
Plastic Design and 
Second-Order Analysis of 

Steel Frames 



W.F. Chen I. Sohal 

Plastic Design and 
Second-Order Analysis 
of Steel Frames 

With 312 illustrations 

Includes two diskettes 

Springer-Verlag 
New York Berlin Heidelberg London Paris 
Tokyo Hong Kong Barcelona Budapest 



W.F.Chen 
Department of Structural Engineering 
Civil Engineering Bldg. 
Purdue University 
West Lafayette, IN 47907 
USA 

I. Sohal 
Department of Civil Engineering 
Rutgers University 
Piscataway, NJ 08855 
USA 

Library of Congress Cataloging-in-Publication Data 
Chen, Wai-Fah, 1936-

Plastic design and second-order analysis of steel frames / W.F. 
Chen, 1. Sohal. 

p. cm. 
Includes bibliographical references and index. 
ISBN-13:978-1-4613-8430-4 
1. Structural frames--Design. 2. Plastic analysis (Engineering) 

3. Steel, Structural. I. Sohal, I. II. Title. 
TA660.F7C44 1994 
624.1'S21--dc20 94-11614 

Printed on acid-free paper. 

© 1995 Springer-Verlag New York Inc. 
Softcover reprint of the hardcover 1st edition 1995 

All rights reserved. This work may not be translated or copied in whole or in part without the 
written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New 
York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. 
Use in connection with any form of information storage and retrieval, electronic adaptation, 
computer software, or by similar or dissimilar methodology now known or hereafter developed 
is forbidden. 
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if 
the former are not especially identified, is not to be taken as a sign that such names, as under­
stood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by 
anyone. 

Production managed by Karen Phillips; manufacturing supervised by Gail Simon. 
Typeset by Asco Trade Typesetting Ltd., Hong Kong. 

9 S 7 6 543 2 1 

ISBN -13:978-1-4613-8430-4 e-ISBN -13:978-1-4613-8428-1 
DOl: 10.1007/978-1-4613-8428-1 



To our families 



Preface 

This book grew out of lectures which the senior author gave for a number of 
years to graduate students of structural engineering at Purdue University. Its 
primary purpose is to present the basic concept and methods of analysis of 
plastic theory, show how to use the theory in practical frame design, and 
discuss how the practical design rules in the AISC-LRFD specifications are 
related to theoretical considerations. These include the effect of axial load 
and shear force on plastic moment capacity, frame, member and local insta­
bility, and the significance of connection detailing in plastic design. Emphasis 
upon these and other design problems commences in Chapter 2 ("Plastic 
Hinges") and continues in Chapter 4 ("Equilibrium Method") and in Chapter 
5 ("Work Method") where the design examples are given and calculations are 
made as complete as possible. The methods described in the first six chapters 
are suitable for hand calculations. Chapter 7 presents a computer-based 
method for the first-order plastic hinge-by-hinge analysis for frame design. 
The computer program FOPA developed and provided in this chapter can 
be used by students to check their homework problems given at the end of 
each chapter in a direct manner. 

The advent of personal computers, particularly in the computing and 
graphics performance of engineering workstations, has made more sophisti­
cated methods of analysis feasible in design practice. While the use of first­
order analysis for elastic or plastic design is still the norm of engineering 
practice, a new generation of codes has emerged which recommends the 
second-order theory as the preferred method of analysis (AISC-LRFD, 1993). 
The advantage of using second-order theory for design practice is that the 
effect of lateral deflections of a structure under loading upon the overall 
geometry can be accounted for in a direct and more accurate manner. The 
result is more realistic and economical design. For this reason, Chapter 8 
provides a compact and convenient summary of the second-order plastic 
hinge-by-hinge analysis methods suitable for computer application. This 
chapter also attempts to take stock of where the structural engineering pro­
fession stands with regard to direct analysis of inelastic strength and stability 
for frame design, and where it might be going. Included with the text are 

vii 
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two diskettes containing two computer programs: one for Chapter 7 (FOPA) 
and the other for Chapter 8 (PHINGE). Both the menu-driven, user-friendly 
programs capable of tracing every plastic hinge formation throughout the 
entire range of loading up to plastic collapse (Chapter 7) or stability failure 
(Chapter 8). 

In writing this book, we have endeavored to present the plastic methods in 
as simple a manner as possible. It also serves as an introduction to the 
second-order theory for inelastic frame design. Attention is directed to both 
analysis and design, and emphasis is placed on the physical significance of the 
various calculations involved. The book is aimed squarely for students of 
structural engineering who are familiar with the processes of elastic analysis 
and design of building frames. The first six chapters present the fundamental 
concepts, theorems, and the plastic methods of analysis and design; numer­
ous examples suitable for hand calculation are included for illustration, and 
suitable problems provided at the end of each chapter for the student. The 
last two chapters are concerned specifically with the computer-based analysis 
methods for frame design. Here, for second-order inelastic analysis (Chapter 
8) only an introduction to this quite difficult subject is given. It combines the 
structural stability theory with the plastic theory described in this book. The 
AISC-LRFD provisions for the use of plastic theory in practical design are 
the basis for the solution of various practical building frame design problems 
developed in the book. 

The two computer programs were developed by Dr. M. Abdel-Ghaffar 
(Chapter 7) and Dr. R.J.Y. Liew (Chapter 8) as a part of their Ph.D. thesis 
work in the School of Civil Engineering at Purdue University for the research 
project entitled "Second-Order Inelastic Analysis for Frame Design" spon­
sored by the National Science Foundation (Dr. Ken Chong, Program 
Director). 

Dr. Sohal wishes to thank his Department Chairman Yong S. Chae, for 
reducing the teaching load for a few semesters; Dean Ellis H. Dill, for his 
encouragement; and his teachers, students, colleagues, friends, computer and 
administrative staff, laboratory technicians, AAUP, research and sponsored 
programs personnel, secretaries, neighbors and the family, for their technical 
and personal support. Particularly, he is indebted to Dr. Pritam and Rupinder 
Dhillon, Dr. Rakesh and Madhu Kapania, Ms. Jessica K. Dembski, Drs. J. 
Wiesenfeld, L.S. Beedle, M. Shinozuka, T.Y. Galambos, D.R. Sherman, R. 
Bjorhovde, S.c. Goel, S. Sridharan, S.T. Mau, J.T.P. Yao, J.T. Gaunt, V.J. 
Meyers, A.F. Grandt, Jr., T.Y. Yang, R.H. Lee, Donald White, K.c. Sinha, 
K.L. Bhanot, M.S. Ghuman, A.F. Saleeb, Eric M. Lui, Y. Ohtani, W.O. 
McCarron, Susan Pritchard, M. Taheri, Andrew J. Hinkle, Bernard Stahl, 
Nipen Saha, Ers. Robinder S. Sandhu, Gopal Gupta, Harjinder Singh, 
Gursharan Wason, Pushpinder Singh, Bhagwan D. Garg, Ajay Garg, Tarsem 
Lal Dhall, Daljit Mand and Dr. Harjit Bhatia, for their informal academic 
and personal support. Special thanks are due to Drs. Eiki Yamaguchi, Lian 
Duan, W.S. King, Mrs. Liping Cai, Messrs, John Sayler, Rajesh Mankani, 



Preface IX 

Edward Gray and Seeth Ramakrishnan, who contributed to the examples 
and solution of the problems in this book, through their home works. He will 
also like to thank Messrs. Ashish Patel, Ghassan Habib, Peter Tardy, Jae 
Chung, Gwo-Gong Huang, Shay Burrows, Mohammed EI-Hawwat, Young 
Cho, David Brill, Nadeem Syed, Satvinder Singh, Mark Palus, Michael 
Steiner, David Stanger, Drs. Anil Khajuria, James Stewart, Ahmed Ezeldin, 
Zheng Zang, Benxian Chen, Luis Aguiar, Ms. Kristi Latimer, Ms. Gargi 
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1 
Basic Concepts 

1.1 Plastic Design vs. Elastic Design 

The plastic design of steel structures has several advantages over the elastic 
design, of which the most important are simplified procedures, savings in the 
cost, and more realistic representation of the actual behavior of steel struc­
tures [1.1]. These advantages are due to the fact that the plastic design fully 
uses the important property of steel called ductility. This chapter will focus 
on the effects of ductility of the steel on the behavior of steel structures and 
show the benefits of the plastic methods that are derived from this property. 
To demonstrate the benefits of ductility, we will present two examples: first a 
hot-rolled section with residual stresses and second a plate with a hole. For 
both examples, the material is idealized to have an elastic-perfectly plastic 
stress-strain behavior as shown in Fig. 1.4. 

1.1.1 Redistribution of Stresses in a H ot-Rolled Section 
with Residual Stresses 
A hot-rolled wide flange section with residual stresses is shown in Fig. 1.1(a). 
These residual stresses are in self-equilibrium. If we apply an axial compres­
sive load to this section, the section will yield first at the elastic limit load 
P y = (O'y - O'rc)A, in which O'y is the yield stress of steel, O'rc is the maximum 
compressive residual stress induced as a result of manufacturing process, and 
A is the cross-sectional area. At this load Py , the stress distribution is shown 
in Fig. 1.1 (b). However, since the steel is ductile, it can take a load higher than 
Py • At a higher load, the section calls upon its less-stressed elastic portions to 
carry the increase in the load while the yielded portions remain at the yield 
stress level O'y as shown in Fig. 1.1 (c). At the plastic limit state, the stress 
distribution is shown in Fig. 1.1(d) and the load corresponding to this state 
has the value Pp = O'yA in which Pp is called the plastic limit load. 

From this example, it is obvious that when we compare this plastic limit 
load with the elastic limit load, the plastic design/analysis is simpler because 
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(a) p = 0 

I 

I 

(c) Py < P < Pp 

(Partially plastic) 

I 

I 

(b) P = Py (Elastic limit) 

(d) P = Pp 

(Fully Plastic) 

o 

FIGURE 1.1. Stresses in a 
rolled I-section: (a) residual 
stresses; (b) stresses at initial 
yielding (or elastic limit 
load); and (c) elastic-plastic 
stresses; and (d) stresses at 
plastic limit load. 

the residual stress (parallel to the direction of applied load) has no influence 
on the computation of the plastic limit load Pp • It is economical because a 
given section takes a higher load on the basis of the plastic method than that 
of the elastic method, i.e., Pp > Py. Since the plastic design considers the ulti­
mate limit state, it represents a more realistic estimation of the maximum 
load-carrying capacity of an actual structure. 

1.1.2 Redistribution of Stresses in a Plate with a Hole 
Another simple example is a plate with a hole, subjected to a tensile load as 
shown in Fig. 1.2(a). In the elastic range, due to stress concentration at the 
hole, the stresses are not uniform as shown in Fig. 1.2(a). So, the plate yields 
first at the elastic limit load Py = uyA/K, in which A is the net area of cross 
section of the plate excluding the area of the hole, and K is the stress concen­
tration Jactor. Again, the plate will take higher loads by using its property 
of ductility and redistributing stresses to its less-stressed elastic portions as 



FIGURE 1.2. Stresses in a 
tension member with a hole: 
(a) stresses at initial yielding 
(elastic limit load); (b) elastic­
plastic stresses; and (c) 
stresses at plastic limit load. 

I 
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o I ~ 
(a) P = Py ( Purely elastic) 

(b) Py < P < Pp (Partially plastic) 

(c) P = Pp (Fully plastic) 

shown in Fig. 1.2(b). At the plastic limit load, the stress distribution becomes 
uniform as shown in Fig. 1.2(c), and the load corresponding to this limit state 
is Pp = O"yA. Here, as in the first example, the advantages of the plastic design 
over the elastic design are obvious. 

Here, as in the elastic design, factors such as buckling, fatigue, and deflec­
tion limitations will require special consideration. 

1.2 The Ductility of Steel 

As mentioned previously, the plastic design has several advantages over the 
elastic design because it fully uses the important property of steel, namely, 
ductility, which may be defined here as the ability of a material to undergo 
large deformation without much loss in its strength. Herein, we will discuss 
the ductile behavior of steel and the redistribution of forces/moments as an 
important benefit of the ductile behavior of steel. 

1.2.1 Stress-Strain Relationship of Steel 
The ability of structural steel to deform plastically at and above yield point 
is illustrated graphically in Fig. 1.3. Note that after the elastic limit is reached, 
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FIGURE 1.3. Stress-strain curve of various steels. 

elongations of up to 15 times the elastic limit strain By take place with no 
significant increase or decrease in stress, thus showing the ductile behavior of 
steel. After that, strain hardening commences at Bst , and further deformation 
can take place only with some increase in stress. 

Generally, steels with higher strength, such as 100 ksi, have relatively lower 
ductility. So, to ensure adequate ductility for plastic analysis and design, 
AISC-LRFD requires that the following specifications be satisfied: LRFD 
A5.1 (page 6-31)-the steel must exhibit a plastic plateau on the stress-strain 
curve; consequently, Fy ~ 65 ksi must be used. 

For simplicity, the stress-strain curves of steel may be idealized by two 
straight lines as shown in Fig. 1.4. Up to the yield stress level, the material is 
elastic. After the yield stress has been reached, the strain is assumed to in­
crease without further increase or decrease of the stress. This is known as the 
elastic-perfectly plastic idealization of the material behavior. 

1.2.2 Redistribution of Forces in a Three-Bar Structure 

Consider the simple three-bar structure shown in Fig. 1.5. This structure is 
statically indeterminate since the internal bar forces cannot be determined 
uniquely by statics alone. In order to determine forces in this structure, we 
need to consider not only the equilibrium condition, but also the compatibil­
ity condition and the stress-strain relationship of the steel. The equilibrium 



FIGURE 1.4. Elastic-per­
fectly plastic idealization for 
the stress-strain relationship 
of steel. 

(B) 

Load 

Py 

cr 

1.2. The Ductility of Steel 5 

(b) 

Unrestricted 
lastic flow 

plastic flow 

Deflection 

Perfectl y plastic 

E 

le) 

(d) Load-deflection relationship 

FIGURE 1.5. Benefits of ductility in a three-bar structure due to force redistribution: (a) 
Purely elastic; (b) partially plastic; (c) fully plastic; and (d) load-deflection relationship. 
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condition of the three bars in Fig. 1.5(a) is 

2TI + T2 = P (1.2.1) 

where TI is the force in Bars 1 and 3, and T2 is the force in Bar 2. The 
compatibility condition of the three bars is that the displacement of Bars 1 
and 3, bl = b3 , must be equal to that of Bar 2, b2 . Using the elastic stress­
strain relation, bl = TILdAE and b2 = T2L2/AE with LI = L3 = Land 
L2 = L/2 where L I, L2, and L3 are the lengths of Bars 1, 2, and 3, respec­
tively, and A is the area of each of the Bars 1,2, and 3, we obtain 

or 

TILl T2L2 
----. 
AE AE 

T2 
TI =2' 

From Eqs. (1.2.1) and (1.2.3), we find 

P 
T2 =2' 

(1.2.2) 

(1.2.3) 

(1.2.4) 

Since the force in Bar 2 is greater than that in Bar 1, Bar 2 will yield first. 
Therefore, the load at which the structure will first yield (P = Py) may be 
determined by substituting T2 = O'yA in Eq. (1.2.4). Thus, 

(1.2.5) 

The corresponding displacement at this yield load is equal to the yield dis­
placement of Bar 2. Using the elastic stress-strain relationship By = O'y/E, we 
have 

O'yL 
by = ByL2 = 2E' (1.2.6) 

After the yielding of Bar 2, the structure reduces to a two-bar structure with 
a constant force equal to O'yA in Bar 2 [Fig. 1.5(b)]. The structure is now 
statically determinate. This two-bar structure can carry further loading until 
the outer two bars also yield at the plastic limit load Pp [Fig. 1.5(c)J given by 

(1.2.7) 

Notice how easily one can compute the ultimate load, that is, the sum of the 
yield loads of each of the three bars. Unlike the elastic analysis, the compati­
bility condition is not required in the determination of the plastic limit load. 
This process of successive yielding of bars causing change of forces among the 
bars in a structure as the load is increased is known as force redistribution. 

The corresponding load-deflection relationship of the three-bar structure 
is shown in Fig. 1.5(d). The load reaches the ultimate load (or the plastic limit 



1.3. Moment-Curvature Relationship 7 

load Pp) at a deflection tJp given by 

uyL 
tJp = eyL1 = E (1.2.8) 

and beyond tJp , the deflections increase without limit while the load remains 
constant at Pp • 

1.2.3 Plastification and Moment Redistribution in Beams 
The stress redistribution in a beam is similar to that in the plate with a hole 
and that in the three-bar structure. The beam can be visualized as being made 
of many horizontal bars or fibers, some of which are in tension while others 
are in compression. At the yield moment My, only the extreme fibers yield. At 
moment higher than My, yielding spreads to the interior fibers too. At the 
plastic limit moment M p , all fibers are yielded. The process of successive yield­
ing of fibers causing change in stresses carried by the fibers as bending mo­
ment is increased is called plastification. 

For statically indeterminate beams and frames, the benefits of ductility are 
even higher than that of simple beams and bars. In these beams and frames, 
the plastic limit load will be much higher than the initial yield load because 
of the two processes, namely, plastification and redistribution. 

In statically indeterminate frames, the moment diagram has more than one 
peak moment. As the loads are applied to and increased in such a beam or 
frame, the cross section at the greatest peak moment will reach the yield 
moment first. As the loads are further increased, this cross section goes 
through the plastification process and a zone of yielding (called plastic zone) 
is formed around this cross section. As the loads are further increased, the 
moment at the yielded or plastic zone remains almost the same and the 
additional loads on the beam or frame are now taken by its less stressed 
sections, thus changing the distribution of moments among various cross 
sections with peak moments. This process of moment redistribution continues 
until plastic zones are formed at other cross sections with peak moments. The 
beam or frame will eventually fail when a sufficient number of these yielded 
zones are developed to transform the beam or frame into a failure mechanism. 

1.3 Moment-Curvature Relationship 

The basic information required in any calculations for plastic behavior and 
strength of framed structures is the relationship between the value of the 
applied bending moment M and the angle of relative rotation () of the ends 
of a beam segment [Fig. 1.6(b)]. The gain in moment-carrying capacity of a 
beam due to plastification depends on this moment-curvature relationship, 
which in turn depends to a large extent on the shape of the cross section. 
Herein, the moment-curvature relationship of a beam with rectangular cross 
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(a) 

-. -F_B-'-'~.~~~"'-+.-
L 

FIGURE 1.6. Bending of a 
rectangular beam segment. 

section in the elastic and elastic-plastic regimes is first derived. Next, full 
plastic moment Mp and shape factor f are described. Then, the moment­
curvature curves of various cross sections are presented and discussed. 

1.3.1 Elastic Regime 
Consider a rectangular beam segment of elastic-perfectly plastic material 
having length L, width b, and depth 2d as shown in Fig. 1.6(a). When this 
beam segment is subjected to bending moment M at its ends, it will bend into 
an arc of radius p as shown in Fig. 1.6(b). The central angle () is related to the 
radius of curvature p by 

L 
() =-. 

p 
(1.3.1) 

The curvature <D, the relative rotation of two sections at a unit distance apart, 
can be expressed as 

<D=£=l(~)=~· (1.3.2) 

Assume that after bending the plane section remains plane and the transverse 
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fibers remain normal to the deflected axis, i.e., shear deformation is negligible. 
Thus, the length of a longitudinal fiber at a distance y from the neutral axis 
is (p + y)O, and the axial strain in the fiber is proportional to the distnace y 
from the neutral axis as [Fig. 1.6(b)] 

e = (p + y)O - L = el>y. 
L 

(1.3.3) 

The moment-curvature relationship can now be obtained by combining the 
compatibility Eq. (1.3.3) with the following stress-strain relationships (1.3.4) 
and equilibrium equations (1.3.5) and (1.3.6). The idealized stress-strain rela­
tionship, as shown in Fig. 1.4, can be written as 

(J = Ee (e < ey) 

(J = (Jy (e ~ ey) 

in which ey is the yield axial strain and E is Young's modulus. 

(1.3.4a) 

(1.3.4b) 

The two equilibrium equations required in the derivation of the moment­
curvature relationship of a segment are 

p = L (JdA = 0 (1.3.5) 

M = L (JydA. (1.3.6) 

Equation (1.3.5) is used to locate the neutral axis of the section. The neutral 
axis for a rectangular section, due to symmetry, is at the centroid of the 
section in the elastic and elastic-plastic regimes. Equation (1.3.6) is used to 
obtain the moment-carrying capacity of a section from a known stress 
distribution. 

When all fibers of the segment are in the elastic regime (e < ey), the stress 
distribution in the section is linear, as shown in Fig. 1.7 (a). The moment­
curvature relationship in this regime is likewise linear and can be obtained by 
substituting (J in Eq. (1.3.6) from Eq. (1.3.4a) and e in the resulting equation 
from Eq. (1.3.3) as follows 

M = E LeYdA = Eel> Ly2dA = Elel> (1.3.7) 

in which I is the moment of inertia of the section. 
As the moment is increased, the axial strain in the fibers increases. The 

segment begins to yield when the axial strain in the extreme fibers reaches the 
yield strain ey. The curvature corresponding to this initial yielding can be 
written from Eq. (1.3.3) as [Fig. 1.7(b)] 

el> = ~ 
y d (1.3.8) 
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Elastic 

Strein 

(a) 

Initial 
yielding 

(b) 

Elastic­
plastic 

(e) 

Fully 
plastic 

(d) 

FIGURE 1.7. Stress and deformation states of rectangular section under pure bending. 

in which 2d is the depth of the rectangular section. The moment capacity at 
this initial yield state can be obtained from Eq. (1.3.7) as 

I (2bd 2
) My = EI<I>y = EeYd = uy -3- = uyS (1.3.9) 

where b is the width of the rectangular section and S is the elastic section 
modulus of the section. For later comparisons, scales in Fig. 1.7 for stress and 
strain profiles have been chosen such that, up to yield point, stress and strain 
are represented by identical horizontal distances on the diagrams, i.e., uy 
in stress diagram is shown equal to maximum ey in the strain diagram in 
Fig. 1.7(b). 

1.3.2 Elastic-Plastic Regime 
A further increase in the moment results in the plastification of the section. 
Here, as in the three-bar example in Section 1.2, the yielded rod/fibers con-
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tinue to carry the constant yield stress (J'y while the less stressed interior elastic 
fibers take additional stresses induced by the increase in the moment as 
shown in Fig. 1.7(c). Here, the strain at the outermost fibers of the beam has 
been doubled. This is possible only by doubling the curvature of the bent 
beam segment. No increase in maximum stress accompanied this increase in 
strain; yield stress (J'y has penetrated one-half the distance in toward the neu­
tral axis. Further increases in strain of the beam outer fibers will result in a 
corresponding increase in the beam curvature Ib, but will only produce a 
further penetration of the constant yield stress (J'y in the beam. This process of 
plastification continues until all fibers are yielded as shown in Fig. 1.7(d). 
During the plastification process, the section is in the elastic-plastic-or 
partially elastic and partially plastic-regime as shown in Fig. 1.7(c). The 
boundary between the elastic and plastic portions is given by 

(1.3.10) 

in which Ji is defined more clearly in Fig. 1.8. The moment-carrying capacity 
of the section in this elastic-plastic regime is obtained from Eq. (1.3.6) by 
substituting (J' = Be = Elby for the elastic portion and (J' = (J'y for the plastic 
portion as follows 

M = f Elby2 dA + f (J'yydA 
A. Ap 

(1.3.11) 

in which Ae and Ap are, respectively, the area of elastic and plastic portions 
of the section. By substituting dA = b dy, M can be written as 

M = 2 I: Elby2b dy + 2 I,d (J'yyb dy (1.3.12) 

E - distribution (j- distribution 

b 

2d _. -f--_._._. 
-'~'G dy_ 

---1---. - ) M 

C >t~ 

(6) (b) 

FIGURE 1.8. Elastic-plastic strains and stresses in rectangular beam under pure 
bending. 
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or 

-3 b 
M = 2E<I>b~ + 20"'2"(d 2 _ ji2). (1.3.13) 

Substitution of ji in Eq. (1.3.13) from Eq. (1.3.10) and of e, in the resulting 
equation from Eq. (1.3.8) along with 0", = Ee" results in the following equa­
tion for the elastic-plastic moment capacity of the rectangular section 

(1.3.14) 

in which M, is the yield moment of the section given by Eq. (1.3.9). Note 
that <1>,/<1> in Eq. (1.3.14) is equal to ji/d. The moment-curvature relationship 
(1.3.14) is shown in Fig. 1.9. The full plastic moment capacity Mp corresponds 
to <I> -+ 00, or <1>,/<1> -+ 0, i.e., Mp = 1.5M, (or 1.50",S). 

1.3.3 Full Plastic Moment and Shape Factor 
The moment-capacity in the elastic-plastic regime can also be expressed in 
terms of this full plastic moment Mp by substituting <I> in Eq. (1.3.11) from 
Eq. (1.3.10) as follows 

or 

M 
My 

M = ~ f y2 dA + 0", f Y dA 
Y A. Ap 

(1.3.15) 

(1.3.16) 

LMp/My 

1.5 - - - - - - - -::...:-:,.;-;,;-;;;-;;;.-;;;.;-;;;.;-;;;.;-....... -----..-..--------1 
1.0 M/My = 3/2 [1-1I3(4)>y 14»)2] 

M/My = 4»/4»y 

o 2 4 6 8 

FIGURE 1.9. Nondimensionalized moment-curvature relationship of a rectangular 
beam. 
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or 

M = ~ f y2 dA + (1, f y dA 
y A. A-A. 

(1.3.17) 

or 

M = ~ f y2 dA + (1, f y dA - (1, f y dA 
y A. A A. 

(1.3.18) 

or 

(1.3.19) 

in which the second term on the right-hand side of Eq. (1.3.19) (1,Z = Mp is 
known as the full plastic moment and is equal to the moment of the stresses 
in the section at the fully plastic state as shown in Fig. 1.7(d); Z is known as 
the plastic section modulus and is equal to the first moment of the area of the 
whole cross section; Se is the elastic section modulus of the elastic portion of 
the section; and Ze is the plastic section modulus of the elastic portion of the 
section. Note that Eq. (1.3.19) can also be written directly from Fig. 1.10 by 
the method of superposition. When the section is fully plastic, the elastic 
portion disappears and Se and Ze in Eq. (1.3.19) reduce to zero. Thus, the full 
plastic moment M p has the general form 

Mp = (1,Z. (1.3.20) 

This is the maximum bending strength of the section, which is equal to the 
numerical sum of the moments of the fully plastic stress profile areas above 
and below the neutral axis, taken about that axis. The plastic moment value 
Mp is the basis for plastic design. The ratio of the plastic moment Mp to the 
yield moment M, represents the amount of reserve strength due to the ductil­
ity of the material leading to plastification and is a function of the cross­
sectional form or shape. This ratio, called shape factor, is a good indicator of 

M + 

FIGURE 1.10. Moment capacity of a section in the elastic-plastic regime using the 
method of superposition. 
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TABLE 1.1. Shape factor for several cross sections 

Shape of cross section 

Isosceles triangle 
Diamond 
Round bar 
Rectangle 
Circular tube 
Wide flange 
Idealized I -section 

Shape factor 

2.32 
2.0 
1.7 
1.5 
1.27 
1.14 
1.0 

the potential of a given section to gain strength by its plastification process. 
The shape factor is defined as 

f _ Mp _ {JyZ _ Z 
- My - ayS - S' (1.3.21) 

For a rectangular section, we have Z = bd2 and S = 2bd2/3, and thus the 
shape factor has the value 

Mp Z bd2 

f= My = S = 2bd2/3 = 1.5. (1.3.22) 

The shape factors for some other cross-sectional shapes are given in Table 
1.1. The shape factor is higher for sections with mass concentrated near the 
centroid of the section and lower for sections with mass concentrated away 
from the centroid. For rolled I-beams and wide flange shapes bent about 
their strong axis, the shape factor f varies between 1.10 and 1.18. For most 
W shapes, it is very close to the value of 1.12. 

The moment-curvature curves for other sections listed in Table 1.1 can 
be derived in a manner similar to that of a rectangular section described 
here. The moment-curvature curves of diamond, rectangular, W14 x 426, 
W21 x 109, and idealized I-sections are shown in Fig. 1.11. The idealized 
curves (elastic-perfectly plastic) for these sections are shown by dashed lines 
in this figure. 

1.3.4 Discussion of Moment-Curvature Curves 
The moment-curvature relationship of the rectangular section, Eq. (1.3. 7) for 
the elastic regime and Eq. (1.3.14) for the elastic-plastic regime, was plotted 
previously in Fig. 1.9. As the curvature is increased, the moment capacity 
approaches rapidly to the full plastic moment Mp. Note that the full plastic 
moment Mp is higher than the yield or elastic limit moment My by 50%. 
Theoretically, the full plastic moment capacity Mp will not be reached until 
the curvature approaches infinity. Practically, 99% of the plastic moment 
capacity is attained at a curvature equal to only four times the yield curvature 
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FIGURE 1.11. Actual and idealized moment-curvature curves. 

<l>y. However, it is expected that the moment capacity of an actual section will 
reach full plastic moment at an early curvature and will have a higher value 
than the full plastic moment at a larger curvature because extreme fibers will 
enter into the strain-hardening regime that has been neglected in the present 
derivation. 

1.4 Flexure of a Fixed-Ended Beam with Uniformly 
Distributed Load 

As discussed in the previous sections, the load-carrying capacity of steel 
structures obtained by plastic analysis is higher than that by elastic analysis 
based on the first yielding of the material in the structures. In statically 
determinate structures, only material plastification at the critical section 
contributes to this higher load-carrying capacity. While in statically indeter­
minate structures, both material plastification at the critical sections and 
moment redistribution among these sections contribute to the higher load­
carrying capacity. Herein, we shall first illustrate this point through the study 
of the bending behavior of a fixed-ended beam subjected to a distributed 
lateral load as shown in Fig. 1.12(a). Next, the hinge-by-hinge method and 
the required rotation capacity, as applied to the present example, are de­
scribed. Finally, some comments are made about the process of plastification 
and moment redistribution of the present example. 
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FIGURE 1.12. Redistribution of moment in a fixed-ended beam with uniformly distrib­
uted load. 

1.4.1 Behavior with Actual and Idealized M-f./J 
Relationships 

In the elastic range, the deflected shape and bending moment diagram of this 
beam can be obtained by solving the governing equilibrium and compatibil­
ity equations. The results are shown by Curve 1, respectively, in Parts (b) and 
(c) of Fig. 1.12. Note that there are three peaks in the moment diagram. The 
moment at the end peaks is wL2/12, and at the center peak it is WL2/24, in 
which w is the intensity of the distributed load and L is the length of the 
beam. As the load is increased, the moment at the greater peaks (end peaks) 
reaches the yield moment My first, and the moment at the smaller (central) 
peak reaches only half the yield moment. In the elastic range, the moment at 
all other sections increases proportionately, thus maintaining the same shape 
of the moment diagram. With a further increase of the load, the plastification 
of some sections near the end peaks starts, and zones of yielding begin to 
form near these peaks. The bending stiffness (or the slope of the moment­
curvature curve) of these yielded zones is smaller compared to that of the 
elastic zones (or the initial slope of the moment-curvature curve). This results 
in a different shape of the bending moment diagram with a higher rate of 
increase in moment in the central elastic portion than that at the plastic end 
portions of the beam. In other words, there is a continuous redistribution 



1.4. Flexure of a Fixed-Ended Beam 17 

of moments along the length of the beam during loading. As the load is 
further increased, the moment at the end peaks will approach the plastic 
moment, while the moment at the central peak will reach the yield moment. 
The beam will fail when the bending moments at all three peaks are equal to 
the plastic moment (Curve 2), thus forming a failure mechanism [see Curve 3, 
Fig. 1.12(b)]. 

The process of moment redistribution can be seen more clearly when we 
carry out the plastic analysis of the fixed-ended beam by employing the 
idealized moment-curvature relationship (the elastic-perfectly plastic type 
shown by the dashed lines in Fig. 1.11). Figure 1.12(d) shows the load­
deflection results of the three-stage loading. In the elastic range, the midspan 
bending moment remains half that at the ends as the load is increased, until 
the beam reaches the limit of its elastic behavior. Stage 1 in Fig. 1.12(d) 
corresponds to the load when the moments at the ends have just reached the 
full plastic moment of the section. As the load w is further increased, the beam 
enters into the elastic-plastic range. In this range, plastic hinges form at the 
fixed ends, permitting them to rotate with constant moment capacity. Stage 
2 corresponds to the theoretical plastic limit load when the moment at the 
center has also reached the full plastic moment capacity of the section. Since 
sufficient plastic hinges have now formed, a failure mechanism has developed 
and no further loading can be supported beyond this stage. Stage 3 corre­
sponds to an arbitrary deformation obtained by a continued deformation 
beyond Stage 2. The deflected shapes and the moment diagrams at these 
three loading stages are shown in Fig. 1.12(b) and (c), respectively. The load­
deflection curve corresponding to the actual moment-curvature relationship 
of the beam is shown as the dashed curve in Figs. 1.12(d). The moment­
curvature responses at the ends and center are shown in Figs. 1.12(e) and (f), 
respectively. At Stage 1, the moment at the ends has just reached Mp [Fig. 
1.12(e)], while at the center of the beam the moment is only half of the plastic 
moment [Fig. 1.12(f)]. As the load is increased beyond this stage, the sections 
at two ends rotate with a constant plastic moment capacity (plastic hinge 
action). The beam now behaves as a simply supported beam with constant 
end moments equal to Mp. At Stage 2, the moment at center also reaches the 
plastic moment. This corresponds to the maximum load-carrying capacity 
state of the beam. Beyond Stage 2, the beam continues to deform as a rigid 
body under constant load. . 

1.4.2 The H inge-by-H inge Method and the Required 
Rotation Capacity 

It is evident from the load-deflection curve shown in Fig. 1.12(d) that the 
formation of each plastic hinge removes one degree of indeterminacy from 
the structure, and the subsequent load-deflection relationship correspons to 
a new and simpler structure. For example, in the elastic range, the deflection 
under the given load can be determined by an elastic analysis with fixed 
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ends. The load-deflection curve between Stages 1 and 2 can be determined 
by an elastic analysis with simply supported ends. The method of finding 
deflection by the elastic analysis of a new structure after the formation of a 
plastic hinge is known as the "hinge-by-hinge method." This method will 
be further elaborated in Example 1.8.2. The computer-based hinge-by-hinge 
analysis, together with its computer program for framed structures, will be 
presented in Chapter 7. 

Note that the fixed-ended beam in this example can go through moment 
redistribution and develop a higher load-carrying capacity only if the end 
sections have adequate rotation capacity, i.e., the section can rotate the re­
quired amount without any significant loss in moment capacity. For exam­
ple, for the fixed-ended beam of Fig. 1.12(a) to reach Stage 2, the end sections 
of the beam must be able to rotate by an angle of Mp L/6EI. This required 
rotation capacity for plastic design must be provided by the ductility of the 
material. This is not a problem for ductile steels, but is can be a problem for 
more brittle materials such as reinforced concrete. 

1.4.3 Some Comments on Plastification and the 
M oment-Redistribution Process 
Note that the process of plastification and moment redistribution in the 
present example beam, in principle, is similar to that of force redistribution in 
the previous example of a three-bar structure. In the case of the three-bar 
structure, when the middle bar yielded, the force in that bar remained con­
stant while forces in Bars 1 and 3 continued to increase. The ultimate load 
was reached when all three bars became plastic. Similarly, during the plastifi­
cation in beam cross sections, when the extreme fibers yielded, the stresses in 
those fibers remained constant while stresses in the intermediate fibers con­
tinued to increase. The full plastic moment capacity was reached when all 
fibers in the cross section were plastic. Thus, the process of plastification 
results in a successive yielding of fibers in the cross section of a member as the 
bending moment is increased and the yielded zone spreads. 

Similarly, during the moment redistribution in the fixed-ended beam, when 
the moments at end sections reached plastic moment capacity, they remained 
constant, while moments at other sections continued to increase. The ulti­
mate load was reached when the moment at the central section also reached 
the plastic moment capacity. As a result, a failure mechanism was developed. 
Thus, the process of moment redistribution results in a successive formation of 
plastic hinges so that less-stressed portions of a structure will carry increased 
moments. 

1.5 Margin of Safety in Plastic Design with Load Factor 

In the allowable stress design, the safety is achieved by using an allowable 
stress that is obtained by applying a factor of safety to the stress level as­
sumed to represent failure. In the plastic design, the safety is achieved by 
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using a factored load obtained by multiplying the given service loads by a 
load factor A.. The application of factor of safety to loads is better since the 
uncertainty associated with loads is higher than that associated with resis­
tances. The load factor by definition is 

A. = limit load 
working load' 

(1.5.1) 

This factor is obtained by first considering the margin of safety of a simply 
supported beam with uniformly distributed lateral load w designed by the 
plastic method and then calibrating it against the allowable stress method as 
laid down in current regulations. By substituting the ultimate load or the 
plastic limit load wp and the working load Wa in Eq. (1.5.1) in terms of the 
plastic moment Mp = WpL2/8 and the allowable moment Ma = WaL2/8, the 
load factor A. for a simply supported beam can be determined as 

A. = wp = 8Mp/L2 = Mp 
Wa 8Ma/L2 Ma 

(1.5.2) 

in which L is the length of a simply supported beam. By replacing M p and Ma 
in terms of stresses, A. can be written as 

(1.5.3) 

In building design, the allowable working stress (1a for compact beams 
(beams having width-to-thickness ratios of their flanges and webs less than 
those specified by AISC specifications) with continuous lateral support is 
equal to 0.66 of the yield stress of the steel section. By substituting (1a = 0.66(1y 
in Eq. (1.5.3), the load factor A. is found to be 

(1y 
A. = 0.66(1y f = 1.52f (1.5.4) 

The shape factor f for wide-flange beams varies from 1.10 to 1.18 with an 
average value of 1.134 and a mode of 1.12, and for wide flange columns the 
shape factor varies from 1.10 to 1.23, with an average of 1.137 and a mode of 
1.115. Using the shape factor equal to the mode of 1.12, we find the load 
factor A. for the plastic design of steel structures as 

A. = 1.52 x 1.12 = 1.70. (1.5.5) 

Thus, in the United States, a load factor of 1.70 is being used for the plastic 
design of steel structures under gravity loads. Note that this load factor is 
also consistent with the usual factor of safety of 1.67 for most structural 
members, used in the allowable stress design specifications. 

For the case of gravity load in combination with wind or earthquake 
forces, allowable-stress design specifications permit a one-third increase in 
computed stresses. So, to be consistent with ASD specification, the load 
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factor A. for the plastic design will be reduced by 25% to 

1.70 
A. = 1.33 = 1.30. (1.5.6) 

This smaller load factor is justified by the fact that the probability of simulta­
neous occurrence of all these load effects is unlikely. 

The values of load factors recommended for plastically designed steel 
structures elsewhere in the world are listed in Table 1.2. 

Since plastic analysis enables the designer to calculate the maximum load 
that the structure is capable of supporting in a direct manner, the corre­
sponding working load is determined by dividing this load by a load factor. 

TABLE 1.2. Load factors for plastic design in various countries 

Assumed 
Country shape factor 

(1) (2) 

USA 1.12 
Australia 1.15 
Canada 1.12 
Germany 
India 1.15 
Mexico 1.12 
Sweden 
United Kingdom 1.15 

Japan 

The following symbols are used: 
D = dead load 
L=liveload 
E = earthquake load 
1 = shape factor 
S = maximum snow load 
W = wind force 
n a period of snowdrifts 

o less than one month 
0.5 one month 
1.0 three months 

Dead load + 
liv~load 

(3) 

(a) 

1.70 
1.75 
1.70 
1.711 
1.85 
1.70 
1.57 
1.75 (portal frames) 

(b) Multiple Load Factors 

Dead load + live 
load + wind or 

earthquake forces 
(4) 

1.30 
1.40 
1.30 
1.501 
1.40 
1.30 
1.34 
1.40 

1.2D + 2.1 (L + S) or 1.4 (D + L + S) 
(normal condition) 

(D + L) + 1.5E or (D + L + nS) + 1.5E 
(under earthquake) 

(D + L) + 1.5W or (D + L + nS) + 1.5W 
(under typhoon) 

Number of 
load factors 

(5) 

2 
2 
2 
2 
2 
2 
2 
3 

6 
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Thus, in plastic design, if the required working load is multiplied by 1.70, the 
fixed-ended beam designed for this increase (factored) load will have the same 
factor of safety 1.70 against plastic collapse as the simple beam. In allowable 
stress design, however, the safety factor against plastic collapse is 1.70 for the 
simple beam case, but it increases to 1.7 x 4/3 = 2.27 for the case of fixed-end 
beam. 

The load factors recommended for all structures including redundant 
structures are the same as those given earlier. Since redundant structures 
such as the fixed-ended beam can develop higher load-carrying capacity 
through redistribution of moments, such structures designed by the plastic 
method will be more economical compared to those when designed by the 
allowable stress method. For example, a 30-foot-Iong fixed-ended beam with 
continuous lateral support and 1 kip/ft uniformly distributed load, designed 
by the allowable stress method will require a W16 x 26 A36 section. How­
ever, if it is designed by the plastic method, it will require only W14 x 22 
A36 secton, thus resulting in an over 15% saving. Note that the W14 x 22 
beam will remain elastic at working load and the deflection at this load will 
be about 1.23 times greater than that of the W16 x 26 beam designed by the 
allowable stress method. Thus, at working loads, plastically designed struc­
tures generally deflect slightly more than a similar continuous structure de­
signed to a working stress limitation. When required, deflections at working 
load can be computed by means of the usual elastic methods. An estimate of 
the working load deflection can generally be obtained more easily by divid­
ing the computed deflection at plastic collapse load by the load factor. This 
will be described in Chapter 6. No more rules are provided to govern deflec­
tions in plastically designed structures; they are subject to the same limita­
tions as those governing working stress designs. 

1.6 A Brief Historical Account of Plastic Design 

Plastic concepts were applied to the design of building frames as early as 
1914 when Kazinczy [1.2] of Hungary published results of his tests on 
clamped girders. He suggested the concept of a plastic hinge. In 1927, Maier­
Leibnitz [1.3] of Germany conducted experiments on continuous beams and 
showed that the ultimate capacity of continuous beams is not affected by 
settlement of their supports. During the late 1930s and afterwards, Baker and 
his associates [1.4] in Great Britain continued tests on steel structures and 
formulated design rules to use the plastic reserve strength. In the 1940s, 
significant progress was made at Brown University in the United States in 
the theory of plastic analysis of structures [1.5]. 

In the late 1940s and during the 1950s, full-scale tests were conducted at 
Lehigh University in the United States by Beedle and his associates [1.6-1.8] 
to study the plastic behavior of large steel frames. These studies focused on 
the verification of plastic analysis and design methods and the conditions 
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that must be satisfied to avoid secondary failure modes such as column 
buckling, local buckling, fatigue, and fracture. 

The plastic design method was approved as an alternative design method 
by the AISC in 1958 and is now treated as a separate chapter of the updated 
Allowable Stress Design Specification issued in 1989 [1.9]. A guide and com­
mentary for plastic design of steel was published by the ASCE in 1971 [1.10]. 
Recently, the AISC (1993) included plastic design as a part of the general 
limit states design specifications known as the load and resistance factor 
design (LRFD) specification [1.11]. 

The rapid advancements in computer hardware and software have moti­
vated researchers and engineers in recent years to make more sophisticated 
inelastic analysis techniques practical for direct engineering design. To this 
end, attempts have been made to modify the plastic hinge method to include 
both strength and stability considerations and to make it consistent with the 
current LRFD specifications [1.12]. In this way it will account for both 
inelastic redistribution of forces and member and system stability in a direct 
manner. This development, known as advanced inelastic analysis, will be de­
scribed in Chapter 8. 

1. 7 Current and Future Design Philosophies 

Current and future design philosophies can be classified as: allowable stress 
design, plastic design with load factor, LRFD with elastic analysis, plastic 
design with LRFD, and design with advanced inelastic analysis. A brief de­
scription of these design philosophies is given in the following. 

1.7.1 Allowable Stress Design 
In the allowable stress design (ASD), it is ensured that the stresses in a struc­
ture under working or service loads do not exceed some predesignated allow­
able values. These allowable values are usually obtained by dividing the yield 
stress or ultimate stress of the material by a factor of safety. The general 
format for an allowable stress design is thus 

R m 
_n >"Q. 
F.S. - if1 nI 

(1.7.1) 

where Rn = nominal resistance of the structural member expressed in unit of 
stress; Qn = nominal working or service stresses computed under working 
load conditions; F.S. = factor of safety (e.g., 1.5 for beams, 1.67 for tension 
members, 1.92 for long columns); i = type of load (i.e., dead load, live load, 
wind load); and m = number of load types. 

The left-hand side ofEq. (1.7.1) represents the allowable stress of the struc­
tural member or component under a given loading condition (for example, 
tension, compression, bending, or shear). The right-hand side of the equation 
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represents the combined stress produced by various load combinations (for 
example, dead load, live load, or wind load). Formulas for the allowable 
stresses for various types of structural members under various types of load­
ings are specified in the AISC specification [1.9]. A satisfactory design is 
reached when the stresses in the member computed using a first-order elastic 
analysis under working load conditions do not exceed their allowable values. 
The effects of secon-order moments and inelasticity are considered in an 
indirect manner. One should realize that in the allowable stress design, the 
factor of safety is applied only to the resistance term, and safety is evaluated 
at the service load. Thus, ASD is characterized by the use of unfactored 
"working" loads in conjunction with a single factor of safety applied to the 
resistance. Because of the greater variability and unpredictability of the live 
load and other loads in comparison with dead load, a uniform reliability is 
not possible with ASD. 

1.7.2 Plastic Design with Load Factor 
In the plastic design (PD) with load factor, it is ensured that the factored load 
combinations or their effects do not exceed the maximum plastic strength of 
the structure or component. It has the format 

(1.7.2) 

where Rn = nominal plastic strength of the structure or component; Qn = 
nominal load or load effect (e.g., axial force, shear force, bending moment); 
i = type of load (D = dead load, L = live load, W = wind load); A. = load 
factor [e.g., 1.70 for (D + L), 1.30 for (D + L + W)J; and m = number of 
load types. 

Note that in this method of design, safety is incorporated only in the load 
term and is evaluated at the ultimate (plastic strength) limit sate. Applying a 
factor of safety to the load term is more appropriate because uncertainty 
associated with loads is higher than that associated with resistances. The 
method is superior than the allowable stress design approach in the sense 
that it considers redistribution of forces in beams and frames in a more direct 
manner. The effects of secon-order moments are considered indirectly. Since 
only a single factor of safety (called load factor) is applied to all loads, a 
uniform reliability cannot be fully achieved with PD. 

1.7.3 Load and Resistance Factor Design with Elastic 
Analysis 

In the load and resistance factor design, it is ensured that the factored load 
effects do not exceed the factored nominal resistance of the structural mem­
ber or component. Here, we have two safety factors. One is applied to the 
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loads, the other to the resistance of the material. This is more realistic be­
cause both loads and resistances have different uncertainties. Thus, the load 
and resistance factor design has the format 

m 

lPRn ;e:: L YiQni (1. 7.3) 
i=l 

where Rn = nominal resistance of the structural member; Qn = nominal load 
effect (e.g., axial force, shear force, bending moment); lP = resistance factor 
(~1.0) (e.g., 0.9 for beams, 0.85 for columns); i = type ofload (e.g., D = dead 
load, L = live load, S = snow load); Yi = load factor (usually> 1.0) corre­
sponding to Qni (e.g., l.4D and 1.2D + 1.6L + 0.5S are the factored load 
combinations recommended by LRFD); and m = number of load types. 

Note that LRFD uses separate factors for each load and can therefore 
reflect the degree of uncertainty of different loads and combinations of loads. 
As a result, a more uniform reliability can be achieved. 

In the 1993 LRFD specification [1.11], the resistance factors were de­
veloped mainly through calibration with ASD [1.13], whereas the load fac­
tors were developed based on a statistical analysis [1.14-1.15]. A satisfactory 
design is one in which the probability of exceeding a limit state of the struc­
tural member (for example, yielding, fracture, or buckling) is minimal. Based 
on the first-order second-moment probabilistic analysis [1.16], the safety of 
the structural member is measured by a reliability or safety index [1.11] 
definded as 

f3 = In(Rn/Qn) 
JVi + VJ 

(1.7.4) 

where R = mean resistance; Q = mean load effect; VR = coefficient of varia­
tion of resistance = (JR/R; and VQ = coefficient of variation of load effect = 
(JQ/Q in which (J is the standard deviation. 

The physical interpretation of the reliability index f3 is shown in Fig. 1.13. 
The shaded area in the figure represents the probability in which In(R/Q) < 0, 
i.e., the probability that the resistance will be smaller than the load effect, 
indicating that a limit state has been exceeded. The larger the value of p, the 
smaller the shaded area, so that it becomes more improbable that a limit 
state will be exceeded. Thus, the magnitude of p reflects the safety of the 
member. In the development of the current LRFD specification [1.11], the 
target values of P were selected as 3.0 for members and 4.5 for connectors 
under dead plus live and/or snow loading. A higher value of P for connectors 
ensures that the connections are designed to be stronger than their adjoining 
members. 

In this design method, the designer has an option to either carry out the 
second-order elastic analysis for directly computing load effects (moments 
and forces) in the members or carry out the first-order elastic analysis and 
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FIGURE 1.13. Reliability 
index. 
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estimate the second-order effects by using the moment amplification factors 
Bl and B2 provided in the specifications [1.11]. The effects of inelasticity are 
considered indirectly. The method is more appropriate for tall buildings in 
which secon-order effects are more pronounced than the inelasticity effects. 

1.7.4 Plastic Design with LRFD 
This method combines the advantages of plastic design with load factor 
(Section 1.7.2) and load and resistance factor design with elastic analysis 
(Section 1.7.3). The format for this design method is the same as that given by 
Eq. (1.7.3). In this method, it is ensured that the member forces caused by 
factored loads and determined by plastic analysis are less than the resistances 
(mainly moments) reduced by the ~-factors. The plastic method will be illus­
trated in detail in Chapters 4 and 5. This design method has the following 
characteristics. 

1. It considers the redistribution of first-order forces/moments in structures 
in a direct manner. 

2. The second-order moments can be estimated by using the amplification 
factors Bl and B2 • 

3. It is more appropriate for the design of low-rise buildings for which the 
effects of inelasticity are more pronounced than the effects of instability. 

4. It gives a more realistic representation of the actual behavior of structures, 
and it is simple to use. 

Plastic design with LRFD is a method for proportioning structures so 
that no strength limit state is exceeded when the structure is subjected to all 
appropriate factored load combinations. Here, as in PD with load factor, 
strength limit states are the basis for design and are related to safety and 
load-carrying capacity (e.g., the limit state of plastic moment and buckling). 
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1.7.5 Design with Advanced Inelastic Analysis 

Currently, inelastic analysis is addressed by design specifications under the 
category of plastic analysis/design. The distinguishing feature of the plastic 
method of analysis/design is that it accounts for inelastic force redistribution 
in the calculation ofload effects. Given the calculated load effects for a partic­
ular member, the specifications provide design equations, which the member 
forces must not violate if the member is to be deemed adequate. However, 
advancements in computer hardware, particularly in the computing and 
graphics performance of engineering workstations, are making more sophis­
ticated methods of analysis feasible in design practice. These more sophisti­
cated analysis techniques hold the promise of more realistic prediction of 
load effects and overall frame performance, and therefore in certain cases, 
greater economy and more uniform safety. If the significant behavioral ef­
fects are considered properly in these more sophisticated methods, separate 
checks of member design equations become unnecessary. Any method of 
second-order inelastic analysis involving the direct consideration of both 
member strength and stability effects such that separate member capacity 
checks are not needed is referred to here as an advanced inelastic analysis. At 
present, AS4100 [1.17] is the only design specification that explicitly allows 
the designer to disregard member capacity checks if an advanced inelastic 
analysis is employed. 

There are three different inelastic analysis approaches currently available 
with respect to their use in the design of planar frames. These advanced 
methods are referred to here as the plastic-zone, the rigid-plastic hinge, and 
the elastic-plastic hinge approaches. As implied by the name, the elastic­
plastic hinge approach involves the modeling of inelastic behavior through 
"zero-length" plastic hinges that remain elastic until the plastic cross-section 
strength of the member is reached. The rigid-plastic hinge approach also 
represents the material yielding effects through a plastic hinge model, but the 
effects of elastic deformations in the structure are neglected. The plastic-zone 
approach involves the explicit modeling of the distribution of plasticity 
throughout the structural members. 

Because the members are modeled as elastic elements between plastic 
hinge locations in the elastic-plastic hinge approach, this method generally 
overestimates the strength and stiffness of the actual structure. However, a 
number of research studies have demonstrated that for practically designed 
frames, elastic-plastic hinge approaches predict essentially the same system 
strength and stability as a more refined (and more expensive) plastic-zone 
analysis [1.18]. In other words, a second-order elastic-plastic hinge analysis 
may in many cases satisfy the requirements for advanced inelastic analysis. 

At present the elastic-plastic hinge method is still in its active development 
stage. Attempts are being aimed (a) to make the plastic hinge method work in 
engineering practice using workstations and (b) to make the design process 



1.8. Examples 27 

consistent with design codes and specifications. A detailed description of this 
new development is given in Chapter 8. 

1.8 Examples 

To further illustrate the benefits of ductility-induced redistribution of forces 
and moments in a structural system, we present three additional examples in 
this section. The first one deals with the redistribution of forces, and the 
second and third deal with the redistribution of moments. 

Example 1.8.1. The three bars of the symmetric truss shown in Fig. 1.14 have 
equal cross-sectional area A and are made of steel with yield stress G'y and 
Young's modulus E: 

1. Plot the load-deflection (P-M relationship of the truss. 
ii. Plot the relationships between member forces and the total force P. 

iii. Determine the ultimate load and the plastic reserve strength beyond the 
elas tic limit. 

Solution: The first step toward obtaining the load-deflection relationship is 
to determine the member forces in terms of the total applied force P. The 
equilibrium of the truss in the vertical direction has the simple form for the 
symmetric structure 

(1.8.1) 

in which Tl and Tz are the forces in Bars 1 and 2, respectively. Note that 
forces in Bars 1 and 3 are equal. Since there are two unknowns and only one 
equilibrium equation, the structure is statically indeterminate by one degree 
and one more equation is required to determine Tl and Tz . The second 
equation has different forms depending on whether the stress state in each 
bar is in the elastic or plastic regime. This is given in the following. 

FIGURE 1.14. Three-bar 
symmetric truss. 

L 

p 
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Elastic Regime: Referring to Fig. 1.14, the compatibility condition at the 
joint is 

(1.8.2) 

in which .::\1 and .::\2 are the extensions of Bars 1 and 2, respectively. In the 
elastic regime, the extensions .::\1 and .::\2 can be expressed in terms of T1 and 
T2 by the elastic stress-strain relationships 

.::\ _ T1L 
1 - AE cos 45° 

and 

Substitution of .::\1 and .::\2 in Eq. (1.8.2) results in 

T2 
T1 =2· 

Solution of Eqs. (1.8.1) and (1.8.5) gives 

and 

1',- P 
1- 2+)2 

2P 
T2 = 2 +)2. 

(1.8.3) 

(1.8.4) 

(1.8.5) 

(1.8.6) 

(1.8.7) 

The load-deflection relationship in this regime can now be obtained from 
Eq. (1.8.4) as 

(1.8.8) 

Since T2 is greater than T1 = T3, Bar 2 will yield first. The elastic limit load Py 
is determined by equating stress in Bar 2 to the yield stress {1y. 

T2 2Py 

{12 = A = (2 + )2)A = {1y (1.8.9) 

or 

2+)2 
Py = 2 A{1y. (1.8.10) 

The corresponding elastic limit deflection .::\y of the truss at Py is 

(1.8.11) 
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Elastic-Plastic Regime: When the load P is increased beyond the elastic limit 
load Py , the truss enters into the elastic-plastic regime. Here, Bar 2 is in the 
yield state while Bars 1 and 3 remain in the elastic state. The compatibility 
equation (1.8.2) is now replaced by the yield condition 

Solution of Eqs. (1.8.1) and (1.8.12) gives 

P - Au 
T1 = .j2y. 

(1.8.12) 

(1.8.13) 

Since Bars 1 and 3 are still elastic, the load-deflection relationship in this 
regime can be obtained from Eq. (1.8.3) as 

A = ~ = (P - AO'y)2L 
cos 45° .j2 AE . 

(1.8.14) 

Plastic Regime: In the fully plastic regime, all three bars yield, and the yield 
condition for the three bars is 

Tl = T2 = T3 = AO'y. (1.8.15) 

Solution of Eqs. (1.8.1) and (1.8.15) gives the plastic limit load or the plastic 
collapse load as 

(1.8.16) 

Note that at the limit load, the deflection will be unrestricted in this regime 
as shown in Fig. 1.15(a). However, the deflection at the onset of this limit 
state can be determined from Eq. (1.8.2) as 

~ = ~ = 20'yL = 2~ . 
p cos 45° E y 

(1.8.17) 

The percentage of the plastic reserve strength beyond the elastic limit load for 
the three-bar truss is 

(1.8.18) 

The load-deflection relationship and the relationship between member forces 
and the total load P are plotted, respectively, in parts (a) and (b) of Fig. 1.15. 
It is seen that the truss can carry an ultimate load in excess of Py by 41.4%, 
but only at the expense of a larger deflection. However, the total displace­
ment under the limit load Pp is only twice that under Py • In fact, the real truss 
will carry loads in excess of Pp with the actual displacement at Pp less than Ap 
because of strain-hardening for real materials. 

Example 1.8.2. Use the hinge-by-hinge method and plot the load-deflection 
relationship of a fixed-ended beam with a concentrated lateral load at one-
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FIGURE 1.15. The force redistribution in a fixed-ended beam: (a) load-deflection rela­
tionship and (b) member forces versus total load relationship. 

third point as shown in Fig. 1.16(a). Determine the amount of plastic reserve 
strength contributed by the process of moment redistribution. Assume that 
the bending stiffness of the beam is EI. 

Solution: As described in Section 1.4, the hinge-by-hinge method consists of 
a series of elastic analyses. It begins with an elastic analysis of the original 
beam. When the maximum moment in the beam reaches the plastic moment 



(d) (9) 

FIGURE 1.16. The changes in moment diagrams through hinge-by-hinge analysis of a 
fixed-ended beam. 

Mp, a hinge with the plastic moment capacity Mp is inserted at the point of 
maximum moment (called plastic hinge), and an elastic analysis is performed 
on the resulting simpler structure. This process is continued until a failure 
mechanism is formed. Since the load-deflection relationship is linear for each 
of these elastic analyses, it is necessary to compute the load and deflection 
only when a new plastic hinge is introduced to the beam. 

Elastic Analysis of the Original Beam: The moment distribution for this in­
determinate beam is shown in Fig. 1.16(b) with (see, for example, AISC steel 
manual [1.9]) 
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4 
MA = -27 PL (1.8.19) 

8 
MB = 81 PL (1.8.20) 

and 

(1.8.21) 

Since the maximum moment occurs at A, a plastic hinge will form first at A 
when IMAI = Mp. The first hinge load P = PI is then 

27 Mp Mp 
PI = 4£ = 6.75£. (1.8.22) 

The deflection at B corresponding to this first hinge load is 

A = ~ MpL2 = 0024 MpL2 
I 81 EI . 7 EI . (1.8.23) 

Elastic Analysis After the Formation of Plastic Hinge at A: The moments at 
Band C for the indeterminate beam shown in Fig. 1.16(c) are: 

Mp 14 
M B = -T+ 81 PL (1.8.24) 

and 

(1.8.25) 

Since MB has a larger numerical value [Fig. 1.16(d)], the next plastic hinge 
will form at B, when MB is equal to Mp. The second hinge load P = P2 is then 

243 Mp Mp 
P2 = 28 £ = 8.67 £' (1.8.26) 

The moment Mc at C corresponding to this load is 

(1.8.27) 

The deflection at B corresponding to the second hinge load has the value 

M L2 
A2 = 0.0423 ;1 . (1.8.28) 

Elasitc Analysis After the Formation of Hinges at A and B: The beam is 
now statically determinate [Fig. 1.16(c)] and its internal forces and moments 
are shown in Fig. 1.16(f). The moment at C [Fig. 1.16(g)] can be expressed 
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as 

Me = (p - 6~p)GL) - Mp. (1.8.29) 

The next plastic hinge will therefore form at C when IMel = Mp. The third 
hinge load P = P3 is then 

(1.8.30) 

The deflection at B corresponding to the third hinge load is the deflection 
of the elastic cantilever beam of length 2L/3 under the vertical load 
(P3 - 6Mp/L = 3Mp/L) combined with the end moment Mp as 

A = _ Mp (~L)2 (3Mp/L)(~L)3 
3 2EI 3 + 3EI 3 

or 

(1.8.31) 

At P = P3 , a failure mechanism has formed and the deflection will become 
unrestricted. Note that the plastic limit load (Pp = P3 ) can be determined 
directly from Fig. 1.16(g) with Me = Mp. There is no need to know the order 
of hinge formation for the direct calculation of the limit load. The load­
deflection relationship is plotted in Fig. 1.17. 

The percentage of plastic reserve strength for the beam beyond the elastic 
limit through the moment redistribution is 

9Mp/L - 6.75Mp/L = 33.3%. 
6.75Mp/L 

Example 1.8.3. Plot the load-deflection relationship of a fixed-ended beam 
with a concentrated load acted at the midspan. Determine the contribution 
of the moment redistribution to the plastic reserve strength, if any. 

Solution: The moment diagram for the given beam is shown in Fig. 1.18(a) 
with 

(1.8.32) 

Since the moments at A, B, and C are all equal, they reach the value Mp 
simultaneously, thus forming the three hinges at the same time. The load 
corresponding to this state has the value 

8Mp 
P1=Y· 
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FIGURE 1.17. The load-deflection relationship reflecting the moment redistribution in 
a fixed-ended beam. 

The deflection at C corresponding to this load can be determined directly 
from the elastic limit solution in usual manner 

M L2 
.11 = 0.0417 ;/ . 

Note that at this load a failure mechanism has developed and the deflection 
will become unlimited as shown in Fig. 1.18(b). 

This example shows that in the present case, contribution through moment 
redistribution to the plastic reserve strength of the indeterminate beam can­
not be realized. 

1.9 Summary 

From the preceding discussions of simple examples, it is seen that one of the 
major advantages of plastic analysis and design is its relative simplicity. To 
solve the elastic problem, it was necessary to formulate an equilibrium equa­
tion and a compatibility equation. Thus, the problem involved solution of 
two simultaneous linear algebraic equations. However, the solution of the 
plastic problem was much simplified by substitution of the yield stress or the 



FIGURE 1.18. No contribu­
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-Plastic Hinges at A,B, and C 
(Failure Mechanism) 

(b) 

plastic moment into the equation of equilibrium. Furthermore, the maximum 
load-carrying capacity computed by the plastic analysis based on an ideal­
ized plastic material has real significance as a measure of ultimate strength of 
a real structure, and the load at which the limit state is reached can usually 
be determined in a direct and simple manner. On the other hand, the elastic 
limit load computed by the elastic analysis based on a linear elastic material 
is relatively meaningless as a measure of strength, although it may be appro­
priate for the computation of stresses and strains under working loads. 

The general description of plastic analysis applies to any structural mate­
rial with sufficient ductility. It is, of course, particularly appropriate to mild 
steel with its sharply defined yield point and large strain value before the 
beginning of strain hardening. Thus, the plastic reserve strength cannot be 
fully realized for structures made of brittle materials that will crack or soften 
under relatively small strains, or for structures made of slender bars that 
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will buckle in compression within either the elastic or the plastic range. For 
bridge-type structures, repeated loadings might fatigue the material, and the 
plastic analysis may not be appropriate for this type of application. 

The major portion of this book will be concerned with the plastic analysis 
of steel-framed structures. In general, if the analysis problem can be solved, 
design can always be achieved by an inverse trial-and-error procedure. How­
ever, some direct approach to the design problem based on the equilibrium 
method and work method will be presented in Chapters 4 and 5, repectively. In 
the following chapters the basic plastic theory and the methods of plastic 
analysis and design will be set forth and the necessary secondary design 
factors such as the details of connecting joints, the deflection limits, and the 
overall and local buckling requirements for compression members will be 
treated in accordance with the 1993 AISC load and resistance factor design 
specifications [1.11J or the plastic design chapter as a part of the 1989 AISC 
allowable stress design specifications [1.9]. Since the serviceability provisions 
(e.g., deflections, drift, and vibration) of ASD and LRFD are similar, mem­
bers controlled by serviceability criteria are not affected by the choice of 
design method. They are subject to the same limitations and checking proce­
dures as those used in allowable stress designs. The reader who is interested 
in the early experimental verifications of the "simple plastic theory" as applied 
to engineering practice may find the 1971 ASCE manual on "Plastic Design 
in Steel" interesting and informative [1.10]. 
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Problems 
1.1. A member made of A36 steel has a maximum compressive residual stress of 

10 ksi and maximum tensile residual stress of 15 ksi. If the area of cross section 
of the member is 2 in2 , determine the yield load and plastic limit load for the 
member when it is subjected to 
(a) compressive axial load (Pey = 52 kips, Pep = 72 kips). 
(b) tensile axial load (P,y = 42 kips, P,p = 72 kips). 

1.2. Determine the yield and plastic limit loads for the A36 steel plate shown in Fig. 
P1.2. Assume that the radius r of the fillet is 0.5 inch (K = 1.8). (Py = 37.5 kips, 
Pp = 67.5 kips). 

1.3. A rigid cross-beam is supported by three equally spaced tension rods. The two 
outside rods are of length L and area A and the center rod is of length 2L and 
area A. What maximum load Pp will the cross-beam support if the load is 
applied at the center? Draw the load-deflection curve. Compute Py, by, and bp 
(Pp = 3Auy, Py = (2.5)Auy, bp = 2Ley, by = Ley). 

1.4. By assuming that the horizontal bar of the structure shown in Fig. Pl.4 is rigid, 
determine 
(a) yield load P = Py [Py = (5/3)Auy]. 
(b) end deflection of the bar at yield load (b = Ley). 
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FIGURE P1.2 

FIGURE P1.4 
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(c) plastic limit load P = Pp (Pp = 2AO"y). 
(d) end deflection of the bar when load starts to increase above plastic limit 

load. Assume est = lOey (0 = lOLey). 

1.5. Each cable of the structure shown in Fig. P1.5 has a cross-sectional area of 
0.2 in2 and is made of A36 steel. By assuming horizontal bar to be rigid, 
determine 
(a) yield load P = Py [Py = 1.25AO"y]' 
(b) deflection of C at yield load (0 = Ley). 
(c) plastic limit load P = Pp [Pp = 1.5AO"y]' 
(d) deflection of C when load P starts to increase above the plastic limit load. 

Assume est = 12ey (oc = 12Ley). 

1.6. The three-bar truss shown in Fig. 1.14 is subjected to horizontal load Q rather 
than the vertical load. Determine the plastic limit load Qp (Qp = J2 AO"y). 

1.7. The three-bar structure shown in Fig. 1.5 is subjected to the vertical load P half 
way between Bars 1 and 2, rather than directly under Bar 2. Determine the value 
of P at elastic and plastic limit (Py = Pp = 2AO"y). 
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FIGURE P1.5 
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1.8. What is the plastic limit load Pp ofthe three-bar truss shown in Fig. 1.14, if Bars 
1 and 3 are mild steel and Bar 2 is high-strength steel with a yield stress of three 
times of mild steel. Also, compute t'1p • Assume the same Young's modulus for 
both steels [Pp = (j2 + 3)Auy l ' t'1p = 3L8y1 )]. 

1.9. Compute the plastic limit load Pp for the structure shown in Fig. 1.5, if Bar 1 is 
rigid, Bar 2 is mild steel, and Bar 3 is high-strength steel with a yield stress of 
twice that of mild steel. What is the load at first yield? Also, compute by and bp at 
Bar 3 (Py = 3Auy 2, Pp = 5Auy 2' c5y3 = Ley. c5p3 = 2Ley). 

1.10. The three-bar truss shown in Fig. 1.14 is subjected to the following loading 
path: The vertical load P is first increased from zero to the elastic limit 
load Py and then held constant at Py , while a horizontal load H is applied 
and increased to the collapse state. Determine the maximum value of H 
(Hp = AUy /j2)? 

1.11. What size cross-beam is required to support the maximum load Pp = 3uy A of 
the structure shown in Fig. 1.5, if the cross-beam of length L is not rigid but 
made of the same material as the bars (Z = 1/2AL)? 

1.12. Using the hinge-by-hinge method, plot the load-midspan deflection relationship 
of the beams shown in Fig. P1.12. Determine the plastic reserve strength con­
tributed by the moment redistribution process. Assume that the bending stiff­
ness of the beams is EI. 

1.13. For mild steel, there exists an upper yield stress u; and a lower yield stress 
uy at the same yield strain 8y" Find the corresponding initial yield moment 
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FIGURE P1.12 

My, fully plastic moment Mp , and shape factor f of a rectangular section 
(My = (1;S, Mp = (1yZ,f = 1.5(1y/(1;). 

1.14. To attain the fully plastic moment condition, the corresponding curvature ~ 
will theoretically have to approach infinity. For all practical purposes, the fully 
plastic moment capacity can be approximately reached when the curvature is 
less than four times that of the initial yield curvature ~Y" Show this fact for an 
actual beam of rectangular section (M = O.98Mp). 
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1.15. A cantilever beam with a double-web section shown in Fig. P1.15 was designed 
to resist a concentrated load of 5 kips under allowable stress conditions 
(ua = 20 ksi). 
a. Determine the factor of safety against plastic collapse. 
b. If an additional load of 20 kips is to be added to the free end of the beam, 

design the required cover plates. (Use 1" thick plates and A36 steel.) 



2 
The Plastic Hinge 

2.1 Introduction 

The plastic hinge concept was introduced in Chapter 1 when the "hinge-by­
hinge" method was applied to solve the fixed-ended beam problems. In this 
chapter, we shall elaborate the concept of the plastic hinge and plastic mo­
ment. The methods of computing the plastic moment and the methods of 
using plastic moment in the design of a cross section will be presented first. 
The plastic moment capacity of a section is significantly affected by factors 
such as axial and shear forces on the section, and the compactness of the 
section. The effects of these factors on the plastic moment capacity of a 
section will then be described. Since the strength of a connection of a given 
member to the adjoining members may govern the ultimate moment­
carrying capacity of the member, methods of estimating the strength of a 
given connection and methods of designing the connection under a given 
loading will be presented in the later part of this chapter. 

2.2 Moment-Curvature Relationship and Plastic Hinge 
Length 

To illustrate the concept of plastic hinge, it is instructive to look at the 
elastic-plastic behavior of a simple structure. Consider a simply supported 
beam with an I-shaped cross section, subjected to a concentrated load at 
the midspan (Fig. 2.1). The behavior of the beam mainly depends on the 
moment-curvature (M-<I» relationship of its cross section. The M-<I> relation­
ship of an I-section will thus be derived in the following. 

2.2.1 Moment-Curvature Relationship of I-Section 
Here, as for a rectangular section in Section 1.3, the M-<I> relationship of an 
I-shaped section (Fig. 2.2a) is derived based on the usual assumptions: (1) the 

42 
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FIGURE 2.1. A simply sup­
ported beam of an I-shaped 
section with a concentrated 
load at midspan. 

b 

(a) (b) 

Q 

L 

(c) 

FIGURE 2.2. Elastic-plastic stress distributions in an I-section. 

(d) 

plane section remains plane after bending of the section, (2) the elastic­
perfectly plastic stress-strain relationship of the material, and (3) the equilib­
rium conditions. The moment-curvature relationship of an I-section can be 
divided into three regimes: (1) the entire section is elastic; (2) when web is 
elastic and flanges are partially plastic; and (3) web is partially plastic and 
flanges are fully plastic. 

Regime I: Elastic-In the elastic regime, the stress distribution will be linear 
throughout the cross section as shown in Fig. 2.2(b). The moment resistance 
MR of the section can be obtained by summing up the moments of the 
stresses shown in Fig. 2.2(b) as 

MR = ~[CTm( d ~ tl)}d - tl)tw[~(d - tl)] 

+ ~[CTm - CTm(d ~ tl) }Ib ( 2d - ~tl) + [CTm( d ~ tl) }lb (2d - tl) 
(2.2.1) 

in which CTm is the maximum stress in the section and d, tl, tw , and bare 
dimensions of the I-section as shown in Fig. 2.2(a). The first terms in the 
right-hand side of Eq. (2.2.1) comprise the moment due to the linear elastic 
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stress in the web, the second term is the moment due to the triangular stress 
[O"rn - O"rn(d - tf)/d] in the flanges, and the last term is the moment due to the 
uniform stress [O"rn(d - tf)/d] in the flanges. Equation (2.2.1) can be simplified 
to 

2 . 3 (tw) (tJ) (tf) (b) MR = 30"rn(d - tf ) d + O"rn d b d -"3 + O"m(d - tf ) d (2d - tf)tf · 

(2.2.2) 

The flanges begin to yield when O"m is equal to O"y. The moment resistance at 
this stage is called yield moment My, given by 

2 3 (tw) (tJ) ( t f) (b) My = 30"y(d - tf ) d + O"y d b d -"3 + O"y(d - tf ) d (2d - tf)tf · 

(2.2.3) 

The curvature at the initial yield moment is given by 

e 0" 
<11 =..1'=-..1'.. 

y d Ed· (2.2.4) 

Regime II: Flange Partially Plastic-The stress distribution in this regime is 
shown in Fig. 2.2(c) and the moment resistance corresponding to this stress 
distribution can be written as 

+ ~[O"y - O"y( d ~dtf) J [tf - d(l - ex)]b 

{2(d - tf ) + ~[tf - d(l - ex)]} 

+ [O"y(d ~dtf) J[tf - d(l- ex)]b{2(d - tf ) + [tf - d(l- ex)]} 

+ O"y[d(l - ex)]b[2d - d(l - ex)] (2.2.5) 

in which the first term is the moment due to the elastic stress in the web, the 
second and third terms are the moments due to the elastic stress in the 
flanges, and the last term is the moment due to the yield stress in the flanges 

(2.2.6) 
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Regime III: Web is Partially Yielded-The stress distribution in this regime 
is shown in Fig. 2.2(d), and the moment resistance corresponding to this 
stress distribution can be written as 

MR = ahb(2d - tf ) + ay(d - tf - IXd)tw[2IXd - (d - tf - IXd)] 

+ ~ay(lXd)tw(~lXd) (2.2.8) 

in which the first term is the moment due to the yield stress in the flanges, and 
the second and third terms are the moments due to the yield stress and elastic 
stress in the web, respectively. Simplification of Eq. (2.2.8) leads to 

The section will become fully plastic when IX reduces to zero. The moment 
resistance corresponding to this fully plastic state can be obtained by sub­
stituting IX = 0 in Eq. (2.2.9) 

(2.2.10) 

The M -<I> relationship of other shapes of sections can be obtained in a similar 
manner. Figure 2.3 shows the M-<I> relationship of W8 x 31 plotted by sub­
stituting appropriate values of d, tf , band tw in Eqs. (2.2.2), (2.2.7), and (2.2.9). 

2.0 • Diamond 2.00 

• Round 1.70 

1.5 • Rectangle 1.50 

0 Tube 1.27 
Mp IMy 

I 'II' 1.14 

1.0 

0.5 

o 1.0 

FIGURE 2.3. Moment-curvature curves of various sections. 
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The M - <l> curves of rectangular and some other sections have also been 
included here for comparison. 

2.2.2 Plastic Hinge Length 
Now, we return to the simply supported beam shown in Fig. 2.1. The beam 
will remain elastic when Q is less than Qy = 4My/L. When Q = Qy, the ex­
treme fibers of the section at midspan begin to yield. When the load Q is 
increased beyond Qy, the maximum moment at midspan and the moments at 
the sections near the midspan exceed the yield moment My [Fig. 2.4(b)], thus 
spreading the yielding over a length of the beam like that shown in Fig. 2.4(c). 
The spreading of the yielded zone continues until the maximum moment at 
midspan reaches Mp [Fig. 2.4(d)]. At this state the entire section at midspan 
is yielded, and this yielded zone spreads out over a length called plastic hinge 
length [Fig. 2.4(e)]. The increase in beam curvature corresponding to the 
development of the full plastic moment Mp at midspan does not produce a 
sharp kink in the beam. Nevertheless, it is sufficient to simulate the effect of 
a hinge. The location at which the value of Mp is reached in a structure is 
called plastic hinge. The actual extent and shape of spread of plasticity in the 
beam depend on the moment diagram. For design purposes, however, we 
shall assume each plastic hinge action takes place only at a single section of 
the beam. The plastic hinge length or the yield length and the actual extent 
of yielding for a simply supported beam of rectangular section with a concen­
trated load at midspan are determined in the forthcoming. 

Referring to Fig. 2.4(e), the distance between section C where yielding has 
just begun and the end support A can be obtained by equating the moment 

A Ll2 

~ Ll2~ 

(a) 

~ 
~M'M MyiMiMp 

(b) 

2dl L-____ =_----1 
(c) 

'1' 

2dl 
A C 

(d) 

bL 
'1' 6 

i 
b 

fy 
• x I D2d 
D B 

(e) 

FIGURE 2.4. Hinge length of a simply supported beam with a concentrated load at 
midspan. 



2.2. Moment-Curvature Relationship and Plastic Hinge Length 47 

at C to the yield moment as 

Q Me =---.l!.a= M 
2 ' 

where Qp is the plastic limit load. Equation (2.2.11) leads to 

2M, 
a = Qp . 

Substitution of Qp = 4Mp/L in Eq. (2.2.12) gives 

L 
a=-

2f 

(2.2.11) 

(2.2.12) 

(2.2.13) 

where f is the shape factor of the section (see Section 1.3.3 and Table 1.1) and 
L is the length of the beam. From Fig. 2.4(e), the hinge length AL can be 
found as 

(2.2.14) 

This is the hinge length for a simply supported beam with a concentrated 
load at midspan. This length will be different for other boundary and loading 
conditions. As noted previously, the hinge length depends on the shape of 
moment diagram, the length of the beam, and the shape factor of the section. 
The distribution of yielded zone within the hinge length also depends on the 
shape of the moment-curvature curve of the section. The plastic zone distri­
bution can be obtained by equating the moment within the hinge length to 
the M-<I> expression in the elastic-plastic regime. For example, for the rectan­
gular section, the moment MR in the elastic-plastic regime has the value 
[Eqs. (1.3.14), (1.3.10), and (1.3.8)]: 

MR(y) = M p [1- ~Grl (2.2.15) 

The moment distribution for the given beam is [Fig. 2.4(d)] 

( L - 2X) 
M(x)=Mp -L- (2.2.16) 

in which x is the distance from the midspan. By equating right-hand sides of 
Eqs. (2.2.15) and (2.2.16), y can be written as 

y = d J¥ (2.2.17) 

in which y defines the boundary between the elastic and plastic regions. The 
distribution of the yielded portion for an I-shaped or any other shaped sec­
tion can be obtained in a similar manner. Since for an I-section, there are two 
expressions for the M-<I> curve in the elastic-plastic regime, the yielded zone 
is also defined by two expressions. 



48 2. The Plastic Hinge 

2.2.3 Plastic Hinge Idealization 
The use of exact nonlinear moment-curvature curve (Fig. 2.3) in the analysis 
of steel structures beyond elastic regime requires an iterative process for a 
solution. However, this iteration process can be eliminated and the solution 
procedure drastically simplified by using the moment-curvature relationship 
idealized by two straight lines represented by 

M = EleD, (0 < eD < eDp) (2.2.18) 

and 

M = Mp, (eD > eDp) (2.2.19) 
where 

eDp = Mp/EI. (2.2.20) 

Equations (2.2.18) and (2.2.19) are plotted in Fig. 2.5. The relationship is 
elastic up to moment Mp and plastic thereafter. In this idealization, all the 
plastic rotation is assumed to occur at the plastic hinge and the length of the 
plastic hinge is assumed to be zero. 

This idealization results in a considerable simplification of the analysis 
procedure without making significant compromise in the accuracy of the 
computed plastic limit load. It results in a series of piecewise linear load­
deflection relationships while the exact load-deflection relationship based 
on the exact elastic-plastic M-eD curve is a smooth curve bounded by the 
piecewise linear relationship. For example, the idealized load-deflection rela­
tionship for a beam shown in Fig. 2.1 is linearly elastic up to the lateral load 
Qp and thereafter, a plastic hinge is formed at the midspan, and the beam be­
haves as if it were hinged at the midspan but with a restraining moment Mp-

To show the influence of loading and boundary conditions on the hinge 
length, two examples of determining the plastic hinge length are presented in 
the following. 

M 
Mp 

Perfectly·plastic 1 (idealized) 

/~ 
Myf----' Elastic-plastic 

(exact) 

FIGURE 2.S. The idealized 
and the actual moment­
curvature relationships. 
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FIGURE 2.6. Hinge length of wp 

a simply supported I-beam il ! ! ! ! ! ! ! ! ! 11; with uniformly distributed 
L load. 

(a) 

(b) 

I· 
a .. I .. .t.L= O.35L 

--I· 
a .. I 

= A C 0 B 

(c) 

Example 2.2.1. Determine the plastic hinge length of a simply supported 
beam with uniformly distributed load as shown in Fig. 2.6. 

Solution: The distance between section C, where yielding just began, and the 
end support A [Fig. 2.6(c)] is obtained by equating the moment at C to the 
yield moment My as 

(2.2.21) 

in which wp is the distributed load at which the moment at midspan reaches 
Mp and it has the value 

(2.2.22) 

By substituting Eq. (2.2.22) in Eq. (2.2.21) and solving the resulting equation 
for a, the distance a is found to be 
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L 
a = 2[1 - J1 - 1/f]· (2.2.23) 

Thus, from Fig. 2.6(c), the plastic hinge length l:!.L is determined as 

l:!.L = L - 2a = LJ1 - 11f (2.2.24) 

With the shape factor f = 1.14, median for wide flange sections, l:!.L comes 
out to be 0.35L. Note that for a simply supported beam, the plastic hinge 
length for the distributed load case is higher than that for the concentrated 
load case (Eq. 2.2.14). 

Example 2.2.2. Determine the plastic hinge lengths at the ends and midspan 
of a fixed-ended beam with a concentrated load at the midspan as shown in 
Fig. 2.7. 

L/2 L/2 

(a) 

(b) 

t.L1 t.L2 t.L1 

I-----tI I' '1 I-----tI 

( I ) 
A D E C B FIGURE 2.7. Hinge lengths of 

I· e ·1 a fixed-ended beam with 
concentrated load at 

(c) midspan. 
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Solution: Referring to the moment diagram at the collapse state [Fig. 2.7(b}], 
the bending moment at a distance x from end A is given by 

M" = ~Px -Mp (2.2.25) 

in which Qp is the plastic limit load when moments at the ends and midspan 
all reach Mp and can be written as 

Q = 8Mp 

PL' (2.2.26) 

Hinge Length at Ends: ~Ll in Fig. 2.7(c) can be obtained by equating the 
moment at D to - My 

(2.2.27) 

By substituting Qp from Eq. (2.2.26) into Eq. (2.2.27) and solving the resulting 
equation, ~Ll is found to be 

(2.2.28) 

Hinge Length at the Midspan: Location of point E in Fig. 2.7(c) can be ob­
tained by equating the bending moment at E to My as 

Q ME = 2P a - Mp = My. (2.2.29) 

Substituting Qp from Eq. (2.2.26) into Eq. (2.2.29) and solving for a, we have 

L 
a = "4 [1 + l/f]· (2.2.30) 

Thus, from Fig. 2.7(c), the hinge length ~L2 is found to be 

L 
~L2 = L - 2a = "2 [1 - 1/f]· 

2.3 The Full Plastic Moment 

(2.2.31) 

The plastic analysis is drastically simplified by using the idealized moment­
curvature relationship shown in Fig. 2.5. In this simplification, the bending 
curvature beyond the elastic limit curvature <l>p increases indefinitely with the 
constant moment capacity Mp. This limit moment capacity Mp is known as 
the full plastic moment. The adjective full means that all fibers of the section 
are plastic. 
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A knowledge of the value of the full plastic moment capacity of a section is 
very important in the plastic analysis and design. For example, if full plastic 
moments of various members of a frame are known, then the plastic limit 
load of the frame can be determined quickly. similarly, the design of a frame 
requires an assignment of certain minimum values of full plastic moment to 
its members to carry the factored loads. For steel sections, Mp depends on the 
yield stress of the steel and the geometry of the section. The calculation of M p 

of a section can be summarized in the following two steps. 
First, the plastic neutral axis is located. Like the elastic neutral axis, the 

plastic neutral axis is determined by considering equilibrium of forces in the 
axial direction, i.e., L Fx = O. Since at the fully plastic state, the stress is equal 
to the yield stress over the entire section (both in compression and in tension), 
the calculation of plastic neutral axis is simpler than that of the elastic neutral 
axis for which a consideration of varying stress over the cross section is 
required. In fact, if the entire section is made of only one type of steel (same 
yield stress over the section), the plastic neutral axis can be determined by 
simply dividing the cross-sectional area into two equal parts. However, if a 
section is made of more than one type of steel (sometimes a standard section 
is modified by the addition of coverplates of a different type of steel), the 
plastic neutral axis must be determined by considering the axial equilibrium 
condition. 

Second, the full plastic moment capacity is determined by summing the 
moments of the forces resulting from stresses in the section. The computa­
tions of plastic moments of several shapes of cross section are illustrated in 
the following example. 

Example 2.3.1. Determine the full plastic moment capacity ofthe rectangular 
section, wide flange section, solid circular section, hollow thin-walled circular 
section, and triangular section as shown in Fig. 2.8. 

Solution: (a) Rectangular section: Since the section is made of only one mate­
rial, the plastic neutral axis (PNA) divides the section into two equal parts 
[Fig. 2.8(a)], i.e., the PNA is at a distance d from the top of the section. So, 
we have 

compressive force = tensile force = bd(Jy 

and the corresponding lever arm is d. Thus the full plastic moment is 

Mp = (bd(Jy)d = bd 2(Jy. (2.3.1 ) 

(b) Wide Flange Section: The PNA divides the section into two equal parts, 
i.e., it is at a distance d from the top of the section [Fig. 2.8(b)]. For this 
section, the full plastic moment can be assumed to consist of two parts: 
one due to the couple formed by flange forces and the other due to the 
couple formed by web forces. The forces and the associated lever arms are 
given by 
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FIGURE 2.S. Computations 
of the fully plastic moment 
capacity of several shapes of 
cross section. 

Flange Forces = btf{ly 

Lever Arm = 2d - tr 
Web Forces = (d - tf)tw{ly 

lever arm = d - tf . 

So the full plastic moment turns out to be 

Mp = btf {ly(2d - tf ) + (d - tf )2tw {ly. 

I bdcr", 

(a) 

(b) 

(e) 

(d) 

(e) 

(2.3.2) 

(c) Solid Circular Section: The PNA of the section passes through the center 
of the circle [Fig. 2.8(c)]. So, the compressive force = tensile force equation 
is given by 

The lever arm for these two forces is two times the distance of the centroid of 
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half-circle from the center of circle, i.e., 4D/3n. So, the full plastic moment is 

(2.3.3) 

(d) Hollow Thin-Walled Circular Section: The PNA passes through the 
centroid of the section [Fig. 2.8(d)]. The compressive force = tensile force 
equation is given by 

The lever arm associated with these two forces is two times the distance of the 
centroid of the half of the hollow circular section from the centroid of the 
section, i.e., 2D/n. So the full plastic moment is 

( nDt ) (2D) 2 Mp = -yO"y 1t = D to"r (2.3.4) 

(e) Triangular Section: The PNA divides the triangular area into two equal 
parts. So, the distance of the PNA from the top is h/J2 [Fig. 2.8(e)]. The 
compressive force = tensile force equation is 

ah 
C=T=40"Y· 

The lever arm corresponding to these two forces is 0.39h. So, the full plastic 
moment is 

(2.3.5) 

2.4 Design of a Cross Section 

In the plastic design of steel structures, a certain value of Mp is assigned to 
each member of the structure. For design purposes, it is convenient to write 
M p in the form 

Mp = ZO"y (2.4.1) 

in which Z is called the plastic section modulus and it depends solely on the 
geometry of the cross section. It can be determined simply by computing the 
first moment of area of the section about its plastic neutral axis. The values 
of Z for all hot-rolled sections are given in the AISC Manual of Steel 
Construction. 

Very often, the standard hot-rolled sections are modified by either the 
addition of cover plates or the curtailment of flanges. For these cases, the 
values of Z are not given in the manual and they have to be calculated. 
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20 

FIGURE 2.9. Plastic modulus of a section with a cover plate. 

However, these calculations can be shortened by modifying the value of Z for 
the standard section given in the manual. 

Consider the example of an arbitrary section with area 2A and one axis of 
symmetry. Assume that it is strengthened by the addition of a single cover 
plate of area a, as shown in Fig. 2.9. Further assume that the yield strengths 
of the original section and the cover plate are O"yO and O"yc' respectively. In the 
fully plastic state, the total force on the cover plate will be aO"yc" Therefore, to 
maintain equilibrium in the axial direction, it is clear from the diagram that 
the plastic neutral axis must shift downward from its original position so that 
an area 

, aO"yc 
a = --

20"yo 
(2.4.2) 

of the original cross section moves from the tension side to the compression 
side of the axis. The resulting fully plastic stress distribution may be consid­
ered as the sum of two parts: the stress distribution in the original section and 
the change in stress distribution introduced by the addition of the cover plate 
as shown in Fig. 2.9. 

The full plastic moment of the modified section can now be determined by 
summing the full plastic moment of the original section and the moment 
contributed by the cover plate. The contribution of the cover plate is equal to 
the moment caused by a couple formed by the cover plate force aO"yc and a 
force due to the fictitious stress 20"yo acting on area a' that has been trans­
ferred from tension to compression, as shown in Fig. 2.9. 

Example 2.4.1. A member of a frame is supposed to have the plastic moment 
capacity of 300 kip-ft. Select the lightest wide flange section for this member. 
Use A36 steel. 

Solution: The required plastic section modulus is 

_ 300 x 12 _ 00· 3 
Z - 36 - 1 Ill. 

The following sections satisfy the requirement of minimum plastic modulus 
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(from the AISC manual) 

Use W21 x 50. 

W16 x 57 

W18 x 50 

W21 x 50 

W24 x 55 

Zx = 105 in3 

Zx = 101 in3 

Zx = 110 in3 

Zx = 134 in. 3 

Example 2.4.2. A W21 x 50 section of A36 steel is modified by the addition 
of a single cover plate. Determine the full plastic moment capacity of the 
modified section if 

(a) A36, 8" x 3/4" plate is used as a cover plate. 
(b) Grade 50, 8" x 3/4" plate is used as a cover plate. 

Solution: The dimensions of W21 x 50, taken from the AISC manual, are 
shown in Fig. 2.10(a). Also from the manual 

Zx = 110 in. 3 

6.S3in 

IO.535 

0.38 

20.83 --1.1-.--

7.89 

~~~'36~~ 10.75 
8 

(a) 

216kjP~ 

7Z ksi 

---1----.-_216 kip. 

6.8Sin 

(b) 

72 hi 

270.32 kips 

9.BB I 
C5~'D~"l[O =s--t0,063 :'30~OEki P~' ==::r======~ .. ~ ... ~ .. ~::I .. 9.l..6~QQ~$~~i.: 5.85 i n 

50 hi 
(c) (d) 

FIGURE 2.10. Computations of plastic moment capacity of W21 x 50 section with a 
cover plate. 
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(a) A36 Steel Cover Plate: Area of the original section that must be trans­
ferred from the tension to the compression side 

, 8 x 0.75 3. 2 
a = 2 = lll. 

The distance by which the neutral axis should be shifted is 

3 8. y=-= 7. 9lll. 
0.38 

The plastic moment of the modified section is now equal to the sum of the full 
plastic moment of the original section and the moment caused by a couple 
formed by the cover plate force of 6 x 36 kips and the web force of 3 x 72 
kips as shown in Fig. 2.1O(b). 

The lever arm for the couple is 

d _ 20.83 ~ _ 7.89 _ . 
- 2 + 8 2 - 6.85 lll. 

Thus, the full plastic moment for the modified section is 

Mp = 110 x 36 + 3 x 72 x 6.85 = 5439.6 kip-in. 

(b) Grade 50 Steel Cover Plate: Area of the original section that must be 
transferred from the tension to the compression side is 

, = (8 x 0.75) x 50 = 4 17· 2 
a 2 36· lll. 

Since this is greater than half the web area ([20.83/2 - 0.535]0.38 = 3.75), a 
part of the flange area must also be transferred. For an extremely accurate 
answer, a graphical method should be used to include the curved portion at 
the junction of flange and web. However, sufficient accuracy can be achieved 
by simply treating the section as three rectangles, Fig. 2.10(c). The shaded 
portion in Fig. 2.10(c) shows the area that must be transferred from tension 
to compression. So, the additional moment is contributed by two couples: 
one couple formed by the web force and a part of the cover plate force and 
the other formed by the flange force and the remaining part of the cover plate 
force. 

( 20.83 ) web force = -2- - 0.535 0.38 x 72 = 270.32 kips. 

The distance between the web force and the cover plate force is 

20.83 3 1 (20.83 ) 
d1 = -2- + 8 - 2 -2- - 0.535 = 5.85 in. 

Flange force = 0.063 x 6.53 x 72 = 29.62 kips. 
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The distance between the flange force and the cover plate force is 

3 0.063 . 
d2 = 8" + 0.535 - -2- = 0.88 tn. 

Mp = 110 x 36 + 270.32 x 5.85 + 29.62 x 0.88 = 5,567.44 kip-in. 

2.5 Effect of Axial Load 

The application of an axial compression to a cross section results in a uni­
form compressive stress over the section. The addition of a bending moment 
to this axial compression produces a linear variation of elastic stress across 
the section as shown in Fig. 2.11. Further increases of bending moment, with 
the axial compression remaining constant, eventually cause yielding on the 
compression face of the section, followed by yielding on the tension face, and 
eventual yielding of the entire cross section. During this process, the neutral 
axis initially lies outside the section for very small values of bending moment 
and it shifts progressively toward the final position in the section in the fully 
plastic state. 

The full plastic moment capacity of a section in the presence of axial com­
pression can be determined from the two usual equilibrium conditions 

p = L (fdA (2.5.1) 

M = L (fydA. (2.5.2) 

The presence of axial compression reduces the full plastic moment capacity 
of a section. This reduced moment capacity is designated Mpc. The extent 
of this reduction is dependent on the magnitude of the axial load. Using 
Eqs. (2.5.1) and (2.5.2), the reduced moment capacities Mpc for rectangular, 
circular tubular, wide flange, and T-sections are obtained in the following. 

Oy Oy 
No bending Small Initiation of 

Yield in Yield in Fully 
moment S.M. Yielding 

compression tension plastic 

FIGURE 2.11. Stress distributions under combined action of bending and axial 
compression. 
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b 

2d + 

d • Yo 

FIGURE 2.12. The reduced plastic moment capacity M pc of a rectangular section con­
sidering the influence of axial compression. 

2.5.1 Rectangular Section 
The full plastic stress diagram consists of two portions as shown in Fig. 2.12. 
The axial load P is assumed to be supported entirely by a centrally located 
portion of the total cross-sectional area stressed to the yield point in com­
pression, and the bending moment to be resisted by the top and bottom 
portions stressed to full yielding in tension in the bottom portion and in 
compression in the upper portion. 

The extent of central portion 2yo can be determined from Eq. (2.5.1) as 

P 
Yo = 2uyb' (2.5.3) 

and the reduced plastic bending strength can be expressed in terms of Yo from 
Eq. (2.5.2) as 

(2.5.4) 

By substituting Eq. (2.5.3) into Eq. (2.5.4) and by noting that 2uybd = uyA = 
Py and Mp = uybd2 , the nondimensionalized expression for the reduced plas­
tic moment capacity of a rectangular section can be written as 

Mpc = 1 _ (P)2. 
Mp Py 

(2.5.5) 

Compared with the stress diagram shown in Fig. 2.8(a) for the case where 
there was no axial load, it is seen that the bending resistance indicated in 
Fig. 2.12 is reduced by an amount equal to the moment of the central stress 
area used to carry the axial load. 

2.5.2 Circular Tubular Section 
Like a rectangular section, the value of Mpc for circular tubular section can 
be expressed as 

(2.5.6) 
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2.5.3 Wide-Flange Section Bending About Strong Axis 
Under low values of axial compression, the plastic neutral axis for wide­
flange sections bending about a strong axis will be in the web, while for high 
values of axial compression, the plastic neutral axis will be in a flange. The 
resulting equations for Mpc for these two cases are given in the following. 
Note that in all the previous derivations, for simplicity we have taken the 
depth of a cross section to be 2d. Herein and from here on, we shall follow the 
usual notation and take the full depth of a wide-flange section to be d instead 
of 2d as shown, among others, in the inset of Fig. 2.13. 

For a neutral axis in a web [0 :-;; P/Py :-;; 1/(1 + 2btJ/twdw)] 

( P)2 (1 + 2btJ)2 
Mpc Py twdw - = 1 - (2.5.7) 
Mp (1 + 4btJ~J) 

twdw 

1.0~---------------------------------------------------. 

0.5 

0.15 

Most W Sections 

t--- b ----I ------.-

t
w

- - ITf x_. _ r-'_x dw tid' d 
Aw 

l.r--L...J....---,_L 
T 

t, 

Re~tangle 

Approximation 

Eq. (2.5.11) 

1.5=(bt,/tw d w ) 

= A,/Aw 

Eq. (2.5.10) -~w 

OL-__ -L ____ ~ __ ~ ____ -L ____ ~ __ ~L_ __ _L ____ ~ ____ ~ __ ~ 

o 0.5 1.0 

FIGURE 2.13. Strength interaction curves for wide-flange sections bending about 
a strong axis. 
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(2.5.8) 

where 1 is the lever arm of the couple formed by the tensile and compressive 
forces in the flanges and is given by 

( twdw) ( P) 1 = d - tf 1 + - 1 - -
2btf Py 

(2.5.9) 

and b, tf , tw , and dw are dimensions of wide-flange section as shown in the 
inset of Fig. 2.13. Note that the maximum and minimum values oflever arm 
1 are, respectively, d and df . The interaction curves plotted between moment 
Mpc and axial force P for btf/twdw = Af/Aw = 0.5, 1, 1.5, and 2.0 are shown 
in Fig. 2.13 in which Af = btf = area of one flange and Aw = twdw = area of 
web. These curves are plotted by assuming that l/dw = d/dw and df/dw are 
about the same for all shapes used as columns and by approximating these 
values as 1.10 and 1.05, respectively. The shaded area in Fig. 2.13 shows 
graphically the extent of variation that would result by applying such an 
expression to all of the rolled shapes likely to be used in the plastic design. 

For design purposes, the interaction in Eqs. (2.5.7) and (2.5.8) can be ap­
proximated by the following two simple equations 

For 0 ~ P ~ 0.15Py 

(2.5.10) 

(2.5.l1) 

Note that this approximation is somewhat conservative for most shapes, 
except in the region where P/Py is amall. Even here, the maximum error is less 
than 5% (dotted line, Fig. 2.13). 

2.5.4 Wide-Flange Section Bending About Weak Axis 
For weak-axis bending, the plastic neutral axis, depending on the value of 
axial load, may fall in the web or the flanges. The resulting Mpc equations for 
these two cases are given in the following. 

For neutral axis in web [0 ~ P/Py ~ (d/dw)(1/(1 + 2btf /twdw)}] 

(2.5.12) 
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1.0 -=c-----------------------, 

Eq. (2.5.15) 

Most '{oF Sections 

0.5 

0.4 

FIGURE 2.14. Strength interaction curves for wide-flange sections bending about a 
weak axis. 

The interaction curves plotted between moment and axial force for 
btJ/twdw = AJ/Aw = 0.5, 1, 1.5, and 2.0 are shown in Fig. 2.14. These curves 
are plotted by assuming that tw/b and d/dw are about the same for all 
shapes used as columns and approximating these values as 0.04 and 1.10, 
respectively. 

For design purposes, interaction Eqs. (2.5.12) and (2.5.13) can be approxi­
mated by the following two equations (dotted line, Fig. 2.14). 

ForO:::; P:::; 0.4Py 

(2.5.14) 
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For O.4Py ~ P ~ Py 

M~ = 1.19 [1 - (:'YJ Mp. (2.5.15) 

Note that the influence of the axial compressive load P on the plastic 
bending strength of columns may have to be further reduced below the value 
Mpc to guard against premature buckling of columns. This is provided for in 
Chapter H of the LRFD rules on beam-column design where columns in 
frames are classified as either a sidesway prevented case or sidesway permit­
ted case. 

2.5.5 T-Sections 
Under the combined action of bending and axial compression, the line of 
action of an axial load may significantly affect the calculation of plastic mo­
ment capacity of a section. Mostly, this line of action is assumed to pass 
through the centroid of the section. For doubly symmetric sections such as 
rectangular, circular, and wide-flange sections, the plastic neutral axis (PNA) 
under pure bending moment passes through the centroids of the sections. 
The moment capacity of such sections, therefore, can be determined by sum­
ming up the moments about the centroidal/plastic neutral axis. 

For monosymmetric sections such as T-sections, PNA under pure moment 
does not pass through the centroids of the sections. If the line of action of 
axial load passes through the original plastic neutral axis, then the full plastic 
moment is always reduced by the axial load. However, if the line of action of 
axial load passes through the centroid, then axial load will generate an addi­
tional bending moment equal to the moment of a couple formed by the 
applied axial load acting through the centroid and the internal axial resis­
tance acting through the plastic neutral axis. If the sign of this additional 
moment is the same as that of the applied moment, the reduced plastic mo­
ment capacity Mpc of the section will artificially be greater than Mp for some 
cases. The following example demonstrates this fact. 

Example 2.5.1. Determine M ~ of aT-section shown in Fig. 2.15 by assuming 
that 

(a) the axial load is acting through the original plastic neutral axis under 
pure moment. 

(b) the axial load is acting through the centroidal axis. 

Solution: (a) Axial Load Through Original PNA: Under pure bending, the 
PNA for the given T-section is at the junction of the two rectangles. In the 
presence of axial compressive load, the PNA shifts by a distance Y2 as shown 
in Fig. 2.15. The distances Yl and Y2 in Fig. 2.15(a) can be determined from 
the axial eqUilibrium condition in Fig. 2.15(b) as 

(2.5.16) 
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FIGURE 2.15. Computations of the reduced moment capacity Mpc for aT-section. 

and the pure bending condition in Fig. 2.15(c) as 

(Jy T(B - Y2) = (JyB(T - Yl) 

or 

y 1B=y2 T. 

Solving these two equations, we obtain 

P 
Yl =~-

2(JyB 

P 
Y2 =--. 

2(Jy T 

(2.5.17) 

(2.5.18) 

(2.5.19) 

By summing up moments about PNA, the reduced moment capacity Mpc is 
found to be 

(2.5.20) 

Substituting Yl and Y2 from Eqs. (2.5.18) and (2.5.19), respectively, using 
Py = 2 BT(Jy and y = (Y2 - yd/4 and simplifying, Mpc can be written as 

(JyBT [(P)2 2B ] M = -(B + T) 1 - - --pc 2 P B+T 
y 

(2.5.21) 
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or 

Mpc = Mp[ 1 -(~y B 2: TJ (2.5.22) 

in which Mp = [(O"yBT/2)(B + T)] is the full plastic moment when axial load 
is equal to zero. 

(b) Axial Load Through Centroid: The distance Yo, between the centroid and 
the PNA under pure bending, can be expressed as 

T B 
-BT-2 + BT-2 B-T 

Yo= 2BT --4- (2.5.23) 

By taking moments about the centroid of section, Mpc is found to be 

Mpc = Mp[l - (P)2 ~J + pYo. (2.5.24) 
Py B+ T 

By substituting Yo from Eq. (2.5.23) and using Py = 2BT O"y, Mpc can be ex­
pressed as 

Mpc = Mp [1 -(~y B 2: T + ~ (! ~ ~) 1 (2.5.25) 

Using the superposition of the stress diagram shown in Figs. 2.15(d) to (f), 
Equations (2.5.22) and (2.5.25) can be derived in a simple and direct manner. 

2.6 Effect of Shear Force 

The shear force combined with bending moment results in a two-dimensional 
stress system in a section, which makes consideration of the effect of shear 
force on Mp much more complex than that of axial force only. Axial force and 
bending moment both result in longitudinal stresses that can be superim­
posed directly. So, for the combined bending and axial force, we were able to 
obtain the exact solution of the problem in a simple manner by using the 
equilibrium equations, the kinematic assumption of plane section remains 
plane, and the yield condition 0" = O"y. For the combined action of shear force 
and bending moment, the exact solution of the governing equations is often 
intractable for most cases and recourse must be made through approxima­
tions and simplifications for practical solutions by using the following equi­
librium equations 

M= L O"ydA 

V= L rdA 

(2.6.1) 

(2.6.2) 
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and the von Mises yield condition [2.1] 

(2.6.3) 

in which (1 and r are, respectively, the normal and shear stresses at a point in 
the beam section at a distance y from the neutral axis. 

These approximate solutions satisfying only the equilibrium equations and 
the yield condition but not the kinematic condition are always lower than the 
exact solution. This will be proved in Chapter 3. The highest solution sat­
isfying Eqs. (2.6.1-2.6.3) will therefore be the best and closest to the exact 
solution. The lower-bound solutions for the moment-carrying capacity con­
sidering the effect of shear force for rectangular and wide-flange sections are 
presented in the following. 

2.6.1 Rectangular Section 
Consider an element of a beam with rectangular cross section [Fig. 2.16(a)]. 
The elastic solution of the beam section under the combined bending and 
shear has the following stress distribution [Fig. 2.16(b)] 

d 

v 

y 

(a) 
(b) 

FIGURE 2.l6. Assumed stress distributions in rectangular cross section under com­
bined bending and shear loads. 
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IT = ITy e:) (2.6.4) 

and 

(2.6.5) 

in which d is the depth of the beam. It can easily be shown that the yield 
condition (2.6.3) is not violated over the entire section. The top and bottom 
fibers are in the yield state of simple compression - ITy and simple tension 
+ ITy, respectively, and the center fiber is in the yield state of pure shear, 
'ty = ITy/,J3, according to the von Mises yield condition (2.6.3). The rest of 
the fibers are in the elastic state. By using this elastic stress distribution, the 
lower-bound solution for the reduced bending moment Mps considering the 
effect of shear force can be obtained as 

1 2 2 
Mps = (,ITybd = 3Mp (2.6.6a) 

v = ~ )Jbd. (2.6,6b) 

This lower-bound solution can be improved by assuming a better stress dis­
tribution with more fibers yielded as shown in Fig. 2.16(c). Mps and shear 
force V corresponding to this distribution can be written as 

(2.6.7) 

(2.6.8) 

in which b is the width of the beam and 'ty = ITy/J3 is the yield stress of the 
material in pure shear. By eliminating Yo from Eqs. (2.6.7) and (2.6.8), Mps can 
be expressed as 

(2.6.9) 

in which Yz, = bdITy/J3 is the maximum shear force capacity of rectangular 
section in the absence of moment. 

The lower-bound solution can be further improved by first assuming a 
general stress distribution and then using the maximization process to obtain 
the best distributions [2.2]. However, the process and the resulting equations 
are too much involved from a practical point of view. For design purposes, 
the following interaction equation proposed by Drucker [2.3] can be used as 
a good approximation to the exact solution 

Mps = 1 _ (V)4. 
Mp Yz, 

(2.6.10) 

Interaction equation (2.6.10) is plotted in Fig. 2.17. 
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2.6.2 Wide-Flange Section 

FIGURE 2.17. Approximated 
bending-shear interaction 
curve [2.3]. 

(b) 

FIGURE 2.18. Assumed stress 
distributions for wide-flange 
sections under combined 
bending and shear force. 

Consider the beam element with wide-flange section as shown in Fig. 2.18(a). 
Assume that the flanges and part of the web yield under normal stress and the 
stress distribution in the remaining portion of the web is parabolic for shear 
stress and linear for normal stress [Fig. 2.18(b)]. These assumed stress distri­
butions satisfy the yield criterion (2.6.3). The resultant moment Mps and shear 
force V corresponding to this stress distribution are 

1 2 
Mps = Mp - 30'yYotw (2.6.11) 

4 O'y 
V = 3 j3twyo. (2.6.12) 
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By eliminating Yo from Eqs. (2.6.11) and (2.6.12), the reduced moment M ps 
can be expressed as 

in which b, tI , dI , and tw are dimensions as shown in Fig. 2.18(a) and 

(J'y 

Vp = twdw'y = twdw J3 

is the maximum shear capacity of the web. 

(2.6.13) 

(2.6.14) 

Expression (2.6.13) for Mps can be improved by assuming that the flanges 
will carry only the normal stresses and the web will carry uniform normal 
and shear stresses as shown in Fig. 2.18(c). With this assumption, Mps can be 
written as 

(2.6.15) 

where (J' is the uniform normal stress in the web and can be expressed in 
terms of shear force V by using, = V/twdw in the von Mises yield criterion, 
Eq. (2.6.3) as 

(2.6.16) 

By substituting (J' from Eq. (2.6.16) in Eq. (2.6.15), Mps can be expressed as 

1 t d2 ~(V)2 
1 + 4 ft;i; ~ 1 - \ Y;) 

1 + ! twd:, 
4 btidi 

(2.6.17) 

Though the stress distribution in Fig. 2.18(c) does not fully satisfy the equilib­
rium conditions at the web-flange junction (the shear stress has a jump at this 
junction), it provides a reasonably good theoretical estimate of the effects of 
shear force on the plastic moment capacity of a wide-flange section. 

The effect of shear force on the full moment capacity of members in a 
practical frame is generally negligible. Because in frames, high shear and 
moment occur in localized zones where strain hardening of material will set 
in quickly, thus, in most cases permitting the moment to reach or exceed the 
full plastic value. Therefore, in actual design of frames, as far as shear is 
concerned, the full plastic moment Mp may be used in design, provided that 
the total transverse shear force V on the section at ultimate loading is no 
more than Vp given by Eq. (2.6.14). 
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Example 2.6.1. Determine the percentage of reduction in the plastic modulus 
ofW14 x 82 of A36 steel when a shear force of 100 kips is to accompany the 
bending moment. 

Solution: From Fig. 2.18(c), the reduced plastic moment capacity of a wide­
flange section in the presence of shear can be written as 

(2.6.18) 

in which Mf is the moment capacity contributed by the flanges and Mws is the 
moment capacity of the web in the presence of shear force and can be written 
as 

(2.6.19) 

where Mw is the moment capacity of the web when shear force is absent and 
(J is the normal stress in the web reduced by the presence of shear force. Thus, 
Eq. (2.6.18) can be expressed as 

(2.6.20) 

or 

Mps = Mp - Mw (1 - ~). (2.6.21) 

Dividing both sides by (Jy' Eq. (2.6.21) can be rewritten as 

Z = Z -Z (1-~) ps w (Jy 

in which Zps is the plastic modulus of a wide-flange section reduced for the 
presence of shear force and Zw is the plastic modulus of the web of a wide­
flange section. 

From the AISC manual, the following properties ofW14 x 82 section can 
be noted 

Z = 139 in3 

dw = d - 2tf = 14.31 - 2 x 0.855 = 12.6 in. 

tw = 0.510 in. 

d;, (12.6)2 . 3 
Zw = tW4 = 0.51 x ~4~ = 20.24 tn. 

The shear stress in the web is 

'C = ~ = 100 = 15.56 ksi 
dwtw 12.6 x 0.51 

from the von Mises yield criterion (2.6.3), the normal stress reduced for the 
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presence of shear stress is 

(J = J (J; - 3,2 = J(36)2 - 3(15.56)2 = 23.87 ksi. 

Therefore, we have 

( 23.87) . 3 
Zps = 139 - 20.24 1 - ~ = 132.18 III 

. 139 - 132.18 0 

% reductIOn = 139 = 4.9%. 

2.7 Effect of Combined Axial and Shear Force 

In a manner similar to that used for considering the individual effects of 
axial and shear force, the effects of combined axial and shear on Mp can be 
considered. 

For a rectangular cross section, Near [2.4] has suggested the following 
approximate interaction equation for the combined bending, axial load, and 
shear force 

M (P)2 (~r = 1 
M, + P, + [ _ (:,y . (2.7.1) 

Equation (2.7.1) is a good approximation of the exact interaction relation. This 
relation reduces to Drucker's approximation (2.6.10) for the special case of 
P = 0 and it reduces to the exact Eq. (2.5.5) for the special case of V = O. Over 
the full range of values of M/Mp, P/Py , and V/Vp, the error never exceeds 5%. 

For wide-flange sections, the effects of combined axial and shear force on 
Mp can be considered by assuming a stress distribution shown in Fig. 2.19. By 
using this stress distribution, the reduced plastic moment capacity of the 
section is found to be 

(d; 2) M = (Jybtfdf + (Jtw 4 - Yo 

in which (J is the normal stress in the web and can be expressed in terms of 
shear force V by using, = V/twdw in the von Mises yield criterion (2.6.3) and 
Yo can be related to the axial load P by the relation P = 2twYo(J. 

2.8 Compactness 

In the plastic analysis of steel structures, it is tacitly assumed that the mo­
ment capacity of a section will remain at the level of the plastic moment until 
a sufficient number of plastic hinges are developed to transform the structure 
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FIGURE 2.19. Assumed stress distributions under combined bending, axial compres­
sion, and shear force for wide-flange sections. 
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FIGURE 2.20. Local buckling of flanges of beams. 

into a failure mechanism. However, if the section is made of thin plate ele­
ments, premature local buckling of some of its element may occur and the 
section may not be able to attain the value of plastic moment or after attain­
ing the plastic moment, it may not be able to sustain the plastic moment up 
to the desired rotation capacity. For example, if the width-to-thickness ratios 
of the flanges and web are too high, they may buckle locally, thus violating 
the basic assumptions underlying the plastic analysis. Figure 2.20 shows pos­
sible local buckling modes of compression flanges of two beams: one under 
moment gradient and the other under uniform moment. 

2.B.1 LRF D Definitions of Compact, Non-Compact and 
Slender Sections 
To ensure proper compactness of section for various purposes, the LRFD 
specification has defined two sets of limiting width-to-thickness ratios 
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TABLE 2.1. Limiting values of width-to-thickness ratio (A. = bit) to avoid premature 
local buckling 

Type of element kmin 

Unstiffened 
Single angles 0.425 
Flanges of I-shaped rolled beams and 

channel section in flexure 0.7 
Flanges of I-shaped hydrid or welded 

beams in flexure 0.7 
Flanges of channels or I-shapes in pure 

compression 0.7 

Stems of tees 1.277 

Stiffened 
Uniform thickness flanges of tubular 

sections and flange cover plates 4.7 

Webs in flexural compression 

Performated cover plates 6.97 
All other uniformly stressed stiffened 

elements, i.e., supproted along two edges 5.0 
Circular hollow sections, D/t, in axial 

compression, in flexure 

FYI = yield stress of the flange, ksi. 
h = clear distance between flanges when welds are used. 
k, = 4/.Jhitw but not less than 0.35 :s; k, :s; 0.763. 
D = diameter. 

Ap Ar 
(compact) (noncom pact) 

NA 76/ft; 

65/ft; 141/JFy - 10 

65/~ 162/J(FYI - 16.5)/k, 

NA 95/ft; 
NA 127/ft; 

190/ft; 238/ft; 
640/ft; 970/ft; 
NA 317/ft; 

NA 253/ft; 

2070/Fy 3300/Fy , 8970/Fy 

(A = bit): Ap and Ar (Table 2.1). On the basis of these limiting values, the 
LRFD has divided the steel sections into three categories: compact sections, 
noncompact sections, and slender sections. If the width-to-thickness ratios of 
all elements of a section are less than Ap , then, the section is a compact 
section. Compact sections are capable of developing a fully plastic stress 
distribution (plastic moment), and they have a rotation capacity of approxi­
mately 3 times the yield rotation capacity before the possible occurrence of 
the local buckling. If the width-to-thickness ratios of all elements of a section 
are less than Ar and the width-to-thickness ratio of one or more elements of a 
section is greater than Ap , then, the section is a noncompact section. Non­
compact sections can develop the yield stress in compression elements before 
local buckling occurs. However, these sections may not resist the local 
buckling at the strain levels required to develop the fully plastic stress distri­
bution. If the width-to-thickness ratio of one or more elements of a section is 
greater than A" then the section is a slender section. These sections may 
develop local buckling elastically before the yield stress is achieved. For de­
termining the width-to-thickness ratio (bit) of a plate element in a thin-walled 
section, the width b is explicitly defined in Fig. 2.21. Further discussion of 
Table 2.1 is given in the forthcoming. 
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FIGURE 2.21. Width of stiffened and unstiffened elements for computing width-to­
thickness ratio bit. 

2.8.2 Relation of Ap and Ar with Buckling Strength of Plate 
Elements 
The recommended values of Ap and Ar are based on the buckling strength of 
plate element with various boundary conditions. With the formal mathemat­
ics, the elastic buckling strength of an axially loaded steel plate element can 
be developed as 

kn2E = 26210-k-

F" ~ 12(1 - v') (~)' , (D' (2.8.1) 

in which v is the Poisson ratio of the material, bit is the width-to-thickness 
ratio of the plate, and k is the buckling coefficient. For elements found in 
most structural members (high aspect ratio), the value of k depends mainly 
on the boundary conditions (or edge conditions) of the plate element. 

On the basis of boundary conditions, the plate elements in actual struc­
tural members can conveniently be divided into two categories: unstiffened 
elements and stiffened elements. Un stiffened elements are supported only 
along one of the edges parallel to the axial stress, for example, legs of single 
angles, flanges of wide-flange sections, and stems of tees. Stiffened elements 
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are supported along both the edges parallel to the axial stress, for example, 
flanges of square and rectangular tubular sections, perforated cover plates, 
and webs of wide-flange and channel sections. The recommended values of 
the buckling coefficient k for several types of thin elements are listed in 
Table 2.1. 

A plate element can develop full yield stress without occurrence of 
buckling only if its width-to-thickness ratio does not exceed a certain value. 
For a plate without residual stresses, this value can be obtained by rearrang­
ing Eq. (2.8.1) 

~ = 162 (k 
t './F; 

where Fy is yield strength of steel in ksi. 

2.8.3 LRFD Recommended Values of Ap and Ar 

(2.8.2) 

To attain the full yielding, the elements with residual stresses have to undergo 
larger strains than those for the elements without residual stresses. Thus, the 
LRFD recommendations for the limiting bit denoted as Ar are based on the 
requirement that is more strict than Eq. (2.8.2) and is approximately given by 

Ar = 113 (k. './F; (2.8.3) 

In order to attain fully plastic stress distribution over the entire section, 
the plate elements have to undergo even higher strains. Thus, Ap in LRFD 
is based on even more strict requirements approximately given by the 
following: 

for unstiffened elements 

(2.8.4) 

and for stiffened elements 

(2.8.5) 

The values of Ar and Ap recommended by LRFD [1.11] in Table B5.1 can 
approximately be obtained by using an appropriate value of k in Eqs. (2.8.3) 
to (2.8.5). These value of Ar and Ap are given herein in Table 2.1. Since webs 
of sections under flexural compression are partially under tension, the 
recommended values of Ar and Ap for these elements are much higher than 
those for the uniformly stressed stiffened elements (Table 2.1). For webs 
under a combined flexural and axial compression, Ap is recommended as the 
following: 
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for P/«APy ) ::;; 0.125 

(2.8.6) 

and for P/(¢J"Py ) > 0.125 

Ap = 191 [2.33 - Pp ] ~ 253 
P, ¢J" y p, (2.8.7) 

in which P is the required axial load capacity, Py is the yield axial load, and 
¢J" is the resistance factor for bending, i.e., 0.9. Note that the limiting bit 
values denoted as Ap are to ensure that the member can be designed by the 
plastic analysis methods. However, in areas of high seismicity, sections must 
also be able to develop higher ductility/rotation capacity (7 to 9 times the 
elastic rotation). Therefore, for such areas, the limiting values of Ap should be 
further reduced as recommended by LRFD. For flanges of I-shaped and 
channel sections, Ap recommended by LRFD in seismic area is 

52 
Ap = p,' (2.8.8) 

For webs under a combined flexural and axial compression, Ap recommended 
by LRFD in seismic area is the following: 

for P/(¢J"Py ) ::;; 0.125 

for P/(¢J"Py ) ~ 0.125 

Cover 
plate 

520 [ P ] IIp = P, 1 - 1.54 ¢J"P
y 

Flange 
edge 
plate 

Longitudinal 
stiffener 

Vertical 
stiffener 

(2.8.9) 

"Box" 
stiffener 

FIGURE 2.22. Methods of stiffening wide-flange shapes to prevent local buckling of 
compression elements. 
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191 [ P ] 253 
Ap = fri 2.33 - A. P ~ fri' 

v Fy 'l'b y v Fy 
(2.8.10) 

The sections that do not meet width-to-thickness requirements may be 
strengthened/stiffened in the region of the plastic hinge. Figure 2.22 suggests 
some methods by which this may be accomplished. 

2.9 Connections 

A structural frame will be able to reach its plastic limit load only if its connec­
tions and members are capable of developing and subsequently maintaining 
the required plastic moment up to the desired rotation capacity. The various 
types of connections that are encountered in steel framed structures are 
designated in Fig. 2.23. These include corner connections (straight and 
haunched), beam-to-column connections (interior, top, and side), beam-to­
beam connections, splices, column anchorages, and miscellaneous connec­
tions (purlins, girts, and bracing). 

4 
6 

reD I® 
Types 

. ~ CD Corner 

[® ® I® 
® Beam-Column 

@ Beam-Beam 

~ Splice 

® Column anchorage 

® Miscellaneous 

l® 

FIGURE 2.23. Types of connections in frames: 1 corner, 2 beam-column, 3 beam-beam, 
4 splice, 5 column anchorage, and 6 miscellaneous. 
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Herein, the primary attention will be focused on the straight corner and 
interior beam-to-column connections under both balanced and unbalanced 
conditions. The basic analysis procedure discussed here is also applicable to 
other types of connections. The analysis will be performed to achieve the 
minimum thicknesses for the parts of the connections that have to transfer 
the load from one member to other members. The analysis will use plastic 
stress distributions that satisfy equilibrium and yield criterion (2.6.3). Since 
the stress distributions that satisfy only the equilibrium and yield criterion 
but not the kinematic condition are lower bounds, the procedure will lead to 
conservative estimates of the thicknesses of plate elements required to trans­
fer a given load. 

2.9.1 Requirements for Connections 
The principal requirements for connections used in a plastically designed 
frame are: 

1. sufficient strength. 
2. adequate rotation capacity. 
3. adequate overall stiffness in the elastic range. 
4. economical fabrication and ease of erection. 

The connection must have sufficient strength so that the full plastic mo­
ment Mp of the connecting members can be developed (i.e., the weaker of the 
two members). In addition to strength, these connections must have the ca­
pacity to rotate while sustaining the plastic moment to permit redistribution 
of moments so that plastic hinges can subsequently form at other critical 
locations resulting in the formation of a mechanism. The connection must 
also exhibit overall elastic stiffness under working load to maintain the rela­
tive positions of all structural components so that excessive drift of the frame 
will not occur. Finally, fabrication and erection of connections should be 
easy and economical because minor material and labor savings in a connec­
tion can considerably reduce the cost of steel structures where connections 
are repeated many times. 

Figure 2.24(a) shows the moment-rotation behavior of four connection 
tests under symmetric loading. Connection A is considered to be properly 
designed and detailed since it is strong enough to carry the plastic moment 
of the connecting beam and allow the beam to rotate inelastically through 
a large angle. Connection B is not acceptable because it does not have 
enough rotation capacity even though it can carry the plastic moment of 
the beam. Connection C exhibits a large rotation capacity but does not have 
enough strength. Connection D is the worst of all since it does not have the 
required moment and rotation capacities that are imperative in plastically 
designed frames. 

Figure 2.25 shows the failure modes of a fully welded connection that met 
the criteria for sufficient strength and rotation capacity in plastic design. 
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Failure of the specimen was due primarily to a combination of excessive 
buckling of the column web and fracture of the column flange material 
around the weld at the tension flange. Since no premature weld failure and 
buckling occurred, the current provisions for welding and connection de­
tailing are adequate [2.5]. 

In the following sections, these provisions of (1) strength, (2) stiffness, and 
(3) rotation capacity will be discussed in light of the behavior and design of 
corner and interior connections. Obviously, among other factors, extra con­
necting materials must be kept to a minimum for overall economy. Both 
unstiffened and stiffened connections will be considered. 

2.9.2 Corner Connections 

Without Stiffeners: Consider a typical straight corner connection without 
stiffeners, as sketched in Fig. 2.26(a). Assume that the horizontal beam con­
tinues through the knee. The moment, axial force, and shear acting on the 
connection are shown in Fig. 2.26(b). The free body diagrams of the parts of 
the corner are shown in Fig. 2.26(c). The tensile force in the outer flange of 
the beam is transferred as shear in the web along line AB. In the same man­
ner, the tensile force in the outer flange of the column is transferred through 
the end plate as shear to the web of the beam along line AD. Note that the 
tensile stress in the outer flange of the beam and the end plate will vary from 
(Jy at point B (or D) to zero at the external corner A. 
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FIGURE 2.25. Failure modes of an interior beam-to-column connection under symmet­
rical loadings: (a) overall view of a failure mode of a properly designed and detailed 
moment connection (connection A defined in Fig. 2.24); (b) fracture failure mode of 
the column flange material around the weld at the tension flange; and (c) buckling 
failure mode of stiffeners in the compression zone of the column web. 

c 
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The inner flange of the beam carries two forces: the shear of the column, 
and the flange force due to bending and thrust in the beam. These two forces 
are transferred as shear to the corner along line DC [Fig. 2.26(c)]. Similarly, 
the two forces on the inner flange of the column are transferred as shear in 
the web along line Be. Note that the shear forces in the web panel tend to 
deform it as shown in Fig. 2.26(d). 

The minimum required thickness tw of the web panel ABCD can be ob­
tained by considering the equilibrium of horizontal forces on the portion of 
the outer flange between A and B and by assuming that (i) the beam flanges 
carry the moment Mp and the beam web carries the shear; (ii) the axial force 
in the beam is negligible; and (iii) the distribution of shear stress in the panel 
web along line AB is uniform [Fig. 2.26(c)]. Thus, the flange force T can be 
expressed in terms of Mp and yield stress 7:yb as 

(2.9.1) 

in which db = d bm - tfb is the lever arm corresponding to the center-to-center 
beam flange forces, deol is the depth of the column and tw is the thickness of 
the panel web. Equation (2.9.1) can be solved for tw to obtain the required 
thickness of the panel web 

(2.9.2) 

The shear stress at yield in Eq. (2.9.2) can be taken from the von Mises yield 
criterion as 7:yb = uYblj3 = 0.577uyb' However, LRFD uses 't'y = 0.6uy • Intro­
ducing resistance factor rPv, we have 

(2.9.3) 

where rPv has the value 0.9. 

With Stiffeners: When the thickness of the panel web is less than the required 
thickness tw , the web can be reinforced either by using a doubler plate or by 
a symmetrical pair of diagonal stiffeners whose cross-sectional area is suffi­
cient to transmit that portion of the shear in excess of the web capacity. Thus, 
when a doubler plate is used as reinforcement, its thickness should be such 
that the total thickness of the web is equal to or more than the minimum 
required as given by Eq. (2.9.3). Welds should be arranged at the edges of 
doubler plates so as to transmit shear stress directly to the boundary of plate 
stiffeners and flanges. When diagonal stiffeners are added as reinforcement, 
the required strength of the pair of diagonal stiffeners [Fig. 2.26(e)] can be 
obtained by considering equilibrium of horizontal forces. 
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(2.9.4) 

in which T is the flange force, twb is the thickness of beam web, T. is the 
required strength of the area of a symmetrical pair of stiffeners and f} is 
the angle of diagonal stiffener with the horizontal, i.e., tan f} = (dbm - 2tfb )/ 

(deol - 2tf J as shown in Fig. 2.26(e). From Eq. (2.9.4), 1'. can be determined 
as 

T. = _l_[Mp _ <Pvtwbdeol(JyJ. 
S cosf} db J3 (2.9.5) 

Stiffeners should be welded for their full area across their ends and continu­
ously fillet welded to column web. To avoid overall buckling, the design of 
stiffeners must also satisfy the following LRFD requirements (Section K1.9). 

The stiffeners shall be designed as axially compressed members (columns) in accor­
dance with the requirements of Sec. E2 with an effective length equal to 0.751" a cross 
section composed of two stiffeners and a strip of the web having a width of 25tw at 
interior stiffeners and 12tw at the ends of members, where I, is the length of stiffeners. 

Design of compressive members and background of column strength equa­
tions, in Section E2 of LRFD, are presented in details in Section 4.6.2. Here-
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in, we will only apply these equations to check the overall buckling of the 
web stiffeners designed in Examples (2.9.1) and (2.9.2). 

To avoid local buckling of the stiffeners, the stiffeners of A36 steel must 
satisfy the criteria (Table 2.1) 

bs 65 
-<--
ts - JF; (2.9.6) 

in which bs and ts are, respectively, the width and thickness of each stiffener, 
and Fy is the yield stress of the stiffener in ksi. 

2.9.3 Balanced Interior Beam-to-Column Connections 

Without Stiffeners: A sketch of a typical interior beam-to-column connection 
is shown in Fig. 2.27(a). The forces introduced in the beam flanges by mo­
ment are transferred to the column flanges and then to the column web 
[Fig. 2.27(b)]. If the thickness of the column web is insufficient, then it can 
fail either by yielding and/or buckling due to the beam compression flange 
force or fracture due to the beam tension flange force. If the thickness of 
the column flange is insufficient, the tensile force in the beam flange tends 
to pull the outstanding column flanges outward, resulting in a possible initia­
tion of fracture at the junction of column flanges and web, as shown in 
Fig. 2.28. 

u 
-'" 
II) 

O ll(1 IXID 
+ 
_&J 

fT~~ 
kc 

~ 
(a) (b) 

FIGURE 2.27. Yielding in an interior beam-to-column connection. 
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Column Web Yielding 

The stresses in the column web resulting from the pair of concentrated beam 
flange forces spread out as they penetrate deeper into the column web. Tests 
of these connections show that stresses in the column web can be estimated 
by assuming a slope of 2.5 : 1 from the point of contact to the column k-line 
[Fig. 2.27(b)]. The minimum thickness of the column web required to pre­
vent yielding under the applied concentrated force of tensile or compressive 
flange of the beam can therefore be determined simply by 

(2.9.7) 

in which (lye is the yield stress of the column, Trb is the beam flange force, twe 
is the thickness of column web, tfb is the thickness of beam flange, and ke is 
the column k-line as shown in Fig. 2.27(b). Note that Eq. (2.9.7) is the same 
as Eq. (Kl-2) of LRFD and rjJ corresponding to this case is 1. 

Column Web Buckling 

To avoid possible buckling of the column web, the buckling strength of the 
web as given by Eq. K1.8 of LRFD must also be checked against the concen­
trated force from the beam flange as follows 

4100rjJt!e Jo: 'T' 

R = d ~ lfb 
e 

(2.9.8) 

in which rjJ is the resistance factor and has the value 0.9, de is clear depth of 
the column and is shown in Fig. 2.27(b), and (lye is in ksi. 

FIGURE 2.28. Column flange 
bending in tension region of 
interior beam-to-column 
connection. 
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Column Flange Bending 

The bending of column flanges is a much more complex problem because the 
flanges bend in two directions, both longitudinal and transverse to the axis of 
the column, as sketched in Fig. 2.28. In order to avoid the excessive bending 
due to the forces from the beam flange, LRFD Eq. K1-1 requires that the 
thickness of the flange of the column must satisfy the following equation 

r/JR = r/J6.25t]e(lye ~ 1Jb (2.9.9) 

in which r/J has the value 0.9, and tIc is in in. Equation (2.9.9) is obtained by 
using the yield line theory for plates and some simplifications about the rela­
tive dimensions of beams and columns. 

With Stiffeners: If the thickness of the column web is insufficient to avoid 
yielding and/or buckling, the web can be reinforced by a pair of stiffeners. 
Then the beam flange force is resisted jointly by the column web and stiff­
eners. The strength 1'. of the stiffeners required to prevent column web yield­
ing or buckling can be determined from the simple equilibrium condition 

(2.9.10) 

in which P max is the capacity of the web without stiffeners, and it is taken as 
the smaller of: 

the yield strength of the column web [LRFD Eq. (K1-2)] 

P max = (lyetwAtib + 5ke) (2.9.11) 

or the buckling strength of the column web [LRFD Eq. (Kl-8)] 

4100r/Jt;e ..;;;;. 
Pmax = d 

e 

(2.9.12) 

in which r/J is the resistance factor and has the value 0.9, (lye is in ksi, twe is in 
inches and de = deol - 2ke is the clear depth of the column and is also in 
inches. 

If the thickness of the column flanges is less than that from Eq. (2.9.9), 
stiffeners must be used to provide support to column flanges. The dimensions 
of all the stiffeners should satisfy local and overall buckling checks. Stiffeners 
should be welded for full strength across their ends, in contact with the inner 
face of flanges to which the supported members are framed, and the welding 
connecting them to the web should be strong enough to transmit the net 
stress applied to the web by the supporting members. The types of stiffeners 
that are commonly used to reinforce the column web and to prevent the 
bending of column flanges are shown in Fig. 2.29. 

2.9.4 Unbalanced Interior Beam-to-Column Connections 
When the moments in the two beams at an interior connection differ by a 
large amount, they may cause large shears in the column web. As a result, a 
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H3 

(a) (b) (c) (d) 

No stiffener Horizontal stiffeners Vertical stiffeners Tee stiffeners 

FIGURE 2.29. Stiffeners for interior beam-to-column connections. 

column web may deform in the same manner as in a corner connection. 
Figure 2.30(a) shows shears and moments acting on a typical unbalanced 
interior beam-to-column connection and Fig. 2.30(b) shows a free body dia­
gram of the forces acting on the top flange stiffener AB. The forces are V, the 
horizontal shear present in the column above the connection and two tensile 
flange forces, Tl and T2 • The net result of these forces must be resisted by a 
shear stress r acting on an area of column web equal to twcdcol' Thus 

M2 Ml 
<Pvrtwcdcol = -d - -d - V. (2.9.13) 

b2 bl 

Using r equal to the shear yield strength rye> the required web thickness to 
resist shear can be obtained as 

(2.9.14) 

If the actual web thickness of the column is less than that given by Eq. 
(2.9.14), diagonal stiffners or web doubler plates, similar to those discussed in 
Section 2.9.2, should be provided to carry the excess shearing force. The 
connection should also be checked for all the failure modes discussed in 
Section 2.9.3. 

Example 2.9.1. Design the corner connection shown in Fig. 2.31. Assume 
that the yield strength of both beam and column is 36 ksi. 

Solution: For W14 x 34 beam, the following properties are noted from the 
AISC manual 

Z = 54.6 in3, tJ = 0.455 in., tw = 0.285 in., kc = 1 in. 

db = d - tJ = 13.98 - 0.455 = 13.525 in. 

in which the more accurate center-to-center distance between the two beam 
flanges is used for the calculation of the flange force. The plastic moment 
capacity of beam is 

Mp = O'ybZ = 36 x 54.6 = 1965.6 kip-in. 
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FIGURE 2.30. Forces acted 
on an unbalanced interior 
beam-to-column 
connection. 

FIGURE 2.31. Design of a pair of diagonal 
stiffener in a straight corner connection. 
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The force in each flange of the beam is 

_ Mp _ 1,965.6 _ 14533 k· T------ . IpS. 
db 13.525 

The shear resistance provided by the column web has the value 

Tw = rPv Tyctwcdcol = 0.9(0.6 x 36)(0.285)(13.98) = 77.45 kips. 

The required strength of stiffeners is 

T. cos n/4 = T - Tw = 145.33 - 77.45 = 67.88 kips 

or 

T. = 96 kips. 

Using a pair of A36 stiffeners, the required area of each stiffener is 

T. 96 . 2 

As = 2rPc(Jy = 2 x 0.85 x 36 = 1.57 lll. 

Try a 1/2-inch-thick plate. The required width of stiffener is 

1.57 . 
bs = 1/2 = 3.14 lll. 

Try a 3 1/4-inch-wide plate. 

Check Buckling of the Stiffeners in the Plane of the Web 

Assume that the stiffeners are welded at its ends only. The compressive 
strength of each of the stiffeners against their buckling in the plane of the web 
can be determined by using the LRFD column strength equation. 

The length of the stiffeners is 

d - 2tJ M. 
Is = --e- = (13.98 - 2 x 0.455)",2 = 18.48 lll. 

cos 

Area, moment of inertia, radius of gyration, effective slenderness ratio, and Ac 
of each of the stiffeners are calculated as 

As = bsts = 3.25 x 0.5 = 1.625 in.2 

Is = /2 (:3.25)(0.5)3 = 0.0339 in.4 

rs = Jft = 

( KL) = 0.75 x 18.48 = 9 2 
r 0.144 6. 5 

Ac = ~ KL (F; = ~(96.25) J 36 = 1.079. 
n r -..jE n 29,000 
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Note that the effective length factor K for the stiffener is taken as 0.75 as per 
Section K1.9 of LRFD. Since Ac < 1.5, the in-plane buckling strength of each 
stiffener is 

or 

,pcPn = 0.85 x 1.625 x 0.658(1.079)2 x 36 = 30.55 kips 

(,pcPn = 30.55 kips) < (i = 48 kiPS), not okay. 

The strength of stiffeners can be increased either by increasing the size of 
the stiffeners or by welding the stiffeners to the web panel throughout their 
length. Here, we assume the latter so that the stiffeners shall not buckle in the 
plane of web. 

Check Out-of-Plane Buckling of the Stiffeners 

To check out-of-plane buckling, we shall evaluate the compressive strength 
of a combined stiffener and web assembly as per Section K1.8 of LRFD. The 
area of the assembly is 

1 . 2 
As = 2 x bs x ts = 2 x 3.25 x 2 = 3.25 In . 

Note that the contribution of the web to the assembly area for this corner 
connection is neglected. Now, moment of inertia, radius of gyration, effective 
slenderness ratio, and Ac of the assembly of the two stiffeners are calculated as 

= t(2 x 3.25 + 0.285)3 = 13 01· 4 
Is 12 . In. 

rs = (i; = )13.01 = 2 in. -JA. 3.25 

(~L)s = 0.75 18;48 = 6.93 

A = ~ (KL) (ii, = 6.93 J 36 = 0.078. 
c 1t r -J If 1t 29,000 

Since Ac < 1.5, the compressive strength of the assembly is checked by using 
the LRFD column strength equation 

or 

,pcPn = ,pcAsO.658;'~ Fy 

,pcPn = 0.85 x 3.25 x 0.658(0.078)2 x 36 = 99.2 kips 

(,pcPn = 99.2 kips) > CT. = 96 kips) okay. 



FIGURE 2.32. Design of a pair of hori­
zontal stiffeners in an interior beam-to­
column connection. 
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Wl4X90 

~ = 3.25 = 6.5 < ~ = 10.8 okay. 
t. 1/2 ft, 

Use a pair of A36-31/4 x 1/2"-inch diagonal stiffeners. 

Example 2.9.2. Design the interior beam-to-column connection shown in 
Fig. 2.32. Assume that both beam and column are made of A36 steel. 

Solution: From the AISC manual, the following properties of W18 x 97 
beam and W14 x 90 column are noted. 

Beam 
W18 x 97 

tIb = 0.87 in. 
bf = 11.145 in. 

db = 18.59 in. 

Zx,b = 211 in. 3 

Column 
W14 x 90 

twe = 0.44 in. 
ke = 11/8 in. 
de = 45/4 in. 
tIc = 0.71 in. 
deol = 14.02 in. 

Check Yielding and Buckling of Column Web 

The maximum beam flange force is 

Mp,b 211 x 36 . 
1jb = db _ tIb = 18.59 _ 0.87 = 428.7 kips. 

The resistance of column web against yielding has the value 

Tw = (1yetwe(tIb + 5ke) 

= 36 x 0.44 (0.87 + 5 x 181) = 122.7 kips < 428.7 not okay. 

The resistance of column web against buckling, Eq. (2.9.12) 
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T. _ 4100 x 0.9 x (0.44)3.J36 _ . 
w - 14.02 _ 2(11/8) - 167.6 kIpS. 

The required strength of stiffeners is 

1'. = 428.7 - 122.7 = 306 kips. 

Check Bending of Column Flanges 

The required thickness of column flange is determined from Eq. (2.9.9) in the 
rearranged form as 

rr;;: 428.7 . . 
tIc = 0.4 ~~ = 0.4 0.9 x 36 = 1.46 m. > 0.71 m. not okay. 

Select Dimensions of Stiffeners 

Stiffeners are needed to reinforce the column web against yielding and to 
strengthen the column flanges against excessive distortion. Providing a pair 
of horizontal stiffeners both in compression and tensile zones, and using A36 
steel, the required area of each stiffener is 

1'. 306 . 2 

As = 2iPc(1ys = 2 x 0.85 x 36 = 5 m. 

Try 5- x I-inch plate. 

Check Buckling of Stiffeners in the Plane of Column Web 

Assume that the stiffeners are not welded to the column web. Then the com­
pressive strength of the stiffeners against their buckling in the plane of the 
column web is determined from the LRFD column strength equation as 
follows: 

length of stiffener Is = d - 2tIc = 14.02 - 2 x 0.71 = 12.6 in. 

Area, moment of inertia, radius of gyration, effective slenderness ratio, and Ac 
of each of the stiffeners are calculated as 

As = bsts = 5 x 1 = 5 in.2 

Is = 112 (5)(1)3 = 0.417 in.4 

- J0.417 - 0289' rs - -5--' m. 

(KL) = 0.75 x 12.6 = 32.7 
r 0.289 

A = ~(KL) (ii, = ~(32.7) J 36 = 0.367. 
c 11: r ~E 11: 29,000 
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Note that K = 0.75 is taken as recommended in Section K1.8 of LRFD. 
Since Ac < 1.5, the buckling strength of each stiffener is 

or 

¢JcPn = ¢JcAsO.658).~ Fy 

¢JcPn = 0.85 x 5 x 0.658(0.367)2 x 36 = 144.6 kips 

(¢JcPn = 144.6 kips) < (~ = 153 kiPS) not okay. 

The strength of stiffeners may be increased by either welding the stiffeners to 
the column web or increasing the size of the stiffeners. Here we increase 
the stiffener size to 5 1/2- x I-inch. As Ac remains the same, the increased 
strength of the stiffeners becomes 

¢JcPn = 0.85 x 5.5 x 0.658(0.367)2 x 36 = 159.1 kips 

¢JcPn > ~ = 153 kips, okay. 

Provide a pair of A36-5 1/2- x I-inch stiffeners in both compression and 
tension zones. 

2.10 Examples 

Herein, we present examples of calculating the full plastic moment of a given 
section with or without the presence of axial load and shear force. The sec­
tion also includes the examples dealing with plastic analysis and section 
design of given determinate beams. More examples can be found in the book 
by Baker and Heyman [2.6], among others. 

Example 2.1 0.1. Calculate the plastic section modulus Z, the elastic section 
modulus S, and the shape factor f for the following sections with dimensions 
shown in Fig. 2.33. 

(a) an I-section bending about strong axis [Fig. 2.33(a)]. 
(b) an I-section bending about weak axis [Fig. 2.33(a)]. 
(c) an I-section with a cover plate [Fig. 2.33(b)]. 
(d) a T-section [Fig. 2.33(c)]. 
(e) a square shaft with keyway [Fig. 2.33(d)]. 
(f) a thin-walled tubular section [Fig. 2.33(e)]. 
(g) an isosceles triangle [Fig. 2.33(f)]. 

Solution: The plastic section modulus Z is determined by calculating the first 
moment of area about the plastic neutral axis while the moment of inertia I 
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P~:;;s.\. ~~/;np =h/!2 

- - ENA 
- - -- PNA 

h 
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FIGURE 2.33. Computation of plastic and elastic moduli and shape factors of various 
sections. 

is determined by calculating the second moment of area about the elastic 
neutral axis. 

a) I-Section Bending About Strong Axis: Both elastic and plastic neutral axes 
pass through the centroid of the section as shown by the dashed line x-x in 
Fig. 2.33(a). Thus, we have 

Z = 2[(1 x 13) x 6.5] + 2[(20 x 2) x 14] = 1289 in.3 

I = 1~ [1 X (26)3] + 2 [ C12)<20)(2)3 ] + 2[(20)(2)(14)2] = 17,171 in.4 



_1_17,171_1145· 3 S------ In. 
c 15 

f = ~ = 1289 = 1 126 
S 1145 . . 
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b) I-Section Bending About Weak Axis: Both elastic and plastic neutral axes 
are the same as shown by the dashed line y-y in Fig. 2.33(a). Thus, we have 

Z = 2(0.5 x 26) x 0.25 + 4[(2 x 10) x 5] = 406.5 in.3 

1 = 112 [26 x (1)3] + 2 [C12}(2)(20)3 ] = 2669 in.4 

S = ~ = 2669 = 267 in.3 
c 10 

f = ~ = 406.5 = 1.522. 
S 267 

c) I-Section with a Cover Plate: Assume that the cover plate material is of the 
same yield stress as the original section. 

Plastic Modulus: Area of the built-up section [Fig. 2.33(b)] is 

A = 2 x (20 x 2) + 26 x 1 + 25 x 2 = 156 in. 2 

The plastic neutral axis will divide the area of cross section into two equal 
halves. Since the area of cover plate is less than A/2 which is less than the area 
of cover plate and top flange, the PNA is in the top flange and the distance Yp 
of the PNA from the top of the section can be obtained by 

A 156 
20(yp - 2) + 50 = "2 = 2 = 78 

Yp = 3.4 in. 

By calculating the first moment of area about the neutral axis, Z is obtained 
as 

Z = (25 x 2)(2.4) + (20 x 1.4)(0.7) 

+ (20 x 2)(27.6) + (26 x 1)(13.6) + (20 x 0.6)(0.3) = 1601 in.3 

Elastic Modulus and Shape Factor: The distance Ye of the elastic neutral axis 
(ENA) from the top of the section can be obtained by 

(25 x 2) x 1 + (20 x 2) x 3 + (26 x 1) x 17 + (20 x 2) x 31 
Ye = 156 

= 11.87 in. 
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Thus, we have 

1 1 
I = 12 x 25 x (2)3 + (25 X 2)(10.87)2 + 12 x 20 x (2)3 + (20 X 2)(8.87)2 

1 1 
+ 12 x 1 x (26)3 + (26 x 1)(5.1W + 12 x 20 x (2)3 + (20 X 2)(19.3)2 

or 

I = 25,885 in.4 

S = ~ = 25,885 = 1286 in.3 
c 20.13 

_ Z _ 1601 _ 4 
f - S - 1286 - 1.2 5. 

d) T -Section: 

Plastic Modulus: The area of the T-section shown in Fig. 2.33(c) is 

A = 15 x 1 + 14 x 1 = 29 in.2 

Since AI2 is less than the area of the flange, the PNA is in the flange and the 
distance Yp of the PNA from the top of the section can be obtained by 

A 29 
15y = - = - = 14 5 p 2 2 . , 

which gives 

yp = 0.967 in. 

Thus, we obtain 

( 0.967) (0.033) Z = (15 x 0.967) -2- + (15 x 0.033) -2- + (14 x 1) x 7.033 

= 105.5 in.3 

Elastic Modulus and Shape Factor: The distance Ye of the ENA from the top 
of the section can be obtained as 

= (15 x 1) x 0.5 + (14 x 1) x 8 = 4 121 . 
Ye 29 . m. 

Thus, we obtain 

1 1 
I = 12 x 15 x (1)3 + (15 x 1) x (3.621)2 + 12 x 1 x (14)3 

+ (14 x 1) x (3.879)2 = 637 in.4 



I 637 . 3 
S = - = -- = 58.6 m. 

c 10.879 

e) Square Shaft with Keyway: 

f = 105.5 = 1.8. 
58.6 

Plastic Modulus: The area of cross section of the shaft is 

A = 8d x 8d - 2d x 4d = 56d2. 
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The distance Yp ofthe PNA from the top ofthe section can be computed from 

A 2 
8d x Y = - = 28d 

p 2 

Yp = 3.5d. 

Thus, we obtain 

Z = (8d x 3.5d)(1.75d) + (8d x 4.5d)(2.25d) - (2d x 4d) x 3.5d = 102d3. 

Elastic Modulus and Shape Factor: The distance Ye of the elastic neutral axis 
from the top of the section can be obtained as 

= (8d x 8d)(4d) - (4d x 2d)(7d) = 357d 
~ ~d2 . . 

Thus, we have 

1= 112 (8d)(8d)3 + (8d x 8d)(4d - 3.57d)2 

-1~ (4d)(2d)3 - (4d x 2d)(7d - 3.57d)2 = 256d4 

I 256d4 3 

S = C = 8d _ 3.57d = 57.8d 

Z 102d3 
f = s = 57.8d3 = 1.765. 

f) Thin-Walled Tubular Section: Both elastic and plastic neutral axes pass 
through the centroid of the section. The first moment of area about this axis 
is 

i
"/2 i(D+/l/2 

Z = 4 (r dr d(})r sin () 
o (D-/l/2 

or 

4 [(D + t)3 (D - t)3] ("/2 . 
Z ="3 -2- - -2- Jo sm()d(} 



98 2. The Plastic Hinge 

or 
1 

Z = tD2 + .3 t 3 ::::: D2 t. 

The second moment of area about the neutral axis is 

or 

or 

Thus, we have 

1,,/2 f(D+t)/2 
I = 4 (r dr dO)(r sin 0)2 

o (D-t)/2 

I - -- - -- sm dO _ [(D + t)4 (D - t)4] 1"/2 . 2 

220 

n 
-D 3t 

I 8 n 2 
S=-=--:::::-D t 

c D + t 4 
2 

Z D 2 t 
f = S = -n- = 1.273. 

-D2 t 
4 

g) Isosceles Triangle: 

Plastic Modulus: 

area of isosceles triangle A = ~ ah 

The distance YP of the PNA from the top of the section is determined from 

1 (yp) A ah 
2 all YP="2=-;P 

which gives 
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By substituting y p = hj.j2, Z can be computed as 

Z = 0.0976ah2. 

Elastic Modulus and Shape Factor: The elastic neutral axis is at a distance of 
Ye = (2j3)h from the top of the section. The second moment of inertia about 
this axis can be expressed as 

or 

Thus, we have 

a fh (3 4 2 4 2 ) ah3 
1=- y --hy +-hy dy=-. 

h 0 3 9 36 

I ah3 j36 ah2 

S = C = (2hj3) = 24 

f = ~ = 0.0976ah2 = 2 342. 
S ah2 j24 . 

Note that I is obtained by using one integral for the entire section with 
limits from 0 to h, while two separate integrals-one each for the portions 
above and below the neutral axis-are used for obtaining Z. This is because 
the integral for I, second moment of area, is a function of square of the 
distance of the area from the neutral axis and therefore the sign of this 
distancej1ever arm ([2hj3 - y] for the portion above the neutral axis and 
[y - 2hj3] for the portion below the neutral axis) does not affect the results. 
While the integral for the plastic modulus Z, first moment of area, is a func­
tion of only the lever arm and not its square, the sign of the lever arm is 
important and if Z is obtained by using one integral with limits from 0 to h 
as for I, the value of Z will come out to be 0.0202 ah2, which is wrong. 

Example 2.10.2. The dimensions of a T-section are as shown in Fig. 2.34. The 
yield stress of the material in compression is 1.5 (Jy and the tensile yield stress 

6" 1.50: 

0.5" I TYc 

FIGURE 2.34. Calculations 5.5" 
of plastic moment of a T-
section with different yield 
stress in tension and -~ .... 
compression. 

\---j 0y 
0.5" 
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is (1y. For bending about the strong axis, the elastic modulus is given as 
4.61 in3. Find (a) the full plastic moment when the tip of the web is in tension 
and (b) the corresponding value ofthe shape factor. 

Solution: (a) When the section is made of the same material and the yield 
stress in tension and compression is the same, the plastic neutral axis divides 
the section into two equal parts. Otherwise, the PNA must be determined 
from the basic equilibrium condition that compressive force must be equal to 
tensile force, i.e., see Fig. 2.34: 

6 x Yo X 1.5(1)1 = 5.5 x 0.5 x (1)1 + (0.5 - Yo) x 6 x (1)1 

which gives 

5.75 . 
Yo = 15" = 0 .. 383 tn. 

Thus, we have 

Mp = 6 x Yo x I X 1.5(1y + 5.5 x 0.5G x 5.5 + 0.5 - Yo) (1)1 

6 (0.5 - YY 
+ x 2 x (1y 

or 

(b) 

f = Mp = 8.59(1y = 1.86. 
My 4.61(1y 

Example 2.10.3. Design an I-section, 50 inches deep and 20 inches wide, 
made up of rectangles with a plastic modulus of 2449 in.3 about the strong 
axis and 411.5 in. 3 about the weak axis. 

Solution: The dimensions t and T of the required section (Fig. 2.35) are un­
known but can be determined by equating the strong- and weak-axis plastic 
moduli in terms of t and T to the required plastic moduli as 

Zx = 2 [(25 - T)/25 ; T)] + 2 [(20)(T) ( 25 -~)] = 2449 in. 3 (2.10.1) 

Zy = 2(50 - 2T) G) (i) + 4[(T)(10)(5)] = 411.5 in.3 (2.10.2) 

The solution of Eqs. (2.10.1) and (2.10.2) for the unknowns t and T leads to 

t = 1 in.; T = 2 in. 



FIGURE 2.35. Design of an I-section for a 
given set of plastic modulus. 
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y 

x------ ----- -------------x 
50" 

Example 2.10.4. A beam having the cross section shown in Fig. 2.36 is made 
of steel with 36-ksi yield stress. Calculate the percentage of reductions in the 
full plastic moments about both principal axes due to axial loads of (a) 381.6 
kips and (b) 1908 kips. How do your results compare with those from interac­
tion Eqs. (2.5.1 0), (2.5.11), (2.5.14) and (2.5.15). 

Solution: 

(a) P = 381.6 kips: Strong Axis: Since P = 381.6 kips is less than the axial 
load capacity of web = (26 x 1) x 36 = 936 kips, the plastic neutral axis is in 
the web. The distance Yo of shift of the neutral axis from its original position 
can be determined from [Fig. 2.36(a)] 

P = 2Yo(1)O'y = 2(Yo)(I)(36) = 381.6 

which gives 

Yo = 5.3 in. 

The reduced plastic moment capacity is obtained by subtracting the contri­
bution of the portion of the cross section carrying axial load from the original 
plastic moment of the section as 

Mpc = Mpx - O'y(I)Y6 

in which Mpx = O'yZX' and Zx from Example 2.10.1(a) is 1289 in. 3 Thus, we 
obtain 

Mpc = 36 x 1,289 - 36 x 1 x (5.3)2 = 46,404 - 1011 = 45,393 kip-in. 

The percentage of reduction in the plastic modulus is 

1011 
46 404 = 2.2%. , 
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+ 

(a) 

II 30·· "I 

(b) 

= 2Y! + 

(c) 

FIGURE 2.36. Computations for the effect of axial loading on Mp of an I-section. 

Note that since PIP, = 381.6/[(2 x 20 x 2 + 26 x 1)36] = 0.1 < 0.15, the 
interaction Eq. (2.5.10) permits no reduction in the full plastic moment 
capacity. 

Weak Axis: For the case of weak-axis bending, the plastic neutral axis is also 
in the web. The distance Yo of shift of the neutral axis from its original 
position can be determined from [Fig. 2.36(b)] 

P = 2Yo(30)CT, = 2(Yo)(30)(36) = 381.6 kips 

which gives 

Yo = 0.177 in. 
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Thus, we obtain 

Mpc = Mpy - O"y(30)(YO)2 

in which Mpy = O"yZy. Since Zy from Example 2.10.1(b) is 406.5 in. 3, we obtain 

Mpc = 36 x 406.5 - 36 x 30 x (0.177)2 

or 

Mpc = 14,634 - 34 = 14,600 kip-in. 

The percentage of reduction in the plastic modulus is 

34 0 

14634 = 0.23%. , 

Note that since PIPy = 0.1 is less than O.4Py , the interaction Eq. (2.5.14) per­
mits no reduction in the full plastic modulus of the section. 

(b) P = 1908 kips: Strong Axis: Since P = 1908 kips is greater than the axial 
capacity of web = 936 kips, the neutral axis is in the flange. The distance Yo 
of shift of the neutral axis from its original position can be determined from 
[Fig. 2.36(c)] 

P = 20"y[13 x 1 + (Yo - 13) x 20] = 2 x 36[20yo - 247] = 1908 kips 

which gives 

Yo = 13.68 in. 

The reduced plastic moment can be computed by taking the moment of 
stresses [Fig. 2.36(c)] about the neutral axis as 

Mpc = 20"y(20)(15 - YO) (YO + 15 ~ Yo) = O"y(20) [(15)2 - Y6J 

or 

Mpc = (36)(20)[(15)2 - (13.68)2] = 27,357 kip-in. 

From part (a), we have Mpx = 46,404 kip-in. 

The percentage of reduction in the plastic modulus is thus 

46,404 - 27,357 = 41% 
46,404 o· 

Mpc from Eq. (2.5.11) is 

M = 1.18(1 - P)M = 1.18[1 - 1908 ] 
pc Py p (36) [2(20 x 2) + (26 xl)] Mp 

= 0.59Mp-

The percentage of reduction in the plastic modulus using the approximate 
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interaction equation 

Mp - 0.59Mp = 41% 
M o· 

p 

The approximate interaction equation gives the same reduction as that given 
by exact calculations. 

Weak Axis: For the case of weak axis bending, the neutral axis is also in the 
flanges. The distance Yo of shift of the neutral axis from the original position 
can be determined from [Fig. 2.36(d)] 

P = 2/Ty[26 x 0.5 + 2yo x 2] = 2 x 36[4yo + 13] = 1908 kips 

which gives 

Yo = 3.38 in. 

Thus, we obtain 

Mpc = 4/Ty(2)(10 - Yo) (YO + 10 ~ Yo) = 4 x 36[(lOf - (3.38)2] 

Mpc = 12,755 kip-in. 

From part (a), we have Mpy = 14,634 kip-in. So the percentage of reduction 
due to axial load is 

14,634 - 12,755 = 28% 
14634 1. o· , 

Since PIPy = 0.50 > 0.4, Mpc from the approximate interaction Eq. (2.5.15) is 

or 

Mpc = 1.19[1 - (361,~0:06YJMp = 0.893Mp. 

The percentage of reduction from approximate Eq. (2.5.15) is 

Mp - 0.893Mp = 10.7%. 
Mp 

Example 2.10.5. Flange cover plates 25 x 2.5 inches are added to the section 
in Example 2.10.4. 

(a) Find the increase in the full plastic moment capacity about the strong 
axis, and 

(b) calculate the reduction in the plastic moment due to an axial load of 
1200 kips. 
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Solution: (a) Increase in the Full Plastic Moment: From Example 2.10.4, the 
original Mp of the sections is 

Mpo = 1289 x 36 = 46,404 kip-in. 

The area of each cover plate is 

Ap = 25 x 2.5 = 62.5 in. 2 

The value of Mp of the section with cover plates is 

or 

Mp = 46,404 + 2 x 36 x 62.5 x 16.25 = 119,529 kip-in. 

The increase in moment capacity due to the addition of cover plates is 

Mp - Mpo = 119,529 - 46,404 = 73,125 kip-in. 

(b) Reduction in the Moment Capacity Due to Axial Load: Since (axial load 
capacity of web = 26 x 1 x 36 = 936 kips) < (P = 1200 kips) < (axial load 
capacity of web ~and two flanges = 936 + 2 x 36 x 20 x 2 = 3816 kips), the 
plastic neutral axis in the presence of an axial load falls in the bottom flange 
as shown in Fig. 2.37. The shift of distance Yo of the neutral axis from its 
original position is 

P = 936 + 2 x 36 x 20(yo - 13) = 1200 

which gives 

FIGURE 2.37. Computations 
of the effect of axial load on 
Mp of an I-section with a 
pair of cover plates. 

Yo = 13.18 in. 

25" 

2.5" 
2.0"1 

------- 30" 

2.5"" 
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Thus, we obtain 

( 2.5) (15 - 13.18) Mpc = 20'yAp 15 + T + 20'y(15 - 13.18)(20) 13.18 + 2 

or 

Mpc = (2)(36)(62.5)(16.25) + (2)(36)(1.82)(20)(14.09) 

or 

Mpc = 73,125 + 36,927 = 110,052 kip-in. 

Thus, the reduction in the plastic moment capacity due to axial load is 

= 119,529 - 110,052 = 9,477 kip-in. 

Example 2.10.6. Show that for an I-section subjected to a shear force V, the 
full plastic moment about the strong axis is 

Mps = Mf + J Mw ( Mw -l t:;J 
where Mf and Mw are, respectively, the contributions of the flanges and the 
web to the full plastic moment in the absence of shear force, tw is the thickness 
of the web, and O'y is the yield stress in tension. 

Solution: The full plastic moment capacity reduced for the presence of shear 
force can be expressed as 

Mps = MJ + Mw~ = MJ + J M;,(0')2 
O'y O'y 

(2.10.3) 

in which 0' is the normal stress that can be exerted on the web in the presence 
of a uniform shear stress r and it can be written from the von Mises yield 
criterion (2.6.3) as 

(2.10.4) 

in which dw is the depth of the web. Now substituting (0'/O'y)2 from Eq. (2.10.4) 
in Eq. (2.10.3), we have 

(2.10.5) 

Example 2.10.7. Determine the reduction in the plastic modulus about the 
strong axis of the I-section shown in Fig. 2.38 due to a shear force of 320 kips 



30" - - - - - - - - - - -

1" 

r 

Shear Stress 
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r---+-~a 

Normal Stress 

FIGURE 2.38. Plastic modulus of an I-section in the presence of shear force. 

in the plane of web. Use the von Mises yield criterion. The section is made of 
steel with yield stress (a) 36 ksi and (b) 50 ksi. 

Solution: By assuming that the shear stress is distributed uniformly over the 
web, the magnitude of shear stress can be determined as 

V 320 . ,= -- = -- = 12.31 ks!. 
Aweb 26 x 1 

(a) ay = 36 ksi: Using the von Mises yield criterion (3.6.3), the normal stress 
in the web can be determined from 

which gives 

a = J a; - 3,2 = J(36)2 - 3(12.31)2 = 29.01 ksi. 

The reduced plastic moment or modulus of the section can be determined 
from Fig. 2.38 as 

or 

Zps = Z - Zweb (1 - ~). 
From Example (2.l0.1a), Z = 1289 in. 3 and we have Zweb = 2 x 1 x 13 x 
6.5 = 169 in3. Thus, we obtain 

Zps = 1289 - 169 (1 - 2~.~1) = 1256 in. 3 

The percentage of reduction in the plastic modulus = (1289 - 1256)/1289 = 
2.56% 
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(b) (1, = 50 ksi: The normal stress in the web is 

(1 = J(1; -lr2 = J(50)2 - 3(12.3W = 45.23 ksi. 

The reduced plastic modulus is 

ZPS = Z - Zweb(1 -~) 
(1, 

or 

Z = 1289 - 169 (1 _ 45.23) = 1273· 3 
ps 50 tn. 

The percentage of reduction in the plastic modulus = (1289 - 1273)/ 
1289 = 1.24%. 

Example 2.10.8. Use LRFD specifications to design a simply supported plate 
girder of A36 steel, with a web depth of 60 inches, to carry a uniformly 
distributed load of 34 kip/ft over a span of 50 feet. Assume that the girder has 
adequate lateral support. 

Solution: The maximum moment in the beam is (Fig. 2.39) 

M = WL2 = (34)(50)2 = 10625 k· -f 
max 8 8 ,1P t. 

b=2S" 
34 kip/ft f=2' 

I 
I 

160" 

I 

Shear ~ 850 kips 

~_~J2" 
SECTION 

~ 
Moment 

FIGURE 2.39. Design of a simply supported beam. 
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The maximum shear force in the beam is 

v. = wL = (34)(50) = 850 kips 
mn 2 2 . 

The required plastic modulus of the section is 

_ Mmax _ 10,625 x 12 _ 3935' 3 Z---- - In. 
~(Jy 0.9 x 36 

and the required area of the web is 

A = Vmax = Vmax = 850 = 43.7 in. 2 

w rPv 1:y rPvO.6Fy 0.9 x 0.6 x 36 

Required thickness of the web is tw = Aw/60 = 43.7/60 = 0.728 in. 
Try 3/4-inch-thick plate for web. To prevent local buckling of the web, we 

check 

dw 60 640 640 
tw = 3/4 = 80 < JF; = 6 = 106.7 okay. 

Use 60 x 3/4-inch plate for the web. 
The dimensions of flange plates should be such that the plastic modulus of 

a section is at least equal to the required plastic modulus, i.e., 

(60)2 
Z = btJ (60 + tJ ) + (0.75)-4- = 3935 in. 3 

Note that Z is not reduced due to the presence of shear stress because at the 
point of maximum moment, shear force is equal to zero. To prevent local 
buckling of flange plates, we must also have 

or 

b 65 
-2 ::;; !D = to.83 

tJ yFy 

b ::;; 21.66tJ . 

Try a conservative proportion of b = 15tJ . Substitution of this proportion in 
the preceding equation gives 

900tJ + 15t] + (0.75) (6~f = 3935 

or 

t] + 60tJ - 217 = O. 

Solving this equation by trial and error, we obtain 

tJ = 1.87 in. 
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Thus, we have 

b = 15tf = 28.05 in. 

Try 28- x 2-inch plates for flanges and check local buckling 

b 28 65 
-=--= 7 <-- okay. 
2tf 2 x 2 p, 

Use 28- x 2-inch plates for flanges. Dimensions of the recommended section 
are shown in Fig. 2.39. 

Example 2.10.9. A straight steel beam is 5 feet long and is simply supported 
at its ends. It is made of rectangular section with 2-inch depth throughout. 
The width of the beam is tapering uniformly from 3 inches at the midspan to 
1 inch at each end. If the yield stress of the steel used is 36 ksi, what uniformly 
distributed load will bring collapse of this beam? Assume that the effect of the 
shear force on the plastic moment capacity of the section is negligible. 

Solution: For a rectangular cross section of varying width (Fig. 2.40), Z" can 
be expressed as 

where b" between the left-hand end and midspan can be written as 

2 
b" = 1 + 2.5 x = 1 + 0.8x. 

Thus, Z" is 

Z" = 1 + 0.8x 

and the plastic moment capacity Mp" of the beam is 

Mp" = O"yZ" = 36(1 + 0.8x) 

w 

Applied Moment, Mx 

FIGURE 2.40. Load-carrying capacity of a tapered beam. 

(2.10.6) 

2" 
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The applied moment at the section a distance x from one end due to the 
uniformly distributed load w is given by 

Mx = [~(5W)X - ~WX2 ] 12 

or 

(2.10.7) 

The collapse value of w will now be controlled by the following two 
conditions: 

(a) At collapse, the applied moment at the critical sections should be equal 
to the plastic moment capacity of the beam at these sections, i.e., 

or 

30wx - 6wx2 = 36(1 + 0.8x). (2.10.8) 

(b) The applied moment at other sections should not exceed the plastic mo­
ment capacity. This leads to the condition that the plastic moment capacity 
curve should enclose the applied moment diagram as shown in Fig. 2.40, and 
both diagrams should be tangent to each other at the critical sections, i.e., 

or 

30w - 12wx = 36(0.8). (2.10.9) 

Solving Eqs. (2.10.8) and (2.10.9) for x and w, we obtain 

w = 2.51 kip/ft, x = 1.54 feet. 

Thus, at collapse, w is 2.51 kip/ft. 

Example 2.10.10. A W14 x 53 beam made of A36 steel is built into a support 
at one end as shown in Fig. 2.41. Vertical loads are applied as shown. Deter­
mine the load factor against collapse (a) neglecting the effect of shear and (b) 
taking shear into account. Use the von Mises yield criterion and assume that 
the beam has adequate lateral support. 

Solution: From the AISC manual, the following properties of W14 x 53 are 
noted: Z = 87.1 in. 3, 

Mp = ayZ = 36 x 87.1 = 3136 kip-in., 

dw = 12.6 in., and tw = 0.37 in. 
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80 kips 

Shear 60 

W 14x53 

FIGURE 2.41. Load factor of a given cantilever beam. 

From the shear force and bending moment diagrams (Fig. 2.41), we have 

Vmax = loA = 80 kips 

and 

Mmax = MA = 220 kip-ft = 220 x 12 = 2640 kip-in. 

(a) Neglecting the effects of shear: The load factor is 

.Ie = Mp = 3136 = 1.188 
Mmax 2640 

(b) Taking shear into account: Since the maximum shear and moment both 
occur at the support, this point is critical. Assuming that the shear force is 
taken by the web only, shear stress t can be computed as 

_ Vmax _ 80 _ 17 16 k . 
t - Aw - 12.6 x 0.37 - . s1. 

Using the von Mises yield criterion (2.6.3), the normal stress (J in the web is 

(J = J(J; - 3t2 = J(36)2 - 3 x (17.16f = 20.31 ksi. 

Thus, we have 

Zps = Z - Zweb(1 - ~) 
or 

( 1) 2( 20.31) ",. 3 
ZPS = 87.1 - 4 (0.37)(12.36) 1 - 36 = 80.9't m. 
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and 

Mps = (JyZPS = 36 x 80.94 = 2914 kip-in. 

The load factor A. against bending is 

Mps = 2914 = 1.104. 
Mmax 2640 

The load factor A. against shear is 

v" = 12.6 x 0.37 x 36/./3 = 1.211. 
Vmax 80 

Thus, the overall load factor is 

A. = 1.104. 

Example 2.10.11. As originally designed, a 15-foot-wide balcony was to be 
supported by A36 W14 x 53 cantilever beams, so that each beam carried a 
uniform load of 1.2 kip/ft. It was then decided to add a balustrade, which 
would apply an additional load of 5 kips to the free end of each beam. Find 
(a) the load factor of the beams as originally designed, and (b) the dimensions 
of the symmetrical flange plates that must be added to provide a load factor 
of 2 when the balustrade is in position. Neglect the effects of shear force. 

Solution: From Example 2.10.10, Z and Mp ofW14 x 53 are 

Z = 87.1 in.3, Mp = 36 x 87.1 = 3136 kip-in. 

(a) Load Factor Before Balustrade is Added: From the bending moment dia­
gram (Fig. 2.42), the maximum moment is 

135 kip-It 

1.2 kiplfl 
I I I 

1511 

(a) 

Mmax = 135 kip-ft = 1620 kip-in. 

B = 10' 
T = 3/8" ~ __ ~~ 

(13.92+ T) 
W 14x53 

420 kip-It 

(b) (e) 

FIGURE 2.42. Design of flange cover plates to increase load-carrying capacity of a 
cantilever beam. . 
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Thus the load factor is 

Mp 3136 
Ie=~= 1620= 1.936 

max 

(b) Dimensions of Cover Plates Needed to Support Balustrade: The bending 
moment diagram for the beam with balustrade on and with a load factor 
Ie = 2 is shown in Fig. 2.42(b). The maximum moment in this diagram is 

Mmax = 420 kip-ft = 5040 kip-in. 

R . d Z Mmax 5040 4· 3 equue =--=--= 1 OlD. 
0", 36 

Z can be expressed in terms of the thickness and the width of the flange plates 
as [Fig. 2.42(c)] 

Z = 87.1 + BT(13.92 + T). 

Try a 10- x 3/8-inch plate. Then we have 

Z = 87.1 + 10 x ~(13.92 + V = 140.7 in.3 okay. 

Check local buckling of flange cover plates 

B 10 190 
T = 3/8 = 26.67 < .jF., = 31.67 okay. 

Use 10- x 3/8-inch flange cover plates as shown in Fig. 2.42(c). 

2.11 Summary 

The basic quantity required in any structural analysis of framed structures is 
the value of bending rigidity E1, which can be considered as the slope of the 
relationship between moment M and curvature <J). In the allowable stress 
design method, which is based on elastic analysis, this quantity has a constant 
value and thus it presents no difficulties in the analysis and design process. 
But in the case of the plastic design method, which is based on plastic analysis, 
there are problems, because the actual moment-curvature response beyond 
the elastic range is nonlinear. It has been shown that the intensity ofthe axial 
load has a major influence on the shape of the moment-curvature curve and 
on the full plastic moment capacity. The stiffness in the elastic range does not 
vary with axial load but the variation of E1 beyond the elastic limit is very 
significant. At the fully plastic limit state, the stiffness or the slope of the 
moment-curvature relation reduces to zero while the maximum moment re­
mains at the full plastic moment Mpc. 

As a practical approximation, the actual moment-curvature curve is re­
placed by two straight lines for which the stiffness is assumed not to be 
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influenced at all by plastic yielding of the material until the full plastic mo­
ment is reached. At the full plastic state, the rotation of the section increases 
without limit at a constant moment along the horizontal portion of the curve. 
This is a very reasonable idealization for members of wide-flange shape, but 
appreciable errors in stiffness must be expected for cross-sectional shapes 
with a large value of shape factor. Nevertheless, the approximation is very 
good for estimating the collapse load of framed structures. Furthermore, this 
idealized cross-sectional behavior reduces the nonlinear structural analysis 
to a sequence of elastic and "rusty" hinge analysis. This rusty hinge is known 
as the plastic hinge, and its formation corresponds to fully plastic moment of 
the section of the structural member. 

The plastic hinge idealization drastically simplifies the plastic analysis of 
framed structures and makes the full collapse load determination as a quasi­
static process. It forms the basis of the simple plastic theory. All that is re­
quired in this simple theory is a knowledge of the value of the full plastic 
moment or the plastic hinge moment. This was described in detail in this 
chapter. As will be seen in the following chapters, if the full plastic moments 
of the vari6us members of a frame are known, then the collapse load of that 
frame can be determined quickly in a direct manner, even if the frame is 
complex. Similarly, the design of a frame to carry given loads consists in the 
assignment of certain minimum values of full plastic moment to the members, 
which can also be achieved quickly in a direct manner. 

However, several factors of secondary importance will prevent the member 
from reaching the full plastic moment. These factors include such things as 
axial load, shear, buckling, and connection details. These factors are not 
included in the "simple" plastic theory, but we must take them into account 
in practical design. In this chapter, the effects and characteristics of the fol­
lowing factors were discussed and appropriate design procedures provided 
for checking the suitability of the original simple plastic design: 

• axial load and shear force that will reduce plastic moment. 
• instability that may cause local buckling of thin-walled sections. 
• connections that are properly proportioned to transmit plastic moment 

from one member to the other. 

In addition, brittle fracture, repeated loading, and deflection limitation at 
working load must all be accounted for in an actual design to check the 
suitability of a design based on the simple plastic theory that neglects all 
these factors. Note that the necessity for considering these additional factors 
in the plastic design is not in any way different in principle from that in the 
conventional elastic design procedures. 
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Problems 
2.1. Show that the nondimensional M-Cf> relationship for a beam of square cross 

section bent about a diagonal is 

(a) Plot the curve, indicating coordinates at Cf>/Cf>y = 1.0, 2.0, 4.0, and 10.0 (1.0, 
1.625, 1.891, 1.981). 

(b) On the same curve, plot the moment-curvature relationships for (i) a rectan­
gle, (ii) W8 x 31, and (iii) the idealized curve (Fig. 2.5). 

(c) Find the shape factors for the three cross sections (2.0, 1.5, 1.11). 
(d) Discuss the practical implications of the plastic hinge idealization of the 

M -Cf> curve to consist of two straight lines. 

2.2. Derive the expression for the plastic zone distribution of a uniformly loaded 
cantilever beam of rectangular cross section with Mma. = Mp. Sketch the result 
and find the plastic hinge length (y/d = J3[1 - (x/I)2], lp/l = 0.184). 

2.3. Derive the expression for the plastic zone distribution shown in Fig. 2.6(c). 

2.4. A simply supported beam of rectangular cross section is subjected to a concen­
trated load at one-third of the span. Plot the shape ofthe plastic zone at collapse 
of the beam. Determine plastic hinge length 

(left side y/d = )9; right side y/d = j?{j, Ip/l = 1/3)-

2.5. Compute Z, S, and f for a box section with outside depth of 20 inches, wall 
thickness of 1/2 inch, and a width of 8 inches. Flexure is about the strong axis. 
Check local buckling requirements (168.25 in. 3, 133.23 in.3, 1.263). 

2.6. Compute Z for a W14 x 132 shape bending about the strong axis, using the 
approximate expression (2.2.10). Compare the result with the exact value listed 
in the AISC manual (232.3 in.3 , 234 in.3 ) 

2.7. For a solid circular section with diameter d, we know Z = d 3/6 and S = nd 3/32, 
and for solid rectangular section with width b and depth d, we know Z = bd 2/4 
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and S = bd2/6. Using these relationships, derive shape factor expressions for the 
following two shapes: 
a. channel section bent about its strong axis, and 

b. circular hollow tube 

16D (D 3 - d3 ) 

f = ----;- (D4 _ d4)· 

2.8. A6- x 3-inch channel section has flange thickness 0.40 inch and web thickness 
0.25 inch. Find Mpc bent about the minor axis under an axial thrust of 36 kips, 
assuming A36 steel. Show that the value of Mpc depends on whether the tips of 
the flanges are in tension or compression, and find both values (87.9 kip-in, 
110.8 kip-in). 

2.9. Select a wide-flange shape section of A36 steel that will transmit a sull plastic 
moment of 300 kip-in in the presence of an axial compression of 200 kips. 
Flexure is about the strong axis (W14 x 26). 

2.10. For a W8 x 31 column bending about the strong axis, draw the theoretical 
Mpc - P relationships. Compare the results with the approximate design equa­
tions at P/Py equal to 0, 0.15, and 0.6. 

(P/Py) 

o 
0.15 
0.6 

Theoretical M pc 

1 
0.95 
0.471 

Approximate Mpc 

1 
1 
0.472 

2.11. Select a member of wide-flange shape of A36 steel whose cross section will 
transmit a strong axis moment of 3000 kip-in., in the presence of a shear force of 
150 kips (W24 x 55). 

2.12. Two loads of 200 kips each are applied 1 foot from each end of a simply sup­
ported .1O-foot-Iong beam. Select a member of wide-flange shape. Check its 
adequacy for shear and modify the design if necessary (PD/LRFD W24 x 84, 
PD/ASD W24 x 62). 

2.13. A T-section, width 5 inches, depth 6 inches, composed of two equal rectangles 
5 x 1 inch, is bent about the strong axis. 
(a) Find Z, S, and f (15 in.3, 8.33 in.3, 1.8). 
(b) Find Mpc due to an axial load of 100 kips. Assume A36 steel (498.3 kip-in.). 

2.14. An I-section made of A36 steel with overall depth 12 inches, flanges 8 x 1 inch, 
web thickness 1/2 inch, is bent about (i) the strong axis and (ii) the weak axis. 
(a) Find Mp assuming three rectangles (3618 kip-in., 1175 kip-in.). 
(b) Calculate the percentage reductions in Mp due to an axial load of (i) 3.6 kips 

and (ii) 18 kips (2.2%, 0.28%, 40.7%, and 13.5%). 
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2.15. Calculate the percentage of reductions in Mp for the beam section in Problem 
2.14 due to a shear force of 100 kips in the plane of the web when steel has a 
tensile yield stress of (i) 36 ksi and (ii) 50 ksi. Use the von Mises yield criterion 
(9.1%,3.5%). 

2.16. Cover plates of 10- x 1-inch are added to the flanges of the beam section in 
Problem 2.14. Find the increase in the full plastic moment Mp about the strong 
axis. Calculate the reduction in Mp due to an axial compression of 500 kips 
(Mp = 8298 kip-in., Mpc = 6159 kip-in.). 

2.17. A fixed-ended beam oflength L has a concentrated load Q at the left third-point. 
If the allowable stress is 24 ksi, the yield stress is 36 ksi, and the shape factor is 
1.15, calculate: 
(a) allowable working load Qa (elastic design) (3.91 Mp/L). 
(b) yield load Qy (5.87 Mp/L). 
(c) plastic limit load Qp (plastic design) (9Mp/L). 
(d) factor of safety against initial yielding (1.5). 
(e) factor of safety against plastic collapse (load factor) (2.3). 
(f) Give two reasons why Qp is much greater than Qy. 
(g) Explain why erection forces will influence the calculation of Qy but have no 

effect on the calculation of QP' 
(h) If a maximum compressive residual stress (J rc = 10 ksi is present in the beam 

section, what are the factors of safety now, against (i) initial yielding and (ii) 
ultimate collapse (1.08, 2.3). 

2.18. A W14 x 34 fixed-ended beam is of 12-foot length and carries a concentrated 
load 60 kips at a distance 4 feet from one end. Find the load factor considering 
the effect of shear according to Equation (2.6.17). Assume a von Mises yield 
criterion and use A36 steel (1 = 1.807). 

2.19. For an interior beam-to-column connection as shown in the inset of Fig. 2.24: 
a. describe all possible failure modes. 
b. list the corresponding LRFD rules to check against such failures. 
c. sketch the shape of the plastic zones at collapse of the two beams. Determine 

plastic hinge length L(l - l/f). 

2.20. A W24 x 176 beam is connected to a column of same size at a right angle to 
transmit the full plastic moment at a corner. Detail the straight corner connec­
tion: (a) using a web doubler plate and (b) using a diagonal stiffener. 

2.21. Two W18 x 76 beams are connected on opposite sides to a W14 x 82 column 
under a symmetric loading condition. Detail the stiffeners in the beam-to­
column connection. Is the moment stiffening for the column adequate if the 
column must also transmit asymmetric moments from the two connecting 
beams? 

2.22. Find the Mpc value for the hollow rectangular section shown in Fig. P2.22, 
where an eccentric axial compression load of 54 kips is applied 0.75 inch above 
the centroid of the section. 
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FIGURE P2.22 

T . ~ 
4' - - -i-or-' . 

LL...----..+----I 
~ .. ~ 

2.23. For a simply supported beam of rectangular section tapering uniformly from d 
at the midspan to dj3 at each end as shown in Fig. P2.23, find the region for 
which cover plates are needed. 

W= 25k/ft 

~3 
f.--90'~ 

FIGURE P2.23 

b=10· 

Dd~40' 



3 
The Tools Used in Plastic Analysis 
and Design 

3.1 Introduction 

The methods of simple plastic analysis and design are based on two basic 
assumptions. The first assumes that the structure is made of a ductile mate­
rial such as steel that is able to absorb large deformations beyond the elastic 
limit without the danger of fracture. The second is that the deflections of a 
structural system under loading are small such that the effect of this upon the 
overall geometry can be ignored. Herein, we shall discuss the practicality of 
these assumptions and the limitations introduced by them in the methods of 
simple plastic analysis and design. 

The exact solution in a plastic analysis must satisfy the three basic condi­
tions: equilibrium, mechanism (kinematics), and plastic moment (yielding) COD­

ditions. For simple structures such as the beams and portal frames discussed 
so far, they are simple enough to be solved by a "direct" approach or 
"visualized" readily. For more complex structures, it becomes more difficult 
to satisfy all these three conditions in order to obtain the exact solution 
immediately. In this situation it is natural to seek simple approximate 
methods of analysis for these structures, and some general principles and 
theorems with which the accuracy of these approximate solutions can be 
assessed. To this end, in this chapter, we shall use the virtual work method 
extensively to establish these fundamental theorems from which simple and 
approximate techniques of practical plastic methods are derived and 
developed. 

3.2 The Assumption of Ductility of Steel 

The fundamental property that makes possible the application of plastic 
analysis to structural steel design is that the structural material has sufficient 
ductility. The term ductility is defined here as the ability of a material to 
undergo a large deformation without a significant loss in strength. Structural 
steels, particularly the most commonly used A36 steel, have this property 

120 
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in abundance. This ductility enables steel structures to reap the benefits of 
plastification and moment redistribution described in the preceding chapters 
and leads to a higher load-carrying capacity. 

3.2.1 Stress-Strain Relationship of Various Types of Steels 

The steel is almost entirely composed of iron. Other chemicals are added in 
small amounts to modify its physical properties such as strength and ductil­
ity. For example, the carbon is added to increase the yield strength but causes 
a reduction in the ductility of the steel. 

Depending on the composition and manufacturing process, the structural 
steels for hot-rolled applications may be classified as carbon steels, high­
strength and low-alloy steels, and quenched and tempered steels. Figure 3.1 
shows typical stress-strain relationships for these three types of steels. 

The carbon steels can further be subdivided into four categories: low 
carbon (less than 0.15%), mild carbon (0.15-0.29%), medium carbon (0.30-
0.59%) and high carbon (0.60-1.7%). A36 steel has 0.25 to 0.29% carbon 
content. The stress-strain relationship of A36 steel is shown by curve (a) 
in the figure. High-strength low-alloy steels are obtained by adding small 

Stress 

( ksi ) 

0.2% offset .--... -",,-- - - Tensile strength. Fu 

t 
100 I - - - Fy = 100 ksi 

I 
I 

80 I 
I 
I 
I 

60 I 
I 

40 

20 

Fy = 36 ksi 

Quenched and Tempered 

alloy steel: A514 

/ 

High-strength, Low-alloy 

carbon steels; A572 

Carbon steels; A36 

(b) 

(a) 

0.05 0.10 0.15 0.20 0.25 0.30 0.35 

Strain 

FIGURE 3.1. Typical stress-strain curves of steels. 
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amounts of alloys such as chromium, copper, manganese, nickel, and phos­
phorous to carbon steel. The addition of these noncarbon alloys increases 
strength without causing a significant loss in ductility as shown by curve (b) 
in Fig. 3.1. Both carbon-steel and high-strength low-alloy steel exhibit well­
defined yield points as shown by curves (a) and (b). For both of these types, 
the strains of up to 8 to 15 times the elastic limit occur without any significant 
change in the stress. A later increase in strength is exhibited as the material 
strain hardens. 

The strength and ductility of the steel can also be adjusted by a heat­
treatment process consisting of quenching (rapid cooling with water or oil) 
and tempering (reheating and then allowing it to cool). The quenching results 
in a higher yield stress but reduces the ductility. The tempering, on the other 
haJ;ld, results in a lower strength but increases the ductility of the material. 
Curve (c) in Fig. 3.1 is the stress-strain curve of A514 steel obtained by a heat 
treatment of low-carbon steel. Note that the ductility of heat-treated high­
strength steel is much lower than the low-strength A36 and A572 steels. 

To ensure adequate ductility for plastic analysis and design, the AISC­
LRFD specification (Chapter A) requires that the steel must exhibit a plastic 
plateau on the stress-strain curve, consequently, Fy :::;; 65 ksi must be used. 

3.2.2 Effects of Unloading and Strain Aging on the 
Stress-Strain Relationship 
Elastic loading and unloading do not effect the stress-strain relationship of 
steel. However, when steel is unloaded after the yield strain is greatly ex­
ceeded, then reloading may give a stress-strain relationship different from 
that observed during an initial loading. 

For example, if a specimen is loaded up to point C in Fig. 3.2 and unloaded 
to point D, then reloading will occur along path D, C, and E, thus causing a 
significant reduction in the available ductility. However, if reloading occurs 
after a certain period of time, the steel may exhibit a different stress-strain 
relationship due to a phenomenon known as strain aging. The strain aging, 
as shown in Fig. 3.2, restores the original shape of the stress-strain diagram, 
but the ductility is further reduced. 

3.2.3 Idealized Stress-Strain Relationship 
To simplify the analysis and design procedures, the actual stress-strain rela­
tionship of steels can be idealized as an elastic-perfectly plastic type with two 
straight lines as shown in Fig. 1.4. Up to the yield stress level, the material is 
elastic. After the yield stress is reached, the strain is assumed to increase 
infinitely without any change in stress. For both A36 and A572 steels, this 
idealization is conservative in the strain-hardening range. Note that both 
steels are perfectly ductile up to a strain of 0.35, compared with an infinite 
ductility assumed in the idealization. As will be shown in the forthcoming, 
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Stress 

Strain 

Ductility after Unloading 

in Strain Hardening I 
Regime and Strain Aging I 

E 

FIGURE 3.2. Effects of unloading in strain-hardening regime and strain aging on 
ductility of steel. 

this ductility of 0.35 for both A36 and A572 steels is more than adequate to 
materialize the benefits of plastification and redistribution of moments in 
almost all practical steel structures. 

3.2.4 Ductility Requirement for Plastification 
The process of plastification enables a section of the members to realize its 
full plastic moment capacity by successive yielding of all the fibers in the 
section. Theoretically, the full plastic moment will be attained only if the 
extreme fibers are capable of sustaining the yield stress up to infinite strain. 
For all practical purposes, 99% of the full plastic moment capacity of a 
section can be attained at a curvature of about 2 to 8 times the initial yield 
curvature as shown in Fig. 2.3. In fact, the moment-carrying capacity of an 
actual section will exceed the theoretical full plastic moment Mp as soon as 
the extreme fibers reach the strain-hardening regime. 

3.2.5 Ductility Requirements for Moment Redistribution 
The process of moment redistribution enables a structural system to attain its 
plastic limit load by the successive development of plastic hinges to form a 
failure mechanism. To this end, the first plastic hinge developed in the pro­
cess must be able to sustain a large rotation capacity with its full plastic 
moment capacity M p , while plastic hinges are developed elsewhere in the 
structure. This required rotation capacity for a plastic hinge can be computed 
by the virtual work method or the hinge-by-hinge method. Details of these 
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two procedures will be described in Chapters 6 and 7 respectively. LRFD 
guidelines of maximum width-to-thickness ratio .A.p for preventing local 
buckling of the cross section (Table 2.1 or LRFD Table B5.1) and of maxi­
mum spacing of laterally unbraced length Lpd for preventing lateral torsional 
buckling of members (Chapter F) are based on a rotation capacity of 3.0 
times the elastic rotation capacity for nonseismic areas and 7 to 9 times the 
elastic rotation capacity for seismic areas. 

3.3 The Assumption on Small Changes in Geometry of 
Structures 

In simple plastic theory, as in elastic theory, the equilibrium equations are 
formulated on the basis of a structure's original undeformed geometry. How­
ever, the word "plastic" usually gives the impression that a large deflection 
would be involved at the plastic limit load. In the following, we will show 
through simple examples that defections at the plastic limit load are of the 
same order of magnitude as those at the elastic limit load. 

Consider a fixed-ended beam with a concentrated load applied at one­
third point. The deflections under concentrated load at elastic and plastic 
limits are determined by the hinge-by-hinge method in Example 1.8.2 as 

and 

M L2 
del = 0.0247 ;1 (3.3.1) 

(3.3.2) 

Note that the deflection at the plastic limit load is about 3 times that at the 
elastic limit, while the plastic limit load is more than 33% higher than the 
elastic limit load. Similarly, the midspan deflection of a fixed-ended beam 
under a uniformly distributed lateral load at the elastic and plastic limit loads 
are found to be 

and 

M L2 
d - p 

el - 32E1 

M L2 
A _ P 
ilpl - 12E1· 

(3.3.3) 

(3.3.4) 

For this case, the plastic limit deflection is only 2.7 times the elastic limit 
deflection while the plastic limit load is more than 33% higher than the elastic 
limit load. 
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3.4 The Equation of Virtual Work 

3.4.1 The Equation 
The virtual work equation relates a system offorces in equilibrium to a system 
of compatible displacements. Stated simply, if a body in equilibrium is given 
a set of small compatible displacement, then the work done WE by the external 
loads on these external displacements is equal to the work done l1j by the 
internal forces on the internal deformations, i.e., 

(3.4.1) 

Note that the external displacements must be compatible with the internal 
deformations. However, these internal deformations need not be real, i.e., 
they need not correspond to any actual or possible state of equilibrium. The 
internal forces must be in equilibrium with the external forces, but they need 
not be the actual internal forces due to the external loads. They bear no 
relationships with the external or internal displacements. Any equilibrium set 
of forces may be used in the equation of virtual work. The structure can be 
arbitrarily distorted to produce a displacement set without reference to any 
loading system. Since the equilibrium set and the displacement set are not 
related in any way, the adjective virtual is used to describe their work 
equation. 

In plastic methods, only mechanism-type deformations are considered in 
which internal deformations are assumed to be concentrated at plastic 
hinges, which are assumed to be connected by rigid members. As a result, the 
virtual work equation (3.4.1) for framed structures can be written in the 
explicit form as 

Equilibrium Set 
! 1 

LPibi = LM/Ji 
t j 

Displacement Set 

(3.4.2) 

where Pi is an external load and Mi is the internal moment at a hinge loca­
tion; both Ps and M s together constitute an equilibrium set and therefore 
must be in equilibrium; bi is the displacement at the load point Pi and in 
direction of the load Pi; and 0i is the rotation at a hinge location with the 
moment Mi , both bs and Os together constitute a displacement set and there­
fore must be compatible with each other. 

3.4.2 Sign Convention 
The use of the virtual work equation, particularly for the moment check used 
in the next chapter, requires proper signs with both moments and rotations. 
The following sign convention will be used when applying the virtual work 
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equation (3.4.2): The moments and rotations causing tension on the side of the 
dotted line are positive and vice-versa (see Figs. 3.10 and 3.11). 

In contrast, in calculating the actual plastic work done on a plastic col­
lapse mechanism described in Chapter 2, the plastic moment Mp and the 
corresponding rotation e are always positive for energy dissipation at a plas­
tic hinge. Thus, no sign convention is needed for calculating the plastic work 
equation for a mechanism solution. This will be described in detail in Chap­
ter 5. 

3.4.3 Work Done by Distributed Loads 
The external work done by concentrated loads can simply be determined as 
the product of the load and the corresponding displacement. However, when 
the load is distributed, Fig. 3.3(a), the external work WE should be calculated 
by carrying out the following integration 

WE = L (wdx)y (3.4.3) 

where w, dx, y, and L are shown in Fig. 3.3. If w is a uniformly distributed 
load, then w can be taken out of the integral. It follows that the remaining 
integral represents the area of the displacement diagram such as that shown 
in Fig. 3.3(b). In plastic methods, the rotations are concentrated at plastic 
hinges and the members between the hinges are straight. Thus, the work done 

J 
A L B 

(a) 

A B 

FIGURE 3.3. Work done by a 
distributed load: (a) distrib-

(b) uted load and (b) deflection. 
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FIGURE 3.4. Work done by 
uniformly distributed loads 
on horizontal members. 
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can be found directly, without carrying out the integration for area, by simply 
calculating the maximum deflections of triangles and trapezoids as shown in 
Figs. 3.4(a), (b), and (c). 

For inclined members under a vertical uniformly distributed load, such as 
those in gable frames (Fig. 3.5), WE can be calculated as 

1 
WE = 2(W cos e)d (3.4.4) 

where W = wL is the total uniformly distributed load on the member; and e, 
d, and L are shown in Fig. 3.5(a). For practical applications, it is more 
convenient to use the formulas in terms of the vertical deflection () than d as 
shown in of Fig. 3.5(a), (b), and (c) for the computation of external work WE. 

3.4.4 Applications of the Virtual Work Equation 
In plastic methods, the virtual work equation has the following five major 
applications. 

1. Obtain the geometrical relationships of mechanism motion by assuming 
appropriate equilibrium sets. 

2. Make a moment check for a given mechanism by assuming appropriate 
displacement sets. 

3. Prove the uniqueness, unsafe, and safe theorems. 
4. Obtain bounding solutions: upper-bound load factors in analysis prob­

lems and lower-bound plastic moments in design problems. 
5. Calculate deflections at collapse load. 

The power and simplicity of the virtual work equation can be brought out 
best by simple examples. Herein, we shall present simple examples illustrat-
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(a) 

(b) 

(e) 
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F· 

Projection of A C' D 

FIGURE 3.5. Work done by 
uniformly distributed loads 
on inclined members. 

ing the first two applications. The plastic theory will be proved in the next 
section, followed by the calculations of upper and lower bounds on load 
factor and plastic moment of simple beams and frames in this chapter and of 
more complex structures in Chapters 4 and 5. Deflection calculations will be 
dealt with in Chapter 6. 

Example 3.4.1. The mechanism shown in Fig. 3.6 is considered in a plastic 
frame analysis. Use the virtual work equation to determine the relationship 
between the angles (}1' (}2' and (}3· 

Solution: To relate (}2 and (}2' the equilibrium set shown in Fig. 3.7 is gener­
ated by simply applying a unit compressive internal force in member BC and 
then adding the necessary external moments to achieve moment equilibrium 
for the other two members. The virtual work done by this equilibrium set 
(Fig. 3.7) on the given displacement set (Fig. 3.6) gives the relationship as 

20(}1 - 25(}2 = 0, 

which leads to the angular relationship 

5 
(}1 =4(}2. (3.4.5) 

To relate (}1 and (}3, the equilibrium set shown in Fig. 3.8 is generated by 
first applying an internal compressive force in member CD with its vertical 
and horizontal components directly proportional to the member slope and 



FIGURE 3.6. The frame 
mechanism to be analyzed. 

FIGURE 3.7. An equilibrium 
set for relating (Jl and (J2 of 
Fig. 3.6. 

FIGURE 3.8. An equilibrium 
set for relating (Jl and (J3 of 
Fig. 3.6. 
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200 

20 

25 

FIGURE 3.9. An equilibrium 
set for relating O2 and 03 of 
Fig. 3.6. 

then adding external moments to meet equilibrium requirements for the oth­
er two members. The virtual work equation for these two sets now provides 

32501 - 25003 = 0, 

which leads to the desired angular relationship 

Alternatively, if we use the equilibrium set of Fig. 3.9, we obtain 

20003 - 32502 = 0, 

which gives an alternative relationship 

(3.4.6) 

(3.4.7) 

Equations (3.4.5) and (3.4.6) lead to the same relationship between 01 and 03 

as in Eq. (3.4.7). Any equilibrium sets can be used for this purpose, but the 
procedure shown in Figs. 3.7 to 3.9 provides a simple and practical procedure 
of obtaining geometric relations easily. 

Example 3.4.2. The mechanism of a rectangular frame shown in Fig. 3.10(a) 
provides an upper-bound solution of P = 16Mp /3L. This solution will be 
exact only if the moment condition (M ~ Mp) is satisfied everywhere in the 
frame. Use the virtual work equation to check the moments corresponding to 
the given plastic collapse mechanism. 

Solution: The moment diagram corresponding to the given mechanism is 
shown in Fig. 3.10(b) with an unknown moment MB. MB can be determined 
by using either of the two displacement sets shown in Fig. 3.11 in conjunction 
with the equilibrium set of Fig. 3.10(b). Using the beam mechanism, the 



FIGURE 3.10. The collapse 
mechanism and its corre­
sponding moment diagram: 
(a) mechanism and (b) 
moment diagram. 

FIGURE 3.11. Two possible 
geometry sets for finding 
M8 of Fig. 3.10(b): (a) 
beam mechanism and (b) 
sway mechanism. 
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virtual work of Fig. 3.10(b) on Fig. 3.11 (a) gives 

p(~lJ) = (+MB)( -lJ) + (+Mp)( +2lJ) + (-Mp)( -lJ). 

Substituting P = 16Mp/3L, we have 

(3.4.8) 

Since MB < Mp, the moment condition is satisfied and the moment check 
is complete. Alternatively, using the sway mechanism, Fig. 3.11(b), and the 
equilibrium set of Fig. 3.10(b), we have the following virtual work equation: 

P(LlJ) "2 T = (+MB)( +lJ) + (-Mp)( -0), 

which with P = 16Mp/3L gives the same value of MB as Eq. (3.4.6). 

Example 3.4.3. The moment diagram corresponding to the plastic collapse 
mechanism of a gable frame is shown in Fig. 3.12 with unknown moments 
MB, MD , and ME. Use the virtual work equation to perform the moment 
check. The collapse load P for this mechanism is 3Mp /5L. 

(a) Mechanism 

4P 

P-";':"'+':~-"" 

(b) Moment Diagram 

p 

E 

P 

FIGURE 3.12. A collapse 
mechanism and its corre­
sponding moment diagram: 
(a) mechanism and (b) 
moment diagram. 
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Solution: The unknown moment MB can be determined easily by assuming 
the sway mechanism of Fig. 3.13 in conjunction with the moment diagram of 
Fig. 3.l2(b). The virtual work equation provides 

P(LO) = (-MB)( +0) + (-Mp)( -0). 

With P = 3Mp/5L, MB has the value 

2 
MB = SMp < Mp okay. 

MD can be determined easily by using the beam mechanism of Fig. 3.14 with 
the moment diagram of Fig. 3.12(b). The virtual work equation gives 

P(LO) = (-MB)(-O) + (+Mp)(+20) + (+MD)(-O), 

which with P = 3Mp/5L and MB = (2/5)Mp provides 

9 . 
MD = SMp > Mp not okay. 

Since MD > Mp, the moment condition is not satisfied and therefore P = 
3Mp/5L is an upper-bound solution, not the exact solution. 

3.5 The Fundamental Theorems 

Here, as in the elastic solution that must satisfy equilibrium, compatibility, 
and elastic moment-curvature conditions, the correct plastic solution must 
satisfy equilibrium, mechanism, and moment conditions. As the structure 
under examination becomes more complex, it becomes increasingly difficult 
to satisfy all three conditions simultaneously. In theory, it is always possible 

FIGURE 3.13. Sway mecha­
nism for finding MB of 
Fig. 3.12(b). 

FIGURE 3.14. Beam mecha­
nism for finding MD of 
Fig. 3.12(b). 
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to write the relevant equilibrium equations compatible with a deformation 
system and satisfy the moment conditions. In practice, the resulting equa­
tions are virtually unsolvable for practicing engineers. The alternative to an 
exact solution is to evolve one in which only one or two of the three basic 
conditions are fully met so that an approximate solution can be obtained 
quickly. In order to judge the accuracy of these approximate solutions, 
several general principles and basic plastic theorems will be established in 
this section, against which the accuracy and meaning of the approximate 
methods can be measured. 

All the basic theorems of plastic theory are based on the assumption that 
the loads acting on a structure will increase proportionally and will not be 
allowed to vary randomly and independently. These loads may be thought of 
as having their working values; as the loads increase, their working values are 
multiplied by a common factor A, the load factor. The basic theorems to be 
established here are concerned with the load factor Ac at the collapse of the 
structure. In establishing the theorems, the equation of virtual work is used 
extensively. 

An important feature of plastic theory to be established in the forthcoming 
is the extent to which an engineer's intuition of structural behavior has been 
used in the development of practical solutions [2.3, 3.1-3.6]. It is the aim of 
this chapter to make full use of such intuitive ideas in conveying an under­
standing of the principles involved. These intuitive ideas are expressed first in 
formal statements, followed by proofs of the theorems of plasticity, after 
which methods of plastic analysis are illustrated by simple examples. 

The more complex problems, which require a deeper appreciation of the 
methods of plastic analysis, are presented in Chapters 4, 5, and 6. Emphasis 
in these three chapters is placed on the methods of analysis that are suitable 
primarily to hand calculations, since a thorough understanding of plastic 
theory is best attained by the direct working of these examples. In Chapters 
7 and 8, some methods suitable for computer application are introduced to 
provide the necessary transition from the current simple plastic methods to 
the more sophisticated analysis techniques that hold the promise of more 
realistic prediction of load effects and frame performance leading to a direct 
analysis of inelastic strength and stability for frame design. This is known as 
advanced inelastic analysis. It is a difficult subject in which plasticity and 
stability theories are taken together and where the structural engineering 
profession is going. Chapter 8 presents an introduction to this difficult sub­
ject and provides a balance view of the significance of stability theory in 
relation to plastic theory. 

3.5.1 Uniqueness Theorem 
Statement and Description. The load factor Ac at collapse has a definite value. 
In other words, as the loads on the structure are gradually increased, i.e., as the 
value of A is increased, collapse occurs at one definite value of A = Ac. 
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Proof: We shall show this by contradiction. First, assume the theorem is false. 
Thus, it is possible to have two collapse mechanisms of a structure under the 
given loads with two different load factors X and A". Both mechanisms will 
satisfy the equilibrium and moment conditions. Denote the displacements 
and rotations ofthe first mechanism by [)' and ()', and of the second one by [)" 
and (}", respectively. These displacement sets are compatible. The associated 
bending moment diagram corresponding to the first collapse mechanism, 
denoted by M', will be in equilibrium with the set of applied loads Xw. This 
moment diagram satisfies the moment condition, I M' I ~ M po Similarly, the 
bending moment diagram corresponding to the second mechanism, denoted 
by M", will be in equilibrium with the set of applied loads A"W and satisfy the 
moment condition, IM"I ~ Mpo 

The actual plastic work for the first mechanism has the usual form 

(3.5.1) 

For the proportional loading case, X on the left-hand side of Eq. (3.5.1) can 
be taken out of the summation sign as 

X I W[)' = I Mp(}'. (3.5.2) 

Now, applying the virtual work equation to the displacement set of the first 
mechanism and the equilibrium set of the second mechanism, we have 

A"I W[)' = IM"(}'. (3.5.3) 

If the two mechanisms have certain common plastic hinges, then M"(}' terms 
on the right-hand side of the equation will be Mp(}' for the common plastic 
hinges and less than Mp(}' for other hinges in the first mechanism. Thus, we 
have 

A"I W[)' ~ IMpWI. (3.5.4) 

Comparing Eq. (3.5.2) with expression (3.5.4), we have 

A" ~A'. (3.5.5) 

Similarly, by comparing the virtual work done by the equilibrium set corre­
sponding to mechanism 1 on mechanism 2, with the actual plastic work done 
for mechanism 2, we can write 

A' ~ A". (3.5.6) 

Inequalities (3.5.5) and (3.5.6) can be satisfied simultaneously only if the two 
load factors have the same value. This value is unique and denoted by Ac> the 
collapse load factor. 

We will now illustrate and prove the uniqueness theorem again using a 
simple structure, the fixed-ended beam, shown in Fig. 3.15(a). Here, the first 
mechanism and its associated moment diagram, and the second mechanism 
and its associated moment diagram are, respectively, shown in parts (b), (c), 
(d), and (e). First, we write the actual plastic work equation for the first 
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(a) 

(b) 

(0) 

(d) 

(e) 
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FIGURE 3.15. A fixed-ended 
beam, its mechanisms, and 
moment diagrams to 
illustrate the uniqueness 
theorem. 

mechanism [parts (b) and (c)] and obtain 

(A'WB)<5~ + (A'Wd<5~ = MpIO~1 + MpIO~1 + MpIO.oI. (3.5.7) 

Now, we write the virtual work equation for the displacement set of the 
first mechanism in part (b) and the equilibrium set of the second mechanism 
in part (e) and get 

(A"WB)<5~ + (A"Wd<5~ = (- Mp)( - e~) + (+ MB)( + e~) + (- Mp)( - e.o). 
(3.5.8) 

The subtraction of Eq. (3.5.8) from Eq. (3.5.7) leads to 

(A' - A")(WB<5~ + Wc<5~) = O~(Mp - MB)' (3.5.9) 
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Since MB must be less than or at the most equal to M p, Eq. (3.5.9) reduces to 

x ~ X'. (3.5.10) 

Similarly, write the plastic work equation for the second mechanism [parts 
(d) and (e)] and obtain 

(3.5.11) 

Again, write the virtual work equation for the displacement set of the second 
mechanism [part (d)] with the equilibrium set of the first mechanism [part 
(c)] and obtain 

(XWB)D;; + (XWdDc = (- MpH - O~) + (+ Md( + oc) + (- MpH - O~). 
(3.5.12) 

The subtraction of Eq. (3.5.12) from Eq. (3.5.11) leads to 

(A" - XHWBD;; + WeDc) = Oc(Mp - Me)· 

Since Me ~ Mp , Eq. (3.5.13) reduces to 

Inequalities (3.5.10) and (3.5.14) can be satisfied only when 

A" = X. 

(3.5.13) 

(3.5.14) 

(3.5.15) 

Note that it has not been established that the collapse mechanism is 
unique or that the bending moment diagram at collapse is unique. In fact, it 
is possible to have two collapse mechanisms leading to the same collapse 
load factor Ae. The uniqueness theorem simply states that the collapse load 
factor Ae determined from the three basic conditions (mechanism, equilib­
rium, and moment) has a unique value. 

3.5.2 Unsafe Theorem 
Statement and Description. If the collapse mechanism of a structure is guessed 
and its plastic collapse equation is written, then the load factor so computed will 
always be greater than, or at best equal to, the true value Ae. It gives an unsafe 
solution. In other words, if all the loads are increased slowly in proportion 
to their working values, actual collapse would have already occurred before 
the formation of the guessed mechanism, unless it happens to be the correct 
mechanism. 

From the plastic work equation such as Eq. (3.5.7), we can determine A 
for a given value of Mp (analysis problem); or we can determine Mp for 
a given value of A (design problem). In the design sense, the unsafe theorem 
states that the value of Mp resulting from the analysis of an assumed mecha­
nism will always be smaller than or at most equal to the actual required 
value. 
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FIGURE 3.16. Mechanisms 
and moment diagrams for a 
fixed-ended beam for the 
illustration of unsafe and 
safe theorems. 

Proof: Consider, for example, a fixed-ended beam with a concentrated lateral 
load P shown in Fig. 3.16(a). The actual collapse mechanism will form when 
plastic hinges are developed at two ends and at the location of the concen­
trated load P [Fig. 3. 16(b)]. The actual moment diagram is shown in part (c). 
Now, assume an arbitrary collapse mechanism shown in part (d). The corre­
sponding moment diagram is shown in part (e): First, we write the plastic 
work equation for the assumed mechanism in part (d) and we obtain 

(3.5.16) 

Note that all the terms on the right-hand side are plastic work and are 
therefore positive. Now apply the virtual work equation to the assumed 
mechanism [part (d)] and the equilibrium set of the actual moment [part (c)] 
and obtain 

PCJc = (-MpH -OA) + (+MDH +OD) + (-MpH -OB)' 

Subtract Eq. (3.5.17) from Eq. (3.5.16) and get 

(pu - PC)Jc = (Mp - MD)OD' 

(3.5.17) 

(3.5.18) 

Since the moment diagrams in part (c) is the actual moment distribution, the 
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moment condition must always be satisfied, i.e., Mn ~ Mp. Thus, Eq. (3.5.18) 
leads to the unsafe theorem 

pU ?: pc 

where pc is the actual collapse load. 

3.5.3 Safe Theorem 

(3.5.19) 

Statement and Description: If a bending moment diagram in equilibrium with 
the applied external loads with load factor A can be obtained such that the full 
plastic moment condition is not exceeded at any cross section of the structure, 
then the load factor A computed from this moment diagram will be less than or 
at most equal to the true collapse load factor Ac. In other words, if at a load 
factor A it is possible to find a bending moment diagram that satisfies both the 
equilibrium and moment conditions but not necessarily the mechanism condi­
tion, then the structure will stand up and not collapse at that load factor, unless 
it happens to be the actual or correct solution. 

In the design problems if plastic moment Mp is determined from an as­
sumed moment diagram described earlier, it will always be greater than or at 
least equal to (safe) the true required plastic moment. The engineers can 
intuitively visualize the distribution of moments and forces and calculate the 
corresponding plastic moment or plastic limit load. In fact, the basic concept 
of the safe theorem has been frequently used by practicing engineers in the 
design of structures without knowing the existence of such a theorem. 

Proof: Again referring to the fixed-ended beam of Fig. 3.16(a), select an arbi­
trary equilibrium moment diagram shown in Fig. 3.16(f), with MA , M B , and 
Me less than or equal to Mp. Apply the virtual work equation to the actual 
collapse mechanism of part (b) and the chosen equilibrium moment diagram 
of part (f) and obtain 

pLf>c = (- MA)( - 8,4) + ( + Md( + 8c) + (- MB)( - 8~). (3.5.20) 

Now, we write the actual plastic work equation for the collapse mechanism 
in part (b) and obtain 

pCf>c = Mpl8A1 + Mpl8cl + MpI8~1. (3.5.21) 

Subtraction of Eq. (3.5.21) from Eq. (3.5.20) leads to 

(PL - PC)f>c = (MA - Mp)8,4 + (Me - Mp)8(; + (MB - Mp)8JJ. (3.5.22) 

Since MA, MB, and Me are all less than or at most equal to Mp, it follows that 

(pL _ PC) ~ o. 

Thus, inequality (3.15.23) leads to the safe theorem 

pL ~ pc. 

(3.5.23) 

(3.5.24) 
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3.5.4 Corollaries of the Safe and Unsafe Theorems 
The following corollaries can be stated as a result of the safe and unsafe 
theorems. 

1. If a material of negligible self-weight is added to a structure or a restraint is 
imposed, the structure cannot thereby be weakened. 

This follows from the safe theorem. Since the moment diagram for the 
collapse state of the unstrengthened structure must satisfy the moment 
condition, the same moment diagram will certainly satisfy the moment 
condition of the strengthened structure. Thus, the strengthened structure 
cannot collapse at a load less than that of the unstrengthened structure. 

2. The removal of a material or constraint from a structure will only weaken 
the structure. 

This follows from the unsafe theorem. Since the mechanism condition 
must be satisfied at the collapse state of the unweakened structure, it will 
certainly be satisfied for the weakened structure under the same load. 
Thus, weakened structure cannot resist a load higher than the collapse 
load for the unweakened structure. 

3. A useful coroll~ry of the unsafe theorem is that the true load factor at 
collapse is the smallest possible one that can be determined from a consider­
ation of all possible mechanisms of collapse. This fact is very useful in the 
method of "combination" of mechanisms, to be presented in Chapter 5. 

In short, the three limit theorems can be summarized as follows: 

{
MECHANISM CONDITION A ~ Ac 

A = Ac EQUILIBRIUM CONDITION A::;; Ac 
MOMENT CONDITION. 

3.6 Upper- and Lower-Bound Solutions Based on the 
Limit Theorems 

The safe and unsafe limit theorems may be used together to obtain upper and 
lower bounds on the value of load factor Ac in an analysis problem or on the 
value of the plastic moment Mp in a design problem. Herein, we shall illustrate 
the calculations of upper- and lower-bound techniques for both analysis and 
design problems with the use of a simple portal frame. 

3.6.1 Analysis Example 
Determine upper and lower bounds on the load factor Ac for a rectangular 
frame shown in Fig. 3.17. Use the mechanism shown in Fig. 3.18. 
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FIGURE 3.17. A simple 
rectangular frame with load 
factor A. 

FIGURE 3.18. An assumed 
sway mechanism. 

40A 

10 E 

-----
I 
I 
I 

Solution: The assumed mechanism has three plastic hinges at D, E, and F. The 
plastic work equation for this mechanism can be written as 

(40,1)(58) + (60,1)(108) = (720)(28) + (240)(28) + (240)(8). (3.6.1) 

Note that plastic work is always positive, and there is no need to consider 
sign convention. Equation (3.6.1) provides an unsafe or upper-bound solu­
tion on the value of Ac as 

A. = 2.7. (3.6.2) 

A lower bound can also be determined by checking the moments corre­
sponding to this mechanism. This is described in the forthcoming. Moments 
at D, E, and F are known to be 720, 240, and 240, respectively. Unknown 
moments at Band C can be determined by the application of the virtual work 
equation as follows. 

Moment at C: Apply the virtual work equation to the equilibrium and dis­
placement sets shown in Fig. 3.19 and get 

(+Md( -8) + (720)( +28) + (-240)( -8) = (60)(2.7)(108), (3.6.3) 

which gives 

Me = 60. (3.6.4) 

Moment at B: Apply the virtual work equation to the equilibrium and dis­
placement sets of Fig. 3.19(b) and obtain 
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(60)( - 8) + (+ M B )( + 28) = (40)(2.7)(58), (3.6.5) 

which provides 

MB = 300. (3.6.6) 

Since MB > (Mp = 240) the moment condition was violated at B. However 
if we scale down the whole moment diagram of the frame by a factor 
240/300 = 0.8 by simply reducing the value of A to 2.7 x 0.8 = 2.16, then the 
moment condition will be met throughout the frame. However, at this load 
level, the mechanism cannot develop. Since at A = 2.16, both the equilibrium 
and moment conditions are satisfied without meeting the mechanism condi­
tion; it follows from the safe theorem that A = 2.16 is a safe solution, i.e., 2.16 
is a lower bound on the value of Ac. Thus, for the assumed mechanism, lower 
and upper bounds are obtained as 

2.16 ::; Ac ::; 2.7. (3.6.7) 
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FIGURE 3.20. A simple 
rectangular frame with Mp 
to be determined. ___ ~~10~~=""l:!~ ...... ~~10~~'="1 E -----1 
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The bounds can be further narrowed down by considering other mecha­
nisms. Note that the actual collapse load factor for this frame is A. = A.c = 2.4, 
corresponding to the formation of plastic hinges at B, E; and F. 

3.6.2 Design Example 
Determine upper and lower bounds on the value of Mp for the frame shown 
in Fig. 3.20. Again, use the mechanism of Fig. 3.18. 

Solution: The plastic work equation for the assumed mechanism can be ex­
pressed as 

(96)(50) + (144)(100) = (3Mp)(20) + (Mp)(20) + (Mp)(O), (3.6.8) 

which gives 

(3.6.9) 

This is an unsafe value of M p , i.e., it is a lower bound on the correct value of 
Mp- The safe value, or upper bound, is determined by checking the moments 
in the frame. Moments at Band C are determined as follows. 

Moment at C: Apply the virtual work equation to the equilibrium and dis­
placement sets of Fig. 3.21 (a), and obtain 

(+Md( -0) + (640)( +20) + (-213)( -0) = (144)(100), (3.6.10) 

which provides 

Me = 53. (3.6.11) 

Moment at B: Apply the virtual work equation to the equilibrium and dis­
placement sets of Fig. 3.21(b) and obtain 

(53)( - 0) + ( + M B)( + 20) = (96)(50), (3.6.12) 

which gives 

MB = 267. (3.6.13) 

Since MB is greater than Mp = 213, the moment condition was violated at B. 
However, if we assign Mp = 267 for the frame, then the moment condition 
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FIGURE 3.21. Equilibrium 
and geometry sets for (a) 
Me and (b) MB • 

will be met throughout the frame. But with this larger section size, plastic 
hinges cannot develop at D, E, and F and thus no mechanism can form. Thus, 
Mp = 267 is an upper-bound solution on Mp. Thus, bounds on Mp are ob­
tained as 

213 ~ Mp ~ 267. (3.6.14) 

Recall from Example 3.6.1 that the exact value of Mp is 240. 

3.7 Illustrative Examples 

Herein, we shall present three different structures to further demonstrate the 
applications of the virtual work equation and/or determine their upper and 
lower bounds on the collapse loads. 

Example 3.7.1. Due to settlement, end A of the frame shown in Fig. 3.22 
is displaced vertically but Av = 0.5 inch and horizontally by Ah = 0.1 inch. 



FIGURE 3.22. Displacements of a frame 
due to settlement and imperfection. 
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Also, due to initial imperfection in member AC, there is a clockwise rotation 
of e = 0.004 radian at point B. Determine the resulting vertical displacement 
6v of end E by the virtual work equation. 

Solution: The first step to determine 6v is to create an equilibrium set. To this 
end, apply a unit vertical load at point E as shown in Fig. 3.23. Now, apply 
the virtual work equation of the given displacement set to the created equilib­
rium set and obtain 

(1)(6v) + (0)(0.1) - (I)(O.S) = (-S x 12)( -0.004), (3.7.1 ) 

which gives 

6v = O.S + 0.24 = 0.74 inch. (3.7.2) 

Example 3.7.2. All five members of the truss shown in Fig. 3.24 have the same 
cross section. Each bar can carry a yield load Py in either tension or compres­
sion and can be extended or compressed indefinitely under this load. Derive 
an upper and lower bound on the collapse value of P. 

Solution: Mechanism 1: Consider the mechanism with yielding of Bars AB, 
BC, AD, and CD, Fig. 3.2S(a). The plastic work equation for this mechanism 
can be expressed as 

4PyAs = 2pu A. 

From triangle DD'D" in Fig. 3.2S(a), A and As are related as 

A = fiAs. 

Thus, Eq. (3.7.3) gives an upper bound 

pU = fipy • 

(3.7.3) 

(3.7.4) 

(3.7.S) 
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FIGURE 3.23. An equilibrium set for Dv' 

FIGURE 3.24. A square truss. 

A lower bound for this mechanism can be found by carrying out an equilib­
rium check. The equilibrium of joint A [Fig. 3.25(b)] gives the force in verti­
cal bar as 

(3.7.6) 

Since FAC > Py , the yield condition has violated in member AC. Thus, if we 
decrease the applied force by a factor Py / j2 Py , then a lower-bound solution 
can be determined as 

(3.7.7) 
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FIGURE 3.25. Upper and 
lower bounds for mecha­
nism 1: (a) mechanism and 
(b) equilibrium of joint A. 

(a) Mechanism 1 

(b) Equilibrium of Joint A 

Mechanism 2: The equilibrium check for mechanism 1 shows that yielding in 
the vertical bar AC is critical. So, we now try the mechanism in which only 
AC is yielded. The plastic work equation for this case is 

2(PU Ll) = Py (2b), (3.7.8) 

which gives 

(3.7.9) 

To relate Ll to b, an equilibrium set is created for member AD as shown in 
Fig. 3.26(b). Now, apply the virtual work equation of mechanism 2 to the 
created equilibrium set and obtain 

(h)(b) + (b)(O) + ( - b)(Ll) + (h)(O) = O. (3.7.10) 

Since b = h, we obtain Ll = band Eq. (3.7.9) reduces to 

pU = Py • (3.7.11) 

From the equilibrium of joint A of Fig. 3.26(c), the forces in all side bars are 
Py/fl. Since all three conditions (equilibrium, moment, and mechanism) are 
now satisfied, P = Py is the exact collapse load. This can also be obtained by 
combining Eq. (3.7.7) with (3.7.11). 
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Example 3.7.3. A rigid frame subjected to vertical distributed load and a 
concentrated horizontal load is shown in Fig. 3.27. Determine a lower and 
upper bound for the plastic moment Mp using the mechanism shown in 
Fig. 3.28. 

Solution: We will first relate 01 , O2 , and 03 , the angles defining the motion of 
the mechanism. 



FIGURE 3.27. A fixed-ended 
frame. 

FIGURE 3.28. A sidesway A 

mechanism. II, 
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2W 

01 and 0'1.: Apply the virtual work equation of the mechanism in Fig. 3.28 to 
the equilibrium set [Fig. 3.29(a)] created by applying a unit compressive 
axial force in segment CD and obtain 

(3.7.12) 

which gives 

(3.7.13) 

01 and 03: Here we have created an equilibrium set by applying an axial force 
to member DE with horizontal and vertical components proportional to the 
horizontal and vertical projection of member DE, respectively [Fig. 3.29(b)]. 
Now the application of the virtual work equation to the mechanism of Fig. 
3.28 and equilibrium set of Fig. 3.29(b) results in 

CJIL2}Od -(~L2}03) = 0, (3.7.14) 

which gives 

(3.7.15) 
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Lower Bound: The plastic work equation for the mechanism Fig. 3.28 has the 
form 

(W)( f L(2) + ~ W(~OI + L(1) + ~ W( L01 - ~(2) 
= MpOI + Mp(OI + (3 ) + Mp(02 + (3 ) + Mi)2' (3.7.16) 

Substituting O2 and 03 in terms of 01 and simplifying, we obtain 

Mp = 0.187WL. (3.7.17) 

This is a lower-bound value of Mp. 

Upper Bound: An upper bound can be determined by checking the moment 
at B and the maximum moment in member BD. 

Moment at B: Apply the virtual work equation to the equilibrium and dis­
placement sets of Fig. 3.30(a) and obtain 

(+MBH -0) + (+MpH +20) + (-MpH -0) = ~(2W)(~0). (3.7.18) 

Substituting Mp = 0.187WL and simplifying, we have 

MB = 0.061 WL < (Mp = 0.187WL) okay. (3.7.19) 
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Maximum Moment in Member BD: The moment in member BD can be ex­
pressed as [Fig. 3.30(b)] 

(2W)X2 
M = 0.061 WL + 0.752Wx - L 2' (3.7.20) 

By equating dM/dx to zero, the location of the maximum moment from B is 
obt&ined as 

Xo = 0.376L. (3.7.21) 

Substituting this value of Xo in Eq. (3.7.20), we have 

Mmax = WL[0.061 + 0.283 - 0.141] = 0.203WL. (3.7.22) 

Thus, if we assign Mp = 0.203WL, then both equilibrium and moment condi­
tions are met, but the mechanism cannot form, since moments at points A, C, 
D, and E are all less than Mp. So, Mp = 0.203 WL is an upper-bound value of 
Mp. Thus, we have 

0.187WL :::;; Mp:::;; 0.203WL. (3.7.23) 

3.8 Summary 

The methods of simple plastic analysis and design are based on two basic 
assumptions. The first assumes that the material is ductile. The stress-strain 
behavior of structural steel has a large amount of ductility, which can be fully 
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realized through the process of plastification and redistribution of forces and 
moments in a structural analysis. The second assumption is that the displace­
ments in a structure under loading are small so that the equilibrium equa­
tions can be formulated on the basis of the original geometry. For most 
practical structures, the displacements at the plastic limit load are not large 
and are of the same order of magnitude as those at the elastic limit load. 

Here, as in the elastic solution that must satisfy equilibrium, compatibility, 
and moment-curvature conditions, the correct plastic solution must satisfy 
equilibrium, mechanism, and moment conditions. However, as the structure 
becomes more complex, it becomes more difficult to obtain the exact solution 
that satisfies all three basic conditions. It is more convenient to obtain a close 
approximate solution rapidly while satisfying only some of the conditions. 
To judge the nature of these types of solutions, some general principles and 
theorems are needed. For this purpose, we have described and proved three 
fundamental theorems of plastic methods, namely, uniqueness, safe, and 
unsafe theorems. According to the uniqueness theorem, if the loads are in­
creased proportionately, then the collapse will occur at one define and unique 
value of the load factor when all three basic conditions are satisfied. The 
unsafe theorem states that a guessed mechanism, if not correct, will overesti­
mate the load factor and underestimate the required plastic moment capac­
ity. In contrast, the safe theorem states that a moment diagram satisfying the 
moment condition and in equilibrium with the applied loads, if not corre­
sponding to a mechanism, will underestimate the load factor and overesti­
mate the required plastic moment capacity. The safe and unsafe theorems can 
be used to establish quickly and easily close upper and lower bounds of the 
load factor or the required plastic moment capacity of a structure. 

The conditions required to establish an upper- or lower-bound solution in 
the simple plastic theory are summarized as follows: 

a. Upper-bound solution, which gives an unsafe, or correct, value of the 
collapse load. 
1. A valid mechanism of collapse must exist such that it satisfies the me­

chanical boundary conditions (mechanism condition). 
2. The internal dissipation of energy at plastic hinges must equal the 

expenditure of energy due to the external loads (work equation). 
3. All deformations take place at the plastic hinge locations and the mate­

rial stays rigid between plastic hinges. The amount of plastic hinge 
rotation at each location is defined by the mechanism. The direction of 
the plastic rotation at each location in tum defines the direction of the 
plastic moment required to calculate the dissipation of energy at the 
plastic hinge location. This shows that the dissipation of energy at 
each plastic hinge location is always positive. (This is known as the 
yield conditions and its associate flow rule in the theory of plasticity.) 

b. Lower-bound solution, which gives an oversafe, or correct, value of the 
collapse load. 
1. A complete moment distribution must be found everywhere in the 
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structure satisfying the equations of equilibrium (equilibrium 
condition). 

2. The forces and moments at the ends must satisfy the boundary condi­
tions (static boundary conditions). 

3. At no place in the structure the moment condition is violated (moment 
condition). 

From these rules, it can be seen that the upper-bound technique is based 
on the mechanism or work approach, while the lower-bound technique is 
based on the equilibrium approach. Both approaches are based on an engi­
neers' intuitive approach and are very powerful, since they are backed by 
repeated experiments and years of experience. These two alternative ap­
proaches to an exact solution within the simple plastic theory will be de­
scribed in detail in the following two chapters as the "equilibrium method" 
and the "work method," respectively, in Chapters 4 and 5. 

The equation of virtual work provides a powerful tool in the plastic meth­
ods. Its usefulness has been demonstrated here by its use in 

a. proving the uniqueness, safe, and unsafe theorems. 
b. obtaining the geometrical relationships of motions of mechanism of struc­

tures by creating proper equilibrium sets. 
c. making moment checks corresponding to assumed collapse mechanisms 

by selecting appropriate displacement sets. 
d. obtaining upper and lower bounds for the load factor or the required 

plastic moment capacity of structures based on an assumed mechanism. 

In writing the virtual work equation, especially for its use in the moment 
check, the moments and rotations must be accompanied with a proper sign 
convention. It is not necessary, however, to consider sign convention in a 
plastic work equation for an assumed mechanism since all terms contributing 
to the plastic energy dissipation are always positive. 
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Problems 

3.1. Why is the correct mechanism the one that corresponds to the lowest load? 
3.2. Demonstrate the upper- and lower-bound theorems with the aid of a beam, 

loaded at the third points, fixed at one end but simply supported at the other. 
3.3. The propped cantilever beam AB as shown in Fig. P3.3 is of constant cross 

section with plastic moment Mp and total length 4a. Determine the upper and 
lower limits on Po by considering three mechanisms with plastic hinges at (a) B 
and D, (b) Band E, and (c) C and E. 

A r r Po 

Er -JJ; B C D 

I" 
a a 

-I" ~I'" 
a 

~I" 
a 

-I 
FIGURE P3.3 

3.4. If end A of the beam in Problem 3.3 is also fixed, determine the three sets of 
upper and lower bounds on Po. 

3.5. The beam of Problem 3.3 is loaded by a uniform load q per unit length. Deter­
mine the upper and lower bounds on q using a mechanism with plastic hinges 
at C and D. 

3.6. What is the effect on q in Problem 3.5 of settlement of support A? 
3.7. If end A of the beam in Problem 3.5 is also fixed find q. 
3.8. The fixed-ended beam as shown in Fig. P3.8 is subjected to a uniformly distrib­

uted load q. Find the upper and lower bounds on q by considering mechanisms 
with plastic hinges at (a) A, B, and C; (b) A, C, and D; and (c) A, B, and D. 

J leg I f I f I I I~ I I I , 
B C 2MP A 

Mp 
D 

I'" 
L -I" L 

~I" 
2L ~I 

FIGURE P3.8 

3.9. If the frame of Fig. 3.27 is subjected to a vertical concentrated load 2W at C 
and a horizontal concentrated load W at B, determine the upper and lower 
bounds on W by considering a mechanism with plastic hinges at A, C, D, and E. 



Problems 155 

3.10. A rectangular frame is subjected to a vertical concentrated load 1.5W at C and 
a horizontal concentrated load Wat D as shown in Fig. P3.1D. Find the upper 
and lower bounds on W by considering a mechanism with plastic hinges at A, 
C,D, and E. 

1.5W 

~ __________ ~~ __________ -, __ ~.~W 
B c o 

Mp = 1 

A E 

I" 
FIGURE P3.1O 

3.11. If the vertical concentrated load in Problem 3.10 is replaced by a uniformly 
distributed load P, determine the upper and lower bounds on W by considering 
mechanism with plastic hinges at A, C, D, and E, when (a) P = Wj4 and (b) P = W. 

3.12. Member BD is added to the square truss of Fig. 3.24. Determine the upper and 
lower bounds on P for mechanisms with yielding of (a) members AB, BC, CD, 
DA, and BD and (b) members AC and BD. 

3.13. The loads and member plastic moment capacities of a two-bay frame are as 

241. 14A 

B C D F G 
r-~~~--~------~~--~~--~-------,--~~17A 

15 

10 
A 10 
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E H 

FIGURE P3.l3 
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shown in Fig. P3.13. Determine the upper and lower limit of A. by considering a 
mechanism with plastic hinges at A, C, D, E, F, G, and H. 

3.14. Define "rotation capacity" and "ductility." For a fixed-ended beam subjected to 
a uniformly distributed lateral load, what is the required rotation capacity and 
ductility in order that the computed plastic limit load will be reached? 

3.15. Why is no elastic energy at a plastic hinge location included in the work equa­
tion such as Eq. (3.6.1)? 

3.16. Under what circumstances does the conventional elastic design become a 
"lower-bound" solution. 

3.17. Explain why erection forces and support settlements influence the elastic but 
not plastic design of a structure. 

3.18. Demonstrate the uniqueness theorem with the aid of a simply supported beam, 
loaded at the third points that: (a) the collapse load ofthe beam is unique; (b) the 
collapse mechanism leading to the same collapse load in not unique; and (c) the 
bending moment diagram associated with the same collapse load is not unique. 

3.19. Can the plastic design method be applied to reinforced concrete frames? Ex­
plain. Can it be applied to steel bridges? Explain. 

3.20. Explain why plastic theorems are not applicable to structural problems involv­
ing instability. 
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Equilibrium Method 

4.1 Introduction 

The preceding chapter was concerned with basic assumptions and theorems 
used in the plastic analysis and design of steel structures. In the following two 
chapters we shall present two basic methods of plastic analysis and design. In 
this chapter, we shall present the plastic analysis and design technique known 
as the "equilibrium method," based on the lower-bound theorem. In the next 
chapter, the plastic analysis and design technique known as the "work meth­
od," based on the upper-bound theorem, will be presented. 

As the name implies, in the equilibrium method, the relationship between 
the strength of a steel structure and the applied loads is found by adjusting 
the unknown redundants in an indeterminate structure such that the equilib­
rium condition is always satisfied and the moment condition is not violated, 
and the mechanism condition mayor may not be satisfied. The equation 
formed in this way is called the statically admissible "equilibrium equation" 
and gives the relationship between the structure strength and the applied 
loads for a particular set of assumed redundant moments. 

It is, however, the task of the analyst/designer to seek the best set of redun­
dant moments that gives the largest applied load-carrying capacity (or the 
smallest required plastic moment) of the structure. In fact, the best set of 
assumed redundant moments corresponds to the formation of a plastic fail­
ure mechanism. Although any set of assumed redundants will give a safe or 
lower-bound solution, the critical set is not generally apparent and requires 
physical intuition combined with the use of differential calculus and algebraic 
techniques. This is described in this chapter. 

Herein, we will begin by reexamining the lower-bound theorem that forms 
the basis of the equilibrium method. Then we will discuss the steps involved 
in obtaining statically admissible equilibrium equations and making the 
mechanism checks. Next, we will demonstrate the use of the equilibrium 
method for plastic design and analysis of simple beams, rectangular portal 
frames, and gable frames. Finally, for plastic analysis and design of large 
structures, we will present a practical procedure of the equilibrium approach. 

157 
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In this and subsequent chapters, for moments and rotations we will follow 
the sign convention used in Chapter 3, which is repeated here: the moments 
and rotations causing tension on the side of the member marked with dotted 
lines will be positive, and vice-versa. 

4.2 Basis of the Method 

For a statically determinate structure, the equilibrium conditions provide a 
complete moment diagram. For these structures, the elastic or plastic limit 
load can be determined directly by equating the critical moment in the equi­
librium moment diagram to the yield or plastic moment of the section. How­
ever, for indeterminate structures, equilibrium equations always lead to the 
moment diagram in terms of unknown redundants. In the elastic analysis, 
these unknowns are determined from compatibility conditions, which often 
make the analysis complicated. In the plastic analysis, however, the analyst 
has the freedom to choose the values of unknown redundants in the moment 
equilibrium equations, which often lead to a quick safe solution to the prob­
lem. The solution will of course be exact only if the chosen values of the 
redundant moments result in a plastic collapse mechanism. 

The fact that any values of redundants yield a safe solution is based on the 
lower-bound theorem of plastic analysis described in Chapter 3. The theorem 
is restated here: a load computed on the basis of an equilibrium moment 
distribution in which moments are nowhere greater than Mp is less than or 
equal to the true plastic limit load. 

The theorem gives lower bounds on, or safe values of, the limit or collapse 
load; the maximum lower bound is the limit load itself. For example, the 
loads determined by the hinge-by-hinge analysis in the examples in Chapter 
1 are lower bounds to the limit loads. In the example of fixed-ended beam in 
Section 1.4, the stage 1 moment diagram satisfies the equilibrium and plastic 
moment conditions, thus, the corresponding load is a lower-bound solution 
and is of course lower than the plastic limit load. The stage 2 moment dia­
gram satisfies the equilibrium and moment conditions as well as the mecha­
nism condition, thus the corresponding load is equal to the plastic limit load. 
Similarly, in Example 1.8.2, moment diagrams at the points of one and two 
plastic hinges satisfy the equilibrium and plastic moment conditions, thus the 
corresponding loads are lower bounds on the plastic limit load. When a third 
hinge is formed, the moment diagram satisfies the equilibrium and moment 
conditions as well as the mechanism condition, thus, the corresponding load 
is equal to the plastic limit load. 

Before the most critical solution of a particular equilibrium can be found, 
the equilibrium equations must be formed first, either graphically or alge­
braically, followed by a proper selection of redundant moments. As a conse­
quence, we will present the equilibrium method in two stages: (a) drawing the 
equilibrium moment diagram and writing the moment equations in terms of 
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redundants and (b) adjusting the redundants in such a way that both plastic 
moment and mechanism conditions are astisfied. These two stages of analysis 
procedure are elaborated on in the next two sections. 

4.3 Moment Equilibrium Equations 

The moment equilibrium equations of a statically indeterminate structure are 
obtained as follows: 

(a) Select redundant(s). Enough freedom must be introduced at support 
points or in the structure to produce a simple determinate structure. 

(b) Draw a moment diagram for the determinate structure under applied 
loads. Moment diagrams are drawn along all members comprising the 
structure, following the usual sign convention for the moment. 

(c) Draw a moment diagram for the determinate structure under redun­
dant(s). This is the restraining moment diagram induced by the actual 
continuity at the redundant points. 

(d) Superimpose moment diagrams of steps (b) and (c). The true moment at 
any point is given by the difference in the ordinates of the two diagrams. 

(e) Write moment equations at critical sections of the structure using the 
moment diagram of step (d). 

The following examples demonstrate these steps of obtaining the moment 
equilibrium equations. 

Example 4.3.1. For a fixed-ended beam shown in Fig. 4. 1 (a), obtain the mo­
ment equilibrium equation in terms of unknown redundants. 

Solution: The degree of indeterminacy for the beam shown in Fig. 4.1 is two. 
The redundants may be selected as the two end moments M 1 . The resulting 
simply supported beams under the uniform load wand under the redundants 
Ml are, respectively, shown in parts (b) and (c) of Figure 4.1. The moment 
diagram for the determinate structure under the uniformly distributed load 
W is shown in part (d) with the moment at the center equal to 

WL 
M=S' (4.3.1) 

The moment diagram under the redundants is shown in part (e). The moment 
diagrams of parts (d) and (e) are combined in part (f). 

Note that the moment diagrams are plotted on the tension side of the 
member. We will use this sign convention throughout this book. From Fig. 
4.1(f), the critical moment in the beam is 

(4.3.2) 
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FIGURE 4.1. Bending 
moment diagrams and 
critical moment in terms of 
redundant moments Ml for 
a fixed-ended beam. 

Example 4.3.2. For the two-span continuous beam shown in Fig. 4.2(a), obtain 
the moment equilibrium equation in terms of unknown redundant moment. 

Solution: The degree of indeterminancy of the beam in Fig. 4.2(a) is one. The 
redundant may be conveniently selected as the moment at midsupport. Let 
this moment be MI' The resulting determinate beam under the two concen­
trated loads and the redundant moment are shown in parts (b) and (c), and 
their moment diagrams are shown, respectively, in parts (d) and (e). These 
diagrams are then superimposed in part (f) and redrawn on a single straight 
base line in part (g). The diagrams in (f) and (g) are identical, from which we 
obtain the critical moment in the beam as 

(4.3.3) 

4.4 Mechanism Check 

Once the moment equilibrium equations in terms of the unknown red un­
dants are set up, the plastic limit load (or plastic moment) of a structure can 
be determined by adjusting the redundants (or the restraining moment dia-
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gram) until the resulting true moment value is maximum and equal to the 
plastic bending strength to be furnished, at enough points in the structure to 
reduce it to a mechanism. The following steps may be used to achieve this 
goal. 

(a) Select value(s) of redundant(s) such that the plastic moment condition at 
maximum moment locations is not violated at any point in the structure. 

(b) Determine the load or plastic moment corresponding to the selected 
redundant(s). 

(c) Check for the formation of a mechanism. If a plastic collapse mechanism 
condition is met, then the computed load (or plastic moment) is the exact 
plastic limit load. Otherwise, it is a lower-bound or safe solution to the 
exact limit load. 

(d) Adjust the redundant(s) and repeat steps (a) to (c) until the exact plastic 
limit load (or plastic moment) is obtained. 
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(a) t / wL = W 

L .. I 

(b) 

(c) .~. 

FIGURE 4.3. Plastic limit 
state of the fixed-ended 
beam of Fig. 4.1. 

Assuming the value of redundant(s) in the structure is equivalent to visual­
izing how the structure will carry the applied loads or distribute the applied 
loads among its components or parts. The most efficient (moment) distribu­
tion corresponds to the formation of a failure mechanism. Any other moment 
distribution will be less efficient and will therefore result in a lower load (or 
safe plastic moment). 

The complete procedure for determining the plastic limit load from the 
moment equilibrium equation(s) in terms of unknown redundant(s) will be 
demonstrated by the following two examples. 

Example 4.4.1. Determine the plastic limit load of the fixed-ended beam 
shown in Fig. 4.3 (a). Use the moment diagram and equilibrium equation 
obtained in Example 4.3.1. 

Solution: In this case, it is obvious by inspection that the required bending 
strength is equal to one-half of the maximum determinate (simple span) mo­
ment that would be produced by the limit load w", which is attained when 
the available plastic bending capacity Mp is reached at all three hinge points. 
For more complex structures and loading, the appropriate choice of redun­
dant (or restraining) moment is not obvious. An arbitrary choice will lead to 
a safe solution. This is illustrated here. 

A safe solution of the fixed-ended beam can be determined from Eq. (4.3.2) 
by selecting a value for the redundant moment MI. For example, if we select 
Ml = 0, the moment diagram is reduced to the one shown in Fig. 4.1(d). By 
equating the critical moment in this diagram to the plastic moment capacity 
of the beam M p , we have 

WL 
Mer = -8- = Mp , (4.4.1) 
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which gives W = W1 as 

(4.4.2) 

The moment diagram in Fig. 4.1 (d) has only one plastic hinge developed at 
midspan, but three hinges are required to form a failure mechanism for the 
fixed-ended beam. It follows that W1 is a lower-bound solution to the exact 
plastic limit load. The assumed moment distribution is obviously not an 
efficient way to carry the applied uniform load. The actual beam will adjust 
itself better to carry the higher load. 

To show this point, we now assume the unknown redundant moment Ml 
equal to the largest possible moment capacity as in the midspan section. 
Thus, from Fig. 4.1(f), we obtain 

WL 
Mer = -8- - Ml = Mp, (4.4.3) 

which gives W = W2 as 

(4.4.4) 

The improved moment diagram [Fig. 4.3(b)] results in the formation of three 
plastic hinges and thus leads to the formation of a failure mechanism as 
shown in Fig. 4.3(c). Therefore, W2 is the exact plastic limit load. 

Note that if a value of M 1 less than Mp such as Mp/2 is assumed, no failure 
mechanism will be developed and the corresponding load (W3 = 12Mp/L) 
will be a better lower bound than that of the first lower-bound value W1 • 

Example 4.4.2. Determine the plastic limit load of a two-span continuous 
beam shown in Fig. 4.4(a). Use the moment diagram and equilibrium equa­
tion obtained in Example 4.3.2. 

FIGURE 4.4. Plastic limit 
state of the two-span contin­
uous beam of Fig. 4.2. 

(a) 

(b) 

(c) 

c 

I. L 
A 

~M+ Mp p 



164 4. Equilibrium Method 

Solution: In constructing the determinate moment diagrams for the continu­
ous beam, the freedom at the midsupport is assumed to be provided by 
means of a real hinge. 

A lower bound on the plastic limit load can easily be found from Eq. (4.3.3) 
by selecting a value ofthe midsupport moment M1 . If we select Ml = 0, for 
example, the moment diagram is shown in Fig. 4.2(d). By equating maximum 
moment in this diagram to the plastic moment capacity of the beam, we have 

M _ Pa(L - a)_ 
cr - L - M p , (4.4.5) 

which gives P = P1 as 

MpL 
P1 = a(L - a)' (4.4.6) 

The moment diagram in Fig. 4.2(d) will develop one plastic hinge in each 
span. Since two plastic hinges in each span are required to develop a plastic 
failure mechanism, the load P1 is a lower-bound solution. On the other hand, 
by setting redundant moment Ml equal to the plastic moment M p , and by 
equating the maximum moment in Fig. 4.2(g) to the plastic moment, we have 

(4.4.7) 

which gives P = P2 as 

p = Mp(L + a) 
2 a(L - a) . 

Since a sufficient number of plastic hinges has formed in the beam [Fig. 
4.4(b)], resulting in the formation of a failure mechanism shown in Fig. 4.4(c), 
P2 is the exact plastic limit load. 

4.5 Design of Simple Beams 

The basic steps involved in the equilibrium method have been described and 
illustrated in Sections 4.3 and 4.4. Herein, we shall use the equilibrium meth­
od to carry out a complete plastic analysis and design of steel beams. The 
load-carrying capacity of beams may be significantly affected by the presence 
of shear force in the beam and the possible lateral torsional buckling of the 
beam if not properly designed. These two effects on beam strength and their 
considerations in design are described in the forthcoming. 

4.5.1 Shear Force 
In many cases, beams are subjected to high shear force. For example, a short 
beam under central load or a long beam under a concentrated load applied 
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near its support may develop a high shear-to-moment ratio. In such cases, 
shear force will decrease the plastic moment capacity of the beam section and 
cause larger deflections than might otherwise be expected. Design and analy­
sis of such beams must therefore consider the effect of shear force on the 
yielding of the section. This may be achieved simply by replacing the plastic 
moment capacity Mp with the reduced plastic moment capacity Mps in the 
procedure given in Sections 4.3 and 4.4. The calculation of Mps was described 
in Section 2.6. Examples 4.5.2 and 4.5.3 in the forthcoming illustrate how the 
shear force can be included in the plastic analysis and design of beams. 

Since high shear and moment values frequently occur in regions of local­
ized yielding, the beneficial effects of strain-hardening usually enable beams 
of wide flange and I shapes to reach the full plastic moment Mp. Experimen­
tal evidence shows that design of beams based on Mps is too conservative 
because of the effect of strain-hardening in an actual beam. Therefore a de­
sign rule to account for the influence of shear force may be obtained by a 
consideration only of the maximum shear force Vp to prevent "failure" due to 
excessive shear deformations. 

Therefore, as far as shear is concerned, the full plastic bending strength Mp 
may be used in design, provided the total transverse shear on the wide-flange 
section at plastic limit load, in kips, is no more than 

or 

(4.5.1) 

where tw = web thickness in inches, d = section depth, tJ = flange thick­
ness, and d/(d - 2tf ) = 1.07. The webs of columns, beams, and girders 
shall be reinforced by stiffeners or a doubler plate if the shear force V at 
plastic limit load exceeds the shear strength Vp (Section N5, Chapter N, ASD, 
1989). 

4.5.2 Lateral Torsional Buckling 
Any member ofI-shape sections bent about its strong axis may be susceptible 
to lateral torsional buckling if the distance between points of lateral support 
is excessive [4.4-4.6, 4.9]. The effect of lateral-torsional buckling (Fig. 4.5) of 
a beam is similar to the effect of local buckling of a cross section (Section 2.7). 
Both effects may prevent the beam from attaining its full plastic moment 
capacity, and if the plastic moment capacity is attained, they may prevent the 
beam from sustaining its moment capacity up to the desired rotation capac­
ity. The local buckling occurs due to a high width-to-thickness ratio of the 
component elements of a cross section, while the lateral-torsional buckling 
occurs due to a high unbraced slenderness ratio of a narrow beam. 
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FIGURE 4.5. Lateral torsional buckling of a wide-flange beam loaded in the plane of 
web. 

The schematic relationship between the unbraced length and the moment­
carrying capacity and rotation capacity of a beam are illustrated in, respec­
tively, the upper and lower part of Fig. 4.6. When the unbraced length is long, 
the member will fail by elastic lateral-torsional buckling and the rotation 
capacity will be small. When the unbraced length is short, the full plastic 
moment will be attained or exceeded and the section will be able to deliver 
much larger rotation capacity. For intermediate unbraced length, the inelas­
tic buckling occurs and the rotation capacity is higher than that for elastic 
buckling. For satisfactory performance, the rotation capacity of a beam (or a 
member of a structure) should be equal to or greater than the hinge angle 
required to form a mechanism. 

To ensure the proper moment and rotation capacities, the LRFD specifica­
tion has defined three sets of limiting unbraced lengths: Lpd, Lp, and L r • 

When unbraced length Lb ~ Lpd' the member is suitable for plastic design, 
i.e., it will be able to sustain plastic moment up to the rotation capacity 
necessary to form a failure mechanism (taken as three times the yielding 
rotation by LRFD). When Lpd < Lb ~ Lp, the member will attain the plastic 
moment but it may not sustain it for the desired rotation capacity. When 
Lp < Lb ~ L r , the member will fail by inelastic lateral torsional buckling 
without attaining plastic moment. When Lb > L r , the member will fail by 
elastic lateral torsional buckling. 

The elastic limiting length Lr is obtained from the elastic lateral torsional 
buckling moment Mer for beams of various cross-sectional shapes. For exam­
ple, for I-shaped members under uniform moment, the elastic solution of the 
governing differential equation gives [4.1] 

(1/:E) 2 

ElyGJ + Lb IyCw (4.5.2) 
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FIGURE 4.6. Moment and rotation capacity of a beam with its unbraced length. 

where Lb is unbraced length; E and G are, respectively, Young's modulus in 
ksi and shear modulus in ksi of steel; I y , J, and Cw are, respectively, the 
moment of inertia about the weak axis in in.4, torsional constant in in.4, and 
warping constant in in.6 for the section. By equating Mer = (Fy - Fr)Sx in this 
equation and then rearranging the resulting equation, Lr = Lb is obtained as 

(4.5.3) 

where Fy is yield stress in ksi, Fr is the maximum compressive residual stress in 
ksi, ry is the radius of gyration of the section about the minor axis in in., and 

Xl =~ JEAGJ SX 2 (4.5.4) 

Cw (Sx)2 X2=4I; GJ (4.5.5) 
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in which Sx is the elastic section modulus about the strong axis in in.3 and A 
is the cross-sectional area ofthe beam in in2• 

The limiting length Lp is obtained from the inelastic critical moment for 
beams. The inelastic critical moment is obtained by replacing Ely, GJ, and 
ECw in Eq. (4.5.2) by effective bending rigidity (Ely)e' torsional rigidity (GJ)e' 
and warping rigidity (ECw)e' These effective values are estimated by using the 
tangent modulus concept. The recommended value of Lp for members of 
I-shaped and channel sections is: 

Lp 300 
ry = JF;; (4.5.6) 

where FYI is the yield stress of the flange of the section in ksi. 
Equation (4.5.6) is valid for the usual case of "open" I-shape sections but 

becomes very conservative for "close" box-type or solid sections. For exam­
ple, for solid rectangular bars and box-beams the recommended value is: 

(4.5.7) 

in which Mp is the plastic moment in kip-in., A is the cross-sectional area in 
in. 2, and J is the torsional constant in in4. 

Tests of I-shape sections have shown that the maximum effective spacing 
between points of lateral support adjacent to a plastic hinge is affected by 
several factors, the most important of which is the moment gradient, i.e., the 
change in moment over this distance. The limiting unbraced length Lpd for 
plastic analysis can be obtained from a beam model in which the beam is 
partly elastic and partly strain hardened. The solution of the resulting differ­
ential equation with some simplifications can be expressed in terms of the 
moment ratio MdMp at the first adjacent bracing hinge moment as 

Lpd _ 3,600 + 2,200MdMp r;- Fy 
(4.5.8) 

where Ml is smaller moment at the end of un braced length of beam in kip-in. 
and MdMp is positive when the moments cause reverse curvature. In Eq. 
(4.5.8), Lpd is measured from a plastic hinge location to the next adjacent 
bracing point, and ry is the radius of gyration of the member with respect to 
its weak axis. Equation (4.5.8) assumes that the moment diagram within the 
unbraced length next to the plastic hinge locations is reasonably linear. For 
nonlinear diagrams between braces, judgement should be used in choosing a 
representative ratio. All plastic hinge locations associated with the failure 
mechanism shall be braced to resist lateral and torsional displacements. 
Equation (4.5.8) is developed to provide a rotation capacity at least three 
times that of the initial yield curvature, which is sufficient for most appli­
cations. However, in the areas of high seismicity, rotations of seven to 
nine times the yield curvature may be required. For such cases, LRFD 
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FIGURE 4.7. Types of lateral support for beams. 

Lpd _ 146 

r;- ft; (4.5.9) 

Adequate lateral support to beams or structural members may be provided 
at intervals by cross beams, cross frames, struts, and roof purlins [Fig. 
4.7(a-d)]. It may also be provided by embedment of compression flange in a 
concrete floor slab [Fig. 4.7(e and f)]. 

Note that at the region of the last plastic hinge, a large rotation capacity is 
not required. Therefore, the lateral support in this region can be provided at 
a spacing more than Lpd• The lateral support requirements for the region of 
the last hinge to form, and for regions not adjacent to a plastic hinge, are no 
different from those of elastic design. Its flexural design strength shall be 
determined in accordance with its respective length: Lpd , Lp , or L, (Section 
F1, LRFD). 
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FIGURE 4.8. Plastic limit 
load of a fixed-ended beam 
with a central prop. 

Example 4.5.1. A beam with plastic moment capacity Mp and length 2L has 
fixed supports at its ends and rests on a central support. Equal concentrated 
loads are applied at the center of each span as shown in Fig. 4.8(a). Deter­
mine the value of the applied loads at the plastic collapse state. Assume that 
the effect of shear force on plastic moment capacity is negligible. 

Solution: The three redundants for the beam may be selected as two end 
moments MA and ME, and the central support moment Me. Due to symme­
try, the end moment MA is equal to ME' The moment diagram in terms of the 
two unknowns MA and Me is shown in Fig. 4.8(b). 

In this moment diagram, if we select MA = ME = Me equal to plastic mo­
ment Mp of the beam, then the moment diagram becomes Fig. 4.8(c). By 
equating the critical moment at B to Mp , we have 

which gives 

PL 
MB = 4 - Mp = Mp , 

8Mp 
P=-. 

L 

(4.5.10) 

(4.5.11) 

At this value of P, nowhere does the moment exceed the plastic moment 
Mp [Fig. 4.8(c)], and the moments at A, B, C, D, and E are all equal to the 
plastic moment M p , thus forming plastic hinges at these points and leading 



FIGURE 4.9. Design of a two­
span continuous beam with 
distributed load. 
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to the formation of a failure mechanism as shown in Fig. 4.8(d). Equation 
(4.5.11) therefore gives the exact value of the limit load P. 

Example 4.5.2. A beam of uniform section, 30 feet long, is to be part of a floor 
system. It is simply supported at its ends and rests on a central support as 
shown in Fig. 4.9(a). The dead and live loads together amount to a uniformly 
distributed load of 5 kips/ft. Design a suitable section of A36 steel for this 
beam. Provide a load factor of 1.70. Assume that the beam has adequate 
lateral support. 

Solution: To select a suitable section for the beam, it is necessary to determine 
the required plastic moment (or section modulus) and shear capacity of the 
section. The required plastic moment capacity will be determined by the 
equilibrium method. 

The degree of redundancy for the structure is one. The redundant may be 
selected as moment MB at the central support. The moment diagram in terms 
of MB is shown in Fig. 4.9(b). The conditions of plastic moment and mecha­
nism of Fig. 4.9(c) will be satisfied if MB and the in-span maximum moments 
in the beam simultaneously become equal to plastic moment Mp . The equa­
tion for the moment in the first span is obtained by superimposing the mo­
ment due to the applied loads and the moment due to the redundant MB 
(=Mp). 
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wL WX 2 Mp 
M=-x----x 

2 2 L 
(4.5.12) 

where x is the distance from end A. By equating the derivative ofEq. (4.5.12) 
to zero, the location of maximum moment can be found as 

(4.5.13) 

Substituting x = Xmax and M = Mp in Eq. (4.5.12) and then solving for Mp, 
we have 

(4.5.14) 

or 

Mp = (5)(l.i(IW [3 - fi] = 164.07 kip-ft. 

The required plastic modulus Z = Mp/Fy = [(164.07)(12)]/36 = 54.69 in3 . 

The shear force diagram of the beam is shown in Fig. 4.9(d). The maximum 
shear force is at the central support and has the value 

VB = 74.69 kips 

. d f b VB 74.69 359· 2 reqUIre area 0 we = - = --=. In. 
't"y 36/./3 

Try W16 x 36 

Z = 64.0 in. 3 

Aw = dwtw = 15 x 0.295 = 4.42 in.2 

shear stress in web = 74~:; = 16.89 ksi. 

The plastic modulus reduced due to the presence of the shear force is 

Z = Z - Z [1 _ J (J; - 3r2J 
ps w (Jy 

or 

_ _ (0.295)(15)2 [1 _ J(36)2 - 3(16.89)2J 
Zps - 64.0 4 36 

= 64.0 - 6.92 = 57.07 in. 3 > 54.69 in. 3 

Use W16 x 36. 

Example 4.5.3. A three-span continuous beam is to support loads of 100 kips 
at the middle of each span as shown in Fig. 4.10(a). For architectural reasons, 
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FIGURE 4.10. Design of cover plates. 

the overall depth of the beam is limited to 20 inches. Show that A36 WI8 x 
50 with cover plates in the regions under concentrated loads is adequate. 
Determine the sizes and lengths of the cover plates. Use a load factor of 1.70. 
Assume that the beam has adequate lateral support. 

Solution: To design the cover plates, first we will draw bending moment and 
shear force diagrams of the beam. The degree of indeterminacy for the beam 
is two. The redundants can be chosen as Me and ME' The moment diagram 
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in terms of these two unknowns is shown in Fig. 4. 10 (b). First, assume that 
the reduction in the plastic moment capacity due to shear force is negligible, 
so that the unknown moments at C and E can be selected as the plastic 
moment ofW18 x 50: 

Me = ME = Mp = uyZ = (36)(101) = 3636 kip-in. 

Corresponding to these values of Me and ME' the shear force diagram is 
shown in Fig. 4.1O(c). The shear forces at Band Fare 

VB = VF = 100.15 kips. 

Shear stress r at these points is calculated by assuming that r is uniformly 
distributed over the web ofW18 x 50 

VF 100.15 . 36 . 
r B = r F = dwtw = (16.85)(0.355) = 16.74 kSl < J3 kSl. 

Thus, at these points, the plastic moment capacity of W18 x 50 is reduced to 

or 

Mps = 3636 - 36 [0.355~6.85)2J [1 _ )(36)2 ~:(16.74)2J = 3267 kip-in. 

Now the cover plates in the middle and end spans can be designed as follows. 

Cover Plates for Middle Span: Moment at D is 

- (170)(20)(12) 326 - 6934 k' . MD - 4 - 7 - Ip-m. 

Shear stress in the web at D is 

85 1421 k' 36 216 k . k 
r = (16.85)(0.355) = . SI < J3 = . SI, 0 ay. 

Thus, in the middle span, Mps of W18 x 50 is taken as 

36 [ 0.355(16.85)2J [1 )(36)2 - (3)(14.21)2J 3391 k' . M = 3636 - - = Ip-m. ps 4 36 

The plastic modulus to be provided by the cover plates is therefore 

6961 - 3391 . 3 
Zplates = 36 = 99.17 m. 

From Fig. 4.10(d), Zplates can be written as 

Zplate = bptp[17.99 + tpJ = 99.17 in. 3 

Trying tp = 0.5 in., bp is 10.75 in. Therefore, use 10.75- x 1/2-inch plates. 
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The length of cover plates Xl [Fig. 4.10(b)] is determined simply by 
equating moment Ml in the middle span to Mps of W18 x 50 in the middle 
span 

which gives 

Ml = 10,200 (10 - xd2) - 3267 = 3391 kip-in., 
10 

Xl = 6.95 ft. 

Therefore provide 7-foot-Iong ll-inch x 1/2-inch cover plates under the load 
in the middle span. 

Cover Plates for End Spans: The moments at Band Fare 

MB = MF = 170(2~)(12) - 32267 = 8567 kip-in. 

In the end spans, M ps is 

Mps = 3,267 kip-in. 

Plastic modulus to be provided by cover plates is therefore 

8567- 3267 . 3 
Zplates = 36 = 147.23 tn. 

From Fig. 4.1O(d), Zplates can be expressed as 

Zplates = bbtp(17.99 + tp) = 147.23 in.3 

Trying tp = 0.75-inches, bp is 10.54 inches. Use 10.5- x 0.75-inch cover plates. 
The length of cover plates X = X2 + X3 [Fig. 4.1O(b)], is determined by 

equating bending moments M2 and M3 in the end spans to the respective Mps 
ofW18 x 50. To do so, start by calculating Mps at A. The shear force at A is: 

~ = 69.85 kips. 

Then the shear stress , at these points is calculated by assuming , is uni­
formly distributed over the web of W18 x 50 

~ 69.85 36 . 
'A = dwtw = 16.85 x 0.355 = 11.68 < j3kSl. 

Thus, the moment capacity of W18 x 50 is reduced to 

[ JU2 - 3,2J 
Mps = Mp - u,Zw 1 - , u, 

= 3636 - 36 [0.355(16.85)2J[1 _ J362 - 3(l1.68)2J = 34 9 k· _. 
4 36. 7 Ip tn. 
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Now, M2 has the value 

M = (10 - x 2 ) (10200 _ 3,267) = 3479 
2 10 ' 2 ' 

Which gives 

x 2 = 5.94 ft, 

and M3 has the value 

_ 10,200(10 - x3 ) _ 3267(10 + X3) _ 3 
M3 - 10 20 - 267, 

which gives 

X3 = 4.48 ft. 

Thus, the length of the cover plates in end spans is 

x = 5.94 + 4.48 = 10.42 ft. 

Therefore, provide lO-foot 5-inch-Iong, 1O.5-inch x 3/4-inch cover plates 
under loads in the two end spans. 

Example 4.5.4. The beam in Example 4.5.2 is designed by the simple plastic 
theory. The lateral support is provided at vertical supports and the location 
of the plastic hinges. Do we need to provide additional lateral supports for 
adequate rotation capacity to form a plastic failure mechanism? If yes, at 
what location would you provide the lateral supports? 

Solution: Check Segments AD and Ee [Fig. 4.9(c)]: From Eq. (4.5.8), maxi­
mum spacing of lateral supports is 

_ 3600 + 2200MdMp _ 3600( ) _ 100 
Lpd - Fy ry - ~ ry - ry. 

For W16 x 36, ry = 1.52 in. Therefore, the maximum permissible spacing is 

L = (100)(1.52) = 1267 f 
pd 12 . t. 

From Fig. 4.9(d), the zero shear location is 

(52.81)(15) 
AD = Ee = Xmax = 52.81 + 74.67 = 6.21 ft < 12.67 ft, okay. 

Check Segments DB and BE [Fig. 4.9(c)]: 

3600 + 2200 c::) . 
Lpd = 36 (1.52) = 244.9 In. = 20.41 ft 

DB = BE = AB - AD = 8.79 ft < 20.41 ft, okay. 

Therefore, there is no need to provide additional lateral supports. Since LRFD 
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requires that all plastic hinge locations associated with the failure mechanism 
be braced to resist lateral and torsional displacements, it follows that lateral 
supports must be provided for the plastic hinge locations D and E in Fig. 4.9(c). 

4.6 Design of Portal Frames 

In the preceding section, the equilibrium method was applied for a complete 
design of steel beams. Herein, we shall use the same procedure for a complete 
design of simple portal frames including the possible yielding effect for mem­
bers under tensile axial forces and yielding as well as instability effects for 
members under compressive axial forces. For one- or two-story frames, the 
effect offrame instability can generally be ignored in a routine plastic analysis 
procedure. For multistory frames, the frame instability effect must be in­
cluded in the calculations of maximum strength and in the design of the 
bracing system and frame members. A direct second-order elastic-plastic 
hinge analysis procedure will be described in Chapter 8. 

4.6.1 Tensile Axial Force 
The presence of an axial force in general reduces the moment-carrying capac­
ity of a member. If the axial force is tensile, the equilibrium method can be 
modified simply by replacing Mp (full plastic moment capacity) with Mpc (the 
plastic moment capacity reduced for the presence of axial load, Section 2.5). 
AISC-LRFD recommends that the following interaction equations be sat­
isfied to consider the effect of tensile axial force in the design of doubly and 
singly symmetric members. 

For Pj¢JPn ~ 0.2 

(4.6.1) 

For P/¢P. < 0.2 

P Mx 
-+--<10 
2¢P. ¢bMnx - . 

(4.6.2) 

where P = applied axial force; Pn = Py is the available axial strength; M is the 
applied end moment; Mn is the available beam-bending capacity including 
the effect of lateral torsional buckling, and is equal to Mp when the beam is 
adequately braced against lateral-torsional instability; ¢ = ¢t = the resistance 
factor for tension = 0.9; and ¢b = the resistance factor for bending = 0.9. 

4.6.2 Compressive Axial Force 
The plastic theory assumes that failure of the entire frame in the formation of 
a mechanism is not preceded by failure of compression members due to 
instability. Consequently, after the frame has been designed and the members 
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selected, the compression members must be checked to assure that applied 
axial force and end moments can be carried by the member in a stable man­
ner. Furthermore, any plastic hinges forming at the ends must have adequate 
rotation capacity. 

The compressive axial force affects both yielding and instability of a mem­
ber. The effect on the yielding is the same as for tensile axial force. Instability 
may be caused by two factors. The first is known as the P-~ effect, and the 
second is known as the P-ll effect. The P-~ effect, also known as the individual 
member instability effect, is due to the lateral deflections within the member. 
For braced multistory frames, provisions must be made to include the P-~ 
effect in the design of bracing system and frame members. The P-ll effect, 
also known as the frame instability effect, is due to the lateral translation of 
an end of the member. For unbraced multistory frames, the P-ll effect must 
be included directly in the calculations of maximum strength. Although the 
strength of an isolated compression member subjected to axial force and 
bending moment can be predicted with relative ease, the instability problem 
becomes exceedingly complex when the compression member is a part of the 
framework. A complete solution of this latter problem requires a second­
order inelastic analysis. In structures designed on the basis of plastic or elastic 
first-order analysis, simplified procedures are available in AISC-LRFD for 
checking the suitability of framed compression members considering the in­
stability effects using the interaction Eqs. (4.6.1) and (4.6.2) for flexure and 
compression in symmetric shapes. This is given in the forthcoming. 

The P-~ effect is shown in Fig. 4.11. Figure 4. 11 (a) shows a member with 
joint translation prevented and subjected to end moments and lateral loads. 
The lateral deflection ~l for this member may be calculated on the basis ofthe 
original straight configuration and is known as the first-order deflection. 
Figure 4.11(b) shows the same member subjected to end moments, lateral 

(a) 

p 

lb) FIGURE 4.11. p-(; effect. 



FIGURE 4.12. P-ll effect. 
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loads, and the axial force. In this case, the axial force P will interact with the 
first-order lateral deflection ~I caused by the end moments and lateral loads 
and will amplify the first-order lateral deflection and first-order moments. 
The P-~ effect will be considered in Chapter 8, where a direct second-order 
elastic-plastic hinge analysis procedure will be described. 

The P-11. effect is illustrated in Fig. 4.12 [4.1-4.6]. Figure 4.12(a) shows an 
unbraced frame subjected to lateral forces L H. The frame deflects laterally 
until an equilibrium position is reached. This lateral deflection AI can be 
calculated on the basis of the original undeformed configuration of the frame 
and is known as the first-order deflection. Figure 4.12(b) shows the same 
frame subjected to the combined lateral forces L H and gravity loads L P. In 
this case, the gravity loads will interact with the lateral deflection caused by 
L H and will introduce the additional P-11. moment to the ends of the col­
umns. This in turn amplifies the initial lateral deflection AI and the first-order 
moments. Here, as the P-~ effect, the P-11. effect will be considered in Chapter 
8 with the use of a direct second-order analysis. 

The effects of instability are included in AISC-LRFD interaction Eqs. 
(4.6.1) and (4.6.2) by applying Bl and B2 factors to (M = BlMnt + B2M/t ) in 
which Mnt is the required flexural strength in the member, assuming there is 
no lateral translation of the frame, and M/ t is the required strength in the 
member as a result of the lateral translation of the frame only, by substituting 
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r 
r.B~--------~C~--------~D~ ~H 

h 

A E 

1 

FIGURE 4.13. Pinned-ended 
portal frame. 

rP = rPc = 0.85 and replacing Pn with the compressive axial strength of the 
member. LRFD recommends the following equations for the compressive 
axial strength of a member: 

For Ac ::;; 1.5 

(4.6.3) 

For Ac > 1.5 

(4.6.4) 

where 

(4.6.5) 

in which KL/r is the governing effective slenderness ratio about the plane of 
buckling, Fy is the yield stress, and E is the Young modulus of steel. 

Note that for plastic design, Ac should not be greater than 1.5K and the 
axial force in the member due to factored loads should not exceed 0.75 AgFy, 
where Ag is the gross cross-sectional area of the member. 

Example 4.6.1. A pinned-ended rectangular portal frame ABCDE is sub­
jected to factored external loads V and H as shown in Fig. 4.13. All the 
members of the frame AB, BD, and DE are made of the same section. Deter­
mine the limit values of H in terms of plastic moment Mp when 

(i) l/h = 1 and V/H = 1/3. 
(ii) l/h = 1 and V/H = 3. 

(iii) l/h = 3 and V/H = 1/3. 
(iv) l/h = 3 and V/H = 3. 

Neglect the effects of shear force, lateral torsional buckling, and axial load on 
member strength. 

Solution: The frame has one degree of redundancy. The redundancy for this 
structure can be chosen as the horizontal reaction at E. Figure 4.14 shows the 



FIGURE 4.14. Determinate 
portal frame loaded by (a) 
applied forces and (b) re­
dundant forces. 

FIGURE 4.15. Moment 
diagram corresponding to 
(a) applied forces and (b) 
redundant forces. 
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resulting determinate frame loaded by the external applied forces and redun­
dant forces. The moment diagrams corresponding to these two loading con­
ditions are shown in Fig. 4.15. 

Now the horizontal reaction S should be selected in such a manner that all 
three conditions of equilibrium, plastic moment, and mechanism are satisfied. 
Formation of two plastic hinges is necessary to form a failure mechanism. 
The hinges can possibly be formed at B, C, and D. Let us select 
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A .~ ______ ~B~ ______ ~C ________ ~~~~~~.E 

(a) 

Hh 

(b) 

FIGURE 4.16. Moment diagrams for combined loading: (a) plastic hinges at C and D 
and (b) plastic hinges at Band D. 

S=Mp 
h 

so that one hinge forms at D. Corresponding to this value of S, the moment 
at Band C can be expressed as 

MB=Hh-Mp 

Hh VI 
MC=T+4- M p-

The location of the second hinge will depend on the relative magnitude of V, 
H, 1, and h. Figure 4.16 shows the bending moment diagram corresponding 
to the combined loading. Figure 4.16(a) corresponds to the second hinge at 
C and Fig. 4.16(b) corresponds to the second hinge at B. For various combi­
nations of V, H, 1, and h, H is calculated in the following. 

Case I: Ilh = 1 and VIH = 1/3-Corresponding to 1= h and V = H/3, we 
have 

MB = Hh - Mp, 

Hh Hh 7 
MC=T+u- Mp = 12 Hh - Mp-
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Since IMBI > IMeI, the second hinge will form at B [Fig. 4.16(b)] and the 
corresponding value of H is 

H =2Mp 
h . 

Case II: When Ilh = I and VIH = 3-Corresponding to 1= h and V = 3H, 
we have 

MB=Hh-Mp 

Hh 3 5 
Me=-+-Hh-M =-Hh-M 2 4 p 4 p' 

Since IMei > IMBI, the second hinge will form at C [Fig. 4.16(a)] and the 
corresponding value of H is 

H = 1.6Mp 
h . 

Case m: Ilh = 3 and VIH = 1/3-Corresponding to 1= 3h and V = H/3, we 
have 

MB = Hh - Mp 

Hh Hh 3 
Me = T + T - Mp ==. "4 Hh - Mp. 

Since IMBI > IMeI, the second hinge will form at B [Fig. 4.16(b)] and the 
corresponding value of H will be 

2Mp 
H=-h-' 

Case IV: 1= 3h and V = 3H-Corresponding to I = 3h and V = 3H, we 
have 

MB=Hh-Mp 

Hh 3H 
Me = T + T(3h) - Mp = 2.7SHh - Mp. 

Since IMei > 1MB ], the second hinge will form at C [Fig. 4.16(a)] and the 
corresponding H is 

Mp 
H=0.727 T · 

To summarize, we have (i) l/h = 1 and V/H = 1/3, H = 2 Mp/h; (ii) l/h = 1 
and V/H = 3, H = 1.6 Mp/h; (iii) l/h = 3 and V/H = 1/3, H = 2 Mp/h; and (iv) 
l/h = 3 and V/H = 3, H = 0.727 Mp/h. 
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Example 4.6.2. The frame in Example 4.6.1 has I = h = 20 feet and VjH = 3. 
All members are made of W16 x 45. Determine the limit values of V and H 

(a) without considering the effect of axial force. 
(b) considering the effect of axial force assume Bl = B2 = 1.0, Kx = 1, 

Ky = 1. 

Column DE is braced in the middle against buckling about weak-axis. 

Solution: (a) Without the effect of axial force: From Example 4.6.1, for Ijh = 
1 and VjH = 3, we have 

From the AISC-LRFD manual, for W16 x 45, we have 

Mpx = ZXFy = 82.3 x 36 = 2,963 kip-in., 

resulting in 

2,963 . 
H = 1.6 (20)(12) = 19.75 kIPS 

V = 3H = (3)(19.75) = 59.25 kips. 

(b) With the effect of axial force: Member BD (Fig. 4.13): The axial force in 
member BD is 

For W16 x 45, the yield axial force is 

Py = (13.3)(36) = 478.8 kips. 

Now, since 

P 7.41 -0018 02 
¢lIPn - (0.9)(478.8) -. < .. 

The reduced plastic moment capacity Mpc can be determined from the follow­
ing interaction equation 

which gives 

The axial force effect is negligible. 
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Member DE (Fig. 4.13): From Fig. 4.13(a), we have 

H = 19.75 kips 

V = 59.25 kips. 

Axial force in member DE is 

V Hh V . 
P = 2 + -[ = 2 + H = 49.38 kIpS. 

Since column DE is supported in the middle against buckling about the 
weak axis, (KL)y = 10 feet. Thus, we have 

A = ~ (KL)y {F, = ~ (10)(12) J 36 
ey 1t ry V If 1t 1.57 30,000 

or 

Aey = 0.843. 

For buckling about the strong axis, we have 

Aex = ~ (KL)x (F, = ~ (1)(20)(12) J 36 = 0.398. 
1t rx V If 1t 6.65 30,000 

So, buckling about the weak axis controls and we have Ae = Aeyo As Ae ~ 1.5, 
P" is 

P" = 0.658;'~ Py = 0.658(0.843)2(478.8) = 355.6 kips. 

The ratio P/(AP" is 

P 49.38 
(AP" - (0.85)(355.6) = 0.163. 

Now the moment Mpe (reduced for the effect of the axial load) can be deter­
mined from the following interaction equation 

~+ Mpc ~1 
2(AP" rPbM"x 

or 

0.163 Mpe = 10 
2 + 0.9Mp ., 

which gives 

Mpc = 0.827Mp • 

Now, H and V become 

H = 16 Mpc = (1.6)(0.827)(2963) = 1634 k· 
. h (20)(12) . IpS 

V = 3H = 49 kips. 
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o 

W16x45 

h1=20' 
Mp = 82.3x36 

A E 

I .. L = 60' 

FIGURE 4.17. Pinned-ended gabled frame. 

Note that 17% reduction in H and V is partly due to axial load and partly 
due to inclusion of,p factors in the computation for the latter case. 

Example 4.6.3. A pinned-ended gable portal frame ABCDE is subjected to 
factored external loads V and H as shown in Fig. 4.17. If all the members are 
made ofW16 x 45, determine the limit values of V and H. Neglect the effects 
of shear force, lateral torsional buckling, and axial load on member strength. 

Solution: The gable frame has one degree of redundancy. The horizontal 
reaction at E is chosen as the redundant. Figures 4.18(a) and (b) show, respec­
tively, the determinate frame loaded by external applied forces V and Hand 
the redundant forces. The moment diagrams corresponding to these two 
loading conditions are shown in Fig. 4.19. Now the horizontal reaction S 
should be selected in such a manner that all three conditions of equilibrium, 
plastic moment, and mechanism are satisfied. Formation of two plastic 
hinges is necessary to form a failure mechanism of the structure. The hinges 
can possibly be formed at B, C, and D. Let us select 

S = Mp = (82.3)(36) = 1235 ki 
hl (20)(12) . ps 

so that one hinge forms at D. Corresponding to this value of S, the moments 
at Band C can be expressed as (Fig. 4.19) 

MB = Hhl - Shl = 20H - (12.35)(20) = 20H - 247 

Hh VL 
Me = -i + 4 - S(hl + h2 ) = 10H + 45H - (12.35)(30) = 55H - 370.5. 
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FIGURE 4.18. Determinate 
gabled frame loaded by (a) 
applied forces and (b) 
redundant force. H -B-
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Assuming the second hinge at B, we have 

r 

la) 

Ib) 

2962.8 
MB = Mp = ----u- = 20H - 247, 

which gives 

H = 24.7 kips 

V Hh1 
-+-
2 L 

D 
I 
I 
I 
I 
I 
I 
I S 
E_ 

Me = (55)(24.7) - 370.5 = 988 kip-ft = 11,856 kip-in, IMel > Mp. 

Therefore, the second hinge will form at C and the corresponding H can be 
determined by equating Me and Mp: 

2962.8 
Me = M = -- = 55H - 3705 p 12 . , 

which gives 

H = 11.23 kips 

and 

v = 3H = 33.69 kips. 
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A B c o E FIGURE 4.19. Moment 
~------r-------.-----~~-------- diagrams corresponding to 

(a) 

(b) 

(e) 

(a) applied forces; (b) 
redundant force; and (c) 
combined loading. 

Note that with proper bracing of the columns against buckling, the reduction 
in V and H due to axial load is less than 5%. 

4.7 Practical Procedure for Large Structures 

The equilibrium method is convenient for plastic analysis and design when 
the number of redundants is small. With an increase in the redundants, the 
method in itself becomes too involved. Selection of the right combination of 
redundants demands increasingly high intuition. For plastic analysis and 
design of large structures that will have a much larger number of redundants, 
we will present a practical procedure of the equilibrium method. The proce­
dure consists of the following steps: 
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(a) Select the redundants. 
(b) Obtain the moment diagram of statically determinate structure under the 

applied loads. 
(c) Obtain the moment diagram of a statically determinate structure under 

the redundant forces. 
(d) Assume a failure mechanism for the structure. 
(e) Combine moment diagrams of steps (b) and (c) to obtain moments at the 

plastic hinge locations and equate these moments to the plastic moment 
of the section. 

(f) Solve the equations resulting from step (e) to determine the selected re­
dundants and the plastic limit load or the required plastic moment for the 
structure. 

(g) Check the plastic moment condition in the entire structure. 
(h) If the plastic moment condition is satisfied for the structure, then the 

solution is exact. If not, proceed further to determine the upper and lower 
limits on the solution. 

(i) If it is an analysis problem and the plastic limit load is to be determined, 
then the load determined in step (f) will be an upper bound because the 
solution satisfies only the mechanism condition. A lower bound to the 
exact limit load is determined by 

(4.7.1) 

where PUP is an upper bound to the exact solution, Mmax is the maximum 
moment in the structure, and Mp is the plastic moment capacity of sec­
tion at the point of maximum moment. 

Equation (4.7.1) provides a lower bound to the exact solution, because 
the moment diagram corresponding to this load has been scaled down to 
meet the moment condition. Thus, the solution so obtained satisfies both 
equilibrium and plastic moment conditions but not the mechanism con­
dition and is therefore a lower bound to the limit load. 

(j) If it is a design problem and plastic moment capacity has to be deter­
mined, then the plastic moment capacity determined in step (f) at the 
hinge locations will be unsafe to carry the applied loads, while the maxi­
mum moment that exceeds the plastic moment capacity in other parts 
of the structure will be a safe solution. This follows from the logic that 
if the plastic moment for all sections in the entire structure is increased 
to the maximum moment obtained from the equilibrium diagram, then 
both equilibrium and plastic moment conditions are satisfied but not 
the mechanism condition. Therefore, the plastic moment capacity so 
obtained provides a safe design when compared with the exact plastic 
moment required for the structure. 

The following examples demonstrate this procedure. The sign convention 
used in these examples is that a moment causing tension inside the frame is a 
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8 at 6 = 48 ft 

~I 

FIGURE 4.20. Portal frame with fixed supports. 

positive moment and a moment causing opening of a joint is a positive 
moment, and vice versa. 

Example 4.7.1. The frame shown in Fig. 4.20 has same cross section through­
out. All joints are rigid and the two base supports are fixed. Find the required 
plastic moment Mp- Neglect the effects of axial force, shear force, and lateral 
torsional buckling on the strength of members. 

Solution: The frame has three degrees of redundancy. The three internal 
forces at midspan C are chosen as the redundants. Figures 4.21 (a) and (b) 
show the determinate structures under the external forces and the redundant 
forces, respectively. In order to preserve symmetry, the vertical load at C has 
been cut into two equal halves. The moments due to external applied loads 
(free moments) and the moment due to redundants are tabulated in Table 4.1. 
The next step is to assume a failure mechanism and equate the moments at 
the plastic hinge locations to plastic moment. 

Mechanism 1: To begin, try the side-sway mechanism with plastic hinges at 
the two joints Band D and the two supporting bases A and E. By equating 
moments at these points to the plastic moment, we have 

MA = -384 + 16T + 24S + M = -Mp 

MB = -192 + 24S + M = Mp 

MD = -192 - 24S + M = -Mp 

ME = M - 24S + 16T = Mp-

(Note that moment at a joint is positive when it causes opening of the joint.) 
These four equations are solved for the four unknowns: 

Mp = 96 kip-ft 

M = 192 kip-ft 

S = 4 kips 

T=O. 
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(b) 

FIGURE 4.21. Determinate frame subjected to (a) applied forces and (b) redundant 
forces. 

The moments in the frame corresponding to these values of unknowns are 
also listed in Table 4.1. The plastic moment condition is violated at many 
points. The absolute maximum moment in the frame is 204 kip-ft. Thus this 
mechanism provides both upper and lower bounds 

96 :s; Mp :s; 204. 

Mechanism 2: Try the combined mechanism with plastic hinges at the two 
supporting bases A and E, beam midspan C, and right top joint D. By equat­
ing moments at these points to the plastic moment, we have 

MA = -384 + M + 24S + 16T = = -Mp 

MD = -192+M-24S= -Mp 

ME = M - 24S + 16T= Mp. 
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These four equations are solved for the four unknowns as 

Mp = M = 128 kip-ft 

8 = 2.67 kips 

T = 4 kips. 

The moments in the frame corresponding to these unknown values are also 
listed in Table 4.1. The plastic moment condition is violated at B3 just to the 
left of the center of the beam. The upper and lower bounds corresponding to 
this mechanism are 

128 :s; Mp :s; 132. 

Mechanism 3: Try the combined mechanism with plastic hinges C switched 
to B3 [Fig. 4.22(a)]. 

The new set of collapse equations is 

MA = - 384 + M + 248 + 16T = - Mp 

MB3 = -12 + 68 + M = Mp 

(a) 

(b) 

o 

FIGURE 4.22. Moment diagram corresponding to the failure mechanism: (a) failure 
mechanism and (b) moment diagram. 
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M D = -192 - 24S + M = - Mp 

ME = M - 24S + 16T = Mp. 

These four equations give the following values of the four unknowns: 

Mp = 129.2 kip-ft 

M = 125.6 kip-ft 

S = 2.615 kip-ft 

T = 4.15 kip-ft. 

Corresponding to these values of unknowns, the moments in the frame are 
tabulated in Table 4.1 and plotted in Fig. 4.22. The plastic moment condition 
is satisfied everywhere. Since only concentrated loads are acting on the frame, 
the moment diagram between various joints and concentrated loads is linear. 
For such cases, if the plastic moment condition is satisfied at the joints and 
at the concentrated load locations (A,Al,B,Bl,B2,B3,C,D3,D2,Dl,El,E), 
it will automatically be satisfied between these locations. 

Since all three conditions of equilibrium, mechanism, and plastic moment 
are satisfied, Mp = 129.2 kip-fit = 1550.4 kip-in. is the exact required plastic 
moment for the frame. 

Example 4.7.2. The gable frame shown in Fig. 4.23 has same cross section 
throughout. All joints are rigid and the two base supports are fixed. Loads 
having the magnitudes shown are actually uniformly distributed over the 
members. Find the required plastic moment Mp so that the load factor is 1.4. 
Neglect the effects of axial force, shear force, and lateral torsional buckling on 
member strength. 

Soultion: The frame has three redundants. These redundants are chosen as 
the three internal forces at joint C. Figure 4.24 (a) and (b) show the determi-

4.97 It 

8 -8 

A 

_8 kips 

12 It 12 It 
E 

FIGURE 4.23. Gable frame with fixed supports subjected to distributed loads. 
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FIGURE 4.24. Determinate 
gable frame subjected to (a) 
applied forces (distributed) 
and (b) redundant forces. 
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TABLE 4.2. Example 4.7.2. gable frame calculations 

Joint A B C 

Free moments -274.66 -261.03 0 
Me M M M 
V -12V -12V 0 
H 12.97H 4.97H 0 

8 kips 

(a) 

(b) 

D E 

-222.07 -153.33 
M M 
12V 12V 
4.97H 12.97H 

nate structures under the external forces and the redundant forces, respec­
tively. The bending moment due to external applied loads (free moments) and 
redundants at various points are tabulated in Table 4.2. 

First, try the failure mechanism with column AB remaining vertical while 
other three members collapsed to the right with hinges at B, C, D, and E. By 
equating the moments at these points to the plastic moment, we have 

MB = -261.03 + M - 12V + 4.97H = -Mp 
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13.0 130 8 ft 

FIGURE 4.25. Moment 
diagram corresponding to 
a mechanism with plastic 
hinges at B, C, D, and E. 

MD = -222.07 + M + 12V + 4.97H = -Mp 

ME = -153.33 + M + 12V + 12.97H = Mp. 

(The moment at a joint is positive when it causes opening of the joint.) 
These four equations are solved to determine the four unknown values as 

Me = M = Mp = 87.68 kip-ft 

V = - 1.62 kips 

H = 13.32 kips. 

We now check the moment at A to see if the plastic moment condition is 
satisfied: 

MA = - 274.66 + 87.68 - 12( -1.62) + (12.97)(13.32) = 5.22 kip-ft 

Since IMAI < Mp = 87.68 kip-ft, this mechanism is okay. However, since the 
actual loads are distributed, we must also check the maximum moment with­
in the member. From the bending moment diagram (Fig. 4.25), it appears 
that the maximum moment may occur in the member Be. The moment Mx 
in the right half of BC can be expressed as 

wx2 

Mx = 87.68 + V'x - 2 

where Viis the resultant shear force at C acting perpendicular to BC and is 

V' = 13.32 sin 22S + 1.62 cos 22S = 6.6 kips, 

w is the distributed load acting perpendicular to BC and is 

= 50 cos 22S - 6 = 3 1 ki 1ft 
w 12.98 . ps, 

and x is the distance along the member from point C to C1 (the point of 
maximum moment). Now Mx along the member BC can be written as 

x2 
Mx = 87.68 + 6.6x - 3.1 2 , 
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To determine the maximum moment location, we set dMx/dx = O. Thus 

d::x = 6.6 - 3.1x = 0, 

which gives 

x = 2.13 ft. 

Thus, the maximum moment at C has the value 

Mel = 87.68 + 6.6 X 2.13 - 3.1(2.13)2/2 

= 87.68 + 14.06 - 7.03 = 94.71 kips-ft 

and this mechanism provides the following upper and lower bounds 

87.68 ~ Mp ~ 94.71. 

Now try the mechanism with plastic hinges at B, C l , D, and E. The collapse 
equations become 

MB = -261.03 + M - 12V + 4.97H = -Mp 

Mel = -7.03 + M - 1.97 V + 0.82H = Mp 

MD = -222.07 + M + 12V + 4.97H = -Mp 

ME = -153.33 + M + 12V + 12.97H = Mp. 

The solution of these four equations gives 

M = 82.48 kip-ft 

H = 13.9 kips 

V = -1.624 kips 

Mp = 89.96 kip-ft = 1,080 kip-in. 

In addition to the equilibrium and mechanism conditions, the plastic mo­
ment condition is also satisfied. Thus, Mp = 1080 kip-in. is exact. Multiplying 
the plastic moment Mp by the load factor 1.4, we have 

Mp = 1,080 x 1.4 = 1,512 kip-in. 

Example 4.7.3. The frame shown in Fig. 4.26 has rigid joints and is rigidly 
fixed to foundations at A and E. The frame has a uniform plastic moment 
capacity of Mp' Investigate the value of Wat which collapse will just occur 
for the load system shown. Present the solution in such a way that the mode 
of collapse and the value of W at collapse are indicated for any value of oc. 
Neglect the instability effects and the effects of axial load and shear force on 
the moment capacity. 

Solution: The redundants for the frame are chosen as the three internal forces 
at joint C. Figure 4.27 shows the determinate gable frame under the applied 
forces and redundant forces, respectively. The free moments and moments 
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FIGURE 4.26. Gable frame with fixed supports and subjected to concentrated loads. 
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FIGURE 4.27. Determinate 
gable frame subjected to (a) 
applied forces (concen­
trated) and (b) redundant 
forces. 

due to redundant forces are tabulated in Table 4.3. To determine W for 
various ranges of IX, we will try all possible mechanisms. 

Mechanism 1: Try the failure mechanism with column AB remaining vertical 
while other three members collapsed to the right with plastic hinges at B, C, 
D, and E. By equating moments at these points to the plastic moment, we have 
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TABLE 4.3. Example 4.7.3. gable frame calculations 

Joint A B C D E 

Free moments C 2~) -WL 4+S -WL/4 0 -WL/4 -WLG- 25~) 
Mo Mo Mo Mo Mo 

1 1 1 
V -VL -VL 0 --VL 2 2 2 

3 1 1 
H -HL -HL 0 -HL 

5 5 5 

Jfl. VL HL 
MB = -T+Mo +T+T= -Mp 

Me = 0 + Mo + 0 + 0 = Mp 

Jfl. VL HL 
M D = -T+Mo-T+T= -Mp 

ME = - WL (! _ 2(X) + Mo _ VL + 3HL = M 
4 5 2 5 p. 

Solve these four equations and determine the four unknowns: 

or 

WL (XWL 
Mo=MP=U+15 

V=o 

5W Mp 
H=--10-

4 L 

H = 5W _ 10(WL + (XWL) = 5W _ 2(XW 
4 L 12 15 12 3· 

Mo 
1 

--VL 2 
3 
-HL 
5 

Now we must ascertain that IMI :s; Mp at points B1 , D1 , and A. Since V = 0, 
the moments at Bl and Dl are the same. At Bl and D1 , we have 

1 1 
MDl = 0 + Mo - - VL + -HL < M 4 10 - P" 

Substituting values of Mo, M p , and H and solving for (x, we have 

(X ~ 0.625. 
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At A, we have 

( 1 21X) 1 3 MA=-WL -+- +Mo+-VL+-HL>-M 4 5 2 5 - P' 

which gives 

IX :::;; 0.25; 

IX ~ 0.625 and IX :::;; 0.25 cannot be satisfied together, so this mechanism is not 
possible. 

Mechanism 2: Try the side-sway mechanism with plastic hinges at A, C, D, 
and E. The corresponding collapse equations are 

MA = - WL(~ + 21X) + Mo + ~ VL + ~HL =-M 
4 5 2 5 p 

Me = 0 + Mo + 0 + 0 = Mp 

WL VL 1 
MD = --+Mo--+-HL=-M 4 2 5 p 

( 1 21X) 1 3 ME = - WL 4 - 5 + Mo -"2 VL + SHL = Mp. 

Solving these four equations for Mo, V, H, and M p , we have 

Mo = Mp = 116 WL + WLG~) 
W IXW 

V=-g+T 

5 IXW 
H= 16W-T' 

Moments at B l , Dl , and B must be less than Mp. Thus 

VL 1 
MBl = Mo + 4 + 10HL :::;; Mp. 

Substituting values of Mo, V, M p , and H and then solving for IX, we have 

IX :::;; O. 

Similarly, for moment at Dl and B, we have 
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which give 

IX > 0.417, IX < 5/4. 

Since the conditions IX < 0, IX > 0.417, and IX < 5/4 cannot be satisfied simul­
taneously, this again is not a possible mechanism. 

Mechanism 3 (Fig. 4.28): Try the mechanism with column AB remaining 
vertical while other members collapsed to the right with plastic hinges at B, 
BI , D, and E. The resulting collapse equations are 

VVL 1 1 
MB = -- + Mo + - VL + -HL =-M 4 2 5 p 

VVL 1 1 
MD = -- + Mo - - VL + -HL =-M 

4 2 5 p 

( 1 21X) 1 3 ME=-VVL --- +Mo--VL+-HL=M 
4 5 2 5 po 

Solution of these four simultaneous equations give!': us 

V=O 

1 4 
H=-VV--IXVV 

2 5 

1 1 
Mp = 10 VVL + 25 IXVVL 

VVL 
Mo = 20 + 0.12IXVVL. 

Now we use the conditions: IMAI :::;; M p, IMel :::;; M p, and IMDII :::;; Mp. 
Since V = 0, MDI = MBI = M p, there is no need to check moment at D I . 

At A, we have either MA :::;; Mp 

( 1 21X) 1 3 MA=-VVL -+- +Mo+-VL+-HL<M 4 5 2 5 - p' 

Substituting values of M o, V; M p , and H and solving for IX, we have 

IX~O 

or MA ~ -Mp 

( 1 21X) 1 3 MA=-VVL -+- +Mo+-VL+-HL>-M 4 5 2 5 - p' 
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which gives 

ex :5: 0.278. 

At C, we have either Me :5: Mp 

1 
Me = Mo = 20 WL + 0.12exWL :5: Mp, 

which gives 

ex :5: 0.625 

1 
Me = Mo = 20 WL + 0.12exWL;;::: -Mp, 

which gives 

ex ;;::: -0.938. 

This condition cannot control, since ex cannot be negative. Thus, this mecha­
nism is valid for the range 

o :5: ex :5: 0.278 

with 

M W= p 

L(O.1 + O.04ex) 

Mechanism 4 (Fig. 4.28): Try the side-sway mechanism with plastic hinges at 
A, B, D, and E. The corresponding collapse equations are 

( 1 2ex) 1 3 
MA=-WL 4+5 +Mo+2.VL+SHL=-Mp 

1 1 1 
MB = -4 WL + Mo + 2. VL + SHL = Mp 

1 1 1 
MD = -4 WL + Mo - 2. VL + SHL = -Mp 

Solution of these four equations gives 

WL 
Mo=-

4 

1 
M =-exWL 

p 5 
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2 
V = -exW 

5 

H=O. 

Now imposing the conditions IMel ::s;; Mp, IMBll ::s;; Mp, and IMDlI ::s;; Mp. At 
C, we have either Me ::s;; Mp 

1 1 
Me = - WL < M = -exWL 4 - p 5 ' 

which gives 

ex ~ 1.25, 

1 1 
Me = - WL > -M = --exWL 4 - p 5 ' 

which gives 

ex ~ -1.25. 

At Bl , we have either MBl ::s;; Mp 

which gives 

ex ~ 2.5, 

1 1 
MBl = Mo + - VL + -HL >-M 4 10 - p' 

which gives 

ex ~ -0.833. 

At Dlo we have either MDl ::s;; Mp 

1 1 
MDl =Mo--VL+-HL<M 4 10 - p' 

which gives 

ex ~ 0.833, 

VL HL 
MDl =Mo--+->-M 4 10 - p' 
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which gives 

!Y. ~ -2.5. 

So this mechanism is valid for 

with 

!Y. ~ 2.5 

W=5Mp 
!Y.L 

Mechanism 5 (Fig. 4.28): Try the side-sway mechanism with plastic hinges at 
A, Bl , D, and E. The corresponding collapse conditions are 

MA = - WL(~ + 2!Y.) + Mo + ~ VL + ~HL =-M 
4 5 2 5 p 

1 1 
MBl = Mo + - VL + -HL = M 4 10 p 

111 
MD = -- WL + Mo - - VL+ -HL =-M 425 p 

( 1 2!Y.) 1 3 
ME = - WL 4 - 5 + Mo - 2 VL + SHL = Mp-

Solution of these four simultaneous equations is 

1 7 
Mp = 16 WL + 40!Y.WL 

1 9 
V= --W+-!Y.W 

8 20 

H = 0.3125W - 0.125!Y.W 

Mo = 0.0625WL + 0.075!Y.WL. 

Now impose the conditions: MB ~ Mp, MB ~ -Mp, Me ~ Mp, and Me ~ 
- Mp. At B, we have 

WL 1 1 
MB = -4 + Mo + 2 VL + SHL ~ Mp-

Substituting values of Mo, V, H, and Mp and then solving for !Y., we have 

!Y. ~ 2.5 

or 



which gives 

At C, we have 

which gives 

or 
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IX ;::: 0.278. 

Me = Mo = 0.0625WL + 0.075IXWL ~ Mp' 

Mechanism 3 

Mechanism 5 

Mechanism 4 

o ~ a ~ 0.278 

Mp 
W = ------'---

l (0.1 + 0.04a) 

0.278,.; a ~ 2.5 

Mp 
W= 

l (..L + 2.. a ) 
16 40 

a :;, 2.5 

5 Mp 
W= 

al 

FIGURE 4.28. Failure mechanisms and limit loads for various values of IX. 
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which gives 

IX ~ -0.5. 

So this mechanism is valid for the range 

0.278 ~ IX ~ 2.5 

with 

w = L(1/16 + 71X/40) 

The failure mechanisms and the limit loads for the full range of IX are 
summarized in Fig. 4.28. 

4.8 Examples of Portal and Gable Frames 

In this section, we will present two examples. One is a portal frame, the other 
is a gable frame. The effects of axial load, lateral torsional buckling, and shear 
force on member strength, which were neglected in Section 4.7, are consid­
ered here. 

Example 4.8.1. Portal Frame: The rigid rectangular frame is subjected to 
applied loads shown in Fig. 4.29. All the members are made of W16 x 45. 
First, determine the limit value of the load factor A. without considering the 
effects of axial load, lateral torsional buckling, and shear force on member 
strength. Then evaluate these effects and provide the necessary reinforce­
ments to minimize these effects. Assume Bl = B2 = 1.0, and Kx = Ky = 1. 

30). 30). 

15).~ ~~ 
--.~--~----------~----~ B C o E F 

20 It 
W16x45 

A G 

30 It 

'1 FIGURE 4.29. Portal frame. 



FIGURE 4.30. Determinate 
frame subjected to (a) 
applied forces and (b) 
redundant forces. 
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(a) 

M(f~ O)M 
B P"------------H ~ ___ __ I F 

: l 1 
1 V 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 

A I 1 G 

(b) 

Solution: The frame has three redundants. We shall make a cut at D and 
consider the three internal forces at this cut as redundants. The bending 
moments due to external applied forces and redundant forces (Fig. 4.30) are 
tabulated in Table 4.4. 

First, try the side-sway mechanism shown in Fig. 4.31 with plastic hinges 
at A, C, F, and G. From Table 4.4, the collapse equations can be written 
as 

MA = -525A. + M + 15V + 20H = -Mp 

Me = M + 7.5V = Mp 

MF = -225A. + M - 15V = -Mp 

MG = -225A. + M - 15V + 20H = Mp. 
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,---t;;;;;;;:::::::======:::::::;:~_/F FIGURE 4.31. Plastic mecha-
I nism for the portal frame of 

C Fig. 4.29. 

A 
G 

TABLE 4.4. Example 4.8.1. portal frame calculations 

Point A B C D 

Free moment -525), -225), 0 0 
M M M M M 
V 15V 15V 7.5V 0 
H 20H 0 0 0 

The solution of these four equations is 

M 
H = --.!!. 

10 

Mp v=-90 

11 
M = 12Mp-

E 

0 
M 
-7.5V 
0 

F G 

-225), -225), 
M M 
-15V -15V 
0 20H 

To ensure the satisfaction of the plastic moment condition, we must check 
the moments at E, D, and E: 

2M 
MB = -225), + M + 15V = -T' IMBI < Mp , okay 
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FIGURE 4.32. Internal forces 
in the frame of Fig. 4.31: (a) 
axial force, (b) shear force, 
and (c) bending moment. 

B 

A 

-

I 

(a) 

-. 54.9 kips 

+ 154.9 kips 

B C2.7 

4.1 kips 

(b) 

A 

p 

E 

l 

V 

F 24.7 kips 

I 

G 
60.3 kips -. 

F 24.7 kips 

60.3 

+ 

G'---

The axial load, shear force, and bending moment diagrams of the frame are 
shown in Fig. 4.32. 

From the AISC manual, for W16 x 45, we have 

Mp = Mpx = FyZx = (36)(82.3) = 2963 kip-in. = 247 kip-ft 

A = 13.3 in.2 , ry = 1.57 in., rx = 6.65 in., Ix = 586 in.4 

Thus, without considering the effects of axial load, we have 
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7 7 
A. = 900 Mp = 900 (247) = 1.92. 

Since all three conditions of equilibrium, mechanism, and plastic moment 
are satisfied, A. = 1.92 is the exact solution if secondary effects are not 
considered. 

Now we shall evaluate the secondary effects and provide the necessary 
reinforcements to minimize these effects. 

Axial Force: Member FG is the critical member [see Fig. 4.32(a)] and the 
axial force in this member is 

Mp 247. 
PFG = 30A. + V = 30A. + 90 = (30)(1.92) + 90 = 60.3 kIpS. 

The yield axial load Py is 

Py = (13.3)(36) = 478.8 kips. 

For strong-axis buckling and weak-axis buckling, we have 

,tex = ~ KL (ii, = ~ (20)(12) J 36 = 0.398 
1t rx ~ E 1t 6.65 30,000 

and 

A. = ~ (20)(12) J 36 = 1686 
ey 1t 1.57 30,000 . , 

the weak-axis buckling controls, thus giving 

[ 0.877J k' P" = T Py = 147.7 IpS. 

For the plastic design, ,te < 1.5K. Also with such a high value of ,te' the 
reduction in the axial capacity of member FG is very large. To increase the 
axial capacity, we need to provide bracings against weak-axis buckling at a 
spacing of 5 feet such that 

,te = 1.~86 = 0.422 < 1.5, okay. 

The weak-axis buckling still controls, so the axial capacity of the member is 

P" = 0.658.l.~ Py = 444.4 kips. 

Since 

P 60.3 
,pcP" = (0.85)(444.4) = 0.160 < 0.2. 
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So the moment capacity of the member can be determined from 

P Mx 
--+--:5: 1.0 
2(/JcPn rPbMnx 

where th = 0.9, Mnx = Mpx = 2963 kip-in., and Mx = Mpc. The reduced plas­
tic moment Mpc is determined from LRFD interaction equation as 

Mx = Mpc < (1 _ 0.160) 
rPbMnx 0.9Mp - 2 

Mpc = (0.92)(0.9)Mp = 0.828Mp-

which will in turn reduce the load factorfrom A. = 1.92 to A. = 7 M pc/900 = 1.59. 

Lateral Torsional Buckling: For plastic design, the maximum unbraced 
length is 

(3,600 + 2,200M 1/ M p) 
Lpd = F ry. 

y 

We will now check Lpd for all portions of the frame and provide the lateral 
support if necessary. 

Portion AB [Fig. 4.32(c)] 

L .. ~ [3600 - 3
2
:

00 m] 1.57 ~ 93 in. > 60 in. okay. 

Lateral supports at a spacing of 5 feet are okay. 

Portion BC 

[
3600 + 2200 G)] . . 

Lpd = 36 1.57 = 221 In. > 7.5 x 12 = 90 In. okay. 

There is no need to provide any lateral support, but the lateral support at the 
plastic hinge location C is required by the LRFD. 

Portion CE 

L .. ~ [3600 - ::oo(~)] 1.57 ~ 77 in. < 15 x 12 ~ 180 in., not okay. 

So we provide lateral supports at a spacing of 5 feet. 

Portion EF 

[ 3600 + 2200C~)]. . 
Lpd = 36 1.57 = 237 In. > 7.5 x 12 = 90 In. okay. 
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There is no need to provide any lateral support. 

Portion FG 

Lpd = [3600 ~~200(I)J 1.57 = 253 in. > 20 x 12 = 240 in. okay. 

Lateral supports at a spacing of 5 feet are okay. 

Shear Force: As far as shear is concerned, the full plastic bending strength of 
the section may be used in design if the total transverse shear on the section 
at the plastic limit load is no more than ~ (Eq. 4.5.1): 

Vp = 0.55Fytwd = 0.55 x 36 x 0.345 x 16.13 = 110 kips. 

Since the shear forces in the frame are all smaller than the shear strength, no 
web stiffeners or doubler plates are needed for frame members. 

Example 4.8.2. Gable Frame: A gable frame is subjected to uniformly distrib­
uted loads as shown in Fig. 4.33. Select an appropriate section for the mem­
bers. Consider the effects of axial force, lateral torsional buckling, and shear 
force on member strength. Assume Bl = B2 = 1.0 and K" = Ky = 1 to check 
column buckling. 

Solution: The degree of redundancy of the frame is one. Take the horizontal 
reaction at E as the redundant. The resulting determinate frame subjected to 
applied and redundant forces is shown in Fig. 4.34. The bending moments in 
the determinate frame due to applied forces and redundant forces are tabu­
lated in Table 4.5. 

First, try the mechanism with plastic hinges at D and C. From Table 4.5, 
the collapse equations can be written as 

-20S = -Mp 

1.8 kips/ft 

15 ft 
... --<II 
.g. 
"" co 20 ci 

FIGURE 4.33. Gable portal frame subjected to uniformly distributed load. 
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-<II 

.9-

.>< 

co 
ci 

1.8 kips/It 

lllllllllllllllllllll 

(a) t 
85.1 94.9 kips 

(b) 

FIGURE 4.34. Determinate structure subjected to (a) applied forces and (b) redundant 
forces. 

TABLE 4.5. Example 4.8.2. gable frame calculations 

Joint 

Free moment 
S 

and 

A 

o 
o 

B 

400 
-20S 

c 

2495 
-35S 

-35S + 2495 = Mp­

Solving these two equations for Sand M p , we have 

Mp = 907 kip-ft 

S = 45.4 kips. 

D 

o 
-20S 

E 

o 
o 

The moment diagram corresponding to these values of Mp and S is shown 
in Fig. 4.35. We must now check moments at B and in between Band C 
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A B c, c D E 

FIGURE 4.35. Moment diagram corresponding to a mechanism with plastic hinges at 
C and D. 

(because the load is distributed): 

MB = 400 - 20S = -50S kip-ft, IMBI ::;; Mp = 907 kip-ft, okay. 

Moment Mx at a horizontal distance x from C toward B (Fig. 4.35) can be 
expressed by taking the free body of the right portion of the frame C 1 CDE as 

Mx = 94.9(50 + x) _ (l.S)(5~ + X)2 (O.S)~.3xf - (35 - 0.3x)(45.4) 

or 

Mx = -0.94x2 + 1S.52x + 906. 

To determine the maximum moment location, we set 

dMx 
dx = 0 = -l.SSx + IS.52 

and obtain 

x = 9.9 ft 

and 

Mmax = -0.94(9.9)2 + 1S.52(9.9) + 906 = 997 kip-ft. 

Since the plastic moment condition is violated at Cl , Mp = 907 kip-ft is not 
an exact solution. However, this mechanism does provide the following up­
per and lower bounds on Mp: 

907 ::;; Mp ::;; 997. 

Now, try the mechanism with hinges at Cl and D. Corresponding to this 
mechanism, the collapse equations are 

MD = -20S = -Mp 

Mel = (94.9)(59.9) - (l.S)~9.9)2 - (0.S)(2.97)2 - 32S = Mp 
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or 

Mel = 2448 - 32S = Mp. 

The solution of these two equations gives 

Mp = 942 kip-ft 

S = 47.1 kips. 

The required plastic modulus Z" = Mp/Fy = (942/36)(12) = 314 in.3 Try 
W30 x 116 throughout the frame. 

From the AISC manual, for W30 x 116, we have 

Z" = 378 in.3, rx = 12 in., ry = 2.19 in., A = 34.2 in.2, Ix = 4930 in.4 

To avoid the effects of weak-axis column buckling and lateral torsional 
buckling, we shall provide bracings at a spacing of 5 feet in all the members. 
We now evaluate the effects of axial force, lateral torsional buckling, and 
shear force on member strength. 

Axial Force: Member DE is the critical member and the axial force in this 
member is 

PDE = VE = 94.9 kips. 

The yield axial yield load for W30 x 116 is 

Py = (34.2)(36) = 1231 kips. 

For strong-axis and weak-axis buckling, the values of Ac are 

Acx =! (KL)x {F, =! 1 x 20 x 2 J 36 = 0.221 
1t rx .y E 1t 12 30,000 

A =! (KL)y [ii, = ! (1)(5)(12) J 36 = 0302 
cy 1t ry .y E 1t 2.19 30,000 . . 

The weak-axis buckling controls. Thus Ac = Acy = 0.302. Now since Ac < 1.5, 
the axial capacity of the member is 

Pn = 0.658Atpy = 0.658(0.302)2(1231) = 1185 kips. 

Since 

P 94.9 
(APn - (0.85)(1185) = 0.094 < 0.2. 

The reduced moment capacity of the member can be determined from 

P Mx 
--+--=10 
2(APn rhMnx . 

where the first-order moment obtained from plastic analysis, i.e., Mx = 
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Mpc = 942 kip-ft: 

P Mx 0.094 942 
2'" P + '" M = -2- + 09M = 1.0, 

Y'c n V'b nx . p 

which gives the required plastic moment 

Mp = 1113.7 kip-ft = 13,364 kip-in. 

The adjusted plastic modulus 

13,364 . 3 
Z = 36 = 371.2 < 378 In., okay. 

Lateral Torsional Buckling: 

L _ (3600 + 2000M1/Mp ) 

pd - F ry. 
y 

Take a conservative value of MdMp as -1 

(3600 - 2200) . . 
Lpd = 36 (2.19) = 85 In. > 60 In., okay. 

Shear Force: Member CD is the critical member and the maximum transverse 
shear force in member CD is 

VCD = (94.9) J(50);: (15f = 90.9 kips. 

The maximum shear strength allowed according to Eq. (4.5.1) is 

Vp = 0.55Fytwd = 0.55 x 36 x 0.565 x 30.01 = 335.7 kips, 

which is sufficient to support the shear load without general yielding of the 
web, the modification of plastic moment capacity is therefore not required by 
specification. However, to see the influence of shear force on plastic bending 
strength, we shall follow the procedure described in Section 2.6, Chapter 2, 
and compute first the shear stress as 

h . b VCD 90.9 5 68 k . 
s ear stress In we = dwtw = (28.31)(0.565) =. S1. 

The plastic modulus reduced due to the presence of shear force is 

Zps = Z - Zw[ 1 - J(J;3~ 3t2J 
= 378 _ (0.565)(28.31)2 [1 _ J(36)2 - (3)(5.68)2J 

4 36 

Zps = 378 - 4.3 = 373.7 in. 3 > 371.2 in. 3, okay. 

Use W30 x 116. 
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4.9 Summary 

In the theory of plastic analysis and design, three fundamental conditions 
must be satisfied when a structure is at its plastic collapse state. 

1. The structure is in equilibrium with respect to the given loads and their 
reactions. 

2. At no point in the structure does the moment produced by the loading 
exceed the available plastic bending strength. 

3. The structure is on the verge of becoming a mechanism. 

Based on these three conditions, two basic methods of plastic analysis and 
design are available. The equilibrium method presented in this chapter is 
based on the lower-bound theorem of limit analysis. The work method to be 
presented in the following chapter is based on the upper-bound theorem. The 
equilibrium method involves two stages of operation. In the first stage, the 
moment equilibrium equations are formed in terms of applied loads and 
unknown redundants. In the second stage, the redundants are selected such 
that the plastic moment condition will not be violated, while the mechanism 
condition may not be satisfied. A safe or lower-bound solution can be ob­
tained quickly by assuming any set of values of redundants. The best solution 
or the highest limit load corresponds to the formation of a failure mechanism. 
A successful application of the second stage of operation requires physical 
intuition combined with the use of differential calculus and algebraic 
technique. 

The equilibrium method is applied to the analysis and design of simple 
beams, rectangular frames, and gable frames. The consideration of the effect 
of shear force on the plastic moment capacity in the design of beams is 
illustrated. Cover plates are designed for a continuous beam having a limited 
depth for architectural reasons. The LRFD specifications for the limiting 
unbraced lengths for preventing lateral torsional buckling are presented, and 
their use in actual frame design is illustrated. 

The effects of axial load on the strength and stability of frames are consid­
ered. To this end, the LRFD interaction equations for beam-columns are 
presented, and their use in designing rectangular and gable frames is 
illustrated. 

For the practical design oflarge-framed structures involving a larger num­
ber of redundants, a practical equilibrium procedure is presented. In this 
procedure, we first assume a failure mechanism and then equate the moments 
at the plastic hinge locations to the plastic moment. The resulting simultane­
ous equations are solved for the unknown redundants. This leads to the 
solution of the required plastic moment capacity or the plastic limit load. The 
results so obtained are used to check moments at other critical sections. This 
check provides upper and lower bounds on the exact solution. The procedure 
is repeated by assuming a new mechanism until the coincidental upper and 
lower bounds. 
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Problems 

4.1. A beam having uniform cross section with full plastic moment Mp and length 2L 
rests on simple supports at its ends and on a central prop. It carries four equal 
loads W, symmetrically arranged about the center oflength, one at the center of 
each span and one a distance L/8 from each end of the beam. What would be 
the value of Wat collapse? [24MpI5L]. 

4.2. If the beam of Problem 4.1 is carrying four equal loads W, symmetrically ar­
ranged about the center of the beam, one at the center of each span and one at 
a distance 3L/8 from each end of the beam, determine the value of W at collapse 
[88MpI27L]. 

4.3. A fixed-ended beam with a prop at the center has a uniform cross section with 
full plastic moment Mp and length 2L. Equal concentrated loads are applied 
at a distance aL from each fixed end. What would be their value a collapse? 
[2/[a(1 - a)]MpIL]. 

4.4. A fixed-ended beam has uniform section with full plastic moment Mp and length 
L. It is subjected to a uniformly distributed load Wand to a concentrated load 
0.5 W at a distance of LI3 from one end. Find the value of Wat collapse [9 M pll]. 

4.5. A uniform beam of length L and full plastic moment Mp is simply supported at 
one end and fixed at the other end. A concentrated load W may be applied 
anywhere in the span. Find the values of Mp corresponding to the most unfavor­
able position of the load W [Mp = 0.172WL]. 
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4.6. A beam has uniform cross section with full plastic moment Mp and length Land 
is built in at one end and simply supported at the other. It carries a concentrated 
load W a distance a from the built-in end. Show that at collapse, W has the 
value 

2L- a 
--:-c~---:- M p. 
a(L - a) 

Show that if both ends had been built in, the load at collapse would have 
increased in the ratio 

2L 
2L -a 

4.7. A beam ABCD of uniform section throughout has full plastic moment Mp and 
is pinned to four supports, thus forming a continuous beam of three equal spans 
each with length L. A load W is applied at the center of each span. Find the 
value of W that causes collapse [6Mp /LJ. 

4.8. The continuous beam shown in Fig. P4.8 has three equal spans carrying central 
point loads. There is no change of beam section between supports but the 
plastic moment resistance of the outer spans is only two-thirds that of the cen­
tral span, which is Mp. At what value of W does the collapse occur? [8Mp/LJ. 

l~ w ~ w J~ w 

A A A 1 
FIGURE P4.8 I· Ll2 .. 1• L/2"I"L/2 ·1" L/2-I"Ll2 .1\/2 "I 

4.9. A uniform continuous beam with full plastic moment Mp rests on five simple 
supports A, B, C, D, and E such that AB = 6L, BC = CD = 8L, and DE = 1OL. 
Each span carries a concentrated load at its midpoint, these loads being W on 
AB, Won BC, lAW on CD, and O.5W on DE. Find the value of W that will just 
cause collapse [5Mp /7L]. 

4.10. A fixed-ended beam of span L is to be designed for collapse under a single 
central point load ,Uv. For a distance (1/2)kL from each end of the span, the 
fully plastic moment is to be r times the value for the remainder of the span. The 
weight per unit length of the beam is 

[ 32M] 
P 1 + AWL 

where M is the fully plastic moment at the section in question, and P is a 
consant. Determine the ratios rand k for minimum weight of the beam, and find 
the saving in material as compared with a design using a uniform beam. Neglect 
the weight of the beam [r = 5/3, k = 1/4, 10%]. 
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4.11. A load of 150 kips is applied 4 feet from the end of a fixed-ended beam 16 feet 
long. Select a wide-flange section. Include the effect of shear force on plastic 
moment capacity in the design of the beam. 

4.12. A fixed-ended W16 x 40 beam 20 feet long is reinforced at its ends with cover 
plates welded to top and bottom flanges. These plates are 5-in. wide and 3/8 in. 
thick. It carries a concentrated load W at midspan. Find the value of W taking 
into account the effect of shear force on the plastic moment capacity. 

4.13. How long must the plates be in Problem 4.12 so that this ultimate load can be 
reached. Does the beam require lateral supports for adequate rotation capacity 
to form a plastic failure mechanism? If yes at what locations. 

4.14. Find a suitable section of A36 steel for the beam of Example 4.5.2 if the ends of 
the continuous beam are fixed instead of simply supported [W14 x 30]. 

4.15. A load of 5 kip/ft is to be carried over the three spans shown in Fig. P4.15 with 
a load factor of 1.7. It is decided to use a wide-flange section with Fy = 36 ksi, 
running continuously over all spans with added cover plates running continu­
ously over support C into the spans BC and CD. Find the size of the basic 
section and length and area of the cover plates. Include the effect of shear force 
on the plastic moment capacity of the beam. 

5 kips/ft 

Alf I *f! I I I *±e* I I *1 
, .. -I" -I" --I 

20 ft 30 ft 25 ft 

FIGURE P4.15 

4.16. The beam designed in Problem 4.15 has lateral support at the vertical supports. 
Do we need additional lateral supports? If yes, at what locations? 

4.17. The beam ABC shown in Fig. P4.17 is to be designed to carry the given loads 
with a load factor 1.7. Using A36 steel, design the beam continuous from A to 
C by taking into account effect of shear force on the plastic moment capacity. 
Determine the location of lateral supports if necessary. 

4 kips/ft 
2 kips/ft 

I I J f 

I .. 
25 ft 20 ft 

FIGURE P4.17 
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4.18. The beam in Problem 4.17 can be designed by using a smaller section continu­
ous from A to C and by adding symmetrical flange reinforcement where neces­
sary in span AB. Select a wide-flange section and find the length and size of the 
cover plates needed. 

4.19. In a fixed-base rectangular portal frame ABCD, the column AB is of height 16 
feet and column DC is of height 24 feet and beam BC is 16 feet and horizontal. 
All the members of the frame have the same full plastic moment Mp. The beam 
BC carries a central concentrated vertical load of 70 kips and a concentrated 
horizontal load of 28 kips is applied at e. Select an appropriate wide-flange 
section. Consider the effects of (a) axial load including stability of the columns 
AB and CD and (b) shear force on moment capacity of beam Be. Provide the 
necessary lateral support to prevent lateral torsional buckling of the beam. 

4.20. Repeat Problem 4.19 when the horizontal load of 28 kips is reversed in 
direction. 

4.21. The frame of Fig. 4.26 has L = 40 ft, IX = 0.5, and W = 50 kips. Select an appro­
priate wide-flange section by taking into account effects of axial load and shear 
force. Provide the lateral supports if necessary to prevent lateral torsional 
buckling. Use LRFD rules. 

4.22. For the gable frame shown in Fig. 4.26 and assuming the following conditions 
IX = 1.0, L = 20 ft, A36 steel, W18 x 46 section: 

(a) Estimate the change in the value of W caused by positioning the plastic 
hinge at BI correctly if the vertical load Won span BC is actually uniformly 
distributed [x = 4 ft, Mp = 4.45W, 6.7%J. 

(b) Estimate the change in the value of W caused by considering the effect of 
axial load on the value Mp, using the LRFD beam-column equation with 
BI = B2 = 1.0 [Mpc = 2703 kip-in., 5.2%J. 

(c) Determine the location of lateral supports if necessary to prevent lateral 
torsional buckling [A, B,Bt> C,DI,D, EJ. 

4.23. The rigid frame shown in Fig. P4.23 is subjected to a vertical distributed load 
and a concentrated horizontal load. Determine a lower and upper bound for the 
plastic moment Mp using the mechanism ACDE [65.79 ~ Mp ~ 71.71J. 

T3k 
10' 

~A~~~4-______ -=24~' ________ ~~~ 

FIGURE P4.23 /-
34' 
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4.24. For the thick ring shown in Fig. P4.24, where r » t, find the collapse load P in 
terms of Mp (neglect axial force effect) [P = 4Mp/(r + t/2)]. 

P..,-+--I I---I--.. p 

FIGURE P4.24 

4.25. Using the mechanism ABI CD shown in Fig. P4.25, we find that the load factor 
is A = 2.4. 

f 
5 

(a) Carry out your moment check. 
(b) Design members AB and BC assuming that the frame is braced at BI , B, CI , 

and C [(a) MB = 0, Mel = 600 kft, PAB = 60 kips; (b) member AB, W21 x 
50, member BC, W30 x 99]. 

60 

B~--------~--~-'----'C 

+..;4,;;,0 ...... B1 

5 240 

240 

t o 
A 

~lO--+-,0 ~ 
FIGURE P4.25 
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Work Method 

5.1 Introduction 

The equilibrium method described in the preceding chapter can easily be 
used in the plastic analysis and design of simple frames where the number of 
redundants is small. As the number of redundants increases, it becomes more 
difficult to draw the bending moment diagram of the structure, and thus 
more difficult to use the equilibrium method. For such structures, the work 
method of plastic analysis is more appropriate and affords a simpler solution. 
As the name implies, the relation between the strength of a frame and the 
applied loads in the work method is found by assuming that there is no 
overall loss of energy as the frame under failure loads undergoes a small 
change in displacement. Thus, by postulating a valid failure mechanism, an 
equation can be formed by equating the external work done by the applied 
loads through the displacements to the internal dissipation of energy at the 
plastic hinge locations. The interal dissipation of energy is the sum of the 
products of the plastic moment at each hinge and the corresponding angular 
change required to effect a small movement of the failure mechanism. The 
external work is the sum of the products of the component of the small 
displacement of the failure mechanism in line with the applied load and the 
corresponding applied load. The equation formed in this way is called the 
work equation and the corresponding collapse load or the required plastic 
moment capacity can be determined by solving the work equation [1.8, 5.1-
5.5J. The computed load for the particular assumed failure mechanism is 
exact if a moment check is performed and shows that the plastic moment 
condition is not violated anywhere in the frame. 

In this chapter, we will first describe the basis of the work method and then 
present the formulation of the work equation and the procedure for a mo­
ment check, the two major steps in the work method. Then, we will demon­
strate the use of the work method for the analysis and design of simple 
frames. Next, we will describe simple methods for calculating the geometrical 
relations of failure mechanisms. A practical method of combining indepen­
dent mechanisms is then presented, which facilitates the determination of 

223 
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plastic limit load or required plastic moment capacity of multistory and 
multbay frames. Finally, we will show how simple modifications can be made 
to the present procedure for the presence of distributed loads. 

5.2 Basis of the Method 

The load computed on the basis of an assumed failure mechanism is never 
less than the exact plastic limit load of the structure. This fact is based on the 
upper-bound theorem of limit analysis described in Chapter 3 and is now 
restated here: A load computed from the work equation on the basis of an 
assumed failure mechanism will always be greater than or at best equal to the 
plastic limit load. 

The upper-bound theorem states that if a mode of failure exists, the struc­
ture will not stand up. The computed loads are upper bounds on, or unsafe 
values of, the limit or collapse loading. The minimum upper bound is the 
limit load itself. The work method has the following two major steps: 

(a) Assume a failure mechanism and form the corresponding work equation 
from which an upper-bound value of the plastic limit load or an unsafe 
value of the plastic moment can be found. 

(b) Write the equilibrium equations for the assumed failure mechanism and 
check the moments to see whether the plastic moment condition is met 
everywhere in the structure. 

These two major steps will b~ elaborated in the following two sections. 

5.3 Work Equation 

The work equation can be regarded as an energy balance statement in math­
ematical form for the structure under collapse loads undergoing a small 
change in displacement and hinge rotation. A work equation can be formed 
for an assumed mechanism by equating the summation of expenditure of 
energy due to the movement of each applied load Wi through a distance bj or 
I Wibi to the summation of internal dissipation of energy in rotating each 
plastic hinge through an angle OJ, at the constant plastic moment M pj, or 
I MpjOj, 

(5.3.1) 

where the left-hand summation extends over all the loads and the right-hand 
summation extends over all the plastic hinges. The internal dissipation of 
energy is always positive, regardless of the direction of hinge rotation. Thus, 
there is no need to establish the signs for moments and plastic hinge rotations 
for calculating the internal energy dissipation. This is in contrast to the equi­
librium method and moment check procedure, which require the proper es­
tablishment of signs for moments and rotations in the application of the 
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virtual work equation. Herein, for the moment check, we shall use the follow­
ing sign convention: Moment-causing tension on the dotted-line side of the 
member is positive and vice-versa, and rotation causing opening on the 
dotted-line side of the members is positive and vice-versa. 

The following three examples have been chosen to show the techniques of 
calculating each of the two work quantities, to form the work equation, and 
to obtain an upper bound of the plastic limit load corresponding to an as­
sumed failure mechanism. Later in this chapter, we will show that for a given 
frame and loading all the possible mechanisms can be obtained as different 
combinations of a comparatively small number of independent mechanisms, 
which are readily identified for a given frame and loading. The determination 
of plastic collapse loads by the method of combining mechanisms is de­
scribed in Section 5.8. 

5.3.1 A Simply Supported Continuous Beam 
Example 5.3.1. Obtain the plastic limit load of the two-span continuous 
beam shown in Fig. 5.1(a). 

Solution: Plastic hinges can possibly be formed at sections B, C, and D. 
Because of symmetry there is only one possible mechanism, as shown in 
Fig. 5.1 (b). Ifthe plastic hinge at point A is rotated through a small angle e, 
then by geometry, the plastic hinges at B, C, and D are rotated through an 
angle equal to 2e. The external work WE is done by the two loads moving 
vertically downward. The small vertical distances are computed in terms of 
angle e as 

(5.3.2) 

Thus, the total external work done is 

WE = p(~e) + p(~e). (5.3.3) 

The internal energy UtJ is dissipated at each of the plastic hinges. The 
energy dissipation at each plastic hinge is equal to the plastic moment at that 
hinge times the angle through which it rotates. Thus, the total internal energy 
dissipation UtJ can be written as 

(5.3.4) 

Note that angular and linear displacements are assumed merely as differen­
tial values; hence the dimension of the undeformed beam can be used in the 
computation, as would be done in elastic analysis. By equating WE to UtJ, we 
have formed the work equation 
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!P 
C iP 

E 

~ B £if 0 A 
1--

l/2 .. 1-- l/2 ... 1-- l/2 
"'1--

l/2 
~I 

(al Beam 

(b) Mechanism 

Mp 

Mp Mp 

(c) Moment check 

FIGURE 5.1. Mechanism analysis of two-span continuous beam (Example 5.3.1): (a) 
beam, (b) mechanism, and (c) moment check. 
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from which we obtain an upper-bound solution to the plastic limit load 

6Mp 
P = y' (5.3.5) 

Since moments at A, B, C, D, and E are known, the moment diagram for 
the beam can be constructed as shown in Fig. 5.1 (c). Since the plastic moment 
condition (M :s; Mp) is met everywhere in the beam, it follows that the solu­
tion P = 6M p/ L is exact. 

5.3.2 A Pinned-Fixed Continuous Beam 
Example 5.3.2. Obtain the plastic limit load of the unsymmetrical two-span 
continuous beam shown in Fig. 5.2(a). 

Solution: Plastic hinges can possibly be formed at Sections B, C, D, 'and E of 
Fig. 5.2(a). 

Two possible mechanisms are shown in Fig. 5.2(b). One involves the failure 
of beam A - C and the other of beam C - E. For mechanism 1, if 0 is the 
angle of rotation at A, then the rotation at C is also equal to O. The angular 
discontinuity at B is 20. The vertical displacement at B is equal to the rota­
tion at A times the distance between A and B, i.e., L\ = O(L/2). For mechanism 
2, if 0 is the angle of rotation at C, then, the rotation at E is 0/2. The disconti­
nuity at D is the sum of angles at C and E. The vertical displacement of D is 
o (L/3). 

The work equation for the left-hand beam mechanism is obtained by 
equating the external energy work to the internal energy dissipation as 

(O.75P)(~O) = Mp[20 + OJ, (5.3.6) 

which gives an upper-bound solution corresponding to the left-hand beam 
mechanism as 

(5.3.7) 

Similarly, the work equation for the right-hand beam mechanism is 

(2P)(~O) = MiO) + 2Mp(1.50) + 2Mp(~). (5.3.8) 

which gives a lower and thus better upper-bound solution for the continuous 
beam as 

Pz = P = 7.s:!p. (5.3.9) 

In the next section, we shall perform a moment check on mechanism 2 to 
show that Eq. (5.3.8) gives the exact plastic limit load. 
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5.3.3 A Pinned-Based Portal Frame 
Example 5.3.3. Obtain the plastic limit load for the portal frame shown in 
Fig. 5.3(a). 

Solution: Plastic hinges can possibly be formed at Sections B, C, and D. Three 
possible mechanisms are shown in Figs. 5.3(b), (c), and (d). The work equa­
tion corresponding to each of these three mechanisms is given later. 

Referring to the beam mechanism (mechanism 1) shown in Fig. 5.3(b), we 
have 

(5.3.10) 

which gives an upper-bound solution as 

(5.3.11) 

For the side-sway mechanism (mechanism 2) shown in Fig. 5.3(c), since both 
plastic hinges rotate the same amount 0, we have 

(5.3.12) 

which gives another upper-bound solution as 

(5.3.13) 

For the combined inechanism (mechanism 3) shown in Fig. 5.3(d), it is com­
posed of three links-segment AC, segment CD, and column DE. Using the 
geometrical relationships shown, we obtain (see Section 5.6.1) 

p(~O) + ~(~O) = Mp (20) + Mp (20), (5.3.14) 

which gives the lowest upper-bound solution of the three assumed collapse 
mechanisms 

(5.3.15) 

The lowest value P3 is the plastic limit load Pp of the frame. To be sure that 
no other possible mechanisms are overlooked, it is necessary to check that 
the plastic moment condition (M ~ Mp) is not violated anywhere in the 
frame. This will be done in the forthcoming. 
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FIGURE 5.3. Mechanism analysis of pinned-based portal frame (Example 5.3.3): (a) 
frame, (b) mechanism 1, (c) mechanism 2, (d) mechanism 3, and (e) moment check. 
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5.4 Moment Check 

The work equation gives an upper bound to the exact plastic limit load. It is 
therefore necessary to check and see whether the moment condition M ~ Mp 
is met throughout the structure for the assumed mechanism. Otherwise, we 
may overlook a more favorable mechanism, which may give a lower load. 
Thus, if the moment condition cannot be met for the assumed mechanism, a 
fresh guess as to the collapse mechanism is made again, but now it is guided 
by the results of the moment check, and the process is repeated. 

For an assumed mechanism, the structure can be determinate or indeter­
minate. The number of indeterminacy I of the structure at collapse load can 
be determined from the following rule 

I = X - (M -1) (5.4.1) 

where X is the number of redundancies in the original structure and M is the 
number of plastic hinges necessary to develop the mechanism. 

The design that leads to an indeterminate structure at collapse is probably 
not the most efficient design, since in theory the material can be saved some­
where in the structure to bring the moments in the inderminate parts of the 
structure up to their fully plastic values. 

However, partial collapse mechanisms often occur in practice, and their 
moment check procedures are more tedious. The procedures of making a 
moment check for a detertminate or indeterminate structure at collapse are 
briefly described in the following. 

5.4.1 Determinate Structures 
If the structure at collapse is determinate, simple statics or the virtual work 
equation can be used to determine the moments in all parts of the structure. 
The moment checks by simple statics and the virtual work equation are 
illustrated in Examples 5.4.1 and 5.4.2. 

5.4.2 Indeterminate Structures 
If the structure at collapse is indeterminate, both the simple statics and the 
virtual work equation can be used for the moment check. The virtual work 
equation can be used to express all unknown moments in terms of redundant 
moments in the redundant portions of the collapsing structure. The resulting 
moment diagram, which is in equilibrium with the applied loads, permits us 
to check the plastic moment condition. 

5.4.3 Illustrative Examples 
Example 5.4.1. Make a moment check for the right-hand beam mechanism 
[Fig. 5.2(b)] of the unsymmetrical two-span continuous beam of Eexample 
5.3.2 using (a) simple statics and (b) virtual work equation. 
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Solution: 
(a) Simple statics: For the right-hand beam mechanism, plastic hinges form 

at C, D, and E. The moments at these three locations are equal to the 
plastic moment capacity of the sections at these locations [Fig. 5.2(d)]. 
The moment at B is unknown and can be determined by considering the 
free body diagram of portion AC as shown in Fig. 5.2(c) from which the 
reaction RA is 

O.75P Mp 
RA =-2--Y 

Substituting P = P2 = 7.5 Mp/L from Eq. (5.3.8), we have 

RA = C·;5)C·~Mp) _ ~p = 1.8~Mp. 

Thus, the central unknown moment MB has the value 

1.81Mp L 
MB = -L-"2 = O.91Mp < Mp. 

(5.4.2) 

(5.4.3) 

(5.4.4) 

Since the moment is not greater than the plastic moment capacity Mp 
anywhere in the beam, P = 7.5Mp/L is the exact plastic collapse load. 

(b) Virtual work equation: The unknown moment MB is determined by 
equating the virtual work done by the applied load to the virtual internal 
work done by moments on the left-hand beam mechanism as the virtual 
displacements and rotations, using the usual sign convention for moment 
(MB = + MB, Me = - Mp) and rotations (OB = + 20, Oe = - 0) in the vir­
tual work equation 

or 

(0.75P)(~0) = (+MB)( +20) + (-Mp)( -0), 

which gives the unknown central moment at B as 

1 [0.75 ] MB =2 TPL-Mp . 

Substituting P = P2 = 7.5 Mp/L, we have the central moment 

= ![0.75 (7.5Mp)L - M ] = 0.91M MB 2 2 L p p 

MB < Mp, okay. 

(5.4.5) 

(5.4.6) 

(5.4.7) 

(5.4.8) 

Example 5.4.2. Make a moment check for the combined mechanism of the 
portal frame of Example 5.3.3 [Fig. 5.3(d)] using (a) simple statics and (b) the 
virtual work equation. 
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Solution: 
(a) Simple statics: For the combined mechanism, plastic hinges form at C 

and D. Therefore moments at C and D are equal to the plastic moment 
capacity at these locations [Fig. 5.3(e)]. The moment at B is unknown 
and can be determined by first determining the horizontal reactions at A 
and E. The horizontal reaction at E is obtained from the free body dia­
gram of column DE as 

2Mp 
HE=y. (5.4.9) 

It follows that the horizontal reaction at A is 

P 2Mp 
HA = "2 - y. (5.4.10) 

Substituting P = P3 = (16/3HMp/L) from Eq. (5.3.14), we have 

H _ 16Mp 1 2Mp _ 2 Mp (5411) A-3L2-y-3Y· .. 

Thus, the unknown beam end moment at B has the value 

L 2MpL Mp 
MB=HA-=---=-2 3L 2 3· 

The resulting moment diagram for the frame is shown in Fig. 5.3(e). Since 
the moment is less than Mp everywhere in the frame, P = 16Mp/3L is the 
exact collapse load of the frame. 

(b) Virtual work equation: The unknown moment MB can be determined 
directly by equating the virtual work done by the applied loads on the 
beam mechanism and the internal virtual work done by the moments at 
the collapse load P = P3 (mechanism 3) on the beam mechanism, in the 
usual sign convention for moments (MB = +MB, Me = +Mp, MD = 
- M p) and rotations (OB = - 0, Oe = + 20, OD = - 0): 

P(L\) = MBOB + MeOe + MDOD (5.4.12) 
or 

p(O~) = (+MBH -0) + (+MpH +20) + (-MpH -0), (5.4.13) 

which gives 

(5.4.14) 

Substituing P = P3 = 16Mp/3L, we have the unknown beam end mo­
ment atB as 

(5.4.15) 
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A 
r c r E r G 

B 7A 0 A F ~ 
I- 2L -I- L - I- 1.5L 

·1 

(a) Beam 

(b) Mechanism 

G 

F t p Mp 
(2- 1.5L) 

(c) Free Bodies 

(d) Moment check 

FIGURE 5.4. Moment check by the trial-and-error method (Example 5.4.3): (a) beam, 
(b) mechanism, (c) free bodies, and (d) moment check. 
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Example 5.4.3. A three-span continuous beam has a uniform section with 
plastic moment capacity M p and is subjected to concentrated loads in each 
span as shown in Fig. 5.4(a). The lowest upper bound is found to be P = 
3Mp/L from the mechanism shown in Fig. 5.4(b). Make a moment check. 

Solution: 
(a) Simple statics: The degree of indeterminacy at the plastic collapse load is 

I = X - (M - 1) = 2 - (2 - 1) = 1. (5.4.16) 

The moments at D, E, and F are unknown. Try the redundant moment 
at E to be -Mp- Then the values of MD and MF can be determined by 
considering the free body diagrams of segments CE and EG in Fig. 5.4(c). 
From the free body CE, the unknown central moment MD can be found 
as 

MD = PL _ M = ~(3Mp) _ M = _ Mp 
4 p 4 L p 4· (5.4.17) 

Similarly, from the free body EG, the unknown central moment MF can 
be found as 

= (~_ Mp )(0 75 ) = (3Mp) (0.75L) _ Mp (0 75L) = ~M . 
MF 2 1.5L . L L 2 1.5L· 8 p 

(5.4.18) 

The resulting moment diagram is shown by the dashed line in Fig. 
5.4(d). Since M ::;; Mp throughout the beam, the limit load P = 3Mp/L is 
the exact solution. Note that the plastic moment check does not require 
the redundant moment ME be determined by an elastic analysis. It only 
requires to show that there exists a value of ME such that it is in equilib­
rium with the applied loads and the resulting moment diagram does not 
violate the moment condition. Also, note that a more efficient use of 
material will result if the design is revised to supply only the required 
plastic moment for other noncollapsing spans. 

(b) Virtual work equation: Assume the moment at E is the redundant (Fig. 
5.5). Now, by the virtual work equation, the unknown moments at D and 
F can be expressed in terms of the plastic moment Mp and the redundant 
moment ME. 

The moment at D is determined by applying the virtual work equation 
to the equilibrium and geometry sets shown in Figs. 5.5(b) and (c): 

(-Mp)(-O) + (+MD )(+20) + (+ME)(-O) = e~p)(~o). (5.4.19) 

which gives the central moment for the left-hand beam as 

1 1 
MD = 4Mp + "2 ME· (5.4.20) 
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(a) Beam 

3Mp 
Pc =-
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(c) Geometry set A 
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~~-----i#~ 

-8 
(d) Geometry set /\~-------7AT~---~~k::::-------=-

for MF ~ 1J;;I;;. ~ U 

FIGURE 5.5. Moment check by the virtual work equation for an indeterminate struc­
ture after a partial collapse (Example 5.4.3): (a) beam, Pc = 3Mp /L; (b) moment dia­
gram, ME = redundant; (c) geometry set for MD; and (d) geometry set for MF• 

Similarly, the moment at F is determined by applying virtual work equa­
tion to the equilibrium and geometry sets shown in Figs. 5.5(b) and (d): 

( 3M ) (1.5L ) (+ME )(-0)+(+MF )(+20)= L P -2- 0 , (5.4.21) 

which gives the central moment for the right-hand beam as 

9Mp 1 
MF = -8- + 2ME' (5.4.22) 

The condition that the absolute values of the moments at D, E, and F be 
less than M p leads to 

1 1 
-M <-M +-ME<M P-4 p 2 - p 

(5.4.23) 

(5.4.24) 

(5.4.25) 

These inequalities can be expressed as 
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5 3 
-"iMp::;; ME::;; "iMp (5.4.26) 

-Mp::;; ME ::;; Mp (5.4.27) 

17 1 -4Mp ::;; ME::;; -4Mp. (5.4.28) 

Inequalities (5.4.26) to (5.4.28) are equivalent to 

1 
-Mp::;; ME::;; -4Mp, (5.4.29) 

which indicates that there exists an ME value in the range given by Eq. 
(5.4.29) corresponding to which the absolute values of the moments at D 
and F are less than Mp so that the moment check is complete. 

5.5 Design of Rectangular Portal Frame 

The axial force in columns will reduce the moment-carrying capacity of the 
columns as described in Section 4.6. Herein, we shall apply the work method 
for the design of rectangular frames and consider the column buckling effects 
of axial load in the plastic design of these frames using the LRFD interaction 
equations presented in Section 4.6. 

Example 5.5.1. A rectangular portal frame is subjected to factored vertical 
loads as shown in Fig. 5.6. Find the required M p , show the collapse mecha­
nism, and perform a moment check. Select an A36 W section for the columns 

60 kips 

Br-------------~--~~~----~----------~E 

15 ft 

A 

10 ft 10 ft 10ft 
~I 

FIGURE 5.6. Design of rectangular portal frame with two concentrated loads (Example 
5.5.1). 
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B 

28 

38 
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Mp 

E 
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10 
A~------------~4-------------~~--~~----~~F 

10ft 10 

FIGURE 5.7. Collapse mechanism for the frame in Figure 5.6. 

and check the effects of axial load using the LRFD interaction equations for 
columns AB and EF. Assume Bl = B2 = 1, and Kx = Ky = 1 for both columns. 

Solution: Consider the beam mechanism shown in Fig. 5.7. By equating the 
external work due to applied loads to the internal energy dissipation, we have 
the work equation for the beam mechanism as 

which gives 

Mp = 244 kip-ft. 

Next, we perform a moment check. For the mechanism under consideration, 
the hinges are formed at B, C, and E. So the moments at B, C, and E are 
known to be -Mp, +2Mp, and -Mp, respectively. The moment at A will be 
determined by applying the virtual work equation to equilibrium and geo­
metric sets chosen as shown in Fig. 5.8(a) as 

80(0) + 60(0) = ( + MA )( - e) + ( - Mp)( + e) + ( - Mp)( - e) + (O)(e), 

which gives the unknown fixed-end moment at A as 

MA = 0 < Mp , okay. 

The equation for the moment at D is obtained by applying the virtual work 
equation to equilibrium and geometry sets selected as shown in Fig. 5.8(b) as 

(80)(0) + (60)(10e) = (+2Mp)(-e) + M D(+2e) + (-Mp)(-e), 
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Geometry set 
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60 kips 

I 
-Mp -() -() 

+2() 

Equilibrium set Geometry set 

(b) For Mo 

FIGURE 5.8. Moment check for the collapse mechanism in Figure 5.7: (a) for MA and 
(b) for MD' 

which gives the unknown beam moment at D as 

MD = ~(600 + Mp) = ~(600 + 244) = 422 kip-ft < 2Mp = 488, okay. 

Design of Columns: Since columns AB and EF are subjected to combined 
bending and axial compression as shown in Fig. 5.9, we shall design the 
columns for an equivalent moment 

d 
Meq = Mx + p.l' 

Assume depth of section d = 18 in. and obtain 

Meq = 244 + (73.3) (1~:(2) = 299 kip-ft 

. d Z - Meq _ (299)(12) - 111' 3 
reqmre x - tPbFy - (0.9)(36) - m. 

Try W18 x 55, which has the values 

A = 16.2 in. 2 

Zx = 112 in. 3 
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66.7 kips 73.3 kips 

'"f' Mp =244 kip-ft 

B 

rf' Mp =244 kip-ft 

E 

15' 15' 

~o 
73.3 kips 

o(f; 
66.7kips 

FIGURE 5.9. Forces in columns AB and EF in Figure 5.6. 

rx = 7.41 in., ry = 1.67 in. 

A. = (0.9)(112)(36) = 302 k' -f 
.""Mp 12 lp t. 

Check Strength of Column AB: The values of slenderness parameters Au and 
Aey are calculated as 

A = KL fF, = (1)(15)(12) J 36 = 0.272 
ex rx7n/E (7.41)n 29,000 

Aey = KL fF, = (1)(15)(12) J 36 = 1.209. 
ry V E 1.67n 29,000 

The buckling about the weak axis controls. So ..I.e = Aey = 1.209 < 1.5; thus 
the axial capacity of the column is calculated from 

Pn = 0.658),:Py = 0.658(1.209)2(36)(16.2) = 316.3 kips. 

Now, we have an axial load ratio equal to 

P 73.3 
(/JcPn - (0.85)(316.3) = 0.273 > 0.2. 

So we shall use the following interaction equation to check the capacity of 
the member 

or 

0.273 + (~) G~) = 0.991 < 1.0, okay. 
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Since the axial load in column EF is smaller than that in column AB, 
W18 x 55 is also sufficient for column EF. So use W18 x 55. 

5.6 Calculation of Geometrical Relations 

The calculations of displacements in the direction of applied loads and rota­
tions at the plastic hinge locations are simple for beams, but they may be­
come somewhat tedious for complex frames. In such cases, the rigid-body 
motion of a failure mechanism may be found easily by the methods known at 
the instantaneous center and the virtual work equation [1.8, 5.1]. These two 
methods will be described and illustrated in the forthcoming. 

5.6.1 Instantaneous Center 
Consider first the application of the instantaneous center method to the com­
bined mechanism (mechanism 3) of Fig. 5.3(d) or Fig. 5.10. As the frame 
moves sideways, segment A-B-C rotates as a rigid body around the base 
at A. Member D-E rotates about point E. The center of rotation of C-D 
is yet unknown and is to be determined by considering the movement of the 
ends of the segment. 

Point D is constrained to move perpendicular to line DE. Thus, its center 
of rotation as part of segment CD must be somewhere along line E-D 
extended. Point C rotates about A, since it is a part of segment A-B-C. 
Therefore, it must move normal to line A-C and its center of rotation as 
part of C-D must lie along A-C extended. The intersection point I satisfies 
both conditions and therefore segment C-D must rotate about point I which 
is called the instantaneous center of rotation of segment C-D. Once the instan­
taneous centers for all rigid parts are found, we can determine the relevant 
displacements and angles of rotation between the connected rigid parts in the 
following manner. 

The mechanism angles at the plastic hinges of Fig. 5.10 are determined as 
follows. Since the mechanism movement is infinitely small, lines AC'I and 
ED'I are tantamount to the straight lines ACI and EDI drawn through the 
hinge points of the undeformed frame. The infinitely small displacement CC' 
can be assumed as linear and perpendicular to ACI, and hence a common 
tangent to arcs of circles having points A and I for centers. Likewise, the 
displacement DD' had both points E and I as centers of rotation. If the 
rotation angle at column base E is e, then the horizontal motion of point D 
is equal to e(Lj2). Since ABC and CDI are similar triangles and DE = DI, it 
follows that the rotation of C-D about I is e(Lj2)j(Lj2) = e. Since the lengths 
A-C and C-I are equal, the rotation at A is equal to rotation at I, which is 
equal to e. The total rotation at D is equal to 2e, the sum of rotations for 
parts ED and CD. Similarly, the total rotation at C is also equal to 2e, the 
sum of rotations for parts A-B-C and C-D. 

The vertical movement at point C is determined by considering the rota­
tion of segment A-B-C about A. Since A-B-C is a rigid body, the angle at B 
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FIGURE 5.10. Instantaneous center for a sway mechanism. 

L/2 

L/2 

remains a right angle and the rotation of B-C with respect to the horizontal 
is equal to e. The vertical motion of point C is therefore eL/2. 

Further applications of the instantaneous center method to gable frames 
are given in Example 5.6.1. 

5.6.2 Virtual Work Equation 
The caculations of geometrical relations of a mechanism can also be made 
easily by the use of the virtual work equation. This is illustrated in the follow­
ing. Consider the gable frame shown in Fig. 5.11(a). The deflected shape is 
shown by the dashed line in the figure. It is clear that the mechanism has two 
degrees of freedom and hence two independent angles of rotation, ifJAB and 
ifJDE' All other angles (ifJBC and ifJCD) can be expressed in terms of ifJAB and ifJDE' 

ifJBC will be computed first. Figure 5.11(b) shows an equilibrium system of 
external forces and moments applied to the mechanism. The equilibrium 
system is obtained in the following way. Bar CD is assumed to be under axial 
load with vertical component equal to r2 and horizontal component equal to 
n (i.e., proportional to the slope of bar CD). It produces vertical reactions r2 

and horizontal reactions n at the two supports. The moment equilibrium is 
then established at the remaining joints of the mechanism. They are equal to 
nhl' (nrl + mr2) and nh2 at joints A, B, and E, respectively. 

If the equilibrium system shown in Fig. 5.11(b) undergoes the displace­
ments shown in Fig. 5.11 (a), then the virtual work equation gives 

nhl ifJAB + (nrl + mr2)ifJBc - nh2ifJDE = O. (5.6.1) 
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FIGURE 5.11. Calculation of geometric re­
lations by the virtual work equation: (a) r, 
mechanism, (b) member CD axially load- r2 

ed, and (c) member BC axially loaded. 

(a) Mechanism 

(b) Member CD Axially loaded 

m n 

(c) Member BC axially loaded 

The rotation of bar BC can then be expressed as 

rPBC = n(h2rPDE - hl rPAB). 
mr2 + nr1 

(5.6.2) 

Similarly, bar BC can be assumed to act as an axially loaded member. 
Figure 5.11(c) summarizes the resulting equilibrium system. The virtual work 
equation for the equilibrium system in (c) doing work on the mechanism in 
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(a) then yields 

(5.6.3) 

The rotation of bar CD can then be expressed as 

(5.6.4) 

The virtual work equation will be applied later to a shed-like gable frame 
in Example 5.6.2 to show its power and simplicity in obtaining the needed 
relationship for plastic analysis. 

5.6.3 Illustrative Examples 
Example 5.6.1. A Regular Gable Frame: A gable frame is subjected to hori­
zontal and vertical loads as shown in Fig. 5.12. Determine the displacements 
in the direction of loads and rotations at the plastic hinge locations corre­
sponding to the mechanism shown. Also determine the upper bound load P 
corresponding to this mechanism. 

Solution: Denote the small rotation of member F - G about point G by 8. 
Segment A - B - C rotates as a rigid body about point A by an unknown 
angle. To find the instantaneous center I of segment C - D - F, we need to 
find the common point about which both ends rotate. Point F is constrained 
to move normal to line G - F and will have its center along line G - F 
extended. Similarly, the center of C will move along A - C extended. Thus 
point I is the intersection of G - F extended and A - C extended. 

By geometry, the length I - G is equal to 5L. F - I is therefore equal to 
4L. Since the horizontal displacement of point F is 8L, the rotation at I is 
8(G - FjF - I) = 8j4. By similar triangles, the ratio C - I to A - Cis 3: 1. 
Thus, the rotation at A is (8j4)(3jl) = (3j4)8. 

Mechanism angles and displacements in the direction of load may now be 
computed. The rotation at F is the sum of rotations of FG and FDC, i.e., 
(8 + 8j4) = (5j4)8. The rotation at C is the sum of rotations of CDF and 
ABC, i.e., (Oj4 + 3j40) = O. The displacements of horizontal load, left vertical 
load, and right vertical load are, respectively, A1 = (38j4)(L), A2 = (Oj4)(3L), 
A3 = (Oj4)(L). 

The correctness of A2 and A3 may be checked by working out the geometry 
of similar triangles ICF in Fig. 5.12(a) and the one shown in Fig. 5.12(b). The 
vertical component of the mechanism motion of point C is equal to the 
rotation about instantaneous center I times the distance to that center mea­
sured normal to the line of action. 

The collapse load for this mechanism is determined from the work equa­
tion [Fig. 5.12(a)] 

PAl + (2P)A 2 + (2P)A 3 = MpOc + MpOF 
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FIGURE 5.12. Instantaneous center for a gable frame mechanism (Example 5.6.1): (a) 
frame and (b) geometrical relationship. 
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or 

( 30L) (30L) (OL) (5 ) P 4 + 2P 4 + 2P 4 = Mp((J) + Mp 40 , (5.6.5) 

which gives an upper-bound solution corresponding to the side-sway mecha­
nism assumed in Fig. 5.12: 

9M pu =_--...!'. 
11 L . (5.6.6) 

Example 5.6.2. A Shed Gable Frame: A shed-type gable frame with four hinges 
is subjected to displacement as shown in Fig. 5.13(a). Using the virtual work 
equation, determine the total rotations at the hinge locations in the frame. 

Solution: First, we shall determine the hinge rotation at D. Assume that BC 
(shaded triangle) is an axially loaded compression member with vertical com­
ponent Lj2 and horizontal component 2L [Fig. 5.13(b)]. The resulting equi­
librium system is shown in Fig. 5.13(b). If this equilibrium system undergoes 
the displacement shown in Fig. 5.13(a), the virtual work equation gives the 
relationship between the two rotational angles 0 and 01 as 

(5.6.7) 

which furnishes 

(5.6.8) 

For determining the rotation of member BC, assume that CD is an axially 
loaded compression member with vertical component - 1 and horizontal 
component zero. The resulting equilibrium system is shown in Fig. 5.13(c). 
When this equilibrium system is subjected to the displacements shown in 
Fig. 5.13(a), the virtual work equation leads to 

LO - 2L02 = 0, (5.6.9) 

which expresses the rotational angle O2 of member BC in terms of the rota­
tional angle of member AB as 

(J2 = (lj2)(). (5.6.10) 

The total hinge rotation at B is equal to the sum of rotations of AB and BC, 
i.e., [0 + (Oj2)] = (3j2)(). Similarly, the total rotation at Cis (01 + (2 ) = 20. 

5.7 Gable Frames 

The gable frames involve more complicated geometry than that of rectangu­
lar frames. Herein, we shall solve two gable frames by the work method. 

Example 5.7.1. Analysis of a Gable Frame Subject to Concentrated Loads: 
The frame shown in Fig. 5.14 is composed of members with a full plastic 
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FIGURE 5.14. Gable frame subjected to concentrated loads (Example 5.7.1). 

moment capacity of 270 kip-ft and has fixed feet and full-strength joints. The 
concentrated loads are as shown. Plot a graph (interaction diagram) from 
which positive values of V and H just causing collapse can be read. 

Solution: To plot the interaction diagram, we will evaluate the strength ofthe 
frame against three basic modes of collapse. 

1. Mechanism with Hinges at A, C, D, and E: The motion of this side-sway 
mechanism is shown in Fig. 5.15. The instantaneous center 0 for Member CD 
is located at the intersection of AC and ED extended. It is convenient to 
express the motion of the mechanism in terms of rotation (J of member CD 
about the instantaneous center O. 

From similar triangles ACCl and OCC2 , we have 

OC2 ClA 
CC2 -Cl C' 

which gives 

OC2 = C l A CC2 = (22.5)(9) = 11.25 ft. 
ClC 18 
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FIGURE 5.15. A mechanism with hinges at joints A, C, D, and E. 

From triangles ACC' and CC'O, we have 

(Ac)(<6) = (OC)(O), 

which leads to the relationship between the angles <6 and 0 as 

<6 = oc 0 = CC20 = ~O = ~ 
AC CtC 18 2· 

11.25 ft 

9 

13.5 

Similarly, from triangles ODD' and EDD', the rotation at E is given by 

(DE)(I/I) = O(OD), 

which expresses the angle 1/1 in terms of the angle 0 as 

OD 
1/1 = 0 DE = 1.50. 

From the known hinge rotations and displacements of loads, the work equa-
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FIGURE 5.16. A mechanism with hinges at joints B, C, D, and E. 

tion for this side-sway mechanism can be written as 

V(90) + H(13.5t/1) = Mp[1ft + (1ft + 0) + (0 + t/I) + t/I]. 

Substituting values of t/I and 1ft and simplifying, we obtain 

v + 2.25H = 180. (5.7.1) 

2. Mechanism with Hinges at B, C, D, and E: Figure 5.16 shows the motion 
corresponding to this side-sway mechanism with no sway in the left-hand 
column AB. Again, we express all plastic hinge rotations and displacements 
at load points in terms of the rotation 0 of member CD about the instanta­
neous center O. 

From similar triangles BCCl and CC20, we have 

OC2 BCl 

CC2 - ClC' 

which gives 
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From triangles BCC' and CC'O, we have 

(BC)(<p) = (OC)(O), 

Which expresses <p in terms of 0 as 

<p = OC (0) = OC20 = 4.5 0 = ~. 
BC BCl 9 2 

Similarly, from triangles ODD' and EDD', we have 

(DE)(I/I) = (OD)(O), 

which shows that 

Now the work equation for this mechanism can be written as (Fig. 5.16) 

V(90) + H(13.51/1) = Mp[<p + (<p + 0) + (0 + 1/1) + I/IJ. 
Substituting values of 1/1 and <p and simplifying, we obtain 

V + 1.5H = 150. (5.7.2) 

3. Mechanism with Hinges at A, B, D, and E: The hinge rotations and dis­
placements corresponding to this simple side-sway mechanism are shown in 
Fig. 5.17. The rotation of all hinges is O. The horizontal load moves by 13.50 

c 

9 ft 

13.5 

FIGURE 5.17. A mechanism with hinges at joints A, B, D, and E. 
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200 
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V 120 

(kips) 

so V+l.5H=150 

40 

V+2.25H=lS0 H=SO kips 

20 40 60 so 100 

H (kips) 

FIGURE 5.18. Interaction diagram for load-carrying capacity of the gable frame in 
Figure 5.14. 

but the vertical load has no vertical movement. The work equation thus has 
the simple form 

H(13.50) = Mp(O + 0 + 0 + 0) 

or 

H = 80 kips. (5.7.3) 

The interaction equations corresponding to these three mechanisms are 
plotted in Fig. 5.18. The positive values of V and H, which just cause collapse 
of the frame, may be read from the solid shaded line. 

By carrying out a moment check for these three side-sway mechanisms, it 
can be shown that mechanism I is valid for the portion AB of the interaction 
curve (H ~ 40, V ::;; 90), mechanism 2 is valid for the portion Be (H ::;; 40, 
V ~ 90), and mechanism 3 is valid only when V = 0. 
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w kips/ft 

I I 

B 

A E 

b b 

FIGURE 5.19. A gable frame subjected to distributed load with (1) fixed supports and 
(2) pinned supports (Example 5.7.2). 

Example 5.7.2. Design of a Gable Frame Subject to Uniformly Distributed 
Load: A gable frame shown in Fig. 5.19 has a uniform section and is to be 
designed by simple plastic theory to carry the uniformly distributed load w. 
Two designs are made, one for a frame with pinned feet and the other for 
fixed feet. Show that the ratio of full plastic moments for the two designs is 

[ 1 + J(1 + 2k)J2 
1 + J(l+k) 

Solution: The problem will be solved in three stages. We will first find the 
required plastic moment for the frame with fixed ends and then solve for the 
pinned-ended case. The ratio of the two plastic moments gives the desired 
form. 

(a) Plastic Moment for the Fixed-Ended Case: Consider the symmetric mech­
anism shown in Fig. 5.20(a). The plastic hinges are formed at A, B, Bl , Dl , D, 
and E. Due to symmetry, points Bl and Dl move vertically downward. The 
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(b-x) x x -,- .. I.. -I" (b-x) 

C1 c r--------------
01 B1 

1r :'-:"-.I3£ -------
(1-x/b)kh1 

0' 

A E 

(a) Rotation of hinges 

w 

~Bl ~o 
B ~_J ____ ~t_~ 

B1 01 

(b) Motion of the load 

FIGURE 5.20. A symmetric failure mechanism for the uniformly loaded gable frame in 
Figure 5.19: (a) rotation of hinges and (b) motion ofthe load. 

instantaneous center 0 1 of the segment BBl is at the intersection of AB 
extended and a horizontal line through Bl . Similarly, the instantaneous cen­
ter for the segment DID is at O2 • 

From the similar triangles CCl Band 0 1 B1 B, the instantaneous center 0 1 

can be located as 

BOl BCl 

BIOl = C1C' 

which gives 
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Then the length ClOl is obtained as 

Cl 01 = BC1 - B01 = khl - (kh l ) ( 1 -~) = ~khl. 
The angles ¢J and 0 can be related by considering the triangles ABB' and 
01 BB', which gives 

( 1 - ~)(khd 
¢J = OlB 0 = b (0) = (1 -~)kO. 

AB hI b 

In Fig. 5.20(b), the vertical displacement Bl BJ. is 

BlBJ. = DlDJ. = (b - x)O. 

The total internal work done at all hinge locations is 

~ = Mp[¢J + (¢J + 0) + 0](2). 

By expressing ¢J in terms of 0, we have 

The total external work done by the distributed load is [Fig. 5.20(b)] 

WE = ~W(b - x)B1BJ. + w(2x)B1BJ. + ~W(b - x)D1DJ.. 

Substituting Bl BJ. and Dl DJ., we have the total external work as 

WE = (b - x) [w(b - x) + w(2x)]O 

or 

(5.7.4) 

(5.7.5) 

Equating the total external work (5.7.5) to the total internal energy dissipa­
tion (5.7.4), we find the desired plastic moment capacity as 

w(b2 - x2)O w(b2 - x2)b 
Mp = [J . (5.7.6) (b - x)k + b 4[k(b - x) + b] 

4 b 0 

The value of Mp can be maximized by equating its derivative to zero, i.e., 

dMp 4[k(b - x) + b]( -2wbx) - wb(b2 - x2)( -4k) 
dx = {4[k(b - x) + b]}2 = 0, 
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which results in the condition for x: 

kx2 - 2b(k + l)x + kb2 = 0. 

Solving for x, we find 

or 

Since Xcr :::; b, Xcr has the value 

Substituting x = Xcr in Eq. (5.7.6), we obtain the maximum plastic moment as 

wb b2 - ~: [(k + 1) - .J2k+1]2 
M = - --;;------;-----------c----;:-

p 4 {k(b-~[(k+1)-.J2k+1])+b} 
(5.7.7) 

and a proper simplification leads to the required plastic moment capacity for 
the frame with fixed ends as 

(5.7.8) 

(b) Plastic Moment for the Pinned-Ended Case: Consider the same mecha­
nism as that of the fixed-ended case. The total internal work ~ for the 
pinned-ended case is 

~ = Mp[(~ + e) + e](2). 

Substituting the value of ~ in terms of e, we have 

~ = 2Mp [( 1 - ~) k + 2] e. (5.7.9) 

The total external work is still the same as that for the fixed-ended case 
[Eq. (5.7.5)]. By equating the internal and external work, Mp can be ex­
pressed in the simple form as 

wb(b2 - X2)(} 

Mp = 2[k(b - x) + 2b]e 
(5.7.10) 

Again, setting the derivative of Mp to zero, we obtain the condition for the 
critical locations for the plastic hinges Bl and D1, as shown in Fig. 5.20, 
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as 

_dM_p = 0 = 2[kb - kx + 2b]wb( -2x) - wb(b2 - X2)( -2k) 
dx ~-------4~[~k(=b~--x~)~+-2=b=]2~--~---

or 

kx2 - 2b(k + 2)x + kb2 = O. 

Solving for x, we find 

or 

b 
Xcr = k [(k + 2) - 2 Jk+1]. (5.7.11) 

Substituting Xcr so obtained in Eq. (5.7.10), we have the desired plastic mo­
ment capacity as 

Simplifying, the required plastic moment capacity Mp for the frame with 
pinned ends reduces to 

M = Wb2[-4k - 4 + 4(k + 2)Jk+1- 4k - 4J 
p 2k2 2Jk+1 

or 

(5.7.12) 

(c) Ratio of the Two Plastic Moments (a): 

wb2 

a = Mp,pinned = k2 [(k + 2) - 2 Jk+1] = 2[(k + 2) - 2 Jk+1] 

Mp,fixed ;:: [(k + 1) _ J2k+1] [(k + 1) - J2k+1] 

or the ratio of the two plastic moments can be written in the simple 
form: 

a = [1 + J1+2kJ2. 
1 +.jl+k 

(5.7.13) 
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5.8 The Combination of Mechanisms 

The basic concept underlying the method of combining mechanisms is that 
for a given frame and loading, every possible collapse mechanism can be ob­
tained as some combination of a certain number of independent mechanisms. 
Once these independent mechanisms have been identified, a work equation is 
written for each combination and the corresponding collapse load is deter­
mined. The lowest load among those obtained by considering all the possible 
combinations of the independent mechanisms is the correct plastic limit or 
collapse load. The final confirmation of the validity of the best combination 
is made by performing a moment check, which may also indicate further 
adjustments that need to be made. 

5.8.1 Number of Independent Mechanisms 

If the number of independent mechanisms is known in advance, then the 
combination could be made in a systematic manner and there would be less 
likelihood of overlooking a possible combination. The number of possible 
independent mechanisms n for a frame can be determined from ' 

n=N-R (5.8.1) 

~ 
® 
IH R 2 

/ 
Cut section 

~ 

® CD 
R = 12 

CD CD 

FIGURE 5.21. Determination ofthe number ofredundants. 
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where N is the number of critical sections at which plastic hinges might form 
under the particular loading system and R is the degree of redundancy of the 
structure. 

For a frame under concentrated loads, the critical sections will occur at 
loading points and joints. In order to determine the number of redundants R 
for a frame, it is necessary to cut sufficient supports and structural members 
such that all loads are carried out by simple beam or cantilever action. The 
number of redundants is then equal to the number of forces and moments 
required to restore continuity. Figure 5.21 shows two examples. The cuts 
made in each of the structures reduce them to either cantilevers or simply 
supported elements. The fixed-ended beam requires a shear force and a mo­
ment to restore continuity at the cut section, and thus R = 2. In the two-story 
structure, an axial force, a shear force, and a moment are required for conti­
nuity at each cut section, and thus R = 12. 

5.8.2 Types of Mechanism 
For convenience of reference to different modes of failure, the following types 
of mechanisms are shown in Fig. 5.22, using the structure shown in part (a) 
of this figure. 

(a) Beam mechanism: For possible beam mechanisms for the structure in 
Fig. 5.22(a) are shown in Fig. 5.22(b). 

(b) Panel mechanism: The motion of the mechanism is due to side-sway as 
shown in Fig. 5.22(c). 

(c) Gable mechanism: This mechanism involves spreading of column tops 
with respect to bases as shown in Fig. 5.22(d). 

(d) Joint mechanism: This mechanism, shown in Fig. 5.22(e), forms at the 
junction of three or more members and represents motion under the 
action of an applied moment. 

(e) Combined mechanism: The combined mechanism may be a partial col­
lapse mechanism as shown in Fig. 5.22(f) or it may be a complete collapse 
mechanism as shown in Fig. 5.22(g). In the partical collapse mechanism, 
the frame at failure is still indeterminate in the noncollapsing portion, 
while in the collapsing portion, it becomes determinate. 

5.8.3 Method of Combination 
The basic principle of combination is to see whether the independent mecha­
nisms can be combined to form a mechanism that gives an even lower value 
of collapse load. To this end, the combinations are selected in such a way that 
the external work becomes a maximum and the internal work becomes a 
minimum [1.8, 2.3]. In this way, the lowest possible load can be obtained. 
Thus, the procedure in the combination is generally to involve mechanism 
motion by as many applied loads as possible and in the meantime to elimi-
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(a) 

~ 
Beam mechanisms 

(b) rb=1 ~ 
-t 

(c) D Panel mechanism 

(d) Gable mechanism 

(e) Joint mechanism 

(f) Partial mechanism 

(g) Complete mechanism 

FIGURE 5.22. Types of mechanisms. 

Independent 
mechanisms 

Combined 
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nate as many hinges as possible. The method will be explained here with 
reference to simple rectangular portal frame problems. The analysis and de­
sign of multistory and multibay frames subjected to concentrated loads will 
be presented in the next section. The illustration of a technique for dealing 
with cases in which the members are subjected to uniformly distributed loads 
is then followed. 

Example 5.8.1. A pinned-Ended Portal Frame: Determine the plastic limit 
load for the pinned-ended frame in Fig. 5.3 by combining the beam and panel 
mechanisms. 

Solution: For the frame in Example 5.3.3, the beam and the panel mechanisms 
[Fig. 5.3(b) and (c)] have a common hinge at B. Since the rotation at B in the 
beam mechanism is opposite that in the panel mechanism, the addition of 
these two mechanisms will lead to a cancellation of the hinge at B. Thus, the 
plastic limit load of the frame can be determined as follows. 

Beam mechanism gives [Fig. 5.3(b)]: 

PL 
TO = 4Mp O. 

Panel mechanism gives [Fig. 5.3(c)] 

PL TO = 2Mp O. 

The addition of Eqs. (5.8.2) and (5.8.3) gives: 

3 
4PLO = 6Mp O. 

(5.8.2) 

(5.8.3) 

(5.8.4) 

The cancellation of the hinge at B reduces the internal work by 2MiJ (MiJ 
from the beam mechanism and another MpO from the panel mechanism). 
Therefore, the work equation corresponding to the combined mechanism 
[Fig. 5.3(d)] can be obtained directly from Eq. (5.8.4) by simply reducing 
2MiJ from the right-hand side of this equation 

which gives 

P = 16 Mp 
3 L' 

(5.8.5) 

(5.8.6) 

This leads to the same answer as that obtained in Example 5.3.3. The proce­
dure that was just described for deriving the work equation for the combined 
mechanism is a little shorter for this particular example than the direct 
derivation from considering the kinematics of the combined mechanism. 
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A E 

I- 20 ~I 
FIGURE 5.23. Fixed-ended portal frame with uniform section (Example 5.8.2). 

However, for more complicated problems, this procedure will result in a 
considerable reduction of computational work. This can be seen clearly in 
the later examples when more complicated frames are analyzed and designed. 

Example 5.8.2. A fixed-Ended Portal Frame: A fixed-ended rectangular por­
tal frame has a uniform section with M p = 20 and carries the load as shown 
in Fig. 5.23. Determine the value of load factor;' at collapse. 

Solution: The frame has five critical sections (N = 5) and three redundancies 
(R = 3), so the number of independent mechanisms is two (n = 2), which will 
be taken here as those shown in Figs. 5.24(a) and (b). The two independent 
work equations are therefore 

panel mechanism [Fig. 5.24(a)]; 

201 = 4(20) = 80, ;. = 4 (5.8.7) 

and beam mechanism [Fig. 5.24(b)]: 

30;' = 4(20) = 80, ;. = 2.67. (5.8.8) 

Now the combination of the two independent mechanisms must be examined 
to see if it will give a value of ;. less than 2.67. It can be seen that only one 
combination of the two mechanisms is possible. This combined mechanism, 
shown in Fig. 5.24(c), involves the cancellation of the hinge at B. 

The calculations leading to the work equation for mode (c) can conve­
niently be laid out as 



FIGURE 5.24. Three possible 
mechanisms of collapse for 
the frame in Figure 5.23: (a) 
panel mechanism, (b) beam 
mechanism, and (c) com­
bined mechanism. 

(J 
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Panel mechanism: 
Beam mechanism: 

Addition: 
Cancel hinge at B: 

Combined mechanism: 

20A. = 4(20) 
30A. = 4(20) 

50A. = 8(20) 
-2(20) 

50A. = 6(20) = 120 
A. = 2.4. 

Note that the cancellation of hinges is the key to the method of combina­
tion of mechanisms. If two equations such as (5.8.7) and (5.8.8) are added 
without any reduction of the right-hand side, a value of A. will result that is 
between the two original values. Thus, the mechanisms cannot possibly be 
combined to give a smaller value of A. unless some terms on the right-hand 
side are cancelled. 

Example 5.8.3. A Portal Frame with Nonuniform Section: A pinned- and 
fixed-ended rectangular portal frame is subjected to loads as shown in Fig. 
5.25. Determine the load factor A. at collapse using the technique of com­
bining mechanisms. 

Solution: Critical sections at which plastic hinges might form are at loading 
points and joints. The five critical sections for the given frame are marked 
with crosses in Fig. 5.25 (N = 5). The frame has two redundancies (R = 2). So 
there are three independent mechanisms of collapse (n = 3). These may be 
taken as those shown in Fig. 5.26. The work equations corresponding to 

c 

40). 
--~. 00 

B 

A 

I· 

5 

10 

D 600 
E 

200 10 

F 

10 

FIGURE 5.25. Rectangular portal frame with nonuniform sections (Example 5.8.3). 



FIGURE 5.26. Three indepen­
dent mechanisms for the 
frame in Figure 5.25: (a) 
panel mechansm, (b) column 
mechanism, and (c) beam 
mechanism. 
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(a) Panel mechanism 

A. =3.0 

(b) Column mechanism 

A. =2.67 

(c) Beam mechanism 
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these three mechanisms are 

Panel mechanism, Fig. 5.26(a): 
(sides-way) 

Column mechanism, Fig. 5.26(b): 
(left-hand column) 

Beam mechanism, Fig. 5.26(c): 
(top beam) 

200,1 = 3(200) = 600 
,1=3 

200,1 = 3(200) = 600 
,1=3 

(5.8.9) 

(5.8.10) 

600,1 = 2(200) + 2(600) = 1,600 
A. = 2.67. (5.8.11) 

Examination of the three independent mechanisms shows that there are 
only two critical sections (at the top of each column) at which hinges occur 
in more than one of the mechanisms. For example, the hinge at the right­
hand column foot occurs only in Fig. 5.26(a), and hence cannot be cancelled 
by combination with any other mechanisms. Only the two hinges at the top 
of the columns can be eliminated in this way. The hinge at the top of the 
right-hand column could be eliminated by subtracting the mechanisms of 
Fig. 5.26(a) and (c). But this would lead to unreasonable mechanisms of the 
type shown in Fig. 5.27: Fig. 5.27(a) = Fig. 5.26(a) - Fig. 5.26(c), and Fig. 
5.27(b) = Fig. 5.26(c) - Fig. 5.26(a). 

(a) (b) 

FIGURE 5.27. Unreasonable combined mechanisms from independent mechanisms in 
Figure 5.26. 

28 

cancel hinge: ·2(200)( 8) 

)" 
(a) A ~ 2.25 (b) A ~ 2.0 

FIGURE 5.28. Reasonable combined mechanisms from independent mechanisms in 
Figure 5.26. 
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It seems likely therefore that the only hinge that can possibly be cancelled 
by any combination of mechanisms is at the top of the left-hand column. The 
positive rotation ( + (J) at this location of Fig. 5.26(a) can be cancelled either 
with negative rotation at the same location of Fig. 5.26(c) or with that of 
Fig. 5.26(b). The two possible combined mechanisms are: Fig. 5.28(a) = 
Fig. 5.26(a) + Fig. 5.26(c) and Fig. 5.28(b) = Fig. 5.26(a) + Fig. 5.26(b). The 
calculations leading to work equations for these two modes are laid out in 
the following: 

First Case, Fig. 5.28(a): 

Panel mechanism, Fig. 5.26(a): 
(side-sway) 
Beam mechanism, Fig. 5.26(c): 
(top beam) 

Addition: 
Cancel hinge at C: 

Combined mechanism, Fig. 5.28(a): 

Second Case, Fig. 5.28(b): 

Panel mechanism, Fig. 5.26(a): 
(side-sway) 
Column mechanism, Fig. 5.26(b): 
(left-hand column) 

Addition: 
Cancel hinge at B: 

Combined mechanism, Fig. 5.28(b): 

2ooA. = 600 

6ooA. = 1600 

8ooA. = 2200 
-2(200) 

800A. = 1800 
A. = 2.25. 

200A. = 600 

2ooA.=6oo 

400A. = 1200 
-2(200) 

4OOA.=800 
A. = 2. 

By performing a moment check (or a statical analysis) of the combined 
mechanism of Fig. 5.28(b), which has a lower load factor than that of Fig. 
5.28(a), we can show that the moment condition is satisfied everywhere in the 
structure. Thus, A. = 2 is the correct answer. 

5.9 Multi-Story and Multi-Bay Frames 

The basic technique ofthe method for combining mechanisms was illustrated 
in the preceding section with reference to a simple one-story and one-bay 
frame. In this section, we will show its applications to multistory and multi­
bay frames with concentrated loads. The analysis of a portal frame to illus-
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trate a technique for dealing with distributed loads will be given in the 
following section. Applications to more complicated frames such as two-bay 
pitched-roof portal frames with distributed loads, among other types, will be 
described in Section. 5.11. 

5.9.1 A Two-Story and One-Bay Rectangular Frame 

Example 5.9.1. The two-story rectangular frame shown in Fig. 5.29 has a 
uniform cross section with a full plastic moment capacity of 200 units. Deter­
mine the load factor A at collapse. 

Solution: The first step is to decide on the correct number of independent 
mechanisms. The frame has 6 redundancies and 12 critical sections (marked 
with crosses in Fig. 5.29). So the number of independent mechanisms is given 
by the following calculations. 

20A. C E 
• r--------------------------------------

10 

30A. 

• 
~--------------------------------------18 F 
I 1 

10 

A H 

20 

FIGURE 5.29. Two-story and one-bay rectangular frame (Example 5.9.1). 
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Possible hinge locations: 
(crosses marked in Fig. 5.29) 
Number of redundanices: 
(two cuts, say, at sections D and F) 

Number of independent mechanisms: 
Joint mechanisms at Band G: 

Number of true independent mechanisms: 

N = 12 

R=6 

n=6 
=2 

=4 

Note that if the two critical sections are taken at each end of the upper 
beam, then we will have 14 critical sections. However, two extra joint mecha­
nisms are introduced and the number of true independent mechanisms re­
mains four. The four true independent mechanisms are readily identified as 
shown in Fig. 5.30, consisting of two beam mechanisms and two sway (panel) 
mechanisms. These four mechanisms are independent, since none of them 
could be obtained by combining the other three in any way. 

Note that for a building frame of m bays and n stories, we will have mn 

beam mechanisms and n panel (sway) mechainsms. So the total number of 
true independent mechanisms will be n(m + 1). The work equations corre­
sponding to the independent mechanisms of Fig. 5.30 are as follows: 

Beam mechanism, (a): 
(top beam) 

Beam mechanism, (b): 
(bottom beam) 

Panel mechanism, (c): 
(top story) 

Panel mechanism, (d): 
(bottom story) 

30),(100) = Mp[O + 20 + OJ 
300), = 800, ). = 2.67 (5.9.1) 

40),(100) = Mp(O + 20 + 0) 
400), = 800, ). = 2.0 (5.9.2) 

20),(100) = Mp(O + 0 + 0 + 0) 
200), = 800, ). = 4 5.9.3) 

20),(100) + 30),(100) = Mp(O + 0 + 0 + 0) 
500), = 800, A = 1.6. (5.9.4.) 

These four work equations, together with the two joint mechanisms, pro­
vide the basic equations for obtaining the final solution. The order of combi­
nation of mechanisms is, to some extent, arbitrary, although it is common­
sense to start with those elementary mechanisms that give the lowest values 
orA.. 

Let us first combine two panel (side-sway) mechanisms (c) and (d). In the 
resulting mechanism [Fig. 5.31(e)], the clockwise joint rotation at B closes up 
the two hinges in the columns so that, on this account, 2Mp O can be sub­
tracted from the right-hand side of the work equations. However, a hinge 
discontinuity appears in the beam so that a single MpO term reappears in the 
equations. The net gain at the joint is therefore MpO which is numerically 
equal to 2000. The joint rotation mechanism may thus be regarded as mean­
ingless in itself but of significance when it is combined with other mecha­
nisms. To sum up, the total hinge discontinuity of 20 in columns at joint 
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-20A 

(J 

(J 

(a) A = 2.67 

(c) A =4.0 

(b) A =2.0 

- ,....--------, 
20A 

(d) A =1.6 

FIGURE 5.30. Four true independent mechanisms for the frame in Figure 5.29. 

10 

B is replaced by a discontinuity of () in beam BG after the joint rotation 
[Fig. S.31(e)]. The same reasoning applies to the joint at G. These calcula­
tions may be laid out as 

Panel mechanism, (c): 
(top story) 
Panel mechanism, (d): 
(bottom story) 

Addition: 
Joint rotation at Band G: 

200A=800 

500A = 800 

700A = 1600 
-2(200) 

Combined Mechanism, (e): 700A = 1200, A = 1.714. (5.9.5) 
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(e) = (e) + (d), }. =1.714 

.-------------~8 

8 

(f) = (e) + (b), }. = 1.455 (9) = (f) + (a), }. = 1.429 

FIGURE 5.31. Combined mechanisms from the independent mechanisms in Figure 
5.30. 

As already pointed out, no work equation can be written for the joint 
rotation mechanism. Without the joint rotations at Band G, the straightfor­
ward addition of the displacement and hinge rotations of mechanisms (c) and 
(d) would be pointless, for they have no common hinge whose rotation would 
be cancelled by the addition and thus reduce the internal work absorbed in 
the plastic hinges in the combined mechanism. 

This solution is worse than that given by the sway of the lower story 
alone, but it now opens up the possibility of adding in two beam mechanisms, 
with corresponding cancellation of hinges. The two stages are shown in Fig. 
5.31(f) and (g). In each case, the cancelled hinge at the left-hand end of the 
beam gives rise to a deduction of2M/J numerically equal to 4000. The calcu­
lations for the work equations corresponding to mechanisms (f) and (g) in 
Fig. 5.31 are laid out in the following: 
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Combined mechanism, (e): 
Beam mechanism, (b): 
(bottom beam) 

Addition: 
Cancel hinge at B: 

Combined mechanism, (f): 

Beam mechanism, (a): 
(top beam) 

Addition: 
Cancel hinge at C: 

Combined mechanism: (g): 

700A = 1200 
400A = 800 

1100A = 2000 
-400 

1l00A = 1600 
A = 1.455 

300A = 800 

1400A = 2400 
-400 

1400A = 2000 
A = 1.429. 

It seems that mechanism (g) is correct, since it gives the lowest value of the 
load factor. However, to be sure, we need to carry out a moment check for 
mechanism (g). 

Moment Check: Corresponding to mechanism (g), the degree of indetermi­
nacy can be calculated as 

Number of plastic hinges in the mechanism: 
Redundancy in the original frame: 
Redundancy at collapse: 

M=6 
X =6 
I = X - (M - 1) = 1. 

Assume that the moment at the lower end of column CB at B2 is the 
redundant (Fig. 5.29). 

Now by using equilibrium, the moments in the frame can be calculated in 
terms of plastic moment and the redundant moment at B2 • The moment at C 
is determined by applying the virtual work equation to the equilibrium and 
geometry sets shown in Fig. 5.32(a). For simplicity, all unknown moments 
are assumed to be positive in the following computations. The usual sign 
convention is adopted here for the bending moments. 

Top beam CE: 

Md - 0) + ( + 200)( + 20) + ( - 200)( - 0) = (1.429 x 30)(100), 

which gives 

Me = 600 - 428.7 = 171.3 < 200, okay. (5.9.6) 

Similarly, the beam end moment at B3 is determined by applying the 
virtual work equation to the equilibrium and geometry sets shown in 
Fig. 5.32(b). 
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C ~200 
Mct ____ 2_0_: ... 1Y -E 

Equilibrium set Equilibrium set 

~ -fl1'68"-0 ~ -0=;00-:0 
+20 +28 

Geometry set Geometry set 

(a) Top Beam (b) Bottom Beam 

MC =171.3rl----- -200 

I I 
I I 

~MB2 ~ 
G2 

Geometry set Equilibrium set 

(c) Top story 

r:~~~)" 
~ 

~I MG2 = MB2 ·85.5 

~- __ ~ G 

200 I 

~MGl 
MBl 

(d) Left-hand Joint (e) Right-hand Joint 

FIGURE 5.32. Moment check for mechanism (g) in Figure 5.31. 

Bottom beam BG: 

MB3 ( -(}) + (+200)( +2(}) + (-200)( -(}) = (1.429 x 40)(10(}), 

which gives 

MB3 = 600 - 571.6 = 28.4 < 200, okay. (5.9.7) 

The column end moment at G2 is determined by applying the virtual work 
equation to equilibrium and geometry sets of Fig. 5.32(c). 

Top story side-sway: 

(MB2 )( -(}) + (+ 171.3)( +(}) + (-200)( -(}) + (MG2 )( +(}) = (20A.)(10(}), 
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which gives 

MG2 = MB2 - 171.3 - 200 + 285.5 = MB2 - 85.5. (5.9.8) 

The column end monent at Bl is determined by considering the equilibrium 
of joint B in Fig. 5.32(d). 

Left-hand joint B: 

MBl = MB2 + 28.4. (5.9.9) 

The column end moment at Gl is determined by considering the equilibrium 
of joint G in Fig. 5.32(e). 

Right-hand joint G: 

MGl = MB2 - 285.5. (5.9.10) 

The complete bending moment diagram for the collapse mechanism in 
Fig. 5.31(g), expressed in terms of the redundant moment M B2 , is shown in 
Fig. 5.33. The condition that the absolute moment at B2 , G2 , Bl , and Gl be 
less than M p = 200 leads to 

200 

171.3.._ ....... -------.. ---""""!:I,.....::;;.....----4t-_ 200 

+ 

+ 

A = 1.429 

200 200 

FIGURE 5.33. Moment diagram for mechanism (g) in Figure 5.31. 
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-200 ~ MB2 ~ 200 (5.9.11) 

-200 ~ MB2 - 85.5 ~ 200 (5.9.12) 

-200 ~ MB2 + 28.4 ~ 200 (5.9.13) 

-200 ~ MB2 - 285.5 ~ 200. (5.9.14) 

Inequalities (5.9.11) to (5.9.14) can be expressed as 

-200 ~ MB2 ~ 200 

-114.5 ~ NB2 ~ 285.5 

- 228.4 ~ MB2 ~ 171.6 

85.5 ~ MB2 ~ 485.5. 

Inequalities (5.9.15) to (5.9.18) are equivalent to 

85.5 ~ MB2 ~ 171.6, 

(5.9.15) 

(5.9.16) 

(5.9.17) 

(5.9.18) 

(5.9.19) 

which indicates that there exists an MB2 value corresponding to which the 
absolute moments at B2 , G2 , B1 , and G1 are less than Mp = 200 so that the 
moment check is complete. Thus, A. = 1.429 is exact. 

5.9.2 A Two-Bay Two-Story Rectangular Frame 
Example 5.9.2. The two-bay two-story frame shown in Fig. 5.34 has full­
strength connections and carries the loads as shown. The full plastic mo­
ments are marked adjacent to the members. Determine the collapse load 
factor A. according to simple plastic theory. 

6). 

-c r--- 4 
1 
1 
1 

4 

1 
1 
1 

8 2 83 

8 1 r---- 5 
1 
1 
1 

I· 

J 

- ---------------, --- 4 
: E3 

----------------1 1 
1 

1 1 
1 
1 4 4 
1 

1:). F. ;1 

·1 
FIGURE 5.34. Two-story two-bay rectangular frame (Example 5.9.2). 
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Solution: The number of independent mechanisms can be calculated as 

Possible hinge locations: 
(crosses marked in Fig. 5.34) 
Redundancies 
(4 cuts, say, at sections D, G, J, L) 

Independent mechanisms: 
Joint mechanisms: 
(joint B, E, F, K) 

True independent mechanisms: 

N=22 

R = 12 

n = 10 
=4 

=6 

The six independent mechanisms are shown in Fig. 5.35 consisting of four 
beam mechanisms and two side-sway mechanisms. The work equations cor­
responding to these independent mechanisms are as follows: 

Beam mechanism, (a): 7A. = 16, A. = 2.286 (5.9.20) 
(top left-hand) 

Beam mechanism, (b): 7A. = 16, A. = 2.286 (5.9.21) 
(top right-hand) 

Beam mechanism, (c): 9A. = 20, A. = 2.222 (5.9.22) 
(bottom left-hand) 

Beam mechanism, (d): 20A. = 44, A. = 2.20 (5.9.23) 
(bottom right-hand) 

Panel mechanism, (e): 6A. = 24, A=4 (5.9.24) 
(top story) 

Panel mechanism, (f): 6A. = 48, A=8 (5.9.25) 
(bottom story) 

Combining the top story side-sway mechanism (e) with the four beam 
mechanisms (a), (b), (c), and (d) [Fig. 5.36], we have 

Panel mechanism, (e): 6A. = 24 
(top story) 
Beam mechanism, (a): 7A. = 16 
(top left-hand) 

Addition: 
Cancel hinge at C: 
Combined mechanism, (g): 
Beam mechanism, (b) 
(top right-hand) 

Addition: 
Rotate joint E: 

13A. = 40 
-8 

13A. = 32, 
7A. = 16 

20A. = 48 
-4 

A. = 2.462 (5.9.26) 
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n 
() 

() () 
() 

(c) X=2.22 (d) X=2.20 

() 

o 

~~----------~~-------------;() 

(e) A= 4 

6X~.~O~ ________________ -, ________________ --, 

() () o 

(f) A= 8 

FIGURE 5.35. Six true independent mechanisms for the frame in Figure 5.34. 
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J 

(j) = (e) + (a) + (b) + (c) + (d), A =2.143 

(k) = (j) + (I), A = 2.182 

FIGURE 5.36. Combined mechanisms from the independent mechanisms in Figure 
5.35. 
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Combined mechanism, (h): 20), = 44, ). = 2.2 (5.9.27) 
Beam mechanism, (c): 9), = 20 
(bottom left-hand) 

Addition: 29;. = 64 
Rotate joint B: -1 

Combined mechanism, (i): 29), = 63, ). = 2.172 (5.9.28) 
Beam mechanism, (d): 20), = 44 
(bottom right-hand) 

Addition: 49), = 107 
Rotate joint F: -2 

Combined mechanism, (j): 49), = 105, 
15 

). = 7 = 2.143. (5.9.29) 

Now, we shall check the combination of mechanism (j) and panel 
mechanism (f) to show that mechanism (j) in Fig. 5.36 gives the lowest ). 
value. 

Combined mechanism, (j): 
Panel mechanism (f): 
(bottom story) 

Addition: 
Cancel hinge at B1 : 

Cancel hinge at F3: 
Rotate joint K: 

Combined mechanism, (k): 

49), = 105 
6), = 48 

55), = 153 
-16 
-16 
-1 

55), = 120, ). = 2.182. (5.9.30) 

Despite the hinge cancellations achieved at joints Bl and F3 and by the 
joint rotation at K this value of). still exceeds the values of 2.143 obtained in 
Eq. (5.9.29). It can therefore be concluded that the lowest value of). (2.143) is 
corresponding to mechanism (j) in Fig. 5.36. To confirm that). = 2.143 is the 
actual solution, we need to make a moment check for mechanism (j). 

Moment Check: The best method for obtaining the moment equilibrium 
equations for this type of frame is to apply the virtual work equation. The 
indeterminacy corresponding to mechanism (j) can be calculated as 

Number of plastic hinges in the mechanism: 
Redundancy in the original structure: 
Redundancy at collapse: 

I = X - (M - 1) = 12 - (11 - 1) = 2 

M=l1 
X = 12 
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Let the fixed-ended moments MA and MH be the redundant moments. All 
other moments can be expressed in terms of these two redundants by use of 
the virtual work equation and the equilibrium of joints. For simplicity, all 
known moments are assumed to be positive in the following computations. 
Due to symmetry, the beam end moments Me and ME2 are equal and there­
fore can be determined by considering either of the two upper beams. From 
Fig. 5.37(a), with A. = 2.143 = 15/7, we have 

-8~-8 C 8 E 
28 1 

o 

Geometry set 

MC~ r~ A4 
~ 

Equilibrium set 

(a) Top 'eft·hand 

~MFI 

'C:--+~-:>~' 
\!Us B 

(d) Middle center 
Joint 

f"U 8" " , 
B; __ ~ ~ __ : K 

'-.!!.Is MK}.!!.) 
(f) Left-hand (g) Right-hand 

Joint Joint 

Geometry set 

(b) Top center Joint 
20AI A 

MF2~ + /:I" 
-~ 

Equilibrium set 

(c) Bottom right·hand 

SA E J 

,Me2 =-3 I Me3 --1 -4, , I I , , I 
I I I 
I , , 
MB2 

MFI =22/7 
+4 

Geometry set (e) Top story Equilibrium set 

6A 

Geometry set Equilibrium set 

(h) Bottom story 

FIGURE 5.37. Moment check for mechanism (j) in Figure 5.36: (a) top left-hand beam, 
(b) top center joint, (c) bottom right-hand beam, (d) middle center joint, (e) top story, 
(f) left-hand joint, (g) right-hand joint, and (h) bottom story. 
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top left-hand beam CE: 

(Md( -0) + (+4)( +20) + (-4)( -0) = no = ISO, 

which gives 

Me = ME2 = -15 + 12 = -3, IMei :::;; 4, okay. 

The column end moment M E3 is determined from equilibrium of joint E in 
Fig. S.37(b): 

top central joint E: 

ME3 = -4 + 3 = -1, (5.9.31) 

The beam end moment MF2 is determined by applying the virtual work 
equation to beam F2K3 as shown in Fig. S.37(c), 

bottom right-hand beam FK: 

300 
(MF2 )( -0) + (+ 11)( +20) + (-11)( -0) = (20-'")(0) = TO, 

which gives 

IMF21 < 11, okay. (5.9.32) 

Now, the column end moment MFl can be determined by considering the 
equilibrium of joint F in Fig. S.37(d): 

middle central joint F: 

(5.9.33) 

The column end moment MB2 is determined by applying the virtual work 
equation to panel mechanism in Fig. S.37(e): 

top story side-sway: 

MB2 ( -0) + (-3)( +0) + (-1)( -0) + (-4)( -0) + e})( +0) + (+4)( +0) 

= (6-'")(0), 

which gives 

IMB21 < 4, okay. (5.9.34) 

The beam end moment MB3 is determined by considering eqUilibrium of joint 
B in Fig. S.37(f): 
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left-hand joint B: 

IMB3 1 < 5, okay. (5.9.35) 

The column end moment MK2 is determined by considering equilibrium of 
joint K in Fig. 5.37(g): 

Right-hand joint K: 

MK2 = -11 + 4 = -7, IMK21 < 8, okay. (5.9.36) 

Now the column end moment MM can be expressed in terms of the redun­
dants MA and MH by considering the panel mechanism of the first story in 
Fig. 5.37(h): 

bottom story side-sway: 

MA( -9) + MH( +9) + MM( +9) + (-8)( +9) + (+8)( -9) + (-7)( -9) 
= (6;')(9), 

which gives 

90 153 
MA - MH - MM = -7 - 9 = -T· (5.9.37) 

The moment check will be complete if we can show that there exists a set of 
redundants MA and MH values such that the value of MM as given in (5.9.37) 
will satisfy the moment condition MM::;; 8. This can be demonstrated by 
choosing, say, MA = -8 and MH = +8, which gives 

153 41 
MM=T-16=7<8 okay. (5.9.38) 

FIGURE 5.38. Moment diagram for mechanism (j) in Figure 5.36. 
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A complete bending moment diagram for mechanism (j) of Fig. 5.36 with 
M A = - 8 and M H = + 8 is shown in Fig. 5.38. The moment condition is not 
violated anywhere in the frame. The load factor A. = 2.143 is thus exact. Note 
that there are many other possible safe and statically admissible bending 
moment distributions corresponding to this partial collapse mechanism, but 
as shown here it is only necessary to establish the existence of one such 
distribution to verify the solution. 

5.9.3 A Three-Story Two-Bay Rectangular Frame 
Example 5.9.3. Find the load factor at collapse for the frame shown in Fig. 
5.39. Note that the members have different plastic moment capacities. 

Solution: The number of independent mechanisms are calculated as 

Possible hinge locations: 
(crosses marked in Fig. 5.39) 
Redundancies: 
(4 cuts, say, at sections E, G, 1, L) 

N=27 

R = 12 

Independent mechanisms: = 15 
Joint mechanisms: = 7 
(joints C, D, F, H, J, K, M) 

True independent mechanisms: = 8. 

~~D~2 __________ ~~ ____ ~E~l~3_A ____________________ ~~ 
0, r------------ 120 

I 
-----------------------------, F. 

I 2 

30 

I l=A rA 2A C3 HI H2 I - C1 ir:;-- 40 -------------, 40 
I I H3 
I I 
I 
I 
I 
I 

l:A 2A I 
I - I 

B I 

I- 18 18 

FIGURE 5.39. Three-story two-bay rectangular frame (Example 5.9.3). 

15 

15 

15 
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159 

(f) 

158 158 

158 

0.59 9 

8 8 

9 

(9) (h) 

FIGURE 5.40. Eight true independent mechanisms for the frame in Figure 5.39. 

The eight independent mechanisms are shown in Fig. 5.40, consisting of 
five beam-type mechanisms and three side-sway mechanisms. The work 
equations corresponding to these independent mechanisms are summarized 
as follows: 

Mechanisms (a) to (e) are beam type: 

(a) Top beam: 
(3A)(360) = (120)(48) 
108A8 = 4808, 

(b) Bottom left-hand beam: 
(3A)(188) = (40)(48) 
54A8 = 1608, 

(c) Middle right-hand beam: 
(3A)(188) = (40)(48) 
54A8 = 1608, 

(d) Bottom right-hand beam: 
(5A)(188) = (80)(48) 
90A8 = 3208, 

A = 4.444. (5.9.39) 

A = 2.963. (5.9.40) 

A = 2.963. (5.9.41) 

A = 3.556. (5.9.42) 
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(e) Left-hand column: 
(2A)(150) = (60)(40) 
30AO = 2400, 

Mechanisms (f) to (h) are side-sway type: 

(f) Top story: 
(2A)(150) = (30)(40) 
30AO = 1200, 

(g) Middle story: 
(2A)(150 + 150 + 7.50 = (60)(0.50)(2) + (40)(40) 

A = 8. (5.9.43) 

A =4. (5.9.44) 

75AO = 2200, A = 2.933. (5.9.45) 

(h) Bottom story: 
(2A)(150)(3) = (60)(20) + (80)(40) 
90AO = 4400, A = 4.889. (5.9.46) 

Combining these independent mechanisms and looking for a minimum 
value of A, we have (Fig. 5.41): 

The combination: (i) = 0.5(£) + (g) 
O.5(f) top side-sway: 
(g) middle side-sway: 

Rotate joint C by 0.50: 
Rotate joint J by 0.50: 

(i) combined: 

The combination: (j) = (i) + 0.5(a) 
(i) combined: 

O.5(a) top beam DF: 

Rotate joint D by 0.50: 
Rotate joint F by 0.50: 

(j) combined: 

The combination: (k) = (j) + 0.5(b) 
(j) combined: 

0.5(b) bottom left-hand beam CH: 

Cancel hinge at C2: 

(k) combined: 

30A(0.50) = 120(0.50) 
75AO = 2200 

90AO = 2800 
-250 
-150 

90AO = 2400, 

90AO = 2400 
108A(0.50) = 480(0.50) 

144AO = 4800 
-750 
-450 

144AO = 3600, 

144AO = 3600 
54A(0.50) = 160(0.50) 

17UO = 4400 
-400 

17UO = 4000, 

A = 2.667. 
(5.9.47) 

A = 2.5. 
(5.4.48) 

A = 2.339. 
(5.9.49) 
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r.:-=-;:--------,O.58 

(i)~0.5(f) + (g) , ),. ~2.667 

,-------__ -------,0 

(k)~(j) + 0.5(b), ),. ~2339 

r-----____ -------yo 

(m)~(l)+ (h), ),. ~2.794 

Rotate by 0.58 
(·458) 

p?'~ ______ ----_0.~58) 
Tn F 0.58 

(j)~(i) + 0.5(a), ),. ~2.5 

r-----__ ~ __ ----~o 

(!)~(k) + (c), ),. ~2.311 

r-------____ -----,8 

(n)~(m) + (d), ),. ~2.568 

FIGURE 5.41. Combined mechanisms from the independent mechanisms in Figure 
5.40. 

The combination: (I) = (k) + (c) 
(k) combined: 
(c) middle right-hand beam HJ: 

Rotate joint H bye: 

(I) combined: 

The combination: (m) = (I) + (h) 
(I) combined: 
(h) bottom side-sway: 

170M = 400e 
54M = 160e 

225}'B = 560e 
-40e 

225}'B = 520e, 

225,J"e = 520e 
90,J"e = 440e 

315,J"e = 960e 

,J" = 2.311. 
(5.9.50) 
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Rotate joint K by 0: 
Rotate joint M by 0: 

(m) combined: 

The combination: (n) = (m) + (d) 
(m) combined: 
(d) bottom right-hand beam KM: 

Cancel hinge at K 2 : 

(n) combined: 

-400 
-400 

315A.O = 8800, 

315A.O = 8800 
90A.O = 3200 

405A.O = 12000 
-1600 

450,10 = 10400, 

A. = 2.794. 
(5.9.51) 

A. = 2.568. 
(5.9.52) 

The lowest value of A. (2.311) is corresponding to mechanism (I) as given by 
Eq. (5.9.50). To confirm that ,1= 2.311 is exact, we shall make a moment 
check for mechanism (1) in Fig. 5.41. 

Moment Check: The indeterminacy corresponding to mechanism (1) can be 
calculated as 

Number of plastic hinges in the mechanism: 
Redundancy in the original structure: 
Redundancy at collapse: 

M=lO 
X = 12 
I = X - (M -1) 

= 12 - (10 - 1) = 3. 

Let the column end moment MM3 and the fixed-ended moments MN and 
Mo be the three chosen redundant moments. All other unknown moments in 
Fig. 5.42(a), all assumed to be positive, can be expressed in terms of these 
redundants by the virtual work equation and the equilibrium of joints. De­
tails of these calculations are given in the forthcoming (Fig. 5.42). 

The Top Beam Moments MD2 = M D1 : From Fig. 5.42(b), we have 

top beam: 

(3,1)(360) = MD2(-O) + (+120)(+20) + (-30)(-0) 
(5.9.53) 

MD2 = -108,1 + 270 = 20.41, IMD21 ~ 120 and IMDtl < 30, okay. 

The Middle Beam Moments MC2 = M H2: From Fig. 5.42(c), we have 

bottom left-hand beam: 

(3,1)(180) = MC2 ( -0) + (+40)( +20) + (-40)( -0) 
(5.9.54) 

Me2 = 120 - 54,1 = -4.79, IMd and IMH21 < 40, okay. 

The Column End Moment Mn: From the eqUilibrium of joint J in Fig. 
5.42(d), we have 

right-hand joint: 

Mn = 0, IMn! < 30, okay. (5.9.55) 
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(e) Central Joint 
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Geometry set 
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FIGURE 5.42. Moment check for mechanism (I) in (a). 

The Column End Moment MH3 : From the equilibrium of joint H in Fig. 
5.42(e), we have 

central joint: 

MH3 = -40 + 4.79 = -35.21, IMH3 1 < 40, okay. (5.9.56) 

The Column End Moment MC3: MC3is determined by applying the virtual 
work equation to the panel mechanism in Fig. 5.42(f): 

top story side-sway: 

(2;')(158) = (MC3)( -8) + (+20.41)( +8) + (-30)( -8) + (0)( +8), 
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Equilibrium set 

(g) Left-hand Joint 
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20 
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FIGURE 5.42 (cont.) 

MC3 = 20.41 + 30 - 30A = -18.92, IMoi < 30, okay. (5.9.57) 

The Column End Moment MCl: From equilibrium of joint C in Fig. 5.42(g), 
we have 

left-hand joint: 

MCl = -23.71, IMClI < 60, okay. (5.9.58) 

The Column Midspan Moment M B: By applying the virtual work equation to 
Fig. 5.42(h), we have 



290 5. Work Method 

left-hand column: 

(22)(150) = (-60)(-0) + (MB )(+20) + (-23.71)(-0), 

which gives 

1 
MB = 152 - 2"(60 + 23.71) 

or 

MB = -7.19, IMBI < 60, okay. (5.9.59) 

Now, we shall express moments M K3 , MK2, MMl' and ML in terms of the 
redundants MM3, MN, and Mo. 

The Column End Moment M K3: From the panel mechanism shown in Fig. 
5.42(i), we have 

bottom story side-sway: 

(22)(150)(3) = (-60)(-0) + (-7.19)(+0) + (MN)(-O) + (MK3 )(+0) 

+ (MM3)( -0) + (Mo)( +0), 

which gives 

M K3 = 902 - 60 + 7.19 + MN + MM3 - Mo 

or 

(5.9.60) 

The Beam End Moment M K2: From equilibrium of joint K in Fig. 5.42(j), we 
have 

bottom central joint: 

(5.9.61) 

The Beam End Moment MMl: From equilibrium of joint M in Fig. 5.42(k), we 
have 

bottom right-hand joint: 

(5.9.62) 

The Beam Midspan Moment ML : By applying the virtual work equation to 
Fig. 5.42(O, we have 

bottom right-hand beam: 

which gives 

(52)(180) = (195.18 - Mo + MM3 + MN)( -0) 

+ ML ( +20) + (MM3 - 40)( -0), 
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or 

(5.9.63) 

The moment condition is that the absolute values of the seven unknown 
moments MN, Mo, MM3' MK3 , MK2, MM1, and ML be less than the plastic 
moments. This leads to the following inequalities: 

-80 ~ MN ~ 80 

-80~Mo~80 

-80 ~ MM3 ~ 80 

-80 ~ 155.18 - Mo + MM3 + MN ~ 80 

-80 ~ 195.18 - Mo + MM3 + MN ~ 80 

- 80 ~ M M3 - 40 ~ 80 

Mo MN 
-80 ~ 181.59 - 2 + MM3 + 2 ~ 80. 

Inequalities (5.9.67) to (5.9.70) can be written as 

75.18 ~ Mo - MM3 - MN ~ 235.18 

115.18 ~ Mo - MM3 - MN ~ 275.18 

-40 ~ MM3 ~ 120 

Mo MN 
101.59 ~ 2 - MM3 - 2 ~ 261.59. 

(5.9.64) 

(5.9.65) 

(5.9.66) 

(5.9.67) 

(5.9.68) 

(5.9.69) 

(5.9.70) 

(5.9.71) 

(5.9.72) 

(5.9.73) 

(5.9.74) 

Thus, all inequalities (5.9.64) to (5.9.66) and (5.9.71) to (5.9.74) can be ar­
ranged to have the form 

-80 ~ MN ~ 80 

-80 ~ Mo ~ 80 

-40 ~ MM3 ~ 80 

115.18 ~ Mo - MM3 - MN ~ 235.18 

Mo MN 
101.59 ~ 2 - MM3 - 2 ~ 261.59. 

(5.9.75) 

(5.9.76) 

(5.9.77) 

(5.9.78) 

(5.9.79) 

These inequalities (5.9.75) to (5.9.79) can be satisfied when MM3 = -40, 
Mo = 80, MN = - 80. None of the seven bending moments found in this way 
exceeds the corresponding fully plastic value, so a distribution of bending 
moment has been found for the entire frame that is not only statically admis­
sible but also safe. This bending moment diagram for the moment check is 
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20.41 

18.92 

FIGURE 5.43. Moment check for the mechanism (I) in Figure 5.42 (a). 

shown in Fig. 5.43. As can be seen, moments are all less than or at most equal 
to the plastic moments in the frame. Therefore, moment check is complete 
and the load factor A. = 2.311 is exact. 

5.10 Distributed Loads 

When a member is subjected to distributed loads (Fig. 5.44), the maximum 
moment and hence the plastic hinge location is not known in advance. The 
exact location of the hinge may be determined by first writing the work 
equation in terms of the unknown distance (for example, z, in Fig. 5.45) and 
then maximizing the plastic moment (or minimizing the loads) by formal 
differentiation. In actual practice, however, it is not necessary to make such 
an exact calculation; instead, it is convenient to substitute the uniform load 
with a pattern of equivalent concentrated loads. In this way, plastic hinge 
locations are limited to well-defined load and reaction points. Herein, we 
shall first solve exactly the single-bay frame of uniform section shown in Fig. 
5.44, followed by an approximate analysis assuming the plastic hinge at quar­
ter points as well as at the midpoint of the beam (Fig. 5.46), respectively. 

5.10.1 Exact Analysis of Portal Frame 
The solution of problems involving frames subject to uniformly distributed 
vertical loading, without resort to an alternate concentrated load pattern, 
requires the determination of two unknowns, the Mp value corresponding to 
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1.6 kips/ft 

24 ~~--~----~--~~--~----~--~~--~---=1 D B 

10 ft 

A E 

20 ft ________________ ~_~1 

FIGURE 5.44. A portal frame subjected to vertical uniformaly distributed and horizon­
tal concentrated loads. 

I~ 
z -I- 20-z 

"\ t ~8 
20-z 

~;T z8 
20-z 

FIGURE 5.45. Exact analysis for portal frame subjected to loads shown in Figure 5.44. 

the failure mechanism and the location of any plastic hinges that would have 
to form at points along the beam in developing that mechanism. Herein, we 
shall use the combination of mechanisms to derive the expression for the Mp 
value of the combined mechanism in terms of the unknown hinge location z 
in the beam. Differentiating this expression for Mp with respect to z and 
setting the derivative equal to zero, the critical hinge location z is obtained. 
Finally, this value is substituted in the equation for Mp to obtain the desired 
solution. 
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B c 

A 

o .-____________ .0 
B 

(a) Mp =60 

o o 

c 

(c) Mp =40 

D 

E 

30 

o 

FIGURE 5.46. Approximate 
analysis for portal frame 
subjected to loads shown 
in Figure 5.44. 

(b) Mp =30 

(d) Mp =30 

FIGURE 5.47. Independent mechanisms assuming critical plastic hinge locations 
shown in Figure 5.46. 

The side-sway mode of collapse in Fig. 5.47(a) leads to 

side-sway: 

4M/J = 24(100), 

which gives 

Mp = 60 kip-ft. 

The beam mechanism of Fig. 5.47(c) leads to 

beam with midspan hinge: 

(5.10.1) 
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which gives 

Mp = 40 kip-ft. (5.10.2) 

In fact, the correct mechanism is shown in Fig. 5.45, in which distance z is as 
yet unknown. The work equation corresponding to this mechanism is 

which gives 

(240 + 16z)(20 - z) 
Mp = (SO - 2z) . 

To maximize Mp, the derivative of Mp is set equal to zero, i.e., 

or 

dMp=O 
dz 

(SO - 2z)(SO - 32z) - (4,Soo + SOz - 16z2 )( -2) = 0, 

which gives 

z = 40 - j1,100 = 6.S3 ft, 

and the exact solution is 

Mp = 69.34 kip-ft. 

(5.10.3) 

(5.10.4) 

(5.10.5) 

General formulas for the maximum bending moment in a member subject 
to a uniformly distributed load, together with the position where this maxi­
mum occurs, can be derived. This is given as Problem 5.1S. 

5.1 0.2 Approximate Analysis of Portal Frame 
Approximate solutions are obtained by considering several failure mecha­
nisms. The frame has three degrees of redundancies. If we assume seven 
critical sections (A, B, B1, C, D1, D, and E) as shown in Fig. 5.46, we will have 
four independent mechanisms. The two usual beam and side-sway mecha­
nisms are shown in Figs. 5.47(a) and (c). The two additional beam mecha­
nisms involving hinges at quarter points Bl and Dl are shown in Figs. 5.47(b) 
and (d). The corresponding work equations for these four mechanisms are as 
follows: 

Mechanism (a), side-sway: 

2400 = 4Mp O 

Mp = 60 kip-ft. 
(5.10.6) 
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Mechanism (b), beam hinge at B1 : 

~(1.6)(20)(158) = Mp(38) + (Mp)(48) + M p8 

Mp = 30 kip-ft. 

Mechanism (c), beam hinge at midspan: 

1 
2(1.6)(20)(100) = M p8 + (Mp)(28) + MpO 

Mp = 40 kip-ft. 

Mechanism (d), beam hinge at D1: 

1 
2(1.6)(20)(158) = M p8 + (Mp)(48) + Mp(38) 

Mp = 30 kip-ft. 

Mp =68.6 

(e)=3(a) + (b) 

Mp =66.67 

(f)=(a) + (c) 

Mp =48 

(5.10.7) 

(5.10.8) 

(5.10.9) 

(9)=(a) + (d) 
FIGURE 5.48. Combining independent 
mechanisms of Figure 5.47. 
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New mechanisms can be obtained by combining these four independent 
mechanisms. Combining mechanism (a) with mechanisms (b), (c), and (d) 
results in mechanisms (e), (f), and (g) as shown in Fig. 5.48. Since the rotation 
at B in mechanism (a) is opposite that in (b), (c), and (d), the combinations 
result in a cancellation of the hinge at B and thus provide higher values of 
Mp. Mechanism (a) is combined with (b), (c), and (d) as follows. 

Mechanism (e): 3(a) + (b) 
3(a) side-sway: 3(2400) = 3(4MiJ) 
(b) beam at B1 : 2400 = 8MpO 
Cancel hinge at B: -6MiJ 

(e) combined at B1 : 9600 = 14MpO 

Mechanism (f): (a) + (c) 
(a) side-sway: 
(c) beam at C: 
Cancel hinge at B: 

(f) combined at C: 

Mechanism (g): (a) + (d) 
(a) side-sway: 
(d) beam at D1 : 

Cancel hinge at B: 

(g) combined at D1 : 

Mp = 68.6 kip-ft. 

2400 = 4MpO 
1600 = 4MpO 

-2MpO 

4000 = 6MpO 
Mp = 66.67 kip-ft. 

2400 = 4MpO 
2400 = 8MpO 

-2MpO 

4800 = 10Mp 

Mp = 48 kip-ft. 

(5.10.10) 

(5.10.11) 

(5.10.12) 

Note that the direct superposition of mechanisms (a) and (b) would not 
lead to the cancellation of the hinge at B. To cancel this hinge, the mechanism 
(a) in Eq. (5.10.6) is multiplied by a factor 3 before adding to mechanism (b) 
in Eq. (5.10.7). Also note that the cancellation of this hinge reduces the inter­
nal work by 6MpO, since the hinge in each mechanism rotates by 30. 

Among all the mechanisms considered, mechanism (e) gives the highest 
value of Mp and thus gives the closest approximate solution. Note that the 
approximate solution differs from the exact one by little more than 1%. If the 
independent mechanisms (b) and (d) are not considered, then the combined 
mechanism (f) leads to Mp = 66.67 kip-ft, which differs from the exact solu­
tion by only 4%. 

The approximate analysis of the distributed load can be made by replacing 
distributed loads by a set of concentrated loads as shown in Fig. 5.49. In the 
case of vertical loading, the distributed load can be replaced by the concen-
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wL = P 
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FIGURE 5.49. Replacing a distributed load by an equivalent set of concentrated 
loads. 

trated loads in several ways shown. The uniform load parabola is always 
circumscribed by the moment diagram due to equivalent concentrated loads. 
Any consequent error will be small and on the "safe" side when the alternate 
pattern consists of three or more concentrated loads, evenly spaced as shown 
in the top of Fig. 5.49. Of course, the more concentrated loads assumed, the 
closer the approximation is to the real problem. Any resulting error will 
likewise be small and on the safe side if uniformly distributed horizontal wind 
loading is replaced by a single concentrated load at the top of the windward 
column (at the eaves in the case of a gable frame). The computed magnitude 
of this load is such that its overturning moment, taken about the base of the 
windward column, is equal to the overturning moment that the wind loading 
produces about the same point. 
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5.11 Examples for Distributed Loads 

In this section, we will present two realistic examples. The first deals with a 
two-bay gable frame subjected to distributed loading, the second deals with 
a two-story two-bay rectangular frame subjected to distributed loading. 

5.11.1 A Two-Bay Gable Frame 
Example 5.11.1. A two-bay gable frame shown in Fig. 5.50 has same cross 
section throughout. Use simple plastic theory to determine the plastic mo­
ment capacity Mp of the cross section. Note that all the loads are distributed 
over the lengths of the members, the magnitude of each load being indicated 
against the dotted arrow that shows the direction in which the load acts. The 
kinematics of gable frames are more difficult to analyze than those of the 
rectangular frames. This example is used to illustrate the technique of dealing 
with such frames subjected to distributed loads. 

Solution: The number of independent mechanisms is calculated as 

Possible hinge locations: 
(crosses marked in Fig. 5.50) 
Redundancies: 
(two cuts, say, sections C and F) 

Independent mechanisms: 
Joint mechanism: 
(joint D) 

True independent mechanisms: 

N = 16 

R=6 

n = 10 
= 1 

=9. 

The nine independent mechanisms are identified and shown in Fig. 5.51, 
consisting of six beam-type mechanisms and three side-sway-type mecha­
nisms. In deriving the work equations for the beam-type mechanisms, we 
shall assume first that the plastic hinges within the spans occur at midspan. 
In the actual collapse mechanisms, these plastic hinges may occur anywhere 
within the span. However, in the initial analysis, it is convenient to combine 
the beam-type mechanisms with the other independent mechanisms while 
keeping the plastic hinges at midspans. Only when we obtain the actual 
collapse mechanism will an adjustment be made to correct the incorrect 
positioning of these hinges. 

The work equations corresponding to the nine independent mechanisms 
are summarized as follows: 

Mechanisms (a) to (f) are beam type: 

(a) column AB: ~(0.45)(7l1) = 4Mpl1 

(5.11.1) 
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(b) beam BC: 
1 1 
2(4.19)(150) - 2(0.12)(7.50) = 4MpO 

30.980 = 4MpO, Mp = 7.75. (5.11.2) 

(c) beam CD: 
1 1 
2(3.47)(150) - 2(0.48)(7.50) = 4MpO 

24.230 = 4MpO, Mp = 6.06. (5.11.3) 

(d) beam DF: 
1 1 
2(4.31)(150) - 2(0.06)(7.50) = 4MpO 

32.10 = 4MpO, Mp = 8.03. (5.11.4) 

(e) beam FG: 
1 1 
2(3.95)(150) - 2(0.24)(7.50) = 4Mp 

28.730 = 4MpO, Mp = 7.18. (5.11.5) 

(f) column GH: ~(0.45)(70) = 4MpO 

(5.11.6) 

Mechanisms (g) to (i) are side-sway type: 

(g) total side-sway: [ ~ (0.45)(2) - 0.12 + 0.48 - 0.06 + 0.24] (140) = 6M pO 

13.860 = 6MpO, Mp = 2.31. (5.11.7) 

(h) right-hand sway: ~(4.31)(300) - ~(0.06)(150) + ~(3.95)(300) 

1 1 (15 ) + 2(0.24)(15 + 30)0 + 2(0.45) 70 (14) 

=M 1 +2+-+- 0 ( 22 15) 
p 7 7 

135.60 = 8.29MpO, Mp = 16.36. (5.11.8) 

(i) combined sway: ~(4.19) C75 0) (30) - ~(0.12) C75 0) (15) 

+ ~(3.47)C75 0)(30) + ~(0.48)((15 + 30)C75 0) 

- (0.06)(140) + (0.24)(140) 

1 (7 14 7 ) + 2(0.~5)(140) = Mp 15 + 15 + 15 + 4 0 

63.910 = 5.87MpO, Mp = 10.89. (5.11.9) 
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c F 

B 

Mp =15.16 

A 
H 

(a) Mechanism (j)=(h) + (i) 

c 

B 

Mp =15.28 

A 

(b) Mechanism (k) = (j) + (d) 

FIGURE 5.52. Combining the independent mechanisms in Figure 5.51: (a) mechanism 
(j) = (h) + (i) and (b) mechanism (k) = (j) + (d). 

(A) Determining the "Correct" Mechanism: Combining the mechanisms in 
Fig. 5.52 and looking for a maximum value of M p , we note that the beam­
type mechanisms cannot be combined with one another in such a way as to 
achieve the cancellation of any hinges, with a possible consequent increase in 
the corresponding value of Mp- The analysis therefore takes the form of 
investigating combinations of the side-sway mechanisms first and then with 
the beam-type mechanisms. To this end, we choose first to combine the two 
side-sway mechanisms (h) and (i), and then with the beam mechanism (d). 
This is outlined in the following. 

The combination: (j) = (h) + (i) 
(h) right-hand side-sway: 135.60 = 8.29MpO 
(i) combined side-sway: 63.910 = 5.87MpO 

Rotation of joint D: 
(j) combined: 

199.510 = 14.l6MpO 
-MpO 

199.510 = 13.16MpO 
Mp = 15.16. (5.11.10) 
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The combination: (k) = (j) + (d) 
(j) combined: 199.510 = 13.16MpO 
(d) beam D2F 32.10 = 4MpO 

Cancel hinge at F: 

(k) combined: 

231.610 = 17.16MpO 
-2MpO 

231.610 = 15.16MpO 
Mp = 15.28. (5.11.11) 

The addition of beam mechanisms does not seem to improve the solution. 
So we shall check the moments for side-sway mechanism (h) for which the 
value of Mp is highest among the mechanisms considered thus far. It is there­
fore concluded here that this mechanism is the actual mechanism, subject 
only to possible adjustments of the positions of the plastic hinges within the 
spans of the beams DF and FG and column GH. 

(B) Adjusting Hinges to the "Correct" Locations: Since the structure is sub­
jected to distributed loads, the moments within the members may be critical. 
Therefore, we shall first check the moments in members DF, FG, and GH 
and, if necessary, make the adjustments in the location of hinges in the mech­
anism. The moment check will be carried out by the application of the virtual 
work equation. Details of this procedure need not be given, since they have 
already been discussed in previous examples. 

Moments in Member DF: The equation for moment M at a horizontal dis­
tance x from D is obtained by applying the virtual work equation to equilib­
rium and geometry sets shown in Fig. 5.53(a) 

1 1 (XO) "2(4.31)(xO) - "2(0.06) 2" 

which gives 

M = -0.0713x2 + 3.231x - 16.36 

or 

M = -0.0713(x - 22.66)2 + 20.25. 

Thus, Mmax = 20.25, I Mmaxl > Mp = 16.36 at x = 22.66, not okay. 

Moments in Member FG: From Fig. 5.53(b), the virtual work equation for 
moment Mis 

1 1 (XO) "2(3.95)(xO) - "2(0.24) 2" 
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14.31 
I 

0.06 t ---

(15.X/2T~ 
X/2! 0 ,..,..v 

-(J 

F 

Mp 

I 
Equilibrium set 

Geometry set Geometry set 

0.45 

(a) 

Mp 

Mp 

Equilibrium set 

14-x 

x 

(c) 

+~ 
14·x 

_.!i!L 
14-x 

Geometry set 

(b) 

FIGURE 5.53. Moment check for mechanism (h) in Figure 5.51. 

which provides 

M = -0.0638x2 + 0.824x + 16.36 

or 

M = -0.0638(x - 6.46)2 + 19.02. 

Thus, Mmax = 19.02, I Mmax I > Mp = 16.36 at x = 6.46, not okay. 

x(J 

30·x 

Moments in Member GH: From Fig. 5.53(c), the virtual work equation for 
moment M is 

which furnishes 

M = -0.0161x2 + 2.562x - 16.36 
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22.66 I.C. 

B 

A 

FIGURE 5.54. Mechanism (1) obtained by adjusting mechanism (h) in Figure 5.51. 

or 
M = -0.0161(x - 79.61)2 + 85.68. 

Since the value of x found from the equation dM/dx = 0 exceeds the mem­
ber vertical height 14, the bending moment increases continuously from the 
column end G to the column end H with Mmax = MG = Mp. As the maximum 
moment does not occur within the member, we have IMI ~ Mp along GH. 

The moment condition is violated in members DF and FG and the maxi­
mum moment in DF is higher than that in FG. The necessary adjustments for 
the distributed loads will thus be made by moving the plastic hinge at F in 
mechanism (h) in Fig. 5.51 to F' (Fig. 5.54). The work equation corresponding 
to this new mechanim (I) is 

[~(3.255)(22.66) - ~ (0.0453)(11.33)] (1.6480) 

1 1 + 2(1.055)(30 + 37.34)0 - 2(0.0147)(15 + 18.67)0 

1 1 1 (15 ) + 2(3.95)(300) + 2(0.24)(15 + 30)0 + 2(0.45)(14) 7 0 

( 22 15) 
= Mp 1.648 + 2.648 + 7 + 7 0 

167.030 = 9.58Mp O, Mp = 17.44. (5.11.12) 

This Mp is an improvement over the previous one (Mp = 16.36). Now, we 
shall check the moment for this new mechanism (Q in Fig. 5.54. 

(C) Performing the Moment Check for the Adjusted Mechanism (/): The re­
dundancy corresponding to the mechanism (h) is calculated as 

Number of plastic hinges in the mechanism: 
Redundancy in the original structure: 
Redundancy at collapse: 

M=4 
X=6 
I = X - (M -1) 

= 6 - (4 - 1) = 3. 
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Assume the moments at B, C, and D3 as the three redundants. Now all the 
moments in the frame can be expressed in terms of these redundants and the 
plastic moment (Mp = 17.44). For simplicity, all unknown moments are assumed 
to be positive in the following computations. The moment distribution in the 
right-hand collapse portion of this partial collapse frame is statically determi­
nate and can be uniquely determined, while the bending moment distribution 
in the left-hand frame is statically indeterminate with three redundants. To 

3.69 

11.33 

-8 
Geometry set 

(a) 

0.:.4.:s.... i M 1 1-· 

30 

14 

+1 
H 

Mp 

22 
7 

I.e 

(c) 

Geometry set 

1 3 .95 

13.03 

30·x ·1 
-8 

Geometry set 

(b) 

'~ .y.' I 148 i -14-x 

+~ ~ 
14-x M03 

(d) 

Equilibrium set 

(e) 

FIGURE 5.55. Moment check for mechanism (/) in Figure 5.54. 
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complete the moment check, it is necessary to assign values to these three 
redundants, when all other moments are expressed in terms of these three. 

Moment Check for the Statically Determinate Portion of the Frame: Moment 
M F: From Fig. 5.55(a), the virtual work equation for MF can be written as 

~(4.31)(22.660) - ~(0.06)(11.330) 

~
MBB 
-I 

O.:.~5 ... : 

1+ 
AI 

MA 

= (-Mp)( -0) + (+Mp)( +4.0870) + (MF )( -3.0870), 

c 

(9) 

Geometry set 

Equilibrium set 

(I) 

I + 14(} B~(} I 14-x 
I 

A _..EL 
14-x 

F 

FIGURE 5.55 (cant.) 

-() 
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which gives 

MF = 13.03 < Mp = 17.44, okay. 

Moments in Member FG: The equation for moment M at a horizontal dis­
tance x from F can be written from Fig. 5.55(b) as 

~(3.95)(X(}) - ~(0.24)G(}) 

= (+ 13.03)( -(}) + (M)(3~~~) + (-Mp)(3~~(}X) 
M = - 0.0638x2 + 0.899x + 13.03 

= -0.0638(x - 7.05)2 + 16.20. 

Thus, we find Mmax = 16.20 at the location x = 7.05. Since I Mmaxl ~ Mp = 
17.44 okay. 

Moments in Member GH: From Fig. 5.55(c), the virtual work equation for 
the moment in member GH can be written as 

~(0.45)((}X) = (-Mp)( +(}) + (+M)C~ ~~) + (+Mp)C:~(}x) 
M = 0.0161x2 + 2.266x - 17.44 

or 
M = 0.0161(x + 70.37)2 - 97.17. 

It is found that the maximum moment does not occur within GH; we can 
therefore conclude that IMI :5; Mp = 17.44, okay. 

Moment Check for the Statically Indeterminate Portion of the Frame: We will 
first carry out a moment check at the ends of the members and then in the 
members subjected to uniformly distributed loads. 

Moment MDt: Since MD3 has been chosen as one of the three redundants, it 
follows from the equilibrium of joint D, Fig. 5.55(d), that the unknown mo­
ment MDl has the value 

MDl = -MD3 - Mp. 

Moment M A : From the equilibrium and geometry sets shown in Fig. 5.55(e), 
we have 

~(3.47)(30(}) - ~(0.48)(15(}) + ~(4.19)(30(}) 

+ ~(0.12)(15 + 30)(} - ~(0.45)(14)C; (}) 

= (+MA )( + 1; (}) + (+MB)( - 272 (}) + (+Md( +2(}) 

+ (-MD3 - MpH -(}) 
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15 22 
107.25 = TMA - TMB + 2Me + MD3 + 17.44 

MA = 1.47MB - 0.93Me - 0.47MD3 + 41.91. 

Moment ME: From Fig. 5.55(f), we have 

~(0.45)(140)(2) + (140)( -0.12 + 0.48 - 0.06 + 0.24) 

= (1.47MB - 0.93Me - 0.47MD3 + 41.91)( -0) 

+ (+MB)( +0) + (+ME)( -0) + (+MD3 )( +0) 

+ (-Mp)( -0) + (+Mp)( +0) 

ME = -0.47MB + 0.93Me + 1.47MD3 - 20.89. 

The condition that the absolute value of the moment at A, B, C, D1, D3 , 

and E is less than Mp leads to the following inequalities 

-17.44 ~ 1.47MB - 0.93Me - 0.47MD3 + 41.91 ~ 17.44 (5.11.13) 

-17.44 ~ MB ~ 17.44 

-17.44 ~ Me ~ 17.44 

-17.44 ~ -MD3 - 17.44 ~ 17.44 

-17.44 ~ M D3 ~ 17.44 

(5.11.14) 

(5.11.15) 

(5.11.16) 

(5.11.17) 

-17.44 ~ -0.47MB + 0.93Me + 1.47MD3 - 20.89 ~ 17.44. (5.11.18) 

Inequalities (5.11.13), (5.11.16), and (5.11.18) can be rearranged as 

-59.35 ~ 1.47MB - 0.93Mc - 0.47MD3 ~ -24.47 

-34.88 ~ M D3 ~ 0 

(5.11.19) 

(5.11.20) 

-3.45 ~ -0.47MB + 0.93Mc + 1.47MD3 ~ 38.33. (5.11.21) 

Inequalities (5.11.14), (5.11.15), (5.11.17), (5.11.19), (5.11.20), and (5.11.21) 
can be satisfied if we substitute MB = -15, Me = + 10, and MD3 = -1.0. 

So the moment condition is satisfied at all nodal points (A, B, C, D1, D2, 

D3, E, F, G, and H) and in the members FG and GR. Next, we shall check 
the maximum moments in the members AB, BC, and CD. 

Further Moment Check for Members Carrying Distributed Loads: Moments 
in Member AB: From Fig. 5.55(g), the equation for moment M in member 
AB is written as 

1 ( + 140 ) ( - xO ) 2(0.45)(Ox) = (MB)( -0) + (+M) 14 _ x + (+MA) 14 _ x ' 
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which gives 

M = -0.0161x2 + (0.225 + MA ~ MB)X + MB. 

Substituting MB = -15 [Fig. 5.55(g)] and 

MA = 1.47MB - 0.93Me - 0.47MD3 + 41.91 

or 

MA = 1.47( -15) - 0.93(10) - 0.47( -1.0) + 41.91 = 11.03 

we have 

M = -0.0161x2 + 2.084x - 15 

M = -0.0161(x - 64.72)2 + 52.44. 

Since the maximum moment occurs at the top end Mmax = MB = -15, it 
follows that IMI :s; Mp = 17.44 along the length of member AB. 

Moments in Member BC: From Fig. 5.55(h), the virtual work equation for 
moment M in member Be is 

1 1 (x) 2(4.19)(Ox) - 2(0.12) 2 

( +300) ( -xO ) 
= (M B)( - 0) + ( + M) 30 _ x + ( + Md 30 _ x ' 

which gives 

2 ( Me - MB) M = -0.0688x + 2.065 + 30 x + MB· 

Substituting MB = -15 and Me = + 10, we have 

M = -0.0688x2 + 2.898x - 15 

or 

M = -0.0688(x - 21.06)2 + 15.51. 

So Mmax = + 15.51 at x = 21.06. 

I Mmaxl < Mp = 17.44, okay. 

Moments in Member CD: From Fig. 5.55(i), the virtual work equation for 
moment M can be written as 

1 1 (ox) 2(3.47)(Ox) - 2(0.48) 2 

( +300) ( -xO ) 
=(+Md(-O)+(+M) 30-x +(MD1 ) 30-x ' 
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FIGURE 5.56. Final moment diagram for mechanism (/) in Figure 5.51. 

which gives 

2 [ MDl - Me] M = -0.0538x + 1.615 + 30 x + Me· 

Substituting Me = + 10 and MDl = - M D3, - 17.44 = -16.44, we have 

M = -0.0538x2 + 0.734x + 10 

or 

M = -0.0538(x - 6.82)2 + 12.50. 

So Mmax = 12.50 at x = 6.82. Thus I Mmaxl < Mp = 17.44 okay. 
The final bending moment diagram for the failure mechanism (I) in Fig. 

5.51 is shown in Fig. 5.56. The moment condition is satisfied everywhere in 
the frame. Therefore, the moment check is complete and the solution Mp = 
17.44 is exact. 

5.11.2 A Two-Story Two-Bay Rectangular Frame 
Example 5.11.2. A two-story two-bay frame is loaded as shown in Fig. 5.57. 
The distributed loads on span CE and IK are shown by dashed arrows. 
Determine the plastic limit load P. 

Solution: The number of independent mechanisms can be calculated as 
follows: 

Possible hinge locations: 
(crosses marked in Fig. 5.57) 
Redundancies: 
(4 cuts at sections D, H, F, J) 

Independent mechanisms: 
Joint mechanisms: 
(joints B, E, I, K) 

True independent mechanisms: 

N=22 

R = 12 

n = 10 
=4 

= 6. 
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FIGURE 5.57. A two-bay two-story frame with distributed loads (Example 5.11.2). 

The six independent mechanisms are shown in Fig. 5.58 consisting of four 
beam mechanisms and two side-sway mechanisms. The work equations 
corresponding to these independent mechanisms are summarized as follows, 
assuming the plastic hinges for the distributed loads on span CE and IK 
occur at their midspans. 

Mechanics (a) to (d) are beam mechanisms: 
(a) Left-hand top beam: 

1 
2(4P)(LO) = MpO + (Mp)(20) + MpO 

(b) Right-hand top beam: 

2P (~LO) = MpO + (Mp)(40) + Mp(30) 

(c) Left-hand bottom beam: 

Mp 
P=2.67 y ' 

5P(LO) = 1.5MpO + (1.5Mp)(20) + 1.5MpO 

P = 1.2~p. 

(5.11.22) 

(5.11.23) 

(5.11.24) 
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3P __ ~~~~ ________________ ~~ ________________ ~ 

9 

9~ ______________ ~(}+-______________ ~(}~ 

Mp 
(e) P=2""L 

3P~_L_9~ ________________ -r ________________ ~ 

8P---'~~~----------------~----------------~~ 9 

9 9 
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FIGURE 5.58. Six true independent mechanisms for the frame in Figure 5.57. 
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(d) Right-hand bottom beam: 

P=4 Mp 
L' 

Mechanism (e) and (f) are side-sway mechanisms: 
(e) Top story: 

(f) Bottom story: 

(5.11.25) 

(5.11.26) 

3P(LO) + 8P(LO) = 3Mp O + 3Mp O + 3Mp O + 3Mp O + 3Mp O + 3Mp O 

P = 1.636 Mp. 
L 

(5.11.27) 

Combining these mechanisms and looking for a minimum value of P, we 
have (Fig. 5.59): 

The combination: (g) = (e) + (f) 
(e) Top side-sway: 
(f) Bottom side-sway: 

Rotate joint B by 0: 
Rotate joint I by 0: 
Rotate joint K by 0: 

(g) Combined: 

The combination: (h) = (g) + (c) 
(g) Combined: 
(c) Left-hand bottom beam BI: 

Cancel hinge at B3: 

(h) Combined: 

3PL() = 6MpO 
llPLO = 18MpO 

14PLO = 24MpO 
-2.5MpO 
-MpO 
-2.5MpO 

14PLO = 18MpO 
P = 1.286(Mp /L) 

14PLO = 18MpO 
5PLO = 6MpO 

19PLO = 24Mp O 
-3MpO 

19PLO = 21MpO 
P = 1.105(Mp/L) 

(5.11.28) 

(5.11.29) 
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Rotate by U 
(-2.5MpU) 

(g)=(e)+(I). P=1.286 Mp /l 

H'''''''''T 
1 

(i)=(h)+(a), P=1.095 Mp /l 

~f i 
Hinge cancellation (-3MpU) 

(h)=(g)+(c), P=1.105 Mp/l 

(j)=(i)+(b), P=1.25 Mp/l 

___ -""1-_ Hinge cancellation (-3Mp8) 

(k)=(i)+(d), P= 1.156 Mp /l 

FIGURE 5.59. Combined mechanisms from the independent mechanisms in Figure 
5.58. 

The combination: (i) = (h) + (a) 
(h) Combined: 
(a) Left-hand top beam CE: 

Cancel hinge at C: 

(i) Combined: 

19PL{) = 21Mp{) 
2PL{) = 4Mp{) 

21PL{) = 25Mp{) 
-2Mp{) 

21PL{) = 23Mp{) 
P = 1.095(Mp/L) (5.11.30) 



316 5. Work Method 

The combination: (j) = (i) + (b) 
(i) Combined: 
(b) Right-hand top beam EG: 

Rotate joint E by {}: 

The combination: (k) = (i) + (d) 
(j) Combined: 
(d) Right-hand bottom beam IK: 

Cancel hinge at 13: 

(k) Combined: 

21PL{} = 23Mp{} 
3PL{} = 8Mp{} 

24PL{} = 31Mp{} 
-Mp{} 

24PL{} = 30Mp{} 
P = 1.25(Mp/L) 

21PL{} = 23MiJ 
1.5PL{} = 6Mp{} 

22.5PL{} = 29Mp{} 
-3Mp{} 

22.5PL{} = 26Mp{} 
P = 1.156(Mp/L) 

(5.11.31) 

(5.11.32) 

Mechanism (i) gives the lowest value of P. Therefore, we shall make a 
moment check for this mechanism. However, before proceeding to a moment 
check, we note that the left-hand top beam CE l carries a distributed load, 
and the assumption that the hinge develops in the middle of this beam should 
be adjusted. 

Adjustment of the Hinge in the Left-Hand Top Beam eEl: Assume that the 
hinge is located a distance a.2L from C (Fig. 5.60). Then the external work WE 
done by.the distributed load is 

1 
WE = 2(4P)(2a.L{}) = 4a.PL{}. 

The internal work ~ is 

~ = Mp({}) + (Mp)C ~ a.) + MPC : a. (}) = MPC = a.){}' 

1 4P 

a2l {1-a}2l 
FIGURE 5.60. Adjustment of hinge loca­
tion in member CE l' 
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Recall that we have ~ = 4MpO and WE = 2PLO for mechanism (a). Now 
the work equation corresponding to mechanism (i) can be modified to be 

21PLO - 2PLO + 4rxPLO = 23MpO - 4MpO + MPC : rx)O' 

which gives 

Mp 21 - 19rx 
P = - --.,....,...,--c----,---,-

L (1 - rx)(19 + 4rx) 

For P to be minimum, we set dP/drx to zero 

dP = (4rx2 + 15rx - 19)(19) - (19rx - 21)(8rx + 15) = 0 
drx (4rx 2 + 15rx - 19)2 ' 

which gives 

rx = 0.320. 

So P is 

P = 1.082~p. (5.11.33) 

Moment Check for Adjusted Mechanism (i): The redundancy corresponding 
to the mechanism (i) can be calculated as follows: 

Number of plastic hinges in the mechanism: 
Redundancy in the original structure: 
Redundancy at collapse: 

M=l1 
X = 12 
I = X - (M - 1) 

= 12 - 10 = 2. 

Let moments at B2 and K2 be the two redundants. We will first check the 
moments in member 13K, which carries distributed loads. 

Moment in Member 13K.: From Fig. 5.61(d), the equation for moment M in 
the right-hand bottom beam 13K! can be written as 

1 ( + 2LO ) ( - xO ) 2(3P)(xO) = (+ l.5Mp)( - 0) + (+ M) 2L _ x + (-1.5Mp) 2L _ x ' 

which gives 

M 
M = 2U [ - 1.623x2 + 0.246xL + 3L 2 ] 

or 

_ 2Mp 2 2 - -0.81 L2 [(x - 0.076L) - 1.854L ]. 
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14P A 
c L _Mp c ..... ...Il_M ... ~ ... +E, 

C 0.640 L8 E 

-.~.~,. 
+1.4718 

Il640 L'" 1.360 L -I 
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I.. L .. I.. L "I 
83 I, 
-8~ 
~. 

(e) 

3P 

- j+O.557Mp - tMp - -Mp 
1 
1 IMB2 IMI2 

~~ __ "~ __ "",,MK2 

--

(f) 

(e) 

(g) 

+L 
(b) 

~' 

(d) 

-8 

(h) 

FIGURE 5.61. Moment check for mechanism (i) in Figure 5.59. 
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The maximum moment in member 13Kl is 

Mmax = (0.812 ~J ) (1.854L2) = l.505Mp at x = 0.076L 

or 

I Mmax I = 1.5 M p , okay. 

Moment at C: By applying the virtual work equation to the left-hand top 
beam eEl in Fig. 5.61(a), we have 

1 
2(4P)(0.640LO) = (+Md( -0) + (+Mp)( + 1.4710) + (-Mp)( -0.4710), 

which gives 

Me = Mp[ -1.385 + 1.471 + 0.471] = 0.557Mp 

or 

IMel < M p , okay. 

Moment at F: From the equilibrium and geometry sets for the right-hand top 
beam E2 G shown in Fig. 5.61 (b), we have 

which gives 

1 
MF = 4 [3.246 - 3]Mp = 0.062Mp 

or 

IMFI < M p , okay. 

Note that from equilibrium of joint E, the top beam end moment at E2 is 
zero. 

Moment at B3: Applying the virtual work equation to the left-hand bottom 
beam B31l' in Fig. 5.61 (c), we have 

which gives 

or 
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Moment Ml'1.: Applying the virtual work equation to the equilibrium and 
geometry sets shown in Fig. 5.61 (e), we have 

3PLO = (MB2 )( -0) + (+O.557Mp)( +0) + (Md( -0) + (+Mp)( +0) 

+ (MK2 )( + 0) + (- Mp)( - 0), 

which gives the beam end moment: 

MI2 = -O.689Mp - MB2 + MK2 • 

Moment M B1: From the equilibrium of joint B shown in Fig. 5.61(f), we have 
the left column end moment: 

MBI = O.91Mp + MB2 . 

Moment M14: From the equilibrium of joint I shown in Fig. 5.61 (g), we have 
the middle column end moment: 

MI4 = 2.3llMp - MB2 + MK2 · 

Moment M K3 : From the equilibrium of joint K shown in Fig. 5.61(h), we 
have the right column end moment: 

MK3 = -1.5Mp + MK2 • 

The conditions that IMB21, IMK21, and IMui be less than Mp and IMK3 1, 
IMBII, and IMI41 be less than 3Mp lead to 

-Mp:S; MB2 :S;Mp 

-Mp:S; MK2 :S; Mp 

-Mp:S; -O.689Mp - MB2 + MK2 :s; Mp 

-3Mp :S; -O.91Mp + MB2 :s; 3Mp 

(5.11.34) 

(5.11.35) 

(5.11.36) 

(5.11.37) 

FIGURE 5.62. Moment diagram for failure mechanism (i) in Figure 5.59. 



5.12. Summary 321 

-3Mp ~ 2.311Mp - MB2 + MK2 ~ 3Mp 

- 3Mp ~ -1.5Mp + MK2 ~ 3Mp-

(5.11.38) 

(5.11.39) 

Inequalities (5.11.34) to (5.11.39) can be satisfied by choosing the redun­
dant moments MB2 = MK2 = O. The final bending moment diagram for fail­
ure mechanism (i) in Fig. 5.59 is shown in Fig. 5.62. With MB2 = MK2 = 0, the 
moment condition is satisfied everywhere in the frame. So the moment check 
is complete and the solution P = 1.082(Mp /L) is exact. 

5.11.3 Analysis Procedures for Distributed Loads 
Thus, in general, the procedure for dealing with distributed loads can be 
summarized as follows: 

i. Determine the "correct" collapse mechanism by the usual method of 
combining mechanisms, assuming that plastic hinges occur at midspan 
for those members carrying uniformly distributed loads. 

ii. Perform a moment check and determine the moments at the ends of the 
members and at the midspan in the loaded members. 

iii. Determine the maximum moments in the members carrying uniformly 
distributed loads and their respective locations. 

iv. Adjust the plastic hinges in the "correct" mechanism under (i) to the 
positions of maximum moments under (iii) and analyze the resulting 
mechanism by the work method. The corresponding value of Mp will then 
be the required value for the actual distributed loads. 

v. Perform a moment check for the adjusted mechanism. 

5.12 Summary 

Out of the two basic methods of plastic analysis and design, the equilib­
rium method was described in Chapter 4. The work method, based on the 
upper-bound theorem of limit analysis, was presented herein. Like the equi­
librium method, the work method consists of two stages of operation. In the 
first stage, a valid mechanism is assumed or obtained through a combination 
of independent mechanisms and the corresponding work equation is formed 
by equating the external work to internal dissipation of energy at the plastic 
hinge locations, which is then solved to determine the plastic limit load or the 
required plastic moment capacity of the structure. 

In the second stage, a moment check is performed to show that for the 
postulated mechanism, the moments everywhere in the structure shall not 
exceed the plastic moment capacities of the corresponding members. If the 
structure at collapse is statically determinate, then the moment check can be 
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performed by simple statics or the virtual work equation. However, diffi­
culties arise when the actual collapse mechanism is of the partial type, in 
which only a portion of the frame is statically determinate at collapse. To 
carry out a moment check for this kind of mechanism, it is a simple matter to 
construct a uniquely determined bending moment diagram for that part of 
the frame that is statically determinate at collapse, by the usual procedure 
and see whether the fully plastic moment is exceeded anywhere within this 
part of the distribution. This is followed by examining the remainder of the 
frame, in which the distribution of bending moment is not uniquely deter­
mined. To this end, the virtual work equation can be used conveniently to 
express the unknown moments in terms of the redundants, from which we 
can check and see whether there exists at least one set of values ofredundants 
such that the resulting moment diagram will not violate the plastic moment 
condition. Such an investigation may prove to be of great difficulty, if the 
noncollapse portion of the frame is highly redundant. The solution of the 
work equation is exact only when the plastic moment condition is not vio­
lated anywhere in the structure; otherwise the solution is unsafe, i.e., the 
computed plastic limit load is higher than the exact plastic limit load or the 
computed required plastic moment is lower than the exact required plastic 
moment. 

The work method is applied to the analysis and design of rectangular and 
gable frames. The application of the work method to gable frames involves 
complex geometrical calculations for determining the displacements in the 
direction of applied loads and rotation at plastic hinges. The methods of 
instantaneous center and the virtual work equation simplifies these geometri­
cal calculations and are used in examples of analysis and design of complex 
gable frames. 

The method of combining mechanisms is described and applied to the 
analysis and design of frames including gable and multistory and multibay 
frames. The basic concept underlying the method of combining mechanisms 
is that for a given frame and loading, every possible collapse mechanism can 
be obtained as some combination of a certain number of independent mecha­
nisms. Once these independent mechanisms are identified, the work equation 
for each combination can be obtained and solved to determine the corre­
sponding collapse load or required plastic moment. The basic aim in com­
bining mechanisms is to maximize the external work and minimize the inter­
nal dissipation of energy. In this way, the lowest possible loads or highest 
plastic moment is obtained. 

For structures having members with distributed loads, the exact location 
of the plastic hinge is not known in advance and its determination requires 
the use of differential calculus. However, the final solution for these structures 
is not very sensitive to the location of the plastic hinges, and in most practical 
cases, a safe solution with small error can be obtained by substituting the 
uniform load with a pattern of equivalent concentrated loads. 



Problems 323 

References 

5.1. Chen, W.F., "A Rapid Method of Computing Geometric Relations in Structural 
Analysis," Civil Engineering Magazine, ASCE, New York, May 1983. 

5.2. Drucker, D.C., Introduction to Mechanics of Deformable Solids, McGraw-Hill, 
New York, 1967. 

5.3. Hodge, P.G., Jr., Plastic Analysis of Structures, McGraw-Hill, New York, 
1959. 

5.4. Massonnet, C.E., and Save, M.A., Plastic Analysis and Design, Vol. 1, Beams and 
Frames, Ginn., New York, 1965. 

5.5. Neal, B.G., The Plastic Methods of Structural Analysis, third edition, Chapman 
and Hall, London, 1977. 

Problems 
5.1. The two-bay frame as shown in Fig. P5.l has uniform cross section with a full 

plastic moment of 100 units. Find the collapse load factor [16/9]. 

50 

6 

3 3 3 3 

FIGURE P5.1 

5.2. The two-story frame as shown in Fig. P5.2 has uniform section with a full plastic 
moment of 45 units. Determine the collapse load factor [2.00]. 
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FIGURE P5.2 

3 

3 

3 3 

5.3. Repeat Example 5.2 if the load of 10 units on the top beam is replaced by a load 
of (a) 15 units and (b) 20 units [2.00, 1.875]. 

5.4. A two-story frame has full plastic moment capacity of its members as shown in 
Fig. P5.4. Find the collapse load factor [19/9]. 

30 • 

35 
4.5 

20 ro 
. ~------~--~~--~--------------~ 

165 4.5 

6 6 

FIGURE P5.4 

5.5. The two-story two-bay frame shown in Fig. P5.5 has uniform section with a full 
plastic moment of 10 units. Find the collapse load factor [2.50]. 
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18 r f4 
~p-----------~----------~----------~----------~ 

~2 !4 
~ ~--------~--------~--------~------~ 

FIGURE P5.5 

5.6. Find the value of W to cause collapse of the two-story tow-bay frame as 
shown in Fig. P5.6. The vertical loads act as midpoints of the beams and 
the full plastic moments are marked in the figure against each member 
[3.60 Mp/l]. 

IW IW 

~~--~--~-'~--------~---r--~--~'--------~ Mp Mp 

Mp Mp 

-I 
FIGURE P5.6 

5.7. The frame as shown in Fig. P5.7 has uniform cross section with a full plastic 
moment Mp' Find the value of W that will just cause collapse [2.5 Mp/l]' 



326 S. Work Method 

!W 
~ r-----------------~ 

w !W ~w 
~ ~--------~--------+-------------------~ 

e 

I .. ~I 

FIGURE PS.7 

S.8. A three-story two-bay frame is subjected to vertical distributed and horizontal 
concentrated loads as shown in Fig. PS.8. The full plastic moments are marked 
in the figure against each member. Determine the load factor A [1.976]. 

12>-
2>-- 4 

2 2 

FIGURE PS.8 
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5.9. The two-bay frame shown in Fig. P5.9 is to be designed to have a uniform 
section with full plastic moment Mp. The loads W act at midspan of the beams. 
Construct an interaction diagram with axes Ph/Mp and WI/Mp from which the 
mode of collapse and the value of required Mp may be determined for all ratios 
of Ph/WI. Assume that P and Ware always positive. For given h = 3 units, I = 6 
units, P = 50 units, and W = 30 units, determine Mp [30]. 

p !W tw 
• 

I 
I- .e 

~I- ~I 
FIGURE P5.9 

5.10. For the two-story frame shown in Fig. P5.l0, the ratio offull plastic moment of 
columns to that of beams is 0.8. Investigate the plastic collapse behavior of the 
frame for various ratios of W to H. Present the results in graphical form. 

-.-·H 

~w 
£/2 

H 

2/2 

-mry;,- 777. 77T 

FIGURE P5.1O I- e/2 ~I· P/2 ~I 
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5.11. A gable frame is subjected to concentrated vertical and horizontal loads as 
shown in Fig. P5.11. Assuming that the frame has a uniform cross section, 
determine the required plastic moment Mp [30.75]. 

6 E,-

E 

5.12. A two-bay gable frame with fixed feet is subjected to concentrated loads as 
shown in Fig. PS.12. Determine the required plastic moment for W = 28 kips 
and H = 22.4 kips. Assume that the frame has uniform cross section [312 kip­
ft]. 

"'I~>------- 80· ------t· ... I~_----- 80· -----~·I· 

FIGURE P5.12 

5.13. Repeat Problem 5.12 for W = 37 kips and H = O. Compare the results with that 
from Problem 5.12 [423 kip-ft]. 
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5.14. A three-bay gable frame is subjected to the loading as shown in Fig. P5.14. The 
full plastic moments are marked in the figure against each member in terms of 
Mp. If P = 18.5 kips and H = 0, 
(a) find Mp by using kl' k2' and k3 proportional to the corresponding spans, i.e., 

kl = (80/60)2 = 1.78; k2 = (100/6W = 2.78; and k3 = 1. 
(b) revise kl> k2' and k3 to have simultaneous collapse in all three spans 

[370 kip-ft; 1.74,2.5, and 1]. 

FIGURE P5.14 

5.15. Determine the value of required Mp for the three-bay gable frame of Problem 
5.14, given that P = 14.0 kips and H = 28.0 kips. Use kl' k2' and K3 revised in 
Problem 5.14 [304 kip-ftJ. 

5.16. Repeat Problem 5.16 when the direction of horizontal load is reversed [301 
kip-ft]. 

5.17. A uniform beam of length L and full plastic moment Mp is simply supported at 
one end and fixed at the other end. A concentrated load Q is applied anywhere 
within the span. Use the work method to 
(a) find the smallest value of Mp that will carry the load Q in its most unfavor­

able position. 
(b) construct the bending moment diagram for the beam assuming that plastic 

hinges occur at the midspan and the fixed end. Find the greatest bending 
moment in this distribution for the load Q applied anywhere in the span, 
and hence determine a safe value of Mp. 

5.18. The maximum bending moment in a member of length L subjected to a uni­
formly distributed load W is given by 

in which M R , M L , and Me are the bending moments on the right-hand and 
left-hand ends and the central span of the beam, respectively. The maximum 
bending moment within the span occurs at a distance Xo to the left of the center 
bending moment within the span occurs at a distance Xo to the left of the 
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center of the beam. Thus, if ML, Me, and MR have been calculated in a 
moment check, the value of Xo and Mma. can be found from these general 
formulas. 

(i) Derive these general formulas using the virtual work equation. 
(ii) What is the value of Mma. when the value of Xo exceeds L/2 in magnitude? 

(iii) Apply these results to the particular portal frame example shown in Fig. 
5.44. 



6 
Estimate of Deflections 

6.1 Introduction 

In most structures, the primary concern is that the structure should have 
adequate strength. Deflections are mostly of secondary concern. The calcula­
tions of deflections are important, however, because excessive deflections 
may hinder the operation of moving parts or the closing of doors or they may 
cause the cracking of a plaster-finished ceiling. Also, deflection control is 
needed to limit the lateral deflection (drift) of tall buildings. In fact, the simple 
plastic theory is valid only when the deflections at the collapse load (P-d 
effect) are small. 

The hinge-by-hinge method of tracing the load-deflection curve and com­
puting deflections at collapse load was introduced in Chapter 1. For deter­
mining deflections at the collapse load by this method, a series of sequential 
elastic analyses is carried out. In this chapter, we will first describe and illus­
trate the slope-deflection and virtual work methods by which the deflections 
at collapse load can be determined in one-step analysis, provided that the 
location of the last plastic hinge is known in advance. Then, we will present 
the deflection theorem, which is very useful in the estimation of collapse 
deflections, if the location of the last plastic hinge is not known in advance. 
Finally, we will illustrate the computations of deflections for simple beams, 
simple frames, and multistory and multi bay frames by the use of the virtual 
work method [1.8, 1.10, 6.l]. 

6.2 Deflections at Collapse and Working Loads 

After the collapse mechanism is formed, the structure becomes unstable and 
its deflections are unrestricted as shown in the load-deflection curve in Fig. 
1.11 of a fixed-ended beam in Chapter 1. However, just before the formation 
of the plastic mechanism, elastic continuity still exists at the point of the last 
plastic hinge formation and the structure is stable. The deflections at this 
point can thus be determined by any method suitable for computing the 

331 
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deflections in the elastic range. However, to compute deflections at the col­
lapse load in a one-step analysis, the location of the last plastic hinge must be 
known in advance. 

The determination of exact deflection at working load may involve elastic­
plastic or elastic analysis and therefore require relatively more calculation 
steps. However, an upper limit on the deflection bw at working load can be 
determined from the deflection at collapse load by assuming a linear relation­
ship between the deflection and the load, i.e., by dividing the calculated defec­
tion be at collapse load by the factor A, that is, 

be 
bw = I' (6.2.1) 

The error in the estimated deflection at working load by this approach will 
increase with an increase in the number of statical indeterminacy. The proce­
dure, however, serves its purpose when the estimated deflections are less than 
the prescribed deflection limit. 

6.3 Slope Deflection Method 

The slope at an end of a beam subjected to end moments and lateral loads 
(Fig. 6.1) can be expressed as [1.8, 1.10] 

(6.3.1) 

in which MAB and MBA are end moments, Land El are, respectively, length 
and bending stiffness of the beam, A is lateral translation between the two 
ends of the beam, and (J~ is the slope at end A of a simply supported beam 
due to the given lateral loading on the segment. The end moments MAB and 
MBA at collapse load are determined from the plastic analysis. Note that in 
this method, moments and rotations are positive when clockwise and vice­
versa. The deflections are then determined by solving equations formed by 
using the compatibility condition as illustrated in the following examples. 

Example 6.3.1. The collapse mechanism and its corresponding bending mo­
ment diagram of the fixed-ended beam of Example 1.8.2 in Chapter 1 are 
shown in Fig. 6.2. Determine the vertical deflection at B at the collapse load 
by the slope deflection method. Assume the last plastic hinge to form, in turn, 
at A, B, and C. 

Solution: Last Hinge at A: For the last plastic hinge to form at A, (JA must be 
equal to zero. The angle (J A can also be expressed in terms of deflection at B 
by applying the slope-deflection equation to segment AB [Fig. 6.2(c)]. 

_ I bBA L/3 ( _ MBA) = 0 
(JA - (JA + L/3 + 3El MAB 2 (6.3.2) 
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6A ~ 6~ + ~ + 3~1 [MAe - M2BA 1 
l P2 

...... 

L 

~ p. 

~ ......... A _1_2 __ 

FIGURE 6.1. Sign convention and nomenclature for slope-deflection equation. 

where t5BA is the deflection at B corresponding to the last hinge at A. Since 
there is no later~J load on segment AB, ()~ = 0. So by substituting ()~ = 0, 
MAB = -Mp, and MBA = -Mp [Fig. 6.2(c)], we have 

t5BA L/3 ( M p) 
L/3 + 3El -Mp + T = 0, (6.3.3) 

which gives 
M L2 

t5 - p 
BA - 54El· (6.3.4) 

Last Hinge at B: For the last plastic hinge to form at B, we have the continu­
ity at B, that is, (}BA = (}BC. The slope-deflection equations of segments AB 
and Be [Fig. 6.2(d)] provide (}BA and (}BC' respectively, as 

() _ t5BB L/3 ( Mp) _ 3t5BB MpL 
BA - L/3 + 3El -Mp + T - L - 18El (6.3.5) 
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B 

(a) 

(b) 

(e) 

(d) 

I_ 2L/3 _I 

L ----------::::--) MCB = Mp 

OBC C:---~ 

(e) 

FIGURE 6.2. Deflection calculation of fixed-ended beam with concentrated load at the 
third point by slope-deflection method. 
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DBB 2L/3 ( Mp) 3DBB MpL 
f)Be = - 2L/3 + 3E1 Mp - T = - 2L + 9E1· (6.3.6) 

By equating f)BA and f)Be and simplifying, we have 

M L2 
~ - p 
UBB - 27E1· (6.3.7) 

Last Hinge at C: For this case, we must have f)e = O. The slope-deflection 
equation for segment CB [Fig. 6.2(e)] gives f)e as 

DBe 2L/3 ( M p) 0 
f)e = - 2L/3 + 3E1 Mp - T = , (6.3.8) 

which gives 

2 M L2 D - p 
Be-27EI· (6.3.9) 

Example 6.3.2. The collapse mechanism and the bending moment diagram 
for a fixed-ended beam of Example 4.4.1 in Chapter 4 are shown in Fig. 6.3. 
Determine the vertical deflection at midspan at the collapse load. Assume the 
last plastic hinge to form, in turn, at A and B. 

Solution: Last Hinge at A: For this case, we must have f)A = O. From the 
slope-deflection equation for segment AB [Fig. 6.3(c)], f)A' can be expressed 
as 

f DBA L/2 ( Mp) f)A=f)A+-+- -M +- =0 
L/2 3E1 p 2 

(6.3.10) 

where f)~ in this case is the end slope of a simply supported beam of length 
L/2 subjected to a uniformly distributed load w. Using w = 16Mp/L2 (Exam­
ple 4.4.1), f)~ can be expressed as 

(6.3.11) 

So Eq. (6.3.10) becomes 

(6.3.12) 

which gives 

(6.3.13) 

Last Hinge at B: For this case, we must have continuity at B, and that leads 
to f)BA = f)Be = O. Applying the slope-deflection equation to segment AB [Fig. 
6.3(d)], f)BA can be written as 

f) f)f DBB L/2 ( Mp) 
BA = B + L/2 + 3E1 - Mp + T = 0 (6.3.14) 
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fA~d 
14 L .\ 

(a) 

(b) 

(e) 

MAB = -Mp (--=-~----)--rl()BB 

MBA = -Mp 

(d) 

FIGURE 6.3. Deflection calculation of fixed-ended beam with uniformly distributed 
load by slope-deflection method. 
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in which e~ is 

Eq. (6.3.14) becomes 

which gives 

M L2 
b - P 

BB - 12EI' 

6.4 Dummy Load Method 

(6.3.15) 

(6.3.16) 

(6.3.17) 

In this method, the deflections can be obtained by the virtual work equation 
involving the integration of the product of two moment diagrams. One mo­
ment diagram is of the actual structure under given loads and the other is of 
an auxiliary structure under a dummy load. The integral is often conven 
iently evaluated by a graphical procedure. The derivation of the virtual work 
equation and the corresponding graphical procedure of integration are pre­
sented in the forthcoming. 

6.4.1 Virtual Work Equation 
The virtual work equation is derived by considering an auxiliary structure 
obtained from the actual structure by eliminating the last plastic hinge and 
replacing the rest of them by real frictionless hinges. A dummy unit load is 
applied to this structure at the point and in the direction of desired deflection. 
Let m be a set of internal moments in equilibrium with this unit load. 

Let b be the desired deflection and <I> be the set of internal deformations 
(curvatures) in the actual structure under the actual loads. Since the auxiliary 
structure differs from the actual structure only by nature of the hinges, the 
displacement b and the curvature <I> in the actual structure are also compati­
ble on the auxiliary structure. So 15 and <1>, and the unit load and the corre­
sponding moment m in the auxiliary structure, respectively, provide the com­
patible set and the equilibrium set in the auxiliary structure. The external and 
internal virtual work done by the equilibrium set in the auxiliary structure 
will thus be 

external virtual work: (1)15 = 15 

internal virtual work: f m<l> ds 

(6.4.1) 

(6.4.2) 
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in which ds is the distance along a member of the structure. Since we assume 
a elastic-perfectly plastic moment-curvature relationship, the members are 
fully elastic between the plastic hinges. The curvature <D in Eq. (6.4.2) can thus 
be replaced by M/El. Then by equating external virtual work to internal 
virtual work, we have 

() = f <Dmds = f ~mds (6.4.3) 

in which () = desired deflection; M = moments in the actual structure under 
actual loads; m = moments in the auxiliary structure due to the unit load at 
the point and direction of the desired deflection; ds = distance along the 
member; E = Young's modulus; and I = moment of inertia of cross section 
of the member. 

The integration in Eq. (6.4.3) is over the whole structure and is carried out 
through the intervals where all functions exist and are piecewise continuous. 
By defining limits at joints, concentrated loads, and hinges, discontinuities in 
the curvature functions are readily handled. 

6.4.2 Graphical Procedures 
If we have specific expressions for M and m, the deflection () can be obtained 
by substituting these expressions in Eq. (6.4.3) and carrying out the necessary 
integrations. However, in most cases, it is convenient to obtain this deflection 
() directly by feeding the coordinates of m and M diagrams into the algebraic 
expressions derived by integrating various shapes of moment diagram. Note 
that the m-diagram will always be linear since it corresponds to a concen­
trated unit load. 

For example, assume that both m and M diagrams of a structural member 
are linear as shown in Fig. 6.4(a). The value of this integral is in fact the 
volume of the three-dimensional figure shown and is 

{L Mmdx = ~[MA(2mA + mB) + MB(mA + 2mB)] (6.4.4) 

where mA' mB' M A, and MB are coordinates ofm- and M-diagrams as shown 
in Fig. 6.4(a). 

When the applied loads are distributed, the M -diagram is nonlinear. When 
the loads are uniformly distributed, the M-diagram is a second-degree para­
bola as shown in Figs. 6.4(b) and (c), the values of the integral for these two 
types of second-degree parabola are 

(6.4.5) 

and 

(6.4.6) 
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L 
eM-Diagram 

m,c + Ifm -{' 
1-o1_1-----...::L'-------+l_1 m-diagram 

L 

= l MK (mA + ms) 

mAC-----+-----]l ms 3 

L 

(b) 

L 

L-~ __ + -----.lIMK 

= J:... MK(3mA+ 5ms) 

---------J1 ms 12 
mAC + 

14 L 
-I 

(e) 

FIGURE 6.4(a, b, c). Graphical integration for various shapes of M-diagram. 
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l 
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TMAmB 

l 
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1MB ~~' l 

TMBmB 

:JmB 

{ ~ ~ 1mB 
~mB 

l 

{ 
~Mk ~~. 

1mB 
l 

{ ~Mk 
---- -- --

ma 

FIGURE 6.4(d). Volumetric formulas for integrating simple shapes of M and m 
diagrams. 

where Mk is shown in Fig. 6.4(b, c). Thus, Eqs. (6.4.4), (6.4.5), and (6.4.6) can be 
used to determine deflections of a structure directly without going through 
the actual integration process. Volumetric formulas for integrating several 
simple shapes of M and m diagrams are summarized in Fig. 6.4(d). 

The applications of the dummy load method to beams, simple frames, and 
multistory frames will be illustrated, respectively, in Sections 6.6, 6.7, and 6.8. 
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6.5 The Deflection Theorem 

As discussed in Sections 6.2 and 6.3, the deflection at collapse load is deter­
mined by assuming continuity at the last plastic hinge. However, the plastic 
analysis using either the equilibrium method or the work method provides us 
only the position of the plastic hinges. But it does not provide any informa­
tion regarding the sequence of formation of the hinges and thus the location 
of the last hinge. In the absence of this information, the deflection theorem 
assists in determining the deflection of a structure at its collapse load. It 
states that: If the deflections are calculated on the assumption that each 
hinge, in turn, is last to form, then the correct deflection at the collapes load 
is the maximum value obtained from various trials, and the corresponding 
hinge will in fact be the last to form in the collapse mechanism. 

This theorem is based on the reasoning that every solution computed by 
making an incorrect assumption may be obtained from the correct solu­
tion by simply applying a rigid body motion to the structure in a direction 
opposite to the collapse mechanism. 

For instance, consider the fixed-ended beam of Example 6.2.1, shown again 
in Fig. 6.5. If we assume that the last hinge is at section C (the right assump­
tion), then the deflections are shown in Fig. 6.5(b). However, if we assume 
that the last plastic hinge is at section B (the wrong assumption), a "kink" 
or mechanism angle that should have been formed at section B will be re­
moved and a negative slope discontinuity will be created at section C as 
shown in Fig. 6.5(c), where continuity should have existed. Note that the 
plastic moment condition will be satisfied only when we have negative slope 
at C. 

To obtain deflections of Fig. 6.5(c) from the deflections of Fig. 6.5(b) the 
beam must be given a motion shown in Fig. 6.5(d). This motion, however, is 
opposite to the failure mechanism of the beam. Therefore, it will reduce all 

t 
lP 
B 

I" L/3 
-I" 

c~ K:::: .~ 
'" Assumed Last Hinge 2L/3 

(a) (e) 

Assumed Last Hinge 

k:::_~ ~ 
(b) (d) 

FIGURE 6.5. Logic behind the deflection theorem. 
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the displacements and rotations. Similarly, it can be shown that the deflec­
tions obtained by assuming the last plastic hinge at A will be less than the 
correct ones. Thus, it follows that the displacements computed by making a 
wrong assumption regarding the last plastic hinge will always be less than the 
correct deflections. 

The theorem is very useful in the computation of deflections at collapse 
load. For example, by applying the deflection theorem to the deflections for 
these beams computed in Examples 6.3.1 and 6.3.2, the correct deflections for 
these beams at collapse loads are, respectively, chosen as 

2 M L2 o - p 
Be - 27 -----p;J (6.5.1) 

and 

M L2 s: _ P 
UBB - 12El' (6.5.2) 

Moreover, when deflections are being computed to ensure that the deflec­
tions at ultimate load are less than the permissible deflections, then the de­
flection theorem may be used to reduce the required number of trial calcula­
tions. For example, if the deflection from the first trial calculation is greater 
than the permissible deflection, then it is established that the correct deflec­
tion at ultimate load will be greater than the permissible deflection and no 
further trials are required. 

6.6 Simple Beams 

The dummy load method was presented in Section 6.4. Herein, we shall apply 
this method to two beam examples. 

Example 6.6.1. Redo Example 6.3.1 by the dummy load method. 

Solution: The collapse mechanism for the beam is shown in Fig. 6.6(a). Here­
in, we will calculate the vertical deflection at B by successively assuming the 
last hinge to form at A, B, and C. The correct deflection will be the largest 
value out of these three calculations (the deflection theorem). 

Last Hinge at A: The moment diagram (M-diagram) due to the applied load 
on the actual beam is shown in Fig. 6.6(b). Assume the last plastic hinge 
forms at A and apply a dummy unit load to the auxiliary structure at B in the 
vertical direction as shown in Fig. 6.6(c). The corresponding m-diagram is 
shown in Fig. 6.6(d). Using the M- and m-diagrams, the deflection at B corre­
sponding to the last hinge at A, OBA' can graphically be expressed as in Fig. 
6.6(e). Applying Eqs. (6.4.4) to these diagrams, OBA is reduced to 
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r c1 (8) 

L/3 2L/3 

(b) 

(e) 

L/3~ (d) 

+ (e) 

L/3[?::::....... 

L/3 2L/3 

FIGURE 6.6. Deflection calculation of fixed-ended beam with concentrated load at the 
third point by dummy load method. 

(6.6.1) 

Last Hinge at B: For this case, the auxiliary structure and the corresponding 
m-diagram are shown, respectively, in Fig. 6.6(f) and (g). Applying Eq. (6.4.4) 
to the diagram in, Fig. 6.6(h), bBB can be written as 

bBB = 6~I[ (~)(-Mp)GL) + (~)(Mp)(~L) 

+ GL )(Mp)(~L) + C~} -Mp)GL) ] (6.6.2) 

or 
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FIGURE 6.6 (cont.) 

M L2 
() - p 

BB - 27EI' 

( f) 

(9) 

(h) 

(i) 

(j) 

(k) 

(6.6.3) 

Last Hinge at C: The auxiliary structure and the m-diagram corresponding 
to this case are shown, respectively, in Fig. 6.6(i) and (j). Using M- and m­
diagrams, ()BC can graphically be expressed as shown in Fig. 6.6(k). Applying 
Eq. (6.4.4) to these diagrams, ()BC is reduced to 

()BC = 6~/C~)[ Mp(O - 2~) -Mp( - 4~ + 0) ] (6.6.4) 
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(a) 

(b) 

(c) 

(d) 

(e) 

(1) 

(9) 

(h) 

FIGURE 6.7. Deflection calculation of fixed-ended beam with uniformly distributed 
load by dummy load method. 
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or 
2 M L2 

~BC=--P-. 
27 E1 

(6.6.5) 

Using the deflection theorem, we can conclude that deflection at B is ~B = 
~BC as given by Eq. (6.6.5). Note that the results are the same as those in 
Example 6.3.1. 

Example 6.6.2. Redo Example 6.3.2 by the dummy load method. 

Solution: The collapse mechanism for the beam and the loading is shown in 
Fig. 6.7(a). The deflection at midspan will be determined by assuming the last 
plastic hinge to form first at A and then at B. 

Last Hinge at A or C: The M-diagram is shown in Fig. 6.7(b). Corresponding 
to the last plastic hinge at A, the auxiliary structure and the m-diagram are 
shown, respectively, in Figs. 6.7(c) and (d). Using the M- and m-diagrams, the 
deflection at B corresponding to the last plastic hinge at A, ~BA' can graphi­
cally be expressed in Fig. 6.7(e). Applying Eqs. (6.4.4) and (6.4.6) to these 
diagrams, we have 

(6.6.6) 

or 
t5BA = o. (6.6.7) 

Last Hinge at B: For this case, the auxiliary structure and the m-diagram are 
shown, respectively, in Figs. 6.7(f) and (g). Using the M- and m-diagrams, the 
deflection at B corresponding to the last hinge at B, ~BB' can graphically be 
expressed in Fig. 6.7(h). Applying Eqs. (6.4.4) to these diagrams, we have 

~BB = 2~i:) {(-Mp)(~) + (-Mp)(~)} + 21~~~)(2Mp)e~) (6.6.8) 
or 

M L2 
J: _ P 
UBB - 12E1' (6.6.9) 

Since ~BB > ~BA' we conclude that the deflection at B is ~B = ~BB as given by 
Eq. (6.6.9). The results are the same as those in Example 6.3.2. 

6.7 Simple Frames 

The dummy load method has been applied to simple beams in the previous 
section. Herein, we shall illustrate its use for simple frames. 

Example 6.7.1. The frame shown in Fig. 6.8 was analyzed previously in 
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+ 

(b) M - diagram 

FIGURE 6.8. Rectangular frame under vertical loads and the corresponding collapse 
moment diagram. 

Example 5.5.1 in Chapter 5 and its collapse moment diagram (M-diagram) is 
shown in Fig. 6.8. Determine the vertical deflection at C by the dummy load 
method. 

Solution: The plastic mechanism has plastic hinges at B, C, and E. We shall 
determine the vertical deflection at C by successively assuming the last hinge 
to form at C, B, and E. The lagrest of the three deflections gives the correct 
deflection (the deflection theorem). 

Last Hinge at C: The auxiliary structure with a vertical unit load at C and the 
corresponding m-diagram are shown, respectively, in Fig. 6.9(a) and (b). The 
deflection Dee can graphically be expressed as in Fig. 6.9(c). Applying Eq. 
(6.4.4) to these diagrams, Dee is reduced to 
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FIGURE 6.9. Auxiliary structure, m-diagram, and deflection bee of the frame of Fig. 
6.8(a) corresponding to the assumption of the last hinge at point C. 
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b = 10 X 123 [(-244)(0 + 230) + (488)(0 + ~O) + (488)(~0 + 13
0

) 1 
cc 6EI (20 20) (20) (10) + (422) 3 + 3 + (422) 3 + 0 + ( - 244) 3 + 0 

(6.7.1) 

or 

b 59.4 X 106 • 
CC = EI tn., (6.7.2) 

where the units of E and I are, respectively, ksi and in4. 

Last Hinge at E: The auxiliary structure and the m-diagram are shown, re­
spectively, in Figs. 6.10(a) and (b). Using the M- and m-diagrams, bCE can 
graphically be expressed as in Fig. 6.10(c). Applying Eq. (6.4.4) to these dia­
grams, bCE has the value 

bCE 

[~( -244)(20) + 10 {(488)( -10) + (422)( -20)} 1 
123 6 6 

EI 10 15 
+ 6 {(422)( -20 - 20) + (-244)( -40 - 10)} + 6( -244)( -40) 

(6.7.3) 

or 

30.8 X 106 . 

EI tn. (6.7.4) 

Last Hinge at B: For this case, the auxiliary structure and the m-diagram 
are shown, respectively, in Figs. 6.11(a) and (b) of Fig. 6.11. Using the m- and 
M-diagrams, bCB can graphically be expressed as in Fig. 6. 11 (c). Applying 
Eq. (6.4.4) to these diagrams, we have 

123 [15 10 ] bCB = EI 6(-244)(-20 - 10) + 6 {( -244)( -20) + (488)( -10)} 

(6.7.5) 

or 

.I: _ 31.6 X 106 . 
UCB - El tn. (6.7.6) 

Comparing bcc, bCE' and bCB' we conclude that the deflection at C is bc = bcc 
as given by Eq. (6.7.2) and the last hinge forms at C. 

Example 6.7.2. The frame in Fig. 6.12 has the same plastic moment capacity 
for all its members. Determine the collapse load P and the moment diagram 
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FIGURE 6.10. Auxiliary structure, m-diagram, and deflection ~CE of the frame of Fig. 
6.8(a) corresponding to the assumption of the last hinge at point E. 
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FIGURE 6.11. Auxiliary structure, m-diagram, and deflection DCB of the frame of Fig. 
6.8(a) corresponding to the assumption of the last hinge at point B. 
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O.4P 2 4 

r------------------------------, 

FIGURE 6.12. Rectangular 
frame with a horizontal and 
a vertical load. 

L 

5 

I- L L 

(M-diagram). Using the dummy load method, calculate the vertical deflection 
of point 3 and the horizontal deflection of point 4 at the collapse load. 

Solution: (A) Collapse Load and Moment Diagram: The frame has one re­
dundancy and three critical sections marked with crosses. The number of 
independent mechanisms are: 

Possible hinge locations = 3 
Number of redundancy = 1 

Independent mechanisms = 2 
Joint mechanisms = 0 

True independent mechanisms = 2 

The work equations for each independent mechanism as shown in Figs. 
6.13(a) and (b) are 

(a) PLO = Mp(O + 20 + 0), P = 4Mp/L (6.7.7) 

(b) OAPLO = Mp(O + 0), P = 5Mp/L. (6.7.8) 

Combining the two independent mechanisms, we have 

(a) PLO = 4MpO 
(b) O.4PLO = 2MpO 

1.4PLO = 6MpO 
Cancel hinge at 2 = - 2MpO 

(6.79) 

Since there are no more mechanisms to combine, we find that P = 2.857 
Mp/L is the lowest. This load probably is the correct answer. However, to be 
sure, we need to carry out a moment check. 

Moment Check: Only the moment at 2 is unknown and can be determined by 
the use of the virtual work equation for the equilibrium and geometry sets 
shown in Fig. 6.14: 
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O.4P 
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4 

FIGURE 6.13. Possible mechanisms of frame of Fig. 6.12: (a) beam mechanism, (b) 
panel mechanism, and (c) combined mechanism. 

2 3 4 

~ +29 
-....... 

(a) Equilibrium Set (b) Geometry Set 

FIGURE 6.14. Equilibrium and geometry set for determining M 2 : (a) equilibrium set 
and (b) geometry set. 

PL9 = M2(-B) + (+Mp)(+2B) + (-Mp)(-B). (6.7.10) 

Substituting P fromEq. (6.7.9) and simplifying, we have 

M2 = +0.143Mp • (6.7.11) 
The complete moment diagram (M-diagram) of the frame at the collapse is 

shown in Fig. 6.15 

(B) Deflections: The collapse mechanism [Fig. 6. 13(c)] has plastic hinges at 3 
and 4. Here, as in previous cases, we must determine the deflections by suc-
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5' 

FIGURE 6.15. Moment 
diagram (M-diagram) for 
frame of Fig. 6.12. 

cessively assuming the last hinge to form at 3 and 4. The correct solution 
corresponds to the largest deflection so obtained (deflecton theorem). 

Last Hinge at 3: For the vertical deflection at point 3, the m-diagram corre­
sponds to a unit vertical load applied to the auxiliary structure at point 3 as 
shown in Fig. 6. 16(a). The m-diagram is shown in Fig. 6.16(b). Using the 
M- and m-diagrams, the vertical deflection at 3, <53v , can be graphically ex­
pressed as in Fig. 6.16(c). Applying Eq. (6.4.4) to these graphs, <53v is reduced 
to 

or 

(6.7.12) 

As for the horizontal deflection at point 4, a horizontal unit load is applied 
to the auxiliary structure at point 4 in Fig. 6.17(a). The m-diagram is shown 
in Fig. 6.17(b). Using the M- and m-diagrams, the horizontal deflection <54h 

can be graphically expressed as in Fig. 6.17(c). Applying Eq. (6.4.4) to these 
diagrams, <54h is reduced to 

or 

(6.7.13) 



6.7. Simple Frames 355 

r 
2 3 4 

1 5 

1 /2t 1-o4t__------=2.=.L-------I_f 1/2 

(a) Last hinge at point 3 

2~~~~~~~~~~~~~~4 

(b) m - diagram 

2 3 

O.14~Mp Mp 

+ 
L 

I 
I 
I 
I 
I 
I 
I 
I 

L 

L 

~L/2 L/2~ 

(e) 

FIGURE 6.16. Auxiliary structure, m-diagram, and deflection b3v of the frame of Fig. 
6.12 corresponding to the assumption of the last hinge at point 3. 
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FIGURE 6.17. Auxiliary structure, m-diagram, and deflection <>4h of the frame of Fig. 
6.12 corresponding to the assumption of the last hinge at point 3. 

Last Hinge at 4: The auxiliary structure with a unit vertical load at point 3 
is shown in Fig. 6.18(a). The m-diagram is shown in Fig. 6.18(b). Combin­
ing M- and m-diagrams, C>3v can graphically be expressed as in Fig. 6.l9(c). 
Applying Eq. (6.4.4) to these diagrams, we have 

_ L [0 + (O.l43Mp )( -L + 0) + (O.l43Mp )( -L + 0) + (Mp) ( 0 - ~)l 
C>3v - 6E1 (L) 

+(Mp) 0-2" +(-Mp)(-L+O)+(-Mp)(-L+O)+O 

or 
c> _ 0.1 19MpL2 

3v - E1 (6.7.14) 
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FIGURE 6.18. Auxiliary structure, m-diagram, and deflection D3v of the frame of Fig. 
6.12 corresponding to the assumption of the last hinge at point 4. 
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FIGURE 6.19. Collapse mechanism for a two-story frame: 
a) two-story frame and 
b) collapse mechanism. 
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Since D3v is lower than that from the previous case by the deflection theorem, 
the previous case (last hinge at 3) is correct and therefore D3v and D4h are, 
respectively, given by Eqs. (6.7.12) and (6.7.13). 

6.8 Multi-Story and Multi-Bay Frames 

The calculations of deflections of multistory and multibay frames are more 
complicated. First, because, these frames are more likely to be redundant at 
the collapse state, which complicates the computation of moment diagrams 
of actual and auxiliary structures. Second, the collapse mechanism of such 
frames involves more plastic hinges, thus requiring either better intuition 
or more trials for selecting the correct last hinge. Herein, we shall use the 
dummy load method (virtual work method) to calculate the deflection of a 
two-story frame. 

Note that the calculations of deflections of high-rise frames are further 
complicated by the interaction of stability and inelasticity. Example calcula­
tions of these frames will therefore not be presented here. The computer­
based methods for analyzing such frames will be presented in Chapters 7 and 8. 

Example 6.8.1. A two-story frame is shown in Fig. 6.19(a). The collapse load 
is P = 2.128 Mp/l and its corresponding mechanism is shown in Fig. 6.19(b). 
Determine the horizontal deflection Dh5 of point 5 at collapse load, assuming 
the last plastic hinge forms at point 4. 

Solution: The use of the virtual work method needs the constructions of the 
M -diagram of the actual structure at collapse load and the m-diagram of the 
auxiliary structure under dummy unit load. The first step toward obtaining 
these moment diagrams is to examine the frame [Fig. 6.19(a)] and determine 
its redundancy at collapse [Fig. 6.19(b)]. The redundancy of the collapse 
mechanism and the auxiliary structure is: 

Redundancy in the original structure: X = 6 

No. of plastic hinges in the mechanism: M = 6 

Redundancy at collapse: I = X - (M - 1) = 1. 

The redundancy of the auxiliary struture [Fig. 6.21(b)] is also equal to 1. 
Since the collapse mechanism has a redundant, it is a partial collapse mecha­
nism. For constructing the M-diagram of this mechanism, take the moment 
at point 6A as redundant. The moments at points 1, 4, 5, 6C, 7, and 8 [Fig. 
6.19(b)] are known to be Mp and the moment at points 2A, 2B, 2C, 3, and 6B 
can be obtained by the use of the virtual work equation as follows. 

Moment at 3: Applying the virtual work equation to the equilibrium and 
geometry sets of beam 3-4-5 shown in Fig. 6.20(a), we have 

pl(} = M 3 ( -0) + M p(20) + (-Mp)( -0). 
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FIGURE 6.20. Computation of moments corresponding to the given mechanism by the 
virtual work method. 

Substituting the value of P = 2.128Mp /l, we have 

M3 = 0.872Mp. 

Moment at 2B: M 2B can be obtained by applying the virtual work equation 
to the equilibrium and geometry sets shown in Fig. 6.20(b) as 

O.9PUJ = (M2B )( -0) + (0.872Mp)(0) + (-Mp)( -0) + M6A(0), 

which gives 

M2B = Mp(0.872 + 1 - 0.9 x 2.128) + M6A = M6A - 0.043Mp' 
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FIGURE 6.21. Moment diagrams of actual and auxiliary frame: (a) actual frame (M­
diagram) and (b) auxiliary frame (m-diagram). 
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Moment at 2C: Since the moment diagram of member 2-6 is the same as that 
for member 3-5, the application of the virtual work equation at beam 2-6 
gives moment M2C equal to M3 = O.872Mp-

Moment at 2A: M2A is determined by considering the equilibrium of joint 2 
as [Fig. 6.20(c)] 

or 

M2A = M6A + O.829Mp-

Moment at 6B: M6B is determined by considering the equilibrium of joint 6 
as [Fig. 6.20(d)] 

M6B = M6A - Mp-

The bending moment diagram expressed in terms of M6A is shown in Fig. 
6.2I(a). 

The conditions that IM6AI, IM2BI, IM2AI, and IM6BI be less than Mp lead to 

(1) -Mp ~ M6A ~ Mp 

(2) -Mp ~ M2B ~ Mp or -Mp ~ (M6A - O.043Mp) ~ Mp 

or -O.957Mp ~ M6A ~ 1.043Mp 

(3) -Mp ~ M2A ~ Mp or -Mp ~ (M6A + O.829Mp) ~ Mp 

or -1.829Mp ~ M6A ~ 0.171Mp 

(4) -Mp ~ M6B ~ Mp or -Mp ~ (M6A - Mp) ~ Mp 

or 0 ~ M6A ~ 2Mp-

The four inequalities (6.8.1) to (6.8.4) can be expressed as 

o ~ M6A ~ O.I7IMp • 

(6.8.1) 

(6.8.2) 

(6.8.3) 

(6.8.4) 

(6.8.5) 

The inequality (6.8.5) implies that M6A can be assigned any value between 
o and 0.17IMp- For simplicity, we take 

It follows that 

M6A = O. 

M2B = M6A - O.043Mp = -O.043Mp 

M2A = M6A + O.829Mp = O.829Mp 

M6B = M6A - Mp = -Mp-

Next, the auxiliary structure [Fig. 6.2I(b)] is obtained by assuming con­
tinuity at the plastic hinge location formed last (point 4) and by replacing the 
rest of the plastic hinges by real hinges and then applying a unit load at point 
5 in the horizontal direction (location and direction of the desired deflection). 
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FIGURE 6.22. Graphical integration for determining ~h5 horizontal deflection of point 
5 of the frame of Fig. 6.19(a). 
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This auxiliary frame has one redundant. To simplify its m-diagram, the re­
dundant is eliminated by releasing an axial restraint in segment 8-6. The 
resulting moment diagram is shown in Fig. 6.21(b). Now the deflection c5h5 

can graphically be expressed as in Fig. 6.22. Applying Eq. (6.4.4) to these 
diagrams, we have 

MI 
c5h5 = 6;/ [(0.872)(2 x 21 + I) + (1)(21 + 21) + (1)(21 + 0) + (-1)(0 + I) 

+ ( - 0.043)(21 + 21) + (0.872)(2 x 21 + I) 
+ (-1)(0 + I) + (0.829)(21 + O)J, 

which gives 

M 12 
c5h5 = 14.206 6~/ . (6.8.6) 

Note that the above value of c5h5 is not exact, because a convenient value of 
M6A = 0 was chosen. The exact value of M6A is 0.069Mp' Using this exact 
solution [Fig. 6.21(a)), we obtain the exact value of c5h5 as 

M 12 
c5h5 = 14.626 6~/ . 

The approximate solution of c5h5 has an error of about 2.9%. 

6.9 Rotational Capacity Requirement 

The plastic design considers the reserve strength of structures by allowing 
redistribution of moments. This process of redistribution of moments is pos­
sible only if the first developed plastic hinges are capable of going through 
the necessary rotations without much loss in moment capacity while addi­
tional hinges are being developed elsewhere in the structure. The excessive 
rotation of these hinges may cause local or lateral buckling of the members. 
In the plastic design, it is therefore of great interest to determine the required 
rotation capacity of hinges in structures. Once the moment diagram and 
deflection at collapse load are known, the calculation of the required hinge 
rotation capacities (also known as hinge angles) is rather simple and straight­
forward. The calculated hinge angles must not exceed the rotation capacity 
of the section [6.1, 6.2, 6.3, 6.4]. 

In the multistory frames, the hinge angles computed on the basis of the 
load determined from the first-order analysis are sometimes very large. How­
ever, the second-order analysis, which is more appropriate for such frames, 
mostly gives a significantly lower load-carrying capacity corresponding to 
which hinge angles are much smaller than those necessary to develop a com­
plete mechanism. Thus, the rotation capacity requirements for the members 
of these frames will be less strict than those computed by using the loads 
obtained from the first-order analysis. 
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FIGURE 6.23. Required rotation capacity for a two-bay gable frame (H = hinge angle). 

For some structures, the calculated hinge angle required to develop a 
mechanism is very large, thus putting a limitation on the design. However, 
the hinge rotation required for the next to last plastic hinge to form is a 
fraction of that required at first to develop the complete mechanism, but the 
load corresponding to the formation of the next to last plastic hinge is almost 
the same as that at the collapse (Fig. 6.23). Such structures are therefore 
appropriate for the plastic design. But their load factor will be slightly less, 
about 2% for the two-bay gable frame shown in the inset of Fig. 6.23, than 
the one determined by the plastic analysis. 

For carrying out the plastic analysis for design of structures, LRFD re­
quires hinge rotation capacity of three times the elastic rotation capacity. In 
areas of high seismicity, the required rotation capacity is 7 to 9 times the 
elastic rotation capacity (page 6-175 of the LRFD specifications). 
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Example 6.9.1. Determine the required rotation capacity of the fixed-ended 
beam with a concentrated load at the one-third span [Fig. 6.2(a)]. Its collapse 
moment diagram is shown in Fig. 6.2(b) and the vertical deflection at point B 
at collapse load was calculated previously in Example 6.3.l. 

Solution: The correct deflection bB is the largest of the three deflections calcu­
lated in Example 6.3.1, i.e., 

2 M L2 
bB = bBC = --p-. 

27 E1 
(6.9.1) 

At A, the hinge angle HA is determined by applying Eq. (6.3.1) to segment AB 
[Fig. 6.2(c)] as 

, L\ 3/L ( 1) HA = e A = e A + - + - MAB - - MBA 
3/L 3E1 2 

(6.9.2) 

where 

Thus 

2 MpL MpL 1 MpL 
HA = gEl - 18E1 = 6El· (6.9.3) 

Similarly, at C [Fig. 6.2(e)], we have 

__ ~ MpU_1_ 2L/3 M -M 2 _ 
Hc - 27 E1 2L/3 + 3E1 (p p/ ) - o. (6.9.4) 

This confirms that C is the last hinge to form. And at C, the rotation capacity 
required to develop the collapse mechanism is theoretically zero. At B, the 
hinge angle H B is 

(6.9.5) 

where HBA and HBC can be written from Fig. 6.2(d). Substitution of HBA and 
HBC in Eq. (6.9.5) and simplification lead to 

1 MpL 
HB =6El· (6.9.6) 

Note that the rotation capacity requirement depends on the structure 
geometry and loading type. For example, if the fixed-ended beam is subjected 
to a concentrated load at its midspan, the rotation capacity requirement for 
all hinges is theoretically zero, because all plastic hinges form simultaneously. 
However, if the fixed-ended beam is subjected to a uniformly distributed 
load, the required rotation capacity is the same as that of concentrated load 
at one-third of the span. 

Example 6.9.2. The rectangular frame shown in Fig. 6.12 was analyzed in 
Example 6.7.2. The collapse mechanism has hinges at points 3 and 4. The 
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FIGURE 6.24. Hinge rotation requirement at point 4 of the frame shown in Fig. 6.12. 

moment diagram is shown in Fig. 6.15. The vertical deflection of points 3 
and the horizontal deflection of point 4 are, respectively, calculated as (j3v = 
O.262MpL2jEI and (j4h = O.524MpL2jEI. Determine the hinge rotations at 
plastic hinges. 

Solution: The rotation of the plastic hinge at 4 can be expressed as 

H4 = H43 - H45 

where H43 and H45 are determined by applying Eq. (6.3.1) to segments 3-4 
and 4-5 in Fig. 6.24. H4 thus becomes 

MpL21 L ( Mp) 
H4 = -O.262EI L + 3EI Mp - 2"" 

MpL21 L 
+ O.524EIL + 3EI(-Mp -O) 

or 

Since the plastic hinge at 3 is the last to form, the required rotation capac­
ity at this point is zero. 
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6.10 Examples 

In this section, we will present three frame examples. In the "first example, we 
use the slope deflection method for deflection calculation. We also determine 
the required rotation capacity and the increase in the required moment 
capacity of the frame due to the P-tl effect. In the second and third examples, 
we calculate deflections by the dummy load method. 

Example 6.10.1. A rectangular frame shown in Figs. 6.25(a) is analyzed and 
its collapse load is found to be P = (80/11)Mp /L. The corresponding collapse 
mechanism and moment diagram are shown, respectively, in Figs. 6.25(b) and 
(c). Determine 

(a) the vertical deflection of point 3 (<>v3) and the horizontal deflection of 
point 4 (<>h4) at collapse by the slope-deflection method. 

(b) the required rotation capacity of the frame. 
(c) the precentage increase in the required moment capacity of the frame due 

to the P-tl effect. 

Solution: (a) Deflection: To determine <>v3 and <>h4' we need two equations. 
One is obtained by the use of the continuity condition at point 2, i.e., (J2l = 
(J23 (Fig. 6.26). The second is by the use of the continuity condition at a point 
where the last plastic hinge has just formed. Since we do not know in advance 
whether the last plastic hinge forms at point 3 or 4, we calculate two sets of 
deflections and select the larger one because of the deflection theorem. 

The continuity condition at point 2 is obtained by applying the slope­
deflection equation (6.3.1) to segments 2-1 and 2-3 (Fig. 6.26), and then by 
equating slopes of these two segments, i.e., e2l = (J23. Considering segment 
2-1, we have 

or 

(6.10.1) 

Now, considering segment 2-3, we have 

<>v3 L/2 (7 1) 
(J23 = 0 + L/2 + 3EI -TIMp + 2,Mp 

or 

(6.10.2) 

Equating (J2l and (J23' we have 
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FIGURE 6.25. A rectangular frame, its failure mechanism, and corresponding moment 
diagram. 
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FIGURE 6.26. Free body diagrams of the frame of Fig. 6.26. 

which gives 

(6.10.3) 

This is one of the two desired relationships between <>v3 and <>h4. The second 
relationship depends on whether the last plastic hinge forms at point 3 or 
point 4. 

Last Hinge at Point 3: If the last plastic hinge forms at point 3, then we have 
the continuity condition 032 = 034 (Fig. 6.26). Applying the slope-deflection 
equation (6.3.1) to segment 3-2, 032 can be expressed as 

<>v3 L/2 ( 7) 
032 = 0 + L/2 + 3E1 -Mp + 22Mp 

or 

o _ 2<>v3 5 MpL 
32-1:- 44EI· (6.10.4) 

Similarly, for segment 3-4, we have 

<>v3 L/2 ( Mp) 
(}34 = 0 - L/2 + 3E1 Mp - T 

or 

(6.10.5) 

Equating 032 and 034, we have 

2<>v3 5 MpL 2<>v3 1 MpL 
1:- 44EI= -1:+ 12EI' 
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which gives 

13 MpL2 
bV3 = 264~' 

Substituting this bV3 in Eq. (6.10.3), we obtain 

1 M L2 
15 - p 
h4- -66~' 

(6.10.6) 

(6.10.7) 

Last Hinge at Point 4: Applying the slope-deflection equation (6.3.1) to seg­
ment 4-3, (}43 can be expressed as 

bV3 L/2 ( Mp) 
(}43 = 0 - L/2 + 3El Mp- T 

or 

Similarly, for segment 4-5, we have 

bh4 L/2 
(}45 = 0 + L/2 + 3El( -Mp - 0) 

or 

() = 2bh4 _ ! MpL 
45 L 6 El . 

Equating (}43 and (}45' we have 

2bv3 1 MpL 2bh4 1 MpL 
-y+ 12EI=Y-6EI 

1 M L2 
15M + bV3 ="8 ;1 . 

Solving the simultaneous Eqs. (6.10.3) and (6.10.10), we obtain 

25 MpU 
bV3 = 264 ~ 

1 M L2 
bh4 =--p-. 

33 El 

(6.10.8) 

(6.10.9) 

(6.10.10) 

(6.10.11) 

(6.10.12) 

Since bV3 and bh4 given by Eqs. (6.10.11) and (6.10.12) are larger than those 
given by Eqs. (6.10.6) and (6.10.7), by the deflection theorem, the bV3 and bh4 

given by Eqs. (6.10.11) and (6.10.12) are the correct solutions and the hinge is 
formed last at point 4. 

Recall that in Example 6.7.2, the geometry of the frame (Fig. 6.12) is identi­
cal to the present example. However, the sequence of plastic hinge formation 
is different. This difference is due to the fact that the ratio of the vertical to 
horizontal loads is not the same in these two examples. 
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(b) Required Rotation Capacity: The mechanism has two plastic hinges. At 
point 4, the plastic hinge forms last, so there is no need of rotation capacity. 
The hinge rotation at point 3 can be expressed as 

(6.10.13) 

Substituting ()32 and ()34' respectively, from Eq. (6.10.4) and Eq. (6.10.5), we 
have 

2<5v3 5 MpL 2<5v3 1 MpL 
H3 =Y- 44 m+Y-12m' 

Substituting <5v3 from Eq. (6.10.11) and simplifying, we obtain 

2 MpL 
H3 =TIm' (6.10.14) 

The required rotation capacity of the member 2-4, at least at point 3, should 
be H3 = (2/11)/(MpL/EI) 

(c) P-!l Moment: In the frame, the maximum increase in moment due to the 
P-!l effect is at point 4 and is obtained approximately as follows. By consider­
ing the equilibrium of segments 4-5 and 3-4, along with the moment diagram 
of the frame [Fig. 6.25(c)], the first-order vertical force at point 5 is obtained as 

Mp 
Vs =4 y . 

Now, the P-!l moment at point 4 is 

Mpt .. = VS <5h4 • 

(6.10.15) 

(6.10.16) 

Substituting <5h4 from Eq. (6.10.12) and Vs from Eq. (6.10.15), we have 

( Mp) (1 MpL2) 
M pd = 4y 33----m- (6.10.17) 

and 

Mpd = ~ MpL = ~(Fy)(~)L. 
Mp 33 EI 33 E I 

(6.10.18) 

Using Young's modulus E = 29,000 ksi and yield stress Fy = 36 ksi and 
taking the shape factor f = Z/S at an average value of 1.14, we have 

Mpd = ~(~)(1.14)(~) = 1.72 x 1O-4(~). 
Mp 33 29,000 d/2 d/2 

Taking L as 20 ft and the depth of the member d as 14 in., the percentage 
increase in moment becomes: 

( 20 x 12) % increase in moment = 1.72 x 10-4 x 7 = 0.59%. 
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FIGURE 6.27. A gable frame, its failure mechanism, and corresponding moment dia­
gram (M-diagram). 
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The collapse load based on the first-order plastic analysis, P = (SO/11)/ 
(Mp/L), has been reduced at least by 0.59%. 

Example 6.10.2. The gable frame shown in Fig. 6.27(a) is analyzed and its 
collapse mechanism and moment diagram are shown, respectively, in Figs. 
6.27(b) and (c). Determine the vertical deflection of the ridge of this frame 
(point D) at collapse load by the dummy load method. 

Solution: The collapse mechanism [Fig. 6.27(b)] has plastic hinges at C and 
E. Since the sequence of the plastic hinge formation is not known in advance, 
the deflection at collapse load can only be determined by successively assum­
ing the last hinge to be at C and E. The correct deflection is the larger one 
according to the deflection theorem. 

Last Hinge at C: For this case, the m-diagram is obtained by applying a unit 
vertical load at point D of the auxiliary structure (obtianed by removing the 
hinge from point C and replacing the plastic hinge at point E by a real 
frictionless hinge). The auxiliary structure and its m-diagram are shown in 
Fig. 6.2S(a). Combining the M- and m-diagrams, ~vD is graphically expressed 
as in Fig. 6.2S(b). Applying Eqs. (6.4.4) and (6.4.5) to these diagrams, we 
obtain 

or 

or 

E1~vD =! f L[(-0.06Mp)(0 +~) + 0.S3Mp(~) + oJ 
1 J5 (L) + 3 T L(0.526Mp) 0 + 4 

+! f L[(0.S3Mp)(~ + 0) + (-Mp)( 0 +~) J 
+ ~ f L(0.526Mp)(~ + 0) J 

M L2 
~vD = ;1 [0.03727 + 0.02450 + 0.01537 + 0.02450] 

(6.10.19) 

Last Hinge at E: For this case, the auxiliary structure with a unit vertical 
load at D and its m-diagram are shown in Fig. 6.29(a). The m- and M-diagrams 
combined to express ~vD graphically are shown in Fig. 6.29(b). Applying Eqs. 
(6.4.4) and (6.4.5) to these diagrams, we obtain 

1L 
E1 ~vD = "6 3 [0 + ( - 0.06M p)( - 0.232L + 0)] 

+! f L[( -0.06Mp)( -0.232L + 0.047L) 
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FIGURE 6.28. Auxiliary structure, m-diagram, and graphical representation of integral 

for 8VD corresponding to the last hinge at point C. 

+ (0.83Mp)(0.094L ~ 0.1 16L)] 

LfiL 
+ "3-4-[(0.526Mp)(-O.l16L + 0.047L)] 

IJ5 
+ 6 4 L [0.83Mp(0.094L -0.116L)+( -Mp)( -0.232L +0.047L)] 

1 J5L 
+"3 -4-[(0.526Mp)(0.047L - 0.116L)] 

lL 
+ 63[(-Mp)(-0.232L + 0) + 0)] 
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FIGURE 6.29. Auxiliary structure, m-diagram, and graphical representation of integral 
for bVD corresponding to the last hinge at point E. 

or 

bVD = M;~2 [0.00077 - 0.00067 - 0.00676 + 0.01554 - 0.00676 + 0.01289] 

or 

(6.10.20) 
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FIGURE 6.30. Computation of deflection for Example 6.10.3: 
(a) frame and its collapse mechanism; 
(b) M-diagram; 
(c) auxiliary structure & m-diagram for the last hinge at point B; 
(d) graphical representation of integral for (jhD for the last hinge at point B; 
(e) auxiliary structure & m-diagram for the last hinge at point A; and 
(I) graphical representation of integral for (jhD for the last hinge at point A. 



378 6. Estimate of Deflections 

Since the deflection bVD for the last hinge at C (Eq. 6.10.19) is higher than 
that of the last hinge at E (Eq. 6.10.20), the correct solution for bVD is given by 
Eq. (6.10.19). 

Example 6.10.3. A frame with its collapse mechanism is shown in Fig. 6.30(a). 
Its corresponding M-diagram is given in Fig. 6.30(b). Determine the horizon­
tal deflection at point D by the dummy load method. 

Solution: Assuming in turn the last hinge to form at points B and A in Fig. 
6.30(a), we make two deflection calculations in the following. 

Last Hinge at B: For this case, the m-diagram is obtained by applying a unit 
horizontal load at point D of the auxiliary structure. The auxiliary structure 
and m-diagram are shown in Fig. 6.30(c). Combining the M- and m-diagrams, 
bhD is graphically expressed in Fig. 6.30(d). Applying Eq. (6.4.4) to these dia­
grams, we have 

or 

(6.10.21) 

Last Hinge at A: For this case, the auxiliary structure with a unit horizontal 
load at D and its m-diagram are shown in Fig. 6.30(e). This m-diagram is 
combined with the M-diagram to express bhD graphically in Fig. 6.30(f). 
Applying Eq. (6.4.4) to these diagrams, we have 

1 
ElbhD = 6L[( -Mp)( -2L + 0) + Mp(O - L)] 

1 
+ 6L[MiO + L) + 0] 

or 

(6.10.22) 

Since the deflection bhD with the last hinge at B (Eq. 6.10.21) is greater than 
that with the last hinge at A (Eq. 6.10.22), the correct solution is Eq. (6.10.21). 

6.11 Summary 

The computation of deflections of plastically designed structures must be 
made to check that the deflections at the plastic limit load do not exceed 
certain specified limits. The second-order moments introduced by the lateral 
deflection of the frames, if significant, must be accunted for in the design. 
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Also, it must be ensured that the developed plastic hinges are capable of 
going through the rotations necessary to form the collapse mechanism with­
out significant loss in their moment-carrying capacity. 

The deflections at the plastic limit load can be estimated by performing a 
series of sequential elastic analyses. But in order to compute plastic limit 
deflections in a one-step analysis, the location of the last plastic hinge to form 
must be known in advance. In the absence of this information, the deflections 
are calculated by assuming that each hinge, in turn, is the last to form. Then, 
by the deflection theorem, the maximum value obtained from various trials is 
the correct deflection. 

The plastic limit deflections can be determined by any method suitable for 
computing the deflections in the elastic range. In this chapter, the slope­
deflection equation method and dummy load or virtual work equation 
method are described and applied to determine the plastic limit displace­
ments, the second-order moments introduced by lateral drift of frames, and 
the required rotation capacity of plastic hinges of simple beams, simple 
frames, and multistory and multibay frames. 

In the slope-deflection equation method, the slopes ofthe members are first 
expressed in terms of their deflections, end moments, and lateral loads. The 
deflections are then determined by solving equations formed by using com­
patibility conditions. The method usually involves solution of simultaneous 
equations. The dummy load or virtual work equation method does not re­
quire the solution of simultaneous equations. In this mehtod, deflections are 
obtained from equations formed by using the virtual work equation. The 
computational procedure, however, involves an evaluation of an integral of 
the product of two moment diagrams over the structure. One moment dia­
gram is of the actual structure subjected to actual applied loads. The other is 
of an auxiliary structure subjected to a unit dummy load. The auxiliary struc­
ture is obtained from the actual structure by eliminating the last plastic hinge 
and replacing the rest of them by real frictionless hinges. A unit dummy load 
is applied to this structure at the point and in the direction of the desired 
deflection. The integration of the product of these two moment diagrams is 
obtained conveniently be substituting the coordinates of these two diagrams 
into the algebraic expressions derived by integrating various shapes of 
moment diagrams. 
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partial fulfillment of the requirements for the degree of Doctor of Philosophy, 
1958. 

Problems 
6.1. Determine the maximum vertical deflection of the two-span continuous beam 

shown in Fig. 4.2(a) at plastic limit load by the dummy load method. 

6.2. Determine the required rotation capacity of plastic hinges developed at the 
plastic limit load of the two-span continuous beam of Problem 6.1. 

6.3. Repeat Problem 6.1 for a two-span continuous beam shown in Fig. 4.8(a). 

6.4. Repeat Problem 6.2 for the two-span continuous beam of Problem 6.3. 

6.5. Repeat Problem 6.1 for a two-span continuous beam shown in Fig. 4.9(a). 

6.6. Repeat Problem 6.2 for the two-span continuous beam of Problem 6.5. 

6.7. Repeat Problem 6.1 for a two-span continuous beam shown in Fig. 5.2(a). 

6.8. Repeat Problem 6.2 for the two-span continuous beam of Problem 6.7. 

6.9. Repeat Problem 6.1 for a three-span continuous beam shown in Fig. 5.4(a). 

6.10. Repeat Problem 6.2 for the three-span continuous beam of Problem 6.9. 

6.11. The moment diagram for the gable frame of Fig. 4.32(a) is shown in Fig. 4.34. 
Determine the vertical deflection of point C and the horizontal deflection of 
point D by the dummy load method. 

6.12. Compute the required rotation capacity of plastic hinges developed at the plas­
tic limit load of the gable frame of Pro blem 6.1l. 

6.13. Calculate the vertical deflection of point C and horizontal deflection of point D 
of the rectangular frame of Fig. 5.3(a) by the dummy load method. 

6.14. Repeat Problem 6.12 for the frame of Problem 6.13. 

6.15. Determine the vertical deflection of point D and the horizontal deflection of 
point E of the rectangular frame of Fig. 5.25 by the dummy load method. 

6.16. Repeat Problem 6.12 for the frame of Problem 6.15. 

6.17. A fixed-based rectangular frame with span 2L and height L is subjected to a 
horizontal load P acting to the right at the top of the left column and a concen­
trated load P at the center of the girder. Calculate the vertical deflection at the 
center of the girder and the horizontal deflection of the top of the frame by the 
dummy load method: 

( 3Mp 2/ ) Pu = L' bv = bh = MpL 3E1 . 

6.18. Repeat Problem 6.12 for the frame of Problem 6.17. 

6.19. Estimate the horizontal deflection of point E of the two-story frame of Fig. 5.29 
by the dummy load method. Assume that the last plastic hinge forms at point D. 

6.20. Repeat Problem 6.12 for the frame of Problem 6.19. 



7 
First-Order Hinge-by-Hinge Analysis 

7.1 Introduction 

As described in Chapter 1, the first-order hinge-by-hinge analysis is a series 
of elastic analyses. First, an elastic analysis is performed on the original 
structure. When the maximum moment in the structure reaches the plastic 
moment capacity of a member, a plastic hinge is formed at the point of 
maximum moment. For further loading, the plastic hinge in this member is 
replaced by a real hinge leading to a new but simpler structure. Next, an 
elastic analysis is again performed on this new structure. The process of 
performing an elastic analysis on the current structure to locate a new plastic 
hinge and then obtaining a newer structure by replacing this new plastic 
hinge with a real hinge is continued until a sufficient number of plastic hinges 
are formed to transform the structure into a failure mechanism. 

In Chapter 1, the hinge-by-hinge analysis procedure was carried out man­
ually for a fixed-ended beam to obtain its load-deflection curve and plastic 
collapse load. Herein, we shall computerize this hinge-by-hinge analysis pro­
cedure so that it can be conveniently applied to larger structures such as 
multistory building frames. In this chapter, we will focus our attention on the 
first-order analysis and ignore the second-order stability effects. Without sta­
bility effects, the first-order analysis will obviously overestimate the actual 
load-carrying capacity, but the difference will be small for most low-rise 
building frames. 

Note that in Chapters 4 and 5 the moment-curvature behavior of members 
was assumed to be rigid-perfectly plastic, and lower and upper bounds on 
the plastic collapse load were determined by the plastic limit analysis. Herein, 
the moment-curvature relationship is taken to be elastic-perfectly plastic, 
and the exact plastic collapse load along with its load-deflection curve is 
obtained for a given structure. 

Since the matrix method is more appropriate for computerized structural 
analysis, herein we will first derive the member stiffness matrix for the follow­
ing five cases: (1) a member without hinges; (2) a member with one end hinge; 
(3) a member with two end hinges; (4) a member with one intermediate hinge 
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382 7. First-Order Hinge-by-Hinge Analysis 

and; (5) a member with one intermediate and one end hinge. Then we will 
describe the numerical procedure used for the development of a computer 
program. Finally, we will present results of three illustrative examples. The 
first example shows the step-by-step computations that have taken place in 
the computer for a fixed-ended beam. The readers who are interested in 
learning only about how to run the computer program may skip the first 
example and directly go to Examples 7.2 and 7.3. The second example com­
pares the computer solution of a multistory and multibay frame with the 
plastic limit analysis solution described in Chapter 4. The third example 
compares the deflections of a frame with those computed by the approximate 
methods described in Chapter 6. In this last example we also compute the 
required rotation capacity. In the appendix, four additional examples using 
the first-order plastic analysis (FOPA) computer program are presented. 

7.2 Stiffness Matrix of Elastic Beam Element 

Considering a beam element subjected to end moments MA and MB as shown 
in Fig. 7.1(a), and using the free body diagram shown in Fig. 7.1(b), the 
external moment at an arbitrary section x can be expressed as 

MA+MB 
Mext = MA - L x. (7.2.1) 

Equating this external moment to internal moment Mint = -Ely" and re­
arranging, we obtain 

(7.2.2) 

Integrating once and twice to obtain, respectively, the slope and deflection of 
the member as 

I __ MA MA + MB x2 C 
Y - EI x + ElL 2 + 1 

(7.2.3) 

MA x2 MA + MB x2 

y=-EI2+ ElL 6+C1X+C2 (7.2.4) 

Using the boundary conditions y(O) = y(L) = 0, we can determine the inte­
gration constants C1 and C2 • The boundary condition y(O) = 0 gives 

C2 = 0 (7.2.5) 

and the boundary condition y(L) = 0 gives 

MAL MA + MBL 
C1 = EI"2 - EI 6' (7.2.6) 
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(a) Element 

~ __ \Mact 

1. fTlAf-----,....---~· 

(b) Free Body 

FIGURE 7.1. Beam element subjected to end moments: (a) element and (b) free body. 

Substituting the value of C1 into Eq. (7.2.3), we have 

, MA MA + MBX2 2MAL - MBL 
y = - EI x + EIL "2 + 6EI (7.2.7) 

Since 9A = y'(O) and 9B = y'(L), we have 

MAL MBL 
9A = EI}- EI"6 (7.2.8) 

MAL MBL 
9B = - EI "6 + EI}' (7.2.9) 

Inverting Eqs. (7.2.8) and (7.2.9), we obtain 
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MA + MB v=----
L 

(a) Slope - Deflection 

r2 ,d2 r5 ,d5 

~l~ ............... _~~~~J~"d' 
r3 ' d3 

(b) Matrix 

FIGURE 7.2. (a) Slope-deflection and (b) matrix analysis coordinates. 

(7.2.10) 

These are the well-known slope-deflection equations. However, in a usual 
structural analysis, it is more convenient to use a matrix analysis coordinate. 
This transformation can be achieved by simply comparing member end 
forces and end displacement in the slope-deflection coordinate with the ma­
trix analysis coordinate as shown in Fig. 7.2. The equilibrium relationship 
between the end forces in these two systems has the form 

1 0 0 
r1 

0 
1 

r2 L L 

{~J r3 0 1 1 
(7.2.11) 

r4 -1 0 0 

rs 1 1 
0 

r6 L L 
0 0 1 



7.3. Stiffness Matrix for a Beam Element with a Plastic Hinge at End A 385 

The kinematic relationship between the end displacements in these two sys-
tems is 

1 0 0 -1 0 0 
d1 

HJ~ 
1 1 

d2 

0 - 1 0 0 d3 (7.2.12) L L 
d4 

1 1 
0 0 0 1 ds L L 

d6 

By including the axial force and axial deformation relationship in the slope­
deflection equation (7.2.10), the new slope-deflection equation can be ex­
pressed as 

(7.2.13) 

The relationship between the end forces {r} and the end displacements {d} 
can now be obtained by substituting Eq. (7.2.13) into Eq. (7.2.11) and substi­
tuting Eq. (7.2.12) in the resulting equation as 

EA 
L 

o 

o 
EA 
L 

o 

o 

o 

12El 
-V 
6El 
L2 

o 

12El 
--V 

6El 
L2 

o 

6El 
L2 

4El 
L 

o 
6El 

- L2 

2El 
L 

EA 
L 

o 

o 
EA 
L 

o 

o 

o o 

-12El 6El 
-----u- L2 

6El 2El 
- U L 

o 0 

12El 6El 
-V - L2 

6El 4El 
-:- U L 

(7.2.14) 

7.3 Stiffness Matrix for a Beam Element with a Plastic 
Hinge at End A 

When one plastic hinge is formed at end A, then the incremental moment at 
end A is zero. Using the condition that AlA = 0 in the first matrix Eq. (7.2.10), 
we obtain the kinematic relation in the incremental form as BA = - BBI2. 
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Substituting this OA into the second equation of matrix Eq. (7.2.10) and then 
rewriting it in matrix form, we have 

{~A}=EI[O 0J{~A}. 
MB L 0 3 OB 

(7.3.1) 

Including the incremental axial load and axial-deformation relationship in 
Eq. (7.3.1), we have 

r}_Er 0 

~]HJ MA --
0 

(7.3.2) . L 0 
MB 0 0 

This relationship can now be transformed into the matrix analysis coordinate 
by using the end forces relation (7.2.11) and the kinematic relation (7.2.12) in 
incremental form as 

EA 
L 

0 0 
EA 
L 

0 0 

0 
3EI 

0 0 
3EI 3EI d1 '1 L3 - L3 L2 

'2 0 0 0 0 0 0 
d2 

'3 EA EA 
d3 (7.3.3) 

'4 0 0 0 0 d4 L L d5 '5 3EI 3EI 3EI '6 0 - L3 0 0 L3 - L2 d6 

0 
3EI 

0 0 
3EI 3EI 

L2 - L2 L 

7.4 Stiffness Matrix for a Beam Element with a Plastic 
Hinge at End B 

The incremental slope-deflection relation for this case can be derived in a 
similar way to that of the previous case as 

{~A}=EI[3 0J{~A}. 
MB L 0 0 OB 

(7.4.1) 

Including the incremental axial load-axial deformation relation in Eq. 
(7.4.1), we have 

(7.4.2) 
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Using Eqs. (7.2.11) and (7.2.12) in an incremental form for the transformation 
to a matrix analysis coordinate, we have 

AE 
L 

o 

o 
AE 
L 

o 
o 

o 
3E1 
L3 

3E1 
L2 

o 

3E1 
- L3 

o 

o 
3E1 
L2 

3E1 
L2 

o 

3E1 
- L2 

o 

AE 
L 

o 

o 

AE 
L 

o 

o 

o o 
3E1 

- L3 0 

3E1 
- U 0 

o 

3E1 
L3 

o 

o 

o 

o 

7.5 Plastic Hinges at Both Ends A and B 

(7.4.3) 

When plastic hinges are formed at both ends, no additional moment can be 
applied at these ends, and the incremental slope-deflection relation becomes 

(7.5.1) 

After transformation to a matrix analysis coordinate, the incremental force­
displacement relation becomes 

EA 
L 
o 
o 
EA 

o 0 

o 0 
o 0 

L 0 0 

o o 0 
o o 0 

EA 
L 0 0 

o 
o 

EA 
L 

o 
o 

o 0 
o 0 

o 0 

o 0 
o 0 

7.6 Stiffness Matrix for a Beam with an Intermediate 
Plastic Hinge 

(7.5.2) 

To derive the stiffness matrix for a beam with an intermediate plastic hinge 
(Fig. 7.3), we will use a slightly different approach. The stiffness matrix is 
obtained directly in the matrix analysis coordinates by applying a unit dis­
placement along the specified degree of freedom. The corresponding stiffness 
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1
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11'4--: -~L-··~I" --:1 
FIGURE 7.3. Nodal forces and degrees offreedom for a frame member with an interme­
diate plastic hinge. 

coefficients, along with constants of integration, are determined from the 
known boundary conditions. 

As an example, consider a beam with a unit displacement along coordinate 
1 as shown in Fig. 7.4(a) [7.1]. The external moment at any point a distance 
x from end A can be expressed as 

(7.6.1) 

where kll and k2l are, respectively, the forces induced along coordinates 1 
and 2 by a unit displacement along coordinate 1. Equating the external 
moment M ext to the internal moment Mint = Ely", we have 

Ely" = kllx - k2l . (7.6.2) 

Integrating Eq. (7.6.2) once and twice, we obtain, respectively, the slope and 
deflection as 

for 0::5; x::5; a 

(7.6.3) 

(7.6.4) 

and for a ~ x ~ L 

(7.6.5) 

x3 x2 

ElY2 = kll 6 - k2l 2 + Dlx + D2 • (7.6.6) 

In Eqs. (7.6.3) to (7.6.6), there are six unknowns: four constants of integra­
tion Cl , C2 , Dl , and D2 ; and two stiffness coefficients kll and k2l . These 
unknowns are determined by using the following six boundary conditions: 
Yl (0) = 1, Y2(L) = 0, y"(a) = 0, and Yl (a) = Y2(a). The solutions for these six 
equations are 
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(a) 

b1= 1 

(c) 

c53= 1 

b1=1 

)k41 T-ll 
14 

FIGURE 7.4. Unit displacements along coordinates 1, 2, 3, and 4 of a member with an 
intermediate hinge. 
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C1 = 0 

C2 = El 

3El(a2 - b2 ) 
D - --;-::-..,.---~".... 

1 - (2a3 + 2b3) 

El (b3 - 2a3 + 3ab2 ) 

D2 = (a3 + b3) 

(7.6.7) 

(7.6.8) 

(7.6.9) 

(7.6.10) 

(7.6.11) 

(7.6.12) 

By considering the equilibrium of the beam in Fig. 7.4(a), the stiffness coeffI­
cients k31 and k41 can be written as 

3El 
k31 = -kll = - 3 b3 

a + (7.6.13) 

(7.6.14) 

All the stiffness coefficients in column 1 of the stiffness matrix are now 
known. The coefficients in other columns can be obtained by considering 
unit displacements along coordinates 2, 3, and 4 as shown in Figs. 7.4(b), (c), 
and (d) respectively. The resulting stiffness matrix, including the axial force 
and axial deformation relationship, has the form 

A(a3 + b3) 
0 0 

'1 31(a + b) 
-A(a3 + b3) 

0 0 
31(a + b) 

'2 0 1 a 0 -1 b 

'3 3El 0 a a 0 -a ab 
= 

a3 + b3 -A(a3 + b3) '4 0 0 
's 31(a + b) 

A(a3 + b3) 
0 0 

31(a + b) 

'6 0 -1 -a 0 1 -b 
0 b ab 0 -b b 

d1 
d2 

X 
d3 
d4 

(7.6.15) 

ds 
d6 
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7.7 Numerical Procedure for a First-Order Plastic 
Analysis 

The first-order plastic analysis is a series of first-order elastic analysis per­
formed on the original and subsequent structures modified by the formation 
of plastic hinges. The plastic hinges are assumed to form only at the member 
ends. For the members supporting laterally distributed loads, a plastic hinge 
may form within the member. In the present computer program, this is 
handled by dividing the member into several elements and replacing the 
distributed load by a number of concentrated loads, one at each node. The 
procedure adopted in the present computer program consists of the following 
steps: 

1. An elastic analysis is performed on the original structure subjected to a 
given set of loads. These loads have relative magnitudes in proportion to 
those at the ultimate state. This set of loads is referred to as the "reference 
loads." 

2. The load factor at each nodal point is computed by dividing the plastic 
moment capacity at that nodal point by the moment at that nodal 
point due to the reference loads. The location of the smallest load factor 
in the whole structure is the location of the first plastic hinge (or 
hinges). 

3. Displacements and internal forces at all nodes of the original structure, 
subjected to a set of loads obtained by multiplying the lowest load factor 
with the reference loads, are computed by merely scaling up the results of 
the first-order elastic analysis of the original structure by the lowest load 
factor. This is based on the fact that the behavior of the structure is 
linearly elastic between the formation of any two plastic hinges. With this 
step, the first stage of the hinge-by-hinge matrix-analysis procedure has 
been completed. 

4. The original structure is now modified by inserting fictitious hinge at the 
location of the first plastic hinge. 

S. An elastic analysis is again performed on this modified structure sub­
jected to the reference loads. 

6. The load factor at each node is again calculated by dividing the "remain­
ing" moment capacity (see Example 7.8.1) at each node by the moment 
due to the reference load applied on the modified structure. The second 
plastic hinge can now be located where the smallest load factor is. 

7. The displacements and internal forces are again scaled up by the new 
load factor. 

8. The cumulative load factor, displacements, and internal forces at all 
nodal points are then computed. This completes the second stage of the 
matrix structural analysis. 

9. The structure is again modified by inserting another fictitious hinge at 
the location as determined in step 6. 



392 7. First-Order Hinge-by-Hinge Analysis 

to. Steps 5 to 9 are repeated until an unstable structure is realized. The 
unstable structure is recognized when the stiffness matrix ceases to be 
positive definite or the deformations due to the reference loads become 
excessively large. 

7.8 Numerical Examples 

Three numerical examples will be presented herein. The first example is a 
fixed-ended beam with a concentrated lateral load applied at one-third point 
as shown in Fig. 7.5 (a). This example is solved here manually by the hinge­
by-hinge matrix-analysis method. The aim is to show the steps the computer 
program will go through later. In the second example, a portal frame taken 
from Chapter 4 is solved by the computer program and the results are com­
pared with the plastic limit load analysis in Chapter 4. In the third example, 
a frame in Chapter 6 is analyzed by the computer program and the deflec­
tions are compared with those obtained by the approximate methods de­
scribed in Chapter 6. 

Example 7.B.l. A 12-foot-long fixed-ended beam with a concentrated load at 
one-third point is shown in Fig. 7.5 (a). Determine the displacements and 
internal forces in this beam by the hinge-by-hinge matrix-analysis procedure 
described in Section 7.7. Compare the results with those obtained in Example 
1.8.2. Assume E = 29,000 ksi, 1 = 1000 in.4, and Zx = 157 in. 3 (W14 x 90). 

Solution: Divide the beam into two elements. The first element has 1, 2, 3, and 
4 as global coordinates [Fig. 7.5(b)], and the second element has 3, 4, 5, and 
6 as global coordinates [Fig. 7.5(c)]. The beam overall has two degrees of 
freedom as 3 and 4. Corresponding to these degrees of freedom, the reference 
load vector is chosen as 

(7.8.1) 

Step 1: The first step is to carry out the elastic analysis on the original beam. 
To this end, the element stiffness matrices are written and then assembled. 
The stiffness matrix for the first element is (Eq. 7.2.14) 

324 54 324 54 

U L2 -U L2 

12 54 6 

L -L2 L 
kl = E1 

324 54 
U -L2 

12 
L 



(a) 

Beam 

(b) 

Element 

(c) 

Element 2 

(d) 

Modified Beam 

(e) 

Cantilever 

(f) 

Mechanism 

1 
CD 
I .. 48" 

2k 
m 
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r t ® 

~I .. 96" ® 
~I 

4J 
4k 6!-

[1J 

r ~ 

~p 
o 

r 
FIGURE 7.5. Hinge-by-hinge matrix analysis of a fixed-ended beam with a concen­
trated load applied at one-third point: (a) beam, (b) element 1, (c) element 2, (d) 
modified beam, (e) cantilever, and (f) mechanism. 
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[

3147 75,521 -3147 

= 2,416,667 -75,521 
3147 

75,521] 
1,208,333 
-75,521 . 

2,416,617 

Similarly, for the second element, we have 

40.5 13.5 40.5 13.5 
L3 L2 - L3 L2 

6 13.5 3 

k2 = E1 
L - L2 L 

40.5 13.5 
L3 - L2 

6 
L 

{93 18,880 -393 18,880] 
1,208,333 -18,880 604,167 

393 -18,880 . 

1,208,333 

(7.8.2) 

(7.8.3) 

Assemble these two matrices to form a global stiffness matrix [kJ corre­
sponding to the chosen degrees of freedom as 

k = [3540 -56,641J. 
3,625,000 

Now the force-displacement relationship can be written as 

-56,641J{V3 } 

3,625,000 V4 ' 

Solving for displacements, we have 

{V3} = {-3.766 x 1O-4 } 

V4 - 5.885 X 10-6 • 

(7.8.4) 

(7.8.5) 

(7.8.6) 

Note that V3 obtained here is the same as Al calculated from Eq. 1.8.23 in 
Chapter 1. 

Step 2: Herein, the element internal forces expressed as load factors are deter­
mined. For the first element, the internal forces are determined as 

-3147 

-75,521 
3147 

-75,521 

75,521] { 0 } 1,208,333 0 
-75,521 -3.766 x 10-4 

2,416,617 - 5.885 x 10-6 
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{ 
0.74} 

= 21.33. 
-0.74 
14.21 

For the second element, the internal forces are calculated as 

{
F3} [393 18,880 
F4 = 18,880 1,208,333 
Fs -393 -18,880 

F6 18,880 604,167 

= -14.21 . { 
-0.26} 

+0.26 
-10.68 

--] {_3.776 x 1O-
4

} -- - 5.885 X 10-6 

-- 0 
-- 0 

The load factors corresponding to moments at these three nodes are 

A = 5,652 = 265 
1 21.33 

5,652 
A2 = 14.21 = 397.7 

A = 5,652 = 529.2 
3 10.68 

395 

(7.8.7) 

(7.8.8) 

(7.8.9) 

(7.8.10) 

(7.8.11) 

where Mp = (JyZX = 36 x 157 = 5,652 has been used. The lowest value of A 
occurs at node 1 with Al = 265. Thus, the first hinge will form at node 1. 

Step 3: The displacements and internal forces at this stage are determined by 
multiplying those determined in steps 1 and 2 by the load factor A = 265. The 
displacements are amplified to be: 

{V3} = { -0.0998}. 
V4 -0.00156 

(7.8.12) 

The displacement V3 in Eq. (7.8.12) is the same as ~l calculated from Eq. 
(1.8.23) in Chapter 1. The amplified internal forces in the first element become 

{Fl} { 196} F2 = 5652. 
F3 -196 
F4 3766 

(7.8.13) 

The internal forces in the second element are calculated to be 
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{
F3} { _69} F4 = -3766 . 
Fs +69 
F6 -2830 

(7.8.14) 

The load vector at this stage can be written as 

(7.8.15) 

Note that the load F3 in Eq. (7.8.15) is the same as PI calculated from Eq. 
(1.8.22) in Chapter 1. 

Step 4: The hinge has formed at the first node and the modified structure is 
shown in Fig. 7.5 (d). 

Step 5: An elastic analysis is again performed on the modified structure sub­
jected to the reference load shown in Fig. 7.5(d). Now the first element has a 
hinge at the left-hand end. Therefore, Eq. (7.3.3) is its stiffness matrix as 

81 
0 

81 27 
L3 -L3 L2 

{81 

0 -787 
31.160l 0 0 0 

kl = E1 81 27 
0 0 0 

(7.8.16) 
L3 -L2 787 -37,760 . 

9 
1,812,500 

L 

The stiffness matrix for the second element remains the same as that given 
by Eq. (7.8.3). The assembled structural stiffness matrix corresponding to the 
third and fourth degree of freedom has the value 

k = [1180 -18,880J. 
3,020,833 

The displacements V3 and V4 are calculated to be 

{ ~3} = _ {9.416 X 1O-4}. 
V4 5.884 X 10-6 

Step 6: The internal forces in the first element are calculated as 

{
PI} r-o -787 P2 _ - 0 0 
P3 - - 0 787 

P4 - 0 -37,760 

37,760l { 0 } o --
-37,760 -9.416 x 10-4 

1,812,500 - 5.884 x 10-6 

(7.8.17) 

(7.8.18) 
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= { _~.:::}. (7.8.19) 

+24.89 

In the second element, the internal forces come out to be 

{
F3} [393 18,880 
~4 = 18,880 1,208,333 
F5 - 393 -18,880 
F6 18,880 604,167 

-] {-9.416 x 1Q_4} 
- - 5.884 X 10-6 

- - 0 
- - 0 

{ 
-0.48} 

= -24.89 
0.48 . 

-21.33 

(7.8.20) 

In Eqs. (7.8.18 to 7.8.20) the dot denotes the incremental displacement or 
internal forces that take place after the latest modification to the given 
structure. 

Since a plastic hinge has already been formed at node 1, calculation of the 
load factor at this node is not needed. At nodes 2 and 3, the load factors are 
calculated by dividing the "remaining" plastic moment capacity by the mo­
ment at that node due to the reference loads applied to the modified structure 
as (Mp = (JyZX = 36 x 157 = 5652) 

5652 - 3766 
A2 = 24.89 = 75.7 (7.8.21) 

A = 5652 - 2830 = 132 3 
3 21.33 . (7.8.22) 

The lowest A occurs at node 2 with A = 75.7. Thus, the second hinge forms at 
node 2. 

Step 7: The deflections amplified by A = 75.7 are 

{V3} {9.416 x 1Q-4} {0.0712 } 
V4 = - 5.884 X 10-6 (75.7) = - 0.000445 . (7.8.23) 

The internal forces in the first element are magnified to be 

{FI} { 39} F2 _ 0 
F3 - -39 . 

F4 1882 

(7.8.24) 

Similarly, the internal forces in the second element are scaled up by A = 75.7 
to be 
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{F3} { _36} ~: = -18~~ . 

F6 -1613 

(7.8.25) 

Step 8: Herein, the cumulative displacements and internal forces are deter­
mined. The cumulative displacements are found to be: 

{V3} {-0.0998} {-0.0712 } {-0.1710} 
V4 = -0.00156 + -0.000445 = -0.0020 . (7.8.26) 

The displacement V3 in Eq. (7.8.26) is the same as .12 calculated from Eq. 
(1.8.28) in Chapter 1. 

The cumulative internal forces in the first element are determined as 

{Fl} { 196} { 39} { 235} F2 5652 0 5652 
= + = . F3 -196 -39 -235 

F4 3766 1882 5648 

(7.8.27) 

In the second element, the cumulative internal forces are computed as 

{
F3} { _69} { -36} {-105} F4 = -3766 + -1882 = -5648 . 
Fs +69 36 + 105 
F6 -2830 -1613 -4443 

(7.8.28) 

The load vector at this stage can be calculated as 

{~:} = {2~5} + 75.7{~} = f~l}. (7.8.29) 

The force F 3 calculated in Eq. (7.8.29) is the same as P 2 calculated from Eq. 
(1.8.26) in Chapter 1. 

Step 9: After the second hinge is formed at the second node, the beam reduces 
to a simple cantilever as shown in Fig. 7.5(e). 

Step 10: Again, an elastic analysis is performed on the modified structure 
shown in Fig. 7.5(e). The first element has hinges on both ends. The stiffness 
matrix of this element as given by Eq. (7.5.2) is null and can be expressed as 

k, ~ r ~ ~ ~} (7.8.30) 
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The second element has a hinge at its left end. Thus, its stiffness is obtained 
from Eq. (7.3.3) as 

10.13 10.13 6.75 
-V 0 

o 
kz = E1 

--V LZ 

{8 0 -98 9MO] 0 0 
0 0 0 

10.13 6.75 

-V - LZ 98 -9440 . 

4.5 
906,250 

L 
(7.8.31) 

The structural stiffness matrix corresponding to the third and fourth degree 
of freedom is written as 

k = [908 ~J 
This stiffness matrix is now used to obtain the increment of V3 as 

V3 = -0.01017. 

(7.8.32) 

(7.8.33) 

The incremental internal forces in the first element are zero. The incremen­
tal forces in the second element come out to be 

{ ~:} = { -~.O}. 
Fs 1.0 
F6 -96 

(7.8.34) 

Since plastic hinges have already been formed at nodes 1 and 2, the load 
factors ill and ilz need not be calculated. The load factor il3 is calculated as 

il = 5652 - 4443 = 12 9 
3 96 .5 . (7.8.35) 

So the controlling load factor is il = il3 = 12.59. 

Step 11: Amplifying the displacement V3 by the controlling load factor, we 
have 

V3 = (12.59)(-0.01017) = -0.1280. (7.8.36) 

Applying the load factor to the internal forces in the second element, we 
obtain 

(7.8.37) 
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Step 12: The cumulative displacement comes out to be 

V3 = - 0.1710 - 0.1280 = 0.2990 inch. (7.8.38) 

This value of V3 is the same as .13 obtained in Eq. (1.8.31). The cumulative 
internal forces for the second element can be calculated as 

{
F3} {-105} { -12.6} {-118} F4 - 5648 0 - 5648 

= + = Fs + 105 12.6 118 . 

F6 -4443 -1209 5652 

(7.8.39) 

The cumulative load vector at this stage is calculated as 

{~:} = f~l} + 12.59g} = f~3}. (7.8.40) 

The applied load F3 in Eq. (7.8.39) is the same as P3 calculated from 
Eq. (1.8.30) in Chapter 1. Since plastic hinges are now formed at all three 
nodes, a mechanism as shown in Fig. 7.5(f) has developed, and the load 
cannot be further increased. 

20' OJ 

1 ® 

I .. 
30' ..I 

FIGURE 7.6. Node and element numbers for matrix analysis of the portal frame of 
Example 4.8.1. 
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Example 7.8.2. Using the computer program First-Order Plastic Analy~is 
described in this chapter and given in the appendix, compute the load factor 
for the frame subjected to the loads shown in Fig. 7.6. All members are made 
ofW16 x 45 section. 

Solution: The elements and node numbers used in the present computer 
analysis are shown in Fig. 7.6. The input and ouput of the analysis from the 
computer program are shown in the following. 

Prob. 7.8.2--Plastic Limit Load 
6 5 3 2 1 

.29000 5 2 
o 0 
o 240 
90 240 
270 240 
360 240 
360 0 
1 2 111 
2 3 1 1 1 
3 4 1 1 
4 5 1 1 
5 6 1 1 1 
13.3 586 2963 
2 15 0 0 
3 0 -30 0 
4 0 -30 0 
1 1 1 1 
6 1 1 1 
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First Order Plastic Analysis "FOPA" 
By 

Dr. Maheeb Abdel-Ghaffar 
Cairo University 

1992 

Prob. 7.8.2--Plastic Limit Load 

* Nds. 
6 

II Elems. 
5 

JOINT COORDINATES 

II Ldd.Nds 
3 

INPUT DATA 

* B.C.Nds 
2 

Joint X-Coord. Y-coord. u-fix 

1 .000 .000 

2 .000 240.000 0 

3 90.000 240.000 0 

4 270.000 240.000 0 

5 360.000 240.000 0 

6 360.000 .000 

LOAD VECTOR 
------------

Joint Fx Fy 
1 .00 .00 
2 IS.00 .00 
3 .00 -30.00 
4 .00 -30.00 
S .00 .00 
6 .00 .00 

MATERIAL GROUP PROPERTIES 
-------------------------

E 
.29E+OS 

M 
.00 
.00 
.00 
.00 
.00 
.00 

v-fix 

0 

0 

0 

0 

* Prp.Grps 
1 

r-fix 

0 

0 

0 

0 

1 

Group Area (A) Inertia (I) Plastic Moment (Mp) 

1 .1330E+02 .S860E+03 

Maximum Displacement occurs at Joint No.: 2 
In the Horizontal Direction 

Incr. Load Factor 
Total Load Factor 
Condition Number 

NODAL DISPLACEMENTS 

OUTPUT DATA 

INCREMENT NO. 

1.326 
1.326 

1/ .647E-06 

.2963E+04 
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-------------------

INCREMENTAL TOTAL 
jt hrz. vrt. rot. hrz. vrt. 

.OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO 
2 .109E+Ol -.215E-Ol -.105E-Ol .109E+OI -.215E-OI 
3 .109E+Ol -.976E+OO -.792E-02 .109E+Ol -.976E+OO 
4 .10BE+Ol -.752E+OO .B72E-02 .10BE+Ol -.752E+OO 
5 .107E+Ol -.2BIE-Ol .377E-02 .107E+OI -.2BIE-OI 
6 .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO 

END FORCES 
-----------

INCREMENTAL END FORCES 
Mem jI j2 NI VI MI N2 

1 1 2 .345E+02 -.257E+OI .438E+03 -.345E+02 
2 2 3 .225E+02 .345E+02 .106E+04 -.225E+02 
3 3 4 .225E+02 -.530E+Ol -.205E+04 -.225E+02 
4 4 5 .225E+02 -.451E+02 -.109E+04 -.225E+02 
5 5 6 .45IE+02 .225E+02 .296E+04 -.451E+02 

TOTAL END FORCES 
1 1 2 .345E+02 -.257E+Ol .43BE+03 -.345E+02 
2 2 3 .225E+02 .345E+02 .106E+04 -.225E+02 
3 3 4 .225E+02 -.530E+OI -.205E+04 -.225E+02 
4 4 5 .225E+02 -.45IE+02 -.109E+04 -.225E+02 
5 5 6 .451E+02 .225E+02 .296E+04 -.45IE+02 

Plastic Hinge Locations for Load Level = 1. 326 
At Joint In Member 

5 4 
5 5 

INCREMENT NO. 2 

Incr. Load Factor 
Total Load Factor 
Condition Number 

.242 
1. 568 

1/ .668E-06 

NODAL DISPLACEMENTS 

INCREMENTAL 
jt hrz. vrt. rot. 

1 .OOOE+OO . OOOE+OO .OOOE+OO 

hrz. 

.OOOE+OO 

V2 
.257E+OI 

-.345E+02 
.530E+Ol 
.45IE+02 

-.225E+02 

.257E+Ol 
-.345E+02 

.530E+OI 

.451E+02 
-.225E+02 

TOTAL 
vrt. 

.OOOE+OO 
2 .606E+OO -.475E-02 -.426E-02 .170E+OI -.262E-OI 
3 .605E+OO -.365E+OO -.3I4E-02 .169E+Ol - .134E+OI 
4 .604E+OO -.380E+OO .308E-02 .168E+Ol - .1l3E+Ol 
5 .604E+OO -.429E-02 .OOOE+OO .167E+Ol -.323E-Ol 
6 .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO 

END FORCES 
-----------

Mem 
1 
2 
3 
4 
5 

1 
2 
3 

jl 
1 
2 
3 
4 
5 

2 
3 

j2 
2 
3 
4 
5 
6 

2 
3 
4 

INCREMENTAL END FORCES 
Nl VI Ml N2 V2 

.763E+Ol .141E+OI .470E+03 -.763E+Ol -.141E+Ol 

.223E+Ol .763E+Ol .133E+03 -.223E+Ol -.763E+OI 

.223E+Ol .369E+OO -.554E+03 -.223E+OI -.369E+OO 

.223E+Ol -.690E+OI -.621E+03 -.223E+Ol .690E+OI 

.690E+OI .223E+Ol .OOOE+OO -.690E+Ol -.223E+Ol 
TOTAL END FORCES 

.421E+02 -.117E+Ol .908E+03 -.421E+02 .117E+Ol 

.247E+02 .421E+02 .119E+04 -.247E+02 -.421E+02 

.247E+02 -.493E+Ol -.260E+04 -.247E+02 .493E+OI 

rot. 

.OOOE+OO 
-.105E-OI 
-.792E-02 

. B72E-02 

.377E-02 

.OOOE+OO 

M2 
-.106E+04 

.205E+04 

.109E+04 
-.296E+04 

.243E+04 

-.106E+04 
.205E+04 
.109E+04 

-.296E+04 
.243E+04 

rot . 

.OOOE+OO 
-.14BE-OI 
-.l11E-Ol 

.1l8E-OI 

.377E-02 

.OOOE+OO 

M2 
- .133E+03 

.554E+03 

.621E+03 

.OOOE+OO 

.534E+03 

- .1l9E+04 
.260E+04 
.171E+04 
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4 
5 

4 
5 

5 
6 

.247E+02 -.520E+02 -.171E+04 -.247E+02 .520E+02 -.296E+04 

.520E+02 .247E+02 .296E+04 -.520E+02 -.247E+02 .296E+04 

Plastic Hinge Locations for Load Level = 1.558 
At Joint In Member 

6 5 

INCREMENT NO. 3 

Incr. Load Factor .127 
Total Load Factor 1.695 
Condition Number = 1/ . 652E-06 

NODAL DISPLACEMENTS 

INCREMENTAL 
jt hrz. vrt. rot. hrz. 

1 .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO 

TOTAL 
vrt. 

.OOOE+OO 
2 .476E+OO -.233E-02 -.289E-02 .217E+01 -.285E-Ol 
3 .476E+OO -.230E+OO -.187E-02 .217E+Ol -.157E+Ol 
4 .476E+00 -.227E+OO .188E-02 .216E+OI -.136E+Ol 
5 .476E+00 -.241E-02 .OOOE+OO .215E+OI -.348E-OI 
6 .OOOE+OO .OOOE+OO -.198E-02 .OOOE+OO 

END FORCES 
-----------

INCREMENTAL END FORCES 
Mem jl j2 Nl VI MI N2 

1 I 2 .374E+Ol .19IE+OI .434E+03 -.374E+OI 
2 2 3 - .124E-04 .374E+OI -.238E+02 .124E-04 
3 3 4 -.618E-05 -.66IE-01 -.361E+03 .618E-05 
4 4 5 -.124E-04 -.388E+01 -.349E+03 .124E-04 
5 5 6 .388E+01 -.252E-06 .OOOE+OO -.388E+01 

TOTAL END FORCES 
1 1 2 .459E+02 .737E+00 .134E+04 -.459E+02 
2 2 3 .247E+02 .459E+02 . 116E+04 -.247E+02 
3 3 4 .247E+02 -.500E+01 -.296E+04 -.247E+02 
4 4 5 .247E+02 -.559E+02 -.206E+04 -.247E+02 
5 5 6 .559E+02 .247E+02 .296E+04 -.559E+02 

Plastic Hinge Locations for Load Level = 1. 695 
At Joint In Member 

3 2 
3 3 

INCREMENT NO. 4 

Incr. Load Factor 
Total Load Factor 
Condition Number 

.225 
1. 920 

1/ .107E-05 

NODAL DISPLACEMENTS 

INCREMENTAL 
jt hrz. vrt. rot. 

1 .OOOE+OO .OOOE+OO .OOOE+OO 

hrz. 

.OOOE+OO 

.OOOE+OO 

V2 
- .191E+Ol 
-.374E+OI 

.66IE-01 

.388E+01 

.252E-06 

-.737E+00 
-.459E+02 

.500E+01 

.559E+02 
-.247E+02 

TOTAL 
vrt. 

.OOOE+OO 
2 .229E+01 -.561E-02 -.172E-01 .446E+O·1 -.341E-01 
3 .229E+01 -.168E+01 .OOOE+OO .446E+01 -.325E+01 
4 .229E+01 -.691E+OO . 693E-02 .445E+01 -.205E+01 
5 .229E+01 -.280E-02 .OOOE+OO .444E+01 -.376E-01 
6 .OOOE+OO .OOOE+OO -.954E-02 .OOOE+OO .OOOE+OO 

rot. 

.OOOE+OO 
-.177E-Ol 
-.129E-Ol 

.137E-01 

.377E-02 
-.198E-02 

M2 
.238E+02 
.36IE+03 
.349E+03 
.OOOE+OO 
.OOOE+OO 

-.116E+04 
.296E+04 
.206E+04 

-.296E+04 
.296E+04 

rot. 

.OOOE+OO 
-.349E-01 
-.129E-01 

.206E-01 

.377E-02 
- . 115E-01 
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END FORCES 
-----------

INCREMENTAL END FORCES 
Mem jl j2 Nl Vl Ml N2 

1 1 2 .90lE+Ol .338E+Ol .l62E+04 -.90lE+Ol 
2 2 3 -.l85E-03 .90lE+Ol .811E+03 .l85E-03 
3 3 4 -.926E-04 .225E+Ol .OOOE+OO .926E-04 
4 4 5 -.l85E-03 -.45lE+Ol -.405E+03 .l85E-03 
5 5 6 .45lE+Ol -.l43E-05 .OOOE+OO -.45lE+Ol 

TOTAL END FORCES 
1 1 2 .549E+02 .412E+Ol .296E+04 -.549E+02 
2 2 3 .247E+02 .549E+02 .l98E+04 -.247E+02 
3 3 4 .247E+02 -.274E+Ol - .296E+04 -.247E+02 
4 4 5 .247E+02 -.604E+02 -.247E+04 -.247E+02 
5 5 6 .604E+02 .247E+02 .296E+04 -.604E+02 

Plastic Hinge Locations for Load Level = 1. 920 
At Joint In Member 

1 1 

Incremental Displacements up to .l860E+06 
Excessive Deformations .... Must be a mechanism 

0.9 PT 
,p 

6 rID 7 

100 ~ 

0.9 

,p 
3 [g] 4 

100 [j] 

1",~ 

V2 
-.338E+Ol 
-.90lE+Ol 
-.225E+Ol 

.45lE+Ol 

.l43E-05 

-.4l2E+Ol 
-.549E+02 

.274E+Ol 

.604E+02 
-.247E+02 

[1J 

~ 

I~ 100 + 100 

FIGURE 7.7. A two-story frame for deflection computation. 

M2 
-.811E+03 

.OOOE+OO 
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- .l98E+04 
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-.296E+04 
.296E+04 
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The resulting load factor A. = 1.92 is the same as that calculated in 
Example 4.8.1 of Chapter 4. 

Example 7.8.3. A two-story rectangular frame is subjected to the loads 
shown in Fig. 7.7. Analyze the frame by the First-Order Plastic Hinge Analy­
sis computer program. Assume all members are made ofW16 x 45. 

(a) Determine the load factor and horizontal deflection of point 8, and com-
pare with those determined in Example 6.8.1. 

(b) Calculate the required rotation capacity at points 1 and 8. 

Solution: The input data for the analysis of the structure shown in Fig. 7.7 
and the resulting output data are listed in following. 

Prob.7.8.3 Deflection of Two Story Frame 
8 8 4 2 1 
29000 8 2 
o 0 
200 0 
o 100 
100 100 
200 100 
o 200 
100 200 
200 200 
1 3 1 1 1 
3 4 1 1 1 
4 5 1 1 1 
2 5 1 1 
3 6 1 1 
6 7 1 1 1 
7 8 1 1 1 
5 8 1 1 1 
13.3 586 2963 
3 0.9 0 0 
4 0 -1.0 0 
60.900 
7 0 -1.0 0 
1 1 1 1 
211 1 
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============================================================================= 
First Order Plastic Analysis "FOPA" 

icy 
Dr. Maheeb Abdel-Ghaffar 

Cairo University 
1992 

===================================~========================================= 

INPUT DATA 

Prob.7.8.3 Deflection of Two Story Frame 

* Nds. 
8 

* Elems. 
8 

JOINT COORDINATES 

# Ldd.Nds 
4 

* B.C.Nds 
2 

E 
.29E+OS 

* Prp.Grps 
1 

Joint X-Coord. Y-coord. u-fix v-fix r-fix 

1 

2 

3 

4 

5 

6 

7 

8 

LOAD VECTOR 

Joint 
1 
2 
3 
4 
5 
6 
7 
8 

.000 

200.000 

.000 

100.000 

200.000 

.000 

100.000 

200.000 

Fx 
.00 
.00 
.90 
.00 
.00 
.90 
.00 
.00 

MATERIAL GROUP PROPERTIES 

Group Area (A) 

1 .1330E+02 

.000 1 

.000 1 

100.000 a 

100.000 a 

100.000 a 

200.000 a 

200.000 a 

200.000 a 

Fy M 
.00 .00 
.00 .00 
.00 .00 

-1. 00 .00 
.00 .00 
.00 .00 

-1. 00 .00 
.00 .00 

Inertia (I) 

.5860E+03 

Maximum Displacement occurs at Joint No.: 6 
In the Horizontal Direction 

OUTPUT DATA 

INCREMENT NO. 1 

1 1 

1 1 

a a 

a a 

a a 

a a 

a a 

a a 

Plastic Moment (Mp) 

.2963E+04 
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Incr. Load Factor 
Total Load Factor 
Condition Number 

42.927 
42.927 

1/ .377E-06 

NODAL DISPLACEMENTS 

INCREMENTAL 
jt hrz. vrt. rot. 

1 .OOOE+OO . OOOE+OO .OOOE+OO 
2 .OOOE+OO .OOOE+OO .OOOE+OO 

TOTAL 
hrz. vrt. 

.OOOE+OO .OOOE+OO 

.OOOE+OO .OOOE+OO 
3 .390E+00 -.286E-02 -.447E-02 .390E+00 -.286E-02 
4 .387E+00 -.142E+00 .186E-02 .387E+00 -.142E+00 
5 .385E+00 -.194E-Ol -.345E-02 .385E+00 -.194E-Ol 
6 .814E+00 -.527E-02 -.364E-02 .814E+00 -.527E-02 
7 .805E+00 -.179E+00 .108E-02 .805E+00 -.179E+00 
8 .796E+00 -.281E-Ol -.136E-02 .796E+00 -.281E-Ol 

END FORCES 
-----------

INCREMENTAL END FORCES 
Mern jl j2 Nl VI Ml N2 

1 1 3 . 110E+02 .339E+02 .245E+04 - .110E+02 
2 3 4 .861E+Ol .170E+Ol -.989E+03 -.861E+Ol 
3 4 5 .861E+Ol -.412E+02 - .116E+04 -.861E+Ol 
4 2 5 .748E+02 .434E+02 .275E+04 -.748E+02 
5 3 6 .932E+Ol .388E+Ol .531E+02 -.932E+Ol 
6 6 7 .348E+02 .932E+Ol -.335E+03 -.348E+02 
7 7 8 .348E+02 -.336E+02 -.127E+04 -.348E+02 
8 5 8 .336E+02 .348E+02 .138E+04 -.336E+02 

TOTAL END FORCES 
1 1 3 . 110E+02 .339E+02 .245E+04 - . 110E+02 
2 3 4 .861E+Ol .170E+Ol -.989E+03 -.861E+Ol 
3 4 5 .861E+Ol -.412E+02 - .116E+04 -.861E+Ol 
4 2 5 .748E+02 .434E+02 .275E+04 -.748E+02 
5 3 6 .932E+Ol .388E+Ol .531E+02 -.932E+Ol 
6 6 7 .348E+02 .932E+Ol -.335E+03 -.348E+02 
7 7 8 .348E+02 -.336E+02 -.127E+04 -.348E+02 
8 5 8 .336E+02 .348E+02 .138E+04 -.336E+02 

Plastic Hinge Locations for Load Level = 42.927 
At Joint In Member 

5 3 

INCREMENT NO. 2 

Incr. Load Factor 
Total Load Factor 
Condition Number 

2.681 
45.608 

1/ .385E-06 

NODAL DISPLACEMENTS 

INCREMENTAL 
jt hrz. vrt. rot. 

1 .OOOE+OO .OOOE+OO . OOOE+OO 
2 .OOOE+OO .OOOE+OO .OOOE+OO 

hrz. 

.OOOE+OO 

.OOOE+OO 

V2 
-.339E+02 
-.170E+Ol 

.412E+02 
-.434E+02 
-.388E+Ol 
-.932E+Ol 

.336E+02 
-.348E+02 

-.339E+02 
-.170E+Ol 

.412E+02 
-.434E+02 
-.388E+Ol 
-.932E+Ol 

.336E+02 
-.348E+02 

TOTAL 
vrt. 

.OOOE+OO 

.OOOE+OO 
3 .416E-Ol -.331E-03 -.558E-03 .431E+00 -.319E-02 
4 .415E-01 -.330E-Ol .163E-04 .429E+00 -.175E+00 
5 .414E-Ol - .106E-02 -.630E-03 .427E+00 -.205E-Ol 
6 .897E-Ol -.367E-03 -.340E-03 .904E+00 -.564E-02 
7 .892E-Ol -.125E-Ol . 111E-03 .894E+00 -.192E+00 
8 .888E-Ol -.172E-02 - .144E-03 .885E+00 -.298E-Ol 

rot . 

.OOOE+OO 

.OOOE+OO 
-.447E-02 

.186E-02 
-.345E-02 
-.364E-02 

.108E-02 
- . 136E-02 

M2 
.936E+03 
. 116E+04 

-.296E+04 
.158E+04 
.335E+03 
.127E+04 

-.209E+04 
.209E+04 

.936E+03 

. 116E+04 
-.296E+04 

.158E+04 

.335E+03 

.127E+04 
-.209E+04 

.209E+04 

rot . 

.OOOE+OO 

.OOOE+OO 
-.502E-02 

.187E-02 
-.408E-02 
-.398E-02 

. 119E-02 
-.150E-02 
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END FORCES 
-----------

INCREMENTAL END FORCES 
Mem jl j2 Nl VI Ml N2 

1 1 3 .128E+Ol .279E+Ol .234E+03 -.128E+Ol 
2 3 4 .272E+00 . 114E+Ol -.407E+02 -.272E+00 
3 4 5 .272E+00 -.154E+Ol -.154E+03 -.272E+00 
4 2 5 .408E+Ol .203E+Ol .209E+03 -.408E+Ol 
5 3 6 .140E+00 .654E+00 -.427E+Ol -.140E+00 
6 6 7 .176E+Ol .140E+00 -.697E+02 -.176E+01 
7 7 8 .176E+Ol -.254E+Ol -.837E+02 -.17 6E+Ol 
8 5 8 .254E+Ol .176E+Ol .546E+Ol -.2541';+01 

TOTAL END FORCES 
1 1 3 .123E+02 .367E+02 .269E+04 -.123E+02 
2 3 4 .888E+Ol .284E+Ol -.103E+04 -.888E+Ol 
3 4 5 .888E+Ol -.428E+02 - .131E+04 -.888E+Ol 
4 2 5 .789E+02 .454E+02 .296E+04 -.789E+02 
5 3 6 .946E+Ol .454E+Ol .489E+02 -.946E+Ol 
6 6 7 .365E+02 .946E+Ol -.405E+03 -.365E+02 
7 7 8 .365E+02 -.361E+02 -.135E+04 -.365E+02 
8 5 8 .361E+02 .365E+02 .139E+04 -.361E+02 

Plastic Hinge Locations for Load Level = 45.608 
At Joint In Member 

2 4 

Incr. Load Factor 
Total Load Factor 
Condition Number 

INCREMENT NO. 

1.955 
47.563 

1/ .378E-06 

NODAL DISPLACEMENTS 

INCREMENTAL 
jt hrz. vrt. rot. 

1 .OOOE+OO .OOOE+OO . OOOE+OO 
2 .OOOE+OO .OOOE+OO -.437E-03 

hrz. 

.OOOE+OO 

.OOOE+OO 

V2 
-.279E+Ol 
- .114E+Ol 

.154E+Ol 
-.203E+Ol 
-.654E+00 
-.140E+00 

.254E+Ol 
-.176E+Ol 

-.367E+02 
-.284E+Ol 

.428E+02 
-.454E+02 
-.454E+Ol 
-.946E+Ol 

.361E+02 
-.365E+02 

TOTAL 
vrt. 

.OOOE+OO 

.OOOE+OO 
3 .444E-01 -.178E-03 -.527E-03 .476E+OO -.337E-02 
4 .449E-01 -.285E-01 .263E-04 .474E+OO -.203E+OO 
5 .453E-Ol -.836E-03 -.486E-03 .472E+OO -.213E-01 
6 .847E-01 - .180E-03 -.255E-03 .988E+OO -.582E-02 
7 .843E-01 -.852E-02 .892E-04 .978E+00 -.200E+00 
8 .839E-01 -.134E-02 -.136E-03 .969E+00 -.312E-01 

END FORCES 
-----------

Mem 
1 
2 
3 
4 
5 
6 
7 
8 

1 
2 
3 

ji 
1 
3 
4 
2 
3 
6 
7 
5 

1 
3 

j2 
3 
4 
5 
5 
6 
7 
8 
8 

3 
4 
5 

NI 
.686E+OO 

-.169E+OI 
-.169E+OI 

.323E+OI 

. 922E-02 

.152E+OI 

.152E+OI 

.195E+Ol 

.130E+02 

.719E+OI 

.719E+OI 

INCREMENTAL END FORCES 
VI MI N2 

.369E+OI .274E+03 -.686E+OO 

.676E+OO -.603E+02 .169E+OI 
-.128E+OI -.128E+03 .169E+OI 
-.168E+OO .OOOE+OO -.323E+OI 

.235E+OO -.345E+02 -.922E-02 

.922E-02 -.580E+02 -.152E+OI 
-.195E+OI -.590E+02 -.152E+OI 

.152E+Ol .168E+02 -.195E+OI 
TOTAL END FORCES 

.404E+02 .296E+04 -.130E+02 

.35IE+OI -.109E+04 -.7I9E+01 
-.440E+02 -.144E+04 -.7I9E+Ol 

V2 
-.369E+OI 
-.676E+OO 

.128E+OI 

.168E+OO 
-.235E+OO 
-.922E-02 

.195E+OI 
-.152E+OI 

-.404E+02 
-.35IE+OI 

.440E+02 

M2 
.450E+02 
.154E+03 
.OOOE+OO 

-.546E+Ol 
.697E+02 
.837E+02 

- .170E+03 
.170E+03 

.981E+03 

.131E+04 
-.296E+04 

.158E+04 

.405E+03 

.135E+04 
-.226E+04 

.226E+04 

rot . 

.OOOE+OO 
-.437E-03 
-.555E-02 

.190E-02 
-.457E-02 
-.423E-02 

.128E-02 
-.164E-02 

M2 
.948E+02 
.128E+03 
.OOOE+OO 

-.168E+02 
.580E+02 
.590E+02 

- .136E+03 
.136E+Q3 

.108E+04 

.144E+04 
-.296E+04 
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4 2 5 .821E+02 .452E+02 .296E+04 -.821E+02 
5 3 6 .947E+Ol .477E+Ol .144E+02 -.947E+Ol 
6 6 7 .380E+02 .947E+Ol -.463E+03 -.380E+02 
7 7 8 .380E+02 -.381E+02 -.141E+04 -.380E+02 
8 5 8 .381E+02 .380E+02 .140E+04 -.381E+02 

Plastic Hinge Locations for Load Level ~ 47.563 
At Joint In Member 

1 1 

INCREMENT NO. 4 

Incr. Load Factor 
Total Load Factor 
Condition Number 

5.373 
52.936 

1/ .348E-06 

NODAL DISPLACEMENTS 

INCREMENTAL 
jt hrz. vrt. rot. 

.OOOE+OO . OOOE+OO -.462E-02 
2 .OOOE+OO .OOOE+OO -.433E-02 

hrz. 

.OOOE+OO 

.OOOE+OO 

-.452E+02 
-.477E+Ol 
-.947E+Ol 

.381E+02 
-.380E+02 

TOTAL 
vrt. 

.OOOE+OO 

.OOOE+OO 
3 .400E+00 .488E-03 -.277E-02 .876E+OO -.288E-02 
4 .400E+00 -.128E+00 .226E-03 .874E+OO -.331E+00 
5 .400E+OO -.327E-02 -.334E-02 .872E+00 -.246E-Ol 
6 .613E+00 .102E-02 -.124E-02 .160E+Ol -.480E-02 
7 .613E+00 -.290E-Ol .435E-03 .159E+Ol -.229E+00 
8 .612E+OO -.520E-02 -.689E-03 .158E+Ol -.364E-Ol 

END FORCES 
-----------

Mem jl j2 Nl 
1 1 3 -.188E+Ol 
2 3 4 .111E+Ol 
3 4 5 .111E+Ol 
4 2 5 .126E+02 
5 3 6 -.207E+Ol 
6 6 7 
7 7 8 
8 5 8 

1 1 3 
2 3 4 
3 4 5 
4 2 5 
5 3 6 
6 6 7 
7 7 8 
8 5 8 

Plastic Hinge 
At Joint In 

8 
8 

.226E+Ol 

.226E+Ol 

.744E+Ol 

. l11E+02 

.830E+Ol 

.830E+Ol 

.948E+02 

.740E+Ol 

.403E+02 

.403E+02 

.455E+02 

Locations 
Member 

7 
8 

INCREMENTAL END FORCES 
VI Ml N2 

.630E+Ol .OOOE+OO .188E+Ol 

.191E+00 -.499E+03 - . ll1E+Ol 
-.518E+Ol -.518E+03 - .111E+Ol 

.337E+Ol .OOOE+OO -.126E+02 

.257E+Ol -.131E+03 .207E+Ol 
-.207E+Ol -.388E+03 -.226E+Ol 
-.744E+Ol -.181E+03 -.226E+Ol 

.226E+Ol -.337E+03 -.744E+Ol 
TOTAL END FORCES 

.467E+02 .296E+04 - .111E+02 

.371E+Ol -.159E+04 -.830E+Ol 
-.492E+02 -.196E+04 -.830E+Ol 

.486E+02 .296E+04 -.948E+02 

.734E+Ol - .117E+03 -.740E+Ol 

.740E+Ol -.851E+03 -.403E+02 
-.455E+02 -.159E+04 -.403E+02 

.403E+02 .107E+04 -.455E+02 

for Load Level ~ 52.936 

INCREMENT NO. 5 

Incr. Load Factor 
Total Load Factor 
Condition Number 

7.700 
60.636 

1/ .396E-06 

V2 
-.630E+Ol 
-.191E+00 

.518E+Ol 
-.337E+Ol 
-.257E+Ol 

.207E+Ol 

.744E+Ol 
-.226E+Ol 

-.467E+02 
-.371E+Ol 

.492E+02 
-.486E+02 
-.734E+Ol 
-.740E+Ol 

.455E+02 
-.403E+02 

.156E+04 

.463E+03 

.141E+04 
-.240E+04 

.240E+04 

rot . 

-.462E-02 
-.477E-02 
-.832E-02 

.212E-02 
-.790E-02 
-.547E-02 

. 171E-02 
-.232E-02 

M2 
.630E+03 
.518E+03 
.OOOE+OO 
.337E+03 
.388E+03 
.181E+03 

-.563E+03 
.563E+03 

. 171E+04 

.196E+04 
-.296E+04 

.190E+04 

.851E+03 

.159E+04 
-.296E+04 

.296E+04 
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NODAL DISPLACEMENTS 
-------------------

INCREMENTAL TOTAL 
jt hrz. vrt. rot. hrz. vrt. 

1 .OOOE+OO .OOOE+OO -.869E-02 .OOOE+OO .OOOE+OO 
2 .OOOE+OO .OOOE+OO -.821E-02 .OOOE+OO .OOOE+OO 
3 .780E+OO .699E-03 -.601E-02 .166E+01 -.218E-02 
4 .777E+00 -.259E+OO .579E-03 .165E+01 -.590E+00 
5 .775E+00 -.469E-02 -.682E-02 .165E+01 -.293E-01 
6 .136E+01 .794E-03 -.448E-02 .296E+01 -.400E-02 
7 .136E+01 -.203E+00 .376E-03 .295E+01 -.432E+00 
8 .136E+01 -.678E-02 .OOOE+OO .294E+01 -.432E-01 

END FORCES 
-----------

INCREMENTAL END FORCES 
Mem j1 j2 N1 V1 M1 N2 

1 1 3 -.270E+01 .912E+01 .OOOE+OO .270E+01 
2 3 4 .948E+01 -.233E+01 -.124E+04 -.948E+01 
3 4 5 .948E+01 -.100E+02 -.10OE+04 -.948E+01 
4 2 5 .181E+02 .474E+01 .OOOE+OO -.181E+02 
5 3 6 -.366E+OO .1l7E+02 .324E+03 .366E+00 
6 6 7 -.474E+01 -.366E+00 -.843E+03 .474E+01 
7 7 8 -.474E+01 -.807E+01 -.807E+03 .474E+01 
8 5 8 .807E+01 -.474E+01 -.474E+03 -.807E+01 

TOTAL END FORCES 
1 3 .841E+01 .558E+02 .296E+04 -.841E+01 
2 3 4 .178E+02 .138E+01 -.283E+04 -.178E+02 
3 4 5 .178E+02 -.593E+02 -.296E+04 - .178E+02 
4 2 5 .1l3E+03 .533E+02 .296E+04 -.113E+03 
5 3 6 .703E+01 .190E+02 .207E+03 -.703E+01 
6 6 7 .356E+02 .703E+01 -.169E+04 -.356E+02 
7 7 8 .356E+02 -.536E+02 -.240E+04 -.356E+02 
8 5 8 .536E+02 .356E+02 .593E+03 -.536E+02 

Plastic Hinge 
At Joint In 

4 

Locations 
Member 

for Load Level ~ 60.636 

2 
4 3 

INCREMENT NO. 6 

Iner. Load Factor 
Total Load Factor 
Condition Number 

2.406 
63.043 

1/ .358E-06 

NODAL DISPLACEMENTS 

INCREMENTAL 
jt hrz. vrt. rot. 

1 .OOOE+OO . OOOE+OO -.753E-02 
2 .OOOE+OO .OOOE+OO -.781E-02 

hrz. 

.OOOE+OO 

.OOOE+OO 

V2 
-.912E+01 

.233E+01 

.10OE+02 
-.474E+01 
- .1l7E+02 

.366E+00 

.807E+01 

.474E+01 

-.558E+02 
-.138E+01 

.593E+02 
-.533E+02 
-.190E+02 
-.703E+01 

.536E+02 
-.356E+02 

TOTAL 
vrt. 

.OOOE+OO 

.OOOE+OO 
3 .748E+OO .218E-03 -.736E-02 .240E+01 - .196E-02 
4 .746E+OO -.783E+OO .OOOE+OO .240E+01 -.137E+01 
5 .744E+OO -.147E-02 -.670E-02 .239E+Ol -.307E-Ol 
6 .134E+Ol .106E-02 -.387E-02 .430E+Ol -.294E-02 
7 .134E+Ol -.156E+OO .417E-03 .429E+Ol -.587E+OO 
8 .134E+Ol -.293E-02 .OOOE+OO .428E+Ol -.461E-Ol 

END FORCES 

rot. 

-.133E-01 
- .130E-01 
-.143E-01 

.270E-02 
-.147E-01 
-.995E-02 

.209E-02 
-.232E-02 

M2 
.912E+03 
.100E+04 
.OOOE+OO 
.474E+03 
.843E+03 
.807E+03 
.OOOE+OO 
.OOOE+OO 

.262E+04 

.296E+04 
-.296E+04 

.237E+04 

.169E+04 

.240E+04 
-.296E+04 

.296E+04 

rot . 

-.208E-01 
-.208E-01 
-.217E-01 

.270E-02 
-.214E-Ol 
- .138E-Ol 

.250E-02 
-.232E-02 
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INCREMENTAL END FORCES 
Mem jl j2 NI VI MI N2 

1 1 3 -.842E+00 .575E+00 .OOOE+OO .842E+00 
2 3 4 .75IE+Ol .241E+Ol .241E+03 -.751E+Ol 
3 4 5 .751E+Ol .OOOE+OO .OOOE+OO -.751E+Ol 
4 2 5 .565E+Ol .376E+Ol .OOOE+OO -.565E+Ol 
5 3 6 -.325E+Ol .592E+Ol -.298E+03 .325E+Ol 
6 6 7 -.376E+Ol -.325E+Ol -.890E+03 .376E+Ol 
7 7 8 -.376E+OI -.565E+Ol -.565E+03 .376E+Ol 
8 5 8 .565E+Ol -.376E+Ol -.376E+03 -.565E+Ol 

TOTAL END FORCES 
1 1 3 .757E+Ol .564E+02 .296E+04 -.757E+Ol 
2 3 4 .253E+02 .378E+Ol -.258E+04 -.253E+02 
3 4 5 .253E+02 -.593E+02 -.296E+04 -.253E+02 
4 2 5 . 119E+03 .571E+02 .296E+04 - . 119E+03 
5 3 6 .378E+Ol .249E+02 -.912E+02 -.378E+Ol 
6 6 7 .318E+02 .378E+Ol -.258E+04 -.318E+02 
7 7 8 .318E+02 -.593E+02 -.296E+04 -.318E+02 
8 5 8 .593E+02· .318E+02 .217E+03 -.593E+02 

Plastic Hinge Locations for Load Level = 63.043 
At Joint In Member 

7 6 
7 7 

Incremental Displacements up to .1510E+05 
Excessive Deformations .... Must be a mechanism 

(a) Deflections: From the output, we note that 

Ac = 63.043. 

From Example 6.8.1, we have 

Mp 2963 
Ac = 2.128 y = 2.128 100 = 63.05, 

V2 
-.575E+00 
-.241E+Ol 

.OOOE+OO 
-.376E+Ol 
-.592E+Ol 

.325E+Ol 

.565E+Ol 

.376E+Ol 

-.564E+02 
-.378E+OI 

.593E+02 
-.571E+02 
-.249E+02 
-.378E+Ol 

.593E+02 
-.318E+02 

which is practically the same. Also, from the output data, we note 

<>h8 = 4.28 in. 

M2 
.575E+02 
.OOOE+OO 
.OOOE+OO 
.376E+03 
.890E+03 
.565E+03 
.OOOE+OO 
.OOOE+OO 

.268E+04 

.296E+04 
-.296E+04 

.275E+04 

.258E+04 

.296E+04 
-.296E+04 

.296E+04 

(7.8.41) 

From Example 6.8.1, <>hS (<>h8 in this example) can be calculated from 
Eq. (6.8.6) as 

or 

<> = 14.206 x 2963 x (100)2 = 413 in 
h8 6 x 29,000 x 586 . . (7.8.42) 

Equation (6.8.6) is based on a certain assumed value of indeterminate mo­
ments in the moment check. The error between the estimated <>h8 and that 
computed from FOPA is 3.5%. A modified estimation of deflection by 
Eq. (6.8.6) based on the exact elastic analysis ofthe indeterminate moments is 

M L2 
<>hS = 14.626 6~I 
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FIGURE 7.S. Member end 
moments of Fig. 7.7: (a) 
member 1-3, (b) member 
5-S, and (c) member 7-S. 

, 56.4 

2,680ft'\ 
3 

159.3 

2,960~ 

1 5 f 2
.
96O 

56.4 

t217 

59.3 

(a) Member 1-3 (b) Member 5-8 

8) 2,960 

(c) Member 7-8 

or 

() _ 14.626 x 2963 x (100)2 _ 42 . 
h5 - 6 x 29,000 x 586 -. 5 Ill. (7.8.43) 

(b) Rotation Capacity: (i) Point 1: The rotation capacity required at point 1 
for the formation of a mechanism can be calculated from Eq. (6.3.1) as 

(JA = ~ + 3~I( M13 - ~M31) 
in which L\ is the horizontal displacement of node 3 with respect to node 1 
(displacement is zero) and M13 and M31 [Fig. 7.8(a)] are internal moments, 
all obtained from the output from FOPA. Note that in this equation, mo­
ments M13 and M31 are positive when clockwise and vice-versa. 

2.4 100 [ 2680J 
(JA = 100 + 3 x 29,000 x 586 -2960 + -2-

or 

(JA = 0.0208. 
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(ii) Point 8: The required rotation capacity at point 8 consists of two parts: 
the rotation of segment 8-5 and the rotation of segment 8-7; it can be ex­
pressed as 

(}8 = (}85 - (}87· 

The rotation of segment 8-5 is calculated from 

(}85 = ~ + 3~I( M85 - ~M58) 
in which .1 is the relative horizontal displacement of nodes 8 and 5 and is 
calculated as 

.1 = 4.28 - 2.39 = 1.89 in. 

M85 and M58 [Fig. 7.8(b)] are internal moments in segment 8-5 and are 
obtained from the output of FOPA. Now, (}85 becomes 

() = 1.89 100 [_ 217J_ 
85 100 + 3 x 29,000 x 586 2960 + 2 - 0.01331. 

Similarly, for segment 8-7, we have 

.1v78 L ( 1) (}87 = -- + - M87 - -M78 
L 3EI 2 

where .1v78 is the relative vertical displacement of nodes 7 and 8 and is 
obtained from the FOPA output as 

.1v78 = -0.587 - (-0.0461) = -0.541. 

The rotation of segment 8-7 has the value 

0.541 100 [ 1 J 
(}87 = - 100 + 3 x 29,000 x 586 2960 - 2(2960) = -0.00251. 

Now the required hinge rotation at node 8 can be expressed as 

H8 = 0.01331 + 0.00251 = 0.01582. 

7.9 Summary and Conclusions 

The first-order plastic hinge analysis consists of a series of elastic analyses. In 
each of these elastic analyses, a plastic hinge is introduced at the point of the 
maximum moment and a new, simpler structure is formed after replacing the 
plastic hinge with a real hinge. The elastic analyses are continued until a 
sufficient number of plastic hinges is formed to transform the structure into a 
failure mechanism. 

In order to computerize this hinge-by-hinge procedure, we first derive the 
stiffness matrices for beam elements with several boundary conditions. Then 
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we describe a numerical procedure for developing the computer program. In 
the latter part of the chapter, we presented three illustrative examples. In the 
first example, we showed the details of a step-by-step calculation procedure 
of the hinge-by-hinge matrix-analysis method for a fixed-ended beam. In the 
second example, the computer program was applied to a portal frame and 
the plastic limit load so obtained was compared with the plastic limit analysis 
solution obtained in Chapter 4. In the third example, the deflection estimated 
for a frame in Example 6.8.1 (Chapter 6) was checked by the computer pro­
gram FOPA. The required rotation capacity of plastic hinges was also esti­
mated. In the appendix, four examples demonstrating the capability of the 
computer program FOPA are presented. 
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Appendix 

M. ABDEL-GHAFFAR 

A7.1 FOPA-Program Description 

The program FOPA is based on the procedure described in Section 7.7. It is 
useful to obtain the load-displacement history of plane rigid frames under 
static loads. The locations and sequence of the formation of plastic hinges are 
also given in the output file (OUT.DAT) and on the screen. 

The input can be given to the program in two ways: either (1) by opening 
a file called IN.DA T and entering the necessary data to run FO PA; or (2) by 
using the small program DATA to interactively create the files IN.DAT and 
MESH.DAT. The MESH.DAT file contains the information needed for a 
small program called DRAW to sketch the structure on the screen so that the 
user can verify that the nodal coordinates and the member geometry are 
entered correctly. The program DRAW can also be used to sketch the de­
formed collapse mechanism of the structure, provided the user runs DRAW 
after running FOPA. 

The output of FOPA comes on one major file called OUT.DAT and three 
other files called DISP.DAT, DISPMX.DAT, and DEF.DAT. The output file 
OUT.DA T has everything about the structure for each load increment as 
well as the input data. If the structure is relatively large with many plastic 
hinges to form, the file 0 UT.D A T will be too large to print all of it. The user 
has the option of printing only the conclusion of the results for each load step 
by entering a value of "0" (zero) for the parameter FLAG in the input data 
file. 

The output file DISP.DA T contains four columns: the load level, the hori­
zontal and vertical displacements, and the rotation of the selected node. This 
file is useful in plotting the load-displacement history of the selected node 
without extracting it from the file OUT.DAT. The file DISPMX.DAT is 
similar to DISP.DAT except that DISPMX.DAT concerns the point of maxi­
mum displacement in the elastic range, which may not be at the same point 
as at the collapse. The point of maximum displacement in the elastic range is 
chosen because displacement is of serviceability concern (at the service load 
level) rather than a limit state at collapse. The file DEF.DAT is used by 
DRA W to sketch the deformed shape of the collapse mechanism. 

416 
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If the user prefers to input the structure's data without using the program 
DATA, i.e., by directly creating or editing a file called IN.DA T, running 
FOPA automatically prints the file MESH.DAT, which the DRAW program 
needs for sketching the structure's geometry. 

A7.2 Input Data 

The necessary information needed for creating the input file IN.DAT can be 
entered as eight read statements in a free format as follows: 

1. Job name: with a maximum of 80 characters. 
2. Five entries as follows: 

(1) Number of nodes: with a maximum of 99 nodes. 
(2) Number of elements: with a maximum of 99 elements. 
(3) Number of loaded nodes: with a maximum of 70 loaded nodes. 
(4) Number of supports: with a maximum of 20 supports. 
(5) Number of property groups: with a maximum of 20 groups. 

3. Three entries as follows: 
(1) Modulus of elasticity. 
(2) Node of interest: where the load-displacement history is monitored 

and printed in the file DISP.DAT. 
(3) Flag: equals "0" (zero) if only a brief output file OUT.DAT is needed. 

Otherwise, enter any other number if a complete output file 
OUT.DAT is needed. 

4. Two entries for each node: 
(1) X -coordinate 
(2) Y -coordinate 
Entered for all nodes in an ascending order (i.e., starting from node 1 until 
the last node). 

5. Five entries for each element: 
(1) Node number for the element's first node. 
(2) Node number for the element's second node. 
(3) Connection type of first node (0 for a hinged connection; 1 for a rigid 

connection). 
(4) Connection type of second node. 
(5) Property group number this member belongs to. 

6. Three entries for each property group: 
(1) Area. 
(2) Inertia. 
(3) Plastic moment capacity. 

7. Four entries of each loaded node: 
(1) Loaded node number. 
(2) Applied horizontal force (positive -+). 
(3) Applied vertical force (positive upward). 
(4) Applied bending moment (positive counterclockwise). 
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For example, "15 -7 3 2" means that at node number 15 there is a 
vertical downward concentrated load of 7 units (e.g., kips or kN), a 
horizontal force of 3 units from left to right, and a concentrated mo­
ment of 2 units (e.g., kip-in. or kN-m.) counterclockwise. 

8. Four entries for each support: 
(1) Supported node number. 
(2) Is motion restrained in the X -direction? "1" for yes and "0" for no. 
(3) Is motion restrained in the Y-direction? "I" or "0." 
(4) Is rotation restrained? "1" or "0." 

For example, "23 1 1 0" means that node number 23 is a hinged 
support. 

Example A 7.1. The same frame was solved in Example 6.8.1 with different 
applied loads, as shown in Fig. A 7.1. The plastic moment capacity is assumed 
in the input file as 200 and the story height is taken as 10, as used in the 
previous example. Using FOPA, the load factor P is obtained as P = 42.55 
and the horizontal displacement at node E is bE = 1.65. These values are 
quite close to the exact values given in Example 6.8.1. The load-displacement 
history of node E is plotted in Fig. A7.2 and the last plastic hinge to form was 
at node D (or hinge 6). 

Example A7.2. The frame shown in Fig. A7.3 is the same as that in Example 
5.9.3. It is solved here using FOPA. The limit load factor is 2.22. The exact 
value given by mechanism (1) of Eq. (5.9.50) is 2.311, which is a little higher 
than the analysis result. The reason is the excessive deformations required to 
achieve the load factor of 2.311, which introduces ill-conditioning and singu­
larity of the stiffness matrix. This can be noticed from Fig. A 7.4, where the 
load-displacement curve becomes almost horizontal at load level 2.22. To 
improve the solution for ill-conditioned structures at or near the limit load, 
calculations should be done in a double-precision accuracy. The more accu­
rate solution considering the effects of stability and plasticity on the final 
collapse load is based on the second-order inelastic analysis, which is the 
subject of Chapter 8. 

1.0 

0.9 --..... ~C---.,;,D----E 

1.0 

0.9--·· .. ~B---~F----iG 

FIGURE A7.1. The finite element model 
for Example A7.1. 
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Frame of Example A 7.1 
Mp = 200, E = 30,000 
L = 10, A = 1 = 1.0 

A =42.55 

<\=1.65 

1.5 

6 

2.0 

FIGURE A7.2. The load-deflection curve for the frame shown in Fig. A7.1. 

o Element number 

o Node number 
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@ 
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~ 18 ~I~ 18 ~I~ 18 ~I~ 18 

·1 
FIGURE A 7.3. The finite element model for Example A 7.2. 
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(; 
u 

Frame of Example A 7.2 

" u. 

'0 

" o 
...J 

10 

Last hinge 

11 

11 

A. = 2.22 

O.OI+-~--~~~~~~--~~--~~~ __ ~~ __ ~-L~ __ ~~ __ ~~ 
o 

Displacement 

FIGURE A 7.4. The load-deflection curve for the frame shown in Fig. A 7.3. 

2 

+ 

3--" 

I 3 @ 8 = 24 I 
r-'~-"'-'-------1 

FIGURE A 7.5. Finite element model for Example A 7.3. 
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Example A7.3. In the preceding two examples, the plastic moment capacity 
was given and the unknown was the plastic limit load factor. In this frame, 
which is similar to that of Problem 5.11 in Chapter 5, we are looking for the 
required plastic moment for the frame to sustain the given factored loads of 
Fig. A7.5. 

The procedure is quite simple; an assumed Mp is entered in the program 
(20, in this example) and the corresponding load factor is obtained, which is 
0.65 for this case. The required Mp can then be calculated by scaling the 
assumed Mp with the inverse of the calculated load factor, i.e., the required 

o 
;:; .. 
u. 

"C .. 
.3 

m 

1.2.----,---..,..-------r----r------,r---~--~-____r--__r_-____, 

1.0 

3 
_~~ __ ----.-4 ~ Mp= 30.75 

Mp = 20 
4 

Frame 01 Example 7.3 

I· 12 ./ 

0.04 0.06 0.08 0.10 

Displacement 

FIGURE A 7.6. The load-deflection curves for the frame shown in Fig. A 7.5. 

7.5 

7.5 

7 

® [lJ @ 

~ 7 

CD ® @ 

I- 8 @ 15 = 120 

-I 
FIGURE A7.7. Finite element model for Example A7.4 with 13 elements. 
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M p for this frame is 

Mp = 20(0.~5) = 30.75, 

which is the correct answer for the problem. The response for both Mp = 20 
and Mp = 30.75 is plotted in Fig. A7.6. 

Several trials will be needed if the moment capacities were not the same for 
all members. 

Example A7.4. As has been demonstrated in Example 5.11.1 in Chapter 5, 
the replacement of the distributed load with an equivalent concentrated load 
at the midspan of each member results in an overestimation of the required 
plastic moment capacity ofthe members, or alternatively the limit load factor 
can be underestimated. The same example is solved with the program FOPA 
twice, one with 13 elements (Fig. A7.7) and the other with 36 elements (Fig. 
A 7.8). The larger number of elements is used to simulate the effect of the 
uniform load. The results are plotted in Fig. A7.9. The plastic moment capac­
ity calculated from the first case is: 

"C 

'" .3 

1.0 

0.8 

0.6 

0.4 

Mp = 20(0.~3) = 21.50. 

~ 36 Elements 

(L.F.=1.15) 

Frame of Example 5.11.1 

M. = 20 

0·~+.0-0--~~---L--~--0.Ll0--~--L-~~~---0.L20--~--~~--~~0~.30 

Displacement ~ 

FIGURE A 7.9. The load-deflection curves for the frame shown in Fig. A 7.7. 
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Using 36 elements, a more accurate answer is obtained as: 

Mp = 20C.~5) = 17.40. 

The use of an element with the plastic hinge allowed to form within the 
member's length would give the exact answer. Th;~ approach, however, is not 
implemented in the present FOPA program. 



8 
Second-Order Plastic Hinge Analysis 

1. Y. RICHARD LIEW AND W. F. CHEN 

8.1 Introduction 

8.1.1 Background 

During the past 20 years, numerous analytical models have been developed 
for second-order inelastic analysis of steel frames. In general, these models 
may be categorized into two main types: (1) plastic zone and (2) plastic hinge. 
The plastic-zone model follows explicitly the gradual spread of yielding 
throughout the volume of the structure. Plastification in the members is 
modeled by discretization of members into several beam-column elements 
and subdivision of the cross sections into many "fibers" [8.1-8.3]. The effects 
of residual stresses, geometric imperfections, and material strain hardening 
can all be accounted for in a plastic-zone analysis model. Because of the 
refined discretization of the members and their cross sections, the plastic­
zone analysis can accurately predict the inelastic response of the structure, 
and it is generally considered an "exact" method of analysis. However, this 
type of analysis is too computationally intensive for general design use, 
and because of its complexity and cost, it has not yet found application in 
ordinary practice. Even if such analysis methods should become generally 
available and reliable, a more efficient procedure to assess the structural 
performance and failure modes of a system would be useful. Plastic-hinge­
based methods of analysis hold the promise to fulfill these requirements. 

In conventional plastic-hinge-based analysis, inelasticity in frame elements 
is assumed to concentrate at "zero-length" plastic hinges. Regions in the 
frame elements other than at the plastic hinges are assumed to behave elas­
tically. If the cross-section forces at any particular locations in an element are 
less than the cross-sectional plastic capacity, elastic behavior is assumed. If 
the section plastic capacity is reached, a plastic hinge is formed and the 
element stiffness matrix is adjusted to account for the presence of a plastic 
hinge. The cross-sectional response after the formation of a plastic hinge is 
usually assumed to be perfectly plastic with no strain hardening [8.4-8.6]. 

Plastic hinge analyses can be classified into two categories; first order and 

425 
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second order, depending on whether geometric second-order effects are ac­
counted for. For the first-order elastic-plastic hinge analysis discussed in 
Chapter 7, equilibrium is formulated based on an undeformed geometry. 
Thus, only the inelasticity effects that influence the strength of the structure 
are included. The geometric nonlinear effects on the equilibrium of the struc­
ture are not considered. First-order elastic-plastic hinge analysis predicts the 
maximum load of the structure corresponding to the formation of a plastic 
collapse mechanism. This analysis approach essentially predicts the same 
maximum load as the rigid-plastic analysis approaches as discussed in 
Chapters 4 and 5. The elastic-plastic method is an alternative plastic design 
method, which in addition to finding the collapse load for a frame, gives 
information about the redistribution of forces prior to reaching the collapse 
load. 

The elastic-plastic hinge analysis determines the order of plastic hinge 
formation, the load factor associated with each hinge formation, and member 
forces in the frame between each hinge formation. The main advantage of the 
method is that the state of the frame can be established at any load factor 
rather than only at the state of collapse. This allows a more accurate determi­
nation of member forces at the required design load factor. 

If equilibrium is formulated based on deformed structural geometry, the 
analysis is normally termed second-order. The need for a second-order analy­
sis of steel frames is increasing in view of the AISC LRFD specifications 
[8.7], which give explicit permission for the engineer to compute load effects 
from a direct second-order analysis. Second-order elastic analysis is also the 
"prefered" method in the Canadian limit states design specification [8.8] and 
in many other limit-states code provisions. Although there are several other 
approximated methods [8.9-8.12] based on the same concept as the BdB2 
analysis in the LRFD specification, these methods do not always give satis­
factory results because they are derived based on simplified assumptions and 
are applicable to rectangular frames with rigid connections and small dis­
placements. Furthermore, it is rather cumbersome and tedious to calculate 
the amplification factors applied to a first-order analysis. In view of this, it is 
more convenient and straightforward to use computer-based methods to 
calculate member forces directly as long as the method can be easily 
implemented. 

Second-order elastic plastic hinge analysis considers inelasticity and stabil­
ity effects at a certain level of approximation. The method often employs one 
element per member, and it is sufficiently accurate to capture the global 
behavior of the structures. The analysis method is computationally more 
efficient and economical than second-order plastic-zone analyses. Presently, 
direct second-order inelastic analysis is addressed by many specification pro­
visions for plastic design. Given the computed load effects from this type of 
analysis, specifications typically provide equations that member forces must 
not violate if the members are deemed adequate. However, if the limit states 
associated with a particular design code are represented with sufficient accu-
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racy in the analysis, then the separate checks of member equations are not 
required. For the discussions that follow, any methods of analysis that suffi­
ciently capture the stability and plastic limit state behavior such that separate 
member capacity checks are not required are called advanced analysis. 

At present, only plastic zone analysis has been classified as an advanced 
analysis technique. Australian Standard AS4100 [8.13] and EC 3 [8.14] are 
the only design specifications that explicitly allow engineers to disregard 
member capacity checks if a plastic zone analysis is employed. This chapter 
provides the solution and tools to advance the use of plastic-hinge-based 
analysis as an advanced technique for frame proportioning without the need 
for member capacity checks. The present work is limited to two-dimensional 
steel frames only. Information regarding spatial behavior of beam-columns 
and frames, including topics such as lateral-torsional buckling, is not con­
sidered. Also, the present work is limited to frames subjected to static loads 
only. Frames under dynamic and cyclic loading are not considered in the 
analysis. 

8.1.2 Organization 

This section is intended to provide an overview of the impetus behind the 
research in advanced analysis for steel frame design. The sequence sections 
are arranged to present basic theories, assumptions, and development work 
for implementation of second-order plastic-hinge-based analysis for the de­
sign of two-dimensional steel frames. 

Sections 8.2 through 8.4 present the mathematical formulation of the con­
ventional elastic-plastic hinge approach for modeling inelastic behavior of 
frame and truss elements. Section 8.5 provides assessment of the capabilities 
of the method and explores the limitations of the method. Benchmark studies 
in Section 8.5 conclude that, without modification and refinements, the 
elastic-plastic hinge approach is not adequate to be accepted as an advanced 
analysis method. 

Section 8.6 presents the desirable attributes that would be considered in 
the development of an analysis model as an advanced technique. Section 8.7 
presents an improved plastic-hinge-based method called the refined plastic 
hinge model, which satisfies the attributes outlined in Section 8.6. The refined 
plastic hinge approach adopts a suitable stiffness-degradation function that 
represents the distributed yielding behavior of beam columns. Benchmark 
tests are then conducted to provide confirmation of the general validity of 
this method. 

In Section 8.8, a method of incorporating semirigid connection effects in 
advanced analyses of steel frames is presented. The design of semirigid frames 
using an advanced analysis technique is illustrated through an example. 

A FORTRAN-based computer program, PHINGE, is implemented in 
Section 8.9, based on the theories developed in Sections 8.2 through 8.8. 
The computer program can perform first-order, second-order elastic, second-
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order plastic hinge, and· second-order refined plastic hinge analyses. It is 
an educational software for engineers and graduate students who intend to 
perform second-order analysis for a more realistic estimation of a system's 
strength and stability. The program can be installed in personal computers or 
engineering workstations. Source codes, an instruction manual, and installa­
tion guides are provided for ease of implementation in a PC environment. 
Example problems and sample input data files are given in Sections 8.10 and 
8.11. They are intended to help clarify the data-generation process. 

8.2 Modeling of Elastic Beam-Column Element 

8.2.1 Assumptions 
The general assumptions used in the modeling of a beam-column element 
are: 

1. all elements are initially straight and prismatic. Plane cross-sections re­
main plane after deformation. 

2. all member cross sections are fully compact such that local buckling effects 
are insignificant. 

3. all members are sufficiently braced such that out-of-plane flexural or 
lateral-torsional buckling does not influence the member response prior to 
failure. 

4. member deformations and strains are assumed to be small, but large rigid­
body displacements are allowed. 

5. the member shear forces are smaller enough that the effects of shear defor­
mation can be neglected. 

6. axial shortening due to member curvature bending is neglected. 

The assumptions that the member is prismatic and member distortions are 
small are reasonable for ordinary steel frame structures. Although the steel 
frame may undergo large rigid-body displacements at collapse, the distortion 
of each member with respect to its chord length in the displaced configura­
tion will remain small since steel members with compact cross sections usu­
ally exhibit high bending rigidity. 

Member curvature effects (bowling effect) are not considered in the present 
formulation because many practical frame members have small slenderness 
ratios for which the axial shortening is often dominated by inelastic axial 
deformation. For very slender beam-column members, the bowing effects 
may need to be considered in the stiffness formulation [8.15]. 

8.2.2 Stability.Functions 
Figure 8.1(a) shows a beam-column member subjected to end moments MA 
and MB and is acted on by an axial force P. Using the free body diagram of 
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FIGURE 8.1. Beam-column subject to end moments and axial force. 

a segment of beam column of length x as shown in Fig. S.1(b), the following 
equilibrium equation can be derived [8.16]: 

d2y 2 MA + MB MA 
dx2 + P Y = LEI x - El (S.2.l) 

where E is the modulus of elasticity, I is the moment of inertia, L is the 
undeformed length of the element, p = L J P i El, and P is taken as positive 
in tension. 

The general solution of this ordinary differential equation is 

. MA + MB MA 
Y = Asmpx + Bcospx + 2 X - --2. (S.2.2) 

LElp Elp 

The constants A and B can be evaluated by using the boundary conditions 

y(O) = 0, y(L) = 0 (S.2.3) 
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and they are written as 

1 
A = - E1 2· (MA COS pL + M B ) p smpL 

MA 
B=-­E1p2· 

Back-substituting A and B into Eq. (8.2.2), and rearranging terms 

1 [cos pL. x ] y = --- -.--smpx - cospx - - + 1 MA 
E1p2 smpL L 

1 [ 1. x] --- ---smpx-- M 
E1p2 sinpL L B 

from which 

dy 1 [cos pL . 1 ] 
- = -- -.--cospx + smpx - - MA 
dx E1p smpL pL 

(8.2.4) 

(8.2.5) 

(8.2.6) 

- _1_ [_. _1_ cos px __ 1 ] M . (8 2 7) 
E1p smpL pL B •• 

The end rotation ()A is obtained by letting x = 0 in Eq. (8.2.7) 

()A = dy I = ~[sinpL - PLCOSPL]M + ~[sinpL - PL]M 
dx x=o E1 (kL)2 sin pL A E1 (pL)2 sin pL B (8.2.8) 

and ()B can be obtained from Eq. (8.27) for x = L 

() dy I L [sin pL - PL] L [sin pL - pL cos PL] 
B = - = - 2 MA + - 2 M B • (8.2.9) 

dx x=L E1 (pL) sin pL EI (pL) sin pL 

The axial force-displacement relationship ignoring the effect of curvature 
shortening may be expressed as 

EA 
P=-e 

L 

where e is the axial displacement of the member. 

(8.2.10) 

Equations (8.2.8), (8.2.9), and (8.2.10) can be expressed in matrix form as 

G: } ~~ [~ ~ A~l J{ ~ } (8.2.11) 

S1 and S2 are called the stability junctions, which may be written as: 

S1= 2-2cos(p)-psin(p) 
p2 cosh(p) - p sinh(p) 

{ 

p sin(p) - p2 cos(p) for P < 0 

for P > 0 
2 - 2cosh(p) + psinh(p) 

(8.2.12) 
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{ 

p2 _ P sin(p) 

2 - 2 cos(p) - p sin(p) 
S = 2 P sinh(p) _ p2 

2 - 2 cosh(p) + p sinh(p) 

for P < 0 
(8.2.13) 

for P > O. 

S1 and S2 account for the effect of the axial force on the bending stiffness 
of the member. Equations (8.2.12) and (8.2.13) are indeterminate when the 
axial force is equal to zero. To circumvent this problem, the following sim­
plified equations are used to approximate the stability function when the 
axial force in the member falls within the range of - 2.0 ~ p ~ 2.0 [8.5]. 

_ 4 2n2Pe _ (O.OlPe + 0.543)p; (0.004Pe + 0.285)p; 
S1 - + 15 4 + Pe (8.2.14) 8.183 + Pe 

S2 = 2 _ n2 Pe + (O.OlPe + 0.543)p; _ (0.004Pe + 0.285)p;. 
30 4 + Pe 8.183 + Pe 

(8.2.15) 

where Pe = PIPe = P/(n2EI/L2) = p2/n2. Equations (8.2.14) and (8.2.15) are 
applicable for members in tension and compression; they give excellent 
prediction of results compared to the "exact" solution obtained from Eqs. 
(8.2.12) and (8.2.13) [8.5]. 

8.2.3 Tangent Stiffness Relationship 
In a second-order analysis, it is convenient to express the element force­
displacement equations in an increment form. Denoting MA, MB, OA' OB as the 
incremental end moments and joint rotations at element ends A and B, re­
spectively, and P and e as the incremental axial force and displacement in the 
longitudinal direction of the element, an incremental form of Eq. (8.8.11) may 
be written as [8.17]: 

~ ] {:;}. 
A/I e 

Equation (8.2.16) may be expressed symbolically as 

C. = k.d. 

(8.2.16) 

(8.2.17) 

in which C. and d. are the incremental force and displacement vectors, respec­
tively, and k. is the element basic tangent stiffness matrix. For a plane frame 
member, three additional degrees of freedom are required to describe the 
total displacements of the member. If dg1 , dg2 , ••• and dg6 are defined as the 
global translational and rotational degrees of freedom of a frame member 
(see Fig. 8.2), it can be shown that the local displacements are related to the 
global displacements by 
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v 

Yo 

L------~x 

FIGURE 8.2. Global and local displacements of a beam-column element. 

d () () d _lYo+dgS-dg2 
c1 = A = 0 + g3 - tan d 

Xo + g4 - dg1 
(B.2.lBa) 

d =() =() +d _tan-1Yo+dgs-dg2 
c2 B 0 g6 + d _ d Xo g4 gl 

(B.2.1Bb) 

d _ (2xo + dg4 - dg1 )(dg4 - dg1 ) + (2yo + dgs - dg2 )(dg5 - dg2 ) 
c3 - Lf + L (B.2.1Bc) 

where Lf is the deformed chord length. 
The expression for dC3 in Eq. (B.2.1Bc) is more accurate than the value 

calculated from Lf - L. This is because Eq. (B.2.1Bc) avoids finding the small 
difference between large member lengths [B.1B]. This equation is obtained by 
writing dc3 = (LJ - L 2 )/(Lf - L) and then solving for dc3 • In the denomina­
tor, Lf + L ~ 2L may be assumed, since small displacement theory is pre­
sumed for the corotational chord element [B.19]. 

Upon differentiation of Eqs. (B.2.1Ba-c) with respect to each member end 
displacement variable dgi , where i = 1, 2, ... 6, the incremental kinematics 
relationship relating the two sets of displacement vectors may be written in 
matrix form as 
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d91 

[bA 1 [ -mOIL 
cos()/L 1 sin()/L -cos()/L 

!] 
d92 

iJ~ = -sin()/L cos()/L 0 sin()/L -cos()/L 
dg3 

dg4 e -cosO -sinO 0 cosO sin 0 dgs 

dg6 

(8.2.19) 

where 0 is the angle of inclination of the chord of the deformed member. 
Symbolically, the kinematics relationship of Eq. (8.2.19) may be written as 

de = Tegdg. (8.2.20) 

Based on the principle of equilibrium, the forces in the two systems shown 
in Fig. 8.3 are related by 

FIGURE 8.3. Equivalent force system. 
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hi -sin elL -sin elL -cos e 
h2 cos elL cos elL -sin e [;l h3 1 0 0 

h4 sin elL sin elL cose (8.2.21) 

hs -cos elL -cos elL sin e 
h6 0 1 0 

Symbolically, 
fg = Tc~fc. (8.2.22) 

Taking derivatives on both sides of Eq. (8.2.22) gives 
• T· • T 
fg = Tcgfc + Tcgfc' (8.2.23) 

In view of Eqs. (8.2.17) and (8.2.20), Eq. (8.2.23) may be further written as 
• T • • T 
fg = Tcgkc Tcgdg + Tcgfc' (8.2.24) 

!,he transformation matrix t~ can be evaluated by taking the derivative of 
Tcg with respect to each global degree of freedom, dgk , as 

• T [OT~J. Tcg = od
gk 

dgk , k = 1,2, ... ,6. (8.2.25) 

Equation (8.2.25) may be written, in view of Eq. (8.2.20), as 

t~ = [o:~~~ JT dgk , i = 1,2,3; j = 1,2, ... ,6; k = 1,2, ... ,6 (8.2.26) 
g} gk 

or 

(8.2.27) 

By carrying out the appropriate derivatives, the matrices T., T2, T3 are given 
as [8.20J 

-2sc c2 _ S2 0 2sc _(c2 _ S2) 0 

2sc 0 -(c2 _ S2) -2sc 0 

1 0 0 0 0 
(8.2.28) Tl = T2 = L2 -2sc c2 _ S2 0 

sym. 2sc 0 

0 

S2 -sc 0 _S2 sc 0 

c2 0 sc _c2 0 
1 0 0 0 0 

(8.2.29) T3=-
S2 0 L -sc 

sym. c2 0 

0 
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The complete derivation of the incremental force-displacement relationship 
is then obtained by substituting t.~ from Eq. (8.2.27) into Eq. (8.2.24) 

(8.2.30) 

Equation (8.2.30) is the large-displacement small-strain incremental force­
displacement relationship of a beam-column element in the global coordinate 
system, and it may be written symbolically as 

(8.2.31) 

where kg represents the tangent stiffness matrix of the beam-column element. 
It should be noted that in the derivation of the tangent stiffness matrix, kg, 
the joints are assumed to be rigid. If plastic hinges or connections are pre­
sented at the element ends, the tangent stiffness matrix needs to be modified. 
These modifications are discussed in Sections 8.4 and 8.7. 

8.3 Modeling of Truss Elements 

8.3.1 Assumptions 
The following assumptions are made in the formulation of truss elements: 

1. The element can undergo large rigid-body displacements, but the member 
deformation remains small. 

2. The axial force-displacement relationship in the local convected coordi­
nates is written as 

EA 
P=-e 

L 
(8.3.1) 

where P and e are the axial force and displacement, respectively; A is the 
cross-sectional area; and L is the length of the truss member. 

3. Failure ofthe truss element is said to have occurred when for compression 
[8.7] 

(8.3.2a) 

for Ac > 1.5 (8.3.2b) 

and when for tension 

P=Py=AFy (8.3.3) 

where Ac = (L/rn)JFy/E is the member slenderness parameter, r is the 
radius of gyration of the cross section of the member, Fy is the material 
yield stress, and E is the modulus of elasticity. 
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8.3.2 Tangent Stiffness Formulation 
The tangent stiffness relationship for a bracing element can be obtained from 
the tangent stiffness relationship of a frame element by deleting the appropri­
ate rows and columns in Eq. (8.2.30) that correspond to the rotational de­
grees of freedom of the element. The resulting tangent stiffness relationship of 
a truss element is [8.21] 

• T •• 
ell = (Tegke Tell + T P)dg = kId II 

where, referring to Fig. 8.4, 

Yo 
v 

FIGURE 8.4. Global and local displacements of a truss element. 

(8.3.4) 

(8.3.5) 

(8.3.6) 
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Teg = [ - cos 0 - sin 0 cos 0 sin oy 
k =EA 

C L 

T = .!. [Sin
2 

0 
L sym. 

- sin 0 cos 0 - sin2 0 
cos 2 0 sin 0 cos 0 

sin2 0 

sin 0 cos () ] 
-cos 02 

- sin 0 cos 0 
cos2 0 

(8.3.7) 

(8.3.8) 

(8.3.9) 

in which 0 is the angle of inclination of the chord of the deformed element 
chord. 

For structuressubjected to severe wind or lateral earthquake loading, truss 
diagonal bracing may be introduced to reduce the story drifts and enhance 
the lateral-load resistance of the structure. In design, these braces are usually 
assumed to carry only axial force. Therefore, it is justifiable to use truss 
elements to model the bracing members. 

The truss elements may also be used for modeling gravity columns that do 
not participate in the lateral-force resisting system. These gravity columns 
(leaner columns), which are commonly used in low-rise industrial buildings 
and tall office building frames, are usually designed to carry only gravity 
loads. Therefore, they can be modeled by the truss element described in this 
section. 

8.4 Modeling of Plastic Hinges 

There are two common approaches for modeling elastic-plastic hinges [8.30]. 
The first approach is called the beam-column stability function approach in 
which the plastic hinge can undergo plastic rotation only. The change in the 
axial force in a frame element is based solely on the element axial force­
displacement relationship, with no effect from the inelasticity at the plastic 
hinges. The second approach is based on a force-space plasticity formulation 
in which an associated flow rule is used to describe the relationship between 
the axial and rotation plastic deformations at a fully plastified cross section. 
For most practical cases, the differences in results predicted by these two 
plastic hinge approaches are small, particularly when the axial force in the 
member is small. Also, both approaches can account for force-point move­
ment on the plastic strength surface. In other words, if the axial force is in­
creased on a fully plastified cross section, the bending moment would need to 
be decreased so that the cross-sectional plastic capacity is not violated. The 
formulation presented here is based on the beam-column stability approach. 

8.4.1 Assumptions 
1. Inelastic behavior in the member is assumed to be contained within a 

zero-length plastic hinge. 
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2. Plastic hinges are allowed to form only at the element ends, and plastic 
deformations at plastic hinges involve inelastic rotation only. 

3. Once a plastic hinge is formed, the cross-sectional forces are assumed to 
move on the plastic strength surface. Unloading from this surface is not 
considered. 

4. The AISC LRFD cross-sectional plastic strength equations [8.7] are 
adopted in the elastic-plastic hinge formulation: 

P 8 M P 
-+--= 1.0 for p ~ 0.2 (8.4.1) 
Py 9Mp y 

P M P 
-+-= 1.0 for- < 0.2 (8.4.2) 
2Py Mp Py 

where Py is the squash load, Mp is the plastic moment capacity for a 
member under pure bending action, and P and M are the second-order 
axial force and bending moment at the cross section under consideration. 
The plastic strength equations are plotted in Fig. 8.5, and they are derived 
from the AISC LRFD interaction equations for beam columns of zero 
length, i.e., L = O. 

Although the present formulation is limited to modeling plastic hinges 
only at the element ends, the formation of a plastic hinge between both ends 
of the element can be detected based on a simple procedure discussed in Refs. 
[8.22 and 8.23]. Normally, the analysis of frame members with maximum 
moment within their span length, and the analysis of beam-columns with 
in-span loading and inclined members subjected to gravity loads would re­
quire more than one beam-column element per member to capture the plastic 
hinge formation in the member. Multiple beam-column elements per member 
are necessary to idealize the nonuniformly loaded members (both in the 
transverse and axial directions) as a number of finite elements with forces 
applied only at their ends. 

Research by Chen and Atsuta [8.24] indicate that the insertion of a plastic 
hinge at the "exact" maximum moment point in a frame member is not 
required for an accurate estimate of the maximum strength of the member. 
As long as the "exact" location of the plastic hinge in a member is not more 
than L/6 distance away from the assumed position (L is the length of the 
member), the difference in strength prediction is not more than 5 percent. 
This observation is true for beam columns subjected to uniform patch load 
and concentrated lateral load [8.24]. 

For structures subjected to static loading only, elastic unloading at the 
locations of plastic hinges may be neglected. The analytical results obtained 
based on this assumption are generally conservative. The numerical imple­
mentation following this assumption is also straightforward in concept, and 
it does not have the problem of being trapped into the recurring process of 
loading, unloading, and reloading of plastic hinges. 



P/Py 

0·4 

0·2 

-1-0 -0·2 0 

-0·2 

-0·4 

-0·6 

8.4. Modeling of Plastic Hinges 439 

0·2 

p 

AISC lRFD Plastic 
Strength Surface 

0·4 0·6 M/Mp 

FIGURE 8.5. Cross-sectional plastic strength surface for plastic hinge analysis. 

8.4.2 Modified Tangent Stiffness Relationship 
If the state of forces at any cross section equals or exceeds the plastic 
strength, a plastic hinge is formed. The element force-displacement relation­
ships need to be modified to reflect the change in element behavior due to 
formation of plastic hinge(s) at the element end(s). 

If a plastic hinge is formed at element end A, the incremental force-dis­
placement relationships from Eq. (8.2.16) may be written as: 

(8.4.3) 

where ~MPCA is the change in plastic moment capacity at end A as P changes. 
BA from the first row of Eq. (8.4.3) can be written as: 
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{} _ LAMpCA S2 {} 
A - EIS1 - Sl B' 

(8.4.4) 

Backsubstituting Eq. (8.4.4) into the second and third row of Eq. (8.4.3), the 
modified element force-displacement relationship can be obtained as 

{ ~A} EI [0 0 2 0 ] {~A} { 1 } ~B = L 0 (Sl - S2)/Sl 0 f}B + S2/S1 AMpCA-
P 0 0 A/I e 0 

(8.4.5) 

A similar approach can be followed if a plastic hinge is formed at end B. If 
plastic hinges are formed at both ends of the element, f) A and f}B can be 
written in terms ofthe change in moment at the respective end of the element. 
The resulting modified force-displacement relationship is 

~B = EI 0 0 {MA} [0 0 
P L 0 0 

(8.4.6) 

where AMpcA and AMpcB are the change in the plastic moment capacity at 
the respective end of the member as P changes. 

Equations (8.4.5) and (8.4.6) account for the presence of plastic hinge(s) 
at the element end(s). They may be written symbolically as 

tc = kchde + f.p (8.4.7) 

where keh is the modified tangent stiffness matrix due to the presence of 
plastic hinge(s). f.p is an equilibrium force correction vector that results from 
the change in moment capacity as P changes. 

If Eq. (8.2.17) is replaced by Eq. (8.4.7) and the procedure in Section 8.2 
is followed, the modified element force-displacement relationship in global 
coordinates may be written as 

, T ' T' 
fg = (Tcgkch Teg + TIMA + T2MB + T3P)dg + Tcgfcp (8.4.8) 

or 

where 

kgh = T~kchTeg + TIMA + T2MB + T3 P 

is the modified tangent stiffness matrix, and 
, T' 
fgp = Tegfcp 

is the global equilibrium force correction vector. 

(8.4.9) 

(8.4.10) 

(8.4.11) 

Once a plastic hinge is formed in a member, the subsequent change in the 
plastic moment capacity due to the change in axial force will affect the force­
displacement relationships of the beam-column element. In other words, re­
ferring to Fig. 8.5, once the plastic strength is reached at point Q, the state of 
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moment is stationary at Q. However, because of the presence of axial force, 
the state of moment will change. If the axial force is increased, the force point 
should move from Q to P. The force-point movement on the plastic strength 
surface must be considered in the tangent stiffness formulation [8.25 and 
8.26]. 

8.5 Limitations of Elastic-Plastic Hinge Models for 
Advanced Analysis 

Although the elastic-plastic hinge approach is capable of predicting the over­
all behavior of many types of frames, it cannot be used without modification 
to predict accurately or conservatively the capacity and load behavior of 
general beam-column members. Its accuracy is also suspect for frames where 
the failure is influenced to a great extent by the strength and stability of 
individual members. This section explores the limitations of the elastic­
plastic hinge analysis for assessment of maximum strength behavior of planar 
frames. The performance of the analysis method is evaluated by comparing 
the results with established benchmark solutions. 

8.5.1 Axially Loaded Columns 
Figure 8.6 compares the AISC LRFD column strength curve [8.7] with the 
strength curve generated by second-order elastic-plastic hinge analysis. For 
comparison with the AISC LRFD column strength curve, the elastic-plastic 
hinge analysis is carried out using a W8 x 31 section bent about its strong 
axis. The column is discretized into two elements with an initial deflection <50 

at midlength equal to L/1500. This initial out-of-straightness magnitude is 
implicitly assumed in the development of the AISC LRFD column equations 
[8.7]. Residual stresses and end restraints are, however, not modeled in the 
plastic-hinge analysis. 

It is observed from Fig. 8.6 that the elastic plastic hinge analysis overpre­
dicts the column capacity implied by the AISC LRFD column equations. 
The maximum error is about 23%, which corresponds to the column with a 
slenderness paramenter of unity, at which value residual stress and initial 
out-of-straightness effects interact to produce the greatest reduction in 
strength from the theoretical value for a perfect column. However, for col­
umns whose slenderness parameter is less than or equal to 0.4, the maximum 
error from the elastic-plastic hinge analysis is not more than 5% unconserva­
tive when compared to the AISC LRFD column strength curve. These results 
suggest that for stocky column members with slenderness parameter Ac less 
than 0.4, the column maximum strength can be predicted within 5% error 
using the second-order elastic-plastic hinge analysis. 
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FIGURE 8.6. Comparison of strength curves for axially loaded pinned-end column. 

8.5.2 Beam Columns 

Zhou et al. [8.27J analyzed the beam columns shown in Fig. 8.7 using the 
plastic-zone method. The results are presented for beam columns subjected 
to equal end moments producing single curvature bending. The beam col­
umns have residual stresses with a maximum compressive magnitude ofO.3Fy 

and an initial geometric imperfection that varied sinusoidally with a maxi­
mum in-plane deflection, <>0 = L/1000, at midlength. In Fig. 8.7, the plastic­
zone strength curves are compared with the elastic-plastic hinge solutions. 
The plastic hinge results were generated using two elements per member. The 
analyses explicitly model the member initial out-of-straightness, which has a 
maximum magnitude of <>0 = L/1000 at the midlength. 

It can be observed from Fig. 8.7 that for beam columns with L/r less 
than 20 and P less than O.2Py , the elastic-plastic hinge analysis is sufficiently 
accurate for the prediction of the ultimate strengths of these beam columns. 
Otherwise, the elastic-plastic hinge analyses always overpredict the capacities 
of the beam columns by more than 5%. 
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FIGURE 8.7. Comparison of beam-column strengths from plastic-hinge-based analyses 
with "exact" strength curves [8.27]. 

8.5.3 Sway Frames 
Figure 8.8 through 8.10 compare the in-plane strength curves obtained by the 
second-order elastic-plastic hinge with the plastic-zone results from Kancha­
nalai [8.28]. Kanchanalai's plastic-zone solutions were used as benchmarks 
for the development of the AISC LRFD beam-column equations [8.22, 8.29]; 
any analysis methods that can match these benchmarks are expected to sat­
isfy the requirements for two-dimensional advanced inelastic analysis, for 
which separate specification member capacity checks are not required. 

Both the strong- and weak-axis strength curves are presented in the figures 
for the plastic-zone solutions. However, only the strong-axis strength curves 
are shown for the plastic hinge analyses. The weak-axis curves from the 
plastic hinge analysis are identical with the strong-axis strength curves be-
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FIGURE 8.8. Comparison of strength curves for portal frame with GA = 3 and 
Lc/r = 30. 

cause the results are presented in a nondimensional form, and only one plas­
tic strength curve (i.e., the LRFD beam-column interaction equations for a 
member of zero length) was used for both the strong- and weak-axis section 
strengths. 

Comparisons of results show that the elastic-plastic hinge analyses over­
predict the maximum strengths of the frames. For the portal frame shown in 
Figs. 8.8 and 8.9, the strong-axis strengths from the plastic hinge model are 
approximately in error by a maximum of 20 and 9%, respectively (the errors 
are measured radially from the origin of the plots). For the leaned-column 
frame shown in Fig. 8.10, the strong-axis strengths are overpredicted with a 
maximum error of 20%. 

The weak-axis strengths are also significantly overpredicted by the elastic-
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plastic hinge model for the fi'ames shown in Figs. 8.8 through 8.10. In these 
cases, the maximum unconservative error in the weak-axis strength predic­
tions based on the elastic-plastic hinge analyses ranges from about 10 to 30% 
unconservative. 

Research [8.30-8.31J shows that for very stocky or very flexible frames, 
the elastic-plastic hinge results are quite comparable to the strong-axis 
plastic-zone results for almost all ranges of axial force versus moment. This 
means that second-order elastic-plastic hinge analysis is sufficiently accurate 
in predicting the failure load either at the elastic buckling or at the collapse 
load associated with the formation of plastic mechanism. However, for 
frames such as those shown in Figs. 8.8 through 8.10, both the strong- and 
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weak-axis strengths are significantly overpredicted by the plastic hinge analy­
ses for a wide range of moment versus axial force. Therefore, it is necessary 
to refine the conventional elastic-plastic hinge model to generalize its appli­
cation for the analysis of a wider range of structural systems. 

8.6 Desirable Attributes for Plastic-Hinge-Based 
Advanced Analysis 

This section outlines the desirable attributes for development of an improved 
plastic-hinge-based-element. 

1. The analysis should be capable of capturing the characteristic behavior 
of a wide range of structural systems and member types. For instance, 
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strong- and weak-axis bending action of rolled and welded beam-column 
sections, behavior of braced and unbraced beam columns, failure of mem­
bers by predominately elastic or inelastic instability, and load-deflection 
and strength behavior of beam columns subjected to axial and transverse 
forces can all be represented with sufficient accuracy. The model should be 
capable of representing P - !l. and P - 0 effects, including the instability 
effects from leaner columns. It can predict the response due to distributed 
plasticity associated with residual stresses, geometric imperfections at a 
wide range of axial force, and bending moment combinations. 

2. The element model should capture, conservatively, the in-plane stability 
and strength of individual frame components in resisting load actions. 
The analysis should not more than 5% unconservative when compared 
to a wide range of second-order plastic-zone solutions for planar beam­
column strength. 

3. The response characteristics generated by the analysis model for various 
types of members and systems should be reasonably close to those pre­
dicted by a plastic-zone analysis. 

4. The element force-displacement relationships should be derived analyti­
cally and implemented in explicit form for analysis. Residual stress effects 
can be accommodated implicitly using the tangent modulus model, and 
the effects of distributed plasticity on axial member deformations are 
represented. 

5. The element formulation should reduce to a well-recognized behavior 
model in the limits of pure beam and pure column action. That is, 
when axial force approadches zero, the element ultimate strength be­
havior approaches that of the elastic-plastic hinge model. For the case 
of a member loaded by pure axial load, the element inelastic stiffness is 
close to that associated with the inelastic flexural rigidity E,I implied by 
the column strength equations of the AISC LRFD design specification 
[8.7]. 

6. The member forces calculated by the analysis model should not violate the 
cross-sectional plastic strength associated with the condition of full plas­
ticity. Also, the model should accommodate changes in the values of the 
axial force and moment at a plastic hinge location. For example, if the 
axial force supported by a beam column increases after a plastic hinge has 
formed, the moment at the plastic hinge must decrease. 

7. The possible benefits of strain hardening should not be relied on, since 
the ability of a beam column to develop significant strain hardening is 
dependent on many factors such as moment gradient and interaction of 
local and lateral-torsional buckling effects and distributed yielding along 
the member length. At the present time, the precise effects of yielding, 
strain hardening, and possible local and lateral torsional buckling on the 
full moment-rotation characteristics of beam-column members are still 
not well enough quantified for direct implementation in a practical inelas­
tic analysis. 

8. The model should be capable of achieving the requisite accuracy using 
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only one or a few elements per member. This attribute is necessary for 
analysis of moderate-size and large structural systems. 

9. The model should represent the effects of distributed yielding on both the 
axial and flexural deformations. Framing members subjected to high axial 
forces and small bending moments, such as members in a truss-type sys­
tem as well as in most tall building frames, may exhibit significant distrib­
uted yielding along their lengths prior to failure. The member effective 
axial stiffness provides a significant contribution to the response of these 
types of structures. 

The next section presents a beam-column model that will satisfy most of 
the above attributes. The model is based on a fairly simple and elegant ideal­
ization of the physical behavior of beam-column response. 

8.7 Approximate Effects of Distributed Yielding 

As explained in Sections 8.4 and 8.5, the distributed plasticity effects asso­
ciated with flexure must be captured to obtain an accurate physical model 
of beam-column behavior. This may be accomplished by representing the 
gradual degradation in stiffness that occurs at plastic hinge locations as yield­
ing progresses under increasing moment when the cross-sectional strength is 
approached. Since the distributed yielding is influenced largely by member 
initial imperfections (member out-of-straightness and residual stresses) as 
well as by axial force, it is proposed that these distributed plasticity effects 
be modeled by an effective tangent-modulus approach for the calculation 
of column strength [8.30-8.31]. The detailed formulation of the model is 
described later. 

8.7.1 Tangent-Modulus Approach 
For columns subjected to pure compression, the AISC LRFD specification 
provides the following formula for the evaluation of axial compressive 
strength: 

P = Py(0.658"~) (8.7.1) 

_ (0.877) P-Py ~ 
c 

Ac > 1.5 (8.7.2) 

where Py is the axial load at full yield, Ac is the normalized column slenderness 
ratio defined by Ac = (KLlnr)JFyIE, Fy is the material yield stress, E is the 
modulus of elasticity, and KLlr is the effective slenderness ratio. The column 
tangent modulus, Et , can be evaluated based on the inelastic stiffness reduc­
tion procedure given in the AISC LRFD manual for the calculation of inelas­
tic column strength. The ratio of the tangent modulus to the elastic modulus, 
EtIE, is defined as [8.30]: 
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{ 
. 1.0 

E,_ P P 
E - -2.7243-ln[-J 

Py Py 

for P ~ 0.39Py 

for P > 0.39Py • 
(8.7.3) 

Since this E, model is derived from the LRFD column strength formula, 
it implicitly includes the effects of residual stresses and initial out-of­
straightness in modeling the member effective stiffness. 

The column tangent modulus also can be evaluated based on the CRC 
column equations [8.32]. The E,/E expressions may be written as: 

E {1.0 for P ~ O.5Py 

--.!.= 4P[ PJ E - 1 - - for P > 0.5Py • 
Py Py 

(8.7.4) 

The axial force-displacement relationships of an axially loaded inelastic ele­
ment can be derived using Eqs. (8.7.3) and (8.7.4); the results are shown in Fig. 
8.11. It should be noted that the normalized axial force-displacement rela­
tionships of an element described by the tangent moduli equations are non­
linear in nature, whereas for the conventional elastic-plastic hinge model, a 
linear elastic-perfectly plastic normalized axial force-displacement relation­
ship is tacitly assumed. The main difference between the CRC-E, and the 
LRFD-E, is that the former considers only the residual stress effects in mod-
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FIGURE 8.11. Axial force-strain relation. 
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eling the column effective stiffness, whereas the latter is based on LRFD 
column strength equations that account for the effects of both geometric 
imperfections and residual stresses. 

Recent research [8.6, 8.31] found that for members subjected to significant 
in-plane bending, the modeling of the member stiffness equation using only 
the tangent-modulus approach is not sufficient to represent the gradual stiff­
ness degradation as yielding progress through the volume of the member. 
Additional distributed plasticity effects in the beam-column member can be 
attributed to the bending action. These effects may be represented by mod­
ifying the basic elastic-plastic hinge model such that the member stiffness 
degrades gradually from the stiffness associated with the onset of yielding to 
that associated with the formation of plastic hinges. This approach, which is 
called the refined plastic hinge method, has been shown to be superior than 
the conventional elastic-plastic hinge approach in representing the inelastic 
behavior of many types of frame structures. 

8.7.2 Effects of Plastification at Element Ends 
Consider a beam-column member in which plastification may occur at both 
ends, the incremental force-displacement relationships may be written as 
[8.30]: 

The terms S1 and S2 are the conventional beam-column stability functions, 
with E t used in place of the elastic modulus. The term fjJ (subscripts A and B 
denote the respective ends of the element) is a scalar parameter that allows 
for gradual inelastic stiffness reduction of the element associated with the 
effect of plastification at the element end. This term is equal to one when the 
element is elastic, and it is zero when a plastic hinge is formed at the end. The 
parameter fjJ is assumed to vary according to the following parabolic function 
[8.30]: 

for (Xi> 0.5 
for (Xi ~ 0.5 

(8.7.6) 

where (X is a force-state parameter that measures the magnitude of axial force 
(P) and bending moment (M) at the element end. The term (X is expressed as: 

P 8 M 
(X=-+-­

Py 9Mp 

P M 
(X=2P + M 

y p 

P 2 M 
for- >-­

Py - 9 Mp 

P 2 M 
for- < --. 

Py 9 Mp 

(8.7.7) 

(8.7.8) 
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FIGURE 8.12. Two-surface stiffness degradation model for refined plastic hinge 
analysis. 

Initial yielding is assumed to occur based on a yield surface that has the same 
shape as the plastic strength surface, as shown in Fig. 8.12. In this figure, the 
yield surface function corresponding to 0( = 1.0 represents the state of forces 
at which the cross section is fully yielded. The yield surface function corre­
sponding to 0( = 0.5 represents the state of forces at which initial yielding 
starts to occur. If the state of forces is changed in such a manner that the force 
point moves inside or along the initial yield surface, the element is fully elastic 
with no stiffness reduction. If the force point moves beyond the initial yield 
surface, the element stiffness is reduced to account for the effect of plastifica­
tion at the element end. 

It should be noted that when Et = E, and ,pA = ,pH = 1, the element is fully 
elastic. Equation (8.7.5) reduces to the conventional tangent-stiffness equa­
tions as shown here: 

(8.7.9) 



452 8. Second-Order Plastic Hinge Analysis 

In the refined plastic hinge formulation, the AISC LRFD beam-column 
interaction equations for member of zero length are adopted as the cross­
sectional plastic strength equations for representing both the strong- and 
weak-axis in-plane strength behavior. This cross-sectional plastic strength 
may be reduced by the appropriate resistance factors for use in limit-states 
design. Different resistance factors for flexural bending and axial compres­
sion, such as those currently used in AISC LRFD for beam-column design, 
may also be used in the refined plastic hinge analysis, if required. 

The refined hinge analysis enables the prediction of a column strength that 
is close to that implied by the code requirements for column design. Also, the 
refined plastic hinge model is successful in predicting the collapse load of a 
beam member whose failure is governed by the formation of a plastic collapse 
mechanism. The accuracy of the refined plastic hinge analysis has been ver­
ified by comparing the results with the more exact plastic-zone results reported 
in [8.6, 8.31]. Some results from the studies are given in the following sections. 

8.7.3 Isolated Columns and Beam Columns 

Figure 8.13 compares the inelastic column strength curve generated by the 
refined hinge analyses with the AISC LRFD column strength curve. In 
the refined plastic hinge analysis, the column is discretized into two beam­
column elements. A W8 x 31 column section bending about the strong axis 
is assumed, and the column initial out-of-straightness with a maximum mid­
length deflection equal to L/1500 is explicitly modeled. This out-of-straight­
ness magnitude is equivalent to that assumed by the LRFD column strength 
curve. 

The comparison shows that the column strength curve generated by the 
refined plastic hinge analysis is not more than 5% unconservative for col­
umns with slenderness parameters up to A.c = 1.5. 

It is important to emphasize that the conventional elastic-plastic hinge 
method overpredicts the column strength up to a maximum error of 22.5%. 
This error, however, reduces to less than 5% when the refined plastic hinge 
method is used. 

Figure 8.14 shows the beam-column strength curves generated by the re­
fined plastic hinge analysis. The results are compared with those obtained 
from the elastic-plastic and plastic zone analyses. The plastic-hinge-based 
results in Fig. 8.14 were generated based on the use of two elements per 
member, and the analyses explicitly model the member initial out-of­
straightness, which has a maximum magnitude of ~o = L/IOOO at the mid­
length. The refined plastic hinge model is based on the use of the CRC 
column tangent modulus since member initial out-of-straightness is modeled 
explicitly in the analysis. It can be observed that the refined plastic hinge 
approach is successful in predicting the limit strengths of the beam columns 
with maximum error not more than 7%. Additional studies for beam columns 



8.7. Approximate Effects of Distributed Yielding 453 

Elastic-Plastic Hinge Analysis (2elemenU)0=lI1500 I 
1-0 r-.~~=~:--_~_--,Euler Buckling Curve --
0·8 

0·6 

0·2 

0·0_ -0·0 

----
--..: --;---

Refined Hinge Analysis ( 2 elements I 
(CRC-E t , 60= Ll1500 I 

1 

W8x31 

0·3 0·6 O·g 

Ac= Tt~ JFy IE 
x 

'·2 

FIGURE 8.13. Comparison of column strength curves. 

1-5 

subjected to unequal end moments producing reverse-curvature bending are 
also reported in Ret. [8.6]. 

8.7.4 Portal Frame 
A portal sway frame is presented here to show the improvements in the 
predicted behavior obtained using the refined plastic hinge analysis. The 
portal frame in Fig. 8.15 consists of a rigid girder and two columns that are 
pin-supported at the bases. This frame is analyzed by Kanchanalai [8.28] 
using a plastic-zone model. The gravity loads are applied first, followed by a 
lateral load H, which is increased until the failure of the frame. The results are 
plotted for different combinations of gravity load versus lateral load. It can 
be observed that the proposed model gives a closer strength prediction than 
the more accurate plastic-zone method. The significance of the proposed 
refinements is more pronounced when the column axial load is high. It 
should be noted that this portal frame example is rather critical in testing the 
accuracy of second-order inelastic analyses. 
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FIGURE 8.14. Comparison of beam-column strength curves. 

8.7.5 Six-Story Sway Frame 

1-0 

A six-story three-bay frame has been proposed by Vogel [8.33] as a calibra­
tion frame for nonlinear inelastic analysis. This example is cited to provide a 
better comparison of the various methods in representing the yield effects. 
The frame (Fig. 8.16) consists of initial out-of-plumbness associated with the 
value recommended by Ee 3 [8.14]. Both gravity and lateral loads are ap­
plied proportionally until failure occurs. The applied load versus top and 
fourth-story lateral displacement curves are shown in Fig. 8.16. 

For this frame, all the inelastic analysis methods predict essentially the 
same limit load. The maximum frame resistance is reached at a load parame­
ter of 1.111 in Vogel's plastic-zone study, at 1.118 for the refined plastic hinge 
analysis, and 1.124 for the elastic-plastic hinge analysis. The maximum differ­
ence between these limit loads is less than 2%. These results conclude that 
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FIGURE 8.15. Comparison of strength curves for portal frame. 

when the overall nonlinear behavior of the frame is dominated by inelastic 
action in the beams, the plastic-hinge-based models generally give sufficient 
representation of the overall frame behavior. For high-rise building frames, 
both plastic hinge analyses should compare well with the plastic-zone 
method as shown by the closeness of all three curves in Fig. 8.16. The inabil­
ity of the conventional method to represent member strength (such as for the 
frame shown in Fig. 8.16) can be attributed as "local effects." That is, the 
conventional plastic hinge method is accurate in predicting the system re­
sponse, but may not be accurate enough in predicting the strength and stabil­
ity of isolated beam-column elements or subassemblies [8.31]. 

Bending moments at selected locations in the frame, computed based on 
the three inelastic analyses at the frame's limit of resistance, are compared in 
Fig. 8.17. The plastic-zone solutions shown are based on Ziemian's work 
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[8.34] in which the frame's limit of resistance is reached at a load factor of 
1.180, which is slightly higher than the limit load predicted by Vogel's plastic­
zone analysis. The distribution offorces predicted by all the inelastic analyses 
are remarkably close. Included in Fig. 8.17 are the locations of plastic hinges 
detected by the refined plastic hinge and elastic-plastic hinge analyses. The 
first plastic hinge predicted by the elastic-plastic hinge analysis occurs at an 
applied load ratio of 0.770, whereas in the refined plastic hinge analysis, no 
plastic hinge is observed until the applied load ratio reaches a value of 0.873. 
The elastic-plastic hinge analysis detects a total of 24 plastic hinges in com­
parison with the refined plastic hinge approach, which detects only 15 plastic 
hinges in the frame. However, several locations that are not registered as 
plastic hinges in the refined hinge analysis have ¢J values almost equal to zero. 
These ¢J values may be used to indicate the degrees of yielding at the critical 
locations in the frame; ¢J = 1 indicates a fully elastic state, whereas ¢J = 0 
signifies a fully yielded state. Detailed comparisons of yielded zones predicted 
by the refined plastic hinge and plastic-zone analyses are given in Ref. [8.6]. 
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8.8 Modeling of Semirigid Frames 

8.8.1 Connection Element 
A three-parameter connection model [8.35] is adopted for second-order 
analysis of semirigid frames. The selection of the connection model is guided 
by its simplicity and robustness for representing the basic behavior of typical 
beam-to-column connections and for ease of implementation in any second­
order analysis program. The generalized equation of the power model has the 
form: 

() 
for () > 0 and m > 0 (8.8.1) m = (1 + ()")1/" 

or equivalently 

m 
() = (1 - m")1/" for () > 0 and m > O. (8.8.2) 

The parameters in these equations are defined as: m = M/Mu; M = 
connection moment; Mu = ultimate moment capacity of the connection; n = 
shape parameter; 0 = ()r/()o; ()r = relative rotation between beam and column; 
00 = reference plastic rotation, Mu/Rki; and Rki = initial connection stiffness. 

Equation (8.8.1) or (8.8.2) has the shape shown in Fig. 8.18. It can be 
observed that for larger values of the power index n, the transition from the 
initial stiffness, Rki, to the final curve of maximum moment, Mu, is more 
abrupt. If n is infinity, the model becomes a bilinear curve that has an initial 
connection stiffness Rki and ultimate moment capacity My. 

In the analysis, the connections are modeled as rotational springs having 
the M - ()r curves described by the three-parameter model shown in Fig. 8.18. 
These springs are physically tied to the ends of the beam column (Fig. 8.19) 
by enforcing equilibrium and compatibility at the connecting ends. Finally, 
the rotational degrees of freedom of the connections can be condensed out 
from the tangent-stiffness relationship of the beam-column element. 

8.8.2 Tangent-Stiffness Formulation 
The connection tangent stiffness Rkt at any arbitrary rotation IOrl can be 
evaluated by differentiating M with respect to IOrl from Eq. (8.8.1). The result­
ing connection tangent stiffness is [8.23, 8.36] 

dM My 
Rkt = dlOrl9~ = ()o(l + O)1+1fn 

(8.8.3) 

when the connection is loaded, and 
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FIGURE 8.18. Moment-rotation curves of semirigid connections. 

FIGURE 8.19. Beam column with semirigid connections attached at both ends. 

(8.8.4) 

when the connection is unloaded. 
The stiffness matrix of a beam-column element with semirigid connections 

attached at its ends may be derived based on the modified beam-column 
stability function approach [8.17]. Consider a beam column subjected to end 
moments (MA and M B) and axial force (P) with connections attached at both 
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ends as shown in Fig. 8.19. The presence of connections introduces relative 
incremental rotations of OrA. and OrB at the Ath and Bth end of the member, 
respectively. Denoting RktA. and RktB as the tangent stiffness of connection A 
and B, respectively, the relative incremental rotations between the joints and 
beam ends (i.e., the incremental rotational deformations of the connections) 
can be expressed as: 

(8.8.5) 

The incremental force-displacement equations for the beam-column element 
modified for the presence of end connections can be expressed as [8.36]: 

(8.8.6) 

(8.8.7) 

where Sijo Sij' Sjj are defined in the following manner. 

1. If elastic or elastic-plastic hinge assumption is assumed, then 

(8.8.8) 

where S1 and S2 are the stability functions as discussed in Section 8.2. 
2. If gradual stiffness degradation due to spread-of-plasticity effects in the 

element is considered, then [8.23] . 

(8.8.9) 

( S~ ) Sjj = S1 - S1 [1 - ;A.];B (8.8.10) 

Sij = ;A.;BS2 (8.8.11) 

and the elastic modulus, E, in Eqs. (8.8.6) and (8.8.7) should be replaced by 
the tangent modulus Et . 

Solving Eqs. (8.8.6) and (8.8.7) for MA. and MB gives 

. EtI. . 
MA. = L [Si10A. + SGOB] (8.8.12) 

. EtI· . 
MB = L[SG0A. + Sj~OB] (8.8.13) 

where 
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S.'!' = (S .. + EtIS;;Sjj _ EtIS;})!R* 
" " LRktB LRktB 

S~ = (S .. + EtlSiiSjj _ E,ISiJ)!R* 
JJ JJ LRktA LRktA 

and 

( EtIS;;) ( EtlSjj) (Etl)2 SJ R* - 1 + -- 1 + -- - -
- LRktA LRktB L RktA RktB 

The incremental axial force-displacement equation is 

. EtA P=-e L . 

Finally, the tangent-stitTness relationship may be written as: 

. El" 'J 

{
MA} [s.'!' S~ 
~B = L Si~ Sj~ 
P 0 0 

~ ] {::}. 
A/I e 

(8.8.14) 

(8.8.15) 

(8.8.16) 

(8.8.17) 

Equation (8.8.17) is the modified element tangent-stitTness equation that ac­
counts for the etTects of both distributed plasticity and connection flexibility 
on the element. They can be transformed to global coordinates to obtain the 
global element tangent-stitTness relationships. 

8.8.3 Analysis/Design of a Semirigid Frame 
Figure 8.20 shows a frame example with prescribed configuration, dimen­
sions, and nominal loads. The gravity loads are assumed to include the con­
tributions from both dead and live loads. It is further assumed that the dead 
and live loads are of equal proportion, and the column sizes are kept the 
same for the top and bottom stories of the frame. For this two-story frame 
example, the preliminary beam sizes were chosen based on first-order plastic 
hinge analysis assuming rigid frame action. The preliminary column sizes 
were selected according to the tributary gravity load supported by each col­
umn. After a few cycles of design iterations using refined plastic hinge analy­
ses, the least-weight members satisfying the strength limit states are obtained. 
The member sizes are shown in Fig. 8.20. 

The details of the connection assemblage selected for the frame are shown 
in Fig. 8.21. The resulting geometrical dimensions of a set of possible semi­
rigid connections are summarized in Table 8.1. The connection type is de­
noted in the table by the thickness of the top and seat angle as, for example, 
C-3/8. The initial stitTnesses and ultimate moment capacities of these connec­
tions are shown in Table 8.2. 
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Design Requirements: The frame is designed to satisfy two factored load 
combinations: 

1.4 gravity 

1.0 gravity + 1.3 wind. 

(8.8.18) 

(8.8.19) 

The refined plastic hinge analysis is carried out based on the factored cross­
sectional strengths ¢>Py and ¢>Mp with the LRFD-based tangent modulus 
[Eq. (8.7.3)] used in place of the elastic modulus. The ¢> factor used for the 
cross-sectional design strengths is 0.90, which is the same as that recom­
mended by the Australian limit-states (AS4100, 1990) for use in the advanced 
analysis of structural steel frames. Since the LRFD tangent-modulus model 
is used for advanced inelastic analysis, the modeling of member initial out­
of-straightness is not required. This approach simplifies the analysis/design 
procedures considerably, since explicit modeling of column initial out-of­
straightness can be a cumbersome task for large structural systems. However, 
it should be noted that all the columns in the frame shown in Fig. 8.20 are not 
affected by the column tangent-modulus model. This is because the columns' 
axial forces at the factored load level are small. 
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W8 X 31 
l6x 4x tt 

7/8" A325 Bolts • • 
• • 

FIGURE 8.21. The connection details. 

TABLE 8.1. Connection details. 

Top and seat angle Web angles 
2L6 x 4 x t, L4 x 3.5 x 1/4 

Bolt Nut 
Connection diameter, width, W t" I" get' k" gcw, Iw, kw, 

type in. (in.) in. in. in. in. in. in. in. 

C-3/8 7/8 1 + 7/16 3/8 7 3 7/16 3 8 11/16 
C-l/2 7/8 1 + 7/16 1/2 7 3 1 3 8 11/16 
C-9/16 7/8 1 + 7/16 9/16 7 3 1 + 1/16 3 8 11/16 
C-5/8 7/8 1 + 7/16 5/8 7 3 1 + 1/8 3 8 11/16 
C-3/4 7/8 1 + 7/16 3/4 7 3 1 + 1/4 3 8 11/16 

All columns in the frame are assumed to have an initial out-of-plumbness 
of h/400, where h is the story height. This column out-of-plumbness magni­
tude is obtained from ECCS provisions for use with second-order plastic­
zone analysis of steel frames. 

In additional to strength checks, the following serviceability requirements 
are also imposed: 
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TABLE 8.2. Connection parameters. 

Beam W16 x 31 Beam W18 x 35 
(beam depth = 17.7 in.) (beam depth = 15.8 in.) 

Connection M u , Rk;, M u, Rk;, 

type kip-in kip-in/rad n kip-in kip-in/rad n 

C-3/8 532.0 107,548 2.10 473.0 86,980 2.23 
C-1/2 903.4 254,227 1.32 814.0 205,924 1.57 
C-9/16 1097.2 369,595 0.89 990.4 299,599 1.14 
C-5/8 1312.5 520,528 0.80 1186.4 422,267 0.80 
C-3/4 1773.0 954,013 0.80 1606.0 775,080 0.80 

• Service beam live load deflections are limited to L/360. Since the live and 
dead load portions of the gravity load are equal, this is approximately 
equal to an unfactored gravity load deflection limit of L/180. 

• Lateral roof deflection of the frame under service wind load is limited to 
H/400, where H is the frame height. The service wind load combination is 
given as 

Dead + 0.2 Live + 1.0 Wind. (8.8.20) 

Since the live and dead load portions of the gravity load are equal, the 
load combination in Eq. (8.8.20) may be rewritten as: 

0.6 Gravity + 1.0 Wind. (8.8.21) 

• Maximum interstory drift due to the service load combination in Eq. 
(8.8.21) is limited to h/250, where h is the story height. 

• Plastic hinge formation under service loads is prohibited to prevent the 
possibility of excessive localized damage before the full service load is 
reached. 

All the above serviceability requirements are checked using the refined 
plastic hinge method described in Section 8.7. 

Summary of Result: Results showing the characteristics of the two-story 
frame with different connection configurations are summarized in Tables 8.3 
through 8.5. For comparison, the pinned and rigid connection cases are also 
included in the studies. 

Applied Load Ratios: Table 8.3 shows the load factor at the formation of the 
first plastic hinge and at the limiting strength. The load factor is expressed as 
a ratio of the applied load to the full factored load. For all the semirigid 
frames (denoted by the connection types), the first plastic hinge forms after 
the application of the service load. More specifically, for the gravity-loaded 
frames, the first plastic hinge forms shortly after the application of the service 
load. For the wind load combination, all the semirigid frames achieve load 



8.8. Modeling of Semirigid Frames 465 

TABLE 8.3. Applied load ratios for frames with semirigid connections. 

1.4 x Gravity 

Connection type First plastic hinge 

Pin 
C-3/8 0.807 
C-l/2 0.890 
C-9/16 0.900 
C-5/8 0.929 
C-3/4 1.021 
Rigid 1.143 

Service load = 1.0 x gravity load = 0.714. 

Limit load 

0.659 
0.933 
1.057 
1.111 
1.134 
1.152 
1.157 

1.0 Gravity x 1.3 Wind 

Limit load 

0.796 
1.129 
1.259 
1.302 
1.354 
1.436 
1.464 

TABLE 8.4. Maximum beam deflections under service load (1.0 x gravity). 

Connection type 

Pin 
C-3/8 
C-l/2 
C-9/16 
C-5/8 
C-3/4 
Rigid 

Critical member 

BI-WI8 x 36 
BI-W18 x 36 
BI-WI8 x 36 
BI-WI8 x 36 
BI-WI8 x 36 
B2-W16 x 31 

Deflection at service load is limited to L/180 = 1.6 in. 

Deflection (in.) 

1.031 
0.88 
0.87 
0.83 
0.73 
0.66 

TABLE 8.5. Maximum lateral drifts under service load (1.0 wind + 0.6 gravity). 

Connection type 

Pin 
C-3/8 
C-l/2 
C-9/16 
C-5/8 
C-3/4 
Rigid 

Frame drift (in.) 

1.742 
1.226 
0.896 
0.885 
0.824 
0.669 
0.531 

1. Maximum frame drift is limited to H/400 = 0.72 in. 
2. Maximum interstory drift is limited to h/250 = 0.576 in. 

Interstory drift (in.) 

1.478 
0.618 
0.490 
0.488 
0.460 
0.399 
0.342 

factors greater than 1.0 prior to the first occurrence of a plastic hinge in any 
of the members. 

Maximum Beam Deflections: The maximum beam deflections under service 
gravity load (1.0 x gravity) are shown in Table 8.4. For all cases, the maxi­
mum beam deflection is significantly lower than the deflection limit criteria 
of L/180. Therefore, the beam serviceability limit is not the controlling factor 
for the frame. 
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Maximum Drifts: In the advanced analyses, proportional loading is used 
where the loads are applied incrementally. The maximum frame and inter­
story drifts under service load combination, 0.6 gravity + 1.0 wind, are evalu­
ated as shown in Table 8.5. The results indicate that the frames with semirigid 
connections have maximum frame drifts in the order of 1.26 to 2.09 times that 
for the frame with rigid connections. Also, the interstory drift increases as the 
connection thicknesses of the top and seat angles reduce from 5/8 to 3/8 inch. 
Finally, except for the frame with pinned connections, all other semirigid 
frames satisfy the interstory drift criterion of hl250 imposed by the design 
requirements. Only the frames with connection rigidity greater than or equal 
to that implied by C-3/4 satisfy the drift limit of HI400 = 0.72 inch. 

Final Designd: Although the inelastic analyses show that most of the semi­
rigid connections (except C-3/8) can resist the factored load effects, the frame 
drifts and deformation capacity of several connections violate the design 
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FIGURE 8.22. Lateral load-displacement traces. 
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requirements. To fulfill all the design requirements, it is decided to redesign 
the connections by satisfying, particularly, the serviceability requirements. 
The lightest connections in Table 8.1 that meeting the capacity requirements 
for the connections in beams B1 and B2 are C-3/4 and C-1/2, respectively. 
The final selection of connections for the two-story frame is C-3/4 connec­
tions for the lower-story girder and C-1/2 connections for the upper-story 
girder. 

The load-displacement curves of the final frame at the top and bottom 
floors are shown in Fig. 8.22. The highly nonlinear response of the frame as 
the factored gravity load is applied is mainly due to the nonlinear response of 
the connections subjected to increasing end moments from the beams. The 
sudden increase in deflections at an applied load ratio slightly above 1.0 
indicates that the frame failed by side-sway instability soon after the applica­
tion of the factored gravity load. The plastic hinge formation sequence is also 
shown in the load-displacement diagram. Only two plastic hinges are de­
tected by the refined plastic hinge analysis, which accounts for gradual stiff­
ness degradation due to distributed plasticity in the members. The maximum 
load ofthis frame occurs at an applied load ratio of 1.096, which is about 10% 
higher than the full factored gravity load. The frame satisfies all the service­
ability requirements. The first plastic hinge forms at an applied load ratio of 
1.014, which is slightly above the full factored gravity load. The maximum 
frame and interstory drifts at service load combination (1.0 wind + 0.6 grav­
ity) are 0.702 and 0.401 inch, respectively. These lateral drifts are slightly 
below the frame and interstory drift limits of H/400 = 0.72 inch and h/250 = 
0.576 inch, respectively. 

8.9 Computer Program-PHINGE 

This section describes a FORTRAN-based computer program, PHINGE, 
which can be used for the analysis of two-dimensional steel frames. The 
computer program was jointly developed by the Structural Engineering De­
partment at Purdue University and the Civil Engineering Department at the 
National University of Singapore under a research project entitled advanced 
analysis for frame design. The main objective of this project is to provide an 
educational type of software for engineers and graduate students to perform 
planar frame analysis for a more realistic prediction of the system's strength 
and stability. The final aim is to advance the use of second-order inelastic 
analysis programs for proportioning steel frame structures so that the tedious 
task of estimating various factors (such as effective length and moment am­
plification factors) for individual member capacity checks can be eliminated 
in the design process [8.37]. 

The computer program, PRINGE, has been tested in an IBM or equi­
valent personal computer system using Microsoft FORTRAN compiler 
Version 5.1. It can also be run on UNIX workstations using a standard 
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FORTRAN 77 compiler. The memory required to run the program depends 
on the size of the problem. Computer with minimum 640K of memory and a 
30MB hard disk is generally required. For PC's application, the array sizes 
have been reduced as follow: 

Maximum total degrees of freedom MAXDOF = 150 
Maximum translational degrees of freedom MAXTOF = 100 
Maximum rotational degrees offreedom MAXROF = 50 
Maximum number of truss elements MAXTRS = 20 
Maximum number of connections MAXCNT = 20 

INFIlE Input data file 

INPUT Program 

DATA 1 Data files 

PHINGE Program 

Output files 

FIGURE 8.23. Operating procedure of PHINGE program. 
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It is possible to run a bigger job in UNIX workstations by modifying the 
above values in the parameter statements in the source code. The reader 
should read the README DOC file for more information. 

The computer program is divided into two parts. The first part consists of 
a FORTRAN program; INPUT, which reads a input data file; INFILE, and 
generates three working data files, DATAO, DATAl, and DATA2. The sec­
ond executable program, PHINGE, reads the working data files ~nd gener­
ates three output files named OUT.OAT, OUT.LD, and OUT.EF. After the 
output files are generated, the user can view these files on the screen or print 
them out for detailed information on element force distribution (OUT.EF) 
and nodal load versus displacement results (OUT.LD). The schematic dia­
gram shown in Fig. 8.23 explains the operation procedure of the com­
puter program. Two executable program files named INPUT.EXE and 
PHINGE.EXE are supplied. These programs can be executed by issuing the 
commands "INPUT" and "PHINGE" separately at the terminals. 

The analysis library consists of three elements, namely, a plane frame ele­
ment, a plane truss element, and a connection element. The connection ele­
ment is represented by a zero-length rotational spring with a user-specified 
nonlinear moment-rotation curve. Loading is allowed only at the nodal 
points with specified forces. Geometric nonlinearities can be accounted for 
using an iterative load-incremental scheme. Material nonlinearities are ac­
counted for by using zero-length plastic hinges lumped at the element ends. 

The complete source code listing for the computer program is provided in 
the attached diskette. The user is encouraged to modify or improve the program 
for his or her use. Program PHINGE is in its preliminary stage of develop­
ment and will be under a constant state of development in the years to come. 

The necessary input instructions for the user to execute PHINGE are 
described in Section 8.9.5. The new user is advised to read all the instructions, 
paying particular attention to the appended notes, to gain an initial overall 
view of the data required to specify an analysis task to PHINGE. Readers 
without prior knowledge or experience on nonlinear analysis will benefit 
from careful study of the example problems given in Sections 8.10 and 8.11. 
These examples are intended to help clarify the data-generation process. 
Upon examining the input instructions, the reader should recognize that no 
system of units is assumed by the program. It is the user's responsibility to 
specify data in the consistent units of his or her choice. Overlooking this 
requirement is a common source of erroneous results. 

8.9.1 Installation and Execution Procedure 
This section deals with the installation and execution of PHINGE on an 
MS-DOS-based computer system, such as an IBM-compatible Pc. 

A computer diskette is provided, which contains the following: 

a. PHINGE program executables (INPUT.EXE and PHINGE.EXE). 
b. PHINGE batch file (RUN.BAT). 
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c. Sample examples and their output files (EX? *). 
d. Source codes written in FORTRAN 77 (in directory SOURCE). 

The programs provided must first be copied onto the hard disk, i.e., copy 
PHINGE.EXE, INPUT.EXE, INFILE, and RUN.BAT from the diskette to 
the hard disk. Before putting the program to work, the user should test the 
system by running the sample example provided on the same diskette. 

Several input data files have been prepared and the details are explained in 
Sections 8.10 and 8.11. The user may test-run the program by running the 
PHINGE program from the directory where the executable files are resident. 
Mter the execution of the PHINGE program, three working data files 
and three output files will be generated. The output files produced are 
OUT.DAT, OUT.LD, and OUT.EF. These files should be compared to the 
corresponding output files, EX?DA T, EX?LD, and EX?EF that are pro­
vided on the diskette. 

8.9.2 PHINGE Modeling Options 
Program PHINGE was developed based on the theory described in Sections 
8.2 through 8.8. The program can perform first-order elastic, second-order 
elastic, second-order elastic-plastic, and second-order refined plastic hinge 
analyses of planar steel frames with or without semirigid connections. The 
second-order elastic-plastic analysis procedure described in Section 8.4 can 
be reduced to first- and second-order elastic analysis by specifying appropri­
ate load step increment and material properties in the analysis input data file. 
For first-order analysis, the total factored load should be applied in one load 
increment to suppress numerical iteration in the nonlinear analysis algo­
rithm. For elastic analysis, section plastic moduli of arbitrary large values 
should be assumed for all beam-column elements to prevent the formation of 
plastic hinges due to bending actions. 

Since second-order plastic-hinge-based analysis involves both geometric 
and material nonlinearities, recourse to the tangent-stiffness matrix, which 
is a linearized form of the nonlinear force-displacement relationships, is used 
to obtain solutions. In other words, instead of solving a set of nonlinear 
equilibrium equations, a set of linearized equations is solved at each cycle of 
calculation. 

The simple incremental solution method is the simplest and most direct 
nonlinear global solution technique. This numerical procedure is straightfor­
ward in concept and implementation, and the numerical algorithm is gener­
ally well behaved and often exhibits good computational efficiency. This is 
especially true when the structure is loaded into the inelastic region by which 
a trace of hinge-by-hinge formation is required in the element stiffness formu­
lations. However, for a finite increment size, this approach only approxi­
mates the nonlinear structural response, and equilibrium between the exter­
nal applied loads and the internal element forces is not satisfied. 

Iterative methods, such as the Newton-Raphson method, satisfy the equi­
librium equations at a specific external load magnitude. In this method, the 
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equilibrium out-of-balance that is present following a linear load increment 
is eliminated within a given tolerance by applying additional corrective steps. 
The Newton-Raphson method has the advantage of providing results that lie 
on the "exact" load-displacement trace. However, the requirement to trace 
the hinge-by-hinge formation in the structure may render the plastic hinge 
analysis slightly inefficient in the numerical iteration process. 

In the PHINGE program, the simple incremental method has been imple­
mented for second-order elastic-plastic hinge analysis. The refined plastic 
hinge model is implemented using an automatic load-increment procedure. 
To prevent plastic hinges from forming within a constant-stiffness load incre­
ment, load step sizes less than or equal to the specified increment magnitude 
are internally computed such that plastic hinges form only after the load 
increment. Thus, the subsequent element stiffness formulation will account 
for the stiffness reduction due to the presence of plastic hinges. For elements 
that are partially yielded at their ends, a limit is placed on the magnitude of 
the increment in the element end forces [8.30J. Increments of these force 
components that are relatively large, compared to their respective plastic 
strengths, may indicate that the path taken from the initial yield surface to 
the plastic strength surface may have deviated excessively from the "exact" 
path, upon which the calculation of element effective stiffness may lead to 
some error. The analysis program automatically scales an attempted load 
increment when the change in the element stiffness parameter exceeds a pre­
defined tolerance. A tolerance value has been specified in the solution scheme 
to suppress the error that may be incurred during the computation [8.30J. 

The nonlinear analysis routines in PHINGE are based on the matrix stiff­
ness method and involve the solving of the following incremental force­
displacement equation: 

[KtJ{d} = {i} (8.9.1) 

where {d} is the vector of unknown incremental nodal displacements, {j} is 
the vector of known equivalent incremental nodal loads, and [KrJ is the 
global tangent-stiffness matrix, which reflects the current state of the de­
formed structure with the corresponding effective stiffness. The matrix [K,J is 
the assembly of the transformed element tangent-stiffness matrices discussed 
in Sections 8.2-8.8. 

8.9.3 Convention and Terminology 
This section deals with specific conventions and terminology used by 
PHINGE in the input preparation and the output interpretation phases of 
the analysis. Data preparation involves (1) describing the analysis method, 
size of the problems, and output format, (2) defining element properties and 
structural geometry, and (3) defining the loading conditions for which the 
structure needs to be analyzed. 
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8.9.3.1 Joints and Elements 

The geometric dimensions of the structures are established by placing joints 
(or nodal points) on the structures. Each joint is given an identification num­
ber and is located in a plane associated with a global two-dimensional coor­
dinate system. 

The structural geometry is completed by connecting the predefined jonts 
with structural elements that are of specific types, namely, frame, truss, and 
connection. Each element also has an identification number. 

The following are some of the factors that need to be considered in locating 
joints on a structure: 

1. The number of joints should be sufficient to describe the geometry and the 
response behavior of the structures. 

2. Joints need to be located at points and lines of discontinuity, e.g., at 
changes in material properties or section properties. 

3. Joints should be located at points on the structure where forces and dis­
placements are to be evaluated. 

4. Joints should be located at points on the structure where concentrated 
loads are to be applied. The applied loading should be represented as 
concentrated loads acting on specific joints in the members. 

5. Joints should be located at all support points. Support conditions are 
represented in the structural model by restricting the movement of the 
specific joints in specific directions. 

6. Element mesh should be refined enough to capture the inelastic behavior 
and second-order effects in the regions of interest. 

8.9.3.2 Global and Local Coordinate Sytems 

For the generation of all the input and output data associated with the joints, 
a two-dimensional (x,y) global coordinate system is used. The following 
input data are prepared with respect to the global coordinate system: 

1. joint coordinates. 
2. joint restraints. 
3. joint connection spring. 
4. joint loading. 
5. joint constraints. 

The following output is also referred to in the global coordinate system: 

1. joint displacements. 
2. joint reactions. 

8.9.3.3 Degrees of Freedom 

A two-joint frame element has six displacement components as shown in 
Fig. 8.24. Each joint can translate in the global x- and y-directions, and it can 
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rotate about the global z-axis. The directions associated with these displace­
ment components are known as degrees of freedom of the joint. 

A two-joint truss element has four degrees of freedom as shown in Fig. 
8.25. Each joint consists of two translational degrees of freedom and with no 
rotational components. 

If the displacement of a joint corresponding to anyone of its degrees of 
freedom is known to be zero, such as at a support point, then the degree of 
freedom is known as an inactive degree of freedom. Degrees of freedom at 
which the displacements are not known are termed active degree of freedoms. 
In general, the displacement of an inactive degree of freedom is usually 
known, and the purpose of the analysis is to find the reaction in that direc­
tion. For an inactive degree of freedom the applied load is usually known 
(it could be zero), and the purpose of the analysis is to find the corresponding 
displacement. 

8.9.3.4 Units 

There are no built-in units in the PHINGE computer program. The user 
must prepare the input in a consistent set of units. The output produced by 
the program will then conform to the same set of units. Therefore, if the user 
chooses to use kips and inches as the input units, all the dimensions of the 
structure must be entered in inches and all the loads in kips. The material 
properties should also conform to these units. The output units will then be 
in kips and inches, so that the frame member axial force will be in kips, 
bending moments will be in kip-inches and displacements will be in inches. 
However, joint rotations are in radians, irrespective of units. 

8.9.4 Data Preparation 
Described here is the input sequence and data structure to create an input file 
called INFILE. The analysis program, PHINGE, can analyze any frame 
structures with maximum degrees offreedom not more than 165. However, it 
is possible to recompile the source code to accommodate more degrees of 
freedom by changing the size of the arrays in the PARAMETER statements. 
This problem can be overcome by using dynamic storage allocation. This 
procedure is rather common in finite element programs [8.18, 8.38], and it 
will be used in the next release of the program. 

The input data file INFILE is prepared in a specific format. The following 
input sequence must be followed: 

1. Title line. 
2. Analysis method. 
3. Analysis attributes. 
4. Job control. 
5. Element types. 
6. Element group. 
7. Connection properties. 
8. Frame element properties. 
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9. Truss element properites. 
10. Connection element data. 
11. Frame element data and geometry. 
11. Truss element data and geometry. 
12. Nodal forces. 

Some of the data input are mandatory; however, the existence of some of 
the elements in the input data depends on the problem being analyzed. The 
order in which the data lines occur in the input file must be strictly followed. 

The various functions and uses of these data are summarized in the following. 

Line 1: Title line 

Note Columns Variable Description 

(1) 1-8 A comment card 

Note: 

1. The comment line is skipped, without interpretation, at the execution of 
INPUT. This line is usually required to identity one input file from the other. 

Line 2 (IS): Analysis method 

Note Columns Variable 

(1) 1-5 ISOLVE 

Note: 

Description 

Specify the analysis method. Specify 
ISOL VE = 0 for elastic-plastic hinge 
analysis, and ISOL VE = 1 for refined 
plastic hinge analysis 

1. IF ISOLVE = 0 is specified, the second-order elastic-plastic hinge analy­
sis is activated. If ISOLVE = 1 is specified, the second-order refined plas­
tic hinge method described in Section 8.7 is initiated. 

Line 3 (2/S): Analysis attributes 
This line is skipped if ISOL VE = 0 

Note Columns Variable De~cription 

(1) 1-5 lET Tangent-modulus model; lET = 1, CRC 
tangent modulus; lET = 2, LRFD 
tangent modulus 

(2) 6-10 IPHI Element stiffness degradation model 
(IPHI = 1) IPHI = 1, parabolic stiffness 
reduction 



476 8. Second-Order Plastic Hinge Analysis 

Note: 

1. If lET = 1 is selected, the CRC tangent-modulus model given by Eq. 
(8.7.4) is adopted in the refined plastic hinge analysis for members sub­
jected to compression or tension. If lET = 2 is specified, the LRFD tan­
gent modulus from Eq. (8.7.4) is effected for members subjected to axial 
compression only. For members subjected to tension, the CRC tangent­
modulus model is automatically selected, as discussed in [8.2]. 

2. A parabolic stiffness-reduction function [Eq. (8.7.6)J with initial yield sur­
face equal to one-half the plastic strength surface is adopted in the refined 
plastic hinge analysis if IPHI = 1 is selected. Other possible stiffness­
reduction schemes used in calibrating the refined plastic hinge model to 
best fit the "exact" plastic-zone solutions are given in the subroutine 
ESTIFF. The reader is referred to [8.6J for information pertinent to this 
aspect. 

Line 4 (415): Job control card 

Note Columns 

(1) 1-5 

(2) 6-10 
(3) 11-15 
(4) 16-20 

Note: 

Variable 

NDOFS 

NINCRE 
NSEQN 
IPRTFC 

Description 

Number of degrees of freedom of the 
structure (::::;; 165) 

Number of load increments 
Number of load sequences (::::;;2) 
Flag for printing member end forces: 

IPRTFC = 0, do not print element end 
forces; IPRTFC = 1, print elemnt end 
forces 

1. The structure degrees of freedom is required. This value should not be 
larger than the default limit of 165. If this value is exceeded, the user needs 
to recompile the source code by setting a larger value for "MAXDOF" in 
the PARAMETER statements. 

2. The total load incremental steps are required. The analysis is terminated 
when the number of the total load incremental steps is reached. For first­
order analysis, the total factored load should be applied in one load incre­
ment to suppress numerical iteration in the nonlinear analysis algorithm, 
i.e., let NINCRE = 1. 

3. Only two load sequences are allowed in the current version of the 
program. 

4. Member end forces are not printed if IPRTFC = o. These forces are 
printed at each step of IQad increment if IPRTFC = 1; this means a larger 
storage capacity is required for OUT.EF. 



Line 5 (3/5): Element types 

Note 

(1) 
(1) 
(1) 

Note: 

Columns 

1-5 
6-10 

11-15 

Variable 

NCTYPE 
NFTYPE 
NTTYPE 
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Description 

Number of connection types (::;; 10) 
Number of frame element types (::;; 20) 
Number of truss element types (::;; 10) 

1. If the limits specified in the above are exceeded, the user need to recompile 
the program by specifying suitable values for the variables in the 
PARAMETER statements of the source code. 

Line 6 (3/5): Element group 

Note 

(1) 
(1) 
(1) 

Note: 

Columns 

1-5 
6-10 

11-15 

Variable 

NUMCNT 
NUMFRM 
NUMTRS 

Description 

Number of connection types (::;; 10) 
Number offrame elements (::;;200) 
Number of truss elements (::;; 20) 

1. If the limits specified in the above are exceeded, the user needs to re­
compile the program by specifying suitable values for the variables in 
the PARAMETER statements of the source code. 

Line 7 (/5, 3DI0.0): Connection properties 
This line should be omitted if NCTYPE = O. Otherwise, this line must be 
supplied NCTYPE times. 

Note 

(1) 
(2) 
(2) 
(2) 

Note: 

Columns 

1-5 
6-15 

16-25 
26-35 

Variable 

ICTYPE 
MU 
RKI 
n 

Description 

Connection type identifier (an integer) 
Connection ultimate moment capacity 
Connection initial stiffness 
Connection shape parameter 

1. Connection property sets must be specified in the order as shown. 
Users should refer to Section 8.8 for the definition of the connection 
paramenters. 
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2. The connection property set is stored in an array CTYPE(ICTYPE, J = 
1,3). Step-by-step procedures for calculating Mu and Rki for semirigid con­
nections composed of angles are given in [8.36]. 

Line 8 (15, 5DI0.0): Frame element properties 
If NFTYPE =1= 0, this line must be supplied NETYPE times. Otherwise, this 
line should be omitted. 

Note Columns Variable Description 

1-5 IFTYPE Frame type identifier (an integer) 
(1) 6-15 A Cross-sectional area 
(1) 16-25 I Moment of inertia 
(1) 26-35 Z Plastic section modulus 
(1) 36-45 E Modulus of elasticity 

(1), (2) 46-55 FY Material yield strength 

Notes: 

1. Material property sets for the frame elements must be specified in the 
order shown. The material set is stored in an array FTYPE(IFTYPE, 
J = 1,5). 

2. For elastic analysis, material yield strength of arbitrary large values 
should be assumed for all elements to prevent the formation of plastic 
hinges due to bending actions, say FY = IE + 05. 

Line 9 (15, 4DI0.0): Truss element properties 
If NFTYPE =1= 0, this line must be supplied NETYPE times. Otherwise, this 
line should be omitted. 

Note Columns Variable Description 

1-5 ITTYPE Truss type identifier (an integer) 
(1) 6-10 A Cross-sectional area 
(1) 16-25 I Moment of inertia 
(1) 26-35 E Modulus of elasticity 
(1) 36-45 FY Yield stress 

Note: 

1. Material property sets for the truss elements must be specified in the 
order shown. For truss elements under axial compression, the analysis 
is terminated once the axial force in the truss element exceeds the column 
strength implied by the LRFD column strength equations [8.7]. There­
fore, the moment of inertia for weak-axis bending should be specified 
for a pinned-ended truss element. For element subjected to tensile force, 
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the cross-sectional effective area (with allowance for bolt holes) may be 
specified. The material set is stored in an array TTYPE(ITTYPE, J = 1,4). 

Line 10 (415): Connection data 
This line should be omitted if NUMCNT = O. Otherwise, this line must be 
supplied NUMCNT times. 

Note Columns Variable Description 

(1) 

Note: 

1-5 LCNT Connection element number 
6-10 IFMCNT(LCNT) Beam-column element number to 

11-15 lEND (LCNT) 

16-20 JDCNT(LCNT) 

which the connection is 
attached 

Beam-column element end to 
which the connection is 
attached: lEND = 1 for 
connection at end A; lEND = 2 
for connection at end B 

Connection type number 

1. See Fig. 8.24 for the respective end of the beam-column element. 

Line 11 (15, 2D10.0, 715): Frame element data and geometry 
This line should be omitted if NUMFRM = O. Otherwise, this line must be 
supplied NUMFRM times. 

Note Columns Variable Description 

1-5 LFRM Frame element number 
(1) 6-15 FXO(LFRM) Horizontal projected length 
(1) 16-25 FYO(LFRM) Vertical projected length 

26-30 JDFRM(LFRM) Frame type number 
(2) 31-35 NFRMCO(JDFRM,1) Node number for degree of 

freedom 1 
(2) 36-40 NFRMCO(JDFRM,2) Node number for degree of 

freedom 2 
(2) 41-45 NFRMCO(JDFRM,3) Node number for degree of 

freedom 3 
(2) 46-50 NFRMCO(JDFRM,4) Node number for degree of 

freedom 4 
(2) 51-55 NFRMCO(JDFRM,5) Node number for degree of 

freedom 5 
(2) 56-60 NFRMCO(JDFRM,6) Node number for degree of 

freedom 6 
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Note: 

1. The projected lengths for a frame element are shown in Fig. 8.24. The 
nodal numbering sequence must follow the order ofthe degrees offreedom 
for the frame element shown in Fig. 8.24. 

Line 12 (15, 2DI0.0, 515): Truss element data card 
This line should be omitted if NUMTRS = O. Otherwise, this line must be 
supplied NUMTRS times. 

Note Columns Variable Description 

1-5 LTRS Truss element number 
(1) 6-15 TXO(LTRS) Horizontal projected length 

(in inches) 
(1) 16-25 TYO(LTRS) Vertical projected length 

(in inches) 
26-30 JDTRS(LTRS) Truss type number 

(2) 31-35 NTRSCO(JTRS,l) Node number for degree of 
freedom 1 

(2) 36-40 NTRSCO(JTRS,2) Node number for degree of 
freedom 2 

(2) 41-45 NTRSCO(JTRS,3) Node number for degree of 
freedom 3 

(2) 46-50 NTRSCO(JTRS,4) Node number for degree of 
freedom 4 

Note: 

1. The projected lengths for a truss element are shown in Fig. 8.25. The nodal 
numbering sequence must follow the order of the degrees of freedom for 
the truss element shown in Fig. 8.25. 

Line 13 (IS, 3DI0.0): Nodal load 

Note Columns Variable Description 

(1) 1-5 NLDOF Degree of freedom at which a load is 
applied 

(2) 6-15 FAMG(I,l) Magnitude of load increment of load 
sequence 1 

(3) 16-35 FAMG(I,2) Magnitude of load at which load 
sequence 1 end 

(3) 36-45 FAMG(I,3) Magnitude of load increment of load 
sequence 2 
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Notes: 

1. All concentrated forces must be applied at the nodal point in the x and y 
directions of the global coordinates by specifying he translational degrees 
of freedom of the node. Concentrated moment may be applied at the 
nodal point by specifying the rotational degree of freedom of the node. 

2. If the number of load increments NINCRE = 1, values assigned to 
F AMG(I,2) and F AMG(I,3) will not affect the analysis results. In this 
case, the analysis is terminated when the number of load increment 
NINCRE is reached or when the structural stiffness matrix is nonpositive 
definite after attempting several load-reduction steps near the maximum 
load point. 

3. If NINCRE = 2, the user must specify values for F AMG(I,2) and 
FAMG(I,3) so that the analysis knows when to apply load sequence 2 
once the total load parameter for load sequence 1 is reached. 

8.9.5 PH/NGE Output Files 
After a successful execution of PHINGE using the RUN command, the 
following files will exit on the disk: 

1. DATAO: Working data file generated by INPUT. 
2. DATAl: Working data file generated by INPUT. 
3. DATA2: Working data file generated by INPUT. 
4. OUT.DAT: Input data echo generated by PHINGE. 
5. OUT.LD: Load-displacement results and sequence of plastic hinge forma­

tion at joints. 
6. OUT.EF: Element forces in global coordinates. 

OUT.DAT contains an echo of the information from the input data file 
INFILE. This file is created by PHINGE and contains the detailed summary 
on the input data cards. This file may be used to check for numerical and 
incompatibility errors in the input data preparation. 

OUT.LD contains the load and displacement information at various joints 
in the structure. The load-displacement results are presented at the end of 
every load increment. The sign conventions for the loads and displacements 
should follow the frame degrees of freedom as shown in Figs. 8.24 and 8.25. 

OUT.EF contains the element joint forces for all types of elements at every 
load step. The element joint forces are obtained by the summation of the 
product of the element incremental displacements and element tangent stiff­
ness matrices at every load step. The element joint forces are output in the 
global coordinate system and are forces acting on the element at the joints 
and must be in equilibrium with the applied forces at the joints. 

8.9.6 Executing the PH/NGE Program 
Say the data associated with the problem the user wishes to analyze has been 
created in a data file called INFILE. Entering the command RUN from the 
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directory where the PHINGE.EXE and INPUT.EXE files are resident will 
activate a series of PHINGE programs in the required sequence for the 
analysis of the structure defined by the data file INFILE. The sequence of 
actions generated by the batch file, RUN.BAT, is: (1) executing INPUT, 
which reads the input data file INFILE and generates three working data 
files, DATAO, DATAl, and DATA2; (2) executing PHINGE, which reads the 
working data files and generates three output files, OUT.DAT, OUT.LD, 
and OUT.EF. The schematic diagram Fig. 8.23 explains the sequential oper­
ation procedures generated by the batch file RUN. BAT. 

Mter the OUT.LD and OUT.EF files are generated, the user can view 
these files on the screen or print them out for detailed information on force 
distribution and load-deformation characteristics of the structure. To print 
an output file the MS-DOS PRINT command may be used. 

It should be noted that RUN is a batch command that facilitates the 
execution of PHINGE and the clearing of old working files and output files. 
Entering the command RUN will erase the old files DATAO, DATAl, 
DA T A2, OUT.DAT, OUT.LD, and OUT.EF before creating the new ones. 
Therefore, it is advisable to rename the desired output files before running a 
new problem. 

8.10 Analysis of a One-Story Portal Frame 

8.1 0.1 Rigid Plastic Analysis 
Figure 8.26 shows a rectangular portal frame subjected to two concentrated 
vertical loads acting at one-third points of the beam. This example is sim­
ilar to the problem given in Example 5.5.1 in which the members are 
proportioned based on plastic analysis. 

80 kips 60 kips 

BCD E 
~----------~------------------------~ W21x 83 

180' 
W18x50 W18x50 

~J 
120" 120" -I- 120" ./ 

FIGURE 8.26. Portal frame subjected to two concentrated loads. 
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The collapse mechanism based on plastic analysis is a beam mechanism 
shown in Fig. 8.27. By equating the external work due to applied loads to the 
internal energy dissipation, the collapse load factor A. is obtained as: 

80A.(200) + 60A.(100) = Mp(20) + 1.94Mp(30) + MpO 

A. = 8.82 M 
2200 p 

8.82 
or A. = 2200 (303/12) = 1.215. (8.10.1) 

From equilibrium, the bending moment diagram and reaction forces at col­
lapse (i.e., A. = 1.215) are shown in Fig. 8.28. One of the disadvantages of 
plastic analysis is that the state of the frame at the factored load level cannot 
be determined readily. One has to perform a hinge-by-hinge analysis in order 

29 

B 

A 

FIGURE 8.27. Collapse mechanism based on plastic analysis. 

t 89.1 Kips 

A=1-215 
(Kip- ft ) 

506.9 

81.0 Kips t 
FIGURE 8.28. Force distribution at the incipient of collapse based on plastic analysis. 
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to obtain the "correct" force distribution in the frame for the purpose of 
member proportioning. 

In order to perform member capacity checks, the bending moment dia­
gram at the design load factor (i.e., at A. = 1.0) must be established. This can 
be obtained by factoring the bending moment diagram at collapse by a factor 
of 1.215 to achieve the bending moment diagram at the factored load level. 
The resulting bending moment diagram is shown in Fig. 8.29. 

8.10.2 Second-Order Elastic-Plastic Hinge Analysis 

A second-order elastic-plastic hinge analysis considers the effects of both 
geometric and material nonlinearities in a more exact manner. The effects of 
residual stress and geometric initial imperfections are, however, not modeled 

t 73. 3 Ki ps 

A = 1·0 
(Kip-ft ) 66.7 Kips t 

FIGURE 8.29. Force distribution at the factored load level based on plastic analysis. 

2 5 8 11 

3hl Sh4 9A7 12AlO 

CD (0 CD 
W21x83 

180" CD W18x50 W18x50 CD 
13 

I .. 120" ·1· 120" ·1· 120" ..I 
FIGURE 8.30. Structural modeling of the portal frame shown in Fig. 8.26. 
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in the analysis. Since the problem is nonlinear, the analysis has to be carried 
out using small load increments. 

For the frame shown in Fig. 8.26, the beam is discretized into three ele­
ments, and the columns are represented by one element per member. The 
computer model is shown in Fig. 8.30. The input file, INFILE, to perform the 
second-order elastic-plastic analysis, is shown in Fig. 8.31. Kip-inch units are 
used. All members are modeled using beam-column elements, and the loads 
are applied proportionally to collapse. 

The resulting bending moment diagram and support reaction forces at 
maximum load factor (at load step 31, A = 1.166) and at design load factor (at 
load step 21, A = 1.0) are shown in Figs. 8.32 and 8.33, respectively. The first 

j*SECOND ORDER ELASTIC PLASTIC HINGE ANALYSIS 
EXAMPLE 5.5.1 
o 

13 50 1 
0 2 0 
0 5 0 
1 14.70 800.0 101.00 29000. 
2 24.30 1830.0 196.00 29000. 

0.0 180.0 1 0 0 0 
2 0.0 180.0 1 0 0 13 
3 120.0 0.0 2 1 2 3 
4 120.0 0.0 2 4 5 6 
5 120.0 0.0 2 7 8 9 
5 -4.00 -80.0 0.000 
8 -3.00 -60.0 0.000 

36.00 
36.00 

1 2 3 
10 11 12 
4 5 6 
7 8 9 

10 11 12 

FIGURE 8.31. Input data file, INFILE, for second-order elastic plastic hinge analysis 
of a portal frame (named ex! in the diskette). 

85· 5 Kips 

500·~ 

A = 1·166 
(Kip-ft) 

FIGURE 8.32. Force distribution at the maximum load based on second-order elastic­
plastic hinge analysis. 
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71-8 Kips 

A=lO 
(Kip-ft ) t 68 Kips 

FIGURE 8.33. Force distribution at the factored load level based on second-order 
elastic-plastic hinge analysis. 

j*SECOND ORDER REFINED PLASTIC HINGE ANALYSIS 
EXAMPLE 5.5.1 

1 
2 

13 40 1 
0 2 0 
0 5 0 
1 14.70 800.0 101.00 29000. 36.00 
2 24.30 1830.0 196.00 29000. 36.00 
1 0.0 180.0 1 0 0 0 1 2 3 
2 0.0 180.0 1 0 0 13 10 11 12 
3 120.0 0.0 2 1 2 3 4 5 6 
4 120.0 0.0 2 4 5 6 7 8 9 
5 120.0 0.0 2 7 8 9 10 11 12 
5 -4.00 -80.0 0.000 
8 -3.00 -60.0 0.000 

FIGURE 8.34. Input data file, INFILE, for second-order refined plastic hinge analysis 
of a portal frame (named exla in the diskette). 

plastic hinge is formed at the top right-hand column at A. = 0.95, and the 
second plastic hinge is at the larger concentrated load point at A. = 1.02. The 
last plastic hinge is formed at the top left-hand column at the incipient of 
collapse with the applied load factor A. = 1.166. 

The complete input and output data files are stored in the computer 
diskette and are renamed as EXl (for INFILE), EXl.DAT, EXl.LD, 
and EXl.EF (for the corresponding OUT.DAT, OUT.LD, and OUT.EF 
files). 
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8.10.3 Second-Order Refined Plastic Hinge Analysis 
The farme model shown in Fig. 8.30 is now analyzed using the second-order 
refined plastic hinge analysis. The analysis adopted the LRFD tangent 
modulus in which explicit modeling of member initial imperfections is not 
required. The input file, INFILE, for this problem is shown in Fig. 8.34. 
A large number of load increments (NINCRE = 40) has been specified for 
limit-load analysis. The bending moment diagrams at design load factor (at 
load step 21) and at limit load factor (at load step 30) are .shown in Figs. 8.36 
and 8.35, respectively. 

The complete input and output data files are stored in the computer 
diskette, and they are renamed EXla (for INFILE), EXla.DAT, EXla.LD, 
and EXla.EF (for the corresponding OUT.DAT, OUT.LD, and OUT.EF files). 

t 85·7 Kips 

A = 1·170 
(Kip-ft ) t 78·0 Kips 

FIGURE 8.35. Force distribution at the maximum load based on second-order refined 
plastic hinge analysis. 

t 71-8 Kips 

485·6 

A = 1-0 
( Kip-ttJ 

67·9 Kips 

FIGURE 8.36. Force distribution at the factored load level based on second-order 
plastic hinge analysis. 
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8.1 0.4 Comparison of Results 
Load-deflection results from the three analyses are compared as shown in 
Fig. 8.37. The plastic analysis predicts a larger collapse load at A. = 1.215, 
followed by the second-order elastic-plastic hinge at A. = 1.166 and the re­
fined plastic hinge analysis at A. = 1.170, in which the latter two results are 
very close to each other. In the elastic-plastic hinge analysis, the first plastic 
hinge is formed at the beam's right end, denoted as point E in the frame. The 
applied load factor corresponding to the formation of the first plastic hinge 
is A. = 0.95. Since the elastic-plastic hinge analysis neglects the effects of resid­
ual stresses and gradual plastification in the beam, the distribution of internal 
forces during the loading process is somewhat different from that predicted 
by the refined plastic hinge method. However, for this particular frame, the 
inelastic force-redistribution process does not have any influence on the pre­
diction of the ultimate strength. This is because the second-order effect is 
virtually absent, and the beam failure is due to the formation of a beam 
mechanism. 

In the refined plastic hinge analysis, the first plastic hinge is formed at 
point E in the frame. The load factor corresponding to the formation of the 
first plastic hinge is A. = 0.972, which is slightly higher than the load at first 
hinge predicted by the plastic hinge analysis. The formation of the first plastic 
hinge is delayed in the refined plastic hinge analysis because the inelastic 

1-2~::":"::"-~::""":"'=":""""':L..------

Second-Order Elastic Plastic 

lO 

0·8 

" O·S 

0·4 

0·2 

E (0·950) 

aOA SOA 

O·S o·a 
Vertical Deflection at 

2·0 

FIGURE 8.37. Comparison of load-displacement curves for the portal frame. 
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force redistribution occurs before the attainment of full plastic section capac­
ity at E. The gradual plastification at E tends to shed load to other less­
critical locations and therefore leads to a smooth transition of stiffness from 
the elastic to the inelastic range. 

Analyses based on plastic, second-order elastic-plastic, and second-order 
refined plastic hinge methods predict different load-displacement behavior 
because of the different degree of accuracy in predicting the second-order 
and inelasticity effects in the frame. The plastic analysis does not provide 
any information concerning the load-deflection behavior of the frame. The 
elastic-plastic hinge approach predicts a piece-wise linear curve, and the re­
fined plastic hinge approach predicts a smooth curve with gradual stiffness 
degradation when the limit load is approached. 

1-3 x 2·215 

13x4·431 

5·58 11-16 

C3-W8x31 

Cl-W8x31 

I· 

11·16 11-16 5·58 

I 
82-W16x31 

C4-W8x31 

16·2 16·2 8·1 

Bl- W18x35 

288 

C2-W8x31 

E =29000 ksi 
~ =36 ksi 
qJ = 0·9 
Units: Kips & Inches 

·1 

FIGURE 8.38. Semirigid frame subjected to factored loading. 

144 

144 
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8.11 Analysis of a Semirigid Braced Frame 

Figure 8.38 shows a semirigid frame braced by truss diagonals and subjected 
to the following load combination: 

1.0 Gravity + 1.3 Wind. (8.11.1) 

The computer model for the braced semirigid frame is shown in Fig. 8.39. 
For illustration purposes, only the refined plastic hinge analysis is used. All 
beams are modeled by four discrete elements and all columns by one element. 
The loads are applied at the nodal points in 5% increments with respect to 
the full factored loads. Two load sequences are prescribed. The first load 
sequence applies incremental forces up to the factored load level, then is 
followed by the second load increment applied up to the maximum load 
point. Frames with column bases assumed to be fully pinned or fixed are 
analyzed. 

CD 

o Frame Element .dTruss Element 
o Connection Element 

FIGURE 8.39. Structural modeling of the semirigid frame. 
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/*REFINED PLASTIC HINGE ANALYSIS OF FRAME WITH SIMPLY 
SUPPORTED BASES 

1 
2 1 

32 80 1 
2 3 1 
4 12 2 
1 1773.0 954013.0 0.80 
2 814.0 205924.0 1.57 
1 9.13 110. 30.4 29000. 32.4 
2 10.3 510. 66.5 29000. 32.4 
3 9.12 375. 54.0 29000. 32.4 
1 1.19 0.392 29000.0 32.4 
1 5 1 1 
2 8 2 1 
3 9 1 2 
4 12 2 2 
1 0.0 144. 1 0 0 1 3 4 5 
2 0.0 144. 1 0 0 2 15 16 17 
3 0.0 144. 1 3 4 5 18 19 20 
4 0.0 144. 1 15 16 17 30 31 32 
5 72.0 o. 2 3 4 5 6 7 8 
6 72.0 o. 2 6 7 8 9 10 11 
7 72.0 o. 2 9 10 11 12 13 14 
8 72.0 o. 2 12 13 14 15 16 17 
9 72.0 o. 3 18 19 20 21 22 23 

10 72.0 o. 3 21 22 23 24 25 26 
11 72.0 o. 3 24 25 26 27 28 29 
12 72.0 o. 3 27 28 29 30 31 32 
1 288.0 144.0 0 0 15 16 
2 288.0 144.0 1 3 4 30 31 
3 0.2880 5.7603 0.2880 

18 0.143975 2.8795 0.143975 
4 -0.405 -8.1 -0.405 
7 -0.810 -16.2 -0.810 

10 -0.810 -16.2 -0.810 
13 -0.810 -16.2 -0.810 
16 -0.405 -8.1 -0.405 
19 -0.2790 -5.58 -0.2790 
22 -0.5580 -11.16 -0.5580 
25 -0.5580 -11.16 -0.5580 
28 -0.5580 -11.16 -0.5580 
31 -0.2790 -5.58 -0.2790 

FIGURE 8.40. Input data file, INFlLE, for second-order refined plastic hinge analysis 
of a semirigid braced frame with pinned based (named ex2 in the diskette). 
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/*REFINED PHINGE ANALYSIS OF A FRAME WITH FIXED BASES 
1 
2 1 

30 80 2 
2 3 1 
4 12 2 
1 1773.0 954013.0 0.80 
2 814.0 205924.0 1.57 
1 9.13 110. 30.4 29000. 32.4 
2 10.3 510. 66.5 29000. 32.4 
3 9.12 375. 54.0 29000. 32.4 
1 0.95563 0.703 29000.0 32.4 
1 5 1 1 
2 8 2 1 
3 9 1 2 
4 12 2 2 
1 0.360 144. 1 0 0 0 1 2 3 
2 0.360 144. 1 0 0 0 13 14 15 
3 0.360 144. 1 1 2 3 16 17 18 
4 0.360 144. 1 13 14 15 28 29 30 
5 72.0 o. 2 1 2 3 4 5 6 
6 72.0 o. 2 4 5 6 7 8 9 
7 72.0 o. 2 7 8 9 10 11 12 
8 72.0 o. 2 10 11 12 13 14 15 
9 72.0 o. 3 16 17 18 19 20 21 

10 72.0 o. 3 19 20 21 22 23 24 
11 72.0 o. 3 22 23 24 25 26 27 
12 72.0 o. 3 25 26 27 28 29 30 
1 288.36 144.0 1 0 0 13 14 
2 288.36 144.0 1 1 2 28 29 
1 0.2880 5.76 0.2880 

16 0.143975 2.8795 0.143975 
2 -0.405 -8.1 -0.405 
5 -0.810 -16.2 -0.810 
8 -0.810 -16.2 -0.810 

11 -0.810 -16.2 -0.810 
14 -0.405 -8.1 -0.405 
17 -0.2790 -5.58 -0.2790 
20 -0.5580 -11.16 -0.5580 
23 -0.5580 -11.16 -0.5580 
26 -0.5580 -11.16 -0.5580 
29 -0.2790 -5.58 -0.2790 

FIGURE 8.41. Input data file, INFILE, for second-order refined plastic hinge analysis 
of a semirigid braced frame with fixed bases (named ex2a in the diskette). 
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TABLE 8.6. Connection parameters. 

Connections at first-story beam ends Connections at second-story beam Ends 

M., kip-in. n M., kip-in. n 

1773 954,013 0.80 814 205,924 1.57 

1-6 "516 
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m~----------------~w ___ 
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FIGURE 8.42. Load-displacement traces of semirigid braced frames with different sup­
port conditions. 

The input data files for the semirigid frame with pinned and fixed bases are 
shown in Figs. 8.40 and 8.41, respectively. In the refined plastic hinge analysis 
the LRFD tangent modulus is activated by specifying lET = 2 as given in 
Figs. 8.40 and 8.41. However, the tangent-modulus model will not affect the 
ultimate strength results of this frame because the axial forces in the columns 
at factored loads are small (less than O.3Py )' The design yield strength is taken 
as 0.9 times the nominal yield strength of 36 ksi. The resistance factor of 0.9 
for material yield strength is recommended by the Australian limit-states 
code [8.13] for use in the advanced analysis of structural steel frames. 
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All columns are assumed to have initial out-of-plumbness of h/400, where 
h is the story height. This column out-of-plumbness magnitude may be ob­
tained from ECCS provisions for use with second-order plastic-zone analysis 
[8.39]. The column initial out-of-straightness is not modeled explicitly in the 
refined plastic hinge analysis since the axial force in all the columns is smaller 
than 0.26Pe , where Pe is the Euler buckling load. 

The semirigid connections used are top-and-seat angles with double-web 
angles. The evaluation of the connection's ultimate moment capacity and 
initial stiffness is documented in Ref. [8.36]. The connection parameters are 
summarized in Table 8.6. 

The diagonal braces are made of angles L3 x 2 x 1/4 and are pinned at 
their ends by using simple bolt connections made of A325 bolt of 7/8-inch 
diameter. The diagonal braces are modeled using truss elements in which the 
net effective area of the angle section, after reduction for a single hole, is used 
in the analysis. 

Figure 8.42 shows the load-displacement curves of the frame with two 
different support conditions. An applied load ratio of 1.0 corresponds to the 
full factored wind load combination of 1.0 gravity + 1.3 wind. The analysis 
shows that diagonal bracing provides an effective means to control the frame 
drift and enhance the lateral stiffness of the frame. The increase in load­
carrying capacity is more pronounced for more flexible frames. 
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Problems 
8.1. The column shown in Fig. P8.1 has an initial out-of-straightness at the midspan 

equal to L/1500, and the column slenderness ratio A = (L/nrx}/JFy/E = 1.0. De­
termine the column axial load capacity using second-order elastic-plastic hinge 
and refined plastic hinge analyses, assuming two frame elements per member. 
Compare the computer results with the solutions obtained using the AISC 
LRFD column strength equations, and explain why the elastic-plastic hinge 
analysis is not adequate for use as advanced analysis. 

~ 00 = l/1500 
P~--~~~~~~f==~~~L~-~~P 

1--1-----=-------1 .. 1 A 

W8x31 

l /\c = 1-0 
FIGURE P8.1. 
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8.2. The beam column shown in Fig. P8.2 is subjected to a constant axial force of 
P = 0.5Py and a midspan concentrated load applied incrementally to collapse. 
For Ljr = 80, determine the ultimate strength of the beam column using second­
order elastic-plastic hinge and refined plastic hinge analyses. Compare the results 
with those obtained by first-order plastic hinge analysis using the AISC LRFD 
beam-column interaction equations. 

w=? 
waX 31 , 00= ll1500 

P ~ ~~-----=:::::=:::tl :=:::::::;;;;;;;;~--Z;A ... p = O· 5 Py 

~ t .[ lIrx = 80 
l 

FIGURE P8.2. 

8.3. The dimensions and member sizes for two portal frames in which side-sway is 
prevented are shown in Fig P8.3. The column slenderness ratio for type A and 
type B frames is Ljr = 40.3, and the relative stiffness of the column to the beam is 
0.25. The difference between. the type A and type B frames is the support condi­
tions.The type A frame has fixed supports, whereas the type B frame is simply 
supported at the bases of the columns. The beams and columns in these frames 
are rigidly connected about their strong-axis bending direction. All the member 
cross sections are assumed to be fully compact and the members are fully braced 
to prevent out-of-plane deformations. 

For the load parameter p = 0.34, determine the ultimate strength of the frame 
using 
(a) elastic analysis and the AISC LRFD beam-column equations. 
(b) plastic analysis and the AISC LRFD beam-column equations. 
(c) second-order elastic-plastic hinge analysis. 
(d) second-order refined plastic hinge analysis. 

8.4. The configurations ofthree calibration frames are shown in Fig. P8.4. The cross­
sectional dimensions and properties of the frame members to be used in the 
analyses are summarized in the table. Also tabulated are the magnitudes of col­
umn sway imperfections, and the discretization of frame members to be used in 
the analysis of the calibration frames. For the factored loading as shown: 
(a) determine the load factors at collapse using second-order plastic-hinge-based 

analyses. 
(b) compare the load versus lateral displacement results. 
(c) compare the internal force distribution and plastic hinge locations. 
(d) compare the plastic-hinge-based results with the plastic-zone solutions in 

[8.6] and [8.33]. 
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TABLE FOR P.8.4: Cross-section properties of members and initial sway imperfections. 

A Ix Iy Calibration 
Members (cm2 ) (cm4) (cm4) Frames 

IPE240 39.1 3,892 284 

IPE300 53.8 8,356 604 
Portal 

IPE330 62.6 11,770 788 Frame 

IPE360 72.7 16,270 1,043 

IPE400 84.5 23,130 1,318 Columns 

HEB160 54.3 2,492 889 
Gable 

HEB200 78.1 5,696 2,003 Frame 
Roof 

HEB220 91.0 8,091 2,843 Beams 

HEB240 106.0 11,260 3,923 

HEB260 118.0 14,920 5,135 
6-Story 

HEB300 149.0 25,170 8,563 Frame 

HEA340 133.0 27,690 7,436 

• Angle of sway imperfection CPo = r1 r2/3OO (see Ref. [8.33]) 
"'''' Sway deflection at the top of the frame. 

roof beam 

4m 

floor beam 
6 

4m 

floor beam 
4m 

6 
First-storey 
floor beam 

5m 

6m 

Plane Frame 

(a) 

FIGURE P8.6. 

CPo or CP06 Sway Deflection"'· 

'" (mm) 

1/400 12.5 

1/300 13.3 

1/432 24.0 

1/450 50.0 

1 
Plane Frame 

1 
6m 

(b) 
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8.5. For the frame configuration and loading shown in Fig. 8.20, reproportioning the 
frame members using AISC LRFD factored load combinations assuming full 
rigidity between beam-to-column connections. Using advanced analysis tech­
niques, select a connection type from Table 1 that will satisfy ultimate strength 
and serviceability limit-state requiements. 

8.6. Figure P8.6(a) shows an interior frame of a multistory steel building to be de­
signed using advanced analysis methods. The frame is braced against out-of­
plane sway at each story level. The floor comprises only primary beams, with 
flooring and roofing spanning as shown in Fig. P8.6(b). The materials used for all 
steel sections are A36 steel. 
Based on the loading data given below: 
Floor Beams 
Uniformly distributed dead load = 4.5 kN/m2. 
Uniformly distributed imposed load = 5.0 kN/m2. 
Roof Beam 
Uniformly distributed dead load = 4.0 kN/m2. 
Uniformly distributed imposed load = 1.5 kN/m2. 

a) Design the columns and beams using the AISC LRFD procedures. The col­
umn base may be assumed to be fixed, and same column size is to be used for 
the entire frame. 

b) Redesign all members using advanced analysis techniques, and conduct 
checks to ensure that all serviceability and ultimate strength criteria are 
satisfied. 
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Deflection control, 331 
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Dummy load method, 337-340 

E 
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Elastic analysis, load and resistance 
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Elastic beam-column element, modeling 

of,428-435 
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of,382-385 
Elastic design, plastic design versus, 1-3 
Elastic limit, 3-4 
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Elastic limit deflection, 28, 32 
Elastic limit load, I, 28 
Elastic limit strain, 4 
Elastic method, 2 
Elastic-perfectly plastic idealization, 4, 5 
Elastic-plastic hinge approach, 26 

limitations of, for advanced analysis, 
441-446 

Elastic-plastic regime, 10-12 
Elastic regime, 8-10 
Elastic section modulus, 10 
Element ends, effects of plastification at, 

450-452 
Energy dissipation, 126,223,225 

internal, 224 
Equilibrium, 120 
Equilibrium method, 157-222,223 

basis of, 158-159 
design of simple beams, 164-176 
examples of portal and gable frames, 

206-216 
mechanism check, 160-164 
moment equilibrium equations, 159-

160 
practical procedure for large structures, 

188-206 
Equilibrium set, 125 
Equivalent concentrated loads, 298 
Equivalent force system, 433 
Estimate of deflections, 331-380 

at collapse and working loads, 331-332 
deflection theorem, 341-342 
dummy load method, 337-340 
examples, 368-378 
introduction, 331 
multi-story and multi-bay portal 

frames, 359-364 
rotational capacity requirement, 364-

367 
simple beams, 342-346 
simple frames, 346-359 
slope deflection method, 332-337 

Extreme fibers, axial strain in, 9 

F 
Failure mechanism, 7, 17,33, 162 

plastic, 157 
First-order analysis, 364 



First-order deflection, 178, 179 
First-order elastic analysis, 23, 24, 391 
First-order elastic-plastic hinge analysis, 

426 
First-order hinge-by-hinge analysis, 381-

424 
introduction, 381-382 
numerical examples, 392-414 
numerical procedure for first-order 

plastic analysis, 391-392 
stiffness matrix of beam elements with 

intermediate plastic hinge, 
387-390 

stiffness matrix of beam elements with 
plastic hinge at both ends, 387 

stiffness matrix of beam elements with 
plastic hinge at one end, 385-387 

stiffness matrix of elastic beam 
elements, 382-385 

First-order plastic analysis, 382; see also 
FOPA computer program 

numerical procedure for, 391-392 
First-order second-moment probabilistic 

analysis, 24 
FOPA computer program, vii; viii 

description, 416-417 
examples, 418-424 
input and output from, 401-412 
input data, 417-418 

Force, shear, see Shear force 
Force redistribution, 4-7 
Force system, equivalent, 433 
Frame design, advanced analysis for, 467 
Frame instability effect, 178-179 
Frames 

gable, see Gable frame 
portal, see Portal frame 
semirigid, see Semirigid frames 
simple, 346-359 
sway, 443-446 

Free moments, 190, 195 
Full plastic moment, 12-14,51-54 
Full plastic movement, examples of 

calculating, 93-114 
Fundamental plastic theorems, 133-140 

G 
Gable frame 

analysis by work method, 247-257 
examples of, 212-216 
regular, 244-247 
shed,247 
two-bay, 299-311 

Gable mechanism, 259, 260 
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Geometrical relations, calculation of, 
241-247 

Geometry of structures, assumption on 
small changes in, 124 

Global stiffness matrix, 394 
Graphical procedures, 338-340 
Gravity columns, 437 
Gravity loads, 179,490 

H 
Hinge-by-hinge analysis, 381 

first-order, see First-order hinge-by­
hinge analysis 

Hinge-by-hinge matrix-analysis proce­
dure, 391 

Hinge-by-hinge method, 17-18,30-31 
Hinge length, plastic, see Plastic hinge 

length 

I 
I-shaped section, moment-curvature 

relationship of, 42-45 
Idealized stress-strain relationship, 

122-123 
Inactive degree of freedom, 474 
Independent mechanisms, 225 

number of, 258-259 
Indeterminacy, number of, 231 
Indeterminate structures, 231 
Individual member instability effect, 

178-179 
Inelasticity, interaction of stability and, 

359 
Initial yield state, 10 
Instability, 177 
Instantaneous center, 241 
Instantaneous center method, 241-242 
Interior connections 

balanced, 84-86 
unbalanced, 86-93 

Internal energy dissipation, 224 
Isolated columns, 452-453 

J 
Joint mechanism, 259, 260 
Joints, 472 

L 
Large structures, practical procedure for, 

188-206 
Last plastic hinge, 332 
Lateral deflection, 331 
Lateral support for beams, 169 
Lateral torsional buckling, 165-176 
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Leaner columns, 437 
Limit theorems, see also Safe theorem; 

Unsafe theorem 
upper- and lower-bound solutions 

based on, '140-144 
Limiting length, 168 
Load and resistance factor design, see also 

LRFD entries 
with elastic analysis, 23-25 

Load-deflection results compared, 488-489 
Load factor, 134 

plastic design with, 23 
margin of safety in, 18-21 

Loads 
distributed, see Distributed loads 
equivalent concentrated, 298 
gravity, 179,490 
reference, 391 
working, estimate of deflections at 

collapse and, 33 1-332 
Lower-bound solutions, 66 
LRFD, plastic design with, 25 
LRFD beam-column equations, 443 
LRFD column strength curve, 441, 442 
LRFD cross-sectional plastic strength 

equations,438 
LRFD interaction equations, 217 
LRFD recommended values of width-to­

thickness ratios, 75-77 

M 
Mechanism, 120, 161 

types of, 259, 260 
Mechanism checks, 157, 160-164 
Member curvature effects, 428 
Method of superposition, 13 
Moment amplification factors, 25 
Moment check, 125, 127,231-237 
Moment-curvature relationship, 7-15, 

42-51 
of f-shaped section, 42-45 

Moment equilibrium equations, 159-160 
Moment redistribution, 18 

in beams, 7 
ductility requirements for, 123-124 

Monosymmetric sections, 63 

N 
Newton-Raphson method, 470 
Noncompact sections, 73 

o 
One-step analysis, 332 

p 
Panel mechanism, 259, 260, 263, 265 
PD, see Plastic design 
PRINGE computer program, viii, 427-428, 

467-482 
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tools used in, 120-156 
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Plastic collapse mechanism, 158 
Plastic design 
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margin of safety in, 18-21 
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Plastic failure mechanism, 157 
Plastic hinge, 31, 42-119 

concept of, 21 
modeling of, 437-441 

Plastic hinge action, 17 
Plastic hinge analysis, 425-427 

second-order, see Second-order plastic 
hinge analysis 

Plastic-hinge-based advanced analysis, 
desirable attributes for, 446-448 

Plastic hinge idealization, 48-51 
Plastic hinge length, 46-51 
Plastic hinge method, 22, 26 
Plastic limit load, 1,3,17,29,33 
Plastic limit moment, 7 
Plastic method, 2 
Plastic moment, 19, 120 
Plastic neutral axis (PNA), 52, 63 
Plastic section modulus, 13, 54 
Plastic strength surface, 437, 438 
Plastic theorems, fundamental, 133-140 
Plastic theory, vii 

theorems of, 133-140 
Plastic zone, 7 
Plastic-zone analysis, 427, 447 
Plastic-zone approach, 26 
Plastic-zone model, 425 
Plasticity effects, distributed, 448 



Plastification, 7, 16 
ductility requirements for, 123 
effects of, at element ends, 450-452 

Plastification process, 11, 18 
Plate elements, buckling strength of, 74-75 
PNA (plastic neutral axis), 52, 63 
Portal frame 

analysis of one-story, 482-489 
approximate analysis of, 295-298 
design of, 177-188 
exact analysis of, 292-295 
examples of, 206-212 
fixed-ended, 262 
multi-story and multi-bay, 267-292, 

359-364 
with nonuniform section, 264-267 
pinned-based,229-230 
pinned-ended, 261-262 
rectangular, see Rectangular portal 

frame 
Portal sway frame, 453 

six-story, 454-457 
Power model, 458 

Q 
Quenching, 122 

R 
Rectangular portal frame 

design of, 237-241 
three-story two-bay, 283-292 
two-story one-bay, 268-275 
two-story two-bay, 275-283, 311-321 

Rectangular section, 59, 66-68 
Redistribution, 7 

examples, 27-34 
force, 4-7 
moment, see Moment redistribution 
of stresses, see Stresses, redistribution 

of 
Reduced moment capacities, 58 
Redundancies, number of, 231 
Reference loads, 391 
Refined plastic hinge analysis, second-

order, 487 
Refined plastic hinge method, 450 
Refined plastic hinge model, 427 
Reliability index, 24, 25 
Resistance factors, 24, 452 
Rigid-plastic analysis, 426, 482-484 
Rigid-plastic hinge approach, 26 
Rotation capacity, 18 
Rotational capacity requirement, 364-367 

Index 507 

S 
Safe theorem, 139 

corollaries of, 140 
Safety, margin of, in plastic design with 

load factor, 18-21 
Safety index, 24 
Second-order analysis, 364, 426 
Second-order elastic analysis, 24, 426 
Second-order elastic-plastic hinge 

analysis, 26, 426, 484-486 
Second-order inelastic analysis, 26, 178, 

418 
Second-order plastic hinge analysis, 

425-501 
analysis of one-story portal frame, 

482-489 
analysis of semirigid braced frame, 

489,490-494 
approximate effects of distributed 

yielding, 448-457 
background,425-426 
desirable attributes for plastic-hinge­

based advanced analysis, 446-
448 

introduction, 425-428 
limitations of elastic-plastic hinge 
models for advanced analysis, 441-446 
modeling of elastic beam-column 

element, 428-435 
modeling of plastic hinges, 437-441 
modeling of semirigid frames, 458-467 
modeling of truss elements, 435-437 
organization of chapter, 427-428 

Second-order plastic-zone analysis, 426 
Second-order refined plastic hinge 

analysis, 487 
Seismicity, areas of high, 76 
Semirigid braced frame, analysis of, 

489, 490-494 
Semirigid connections, 459, 461 
Semirigid frames, 458 

braced, analysis of, 489, 490-494 
modeling of, 458-467 

Serviceability limit, beam, 465 
Serviceability requirements, 464 
Shape factor, 13-14, 19,47 
Shear capacity, maximum, 69 
Shear force, 65, 164-165 

effect of, 65-71 
effect of combined axial force and, 71 

Shear strength, 165 
Side-sway mechanisms, 190-191,314 
Sign convention, 125-126, 158, 189-190 



508 Index 

Simple plastic analysis, 120 
Simple plastic theory, 36 
Slender sections, 73 
Slenderness ratio, effective, 180 
Slope-deflection equations, 384 
Slope-deflection method, 332-337 
Spread-of-plasticity effects, 460 
Stability, interaction of inelasticity and, 

359 
Stability function approach, 459 
Stability functions, 428-431, 450 
Steel 

ductility of, 3-7, 120-124 
stress-strain relationship of, 3-4 
various types of, 121-122 

Stiffened elements, 73, 74 
Stiffeners 

buckling of, see Buckling of stiffeners 
corner, 81-84 
dimensions of, 92 

Stiffness matrix, 390 
of beam elements, see Stiffness matrix 

of beam elements 
global, 394 
structural, 399 
tangent, 435 

Stiffness matrix of beam elements 
elastic, 382-385 
with intermediate plastic hinge, 

387-390 
with plastic hinge at both ends, 387 
with plastic hinge at one end, 385-387 

Stiffness relationship, tangent, 431-435 
Strain aging, stress-strain relationship and, 

122, 123 
Strain-hardening regime, 15 
Strength limit states, 25 
Strengthened structure, 140 
Stress concentration, 2 
Stress concentration factor, 2 
Stress-strain relationship 

idealized, 122-123 
of steel, 3-4 
strain aging and, 122, 123 
of various types of steel, 121-122 

Stresses, redistribution of 
in hot-rolled section with residual 

stresses, 1-2 
in plate with hole, 2-3 

Structural stiffness matrix, 399 
Structures, geometry of, assumption on 

small changes in, 124 
Sway frames, 443-446 

T 
T-sections, 63-65 
Tangent-modulus approach, 448-450 

effective, 448 
Tangent stiffness matrix, 435 
Tangent stiffness relationship, 431-435 
Tempering, 122 
Tensile axial force, 177 
Theorems, fundamental plastic, 133-140 
Three-parameter model, 458 
Torsional buckling, lateral, 165-176 
Truss elements, modeling of, 435-437 

U 
Unbalanced interior connections, 86-93 
Unbraced multi-story frames, 178 
Uniqueness theorem, 134-137 
Unsafe theorem, 137-139 

corollaries of, 140 
Unstiffened elements, 73, 74 

V 
Virtual work equation, 125,337-338 

applications of, 127-133 
examples of applications of, 144-151 

Virtual work equation method, 242-244 
Virtual work method, 120 
Volumetric formulas, 340 
von Mises yield condition, 66, 69 

W 
Weak-axis strengths, 444-445 
Weakened structure, 140 
Wide-flange section, 68-71 

bending about strong axis, 60-61 
bending about weak axis, 61-63 

Width-to-thickness ratios, 72-73 
LRFD recommended values of, 75-77 

Wind load, 490 
Work done by distributed loads, 126-127 
Work equation, 223, 224-230 
Work method, 223-330 

basis of, 224 
calculation of geometrical relations, 

241-247 
combining mechanisms, 258-267 
design of rectangular portal frame, 

237-241 
distributed loads, 292-298 
examples for distributed loads, 299-321 
gable frame analysis by work method, 

247-257 
introduction, 223-224 



moment check, 231-237 
multi-story and multi-bay portal 

frames, 267-292 
work equation, 223, 224-230 

Working loads, estimate of deflections 
at collapse and, 331-332 

y 
Yield curvature, 14 
Yield line theory, 86 
Yield moment, 7,12,44 
Yield surface function, 451 

Index 509 

Yielding, distributed, approximate effects 
of, 448-457 
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