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Preface

This book grew out of lectures which the senior author gave for a number of
years to graduate students of structural engineering at Purdue University. Its
primary purpose is to present the basic concept and methods of analysis of
plastic theory, show how to use the theory in practical frame design, and
discuss how the practical design rules in the AISC-LRFD specifications are
related to theoretical considerations. These include the effect of axial load
and shear force on plastic moment capacity, frame, member and local insta-
bility, and the significance of connection detailing in plastic design. Emphasis
upon these and other design problems commences in Chapter 2 (“Plastic
Hinges”) and continues in Chapter 4 (“Equilibrium Method”) and in Chapter
5 (“Work Method”) where the design examples are given and calculations are
made as complete as possible. The methods described in the first six chapters
are suitable for hand calculations. Chapter 7 presents a computer-based
method for the first-order plastic hinge-by-hinge analysis for frame design.
The computer program FOPA developed and provided in this chapter can
be used by students to check their homework problems given at the end of
each chapter in a direct manner.

The advent of personal computers, particularly in the computing and
graphics performance of engineering workstations, has made more sophisti-
cated methods of analysis feasible in design practice. While the use of first-
order analysis for elastic or plastic design is still the norm of engineering
practice, a new generation of codes has emerged which recommends the
second-order theory as the preferred method of analysis (AISC-LRFD, 1993).
The advantage of using second-order theory for design practice is that the
effect of lateral deflections of a structure under loading upon the overall
geometry can be accounted for in a direct and more accurate manner. The
result is more realistic and economical design. For this reason, Chapter 8
provides a compact and convenient summary of the second-order plastic
hinge-by-hinge analysis methods suitable for computer application. This
chapter also attempts to take stock of where the structural engineering pro-
fession stands with regard to direct analysis of inelastic strength and stability
for frame design, and where it might be going. Included with the text are

vii
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two diskettes containing two computer programs: one for Chapter 7 (FOPA)
and the other for Chapter 8 (PHINGE). Both the menu-driven, user-friendly
programs capable of tracing every plastic hinge formation throughout the
entire range of loading up to plastic collapse (Chapter 7) or stability failure
(Chapter 8).

In writing this book, we have endeavored to present the plastic methods in
as simple a manner as possible. It also serves as an introduction to the
second-order theory for inelastic frame design. Attention is directed to both
analysis and design, and empbhasis is placed on the physical significance of the
various calculations involved. The book is aimed squarely for students of
structural engineering who are familiar with the processes of elastic analysis
and design of building frames. The first six chapters present the fundamental
concepts, theorems, and the plastic methods of analysis and design; numer-
ous examples suitable for hand calculation are included for illustration, and
suitable problems provided at the end of each chapter for the student. The
last two chapters are concerned specifically with the computer-based analysis
methods for frame design. Here, for second-order inelastic analysis (Chapter
8) only an introduction to this quite difficult subject is given. It combines the
structural stability theory with the plastic theory described in this book. The
AISC-LRFD provisions for the use of plastic theory in practical design are
the basis for the solution of various practical building frame design problems
developed in the book.

The two computer programs were developed by Dr. M. Abdel-Ghaffar
(Chapter 7) and Dr. RJ.Y. Liew (Chapter 8) as a part of their Ph.D. thesis
work in the School of Civil Engineering at Purdue University for the research
project entitled “Second-Order Inelastic Analysis for Frame Design” spon-
sored by the National Science Foundation (Dr. Ken Chong, Program
Director).

Dr. Sohal wishes to thank his Department Chairman Yong S. Chae, for
reducing the teaching load for a few semesters; Dean Ellis H. Dill, for his
encouragement; and his teachers, students, colleagues, friends, computer and
administrative staff, laboratory technicians, AAUP, research and sponsored
programs personnel, secretaries, neighbors and the family, for their technical
and personal support. Particularly, he is indebted to Dr. Pritam and Rupinder
Dhillon, Dr. Rakesh and Madhu Kapania, Ms. Jessica K. Dembski, Drs. J.
Wiesenfeld, L.S. Beedle, M. Shinozuka, T.V. Galambos, D.R. Sherman, R.
Bjorhovde, S.C. Goel, S. Sridharan, S.T. Mau, J.T.P. Yao, J.T. Gaunt, V.J.
Meyers, A.F. Grandt, Jr., T.Y. Yang, R.H. Lee, Donald White, K.C. Sinha,
K.L. Bhanot, M.S. Ghuman, A.F. Saleeb, Eric M. Lui, Y. Ohtani, W.O.
McCarron, Susan Pritchard, M. Taheri, Andrew J. Hinkle, Bernard Stahl,
Nipen Saha, Ers. Robinder S. Sandhu, Gopal Gupta, Harjinder Singh,
Gursharan Wason, Pushpinder Singh, Bhagwan D. Garg, Ajay Garg, Tarsem
Lal Dhall, Daljit Mand and Dr. Harjit Bhatia, for their informal academic
and personal support. Special thanks are due to Drs. Eiki Yamaguchi, Lian
Duan, W.S. King, Mrs. Liping Cai, Messrs, John Sayler, Rajesh Mankani,
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Edward Gray and Seeth Ramakrishnan, who contributed to the examples
and solution of the problems in this book, through their home works. He will
also like to thank Messrs. Ashish Patel, Ghassan Habib, Peter Tardy, Jae
Chung, Gwo-Gong Huang, Shay Burrows, Mohammed El-Hawwat, Young
Cho, David Brill, Nadeem Syed, Satvinder Singh, Mark Palus, Michael
Steiner, David Stanger, Drs. Anil Khajuria, James Stewart, Ahmed Ezeldin,
Zheng Zang, Benxian Chen, Luis Aguiar, Ms. Kristi Latimer, Ms. Gargi
Shah and several others; who participated in useful discussions on the text,
during their structural analysis and design classes at Rutgers University.

West Lafayette, IN W.F. Chen
1.S. Sohal
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1

Basic Concepts

1.1 Plastic Design vs. Elastic Design

The plastic design of steel structures has several advantages over the elastic
design, of which the most important are simplified procedures, savings in the
cost, and more realistic representation of the actual behavior of steel struc-
tures [1.1]. These advantages are due to the fact that the plastic design fully
uses the important property of steel called ductility. This chapter will focus
on the effects of ductility of the steel on the behavior of steel structures and
show the benefits of the plastic methods that are derived from this property.
To demonstrate the benefits of ductility, we will present two examples: first a
hot-rolled section with residual stresses and second a plate with a hole. For
both examples, the material is idealized to have an elastic—perfectly plastic
stress-strain behavior as shown in Fig. 1.4.

1.1.1 Redistribution of Stresses in a Hot-Rolled Section
with Residual Stresses

A hot-rolled wide flange section with residual stresses is shown in Fig. 1.1(a).
These residual stresses are in self-equilibrium. If we apply an axial compres-
sive load to this section, the section will yield first at the elastic limit load
P, = (0, — 0,.)A, in which o, is the yield stress of steel, g, is the maximum
compressive residual stress induced as a result of manufacturing process, and
A is the cross-sectional area. At this load P,, the stress distribution is shown
in Fig. 1.1(b). However, since the steel is ductile, it can take a load higher than
P,. At a higher load, the section calls upon its less-stressed elastic portions to
carry the increase in the load while the yielded portions remain at the yield
stress level o, as shown in Fig. 1.1(c). At the plastic limit state, the stress
distribution is shown in Fig. 1.1(d) and the load corresponding to this state
has the value P, = 06,4 in which P, is called the plastic limit load.

From this example, it is obvious that when we compare this plastic limit
load with the elastic limit load, the plastic design/analysis is simpler because
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> s, M FIGURE 1.1. Stresses in a
%y rolled I-section: (a) residual
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the residual stress (parallel to the direction of applied load) has no influence
on the computation of the plastic limit load P,. It is economical because a
given section takes a higher load on the basis of the plastic method than that
of the elastic method, i.e., P, > P,. Since the plastic design considers the ulti-
mate limit state, it represents a more realistic estimation of the maximum
load-carrying capacity of an actual structure.

1.1.2 Redistribution of Stresses in a Plate with a Hole

Another simple example is a plate with a hole, subjected to a tensile load as
shown in Fig. 1.2(a). In the elastic range, due to stress concentration at the
hole, the stresses are not uniform as shown in Fig. 1.2(a). So, the plate yields
first at the elastic limit load P, = 6,4/K, in which A is the net area of cross
section of the plate excluding the area of the hole, and K is the stress concen-
tration factor. Again, the plate will take higher loads by using its property
of ductility and redistributing stresses to its less-stressed elastic portions as
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FIGURE 1.2. Stresses in a
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shown in Fig. 1.2(b). At the plastic limit load, the stress distribution becomes
uniform as shown in Fig. 1.2(c), and the load corresponding to this limit state
is P, = o,A. Here, as in the first example, the advantages of the plastic design
over the elastic design are obvious.

Here, as in the elastic design, factors such as buckling, fatigue, and deflec-
tion limitations will require special consideration.

1.2 The Ductility of Steel

As mentioned previously, the plastic design has several advantages over the
elastic design because it fully uses the important property of steel, namely,
ductility, which may be defined here as the ability of a material to undergo
large deformation without much loss in its strength. Herein, we will discuss
the ductile behavior of steel and the redistribution of forces/moments as an
important benefit of the ductile behavior of steel.

1.2.1 Stress-Strain Relationship of Steel

The ability of structural steel to deform plastically at and above yield point
is illustrated graphically in Fig. 1.3. Note that after the elastic limit is reached,
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FIGURE 1.3. Stress-strain curve of various steels.

elongations of up to 15 times the elastic limit strain ¢, take place with no
significant increase or decrease in stress, thus showing the ductile behavior of
steel. After that, strain hardening commences at ¢, and further deformation
can take place only with some increase in stress.

Generally, steels with higher strength, such as 100 ksi, have relatively lower
ductility. So, to ensure adequate ductility for plastic analysis and design,
AISC-LRFD requires that the following specifications be satisfied: LRFD
A5.1 (page 6-31)—the steel must exhibit a plastic plateau on the stress-strain
curve; consequently, F, < 65 ksi must be used.

For simplicity, the stress-strain curves of steel may be idealized by two
straight lines as shown in Fig. 1.4. Up to the yield stress level, the material is
elastic. After the yield stress has been reached, the strain is assumed to in-
crease without further increase or decrease of the stress. This is known as the
elastic—perfectly plastic idealization of the material behavior.

1.2.2 Redistribution of Forces in a Three-Bar Structure

Consider the simple three-bar structure shown in Fig. 1.5. This structure is
statically indeterminate since the internal bar forces cannot be determined
uniquely by statics alone. In order to determine forces in this structure, we
need to consider not only the equilibrium condition, but also the compatibil-
ity condition and the stress-strain relationship of the steel. The equilibrium
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FIGURE 1.4. Elastic—per-
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FIGURE 1.5. Benefits of ductility in a three-bar structure due to force redistribution: (a)
Purely elastic; (b) partially plastic; (c) fully plastic; and (d) load-deflection relationship.
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condition of the three bars in Fig. 1.5(a) is
2T+ T,=P (1.2.1)

where T is the force in Bars 1 and 3, and T, is the force in Bar 2. The
compatibility condition of the three bars is that the displacement of Bars 1
and 3, §; = J,, must be equal to that of Bar 2, J,. Using the elastic stress-
strain relation, §; = T,L,/AE and é, = T,L,/AE with L, = L, =L and
L, = L/2 where L,, L,, and L, are the lengths of Bars 1, 2, and 3, respec-
tively, and A is the area of each of the Bars 1, 2, and 3, we obtain

T,L, _ LL,L,
4E - AE (1.2.2)
or
T
T, =-—. 2.
L= (123)
From Egs. (1.2.1) and (1.2.3), we find
P
T,=—. 2.
= (124)

Since the force in Bar 2 is greater than that in Bar 1, Bar 2 will yield first.
Therefore, the load at which the structure will first yield (P = P,) may be
determined by substituting T, = g,4 in Eq. (1.2.4). Thus,

P, = 2T, = 20, A. (1.2.5)

The corresponding displacement at this yield load is equal to the yield dis-
placement of Bar 2. Using the elastic stress-strain relationship ¢, = o,/E, we
have

o, =¢,L, = —2”E ’ (1.2.6)
After the yielding of Bar 2, the structure reduces to a two-bar structure with
a constant force equal to 6,4 in Bar 2 [Fig. 1.5(b)]. The structure is now
statically determinate. This two-bar structure can carry further loading until
the outer two bars also yield at the plastic limit load P, [Fig. 1.5(c)] given by

P,=30,A. (127)

Notice how easily one can compute the ultimate load, that is, the sum of the
yield loads of each of the three bars. Unlike the elastic analysis, the compati-
bility condition is not required in the determination of the plastic limit load.
This process of successive yielding of bars causing change of forces among the
bars in a structure as the load is increased is known as force redistribution.
The corresponding load-deflection relationship of the three-bar structure
is shown in Fig. 1.5(d). The load reaches the ultimate load (or the plastic limit
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load P,) at a deflection J, given by

0,=¢L, = VT (1.2.8)
and beyond J,, the deflections increase without limit while the load remains
constant at P,.

1.2.3 Plastification and Moment Redistribution in Beams

The stress redistribution in a beam is similar to that in the plate with a hole
and that in the three-bar structure. The beam can be visualized as being made
of many horizontal bars or fibers, some of which are in tension while others
are in compression. At the yield moment M, only the extreme fibers yield. At
moment higher than M, yielding spreads to the interior fibers too. At the
plastic limit moment M, all fibers are yielded. The process of successive yield-
ing of fibers causing change in stresses carried by the fibers as bending mo-
ment is increased is called plastification.

For statically indeterminate beams and frames, the benefits of ductility are
even higher than that of simple beams and bars. In these beams and frames,
the plastic limit load will be much higher than the initial yield load because
of the two processes, namely, plastification and redistribution.

In statically indeterminate frames, the moment diagram has more than one
peak moment. As the loads are applied to and increased in such a beam or
frame, the cross section at the greatest peak moment will reach the yield
moment first. As the loads are further increased, this cross section goes
through the plastification process and a zone of yielding (called plastic zone)
is formed around this cross section. As the loads are further increased, the
moment at the yielded or plastic zone remains almost the same and the
additional loads on the beam or frame are now taken by its less stressed
sections, thus changing the distribution of moments among various cross
sections with peak moments. This process of moment redistribution continues
until plastic zones are formed at other cross sections with peak moments. The
beam or frame will eventually fail when a sufficient number of these yielded
zones are developed to transform the beam or frame into a failure mechanism.

1.3 Moment-Curvature Relationship

The basic information required in any calculations for plastic behavior and
strength of framed structures is the relationship between the value of the
applied bending moment M and the angle of relative rotation 9 of the ends
of a beam segment [Fig. 1.6(b)]. The gain in moment-carrying capacity of a
beam due to plastification depends on this moment-curvature relationship,
which in turn depends to a large extent on the shape of the cross section.
Herein, the moment-curvature relationship of a beam with rectangular cross
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(a) FIGURE 1.6. Bending of a
b rectangular beam segment.

Beam Segment

section in the elastic and elastic-plastic regimes is first derived. Next, full
plastic moment M, and shape factor f are described. Then, the moment-
curvature curves of various cross sections are presented and discussed.

1.3.1 Elastic Regime

Consider a rectangular beam segment of elastic—perfectly plastic material
having length L, width b, and depth 2d as shown in Fig. 1.6(a). When this
beam segment is subjected to bending moment M at its ends, it will bend into
an arc of radius p as shown in Fig. 1.6(b). The central angle 6 is related to the
radius of curvature p by

L
0=—. (1.3.1)
p
The curvature @, the relative rotation of two sections at a unit distance apart,
can be expressed as
0 1/L 1
b=—=—-|-)=-. 132
L L <p> P (132

Assume that after bending the plane section remains plane and the transverse
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fibers remain normal to the deflected axis, i.e., shear deformation is negligible.
Thus, the length of a longitudinal fiber at a distance y from the neutral axis
is (p + )0, and the axial strain in the fiber is proportional to the distnace y
from the neutral axis as [Fig. 1.6(b)]

(p+30—L_

dy. 1.3.3
T y (1.33)

The moment-curvature relationship can now be obtained by combining the
compatibility Eq. (1.3.3) with the following stress-strain relationships (1.3.4)
and equilibrium equations (1.3.5) and (1.3.6). The idealized stress-strain rela-
tionship, as shown in Fig. 1.4, can be written as

c=Ee (e<g) (1.3.4a)

c=0, (6>¢) (1.3.4b)

in which ¢, is the yield axial strain and E is Young’s modulus.
The two equilibrium equations required in the derivation of the moment-
curvature relationship of a segment are

P= J gdA =0 (1.3.5)
A

M =f gydA. (1.3.6)
A

Equation (1.3.5) is used to locate the neutral axis of the section. The neutral
axis for a rectangular section, due to symmetry, is at the centroid of the
section in the elastic and elastic-plastic regimes. Equation (1.3.6) is used to
obtain the moment-carrying capacity of a section from a known stress
distribution.

When all fibers of the segment are in the elastic regime (¢ < ¢,), the stress
distribution in the section is linear, as shown in Fig. 1.7(a). The moment-
curvature relationship in this regime is likewise linear and can be obtained by
substituting ¢ in Eq. (1.3.6) from Eq. (1.3.4a) and ¢ in the resulting equation
from Eq. (1.3.3) as follows

M= Ej ¢ydA = E® [ y*dA = EI® (1.3.7)
A JA

in which I is the moment of inertia of the section.

As the moment is increased, the axial strain in the fibers increases. The
segment begins to yield when the axial strain in the extreme fibers reaches the
yield strain ¢,. The curvature corresponding to this initial yielding can be
written from Eq. (1.3.3) as [Fig. 1.7(b)]

o, = % (1.3.8)
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Elastic Initial Elastic- Fully
yielding plastic plastic
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FIGURE 1.7. Stress and deformation states of rectangular section under pure bending.

in which 2d is the depth of the rectangular section. The moment capacity at
this initial yield state can be obtained from Eq. (1.3.7) as

2
My = EI(I)y = Eeyé = 0’y <2b3d > = O'yS (139)

where b is the width of the rectangular section and S is the elastic section
modulus of the section. For later comparisons, scales in Fig. 1.7 for stress and
strain profiles have been chosen such that, up to yield point, stress and strain
are represented by identical horizontal distances on the diagrams, ie., g,
in stress diagram is shown equal to maximum ¢, in the strain diagram in
Fig. 1.7(b).

1.3.2 Elastic-Plastic Regime

A further increase in the moment results in the plastification of the section.
Here, as in the three-bar example in Section 1.2, the yielded rod/fibers con-
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tinue to carry the constant yield stress o, while the less stressed interior elastic
fibers take additional stresses induced by the increase in the moment as
shown in Fig. 1.7(c). Here, the strain at the outermost fibers of the beam has
been doubled. This is possible only by doubling the curvature of the bent
beam segment. No increase in maximum stress accompanied this increase in
strain; yield stress o, has penetrated one-half the distance in toward the neu-
tral axis. Further increases in strain of the beam outer fibers will result in a
corresponding increase in the beam curvature @, but will only produce a
further penetration of the constant yield stress g, in the beam. This process of
plastification continues until all fibers are yielded as shown in Fig. 1.7(d).
During the plastification process, the section is in the elastic-plastic—or
partially elastic and partially plastic—regime as shown in Fig. 1.7(c). The
boundary between the elastic and plastic portions is given by

y= (1.3.10)

S°

in which y is defined more clearly in Fig. 1.8. The moment-carrying capacity
of the section in this elastic-plastic regime is obtained from Eq. (1.3.6) by
substituting ¢ = Ee = E®y for the elastic portion and ¢ = g, for the plastic
portion as follows

M= J E®y?dA + J o,ydA (1.3.11)
4, 4,

in which 4, and A, are, respectively, the area of elastic and plastic portions
of the section. By substituting d4 = bdy, M can be written as

y

y d
M= 2_[ E®y?bdy + 2f o,ybdy (1.3.12)
0

€ - distribution G -distribution

b
x
‘bq’g
2d| ——4—-———- 4+ rr———— - - -— M
R L
dy= [y =%y 1]
c
* 't9=Tv
e>ey oy
(a) (b)

FIGURE 1.8. Elastic-plastic strains and stresses in rectangular beam under pure
bending.
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or
¥’ b
M= 2E(I)b? + 2ay§(d2 - 72). (1.3.13)

Substitution of y in Eq. (1.3.13) from Eq. (1.3.10) and of ¢, in the resulting
equation from Eq. (1.3.8) along with ¢, = E¢,, results in the following equa-
tion for the elastic-plastic moment capacity of the rectangular section

3 1/®,)?
M =§My|:l "5(6) ] (1.3.14)

in which M, is the yield moment of the section given by Eq. (1.3.9). Note
that ®,/® in Eq. (1.3.14) is equal to y/d. The moment-curvature relationship
(1.3.14) is shown in Fig. 1.9. The full plastic moment capacity M, corresponds
to ® —» oo, or &,/® - 0, ie., M, = 1.5M, (or 1.55,5).

1.3.3 Full Plastic Moment and Shape Factor

The moment-capacity in the elastic-plastic regime can also be expressed in
terms of this full plastic moment M, by substituting ® in Eq. (1.3.11) from
Eq. (1.3.10) as follows

M=J Ef_XyZdA+j o,ydA (1.3.15)
4, Y A,

or

M=?J ysz+6yJ ydA (1.3.16)
Y Ja, 4,

<
<

Mp /My
1.65F ————- Lo

1.0 M/My = 3/2 [1- 1/3(®, /®)? ]

T MMy = @/,

s - Il Il 1 1 1 1 1
0 12 4 6 8 10 &
q)Y

FIGURE 1.9. Nondimensionalized moment-curvature relationship of a rectangular
beam.
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or
M= QJ VA +o, [ ydA (1.3.17)
Yy Ja, JA-4,
or
M=?J ysz+ayJ ydA——ayf ydA (13.18)
Yy Ja, A A,
or
M=96S,+0,Z—0,Z, (1.3.19)

in which the second term on the right-hand side of Eq. (1.3.19) 6,Z = M,, is
known as the full plastic moment and is equal to the moment of the stresses
in the section at the fully plastic state as shown in Fig. 1.7(d); Z is known as
the plastic section modulus and is equal to the first moment of the area of the
whole cross section; S, is the elastic section modulus of the elastic portion of
the section; and Z, is the plastic section modulus of the elastic portion of the
section. Note that Eq. (1.3.19) can also be written directly from Fig. 1.10 by
the method of superposition. When the section is fully plastic, the elastic
portion disappears and S, and Z, in Eq. (1.3.19) reduce to zero. Thus, the full
plastic moment M, has the general form

M,=o0,Z. (1.3.20)

This is the maximum bending strength of the section, which is equal to the
numerical sum of the moments of the fully plastic stress profile areas above
and below the neutral axis, taken about that axis. The plastic moment value
M, is the basis for plastic design. The ratio of the plastic moment M, to the
yield moment M, represents the amount of reserve strength due to the ductil-
ity of the material leading to plastification and is a function of the cross-
sectional form or shape. This ratio, called shape factor, is a good indicator of

T <

=\
|

M = oS, + qZ - oz

FiGURE 1.10. Moment capacity of a section in the elastic-plastic regime using the
method of superposition.
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TABLE 1.1. Shape factor for several cross sections

Shape of cross section Shape factor
Isosceles triangle 2.32
Diamond 2.0
Round bar 1.7
Rectangle 1.5
Circular tube 1.27
Wide flange 1.14
Idealized I-section 1.0

the potential of a given section to gain strength by its plastification process.
The shape factor is defined as

M, o7 Z
=2="2 =_ 3.21
M, ¢S S (1.321)

For a rectangular section, we have Z = bdzyand S = 2bd?/3, and thus the
shape factor has the value

M, Z  bd? 4
M, S 2bd*3

y
The shape factors for some other cross-sectional shapes are given in Table
1.1. The shape factor is higher for sections with mass concentrated near the
centroid of the section and lower for sections with mass concentrated away
from the centroid. For rolled I-beams and wide flange shapes bent about
their strong axis, the shape factor f varies between 1.10 and 1.18. For most
W shapes, it is very close to the value of 1.12.

The moment-curvature curves for other sections listed in Table 1.1 can
be derived in a manner similar to that of a rectangular section described
here. The moment-curvature curves of diamond, rectangular, W14 x 426,
W21 x 109, and idealized I-sections are shown in Fig. 1.11. The idealized
curves (elastic—perfectly plastic) for these sections are shown by dashed lines
in this figure.

f= (1.3.22)

1.3.4 Discussion of Moment-Curvature Curves

The moment-curvature relationship of the rectangular section, Eq. (1.3.7) for
the elastic regime and Eq. (1.3.14) for the elastic-plastic regime, was plotted
previously in Fig. 1.9. As the curvature is increased, the moment capacity
approaches rapidly to the full plastic moment M,. Note that the full plastic
moment M, is higher than the yield or elastic limit moment M, by 50%.
Theoretically, the full plastic moment capacity M, will not be reached until
the curvature approaches infinity. Practically, 99% of the plastic moment
capacity is attained at a curvature equal to only four times the yield curvature
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14WF426
21WF 109

1.23
1.1
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; =
Idealized I - Section, o

05

FIGURE 1.11. Actual and idealized moment-curvature curves.

®,. However, it is expected that the moment capacity of an actual section will
reach full plastic moment at an early curvature and will have a higher value
than the full plastic moment at a larger curvature because extreme fibers will
enter into the strain-hardening regime that has been neglected in the present
derivation.

1.4 Flexure of a Fixed-Ended Beam with Uniformly
Distributed Load

As discussed in the previous sections, the load-carrying capacity of steel
structures obtained by plastic analysis is higher than that by elastic analysis
based on the first yielding of the material in the structures. In statically
determinate structures, only material plastification at the critical section
contributes to this higher load-carrying capacity. While in statically indeter-
minate structures, both material plastification at the critical sections and
moment redistribution among these sections contribute to the higher load-
carrying capacity. Herein, we shall first illustrate this point through the study
of the bending behavior of a fixed-ended beam subjected to a distributed
lateral load as shown in Fig. 1.12(a). Next, the hinge-by-hinge method and
the required rotation capacity, as applied to the present example, are de-
scribed. Finally, some comments are made about the process of plastification
and moment redistribution of the present example.
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FIGURE 1.12. Redistribution of moment in a fixed-ended beam with uniformly distrib-
uted load.

1.4.1 Behavior with Actual and Idealized M-®
Relationships

In the elastic range, the deflected shape and bending moment diagram of this
beam can be obtained by solving the governing equilibrium and compatibil-
ity equations. The results are shown by Curve 1, respectively, in Parts (b) and
(c) of Fig. 1.12. Note that there are three peaks in the moment diagram. The
moment at the end peaks is wL?/12, and at the center peak it is wL?/24, in
which w is the intensity of the distributed load and L is the length of the
beam. As the load is increased, the moment at the greater peaks (end peaks)
reaches the yield moment M, first, and the moment at the smaller (central)
peak reaches only half the yield moment. In the elastic range, the moment at
all other sections increases proportionately, thus maintaining the same shape
of the moment diagram. With a further increase of the load, the plastification
of some sections near the end peaks starts, and zones of yielding begin to
form near these peaks. The bending stiffness (or the slope of the moment-
curvature curve) of these yielded zones is smaller compared to that of the
elastic zones (or the initial slope of the moment-curvature curve). This results
in a different shape of the bending moment diagram with a higher rate of
increase in moment in the central elastic portion than that at the plastic end
portions of the beam. In other words, there is a continuous redistribution
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of moments along the length of the beam during loading. As the load is
further increased, the moment at the end peaks will approach the plastic
moment, while the moment at the central peak will reach the yield moment.
The beam will fail when the bending moments at all three peaks are equal to
the plastic moment (Curve 2), thus forming a failure mechanism [see Curve 3,
Fig. 1.12(b)].

The process of moment redistribution can be seen more clearly when we
carry out the plastic analysis of the fixed-ended beam by employing the
idealized moment-curvature relationship (the elastic—perfectly plastic type
shown by the dashed lines in Fig. 1.11). Figure 1.12(d) shows the load-
deflection results of the three-stage loading. In the elastic range, the midspan
bending moment remains half that at the ends as the load is increased, until
the beam reaches the limit of its elastic behavior. Stage 1 in Fig. 1.12(d)
corresponds to the load when the moments at the ends have just reached the
full plastic moment of the section. As the load w is further increased, the beam
enters into the elastic-plastic range. In this range, plastic hinges form at the
fixed ends, permitting them to rotate with constant moment capacity. Stage
2 corresponds to the theoretical plastic limit load when the moment at the
center has also reached the full plastic moment capacity of the section. Since
sufficient plastic hinges have now formed, a failure mechanism has developed
and no further loading can be supported beyond this stage. Stage 3 corre-
sponds to an arbitrary deformation obtained by a continued deformation
beyond Stage 2. The deflected shapes and the moment diagrams at these
three loading stages are shown in Fig. 1.12(b) and (c), respectively. The load-
deflection curve corresponding to the actual moment-curvature relationship
of the beam is shown as the dashed curve in Figs. 1.12(d). The moment-
curvature responses at the ends and center are shown in Figs. 1.12(e) and (f),
respectively. At Stage 1, the moment at the ends has just reached M, [Fig.
1.12(e)], while at the center of the beam the moment is only half of the plastic
moment [Fig. 1.12(f)]. As the load is increased beyond this stage, the sections
at two ends rotate with a constant plastic moment capacity (plastic hinge
action). The beam now behaves as a simply supported beam with constant
end moments equal to M, At Stage 2, the moment at center also reaches the
plastic moment. This corresponds to the maximum load-carrying capacity
state of the beam. Beyond Stage 2, the beam continues to deform as a rigid
body under constant load. '

1.4.2 The Hinge-by-Hinge Method and the Required
Rotation Capacity

It is evident from the load-deflection curve shown in Fig. 1.12(d) that the
formation of each plastic hinge removes one degree of indeterminacy from
the structure, and the subsequent load-deflection relationship correspons to
a new and simpler structure. For example, in the elastic range, the deflection
under the given load can be determined by an elastic analysis with fixed
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ends. The load-deflection curve between Stages 1 and 2 can be determined
by an elastic analysis with simply supported ends. The method of finding
deflection by the elastic analysis of a new structure after the formation of a
plastic hinge is known as the “hinge-by-hinge method.” This method will
be further elaborated in Example 1.8.2. The computer-based hinge-by-hinge
analysis, together with its computer program for framed structures, will be
presented in Chapter 7.

Note that the fixed-ended beam in this example can go through moment
redistribution and develop a higher load-carrying capacity only if the end
sections have adequate rotation capacity, ie., the section can rotate the re-
quired amount without any significant loss in moment capacity. For exam-
ple, for the fixed-ended beam of Fig. 1.12(a) to reach Stage 2, the end sections
of the beam must be able to rotate by an angle of M,L/6EI. This required
rotation capacity for plastic design must be provided by the ductility of the
material. This is not a problem for ductile steels, but is can be a problem for
more brittle materials such as reinforced concrete.

1.4.3 Some Comments on Plastification and the
Moment-Redistribution Process

Note that the process of plastification and moment redistribution in the
present example beam, in principle, is similar to that of force redistribution in
the previous example of a three-bar structure. In the case of the three-bar
structure, when the middle bar yielded, the force in that bar remained con-
stant while forces in Bars 1 and 3 continued to increase. The ultimate load
was reached when all three bars became plastic. Similarly, during the plastifi-
cation in beam cross sections, when the extreme fibers yielded, the stresses in
those fibers remained constant while stresses in the intermediate fibers con-
tinued to increase. The full plastic moment capacity was reached when all
fibers in the cross section were plastic. Thus, the process of plastification
results in a successive yielding of fibers in the cross section of a member as the
bending moment is increased and the yielded zone spreads.

Similarly, during the moment redistribution in the fixed-ended beam, when
the moments at end sections reached plastic moment capacity, they remained
constant, while moments at other sections continued to increase. The ulti-
mate load was reached when the moment at the central section also reached
the plastic moment capacity. As a result, a failure mechanism was developed.
Thus, the process of moment redistribution results in a successive formation of
plastic hinges so that less-stressed portions of a structure will carry increased
moments.

1.5 Margin of Safety in Plastic Design with Load Factor

In the allowable stress design, the safety is achieved by using an allowable
stress that is obtained by applying a factor of safety to the stress level as-
sumed to represent failure. In the plastic design, the safety is achieved by
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using a factored load obtained by multiplying the given service loads by a
load factor A. The application of factor of safety to loads is better since the
uncertainty associated with loads is higher than that associated with resis-
tances. The load factor by definition is

limit load

= 1.51
working load ( )

This factor is obtained by first considering the margin of safety of a simply
supported beam with uniformly distributed lateral load w designed by the
plastic method and then calibrating it against the allowable stress method as
laid down in current regulations. By substituting the ultimate load or the
plastic limit load w, and the working load w, in Eq. (1.5.1) in terms of the
plastic moment M, = w,L*/8 and the allowable moment M, = w,L?/8, the
load factor A for a simply supported beam can be determined as

w, 8M,/L*> M,
A= w, " SMJL® " M, (1.5.2)

in which L is the length of a simply supported beam. By replacing M, and M,
in terms of stresses, A can be written as

_%Z _o

i =2
S o,

f. (1.5.3)

Q

In building design, the allowable working stress o, for compact beams
(beams having width-to-thickness ratios of their flanges and webs less than
those specified by AISC specifications) with continuous lateral support is
equal to 0.66 of the yield stress of the steel section. By substituting g, = 0.660,
in Eq. (1.5.3), the load factor 4 is found to be

=% r_
= O.66ayf— 1.52f. (1.54)
The shape factor f for wide-flange beams varies from 1.10 to 1.18 with an
average value of 1.134 and a mode of 1.12, and for wide flange columns the
shape factor varies from 1.10 to 1.23, with an average of 1.137 and a mode of
1.115. Using the shape factor equal to the mode of 1.12, we find the load
factor A for the plastic design of steel structures as

A =152 x 1.12 = 1.70. (1.5.5)

Thus, in the United States, a load factor of 1.70 is being used for the plastic
design of steel structures under gravity loads. Note that this load factor is
also consistent with the usual factor of safety of 1.67 for most structural
members, used in the allowable stress design specifications.

For the case of gravity load in combination with wind or earthquake
forces, allowable-stress design specifications permit a one-third increase in
computed stresses. So, to be consistent with ASD specification, the load
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factor A for the plastic design will be reduced by 25% to

1.70
=15- 1.30. (1.5.6)
This smaller load factor is justified by the fact that the probability of simulta-
neous occurrence of all these load effects is unlikely.
The values of load factors recommended for plastically designed steel
structures elsewhere in the world are listed in Table 1.2.
Since plastic analysis enables the designer to calculate the maximum load
that the structure is capable of supporting in a direct manner, the corre-
sponding working load is determined by dividing this load by a load factor.

TABLE 1.2. Load factors for plastic design in various countries

Dead load + live

Assumed Dead load + load + wind or Number of

Country shape factor live load earthquake forces  load factors
(1 2 3) @ )

(a)

USA 1.12 1.70 1.30 2
Australia 1.15 1.75 1.40 2
Canada 1.12 1.70 1.30 2
Germany _— 1L.71f 1.50f 2
India 1.15 1.85 1.40 2
Mexico 1.12 1.70 1.30 2
Sweden —_ 1.57 1.34 2
United Kingdom 1.15 1.75 (portal frames) 1.40 3

(b) Multiple Load Factors

Japan e 12D +21(L+ S)or14(D+ L+ S) 6
(normal condition)
(D+ L)+ 1L5Eor(D+ L +nS)+ 1.5E
(under earthquake)
(D+ L)+ 1.5Wor (D + L + nS) + L.5W

(under typhoon)
The following symbols are used:
D = dead load
L = live load

E = earthquake load

f = shape factor

S = maximum snow load

W = wind force

n | a period of snowdrifts

0 less than one month
0.5 one month
1.0 three months
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Thus, in plastic design, if the required working load is multiplied by 1.70, the
fixed-ended beam designed for this increase (factored) load will have the same
factor of safety 1.70 against plastic collapse as the simple beam. In allowable
stress design, however, the safety factor against plastic collapse is 1.70 for the
simple beam case, but it increases to 1.7 x 4/3 = 2.27 for the case of fixed-end
beam.

The load factors recommended for all structures including redundant
structures are the same as those given earlier. Since redundant structures
such as the fixed-ended beam can develop higher load-carrying capacity
through redistribution of moments, such structures designed by the plastic
method will be more economical compared to those when designed by the
allowable stress method. For example, a 30-foot-long fixed-ended beam with
continuous lateral support and 1 kip/ft uniformly distributed load, designed
by the allowable stress method will require a W16 x 26 A36 section. How-
ever, if it is designed by the plastic method, it will require only W14 x 22
A36 secton, thus resulting in an over 159 saving. Note that the W14 x 22
beam will remain elastic at working load and the deflection at this load will
be about 1.23 times greater than that of the W16 x 26 beam designed by the
allowable stress method. Thus, at working loads, plastically designed struc-
tures generally deflect slightly more than a similar continuous structure de-
signed to a working stress limitation. When required, deflections at working
load can be computed by means of the usual elastic methods. An estimate of
the working load deflection can generally be obtained more easily by divid-
ing the computed deflection at plastic collapse load by the load factor. This
will be described in Chapter 6. No more rules are provided to govern deflec-
tions in plastically designed structures; they are subject to the same limita-
tions as those governing working stress designs.

1.6 A Brief Historical Account of Plastic Design

Plastic concepts were applied to the design of building frames as early as
1914 when Kazinczy [1.2] of Hungary published results of his tests on
clamped girders. He suggested the concept of a plastic hinge. In 1927, Maier-
Leibnitz [1.3] of Germany conducted experiments on continuous beams and
showed that the ultimate capacity of continuous beams is not affected by
settlement of their supports. During the late 1930s and afterwards, Baker and
his associates [1.4] in Great Britain continued tests on steel structures and
formulated design rules to use the plastic reserve strength. In the 1940s,
significant progress was made at Brown University in the United States in
the theory of plastic analysis of structures [1.5].

In the late 1940s and during the 1950s, full-scale tests were conducted at
Lehigh University in the United States by Beedle and his associates [1.6—1.8]
to study the plastic behavior of large steel frames. These studies focused on
the verification of plastic analysis and design methods and the conditions
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that must be satisfied to avoid secondary failure modes such as column
buckling, local buckling, fatigue, and fracture.

The plastic design method was approved as an alternative design method
by the AISC in 1958 and is now treated as a separate chapter of the updated
Allowable Stress Design Specification issued in 1989 [1.9]. A guide and com-
mentary for plastic design of steel was published by the ASCE in 1971 [1.10].
Recently, the AISC (1993) included plastic design as a part of the general
limit states design specifications known as the load and resistance factor
design (LRFD) specification [1.11].

The rapid advancements in computer hardware and software have moti-
vated researchers and engineers in recent years to make more sophisticated
inelastic analysis techniques practical for direct engineering design. To this
end, attempts have been made to modify the plastic hinge method to include
both strength and stability considerations and to make it consistent with the
current LRFD specifications [1.12]. In this way it will account for both
inelastic redistribution of forces and member and system stability in a direct
manner. This development, known as advanced inelastic analysis, will be de-
scribed in Chapter 8.

1.7 Current and Future Design Philosophies

Current and future design philosophies can be classified as: allowable stress
design, plastic design with load factor, LRFD with elastic analysis, plastic
design with LRFD, and design with advanced inelastic analysis. A brief de-
scription of these design philosophies is given in the following.

1.7.1 Allowable Stress Design

In the allowable stress design (ASD), it is ensured that the stresses in a struc-
ture under working or service loads do not exceed some predesignated allow-
able values. These allowable values are usually obtained by dividing the yield
stress or ultimate stress of the material by a factor of safety. The general
format for an allowable stress design is thus

R, =
re 2 ;1 0, (1.7.1)

where R, = nominal resistance of the structural member expressed in unit of
stress; 0, = nominal working or service stresses computed under working
load conditions; F.S. = factor of safety (e.g., 1.5 for beams, 1.67 for tension
members, 1.92 for long columns); i = type of load (i.e., dead load, live load,
wind load); and m = number of load types.

The left-hand side of Eq. (1.7.1) represents the allowable stress of the struc-
tural member or component under a given loading condition (for example,
tension, compression, bending, or shear). The right-hand side of the equation
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represents the combined stress produced by various load combinations (for
example, dead load, live load, or wind load). Formulas for the allowable
stresses for various types of structural members under various types of load-
ings are specified in the AISC specification [1.9]. A satisfactory design is
reached when the stresses in the member computed using a first-order elastic
analysis under working load conditions do not exceed their allowable values.
The effects of secon-order moments and inelasticity are considered in an
indirect manner. One should realize that in the allowable stress design, the
factor of safety is applied only to the resistance term, and safety is evaluated
at the service load. Thus, ASD is characterized by the use of unfactored
“working” loads in conjunction with a single factor of safety applied to the
resistance. Because of the greater variability and unpredictability of the live
load and other loads in comparison with dead load, a uniform reliability is
not possible with ASD.

1.7.2 Plastic Design with Load Factor

In the plastic design (PD) with load factor, it is ensured that the factored load
combinations or their effects do not exceed the maximum plastic strength of
the structure or component. It has the format

R,>21Y O (1.7.2)
i=1

where R, = nominal plastic strength of the structure or component; Q, =
nominal load or load effect (e.g., axial force, shear force, bending moment);
i = type of load (D = dead load, L = live load, W = wind load); A = load
factor [e.g., 1.70 for (D + L), 1.30 for (D + L + W)]; and m = number of
load types.

Note that in this method of design, safety is incorporated only in the load
term and is evaluated at the ultimate (plastic strength) limit sate. Applying a
factor of safety to the load term is more appropriate because uncertainty
associated with loads is higher than that associated with resistances. The
method is superior than the allowable stress design approach in the sense
that it considers redistribution of forces in beams and frames in a more direct
manner. The effects of secon-order moments are considered indirectly. Since
only a single factor of safety (called load factor) is applied to all loads, a
uniform reliability cannot be fully achieved with PD.

1.7.3 Load and Resistance Factor Design with Elastic
Analysis
In the load and resistance factor design, it is ensured that the factored load

effects do not exceed the factored nominal resistance of the structural mem-
ber or component. Here, we have two safety factors. One is applied to the
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loads, the other to the resistance of the material. This is more realistic be-
cause both loads and resistances have different uncertainties. Thus, the load
and resistance factor design has the format

Mz

¢Rn = yiQni (173)
i=1

where R, = nominal resistance of the structural member; Q, = nominal load
effect (e.g., axial force, shear force, bending moment);- ¢ = resistance factor
(<£1.0) (e.g., 0.9 for beams, 0.85 for columns); i = type of load (e.g., D = dead
load, L = live load, S = snow load); y; = load factor (usually > 1.0) corre-
sponding to Q,; (e.g., 1.4D and 1.2D + 1.6L + 0.5S are the factored load
combinations recommended by LRFD); and m = number of load types.

Note that LRFD uses separate factors for each load and can therefore
reflect the degree of uncertainty of different loads and combinations of loads.
As a result, a more uniform reliability can be achieved.

In the 1993 LRFD specification [1.11], the resistance factors were de-
veloped mainly through calibration with ASD [1.13], whereas the load fac-
tors were developed based on a statistical analysis [1.14-1.15]. A satisfactory
design is one in which the probability of exceeding a limit state of the struc-
tural member (for example, yielding, fracture, or buckling) is minimal. Based
on the first-order second-moment probabilistic analysis [1.16], the safety of
the structural member is measured by a reliability or safety index [1.11]
definded as

In(R./Q,)
= 1.74
VVE+ VS (174

where R = mean resistance; Q = mean load effect; Vi = coefficient of varia-
tion of resistance = ar/R; and V,, = coefficient of variation of load effect =
0o/Q in which ¢ is the standard deviation.

The physical interpretation of the reliability index B is shown in Fig. 1.13.
The shaded area in the figure represents the probability in which In(R/Q) < 0,
i.e, the probability that the resistance will be smaller than the load effect,
indicating that a limit state has been exceeded. The larger the value of B, the
smaller the shaded area, so that it becomes more improbable that a limit
state will be exceeded. Thus, the magnitude of B reflects the safety of the
member. In the development of the current LRFD specification [1.11], the
target values of § were selected as 3.0 for members and 4.5 for connectors
under dead plus live and/or snow loading. A higher value of g for connectors
ensures that the connections are designed to be stronger than their adjoining
members.

In this design method, the designer has an option to either carry out the
second-order elastic analysis for directly computing load effects (moments
and forces) in the members or carry out the first-order elastic analysis and
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estimate the second-order effects by using the moment amplification factors
B, and B, provided in the specifications [1.11]. The effects of inelasticity are
considered indirectly. The method is more appropriate for tall buildings in
which secon-order effects are more pronounced than the inelasticity effects.

1.7.4 Plastic Design with LRFD

This method combines the advantages of plastic design with load factor
(Section 1.7.2) and load and resistance factor design with elastic analysis
(Section 1.7.3). The format for this design method is the same as that given by
Eq. (1.7.3). In this method, it is ensured that the member forces caused by
factored loads and determined by plastic analysis are less than the resistances
(mainly moments) reduced by the @-factors. The plastic method will be illus-
trated in detail in Chapters 4 and 5. This design method has the following
characteristics.

1. It considers the redistribution of first-order forces/moments in structures
in a direct manner.

2. The second-order moments can be estimated by using the amplification
factors B, and B,.

3. It is more appropriate for the design of low-rise buildings for which the
effects of inelasticity are more pronounced than the effects of instability.

4. It gives a more realistic representation of the actual behavior of structures,
and it is simple to use.

Plastic design with LRFD is a method for proportioning structures so
that no strength limit state is exceeded when the structure is subjected to all
appropriate factored load combinations. Here, as in PD with load factor,
strength limit states are the basis for design and are related to safety and
load-carrying capacity (e.g., the limit state of plastic moment and buckling).
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1.7.5 Design with Advanced Inelastic Analysis

Currently, inelastic analysis is addressed by design specifications under the
category of plastic analysis/design. The distinguishing feature of the plastic
method of analysis/design is that it accounts for inelastic force redistribution
in the calculation of load effects. Given the calculated load effects for a partic-
ular member, the specifications provide design equations, which the member
forces must not violate if the member is to be deemed adequate. However,
advancements in computer hardware, particularly in the computing and
graphics performance of engineering workstations, are making more sophis-
ticated methods of analysis feasible in design practice. These more sophisti-
cated analysis techniques hold the promise of more realistic prediction of
load effects and overall frame performance, and therefore in certain cases,
greater economy and more uniform safety. If the significant behavioral ef-
fects are considered properly in these more sophisticated methods, separate
checks of member design equations become unnecessary. Any method of
second-order inelastic analysis involving the direct consideration of both
member strength and stability effects such that separate member capacity
checks are not needed is referred to here as an advanced inelastic analysis. At
present, AS4100 [1.17] is the only design specification that explicitly allows
the designer to disregard member capacity checks if an advanced inelastic
analysis is employed.

There are three different inelastic analysis approaches currently available
with respect to their use in the design of planar frames. These advanced
methods are referred to here as the plastic-zone, the rigid-plastic hinge, and
the elastic-plastic hinge approaches. As implied by the name, the elastic-
plastic hinge approach involves the modeling of inelastic behavior through
“zero-length” plastic hinges that remain elastic until the plastic cross-section
strength of the member is reached. The rigid-plastic hinge approach also
represents the material yielding effects through a plastic hinge model, but the
effects of elastic deformations in the structure are neglected. The plastic-zone
approach involves the explicit modeling of the distribution of plasticity
throughout the structural members.

Because the members are modeled as elastic elements between plastic
hinge locations in the elastic-plastic hinge approach, this method generally
overestimates the strength and stiffness of the actual structure. However, a
number of research studies have demonstrated that for practically designed
frames, elastic-plastic hinge approaches predict essentially the same system
strength and stability as a more refined (and more expensive) plastic-zone
analysis [1.18]. In other words, a second-order elastic-plastic hinge analysis
may in many cases satisfy the requirements for advanced inelastic analysis.

At present the elastic-plastic hinge method is still in its active development
stage. Attempts are being aimed (a) to make the plastic hinge method work in
engineering practice using workstations and (b) to make the design process
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consistent with design codes and specifications. A detailed description of this
new development is given in Chapter 8.

1.8 Examples

To further illustrate the benefits of ductility-induced redistribution of forces
and moments in a structural system, we present three additional examples in
this section. The first one deals with the redistribution of forces, and the
second and third deal with the redistribution of moments.

Example 1.8.1. The three bars of the symmetric truss shown in Fig. 1.14 have
equal cross-sectional area A and are made of steel with yield stress g, and
Young’s modulus E:

i. Plot the load-deflection (P-A) relationship of the truss.
ii. Plot the relationships between member forces and the total force P.
iii. Determine the ultimate load and the plastic reserve strength beyond the
elastic limit.

Solution: The first step toward obtaining the load-deflection relationship is
to determine the member forces in terms of the total applied force P. The
equilibrium of the truss in the vertical direction has the simple form for the
symmetric structure

T, + 2T, cos45° = P (1.8.1)

in which T, and T, are the forces in Bars 1 and 2, respectively. Note that
forces in Bars 1 and 3 are equal. Since there are two unknowns and only one
equilibrium equation, the structure is statically indeterminate by one degree
and one more equation is required to determine 7; and T,. The second
equation has different forms depending on whether the stress state in each
bar is in the elastic or plastic regime. This is given in the following.

FIGURE 1.14. Three-bar
symmetric truss.
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Elastic Regime: Referring to Fig. 1.14, the compatibility condition at the
joint is

A, = A, cos45° (1.8.2)
in which A; and A, are the extensions of Bars 1 and 2, respectively. In the

elastic regime, the extensions A, and A, can be expressed in terms of 7; and
T, by the elastic stress-strain relationships

T,L
' AEcos45° (1.83)
and
T,L
A, =22, 8.
= (1.84)
Substitution of A; and A, in Eq. (1.8.2) results in
T,
T, =-=. 1.8.
= (18.5)
Solution of Egs. (1.8.1) and (1.8.5) gives
P
= (1.8.6)
"2 + \/5
and
2P (1.8.7)

T,=—kr.
2724 \/5
The load-deflection relationship in this regime can now be obtained from
Eq. (1.8.4) as
_ 2P L
T2y S24AE
Since T, is greater than T, = T, Bar 2 will yield first. The elastic limit load P,
is determined by equating stress in Bar 2 to the yield stress o,.

A=A (1.8.8)

go=l2__ b _ (1.8.9)
A 2+ /a4
or
2+./2
P,= 2\[,4 : (1.8.10)

The corresponding elastic limit deflection A, of the truss at P, is

Ay=4y =5 L=2L (18.11)
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Elastic-Plastic Regime: When the load P is increased beyond the elastic limit
load P,, the truss enters into the elastic-plastic regime. Here, Bar 2 is in the
yield state while Bars 1 and 3 remain in the elastic state. The compatibility
equation (1.8.2) is now replaced by the yield condition

T, = Ag,. (1.8.12)
Solution of Egs. (1.8.1) and (1.8.12) gives
_ P — Ao,

T, = .
BN

Since Bars 1 and 3 are still elastic, the load-deflection relationship in this
regime can be obtained from Eq. (1.8.3) as

(1.8.13)

A, _(P-Ac)2L
T cosd5° J2A4E

Plastic Regime: In the fully plastic regime, all three bars yield, and the yield
condition for the three bars is

T,=T,=T, = Ao, (1.8.15)

(1.8.14)

Solution of Egs. (1.8.1) and (1.8.15) gives the plastic limit load or the plastic
collapse load as

P, = Aol + \/2) = /2P, (1.8.16)

Note that at the limit load, the deflection will be unrestricted in this regime
as shown in Fig. 1.15(a). However, the deflection at the onset of this limit
state can be determined from Eq. (1.8.2) as

A _ 20,L

A =" = 2A,.
P cos45° E y

(1.8.17)

The percentage of the plastic reserve strength beyond the elastic limit load for
the three-bar truss is

P,—P,_ P(2-1)
p= = 41.4%, (1.8.18)

y

The load-deflection relationship and the relationship between member forces
and the total load P are plotted, respectively, in parts (a) and (b) of Fig. 1.15.
It is seen that the truss can carry an ultimate load in excess of P, by 41.4%,
but only at the expense of a larger deflection. However, the total displace-
ment under the limit load P, is only twice that under P,. In fact, the real truss
will carry loads in excess of P, with the actual displacement at P, less than A,
because of strain-hardening for real materials.

Example 1.8.2. Use the hinge-by-hinge method and plot the load-deflection
relationship of a fixed-ended beam with a concentrated lateral load at one-
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FiGURE 1.15. The force redistribution in a fixed-ended beam: (a) load-deflection rela-
tionship and (b) member forces versus total load relationship.

third point as shown in Fig. 1.16(a). Determine the amount of plastic reserve
strength contributed by the process of moment redistribution. Assume that
the bending stiffness of the beam is EI.

Solution: As described in Section 1.4, the hinge-by-hinge method consists of
a series of elastic analyses. It begins with an elastic analysis of the original
beam. When the maximum moment in the beam reaches the plastic moment
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FIGURE 1.16. The changes in moment diagrams through hinge-by-hinge analysis of a
fixed-ended beam.

M, a hinge with the plastic moment capacity M, is inserted at the point of
maximum moment (called plastic hinge), and an elastic analysis is performed
on the resulting simpler structure. This process is continued until a failure
mechanism is formed. Since the load-deflection relationship is linear for each
of these elastic analyses, it is necessary to compute the load and deflection
only when a new plastic hinge is introduced to the beam.

Elastic Analysis of the Original Beam: The moment distribution for this in-
determinate beam is shown in Fig. 1.16(b) with (see, for example, AISC steel
manual [1.9])
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4
M,=—— 8.
A 27PL (1.8.19)
M ——8PL (1.8.20
BT 81 8.20
and

M. = 2PL (1.8.21
€= Tyl .8.21)

Since the maximum moment occurs at A, a plastic hinge will form first at A
when |M,| = M, The first hinge load P = P, is then

_2TM, M,
P, = 7L 6.75 T (1.8.22)

The deflection at B corresponding to this first hinge load is

2 M,L? M,L?
= = 0.02. LA 8.
1=y pp = 0047 E (1.8.23)

Elastic Analysis After the Formation of Plastic Hinge at 4: The moments at
B and C for the indeterminate beam shown in Fig. 1.16(c) are:

M, 14
Mg = — + 8_1PL (1.8.24)
and
M 4
M.=—%f_—_PL. 8.
¢ 3 27PL (1.8.25)

Since Mj has a larger numerical value [Fig. 1.16(d)], the next plastic hinge
will form at B, when Mj is equal to M,,. The second hinge load P = P, is then

243 M, M,
p=">Yr_gerte. 18,
2= ®L T (1.8.26)

The moment M, at C corresponding to this load is

11
Mc = —3; M, = —0.785M,, (1.8.27)

The deflection at B corresponding to the second hinge load has the value

M,L?
A; = 004232 (1.8.28)

Elasitc Analysis After the Formation of Hinges at 4 and B: The beam is
now statically determinate [Fig. 1.16(c)] and its internal forces and moments
are shown in Fig. 1.16(f). The moment at C [Fig. 1.16(g)] can be expressed
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as

6M,) (2
we=(p)(22) -, 2229

The next plastic hinge will therefore form at C when |M¢| = M,,. The third
hinge load P = P; is then

M,
=_¢ 1.8.30
Py=1 (1830)
The deflection at B corresponding to the third hinge load is the deflection
of the elastic cantilever beam of length 2L/3 under the vertical load

(Py — 6M,/L = 3M,/L) combined with the end moment M, as

M, (2 \2 (M/L)(2.)}
A= —p(2) o2y
3 2E1<3 ) T 3Er 3
or
M,L?
Ay = 0074122 1.831
= 007412, (18.31)

At P = Py, a failure mechanism has formed and the deflection will become
unrestricted. Note that the plastic limit load (P, = P;) can be determined
directly from Fig. 1.16(g) with M, = M,,. There is no need to know the order
of hinge formation for the direct calculation of the limit load. The load-
deflection relationship is plotted in Fig. 1.17.

The percentage of plastic reserve strength for the beam beyond the elastic
limit through the moment redistribution is

9M,/L — 6.75M,,/L

§TSML e

Example 1.8.3. Plot the load-deflection relationship of a fixed-ended beam
with a concentrated load acted at the midspan. Determine the contribution
of the moment redistribution to the plastic reserve strength, if any.

Solution: The moment diagram for the given beam is shown in Fig. 1.18(a)
with
PL

IMy| = My = |Mc| = —-. (1.8.32)
Since the moments at A, B, and C are all equal, they reach the value M,
simultaneously, thus forming the three hinges at the same time. The load
corresponding to this state has the value

M,

P, ="
7L
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FIGURE 1.17. The load-deflection relationship reflecting the moment redistribution in
a fixed-ended beam.

The deflection at C corresponding to this load can be determined directly
from the elastic limit solution in usual manner
M,L?

A, =0.0417 2",
! 7 EI

Note that at this load a failure mechanism has developed and the deflection
will become unlimited as shown in Fig. 1.18(b).

This example shows that in the present case, contribution through moment
redistribution to the plastic reserve strength of the indeterminate beam can-
not be realized.

1.9 Summary

From the preceding discussions of simple examples, it is seen that one of the
major advantages of plastic analysis and design is its relative simplicity. To
solve the elastic problem, it was necessary to formulate an equilibrium equa-
tion and a compatibility equation. Thus, the problem involved solution of
two simultaneous linear algebraic equations. However, the solution of the
plastic problem was much simplified by substitution of the yield stress or the
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plastic moment into the equation of equilibrium. Furthermore, the maximum
load-carrying capacity computed by the plastic analysis based on an ideal-
ized plastic material has real significance as a measure of ultimate strength of
a real structure, and the load at which the limit state is reached can usually
be determined in a direct and simple manner. On the other hand, the elastic
limit load computed by the elastic analysis based on a linear elastic material
is relatively meaningless as a measure of strength, although it may be appro-
priate for the computation of stresses and strains under working loads.

The general description of plastic analysis applies to any structural mate-
rial with sufficient ductility. It is, of course, particularly appropriate to mild
steel with its sharply defined yield point and large strain value before the
beginning of strain hardening. Thus, the plastic reserve strength cannot be
fully realized for structures made of brittle materials that will crack or soften
under relatively small strains, or for structures made of slender bars that



36 1. Basic Concepts

will buckle in compression within either the elastic or the plastic range. For
bridge-type structures, repeated loadings might fatigue the material, and the
plastic analysis may not be appropriate for this type of application.

The major portion of this book will be concerned with the plastic analysis
of steel-framed structures. In general, if the analysis problem can be solved,
design can always be achieved by an inverse trial-and-error procedure. How-
ever, some direct approach to the design problem based on the equilibrium
method and work method will be presented in Chapters 4 and 5, repectively. In
the following chapters the basic plastic theory and the methods of plastic
analysis and design will be set forth and the necessary secondary design
factors such as the details of connecting joints, the deflection limits, and the
overall and local buckling requirements for compression members will be
treated in accordance with the 1993 AISC load and resistance factor design
specifications [1.11] or the plastic design chapter as a part of the 1989 AISC
allowable stress design specifications [1.9]. Since the serviceability provisions
(e.g., deflections, drift, and vibration) of ASD and LRFD are similar, mem-
bers controlled by serviceability criteria are not affected by the choice of
design method. They are subject to the same limitations and checking proce-
dures as those used in allowable stress designs. The reader who is interested
in the early experimental verifications of the “simple plastic theory” as applied
to engineering practice may find the 1971 ASCE manual on “Plastic Design
in Steel” interesting and informative [1.10].
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Problems

1.1.

1.2.

1.3.

14.

A member made of A36 steel has a maximum compressive residual stress of
10 ksi and maximum tensile residual stress of 15 ksi. If the area of cross section
of the member is 2 in? determine the yield load and plastic limit load for the
member when it is subjected to

(a) compressive axial load (P,, = 52 kips, P,, = 72 kips).

(b) tensile axial load (P,, = 42 kips, P,, = 72 kips).

Determine the yield and plastic limit loads for the A36 steel plate shown in Fig.
P1.2. Assume that the radius r of the fillet is 0.5 inch (K = 1.8). (P, = 37.5 kips,
P, = 67.5 kips).

A rigid cross-beam is supported by three equally spaced tension rods. The two
outside rods are of length L and area 4 and the center rod is of length 2L and
area 4. What maximum load P, will the cross-beam support if the load is
applied at the center? Draw the load-deflection curve. Compute P, 9, and J,
(P, = 340,,P, = (2.5 A0,,8, = 2L¢,, 6, = Le

Y2y Y)'

By assuming that the horizontal bar of the structure shown in Fig. P1.4 is rigid,
determine

(a) yield load P = P, [P, = (5/3)4q,].

(b) end deflection of the bar at yield load (5 = Le,).
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1.5.

1.6.

1.7
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(¢) plastic limit load P = P, (P, = 240,).
(d) end deflection of the bar when load starts to increase above plastic limit
load. Assume ¢, = 10g, (0 = 10Le,).

Each cable of the structure shown in Fig. P1.5 has a cross-sectional area of

0.2 in? and is made of A36 steel. By assuming horizontal bar to be rigid,

determine

(a) yield load P = P, [P, = 1.2540,].

(b) deflection of C at yield load (6 = Le,).

(c) plastic limit load P = P, [P, = 1.540,].

(d) deflection of C when load P starts to increase above the plastic limit load.
Assume ¢, = 12¢, (J, = 12Lg,).

The three-bar truss shown in Fig. 1.14 is subjected to horizontal load Q rather
than the vertical load. Determine the plastic limit load @, (Q, = \/5 Aoy).

The three-bar structure shown in Fig. 1.5 is subjected to the vertical load P half
way between Bars 1 and 2, rather than directly under Bar 2. Determine the value
of P at elastic and plastic limit (P, = P, = 24a,).
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What is the plastic limit load P, of the three-bar truss shown in Fig. 1.14, if Bars
1 and 3 are mild steel and Bar 2 is high-strength steel with a yield stress of three
times of mild steel. Also, compute A,. Assume the same Young’s modulus for
both steels [P, = (/2 + 3)40,,,A, = 3Le,;)].

Compute the plastic limit load P, for the structure shown in Fig. 1.5, if Bar 1 is
rigid, Bar 2 is mild steel, and Bar 3 is high-strength steel with a yield stress of
twice that of mild steel. What is the load at first yield? Also, compute 6, and J, at
Bar 3 (P, = 34o0,,, P, = 5A40,,,6,3 = Le,, 0,3 = 2L¢,).

The three-bar truss shown in Fig. 1.14 is subjected to the following loading
path: The vertical load P is first increased from zero to the elastic limit
load P, and then held constant at P,, while a horizontal load H is applied
and increased to the collapse state. Determine the maximum value of H

(H, = Aa,/\/2)?

What size cross-beam is required to support the maximum load P, = 30,4 of
the structure shown in Fig. 1.5, if the cross-beam of length L is not rigid but
made of the same material as the bars (Z = 1/24L)?

Using the hinge-by-hinge method, plot the load-midspan deflection relationship
of the beams shown in Fig. P1.12. Determine the plastic reserve strength con-
tributed by the moment redistribution process. Assume that the bending stiff-
ness of the beams is EI.

For mild steel, there exists an upper yield stress o, and a lower yield stress
o, at the same yield strain ¢, Find the corresponding initial yield moment
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M,, fully plastic moment M,, and shape factor f of a rectangular section
(M, =0,5,M, =0,Z, f = 1.50,/0}).

1.14. To attain the fully plastic moment condition, the corresponding curvature @
will theoretically have to approach infinity. For all practical purposes, the fully
plastic moment capacity can be approximately reached when the curvature is
less than four times that of the initial yield curvature ®,. Show this fact for an
actual beam of rectangular section (M = 0.98M,,).
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1.15. A cantilever beam with a double-web section shown in Fig. P1.15 was designed
to resist a concentrated load of 5 kips under allowable stress conditions
(0, = 20 ksi).
a. Determine the factor of safety against plastic collapse.
b. If an additional load of 20 kips is to be added to the free end of the beam,
design the required cover plates. (Use 1” thick plates and A36 steel.)



2
The Plastic Hinge

2.1 Introduction

The plastic hinge concept was introduced in Chapter 1 when the “hinge-by-
hinge” method was applied to solve the fixed-ended beam problems. In this
chapter, we shall elaborate the concept of the plastic hinge and plastic mo-
ment. The methods of computing the plastic moment and the methods of
using plastic moment in the design of a cross section will be presented first.
The plastic moment capacity of a section is significantly affected by factors
such as axial and shear forces on the section, and the compactness of the
section. The effects of these factors on the plastic moment capacity of a
section will then be described. Since the strength of a connection of a given
member to the adjoining members may govern the ultimate moment-
carrying capacity of the member, methods of estimating the strength of a
given connection and methods of designing the connection under a given
loading will be presented in the later part of this chapter.

2.2 Moment-Curvature Relationship and Plastic Hinge
Length

To illustrate the concept of plastic hinge, it is instructive to look at the
elastic-plastic behavior of a simple structure. Consider a simply supported
beam with an I-shaped cross section, subjected to a concentrated load at
the midspan (Fig. 2.1). The behavior of the beam mainly depends on the
moment-curvature (M-®) relationship of its cross section. The M-® relation-
ship of an I-section will thus be derived in the following.

2.2.1 Moment-Curvature Relationship of I-Section

Here, as for a rectangular section in Section 1.3, the M-® relationship of an
I-shaped section (Fig. 2.2a) is derived based on the usual assumptions: (1) the

42
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ported beam of an I-shaped
section with a concentrated
load at midspan.

FIGURE 2.1. A simply sup- 10
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FIGURE 2.2. Elastic-plastic stress distributions in an I-section.

plane section remains plane after bending of the section, (2) the elastic—
perfectly plastic stress-strain relationship of the material, and (3) the equilib-
rium conditions. The moment-curvature relationship of an I-section can be
divided into three regimes: (1) the entire section is elastic; (2) when web is
elastic and flanges are partially plastic; and (3) web is partially plastic and
flanges are fully plastic.

Regime I: Elastic—In the elastic regime, the stress distribution will be linear
throughout the cross section as shown in Fig. 2.2(b). The moment resistance
My of the section can be obtained by summing up the moments of the
stresses shown in Fig. 2.2(b) as

1If (d- 4
Mg = 5[%( d tf)] d —to), |:§(d - tf):'
+ %[a,,, — 0, <djth>] b <2d - %y) + [a,,, (%)} t;b(2d — 1,)

2.2.1)

in which o, is the maximum stress in the section and d, ¢, t,, and b are
dimensions of the I-section as shown in Fig. 2.2(a). The first terms in the
right-hand side of Eq. (2.2.1) comprise the moment due to the linear elastic
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stress in the web, the second term is the moment due to the triangular stress
[0, — 0,(d — t;)/d] in the flanges, and the last term is the moment due to the
uniform stress [0,,(d — t;)/d] in the flanges. Equation (2.2.1) can be simplified
to

Mg = %%(d ~t)? (%’) + O <§>b<d - %’) + op(d — tﬂ(g) (2d —t)ty.
222)

The flanges begin to yield when g, is equal to 6,. The moment resistance at
this stage is called yield moment M,, given by

2 t, 2 t b
M, = goy(d — ) (E) + o, <%f>b<d - gf) + o,(d —t;) (E) 2d —tp)t;.

(2:2.3)
The curvature at the initial yield moment is given by
& _ 0
=J=_2 224
o, d Ed 2.24)

Regime II: Flange Partially Plastic—The stress distribution in this regime is
shown in Fig. 2.2(c) and the moment resistance corresponding to this stress
distribution can be written as

1 d—t 4
MR=§|:JY< ad’)](d—t,)tw[g(d—tf)]
+ %[ay —a, <d ;dtf>:l [ty —d(1 —0o)]b

{2((1 —t)+ ;[tf —d(l - cx)]}

+ [“y (d ;dtfﬂ [t; — d(l — )1b{2(d — ;) + [t; — d(1 — %)}

+ 0,[d(1 — 2)]b[2d — d(1 — &)] (2.2.5)

in which the first term is the moment due to the elastic stress in the web, the
second and third terms are the moments due to the elastic stress in the
flanges, and the last term is the moment due to the yield stress in the flanges

& ("

Oy
(0] E®d’

o= (2.2.6)

o

Simplification of Eq. (2.2.5) gives
1 1
Mg = % t,)3< \ + 0,b(t; — d + ad)? (—ad +-d— ><cxd>

+a,b (;—dtf) (t; — d + oad)(d — t; + ad) + 0,bd*(1 — a?). (2.2.7)
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Regime III: Web is Partially Yielded—The stress distribution in this regime
is shown in Fig. 2.2(d), and the moment resistance corresponding to this
stress distribution can be written as

Mg =o0,t;b(2d —t;) + 0,(d — t; — ad)t,[2ad — (d — t; — ad)]
1 4
+ an(ad)tw <§ ocd) (2.2.8)

in which the first term is the moment due to the yield stress in the flanges, and
the second and third terms are the moments due to the yield stress and elastic
stress in the web, respectively. Simplification of Eq. (2.2.8) leads to

2
Mg = a,bt[2d — t;) + o,t,,(d — t; — ad)(d — t; + ad) + Sayazdztw. 229

The section will become fully plastic when « reduces to zero. The moment
resistance corresponding to this fully plastic state can be obtained by sub-
stituting o = 0 in Eq. (2.2.9)

M, = o,bt;(2d — t;) + 0,1, (d — t,). 2.2.10)

The M-® relationship of other shapes of sections can be obtained in a similar
manner. Figure 2.3 shows the M-® relationship of W8 x 31 plotted by sub-
stituting appropriate values of d, t;, b and t,, in Egs. (2.2.2), (2.2.7), and (2.2.9).

A
201 ¢ Diamond 2.00
@ Round 1.70
1.5 | [} Rectangle  1.50
O Tube 1.27

Mp /My

I W 1.14

1.0

0.5
L —

0 1.0
® /P,

FIGURE 2.3. Moment-curvature curves of various sections.
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The M — ® curves of rectangular and some other sections have also been
included here for comparison.

2.2.2 Plastic Hinge Length

Now, we return to the simply supported beam shown in Fig. 2.1. The beam
will remain elastic when Q is less than Q, = 4M /L. When Q = Q,, the ex-
treme fibers of the section at midspan begin to yield. When the load Q is
increased beyond Q,, the maximum moment at midspan and the moments at
the sections near the midspan exceed the yield moment M, [Fig. 2.4(b)], thus
spreading the yielding over a length of the beam like that shown in Fig. 2.4(c).
The spreading of the yielded zone continues until the maximum moment at
midspan reaches M, [Fig. 2.4(d)]. At this state the entire section at midspan
is yielded, and this yielded zone spreads out over a length called plastic hinge
length [Fig. 2.4(e)]. The increase in beam curvature corresponding to the
development of the full plastic moment M, at midspan does not produce a
sharp kink in the beam. Nevertheless, it is sufficient to simulate the effect of
a hinge. The location at which the value of M, is reached in a structure is
called plastic hinge. The actual extent and shape of spread of plasticity in the
beam depend on the moment diagram. For design purposes, however, we
shall assume each plastic hinge action takes place only at a single section of
the beam. The plastic hinge length or the yield length and the actual extent
of yielding for a simply supported beam of rectangular section with a concen-
trated load at midspan are determined in the forthcoming.

Referring to Fig. 2.4(e), the distance between section C where yielding has
just begun and the end support A can be obtained by equating the moment

FIGURE 2.4. Hinge length of a simply supported beam with a concentrated load at
midspan.
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at C to the yield moment as

0
MC = 7”(1 = My
where Q, is the plastic limit load. Equation (2.2.11) leads to
a= 2M, .
2,
Substitution of @, = 4M,/L in Eq. (2.2.12) gives

a=L (2.2.13)

f
where f is the shape factor of the section (see Section 1.3.3 and Table 1.1) and
L is the length of the beam. From Fig. 2.4(e), the hinge length AL can be
found as

(2.2.11)

2.2.12)

AL=L—2a=L<1—}>. (2.2.14)
This is the hinge length for a simply supported beam with a concentrated
load at midspan. This length will be different for other boundary and loading
conditions. As noted previously, the hinge length depends on the shape of
moment diagram, the length of the beam, and the shape factor of the section.
The distribution of yielded zone within the hinge length also depends on the
shape of the moment-curvature curve of the section. The plastic zone distri-
bution can be obtained by equating the moment within the hinge length to
the M-® expression in the elastic-plastic regime. For example, for the rectan-
gular section, the moment M in the elastic-plastic regime has the value
[Egs. (1.3.14), (1.3.10), and (1.3.8)]:

1 =\ 2
My(5) = Mp|:1 - §<‘y-l> ] 2.2.15)

The moment distribution for the given beam is [Fig. 2.4(d)]

L-2
M(x) = M,,( . x> (2.2.16)
in which x is the distance from the midspan. By equating right-hand sides of
Egs. (2.2.15) and (2.2.16), ¥ can be written as

y=d /%x (2.2.17)

in which y defines the boundary between the elastic and plastic regions. The
distribution of the yielded portion for an I-shaped or any other shaped sec-
tion can be obtained in a similar manner. Since for an I-section, there are two
expressions for the M-® curve in the elastic-plastic regime, the yielded zone
is also defined by two expressions.
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2.2.3 Plastic Hinge Idealization

The use of exact nonlinear moment-curvature curve (Fig. 2.3) in the analysis
of steel structures beyond elastic regime requires an iterative process for a
solution. However, this iteration process can be eliminated and the solution
procedure drastically simplified by using the moment-curvature relationship
idealized by two straight lines represented by

M=EID,0<® < ®,) (2.2.18)
and
M=M,(@®>2, (2.2.19)
where
®,= M,/EI (2.2.20)

Equations (2.2.18) and (2.2.19) are plotted in Fig. 2.5. The relationship is
elastic up to moment M, and plastic thereafter. In this idealization, all the
plastic rotation is assumed to occur at the plastic hinge and the length of the
plastic hinge is assumed to be zero.

This idealization results in a considerable simplification of the analysis
procedure without making significant compromise in the accuracy of the
computed plastic limit load. It results in a series of piecewise linear load-
deflection relationships while the exact load-deflection relationship based
on the exact elastic-plastic M-® curve is a smooth curve bounded by the
piecewise linear relationship. For example, the idealized load-deflection rela-
tionship for a beam shown in Fig. 2.1 is linearly elastic up to the lateral load
Q, and thereafter, a plastic hinge is formed at the midspan, and the beam be-
haves as if it were hinged at the midspan but with a restraining moment M,

To show the influence of loading and boundary conditions on the hinge
length, two examples of determining the plastic hinge length are presented in
the following.

Perfectly-plastic

M (idealized)
M= MP
Np o o
My Elastic- plastic
(exact)
Elastic
+—M=EI$

FIGURE 2.5. The idealized
and the actual moment-
P % curvature relationships.
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FIGURE 2.6. Hinge length of

w
P
a simply supported I-beam 'EEEEEEEEEEREE"
with uniformly distributed

load. L
(a)

(b)

AlL= 0.35L

(c)

Example 2.2.1. Determine the plastic hinge length of a simply supported
beam with uniformly distributed load as shown in Fig. 2.6.

Solution: The distance between section C, where yielding just began, and the
end support 4 [Fig. 2.6(c)] is obtained by equating the moment at C to the
yield moment M, as

w,L a?

Ta - Wpa* = My (22.21)

in which w,, is the distributed load at which the moment at midspan reaches
M, and it has the value

M
w = M, (2.2.22)

P=L2

By substituting Eq. (2.2.22) in Eq. (2.2.21) and solving the resulting equation
for a, the distance a is found to be
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a= %[1 - J1=1f]. (2.2.23)

Thus, from Fig. 2.6(c), the plastic hinge length AL is determined as
AL=L—-2a=L./1-1/f. (2.2.29)

With the shape factor f = 1.14, median for wide flange sections, AL comes
out to be 0.35L. Note that for a simply supported beam, the plastic hinge
length for the distributed load case is higher than that for the concentrated
load case (Eq. 2.2.14).

Example 2.2.2. Determine the plastic hinge lengths at the ends and midspan
of a fixed-ended beam with a concentrated load at the midspan as shown in
Fig. 2.7.

[
B
Z L/2 L/2
C 7

(b)

f—i f—
D E

ALy

C B  FIGURE 2.7. Hinge lengths of
a fixed-ended beam with
concentrated load at

(© midspan.

>
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Solution: Referring to the moment diagram at the collapse state [Fig. 2.7(b)],
the bending moment at a distance x from end A is given by

9

M =22x— M (2.2.25)

14
in which @, is the plastic limit load when moments at the ends and midspan

all reach M, and can be written as

Q,= 8124". (2.2.26)

Hinge Length at Ends: AL, in Fig. 2.7(c) can be obtained by equating the

moment at D to — M,

My = %ALl —M,=—M,. (2.227)

By substituting Q, from Eq. (2.2.26) into Eq. (2.2.27) and solving the resulting
equation, AL, is found to be

AL, = %(1 —1/f). (2.2.28)

Hinge Length at the Midspan: Location of point E in Fig. 2.7(c) can be ob-
tained by equating the bending moment at E to M, as

M, = %a - M,=M,. (2.2.29)
Substituting @, from Eq. (2.2.26) into Eq. (2.2.29) and solving for a, we have
a= %[1 + 1/f1 (2.2.30)

Thus, from Fig. 2.7(c), the hinge length AL, is found to be

AL, =L —2a= %‘[1 —1/f1. (2.2.31)

2.3 The Full Plastic Moment

The plastic analysis is drastically simplified by using the idealized moment-
curvature relationship shown in Fig. 2.5. In this simplification, the bending
curvature beyond the elastic limit curvature ®, increases indefinitely with the
constant moment capacity M,. This limit moment capacity M, is known as
the full plastic moment. The adjective full means that all fibers of the section
are plastic.
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A knowledge of the value of the full plastic moment capacity of a section is
very important in the plastic analysis and design. For example, if full plastic
moments of various members of a frame are known, then the plastic limit
load of the frame can be determined quickly. similarly, the design of a frame
requires an assignment of certain minimum values of full plastic moment to
its members to carry the factored loads. For steel sections, M, depends on the
yield stress of the steel and the geometry of the section. The calculation of M,
of a section can be summarized in the following two steps.

First, the plastic neutral axis is located. Like the elastic neutral axis, the
plastic neutral axis is determined by considering equilibrium of forces in the
axial direction, i.e., Y F, = 0. Since at the fully plastic state, the stress is equal
to the yield stress over the entire section (both in compression and in tension),
the calculation of plastic neutral axis is simpler than that of the elastic neutral
axis for which a consideration of varying stress over the cross section is
required. In fact, if the entire section is made of only one type of steel (same
yield stress over the section), the plastic neutral axis can be determined by
simply dividing the cross-sectional area into two equal parts. However, if a
section is made of more than one type of steel (sometimes a standard section
is modified by the addition of coverplates of a different type of steel), the
plastic neutral axis must be determined by considering the axial equilibrium
condition.

Second, the full plastic moment capacity is determined by summing the
moments of the forces resulting from stresses in the section. The computa-
tions of plastic moments of several shapes of cross section are illustrated in
the following example.

Example 2.3.1. Determine the full plastic moment capacity of the rectangular
section, wide flange section, solid circular section, hollow thin-walled circular
section, and triangular section as shown in Fig. 2.8.

Solution: (a) Rectangular section: Since the section is made of only one mate-
rial, the plastic neutral axis (PNA) divides the section into two equal parts
[Fig. 2.8(a)], i.e., the PNA is at a distance d from the top of the section. So,
we have

compressive force = tensile force = bdo,
and the corresponding lever arm is d. Thus the full plastic moment is
M, = (bdo,)d = bd*a,. (23.1

(b) Wide Flange Section: The PNA divides the section into two equal parts,
ie., it is at a distance d from the top of the section [Fig. 2.8(b)]. For this
section, the full plastic moment can be assumed to consist of two parts:
one due to the couple formed by flange forces and the other due to the
couple formed by web forces. The forces and the associated lever arms are
given by
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FiGure 2.8. Computations
of the fully plastic moment —

Ddcr"|
capacity of several shapes of 54 d (@)
cross section. — .

—_—
24 (o, d-ty |2d-t (b)
— .
btyoy

4D (c)

Flange Forces = bt,0,
Lever Arm = 2d — ¢
Web Forces = (d — t,)t,,0,

lever arm = d — ;.
So the full plastic moment turns out to be
M, = bt;0,(2d — t;) + (d — t;)’t,0,. 23.2)

(c) Solid Circular Section: The PNA of the section passes through the center
of the circle [Fig. 2.8(c)]. So, the compressive force = tensile force equation
is given by

The lever arm for these two forces is two times the distance of the centroid of
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half-circle from the center of circle, i.e., 4D/3=n. So, the full plastic moment is

nD? 4D D?
Mp = <T Uy) <§> = *6—0'),. (233)

(d) Hollow Thin-Walled Circular Section: The PNA passes through the
centroid of the section [Fig. 2.8(d)]. The compressive force = tensile force
equation is given by

The lever arm associated with these two forces is two times the distance of the
centroid of the half of the hollow circular section from the centroid of the
section, i.e., 2D/n. So the full plastic moment is

Dt 2D
M, = ("T ay) (7> - Dts, (2.34)

(e) Triangular Section: The PNA divides the triangular area into two equal
parts. So, the distance of the PNA from the top is h/\/i [Fig. 2.8(e)]. The
compressive force = tensile force equation is

ah
C = T=Ta'y.

The lever arm corresponding to these two forces is 0.39h. So, the full plastic
moment is

p

M, = <oy “Th> (0.39h) = 0.0985,ah. (23.5)

2.4 Design of a Cross Section

In the plastic design of steel structures, a certain value of M, is assigned to
each member of the structure. For design purposes, it is convenient to write
M, in the form

M, = Zs, 24.1)

in which Z is called the plastic section modulus and it depends solely on the
geometry of the cross section. It can be determined simply by computing the
first moment of area of the section about its plastic neutral axis. The values
of Z for all hot-rolled sections are given in the Aisc Manual of Steel
Construction.

Very often, the standard hot-rolled sections are modified by either the
addition of cover plates or the curtailment of flanges. For these cases, the
values of Z are not given in the manual and they have to be calculated.
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FIGURE 2.9. Plastic modulus of a section with a cover plate.

However, these calculations can be shortened by modifying the value of Z for
the standard section given in the manual.

Consider the example of an arbitrary section with area 24 and one axis of
symmetry. Assume that it is strengthened by the addition of a single cover
plate of area a, as shown in Fig. 2.9. Further assume that the yield strengths
of the original section and the cover plate are o, and o,,, respectively. In the
fully plastic state, the total force on the cover plate will be ag,,. Therefore, to
maintain equilibrium in the axial direction, it is clear from the diagram that
the plastic neutral axis must shift downward from its original position so that
an area

ao,

= 242
a 20, ( )

of the original cross section moves from the tension side to the compression
side of the axis. The resulting fully plastic stress distribution may be consid-
ered as the sum of two parts: the stress distribution in the original section and
the change in stress distribution introduced by the addition of the cover plate
as shown in Fig. 2.9.

The full plastic moment of the modified section can now be determined by
summing the full plastic moment of the original section and the moment
contributed by the cover plate. The contribution of the cover plate is equal to
the moment caused by a couple formed by the cover plate force ao,, and a
force due to the fictitious stress 20,, acting on area a’ that has been trans-
ferred from tension to compression, as shown in Fig. 2.9.

Example 2.4.1. A member of a frame is supposed to have the plastic moment
capacity of 300 kip-ft. Select the lightest wide flange section for this member.
Use A36 steel.

Solution: The required plastic section modulus is

300 x 12

— i3
36 = 100 in.

Z

The following sections satisfy the requirement of minimum plastic modulus
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(from the AISC manual)
W16 x 57 Z,=105in3
W18 x 50 Z,.=1011in3
W21 x 50 Z.=110in3
W24 x 55 Z, = 1341in.3
Use W21 x 50.

Example 2.4.2. A W21 x 50 section of A36 steel is modified by the addition
of a single cover plate. Determine the full plastic moment capacity of the
modified section if

(a) A36,8” x 3/4” plate is used as a cover plate.
(b) Grade 50, 8” x 3/4” plate is used as a cover plate.

Solution: The dimensions of W21 x 50, taken from the AISC manual, are
shown in Fig. 2.10(a). Also from the manual

Z, =110in3

72 ksi

—— 216 kips
6.85in
216 kips
—E="1 :

20.83

= Tors —
e ——|
8 36 ksi
(a) ®)
3 72 ksi
270.32 kips
9.88
5.85in
ety L0 063 300 kips 29.62 kips
.......fo8em
50 ksi
(c) «

FIGURE 2.10. Computations of plastic moment capacity of W21 x 50 section with a
cover plate.



2.4. Design of a Cross Section 57
(a) A36 Steel Cover Plate: Area of the original section that must be trans-
ferred from the tension to the compression side

_8x075
=R

’

a

3in.2

The distance by which the neutral axis should be shifted is

3

= W = 789 1n.

Yy

The plastic moment of the modified section is now equal to the sum of the full
plastic moment of the original section and the moment caused by a couple
formed by the cover plate force of 6 x 36 kips and the web force of 3 x 72
kips as shown in Fig. 2.10(b).

The lever arm for the couple is

20.83 3 7.89 .

Thus, the full plastic moment for the modified section is
M, =110 x 36 + 3 x 72 x 6.85 = 5439.6 kip-in.

(b) Grade 50 Steel Cover Plate: Area of the original section that must be
transferred from the tension to the compression side is

8 x 0.75) 50 .

a = 3 x36—4.171n.

Since this is greater than half the web area ([20.83/2 — 0.535]0.38 = 3.75), a
part of the flange area must also be transferred. For an extremely accurate
answer, a graphical method should be used to include the curved portion at
the junction of flange and web. However, sufficient accuracy can be achieved
by simply treating the section as three rectangles, Fig. 2.10(c). The shaded
portion in Fig. 2.10(c) shows the area that must be transferred from tension
to compression. So, the additional moment is contributed by two couples:
one couple formed by the web force and a part of the cover plate force and
the other formed by the flange force and the remaining part of the cover plate
force.

.83
web force = (2—02§~ — 0.535) 0.38 x 72 = 270.32 kips.

The distance between the web force and the cover plate force is

20.83 3 1/2083
d = — - — = —— = U. = . 1 .
1 7 + 3 2< > 0 535) 5.851n

Flange force = 0.063 x 6.53 x 72 = 29.62 kips.
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The distance between the flange force and the cover plate force is

0.063
d2=§+0$5——7~=OBMu

M, = 110 x 36 + 270.32 x 5.85 + 29.62 x 0.88 = 5,567.44 kip-in.

2.5 Effect of Axial Load

The application of an axial compression to a cross section results in a uni-
form compressive stress over the section. The addition of a bending moment
to this axial compression produces a linear variation of elastic stress across
the section as shown in Fig. 2.11. Further increases of bending moment, with
the axial compression remaining constant, eventually cause yielding on the
compression face of the section, followed by yielding on the tension face, and
eventual yielding of the entire cross section. During this process, the neutral
axis initially lies outside the section for very small values of bending moment
and it shifts progressively toward the final position in the section in the fully
plastic state.

The full plastic moment capacity of a section in the presence of axial com-
pression can be determined from the two usual equilibrium conditions

P=faM 2.5.1)

M =J aydA. (2.5.2)
4

The presence of axial compression reduces the full plastic moment capacity
of a section. This reduced moment capacity is designated M,.. The extent
of this reduction is dependent on the magnitude of the axial load. Using
Egs. (2.5.1) and (2.5.2), the reduced moment capacities M, for rectangular,
circular tubular, wide flange, and T-sections are obtained in the following.

g, o, [ o,
[}
ay o,
No bendin: Small initiation of
o ma Yield in Yield in Fully
moment B.M. Yielding

plastic

P

FiGURe 2.11. Stress distributions under combined action of bending and axial
compression.
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b gy Oy
d-y,
Oy
2d T = 2y, + 2y
Yo
d-y
X
O'y Oy

FIGURE 2.12. The reduced plastic moment capacity M,, of a rectangular section con-
sidering the influence of axial compression.

2.5.1 Rectangular Section

The full plastic stress diagram consists of two portions as shown in Fig. 2.12.
The axial load P is assumed to be supported entirely by a centrally located
portion of the total cross-sectional area stressed to the yield point in com-
pression, and the bending moment to be resisted by the top and bottom
portions stressed to full yielding in tension in the bottom portion and in
compression in the upper portion.

The extent of central portion 2y, can be determined from Eq. (2.5.1) as

P

Yo = m, (2.5.3)

and the reduced plastic bending strength can be expressed in terms of y, from
Eq. (2.5.2) as

M, = o,b(d* — y?). (2.54)

By substituting Eq. (2.5.3) into Eq. (2.5.4) and by noting that 20,bd = 0,4 =
P, and M, = 0,bd?, the nondimensionalized expression for the reduced plas-
tic moment capacity of a rectangular section can be written as

M, . (PY
=1 <17>‘ (2.5.5)

p y.

Compared with the stress diagram shown in Fig. 2.8(a) for the case where
there was no axial load, it is seen that the bending resistance indicated in
Fig. 2.12 is reduced by an amount equal to the moment of the central stress
area used to carry the axial load.

2.5.2 Circular Tubular Section

Like a rectangular section, the value of M, for circular tubular section can

be expressed as
P
M. _ cos (E —). (2.5.6)
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2.5.3 Wide-Flange Section Bending About Strong Axis

Under low values of axial compression, the plastic neutral axis for wide-
flange sections bending about a strong axis will be in the web, while for high
values of axial compression, the plastic neutral axis will be in a flange. The
resulting equations for M, for these two cases are given in the following.
Note that in all the previous derivations, for simplicity we have taken the
depth of a cross section to be 2d. Herein and from here on, we shall follow the
usual notation and take the full depth of a wide-flange section to be d instead
of 2d as shown, among others, in the inset of Fig. 2.13.
For a neutral axis in a web [0 < P/P, < 1/(1 + 2bt,/t,d,)]

P\? 2bt,\?
v (5)(+22)
g P el 25.7)
M, 4bt,d,
1+
tuds
1.0
PIR
1.5=(bt, /t,d,,)
05
Aw Approximation
r + l P i Eq (25.11)
0.15F1 T Ay
L t
0 I L 1 1 I L L
Y 0.5 1.0
Mpc/Mp

FIGURE 2.13. Strength interaction curves for wide-flange sections bending about
a strong axis.
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For a neutral axis in a flange [1/(1 + 2bt,/t,d,) < P/P, < 1.0]

1 P 2bt
() -5)(+ 2
M, _ \dy By Ludy (2.5.8)

M
(e )2

where [ is the lever arm of the couple formed by the tensile and compressive
forces in the flanges and is given by

t,d P
=d— 1+ 2" - 5.
l=d tf< + 2btf><1 Py> (2.5.9)

and b, t, t,,, and d,, are dimensions of wide-flange section as shown in the
inset of Fig. 2.13. Note that the maximum and minimum values of lever arm
| are, respectively, d and d;. The interaction curves plotted between moment
M, and axial force P for bt /t,d, = A;/A, =05, 1, 1.5, and 2.0 are shown
in Fig. 2.13 in which 4, = bt, = area of one flange and 4,, = t,,d,, = area of
web. These curves are plotted by assuming that I/d,, = d/d,, and d,/d,, are
about the same for all shapes used as columns and by approximating these
values as 1.10 and 1.05, respectively. The shaded area in Fig. 2.13 shows
graphically the extent of variation that would result by applying such an
expression to all of the rolled shapes likely to be used in the plastic design.

For design purposes, the interaction in Egs. (2.5.7) and (2.5.8) can be ap-
proximated by the following two simple equations

For 0 < P < 0.15P,

M

pc

=M

p

(2.5.10)
and for 0.15P, < P < P,

P
M, = 1.18<1 —F>M,,. (2.5.11)

y

Note that this approximation is somewhat conservative for most shapes,
except in the region where P/P, is amall. Even here, the maximum error is less
than 5% (dotted line, Fig. 2.13).

2.5.4 Wide-Flange Section Bending About Weak Axis

For weak-axis bending, the plastic neutral axis, depending on the value of
axial load, may fall in the web or the flanges. The resulting M,,. equations for
these two cases are given in the following.

For neutral axis in web [0 < P/P, < (d/d,)(1/(1 + 2bt,/t,d,))]

(122
Mpc=1_<‘w)<dw> \td) (ﬁ)z, (2.5.12)

M, b)\d)| 20t, ¢, |\P,
t,d, b
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1.0
= 0.5
Approximation
(2.5.15)
L Ee > 1.0
P/R, /
F Most W Sections 20\
Y N
05 Rectangle ®
0.4 | Ay At 1.5= bty /(t,d,) )
= Ay/Aw
y - =
— L i J |
| Eq (2.5.14)
L
0 1 1 L L | L L 1 1
0 0.5 1.0

Myo/Mp

FIGURE 2.14. Strength interaction curves for wide-flange sections bending about a
weak axis.

For neutral axis in flanges [(d/d,)(1/(1 + 2bt,/t,d,)) < P/P, < 1]

( 2bt,>2
1+ —
2B i | D)
M, P, (2});,)(2171, N 5‘1) ( {4 twdw> P)|
t,d,/\t,d, b 2bt,
(2.5.13)

The interaction curves plotted between moment and axial force for
bt;/t,d, = A;/A, = 0.5, 1, 1.5, and 2.0 are shown in Fig. 2.14. These curves
are plotted by assuming that ¢,/b and d/d, are about the same for all
shapes used as columns and approximating these values as 0.04 and 1.10,
respectively.

For design purposes, interaction Egs. (2.5.12) and (2.5.13) can be approxi-
mated by the following two equations (dotted line, Fig. 2.14).

For0 <P <04P,

M, = M,. (2.5.14)
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P 2
M, = 1.19[1 - <F) }M,,. (2.5.15)

Note that the influence of the axial compressive load P on the plastic
bending strength of columns may have to be further reduced below the value
M, to guard against premature buckling of columns. This is provided for in
Chapter H of the LRFD rules on beam-column design where columns in
frames are classified as either a sidesway prevented case or sidesway permit-
ted case.

For04P, <P <P,

2.5.5 T-Sections

Under the combined action of bending and axial compression, the line of
action of an axial load may significantly affect the calculation of plastic mo-
ment capacity of a section. Mostly, this line of action is assumed to pass
through the centroid of the section. For doubly symmetric sections such as
rectangular, circular, and wide-flange sections, the plastic neutral axis (PNA)
under pure bending moment passes through the centroids of the sections.
The moment capacity of such sections, therefore, can be determined by sum-
ming up the moments about the centroidal/plastic neutral axis.

For monosymmetric sections such as T-sections, PNA under pure moment
does not pass through the centroids of the sections. If the line of action of
axial load passes through the original plastic neutral axis, then the full plastic
moment is always reduced by the axial load. However, if the line of action of
axial load passes through the centroid, then axial load will generate an addi-
tional bending moment equal to the moment of a couple formed by the
applied axial load acting through the centroid and the internal axial resis-
tance acting through the plastic neutral axis. If the sign of this additional
moment is the same as that of the applied moment, the reduced plastic mo-
ment capacity M, of the section will artificially be greater than M, for some
cases. The following example demonstrates this fact.

Example 2.5.1. Determine M, of a T-section shown in Fig. 2.15 by assuming
that

(a) the axial load is acting through the original plastic neutral axis under
pure moment.
(b) the axial load is acting through the centroidal axis.

Solution: (a) Axial Load Through Original PNA: Under pure bending, the
PNA for the given T-section is at the junction of the two rectangles. In the
presence of axial compressive load, the PNA shifts by a distance y, as shown
in Fig. 2.15. The distances y, and y, in Fig. 2.15(a) can be determined from
the axial equilibrium condition in Fig. 2.15(b) as

y1Bo, + y,To, = P (2.5.16)
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FIGURE 2.15. Computations of the reduced moment capacity M, for a T-section.

and the pure bending condition in Fig. 2.15(c) as

0,T(B —y,) = 0,B(T — y;) (2.5.17)

or

wB=y,T
Solving these two equations, we obtain

_.F (2.5.18
V= 20,B S18)
P
ya = —ZJyT' (2.5.19)

By summing up moments about PNA, the reduced moment capacity M, is
found to be

. 1 -
M, =0,T(B— y2)§(B +T+y, +y)— Py (2.5.20)

Substituting y, and y, from Eqs. (2.5.18) and (2.5.19), respectively, using
P, =2 BTo,and y = (y, — y,)/4 and simplifying, M,,. can be written as

BT P\* 2B
M, = "v2 (B + T)|:1 - <F> 5 T] (2.5.21)
Y.
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P\2 2B
- (£ 2.5.
M, M,,[1 (Py> B T] (2.5.22)

in which M, = [(6,BT/2)(B + T)] is the full plastic moment when axial load
is equal to zero.

or

(b) Axial Load Through Centroid: The distance y,, between the centroid and
the PNA under pure bending, can be expressed as

T B
—BT— + BT -
_ 2 2 B-T (2.5.23)
Yo=""7BT T 4 o
By taking moments about the centroid of section, M, is found to be
P\*> 2B
=M,|1—|—-} ——|+ Py,. 2.5.24
MP" PI: <Py) B_+_T:|+ yO ( )
By substituting y, from Eq. (2.5.23) and using P, = 2BT g,, M, can be ex-
pressed as
P\? 2B P/B—-T
M,=M,]1—-|—= ———=]1 2.5.25
pe ”[ <Py> B+T+Py<B+ T>:| ( )

Using the superposition of the stress diagram shown in Figs. 2.15(d) to (f),
Equations (2.5.22) and (2.5.25) can be derived in a simple and direct manner.

2.6 Effect of Shear Force

The shear force combined with bending moment results in a two-dimensional
stress system in a section, which makes consideration of the effect of shear
force on M, much more complex than that of axial force only. Axial force and
bending moment both result in longitudinal stresses that can be superim-
posed directly. So, for the combined bending and axial force, we were able to
obtain the exact solution of the problem in a simple manner by using the
equilibrium equations, the kinematic assumption of plane section remains
plane, and the yield condition ¢ = ,. For the combined action of shear force
and bending moment, the exact solution of the governing equations is often
intractable for most cases and recourse must be made through approxima-
tions and simplifications for practical solutions by using the following equi-
librium equations

M= f oydA (2.6.1)
A

V= f tdA (2.6.2)
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and the von Mises yield condition [2.1]
6% + 31* < o} (2.6.3)

in which o and 7 are, respectively, the normal and shear stresses at a point in
the beam section at a distance y from the neutral axis.

These approximate solutions satisfying only the equilibrium equations and
the yield condition but not the kinematic condition are always lower than the
exact solution. This will be proved in Chapter 3. The highest solution sat-
isfying Eqgs. (2.6.1-2.6.3) will therefore be the best and closest to the exact
solution. The lower-bound solutions for the moment-carrying capacity con-
sidering the effect of shear force for rectangular and wide-flange sections are
presented in the following.

2.6.1 Rectangular Section

Consider an element of a beam with rectangular cross section [Fig. 2.16(a)].
The elastic solution of the beam section under the combined bending and
shear has the following stress distribution [Fig. 2.16(b)]

FIGURE 2.16. Assumed stress distributions in rectangular cross section under com-
bined bending and shear loads.
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o=o0, <2dy> (2.6.4)

B o.y 2y 27712
T = ﬁl:l - <7> ] (2.6.5)

in which d is the depth of the beam. It can easily be shown that the yield
condition (2.6.3) is not violated over the entire section. The top and bottom
fibers are in the yield state of simple compression — g, and simple tension
+ g, respectively, and the center fiber is in the yield state of pure shear,
T, = ay/\/g, according to the von Mises yield condition (2.6.3). The rest of
the fibers are in the elastic state. By using this elastic stress distribution, the
lower-bound solution for the reduced bending moment M, considering the
effect of shear force can be obtained as

and

1 2
M,, = co,bd® = M (2.6.6a)

3 p

2.9
3 \/5
This lower-bound solution can be improved by assuming a better stress dis-

tribution with more fibers yielded as shown in Fig. 2.16(c). M, and shear
force V corresponding to this distribution can be written as

B 1/2y0\?
M,, = Mp[l - §(T> ] (2.6.7)

4
V =-1,by, (2.6.8)

14 bd. (2.6.6b)

in which b is the width of the beam and 7, = ay/\/g is the yield stress of the
material in pure shear. By eliminating y, from Egs. (2.6.7) and (2.6.8), M,,, can
be expressed as

M, . 3(V\
- _1_Z<7> (2.6.9)

p p.

in which V, = bday/\/g is the maximum shear force capacity of rectangular
section in the absence of moment.

The lower-bound solution can be further improved by first assuming a
general stress distribution and then using the maximization process to obtain
the best distributions [2.2]. However, the process and the resulting equations
are too much involved from a practical point of view. For design purposes,
the following interaction equation proposed by Drucker [2.3] can be used as
a good approximation to the exact solution

M,, \*
e =1 <7) . (2.6.10)

p p

Interaction equation (2.6.10) is plotted in Fig. 2.17.
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2.6.2 Wide-Flange Section

Consider the beam element with wide-flange section as shown in Fig. 2.18(a).
Assume that the flanges and part of the web yield under normal stress and the
stress distribution in the remaining portion of the web is parabolic for shear
stress and linear for normal stress [Fig. 2.18(b)]. These assumed stress distri-
butions satisfy the yield criterion (2.6.3). The resultant moment M, and shear
force V corresponding to this stress distribution are

1
My, = M, — 30,531, (2.6.11)

NN

V=2t (2.6.12)

§ \/gtwyo
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By eliminating y, from Egs. (2.6.11) and (2.6.12), the reduced moment M,
can be expressed as

3<V>2
M, 4\, 2
s_ 1 N\ iy <ty 2.6.13
Moo dbrd, OV =3 (26.13)
P 1+ e
t,d;

in which b, t,, d;, and t,, are dimensions as shown in Fig. 2.18(a) and

V,=t,d,t, = twdw—al
J3
is the maximum shear capacity of the web.
Expression (2.6.13) for M, can be improved by assuming that the flanges
will carry only the normal stresses and the web will carry uniform normal
and shear stresses as shown in Fig. 2.18(c). With this assumption, M, can be
written as

(2.6.14)

1
Mps = O'ybtfdf + Zo’twd‘zv (2.6.15)

where ¢ is the uniform normal stress in the web and can be expressed in
terms of shear force V by using T = V/t,,d,, in the von Mises yield criterion,

Eq. (2.6.3) as
9 _ / 1— <\/§ ’)2 = |1- <K>2. (2.6.16)
o, o, V,

By substituting ¢ from Eq. (2.6.16) in Eq. (2.6.15), M, can be expressed as

1¢,d2 V\?
142 1—(—
M, = 4btd, v,
M, 1t,d? '
4 bt,d,

p 1 +
Though the stress distribution in Fig. 2.18(c) does not fully satisfy the equilib-
rium conditions at the web-flange junction (the shear stress has a jump at this
junction), it provides a reasonably good theoretical estimate of the effects of
shear force on the plastic moment capacity of a wide-flange section.

The effect of shear force on the full moment capacity of members in a
practical frame is generally negligible. Because in frames, high shear and
moment occur in localized zones where strain hardening of material will set
in quickly, thus, in most cases permitting the moment to reach or exceed the
full plastic value. Therefore, in actual design of frames, as far as shear is
concerned, the full plastic moment M, may be used in design, provided that
the total transverse shear force V on the section at ultimate loading is no
more than V, given by Eq. (2.6.14).

(2.6.17)
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Example 2.6.1. Determine the percentage of reduction in the plastic modulus
of W14 x 82 of A36 steel when a shear force of 100 kips is to accompany the
bending moment.

Solution: From Fig. 2.18(c), the reduced plastic moment capacity of a wide-
flange section in the presence of shear can be written as

M, = M, + M,, (2.6.18)

in which M, is the moment capacity contributed by the flanges and M,,; is the
moment capacity of the web in the presence of shear force and can be written
as

M, =M, (2.6.19)
O'y
where M,, is the moment capacity of the web when shear force is absent and
o is the normal stress in the web reduced by the presence of shear force. Thus,
Eq. (2.6.18) can be expressed as

M, =M, + M, — M, + M,, (2.6.20)
or
g
M, =M, — Mw<1 — —>. (2.6.21)
a}’

Dividing both sides by o,, Eq. (2.6.21) can be rewritten as

Z,,s=z—zw<1—5)

O'y
in which Z,, is the plastic modulus of a wide-flange section reduced for the
presence of shear force and Z,, is the plastic modulus of the web of a wide-
flange section.
From the AISC manual, the following properties of W14 x 82 section can
be noted

Z =139 in3
d,=d—2t;=1431 —2 x 0855 = 12.6 in.
t, = 0.510 in.
2 12.6)%
Z,= tw%w =0.51 x (126) =20.24 in.3
The shear stress in the web is
T 4 100 = 15.56 ksi

T d,t, 126 x 051

from the von Mises yield criterion (2.6.3), the normal stress reduced for the
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presence of shear stress is
o =/} — 3% = /(36)* — 3(15.56)* = 23.87 ksi.

Therefore, we have

23.87 .
Z,s =139 — 20.24<1 - ~3-6——) =132.18 in®
. 139 — 132.18
9% reduction = — 39 = 4.9%.

2.7 Effect of Combined Axial and Shear Force

In a manner similar to that used for considering the individual effects of
axial and shear force, the effects of combined axial and shear on M, can be
considered.

For a rectangular cross section, Near [2.4] has suggested the following
approximate interaction equation for the combined bending, axial load, and
shear force

)
M, (P)2 PA/7AN 2.7.1)

M, "\p) TPy
\B,

p y.

Equation (2.7.1) is a good approximation of the exact interaction relation. This
relation reduces to Drucker’s approximation (2.6.10) for the special case of
P = 0 and it reduces to the exact Eq. (2.5.5) for the special case of V = 0. Over
the full range of values of M/M,, P/P,, and V/V,, the error never exceeds 5%.

For wide-flange sections, the effects of combined axial and shear force on
M, can be considered by assuming a stress distribution shown in Fig. 2.19. By
using this stress distribution, the reduced plastic moment capacity of the
section is found to be

d2
M =o,bt d, + ot,, <—43 - y%)

in which ¢ is the normal stress in the web and can be expressed in terms of
shear force V by using 7 = V/t, d,, in the von Mises yield criterion (2.6.3) and
Yo can be related to the axial load P by the relation P = 2t,,y,0.

2.8 Compactness
In the plastic analysis of steel structures, it is tacitly assumed that the mo-

ment capacity of a section will remain at the level of the plastic moment until
a sufficient number of plastic hinges are developed to transform the structure
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FIGURE 2.19. Assumed stress distributions under combined bending, axial compres-
sion, and shear force for wide-flange sections.

FIGURE 2.20. Local buckling of flanges of beams.

into a failure mechanism. However, if the section is made of thin plate ele-
ments, premature local buckling of some of its element may occur and the
section may not be able to attain the value of plastic moment or after attain-
ing the plastic moment, it may not be able to sustain the plastic moment up
to the desired rotation capacity. For example, if the width-to-thickness ratios
of the flanges and web are too high, they may buckle locally, thus violating
the basic assumptions underlying the plastic analysis. Figure 2.20 shows pos-
sible local buckling modes of compression flanges of two beams: one under
moment gradient and the other under uniform moment.

2.8.1 LRFD Definitions of Compact, Non-Compact and
Slender Sections

To ensure proper compactness of section for various purposes, the LRFD
specification has defined two sets of limiting width-to-thickness ratios
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TaBLE 2.1. Limiting values of width-to-thickness ratio (4 = b/t) to avoid premature
local buckling

A A
Type of element Kmin (compact) (noncompact)

Unstiffened
Single angles 0.425 NA 76/\/F,
Flanges of I-shaped rolled beams and

channel section in flexure 0.7 65/\/Fy 141/,/F, - 10
Flanges of I-shaped hydrid or welded

beams in flexure 0.7 65/\/F,, 162/./(F,; — 16.5)/k,
Flanges of channels or I-shapes in pure

compression 0.7 NA 95/\/;":,
Stems of tees 1277  NA 127/, /F,
Stiffened
Uniform thickness flanges of tubular

sections and flange cover plates 4.7 190/\/;:y 238/\/1?,,
Webs in flexural compression _ 640/\/;":, 970/\/I‘Ty
Performated cover plates 697 NA 317/\/;":,
All other uniformly stressed stiffened

elements, i.e., supproted along two edges 5.0 NA 253/\/17y
Circular hollow sections, D/t, in axial

compression, in flexure —_— 2070/F, 3300/F,, 8970/F,
F,, = yield stress of the flange, ksi.

h = clear distance between flanges when welds are used.
k. = 4/./h/t,, but not less than 0.35 < k. < 0.763.
D = diameter.

(A=b/t): A, and A, (Table 2.1). On the basis of these limiting values, the
LRFD has divided the steel sections into three categories: compact sections,
noncompact sections, and slender sections. If the width-to-thickness ratios of
all elements of a section are less than A,, then, the section is a compact
section. Compact sections are capable of developing a fully plastic stress
distribution (plastic moment), and they have a rotation capacity of approxi-
mately 3 times the yield rotation capacity before the possible occurrence of
the local buckling. If the width-to-thickness ratios of all elements of a section
are less than 4, and the width-to-thickness ratio of one or more elements of a
section is greater than A,, then, the section is a noncompact section. Non-
compact sections can develop the yield stress in compression elements before
local buckling occurs. However, these sections may not resist the local
buckling at the strain levels required to develop the fully plastic stress distri-
bution. If the width-to-thickness ratio of one or more elements of a section is
greater than A,, then the section is a slender section. These sections may
develop local buckling elastically before the yield stress is achieved. For de-
termining the width-to-thickness ratio (b/t) of a plate element in a thin-walled
section, the width b is explicitly defined in Fig. 2.21. Further discussion of
Table 2.1 is given in the forthcoming.
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FIGURE 2.21. Width of stiffened and unstiffened elements for computing width-to-
thickness ratio b/t.

2.8.2 Relation of 4, and J, with Buckling Strength of Plate
Elements

The recommended values of 4, and 4, are based on the buckling strength of
plate element with various boundary conditions. With the formal mathemat-
ics, the elastic buckling strength of an axially loaded steel plate element can
be developed as

kn2E k
F " = 26210 28.1)

I

in which v is the Poisson ratio of the material, b/t is the width-to-thickness
ratio of the plate, and k is the buckling coefficient. For elements found in
most structural members (high aspect ratio), the value of k depends mainly
on the boundary conditions (or edge conditions) of the plate element.

On the basis of boundary conditions, the plate elements in actual struc-
tural members can conveniently be divided into two categories: unstiffened
elements and stiffened elements. Unstiffened elements are supported only
along one of the edges parallel to the axial stress, for example, legs of single
angles, flanges of wide-flange sections, and stems of tees. Stiffened elements
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are supported along both the edges parallel to the axial stress, for example,
flanges of square and rectangular tubular sections, perforated cover plates,
and webs of wide-flange and channel sections. The recommended values of
the buckling coefficient k for several types of thin elements are listed in
Table 2.1.

A plate element can develop full yield stress without occurrence of
buckling only if its width-to-thickness ratio does not exceed a certain value.
For a plate without residual stresses, this value can be obtained by rearrang-
ing Eq. (2.8.1)

162 [— 2.8.2
7 282)

y

b k
.=
where F, is yield strength of steel in ksi.

2.8.3 LRFD Recommended Values of A, and 4,

To attain the full yielding, the elements with residual stresses have to undergo
larger strains than those for the elements without residual stresses. Thus, the
LRFD recommendations for the limiting b/t denoted as 4, are based on the
requirement that is more strict than Eq. (2.8.2) and is approximately given by

k
=113 [—. 8.
. 3/; (2.8.3)

In order to attain fully plastic stress distribution over the entire section,
the plate elements have to undergo even higher strains. Thus, 4, in LRFD
is based on even more strict requirements approximately given by the

following:
k
A,=15 \/: (2.8.4)
i4 Fy

k
2, =94 \/;; (2.8.5)

The values of 4, and 4, recommended by LRFD [1.11] in Table B5.1 can
approximately be obtained by using an appropriate value of k in Egs. (2.8.3)
to (2.8.5). These value of 4, and 4, are given herein in Table 2.1. Since webs
of sections under flexural compression are partially under tension, the
recommended values of 4, and 4, for these elements are much higher than
those for the uniformly stressed stiffened elements (Table 2.1). For webs
under a combined flexural and axial compression, 4, is reccommended as the
following:

for unstiffened elements

and for stiffened elements
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for P/(¢,P,) < 0.125

A, = 640 (1 — 275 > (2.8.6)
¢, P,

JF

and for P/(¢,P,) > 0.125

191 P 253
A, = 2.33 — — 2.8.7
g ﬁ[ m] JF, 287

in which P is the required axial load capacity, P, is the yield axial load, and
¢, is the resistance factor for bending, i.e., 0.9. Note that the limiting b/t
values denoted as 4, are to ensure that the member can be designed by the
plastic analysis methods. However, in areas of high seismicity, sections must
also be able to develop higher ductility/rotation capacity (7 to 9 times the
elastic rotation). Therefore, for such areas, the limiting values of 1, should be
further reduced as recommended by LRFD. For flanges of I-shaped and
channel sections, 4, reccommended by LRFD in seismic area is

a,=% (2.8.8)

p
JF,
For webs under a combined flexural and axial compression, 4, reccommended
by LRFD in seismic area is the following:

for P/(¢,P,) < 0.125
520 P

A 1—-154 2.89

= JF, [ 4P ] (282

for P/(¢,P,) = 0.125

Cover Flange Longitudinal Vertical "Box"
plate edge stiffener stiffener - stiffener
plate

FIGURE 2.22. Methods of stiffening wide-flange shapes to prevent local buckling of
compression elements.
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191 P 253

Ay = —|:2.33 — —:| > —. (2.8.10)
\/Fy P, \/Fy

The sections that do not meet width-to-thickness requirements may be

strengthened/stiffened in the region of the plastic hinge. Figure 2.22 suggests
some methods by which this may be accomplished.

2.9 Connections

A structural frame will be able to reach its plastic limit load only if its connec-
tions and members are capable of developing and subsequently maintaining
the required plastic moment up to the desired rotation capacity. The various
types of connections that are encountered in steel framed structures are
designated in Fig. 2.23. These include corner connections (straight and
haunched), beam-to-column connections (interior, top, and side), beam-to-
beam connections, splices, column anchorages, and miscellaneous connec-
tions (purlins, girts, and bracing).

Column anchorage

1 2
Types
He (@ Corner
> - aE> a=> e ¢ ® Beam-Column
2 @ £ @ Beam-Beam
@ Splice
®

Miscellaneous

TITTT 7777

FIGURE 2.23. Types of connections in frames: 1 corner, 2 beam-column, 3 beam-beam,
4 splice, 5 column anchorage, and 6 miscellaneous.
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Herein, the primary attention will be focused on the straight corner and
interior beam-to-column connections under both balanced and unbalanced
conditions. The basic analysis procedure discussed here is also applicable to
other types of connections. The analysis will be performed to achieve the
minimum thicknesses for the parts of the connections that have to transfer
the load from one member to other members. The analysis will use plastic
stress distributions that satisfy equilibrium and yield criterion (2.6.3). Since
the stress distributions that satisfy only the equilibrium and yield criterion
but not the kinematic condition are lower bounds, the procedure will lead to
conservative estimates of the thicknesses of plate elements required to trans-
fer a given load.

2.9.1 Requirements for Connections

The principal requirements for connections used in a plastically designed
frame are:

1. sufficient strength.

2. adequate rotation capacity.

3. adequate overall stiffness in the elastic range.
4. economical fabrication and ease of erection.

The connection must have sufficient strength so that the full plastic mo-
ment M, of the connecting members can be developed (i.e., the weaker of the
two members). In addition to strength, these connections must have the ca-
pacity to rotate while sustaining the plastic moment to permit redistribution
of moments so that plastic hinges can subsequently form at other critical
locations resulting in the formation of a mechanism. The connection must
also exhibit overall elastic stiffness under working load to maintain the rela-
tive positions of all structural components so that excessive drift of the frame
will not occur. Finally, fabrication and erection of connections should be
easy and economical because minor material and labor savings in a connec-
tion can considerably reduce the cost of steel structures where connections
are repeated many times.

Figure 2.24(a) shows the moment-rotation behavior of four connection
tests under symmetric loading. Connection A is considered to be properly
designed and detailed since it is strong enough to carry the plastic moment
of the connecting beam and allow the beam to rotate inclastically through
a large angle. Connection B is not acceptable because it does not have
enough rotation capacity even though it can carry the plastic moment of
the beam. Connection C exhibits a large rotation capacity but does not have
enough strength. Connection D is the worst of all since it does not have the
required moment and rotation capacities that are imperative in plastically
designed frames.

Figure 2.25 shows the failure modes of a fully welded connection that met
the criteria for sufficient strength and rotation capacity in plastic design.



2.9. Connections 79

FIGURE 2.24. Requirements
of moment-rotation be-
havior for connections.

Failure of the specimen was due primarily to a combination of excessive
buckling of the column web and fracture of the column flange material
around the weld at the tension flange. Since no premature weld failure and
buckling occurred, the current provisions for welding and connection de-
tailing are adequate [2.5].

In the following sections, these provisions of (1) strength, (2) stiffness, and
(3) rotation capacity will be discussed in light of the behavior and design of
corner and interior connections. Obviously, among other factors, extra con-
necting materials must be kept to a minimum for overall economy. Both
unstiffened and stiffened connections will be considered.

2.9.2 Corner Connections

Without Stiffeners: Consider a typical straight corner connection without
stiffeners, as sketched in Fig. 2.26(a). Assume that the horizontal beam con-
tinues through the knee. The moment, axial force, and shear acting on the
connection are shown in Fig. 2.26(b). The free body diagrams of the parts of
the corner are shown in Fig. 2.26(c). The tensile force in the outer flange of
the beam is transferred as shear in the web along line AB. In the same man-
ner, the tensile force in the outer flange of the column is transferred through
the end plate as shear to the web of the beam along line AD. Note that the
tensile stress in the outer flange of the beam and the end plate will vary from
o, at point B (or D) to zero at the external corner A.
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FiGURE 2.25. Failure modes of an interior beam-to-column connection under symmet-
rical loadings: (a) overall view of a failure mode of a properly designed and detailed
moment connection (connection A defined in Fig. 2.24); (b) fracture failure mode of
the column flange material around the weld at the tension flange; and (¢) buckling
failure mode of stiffeners in the compression zone of the column web.
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The inner flange of the beam carries two forces: the shear of the column,
and the flange force due to bending and thrust in the beam. These two forces
are transferred as shear to the corner along line DC [Fig. 2.26(c)]. Similarly,
the two forces on the inner flange of the column are transferred as shear in
the web along line BC. Note that the shear forces in the web panel tend to
deform it as shown in Fig. 2.26(d).

The minimum required thickness t,, of the web panel ABCD can be ob-
tained by considering the equilibrium of horizontal forces on the portion of
the outer flange between A and B and by assuming that (i) the beam flanges
carry the moment M, and the beam web carries the shear; (ii) the axial force
in the beam is negligible; and (iii) the distribution of shear stress in the panel
web along line AB is uniform [Fig. 2.26(c)]. Thus, the flange force T can be
expressed in terms of M, and yield stress 7, as

M
T=—=1,tdu 2.9.1)
b

in which d, = d,,, — t;, is the lever arm corresponding to the center-to-center
beam flange forces, d.,, is the depth of the column and t,, is the thickness of
the panel web. Equation (2.9.1) can be solved for t,, to obtain the required
thickness of the panel web

M, 29.2)

t, = .
rybdbdcol

w

The shear stress at yield in Eq. (2.9.2) can be taken from the von Mises yield
criterion as 7, = ay,,/\/g = 0.5770,,. However, LRFD uses 7, = 0.60,. Intro-
ducing resistance factor ¢,, we have

M

t,=——7~2—
¢v rybdbdcol

(2.9.3)

where ¢, has the value 0.9.

With Stiffeners: When the thickness of the panel web is less than the required
thickness t,,, the web can be reinforced either by using a doubler plate or by
a symmetrical pair of diagonal stiffeners whose cross-sectional area is suffi-
cient to transmit that portion of the shear in excess of the web capacity. Thus,
when a doubler plate is used as reinforcement, its thickness should be such
that the total thickness of the web is equal to or more than the minimum
required as given by Eq. (2.9.3). Welds should be arranged at the edges of
doubler plates so as to transmit shear stress directly to the boundary of plate
stiffeners and flanges. When diagonal stiffeners are added as reinforcement,
the required strength of the pair of diagonal stiffeners [Fig. 2.26(e)] can be
obtained by considering equilibrium of horizontal forces.
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FIGURE 2.26. Analysis and
design of straight corner
connections.

M
T = d—p = ¢vrybtwbdcol + ’I;COS 9 (294)

b
in which T is the flange force, t,, is the thickness of beam web, T, is the
required strength of the area of a symmetrical pair of stiffeners and 6 is
the angle of diagonal stiffener with the horizontal, i.e., tan 8 = (d,,, — 2t;,)/
(d.o1 — 2t;.) as shown in Fig. 2.26(¢). From Eq. (2.9.4), T; can be determined

as

- L [MP - ¢—v‘wbdf°"’y]. (29.5)

b 3

Stiffeners should be welded for their full area across their ends and continu-
ously fillet welded to column web. To avoid overall buckling, the design of
stiffeners must also satisfy the following LRFD requirements (Section K 1.9).

The stiffeners shall be designed as axially compressed members (columns) in accor-
dance with the requirements of Sec. E2 with an effective length equal to 0.75 I, a cross
section composed of two stiffeners and a strip of the web having a width of 25¢, at
interior stiffeners and 12¢,, at the ends of members, where [ is the length of stiffeners.

Design of compressive members and background of column strength equa-
tions, in Section E2 of LRFD, are presented in details in Section 4.6.2. Here-
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in, we will only apply these equations to check the overall buckling of the
web stiffeners designed in Examples (2.9.1) and (2.9.2).

To avoid local buckling of the stiffeners, the stiffeners of A36 steel must
satisfy the criteria (Table 2.1)

o

P (2.9.6)

: JF,
in which b, and t, are, respectively, the width and thickness of each stiffener,
and F, is the yield stress of the stiffener in ksi.

o~

2.9.3 Balanced Interior Beam-to-Column Connections

Without Stiffeners: A sketch of a typical interior beam-to-column connection
is shown in Fig. 2.27(a). The forces introduced in the beam flanges by mo-
ment are transferred to the column flanges and then to the column web
[Fig. 2.27(b)]. If the thickness of the column web is insufficient, then it can
fail either by yielding and/or buckling due to the beam compression flange
force or fracture due to the beam tension flange force. If the thickness of
the column flange is insufficient, the tensile force in the beam flange tends
to pull the outstanding column flanges outward, resulting in a possible initia-
tion of fracture at the junction of column flanges and web, as shown in
Fig. 2.28.

FIGURE 2.27. Yielding in an interior beam-to-column connection.
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Column Web Yielding

The stresses in the column web resulting from the pair of concentrated beam
flange forces spread out as they penetrate deeper into the column web. Tests
of these connections show that stresses in the column web can be estimated
by assuming a slope of 2.5 : 1 from the point of contact to the column k-line
[Fig. 2.27(b)]. The minimum thickness of the column web required to pre-
vent yielding under the applied concentrated force of tensile or compressive
flange of the beam can therefore be determined simply by

R = o,t,.(t; + 5k) = T (2.9.7)

in which g, is the yield stress of the column, T, is the beam flange force, ¢,
is the thickness of column web, t, is the thickness of beam flange, and k. is
the column k-line as shown in Fig. 2.27(b). Note that Eq. (2.9.7) is the same
as Eq. (K1-2) of LRFD and ¢ corresponding to this case is 1.

Column Web Buckling

To avoid possible buckling of the column web, the buckling strength of the
web as given by Eq. K1.8 of LRFD must also be checked against the concen-
trated force from the beam flange as follows

410043 ../
R:-ﬁ%iiiznb 2.9.8)

c

in which ¢ is the resistance factor and has the value 0.9, 4, is clear depth of
the column and is shown in Fig. 2.27(b), and g, is in ksi.

FIGURE 2.28. Column flange
bending in tension region of
interior beam-to-column
connection.
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Column Flange Bending

The bending of column flanges is a much more complex problem because the
flanges bend in two directions, both longitudinal and transverse to the axis of
the column, as sketched in Fig. 2.28. In order to avoid the excessive bending
due to the forces from the beam flange, LRFD Eq. K1-1 requires that the
thickness of the flange of the column must satisfy the following equation

R = $6.25t%0,. > Ty (2.9.9)

in which ¢ has the value 0.9, and ¢, is in in. Equation (2.9.9) is obtained by
using the yield line theory for plates and some simplifications about the rela-
tive dimensions of beams and columns.

With Stiffeners: If the thickness of the column web is insufficient to avoid
yielding and/or buckling, the web can be reinforced by a pair of stiffeners.
Then the beam flange force is resisted jointly by the column web and stiff-
eners. The strength T, of the stiffeners required to prevent column web yield-
ing or buckling can be determined from the simple equilibrium condition

T, = Tyy — Pras (2.9.10)

in which P,,,, is the capacity of the web without stiffeners, and it is taken as
the smaller of:

the yield strength of the column web [LRFD Eq. (K1-2)]

Pmax = ayctwc(tjb + Skc) (2911)
or the buckling strength of the column web [LRFD Eq. (K1-8)]
4100413, ./
e = #ﬁﬁ (2.9.12)

in which ¢ is the resistance factor and has the value 0.9, g, is in ksi, t,, is in
inches and d, = d,,, — 2k, is the clear depth of the column and is also in
inches.

If the thickness of the column flanges is less than that from Eq. (2.9.9),
stiffeners must be used to provide support to column flanges. The dimensions
of all the stiffeners should satisfy local and overall buckling checks. Stiffeners
should be welded for full strength across their ends, in contact with the inner
face of flanges to which the supported members are framed, and the welding
connecting them to the web should be strong enough to transmit the net
stress applied to the web by the supporting members. The types of stiffeners
that are commonly used to reinforce the column web and to prevent the
bending of column flanges are shown in Fig. 2.29.

2.9.4 Unbalanced Interior Beam-to-Column Connections

When the moments in the two beams at an interior connection differ by a
large amount, they may cause large shears in the column web. As a result, a



2.9. Connections 87

FIGURE 2.29. Stiffeners for interior beam-to-column connections.

column web may deform in the same manner as in a corner connection.
Figure 2.30(a) shows shears and moments acting on a typical unbalanced
interior beam-to-column connection and Fig. 2.30(b) shows a free body dia-
gram of the forces acting on the top flange stiffener AB. The forces are V, the
horizontal shear present in the column above the connection and two tensile
flange forces, T; and T,. The net result of these forces must be resisted by a
shear stress t acting on an area of column web equal to t,,.d,,,. Thus

M, M, _ V. (2.9.13)
db2 dbl

Using 7 equal to the shear yield strength 1, the required web thickness to
resist shear can be obtained as

1 M, M, ]
te=— |21y (2.9.14)
¢v‘cycdcol l:de dbl

If the actual web thickness of the column is less than that given by Eq.
(2.9.14), diagonal stiffners or web doubler plates, similar to those discussed in
Section 2.9.2, should be provided to carry the excess shearing force. The
connection should also be checked for all the failure modes discussed in
Section 2.9.3.

¢vrtwcdcol =

Example 2.9.1. Design the corner connection shown in Fig. 2.31. Assume
that the yield strength of both beam and column is 36 ksi.

Solution: For W14 x 34 beam, the following properties are noted from the
AISC manual

Z =546in’ t, = 0455 in, t,, = 0.285 in., k, = 1 in.
dy=d —t; = 1398 — 0455 = 13.525 in.

in which the more accurate center-to-center distance between the two beam
flanges is used for the calculation of the flange force. The plastic moment
capacity of beam is

M, = 6,,Z = 36 x 54.6 = 1965.6 Kip-in.
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l F1GURE 2.30. Forces acted
N on an unbalanced interior
beam-to-column
N\ connection.
® | v
M, < l ) M, S I db
N
“\—j\r
dc
f———
(a)
T =M, /4, @ —_— T, =M, /dp
- \\l —

(b)

Diagonal stiffener

W14x34 2

W14x34

FiGuURe 2.31. Design of a pair of diagonal
—N\— stiffener in a straight corner connection.
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The force in each flange of the beam is

M, 19656

p

e = 14533 kips.
4, ~ 13525 ~ 14533 kips

The shear resistance provided by the column web has the value

T, = .7t b = 0.9(0.6 x 36)(0.285)(13.98) = 77.45 kips.
The required strength of stiffeners is

T,cosm/4 =T — T, = 14533 — 77.45 = 67.88 kips
or
T, = 96 kips.
Using a pair of A36 stiffeners, the required area of each stiffener is
I, 96

* 2¢0, 2x0.85x36
Try a 1/2-inch-thick plate. The required width of stiffener is

1.57
bs - 1/72

A = 1.57 in.?

=3.14in.
Try a 3 1/4-inch-wide plate.

Check Buckling of the Stiffeners in the Plane of the Web

89

Assume that the stiffeners are welded at its ends only. The compressive
strength of each of the stiffeners against their buckling in the plane of the web

can be determined by using the LRFD column strength equation.
The length of the stiffeners is

=g = (1398 -2 x 0.455),/2 = 1848 in.

Area, moment of inertia, radius of gyration, effective slenderness ratio, and 4,

of each of the stiffeners are calculated as

A, = bt, =325 x 0.5 = 1.625 in.2

1 -
I, = ﬁ(3'25)(0'5)3 =0.0339 in.*

I, 00339 .
r= /Z_ /—1‘625 =0.144 in.

KL\ 0.75 x 1848
<T) = o 0P
1KL [F, 1 36
“ mwr\E n(% 29) 29,000 1079
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Note that the effective length factor K for the stiffener is taken as 0.75 as per
Section K1.9 of LRFD. Since 4, < 1.5, the in-plane buckling strength of each
stiffener is

¢.P, = $.A,0.658%F,
or

¢.P, = 0.85 x 1.625 x 0.658(1-079% x 36 = 30.55 kips
T,
(¢.P, = 30.55 kips) < <5s =48 kips), not okay.

The strength of stiffeners can be increased either by increasing the size of
the stiffeners or by welding the stiffeners to the web panel throughout their
length. Here, we assume the latter so that the stiffeners shall not buckle in the
plane of web.

Check Out-of-Plane Buckling of the Stiffeners

To check out-of-plane buckling, we shall evaluate the compressive strength
of a combined stiffener and web assembly as per Section K1.8 of LRFD. The
area of the assembly is

1
As=2><bs><ts=2><3.25x§=3.25in2.

Note that the contribution of the web to the assembly area for this corner
connection is neglected. Now, moment of inertia, radius of gyration, effective
slenderness ratio, and A, of the assembly of the two stiffeners are calculated as

1 3
| _dex3254+0289

: 12
_ L [Bor_,.
=4, T35 T

(KE) —015'8 _ o

2
1(KL\ [F, 693 [ 36
fe = E(T) \/75' =\ 29000 2078

Since 4, < 1.5, the compressive strength of the assembly is checked by using
the LRFD column strength equation

¢.P, = ¢, A,0.658%F,

or
¢.P, = 0.85 x 3.25 x 0.658-07®” x 36 = 99.2 kips

(¢.P, = 99.2 kips) > (T, = 96 kips) okay.
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FIGURE 2.32. Design of a pair of hori-
zontal stiffeners in an interior beam-to- W14%X90
column connection.
Wwi18xs7 Horizontel
Stiffeners
Check Local Buckling of the Stiffeners
b, 3.25 65
*="""=65<——=108 okay.

= S<
t, 172 \/Fy
Use a pair of A36-31/4 x 1/2"-inch diagonal stiffeners.

Example 2.9.2. Design the interior beam-to-column connection shown in
Fig. 2.32. Assume that both beam and column are made of A36 steel.

Solution: From the AISC manual, the following properties of W18 x 97
beam and W14 x 90 column are noted.

Beam Column
W18 x 97 W14 x 90
trpy = 0.87in. t,. = 0.44in.
b, = 11.145in. k, = 11/8in.
d, = 18.59 in. d. = ‘:)54‘: in.
Z,,=211in3 atif;,_:: i4.01;in.

Check Yielding and Buckling of Column Web

The maximum beam flange force is

M 211
b _ X 36 _ 4287 kips.

T dy—t, 1859—087

Ty

The resistance of column web against yielding has the value

Tw = Gyctwc(tfb + Skc)
11
=36 x 0.44 (0.87 + 5 x §> = 122.7 kips < 428.7 not okay.

The resistance of column web against buckling, Eq. (2.9.12)
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7 _ 4100 x 09 (0.44)* /36
e 14.02 — 2(11/8)

The required strength of stiffeners is

T, = 428.7 — 122.7 = 306 kips.

= 167.6 Kips.

Check Bending of Column Flanges

The required thickness of column flange is determined from Eq. (2.9.9) in the
rearranged form as
Tp 428.7

= ,4 —_— = ], i . . i . .
090, 0 09 % 36 1.46 in. > 0.71 in. not okay

tfc = 0-4

Select Dimensions of Stiffeners

Stiffeners are needed to reinforce the column web against yielding and to
strengthen the column flanges against excessive distortion. Providing a pair
of horizontal stiffeners both in compression and tensile zones, and using A36
steel, the required area of each stiffener is

_ L _ 306 = 5in.2
"~ 240,, 2x085x36

Try 5- x 1-inch plate.

A;

Check Buckling of Stiffeners in the Plane of Column Web

Assume that the stiffeners are not welded to the column web. Then the com-
pressive strength of the stiffeners against their buckling in the plane of the
column web is determined from the LRFD column strength equation as
follows:

length of stiffener I, = d — 2t,, = 1402 — 2 x 0.71 = 12.6 in.

Area, moment of inertia, radius of gyration, effective slenderness ratio, and 4,
of each of the stiffeners are calculated as

A,=bt,=5x1=5in2

_ 1 3 _ i 4
I, = E(S)(l) = 0417 in.

= 227 _ 0289,
5
L\ 075x 126
<—> = om9 2

"
1/KL\ [F, 1 36
=——] [Z2=-(32 = 0.367.
4 n( r >\/; n(32 7 29,000
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Note that K = 0.75 is taken as recommended in Section K1.8 of LRFD.
Since 4, < 1.5, the buckling strength of each stiffener is

¢.P, = ¢.A,0.658%F,
or

#.P, = 0.85 x 5 x 0.658(°-367" x 36 = 144.6 kips

T,
(¢.P, = 144.6 kips) < (Es =153 kips) not okay.

The strength of stiffeners may be increased by either welding the stiffeners to
the column web or increasing the size of the stiffeners. Here we increase
the stiffener size to 5 1/2- x l-inch. As A, remains the same, the increased
strength of the stiffeners becomes

#,P, = 0.85 x 5.5 x 0.658(°:367* x 36 = 159.1 kips
T; .
¢.P, > 5= 153 kips, okay.

Provide a pair of A36-51/2- x 1-inch stiffeners in both compression and
tension zones.

2.10 Examples

Herein, we present examples of calculating the full plastic moment of a given
section with or without the presence of axial load and shear force. The sec-
tion also includes the examples dealing with plastic analysis and section
design of given determinate beams. More examples can be found in the book
by Baker and Heyman [2.6], among others.

Example 2.10.1. Calculate the plastic section modulus Z, the elastic section
modulus S, and the shape factor f for the following sections with dimensions
shown in Fig. 2.33.

(a) an I-section bending about strong axis [Fig. 2.33(a)].
(b) an I-section bending about weak axis [Fig. 2.33(a)].
(c) an I-section with a cover plate [Fig. 2.33(b)].

(d) a T-section [Fig. 2.33(c)].

(¢) a square shaft with keyway [Fig. 2.33(d)].

(f) a thin-walled tubular section [Fig. 2.33(e)].

(g) an isosceles triangle [Fig. 2.33(f)].

Solution: The plastic section modulus Z is determined by calculating the first
moment of area about the plastic neutral axis while the moment of inertia I
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Vy "
| 25
f
3 T
——————————————————— PNA
ye =11.87
—————————————————— ENA
30"
> ey
20.13
 2f ]
20"
(b)
8d
| ———
f o
| P =
{ 35d| |Ye =357¢
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(e) (f)

Fi1GURE 2.33. Computation of plastic and elastic moduli and shape factors of various
sections.

is determined by calculating the second moment of area about the elastic
neutral axis.

a) I-Section Bending About Strong Axis: Both elastic and plastic neutral axes
pass through the centroid of the section as shown by the dashed line x-x in
Fig. 2.33(a). Thus, we have

Z =2[(1 x 13) x 6.5] + 2[(20 x 2) x 14] = 1289 in.?

I= éu x (26)°] + 2[(11‘2) (20)(2)3] + 2[(20)(2)(14)2] = 17,171 in*
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s=L 1P 45 ins
c 1
Z 1289

b) I-Section Bending About Weak Axis: Both elastic and plastic neutral axes
are the same as shown by the dashed line y-y in Fig. 2.33(a). Thus, we have

Z =2(0.5 x 26) x 0.25 + 4[(2 x 10) x 5] = 406.5 in.?

I= 5[26 x (1)°] + 2[(%2—)(2)(20)3] = 2669 in.*

I 2669

LY in 3
S_c 10 267 in.
Z 406.5
=—=——=1522.
f S 267 >

c¢) I-Section with a Cover Plate: Assume that the cover plate material is of the
same yield stress as the original section.

Plastic Modulus: Area of the built-up section [Fig. 2.33(b)] is
A=2x20x2)+26x1+25x2=156in2

The plastic neutral axis will divide the area of cross section into two equal
halves. Since the area of cover plate is less than A/2 which is less than the area
of cover plate and top flange, the PNA is in the top flange and the distance y,
of the PNA from the top of the section can be obtained by

y, = 34in.

By calculating the first moment of area about the neutral axis, Z is obtained
as

Z = (25 x 2)(2.4) + (20 x 1.4)(0.7)
+ (20 x 2)(27.6) + (26 x 1)(13.6) + (20 x 0.6)(0.3) = 1601 in.?

Elastic Modulus and Shape Factor: The distance y, of the elastic neutral axis
(ENA) from the top of the section can be obtained by

, _(25x2x1+(20x2) x3+(26x1)x 17+ (20 x 2) x 31
e 156

= 11.87 in.
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Thus, we have

1 1
I= 7 X 25 x (2)* + (25 x 2)(10.87)* + 1 x 20 x (2)° + (20 x 2)(8.87)2

1 1
+ 35 % 1x (26 + (26 x D(S.13 + 53 x 20 x () + (20 x 2)(19.3)2

or

I = 25885 in*

d) T-Section:
Plastic Modulus: The area of the T-section shown in Fig. 2.33(c) is
A=15x1+14x1=29in?

Since A4/2 is less than the area of the flange, the PNA is in the flange and the
distance y, of the PNA from the top of the section can be obtained by

A 29
15y, = 7=5 = 14.5,
which gives
y, = 0.967 in.
Thus, we obtain

0.033
2

0.967

Z=(15 x 0.967)(T >+ (14 x 1) x 7.033

) + (15 x 0.033)(

= 105.5in.?

Elastic Modulus and Shape Factor: The distance y, of the ENA from the top
of the section can be obtained as

_(15x 1) x 05+ (14 x 1) x 8

=4.121 in.
ye 29 n

Thus, we obtain

1
I=11_2x 15 x (1Y + (15 x 1) x (36217 + 35 x 1 x (14)

+ (14 x 1) x (3.879)2 = 637 in.*



2.10. Examples 97

I 637 ,
S == =1og7 = 386in
105.5
=—"-18
I=

e) Square Shaft with Keyway:
Plastic Modulus: The area of cross section of the shaft is
A =8d x 8d — 2d x 4d = 56d>.

The distance y, of the PNA from the top of the section can be computed from

8dxyp=§=28d2

y, = 3.5d.
Thus, we obtain
Z = (84 x 3.5d)(1.75d) + (84 x 4.5d)(2.25d) — (2d x 4d) x 3.5d = 10243,

Elastic Modulus and Shape Factor: The distance y, of the elastic neutral axis
from the top of the section can be obtained as

y, = (8d x 8d)(4d) — (4d x 2d)(7d)

. e = 3.57d.

Thus, we have

I= le_(Sd)(Sd)f‘ + (8d x 8d)(4d — 3.57d)?

1
_ﬁ(4d)(2d)3 — (4d x 2d)(7d — 3.57d)* = 256d*

I 2564 ,
S=C=8a—35u- "%
Z  1024°
f=5 =578 = 1765

f) Thin-Walled Tubular Section: Both elastic and plastic neutral axes pass
through the centroid of the section. The first moment of area about this axis

is
2 ((D+1)2
Z=4 ( f (rdrdf)rsin
(

Jo D—1)/2

4[(D+1t\> (D—1t\¥] [ .
e (SORCVIINT

or
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or

1
Z =tD? + §t3 ~ Dt.

The second moment of area about the neutral axis is

n/2 (D+1)/2
I=4 j f (rdr ) (r sin 0)?
0 (

D-1)/2

BCENC [

T I
I=_—[8D3 31~ <D
25 (8D +8Dr*] ~ £ D%

or

or

Thus, we have

S=-=-~-D%
c D+t
2
Z D*
f=2= =1.273.
§ T p
4

g) Isosceles Triangle:
Plastic Modulus:

1
area of isosceles triangle A = iah

The distance y, of the PNA from the top of the section is determined from
1y, A ah
5(“7)“ "= w

h
yp=ﬁ'

Thus, the plastic modulus Z can be expressed as [Fig. 2.33(f)]

Yp h
z= f (%dy)(y,, -9+ j (Ethy>(y ~3)

_al, v ] Lgs ey, e e

which gives
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By substituting y, = h/ﬁ, Z can be computed as
Z = 0.0976ah>.

Elastic Modulus and Shape Factor: The elastic neutral axis is at a distance of
¥. = (2/3)h from the top of the section. The second moment of inertia about
this axis can be expressed as

[z

h 4 4 ah®
3 _ _hy? —h%y ldv = —.
fo <y 3 Y +9h y> Y 36

I ah’/36  ah?

or

I=

SR

Thus, we have

¢ (2h3) 24
Z  0.0976ah?
f=5= aind =2

Note that I is obtained by using one integral for the entire section with
limits from O to h, while two separate integrals—one each for the portions
above and below the neutral axis—are used for obtaining Z. This is because
the integral for I, second moment of area, is a function of square of the
distance of the area from the neutral axis and therefore the sign of this
distance/lever arm ([2h/3 — y] for the portion above the neutral axis and
[y — 2h/3] for the portion below the neutral axis) does not affect the results.
While the integral for the plastic modulus Z, first moment of area, is a func-
tion of only the lever arm and not its square, the sign of the lever arm is
important and if Z is obtained by using one integral with limits from O to h
as for I, the value of Z will come out to be 0.0202 ah?, which is wrong.

Example 2.10.2. The dimensions of a T-section are as shown in Fig. 2.34. The
yield stress of the material in compression is 1.5 g, and the tensile yield stress

6" 1.50,

05T T —

FIGURE 2.34. Calculations 5.5
of plastic moment of a T-

section with different yield

stress in tension and X
compression.

[

(=]
o

sl
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is g,. For bending about the strong axis, the elastic modulus is given as
4.61 in3. Find (a) the full plastic moment when the tip of the web is in tension
and (b) the corresponding value of the shape factor.

Solution: (a) When the section is made of the same material and the yield
stress in tension and compression is the same, the plastic neutral axis divides
the section into two equal parts. Otherwise, the PNA must be determined
from the basic equilibrium condition that compressive force must be equal to
tensile force, i.c., see Fig. 2.34:

6 xy x150,=55%x05x%x0,+(05~y)x6xo0,
which gives

575

yc = 1—5 = 0383 m.

Thus, we have
Ve 1
Mp=6xyc><5x L.50, + 5.5 x 0.5 Ex 554+05—-y.)a,

_ 2
x(0.5 ¥e) .

+6 3 ,
or
M, = 8.59¢,.
(b)
M, 8.59¢,
=_f = = 1.86.
S M, 46lo, 86

Example 2.10.3. Design an I-section, 50 inches deep and 20 inches wide,
made up of rectangles with a plastic modulus of 2449 in.? about the strong
axis and 411.5 in.3 about the weak axis.

Solution: The dimensions t and T of the required section (Fig. 2.35) are un-
known but can be determined by equating the strong- and weak-axis plastic
moduli in terms of t and T to the required plastic moduli as

Z, = 2[(25 - T)t(25 ; T)] + 2[(20)(T)<25 - %)] =2449in3 (2.10.1)

2/\4
The solution of Egs. (2.10.1) and (2.10.2) for the unknowns ¢t and T leads to

Z, = 2(50 — 2T) <5> <5> +4[(T)(10)(5)] = 411.5in3  (2.102)

t=1in; T=2in.
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FIGURE 2.35. Design of an I-section for a
given set of plastic modulus. _

Example 2.10.4. A beam having the cross section shown in Fig. 2.36 is made
of steel with 36-ksi yield stress. Calculate the percentage of reductions in the
full plastic moments about both principal axes due to axial loads of (a) 381.6
kips and (b) 1908 kips. How do your results compare with those from interac-
tion Egs. (2.5.10), (2.5.11), (2.5.14) and (2.5.15).

Solution:

(a) P = 381.6 kips: Strong Axis: Since P = 381.6 kips is less than the axial
load capacity of web = (26 x 1) x 36 = 936 kips, the plastic neutral axis is in
the web. The distance y, of shift of the neutral axis from its original position
can be determined from [Fig. 2.36(a)]

P = 2y,(1)a, = 2(y,)(1)(36) = 381.6
which gives
Yo = 5.3 1n.

The reduced plastic moment capacity is obtained by subtracting the contri-
bution of the portion of the cross section carrying axial load from the original
plastic moment of the section as

Mpc = Mpx - ay(l)y(z)

in which M, = ¢,Z,, and Z, from Example 2.10.1(a) is 1289 in.> Thus, we
obtain

M, =36 x 1,289 — 36 x 1 x (5.3)> = 46,404 — 1011 = 45,393 kip-in.
The percentage of reduction in the plastic modulus is

1011

m = 22%)
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20", o 5,
I 1 12
- 1" 9y
L . 1 - = +
¥ I ]
L 1
[o} [o}

(b)

(©

- (d)

FIGURE 2.36. Computations for the effect of axial loading on M, of an I-section.

Note that since P/P, = 381.6/[(2 x 20 x 2 4+ 26 x 1)36] = 0.1 < 0.15, the
interaction Eq. (2.5.10) permits no reduction in the full plastic moment
capacity.

Weak Axis: For the case of weak-axis bending, the plastic neutral axis is also
in the web. The distance y, of shift of the neutral axis from its original
position can be determined from [Fig. 2.36(b)]

P = 2y,(30)a, = 2(y,)(30)(36) = 381.6 kips
which gives
¥o = 0.177 in.
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Thus, we obtain
M, = M,, — 5,(30)(yo)*
in which M, = 0,Z,. Since Z, from Example 2.10.1(b) is 406.5 in.?, we obtain
M, =36 x 406.5 — 36 x 30 x (0.177)
or
M, = 14,634 — 34 = 14,600 kip-in.
The percentage of reduction in the plastic modulus is

34
14,634

Note that since P/P, = 0.1 is less than 0.4P,, the interaction Eq. (2.5.14) per-
mits no reduction in the full plastic modulus of the section.

= 0.23%.

(b) P = 1908 kips: Strong Axis: Since P = 1908 kips is greater than the axial
capacity of web = 936 kips, the neutral axis is in the flange. The distance y,
of shift of the neutral axis from its original position can be determined from
[Fig. 2.36(c)]

P =20,[13 x 1 + (yo — 13) x 20] = 2 x 36[20y, — 247] = 1908 kips
which gives
Yo = 13.68 in.

The reduced plastic moment can be computed by taking the moment of
stresses [Fig. 2.36(c)] about the neutral axis as

M, = 20,20)(15 — y0)<y0 + 22 y°> — 6,157 — 3]

or
M, = (36)(20)[(15)* — (13.68)*] = 27,357 kip-in.
From part (a), we have M, = 46,404 kip-in.

The percentage of reduction in the plastic modulus is thus

46,404 — 27,357

=41,
46,404 %

M, from Eq. (2.5.11) is

p 1908
M, = 1.18(1 - Fy>M,, = 1.18[1 " (36)[2(20 x 2) + (26 x I)JJM”

= 0.59M,.

The percentage of reduction in the plastic modulus using the approximate
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interaction equation

M, — 0.59M,
T TR 419
M %

p

The approximate interaction equation gives the same reduction as that given
by exact calculations.

Weak Acxis: For the case of weak axis bending, the neutral axis is also in the
flanges. The distance y, of shift of the neutral axis from the original position
can be determined from [Fig. 2.36(d)]

P =20,[26 x 0.5 + 2y, x 2] = 2 x 36[4y, + 13] = 1908 kips
which gives
yo = 3.38in.
Thus, we obtain

lo—yo
2

M,, = 12,755 kip-in.

From part (a), we have M, = 14,634 kip-in. So the percentage of reduction
due to axial load is

M, = 45,(2)(10 — y0)<y0 + > = 4 x 36[(10)* — (3.38)’]

14,634 — 12,755
14,634

Since P/P, = 0.50 > 0.4, M,,. from the approximate interaction Eq. (2.5.15) is
P 2
M, = 1.19|:1 - (—P;) :|Mp

1,908 \?
=1 —| == = 0.893M,,.
M, 119|:1 (36><106) }Mp 893M,
The percentage of reduction from approximate Eq. (2.5.15) is
M, —0.893M,
M

p

= 12.8%.

or

= 10.7%.

Example 2.10.5. Flange cover plates 25 x 2.5 inches are added to the section
in Example 2.10.4.

(2) Find the increase in the full plastic moment capacity about the strong
axis, and

(b) calculate the reduction in the plastic moment due to an axial load of
1200 kips.
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Solution: (a) Increase in the Full Plastic Moment: From Example 2.10.4, the

original M, of the sections is
M,, = 1289 x 36 = 46,404 kip-in.
The area of each cover plate is
A, =25x25=625in2

The value of M, of the section with cover plates is
2.5
M,=M,, + 20'yAp|:15 + —5]

or
M, = 46,404 + 2 x 36 x 62.5 x 16.25 = 119,529 kip-in.
The increase in moment capacity due to the addition of cover plates is

M, — M,, = 119,529 — 46,404 = 73,125 kip-in.

(b) Reduction in the Moment Capacity Due to Axial Load: Since (axial load
capacity of web =26 x 1 x 36 = 936 kips) < (P = 1200 kips) < (axial load
capacity of web and two flanges = 936 + 2 x 36 x 20 x 2 = 3816 kips), the
plastic neutral axis in the presence of an axial load falls in the bottom flange
as shown in Fig. 2.37. The shift of distance y, of the neutral axis from its

original position is
P =936 +2 x 36 x 20(y, — 13) = 1200

which gives

Yo = 13.18 in.
25"
p——
F
{ ]* 25
20T 1 |
__________________ 30"
y=13.18"
FIGURE 2.37. Computations [ 1
of the effect of axial load on I I 25"
E

M, of an I-section with a
pair of cover plates. 20
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Thus, we obtain

M, = 2ayAp<15 + ?) 20,(15 — 13.18)(20)(13.18 + E;é&}ﬁ)
or
= (2)(36)(62.5)(16.25) + (2)(36)(1.82)(20)(14.09)
or

M, = 73,125 + 36,927 = 110,052 kip-in.
Thus, the reduction in the plastic moment capacity due to axial load is
= 119,529 — 110,052 = 9,477 kip-in.

Example 2.10.6. Show that for an I-section subjected to a shear force V, the
full plastic moment about the strong axis is

3 y?
= M, (M, -2
M, M,+/ (Mo 4%)

where M, and M,, are, respectively, the contributions of the flanges and the
web to the full plastic moment in the absence of shear force, t,, is the thickness
of the web, and o, is the yield stress in tension.

Solution: The full plastic moment capacity reduced for the presence of shear
force can be expressed as

2
My, =M, + M, 2 =M+ [M? <5> (2.103)
O'y O'y
in which ¢ is the normal stress that can be exerted on the web in the presence

of a uniform shear stress T and it can be written from the von Mises yield
criterion (2.6.3) as

o \? 372 3v?
L R A 2.10.4
() R L 2104

in which d,, is the depth of the web. Now substituting (¢/0,)* from Eq. (2.10.4)
in Eq. (2.10.3), we have

32
M, Mf+\/M2< 7272 2)
wiw y

Using M,, = a,t,,d%/4, we obtain

M, =M, + \/M( . 4“7) (2.10.5)

Example 2.10.7. Determine the reduction in the plastic modulus about the
strong axis of the I-section shown in Fig. 2.38 due to a shear force of 320 kips
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20" o

w
o
1
|
|
!
|
|
[
1
1
1
1
—_— - — —
Q

Shear Stress Normal Stress

F1GURE 2.38. Plastic modulus of an I-section in the presence of shear force.

in the plane of web. Use the von Mises yield criterion. The section is made of
steel with yield stress (a) 36 ksi and (b) 50 ksi.

Solution: By assuming that the shear stress is distributed uniformly over the
web, the magnitude of shear stress can be determined as

|4 320

Y 1231 ksi
A zexi 2k

T =
(a) o, = 36 ksi: Using the von Mises yield criterion (3.6.3), the normal stress
in the web can be determined from
0% + 312 = o?

which gives

0 = /02 — 31* = /(36)* — 3(12.31)*> = 29.01 ksi.

The reduced plastic moment or modulus of the section can be determined
from Fig. 2.38 as

g

Mps = Mp - Mweb<1 - *>
a)’

g
ZPS=Z— web(l_;y).

From Example (2.10.1a), Z = 1289 in.> and we have Z,,, =2 x 1 x 13 x
6.5 = 169 in3. Thus, we obtain

or

29.01
36

The percentage of reduction in the plastic modulus = (1289 — 1256)/1289 =
2.56%

Z,, = 1289 — 169(1 - > = 1256 in.?
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(b) o, = 50 ksi: The normal stress in the web is

o =/o? —3t% = /(50)* — 3(12.31)* = 45.23 ksi.

The reduced plastic modulus is

or

Z,, = 1289 — 169<1 - 455%) = 1273 in.3

The percentage of reduction in the plastic modulus = (1289 — 1273)/

1289 = 1.24%;.

Example 2.10.8. Use LRFD specifications to design a simply supported plate
girder of A36 steel, with a web depth of 60 inches, to carry a uniformly
distributed load of 34 kip/ft over a span of 50 feet. Assume that the girder has

adequate lateral support.
Solution: The maximum moment in the beam is (Fig. 2.39)

2 2
M, =L G0 s kipet.

b=28"
34 kip/ft : :

EERRRER

50 ft

Shear \I 850 kips SECTION

110,625 kip-f

Moment

FI1GURE 2.39. Design of a simply supported beam.
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The maximum shear force in the beam is

The required plastic modulus of the section is

M. 10625 x 12
z = Lo _ 1 = 3935 in.3
4,0, 09 x 36 n

y

and the required area of the web is

V. v, 850
A = max __ max =4371 .2
"= %, $,06F, 09 x 06 x 36 n
Required thickness of the web is ¢t,, = 4,,/60 = 43.7/60 = 0.728 in.
Try 3/4-inch-thick plate for web. To prevent local buckling of the web, we
check

L

60 80 < @ = @ = 106.7 okay.

3/4 \/I*-} 6
Use 60 x 3/4-inch plate for the web.

The dimensions of flange plates should be such that the plastic modulus of
a section is at least equal to the required plastic modulus, i.e.,

(60)°
4
Note that Z is not reduced due to the presence of shear stress because at the

point of maximum moment, shear force is equal to zero. To prevent local
buckling of flange plates, we must also have

w

ty

Z = bt,(60 + t;) + (0.75)—— = 3935 in.3

b 65
A <——==1083
2, /F,
or
b < 21.66t,.

Try a conservative proportion of b = 15t,. Substitution of this proportion in
the preceding equation gives

60)*
900:7 + 15t} + (0.75)% = 3935

or
t} + 60t} — 217 = 0.
Solving this equation by trial and error, we obtain

t; = 1.87 in.
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Thus, we have
b = 15t; = 28.05 in.
Try 28- x 2-inch plates for flanges and check local buckling

b 2
8 7< 63 okay.

a,"2x2° TR,
Use 28- x 2-inch plates for flanges. Dimensions of the recommended section
are shown in Fig. 2.39.

Example 2.10.9. A straight steel beam is S feet long and is simply supported
at its ends. It is made of rectangular section with 2-inch depth throughout.
The width of the beam is tapering uniformly from 3 inches at the midspan to
1 inch at each end. If the yield stress of the steel used is 36 ksi, what uniformly
distributed load will bring collapse of this beam? Assume that the effect of the
shear force on the plastic moment capacity of the section is negligible.

Solution: For a rectangular cross section of varying width (Fig. 2.40), Z, can
be expressed as

Z,=2[(1 x by)(0.5)] = b,

where b, between the left-hand end and midspan can be written as

2
by=1+,5x=1+08x.

Thus, Z, is
Z,=1+408x
and the plastic moment capacity M, of the beam is
M, =0,Z, =36(1 + 0.8x) (2.10.6)

EEEEEERN! b

5 ft

Plastic Moment
Capacity M

Applied Moment , M,

FiGURE 2.40. Load-carrying capacity of a tapered beam.
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The applied moment at the section a distance x from one end due to the
uniformly distributed load w is given by

M, = [%(SW)x — %wxz] 12

or
M, = 30wx — 6wx>. (2.10.7)

The collapse value of w will now be controlled by the following two
conditions:

(@) At collapse, the applied moment at the critical sections should be equal
to the plastic moment capacity of the beam at these sections, i.e.,

M, =M,
or
30wx — 6wx? = 36(1 + 0.8x), (2.10.8)

(b) The applied moment at other sections should not exceed the plastic mo-
ment capacity. This leads to the condition that the plastic moment capacity
curve should enclose the applied moment diagram as shown in Fig. 2.40, and
both diagrams should be tangent to each other at the critical sections, i.e.,

dM, _dM,
dx  dx
or
30w — 12wx = 36(0.8). (2.10.9)

Solving Egs. (2.10.8) and (2.10.9) for x and w, we obtain
w = 2.51 kip/ft, x = 1.54 feet.
Thus, at collapse, w is 2.51 kip/ft.

Example 2.10.10. A W14 x 53 beam made of A36 steel is built into a support
at one end as shown in Fig. 2.41. Vertical loads are applied as shown. Deter-
mine the load factor against collapse (a) neglecting the effect of shear and (b)
taking shear into account. Use the von Mises yield criterion and assume that
the beam has adequate lateral support.

Solution: From the AISC manual, the following properties of W14 x 53 are
noted: Z = 87.1in.3,

M, =o0,Z =36 x 87.1 = 3136 kip-in,,
d,=126in,and t, = 0.37 in.
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20 kips 60 kips

2 i l 11ty

A
80 kips
—
Shear 60
220 kip-ft
W 14x53
Ma
Moment 60

FIGURE 2.41. Load factor of a given cantilever beam.

From the shear force and bending moment diagrams (Fig. 2.41), we have
Voax = V4 = 80 kips
and
M, = M, = 220 kip-ft = 220 x 12 = 2640 kip-in.
(a) Neglecting the effects of shear: The load factor is
M, 3136

- pr _ 77"
’I_M 2640

max

=1.188

(b) Taking shear into account: Since the maximum shear and moment both
occur at the support, this point is critical. Assuming that the shear force is
taken by the web only, shear stress T can be computed as

Vo 80 .
T= 1 = m =17.16 ksi.

w

Using the von Mises yield criterion (2.6.3), the normal stress ¢ in the web is

o = /o2 — 312 = /(36)* — 3 x (17.16)* = 20.31 ksi.

Thus, we have

or

20.31

—_ _ 1 2 _ _ 1 ia 3
Z,, =871 <Z>(0.37)(12.36) <1 s >_ 80.94'in.
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and
M, =0,Z,, = 36 x 80.94 = 2914 kip-in.
The load factor A against bending is

M, 2914
s =2 = 1.104.
M., 2640

The load factor A against shear is

V, 126 x 0.37 x 36//3
_r = 1.211.
Vinax 80
Thus, the overall load factor is
A =1.104.

Example 2.10.11. As originally designed, a 15-foot-wide balcony was to be
supported by A36 W14 x 53 cantilever beams, so that each beam carried a
uniform load of 1.2 kip/ft. It was then decided to add a balustrade, which
would apply an additional load of 5 kips to the free end of each beam. Find
(a) the load factor of the beams as originally designed, and (b) the dimensions
of the symmetrical flange plates that must be added to provide a load factor
of 2 when the balustrade is in position. Neglect the effects of shear force.

Solution: From Example 2.10.10, Z and M, of W14 x 53 are
Z =87.1in> M, = 36 x 87.1 = 3136 kip-in.

(a) Load Factor Before Balustrade is Added: From the bending moment dia-
gram (Fig. 2.42), the maximum moment is

M, = 135 kip-ft = 1620 kip-in.

10 kips

2.4 kip/ft
 1.2kip/it B = 10"
S S e s | SN EEE 7- 75" Il
7 - . |
1 15 ft 15 11

(13.92+T)
W 14x53
420 kip-ft
135 kip-ft
(a) (b) (c)

FIGURE 2.42. Design of flange cover plates to increase load-carrying capacity of a
cantilever beam.
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Thus the load factor is

M, 3136
A= 31 = a3~ 1936

(b) Dimensions of Cover Plates Needed to Support Balustrade: The bending
moment diagram for the beam with balustrade on and with a load factor
A = 2 is shown in Fig. 2.42(b). The maximum moment in this diagram is

M,,,, = 420 kip-ft = 5040 kip-in.
M _ 5040

——=140in

Required Z =
equire 36

y

Z can be expressed in terms of the thickness and the width of the flange plates
as [Fig. 2.42(c)]

Z =871+ BT(1392 + T).
Try a 10- x 3/8-inch plate. Then we have

3
Z =2871+10 x —(13.92 + %) =140.7in.> okay.

8
Check local buckling of flange cover plates
B 1 19
0 _ = 26.67 < 1% = 31.67 okay.

T 3/8 \/Fy

Use 10- x 3/8-inch flange cover plates as shown in Fig. 2.42(c).

2.11 Summary

The basic quantity required in any structural analysis of framed structures is
the value of bending rigidity EI, which can be considered as the slope of the
relationship between moment M and curvature ®. In the allowable stress
design method, which is based on elastic analysis, this quantity has a constant
value and thus it presents no difficulties in the analysis and design process.
But in the case of the plastic design method, which is based on plastic analysis,
there are problems, because the actual moment-curvature response beyond
the elastic range is nonlinear. It has been shown that the intensity of the axial
load has a major influence on the shape of the moment-curvature curve and
on the full plastic moment capacity. The stiffness in the elastic range does not
vary with axial load but the variation of EI beyond the elastic limit is very
significant. At the fully plastic limit state, the stiffness or the slope of the
moment-curvature relation reduces to zero while the maximum moment re-
mains at the full plastic moment M,,.

As a practical approximation, the actual moment-curvature curve is re-
placed by two straight lines for which the stiffness is assumed not to be
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influenced at all by plastic yielding of the material until the full plastic mo-
ment is reached. At the full plastic state, the rotation of the section increases
without limit at a constant moment along the horizontal portion of the curve.
This is a very reasonable idealization for members of wide-flange shape, but
appreciable errors in stiffness must be expected for cross-sectional shapes
with a large value of shape factor. Nevertheless, the approximation is very
good for estimating the collapse load of framed structures. Furthermore, this
idealized cross-sectional behavior reduces the nonlinear structural analysis
to a sequence of elastic and “rusty” hinge analysis. This rusty hinge is known
as the plastic hinge, and its formation corresponds to fully plastic moment of
the section of the structural member.

The plastic hinge idealization drastically simplifies the plastic analysis of
framed structures and makes the full collapse load determination as a quasi-
static process. It forms the basis of the simple plastic theory. All that is re-
quired in this simple theory is a knowledge of the value of the full plastic
moment or the plastic hinge moment. This was described in detail in this
chapter. As will be seen in the following chapters, if the full plastic moments
of the various members of a frame are known, then the collapse load of that
frame can be determined quickly in a direct manner, even if the frame is
complex. Similarly, the design of a frame to carry given loads consists in the
assignment of certain minimum values of full plastic moment to the members,
which can also be achieved quickly in a direct manner.

However, several factors of secondary importance will prevent the member
from reaching the full plastic moment. These factors include such things as
axial load, shear, buckling, and connection details. These factors are not
included in the “simple” plastic theory, but we must take them into account
in practical design. In this chapter, the effects and characteristics of the fol-
lowing factors were discussed and appropriate design procedures provided
for checking the suitability of the original simple plastic design:

- axial load and shear force that will reduce plastic moment.

- instability that may cause local buckling of thin-walled sections.

+ connections that are properly proportioned to transmit plastic moment
from one member to the other.

In addition, brittle fracture, repeated loading, and deflection limitation at
working load must all be accounted for in an actual design to check the
suitability of a design based on the simple plastic theory that neglects all
these factors. Note that the necessity for considering these additional factors
in the plastic design is not in any way different in principle from that in the
conventional elastic design procedures.
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Problems

2.1.

22.

23.
24.

2.5.

2.6.

2.7.

Show that the nondimensional M-® relationship for a beam of square cross
section bent about a diagonal is

-3 1)

(a) Plot the curve, indicating coordinates at ®/®, = 1.0, 2.0, 4.0, and 10.0 (1.0,
1.625, 1.891, 1.981).

(b) On the same curve, plot the moment-curvature relationships for (i) a rectan-
gle, (ii)) W8 x 31, and (iii) the idealized curve (Fig. 2.5).

(c) Find the shape factors for the three cross sections (2.0, 1.5, 1.11).

(d) Discuss the practical implications of the plastic hinge idealization of the
M-® curve to consist of two straight lines.

Derive the expression for the plastic zone distribution of a uniformly loaded
cantilever beam of rectangular cross section with M, ., = M, Sketch the result

and find the plastic hinge length (y/d = \/3[1 — (x/)*], I,/! = 0.184).
Derive the expression for the plastic zone distribution shown in Fig. 2.6(c).

A simply supported beam of rectangular cross section is subjected to a concen-
trated load at one-third of the span. Plot the shape of the plastic zone at collapse
of the beam. Determine plastic hinge length

9 9
<left side yd = | %; right side y/d = /%, I/l = 1/3).

Compute Z, S, and f for a box section with outside depth of 20 inches, wall
thickness of 1/2 inch, and a width of 8 inches. Flexure is about the strong axis.
Check local buckling requirements (168.25 in., 133.23 in.3, 1.263).

Compute Z for a W14 x 132 shape bending about the strong axis, using the
approximate expression (2.2.10). Compare the result with the exact value listed
in the AISC manual (232.3 in.3, 234 in.%)

For a solid circular section with diameter d, we know Z = d*/6 and S = nd*/32,
and for solid rectangular section with width b and depth d, we know Z = bd 2/4
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2.11.

2.12.

2.13.
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and S = bd?/6. Using these relationships, derive shape factor expressions for the
following two shapes:
a. channel section bent about its strong axis, and

3 [bal2 —b—t,)d— 2t,)2]

=3 (b —t,)d -2t}

b. circular hollow tube

16D (D3 — d3)

=% o=y

A6- x 3-inch channel section has flange thickness 0.40 inch and web thickness
0.25 inch. Find M, bent about the minor axis under an axial thrust of 36 kips,
assuming A36 steel. Show that the value of M, depends on whether the tips of
the flanges are in tension or compression, and find both values (87.9 kip-in,
110.8 kip-in).

Select a wide-flange shape section of A36 steel that will transmit a sull plastic
moment of 300 kip-in in the presence of an axial compression of 200 kips.
Flexure is about the strong axis (W14 x 26).

For a W8 x 31 column bending about the strong axis, draw the theoretical
M, — P relationships. Compare the results with the approximate design equa-
tions at P/P, equal to 0, 0.15, and 0.6.

(P/P) Theoretical M, Approximate M,
0 1 1
0.15 0.95 1
0.6 0471 0.472

Select a member of wide-flange shape of A36 steel whose cross section will
transmit a strong axis moment of 3000 kip-in., in the presence of a shear force of
150 kips (W24 x 55).

Two loads of 200 kips each are applied 1 foot from each end of a simply sup-
ported . 10-foot-long beam. Select a member of wide-flange shape. Check its
adequacy for shear and modify the design if necessary (PD/LRFD W24 x 84,
PD/ASD W24 x 62).

A T-section, width 5 inches, depth 6 inches, composed of two equal rectangles
5 x 1inch, is bent about the strong axis.

(a) Find Z, S, and f (15in.3, 8.33 in.3, 1.8).

(b) Find M, due to an axial load of 100 kips. Assume A36 steel (498.3 kip-in.).

An I-section made of A36 steel with overall depth 12 inches, flanges 8 x 1 inch,

web thickness 1/2 inch, is bent about (i) the strong axis and (ii) the weak axis.

(a) Find M, assuming three rectangles (3618 kip-in., 1175 kip-in.).

(b) Calculate the percentage reductions in M, due to an axial load of (i) 3.6 kips
and (ii) 18 kips (2.2%, 0.28%, 40.7%, and 13.5%).
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215.

2.16.

2.17.

218.

2.19.

2.20.

2.21.

2.22.

2. The Plastic Hinge

Calculate the percentage of reductions in M, for the beam section in Problem
2.14 due to a shear force of 100 kips in the plane of the web when steel has a
tensile yield stress of (i) 36 ksi and (ii) 50 ksi. Use the von Mises yield criterion

9.1%, 3.5%).

Cover plates of 10- x 1-inch are added to the flanges of the beam section in
Problem 2.14. Find the increase in the full plastic moment M, about the strong
axis. Calculate the reduction in M, due to an axial compression of 500 kips
(M, = 8298 kip-in., M, = 6159 kip-in.).

A fixed-ended beam of length L has a concentrated load Q at the left third-point.

If the allowable stress is 24 ksi, the yield stress is 36 ksi, and the shape factor is

1.15, calculate:

(a) allowable working load Q, (elastic design) (3.91 M, /L).

(b) yield load Q, (5.87 M,/L).

(c) plastic limit load @, (plastic design) (9M,/L).

(d) factor of safety against initial yielding (1.5).

(e) factor of safety against plastic collapse (load factor) (2.3).

(f) Give two reasons why @, is much greater than Q,,.

(g) Explain why erection forces will influence the calculation of @, but have no
effect on the calculation of Q.

(h) If a maximum compressive residual stress g,, = 10 ksi is present in the beam
section, what are the factors of safety now, against (i) initial yielding and (ii)
ultimate collapse (1.08, 2.3).

A W14 x 34 fixed-ended beam is of 12-foot length and carries a concentrated
load 60 kips at a distance 4 feet from one end. Find the load factor considering
the effect of shear according to Equation (2.6.17). Assume a von Mises yield
criterion and use A36 steel (A = 1.807).

For an interior beam-to-column connection as shown in the inset of Fig. 2.24:

a. describe all possible failure modes.

b. list the corresponding LRFD rules to check against such failures.

c. sketch the shape of the plastic zones at collapse of the two beams. Determine
plastic hinge length L(1 — 1/f).

A W24 x 176 beam is connected to a column of same size at a right angle to
transmit the full plastic moment at a corner. Detail the straight corner connec-
tion: (a) using a web doubler plate and (b) using a diagonal stiffener.

Two W18 x 76 beams are connected on opposite sides to a W14 x 82 column
under a symmetric loading condition. Detail the stiffeners in the beam-to-
column connection. Is the moment stiffening for the column adequate if the
column must also transmit asymmetric moments from the two connecting
beams?

Find the M,, value for the hollow rectangular section shown in Fig. P2.22,
where an eccentric axial compression load of 54 kips is applied 0.75 inch above
the centroid of the section.
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FIGURE P2.22 l1/2"

2.23. For a simply supported beam of rectangular section tapering uniformly from d
at the midspan to d/3 at each end as shown in Fig. P2.23, find the region for
which cover plates are needed.

w= 25k/ft b=10"
v . ¥ vV vy v ¥ ¢ V9
1 d/3
d d=40"
Ny

90"

FIGURE P2.23



3
The Tools Used in Plastic Analysis
and Design

3.1 Introduction

The methods of simple plastic analysis and design are based on two basic
assumptions. The first assumes that the structure is made of a ductile mate-
rial such as steel that is able to absorb large deformations beyond the elastic
limit without the danger of fracture. The second is that the deflections of a
structural system under loading are small such that the effect of this upon the
overall geometry can be ignored. Herein, we shall discuss the practicality of
these assumptions and the limitations introduced by them in the methods of
simple plastic analysis and design.

The exact solution in a plastic analysis must satisfy the three basic condi-
tions: equilibrium, mechanism (kinematics), and plastic moment (yielding) con-
ditions. For simple structures such as the beams and portal frames discussed
so far, they are simple enough to be solved by a “direct” approach or
“visualized” readily. For more complex structures, it becomes more difficult
to satisfy all these three conditions in order to obtain the exact solution
immediately. In this situation it is natural to seek simple approximate
methods of analysis for these structures, and some general principles and
theorems with which the accuracy of these approximate solutions can be
assessed. To this end, in this chapter, we shall use the virtual work method
extensively to establish these fundamental theorems from which simple and
approximate techniques of practical plastic methods are derived and
developed.

3.2 The Assumption of Ductility of Steel

The fundamental property that makes possible the application of plastic
analysis to structural steel design is that the structural material has sufficient
ductility. The term ductility is defined here as the ability of a material to
undergo a large deformation without a significant loss in strength. Structural
steels, particularly the most commonly used A36 steel, have this property

120
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in abundance. This ductility enables steel structures to reap the benefits of
plastification and moment redistribution described in the preceding chapters
and leads to a higher load-carrying capacity.

3.2.1 Stress-Strain Relationship of Various Types of Steels

The steel is almost entirely composed of iron. Other chemicals are added in
small amounts to modify its physical properties such as strength and ductil-
ity. For example, the carbon is added to increase the yield strength but causes
a reduction in the ductility of the steel.

Depending on the composition and manufacturing process, the structural
steels for hot-rolled applications may be classified as carbon steels, high-
strength and low-alloy steels, and quenched and tempered steels. Figure 3.1
shows typical stress-strain relationships for these three types of steels.

The carbon steels can further be subdivided into four categories: low
carbon (less than 0.15%), mild carbon (0.15-0.29%), medium carbon (0.30—
0.59%) and high carbon (0.60-1.7%). A36 steel has 0.25 to 0.29% carbon
content. The stress-strain relationship of A36 steel is shown by curve (a)
in the figure. High-strength low-alloy steels are obtained by adding small

0.2% offset = — — Tensile strength. F,
_..’ ’._
100 = —- F, = 100 ksi Quenched and Tempered
alloy steei: A514
80 H High-strength, Low-alloy
Stress carbon steels; A572
{ ksi)
60
(b)
40 Carbon steels; A36 (a)
Fy = 36 ksi
20 -
1 1 1 1 1 1 1
0.05 0.10 0.15 0.20 0.25 0.30 0.35

Strain

FIGURE 3.1. Typical stress-strain curves of steels.
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amounts of alloys such as chromium, copper, manganese, nickel, and phos-
phorous to carbon steel. The addition of these noncarbon alloys increases
strength without causing a significant loss in ductility as shown by curve (b)
in Fig. 3.1. Both carbon-steel and high-strength low-alloy steel exhibit well-
defined yield points as shown by curves (a) and (b). For both of these types,
the strains of up to 8 to 15 times the elastic limit occur without any significant
change in the stress. A later increase in strength is exhibited as the material
strain hardens.

The strength and ductility of the steel can also be adjusted by a heat-
treatment process consisting of quenching (rapid cooling with water or oil)
and tempering (reheating and then allowing it to cool). The quenching results
in a higher yield stress but reduces the ductility. The tempering, on the other
hand, results in a lower strength but increases the ductility of the material.
Curve (c) in Fig. 3.1 is the stress-strain curve of A514 steel obtained by a heat
treatment of low-carbon steel. Note that the ductility of heat-treated high-
strength steel is much lower than the low-strength A36 and A572 steels.

To ensure adequate ductility for plastic analysis and design, the AISC-
LRFD specification (Chapter A) requires that the steel must exhibit a plastic
plateau on the stress-strain curve, consequently, F, < 65 ksi must be used.

3.2.2 Effects of Unloading and Strain Aging on the
Stress-Strain Relationship

Elastic loading and unloading do not effect the stress-strain relationship of
steel. However, when steel is unloaded after the yield strain is greatly ex-
ceeded, then reloading may give a stress-strain relationship different from
that observed during an initial loading.

For example, if a specimen is loaded up to point C in Fig. 3.2 and unloaded
to point D, then reloading will occur along path D, C, and E, thus causing a
significant reduction in the available ductility. However, if reloading occurs
after a certain period of time, the steel may exhibit a different stress-strain
relationship due to a phenomenon known as strain aging. The strain aging,
as shown in Fig. 3.2, restores the original shape of the stress-strain diagram,
but the ductility is further reduced.

3.2.3 Idealized Stress-Strain Relationship

To simplify the analysis and design procedures, the actual stress-strain rela-
tionship of steels can be idealized as an elastic—perfectly plastic type with two
straight lines as shown in Fig. 1.4. Up to the yield stress level, the material is
elastic. After the yield stress is reached, the strain is assumed to increase
infinitely without any change in stress. For both A36 and A572 steels, this
idealization is conservative in the strain-hardening range. Note that both
steels are perfectly ductile up to a strain of 0.35, compared with an infinite
ductility assumed in the idealization. As will be shown in the forthcoming,
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FIGURE 3.2. Effects of unloading in strain-hardening regime and strain aging on
ductility of steel.

this ductility of 0.35 for both A36 and A572 steels is more than adequate to
materialize the benefits of plastification and redistribution of moments in
almost all practical steel structures.

3.2.4 Ductility Requirement for Plastification

The process of plastification enables a section of the members to realize its
full plastic moment capacity by successive yielding of all the fibers in the
section. Theoretically, the full plastic moment will be attained only if the
extreme fibers are capable of sustaining the yield stress up to infinite strain.
For all practical purposes, 99% of the full plastic moment capacity of a
section can be attained at a curvature of about 2 to 8 times the initial yield
curvature as shown in Fig. 2.3. In fact, the moment-carrying capacity of an
actual section will exceed the theoretical full plastic moment M, as soon as
the extreme fibers reach the strain-hardening regime.

3.2.5 Ductility Requirements for Moment Redistribution

The process of moment redistribution enables a structural system to attain its
plastic limit load by the successive development of plastic hinges to form a
failure mechanism. To this end, the first plastic hinge developed in the pro-
cess must be able to sustain a large rotation capacity with its full plastic
moment capacity M,, while plastic hinges are developed elsewhere in the
structure. This required rotation capacity for a plastic hinge can be computed
by the virtual work method or the hinge-by-hinge method. Details of these
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two procedures will be described in Chapters 6 and 7 respectively. LRFD
guidelines of maximum width-to-thickness ratio 4, for preventing local
buckling of the cross section (Table 2.1 or LRFD Table B5.1) and of maxi-
mum spacing of laterally unbraced length L, for preventing lateral torsional
buckling of members (Chapter F) are based on a rotation capacity of 3.0
times the elastic rotation capacity for nonseismic areas and 7 to 9 times the
elastic rotation capacity for seismic areas.

3.3 The Assumption on Small Changes in Geometry of
Structures

In simple plastic theory, as in elastic theory, the equilibrium equations are
formulated on the basis of a structure’s original undeformed geometry. How-
ever, the word “plastic” usually gives the impression that a large deflection
would be involved at the plastic limit load. In the following, we will show
through simple examples that defections at the plastic limit load are of the
same order of magnitude as those at the elastic limit load.

Consider a fixed-ended beam with a concentrated load applied at one-
third point. The deflections under concentrated load at elastic and plastic
limits are determined by the hinge-by-hinge method in Example 1.8.2 as

M,L?
— . . .1
A, = 0.0247 £ (3.3.1)
and
M,L?
A, = 00741 ng . (3.3.2)

Note that the deflection at the plastic limit load is about 3 times that at the
elastic limit, while the plastic limit load is more than 33%; higher than the
elastic limit load. Similarly, the midspan deflection of a fixed-ended beam
under a uniformly distributed lateral load at the elastic and plastic limit loads
are found to be

M, L?
el — ﬁf (333)
and
M,L?
pl = ﬁ'. (3.3.4)

For this case, the plastic limit deflection is only 2.7 times the elastic limit
deflection while the plastic limit load is more than 339 higher than the elastic
limit load.
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3.4 The Equation of Virtual Work
3.4.1 The Equation

The virtual work equation relates a system of forces in equilibrium to a system
of compatible displacements. Stated simply, if a body in equilibrium is given
a set of small compatible displacement, then the work done W, by the external
loads on these external displacements is equal to the work done W; by the
internal forces on the internal deformations, i.e.,

Wy = W,. (34.1)

Note that the external displacements must be compatible with the internal
deformations. However, these internal deformations need not be real, ie.,
they need not correspond to any actual or possible state of equilibrium. The
internal forces must be in equilibrium with the external forces, but they need
not be the actual internal forces due to the external loads. They bear no
relationships with the external or internal displacements. Any equilibrium set
of forces may be used in the equation of virtual work. The structure can be
arbitrarily distorted to produce a displacement set without reference to any
loading system. Since the equilibrium set and the displacement set are not
related in any way, the adjective virtual is used to describe their work
equation.

In plastic methods, only mechanism-type deformations are considered in
which internal deformations are assumed to be concentrated at plastic
hinges, which are assumed to be connected by rigid members. As a result, the
virtual work equation (3.4.1) for framed structures can be written in the
explicit form as

Equilibrium Set

Z Pé; = Z M0, (3.42)

Displacement Set

where P, is an external load and M, is the internal moment at a hinge loca-
tion; both Ps and Ms together constitute an equilibrium set and therefore
must be in equilibrium; J; is the displacement at the load point P, and in
direction of the load P; and 6, is the rotation at a hinge location with the
moment M;, both Js and s together constitute a displacement set and there-
fore must be compatible with each other.

3.4.2 Sign Convention

The use of the virtual work equation, particularly for the moment check used
in the next chapter, requires proper signs with both moments and rotations.
The following sign convention will be used when applying the virtual work
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equation (3.4.2). The moments and rotations causing tension on the side of the
dotted line are positive and vice-versa (see Figs. 3.10 and 3.11).

In contrast, in calculating the actual plastic work done on a plastic col-
lapse mechanism described in Chapter 2, the plastic moment M, and the
corresponding rotation 8 are always positive for energy dissipation at a plas-
tic hinge. Thus, no sign convention is needed for calculating the plastic work
equation for a mechanism solution. This will be described in detail in Chap-
ter 5.

3.4.3 Work Done by Distributed Loads

The external work done by concentrated loads can simply be determined as
the product of the load and the corresponding displacement. However, when
the load is distributed, Fig. 3.3(a), the external work W should be calculated
by carrying out the following integration

Wy = f (wdx)y (3.4.3)
L

where w, dx, y, and L are shown in Fig. 3.3. If w is a uniformly distributed
load, then w can be taken out of the integral. It follows that the remaining
integral represents the area of the displacement diagram such as that shown
in Fig. 3.3(b). In plastic methods, the rotations are concentrated at plastic
hinges and the members between the hinges are straight. Thus, the work done

FIGURE 3.3. Work done by a
distributed load: (a) distrib-
uted load and (b) deflection.
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FIGURE 3.4. Work done by

: W = wlL
uniformly distributed loads *
1 1
on horizontal members. @ W W = Lwa
w

) L
(c)
N %w(\

can be found directly, without carrying out the integration for area, by simply
calculating the maximum deflections of triangles and trapezoids as shown in
Figs. 3.4(a), (b), and (c).

For inclined members under a vertical uniformly distributed load, such as
those in gable frames (Fig. 3.5), W; can be calculated as

W = %(Wcos A (3.4.4)

where W = wL is the total uniformly distributed load on the member; and 6,
A, and L are shown in Fig. 3.5(a). For practical applications, it is more
convenient to use the formulas in terms of the vertical deflection & than A as
shown in of Fig. 3.5(a), (b), and (c) for the computation of external work W.

3.4.4 Applications of the Virtual Work Equation

In plastic methods, the virtual work equation has the following five major
applications.

1. Obtain the geometrical relationships of mechanism motion by assuming
appropriate equilibrium sets.

2. Make a moment check for a given mechanism by assuming appropriate
displacement sets.

3. Prove the uniqueness, unsafe, and safe theorems.

4. Obtain bounding solutions: upper-bound load factors in analysis prob-
lems and lower-bound plastic moments in design problems.

5. Calculate deflections at collapse load.

The power and simplicity of the virtual work equation can be brought out
best by simple examples. Herein, we shall present simple examples illustrat-
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D FIGURE 3.5. Work done by
uniformly distributed loads
on inclined members.

A"
W cosf \ ' ,

(a)

Projection of A C' D
|
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ing the first two applications. The plastic theory will be proved in the next
section, followed by the calculations of upper and lower bounds on load
factor and plastic moment of simple beams and frames in this chapter and of
more complex structures in Chapters 4 and 5. Deflection calculations will be
dealt with in Chapter 6.

Example 3.4.1. The mechanism shown in Fig. 3.6 is considered in a plastic
frame analysis. Use the virtual work equation to determine the relationship
between the angles 6,, 0,, and 6,.

Solution: To relate 6, and 6,, the equilibrium set shown in Fig. 3.7 is gener-
ated by simply applying a unit compressive internal force in member BC and
then adding the necessary external moments to achieve moment equilibrium
for the other two members. The virtual work done by this equilibrium set
(Fig. 3.7) on the given displacement set (Fig. 3.6) gives the relationship as

200, — 250, =0,
which leads to the angular relationship
0, = §02. (3.4.5)
4
To relate 6, and 6;, the equilibrium set shown in Fig. 3.8 is generated by

first applying an internal compressive force in member CD with its vertical
and horizontal components directly proportional to the member slope and
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FIGURE 3.6. The frame 0,
mechanism to be analyzed. -

20
25

.
|

LS. 10 | 10 |

FIGURE 3.7. An equilibrium B -1 c
set for relating 6, and 0, of
Fig. 3.6.

20

25

FIGURE 3.8. An equilibrium
set for relating 6, and 0, of
Fig. 3.6.
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200 . FIGURE 3.9. An equilibrium
1 ~F — set for relating 0, and 0; of
Fig. 3.6.
20
20 ®
5 5
—1
20 325
Je -
5 | 10 | 10 y20
o |

then adding external moments to meet equilibrium requirements for the oth-
er two members. The virtual work equation for these two sets now provides

3256, — 250605 = 0,
which leads to the desired angular relationship

13

0, =—
3710

;. (3.4.6)

Alternatively, if we use the equilibrium set of Fig. 3.9, we obtain
20005 — 3250, =0,

which gives an alternative relationship
0, =—_0,. (34.7)

Equations (3.4.5) and (3.4.6) lead to the same relationship between 6, and 6,
as in Eq. (3.4.7). Any equilibrium sets can be used for this purpose, but the
procedure shown in Figs. 3.7 to 3.9 provides a simple and practical procedure
of obtaining geometric relations easily.

Example 3.4.2. The mechanism of a rectangular frame shown in Fig. 3.10(a)
provides an upper-bound solution of P = 16M,/3L. This solution will be
exact only if the moment condition (M < M,) is satisfied everywhere in the
frame. Use the virtual work equation to check the moments corresponding to
the given plastic collapse mechanism.

Solution: The moment diagram corresponding to the given mechanism is
shown in Fig. 3.10(b) with an unknown moment Mg. My can be determined
by using either of the two displacement sets shown in Fig. 3.11 in conjunction
with the equilibrium set of Fig. 3.10(b). Using the beam mechanism, the



F1GURE 3.10. The collapse
mechanism and its corre-
sponding moment diagram:
(a) mechanism and (b)
moment diagram.

FiGure 3.11. Two possible
geometry sets for finding
Mj of Fig. 3.10(b): (a)
beam mechanism and (b)
sway mechanism.
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virtual work of Fig. 3.10(b) on Fig. 3.11(a) gives

p(?) = (+ Mp)(=6) + (+M,)(+20) + (= M,)(=0)

Substituting P = 16M,/3L, we have
My, =2 (3.4.8)

Since My < M, the moment condition is satisfied and the moment check
is complete. Alternatively, using the sway mechanism, Fig. 3.11(b), and the
equilibrium set of Fig. 3.10(b), we have the following virtual work equation:

P(LO
5<7> = (+ Mjp)(+6) + (—M,)(—0),

which with P = 16M,/3L gives the same value of Mj as Eq. (3.4.6).

Example 3.4.3. The moment diagram corresponding to the plastic collapse
mechanism of a gable frame is shown in Fig. 3.12 with unknown moments
Mg, My, and Mg. Use the virtual work equation to perform the moment
check. The collapse load P for this mechanism is 3M,/5L.

FIGURE 3.12. A collapse
mechanism and its corre-
sponding moment diagram:
(a) mechanism and (b)

(b) Moment Diagram moment diagram.
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Solution: The unknown moment My can be determined easily by assuming
the sway mechanism of Fig. 3.13 in conjunction with the moment diagram of
Fig. 3.12(b). The virtual work equation provides

P(LO) = (—Mp)(+0) + (—M,)(—-0).
With P = 3M,/5L, Mp has the value

2
My = §MP <M, okay.

M|, can be determined easily by using the beam mechanism of Fig. 3.14 with
the moment diagram of Fig. 3.12(b). The virtual work equation gives

P(LB) = (—Mp)(—0) + (+M,)(+20) + (+ Mp)(—9),
which with P = 3M,/5L and My = (2/5)M,, provides

9 .
My = §MP > M, not okay.
Since M, > M, the moment condition is not satisfied and therefore P =
3M,/5L is an upper-bound solution, not the exact solution.

3.5 The Fundamental Theorems

Here, as in the elastic solution that must satisfy equilibrium, compatibility,
and elastic moment-curvature conditions, the correct plastic solution must
satisfy equilibrium, mechanism, and moment conditions. As the structure
under examination becomes more complex, it becomes increasingly difficult
to satisfy all three conditions simultaneously. In theory, it is always possible

FIGURE 3.13. Sway mecha-
nism for finding My of
Fig. 3.12(b).

FiGURE 3.14. Beam mecha-
nism for finding M,, of
Fig. 3.12(b).
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to write the relevant equilibrium equations compatible with a deformation
system and satisfy the moment conditions. In practice, the resulting equa-
tions are virtually unsolvable for practicing engineers. The alternative to an
exact solution is to evolve one in which only one or two of the three basic
conditions are fully met so that an approximate solution can be obtained
quickly. In order to judge the accuracy of these approximate solutions,
several general principles and basic plastic theorems will be established in
this section, against which the accuracy and meaning of the approximate
methods can be measured.

All the basic theorems of plastic theory are based on the assumption that
the loads acting on a structure will increase proportionally and will not be
allowed to vary randomly and independently. These loads may be thought of
as having their working values; as the loads increase, their working values are
multiplied by a common factor 4, the load factor. The basic theorems to be
established here are concerned with the load factor A, at the collapse of the
structure. In establishing the theorems, the equation of virtual work is used
extensively.

An important feature of plastic theory to be established in the forthcoming
is the extent to which an engineer’s intuition of structural behavior has been
used in the development of practical solutions 2.3, 3.1-3.6]. It is the aim of
this chapter to make full use of such intuitive ideas in conveying an under-
standing of the principles involved. These intuitive ideas are expressed first in
formal statements, followed by proofs of the theorems of plasticity, after
which methods of plastic analysis are illustrated by simple examples.

The more complex problems, which require a deeper appreciation of the
methods of plastic analysis, are presented in Chapters 4, 5, and 6. Emphasis
in these three chapters is placed on the methods of analysis that are suitable
primarily to hand calculations, since a thorough understanding of plastic
theory is best attained by the direct working of these examples. In Chapters
7 and 8, some methods suitable for computer application are introduced to
provide the necessary transition from the current simple plastic methods to
the more sophisticated analysis techniques that hold the promise of more
realistic prediction of load effects and frame performance leading to a direct
analysis of inelastic strength and stability for frame design. This is known as
advanced inelastic analysis. 1t is a difficult subject in which plasticity and
stability theories are taken together and where the structural engineering
profession is going. Chapter 8 presents an introduction to this difficult sub-
ject and provides a balance view of the significance of stability theory in
relation to plastic theory.

3.5.1 Uniqueness Theorem

Statement and Description. The load factor A at collapse has a definite value.
In other words, as the loads on the structure are gradually increased, i.e., as the
value of A is increased, collapse occurs at one definite value of A = 4.
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Proof: We shall show this by contradiction. First, assume the theorem is false.
Thus, it is possible to have two collapse mechanisms of a structure under the
given loads with two different load factors A’ and A”. Both mechanisms will
satisfy the equilibrium and moment conditions. Denote the displacements
and rotations of the first mechanism by §’ and &', and of the second one by 6"
and 6", respectively. These displacement sets are compatible. The associated
bending moment diagram corresponding to the first collapse mechanism,
denoted by M’, will be in equilibrium with the set of applied loads A’'W. This
moment diagram satisfies the moment condition, |[M’| < M,,. Similarly, the
bending moment diagram corresponding to the second mechanism, denoted
by M”, will be in equilibrium with the set of applied loads "W and satisfy the
moment condition, |[M"| < M,
The actual plastic work for the first mechanism has the usual form

Y(AW)S =Y M,|0]. (3.5.1)

For the proportional loading case, 2’ on the left-hand side of Eq. (3.5.1) can
be taken out of the summation sign as

XYW =Y M0 (352

Now, applying the virtual work equation to the displacement set of the first
mechanism and the equilibrium set of the second mechanism, we have

Y WS =Y M. (3.5.3)

If the two mechanisms have certain common plastic hinges, then M”6’ terms
on the right-hand side of the equation will be M8’ for the common plastic
hinges and less than M, 0’ for other hinges in the first mechanism. Thus, we
have

Y WS <Y M0 (3.54)
Comparing Eq. (3.5.2) with expression (3.5.4), we have
AT AL (3.5.5)

Similarly, by comparing the virtual work done by the equilibrium set corre-
sponding to mechanism 1 on mechanism 2, with the actual plastic work done
for mechanism 2, we can write

A< (3.5.6)

Inequalities (3.5.5) and (3.5.6) can be satisfied simultaneously only if the two
load factors have the same value. This value is unique and denoted by A, the
collapse load factor.

We will now illustrate and prove the uniqueness theorem again using a
simple structure, the fixed-ended beam, shown in Fig. 3.15(a). Here, the first
mechanism and its associated moment diagram, and the second mechanism
and its associated moment diagram are, respectively, shown in parts (b), (c),
(d), and (e). First, we write the actual plastic work equation for the first
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AWg AW FIGURE 3.15. A fixed-ended
L l . lc . beam, its mechanisms, and
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mechanism [parts (b) and (c)] and obtain
(A'Wg)op + (A We)oe = M, |0,| + M, |05 + M, |0)]. (3.5.7)

Now, we write the virtual work equation for the displacement set of the
first mechanism in part (b) and the equilibrium set of the second mechanism

in part (¢) and get

(A"Wp)35 + (A" W)dc = (— M) (—64) + (+ Mp)(+65) + (—Mp)(—92>3)-5 .
(3.5.

The subtraction of Eq. (3.5.8) from Eq. (3.5.7) leads to
(A" — A7) (Wpdg + Wcdc) = Op(M, — Mp). (359
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Since My must be less than or at the most equal to M,,, Eq. (3.5.9) reduces to
A=A (3.5.10)

Similarly, write the plastic work equation for the second mechanism [parts
(d) and (e)] and obtain

(A"Wp)op + (A" We)o¢ = M, |04 + M,|160¢] + M, |6p]. (3.5.11)

Again, write the virtual work equation for the displacement set of the second
mechanism [part (d)] with the equilibrium set of the first mechanism [part
(c)] and obtain

(A'Wp)dp + (AWe)o¢ = (— M,)(—0) + (+Mc)(+6¢) + (— M,)(—0p).

(3.5.12)
The subtraction of Eq. (3.5.12) from Eq. (3.5.11) leads to
(A" — V) (Wpdg + Wcbe) = 0¢(M, — M,). (3.5.13)
Since M < M, Eq. (3.5.13) reduces to
A=A (3.5.14)
Inequalities (3.5.10) and (3.5.14) can be satisfied only when
A=A (3.5.15)

Note that it has not been established that the collapse mechanism is
unique or that the bending moment diagram at collapse is unique. In fact, it
is possible to have two collapse mechanisms leading to the same collapse
load factor 4,. The uniqueness theorem simply states that the collapse load
factor A, determined from the three basic conditions (mechanism, equilib-
rium, and moment) has a unique value.

3.5.2 Unsafe Theorem

Statement and Description. If the collapse mechanism of a structure is guessed
and its plastic collapse equation is written, then the load factor so computed will
always be greater than, or at best equal to, the true value J.. It gives an unsafe
solution. In other words, if all the loads are increased slowly in proportion
to their working values, actual collapse would have already occurred before
the formation of the guessed mechanism, unless it happens to be the correct
mechanism.

From the plastic work equation such as Eq. (3.5.7), we can determine 1
for a given value of M, (analysis problem); or we can determine M, for
a given value of A (design problem). In the design sense, the unsafe theorem
states that the value of M, resulting from the analysis of an assumed mecha-
nism will always be smaller than or at most equal to the actual required
value.
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Proof: Consider, for example, a fixed-ended beam with a concentrated lateral
load P shown in Fig. 3.16(a). The actual collapse mechanism will form when
plastic hinges are developed at two ends and at the location of the concen-
trated load P [Fig. 3.16(b)]. The actual moment diagram is shown in part (c).
Now, assume an arbitrary collapse mechanism shown in part (d). The corre-
sponding moment diagram is shown in part (¢): First, we write the plastic
work equation for the assumed mechanism in part (d) and we obtain

PUsc = M, |0, + M,|6p| + M, |6p|. (3.5.16)

Note that all the terms on the right-hand side are plastic work and are
therefore positive. Now apply the virtual work equation to the assumed
mechanism [part (d)] and the equilibrium set of the actual moment [part (c)]
and obtain

Poc = (—M,)(=0,) + (+ Mp)(+0p) + (—=M,)(—bp).  (35.17)
Subtract Eq. (3.5.17) from Eq. (3.5.16) and get
(PY — P%)oc = (M, — Mp)0,. (3.5.18)

Since the moment diagrams in part (c) is the actual moment distribution, the
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moment condition must always be satisfied, i.c., M, < M,,. Thus, Eq. (3.5.18)
leads to the unsafe theorem

PU> P¢ (3.5.19)

where P° is the actual collapse load.

3.5.3 Safe Theorem

Statement and Description: If a bending moment diagram in equilibrium with
the applied external loads with load factor A can be obtained such that the full
plastic moment condition is not exceeded at any cross section of the structure,
then the load factor A computed from this moment diagram will be less than or
at most equal to the true collapse load factor A.. In other words, if at a load
factor A it is possible to find a bending moment diagram that satisfies both the
equilibrium and moment conditions but not necessarily the mechanism condi-
tion, then the structure will stand up and not collapse at that load factor, unless
it happens to be the actual or correct solution.

In the design problems if plastic moment M, is determined from an as-
sumed moment diagram described earlier, it will always be greater than or at
least equal to (safe) the true required plastic moment. The engineers can
intuitively visualize the distribution of moments and forces and calculate the
corresponding plastic moment or plastic limit load. In fact, the basic concept
of the safe theorem has been frequently used by practicing engineers in the
design of structures without knowing the existence of such a theorem.

Proof: Again referring to the fixed-ended beam of Fig. 3.16(a), select an arbi-
trary equilibrium moment diagram shown in Fig. 3.16(f), with M,, My, and
M_ less than or equal to M,,. Apply the virtual work equation to the actual
collapse mechanism of part (b) and the chosen equilibrium moment diagram
of part (f) and obtain

PESE = (= M) (=05) + (+ M) (+62) + (—Mp)(—05).  (3.5.20)

Now, we write the actual plastic work equation for the collapse mechanism
in part (b) and obtain

Peo¢ = M,|05| + M,|6¢] + M, |03]. (3.5.21)
Subtraction of Eq. (3.5.21) from Eq. (3.5.20) leads to
(P* — P)o¢ = (M, — M,)05 + (M — M,)0% + (Mg — M,)05. (3.5.22)
Since M, Mg, and M are all less than or at most equal to M,,, it follows that
(Pr—P)<o. (3.5.23)
Thus, inequality (3.15.23) leads to the safe theorem
Pl < P (3.5.24)
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3.5.4 Corollaries of the Safe and Unsafe Theorems

The following corollaries can be stated as a result of the safe and unsafe
theorems.

1. If a material of negligible self-weight is added to a structure or a restraint is
imposed, the structure cannot thereby be weakened.

This follows from the safe theorem. Since the moment diagram for the
collapse state of the unstrengthened structure must satisfy the moment
condition, the same moment diagram will certainly satisfy the moment
condition of the strengthened structure. Thus, the strengthened structure
cannot collapse at a load less than that of the unstrengthened structure.

2. The removal of a material or constraint from a structure will only weaken
the structure.

This follows from the unsafe theorem. Since the mechanism condition
must be satisfied at the collapse state of the unweakened structure, it will
certainly be satisfied for the weakened structure under the same load.
Thus, weakened structure cannot resist a load higher than the collapse
load for the unweakened structure.

3. A useful corollary of the unsafe theorem is that the true load factor at
collapse is the smallest possible one that can be determined from a consider-
ation of all possible mechanisms of collapse. This fact is very useful in the
method of “combination” of mechanisms, to be presented in Chapter S.

In short, the three limit theorems can be summarized as follows:

MECHANISM CONDITION 4 > 4,
A = 2, < EQUILIBRIUM CONDITION 4 < 4,
MOMENT CONDITION.

3.6 Upper- and Lower-Bound Solutions Based on the
Limit Theorems

The safe and unsafe limit theorems may be used together to obtain upper and
lower bounds on the value of load factor 4. in an analysis problem or on the
value of the plastic moment M, in a design problem. Herein, we shall illustrate
the calculations of upper- and lower-bound techniques for both analysis and
design problems with the use of a simple portal frame.

3.6.1 Analysis Example

Determine upper and lower bounds on the load factor A, for a rectangular
frame shown in Fig. 3.17. Use the mechanism shown in Fig. 3.18.
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FIGURE 3.17. A simple
rectangular frame with load
factor A.

FIGURE 3.18. An assumed
sway mechanism.

Solution: The assumed mechanism has three plastic hinges at D, E, and F. The
plastic work equation for this mechanism can be written as

(404)(56) + (604)(108) = (720)(26) + (240)(26) + (240)(8).  (3.6.1)

Note that plastic work is always positive, and there is no need to consider
sign convention. Equation (3.6.1) provides an unsafe or upper-bound solu-
tion on the value of 4, as

A=27. (3.6.2)

A lower bound can also be determined by checking the moments corre-
sponding to this mechanism. This is described in the forthcoming. Moments
at D, E, and F are known to be 720, 240, and 240, respectively. Unknown
moments at B and C can be determined by the application of the virtual work
equation as follows.

Moment at C: Apply the virtual work equation to the equilibrium and dis-
placement sets shown in Fig. 3.19 and get

(+Mc)(—0) + (720)(+26) + (—240)(—0) = (60)(2.7)(106), (3.6.3)
which gives
M. = 60. (3.6.4)

Moment at B: Apply the virtual work equation to the equilibrium and dis-
placement sets of Fig. 3.19(b) and obtain
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(60)(—0) + (+ Mp)(+20) = (40)(2.7)(56), (3.6.5)

which provides
M = 300. (3.6.6)

Since My > (M, = 240) the moment condition was violated at B. However
if we scale down the whole moment diagram of the frame by a factor
240/300 = 0.8 by simply reducing the value of 4 to 2.7 x 0.8 = 2.16, then the
moment condition will be met throughout the frame. However, at this load
level, the mechanism cannot develop. Since at A = 2.16, both the equilibrium
and moment conditions are satisfied without meeting the mechanism condi-
tion; it follows from the safe theorem that 4 = 2.16 is a safe solution, i.e., 2.16
is a lower bound on the value of 4. Thus, for the assumed mechanism, lower
and upper bounds are obtained as

216 <A, <27 (3.6.7)
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FIGURE 3.20. A simple
rectangular frame with M,
to be determined.

The bounds can be further narrowed down by considering other mecha-
nisms. Note that the actual collapse load factor for this frame is A = A, = 2.4,
corresponding to the formation of plastic hinges at B, E, and F.

3.6.2 Design Example

Determine upper and lower bounds on the value of M, for the frame shown
in Fig. 3.20. Again, use the mechanism of Fig. 3.18.

Solution: The plastic work equation for the assumed mechanism can be ex-
pressed as

(96)(50) + (144)(100) = (3M,)(20) + (M,)(20) + (M,)(0),  (3.6.8)
which gives
M, = 213. (3.6.9)

This is an unsafe value of M,,, i.e., it is a lower bound on the correct value of
M,,. The safe value, or upper bound, is determined by checking the moments
in the frame. Moments at B and C are determined as follows.

Moment at C: Apply the virtual work equation to the equilibrium and dis-
placement sets of Fig. 3.21(a), and obtain

(+Mc)(—0) + (640)(+26) + (—213)(—6) = (144)(106), (3.6.10)
which provides
M. =53. (3.6.11)

Moment at B: Apply the virtual work equation to the equilibrium and dis-
placement sets of Fig. 3.21(b) and obtain

(53)(—0) + (+ Mpg)(+28) = (96)(50), (3.6.12)
which gives
My = 267. ' (3.6.13)

Since My is greater than M, = 213, the moment condition was violated at B.
However, if we assign M, = 267 for the frame, then the moment condition
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will be met throughout the frame. But with this larger section size, plastic
hinges cannot develop at D, E, and F and thus no mechanism can form. Thus,
M, = 267 is an upper-bound solution on M,. Thus, bounds on M, are ob-
tained as

213 < M, < 267. (3.6.14)
Recall from Example 3.6.1 that the exact value of M, is 240.

3.7 Illustrative Examples

Herein, we shall present three different structures to further demonstrate the
applications of the virtual work equation and/or determine their upper and
lower bounds on the collapse loads.

Example 3.7.1. Due to settlement, end A4 of the frame shown in Fig. 322
is displaced vertically but A, = 0.5 inch and horizontally by A, = 0.1 inch.
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FIGURE 3.22. Displacements of a frame c 5 D
due to settlement and imperfection.

0=0.004 radians -
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j_Av = 05"
Ay, = 0.4"—»|

Also, due to initial imperfection in member AC, there is a clockwise rotation
of 8 = 0.004 radian at point B. Determine the resulting vertical displacement
6, of end E by the virtual work equation.

Solution: The first step to determine J, is to create an equilibrium set. To this
end, apply a unit vertical load at point E as shown in Fig. 3.23. Now, apply
the virtual work equation of the given displacement set to the created equilib-
rium set and obtain

(1)(4,) + (0)(0.1) — (1)(0.5) = (—5 x 12)(—0.004), (3.7.1)

which gives
6, =05+ 0.24 = 0.74 inch. (3.7.2)
Example 3.7.2. All five members of the truss shown in Fig. 3.24 have the same
cross section. Each bar can carry a yield load P, in either tension or compres-

sion and can be extended or compressed indefinitely under this load. Derive
an upper and lower bound on the collapse value of P.

Solution: Mechanism 1: Consider the mechanism with yielding of Bars AB,
BC, AD, and CD, Fig. 3.25(a). The plastic work equation for this mechanism
can be expressed as

4P,A, = 2P"A. (3.7.3)
From triangle DD’D" in Fig. 3.25(a), A and A, are related as
A= /24, (3.7.4)

Thus, Eq. (3.7.3) gives an upper bound
PU= /2P, (3.7.5)
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Skip-ft FIGURE 3.23. An equilibrium set for J,.

c - D

c FIGURE 3.24. A square truss.

A lower bound for this mechanism can be found by carrying out an equilib-
rium check. The equilibrium of joint 4 [Fig. 3.25(b)] gives the force in verti-
cal bar as

Fie=4/2P, (3.7.6)

Since F,¢ > P,, the yield condition has violated in member AC. Thus, if we
decrease the applied force by a factor Py/\/i P,, then a lower-bound solution
can be determined as

PL = =P

y*

(3.7.7)

PU
NG
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FIGURE 3.25. Upper and
lower bounds for mecha-
nism 1: (a) mechanism and
(b) equilibrium of joint A.

(a) Mechanism 1

(b) Equilibrium of Joint A

Mechanism 2: The equilibrium check for mechanism 1 shows that yielding in
the vertical bar AC is critical. So, we now try the mechanism in which only
AC is yielded. The plastic work equation for this case is

2(PYA) = P,(26), (3.7.8)
which gives
v 0
P* = P”X' (3.7.9)

To relate A to §, an equilibrium set is created for member AD as shown in
Fig. 3.26(b). Now, apply the virtual work equation of mechanism 2 to the
created equilibrium set and obtain

(M)(3) + (B)(0) + (—b)(A) + (W) (0) = 0. " (3.7.10)
Since b = h, we obtain A = ¢ and Eq. (3.7.9) reduces to
PU=P, (3.7.11)

From the equilibrium of joint 4 of Fig. 3.26(c), the forces in all side bars are
Py/ﬁ. Since all three conditions (equilibrium, moment, and mechanism) are
now satisfied, P = P, is the exact collapse load. This can also be obtained by
combining Eq. (3.7.7) with (3.7.11).
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A . FIGURE 3.26. Calculations
of collapse load from
mechanism 2: (a) mechanism
2; (b) an equilibrium set;
and (c) equilibrium of

join A.

(b) An equilibrium Set
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(c) Equilibrium of Joint A

Example 3.7.3. A rigid frame subjected to vertical distributed load and a
concentrated horizontal load is shown in Fig. 3.27. Determine a lower and
upper bound for the plastic moment M, using the mechanism shown in
Fig. 3.28.

Solution: We will first relate ,, 0,, and 6;, the angles defining the motion of
the mechanism.
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FIGURE 3.27. A fixed-ended 2w
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FIGURE 3.28. A sidesway
mechanism.

0, and 0, Apply the virtual work equation of the mechanism in Fig. 3.28 to
the equilibrium set [Fig. 3.29(a)] created by applying a unit compressive
axial force in segment CD and obtain

(ﬁL) 0, — <£L) 0, =0, (3.7.12)

2 2
which gives
0, =0,. (3.7.13)
0, and 0;: Here we have created an equilibrium set by applying an axial force
to member DE with horizontal and vertical components proportional to the
horizontal and vertical projection of member DE, respectively [Fig. 3.29(b)].

Now the application of the virtual work equation to the mechanism of Fig.
3.28 and equilibrium set of Fig. 3.29(b) results in

(3 :L )(01) - <\/§L2> 65)=0, (3.7.14)

4
which gives
6; = 36,. (3.7.15)
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Lower Bound: The plastic work equation for the mechanism Fig. 3.28 has the

form
3 1_ /(L 1 L
W) (%wz) +5 W<591 + L01> +5 W<L91 - 202>
= M,0, + M,(6, + 05) + M,(0, + 05) + M,0,. (3.7.16)
Substituting 6, and 6, in terms of 6; and simplifying, we obtain
M, = 0.187TWL. (3.7.17)

This is a lower-bound value of M,

Upper Bound: An upper bound can be determined by checking the moment
at B and the maximum moment in member BD.

Moment at B: Apply the virtual work equation to the equilibrium and dis-
placement sets of Fig. 3.30(a) and obtain

(+MB)(—9)+(+M,,)(+29)+(—M,,)(—e):%(zW)(%e). (3.7.18)

Substituting M, = 0.187WL and simplifying, we have
My = 0.061WL < (M, = 0.187WL) okay. (3.7.19)
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FIGURE 3.30. Moment check : aw
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Maximum Moment in Member BD: The moment in member BD can be ex-
pressed as [Fig. 3.30(b)]

2

M = 0.061WL + 0.752Wx — <gz_v>x7

By equating dM/dx to zero, the location of the maximum moment from B is
obtained as

(3.7.20)

Xo = 0.376L. (3.7.21)
Substituting this value of x, in Eq. (3.7.20), we have
M., = WL[0.061 + 0.283 — 0.141] = 0.203WL. (3.7.22)

Thus, if we assign M, = 0.203WL, then both equilibrium and moment condi-
tions are met, but the mechanism cannot form, since moments at points 4, C,
D, and E are all less than M,,. So, M, = 0.203WL is an upper-bound value of
M,,. Thus, we have

0.187WL < M, < 0.203WL. (3.7.23)

3.8 Summary

The methods of simple plastic analysis and design are based on two basic
assumptions. The first assumes that the material is ductile. The stress-strain
behavior of structural steel has a large amount of ductility, which can be fully
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realized through the process of plastification and redistribution of forces and
moments in a structural analysis. The second assumption is that the displace-
ments in a structure under loading are small so that the equilibrium equa-
tions can be formulated on the basis of the original geometry. For most
practical structures, the displacements at the plastic limit load are not large
and are of the same order of magnitude as those at the elastic limit load.

Here, as in the elastic solution that must satisfy equilibrium, compatibility,
and moment-curvature conditions, the correct plastic solution must satisfy
equilibrium, mechanism, and moment conditions. However, as the structure
becomes more complex, it becomes more difficult to obtain the exact solution
that satisfies all three basic conditions. It is more convenient to obtain a close
approximate solution rapidly while satisfying only some of the conditions.
To judge the nature of these types of solutions, some general principles and
theorems are needed. For this purpose, we have described and proved three
fundamental theorems of plastic methods, namely, uniqueness, safe, and
unsafe theorems. According to the uniqueness theorem, if the loads are in-
creased proportionately, then the collapse will occur at one define and unique
value of the load factor when all three basic conditions are satisfied. The
unsafe theorem states that a guessed mechanism, if not correct, will overesti-
mate the load factor and underestimate the required plastic moment capac-
ity. In contrast, the safe theorem states that a moment diagram satisfying the
moment condition and in equilibrium with the applied loads, if not corre-
sponding to a mechanism, will underestimate the load factor and overesti-
mate the required plastic moment capacity. The safe and unsafe theorems can
be used to establish quickly and easily close upper and lower bounds of the
load factor or the required plastic moment capacity of a structure.

The conditions required to establish an upper- or lower-bound solution in
the simple plastic theory are summarized as follows:

a. Upper-bound solution, which gives an unsafe, or correct, value of the
collapse load.

1. A valid mechanism of collapse must exist such that it satisfies the me-
chanical boundary conditions (mechanism condition).

2. The internal dissipation of energy at plastic hinges must equal the
expenditure of energy due to the external loads (work equation).

3. All deformations take place at the plastic hinge locations and the mate-
rial stays rigid between plastic hinges. The amount of plastic hinge
rotation at each location is defined by the mechanism. The direction of
the plastic rotation at each location in turn defines the direction of the
plastic moment required to calculate the dissipation of energy at the
plastic hinge location. This shows that the dissipation of energy at
each plastic hinge location is always positive. (This is known as the
yield conditions and its associate flow rule in the theory of plasticity.)

b. Lower-bound solution, which gives an oversafe, or correct, value of the
collapse load.

1. A complete moment distribution must be found everywhere in the
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structure satisfying the equations of equilibrium (equilibrium
condition).

2. The forces and moments at the ends must satisfy the boundary condi-
tions (static boundary conditions).

3. At no place in the structure the moment condition is violated (moment
condition).

From these rules, it can be seen that the upper-bound technique is based
on the mechanism or work approach, while the lower-bound technique is
based on the equilibrium approach. Both approaches are based on an engi-
neers’ intuitive approach and are very powerful, since they are backed by
repeated experiments and years of experience. These two alternative ap-
proaches to an exact solution within the simple plastic theory will be de-
scribed in detail in the following two chapters as the “equilibrium method”
and the "work method,” respectively, in Chapters 4 and 5.

The equation of virtual work provides a powerful tool in the plastic meth-
ods. Its usefulness has been demonstrated here by its use in

a. proving the uniqueness, safe, and unsafe theorems.

b. obtaining the geometrical relationships of motions of mechanism of struc-
tures by creating proper equilibrium sets.

¢. making moment checks corresponding to assumed collapse mechanisms
by selecting appropriate displacement sets.

d. obtaining upper and lower bounds for the load factor or the required
plastic moment capacity of structures based on an assumed mechanism.

In writing the virtual work equation, especially for its use in the moment
check, the moments and rotations must be accompanied with a proper sign
convention. It is not necessary, however, to consider sign convention in a
plastic work equation for an assumed mechanism since all terms contributing
to the plastic energy dissipation are always positive.
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Problems

3L
3.2

33.

3.4.

35.

3.6.

3.7.
38.

3.9.

Why is the correct mechanism the one that corresponds to the lowest load?
Demonstrate the upper- and lower-bound theorems with the aid of a beam,

loaded at the third points, fixed at one end but simply supported at the other.

The propped cantilever beam AB as shown in Fig. P3.3 is of constant cross
section with plastic moment M, and total length 4a. Determine the upper and
lower limits on P, by considering three mechanisms with plastic hinges at (a) B
and D, (b) B and E, and (c) C and E.

R, 1.5 R
A 1 7

ﬁ B c D EF

1 >l l
- >l >l >re

FIGURE P3.3

If end A of the beam in Problem 3.3 is also fixed, determine the three sets of
upper and lower bounds on P,,.

The beam of Problem 3.3 is loaded by a uniform load g per unit length. Deter-
mine the upper and lower bounds on g using a mechanism with plastic hinges
at C and D.

What is the effect on ¢ in Problem 3.5 of settlement of support A?

Ifend A of the beam in Problem 3.5 is also fixed find g.

The fixed-ended beam as shown in Fig. P3.8 is subjected to a uniformly distrib-
uted load g. Find the upper and lower bounds on g by considering mechanisms
with plastic hinges at (a) 4, B, and C; (b) 4, C, and D; and (¢) 4, B, and D.

F 3 ¥ § 3 7§ -+t ¢ ¢ v vy
A MP B C 2MP 6
le L e L ol 2L |
il | I~ |

FIGURE P3.8

If the frame of Fig. 3.27 is subjected to a vertical concentrated load 2W at C
and a horizontal concentrated load W at B, determine the upper and lower
bounds on W by considering a mechanism with plastic hinges at 4, C,D,and E.
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3.10. A rectangular frame is subjected to a vertical concentrated load 1.5W at C and
a horizontal concentrated load W at D as shown in Fig. P3.10. Find the upper
and lower bounds on W by considering a mechanism with plastic hinges at A4,

C,D,and E.
‘1.5W
- W
4 B C D
1 Mp = 1
J’_ b A E oy

»l
> rl

FiGure P3.10

3.11. If the vertical concentrated load in Problem 3.10 is replaced by a uniformly
distributed load P, determine the upper and lower bounds on W by considering
mechanism with plastic hinges at 4, C, D, and E, when @P=W4and(b)P =W

3.12. Member BD is added to the square truss of Fig. 3.24. Determine the upper and
lower bounds on P for mechanisms with yielding of (a) members 4B, BC, CD,
DA, and BD and (b) members AC and BD.

3.13. The loads and member plastic moment capacities of a two-bay frame are as

14\

24\
@ lc o /S\JF G -17)
|l

1 1 | 1 L)

ov}

b AL

FIGURE P3.13
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3.14.

3.15.

3.16.

3.17.

3.18.

3.19.

3.20.
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shown in Fig. P3.13. Determine the upper and lower limit of 4 by considering a
mechanism with plastic hinges at A, C, D, E, F, G, and H.

Define “rotation capacity” and “ductility.” For a fixed-ended beam subjected to
a uniformly distributed lateral load, what is the required rotation capacity and
ductility in order that the computed plastic limit load will be reached?

Why is no elastic energy at a plastic hinge location included in the work equa-
tion such as Eq. (3.6.1)?

Under what circumstances does the conventional elastic design become a
“lower-bound” solution.

Explain why erection forces and support settlements influence the elastic but
not plastic design of a structure.

Demonstrate the uniqueness theorem with the aid of a simply supported beam,
loaded at the third points that: (a) the collapse load of the beam is unique; (b) the
collapse mechanism leading to the same collapse load in not unique; and (c) the
bending moment diagram associated with the same collapse load is not unique.
Can the plastic design method be applied to reinforced concrete frames? Ex-
plain. Can it be applied to steel bridges? Explain.

Explain why plastic theorems are not applicable to structural problems involv-
ing instability.



4
Equilibrium Method

4.1 Introduction

The preceding chapter was concerned with basic assumptions and theorems
used in the plastic analysis and design of steel structures. In the following two
chapters we shall present two basic methods of plastic analysis and design. In
this chapter, we shall present the plastic analysis and design technique known
as the “equilibrium method,” based on the lower-bound theorem. In the next
chapter, the plastic analysis and design technique known as the “work meth-
od,” based on the upper-bound theorem, will be presented.

As the name implies, in the equilibrium method, the relationship between
the strength of a steel structure and the applied loads is found by adjusting
the unknown redundants in an indeterminate structure such that the equilib-
rium condition is always satisfied and the moment condition is not violated,
and the mechanism condition may or may not be satisfied. The equation
formed in this way is called the statically admissible “equilibrium equation”
and gives the relationship between the structure strength and the applied
loads for a particular set of assumed redundant moments.

It is, however, the task of the analyst/designer to seek the best set of redun-
dant moments that gives the largest applied load-carrying capacity (or the
smallest required plastic moment) of the structure. In fact, the best set of
assumed redundant moments corresponds to the formation of a plastic fail-
ure mechanism. Although any set of assumed redundants will give a safe or
lower-bound solution, the critical set is not generally apparent and requires
physical intuition combined with the use of differential calculus and algebraic
techniques. This is described in this chapter.

Herein, we will begin by reexamining the lower-bound theorem that forms
the basis of the equilibrium method. Then we will discuss the steps involved
in obtaining statically admissible equilibrium equations and making the
mechanism checks. Next, we will demonstrate the use of the equilibrium
method for plastic design and analysis of simple beams, rectangular portal
frames, and gable frames. Finally, for plastic analysis and design of large
structures, we will present a practical procedure of the equilibrium approach.

157
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In this and subsequent chapters, for moments and rotations we will follow
the sign convention used in Chapter 3, which is repeated here: the moments
and rotations causing tension on the side of the member marked with dotted
lines will be positive, and vice-versa.

4.2 Basis of the Method

For a statically determinate structure, the equilibrium conditions provide a
complete moment diagram. For these structures, the elastic or plastic limit
load can be determined directly by equating the critical moment in the equi-
librium moment diagram to the yield or plastic moment of the section. How-
ever, for indeterminate structures, equilibrium equations always lead to the
moment diagram in terms of unknown redundants. In the elastic analysis,
these unknowns are determined from compatibility conditions, which often
make the analysis complicated. In the plastic analysis, however, the analyst
has the freedom to choose the values of unknown redundants in the moment
equilibrium equations, which often lead to a quick safe solution to the prob-
lem. The solution will of course be exact only if the chosen values of the
redundant moments result in a plastic collapse mechanism.

The fact that any values of redundants yield a safe solution is based on the
lower-bound theorem of plastic analysis described in Chapter 3. The theorem
is restated here: a load computed on the basis of an equilibrium moment
distribution in which moments are nowhere greater than M, is less than or
equal to the true plastic limit load.

The theorem gives lower bounds on, or safe values of, the limit or collapse
load; the maximum lower bound is the limit load itself. For example, the
loads determined by the hinge-by-hinge analysis in the examples in Chapter
1 are lower bounds to the limit loads. In the example of fixed-ended beam in
Section 1.4, the stage 1 moment diagram satisfies the equilibrium and plastic
moment conditions, thus, the corresponding load is a lower-bound solution
and is of course lower than the plastic limit load. The stage 2 moment dia-
gram satisfies the equilibrium and moment conditions as well as the mecha-
nism condition, thus the corresponding load is equal to the plastic limit load.
Similarly, in Example 1.8.2, moment diagrams at the points of one and two
plastic hinges satisfy the equilibrium and plastic moment conditions, thus the
corresponding loads are lower bounds on the plastic limit load. When a third
hinge is formed, the moment diagram satisfies the equilibrium and moment
conditions as well as the mechanism condition, thus, the corresponding load
is equal to the plastic limit load.

Before the most critical solution of a particular equilibrium can be found,
the equilibrium equations must be formed first, either graphically or alge-
braically, followed by a proper selection of redundant moments. As a conse-
quence, we will present the equilibrium method in two stages: (a) drawing the
equilibrium moment diagram and writing the moment equations in terms of
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redundants and (b) adjusting the redundants in such a way that both plastic
moment and mechanism conditions are astisfied. These two stages of analysis
procedure are elaborated on in the next two sections.

4.3 Moment Equilibrium Equations

The moment equilibrium equations of a statically indeterminate structure are
obtained as follows:

(a) Select redundant(s). Enough freedom must be introduced at support
points or in the structure to produce a simple determinate structure.

(b) Draw a moment diagram for the determinate structure under applied
loads. Moment diagrams are drawn along all members comprising the
structure, following the usual sign convention for the moment.

(c) Draw a moment diagram for the determinate structure under redun-
dant(s). This is the restraining moment diagram induced by the actual
continuity at the redundant points.

(d) Superimpose moment diagrams of steps (b) and (c). The true moment at
any point is given by the difference in the ordinates of the two diagrams.

(e) Write moment equations at critical sections of the structure using the
moment diagram of step (d).

The following examples demonstrate these steps of obtaining the moment
equilibrium equations.

Example 4.3.1. For a fixed-ended beam shown in Fig. 4.1(a), obtain the mo-
ment equilibrium equation in terms of unknown redundants.

Solution: The degree of indeterminacy for the beam shown in Fig. 4.1 is two.
The redundants may be selected as the two end moments M, . The resulting
simply supported beams under the uniform load w and under the redundants
M, are, respectively, shown in parts (b) and (c) of Figure 4.1. The moment
diagram for the determinate structure under the uniformly distributed load
W is shown in part (d) with the moment at the center equal to

M=—=. 43.1)

The moment diagram under the redundants is shown in part (¢). The moment
diagrams of parts (d) and (¢) are combined in part (f).

Note that the moment diagrams are plotted on the tension side of the
member. We will use this sign convention throughout this book. From Fig.
4.1(f), the critical moment in the beam is

M,=—-—M,. 432
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Example 4.3.2. For the two-span continuous beam shown in Fig. 4.2(a), obtain
the moment equilibrium equation in terms of unknown redundant moment.

Solution: The degree of indeterminancy of the beam in Fig. 4.2(a) is one. The
redundant may be conveniently selected as the moment at midsupport. Let
this moment be M,. The resulting determinate beam under the two concen-
trated loads and the redundant moment are shown in parts (b) and (c), and
their moment diagrams are shown, respectively, in parts (d) and (e). These
diagrams are then superimposed in part (f) and redrawn on a single straight
base line in part (g). The diagrams in (f) and (g) are identical, from which we
obtain the critical moment in the beam as

Pa(L—a) Ma
L L~

M, = 43.3)

4.4 Mechanism Check

Once the moment equilibrium equations in terms of the unknown redun-
dants are set up, the plastic limit load (or plastic moment) of a structure can
be determined by adjusting the redundants (or the restraining moment dia-
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FIGURE 4.2. Bending
moment diagrams and
critical moments in terms of
redundant moment M, for a
two-span continuous beam.

gram) until the resulting true moment value is maximum and equal to the
plastic bending strength to be furnished, at enough points in the structure to
reduce it to a mechanism. The following steps may be used to achieve this
goal.

(a) Select value(s) of redundant(s) such that the plastic moment condition at
maximum moment locations is not violated at any point in the structure.

(b) Determine the load or plastic moment corresponding to the selected
redundant(s). :

(¢) Check for the formation of a mechanism. If a plastic collapse mechanism
condition is met, then the computed load (or plastic moment) is the exact
plastic limit load. Otherwise, it is a lower-bound or safe solution to the
exact limit load.

(d) Adjust the redundant(s) and repeat steps (a) to (c) until the exact plastic
limit load (or plastic moment) is obtained.
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Assuming the value of redundant(s) in the structure is equivalent to visual-
izing how the structure will carry the applied loads or distribute the applied
loads among its components or parts. The most efficient (moment) distribu-
tion corresponds to the formation of a failure mechanism. Any other moment
distribution will be less efficient and will therefore result in a lower load (or
safe plastic moment).

The complete procedure for determining the plastic limit load from the
moment equilibrium equation(s) in terms of unknown redundant(s) will be
demonstrated by the following two examples.

Example 4.4.1. Determine the plastic limit load of the fixed-ended beam
shown in Fig. 4.3(a). Use the moment diagram and equilibrium equation
obtained in Example 4.3.1.

Solution: In this case, it is obvious by inspection that the required bending
strength is equal to one-half of the maximum determinate (simple span) mo-
ment that would be produced by the limit load W,, which is attained when
the available plastic bending capacity M, is reached at all three hinge points.
For more complex structures and loading, the appropriate choice of redun-
dant (or restraining) moment is not obvious. An arbitrary choice will lead to
a safe solution. This is illustrated here.

A safe solution of the fixed-ended beam can be determined from Eq. (4.3.2)
by selecting a value for the redundant moment M,. For example, if we select
M, = 0, the moment diagram is reduced to the one shown in Fig. 4.1(d). By
equating the critical moment in this diagram to the plastic moment capacity
of the beam M, we have

Mcr =g = Mp’ (441)
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which gives W = W, as

W, = L. (4.42)

The moment diagram in Fig. 4.1(d) has only one plastic hinge developed at
midspan, but three hinges are required to form a failure mechanism for the
fixed-ended beam. It follows that W, is a lower-bound solution to the exact
plastic limit load. The assumed moment distribution is obviously not an
efficient way to carry the applied uniform load. The actual beam will adjust
itself better to carry the higher load.

To show this point, we now assume the unknown redundant moment M,
equal to the largest possible moment capacity as in the midspan section.
Thus, from Fig. 4.1(f), we obtain

WL
M, = 5 M, =M, 4.4.3)
which gives W = W, as
16
W, = M, . 4.44)

L

The improved moment diagram [Fig. 4.3(b)] results in the formation of three
plastic hinges and thus leads to the formation of a failure mechanism as
shown in Fig. 4.3(c). Therefore, W, is the exact plastic limit load.

Note that if a value of M, less than M, such as M,/2 is assumed, no failure
mechanism will be developed and the corresponding load (W; = 12M,/L)
will be a better lower bound than that of the first lower-bound value W;.

Example 4.4.2. Determine the plastic limit load of a two-span continuous
beam shown in Fig. 4.4(a). Use the moment diagram and equilibrium equa-
tion obtained in Example 4.3.2.

kLblP
A

(a) > B
-

v\l

1 #o
¥,

FIGURE 4.4. Plastic limit

state of the two-span contin- \/\/
uous beam of Fig. 4.2.
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Solution: In constructing the determinate moment diagrams for the continu-
ous beam, the freedom at the midsupport is assumed to be provided by
means of a real hinge.

A lower bound on the plastic limit load can easily be found from Eq. (4.3.3)
by selecting a value of the midsupport moment M, . If we select M, = 0, for
example, the moment diagram is shown in Fig. 4.2(d). By equating maximum
moment in this diagram to the plastic moment capacity of the beam, we have

Pa(L — a)
M, = —7 = M, (4.4.5)
which gives P = P, as
M,L
'S al-a) 4.4.6)

The moment diagram in Fig. 4.2(d) will develop one plastic hinge in each
span. Since two plastic hinges in each span are required to develop a plastic
failure mechanism, the load P, is a lower-bound solution. On the other hand,
by setting redundant moment M, equal to the plastic moment M,, and by
equating the maximum moment in Fig. 4.2(g) to the plastic moment, we have

Pa(L — a) a_

M, = 3 -M, M, 4.4.7)

p

which gives P = P, as

M, +a)

P, = alL—a)

Since a sufficient number of plastic hinges has formed in the beam [Fig.
4.4(b)], resulting in the formation of a failure mechanism shown in Fig. 4.4(c),
P, is the exact plastic limit load.

4.5 Design of Simple Beams

The basic steps involved in the equilibrium method have been described and
illustrated in Sections 4.3 and 4.4. Herein, we shall use the equilibrium meth-
od to carry out a complete plastic analysis and design of steel beams. The
load-carrying capacity of beams may be significantly affected by the presence
of shear force in the beam and the possible lateral torsional buckling of the
beam if not properly designed. These two effects on beam strength and their
considerations in design are described in the forthcoming.

4.5.1 Shear Force

In many cases, beams are subjected to high shear force. For example, a short
beam under central load or a long beam under a concentrated load applied
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near its support may develop a high shear-to-moment ratio. In such cases,
shear force will decrease the plastic moment capacity of the beam section and
cause larger deflections than might otherwise be expected. Design and analy-
sis of such beams must therefore consider the effect of shear force on the
yielding of the section. This may be achieved simply by replacing the plastic
moment capacity M, with the reduced plastic moment capacity M, in the
procedure given in Sections 4.3 and 4.4. The calculation of M, was described
in Section 2.6. Examples 4.5.2 and 4.5.3 in the forthcoming illustrate how the
shear force can be included in the plastic analysis and design of beams.

Since high shear and moment values frequently occur in regions of local-
ized yielding, the beneficial effects of strain-hardening usually enable beams
of wide flange and I shapes to reach the full plastic moment M,,. Experimen-
tal evidence shows that design of beams based on M, is too conservative
because of the effect of strain-hardening in an actual beam. Therefore a de-
sign rule to account for the influence of shear force may be obtained by a
consideration only of the maximum shear force V, to prevent “failure” due to
excessive shear deformations.

Therefore, as far as shear is concerned, the full plastic bending strength M,
may be used in design, provided the total transverse shear on the wide-flange
section at plastic limit load, in kips, is no more than

F, F, d— 2t,)
V,=Lt,(d—2t) = —2(t,d) —L
IV S S
or
F, 1
Vy = = (tud) 77 = 054F,1,d ~ 0.55F,1,d 4.5.1)

where t, = web thickness in inches, d = section depth, t; = flange thick-
ness, and d/(d — 2t;) = 1.07. The webs of columns, beams, and girders
shall be reinforced by stiffeners or a doubler plate if the shear force V at
plastic limit load exceeds the shear strength V, (Section N5, Chapter N, ASD,
1989).

4.5.2 Lateral Torsional Buckling

Any member of I-shape sections bent about its strong axis may be susceptible
to lateral torsional buckling if the distance between points of lateral support
is excessive [4.4-4.6, 4.9]. The effect of lateral-torsional buckling (Fig. 4.5) of
a beam is similar to the effect of local buckling of a cross section (Section 2.7).
Both effects may prevent the beam from attaining its full plastic moment
capacity, and if the plastic moment capacity is attained, they may prevent the
beam from sustaining its moment capacity up to the desired rotation capac-
ity. The local buckling occurs due to a high width-to-thickness ratio of the
component elements of a cross section, while the lateral-torsional buckling
occurs due to a high unbraced slenderness ratio of a narrow beam.
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FIGURE 4.5. Lateral torsional buckling of a wide-flange beam loaded in the plane of
web.

The schematic relationship between the unbraced length and the moment-
carrying capacity and rotation capacity of a beam are illustrated in, respec-
tively, the upper and lower part of Fig. 4.6. When the unbraced length is long,
the member will fail by elastic lateral-torsional buckling and the rotation
capacity will be small. When the unbraced length is short, the full plastic
moment will be attained or exceeded and the section will be able to deliver
much larger rotation capacity. For intermediate unbraced length, the inelas-
tic buckling occurs and the rotation capacity is higher than that for elastic
buckling. For satisfactory performance, the rotation capacity of a beam (or a
member of a structure) should be equal to or greater than the hinge angle
required to form a mechanism.

To ensure the proper moment and rotation capacities, the LRFD specifica-
tion has defined three sets of limiting unbraced lengths: L,,, L,, and L,.
When unbraced length L, < L, the member is suitable for plastic design,
ie., it will be able to sustain plastic moment up to the rotation capacity
necessary to form a failure mechanism (taken as three times the yielding
rotation by LRFD). When L,; < L, < L,, the member will attain the plastic
moment but it may not sustain it for the desired rotation capacity. When
L, <L, <L,, the member will fail by inelastic lateral torsional buckling
without attaining plastic moment. When L, > L., the member will fail by
elastic lateral torsional buckling.

The elastic limiting length L, is obtained from the elastic lateral torsional
buckling moment M., for beams of various cross-sectional shapes. For exam-
ple, for I-shaped members under uniform moment, the elastic solution of the
governing differential equation gives [4.1]

T nE\?
M, =T \/ ELGJ + (L—> IC, 452)

b b
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FIGURE 4.6. Moment and rotation capacity of a beam with its unbraced length.

where L, is unbraced length; E and G are, respectively, Young’s modulus in
ksi and shear modulus in ksi of steel; I,, J, and C, are, respectively, the
moment of inertia about the weak axis in in.%, torsional constant in in.#, and
warping constant in in.® for the section. By equating M, = (F, — F,)S, in this
equation and then rearranging the resulting equation, L = L, is obtained as

L (F F)\/l +/1+ X,(F, - E)? 4.53)

where F, is yield stress in ksi, F, is the maximum compressive residual stress in
ksi, r, is the radius of gyration of the section about the minor axis in in., and

EAGJ
X, Sx/ : 4.54)

C,(S,)\?
X, =42 < GJ) (4.5.5)
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in which S, is the elastic section modulus about the strong axis in in. and A4
is the cross-sectional area of the beam in in2.

The limiting length L, is obtained from the inelastic critical moment for
beams. The inelastic critical moment is obtained by replacing EI, GJ, and
EC,, in Eq. (4.5.2) by effective bending rigidity (EI,),, torsional rigidity (GJ),,
and warping rigidity (EC,),. These effective values are estimated by using the
tangent modulus concept. The recommended value of L, for members of
I-shaped and channel sections is:

L 300
Lp_ 7N (4.5.6)
Ty F vf

where F, is the yield stress of the flange of the section in ksi.

Equation (4.5.6) is valid for the usual case of “open” I-shape sections but
becomes very conservative for “close” box-type or solid sections. For exam-
ple, for solid rectangular bars and box-beams the recommended value is:

L, 3750
I - A .
Pt v /7 4.5.7)

in which M, is the plastic moment in kip-in., A is the cross-sectional area in
in.2, and J is the torsional constant in in®.

Tests of I-shape sections have shown that the maximum effective spacing
between points of lateral support adjacent to a plastic hinge is affected by
several factors, the most important of which is the moment gradient, i.e., the
change in moment over this distance. The limiting unbraced length L, for
plastic analysis can be obtained from a beam model in which the beam is
partly elastic and partly strain hardened. The solution of the resulting differ-
ential equation with some simplifications can be expressed in terms of the
moment ratio M, /M, at the first adjacent bracing hinge moment as

L 3,600 + 2,200M, /M,

L
. 7 4.5.8)

where M, is smaller moment at the end of unbraced length of beam in kip-in.
and M,/M, is positive when the moments cause reverse curvature. In Eq.
(4.5.8), L,, is measured from a plastic hinge location to the next adjacent
bracing point, and r, is the radius of gyration of the member with respect to
its weak axis. Equation (4.5.8) assumes that the moment diagram within the
unbraced length next to the plastic hinge locations is reasonably linear. For
nonlinear diagrams between braces, judgement should be used in choosing a
representative ratio. All plastic hinge locations associated with the failure
mechanism shall be braced to resist lateral and torsional displacements.
Equation (4.5.8) is developed to provide a rotation capacity at least three
times that of the initial yield curvature, which is sufficient for most appli-
cations. However, in the areas of high seismicity, rotations of seven to
nine times the yield curvature may be required. For such cases, LRFD



4.5. Design of Simple Beams 169

NS,

Welded

Open web
joists

(b)

— Roof purlin

—— Stiffener

™

“““ Channel Welded or boited

_____ strut

LJ

Main roof
beam or
rigid frame
section

an e

(c)

(d)

Concrete slab

Concrete slab
T e¥0 o g g 940 o
%ﬁ'ébq‘fms--fq;mo °<L3"

Flange
embedded

(e) ()

FIGURE 4.7. Types of lateral support for beams.
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Adequate lateral support to beams or structural members may be provided
at intervals by cross beams, cross frames, struts, and roof purlins [Fig.
4.7(a—d)]. It may also be provided by embedment of compression flange in a
concrete floor slab [Fig. 4.7(e and f)].

Note that at the region of the last plastic hinge, a large rotation capacity is
not required. Therefore, the lateral support in this region can be provided at
a spacing more than L,,. The lateral support requirements for the region of
the last hinge to form, and for regions not adjacent to a plastic hinge, are no
different from those of elastic design. Its flexural design strength shall be
determined in accordance with its respective length: L,,, L,, or L, (Section
F1, LRFD).
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FIGURE 4.8. Plastic limit
load of a fixed-ended beam
with a central prop.

Example 4.5.1. A beam with plastic moment capacity M, and length 2L has
fixed supports at its ends and rests on a central support. Equal concentrated
loads are applied at the center of each span as shown in Fig. 4.8(a). Deter-
mine the value of the applied loads at the plastic collapse state. Assume that
the effect of shear force on plastic moment capacity is negligible.

Solution: The three redundants for the beam may be selected as two end
moments M, and Mg, and the central support moment M. Due to symme-
try, the end moment M, is equal to M. The moment diagram in terms of the
two unknowns M, and M_ is shown in Fig. 4.8(b).

In this moment diagram, if we select M, = My = M. equal to plastic mo-
ment M, of the beam, then the moment diagram becomes Fig. 4.8(c). By
equating the critical moment at B to M, we have

PL
MB:T_MP=MP’ (4510)
which gives
M
P= b 4.5.11)

I
At this value of P, nowhere does the moment exceed the plastic moment

M, [Fig. 4.8(c)], and the moments at 4, B, C, D, and E are all equal to the
plastic moment M, thus forming plastic hinges at these points and leading
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FIGURE 4.9. Design of a two-
span continuous beam with
distributed load.

to the formation of a failure mechanism as shown in Fig. 4.8(d). Equation
(4.5.11) therefore gives the exact value of the limit load P.

Example 4.5.2. A beam of uniform section, 30 feet long, is to be part of a floor
system. It is simply supported at its ends and rests on a central support as
shown in Fig. 4.9(a). The dead and live loads together amount to a uniformly
distributed load of 5 kips/ft. Design a suitable section of A36 steel for this
beam. Provide a load factor of 1.70. Assume that the beam has adequate
lateral support.

Solution: To select a suitable section for the beam, it is necessary to determine
the required plastic moment (or section modulus) and shear capacity of the
section. The required plastic moment capacity will be determined by the
equilibrium method.

The degree of redundancy for the structure is one. The redundant may be
selected as moment My at the central support. The moment diagram in terms
of My is shown in Fig. 4.9(b). The conditions of plastic moment and mecha-
nism of Fig. 4.9(c) will be satisfied if My and the in-span maximum moments
in the beam simultaneously become equal to plastic moment M,. The equa-
tion for the moment in the first span is obtained by superimposing the mo-
ment due to the applied loads and the moment due to the redundant M,
(=M,).



172 4. Equilibrium Method

M=""x_-""_"ry (4.5.12)

where x is the distance from end A. By equating the derivative of Eq. (4.5.12)
to zero, the location of maximum moment can be found as

L M,

Xmax = 2 WL (4513)

Substituting x = xp,,, and M = M, in Eq. (4.5.12) and then solving for M,
we have

__Yff[g_.vfj (4.5.14)
or
M, = w — /8] = 164.07 kip-ft.

The required plastic modulus Z = M, /F, = [(164.07)(12)1/36 = 54.69 in3.
The shear force diagram of the beam is shown in Fig. 4.9(d). The maximum
shear force is at the central support and has the value

V, = 74.69 kips

V; 74.69
required area of web = — =

T, 6/\/5

= 3.59 in.?

Try W16 x 36
Z =640in?
A, =d,t, =15x 0295 =442in?

) 74.69
shear stress in web = vyl = 16.89 ksi.

The plastic modulus reduced due to the presence of the shear force is

7 —7Z_7 [1_—_\/"5_3tz]
ps w

6)’
or
_ (0.295)(15)2 /(36)% — 3(16.89)*
Zps—64.0—~4— 1 36
= 64.0 — 6.92 = 57.07 in.? > 54.69 in.>
Use W16 x 36.

Example 4.5.3. A three-span continuous beam is to support loads of 100 kips
at the middle of each span as shown in Fig. 4.10(a). For architectural reasons,
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FIGURE 4.10. Design of cover plates.

the overall depth of the beam is limited to 20 inches. Show that A36 W18 x
50 with cover plates in the regions under concentrated loads is adequate.
Determine the sizes and lengths of the cover plates. Use a load factor of 1.70.
Assume that the beam has adequate lateral support.

Solution: To design the cover plates, first we will draw bending moment and
shear force diagrams of the beam. The degree of indeterminacy for the beam
is two. The redundants can be chosen as M. and My. The moment diagram
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in terms of these two unknowns is shown in Fig. 4.10(b). First, assume that
the reduction in the plastic moment capacity due to shear force is negligible,
so that the unknown moments at C and E can be selected as the plastic
moment of W18 x 50:

Mc = My = M, = 6,Z = (36)(101) = 3636 kip-in.

Corresponding to these values of M. and My, the shear force diagram is
shown in Fig. 4.10(c). The shear forces at B and F are

Vg = V¢ = 100.15 kips.
Shear stress 7 at these points is calculated by assuming that 7 is uniformly

distributed over the web of W18 x 50

v 100.15 .36
B T (16.85)(0.355) kst < N

Thus, at these points, the plastic moment capacity of W18 x 50 is reduced to

2 __ 2.2
Mps=Mp—awa[1 ——__M]

O'y
or
0.355(16.85)* V(36)* — 3(16.74) ..
M, = 3636 — 36 [—3%6—)—][1 _ VB9 36 ( ) ] = 3267 kip-in.

Now the cover plates in the middle and end spans can be designed as follows.
Cover Plates for Middle Span: Moment at D is

M. — (170)(20)(12)

» 7 — 3267 = 6934 kip-in.

Shear stress in the web at D is

85 36
= =14.21ksi < — = 21.6ksi, okay.
T (16.85)(0.359) 14 51<\/3 s1, okay

Thus, in the middle span, M,,; of W18 x 50 is taken as
0.355(16.85)2][ | J (36 — (3)(14.21)

M, = 3636 — 36|: :| = 3391 kip-in.

4 36
The plastic modulus to be provided by the cover plates is therefore
6961 — 3391 .
Zplates = T = 9917 1n.3

From Fig. 4.10(d), Z,,,..s can be written as
Z o = b,t,[1799 + ¢,]1 = 99.17 in.?
Trying t, = 0.5 in,, b, is 10.75 in. Therefore, use 10.75- x 1/2-inch plates.
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The length of cover plates x; [Fig. 4.10(b)] is determined simply by
equating moment M, in the middle span to M, of W18 x 50 in the middle
span

(10 —x,/2)
10

M, =10,200 — 3267 = 3391 kip-in,,

which gives
x1 = 695 ft.

Therefore provide 7-foot-long 11-inch x 1/2-inch cover plates under the load
in the middle span.

Cover Plates for End Spans: The moments at B and F are

170(20)(12) 3267
My=Mp=—"2""73

= 8567 kip-in.

In the end spans, M, is
M, = 3,267 kip-in.
Plastic modulus to be provided by cover plates is therefore

8567 — 3267 .
Zpjates = — g = 147.23 in.3

From Fig. 4.10(d), Z,,,., can be expressed as
Z ptates = bypt,(17.99 + t,) = 147.23 in.?

P
Trying t, = 0.75-inches, b, is 10.54 inches. Use 10.5- x 0.75-inch cover plates.
The length of cover plates x = x, + x; [Fig. 4.10(b)], is determined by
equating bending moments M, and M; in the end spans to the respective M

of W18 x 50. To do so, start by calculating M, at A. The shear force at A is:
V, = 69.85 kips.

Then the shear stress 7 at these points is calculated by assuming t is uni-
formly distributed over the web of W18 x 50

V, 69.85 36, .
= = =11 —=ksi.
U= T 1685 x 0355 188 < NE ksi
Thus, the moment capacity of W18 x 50 is reduced to

2 _ 3 2
M, =M, — ayzw[1 - 4\/%’]

Oy

0.355(16.85)* V362 — .68)?
=3636—36|: 355(16.85) ]l:l _ /367 - 3011.68) ]=3479 kip-in.

4 36
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Now, M, has the value
_ (10 — x3)

M
2 10

= 3479,

(10,200 2267 ’2267>

Which gives
X, = 594 ft,
and M, has the value

o, _ 10200010 — x;) _ 3267(10 + x,)

=32
3 10 20 67,

which gives
X3 = 448 ft.
Thus, the length of the cover plates in end spans is
x =594 + 448 = 10.42 ft.

Therefore, provide 10-foot 5-inch-long, 10.5-inch x 3/4-inch cover plates
under loads in the two end spans.

Example 4.5.4. The beam in Example 4.5.2 is designed by the simple plastic
theory. The lateral support is provided at vertical supports and the location
of the plastic hinges. Do we need to provide additional lateral supports for
adequate rotation capacity to form a plastic failure mechanism? If yes, at
what location would you provide the lateral supports?

Solution: Check Segments AD and EC [Fig. 4.9(c)]: From Eq. (4.5.8), maxi-
mum spacing of lateral supports is

3600 + 2200M, /M,
pd = F.

y

3600
=3 (r,) = 100r,.

For W16 x 36, r, = 1.52 in. Therefore, the maximum permissible spacing is
_(100)(1.52)

From Fig. 4.9(d), the zero shear location is
(52.81)(15)
= = =———"———"-—=0. . ft, kay.
AD = EC = Xy, 5281 £ 7467 6.21 ft < 12.67 okay
Check Segments DB and BE [Fig. 4.9(c)]:
3600 + 2200 (i—%)
L= % (1.52) = 2449 in. = 2041 ft

DB = BE = AB — AD = 8.79 ft < 20.41 ft, okay.

Therefore, there is no need to provide additional lateral supports. Since LRFD
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requires that all plastic hinge locations associated with the failure mechanism
be braced to resist lateral and torsional displacements, it follows that lateral
supports must be provided for the plastic hinge locations D and E in Fig. 4.9(c).

4.6 Design of Portal Frames

In the preceding section, the equilibrium method was applied for a complete
design of steel beams. Herein, we shall use the same procedure for a complete
design of simple portal frames including the possible yielding effect for mem-
bers under tensile axial forces and yielding as well as instability effects for
members under compressive axial forces. For one- or two-story frames, the
effect of frame instability can generally be ignored in a routine plastic analysis
procedure. For multistory frames, the frame instability effect must be in-
cluded in the calculations of maximum strength and in the design of the
bracing system and frame members. A direct second-order elastic-plastic
hinge analysis procedure will be described in Chapter 8.

4.6.1 Tensile Axial Force

The presence of an axial force in general reduces the moment-carrying capac-
ity of a member. If the axial force is tensile, the equilibrium method can be
modified simply by replacing M, (full plastic moment capacity) with M, (the
plastic moment capacity reduced for the presence of axial load, Section 2.5).
AISC-LRFD recommends that the following interaction equations be sat-
isfied to consider the effect of tensile axial force in the design of doubly and
singly symmetric members.

For P/¢P, > 0.2

P 8 M
—+ - x 1.0. .6.
¢Pn+9¢anxS 0 (461)
For P/¢P, < 0.2
P M,
9P T aM S 1.0 (4.6.2)

where P = applied axial force; P, = P, is the available axial strength; M is the
applied end moment; M, is the available beam-bending capacity including
the effect of lateral torsional buckling, and is equal to M, when the beam is
adequately braced against lateral-torsional instability; ¢ = ¢, = the resistance
factor for tension = 0.9; and ¢, = the resistance factor for bending = 0.9.

4.6.2 Compressive Axial Force

The plastic theory assumes that failure of the entire frame in the formation of
a mechanism is not preceded by failure of compression members due to
instability. Consequently, after the frame has been designed and the members
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selected, the compression members must be checked to assure that applied
axial force and end moments can be carried by the member in a stable man-
ner. Furthermore, any plastic hinges forming at the ends must have adequate
rotation capacity.

The compressive axial force affects both yielding and instability of a mem-
ber. The effect on the yielding is the same as for tensile axial force. Instability
may be caused by two factors. The first is known as the P-d effect, and the
second is known as the P-A effect. The P-6 effect, also known as the individual
member instability effect, is due to the lateral deflections within the member.
For braced multistory frames, provisions must be made to include the P-¢
effect in the design of bracing system and frame members. The P-A effect,
also known as the frame instability effect, is due to the lateral translation of
an end of the member. For unbraced multistory frames, the P-A effect must
be included directly in the calculations of maximum strength. Although the
strength of an isolated compression member subjected to axial force and
bending moment can be predicted with relative ease, the instability problem
becomes exceedingly complex when the compression member is a part of the
framework. A complete solution of this latter problem requires a second-
order inelastic analysis. In structures designed on the basis of plastic or elastic
first-order analysis, simplified procedures are available in AISC-LRFD for
checking the suitability of framed compression members considering the in-
stability effects using the interaction Eqs. (4.6.1) and (4.6.2) for flexure and
compression in symmetric shapes. This is given in the forthcoming.

The P-4 effect is shown in Fig. 4.11. Figure 4.11(a) shows a member with
joint translation prevented and subjected to end moments and lateral loads.
The lateral deflection §; for this member may be calculated on the basis of the
original straight configuration and is known as the first-order deflection.
Figure 4.11(b) shows the same member subjected to end moments, lateral

(b) FIGURE 4.11. P-§ effect.
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loads, and the axial force. In this case, the axial force P will interact with the
first-order lateral deflection J; caused by the end moments and lateral loads
and will amplify the first-order lateral deflection and first-order moments.
The P-4 effect will be considered in Chapter 8, where a direct second-order
elastic-plastic hinge analysis procedure will be described.

The P-A effect is illustrated in Fig. 4.12 [4.1-4.6]. Figure 4.12(a) shows an
unbraced frame subjected to lateral forces Y H. The frame deflects laterally
until an equilibrium position is reached. This lateral deflection A; can be
calculated on the basis of the original undeformed configuration of the frame
and is known as the first-order deflection. Figure 4.12(b) shows the same
frame subjected to the combined lateral forces ) H and gravity loads )_ P. In
this case, the gravity loads will interact with the lateral deflection caused by
Y H and will introduce the additional P-A moment to the ends of the col-
umns. This in turn amplifies the initial lateral deflection A; and the first-order
moments. Here, as the P-6 effect, the P-A effect will be considered in Chapter
8 with the use of a direct second-order analysis.

The effects of instability are included in AISC-LRFD interaction Egs.
(4.6.1) and (4.6.2) by applying B; and B, factors to (M = B;M,, + B,M,,) in
which M,, is the required flexural strength in the member, assuming there is
no lateral translation of the frame, and M,, is the required strength in the
member as a result of the lateral translation of the frame only, by substituting
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l v FIGURE 4.13. Pinned-ended
portal frame.

=3 —> H

|
>

¢ = ¢. = 0.85 and replacing P, with the compressive axial strength of the
member. LRFD recommends the following equations for the compressive
axial strength of a member:

For 4. < 1.5
P, = 0.658%P,. (4.6.3)
For 4, > 1.5
0.877
where
1 KL |F,
A= - JE (4.6.5)

in which KL/r is the governing effective slenderness ratio about the plane of
buckling, F, is the yield stress, and E is the Young modulus of steel.

Note that for plastic design, 4, should not be greater than 1.5K and the
axial force in the member due to factored loads should not exceed 0.75 4, F,,
where A, is the gross cross-sectional area of the member.

Example 4.6.1. A pinned-ended rectangular portal frame ABCDE is sub-
jected to factored external loads ¥ and H as shown in Fig. 4.13. All the
members of the frame AB, BD, and DE are made of the same section. Deter-
mine the limit values of H in terms of plastic moment M, when

@) I/h=1and V/H = 1/3.
@) I/h=1and V/H = 3.
(iii) {/h =3 and V/H = 1/3.
@v) I/h =3 and V/H = 3.

Neglect the effects of shear force, lateral torsional buckling, and axial load on
member strength.

Solution: The frame has one degree of redundancy. The redundancy for this
structure can be chosen as the horizontal reaction at E. Figure 4.14 shows the
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portal frame loaded by (a)
applied forces and (b) re-
dundant forces.

FIGURE 4.15. Moment
diagram corresponding to
(a) applied forces and (b)
redundant forces.
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resulting determinate frame loaded by the external applied forces and redun-
dant forces. The moment diagrams corresponding to these two loading con-
ditions are shown in Fig. 4.15.

Now the horizontal reaction S should be selected in such a manner that all
three conditions of equilibrium, plastic moment, and mechanism are satisfied.
Formation of two plastic hinges is necessary to form a failure mechanism.
The hinges can possibly be formed at B, C, and D. Let us select



182 4. Equilibrium Method

(a)

Hh

Mep

(b)

FIGURE 4.16. Moment diagrams for combined loading: (a) plastic hinges at C and D
and (b) plastic hinges at B and D.

so that one hinge forms at D. Corresponding to this value of S, the moment
at B and C can be expressed as

My=Hh— M,

Hh Vi
MC = —5— + T - M I'E
The location of the second hinge will depend on the relative magnitude of ¥,
H, I, and h. Figure 4.16 shows the bending moment diagram corresponding
to the combined loading. Figure 4.16(a) corresponds to the second hinge at
C and Fig. 4.16(b) corresponds to the second hinge at B. For various combi-
nations of V, H, I, and h, H is calculated in the following.

Case I: I/h=1 and V/H = 1/3—Corresponding to | = h and V = H/3, we
have
MB = Hh - Mp,

Hh Hh 7
MC=T+E—MP—EHh—Mp
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Since |Mpg| > |Mc|, the second hinge will form at B [Fig. 4.16(b)] and the
corresponding value of H is

Case II: When //h = 1 and V/H = 3—Corresponding to | = h and V = 3H,
we have

MB=Hh_Mp
H
MC=7h+%Hh—M,,=§Hh—M,,.

Since |M| > |Mg]|, the second hinge will form at C [Fig. 4.16(a)] and the
corresponding value of H is

_16M,

H==3

CaseIll: //h = 3 and V/H = 1/3—Corresponding to | = 3hand V = H/3, we
have

MBth_Mp
Hh Hh 3
MC=T+T—MP:ZHh—Mp.

Since |Mg| > |M(|, the second hinge will form at B [Fig. 4.16(b)] and the
corresponding value of H will be

2M,
N

Case IV: I = 3h and V = 3H—Corresponding to I = 3h and V = 3H, we
have

H=

My=Hh - M,
Hh 3H
Mc ==+ =-(3h) — M, = 275Hh - M,.

Since |M¢| > |Mjg|, the second hinge will form at C [Fig. 4.16(a)] and the
corresponding H is

H= 0.727%.
h
To summarize, we have (i) I/h = 1 and V/H = 1/3, H =2 M, /h; (ii) I/h = 1

and V/H = 3, H = 1.6 M, /h; (iii) I/h = 3 and V/H = 1/3, H = 2 M,,/h; and (iv)
I/h =3 and V/H = 3, H = 0.727 M,/h.
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Example 4.6.2. The frame in Example 4.6.1 has | = h = 20 feet and V/H = 3.
All members are made of W16 x 45. Determine the limit values of V and H

(a) without considering the effect of axial force.
(b) considering the effect of axial force assume B, =B, =10, K, =1,
K,=1

Column DE is braced in the middle against buckling about weak-axis.

Solution: (a) Without the effect of axial force: From Example 4.6.1, for I/h =
1 and V/H = 3, we have

From the AISC-LRFD manual, for W16 x 45, we have
M, = Z.F, =823 x 36 = 2,963 kip-in,,
resulting in

2,963 .

V = 3H = (3)(19.75) = 59.25 kips.

(b) With the effect of axial force: Member BD (Fig. 4.13): The axial force in
member BD is

M, M, M,

— j— = __e —_— = 00— = 1
T=H-S§ 1.6h h 06h 7.41 kips
For W16 x 45, the yield axial force is
P, = (13.3)(36) = 478.8 kips.
Now, since
P 741 =0.018 < 0.2.

&P, (0.9)(47838)

The reduced plastic moment capacity M, can be determined from the follow-
ing interaction equation

P + M, <1.0,
20.P, $M,

which gives

0.018
M, = (1 - _2—> $M, = 09914, M,

The axial force effect is negligible.
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Member DE (Fig. 4.13): From Fig. 4.13(a), we have

H = 19.75 kips
V = 59.25 kips.
Axial force in member DE is
vV
P=%+H7h=~2‘+H=49.38kips.

Since column DE is supported in the middie against buckling about the
weak axis, (KL), = 10 feet. Thus, we have

A _1(KL), [F, 1(10)(12) | 36
Y xor E =© 157 /30,000

y

or
Aoy = 0.843,

For buckling about the strong axis, we have

_1(KL), [F, 1 (1)Q0)12) [ 36 _ 0398
“nor E n 665 30,000

x

X

So, buckling about the weak axis controls and we have A, = 4,,. As 4, < 1.5,
B, is

P, = 0.658%P, = 0.658°-843%(478.8) = 355.6 kips.
The ratio P/@,.P, is

P 49.38
— = = (.163.
¢.P, (0.85)(355.6)
Now the moment M, (reduced for the effect of the axial load) can be deter-
mined from the following interaction equation

P N M, <1
2¢.F,  $M,,
or
0163 M,
2 0.911\’41, =10
which gives
M, = 0.827M,,

Now, H and V become

M, (1.6)(0.827)(2963)
H=16 h (20)(12)

V = 3H = 49 kips.

= 16.34 kips
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T
h, =10’
Ho
I G D
W 16x45
hy=20 Mp = 82.3x36
o HE
L = 60 |
}L —

FIGURE 4.17. Pinned-ended gabled frame.

Note that 179, reduction in H and V is partly due to axial load and partly
due to inclusion of ¢ factors in the computation for the latter case.

Example 4.6.3. A pinned-ended gable portal frame ABCDE is subjected to
factored external loads V and H as shown in Fig. 4.17. If all the members are
made of W16 x 45, determine the limit values of ¥ and H. Neglect the effects
of shear force, lateral torsional buckling, and axial load on member strength.

Solution: The gable frame has one degree of redundancy. The horizontal
reaction at E is chosen as the redundant. Figures 4.18(a) and (b) show, respec-
tively, the determinate frame loaded by external applied forces ¥ and H and
the redundant forces. The moment diagrams corresponding to these two
loading conditions are shown in Fig. 4.19. Now the horizontal reaction S
should be selected in such a manner that all three conditions of equilibrium,
plastic moment, and mechanism are satisfied. Formation of two plastic
hinges is necessary to form a failure mechanism of the structure. The hinges
can possibly be formed at B, C, and D. Let us select

S=—M—”=£82_'3@—_- 12.35 kips

so that one hinge forms at D. Corresponding to this value of S, the moments
at B and C can be expressed as (Fig. 4.19)
Mg = Hh, — Sh, = 20H — (12.35)(20) = 20H — 247

M= HThl + % — S(hy + h,) = 10H + 45H — (12.35)(30) = 55H — 370.5.
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FIGURE 4.18. Determinate
gabled frame loaded by (a)
applied forces and (b)
redundant force.

Assuming the second hinge at B, we have

62.8
MB=M,,=ZQT=20H—247,

which gives
H = 24.7 kips
Mc = (55)(24.7) — 370.5 = 988 kip-ft = 11,856 kip-in, |[M¢| > M,

Therefore, the second hinge will form at C and the corresponding H can be
determined by equating M¢ and M

2962.8
Mc=M,= I = S55H — 370.5,
which gives
H = 11.23 kips

and
V = 3H = 33.69 kips.
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FIGURE 4.19. Moment
diagrams corresponding to
(a) applied forces; (b)
redundant force; and (c)
combined loading.

Note that with proper bracing of the columns against buckling, the reduction
in ¥V and H due to axial load is less than 5%,

4.7 Practical Procedure for Large Structures

The equilibrium method is convenient for plastic analysis and design when
the number of redundants is small. With an increase in the redundants, the
method in itself becomes too involved. Selection of the right combination of
redundants demands increasingly high intuition. For plastic analysis and
design of large structures that will have a much larger number of redundants,
we will present a practical procedure of the equilibrium method. The proce-
dure consists of the following steps:
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(a) Select the redundants.
(b) Obtain the moment diagram of statically determinate structure under the

(©

applied loads.
Obtain the moment diagram of a statically determinate structure under
the redundant forces.

(d) Assume a failure mechanism for the structure.

(©)

Combine moment diagrams of steps (b) and (c) to obtain moments at the
plastic hinge locations and equate these moments to the plastic moment
of the section.

Solve the equations resulting from step (€) to determine the selected re-
dundants and the plastic limit load or the required plastic moment for the
structure.

(g) Check the plastic moment condition in the entire structure.
(h) If the plastic moment condition is satisfied for the structure, then the

solution is exact. If not, proceed further to determine the upper and lower
limits on the solution.
If it is an analysis problem and the plastic limit load is to be determined,
then the load determined in step (f) will be an upper bound because the
solution satisfies only the mechanism condition. A lower bound to the
exact limit load is determined by

M
P,=P, —*2 471
lo up Mmax ( )
where P,, is an upper bound to the exact solution, M,,,, is the maximum
moment in the structure, and M, is the plastic moment capacity of sec-
tion at the point of maximum moment.

Equation (4.7.1) provides a lower bound to the exact solution, because

the moment diagram corresponding to this load has been scaled down to
meet the moment condition. Thus, the solution so obtained satisfies both
equilibrium and plastic moment conditions but not the mechanism con-
dition and is therefore a lower bound to the limit load.
If it is a design problem and plastic moment capacity has to be deter-
mined, then the plastic moment capacity determined in step (f) at the
hinge locations will be unsafe to carry the applied loads, while the maxi-
mum moment that exceeds the plastic moment capacity in other parts
of the structure will be a safe solution. This follows from the logic that
if the plastic moment for all sections in the entire structure is increased
to the maximum moment obtained from the equilibrium diagram, then
both equilibrium and plastic moment conditions are satisfied but not
the mechanism condition. Therefore, the plastic moment capacity so
obtained provides a safe design when compared with the exact plastic
moment required for the structure.

The following examples demonstrate this procedure. The sign convention

used in these examples is that a moment causing tension inside the frame is a
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2 14 14 4 14 14 14 14 2
6 kips _‘_.>‘ —6
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8 ft
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8 ft
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f >

FIGURE 4.20. Portal frame with fixed supports.

positive moment and a moment causing opening of a joint is a positive
moment, and vice versa.

Example 4.7.1. The frame shown in Fig. 4.20 has same cross section through-
out. All joints are rigid and the two base supports are fixed. Find the required
plastic moment M,,. Neglect the effects of axial force, shear force, and lateral
torsional buckling on the strength of members.

Solution: The frame has three degrees of redundancy. The three internal
forces at midspan C are chosen as the redundants. Figures 4.21 (a) and (b)
show the determinate structures under the external forces and the redundant
forces, respectively. In order to preserve symmetry, the vertical load at C has
been cut into two equal halves. The moments due to external applied loads
(free moments) and the moment due to redundants are tabulated in Table 4.1.
The next step is to assume a failure mechanism and equate the moments at
the plastic hinge locations to plastic moment.

Mechanism 1: To begin, try the side-sway mechanism with plastic hinges at
the two joints B and D and the two supporting bases 4 and E. By equating
moments at these points to the plastic moment, we have

M, = —384 + 16T + 245 + M = — M,
Mp=—192+24S + M = M,
My=—192-245 + M = — M,
My =M — 245 + 16T = M,.

(Note that moment at a joint is positive when it causes opening of the joint.)
These four equations are solved for the four unknowns:

M, = 96 kip-ft
M = 192 kip-ft
S = 4 kips

T=0.
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FiGURE 4.21. Determinate frame subjected to (a) applied forces and (b) redundant
forces.

The moments in the frame corresponding to these values of unknowns are
also listed in Table 4.1. The plastic moment condition is violated at many
points. The absolute maximum moment in the frame is 204 kip-ft. Thus this
mechanism provides both upper and lower bounds

96 < M, < 204,

Mechanism 2: Try the combined mechanism with plastic hinges at the two
supporting bases 4 and E, beam midspan C, and right top joint D. By equat-
ing moments at these points to the plastic moment, we have

M,=—384+M+24S + 16T = = — M,
M,=M=M,
Mp=—192+M —245 = — M,

My =M — 245 + 16T= M,
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These four equations are solved for the four unknowns as
M, = M = 128 kip-ft
S = 2.67 kips
T = 4 kips.

The moments in the frame corresponding to these unknown values are also
listed in Table 4.1. The plastic moment condition is violated at B; just to the
left of the center of the beam. The upper and lower bounds corresponding to
this mechanism are

128 < M, < 132.

Mechanism 3: Try the combined mechanism with plastic hinges C switched
to B, [Fig. 4.22(a)].
The new set of collapse equations is

M, =384+ M +24S + 16T = — M,
My =—12+65+M=M,

18 ft 30 ft

Y
I

_i

(a)

(b)

FIGURE 4.22. Moment diagram corresponding to the failure mechanism: (a) failure
mechanism and (b) moment diagram.



194 4. Equilibrium Method

Mp=—-192-245+ M =—-M,
M;=M—-245+ 16T =M,
These four equations give the following values of the four unknowns:
M, = 129.2 kip-ft
M = 125.6 kip-ft
S = 2.615 kip-ft
T = 4.15 kip-ft.

Corresponding to these values of unknowns, the moments in the frame are
tabulated in Table 4.1 and plotted in Fig. 4.22. The plastic moment condition
is satisfied everywhere. Since only concentrated loads are acting on the frame,
the moment diagram between various joints and concentrated loads is linear.
For such cases, if the plastic moment condition is satisfied at the joints and
at the concentrated load locations (4,4, B, B, B,,B;,C,D3,D,,D,,E,E),
it will automatically be satisfied between these locations.

Since all three conditions of equilibrium, mechanism, and plastic moment
are satisfied, M, = 129.2 kip-fit = 1550.4 kip-in. is the exact required plastic
moment for the frame.

Example 4.7.2. The gable frame shown in Fig. 423 has same cross section
throughout. All joints are rigid and the two base supports are fixed. Loads
having the magnitudes shown are actually uniformly distributed over the
members. Find the required plastic moment M), so that the load factor is 1.4.
Neglect the effects of axial force, shear force, and lateral torsional buckling on
member strength.

Soultion: The frame has three redundants. These redundants are chosen as
the three internal forces at joint C. Figure 4.24 (a) and (b) show the determi-

Y 6 501/ 12 kips
4.97 ft
9
u B D
8 — -8 kips
8
12 ft 5 12 ft
-l e
X A T

FIGURE 4.23. Gable frame with fixed supports subjected to distributed loads.
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FIGURE 4.24. Determinate
gable frame subjected to (a)
applied forces (distributed)
and (b) redundant forces.

TaBLE 4.2. Example 4.7.2. gable frame calculations

Joint A B C D E
Free moments —274.66 —261.03 0 —222.07 —153.33
M, M M M M M
14 —12V —12V 0 12v 12v
H 1297H 497H 0 497H 1297H

nate structures under the external forces and the redundant forces, respec-
tively. The bending moment due to external applied loads (free moments) and
redundants at various points are tabulated in Table 4.2.

First, try the failure mechanism with column 4B remaining vertical while
other three members collapsed to the right with hinges at B, C, D, and E. By
equating the moments at these points to the plastic moment, we have

Mg=—26103+M — 12V + 497H = — M,
Mc=M =M,
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5.22 FIGURE 4.25. Moment
diagram corresponding to
a mechanism with plastic
hinges at B, C, D, and E.

Mp=-22207+ M+ 12V + 497H = — M,
Mg =—15333 + M + 12V + 1297H = M,,

(The moment at a joint is positive when it causes opening of the joint.)
These four equations are solved to determine the four unknown values as

M =M = M, = 87.68 kip-ft
V = —1.62 kips
H = 13.32 kips.

We now check the moment at A4 to see if the plastic moment condition is
satisfied:

M, = —274.66 + 87.68 — 12(—1.62) + (12.97)(13.32) = 5.22 kip-ft

Since [M,| < M, = 87.68 kip-ft, this mechanism is okay. However, since the
actual loads are distributed, we must also check the maximum moment with-
in the member. From the bending moment diagram (Fig. 4.25), it appears
that the maximum moment may occur in the member BC. The moment M,
in the right half of BC can be expressed as

wx?

Mx = 87.68 + Vx — T

where V' is the resultant shear force at C acting perpendicular to BC and is
V' =13.325in22.5° + 1.62cos 22.5° = 6.6 kips,
w is the distributed load acting perpendicular to BC and is

_ 50c0s22.5°— 6
- 12.98

and x is the distance along the member from point C to C, (the point of
maximum moment). Now M, along the member BC can be written as

= 3.1 kips/ft,

x2

M, = 87.68 + 6.6x — 3.1
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To determine the maximum moment location, we set dM, /dx = 0. Thus

dM.,
dx

=6.6 —3.1x =0,

which gives
x =213 ft.
Thus, the maximum moment at C has the value
M, =87.68 + 6.6 x 2.13 — 3.1(2.13)*/2
= 87.68 + 14.06 — 7.03 = 94.71 kips-ft
and this mechanism provides the following upper and lower bounds
87.68 < M, < 94.71.

Now try the mechanism with plastic hinges at B, C,, D, and E. The collapse
equations become

Mp=-261.03+ M — 12V +497H = — M,
Mc, =-703+M— 197V + 082H = M,
Mp=-222074+ M+ 12V +497TH = - M,
Mg =—-153334+ M + 12V + 1297H = M,,
The solution of these four equations gives
M = 82.48 kip-ft
H = 13.9 kips
V = —1.624 kips
M, = 89.96 kip-ft = 1,080 kip-in.

In addition to the equilibrium and mechanism conditions, the plastic mo-
ment condition is also satisfied. Thus, M,, = 1080 kip-in. is exact. Multiplying
the plastic moment M, by the load factor 1.4, we have

M, = 1,080 x 1.4 = 1,512 kip-in.

Example 4.7.3. The frame shown in Fig. 4.26 has rigid joints and is rigidly
fixed to foundations at A and E. The frame has a uniform plastic moment
capacity of M,. Investigate the value of W at which collapse will just occur
for the load system shown. Present the solution in such a way that the mode
of collapse and the value of W at collapse are indicated for any value of .
Neglect the instability effects and the effects of axial load and shear force on
the moment capacity.

Solution: The redundants for the frame are chosen as the three internal forces
at joint C. Figure 4.27 shows the determinate gable frame under the applied
forces and redundant forces, respectively. The free moments and moments



198 4. Equilibrium Method

B, 0,
y_ow
Y B > aw

A E
I 7777
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I

FIGURE 4.26. Gable frame with fixed supports and subjected to concentrated loads.

FIGURE 4.27. Determinate
gable frame subjected to (a)
applied forces (concen-
trated) and (b) redundant
forces.

due to redundant forces are tabulated in Table 4.3. To determine W for
various ranges of «, we will try all possible mechanisms.

Mechanism 1: Try the failure mechanism with column AB remaining vertical
while other three members collapsed to the right with plastic hinges at B, C,
D, and E. By equating moments at these points to the plastic moment, we have
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TABLE 4.3. Example 4.7.3. gable frame calculations

199

Joint A B C D E
1 2a 1 2a
Free moments —WL (E + ?) —WL/4 0 —WL/4 —WL (Z — ?)
Mo MO Mo Mo MO MO
1 1 1 1
14 ~VL VL 0 —=VL —=VL
2 2 2 2
3 1 1 3
H —-HL —-HL 0 —-HL —-HL
5 5 S S
WL VL H
Mg=—+~+My+—+-—=—M
B 4 0 2 5 p

Mc=0+M;,+0+0=M,

WL VL HL
MD=—T+M0_T+?='*MP
1 2« VL 3HL
= — _—_— M —_— _—_— .
Mg WL <4 5 > + M, 3 + 5 M,
Solve these four equations and determine the four unknowns:
WL aWL
Mo =M, =17+ 75
V=0
5w M
H=""—-10"2
4 L

or

H=Z-T\12* 13 2 3

_SW 10<WL ocWL) 5SW 2aW
4 L ‘

Now we must ascertain that |[M| < M, at points B;, D,, and 4. Since V =0

the moments at B, and D, are the same. At B, and D,, we have

1 1
My =0+ Mo + 7 VL + -HL < M,

1 1
MD1=0+M0—'ZVL+EHLSMP.

Substituting values of M,, M, and H and solving for «, we have

o = 0.625.

b
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At A, we have
1 2a 1

3
M,=-WL(>+= - ZHL> -M
# <4+5)+M0+2VL+5HL_ o

which gives
o < 0.25;

o > 0.625 and a < 0.25 cannot be satisfied together, so this mechanism is not
possible.

Mechanism 2: Try the side-sway mechanism with plastic hinges at 4, C, D,
and E. The corresponding collapse equations are

My=-wL(2 42 Mo+ v+ 2HL= M
a= Wzt r Mot Vha sl ==t
Mc=0+My+0+0=M,

WL VL 1
MD=_T+M0—T+§HL=“‘MP
1 2a 1 3

Solving these four equations for M,, V, H, and M, we have

1 3
M0=M,,=RWL+WL< “)

20
w  aW
V=—-o+—
§ 72
H= 5 aW
16 4
Moments at By, D,, and B must be less than M,. Thus
VL 1
My, =M°+T+EHLSM”'

Substituting values of M, ¥, M,, and H and then solving for a, we have
a<O.

Similarly, for moment at D; and B, we have

VL HL
MD1=M0—T+1—OSMP
wL VL HL
MB=—T Mo+7+—5_SMp,
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which give
oa> 0417, 0 < 5/4.

Since the conditions a < 0, @ > 0.417, and « < 5/4 cannot be satisfied simul-
taneously, this again is not a possible mechanism.

Mechanism 3 (Fig. 4.28): Try the mechanism with column AB remaining
vertical while other members collapsed to the right with plastic hinges at B,
B,, D, and E. The resulting collapse equations are

WL 1 1
My= ——"+ Mo+ 5VL+ HL=—M,
1 1
My, =0+ Mo+ VL + - HL = M,
WL 1 1

1 2a 1 3
M.,=-WL|-—— ——VL+-HL=M,.
g (4 5>+M° JVL+3HL=M,

Solution of these four simultaneous equations gives us
V=0

1 4
H=_W-—
2 5otW

1 1
M, =75 WL + 5<aWL

WL
My =——+ 0.12aWL.
0 20 + o
Now we use the conditions: |M4| < M, |[M¢| < M, and |[Mp,| < M,
Since V = 0, Mp;, = My, = M, there is no need to check moment at D;.
At A, we have either M, < M,

2o

1
M =— 4+ =
; WL<4+5>+M0+

1
2

Substituting values of M,, ¥, M, and H and solving for «, we have

3
VL+3HL<M,

a=>0
orM,>-M,
1 2«

1 3
M,=— S+ = - -
., WL<4+ 5>+M0+2VL+5HL2 M,,
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which gives
o < 0.278.
At C, we have either Mc < M,

1
Mc =My =~ WL +0.122WL < M,,

20

which gives
o < 0.625

orM¢>—M,

1

M.=M,= EWL +0.12aWL > —M,,

which gives

o > —0.938.

This condition cannot control, since « cannot be negative. Thus, this mecha-
nism is valid for the range

0<a<0278
with
M

p

W= L(O01 + 0.04a)’

Mechanism 4 (Fig. 4.28): Try the side-sway mechanism with plastic hinges at
A, B, D, and E. The corresponding collapse equations are
1 2«

1 3
MA_—WL<Z+?>+M0+§VL+§HL——MP

1

1 1
My=—; WL+ M, +5VL+zHL =M,

1 1 1
Mp=—2 WL+ Mo~ VL + HL = —M,

1 2o 1 3
S - —_VL+>HL=M,.
M, WL<4 5>+M0 SVL+H i

Solution of these four equations gives

WL
My=—=
07 4
1
M =_—-oWL
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2
V=§OCW

H=0.

Now imposing the conditions |M¢| < M, |[Mp,| < M, and |Mp,;| < M,. At
C, we have either M < M,

1 1
MC=ZWLSMP=§aWL’

which gives
o> 1.25,
or MC 2 _Mp

1 1
MC - ZWL 2 _Mp - _gaWL,

which gives
o> —1.25.
At B, we have either My, <M,

My, =MO+%VL+%HLSMI,,
which gives
o> 2.5,
orMg, >—-M,
Mg, =M, + %VL + Tl(—)HL > —-M,,
which gives
o > —0.833.

At D,, we have either Mp; < M,

1 1
MDl:MO—ZVL-*-EHLSMP’

which gives
o > 0.833,
orMp, >—M,
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which gives
o> —25.
So this mechanism is valid for
a>25
with
— SMP
al ’

Mechanism 5 (Fig. 4.28): Try the side-sway mechanism with plastic hinges at
A, B, D, and E. The corresponding collapse conditions are

1 2« 1 3
=—WL - — = = = —
M, <4+5>+M0+2VL+5HL M,

1 1
My, = Mo+ VL + oHL =M,

1 1 1

My=—wL(2- Ve My—Lvi+lHL =M
p=—Whi{g=3)t Mo VE+5HL=M,
Solution of these four simultaneous equations is

1 7
M,=— WL+ —aWL

16 40
1 9

H =03125W — 0.125aW
M, = 0.0625WL + 0.075¢WL.

Now impose the conditions: My < M,, My > —M,, Mc < M,, and M¢ >
—M,. At B, we have

WL 1 1
Substituting values of M,, ¥, H, and M, and then solving for «, we have
<25
or
WL 1 1
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which gives
o > 0.278.
At C, we have
Mc = M, =0.0625WL + 0075« WL < M,

which gives

o >0,
or
M= My > —M,,
w w
B1l 1
B D
AW ¢ —_— W
0 a < 0.278
E W = M
77T L (0.1 + 0.040)
Mechanism 3
B,y
D
0278 < a < 25
M
P
A E = 7 >
L
Mechanism 5 0
a =25
5Mp
N al

Mechanism 4

FIGURE 4.28. Failure mechanisms and limit loads for various values of «.
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which gives
o> —05.
So this mechanism is valid for the range
0278 <a <25
with
M

p

W= L(1/16 + 7a/40)’

The failure mechanisms and the limit loads for the full range of a are
summarized in Fig. 4.28.

4.8 Examples of Portal and Gable Frames

In this section, we will present two examples. One is a portal frame, the other
is a gable frame. The effects of axial load, lateral torsional buckling, and shear
force on member strength, which were neglected in Section 4.7, are consid-
ered here.

Example 4.8.1. Portal Frame: The rigid rectangular frame is subjected to
applied loads shown in Fig. 4.29. All the members are made of W16 x 45.
First, determine the limit value of the load factor A without considering the
effects of axial load, lateral torsional buckling, and shear force on member
strength. Then evaluate these effects and provide the necessary reinforce-
ments to minimize these effects. Assume B, = B, = 1.0,and K, = K, = 1.

30\ 30\
7.5' I 7.5
15\ N —
Y C D E F
20 ft

W16x45

1 o

- Yezarza 7T
30 ft

=l FIGURE 4.29. Portal frame.



4.8. Examples of Portal and Gable Frames 207

FIGURE 4.30. Determinate 30\ 30A
frame subjected to (a) B c l b 1 €
applied forces and (b) —_— = F
redundant forces. 15 : |
| |
I |
' |
' |
|
|
|
i |
All | L%
T 77
(a)
t v
T S X U —
T HH O TTTTT
| l |
| v |
| |
| |
! |
| |
| |
| |
all Ila
T T

(b)

Solution: The frame has three redundants. We shall make a cut at D and
consider the three internal forces at this cut as redundants. The bending
moments due to external applied forces and redundant forces (Fig. 4.30) are
tabulated in Table 4.4.

First, try the side-sway mechanism shown in Fig. 431 with plastic hinges
at A, C, F, and G. From Table 4.4, the collapse equations can be written
as

M, =—5251+M + 15V + 20H = — M,
Mc=M+175V =M,
Mp=—2250+M—15V = —M,

Mg=—225+M — 15V + 20H = M,.
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B g FIGURE 4.31. Plastic mecha-
nism for the portal frame of
c Fig. 4.29.

Al JG

TaBLE 4.4. Example 4.8.1. portal frame calculations

Point A B C D E F G
Free moment —5254 —2254 0 0 0 —225A —2254
M M M M M M M M
| 4 15v 15v 7.5V 0 14 —15v —15v
H 20H 0 0 0 0 0 20H

The solution of these four equations is

MP
H=7

7
2.:9—0‘6Mp

MP
=%

11
=M

M .
12°°°

To ensure the satisfaction of the plastic moment condition, we must check
the moments at B, D, and E:

2M
3 P |Mg| < M,, okay

Mp=—-225+ M+ 15V = —

11
M=M= EM"’ IMp| < M, okay

10

ﬁMI,, [Mg| < M, okay.
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FIGURE 4.32. Intgrnal forces B Fa7 kips
in the frame of Fig. 4.31: (a) _
axial force, (b) shear force,
and (c) bending moment.
|
(a) P
G
54.9 kips 60.3 kips
+  [54.9 kips
E F ,24.7 kips
B C7 —
60.3
}4.1 kips
n +
(b) v
- A G' L

o

uz

[+ |7
(@]
m

\
<
°

(c) M

The axial load, shear force, and bending moment diagrams of the frame are
shown in Fig. 4.32.
From the AISC manual, for W16 x 45, we have

M, = M,, = F,Z, = (36)(82.3) = 2963 kip-in. = 247 kip-ft
A=133in2r, = 1.57in, r, = 6.65 in, I, = 586 in*

Thus, without considering the effects of axial load, we have
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7 7
A=—M

Since all three conditions of equilibrium, mechanism, and plastic moment
are satisfied, 4 = 1.92 is the exact solution if secondary effects are not
considered.

Now we shall evaluate the secondary effects and provide the necessary
reinforcements to minimize these effects.

Axial Force: Member FG is the critical member [see Fig. 4.32(a)] and the
axial force in this member is

M 47
Prg = 304 + V = 304 + g = (30)(1.92) + 29—0 = 60.3 kips.

The yield axial load P, is
P, = (13.3)(36) = 478.8 kips.

For strong-axis buckling and weak-axis buckling, we have

_ LKL [F, 10)(12) [ 36
Fe = 0 . VE = 665 \ 30,000 0.398

1012 [ 36
" n 1.57 +/ 30,000

and

= 1.686,

the weak-axis buckling controls, thus giving

0.877 .
P, = [T:l P, = 147.7 kips.

For the plastic design, 4, < 1.5K. Also with such a high value of 4, the
reduction in the axial capacity of member FG is very large. To increase the
axial capacity, we need to provide bracings against weak-axis buckling at a
spacing of 5 feet such that

Ao = 1—?9 = 0422 < 1.5, okay.

(o

The weak-axis buckling still controls, so the axial capacity of the member is
P, = 0.658%P, = 444.4 kips.
Since

p 60.3

=% _0i160<02
4.P.  (0.85)(444.4) <
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So the moment capacity of the member can be determined from
p
— * <10
2¢an * ¢anx B
where ¢, = 0.9, M,, = M, = 2963 kip-in., and M, = M,,.. The reduced plas-
tic moment M, is determined from LRFD interaction equation as

M, M, <<1 0.160)

®M,. 09M,~\" 2

M, = (0.92)(09)M, = 0.828M,.

which will in turn reduce the load factor from A = 1.92to A = 7TM,./900 = 1.59.

Lateral Torsional Buckling: For plastic design, the maximum unbraced
length is

(3,600 + 2,200M, /M)
pd = Fy
We will now check L, for all portions of the frame and provide the lateral
support if necessary.

Portion AB [Fig. 4.32(c)]

Ty.

3600 — 2200 <§>

L, = —3 1.57 =93 in. > 60 in. okay.
Lateral supports at a spacing of 5 feet are okay.
Portion BC

3600 + 2200 <g>

L, = — 3 1.57=221in. > 7.5 x 12=90in. okay.

There is no need to provide any lateral support, but the lateral support at the
plastic hinge location C is required by the LRFD.

Portion CE

3600 — 2200 <E

L, = 6 ) 1.57 =77 in. < 15 x 12 =180 in,, not okay.

So we provide lateral supports at a spacing of 5 feet.
Portion EF

10
3600 + 2200 <ﬁ>
L, = 36 1.57 =237 in. > 7.5 x 12 =901in. okay.
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There is no need to provide any lateral support.
Portion FG

[3600 + 2200(1)
L=~y """

%6 :|1.57 =253 in. > 20 x 12 =2401in. okay.

Lateral supports at a spacing of 5 feet are okay.

Shear Force: As far as shear is concerned, the full plastic bending strength of
the section may be used in design if the total transverse shear on the section
at the plastic limit load is no more than V,, (Eq. 4.5.1):

V, = 0.55Ft,d = 0.55 x 36 x 0.345 x 16.13 = 110 kips.

Since the shear forces in the frame are all smaller than the shear strength, no
web stiffeners or doubler plates are needed for frame members.

Example 4.8.2. Gable Frame: A gable frame is subjected to uniformly distrib-
uted loads as shown in Fig. 4.33. Select an appropriate section for the mem-
bers. Consider the effects of axial force, lateral torsional buckling, and shear
force on member strength. Assume B, = B, = 1.0and K, = K, = 1 to check
column buckling.

Solution: The degree of redundancy of the frame is one. Take the horizontal
reaction at E as the redundant. The resulting determinate frame subjected to
applied and redundant forces is shown in Fig. 4.34. The bending moments in
the determinate frame due to applied forces and redundant forces are tabu-
lated in Table 4.5.

First, try the mechanism with plastic hinges at D and C. From Table 4.5,
the collapse equations can be written as

-208S=-M

P

1.8 kips/ft

ERENEERENNNENNNNRENEE

15 ft

0.8 kips/ft

100 ft |

FIGURE 4.33. Gable portal frame subjected to uniformly distributed load.
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1.8 kips/ft

IR EENEEN

SERENES

(b)

FIGURE 4.34. Determinate structure subjected to (a) applied forces and (b) redundant
forces.

TaBLE 4.5. Example 4.8.2. gable frame calculations

Joint A B C D E
Free moment 0 400 2495 0 0
S 0 —208 —358 —208 0
and

—358 +2495=M,,.
Solving these two equations for S and M, we have
M, = 907 kip-ft
S = 45.4 kips.

The moment diagram corresponding to these values of M, and S is shown
in Fig. 4.35. We must now check moments at B and in between B and C
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FIGURE 4.35. Moment diagram corresponding to a mechanism with plastic hinges at
CandD.

(because the load is distributed):
My = 400 — 208 = —508 kip-ft, [My| < M, = 907 kip-ft, okay.
Moment M, at a horizontal distance x from C toward B (Fig. 4.35) can be
expressed by taking the free body of the right portion of the frame C,CDE as
(1.8)(50 + x)? B (0.8)(0.3x)? B

M, = 94.9(50 + x) — 5 5

(35 — 0.3x)(45.4)

or
M, = —0.94x? + 18.52x + 906.
To determine the maximum moment location, we set

M,

=0=—1.88x + 18.52
dx

and obtain
x=99ft
and
M, = —0.94(9.9)*> + 18.52(9.9) + 906 = 997 kip-ft.
Since the plastic moment condition is violated at C;, M, = 907 kip-ft is not

an exact solution. However, this mechanism does provide the following up-
per and lower bounds on M,:

907 < M, < 997.

Now, try the mechanism with hinges at C, and D. Corresponding to this
mechanism, the collapse equations are
M,=-20S=-M

M, = (94.9)(59.9) — w —(0.8)297)* — 328 =M,
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or
Mg, =2448 — 325 = M,
The solution of these two equations gives
M, = 942 kip-ft
S = 47.1 kips.

The required plastic modulus Z, = M,/F, = (942/36)(12) = 314 in.> Try
W30 x 116 throughout the frame.
From the AISC manual, for W30 x 116, we have

Z,=378in’r,=12in,r,=2.19in, 4 = 342in?% I, = 4930 in.*

To avoid the effects of weak-axis column buckling and lateral torsional
buckling, we shall provide bracings at a spacing of S feet in all the members.
We now evaluate the effects of axial force, lateral torsional buckling, and
shear force on member strength.

Axial Force: Member DE is the critical member and the axial force in this
member is

Ppp = Vg = 94.9 kips.
The yield axial yield load for W30 x 116 is
P, = (34.2)(36) = 1231 kips.

For strong-axis and weak-axis buckling, the values of 4, are

_1(KL), [F, 11x20x2 [ 36 _

Fee =4 . VE n 12 30,000 0221
K 1

o 1KLL, JF, 1)) | 36 .0

Y nor E = 219 30,000

y

The weak-axis buckling controls. Thus 4, = 4., = 0.302. Now since 4, < 1.5,
the axial capacity of the member is

P, = 0.658%P, = 0.6581°-3°2*(1231) = 1185 kips.
Since

P 94.9

4P = 085)(1185) =0.094 < 0.2.
The reduced moment capacity of the member can be determined from

P + M, =1.0
2¢an ¢anx_ .

where the first-order moment obtained from plastic analysis, ie, M, =
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M, = 942 kip-ft:
P + M, 0.09% + 942
2¢.P, M, 2  09M,
which gives the required plastic moment

M, = 1113.7 kip-ft = 13,364 kip-in.

1.0,

The adjusted plastic modulus

_ 13,364

= = 1 3
36 371.2 < 378 in.°, okay.

Lateral Torsional Buckling:

(3600 + 2000M, /M)
pd = F ry.

y

L

Take a conservative value of M;/M, as —1
(3600 — 2200)
WET3E

Shear Force: Member CD is the critical member and the maximum transverse
shear force in member CD is

(2.19) = 85in. > 60 in., okay.

50
Vip = (94.9)—— = = 90.9 kips.
cp (50 + (152 P

The maximum shear strength allowed according to Eq. (4.5.1) is

V, = 0.55F;t,d = 0.55 x 36 x 0.565 x 30.01 = 335.7 kips,

which is sufficient to support the shear load without general yielding of the
web, the modification of plastic moment capacity is therefore not required by
specification. However, to see the influence of shear force on plastic bending
strength, we shall follow the procedure described in Section 2.6, Chapter 2,
and compute first the shear stress as

Ve 90.9

= = . k..
Lr. 83100563 o8k

shear stress in web =

The plastic modulus reduced due to the presence of shear force is

7 =7Z-Z [1______\/%2_312]
ps w

36

(0.565)(28.31)> | J36)> — (3)(5.68)
B 4 - 36

Z,, =378 — 43 =3737in> > 371.2in> okay.
Use W30 x 116.

=378
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4.9 Summary

In the theory of plastic analysis and design, three fundamental conditions
must be satisfied when a structure is at its plastic collapse state.

1. The structure is in equilibrium with respect to the given loads and their
reactions.

2. At no point in the structure does the moment produced by the loading
exceed the available plastic bending strength.

3. The structure is on the verge of becoming a mechanism.

Based on these three conditions, two basic methods of plastic analysis and
design are available. The equilibrium method presented in this chapter is
based on the lower-bound theorem of limit analysis. The work method to be
presented in the following chapter is based on the upper-bound theorem. The
equilibrium method involves two stages of operation. In the first stage, the
moment equilibrium equations are formed in terms of applied loads and
unknown redundants. In the second stage, the redundants are selected such
that the plastic moment condition will not be violated, while the mechanism
condition may not be satisfied. A safe or lower-bound solution can be ob-
tained quickly by assuming any set of values of redundants. The best solution
or the highest limit load corresponds to the formation of a failure mechanism.
A successful application of the second stage of operation requires physical
intuition combined with the use of differential calculus and algebraic
technique.

The equilibrium method is applied to the analysis and design of simple
beams, rectangular frames, and gable frames. The consideration of the effect
of shear force on the plastic moment capacity in the design of beams is
illustrated. Cover plates are designed for a continuous beam having a limited
depth for architectural reasons. The LRFD specifications for the limiting
unbraced lengths for preventing lateral torsional buckling are presented, and
their use in actual frame design is illustrated.

The effects of axial load on the strength and stability of frames are consid-
ered. To this end, the LRFD interaction equations for beam-columns are
presented, and their use in designing rectangular and gable frames is
illustrated.

For the practical design of large-framed structures involving a larger num-
ber of redundants, a practical equilibrium procedure is presented. In this
procedure, we first assume a failure mechanism and then equate the moments
at the plastic hinge locations to the plastic moment. The resulting simultane-
ous equations are solved for the unknown redundants. This leads to the
solution of the required plastic moment capacity or the plastic limit load. The
results so obtained are used to check moments at other critical sections. This
check provides upper and lower bounds on the exact solution. The procedure
is repeated by assuming a new mechanism until the coincidental upper and
lower bounds.



218

4. Equilibrium Method

References

4.1.

4.2.

43,

44.

4.5.

4.6.

4.7.

438.

49.

4.10.

Chen, W.F., and Lui, EM., Structural Stability: Theory and Implementation,
Elsevier, New York, 486 pp., 1987.

Chen, W.F., and Lui, E.M., Stability Design of Steel Frames, CRC Press, Boca
Raton, FL, 380 pp., 1991.

Cheong-Siat-Moy, F., “Consideration of Secondary Effects in Frame Design,”
Journal of Structural Division, ASCE, 103, ST10, pp. 2005-2019, 1972.
Rosenblueth, E., “Slenderness Effects in Buildings,” Journal of Structural Divi-
sion, ASCE, 91, ST1, pp. 229-252, 1965.

Stevens, L.K., “Elastic Stability of Practical Multistory Frames,” Proceedings of
Civil Engineering, 36, London, England, 1967.

Yura, J.A., Elements for Teaching Load and Resistance Factor Design, AISC,
Chicago, IL, 1987.

Galambos, T.V., “Inelastic Lateral Buckling of Beams,” Journal of Structural
Division, ASCE, 89, STS, pp. 217-242, 1963.

Galambos, T.V., and Fukumoto, Y., “Inelastic Lateral-Torsional Buckling of
Beam-Columns,” Bulletin No. 115, Welding Research Council, July 1966.
Nethercot, D.A., and Trahair, N.S., “Inelastic Lateral Buckling of Determinate
Beams,” Journal of Structural Division, ASCE, 102, ST4, pp. 701-717, 1976.
Salmon, C.G., and Johnson, J.E., Steel Structures: Design and Behavior, Empha-
sizing Load and Resistance Factor Design, third edition, Harper and Row, New
York, p. 1086, 1990.

Problems

4.1.

4.2.

4.3.

4.4.

4.5.

A beam having uniform cross section with full plastic moment M, and length 2L
rests on simple supports at its ends and on a central prop. It carries four equal
loads W, symmetrically arranged about the center of length, one at the center of
each span and one a distance L/8 from each end of the beam. What would be
the value of Wat collapse? [24M,,/5L].

If the beam of Problem 4.1 is carrying four equal loads W, symmetrically ar-
ranged about the center of the beam, one at the center of each span and one at
a distance 3L/8 from each end of the beam, determine the value of W at collapse
[88M,/27L].

A fixed-ended beam with a prop at the center has a uniform cross section with
full plastic moment M, and length 2L. Equal concentrated loads are applied
at a distance aL from each fixed end. What would be their value a collapse?

[2/[a(1 — a)]M,/L].

A fixed-ended beam has uniform section with full plastic moment M, and length
L. It is subjected to a uniformly distributed load W and to a concentrated load
0.5W at a distance of L/3 from one end. Find the value of W at collapse [9IM,,/I].

A uniform beam of length L and full plastic moment M, is simply supported at
one end and fixed at the other end. A concentrated load W may be applied
anywhere in the span. Find the values of M, corresponding to the most unfavor-
able position of the load W [M,, = 0.172WL].
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A beam has uniform cross section with full plastic moment M, and length L and
is built in at one end and simply supported at the other. It carries a concentrated
load W a distance a from the built-in end. Show that at collapse, W has the
value

2L —a
allL—a) 7

Show that if both ends had been built in, the load at collapse would have
increased in the ratio

2L
2L —a’

A beam ABCD of uniform section throughout has full plastic moment M, and
is pinned to four supports, thus forming a continuous beam of three equal spans
each with length L. A load W is applied at the center of each span. Find the
value of W that causes collapse [6M,/L].

The continuous beam shown in Fig. P4.8 has three equal spans carrying central
point loads. There is no change of beam section between supports but the
plastic moment resistance of the outer spans is only two-thirds that of the cen-
tral span, which is M. At what value of W does the collapse occur? [8M,,/L].

et e be——te——ste——]

FIGURE P4.8 L/2  L/2  L/2 L/2 L/2 L/2

A uniform continuous beam with full plastic moment M, rests on five simple
supports A, B, C, D, and E such that AB = 6L, BC = CD = 8L, and DE = 10L.
Each span carries a concentrated load at its midpoint, these loads being W on
AB, W on BC, 1.4W on CD, and 0.5W on DE. Find the value of W that will just
cause collapse [SM,/7L].

A fixed-ended beam of span L is to be designed for collapse under a single
central point load AW. For a distance (1/2)kL from each end of the span, the
fully plastic moment is to be r times the value for the remainder of the span. The
weight per unit length of the beam is

2M

where M is the fully plastic moment at the section in question, and f is a
consant. Determine the ratios r and k for minimum weight of the beam, and find
the saving in material as compared with a design using a uniform beam. Neglect
the weight of the beam [r = 5/3, k = 1/4, 10%;].
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4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

4.17.

4. Equilibrium Method

A load of 150 kips is applied 4 feet from the end of a fixed-ended beam 16 feet
long. Select a wide-flange section. Include the effect of shear force on plastic
moment capacity in the design of the beam.

A fixed-ended W16 x 40 beam 20 feet long is reinforced at its ends with cover
plates welded to top and bottom flanges. These plates are 5-in. wide and 3/8 in.
thick. It carries a concentrated load W at midspan. Find the value of W taking
into account the effect of shear force on the plastic moment capacity.

How long must the plates be in Problem 4.12 so that this ultimate load can be
reached. Does the beam require lateral supports for adequate rotation capacity
to form a plastic failure mechanism? If yes at what locations.

Find a suitable section of A36 steel for the beam of Example 4.5.2 if the ends of
the continuous beam are fixed instead of simply supported [W14 x 30].

A load of 5 kip/ft is to be carried over the three spans shown in Fig. P4.15 with
a load factor of 1.7. It is decided to use a wide-flange section with F, = 36 ksi,
running continuously over all spans with added cover plates running continu-
ously over support C into the spans BC and CD. Find the size of the basic
section and length and area of the cover plates. Include the effect of shear force
on the plastic moment capacity of the beam.

5 kips/ft
EEEEEEEEEEEEREENRRE
A B ANG D

bt o
- Lol Bl L 1

T e
20 ft 30 ft 25 ft

FIGURE P4.15

The beam designed in Problem 4.15 has lateral support at the vertical supports.
Do we need additional lateral supports? If yes, at what locations?

The beam ABC shown in Fig. P4.17 is to be designed to carry the given loads
with a load factor 1.7. Using A36 steel, design the beam continuous from A to
C by taking into account effect of shear force on the plastic moment capacity.
Determine the location of lateral supports if necessary.

4 kips/ft
2 kips/ft
Y IRIEERENE i t ¢+ 1 ¥ ¥ 11
Ay c
b >l —|
25 ft 20 ft

FIGURE P4.17
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The beam in Problem 4.17 can be designed by using a smaller section continu-
ous from A4 to C and by adding symmetrical flange reinforcement where neces-
sary in span AB. Select a wide-flange section and find the length and size of the
cover plates needed.

In a fixed-base rectangular portal frame ABCD, the column AB is of height 16
feet and column DC is of height 24 feet and beam BC is 16 feet and horizontal.
All the members of the frame have the same full plastic moment M,. The beam
BC carries a central concentrated vertical load of 70 kips and a concentrated
horizontal load of 28 kips is applied at C. Select an appropriate wide-flange
section. Consider the effects of (a) axial load including stability of the columns
AB and CD and (b) shear force on moment capacity of beam BC. Provide the
necessary lateral support to prevent lateral torsional buckling of the beam.

Repeat Problem 4.19 when the horizontal load of 28 kips is reversed in
direction.

The frame of Fig. 4.26 has L = 40 ft, « = 0.5, and W = 50 kips. Select an appro-
priate wide-flange section by taking into account effects of axial load and shear
force. Provide the lateral supports if necessary to prevent lateral torsional
buckling. Use LRFD rules.

For the gable frame shown in Fig. 4.26 and assuming the following conditions
o = 1.0, L = 20 ft, A36 steel, W18 x 46 section:

(a) Estimate the change in the value of W caused by positioning the plastic
hinge at B, correctly if the vertical load W on span BC is actually uniformly
distributed [x = 4 ft, M, = 445W, 6.7%].

(b) Estimate the change in the value of W caused by considering the effect of
axial load on the value M, using the LRFD beam-column equation with
B, = B, = 1.0 [M,,, = 2703 kip-in., 5.2%].

(c) Determine the location of lateral supports if necessary to prevent lateral
torsional buckling [4, B, B,,C,D,, D, E].

The rigid frame shown in Fig. P4.23 is subjected to a vertical distributed load
and a concentrated horizontal load. Determine a lower and upper bound for the
plastic moment M, using the mechanism ACDE [65.79 < M, < 71.71].

L J

FIGURE P4.23 | l
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4.24. For the thick ring shown in Fig. P4.24, where r » t, find the collapse load P in
terms of M, (neglect axial force effect) [P = 4M, /(r + t/2)].

FIGURE P4.24

4.25. Using the mechanism 4B;CD shown in Fig. P4.25, we find that the load factor
isA=24

(a) Carry out your moment check.

(b) Design members AB and BC assuming that the frame is braced at B,, B, C,,
and C [(a) My =0, M, = 600 kft, P,z = 60 kips; (b) member 4B, W21 x
50, member BC, W30 x 99].

I

C: \720 ?C

B

f
5
40

‘_*— B, 240
5 240
g

ik

10 } 10 —

FIGURE P4.25



5
Work Method

5.1 Introduction

The equilibrium method described in the preceding chapter can easily be
used in the plastic analysis and design of simple frames where the number of
redundants is small. As the number of redundants increases, it becomes more
difficult to draw the bending moment diagram of the structure, and thus
more difficult to use the equilibrium method. For such structures, the work
method of plastic analysis is more appropriate and affords a simpler solution.
As the name implies, the relation between the strength of a frame and the
applied loads in the work method is found by assuming that there is no
overall loss of energy as the frame under failure loads undergoes a smalil
change in displacement. Thus, by postulating a valid failure mechanism, an
equation can be formed by equating the external work done by the applied
loads through the displacements to the internal dissipation of energy at the
plastic hinge locations. The interal dissipation of energy is the sum of the
products of the plastic moment at each hinge and the corresponding angular
change required to effect a small movement of the failure mechanism. The
external work is the sum of the products of the component of the small
displacement of the failure mechanism in line with the applied load and the
corresponding applied load. The equation formed in this way is called the
work equation and the corresponding collapse load or the required plastic
moment capacity can be determined by solving the work equation [1.8, 5.1-
5.5]. The computed load for the particular assumed failure mechanism is
exact if a moment check is performed and shows that the plastic moment
condition is not violated anywhere in the frame.

In this chapter, we will first describe the basis of the work method and then
present the formulation of the work equation and the procedure for'a mo-
ment check, the two major steps in the work method. Then, we will demon-
strate the use of the work method for the analysis and design of simple
frames. Next, we will describe simple methods for calculating the geometrical
relations of failure mechanisms. A practical method of combining indepen-
dent mechanisms is then presented, which facilitates the determination of

223
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plastic limit load or required plastic moment capacity of multistory and
multbay frames. Finally, we will show how simple modifications can be made
to the present procedure for the presence of distributed loads.

5.2 Basis of the Method

The load computed on the basis of an assumed failure mechanism is never
less than the exact plastic limit load of the structure. This fact is based on the
upper-bound theorem of limit analysis described in Chapter 3 and is now
restated here: A load computed from the work equation on the basis of an
assumed failure mechanism will always be greater than or at best equal to the
plastic limit load.

The upper-bound theorem states that if a mode of failure exists, the struc-
ture will not stand up. The computed loads are upper bounds on, or unsafe
values of, the limit or collapse loading. The minimum upper bound is the
limit load itself. The work method has the following two major steps:

(a) Assume a failure mechanism and form the corresponding work equation
from which an upper-bound value of the plastic limit load or an unsafe
value of the plastic moment can be found.

(b) Write the equilibrium equations for the assumed failure mechanism and
check the moments to see whether the plastic moment condition is met
everywhere in the structure.

These two major steps will be elaborated in the following two sections.

5.3 Work Equation

The work equation can be regarded as an energy balance statement in math-
ematical form for the structure under collapse loads undergoing a small
change in displacement and hinge rotation. A work equation can be formed
for an assumed mechanism by equating the summation of expenditure of
energy due to the movement of each applied load W, through a distance J; or
Y. W;4; to the summation of internal dissipation of energy in rotating each
plastic hinge through an angle 6, at the constant plastic moment M, or
Z M pi Bi’

Y Wi =Y M6, (5.3.1)

where the left-hand summation extends over all the loads and the right-hand
summation extends over all the plastic hinges. The internal dissipation of
energy is always positive, regardless of the direction of hinge rotation. Thus,
there is no need to establish the signs for moments and plastic hinge rotations
for calculating the internal energy dissipation. This is in contrast to the equi-
librium method and moment check procedure, which require the proper es-
tablishment of signs for moments and rotations in the application of the
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virtual work equation. Herein, for the moment check, we shall use the follow-
ing sign convention: Moment-causing tension on the dotted-line side of the
member is positive and vice-versa, and rotation causing opening on the
dotted-line side of the members is positive and vice-versa.

The following three examples have been chosen to show the techniques of
calculating each of the two work quantities, to form the work equation, and
to obtain an upper bound of the plastic limit load corresponding to an as-
sumed failure mechanism. Later in this chapter, we will show that for a given
frame and loading all the possible mechanisms can be obtained as different
combinations of a comparatively small number of independent mechanisms,
which are readily identified for a given frame and loading. The determination
of plastic collapse loads by the method of combining mechanisms is de-
scribed in Section 5.8.

5.3.1 A Simply Supported Continuous Beam

Example 5.3.1. Obtain the plastic limit load of the two-span continuous
beam shown in Fig. 5.1(a).

Solution: Plastic hinges can possibly be formed at sections B, C, and D.
Because of symmetry there is only one possible mechanism, as shown in
Fig. 5.1(b). If the plastic hinge at point A4 is rotated through a small angle 0,
then by geometry, the plastic hinges at B, C, and D are rotated through an
angle equal to 20. The external work W; is done by the two loads moving
vertically downward. The small vertical distances are computed in terms of
angle 6 as

0. (532

Thus, the total external work done is

L L
Wy = P(E 0> + P<§0>. (53.3)

The internal energy W; is dissipated at each of the plastic hinges. The
energy dissipation at each plastic hinge is equal to the plastic moment at that
hinge times the angle through which it rotates. Thus, the total internal energy
dissipation W; can be written as

W, = M,(20) + M,(20) + M,(26). (5.34)

Note that angular and linear displacements are assumed merely as differen-
tial values; hence the dimension of the undeformed beam can be used in the
computation, as would be done in elastic analysis. By equating Wy to W;, we
have formed the work equation

2(525 9) = 3M,(26)
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FIGURE 5.1. Mechanism analysis of two-span continuous beam (Example 5.3.1): (a)
beam, (b) mechanism, and (c) moment check.
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from which we obtain an upper-bound solution to the plastic limit load
_6M,
7
Since moments at 4, B, C, D, and E are known, the moment diagram for
the beam can be constructed as shown in Fig. 5.1(c). Since the plastic moment

condition (M < M,) is met everywhere in the beam, it follows that the solu-
tion P = 6M,/L is exact.

P (5.3.5)

5.3.2 A Pinned-Fixed Continuous Beam

Example 5.3.2. Obtain the plastic limit load of the unsymmetrical two-span
continuous beam shown in Fig. 5.2(a).

Solution: Plastic hinges can possibly be formed at Sections B, C, D, and E of
Fig. 5.2(a).

Two possible mechanisms are shown in Fig. 5.2(b). One involves the failure
of beam A — C and the other of beam C — E. For mechanism 1, if 8 is the
angle of rotation at A, then the rotation at C is also equal to 6. The angular
discontinuity at B is 26. The vertical displacement at B is equal to the rota-
tion at 4 times the distance between A and B, i.e., A = 6(L/2). For mechanism
2, if 0 is the angle of rotation at C, then, the rotation at E is 8/2. The disconti-
nuity at D is the sum of angles at C and E. The vertical displacement of D is
0 (L/3).

The work equation for the left-hand beam mechanism is obtained by
equating the external energy work to the internal energy dissipation as

(0.75P) (% 0) = M,[20 + 0], (5.3.6)

which gives an upper-bound solution corresponding to the left-hand beam
mechanism as

8M
P =P % 3.
! i3 (5.3.7)
Similarly, the work equation for the right-hand beam mechanism is
L 0
(2P) <§ 0> = M,(0) + 2M(1.50) + 2M,, <§>, (5.3.8)

which gives a lower and thus better upper-bound solution for the continuous
beam as

7.5M,
— (53.9)

P,=P=

In the next section, we shall perform a moment check on mechanism 2 to
show that Eq. (5.3.8) gives the exact plastic limit load.
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5.3.3 A Pinned-Based Portal Frame

Example 5.3.3. Obtain the plastic limit load for the portal frame shown in
Fig. 5.3(a).

Solution: Plastic hinges can possibly be formed at Sections B, C, and D. Three
possible mechanisms are shown in Figs. 5.3(b), (c), and (d). The work equa-
tion corresponding to each of these three mechanisms is given later.

Referring to the beam mechanism (mechanism 1) shown in Fig. 5.3(b), we
have

P(% o) = M,0 + M,(26) + M,(6), (5.3.10)

which gives an upper-bound solution as

8M

P =2 (5.3.11)

For the side-sway mechanism (mechanism 2) shown in Fig. 5.3(c), since both
plastic hinges rotate the same amount 6, we have

P(L

which gives another upper-bound solution as

8M
P2= Lp.

(5.3.13)

For the combined mechanism (mechanism 3) shown in Fig. 5.3(d), it is com-
posed of three links—segment AC, segment CD, and column DE. Using the
geometrical relationships shown, we obtain (see Section 5.6.1)

L P(L
P(E 6) + 5(5 0) = M,(20) + M,(26), (5.3.14)

which gives the lowest upper-bound solution of the three assumed collapse
mechanisms

Py=_—--° 5.3.15
=3 (53.15)
The lowest value P, is the plastic limit load P, of the frame. To be sure that
no other possible mechanisms are overlooked, it is necessary to check that
the plastic moment condition (M < M,) is not violated anywhere in the
frame. This will be done in the forthcoming.
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FIGURE 5.3. Mechanism analysis of pinned-based portal frame (Example 5.3.3): (a)
frame, (b) mechanism 1, (c) mechanism 2, (d) mechanism 3, and (¢) moment check.
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5.4 Moment Check

The work equation gives an upper bound to the exact plastic limit load. It is
therefore necessary to check and see whether the moment condition M < M,
is met throughout the structure for the assumed mechanism. Otherwise, we
may overlook a more favorable mechanism, which may give a lower load.
Thus, if the moment condition cannot be met for the assumed mechanism, a
fresh guess as to the collapse mechanism is made again, but now it is guided
by the results of the moment check, and the process is repeated.

For an assumed mechanism, the structure can be determinate or indeter-
minate. The number of indeterminacy I of the structure at collapse load can
be determined from the following rule

I=X-M=-1) (5.4.1)

where X is the number of redundancies in the original structure and M is the
number of plastic hinges necessary to develop the mechanism.

The design that leads to an indeterminate structure at collapse is probably
not the most efficient design, since in theory the material can be saved some-
where in the structure to bring the moments in the inderminate parts of the
structure up to their fully plastic values.

However, partial collapse mechanisms often occur in practice, and their
moment check procedures are more tedious. The procedures of making a
moment check for a detertminate or indeterminate structure at collapse are
briefly described in the following.

5.4.1 Determinate Structures

If the structure at collapse is determinate, simple statics or the virtual work
equation can be used to determine the moments in all parts of the structure.
The moment checks by simple statics and the virtual work equation are
illustrated in Examples 5.4.1 and 5.4.2.

5.4.2 Indeterminate Structures

If the structure at collapse is indeterminate, both the simple statics and the
virtual work equation can be used for the moment check. The virtual work
equation can be used to express all unknown moments in terms of redundant
moments in the redundant portions of the collapsing structure. The resulting
moment diagram, which is in equilibrium with the applied loads, permits us
to check the plastic moment condition.

5.4.3 Illustrative Examples

Example 5.4.1. Make a moment check for the right-hand beam mechanism
[Fig. 5.2(b)] of the unsymmetrical two-span continuous beam of Eexample
5.3.2 using (a) simple statics and (b) virtual work equation.
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Solution:

(a) Simple statics: For the right-hand beam mechanism, plastic hinges form
at C, D, and E. The moments at these three locations are equal to the
plastic moment capacity of the sections at these locations [Fig. 5.2(d)].
The moment at B is unknown and can be determined by considering the
free body diagram of portion AC as shown in Fig. 5.2(c) from which the
reaction R, is

075P M
Ry=——-—-2. 4.2
=T (5.42)
Substituting P = P, = 7.5 M,/L from Eq. (5.3.8), we have
_(0.75\(75M,\ M, 181M,
Thus, the central unknown moment My has the value
1.81M, L
=7 4 5= 091M, < M,, (5.44)

Since the moment is not greater than the plastic moment capacity M,
anywhere in the beam, P = 7.5M,,/L is the exact plastic collapse load.

(b) Virtual work equation: The unknown moment My is determined by
equating the virtual work done by the applied load to the virtual internal
work done by moments on the left-hand beam mechanism as the virtual
displacements and rotations, using the usual sign convention for moment
(Mg = + Mg, M = —M,) and rotations (63 = +26,6c = —6) in the vir-
tual work equation

(0.75P)(A) = Mybg + M0, (5.4.5)
or
L
(0.75P) <5 0) = (+Mp)(+26) + (—M,)(—0), (5.4.6)
which gives the unknown central moment at B as
110.75
Mg = E[T PL — M‘,}. (5.4.7)
Substituting P = P, = 7.5 M, /L, we have the central moment
110.75(7.5M
My = f[T( I ">L — Mp:| = 091M, (5.4.8)

My < M, okay.

Example 5.4.2. Make a moment check for the combined mechanism of the
portal frame of Example 5.3.3 [Fig. 5.3(d)] using (a) simple statics and (b) the
virtual work equation.
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Solution:

()

(b)

Simple statics: For the combined mechanism, plastic hinges form at C
and D. Therefore moments at C and D are equal to the plastic moment
capacity at these locations [Fig. 5.3(¢)]. The moment at B is unknown
and can be determined by first determining the horizontal reactions at A
and E. The horizontal reaction at E is obtained from the free body dia-
gram of column DE as

_2M,

Hg I (5.4.9)
It follows that the horizontal reaction at A is
P 2M,
H, = 3T (5.4.10)
Substituting P = P; = (16/3)(M,/L) from Eq. (5.3.14), we have
HA=1_%1_%=gMP (5.4.11)

3L 2 L 3L

The resulting moment diagram for the frame is shown in Fig. 5.3(e). Since
the moment is less than M, everywhere in the frame, P = 16M,/3L is the
exact collapse load of the frame.

Virtual work equation: The unknown moment My can be determined
directly by equating the virtual work done by the applied loads on the
beam mechanism and the internal virtual work done by the moments at
the collapse load P = P; (mechanism 3) on the beam mechanism, in the
usual sign convention for moments (Mp = +Mpy, M= +M,, Mp =
—M,) and rotations (0 = — 0,0, = +20,0, = —0):

P(A) = Myby + M6, + Mp6, (5.4.12)

or

p<e§> = (+ Mp)(—0) + (+ M,)(+26) + (— M,)(—6), (54.13)

which gives
PL

M = > + 3M,. (5.4.14)

Substituing P = P; = 16M,/3L, we have the unknown beam end mo-
ment at B as

1/16 M
My = _§<?Mp> +3M, = —3—" <M,, okay. (5.4.15)
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FiGURE 5.4. Moment check by the trial-and-error method (Example 5.4.3): (a) beam,
(b) mechanism, (c) free bodies, and (d) moment check.
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Example 5.4.3. A three-span continuous beam has a uniform section with
plastic moment capacity M, and is subjected to concentrated loads in each
span as shown in Fig. 5.4(a). The lowest upper bound is found to be P =

M,

/L from the mechanism shown in Fig. 5.4(b). Make a moment check.

Solution:

@

(b)

Simple statics: The degree of indeterminacy at the plastic collapse load is
I=X-M-1)=2-2-1)=1 (5.4.16)

The moments at D, E, and F are unknown. Try the redundant moment
at E to be —M,,. Then the values of M;, and M can be determined by
considering the free body diagrams of segments CE and EG in Fig. 5.4(c).
From the free body CE, the unknown central moment M}, can be found
as

My=-—"-M, ==
! P4\ L

PL L{3M M
( ”) -M, = —T”. (5.4.17)
Similarly, from the free body EG, the unknown central moment M can

be found as

P M, 3M,\(0.75L) M, 5
=(=z- I5L) = - I5L) = = M,.
Mp <2 1.5L)(075L) < L ) 2 A
(5.4.18)

The resulting moment diagram is shown by the dashed line in Fig.

5.4(d). Since M < M, throughout the beam, the limit load P = 3M,/L is
the exact solution. Note that the plastic moment check does not require
the redundant moment M, be determined by an elastic analysis. It only
requires to show that there exists a value of Mg such that it is in equilib-
rium with the applied loads and the resulting moment diagram does not
violate the moment condition. Also, note that a more efficient use of
material will result if the design is revised to supply only the required
plastic moment for other noncollapsing spans.
Virtual work equation: Assume the moment at E is the redundant (Fig.
5.5). Now, by the virtual work equation, the unknown moments at D and
F can be expressed in terms of the plastic moment M, and the redundant
moment M.

The moment at D is determined by applying the virtual work equation
to the equilibrium and geometry sets shown in Figs. 5.5(b) and (c):

(—=M,)(—=0) + (+Mp)(+20) + (+ Mg)(—0) = (324”) (%0) (5.4.19)

which gives the central moment for the left-hand beam as
1 1

MD=ZMP+§ME' (5.4.20)
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FIGURE 5.5. Moment check by the virtual work equation for an indeterminate struc-
ture after a partial collapse (Example 5.4.3): (a) beam, P, = 3M,/L; (b) moment dia-
gram, My = redundant; (c) geometry set for Mp,; and (d) geometry set for M.

Similarly, the moment at F is determined by applying virtual work equa-
tion to the equilibrium and geometry sets shown in Figs. 5.5(b) and (d):

3M, )\ (1.5L
(+Mg)(—0) +(+MF)(+20)=< L"><Te>, (5.4.21)
which gives the central moment for the right-hand beam as
IM, 1
MF = Tp + EME. (5.4.22)

The condition that the absolute values of the moments at D, E, and F be
less than M, leads to

1 1
—M, < M, +5Mp < M, (5.4.23)
—M, <My <M, (5.4.24)
9 1
~M, < gM, + s My < M, (5.4.25)

These inequalities can be expressed as
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—%M,, < Mg S%Mp (5.4.26)
—-M,<Mg<M, (5.4.27)
—-%M,, < Mg < —%Mp. (5.4.28)
Inequalities (5.4.26) to (5.4.28) are equivalent to
—M,< Mg < —%Mp, (5.4.29)

which indicates that there exists an M; value in the range given by Eq.
(5.4.29) corresponding to which the absolute values of the moments at D
and F are less than M, so that the moment check is complete.

5.5 Design of Rectangular Portal Frame

The axial force in columns will reduce the moment-carrying capacity of the
columns as described in Section 4.6. Herein, we shall apply the work method
for the design of rectangular frames and consider the column buckling effects
of axial load in the plastic design of these frames using the LRFD interaction
equations presented in Section 4.6.

Example 5.5.1. A rectangular portal frame is subjected to factored vertical
loads as shown in Fig. 5.6. Find the required M,, show the collapse mecha-
nism, and perform a moment check. Select an A36 W section for the columns

180 kips 160 kips

C 2M,, D E

15 ft
Mp) (Me

T 3

L

I>
3

10 ft L 10 ft L 101t

FIGURE 5.6. Design of rectangular portal frame with two concentrated loads (Example
5.5.1). '
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FiGURE 5.7. Collapse mechanism for the frame in Figure 5.6.

and check the effects of axial load using the LRFD interaction equations for
columns AB and EF. Assume B; = B, = 1,and K, = K, = 1 for both columns.

Solution: Consider the beam mechanism shown in Fig. 5.7. By equating the
external work due to applied loads to the internal energy dissipation, we have
the work equation for the beam mechanism as

80(200) + 60(100) = M,(20) + 2M,(30) + M,(0),
which gives
M, = 244 kip-ft.

Next, we perform a moment check. For the mechanism under consideration,
the hinges are formed at B, C, and E. So the moments at B, C, and E are
known to be —M,, +2M,, and —M,, respectively. The moment at 4 will be
determined by applying the virtual work equation to equilibrium and geo-
metric sets chosen as shown in Fig. 5.8(a) as

80(0) + 60(0) = (+M,)(—8) + (—M,)(+6) + (—M,)(—6) + (0)(6),
which gives the unknown fixed-end moment at A4 as
M,=0<M,, okay.

The equation for the moment at D is obtained by applying the virtual work
equation to equilibrium and geometry sets selected as shown in Fig. 5.8(b) as

(80)(0) + (60)(106) = (+2M,)(—0) + Mp(+20) + (—M,)(—0),
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Geometry set

Equilibrium set

(b) For Mp
FIGURE 5.8. Moment check for the collapse mechanism in Figure 5.7: (a) for M, and
(b) for M.

which gives the unknown beam moment at D as
1 1 .
M, = 5(600 + M,) = 5(600 + 244) = 422 kip-ft < 2M, = 488, okay.
Design of Columns: Since columns AB and EF are subjected to combined

bending and axial compression as shown in Fig. 5.9, we shall design the
columns for an equivalent moment

M, =M, + Pl
2

Assume depth of section d = 18 in. and obtain

18
M, =244 + (73.3) ——~ = 299 kip-ft
SR T
M 299)(1
required Z, = —3 = (@299)12) _ 111 in.3

#&F, (0.9)(36)
Try W18 x 55, which has the values

A=162in?

Z,=112in3
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73.3 kips 66.7 kips
¢ Mp =244 kip-ft ¢ Mp =244 kip-ft
B E

15' 15
A F ;

o /

\P o\/

73.3 kips 66.7kips

FIGURE 5.9. Forces in columns AB and EF in Figure 5.6.

r,=1741in,r, = 1.67in.

$M, = w = 302 kip-ft.

Check Strength of Column AB: The values of slenderness parameters 4., and
A, are calculated as
_KL [F, _(1)(15(12) 36

“ra\NE  (T4)m 29,000 0272

_KL [F, (1)5(12) [ 36 _
T \VE  167n 29,000_1‘209'

The buckling about the weak axis controls. So 4, = 4., = 1.209 < 1.5; thus
the axial capacity of the column is calculated from

P, = 0.658%P, = 0.6581-2097(36)(16.2) = 316.3 kips.
Now, we have an axial load ratio equal to
P 733
¢.P, (0.85)(316.3)

So we shall use the following interaction equation to check the capacity of
the member

cX

cy
r}’

=0.273 > 0.2.

P +8< M ><1
¢an 9 ¢bMp

0.273 + <§) <£> =0991 < 1.0, okay.

or

'

302
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Since the axial load in column EF is smaller than that in column AB,
W18 x 55 is also sufficient for column EF. So use W18 x 55.

5.6 Calculation of Geometrical Relations

The calculations of displacements in the direction of applied loads and rota-
tions at the plastic hinge locations are simple for beams, but they may be-
come somewhat tedious for complex frames. In such cases, the rigid-body
motion of a failure mechanism may be found easily by the methods known at
the instantaneous center and the virtual work equation [1.8, 5.1]. These two
methods will be described and illustrated in the forthcoming.

5.6.1 Instantaneous Center

Consider first the application of the instantaneous center method to the com-
bined mechanism (mechanism 3) of Fig. 5.3(d) or Fig. 5.10. As the frame
moves sideways, segment A-B-C rotates as a rigid body around the base
at A. Member D-E rotates about point E. The center of rotation of C-D
is yet unknown and is to be determined by considering the movement of the
ends of the segment.

Point D is constrained to move perpendicular to line DE. Thus, its center
of rotation as part of segment CD must be somewhere along line E-D
extended. Point C rotates about A, since it is a part of segment A-B-C.
Therefore, it must move normal to line A-C and its center of rotation as
part of C-D must lie along 4-C extended. The intersection point I satisfies
both conditions and therefore segment C-D must rotate about point I which
is called the instantaneous center of rotation of segment C-D. Once the instan-
taneous centers for all rigid parts are found, we can determine the relevant
displacements and angles of rotation between the connected rigid parts in the
following manner.

The mechanism angles at the plastic hinges of Fig. 5.10 are determined as
follows. Since the mechanism movement is infinitely small, lines AC’I and
ED'[ are tantamount to the straight lines ACI and EDI drawn through the
hinge points of the undeformed frame. The infinitely small displacement CC’
can be assumed as linear and perpendicular to ACI, and hence a common
tangent to arcs of circles having points 4 and I for centers. Likewise, the
displacement DD’ had both points E and I as centers of rotation. If the
rotation angle at column base E is 6, then the horizontal motion of point D
is equal to 6(L/2). Since ABC and CDI are similar triangles and DE = DI, it
follows that the rotation of C-D about I is 8(L/2)/(L/2) = 0. Since the lengths
A-C and C-I are equal, the rotation at A is equal to rotation at I, which is
equal to 6. The total rotation at D is equal to 26, the sum of rotations for
parts ED and CD. Similarly, the total rotation at C is also equal to 26, the
sum of rotations for parts A-B-C and C-D.

The vertical movement at point C is determined by considering the rota-
tion of segment A-B-C about A. Since A-B-C is a rigid body, the angle at B
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FIGURE 5.10. Instantaneous center for a sway mechanism.

remains a right angle and the rotation of B-C with respect to the horizontal
is equal to 6. The vertical motion of point C is therefore 6L/2.

Further applications of the instantaneous center method to gable frames
are given in Example 5.6.1.

5.6.2 Virtual Work Equation

The caculations of geometrical relations of a mechanism can also be made
easily by the use of the virtual work equation. This is illustrated in the follow-
ing. Consider the gable frame shown in Fig. 5.11(a). The deflected shape is
shown by the dashed line in the figure. It is clear that the mechanism has two
degrees of freedom and hence two independent angles of rotation, ¢, and
épE- All other angles (¢gc and ¢¢p) can be expressed in terms of ¢, and ¢p.

dgc will be computed first. Figure 5.11(b) shows an equilibrium system of
external forces and moments applied to the mechanism. The equilibrium
system is obtained in the following way. Bar CD is assumed to be under axial
load with vertical component equal to r, and horizontal component equal to
n (i.e., proportional to the slope of bar CD). It produces vertical reactions r,
and horizontal reactions n at the two supports. The moment equilibrium is
then established at the remaining joints of the mechanism. They are equal to
nhy, (nr; + mr,) and nh, at joints A4, B, and E, respectively.

If the equilibrium system shown in Fig. 5.11(b) undergoes the displace-
ments shown in Fig. 5.11(a), then the virtual work equation gives

nh1¢AB + (nr1 + mr2)¢BC - nh2¢DE = 0 (56.1)
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FIGURE 5.11. Calculation of geometric re-
lations by the virtual work equation: (a) ,
mechanism, (b) member CD axially load-
ed, and (c) member BC axially loaded.

| Y AR
>
b=
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le_m n

(c) Member BC axially loaded

The rotation of bar BC can then be expressed as

o = n(hy¢pg — hy ¢AB)_

mr, + nry

(5.6.2)

Similarly, bar BC can be assumed to act as an axially loaded member.
Figure 5.11(c) summarizes the resulting equilibrium system. The virtual work
equation for the equilibrium system in (c) doing work on the mechanism in
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(a) then yields
mhy@yp + (mry + nri)dcp — mhydpp = 0. (5.6.3)

The rotation of bar CD can then be expressed as

_ m(h,¢pg — h1P4p)
b mr, + nr, ’

(5.6.4)

The virtual work equation will be applied later to a shed-like gable frame
in Example 5.6.2 to show its power and simplicity in obtaining the needed
relationship for plastic analysis.

5.6.3 Illustrative Examples

Example 5.6.1. A Regular Gable Frame: A gable frame is subjected to hori-
zontal and vertical loads as shown in Fig. 5.12. Determine the displacements
in the direction of loads and rotations at the plastic hinge locations corre-
sponding to the mechanism shown. Also determine the upper bound load P
corresponding to this mechanism.

Solution: Denote the small rotation of member F — G about point G by 6.
Segment A — B — C rotates as a rigid body about point A by an unknown
angle. To find the instantaneous center I of segment C — D — F, we need to
find the common point about which both ends rotate. Point F is constrained
to move normal to line G — F and will have its center along line G — F
extended. Similarly, the center of C will move along A — C extended. Thus
point I is the intersection of G — F extended and A — C extended.

By geometry, the length I — G is equal to 5L. F — [ is therefore equal to
4L. Since the horizontal displacement of point F is 6L, the rotation at I is
0(G — F/F — I) = /4. By similar triangles, the ratio C —Ito A - Cis 3:1.
Thus, the rotation at 4 is (6/4)(3/1) = (3/4)6.

Mechanism angles and displacements in the direction of load may now be
computed. The rotation at F is the sum of rotations of FG and FDC, ie.,
(0 + 6/4) = (5/4)6. The rotation at C is the sum of rotations of CDF and
ABC,ie., (6/4 + 3/40) = 6. The displacements of horizontal load, left vertical
load, and right vertical load are, respectively, A, = (36/4)(L), A, = (6/4)(3L),
A; = (0/4)(L).

The correctness of A, and A; may be checked by working out the geometry
of similar triangles ICF in Fig. 5.12(a) and the one shown in Fig. 5.12(b). The
vertical component of the mechanism motion of point C is equal to the
rotation about instantaneous center I times the distance to that center mea-
sured normal to the line of action.

The collapse load for this mechanism is determined from the work equa-
tion [Fig. 5.12(a)]

PA, + 2P)A, + 2P)A; = M,0: + M, 0;
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(a) Frame
v @
A}
T c
3L

(Licn-a

(C -1) 4

{b) Geometrical relationship

FIGURE 5.12. Instantaneous center for a gable frame mechanism (Example 5.6.1): (a)
frame and (b) geometrical relationship.
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FIGURE 5.13. Calculations
of geometric relations by
the virtual work equation
(Example 5.6.2): (a) mecha-
nism, (b) member BC axially
loaded, and (c) member CD
axially loaded.

—
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(c) Member CD axially loaded
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36L 30L oL 5
P<T> +2P <T> +2P (T) = M,(0) + M, (Z 6>, (5.6.5)

which gives an upper-bound solution corresponding to the side-sway mecha-
nism assumed in Fig. 5.12:

or

9 M,
1L
Example 5.6.2. A Shed Gable Frame: A shed-type gable frame with four hinges

is subjected to displacement as shown in Fig. 5.13(a). Using the virtual work
equation, determine the total rotations at the hinge locations in the frame.

U

(5.6.6)

Solution: First, we shall determine the hinge rotation at D. Assume that BC
(shaded triangle) is an axially loaded compression member with vertical com-
ponent L/2 and horizontal component 2L [Fig. 5.13(b)]. The resulting equi-
librium system is shown in Fig. 5.13(b). If this equilibrium system undergoes
the displacement shown in Fig. 5.13(a), the virtual work equation gives the
relationship between the two rotational angles 8 and 8, as

(4.5L%)0 — (3L?)6, =0, (5.6.7)
which furnishes
0, = 3 0 (5.6.8)
1 -_ 2 . - .

For determining the rotation of member BC, assume that CD is an axially
loaded compression member with vertical component —1 and horizontal
component zero. The resulting equilibrium system is shown in Fig. 5.13(c).
When this equilibrium system is subjected to the displacements shown in
Fig. 5.13(a), the virtual work equation leads to

L6 —2L8, =0, (5.6.9)

which expresses the rotational angle 6, of member BC in terms of the rota-
tional angle of member 4B as

0, = (1/2)6. (5.6.10)

The total hinge rotation at B is equal to the sum of rotations of AB and BC,
ie, [0 + (0/2)] = (3/2)0. Similarly, the total rotation at C is (6, + 6,) = 26.

5.7 Gable Frames

The gable frames involve more complicated geometry than that of rectangu-
lar frames. Herein, we shall solve two gable frames by the work method.

Example 5.7.1. Analysis of a Gable Frame Subject to Concentrated Loads:
The frame shown in Fig. 5.14 is composed of members with a full plastic



248 5. Work Method
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13.5
Mp =270 kip-ft
A E R
7T /20
| 18 ft 9 |
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FIGURE 5.14. Gable frame subjected to concentrated loads (Example 5.7.1).

moment capacity of 270 kip-ft and has fixed feet and full-strength joints. The
concentrated loads are as shown. Plot a graph (interaction diagram) from
which positive values of ¥V and H just causing collapse can be read.

Solution: To plot the interaction diagram, we will evaluate the strength of the
frame against three basic modes of collapse.

1. Mechanism with Hinges at 4, C, D, and E: The motion of this side-sway
mechanism is shown in Fig. 5.15. The instantaneous center O for Member CD
is located at the intersection of AC and ED extended. It is convenient to
express the motion of the mechanism in terms of rotation 8 of member CD
about the instantaneous center O.

From similar triangles ACC, and OCC,, we have

0C, C,4
cc, CC
which gives
C, A (22.5)9)
= = = 11.25 ft.
ocC, c.C CC, 18
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13.5

18 ft NP 9
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FIGURE 5.15. A mechanism with hinges at joints A, C, D, and E.

From triangles ACC’ and CC'O, we have

(AC)(@) = (00)(0),
which leads to the relationship between the angles ¢ and 6 as
oc, CG, 0

9
[——p— _‘————0=— = —,
ac’ C,C 3973

¢
Similarly, from triangles ODD’ and EDD’, the rotation at E is given by
(DE)(y) = 6(0D),
which expresses the angle  in terms of the angle 6 as

=092 _ 150,
DE

From the known hinge rotations and displacements of loads, the work equa-
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FIGURE 5.16. A mechanism with hinges at joints B, C, D, and E.

tion for this side-sway mechanism can be written as
V(96) + H(13.5¢) = M [¢ + (4 + 60) + (0 + ¥) + ¥].
Substituting values of  and ¢ and simplifying, we obtain
V + 2.25H = 180. (5.7.1)

2. Mechanism with Hinges at B, C, D, and E: Figure 5.16 shows the motion
corresponding to this side-sway mechanism with no sway in the left-hand
column AB. Again, we express all plastic hinge rotations and displacements
at load points in terms of the rotation 6 of member CD about the instanta-
neous center O.

From similar triangles BCC, and CC,0, we have

0C, BC,
cc, c,.C

which gives

BC, 9
Fa(CC) =0 =451t

0C, =
27
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From triangles BCC' and CC'O, we have
(BCO)(¢) = (0C)(0),

Which expresses ¢ in terms of 0 as

=-_0=

¢ = —()—BC1 9

0C,, _45, 0
7

Similarly, from triangles ODD’ and EDD’, we have
(DE)(¥) = (OD)(0),
which shows that
0))) 13.5

Now the work equation for this mechanism can be written as (Fig. 5.16)

V(90) + H(13.5¢) = M,[¢ + (¢ + 6) + (0 + ) + ¥].
Substituting values of  and ¢ and simplifying, we obtain
V + 1.5H = 150.

251

(5.7.2)

3. Mechanism with Hinges at 4, B, D, and E: The hinge rotations and dis-
placements corresponding to this simple side-sway mechanism are shown in
Fig. 5.17. The rotation of all hinges is 6. The horizontal load moves by 13.50

FIGURE 5.17. A mechanism with hinges at joints 4, B, D, and E.

9 ft

13.5
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200

(2)
- B8(40,90)

80 . V+1.5H=150

40 | \

(1 J—
(3)
V+2.25H=180 H=80 kips
] ! | A
20 40 60 80 100
H (kips)

FIGURE 5.18. Interaction diagram for load-carrying capacity of the gable frame in
Figure 5.14.

but the vertical load has no vertical movement. The work equation thus has
the simple form

H(13.50) = M,(0 + 6 + 6 + 0)

or
H = 80 kips. (5.7.3)

The interaction equations corresponding to these three mechanisms are
plotted in Fig. 5.18. The positive values of ¥ and H, which just cause collapse
of the frame, may be read from the solid shaded line.

By carrying out a moment check for these three side-sway mechanisms, it
can be shown that mechanism 1is valid for the portion AB of the interaction
curve (H > 40,V < 90), mechanism 2 is valid for the portion BC (H < 40,
V > 90), and mechanism 3 is valid only when V = 0.
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FIGURE 5.19. A gable frame subjected to distributed load with (1) fixed supports and
(2) pinned supports (Example 5.7.2).

Example 5.7.2. Design of a Gable Frame Subject to Uniformly Distributed
Load: A gable frame shown in Fig. 5.19 has a uniform section and is to be
designed by simple plastic theory to carry the uniformly distributed load w.
Two designs are made, one for a frame with pinned feet and the other for
fixed feet. Show that the ratio of full plastic moments for the two designs is

[1 +./ +2k)]2
1+ /(0 +k

Solution: The problem will be solved in three stages. We will first find the
required plastic moment for the frame with fixed ends and then solve for the
pinned-ended case. The ratio of the two plastic moments gives the desired
form.

(a) Plastic Moment for the Fixed-Ended Case: Consider the symmetric mech-
anism shown in Fig. 5.20(a). The plastic hinges are formed at A, B, B, D,, D,
and E. Due to symmetry, points B, and D, move vertically downward. The
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T O A AN
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h1
X

(a) Rotation of hinges

S S O O S N

(b) Motion of the load

FIGURE 5.20. A symmetric failure mechanism for the uniformly loaded gable frame in
Figure 5.19: (a) rotation of hinges and (b) motion of the load.

instantaneous center O, of the segment BB, is at the intersection of 4B
extended and a horizontal line through B, . Similarly, the instantaneous cen-
ter for the segment D, D is at O,.
From the similar triangles CC, B and O, B, B, the instantaneous center O,
can be located as
BO, BC,

B,0, C,C’

which gives
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BC,
C,C

50, = 258,00 = ) * 5 = ) (1- 7).

Then the length C, O, is obtained as

C,0, = BC, — BO, = kh, — (kh1)<1 - %‘_) - %khl-

The angles ¢ and 6 can be related by considering the triangles ABB’ and
0, BB', which gives

X
(1 —-)(khl)
¢-0‘Be=—b (6)=<1—%)k6.

" AB hy

In Fig. 5.20(b), the vertical displacement B, B; is
B,B; = D,D; = (b — x)6.

The total internal work done at all hinge locations is

W= M,[¢ + (¢ + 6) + 612

By expressing ¢ in terms of §, we have

W, = 4M,0 [(1 _ .;f)k + 1]. (5.7.4)

The total external work done by the distributed load is [Fig. 5.20(b)]
1 1
W = Ew(b — x)B; B; + w(2x)B, B; + zw(b — x)D, D;.

Substituting B; B; and D, D}, we have the total external work as
W = (b — x)[w(b — x) + w(2x)]0
or
Wy = w(b? — x?2)0. (5.7.5

Equating the total external work (5.7.5) to the total internal energy dissipa-
tion (5.7.4), we find the desired plastic moment capacity as

— W(b2 - x2)6 _ W(b2 _ x2)b
Yo 4[%’3] 0 T 4[k(b — x) + b]’ (5.7.6)

b
The value of M, can be maximized by equating its derivative to zero, i..,

dM,  A[k(b — x) + b](—2wbx) — wh(b* — x?)(—4k) _
dx {4[k(b — x) + b]}? -

0,
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which results in the condition for x:
kx? — 2b(k + 1)x + kb> = 0.
Solving for x, we find

L bkt D+ V43 (k + 1)? — 4k?b?
cr — 2k

or

Since x,, < b, x,, has the value

r —

xc,=b<l+£— /i k2) Cltk+ 1) — 2k + 1.

Substituting x = x,, in Eq. (5.7.6), we obtain the maximum plastic moment as

b2
" bz—p[(k+1)—./2k+1 2
M, =—

4 {k(b—%[(k+ 1) — 2k + 1]>+b}

and a proper simplification leads to the required plastic moment capacity for
the frame with fixed ends as

M, = ;—II:Z[(k +1)— 2k +1]. (5.7.8)

(b) Plastic Moment for the Pinned-Ended Case: Consider the same mecha-
nism as that of the fixed-ended case. The total internal work W, for the
pinned-ended case is

(5.7.7)

W = M,[(¢ + 0) + 0]1(2).

Substituting the value of ¢ in terms of 8, we have

W, = 2M, [(1 _ %)k + 2] 6. (5.7.9)

The total external work is still the same as that for the fixed-ended case
[Eq. (5.7.5)]. By equating the internal and external work, M, can be ex-
pressed in the simple form as

wb(b? — x?)0

My = 3k — %) + 2516 (7.1

Again, setting the derivative of M, to zero, we obtain the condition for the
critical locations for the plastic hinges B; and D;, as shown in Fig. 5.20,
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as

dM 2[kb — kx + 2b]wb(—2x) — wh(b* — x?)(—2k)
P_0=

dx 4[k(b — x) + 2b]2

or
kx? — 2b(k + 2)x + kb* = 0.
Solving for x, we find

_ 2b(k + 2) — \/4b*(k + 2)* — 4k?b?
cr — 2k

or

xc,=§[(k+2)~21/k +1]. (5.7.11)

Substituting x,, so obtained in Eq. (5.7.10), we have the desired plastic mo-
ment capacity as

b bz—%z[(k+2)—2 k+ 172
2] il
2 k(b—%[(k+2)—2./(k+1)]>+2b

Simplifying, the required plastic moment capacity M, for the frame with
pinned ends reduces to

W[t d+ak+ D) Sk 1 —dk—4
»T 2K 2k + 1

or
wb?
M, =" [k +2—2/k+ 1] (5.7.12)

(c) Ratio of the Two Plastic Moments ().

wh?
p,pinned __

L _7[("*2)”2Vk+1]=2[(k+2)—2\/le]
M, firea ;Tl)j[(ki'l)—MJ [k +1)— 2k + 1]

M

or the ratio of the two plastic moments can be written in the simple

form:
1+ ST+ 2K
o= [;] , (5.7.13)
1+ J1+k
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5.8 The Combination of Mechanisms

The basic concept underlying the method of combining mechanisms is that
for a given frame and loading, every possible collapse mechanism can be ob-
tained as some combination of a certain number of independent mechanisms.
Once these independent mechanisms have been identified, a work equation is
written for each combination and the corresponding collapse load is deter-
mined. The lowest load among those obtained by considering all the possible
combinations of the independent mechanisms is the correct plastic limit or
collapse load. The final confirmation of the validity of the best combination
is made by performing a moment check, which may also indicate further
adjustments that need to be made.

5.8.1 Number of Independent Mechanisms

If the number of independent mechanisms is known in advance, then the
combination could be made in a systematic manner and there would be less
likelihood of overlooking a possible combination. The number of possible
independent mechanisms » for a frame can be determined from

n=N-R (5.8.1)

{@I)ER=2
S

L

Cut section

| |
LA

® ®

L
——

© ®

77777777 77T 777777

FIGURE 5.21. Determination of the number of redundants.
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where N is the number of critical sections at which plastic hinges might form
under the particular loading system and R is the degree of redundancy of the
structure.

For a frame under concentrated loads, the critical sections will occur at
loading points and joints. In order to determine the number of redundants R
for a frame, it is necessary to cut sufficient supports and structural members
such that all loads are carried out by simple beam or cantilever action. The
number of redundants is then equal to the number of forces and moments
required to restore continuity. Figure 5.21 shows two examples. The cuts
made in each of the structures reduce them to either cantilevers or simply
supported elements. The fixed-ended beam requires a shear force and a mo-
ment to restore continuity at the cut section, and thus R = 2. In the two-story
structure, an axial force, a shear force, and a moment are required for conti-
nuity at each cut section, and thus R = 12.

5.8.2 Types of Mechanism

For convenience of reference to different modes of failure, the following types
of mechanisms are shown in Fig. 5.22, using the structure shown in part (a)
of this figure.

(a) Beam mechanism: For possible beam mechanisms for the structure in
Fig. 5.22(a) are shown in Fig. 5.22(b).

(b) Panel mechanism: The motion of the mechanism is due to side-sway as
shown in Fig. 5.22(c).

(c) Gable mechanism: This mechanism involves spreading of column tops
with respect to bases as shown in Fig. 5.22(d).

(d) Joint mechanism: This mechanism, shown in Fig. 5.22(e), forms at the
junction of three or more members and represents motion under the
action of an applied moment.

() Combined mechanism: The combined mechanism may be a partial col-
lapse mechanism as shown in Fig. 5.22(f) or it may be a complete collapse
mechanism as shown in Fig. 5.22(g). In the partical collapse mechanism,
the frame at failure is still indeterminate in the noncollapsing portion,
while in the collapsing portion, it becomes determinate.

5.8.3 Method of Combination

The basic principle of combination is to see whether the independent mecha-
nisms can be combined to form a mechanism that gives an even lower value
of collapse load. To this end, the combinations are selected in such a way that
the external work becomes a maximum and the internal work becomes a
minimum [1.8, 2.3]. In this way, the lowest possible load can be obtained.
Thus, the procedure in the combination is generally to involve mechanism
motion by as many applied loads as possible and in the meantime to elimi-
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nate as many hinges as possible. The method will be explained here with
reference to simple rectangular portal frame problems. The analysis and de-
sign of multistory and multibay frames subjected to concentrated loads will
be presented in the next section. The illustration of a technique for dealing
with cases in which the members are subjected to uniformly distributed loads
is then followed.

Example 5.8.1. A pinned-Ended Portal Frame: Determine the plastic limit
load for the pinned-ended frame in Fig. 5.3 by combining the beam and panel
mechanisms.

Solution: For the frame in Example 5.3.3, the beam and the panel mechanisms
[Fig. 5.3(b) and (c)] have a common hinge at B. Since the rotation at B in the
beam mechanism is opposite that in the panel mechanism, the addition of
these two mechanisms will lead to a cancellation of the hinge at B. Thus, the
plastic limit load of the frame can be determined as follows.

Beam mechanism gives [Fig. 5.3(b)]:

PL

7t‘) =4M.0. (5.8.2)
Panel mechanism gives [Fig. 5.3(c)]

PL
—0=2M,0. (58.3)

The addition of Egs. (5.8.2) and (5.8.3) gives:

;PLB = 6M,0. (5.84)

The cancellation of the hinge at B reduces the internal work by 2M,6 (M6
from the beam mechanism and another M,0 from the panel mechanism).
Therefore, the work equation corresponding to the combined mechanism
[Fig. 5.3(d)] can be obtained directly from Eq. (5.8.4) by simply reducing
2M,0 from the right-hand side of this equation

3
ZPL(’) =6M,0 — 2M,0 = 4M,0, (5.8.5)
which gives
16 M
P=__2 .
3T (5.8.6)

This leads to the same answer as that obtained in Example 5.3.3. The proce-
dure that was just described for deriving the work equation for the combined
mechanism is a little shorter for this particular example than the direct
derivation from considering the kinematics of the combined mechanism.
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FI1GURE 5.23. Fixed-ended portal frame with uniform section (Example 5.8.2).

However, for more complicated problems, this procedure will result in a
considerable reduction of computational work. This can be seen clearly in
the later examples when more complicated frames are analyzed and designed.

Example 5.8.2. A fixed-Ended Portal Frame: A fixed-ended rectangular por-
tal frame has a uniform section with M, = 20 and carries the load as shown
in Fig. 5.23. Determine the value of load factor 4 at collapse.

Solution: The frame has five critical sections (N = 5) and three redundancies
(R = 3), so the number of independent mechanisms is two (n = 2), which will
be taken here as those shown in Figs. 5.24(a) and (b). The two independent
work equations are therefore

panel mechanism [Fig. 5.24(a)]:
204 =4(20)=80,A=4 (5.8.7)
and beam mechanism [Fig. 5.24(b)]:
304 = 4(20) = 80, 4 = 2.67. (5.8.8)

Now the combination of the two independent mechanisms must be examined
to see if it will give a value of A less than 2.67. It can be seen that only one
combination of the two mechanisms is possible. This combined mechanism,
shown in Fig. 5.24(c), involves the cancellation of the hinge at B.

The calculations leading to the work equation for mode (c) can conve-
niently be laid out as



FIGURE 5.24. Three possible
mechanisms of collapse for
the frame in Figure 5.23: (a)
panel mechanism, (b) beam
mechanism, and (c) com-
bined mechanism.
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Panel mechanism: 204 = 4(20)
Beam mechanism: 304 = 4(20)
Addition: 504 = 8(20)
Cancel hinge at B: —2(20)

Combined mechanism: 504 = 6(20) = 120
A=24

Note that the cancellation of hinges is the key to the method of combina-
tion of mechanisms. If two equations such as (5.8.7) and (5.8.8) are added
without any reduction of the right-hand side, a value of A will result that is
between the two original values. Thus, the mechanisms cannot possibly be
combined to give a smaller value of 4 unless some terms on the right-hand
side are cancelled.

Example 5.8.3. A Portal Frame with Nonuniform Section: A pinned- and
fixed-ended rectangular portal frame is subjected to loads as shown in Fig.
5.25. 