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Preface 

The cost plays an important role in the design of engineering structures. This role 
can be illustrated by an example. In the design of a crossing over a big river the 
designer has two possibilities: design a number of small-span bridges with a 
number of basements or build a large-span bridge with only two basements. The 
cost comparison helps designers to select the cheaper version since the cost of 
basements depends on the quality of soil. 

In the case of welded structures the cost comparison helps to select the most 
economic structural version since the welding is an expensive fabrication 
technology. Our research has been focused on the use of the optimum design 
methods to minimize the cost of welded structures. This systematic research 
resulted in optimized structural types using realistic numerical problems. 

This book contains studies worked out during last five years and is a 
continuation of or books published in years 1984, 1997, 2003 and 2008. Studies 
on beams, tubular trusses, frames, stiffened plates and shells are grouped in 
separate chapters. Chapter 1 gives a survey on our experiences in the field of 
structural optimization. Separate chapters deal with the mathematical function 
minimization methods and the cost calculation. 

Our aim is to transfer the results of our research relating to the optimum design 
of steel structures, the ways to select the most suitable structural versions. This 
transfer is enabled by abstracts and conclusions of each section. 

The following studies on the optimum design for minimum weight or cost can 
be brought into prominence: Chapter 4: fire design of a welded box beam, Chapter 
5: transmission line tower constructed as a welded tubular truss, Chapter 6: 
earthquake-resistant design of braced frames, Chapter 7: storage tank roof 
constructed from welded stiffened sectorial plates, Chapter 8: ring-stiffened 
cylindrical and conical shells. 

Structural optimization is a design system for searching better solutions, which 
better fulfil engineering requirements. The main requirements of a modern load-
carrying structure are the safety, fitness for production and economy. The safety 
and producibility are guaranteed by design and fabrication constraints, and 
economy can be achieved by minimization of a cost function. 

The main aim of this book is to give designers and fabricators aspects for 
selection of the best structural solution. A lot of structural versions fulfil the 
design and fabrication constraints and designers should select from these 
possibilities the best ones. A suitable cost function helps this selection, since a 
modern structure should be not only safe and fit for production but also  
economic.  
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In most cases, treated in this book, much more unknowns should be varied to 
find the best solution. In these cases one needs special mathematical methods, 
some of them are treated in this book as well. 

The optimum design procedure can be formulated mathematically as follows: 
the objective function should be minimized 

( )nx,...,xx  min,)x(f 1=→  

subject to constraints 

p...j  ,)x(g j 10 =≤  

where n is the number of unknowns and p is the number of constraints. 
The solution of this constrained function minimization problem needs effective 

mathematical methods. 
The above description shows that the structural optimization has four main 

components:  

(1)  design constraints relate to stress, stability, deformation, eigenfrequency, 
damping, 

(2)  fabrication constraints formulate the limitation of residual welding 
distortions, requirements for welding technology, limitations of plate 
thicknesses and main structural dimensions, definition of available profile 
series,  

(3)  a cost function is formulated according to the fabrication sequence and 
contains the cost of materials, assembly, welding, cutting and painting,  

(4)  mathematical methods. 

In our systematic research we have developed suitable means for these main 
components. Design constraints are formulated according to relevant Eurocodes or 
design rules of American Petroleum Institute (API), Det Norske Veritas (DNV) 
and European Convention for Constructional Steelwork (ECCS).  

We have worked out a calculation method for residual welding stresses and 
distortions, for the cost function we have created a calculation method mainly for 
welded structures and we use several effective mathematical algorithms.  

We have solved a lot of structural optimization problems for various structural 
models. Since these models are the main components of industrial structures, 
designers can use them in their work. The cost estimation in design stage is a good 
basis for the comparison of candidate structural versions.  

Our structural models of welded I- and box-beams, tubular trusses, steel 
frames, stiffened plates and shells can be used in all industrial applications i.e. in 
bridges, buildings, roofs, columns, towers, ships, cranes, offshore structures, belt-
conveyor bridges, machine structures, vehicles, etc.  

Since the functions are highly nonlinear only numerical problems can be 
treated. Therefore, the conclusions are not completely general. In spite of this the 
solutions give valuable aspects for optimum design, because the numerical data 
are selected realistically. 

The first step of the optimization procedure is the selection of variables.  
For this selection we need to know the main characteristics of a typical stru- 
cture as follows: materials, loads, geometry, topology, profiles, fabrication 
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technology, joints, costs. The better solutions can be obtained by changing these 
characteristics. 

Summarizing: the general aspect of our book is the cost comparison, which is 
an effective means to select the most suitable structural versions. 

We participate continuously in the following conference series: Annual 
Assemblies International Institute of Welding (IIW), World Congresses of ISSMO 
(International Society of Structural and Multidisciplinary Optimization), Eurosteel 
European Conferences of Steel Structures, Tubular Structures Symposia 
(organized by the IIW subcommission XV-E).  

Beside the Conference Proceedings, we publish our studies also in well-known 
international engineering journals i.e. Structural and Multidisciplinary Optimization, 
Welding in the World, Computers and Structures, Engineering Optimization, 
Engineering Structures, Thin-walled Structures, Journal of Constructional Steel 
Research etc. 

We hope that this book can help designers, students, researchers, manufacturers 
with the aspects shown in realistic models to find better, optimal, competitive 
structural solutions. 
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Chapter 1 
Experiences with the Optimum Design  
of Steel Structures 

A brief history of the structural optimization is given. The developed system of 
minimum cost design is described. In 1970’s a school has been found for struc-
tural optimization in the University of Miskolc. The advantages and disadvantages 
are compared for the design by routine and those of optimum design. The problem 
of interaction of two instabilities is treated with the conclusion that the optimum 
design is safe when the used stability constraints take into account the effect of 
initial imperfections and residual stresses. Some own results are detailed about the 
optimum design for different structural types such as compressed and bent col-
umns, stiffened plates as well as wind turbine towers. A literature survey is given 
for optimum design of trusses, frames and industrial applications. 

1.1   Introduction 

In 1960 Professor Lucien Schmit jr. (University of California Los Angeles) de-
fined the structural synthesis as a mathematical constrained function minimization 
problem (Schmit, 1960) 

}{ nxxxxxf ,...,,min,)( 21=→  

                                     subject to  pjxg j ...1,0)( =≤  

and he and his co-workers developed an effective optimum design system for 
aero- and astronautical structures. 

Later Schmit (Schmit 1984) emphasized that the cost should be considered as 
an objective function instead of weight. In aircraft design the main aspect has been 
to minimize the weight, but the cost savings are also very important mainly for 
other industrial applications. From this time the author’s aim was to formulate a 
realistic cost function for welded structures. 

In 1960 the author designed a series of roofs for vertical storage tanks for fluids 
covered by a soil layer. The roofs were constructed from welded stiffened plates 
(Fig. 1.1) (Farkas 1962). At this time Farkas began his research of structural  
optimization of welded structures. 
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1.2   Foundation of the School for Structural Optimization at the 
University of Miskolc 

In 1970-s Moe and Kavlie have optimized ship structures and during my trip to 
Trondheim I have obtained from Mr. Kavlie the Fortran program of the SUMT op-
timization method. My doctorand Imre Tímár has applied it for optimum design of 
sandwich plates. His doctoral dissertation has been the first application of comput-
erized optimum design in Hungary (Timár  1977).  

Farkas has defended his dissertation for the academic degree “doctor of techni-
cal science” with title “Optimum design of metal structures” in 1978, which has 
been published as a book in 1984 (Farkas 1984).  

This was followed by a series of dissertations written by K. Jármai, L. Szabó, 
F.J. Szabó, Gy. Kovács, Z. Virág, L. Kota, R. Dúl and others in the structural op-
timization school in the University of Miskolc. 

The authors take part in the work of the International Institute of Welding 
(IIW). They have founded a subcommission IIW XV-F “Design, fabrication and 
economy of welded structures” its chairman is K. Jármai. They have written a lot 
of scientific documents and published more than 25 articles in the IIW journal 
“Welding in the World”. 

They are also founding members of the International Society of Structural and 
Multidisciplinary Optimization (ISSMO) and published more articles in its journal 
SMO. In 2010 a course for engineers is organized by K. Jármai in the University 
of Miskolc to obtain the title “International Welded Structure Designer”. The 
structural optimization has been an important part in these lectures. 

Farkas and Jármai have collected their research results in three books (Farkas 
and Jármai 1997, 2003, 2008.) 

1.3   Derivation of the Structural Optimization System 

It is possible to derive the structural optimization system of welded structures 
from the design of welded stiffened plates, since the design of this structural 
model contains all the important engineering aspects to be included in such a de-
sign system. 

 

(1) Stiffened plates can buckle and the variable load can cause fatigue cracks in 
stress concentration points. In the design these phenomena should be taken 
into account formulating design constraints to guarantee the safe load-
carrying capacity of a structure. 

 

(2) In the production of stiffened plates different welding technologies can be used 
and each welding method has a defined thickness domain, thus, limitation of 
thicknesses should be formulated. The shrinkage of welds can cause residual 
stresses and distortions, which should be limited for quality assurance of 
welded structures. Thus, fabrication constraints should be formulated to guar-
antee the manufacturability of a structure. 
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(3) In the design of stiffened plates the question how to determine the optimum 
number of stiffeners arises. To achieve a minimum mass structure many thin 
ribs should be used, but these results in a very expensive structure, since the 
cost of welding is high. To minimize the cost, fewer and thicker stiffeners 
should be used. This optimization problem can be solved by the formulation of 
a mass or cost function and by the minimization of this objective function con-
sidering the design and fabrication constraints. For these constrained function 
minimization problems effective mathematical methods should be used. 

 

Fig. 1.1 Part of the roof of a storage tank constructed from welded stiffened plates 

The above derived structural optimization system has four main components: 
design constraints, fabrication constraints, cost function and mathematical meth-
ods. This system can fulfil all the important engineering requirements: safety and 
manufacturability is guaranteed by design and fabrication constraints, economy is 
achieved by minimizing the cost function. 

This derivation illustrates the fact that our structural optimization system is 
based on realistic phenomena and requirements, which arise in modern design 
processes. 

Optimization means a search for better solutions, which fulfil the requirements 
better. For a modern load-carrying engineering structure the main requirements 
are as follows: load-carrying capacity (safety), manufacturability and economy. 

These requirements can be fulfilled by a structural synthesis system, in  
which a cost function is minimized considering constraints on design and  
manufacturability. 
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Fig.1.2 A structural optimization system 

This system can be symbolized by a simple spatial structure as shown in  
Fig. 1.2. This symbol also shows two important aspects: (1) when a requirement is 
missing, then the system does not work well, does not give better solutions; (2) 
close cooperation (harmony) should be realized between these main aspects, since 
they affect each other to a significant extent. Structural optimization is a general 
system, which can synthesize all the important engineering aspects. 

At the analytical level the structural characteristics of the type of structure in-
vestigated should be analyzed as follows: loads, materials, geometry, boundary 
conditions, profiles, topology, fabrication, joints, transport, erection, maintenance, 
costs. Those variables whose changing will result in better solutions should be se-
lected. A cost function and constraints on design and fabrication should be 
mathematically formulated in the function of variables. 

At the level of synthesis the cost function should be minimized using effective 
mathematical methods for the constrained function minimization. Comparing the 
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optimum solutions designers can select the most suitable one. This comparison 
can result in significant mass and cost savings in the design stage. 

Our aim is to show designers and manufacturers that it is worth using optimum 
design processes to achieve significant cost savings in the design stage. Cost sav-
ings can be achieved by various means. We dealt with the cost savings by means 
of changes in structural characteristics, which influence the cost function. 

Fabrication constraints are the limitations of initial imperfections caused by 
welding, since the shrinkage of welds can cause residual stresses and distortions, 
which should be limited in order to achieve quality assurance of welded structures. 

The developed cost function includes cost of material and fabrication. The later 
contains the assembly, in the case of shells the cost of forming the plate elements 
into shell parts, in the case of tubular structures the cutting and grinding of bar 
ends, welding, additional welding costs and painting. The cost of transportation 
and erection is neglected, since their influence on structural characteristics is little. 

Our aim is to bridge the gap between the optimization theory and fabrication 
practice. It is very important to include fabrication aspects into design constraints 
and to consider also fabrication costs in the cost function.  

During a stay in Japan in 1999, colleagues in the Ehime University  
(Matsuyama city) have organized for us a trip to Ube. We have presented lectures 
for engineers of the Steel Structures Factory in this large industrial area. After 
Farkas’s presentation, an engineer has had a question how to optimize a large 
complicate bridge structures.  

The answer was as follows:  a cost function should be defined using industrial 
cost data, design constraints should be formulated according to valid design rules, 
and an effective mathematical optimization method should be used. After this visit 
Farkas has formulated a further aspect:  the most important structural characteris-
tics should be selected, and the minimum cost solution can be achieved by  
changing these characteristics. 

1.4   Advantages and Disadvantages of Two Different Design 
Methods 

1.4.1    Design by Routine 

The designer takes a structure by routine and checks it for fulfilling of constraints. 

Advantages 

(a) Special mathematical methods are not needed, 
(b) Tables, diagrams can be used without any continuous functions, 
(c) The time-consuming investigation of many structural versions is not  

necessary. 
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Disadvantages 

(a) design without any goals, objective functions, 
(b) the fulfilling of the design constraints can only be reached approximately, 
(c) a minimum mass or cost is not reached, 
(d) it is impossible to develop new, innovative structural types. 

1.4.2   Optimum Design 

In the optimum design a structural version is sought, which fulfils the design and 
fabrication constraints and minimizes the cost function. 

Advantages 

(a) clear and exact formulation of design problems (goals and constraints), 
(b) possibility to include all the important engineering aspects, 
(c) treats the fabrication aspects and cost function, 
(d) possibility to achieve significant cost savings in design stage, 
(e) possibility to give designers aspects for innovative, competitive structures, 
(f) possibility to give a realistic basis for comparison of different structural  

versions, 
(g) possibility to show the most important structural characteristics to be  

varied. 

Disadvantages 

(a) most of problems can be treated only numerically, therefore general  
conclusions cannot be drawn, 

(b) in order to use continuous functions the results of experiments published in 
tabulated or graphic form as well as the cross-sectional characteristics of 
fabricated series of profiles should be formulated by approximate functions, 

(c) special mathematical methods should be used, 
(d) difficulty to obtain realistic cost data from industry, 
(e) difficulty to treat coupled instabilities (more active constraints), 
(f) cost savings is significant in serial production, but this can be realized not 

very often, 
(g) remuneration of designers is not proportional to cost savings, but rather to 

total cost. 

1.5   The Problem of the Interaction of Two Instabilities 

Thompson and Hunt (1974) stated that in the case of two active instability con-
straints the optimization can result in unsafe design, since the interaction of insta-
bilities can decrease the strength significantly due to unavoidable imperfections.  
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Rondal and Maquoi (1981) have shown that this decrease in strength is much 
more smaller in the case when the practical stability formulae take into account the 
effect of initial imperfections and residual stresses. Thus, it is no danger of unsafe 
optimum design in the case of more active stability constraints. In practice some 
problems can occur with possible interaction of two different failure modes, e.g. in-
teraction of overall buckling and fatigue. In the absence of experimental results it is 
suggested to use an additional safety factor of 1.2 between the two constraints. 

1.6   Detailed Results for Different Structural Types 

1.6.1   Compressed and Bent Columns Constructed from Stiffened 
Shell or from Square Box Walls of Stiffened Plates 

The vertical load NF = 34000 kN, , the horizontal force  HF = 0.1NF, the yield 
stress  fy = 355 MPa, R = 1850 mm, L = a0 = 15 m. 

It is possible to compare the costs of structural versions of the column with the 
same height, loads and constraints on stress and displacement as follows. 

(1) The stringer-stiffened circular shell (Fig. 1.3a) with a radius of 1850 mm has 
the minimum cost of K = 70571 (unstiffened K = $92100), 

(2) The square box structure composed from orthogonally stiffened plates  
(Fig. 1.3b) with an optimized width of b0 = 4500 mm has the minimum cost 
of K = $76990, 

(3) The cellular box structure (Fig. 1.3c) loaded by a slightly different compres-
sion force (30000 instead of 34000 kN) with an optimized width of  
b0 = 4700 mm has the minimum cost of K = $60430. 

HF

NF

w

2R

L

         

R

t

 

Fig. 1.3a A cantilever cylindrical circular stringer stiffened shell column loaded by com-
pression and bending 
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                            (b)                                                 (c)    

Fig. 1.3b A welded cantilever square box column with walls of stiffened  plates loaded by 
compression and bending,  1.3c  Corner construction with cellular plates 

 

Fig. 1.4a Square plate supported at four corners stiffened orthogonally on one side by 
halved rolled I section stiffeners, the edge and internal stiffeners have different cross-
section 
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Details can be found in the following studies: 
Farkas J, Jármai K (2005), Farkas J, Jármai K (2008a), Farkas J, Jármai K 

(2008b). 

1.6.2   Stiffened or Cellular Plate Supported at Four Corners 
Subject to a Uniformly Distributed Normal Load (Fig.1.4) 

The edge plate length 18 m, factored load intensity 0.0015 N/mm2, yield stress 
355 MPa. 

Comparing the two structural versions it can be concluded that the cellular plate 
is competitive to the plate stiffened one side, since the costs are nearly the same 
(106800 compared to $ 106100 for cellular plate) and the cellular construction has 
some advantages over the stiffened one. 

Details can be found in the following studies: 
Farkas J, Jármai K, Snyman JA (2010), Farkas J, Jármai K (2008c).  

 

Fig. 1.4b A cellular plate with halved rolled I section stiffeners 

1.6.3   A Wind Turbine Tower Constructed as a Shell or Tubular 
Truss Structure 

The cost comparison is applied to two structural versions of a wind turbine tower. 
The tower is 45 m high, loaded on the top by a factored vertical force of 950 kN 
(self weight of the nacelle), a bending moment of 997 kNm and a horizontal force 
of 282 kN from the turbine operation. The tower width is limited to 2.5 m due to 
the rotating turbine blades of length 27 m. Both the shell and the truss structure are 
constructed from 3 parts each of 15 length with stepwise increasing widths. The 3 
shell parts are joined by bolted connections. 
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Fig. 1.5 A wind turbine tower constructed as a ring-stiffened circular slightly conical shell. 
(a) wind loads, (b) diameters of the shell, (c) bending moments, (d)  shell thicknesses. 

 
 

Truss of the top tower part Truss of the middle tower part Truss of the bottom tower part 

Fig. 1.6 A wind turbine tower constructed as a tubular truss 
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The comparison of the two structural versions shows that the tubular truss has 
smaller mass (17533 compared to 30518 kg), smaller surface to be painted and is 
much cheaper than the shell structure (51161 compared to $85628). This differ-
ence is caused by the much lower mass and surface of the tubular truss version. 

Details can be found in the following studies: 
Farkas J, Jármai K (2006), Uys PE, Farkas J, Jármai K, van Tonder F (2007), 

Farkas J, Jármai K (2008).  

1.7   Survey of Selected Literature of the Optimum Design 
of Steel Structures 

In order to show the wide range of application of the optimum design of steel 
structures only some journal articles are mentioned here as follows. 

1.7.1   Truss Structures 

Detailed survey can be found in Chapter 5, Table 5.1. 

1.7.2   Building Frames 

Ali NBH, Sellami M, Cutting-Decelle AF, Mangin JC (2009) Multi-stage produc-
tion cost optimization of semi-rigid steel frames using genetic algorithms. Eng. 
Struct. 31: 2766-2778 

Cabrero JM, Bayo E (2005) Development of practical design methods for steel 
structures with semi-rigid connections. Eng. Struct. 27:  1125-1137 

Jármai K, Farkas J, Kurobane Y (2006) Optimum seismic design of a multisto-
rey steel frame. Eng. Struct. 28: No.7. June, 1038-1048 

Kameshki ES, Saka MP (2003) Genetic algorithm based optimum design of 
nonlinear planar steel frames with various semi-rigid connections. J. Constr. Steel 
Res. 59: 109-134 

Moghaddam H, Hajirasouliha I, Doostan A (2005) Optimum seismic design of 
concentrally braced frames: concepts and design procedures. J. Constr. Steel Res. 
61:  2, 151-166 

Simões LMC (1996) Optimization of frames with semi-rigid connections. 
Comput. Struct. 60:  4, 531-539 

1.7.3   Industrial Applications 

Bridge: Durfee RH (1987) Design of a triangular cross-section bridge truss. J. 
Struct. Eng Proc. Am Soc Civ Eng 113:  2399-2414 

Silo: Farkas J, Jármai K (1997) Welded steel silos. In Farkas J, Jármai K Analysis 
and optimum design of metal structures. Rotterdam-Brookfield, Balkema, 285-298 

Bunker: Farkas J, Jármai K (2003) Bunkers constructed from welded stiffened 
plates. In: Farkas J, Jármai K Economic design of metal structures. Rotterdam, 
Millpress, 295-309 
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Oil pipeline: Farkas J, Jármai K (2006) Optimum strengthening of a column-
supported oil pipeline by a tubular truss. J Constr. Steel Res. 62: No.1-2. 116-120 

Wind turbine tower: Farkas J, Jármai K (2006) Cost comparison of a tubular truss 
and a ring-stiffened shell structure for a wind turbine tower. In: Tubular Structures 
XI. Proc. 11th Int. Symposium and IIW Int. Conf. on Tubular Structures, Québec 
City, Canada, 2006. Eds Packer JA and Willibald S, Taylor and Francis, London 
etc. 341-349 

Welded beam: Ferscha F (1987) Querschnittsoptimierung biegesteifer, 
geschweisster Stahlstabtragwerke. Stahlbau 56: 313-318 

Ship: Hart ChG, Vlahopoulos N (2010) An integrated multidisciplinary particle 
swarm optimization approach to conceptual ship design. Struct. Multidisc. Optim. 
41: 481-494 

Communication tower: Jasim NA, Galeb ACh (2002) Optimum design of square 
free-standing communication towers. J. Constr. Steel Res. 58: 413-425 

Offshore tower: Jármai K, Snyman JA, Farkas J (2006) Minimum cost design of a 
welded orthogonally stiffened cylindrical shell.  Comput. Struct. 84: No.12. 787-
797  

Storage tank roof: Jármai K, Farkas J (2008) Optimum design of welded stiffened 
plate structure for a fixed storage tank roof. In: Safety and reliability of welded 
components in energy and processing industry. Proc. of the IIW Internat. Confer-
ence Graz Austria Eds Mayr P, Posch G, Cerjak H.  Graz  Univ. of Technology. 
137-142 

Offshore tower: Karadeniz H, Togan V, Vrouwenvelder T (2009) An integrated 
reliability-based design optimization of offshore towers. Reliab. Eng. System 
Safety 94: 1510-1316 

Ship: Kavlie D, Moe J (1971) Automated design of frame structures. J. Struct.Div. 
Proc. Am Soc Civ Eng 97:  33-62  

Cable-stayed bridge: Negrão JHO, Simões LMC (1994) Three-dimensional 
nonlinear optimization of cable-stayed bridges. In: Topping,B.H.V., Papadra-
kakis,M. (eds) Advances in Structural Optimization. Edinburgh, Civil-Comp. 
Press,  203-213 

Transmission line tower: Rao GV (1995) Optimum designs for transmission line 
towers. Comput. Struct. 57:  1, 81-92 

Bridge: Taniwaki K (1997) Total optimal synthesis method for frame structures 
dealing with shape, sizing, material variables and prestressing. Doctor dissertation, 
Mastuyama, Ehime University, Japan  

Wind turbine tower: Uys PE, Farkas J, Jármai K, van Tonder F (2007) Optimisa-
tion of a steel tower for a wind turbine structure. Eng, Struct. 29: 1337-1342 
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1.8   Conclusions 

Structural optimization is a very useful system for the modern innovative design 
of steel structures. It can consider all the important engineering aspects and serves 
for realistic comparison of structural versions. The comparison of the design by 
routine with the optimum design shows that both methods have advantages and 
disadvantages, but the optimum design is superior for its systematic character.  

In the stability constraints the effect of initial imperfections and residual 
stresses should be taken into account to avoid the strength decrease by coupled in-
stabilities. Therefore the classic results for overall and local buckling strength 
should be modified as it is taken in Eurocodes.  

In the structural optimization the fabrication and economic aspects play an im-
portant role, thus, the fabrication constraints and cost calculation should be in-
volved in the design process. 

Optimization and comparison of realistic numerical structural models can give 
useful aspects for designers to select the best, competitive versions. Such compari-
sons are illustrated by solved problems of compressed and bent columns stiffened 
plates as well as shell vs truss. 

 



Chapter 2 
Newer Mathematical Methods in Structural 
Optimization 

2.1    Introduction 

Structural optimization means finding the best solution while considering several 
design constraints. The optimization can be topology, shape and size optimization. 
Our activity is related mainly to sizing optimization. These constraints can be the 
behaviour of the structure, like the stresses, fatigue, deformations, stability, 
eigenfrequency, damping, etc. These constraints are usually highly nonlinear, so to 
find the optimum it is not an easy task. It is as important to have a reliable 
optimization technique. There are many optimization algorithms available. Non of 
the algorithm is superior. All of them can have benefits and disadvantages. 

In our practice on structural optimization we have used several techniques in 
the last decades. We have published them in our books and gave several examples 
as engineering applications (Farkas 1984, Farkas & Jármai 1997, 2003, 2008). 
Most of the techniques were modified to be a good engineering tool in this work. 

For single objective optimization there are a great number of methods available 
as it was described in Farkas & Jármai (1997, 2003, 2008). Mathematical 
programming methods without derivatives like: Complex (Box 1965), Flexible 
Tolerance (Himmelblau 1971) and Hillclimb (Rosenbrock 1960). Methods with first 
derivatives such as: Sequential Unconstrained Minimization Technique (SUMT) 
(Fiacco & McCormick 1968), Davidon-Fletcher-Powell (Rao 1984), etc. Methods 
with second derivatives such as: Newton (Mordecai 2003), Sequential Quadratic 
Programming, SQP (Fan et al. 1988), the Feasible SQP (Zhou & Tits 1996). There 
are also other classes of techniques like Optimality Criteria methods (OC) (Rozvany 
1997), or the combinatorial discrete methods like Backtrack (Golomb & Baumert 
(1965), Annamalai 1970), the entropy-based method (Simões & Negrão 2000) 
(Farkas et al. 2005).  

In the last three decades some new techniques appeared e.g. the evolutionary 
techniques, like Genetic Algorithm, GA by Goldberg (1989), the Differential 
Evolution, DE method of Storn & Price (1995), the Ant Colony Technique 
(Dorigo et al. 1999), the Particle Swarm Optimization, PSO by Kennedy & 
Eberhart (1995), Millonas (1994) and the Artificial Immune System, AIS 
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(Farmer et al. (1986), de Castro & Timmis (2001), Dasgupta (1999), the Firefly 
algorithm (Yang 2008). The leap-frog technique with the analogue of potential 
energy minimum (Snyman 1983, 2005), have also been developed. 

Multicriteria optimization is used when more objectives are important to find 
the compromise solution (Osyczka 1984, 1992, Koski 1994, Wei and Leung 
2011). 

The general formulation of a single-criterion non-linear programming problem 
is the following: 

minimize   , (2.1) 

     subject to   P,...,,j    ,)x(g j 210 =≤ ,      (2.2) 

MP,...,Pi    )x(hi ++== 10 ,      (2.3) 

f(x) is a multivariable non-linear function, gj(x) and hi(x) are non-linear inequality 
and equality constraints, respectively. 

2.2   Firefly Algorithm 

Firefly algorithm is one of the newest evolutionary optimization algorithms, and is 
inspired by the flashing behaviour of fireflies. Each firefly movement is based on 
absorption of the other one’s flash. The primary purpose for a firefly's flash is to 
act as a signal system to attract other fireflies. Yang X.S. (2008, 2012) formulated 
this firefly algorithm by assuming: 

 
- One firefly will be attracted by all other fireflies; 
- Attractiveness is proportional to their brightness (it is associated with the 

objective function), and for any two fireflies, the less brighter one will be 
attracted by the brighter one and thus moves toward it. Brightness can be 
proportional to the distance between fireflies and to the passing time; 

- If there are no fireflies brighter than a given firefly, it will move randomly. 
 

The single fireflies represent a solution of the problem, just like particles at PSO, 
or the chromosomes at the genetic algorithm. The goodness of the individuals is 
evaluated with penalty functions. 

The core of the algorithm is as follows: 

- Generate a random solution set, ࢞ ൌ ሼݔଵ , ଶݔ , … , ௞ݔ ሽ 
- Compute intensity for each solution member, ࡵ ൌ ሼܫଵ , ଶܫ , … , ௞ܫ ሽ 
- Moves each firefly towards other brighter fireflies, and if there is no other 

brighter firefly, move it randomly. 
- Update the solution set. 
- Terminate if a termination criterion is fulfilled otherwise go back to step 2. 

 

N1 x,...,x,x      )x(f 2
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From elementary physics it is clear that the intensity of light is inversely 
proportional to the square of the distance, say d, from the source. Furthermore 
when light passes through a medium with light absorption coefficient of α the light 
intensity, I varies with distance d as given below: ܫሺݎሻ ൌ ଴݁ିఈௗ      (2.4)ܫ

where I0 is the intensity at the source point. 
These can be combined as ܫሺݎሻ ൌ ଴݁ିఈௗమܫ

      (2.5) 

However, to compute 1/(1+ αd2) is easier than computing ݁ିఈௗమ
 

Hence the intensity can be calculated using ܫሺݎሻ ൌ ଴1ܫ ൅  ଶ      (2.6)݀ߙ

Similarly, the attractiveness of a firefly can be defined as follows (Tilahun and 
Ong 2012): ܣሺݎሻ ൌ ଴1ܣ ൅  ଶ      (2.7)ݎߣ

where A0 is the attractiveness at d = 0. 
If a firefly located at point ࢞′ ൌ ሼݔଵ′ , ′ଶݔ , … , ′௡ݔ ሽ is brighter than another firefly 

located at point ࢞ ൌ ሼݔଵ , ଶݔ , … , ௡ݔ ሽ, the firefly located at x will move towards 
x’. The location update of the firefly located at x will be done as follows: ࢞ ൌ ࢞ ൅ ′଴݁ିఈௗమሺ࢞ܣ െ ࢞ሻ ൅ ࢘      (2.8) 

The last term is a randomization one with r vector of random numbers, whereas 
the second term is due to the attraction of x towards x’. For practical uses A0 can 
be taken as one, A0 = 1. 

Unlike deterministic solution methods, metaheuristic algorithms (like Firefly) 
are not affected by the behaviour of the optimization problem. This makes the 
algorithm to be used widely in different fields. 

We have used Firefly to find the solution of the supplier selection (Kota, Jármai 
2013). The problem is realized through the discretization of the firefly algorithm.  

In the next step the light intensity is evaluated to all the fireflies. The light 
intensity is a sum of the target function and the penalty values. 

 
Firefly 1 x1 x2 x3  xd 
Firefly 2 x1 x2 x3  xd 
. . . . . . 
Firefly n x1 x2 x3  xd 

Fig. 2.1 Population, data structure of the fireflies 
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The Penalty Functions 

The penalty value under the minimum ordering quantity: ܤ௠௜௡ ൌ  ∑ ൫ݔ௝௠௜௡ െ ௝ݔ ൯ଶௗ௝ୀଵ | ݂݅ ௝ݔ ൏ ௝௠௜௡       (2.9)ݔ

where: 

- d: is the number of the suppliers, 
 .௝௠௜௡: is the minimum quantity can be ordered from the supplier jݔ -

The penalty value above the maximum quantity: ܤ௠௔௫ ൌ  ∑ ൫ݔ௝ െ ௝௠௔௫൯ଶௗ௝ୀଵݔ ௝ݔ ݂݅ |  ൐ ௝௠௔௫ݔ                            (2.10) 

where: 

- d: is the number of suppliers, 
 .௝௠௜௡: is the maximum quantity can be ordered from the supplier jݔ -

The light intensity of an individual is: ܫ ൌ ܥ ൅ ௠௜௡ܤ ൅  ௠௔௫    (2.11)ܤ

In the next phase the individuals move towards the brighter individuals. The 
brightest individual moves randomly. 

The definition of the movement is really simple in a continuous state space but 
in a discrete state space the movement and the distance function have to be 
defined. 

The determination of the distance of the individuals is performed by the 
following function: 

,1ܨሺܦ  2ሻܨ ൌ ∑ ௝ிଵݔሺݏܾܽ െ ௝ிଶሻௗ௝ୀଵݔ                               (2.12) 

where: 

- F1: firefly 1, the first operand of the distance function, , 
- F2: firefly 2, the second operand of the distance function, 
 ,௝ிଵ: the ordering quantity from the supplier j at the first fireflyݔ -
 .௝ிଶ: the ordering quantity from the supplier j at the second fireflyݔ -

 
The movement of the individuals is the discretized variant of the continuous 
movement function (Kota, Jármai 2013). 

Because the sum of the ordering quantities is a given constant value which must 
not altered in either way, so only even variances can happen among the ordering 
quantities. So, if a given quantity is differ then an another quantity have to differ 
at alternate sign. 

In the next step the light intensity is evaluated to all the fireflies. The light 
intensity is a sum of the target function) and the penalty values. 
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The Firefly algorithm was suitable for the optimization of systems. In some 
cases it trapped to a local minimum, but the problem was very complex, when we 
increased the number of elements up to 1000. 

2.3   Particle Swarm Optimization Algorithm 

2.3.1   The PSO Algorithm 

Programs that work very well in optimizing convex functions very often perform 
poorly when the problem has multiple local minima or maxima. They are often 
caught or trapped in the local minima/maxima. Several methods have been 
developed to escape from being caught in such local optima.  

The particle swarm optimization (PSO) is a parallel evolutionary computation 
technique developed by Kennedy and Eberhart (1995) based on the social 
behaviour metaphor. A standard textbook on PSO, treating both the social and 
computational paradigms, is Yang (2012). The PSO algorithm is initialized with a 
population of random candidate solutions, conceptualized as particles. Each 
particle is assigned a randomized velocity and is iteratively moved through the 
problem space. It is attracted towards the location of the best fitness achieved so 
far by the particle itself and by the location of the best fitness achieved so far 
across the whole population (global version of the algorithm). 

Additionally, each member learns from the others, typically from the best 
performer among them. Every individual of the swarm is considered as a particle 
in a multidimensional space that has a position and a velocity. These particles fly 
through hyperspace and remember the best position that they have seen. Members 
of a swarm communicate good positions to each other and adjust their own 
position and velocity based on these good positions. The Particle Swarm method 
of optimization testifies the success of bounded rationality and decentralized 
decision making in reaching at the global optima. It has been used successfully to 
optimize extremely difficult multimodal functions. 

PSO shares many similarities with evolutionary computation techniques such as 
Genetic Algorithms (GA). The system is initialized with a population of random 
solutions and searches for optima by updating generations. However, unlike GA, 
PSO has no evolution operators such as crossover and mutation. In PSO, the 
potential solutions, called particles, fly through the problem space by following 
the current optimum particles.  

Each particle keeps track of its coordinates in the problem space which are 
associated with the best solution (fitness) it has achieved so far. (The fitness value 
is also stored.) This value is called pbest. Another "best" value that is tracked by 
the particle swarm optimizer is the best value, obtained so far by any particle in 
the neighbours of the particle. This location is called lbest. when a particle takes 
all the population as its topological neighbours, the best value is a global best and 
is called gbest. 
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The particle swarm optimization concept consists of, at each time step, 
changing the velocity of (accelerating) each particle toward its pbest and lbest 
locations (local version of PSO). Acceleration is weighted by a random term, with 
separate random numbers being generated for acceleration toward pbest and lbest 
locations.  

In past several years, PSO has been successfully applied in many research and 
application areas. It is demonstrated that PSO gets better results in a faster, 
cheaper way compared with other methods.  

One reason that PSO is attractive is that there are few parameters to adjust. One 
version, with slight variations, works well in a wide variety of applications. 
Particle swarm optimization has been used for approaches that can be used across 
a wide range of applications, as well as for specific applications focused on a 
specific requirement. 

The method is derivative free, constrained problems can simply be 
accommodated using penalty functions. 

PSO was successfully applied to the optimum shape and size design of 
structures by Fourie and Groenwold (2000). They reintroduced an operator, 
namely craziness, together with the use of dynamic varying maximum velocities 
and inertia.  

The pseudo code of the procedure can be written as follows: 

I) For each particle: 
     Initialize particle 
II) Do: 
     a) For each particle: 
          1) Calculate fitness value 
          2) If the fitness value is better than the best fitness value (pbest) in 

history 
          3) Set current value as the new pbest 
        End 
     b) For each particle: 
           1) Find in the particle neighbourhood, the particle with the best fitness 
           2) Calculate particle velocity according to the velocity equation (2.13) 
           3) Apply the velocity constriction 
           4) Update particle position according to the position equation (2.14) 
           5) Apply the position constriction 
         End 
     While maximum iterations or minimum error criteria is not attained. 

A more precise and detailed description of the particular PSO algorithm, as 
applied to penalty function formulation and used in this study now follows.  

Initialise a random population (swarm) of M particles (swarm members), by 
assigning an initial random position 0

ix  (candidate solution), as well as a random 

initial velocity 0
iv , to each particle i, i=1,2,…,M. Then compute simultaneous 

trajectories, one for each particle, by performing the following steps. 
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1) At instant k, compute the fitness of each individual particle i at discrete point 
k
ix , by evaluating )( k

iF x . With reference to the minimization of (2.1), the 

lower the value of )( k
iF x , the greater the particle’s fitness.  

2) For i=1,2,…,M: 

        if b
i

k
i FF ≤)(x  then set k

i
b
i

k
i

b
i FF xpx ==  and )(   {best point on trajectory i} 

        if k
i

bk
i

ggk
i FFFF xgxx ==≤  and  )(set   then )(  {best global point} 

3) If  1set  else  ,1set  then   +==< NNNFF g
before

g . 

4) If  N> Nmax  or  k> kmax then STOP and set x* = gb; else continue. 
5) Compute new velocities and positions for instant k+1, using the rule: 

  for i=1,2,…,M: 

)()(: 2211
k
i

bk
i

b
i

k
i rcrc xgxpvv 1k

i −+−+=+ ,     (2.13) 

t1k
i

k
i

1k
i

++ += vxx : ,    (2.14)

where 1r  and 2r  are independently generated random numbers in the interval 

[0,1], and 1c , 2c  are parameters with appropriately chosen values. 

6) Set   and   1 gg
before FFkk =+= ; go to step 2. 

 

PSO was applied to solve several structural optimization problems: cost 
minimization of an orthogonally stiffened welded steel plate (Farkas et al. 2007a), 
ring-stiffened conical shell (Farkas et al. 2007b), optimization of a wind turbine 
tower structure (Uys et al. 2007), optimization of a stiffened shell (Farkas et al. 
2007c), optimization of cellular plate (Jármai, Farkas 2012). 

2.3.2   Modification of PSO Algorithm with Gradient Estimation 

As previously mentioned, several variants of the PSO algorithm have been 
developed to improve the effectiveness of the technique. One of the solutions is  
to establish multiple groups of particles instead of one group. Then the local  
best results in each group compared and the best result of the best group gives  
the solution. At this case the communication is interpreted not only between the 
individual particles, but between the groups, so that for individual particles in the 
speed and position changes not only the position of the local best of the group, but 
the best results of all the groups taken into consideration.  

Another modification is known as crazy bird. This variant is uses randomly 
selected particles and these particles are flying into a random direction, so that the 
group does not tear out particles towards the hoped gbest position, which differs 
from current gbest direction. It helps finding global minimum if the number of 
crazy bird is kept small. 

The aforementioned procedures effectiveness has a random nature. We do not 
know that how many groups for the particles to send into random direction to get a 
better result than using the standard algorithm.  
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At the standard algorithm there is no other information about the objective 
function which is computed. But in many cases, depending on the individual 
characteristics of the problem, it would be useful to have local knowledge, since 
such information may make the procedure to be more efficient. One such 
information is the local gradient, which as we have only discrete points of 
samples, can be estimated. The finite-difference-based solution is a fast and 
efficient solution for the gradient estimation for discrete data. Each finite 
difference scheme is based on the Taylor-row. At the differentiable function it is 
assumed that the one-dimensional function f(x) can be written in the following 
way:  

( )
20 0 0

0 0
0

'( ) ''( ) ( )
( ) ( ) ...

1! 2! !

n
n

n

f x f x f x
f x h f x h h h

n

∞

=

+ ≈ + + + =     (2.15)

In this case we can stop at the second member of the formula as follows: 

0
0 0

'( )
( ) ( )

1!

f x
f x h f x h+ ≈ +     (2.16)

Expressed as the derivative of the following formula applies: 

0 0
0

( ) ( )
'( )

f x h f x
f x

h

+ −
≈     (2.17)

This formula is called in the literature as forward difference estimate. 
Then, if instead of f(x0+h) we use f(x0-h) in the equation, we get the following 

result: 

0 0
0

( ) ( )
'( )

f x f x h
f x

h

− −
≈     (2.18)

This formula in the literature is called as backward difference. As mentioned these 
estimates are simple and easily calculated, but its drawback that it is less accurate. 
More complex gradient estimations are available in the literature, but their 
calculation is more time consuming than the above described procedures and 
require more than two sampling points. 

During the movement of a particle up to a given moment, the points of the 
earlier function values can be used to estimate gradients in this point. We have 
implemented the algorithm using backward difference method since it was easier 
to implement. The gradients of the completed algorithm is used to adjust the speed 
of the particles, thus the particles move faster in one interval the feasible domain 
and move slower on the other interval. Each particle position and velocity data are 
stored, also the number of consecutive points where positive gradients have been 
found. In case when this value exceeds a pre-defined constant, than the velocity of 
the particle is increased. In case a negative gradient is found, or it is not 
interpreted by the gradient, the speed is reset to the default value. 
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Table 2.2 Result of the test functions using standard PSO and GPSO 

Function 
name  

Method  Avg of 
iterations  

Avg of 
distances  

Best  Worst  Std dev.  

De Jong  PSO  271.44  0.00012  241  307  0.00015  
 GPSO 169.66  0.00019  148  184  0.00027  
Rosenbrock PSO  256.13  0.00122  134  303  0.00605  
 GPSO 171.62  0.00032  124  230  0.00284  
Rastrigin  PSO  157.85  0.31868  86  295  0.30559  

 GPSO 122.96  0.33681 70  309  0.22001  

2.4   The IOSO Technique 

2.4.1   Main Features of IOSO Technology 

IOSO Technology (Indirect Optimization on Self-Organization) is based on the 
response surface technology. That is why our strategy differs significantly from 
the well-known approaches to optimization. Our strategy has higher efficiency and 
provides wider range of capabilities than standard algorithms. The main advantage 
one can get from using the IOSO Technology is ability to solve very complex 
optimization tasks. 

Unlike common response surface technology algorithms, IOSO algorithms are 
specifically developed for solving optimization problems. They are accurate in 
predicting the direction towards the optimum. We can approximate objective 
functions with complex topology (including the ones with local optima) using 
minimal number of points in the experiment plan, particularly including the case 
when the number of points is less than the number of design variables. For 
example, we start solution of the optimization problem with 140 design variables 
using only 40 points. 

Each iteration of IOSO algorithm consists of two steps. The first step is the 
creation of an analytical approximation of objective function(s) and constrained 
parameters. The second step is the optimization of these approximation functions. 
Multi-objective optimization problem solution is based on the use of 
approximation functions for individual objectives and constraints.  

The distinctive feature of IOSO multi-objective algorithm is an extremely low 
number of trial points to initialize the search procedure (typically 30 to 50 values 
of the objective function for the optimization problems with nearly 100 design 
variables). During the IOSO operation, the information concerning the behaviour 
of the objective function in the vicinity of the Pareto set is stored, and the response 
function is made more accurate only for this search area. 

The main benefits of IOSO algorithm are its outstanding reliability in avoiding 
local minima and its computational speed.  
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2.4.2   Testing of the Method 

Unfortunately, currently there are no common tests for multiobjective 
optimization methods. To estimate the efficiency of our method we solved many 
optimization problems where we used well-known optimization test functions as 
individual objectives in the multiobjective formulation. We made sure that the 
extrema of the single objectives did not coincide with each other. The following 
parameters were used as a measure of efficiency of our method:  

- Precision of finding the extremes of the individual objectives; 
- Average precision according to Pareto set (Fig. 2.1);  
- How uniform the solutions were distributed in the space of objectives.  

The results obtained showed the high efficiency of the method for solving various 
types of problems (Fig. 2.2). 

 

Fig. 2.1 A set of Pareto optima in the design space 

Effectiveness indicators are as follows: 

The accuracy of determination of the extrema of a particular criteria 
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The indicator of Pareto points uniformity in design space 
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Fig. 2.2 Some test functions 

Most of the real-life engineering optimization problems require simultaneous 
optimization of more than one objective function. In these cases, it is often 
impossible that the same values of design parameters will lead to the optimal 
values for all goals. Hence, to ensure a satisfactory design some trade-off between 
the objectives is necessary. For this purpose we use the multiobjective approach to 
optimize the overall efficiency (Egorov 1998, Egorov et al. 1997, Egorov & 
Kretinin 1992, Dulikravich et al. 1999). 
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IOSO can be easily integrated with different applications for engineering 
analysis both in-house and commercial, such as NASTRAN, ANSYS, StarCD, 
FineDesign, Fluent etc. 

2.4.3   Novelty and Distinctive Features of IOSO 

- multiobjective optimization for large-dimensionality problems (up to 100 
independent design variables and up to 100 constraints), which allows to 
reach the increase of efficiency by 2 - 7 times higher than that of middle-
dimensionality optimization tasks (20-40 design variables); 

- low expenditures for optimal solution search (reduction of the number of 
analysis code direct calls up to 20 times in comparison with traditional 
approaches and genetic algorithms (GA), depending on the complexity and 
dimensionality of the task); 

- full automatic optimization technology algorithms with easy to use procedure 
of task setting; 

- the possibility to solve multidisciplinary optimization problems; 
- multiobjective optimization for stochastic problems (up to 100 independent 

design variables), having complex topology of objective and the large number 
of constraints. Now it is well-known that many methods are capable of 
solving the tasks having up to 10 - 20 variables, and it is not known the 
analogues to IOSO  optimizer that is designed for large-dimensional 
multiobjective tasks (100 independent design variables and 20 objectives); 
solving all classes of optimization problems including stochastic, 
multiextreme and having non-differential peculiarities. 

 
We have used IOSO for the optimization of cellular plates (Jármai, Farkas 2012). 



Chapter 3 

Cost Calculations 

3.1   Introduction 

This Chapter describes the importance of cost calculations when we optimize a 
structure. These cost calculations are founded on material costs and those 
fabrication costs, which have direct effect on the sizes, dimensions or shape of the 
structure. The cost function includes the cost of material, assembly, welding as 
well as surface preparation, painting and cutting, edge grinding, forming the shell 
and is formulated according to the fabrication sequence. Other costs, like 
amortization, investment, transportation, maintenance are not considered here. 
Sometimes we can predict the cost of design and inspection, but usually they are 
proportional to the weight of the structure. Cost and production time data come 
from different companies from all over the world. When we compare the same 
design at different countries, we should consider the differences between labour 
costs. It has the most impact on the structure, if the technology is the same. This 
Chapter describes the new cost calculations of the different technologies, 
considering some newer technologies like laser, plasma, waterjet, etc. These costs 
are the objective functions in structural optimization.  

When we consider the interaction of design and fabrication technology, we 
should not forget about the cost as the third important characteristic of the 
structure. These three together help us to find the best solution. 

3.2   The Cost Function  

The cost function of a real structure may include the cost of material, assembly, 
the different fabrication costs such as welding, surface preparation, painting and 
cutting, edge grinding, forming the geometry, etc. There are some researches, 
which have been done in this field like Klansek & Kravanja (2006a,b), Jalkanen 
(2007), Tímár et al. (2003), Farkas & Jármai (1997,2003,2008), Bader (2002), 
Happio (2012). For composites the calculation is very different and there are some 
good information available on the internet (Catalog 2012, Cost studio 2012). 
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3.2.1   The Cost of Materials  

VkK MM ρ= , (3.1) 

For steel the specific material cost can be kM=1.0-1.3 $/kg, for aluminium  
kM= 3.0-3.5 $/kg, for stainless steel kM = 6.0-7.1 $/kg, for glass fibre 20-30 $/m2 
depending on the thickness. 

KM [kg] is the fabrication cost, kM [$/kg] is the corresponding material cost 
factor, V [mm3] is the volume of the structure, ρ is the density of the material. For 

steel it is 7.85x10-6 kg/mm3, for aluminium 2.7x10-6 kg/mm3, for stainless steel 
7.78x10-6 kg/mm3, for glass fibre 2.5x10-6 kg/mm3. If several different materials 
are used, then it is possible to use different material cost factors simultaneously in 
Eq. (3.1). 

3.2.2   The Fabrication Cost in General 

Kf = kf 
i

iT , (3.2)

where Kf [$] is the fabrication cost, kf [$/min] is the corresponding fabrication cost 
factor, Ti [min] are production times. It is assumed that the value of kf is constant 
for a given manufacturer. If not, it is possible to apply different fabrication cost 
factors simultaneously in Eq. (3.2). 

3.2.2.1   Fabrication Times for Welding 

The main times related to welding are as follows: preparation, assembly, tacking, 
time of welding, changing the electrode, deslagging and chipping.  

Calculation of the times of preparation, assembly and tacking 

The times of preparation, assembly and tacking can be calculated with an 
approximation formula as follows 

VCT dww κρΘ11 = , (3.3) 

where C1 is a parameter depending on the welding technology (usually equal to 1), 
Θ dw is a difficulty factor, κ  is the number of structural elements to be assembled. 
The difficulty factor expresses the complexity of the structure. Difficulty factor 
values depend on the kind of structure (planar, spatial), the kind of members (flat, 
tubular). The range of values proposed is between 1-4 (Farkas & Jármai 1997). 

Calculation of Real Welding Time 

Real welding time can be calculated on the following way 

wi
i

wiiw LaCT = 2
22

,  (3.4)
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where awi is weld size, Lwi is weld length, C2i is constant for different welding 
technologies. C2 contains not only the differences between welding technologies 
but the time differences between positional (vertical, overhead) and normal 
welding in downhand position as well. The equations for different welding 
technologies can be found in the Farkas, Jármai (2008). 

Calculation of Additional Fabrication Actions Time 

There are some additional fabrication actions to be considered such as changing 
the electrode, deslagging and chipping. The approximation of this time is as 
follows 

= wi
n
wiiw LaCT 23 3.0 . (3.5) 

Table 3.1 Welding times T
w2

 (min/mm) in the function of weld size aw (mm) for 

longitudinal fillet welds, downhand position 

Welding technology aw [mm] 2
2

3
2

3 1010 ww aCT =  

SMAW 0-15 27889.0 wa  

SMAW HR 0-15 25390.0 wa  

GMAW-C 0-15 23394.0 wa  

GMAW-M 0-15 23258.0 wa  

FCAW 0-15 22302.0 wa  

FCAW-MC 0-15 24520.0 wa  

SSFCAW ( ISW ) 0-15 22090.0 wa  

SAW 0-15 22349.0 wa  

 
It is proportional to Tw2. It is the 30% of it. The two time elements are as follows: 

=+ wi
n
wiiww LaCTT 232 3.1 .  (3.6) 

The welding time for ½ V, V, K and X weldings are as follows for the different 
technologies: 

SMAW = Shielded Metal Arc Welding, SMAW HR = Shielded Metal Arc 
Welding High Recovery, GMAW-CO2 = Gas Metal Arc Welding with CO2 , 
GMAW-Mix = Gas Metal Arc Welding with Mixed Gas, FCAW = Flux Cored 
Arc Welding, FCAW-MC = Metal Cored Arc Welding, SSFCAW (ISW) = Self 
Shielded Flux Cored Arc Welding, SAW = Submerged Arc Welding, GTAW = 
Gas Tungsten Arc Welding. 
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Table 3.2 Welding times Tw2 (min/mm) in the function of weld size aw (mm) for 
longitudinal 1/2 V and V butt welds downhand position 

  1/2 V butt welds V butt welds 

Welding 
technology 

aw [mm] 2
2

3
2

3 1010 ww aCT =  2
2

3
2

3 1010 ww aCT =  

SMAW 4-6 6-15 wa.133 252140 wa. wa.72 2450 wa.  
SMAW HR 4-6 6-15 wa14.2 235670 wa. wa.84621 230770 wa.  
GMAW-C 4-15 22245.0 wa  21939.0 wa  

GMAW-M 4-15 22157.0 wa  21861.0 wa  

FCAW 4-15 21520.0 wa  21311.0 wa  

FCAW-MC 4-15 22993.0 wa  22582.0 wa  

SSFCAW (ISW) 4-15 21384.0 wa  21194.0 wa  

SAW 4-15 21559.0 wa  21346.0 wa  

Table 3.3 Welding times Tw2 (min/mm) in the function of weld size aw (mm) for 

longitudinal K and X butt welds downhand position in the form  wi
i

n
wiiw LaCT = 22  

  K butt welds X butt welds 

Welding 
technology 

aw [mm] n
ww aCT 2

3
2

3 1010 =  n
ww aCT 2

3
2

3 1010 =  

SMAW 10-40 93.13539.0 wa  9.13451.0 wa  

SMAW HR 10-40 93.12419.0 wa  9.12363.0 wa  

GMAW-CO2 10-40 94.11520.0 wa  9.11496.0 wa  

GMAW-Mix 10-40 94.11462.0 wa  9.11433.0 wa  

FCAW 10-40 94.11032.0 wa  9.11013.0 wa  

FCAW-MC 10-40 94.12030.0 wa  9.11987.0 wa  

SSFCAW (ISW) 10-40 94.10937.0 wa  9.10924.0 wa  

SAW 10-40 94.11053.0 wa  9.11033.0 wa  

3.2.2.2   Thermal and Waterjet Cutting 

The four most commonly used non-contact methods of metal cutting are oxy-fuel 
gas, plasma, laser, and abrasive waterjet. The first three cutting processes are 
thermal in nature, while the waterjet method cuts by abrasive erosion. These four 
processes are primarily used to make precision external and interior cuts on flat 
sheet and plate material. 
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Plate Cutting and Edge Grinding Times 

Oxy-fuel gas cutting, usually with acetylene gas, was once the only method of 
thermal cutting. The oxy-fuel torch has a pre-heating flame that heats either the 
iron or carbon steels to it’s "kindling temperature" of around 480º C. Then, a 
stream of pure oxygen is introduced causing the rapid combustion reaction 
between the steel and the oxygen. The resulting molten material, or slag, is blown 
through the metal by the stream of cutting oxygen, providing a relatively smooth 
and regular cut. 

The calculation of the times of arc-spot welding, fabrication times of post-
welding treatments, time for flattening plates, surface preparation time, painting 
times also can be found in Farkas, Jármai (2008). 

Laser Welding  

The spectrum of laser welding extends from heat conduction welding to deep-
penetration welding, a keyhole process in which aspect ratios of up to 10:1 are 
attained. High power densities permit a concentrated energy input, achieving high 
welding speeds as well as significantly reduced heat influence and distortion. 
Compared with arc welding, it allows a much wider range of materials to be 
welded, and material thicknesses of up to approximately 20 mm can be welded in 
one pass. 

When compared to other welding processes, laser welding has some similar as 
well as some unique characteristics like GTAW (Gas Tungsten Arc Welding), 
laser welding is a fusion process performed under inert cover gas, where filler 
material is most times not added. Like electron beam welding, Laser welding is a 
high energy density beam process, where energy is targeted directly on the 
workpiece. Laser differs from both GTAW and EB (electron beam) welding in 
that it does not require that the workpiece complete an electrical circuit. And since 
electron beam welding must be performed inside a vacuum chamber, laser 
welding can almost always offer a cost advantage over EB in both tooling and 
production pricing. 

One of the largest advantages that pulsed laser welding offers is the minimal 
amount of heat that is added during processing. The repeated "pulsing" of the 
beam allows cooling between each "spot" weld, resulting in a very small "heat 
affected zone". This makes laser welding ideal for thin sections or products that 
require welding near electronics or glass-to-metal seals. Low heat input, combined 
with an optical (not electrical) process, also means greater flexibility in tooling 
design and materials. The speed of laser welding of steel plates can be seen on 
Fig. 3.1ab, the value of welding speed [m/min] and time/unit length [min/m] in the 
function of plate thickness t [mm]. 
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S= 1/lnT=1/(a+bt2.5) [mm/min] 

                              a= -0.05918578241974762 

                                  b= -0.02448968345282072 

(3.7)

where S is the welding speed [mm/min], T is time [min], t is thickness [mm]. 

Thermal and Waterjet Cutting 

The four most commonly used non-contact methods of metal cutting are oxy-fuel 
gas, plasma, laser, and abrasive waterjet. The first three cutting processes are 
thermal in nature, while the waterjet method cuts by abrasive erosion. These four 
processes are primarily used to make precision external and interior cuts on flat 
sheet and plate material. 

The cutting and edge grinding can be made by different technologies, like 
Acetylene, Stabilized gasmix and Propane with normal and high speed. 

The cutting cost function can be formulated using in the function of the 
thickness (t [mm]) and cutting length (Lc [mm]). Parameters are given in Farkas, 
Jármai (2008): 

=
i

ci
n
iCPiCP LtCT ,  (3.8) 

where ti the thickness in [mm], Lci is the cutting length in [mm]. The value of n 
comes from curve fitting calculations. 

Laser welding of steel
Rank 2  Eqn 27  lny=a+bx (̂2.5)

r^2=0.99712549  DF Adj r^2=0.99648671  FitStdErr=0.0064268442  Fstat=3468.8526
a=-0.059185782 
b=-0.024489683 
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Fig. 3.1a Laser welding speed S [m/min] in the function of plate thickness t [mm] 
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Laser welding of steel
Rank 2  Eqn 91  y 2̂=a+bx 3̂

r^2=0.96973273  DF Adj r^2=0.95964364  FitStdErr=0.10645217  Fstat=224.27293
a=0.0072113225 
b=0.00081510146 
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Fig. 3.1b Laser welding time/unit length [min/m] in the function of plate thickness t [mm] 

Table 3.4 Cutting time of plates, TCP (min/mm) in the function of weld size aw (mm) for 
longitudinal fillet welds and T-, V-, 1/2 V butt welds 

Cutting technology Thickness 
t [mm] 

n
CPCP tCT 33 1010 =  

Acetylene ( normal speed ) 2-15 25.0t1388.1  

Acetylene ( high speed ) 2-15 25.09561.0 t  

Stabilized gasmix ( normal speed ) 2-15 25.01906.1 t  

Stabilized gasmix ( high speed ) 2-15 23008581 .t.
Propane ( normal speed ) 2-15 24.02941.1 t  

Propane ( high speed ) 2-15 25.01051.1 t  

Table 3.5 Cutting time of plates for 1 mm length, TCP (min/mm) in the function of weld 
size aw (mm) for fillet longitudinal X- and K butt welds 

Cutting technology Thickness 
t [mm] 

n
CPCP tCT 33 1010 =  

Acetylene ( normal speed ) 10-40 36085290 .t.
Acetylene ( high speed ) 10-40 38069110 .t.
Stabilized gasmix ( normal speed ) 10-40 36.08991.0 t  

Stabilized gasmix ( high speed ) 10-40 44064150 .t.
Propane ( normal speed ) 10-40 36095650 .t.
Propane ( high speed ) 10-40 38078700 .t.

 
The thermal processes and the oxy-fuel gas process in particular share two 

disadvantages. First, heat changes the structure of metal in a "heat-affected zones" 
adjacent to the cut. This may degrade some metallurgical qualities at the cut's 
edge, requiring pre-treatment or trimming. Secondly, tolerances may be less 
accurate than a machined cut, except for laser cutting. 
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Laser Cutting of Steel (Fig. 3.2) and Aluminium (Fig. 3.3) 

Steel sheet cutting by laser
Rank 1  Eqn 30  lny=a+bx (̂0.5)lnx

r^2=0.99393151  DF Adj r^2=0.99190868  FitStdErr=0.24614748  Fstat=1146.4994
a=2.191688 

b=-0.27156276 
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Fig. 3.2 Steel sheet cutting speed by laser [m/min] 

Laser cutting is a fairly new technology that allows metals and some non 
metallic materials to be cut with extreme precision if required. The laser beam is 
typically 0.2 mm in diameter with a power of 1-2 kW. At laser cutting process, a 
beam of high-density light energy is focused through a tiny hole of the nozzle. 
When this beam strikes the surface of the work piece, the material of the work 
piece is cut immediately. Lasers work best on materials such as carbon and 
stainless steels. Metals such as aluminium and copper alloys are more difficult to 
cut by laser due to their ability to reflect the laser light as well as absorb and 
conduct heat. The distribution of the application of laser in different 
manufacturing processes can be seen on Fig. 3.4. Laser cutting is the largest 
application. 

 
 

Laser cutting of aluminium
Rank 8  Eqn 20  y=a+b/x 2̂

r^2=0.99946695  DF Adj r^2=0.9989339  FitStdErr=0.3086067  Fstat=1875
a=1 

b=19.047619 
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Fig. 3.3 Aluminium sheet cutting speed by laser [m/min] 
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Fig. 3.4 Distribution of the application of laser in different manufacturing processes 

Waterjet Cutting of Steel (Fig. 3.5) and Stainless Steel (Fig. 3.6) 
 

A water jet cutter is capable of cutting a wide variety of materials using a very 
high-pressure jet of water, or a mixture of water and an abrasive substance.  

 
Water cutting of carbon steel

Rank 2  Eqn 59  y (̂-1)=a+b/x
r^2=0.99941071  DF Adj r^2=0.99936538  FitStdErr=2.0248543  Fstat=45790.612

a=-0.0016304928 
b=0.73680309 
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Fig. 3.5 Waterjet cutting of steel sheet cutting [min/m] 

Waterjet cutting, carbon steel 3500 bar Waterjet cutting stainless steel pressure 
3500 bar 

S= 1/T=a+b/t [m/min] 
a= -0.001630492750216705  
b= 0.7368030917264656  

S=1/T0.5=1/(a+bt0.5)[m/min]            (3.10) 
a= -1.231333913075542  
b= 1.405960445076508  

Laser cutting of steel sheets Laser cutting of aluminium sheets 
S=1/lnT=1/(a+bt0.5lnt) [min/mm] 
a= 2.191688010897978  
b= -0.2715627600304911  

S= 1/T=1/(a+b/t2)[min/mm]               (3.9) 
a= 1  
b= 19.04761904761905  
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Waterjet cutting of stainless steel
Rank 2  Eqn 75  y (̂0.5)=a+bx (̂0.5)

r^2=0.99170964  DF Adj r^2=0.99107193  FitStdErr=6.8325653  Fstat=3229.7966
a=-1.2313339 
b=1.4059604 
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Fig. 3.6 Waterjet cutting of stainless steel sheet cutting [min/m] 

Plasma Cutting of Steel (Fig. 3.7) and Stainless Steel (Fig. 3.8) 
 

Plasma cutting uses an extremely high temperature, high velocity stream of 
ionized gas to cut the metal. Plasma temperatures range from about 5500 ºC to 
28,000 ºC. Depending upon the material to be plasma cut, the gases used include: 
standard compressed shop air, oxygen, argon and hydrogen, or nitrogen and 
hydrogen. Gas shielding is accomplished with air, water, or carbon dioxide. 

Plasma cutting of stainless steel
Rank 2  Eqn 59  y (̂-1)=a+b/x

r^2=0.99766476  DF Adj r^2=0.99610793  FitStdErr=0.1281669  Fstat=1708.8855
a=-0.18015094 
b=41.038152 
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Fig. 3.7 Plasma cutting of stainless steel [min/m] 

Plasma cutting requires a torch, a power supply, and an arc-starting circuit. The 
plasma cutting power supply is a constant-current DC power source. A high 
frequency AC starting circuit ionizes the gas to make it conductive. When gas is 
fed to the torch, part of the gas is ionized by the high-voltage arc starter between 
the electrode, or cathode, in the torch, and the torch tip. When the power supply’s  
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Plasma cutting of aluminum
Rank 1  Eqn 37  lny=a+blnx/x

r^2=0.96481736  DF Adj r^2=0.94136227  FitStdErr=0.3527006  Fstat=109.69245
a=2.2375738 
b=-24.539067 
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Fig. 3.8 Plasma cutting of aluminium [min/m] 

small DC current meets this high voltage gas, it creates a pilot arc. This pilot arc 
leaves the torch tip as a plasma jet and becomes the path for the main plasma arc. 
Once the pilot arc contacts the metal’s surface, or anode, the main arc forms. The 
pilot arc then shuts off, and the cutting torch begins operation. 

 
Plasma cutting of stainless steel   Plasma cutting of aluminium 
S=1/T=a+b/t [m/min] 
a= -0.1801509431963638 
b= 41.03815214608195 

S=1/lnT=1/(a+b/t0.5)  [m/min]                   (3.11) 
 a= 2.97536641707248 
 b= -18.8936784318449 

3.2.2.3   Time for Flattening Plates 

p
e

eedfFP A
ta

tbaT 









++=

4
3 1Θ , (3.12) 

where ae=9.2x10-4 min/mm2, be= 4.15x10-7 min/mm5, dfΘ  is the difficulty 

parameter ( dfΘ = 1,2 or 3). The difficulty parameter depends on the form of the 

plate. 

3.2.2.4   Surface Preparation Time 

The surface preparation means the surface cleaning, sand spraying, etc. The 
surface cleaning time can be defined in the function of the surface area (As [mm2]) 
as follows: 

sspdsSP AaT Θ= , (3.13)

where asp = 3x10-6 min/mm2, Θ ds is a difficulty parameter. 
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3.2.2.5   Painting Time 

The painting means making the ground- and the topcoat. The painting time can be 
given in the function of the surface area (As [mm2]) as follows: 

stcgcdpP A)aa(T += Θ ,  (3.14) 

where agc = 3x10-6 min/mm2 , atc = 4.15x10-6 min/mm2, Θ dp is a difficulty factor, 
Θ dp=1,2 or 3 for horizontal, vertical or overhead painting. Tizani et al. (1996) 
proposed a value for painting 14.4 x10-6 $/mm2. For more complicated structures 
we use kP = 2x14.4x10-6 $/mm2. 

3.2.2.6   Times of Hand Cutting and Machine Grinding of Strut Ends 

At tubular structures a main part of the total cost is the cost of hand cutting and 
machine grinding of strut ends. We use the following formula (Farkas & Jármai 
2008).  

Glijnis (1999) proposed a formula for one strut end in the case of oxyfuel 
cutting on CNC machine as follows: 

ii

i
CG sin.)t(

d.
($)K

ϕ
π

302350

52

−
= ,  (3.15)

where 350 mm/min is the cutting speed, 0.3 is the efficiency factor, di and ti are in 
mm, : φi  is the inclination angle of a diagonal brace. 

3.2.2.7   Cost of Intumescent Painting 

Intumescent paintings are getting more and more popular, because they look 
attractive, does not have a bad effect on slim steel structure view, but the painting 
is relatively expensive 

Kpi = (kp +kpi) Ap,  (3.16)

where the specific painting cost kp = 14 $/m2 , means the normal painting in two 
layers (ground and top coat). The additional intumescent painting cost depends on 
its thickness. The thickness is proportional to the protection time. The cost is kpi = 
20 $/m2, for R30, half hour, or kpi = 60 $/m2 for R60, one hour protection. Ap is the 
full covered surface. 

3.2.3  Total Cost Function 

The total cost function can be formulated by adding the previous cost functions 
together (depending on the structure some can be zero). 
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Taking km = 0.5-1.5 $/kg, kf =0 -1 $/min. The kf/km  ratio varies between 0 - 2 
kg/min. If kf/km = 0, then we get the mass minimum. If kf/km = 2.0 it means a very 
high labour cost (Japan, USA), kf/km = 1.5 and 1.0 means a West European labour 
cost, kf/km = 0.5 means the labour cost of developing countries. Even if the 
production rate is similar for these cases, the difference between costs due to the 
different labour costs is significant. 

3.3   Conclusion 

In this Chapter the cost calculation of different welding, cutting, painting, etc. 
technologies have been described. These cost calculations are founded on material 
costs and those fabrication costs, which have direct effect on the sizes, dimensions 
or shape of the structure. The calculated times for different newer technologies 
like laser, plasma, waterjet, etc. have been included also. These costs are the 
objective functions in structural optimization. 

When we consider the interaction of design and technology, we should not 
forget the cost of the structure as the third leg of the system. These three together 
help us to find the best solution. These cost calculations are founded on material 
costs and those fabrication costs, which have direct effect on the sizes, dimensions 
or shape of the structure. Cost and production time data come form different 
companies from all over the world. When we compare the same design at different 
countries, we should consider the differences between labour costs. It has the 
greatest impact on the structure sizes, when the technology is the same. 



Chapter 4 
Beams and Columns 

4.1   Comparison of Minimum Volume and Minimum Cost Design  

4.1   Comparison of Minimum Volume and Minimum Cost  
Design of a Welded Box Beam 

Abstract 

The present study shows the difference between structures optimized for minimum 
volume and minimum cost. The cost function contents the cost of material, assem-
bly, welding and painting. A simply supported welded box section beam is inves-
tigated. The design constraints are as follows: limitation of the maximum stress 
from the maximum bending moment, limitation of plate slendernesses to avoid lo-
cal buckling of flange and web. The minimization of the volume and cost results 
in different beam sizes, but the cost difference between the two optima is small.  

4.1.1   Introduction 

In structural optimization researchers use volume as objective function. In order to 
design economic and competitive structures a cost function should be formulated 
and minimized. A cost calculation method is developed mainly for welded struc-
tures (Farkas and Jármai 1997, 2003, 2008). The cost function contents the cost of 
material, assembly, welding and painting. This function contents the main struc-
tural parameters to be optimized as the main cross-sectional dimensions as  
well as dimension and length of welds. Since the welding cost is proportional  
to the square of weld size, this size should be minimized to achieve economic 
structures. 

The symmetrical plated unstiffened box cross-section of the beam has four 
variable dimensions and four longitudinal fillet welds. Since the cross-section is 
constant for the whole beam, in the minimum volume design it is sufficient to op-
timize the cross-section area. For the minimum cost design the whole beam should 
be investigated. 

The minimum cross-section area design results in relatively simple closed for-
mulae. Since the cost function is a more complicated non-linear one, the minimum 
cost design needs mathematical methods. 
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In a numerical problem it is shown that the optimal cross-sectional dimensions 
are different for minimum cross-sectional area and minimum cost, but the  
difference in total costs of these optima is not high. Thus, using the minimum vol-
ume design instead of minimum cost design can be allowed. 

To find the optima the truss height is varied stepwise and a MathCAD algo-
rithm is used to calculate the corresponding values. 

4.1.2   Minimum Cross-Sectional Area Design 

The symmetrical plated unstiffened box cross-section of the beam has four vari-
able dimensions (h, tw, b, tf) and four longitudinal fillet welds (Fig.4.1). Since the 
cross-section is constant for the whole beam, in the minimum volume design it is 
sufficient to optimize the cross-section area. For the minimum cost design the 
whole beam should be investigated. 

 

Fig. 4.1 A simply supported welded box beam 

The formulation of the optimum design of a box beam is as follows: find the 
optimum values of the dimensions h, tw, b,  tf  to minimize the whole cross-section 
area 

fw bthtA 2+=  (4.1)

and fulfil the following constraints: 

(a)  stress constraint 

1y
x
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M
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y
x =≥  (4.2)
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The bending moment is expressed as 

8/2LpM s= , (4.4)

the self mass of the beam is also taken into account, so 

Apps 11.15.1 ρ+= ,  ρ1 = 7.85x10-5 N/mm3.  (4.5) 

(b) constraint on local buckling of webs 

;
1

2/ β
≤

wt

h
 or   htw β2≥  (4.6) 

where 

yf

235
;69/1 == εεβ   (4.7)

(c) constraint for local buckling of compressed upper flange 

ε
δ

42
1 =≤

ft

b
,     or   bt f δ≥   (4.8)

Considering the local buckling constraint as active the stress constraint can be 
written as 

0

3

3
Whbt

h
W f ≥+= β

 (4.9)

substituting  btf from Eq. (4.9) into Eq. (4.1) one obtains 

3

42 2
0 h

h

W
A

β+=   (4.10)

From the condition 

0=
dh

dA
  (4.11) 

one obtains the optimum value of  h from the stress constraint 

3
0

4

3

βσ
W

h =   (4.12) 

This formula gives an approximate value for hopt, since the effect of self mass in 
Mmax is neglected. 
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4.1.3   Minimum Cost Design 

It is important for cost to define the required fillet weld size. We take it in function 
of the web thickness 

aw = 0.3tw/2 = 0.3βh   (4.13)

but  awmin = 3 mm. 
The cost function contains the cost of material, assembly, welding and  

painting: 

K = KM + KW + KP (4.14) 

KM = kMρAL, ρ = 7.85x10-6 kg/mm3, kM = 1 $/kg  (4.15) 

Welding cost for 4 fillet welds of GMAW-C (Gas metal arc welding with CO2) 
(Farkas and Jármai 2003, 2008) 

( ) min/$0.1,3.1 2
1 =+= wwwwcww kLaCVCkK κρΘ : C1 = 1.0 min/kg0.5   (4.16)

The factor of complexity of assembly is  Θc = 2, number of assembled parts is 
κ = 4, welding coefficient  Cw = 0.3394x10-3, length of welds Lw = 4L. 

Painting cost 

6108.28, −== xkSkK ppp $/mm2, S = 4bL  (4.17) 

4.1.4   Numerical Data and Results 

p = 90 N/mm,  L = 15 m,  fy = 235 MPa. The required section modulus is accord-
ing to Eq. (4.2) W0 = 1841x104 mm3, the effect of self mass is very small. 

The approximate formula Eq. (4.12) gives hopt = 972 mm. 
In the optimization process h is selected and changed stepwise. For each h a 

suitable b is sought to satisfy the stress constraint. The obtained volume and cost 
value are given in Table 4.1. 

It can be seen that the optimum values of h are different, for minimum volume 
hopt = 990 mm, and for minimum cost hopt = 920 mm, but the difference of cost  
between these optima is only  100(8940 – 8892)/8940 = 0.5%. The difference be-
tween the optima is caused by the different fillet weld sizes. To decrease the weld-
ing cost the weld size should be decreased, but this decrease causes decrease in 
tw/2 and h, since aw depends on tw/2 and tw/2 depends on h. 
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Table 4.1 Results of the optimization process. The optima are marked by bold letters.  
Wx in mm3

.
 

h mm b mm Wxx10-4 A mm2 tw/2 mm aw mm KM  $ KW  $ KP  $ K  $ 
1000 756 1844 56200 14.5 4.35 6618 826 1517 8961 
995 759 1844 56130 14.4 4.33 6609 820 1515 8945 
990 763 1841 56130 14.3 4.30 6609 816 1515 8940 
985 767 1841 56140 14.2 4.28 6610 811 1514 8935 
980 771 1842 56140 14.2 4.26 6611 806 1513 8930 
-- -- -- -- -- -- -- -- -- -- 

940 802 1841 56240 13.6 4.09 6622 768 1505 8895 
930 810 1842 56310 13.5 4.04 6631 758 1503 8893 
920 818 1842 56400 13.3 4.00 6641 749 1502 8892 
910 826 1842 56490 13.2 3.96 6652 741 1500 8893 
900 834 1843 56600 13.0 3.91 6665 732 1498 8895 

4.2   Minimum C ost Design for Fire Resistance of a Welde d Box Column  
4.2   Minimum Cost Design for Fire Resistance of a Welded Box 

Column and a Welded Box Beam 

Abstract 

The optimum design is applied to cost minimization of two types of welded steel 
structures in fire. Both unprotected and protected structures are investigated.  The 
compressed rod of welded square box cross-section is designed to overall and lo-
cal buckling. The bent beam of welded box section should fulfil the stress, deflec-
tion and local buckling constraints. The cost function contents the cost of material, 
assembly, welding, painting and fire protection. In the unprotected case the critical 
temperature method is used with formulae given in Eurocode 3. In both structures 
the protected structure is cheaper than the unprotected one. This difference is 
caused by the significant difference in thicknesses. 

4.2.1   Introduction 

Requirements for modern load-carrying structures are the safety, fitness for pro-
duction and economy. In the optimum design procedure the safety and fitness for 
production are guaranteed by fulfilling of design and fabrication constraints, and 
the economy is achieved by minimization of a cost function. 

It is possible to design a lot of structural versions. The most suitable version 
can be selected by cost comparison. For the purpose of economic design of welded 
steel structures a relatively simple cost calculation method is developed (Farkas 
and Jármai 1997, 2003, 2008). The cost function consists of cost of material,  
assembly, welding and painting. 

Since the fire resistance of steel structures needs protection, the cost of various 
protection methods is also calculated using numerical data from industry. 
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The search for better solutions is performed by change of structural characteris-
tics such as material, type of structure, profiles, main dimensions, fabrication 
technology, connections. 

In general, the optimum design needs the solution of a constrained minimiza-
tion of one or more objective nonlinear multivariable functions. Therefore the 
problems can only be treated numerically and the results are valid not generally. In 
spite of this, when the numerical data of problems are selected as near as possible 
to industrial application, the results are very useful for designers to find the most 
economic and competitive structural versions. 

In our research work we have worked out a lot of numerical problems of vari-
ous metal structures. Our aim is to show how to apply the economic design for 
fire-resistant welded steel structures. The catastrophic damages and failures show 
that steel structures are very sensitive to high temperatures. Therefore special de-
sign rules have been elaborated in relevant Eurocodes (Eurocode 1, Part 1-2, 2005, 
Eurocode 3 Part 1-2, 2005, Eurocode 3, Part 1.1, 2005), which are applied in the 
study. 

Two numerical problems are solved as follows: 

(1) a centrally compressed rod of welded square box cross-section,  
(2) a welded box beam loaded in bending and shear. 

 
Costs of unprotected and protected versions are compared to each other. Since 
only optimized versions can be compared, the both versions are optimized for 
minimum cost. 

A lot of articles have been published on fire-resistant design of steel structures. 
Studies of Franssen et al. (1995), Vila Real et al. (2005) and Choi et al. (2002) can 
be mentioned.  

4.2.2   The Critical Temperature Method 

Figure 4.2 shows the temperature versus time for fire gas and for a steel structure. 
The gas temperature can be calculated as 








 ++= 1
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8
log34520

T
gΘ  (4.18) 

where T is the time in sec. 
The temperature of steel structure in a time interval is given by 

T
c

h

V

A

ma

netdm
a Δ

ρ
ΔΘ =  (4.19)

where  ca is the specific heat of steel,  

36231 1022.21069.11073.7425 aaaa xxxc Θ+Θ−Θ+= −−−  (4.20)
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Fig. 4.2 Critical temperature in the function of time 

ρm is the unit mass of steel,  Am/V is for rods of constant cross-section the ratio of 
perimeter/cross-section area, for a square box section 

Am/V = 1/t  (4.21)

The design value of the net heat flux per unit area is 

netrnetcnetd hhh +=   (4.22)

where the net convection heat flux is 

( )agnetch Θ−Θ= 25   (4.23)

and the net radiative heat flux is 

( ) ( )[ ]448 2732731067.58.0 +Θ−+Θ= −
agnetr xxh   (4.24) 

5.67x10-8 is the Boltzmann constant. 
The critical temperature is given by 

4821
9674.0

1
ln19.39
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+





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


−=

μ
Θcr   (4.25)

where   

μ0  = Nfi/N0  (4.26)

is the utilization factor, Nfi and No are the limiting compression forces in the case 
of fire and for ambient temperature, respectively. 
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The fire resistance time R corresponding to the critical temperature can be ob-

tained by step-by-step using Eqs. (4.18)-(4.26). Since until 600 0C the parameters 
in Eq. (4.19). can be approximated by three linear intervals, we use intervals of  

cracracra ,/,/ ΘΘΘΘΘΘ === 321 323   (4.27) 

In this case the final R = ∑Ri  is calculated by three iterations using a MathCAD 
algorithm 

netdi

maiai
i

hx

c
R

4106

ρΘΔ = , i = 1,2,3  (4.28)

4.2.3   A Centrally Compressed Column with Pinned Ends  
of Welded Square Box Cross-Section 

The design value of the net heat flux per unit area is 

netrnetcnetd hhh +=  (4.29)

where the net convection heat flux is 

( )agnetch Θ−Θ= 25
 (4.30)

and the net radiative heat flux is 

( ) ( )[ ]448 2732731067.58.0 +Θ−+Θ= −
agnetr xxh  (4.31) 

5.67x10-8 is the Boltzmann constant. 
 

              

Fig. 4.3 Compressed column of welded square box section 
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4.2.3.1   Overall Buckling Constraint for Ambient Temperature 

0NN ≤  (4.32) 

AfN yχ=0   (4.33) 

the buckling factor  
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In the case of a square box section 

btA 4=   (4.36) 

63

2 33 bttb
I +=   (4.37) 

For fire design  α = 0.49. 

4.2.3.2   Overall Buckling Constraint in Fire 

tfiNN .≤   (4.38) 

Mfiyiyfitfi fAkN γχ /. Θ=   (4.39) 

γMfi = 1 
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235
65.0   (4.41)

Factors of  kyΘi  and  kEΘi  can be approximated by linear intervals of 
 

    kyΘ0 = 1               if  20 0C < Θa <400 0C         (4.42) 
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100
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2 +
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= a
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Θ

Θ       if  500 0C < Θa <600 0C        (4.47) 

4.2.3.3   Local Buckling Constraint 

For ambient temperature  

yftb /235,42/ =≤ εε   (4.48) 

For fire Eurocode 3 proposed a decreased value of 

εε 6.33428.0/ =≤ xtb   (4.49) 

According to the experiments of Knobloch (2008) 

εε 2.25426.0/ =≤ xtb   (4.50) 

4.2.3.4   Cost Function 

Material cost 

kgkALVVkK mmm /$0.1,, === ρ   (4.51) 

Welding cost for 4 fillet welds of GMAW-C (Gas metal arc welding with CO2)  

( ) min/$0.1,3.1 2
1 =+Θ= wwwwcww kLaCVCkK κρ : C1 = 1.0 min/kg0.5     (4.52) 

The factor of complexity of assembly is  Θc = 2, number of assembled parts is  
κ = 4, fillet weld size aw = 0.3t, welding coefficient  Cw = 0.3394x10-3, length of 
welds Lw = 4L. 

Painting cost 

6108.28, −== xkSkK ppp $/mm2, S = 4bL  (4.53) 
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Total cost 

pwm KKKK ++=  (4.54) 

4.2.3.5   Numerical Data and Results 

Centric compression force for fire N = 107 [N]. This load is calculated from the  
actual ones using a reduction factor  ηfi.  Rod length L = 6 m. Yield stress of steel 
fy = 235 MPa.  

The optimization is performed by a systematic search using a MathCAD  
algorithm. Results are given in Tables 4.2 and 4.3. 

Table 4.2 Results for the unprotected structure for a fire resistance time R = 30 min.  
Optimum is marked by bold letters. 

b mm t mm 10-3A K $ Θcr
0C R min 10-7Nfi.T [N] 

500 38 76.00 5541 556 31.2 1.013 
500 37 74.00 5372 551 30.2 0.977 
510 37 75.48 5451 555 30.5 1.003 
520 36 74.88 5359 554 29.9 0.856 
530 35 74.20 5265 553 29.4 0.857 

Table 4.3 Results for protected structure for fire resistance time R = 60 min. Optimum is 
marked by bold letters. K is the cost according to Eq. (4.51) without the cost of protection. 
The result in the last row does not fulfil the local buckling constraint. 

b mm t mm 10-3A K $ 10-7NfitT [N] b/t 
630 20 50.40 3385 1.012 31.5 
660 19 50.16 3357 1.014 34.7 
700 18 50.40 3361 1.028 38.9 
720 17 48.96 3271 1.003 42.4 

4.2.3.6   Cost Including Protection 

The following approximate cost data are from Hungarian industry. 

(a) Intumescent paint “Polylack” 

Cost factor kp1 = 60 $/m2, superficies : S = 4x0.66x6 = 15.84 m2 
Kp1 = kp1S = 950 $ 
K1 = K – Kp + Kp1 = 3357 – 456 + 950 = 3851 $ 
Cost without protection  K = 5451 $, thus, the cost savings is 29%. 

(b) Fire resistant plasterboard  “Rigips” of thickness 12.5 mm   

Cost factor kp2 = 5.0 $/m2,  Kp2 = kp2S = 79.0 $, labour cost KL = 70 $ 
K2 = 3357 – 456 + 79 + 70  = 3050 $  
Cost without protection  K = 5451 $, thus, the cost savings is 44%. 
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4.2.4   A Simply Supported Uniformly Loaded Welded Box Beam 

Optimum design of this structure is treated for four cases as follows: unprotected 
and protected beam with stress or deflection constraint. In Equations the following 
subscripts are used: unprotected stress constraint σ, unprotected deflection con-
straint w, protected stress constraint σ1, protected deflection constraint w1. 

 

Fig. 4.4 A simply supported welded box beam 

4.2.4.1   Optimum Design 

It is sufficient to solve the optimization problem for minimum cross-section area 
instead of minimum cost, since the welding cost of four longitudinal fillet welds 
does not has significant effect on the optimum beam dimensions.  

The formulation of the optimum design of a box beam is as follows: find the 
optimum values of the dimensions h, tw, b,  tf  to minimize the whole cross-section 
area  A. As it is derived in Section 4.1.2 one obtains the optimum value of  h from 
the stress constraint. 

3
0

4

3

βσ
W

h =  (4.55) 

In fire conditions the constraint on local buckling of webs 

;
1

2/ β
≤

wt

h
 or   htw β2≥  (4.56) 

where 

y
fifi f

235
,69/1;69/1 === εεαβεβ   (4.57)

For unprotected beam  αfi = 0.6, for protected one  αfi = 1. 
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The constraint for local buckling of compressed upper flange 
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The deflection constraint 
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Table 4.4 Characteristics of optimum box sections 

Stress constraint Deflection constraint 
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The advantage of this optimization method is that the other characteristics of the 
optimum cross-section can be expressed by  hσ or hw. These characteristics are 
summarized in Table 4.4. 

 
Numerical data 

 
p = 90 N/mm,  L = 15 m,  fy = 235 MPa, fy1 = fy/1.1 = 213.6 MPa. 

4.2.4.2   Optimum Design of Unprotected Beam with Stress Constraint 

Factored load in ambient temperature 

σσ ρ App 11.15.1 +=   (4.61) 
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Factored load in fire 

2
1 4;1.15.1 σσσσ βρ hAApp fifififi =+=   (4.62)

Bending moment for fire 

8/2LpM fifi σ=  (4.63)

Bending moment capacity in ambient temperature 

10 yx fWM σ=   (4.64) 

The utilization factor 

0
0 M

M fi=μ   (4.65) 

The ratio of perimeter/cross-section area for a box beam  
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 (4.66)

The search for the optimum hσ is performed according to section 4.2.2 using  
the critical temperature method. The result for fire resistance time R = 30 min is  
hσ = 1230 mm. The other data for the beam are given in Table 4.5. 

The maximum stress 

σ
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=max   (4.67) 

The maximum deflection 
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where  kEΘ is calculated according to Eq. (4.47), 

σσ ρ Appwfi 1+=   (4.69)

For the cost calculation Eqs. (4.51)-(4.54) are used with the following changes: 

( )σσσσσ bhLSLAV +== 2; ,   
2

3.0 σ
σ

w
w

t
a =   (4.70)

The costs are calculated similar to Eqs. (4.51, 4.52, 4.53) with the following  
differences: 

σρVkK mm = ,   σSkK pp =   (4.71) 
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4.2.4.3   Optimum Design of the Protected Beam with Stress Constraint 

The optimization is performed using Table 4.4. thus, subscripts of  σ1 are used. 
The optimum height of the beam is  hσ1 = 990 mm. 
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+==   (4.72) 

1

4
1

1max 384

5

σ

σ
σ

x

w

EI

Lp
w = ;  111 σσ ρ Appw +=   (4.73) 

The costs are calculated similar to section 4.2.3.6. 
It should be mentioned that the self mass of the protection can be neglected. 

(The specific mass of plasterboard protection Rigips of thickness 12.5 mm is 10.5 
kg/m2, and that of an intumescent painting of thickness 2 mm is 3.5 kg/m2.) 

The results are given in Table 4.5. 
Results in Table 4.5 show that the protected beam is much more cheaper than 

the unprotected one. The protection with plasterboard Rigips is cheaper than the 
Polylack painting. 

4.2.4.4   Optimum Design of Unprotected Beam with Deflection Constraint 

Formulae in the right side column of Table 4.4 with subscript w are used. Eqs. 
(4.61)-(4.64) are used with subscript w instead of σ. Eq. (4.65) is changed to 

Table 4.5 Results for unprotected and protected beams with stress constraint. Dimensions 
in mm, stresses in MPa, costs in $. 

Unprotected Protected 
hσ =1230 hσ1 = 990 
bσ =960 bσ1 = 775 
twσ = 60 twσ1 = 30 
tfσ = 38 tfσ1 = 19 
σmaxσ = 69 σmaxσ1 =202 
wmaxσ = 22 wmaxσ1 = 31 

Km = 17280 Km1 = 6965 
Kw = 2670 Kw1 = 870 
Kp = 1892 Kpro = 3177, Kpro1 = 476 
K = 21840 K1 = 11010, K2 = 8311 
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Eq. (4.66) is changed to 
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The critical temperature according to Eq. (4.25) is 579 0C. 
The optimum design procedure according to section 4.2.2 for fire resistant time 

R = 30 min results in  hwopt = 1500 mm.  
In Eqs. (4.67)-(4.71) the subscripts F are changed to w. 
The optimum beam dimensions and characteristics are summarized in  

Table 4.6. 

4.2.4.5   Optimum Design of the Protected Beam with Deflection Constraint 

The optimization is performed using Table 4.4. Thus, subscripts w1 are used. The 
optimum height of the beam is  hw1 = 1050 mm. In Eqs. (4.72) and (4.73) sub-
scripts F1 are changed to w1. 

Results are given in Table 4.6. 

Table 4.6 Results for unprotected and protected beams with deflection constraint. Dimen-
sions in mm, stresses in MPa, costs in $. 

Unprotected Protected 
hw =1500 hw1 = 1050 
bw =680 bw1 = 475 
tww = 74 tww1 = 32 
tfw = 27 tfw1 = 19 
σmaxw = 75 σmaxw1 =255 
wmaxw = 21 wmaxw1 = 37 
Km = 17390  
Kw = 3789  
Kp = 1884  
K = 23070  

 
It can be seen that the protected beam does not fulfil the stress constraint 

(255>213 MPa), thus the costs are not calculated for this case. 
Comparison of Tables 4.5 and 4.6 shows that the deflection constraint results in 

a more expensive beam than that with the stress constraint. 

4.2.5   Conclusions 

A compressed rod of welded square box cross-section is designed for overall and 
local buckling. In the case of a simply supported beam of welded box section 
loaded by bending and shear the stress, deflection and local buckling constraints 
are considered. 

In the optimization procedure the systematic search method is used with Math-
CAD program. In the case of bent box beam the optimum dimensions are derived 
by an analytical method. 

The cost function contents the cost of material, assembly, painting and fire pro-
tection. Two types of protection are considered: intumescent painting Polylack 
and plasterboard Rigips. 
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The fire resistance time is 30 min for unprotected and 60 min for protected 
structures. The critical temperature method is suitable for the design using formu-
lae given by Eurocode 3. 

In the case of bent beam the structure for stress constraint is cheaper than that 
for deflection constraint.  

In both structures the protected ones are much more cheaper than the unpro-
tected ones. This difference is caused by the significant difference of section 
thicknesses.  
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5.1   Survey of Selected Literature 

In order to illustrate the literature of the optimum design of trusses, the characte-
ristics of some articles are summarized in Table 5.1. 

Table 5.1 Literature survey of selected journal articles about the optimization of trusses 

Author Examples Math.  
method 

Material Buckling  
calculation 

Cross- 
section

Constraint 

Gil (2001) non-parallel chords conjugates 
gradient 

steel EC3  stress and  
geometric 

Tong (2001) 10-,25-bar combina- 
torial 

alum.   stress and  
frequency 

Makris 
(2002) 

3-,10-,25-, 
60-and 132-bar 

strain- 
energy- 
density 

alum. No buck-
ling 

 displacement 

Hasancebi  
(2002) 

224-bar 3D pyramid, 
simply supported  

simulated  
annealing 

steel AISC CHS, 
W- 
section

layout  
optimization 

Kripakaran 
(2007) 

10-,18-, 21-bar new  
algorithm 

steel,  
alum. 

AASHTO 
Euler 

CHS minimum  
Cost 

Lamberti 
(2008) 

18-bar cantilever, 25-
bar 3D, 45-72-and  
200-bar 

simulated  
annealing 

steel,  
alum. 

Euler  stress, nodal  
displacement 

Silih (2008) non-parallel chords MINLP Steel EC3 CHS minimum mass 
or cost 

Kaveh 
(2009) 

10-,25-,120-200-, 
and 244-bar Tower 

PSO, 
ACO, 
HS 

steel,  
alum. 

AISC  stress, nodal dis-
placements 

Jármai 
(2004) 

Simply supported, 
parallel chords, 5, 8 
spacing 

Leap-frog, 
dynamic-
Q 

Steel EC3 CHS optimum height,  
effect of loads,  
min. volume 

 
Abbreviations: AISC American Institute of Steel Construction, CHS Circular  
Hollow Section, AASHTO American Assoc. of State and Highway Transportation 
Officials, EC3 Eurocode 3 (EN 1993-1-1: 1992), W – American wide flange 
beam, PSO particle swarm optimizer, ACO ant colony strategy, HS harmony 
search, MINLP mixed-integer nonlinear programming, alum – aluminium. 

Remarks: 

(1)  In trusses the compression members should be designed against overall buck-
ling. The use of Euler-formula gives unsafe design, since it does not take into 
account the effect of initial imperfections and residual stresses. Therefore 
buckling formulae of Eurocode 3 or another up-to-date improved buckling 
formulae should be used.  

(2)  The type of the investigated cross section should be given, since it has been 
shown (Farkas and Jármai 1997) that the cross-sectional form affects the op-
tima significantly. 
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5.2   Comparison of Minimum Volume and Minimum Cost Design  
5.2   Comparison of Minimum Volume and Minimum Cost  

Design of a Welded Tubular Truss 

Abstract 

The present study shows the difference between structures optimized for minimum 
volume and minimum cost. The cost function contents the cost of material, assem-
bly, welding and painting.  A cantilever tubular truss with parallel chords is inves-
tigated. The compression rods are designed against overall buckling so that the  
required cross-sectional areas are calculated with approximate closed formulae. In 
the cost function also the cost of cutting and edge grinding of the circular hollow 
section rod ends is included. The heights of the truss corresponding to minimum 
volume and cost are different, but the cost difference between the two optima is 
not high. 

5.2.1   Introduction 

In structural optimization researchers use volume as objective function. In order to 
design economic and competitive structures a cost function should be formulated 
and minimized. The cost function contents the cost of material, assembly, welding 
and painting. This function contents the main structural parameters to be opti-
mized as the main cross-sectional dimensions as well as dimension and length of 
welds. Since the welding cost is proportional to the square of weld size, this size 
should be minimized to achieve economic structures. 

The N-type planar truss (Fig. 5.1) is welded from circular hollow section (CHS) 
rods. Four different CHS profiles are applied for upper and lower chord, for di-
agonal and vertical braces. The rods are welded together by fillet welds without 
gusset plates. The constraint of overall and local buckling of compression rods as 
well as the stress constraint for tension rods are considered. 

In cost function the material, cutting and grinding of rod ends, assembly, weld-
ing and painting cost is considered. To find the optima the truss height is  
varied stepwise and a MathCAD algorithm is used to calculate the corresponding 
values. 

A numerical problem shows that the rod profiles are different for minimum 
volume and minimum cost, but the cost difference between the two optima is 
small. 

5.2.2   Minimum Volume Design 

The rods of the cantilever truss of parallel chords (Fig.5.1) are divided to four 
groups of the same cross-section area:  
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Group 1: Tension rods of the upper chord in which the maximum rod force is 

haFS /21 =  (5.1) 

with a required cross-sectional parameters 

δπδ /,/,1.1/,/ 11111111 DtADfffSA yyy ====  (5.2) 

fy is the steel yield stress, δ = D/t is the circular hollow section slenderness, we use 
here the limiting slenderness of δ = 50, prescribed by Wardenier et al. (1991). 
Note that the available profiles have generally smaller slenderness. 

Group 2: Compression rods of the lower chord in which the maximum force is 

haFS /22 =  (5.3) 

 

Fig. 5.1 A cantilever truss of parallel chords 

These rods should be designed against overall buckling. The required cross-
sectional area cannot be expressed explicitly using the complicate verification 
formula of Eurocode 3 (2002), therefore we use here the approximate formulae of 
the Japan Railroad Association (Hasegawa and Abo 1985) 

1yf
A

S χ≤   (5.4) 

 

 χ = 1      for  2.0≤λ               (5.5a) 
 

λχ 545.0109.1 −=   for  12.0 ≤≤ λ           (5.5b) 

 

2773.0

1

λ
χ

+
=    for  1≥λ           (5.5c) 
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For rods of circular hollow section (CHS) with a symbol of  δ = D/t 

δ
π

δ
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8
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In order to design rods of CHS we introduce notations 
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π
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ϑ ===   (5.8)

with these notations   

ϑ
λ c=   (5.9)

and one obtains closed formulae  

for  ϑϑ ≤≤ c2.0  
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 (5.10b)

Knowing ϑ  the cross-sectional parameters are 

δ
π

δ
ϑ 2

,,
100

D
A

D
t

L
D ===   (5.11)

For the rods of group 2 

k = 0.9, L = a, δ = 50, S = S2. (5.12)

k is the effective buckling length factor, according to Rondal et al. (1992) for 
chords 0.9 and for bracings 0.75, L is the rod length between joints. 
 
 



66 5   Tubular Trusses
 

Group 3: tension braces with rod force of 

1
2

3 +





=

h

a
FS   (5.13)

and cross-sectional area 

δπ
δ 3

3
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3
3 ,,

D
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y

===   (5.14)

Group 4: compression braces with rod force of 

S4 = F,  (5.15)

k = 0.75, L = h, δ = 50, S = S4  (5.16)

The structural volume of the truss is given by 

4
22

321 2332 hAhaAaAaAV ++++=   (5.17) 

Using this formula one can optimize the truss height h for minimum volume. 

5.2.3   Minimum Cost Design 

The cost function contents material, cutting and grinding of CHS rod ends, assem-
bly and welding as well as painting cost. 

The material cost is defined by 

VkK MM ρ= , kM = 1.0 $/kg  (5.18)

The cost of cutting and edge grinding of CHS rod ends (Farkas and Jármai 2003, 
2008) 

( ) α
π

sin3.02350

5.2
($)

t

D
KCG −

=   (5.19)

where 350mm/min is the cutting speed, 0.3 is the efficiency factor, D and t are  
in mm, α is the inclination angle of diagonal braces, in our case 

22
sin

ha

h

+
=α  (5.20)

In the case of our truss 

( ) ( ) 3,
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The general formula for the welding cost is as follows    









+Θ= 

i
wipi

n
wiwiww LCaCVCkK 3.11 κρ   (5.22) 

where kw [$/min] is the welding cost factor, C1 is the factor for the assembly  
usually taken as C1 = 1 min/kg0.5, Θ is the factor expressing the complexity of as-
sembly, the first member calculates the time of the assembly, κ is the number of 
structural parts to be assembled, ρV is the mass of the assembled structure, the 
second member estimates the time of welding, Cw and n are the constants given 
for the specified welding technology and weld type. 

Furthermore Cpi is the factor for the welding position (download 1, vertical 2, 
overhead 3), Lw is the weld length, the multiplier 1.3 takes into account the addi-
tional welding times (deslagging, chipping, changing the electrode). 

The cost of assembly and welding using SMAW (shielded metal arc welding) 
fillet welds is given according to Eq. (5.22) by 




















++Θ= −

α
ππκρ
sin

6
4107889.03.1

2
332

44
3 tD

tDxxVkK WW   (5.23) 

kW = 1.0 $/min,  κ = 7. 

The cost of painting is calculated as 

6108.28, −== xkSkK PPPP   (5.24)

The superficies to be painted is 

22
3421 3232 haDDhDaDaSP ++++= ππππ   (5.25)

The total cost is given by 

PWCGM KKKKK +++=   (5.26)

5.2.4   Numerical Data and Results 

F = 600 kN, a = 5000, fy = 355 MPa, E = 2.1x105 MPa. 
In order to find the optimum h for minimum volume and minimum cost, h is 

changed stepwise and for each h the required diameters and thicknesses as well as 
the volume and cost are calculated using a MathCAD algorithm. The calculation 
results are given in Table 5.2. 
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Table 5.2 Volume and costs in function of h. The optima are marked by bold letters. Di-
mensions in mm, volume in mm3 and costs in $. 

h D1xt1 D2xt2 D3xt3 D4xt4 V KCG KW KP K 
8500 187x3.7 262x5.2 185x3.5 231x4.6 2075 441 509 1376 3956 
8000 192x3.8 268x5.4 185x3.7 227x4.6 2049 437 512 1345 3903 
7500 198x4.0 275x5.5 189x3.8 222x4.4 2034 436 517 1317 3866 
7000 206x4.1 283x5.7 191x3.8 218x4.4 2031 436 523 1292 3845 
6500 213x4.3 292x5.8 193x3.7 214x4.3 2042 438 532 1271 3844 
6000 222x4.4 302x6.0 196x3.9 209x4.2 2069 443 544 1255 3867 
5500 232x4.6 314x6.3 200x4.0 205x4.1 2117 451 561 1243 3918 

 
It should be mentioned that the CHS dimensions are not fabricated (available) 

profiles, we have not used them, since it is impossible to show the difference  
between optima with available profiles. It can be seen that the truss height is dif-
ferent for minimum volume and minimum cost, but the difference between the 
corresponding costs is very small. Thus, the minimum volume design can be used 
with a good approximation. 

5.2.5   Conclusions 

In order to show the difference between the minimum volume and minimum cost 
designs a simple structure is optimized for both minima. The results show that the 
structural dimensions are different, but the difference in corresponding costs is 
small. 

It should be mentioned that the difference in costs depends on the amount of 
fabrication cost. In our two cases this amount is not very large, but in more com-
plicated structures it can be larger.  

5.3   Optimum Design of Tubular Trusses for Displacement 
Constraint  

Abstract 

The developed method is applied to truss columns of parallel and non-parallel 
chords. The cantilever columns are loaded on the top by a horizontal concentrated 
force and the horizontal displacement of the top is limited. In the case of the paral-
lel-chord-truss the distance of the chords is optimized. In the case of non-parallel 
chords the slope angle of chords is optimized for minimum structural volume. The 
comparison of the two optimized trusses shows that the truss with non-parallel 
chords has smaller volume. 



5.3   Optimum Design of Tubular Trusses for Displacement Constraint 69
 

5.3.1   Introduction 

Using formulae for volume and for displacement of a truss structure a method is 
worked out to calculate the optimum circular hollow sections (CHS) and the  
optimum geometry of a truss. These cross-sections are larger than those required 
to prevent overall buckling of rods. The cross section of compressed rods are  
optimized for overall buckling using the formulae of Eurocode 3 and a special 
Mathcad algorithm.  

The developed method is applied to truss columns of parallel and non-parallel 
chords. The cantilever columns are loaded on the top by a horizontal concentrated 
force and the horizontal displacement of the top is limited. In the case of the paral-
lel-chord-truss the distance of the chords is optimized. In the case of non-parallel 
chords the slope angle of chords is optimized for minimum structural volume. The 
comparison of the two optimized trusses shows that the truss with non-parallel 
chords has smaller volume. 

Tubular trusses should fulfil in several cases not only the overall buckling con-
straints but also displacement prescriptions. In the present study it is shown that, 
in the case of a strict displacement constraint the required cross-sectional areas 
and the truss geometry can be optimized. The objective function is the structural 
volume, but later it is possible to consider also the cost function. 

5.3.2   The Displacement Constraint 

The displacement constraint is formulated  as 

0w
EA

LsS
w

i

iii ≤=   (5.27) 

where  E is the elastic modulus, Si is the force acting in a rod, si is the rod force for 
F = 1, Li is the rod length, Ai is the cross-sectional area, w0 is the allowable dis-
placement. 

5.3.3  Design for Overall Buckling 

The used method is given in Section 5.2.2  Eqs. (5.4 – 5.11).  
In the case of very long struts with small compressive force, the limitation of 

the strut slenderness can be governing. From the limitation of 

max/ λλ ≤= rKL  (5.28)

the required radius of gyration is 

max/ λKLr ≥ .  (5.29)

According to BS 5400 (1982)  .180max =λ  
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5.3.4   A Truss Column with Parallel Chords (Fig. 5.2) 

The numbers show that only three different cross-sectional areas are considered 
for only three different rod forces. In the calculation these three cross-sectional  
areas are taken into account with different multipliers as 

AA ii μ=   (5.30) 

 

Fig. 5.2 A tubular truss with parallel chords 

so the displacement constraint is given by 

0
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  (5.31) 

from which one obtains 
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The structural volume is calculated as 
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Using a notation   

a

h

3
tan == αω   (5.34)

the rod forces are 

1,,3 2
321 +=== ωω FSFSFS   (5.35) 
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and the rod lengths are 
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Using these formulae one obtains 
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where 
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112 +++=v   (5.39)

In the optimum design ωopt is sought, which minimizes the structural volume or 
the value of 

V1 = v1v2.  (5.40)

The values of  μi are selected as  μ1 = 1, μ2 = μ3 = 0.8 taking into account the fabri-
cation of tubular joints. With these values the search results in  

040,85.0 == αωopt   (5.41) 

The details of the systematic search are given in Table 5.3. 

Table 5.3 Details of the systematic search 

ω V1 = v1v2 
0.70 28.289 
0.75 26.606 
0.80 26.215. 
0.85 26.061 
0.90 26.106 
0.95 26.318 
1.00 26.676 

 
Numerical example 

 
F = 100000 N, h = 12000, fy = 355 MPa,  E = 2.1x105 MPa, w0 = 12 mm. 
A1 = 2971, A2 = A3 = 2377 mm2. 

 
It should be noted that another values of  μ2 and μ3 give larger values of V1. 
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The rod forces for the displacement constraint (Si) and for overall buckling con-
straint (1.5Si), lengths (Li), factors of the buckling length (K), the required CHS 
profiles and their cross-sectional areas are given in Table 5.4. 

Table 5.4 Data for the optimal truss with parallel chords 

Forces Si [kN] Li [mm] K CHS A [mm2] r [mm] 
S1 255.0 -- -- 163.3x6 3060 57.4 

1.5S1 382.5 4000 0.9 139.7x5 2120 47.7 
S2 100.0 -- -- 139.7x6 2520 47.3 

1.5S2 150.0 4706 0.75 101.6x3.6 1110 34.7 
S3 131.2 -- -- 139.7x6 2520 47.3 

1.5S3 196.8 6176 0.75 114.3x5 1720 38.7 

It can be seen that for all rods A(displacement) > A(buckling). The actual struc-
tural volume for the optimal truss is  V = 1.557x108 mm3. The values of r show 
that the profiles for displacement constraint fulfil the overall buckling constraint 
as well. 

5.3.5  A Truss Column with Non-parallel Chords (Fig. 5.3) 

In order to show the savings in structural volume obtainable by using non-parallel 
chords instead of parallel ones, a tubular truss column with non-parallel chords is 
investigated. The column height, the horizontal force and the allowable horizontal 
displacement are the same as in Section 5.3.4. 

 

Fig. 5.3 A tubular truss with non-parallel chords 
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Introducing notations   

βϑαω tan,tan ==   (5.42) 

the geometric data of the truss are as follows: 
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  (5.43)

Since in the systematic search the values of a3 and ω are varied, all data are given 
in function of these variables. 
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The rod forces are as follows 
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It is supposed that the force in all chords is S1, the force in all diagonals is S2, the 
force in the upper horizontal rod is F, in other horizontals is S3. 

Similar to the formulae used in Section 5.3.4 
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Fabrication constraints are also introduced to guarantee the minimum angle 300  
(tan 300 = 0.577) between the rods. 
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Numerical example 

F = 100000 N, h = 12000, fy = 355 MPa,  E = 2.1x105 MPa, w0 = 12 mm. 
In the optimization process the optimum values of a3 and ω are sought which 

minimize V1 = v1v2. The details of the search are given in Table 5.5. 

Table 5.5 Search details 

a3 [mm] ωmin V1 = v1v2 
3400 0.43 19.238 
3300 0.43 18.974 
3200 0.42 18.258 
3100 0.42 18.015 
3000 0.45 19.157 
2900 0.48 20.398 

 
ω-values smaller than ωmin do not fulfil the constraints of  577.0≥iψ . 

The optimum is given by bold letters.  ω = 0.42 (α = 22.80), 02.72=ϑ ,  
a0 = 10810 mm. 

A1 = 2311, A2 = A3 = 1848 mm2. 
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The rod forces for the displacement constraint (Si) and for overall buckling con-
straint (1.5Si), lengths (Li), factors of the buckling length (K), the required CHS 
profiles and their cross-sectional areas are given in Table 5.6. 

Table 5.6 Data for the optimal truss with non-parallel chords. *Prescription for max.  
slenderness λ =180 is governing. 

Forces Si [kN] Li [mm] K CHS A [mm2] R [mm] 
S1 119.4 4171 -- 168.3x4.5 2320 57.9 

1.5S1 179.1 4171 0.9 168.3x4.5. 2320 57.9 
S2 40.4 10130 -- 139.7x4.0 1710* 48.0 

1.5S2 60.7 10130 0.75 139.7x4.0 1710* 48.0 
S3 41.8 8239 -- 114.3x6.0 2040* 38.3 

1.5S3 62.8 a1=8239 0.75 101.6x3.6 1110 34.7 
1.5S3 150.0 a3=3100 0.75 101.6x3.6 1110 34.7 

 
It can be seen that for all rods A(displacement) ≥  A(buckling). The actual 

structural volume for the optimal truss is  V = 1.347x108 mm3. 
The comparison of the trusses with parallel and non-parallel chords shows that 

the structural volume of the truss with non-parallel chords is 12% smaller than that 
of truss with parallel chords, i.e. the second version is more economic. 
5.4   Volume and Cost M inimization of a Tubular Truss  

5.4   Volume and Cost Minimization of a Tubular Truss  
with Non-parallel Chords in the Case of a  
Displacement-Constraint 

Abstract 

The minimum volume and cost of a simply supported planar truss with N-type 
bracing is optimized. The lower chord of the truss is horizontal, but the symmetric 
upper chord parts are non-parallel and their inclination angle as well as the cross-
sectional areas of CHS (circular hollow section) rods are optimized. For the calcu-
lation of required cross-sectional area of compression struts closed formulae are 
used as a good approximation of Eurocode 3 buckling curve. A special method is 
developed for the minimum volume design considering the deflection constraint. 
In the case of a strong displacement constraint the cross-sectional areas required 
for the allowed deflection are larger than those required for stress and buckling 
constraints. The cost function includes the cost of material, cutting and grinding of 
CHS strut ends, assembly, welding and painting. Special mathematical methods 
are used to find the optima in the case of a numerical problem. 

5.4.1   Introduction 

The aim of the present study is to show the minimum volume and cost optima of a 
truss and solve the optimum design problem subject to a strong displacement  
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constraint. In the case of stress constraints the tension rods are designed for yield 
stress by using a safety factor for loading and the compression rods are designed 
for overall buckling. In the case of a strong displacement constraint the required 
cross-sectional areas are larger than those required for stress constraints. 

In the optimum design process of a truss the optimal value of the cross-
sectional areas of struts and the geometric characteristics of the truss are sought 
which minimize an objective function and fulfil the design and fabrication con-
straints. The objective function can be the volume (weight) or cost, the design 
constraints are the limitation of stress and displacement, the fabrication constraints 
ease the manufacturing (welding) process. 

In the case of an active displacement constraint a special method is developed 
to calculate the required cross-sectional areas and the truss geometry.  

It is shown that the non-parallel chords are more economic than the beam with 
parallel chords. Thus, in our case the angle of the upper chord (unknowns h9 and 
h13 in Fig. 5.4) is optimized. 

Another problem is the grouping of rods having the same cross-sectional area. 
The design of all the rods having different cross-sectional areas can cause difficul-
ties in fabrication, but the design of all the rods with the same cross-sectional area 
would be uneconomic. Thus, the economy depends on grouping of rods. In our 
case four groups are used. 

For the minimization of the structural volume or cost, minimization of the 
cross-sectional areas of rods is needed.  The cross-sectional area of compression 
rods cannot be calculated from the Eurocode 3 buckling formulae. Therefore ap-
proximate formulae of Japan Road Association are used. Stress and buckling con-
straints are calculated using factored forces, whilst the deflection is calculated 
with forces without a safety factor.  

In order to obtain comparable optima the required cross-sectional areas are not 
rounded to available profiles and the most economic δ = D/t = 50 slenderness (di-
ameter/thickness) of CHS is used. 

The limitation of the angle between CHS struts (minimum 300) is taken into ac-
count as a fabrication constraint. Another fabrication constraint is that the diame-
ters of the chords should be larger than those of verticals and diagonals of the 
bracing. 

The effect of self mass is neglected in this comparative study. 

5.4.2   Minimum Volume Design of the Tubular Truss  
with Non-parallel Chords 

Relatively simple formulae can be derived for trusses to minimize the structural 
volume and fulfil a displacement constraint. 
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Fig. 5.4 The simply supported truss with non-parallel chords 

The truss rods are divided into n-groups having the same cross-sectional areas 
(Ai), so 

AA ii μ= , i = 1…n,            (5.57) 

where μi are multipliers and the displacement constraint is given by 

0

1
w

LsS
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w

i i

iii ≤=  μ ,  (5.58)

where E is the elastic modulus, Si  is the rod force, si is the rod force from the unit 
force acting at the midspan, Li is the rod length, wo is the admissible deflection. 

From Eq. (5.58) one obtains 
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The structural volume is calculated as 
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where  
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In the minimum volume design the truss geometry is sought, which minimizes  

211 vvV = .  (5.62) 
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In the case of the simply supported truss shown in Figure 5.4 the spacing is con-
stant, the non-parallel upper chord is determined by variable heights h9 and h13. 
The truss is subject to a set of vertical static forces F acting on the upper nodes. 
The displacement of the central lower node is prescribed. It is supposed that all the 
truss nodes are restrained against transverse deformation. 

The variables to be optimized are the heights h9 and h13  as well as the cross 
sectional areas of rods (A and μi). 

The calculations show that, in the case of a strong displacement constraint the 
necessary rod cross-sectional areas are so large that the stress constraints on ten-
sion and overall buckling are fulfilled. In spite of this fact these constraints should 
be checked. 

To facilitate the welding of nodes for tubular trusses a geometric fabrication 
constraint should be considered that the minimal angle between rods should be 
equal or greater than 300, in our case (Figure 5.4) 

09
1 30tantan ≥=

a

hα ,  (5.63) 

from which 

173230tan 0
9 =≥ ah mm,  (5.64)

and 

3
60tan 0

4

πα =≤ .  (5.65)

In our case these constraints are always active. 

Table 5.7 Characteristics of rods in the lower chord, Li = a 

i Si si

1 0 0 
 3.5Fa/h10 0.5a/h10 

3 6Fa/h11 a/h11

4 7.5Fa/h12 1.5a/h12

 
The rod forces and lengths (Si, si, Li) are expressed in function of h9 and the in-

clination angle of the upper chords α. 

( )
( )2

2

913 cos1sin,
1tan

1
cos,

4
tan αα

α
αα −=

+
=

−
=

a

hh
.    (5.66) 

The formulae for Si, si and Li are given in Tables 5.7, 5.8, 5.9  and 5.10. 
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Table 5.8 Characteristics of rods in the upper chord 

i Si si Li 
5 

αcos

5.3

10h

Fa
 

αcos

5.0

10h

a
 

αcos

a
 

6 

αcos

6

11h

Fa
 

αcos11h

a
 

αcos

a
 

7 

αcos

5.7

12h

Fa
 

αcos

5.1

12h

a
 

αcos

a
 

8 

αcos

8

13h

Fa
 

αcos

2

13h

a
 

αcos

a
 

Table 5.9 Characteristics of verticals 

i Si si Li

9 4F 0.5 h9

10 -3.5F+S5sinα -0.5+s5sinα h10=h9+atanα 
11 -2.5F+S6sinα -0.5+s6sinα h11=h9+2atanα 
12 -1.5F+S7sinα -0.5+s7sinα h12=h9+3atanα 
13 -F+2S8sinα 2s8sinα h13 

Table 5.10 Characteristics of diagonals 

i Si si Li

14 S5L14cosα/a s5L14cosα/a 22
9 ah +  

15 ( ) 10156 /sin5.2 hLSF α−  ( ) 10156 /sin5.0 hLs α−  22
10 ah +  

16 ( ) 11167 /sin5.1 hLSF α−  ( ) 11167 /sin5.0 hLs α−  22
11 ah +  

17 ( ) 12178 /sin5.0 hLSF α−  ( ) 12178 /sin5.0 hLs α−  22
12 ah +  

 
The rods are divided into four groups having the same cross-section): lower 

chord (1,2,3,4), upper chord (5,6,7,8), verticals (9,10,11,12,13) and diagonals 
(14,15,16,17). 

In order to facilitate the fabrication, the lower and upper chords have the same 
cross-section (μ1 = μ2 = 1) and the optimal values of μ3 (multiplier for verticals) 
and μ4 (multiplier for diagonals) are sought, which should be smaller than μ1. 

The components of  211 vvV =  to be minimized are as follows. 
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With the optimum values of h9, h13, μ3 and μ4  

144133
2

21   ,  , AAAA
Ew

v
AA optopt

adm

opt μμ ====   (5.69)

The minimum structural volume is 

Vmin = v1A1.  (5.70)

For a circular hollow section (CHS of diameter D and thickness t)  

tDDDtA /,/2 === δδππ ,  (5.71)

from which 

δπ
δ D

t
A

D ==    , .  (5.72) 

In the design we should use the maximum value of δ, but it is limited to 50 (War-
denier et al. 1991). In the case of available CHS profiles according to (EN 10210-
2. 2006) δ is varied between 10-50. In order to obtain realistic optima in all cases 
the optimum δ = 50 is used.  

5.4.3   Check of the Compression Rods for Overall Buckling 

The used method is described in Section 5.2.2 Eqs. (5.4-5.11) and Eqs.  
(5.28-5.29). 

For the check of overall buckling the following constraint should be fulfilled 
for all compression rods 

δ
π i

i

D
A ≥ ,  (5.73) 

where  Ai is the optimum cross-sectional area for displacement constraint and Di is 
the required diameter from overall buckling calculation. 

5.4.4   The Cost Function 

The cost function contains the cost of material, cutting and grinding of CHS strut 
ends, assembly, welding and painting. 

The cost of material is given by 

2VkK MM ρ= ,  (5.74)

where an average specific cost of  kM = 1.0 $/kg is considered, ρ = 7.85x10-6 
kg/mm3 for steel. V2 is the actual structural volume (see Eq. 5.81). 
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The cost of cutting and grinding of CHS strut ends is calculated with a formula 
proposed by Glijnis (Farkas & Jármai 2003) 

( ) α
πΘ

sin3.02350

5.2
($)

t

D
kK CGFCG −

= ,  (5.75)

where kF = 1.0 $/min is the specific fabrication cost, 3=ΘCG  is a factor for work 

complexity, 350 mm/min is the cutting speed, 0.3 is the efficiency factor, diameter 
D and thickness t are in mm, α is the inclination angle of diagonal braces. 

In our case for verticals 

( ) 3.02350
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1
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95.2
3

3 t
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+
= απΘ .  (5.76)

For diagonals at the lower strut ends 

( ) 3.02350

cos

1

25.2
4

4

1
41 t

DK i i
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=
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= απΘ , 
 (5.77)

where 

ahahahah /tan   ,/tan   ,/tan   ,/tan 124.11310291 ==== αααα    (5.78)

For diagonals at the upper strut ends 

( ) 3.02350

cos

1

25.2
4

4

1
42 t

DK i i
CGCG −

=


= βπΘ , 
 (5.78)

where 

ii ααβ −−= 090 , i = 1,2,3,4.  (5.79)

For welding costs kw = 1.0 $/min,  Θ = 3.  
The cost of assembly and welding using SMAW (shielded metal arc welding) 

fillet welds is given by for verticals 
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For diagonals at the lower strut ends 
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For diagonals at the upper strut ends 


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−=
4

1

2
44

3
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1
2107889.03.1
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W tDxxxK
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The cost of painting is calculated as 

6108.28, −== xkSkK PPPP  $/mm2.  (5.84)

The superficies to be painted is 
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The total cost is given by 

PwwWCGCGCGM KKKKKKKKK +++++++= 2121 .  (5.86)

5.4.5   Numerical Data 

Loads for displacement calculation (without safety factor) F = 120000 N, for 
stress and buckling constraints F0 = 1.5F = 180000 N (safety factor of 1.5). Yield 
stress of steel fy = 355 MPa, elastic modulus E = 2.1x105 MPa, span length L = 24 
m, allowable displacement at the middle of the span w0 = 32 mm = L/750. 

5.4.6   The Optimization Process 

Calculate the optimum values of  h9, h13, μ3 and  μ4 to obtain Vmin or Kmin and fulfil 
the constraints on displacement, on minimum angle α1 [Eq. (5.64)], on maximum 
angle α4 [Eq. (5.65)] as well as on stress and overall buckling. 

The ranges of unknowns are as follows: 1732 < h9 < 5000 mm,  4000 < h13 < 
8000 mm and  h9 < h13, 0.5 < μ3

 < 1,  0.5 < μ4 < 1. 
In the case of minimum volume design Eqs. (5.69) and (5.70) give the results 

and Eq. (5.73) should be fulfilled. In the case of minimum cost Eq. (5.86) should be 
minimized, for which Eqs. (5.67), (5.68), (5.69), (5.72) and (5.81) should be used. 

5.4.7   Results of the Optimization 

The fabrication constraints [Eq. (5.63) and (5.64)] determine the optimal pair of 
unknowns h9 and h13 as follows: for a given h9 a value of h13 smaller than h13opt 
gives larger v1v2, larger does not fulfill the fabrication constraint Eq. (5.64).  
Table 5.11 shows the max h13 in function of h9. 

Table 5.11 Maximum h13 values in function of h9. Values in mm. 

h9 1750 1850 1950 2000 2100 2200 2300 
h13opt 6340 6310 6280 6260 6220 6190 6160 
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Furthermore the calculations show that the best value for  μ3 and  μ4 is 0.6, 
since the value of 0.5 gives cross-sections which do not fulfill the buckling con-
straints. Thus, the remaining unknown h9 can be optimized using the MathCAD 
program. Table 5.12 gives the volume and cost in function of h9.  The optimum h9 
minimizes thee product v1v2 (fulfilling the deflection constraint) and also V and K. 

Table 5.12 shows that the following optima are determined: in the case of μ3 = 
μ4 = 0.6, h9opt = 1950, h13opt = 6280, v1v2min = 2.321x1015, Vmin = 3.454x108 mm3, 
Kmin = $7825, A1 = A2 = 3708, A3 = A4 = 2225 mm2.  Table 5.12 shows that the 
sensitivity of V and K is small. 

The cross-sectional areas required for stress and buckling constraints are as fol-
lows:  A1 = A2 = 2195, A3 = 2084, A4 = 2094 mm2. It can be seen that the cross-
sectional areas determined for a strong displacement constraint are larger than 
those required for stress or buckling constraints. 

In addition the calculation results for  μ3 = 0.7 and  μ4 = 0.5 are given.  

Table 5.12 Volume and cost in the function of h9. h in mm. Optima are marked with bold 
letters. 

h9 h13 v1v2x10-15 Vx10-8 mm3 K $ 
1750 6390 2.331 3.469 7854 
1850 6310 2.324 3.459 7830 
1950 6280 2.321 3.454 7825 
2000 6260 2.322 3.456 7829 
2100 6220 2.327 3.463 7843 

Table 5.13 Results in the case of  μ3 = 0.7 and  μ4 = 0.5. Optimum is marked by bold letters. 

h9 h13 v1v2x10-15 
1750 6390 2.335 
1850 6310 2.329 
1950 6280 2.326 
2000 6260 2.328 
2100 6220 2.334 

 
Another optimum values for h9 = 1950 mm:  A1 = A2 = 3728 , A3 = 2610, A4 = 

1864 mm2. V = 3.462x108 mm3, K = $7818. Since A4 = 2094 mm2 is necessary for 
buckling constraint, the value of μ4 = 0.5 is too small and  μ4 = 0.6 should be used. 

For comparison the optimum data for the truss of parallel chords:  h9opt = h13opt = 
5000 mm, Vmin = 5.852x108 mm3. Kmin = $11350. It can be seen that the truss of 
non-parallel chords is much more economic than the truss of parallel chords. 

5.4.8   Check of Strength of a Tubular Joint 

After the optimization the optimal cross-sections should be replaced by available 
profiles according to EN 10291-2 and the joints should be checked for strength 
according to new IIW rules (Static design 2009). To illustrate this procedure a tu-
bular joint of the truss optimized for strength is shown in Figure 5.5. 
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The related rod forces are as follows:   S3 = 787.4 kN (tension), S12 = 11.1 kN 
(tension), S15 = 233.4 kN (tension), governing for diagonals, also for rod 16, for 
which S16 = 13820 N compression. 

The available CHS profiles for the optimized truss are as follows: chords: 

ø273.0x5 mm, verticals and diagonals:  ø 139.7x6 mm. 
According to Figure 5.5 the joint is designed an overlap K-joint, with the ec-

centricity of e = 0.25x273 = 68 mm, the overlap is Ov = 100q/p = 100x34.3/161.6 
= 21.2%.  

 

Fig. 5.5 The overlapped tubular joint 

(a) Check of local yielding of overlapping brace 
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In our case  5,6,7.139,273 00 ====== tttddd jiji  

 
2.277,72,6.25 . === effbeovei Ldd . 
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(b) Check of local chord member yielding 
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(c) Check of brace shear 
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In our case   
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116700cos15 =jS θ < 833513* =SN N, OK. 

5.4.9   Conclusions 

The optimization problem to be solved is the following: find the optimal geometry 
and cross-sectional areas of rods which minimize the structural volume or cost  
for a simply supported tubular truss with non-parallel chords for a strong  
displacement constraint.  

For the solution of this problem a developed calculation method is used. Be-
sides the displacement constraint the rods are checked for tension stress and over-
all buckling. It is shown that, in the case of a strong displacement constraint the 
cross-sectional areas are larger than those required for constraints on stress and 
buckling. 

The fabrication (welding) constraints on minimal angle between tubular rods 
(300) have been also active. In the calculation of overall buckling the Eurocode 3 
formulae are approximated by formulae of Japan Road Association enabling the 
explicit expression of the necessary cross-sectional area. 

 



86 5   Tubular Trusses
 

Special formulae are used for the cost calculation. The cost function expresses 
the cost of material, cutting and grinding of the tubular (CHS) rod ends, assembly, 
welding and painting. It is shown that, in this case, the structural optima for mini-
mum volume and minimum cost are the same. Check of strength of a tubular  
joint shows that the chords and braces of available CHS profiles fulfil the  
requirements. 
5.5    Minimum Cost Design and C omparison of Tubular Trusses  
5.5    Minimum Cost Design and C omparison of Tubular Trusses  

5.5   Minimum Cost Design and Comparison of Tubular Trusses 
with N- and Cross-(Rhombic)-Bracing 

Abstract 

Two similar simply supported optimized tubular trusses with parallel chords and 
N- and rhombic-type bracing are compared to each other. In the optimization 
process the truss height and cross-sectional areas of circular hollow section (CHS) 
struts are sought which minimize the structural volume or cost and fulfil the stress 
and buckling or deflection constraint. The required cross-sectional area of com-
pression rods are calculated using closed formulae to approximate the Eurocode 3 
buckling curve. A special method is developed for the optimization of trusses in 
the case of a deflection constraint. The cost function includes the cost of material, 
cutting and grinding of CHS strut ends, assembly, welding and painting. The 
comparison shows that the rhombic-type truss is more advantageous than the N-
type one, since its structural volume and cost is smaller. 

5.5.1   Introduction 

It is useful for designers to compare different structural types to achieve develop-
ment of competitive structures. For the realistic comparison the different structural 
types should be optimized. The optimization can be performed according to dif-
ferent aspects. In the present study the volume (mass) and cost serve as objective 
function to be minimized and the stress, buckling and deflection constraints are 
considered as main requirements. 

Trusses of parallel chords can be constructed using different bracings, such as 
K-, N- and cross-type ones. The aim of the present study is to compare trusses 
with N- and cross-type trusses. Cross-(rhombic)-type trusses are often used, but 
their advantages are not investigated. Adeli and Balasubramanyan (1988) have op-
timized X- (Pratt) type trusses. Simos et al. (2008) have compared N- and X-type 
trusses regarding their resistance against progressive failure.  

For the struts of trusses the hollow sections are the most economic profiles be-
cause of their large buckling resistance. Optimum design of tubular trusses are 
treated in books (Farkas 1984, Farkas and Jármai 1997, 2003, 2008)  The special-
ity of tubular trusses is the geometric constraint, which prescribes the minimum 
angle between rods to enable the welding of joints. 
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Compression rods should be designed against overall buckling. In order to 
minimize the structural volume, it is necessary to have explicit formulae for  
the cross-sectional areas. Since the buckling formulae of Eurocode 3 are too  
complicate, approximate expressions are used for hollow section rods. 

In the case of optimum design considering the deflection constraint a special 
method is used developed by the authors. This method enables to calculate the 
cross-sectional areas required for a prescribed deflection. 

In the cost function the costs of material, cutting and grinding of circular hol-
low section strut ends, assembly, welding and painting are taken into account. 

The effect of self mass in this comparative study is neglected. 
These problems are complicated, thus only numerical studies can be performed, 

but the conclusions can be useful for designers. 

5.5.2   The Optimization Process 

The optimum design procedure for both structural versions can be summarized as 
follows. 

(a) Formulation of the problem: find the optimum height of the simply supported 
truss with parallel chords, which minimizes the structural volume and cost as 
well as fulfil the constraints on stress, stability, geometry and deflection. 

(b) Selection of design variables: the truss height h and (in steps k1-k6) the factors 
μi determining the ratio between the cross-sectional areas of rod groups. 

(c) Determination of rod forces in function of h. 
(d) Formulation of constraints on stress, overall and local buckling of tubular rods, 

on deflection of the mid-span point and on geometry (angle between rods 
030≥iα ). 

(e) Creation of the formulae for cross-sectional areas  Ai  required for tension and 
compression rods. 

(f) Creation of the formulae for structural volume and cost in function of h and the 
cross-sectional areas. 

(g) Search the optimum h and Ai for minimum volume and cost using a mathe-
matical constrained function minimization method. 

(k) In order to fulfil the deflection constraint the following steps are needed: 

     (k1) Determination of rod forces from the unique force acting on the mid-span 
in function of h. 

     (k2) Selection of rod groups of equal cross-sectional area based on required Ai 
(step (e)). 

     (k3) Creation of the formulae for v1 and v2 (see below). 
     (k4) Search the optimal values for h and μi to minimize V1 = v1v2 and fulfil the 

constraint on geometry using a mathematical method.  
     (k5) Calculation of the required cross-sectional areas A = v2/(Ewadm) and Ai = 

μiA, wadm is the admissible deflection. 
     (k6) Determination of the final Ai, which are larger from those obtained in steps 

(g) and (k5). 
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5.5.3   Optimum Design of an N-Type Planar Tubular Truss 

5.5.3.1   Optimum Height and Cross-Sectional Areas for Stress and Overall 
Buckling Constraints 

 

Fig. 5.6 N-type truss with parallel chords, numbering of rod groups 

 

Fig.5.7 Numbering of rods in Fig.5.6 

As it can be seen on Fig. 5.6, cross-sectional area is the same for all the tension 
rods of the lower chord (marked by 1), for all the compression rods of the upper 
chord (mark 2), all the diagonals (3) and verticals (4). 

 
Rod groups of equal cross-sectional areas:  

 
Chords: 1-2-3-4-5-6 (governing A4), diagonals 7-8-9 (A9), columns 10-11-12 (A12), 
central column 13 (A13) 

 
(1) tension rods of the lower chord in which the maximum rod force is 

haFS /41 =   (5.87) 

with a required cross-sectional parameters 

δπδ /,/,1.1/,/ 11111111 Dt   AD   ff   fSA yyy ====   (5.88) 

fy is the steel yield stress, δ = D/t is the circular hollow section slenderness, we use 
here the limiting slenderness of δ = 50, prescribed by Wardenier et al. (1991). 
Note that the available profiles have generally smaller slenderness. 
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(2) compression rods of the lower chord in which the maximum force is 

haFS /5.42 =   (5.89)

These rods should be designed against overall buckling. The calculation of the re-
quired cross-sectional area is described in Section 5.2.1 by Eqs. (5.4)-(5.11).  

In order to obtain comparable optima the calculated rod diameters and thick-
nesses are not modified according to fabricated available profiles. 

 

Using notation   22 hab +=  
 

the rod forces for rods 3 (compression) and 4 (tension) are as follows: 

FS   hbFS 5.2,/5.2 43 ==  (5.90) 

Since the middle vertical rod is loaded only by a secondary force, its cross-
sectional area, diameter and thickness are taken as 

δπδ /,/,5.0 555545 Dt   AD   AA ===   (5.91) 

The volume of the truss is given by 

( ) hAhAbALAAV 54321 66 ++++=   (5.92)

The cost function contents the cost of material, cutting and grinding of CHS strut 
ends, assembly, welding and painting. 

The cost of material is given by 

VkK MM ρ=   (5.93) 

where an average specific cost of  kM = 1.0 $/kg is considered, ρ = 7.85x10-6 
kg/mm3 for steel. 

The cost of cutting and grinding of CHS strut ends is calculated with a formula 
proposed by Glijnis (1999) 

( ) α
πΘ

sin3.02350

5.2
($)

t

D
kK CGFCG −

=   (5.94)

where kF = 1.0 $/min is the specific fabrication cost, 3=CGΘ  is a factor for work 

complexity, 350mm/min is the cutting speed, 0.3 is the efficiency factor, diameter 
D and thickness t are in mm, α is the inclination angle of diagonal braces, in our 
case 

22
sin

ha

h

+
=α   (5.95)

In our case the KCG formula should be multiplied for diagonals (3) and verticals 
(4) by 12, for vertical (5) by 2. 
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The cost of assembly and welding using SMAW (shielded metal arc welding) fil-
let welds is given by 




















+++= − 2

55

2
332

44
3 2

sin

12
12107889.03.1 tD

tD
tDxxVkK WW π

α
ππκρΘ   (5.95) 

In our case  kw = 1.0 $/min,  κ = 15, Θ = 3,  
The cost of painting is calculated as 

6108.28, −== xkSkK PPPP  $/mm2. (5.96)

The superficies to be painted is 

53421 66 DhbDDhDLDLSP πππππ ++++=   (5.97)

The total cost is given by 

PWCGM KKKKK +++=   (5.98)

Numerical data: factored forces F = 500 kN, a = 6 mm fy = 355 MPa,  
E = 2.1x105 MPa. 

 
The search for optimum h is performed by using a MathCAD and a PSO algorithm 
(Farkas and Jármai 2003). The results are given in Table 5.14. 

Table 5.14 Volume and cost in function of h. Optima are marked by bold letters. 

h mm V x10-8 mm3 K $ 

7100 10.58 17040 
7200 10.57 17033 
7300 10.56 17031 
7400 10.5546 17032 
7500 10.5517 17040 
7600 10.5506 17040 
7700 10.5524 17050 
7800 10.56 17070 

 
It can be seen that hopt = 7600 mm for Vmin and hopt = 7300 mm for Kmin. It can 

be seen that hopt = 7400-7700 mm for Vmin and hopt = 7200-7400 mm for Kmin. This 
means that the optima for volume and for cost are different. Note that the change 
in volume and in cost in the optimum domain is very small. 

The cross-sectional areas for  h = 7400 mm are as follows: A4 = 7185, A9 = 
4986, A12 = 5342, A13 = 2155 mm2. 

5.5.3.2   Optimum Height and Cross-Sectional Areas for Deflection 
Constraint 

The used method is described in Section 5.4.3 by Eqs. (5.57)-(5.62). 
In our case the deflection is calculated with forces without safety factor 1.5, 

thus F = 333333 N. The effect of self mass is neglected. 
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hbhLv 5341 662 μμμ +++=   (5.99)

4

44

3

33
22112

66

μμ
hsSbsS

LsSLsSv +++=   (5.100)

5.0,/5.0,/5.1,/ 4321 ==== shbshashas   (5.101)

The values of  μi are selected as  μ1 = μ2 = 1, μ3 = μ4 = 0.75, μ5 = 0.4 taking  
into account the fabrication of tubular joints. The results of the search are given in 
Table 5.15. 

Table 5.15 Search for hopt in the case of a deflection constraint. Optimum is marked by 
bold letters. 

h mm V1x10-15 mm3 
8900 6.588 
9000 6.584 
9100 6.582 
9200 6.582 
9300 6.584 
9400 6.587 

 
For an allowed deflection of w0 = L/1500 = 24 mm the required cross-sectional 

areas are as follows: A4 =7975, A9 = 0.75x7975 =5981, A13 = 0.4x7975  
= 3190 mm2. 

It can be seen that the cross-sectional areas required for the allowed deflection 
are larger than those required for stress and buckling constraints. 

The corresponding structural volume and cost for these cross-sectional areas is  
V = 1.321x109 mm3  and  K = $20410. 

5.5.4   Optimum Design of a Rhombic-Type Planar Tubular Truss 

5.5.4.1   Optimum Height and Cross-Sectional Areas for Stress and Overall 
Buckling Constraints 

According to Fig. 5.8, four rod groups of equal cross-sectional area are selected as 
follows: chords marked by 1,2,3, 4,5,6,7 tension diagonals 8,9,10, compression 
diagonals 11,12, column 13. 

 
(1) tension rods of the lower chord in which the maximum rod force is 

haFS /25,41 =   (5.102) 

with a required cross-sectional parameters 

δπδ /,/,1.1/,/ 11111111 Dt   AD   ff   fSA yyy ====  (5.103) 
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(2)  compression rods of the upper chord (cross-sectional area A2) in which the 
maximum force is 

haFS /25.44 =  (5.104) 

 

Fig. 5.8 Rhombic-type truss with parallel chords 

(3) tension diagonals (cross-sectional area A3) with rod force  

22
9 ,/25.1 ahq   hqFS +==   (5.105) 

(4) compression diagonals (cross-sectional area A4) with rod force 

hqFS /25.011 =  (5.106) 

According to Eurocode 3, Part 3-1 (2006) the effective buckling length of these 
diagonals is 0.5q. 

Tension column (cross-sectional area A5) with rod force 

FS 5.013 =  (5.107) 

The structural volume is given by 

( ) ( ) 5431211 222/23 hAqAAqqAhqaaAV +++++++=  (5.108)

The cost function contents the cost of material, cutting and grinding of CHS strut 
ends, assembly, welding and painting. 

The cost of material is given by Eq. (5.93), the cost of cutting and grinding of 
CHS strut ends is calculated with a formula Eq.(5.94). 

In our case the diagonals (11,12) should be interrupted in the middle of rods. 
Thus  

( ) ( ) ( ) 32
4

4

14

4

10

10
1 sin350

2
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2
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3.0
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D

t

D
K ++




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


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−
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−

=
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πΘ  (5.109)
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8
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The cost of assembly and welding using SMAW (shielded metal arc welding)  
fillet welds is given by 

( )321
3 (107889.03.1 TTTxxVKW +++= − πκρΘ  (5.113) 

βαα sin
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8 2
44
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T ++=  

(5.113a)
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2

sin

2
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2
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10102
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tDT ++=  

(5.113b)
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2
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8
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8
tD

tDtD
T ++=

γα
 

(5.113c)

kW = 1.0 $/min,  κ = 21. 
The cost of painting is calculated with Eq.(5.96). The superficies to be  

painted is 

( )13104111104 224410 hDqDDqqDqDaDSP +++++= π  (5.114) 

The total cost is given by 

PWCGCGCGM KKKKKKK +++++= 21  (5.115)

In the optimization process a fabrication constraint should be taken into account, 
namely the prescription for tubular truss nodes that the angle between rods should 
be larger than 300 to guarantee the easy welding of nodes. In our case this con-
straint is formulated as 

030≤α  (5.116) 

The search for optimum h is performed by using a MathCAD and the PSO algo-
rithm (Farkas and Jármai 2003). The results are given in Table 5.16. 
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Table 5.16 Volume and cost in function of h. Optima are marked by bold letters. 

h mm V x10-8 
mm3 

Kx10-4 $ (90-α)0 

9000 7.294 1.414 56.3 
10000 7.048 1.378 59.0 
10300 6.991 1.370 59.8 
10400 6.973 1.368 60.0 
10500 6.957 1.366 60.2 
11000 6.883 1.357 61.4 

5.5.4.2   Check of a Truss Joint with Available Tubular Profiles 

After the optimization the optimal cross-sections should be replaced by available 
profiles according to EN 10291-2  and the joints should be checked for strength 
according to new IIW rules (Static design 2009). To illustrate this procedure a tu-
bular joint of the rhombic braced truss optimized for strength is shown in Fig. 5.9. 

The related rod forces are as follows:   S4 = 4.25Fq/h = 1226 kN (compression), 
S8 = 0.25Fq/h = 144 kN, S9 = 721.6 kN, S10 = 954.3 kN (tension), S11 = S12 = 144 
kN (compression), S13 = 250 kN (tension). 

The available CHS profiles for the rhombic truss optimized for strength are as 
follows: 

Chords 1,2,3,4,5,6,7: ø244.5x8, 

Tension diagonals: 8: ø139.7x10,  9: ø168.3x5, 10: ø168.3x6, 

Compression diagonals 11,12: ø114.3x4, 

Column 13: ø88.9x3.  

According to Fig. 5.9 the joint is designed a K-joint with gap, with the eccentricity 
of e = 0.25d4 = 61 mm the gap is g = 65 mm. 

 

 

Fig. 5.9 Truss joint with available tubular profiles 
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Check of rod 8 for chord plastification: 
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( ) 28.152/,5714.0/ 4448 ==== tddd γβ  
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1 ====−= xxfASNNnnQ ypl
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f  

 

With values of  3917.18,60,8044.0,25.0 0
1 ==== uf QQC θ  

 
N* = 388 > 144 kN, OK. 

 
Check of rod 12 is similarly  N* = 306 > 144 kN, OK. 

 
Check of rod 8 for chord punching shear: 

 

735
sin2

sin1
58.0*

248 =+=
θ
θπ tdfN y  > 144 kN, OK. 

5.5.4.3   Optimum Height and Cross-Sectional Areas for Deflection 
Constraint 

As it has been described in Section 5.4.3 the structural volume is calculated as 

  ===
i i

iiii AvLALAV 1μ   (5.117) 

0
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LAV

i i
ii

i i

iii
ii ===  μ

μ
  (5.118) 

In the optimum design hopt is sought, which minimizes the structural volume or the 
value of 

V1 = v1v2.  (5.119) 

μ-factors are taken considering the cross-sectional areas corresponding to the av-
erage hopt = 10400 mm as follows: A4 = 5201, A10 = 2957, A11 = 1073, A13 = 773 
mm2, thus,  μ1 = μ2 = 1, μ3 = 0.6, μ4 = 0.2, μ5 = 0.15. 
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The other rod forces are as follows: 
             

1211871652 /25.0   ,5.2   ,/5.2   ,/75.2 ShFqSSFShFqSShaFS =======  (5.120a) 

 
hFqShFqS /5.2   ,/25.1 1109 ==                   (5.120b) 

 
5.0   ,0   ,/75.0   ,/25.1 735241 ====== ssshasshas             (5.121a) 

 
5.0   ,/25.0   ,/25.0   ,/5.0   ,/25.0 1312111101698 =−===−=== shqsshqshqshqss  

                         (5.121b) 

( ) hqqq
h

qv 541311 22
2

5 μμμ ++++++=               (5.122) 

 
( ) 2/771665544221121 hsSqsSasSsSsSsSv +++++=          (5.123a) 

 
( )

3

110109988
22 μ

qsSqsSsS
v

++
=                  (5.123b) 

 
( )

5

1313

4

12121111
23 μμ

hsSqsSsS
v +

+
=                 (5.123c) 

 

2322212 vvvv ++=                       (5.124) 

 
5.0,0,/75.0,/25.1 735241 ====== s   s   shas   shas         (5.125a) 

 
5.0   ,/25.0   ,/25.0   ,/5.0   ,/25.0 1312111101698 =−===−=== shqsshqshqshqss

                         (5.125b) 
 

The results of the search are given in Table 5.17. 

Table 5.17 Search for hopt in the case of a deflection constraint. Optimum is marked by 
bold letters. 

h mm V1x10-16 mm3 (90-α)0 

10200 1.924 59.5 
10300 1.922 59.8 
10400 1.921 60.0 
10500 1.920 60.2 

 
It can be seen that V1 decreases with the increase of h, but the inclination angle 

of diagonals shall be smaller than 300, therefore hopt = 10400 mm. 
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For  h = 10400 mm truss height for a force F = 333 kN the deflection is  
w = 35mm. To allowed deflection of 24 mm correspond the following cross-
sectional areas:  A4 = 5549>5201, A10 = 3329>2957, A11 = 1110>1073,  
A13 = 832>773 mm2. 

The corresponding structural volume and cost for these cross-sectional areas is 
V = 7.535x108 mm3  and K = $14500. 

5.5.5   Comparison of the Two Bracing Types 

The data for the comparison are summarized in Tables 5.18 and 5.19. 
The volume and cost minima are smaller for rhombic-type truss both in the case 

of stress and deflection constraint. In the case of stress constraint this difference is 
100(10.55-6.973)/10.55 = 34% in volume and 20% in cost. In the case of deflec-
tion constraint this difference is 37% in volume and 29% in cost. 

Table 5.18 Comparison of the minima of the volume and cost for stress and buckling  
constraints 

Truss type Stress and buckling constraints, 
F = 500 kN 

Deflection constraint 
F = 333 kN 

N hopt = 7400 mm 
V = 10.55x108, K =  $17030  

hopt = 9100 mm 
V = 13.21x108 , K = $20410  

rhombic hopt = 10400 mm 
V = 6.973x108, K = $13680  

hopt = 10400 mm 
V = 7.535x108 , K = $14500  

Table 5.19 Cost components in Table 5. 18 (in $) 

 KM KCG             KW KP K 
N-type 

Rhombic 
8285 
5474 

1889 
1969 

1903 
1507 

4955 
3902 

17030 
13680 

 
The analysis of cost components (Table 5.19) shows that the material, welding 

and painting cost for rhombic-type truss is smaller, the cutting and grinding cost is 
larger than that for N-type truss. 

It can be concluded that, in this numerical problem, the rhombic-type truss is 
more advantageous than the N-type one. The greatest difference occurs in volumes 
for deflection constraint. 

5.5.6   Conclusions 

A comparison is carried out for a numerical problem of simply supported trusses 
with parallel chords with the same number of joint spacing and with the same 
loading. 

The comparison of the optimized versions of planar N- and rhombic-type tubu-
lar trusses shows that the rhombic-type truss has smaller volume and cost in the 
case of stress and deflection constraint. 
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In the case of stress constraint the compression rods are designed against over-
all buckling using an approximate buckling curve instead of the Eurocode 3 curve. 
In the case of the deflection constraint a special method is worked out to obtain 
the required cross-sectional areas of struts. These areas are always larger than 
those required for overall buckling.  

Stress and buckling constraints are calculated using factored forces, the deflec-
tion is calculated with forces without a safety factor. To obtain comparable optima 
the required cross-sectional areas are not rounded to available profiles and the 
most economic δ = D/t = 50 slenderness of CHS is used.  

Special fabrication constraints are taken into account that the diameters of 
chords should be larger than those of bracing and the angle between rods should 
be larger than 300 to ease the welding of the nodes. 

The cost function includes the cost of material, cutting and grinding of CHS rod 
ends, assembly and welding as well as painting. In the case of rhombic-type truss 
the compression diagonals should be interrupted in the middle joints and additive 
costs of cutting and grinding as well as assembly and welding are taken into ac-
count. Despite of these additive costs the rhombic-type truss has smaller volume 
and total cost than the N-type one. 

The calculations also show that the optimum truss height and cross-sectional 
areas are approximately the same for minimum volume and minimum cost. Thus, 
the cost for minimum volume is a good approximation for the minimum cost. 
5.6   Optimum Des ign of a Transmission Line Tower Constructed  

5.6   Optimum Design of a Transmission Line Tower  
Constructed from Welded Tubular Truss 

Abstract 
The aim of this study is to show the advantages of trusses constructed from circu-
lar hollow section (CHS) rods with welded nodes. Another aim is to solve the fol-
lowing optimization problem: determine the slope angle (sprawling) of the four 
main rods of the truss tower and the cross-sectional areas of rods, which minimize 
the structural volume or cost and fulfil the design and fabrication constraints. De-
sign constraints relate to the tensile stress and overall buckling strength of rods. 
Fabrication constraints prescribe the minimum angle between CHS rods to ease 
the welding of nodes. For the numerical optimization process a tower of 45 m 
height is selected and the loads are determined according to the rules of the Hun-
garian Standard for transmission lines. 

5.6.1   Introduction 

The trusses of transmission line towers are usually constructed from rods of angle 
profile with bolted connections, as it is used by Rao (1995) and Silva et al (2005). 
These rods have a poor overall buckling strength. The aim of this study is to show 
the advantages of trusses constructed from circular hollow section (CHS) rods 
with welded nodes. Taniwaki and Ohkubo (2004) have used CHS rods, they have 
considered special Japanese problems of seismic-design and cost of land as well as 
special mathematical methods. 
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Another aim is to solve the following optimization problem: determine the 
slope angle (sprawling) of the four main rods of the truss tower and the cross-
sectional areas of rods, which minimize the structural volume or cost and fulfil the 
design and fabrication constraints.  

Design constraints relate to the tensile stress and overall buckling strength of 
rods. Fabrication constraints prescribe the minimum angle between CHS rods to 
ease the welding of nodes.  

For the numerical optimization process a tower of 45 m height is selected and 
the loads are determined according to the rules of the Hungarian Standard for 
transmission lines MSZ 151 (2000, 1988). The cost function contents the cost of 
material, cutting and grinding of the ends of CHS rods, assembly, welding and 
painting. 

More groups of rods having the same cross-sectional area are selected. Ap-
proximate formulae are used instead of overall buckling formulae of Eurocode 3, 
which allow for expressing the cross-sectional area of compressed rods explicitly. 

To obtain comparable optima the required cross-sectional areas are not rounded 
to available profiles. 

5.6.2   Loads 

The tower has two main parts. The upper part solves for the fixing of conductors. 
The whole height of the tower is 45 m, the height of the upper part is 21 m. The 
present study treats the optimum design of the lower part with the height of 24 m. 
The loads acting from the upper part are calculated according to the MSZ 151 
(1988, 2000). The governing load combination is as follows: in the one side of the 
tower the whole tension and on the other side the half of the tension of conductors  
+  rime without wind load. 

 

The distance of towers: 400 m.  
Weight of two lightning conductors: 2x712x0.4x9.81 = 5587 N. 
Weight of 12 electric conductors: 12x1935x0.4x9.81 = 91115 N. 
Weight of the upper part of the tower: approximately 40 kN. 
Additional load according to the Hungarian standard MSZ 151-1 (2000) the 

weight of rime is 
 

dz 25.025.3 += ,where d is the wire-diameter. 
 

For the lightning conductors with d = 16 mm  z = 7.25 N/m, for electric conduc-
tors with d = 31.05 z = 11.025 N/m. For 400 m distance it is 2900 N and 4405 N, 
respectively. 

Vertical load from the upper part of the tower is multiplied by a safety factor  
of 1.1: 

( ) kNxxV 03.2099.22405.412405587.5115.911.1 =++++=  

The allowable tensile stress of a 95/55 steel lightning conductor is 140 N/mm2 and 
that of a 500/66 aluminium electric conductor is 85 N/mm2. 
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The tensile force of a lightning conductor is 

( ) N213921403.565.96 =+  

and that of an electric conductor 

( ) N48458854.657.504 =+ . 

The governing load combination is the half of the tensile force of conductors. 
The horizontal force acting on the top of the lower part of the tower: 

( ) 143.3125.04585.4812392.2120 =+= xxH  kN 

and the bending moment from the tensile forces 

( ) 5.28502.84.164585.4828.21392.21 =++= xxM  kNm. 

It is supposed that the tower is square symmetric in plane. 
Vertical loads acting on the half lower part of the tower (width of the tower  

a1 = 3.7 m) (Fig. 5.10): 

46.437
7.32

5.2850

4

03.209
10 =+=

x
F  kN (5.126) 

94.332
4

03.209

7.32

5.2850
20 =−=

x
F kN  (5.127) 

Loads acting on the inclined tower plane (Fig. 5.11) 

ΩΘ=ΩΘ= /94.332,/46.437 21 FF  (5.128)

Ω
−=

Ω
+−= 4.770

07.156
94.33246.437

2
0H

H  (5.129)

5.6.3   Geometric Data (Fig. 5.10, 5.11) 

Factors for the transformation of loads from vertical to inclined plane:   

1,1 22 +=−= θΘθΩ ,  where  βθ tan=  (5.130) 

df
L

dLc θ
ΩΩ

Θ
=== ,,  (5.131) 

LfhLfhLfhLfhLfh /2000,/4500,/4500,/7000,/6000 54321 =====  (5.132)
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Fig. 5.10 Bottom part of the tower with loads from the upper part 

,/θii hd =  i =1,…,5 (5.133) 

45634523412312 2,2,2,2,2 daadaadaadaadaa −=−=−=−=+=  (5.134) 
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655 /2tan ah=α  (5.137) 

2211 180, αβγαβγ −−=−=  (5.138) 

4433 180, αβγαβγ −−=−=   (5.139) 

55 αβγ −=  (5.140) 
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Fig.5.11 The trussed inclined plan of the bottom part 

Rod lengths:   

5...1,/ == ifchL ii ,  (5.141)
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5.6.4   Rod Forces from a Horizontal Force  F = 1 
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49 SS −=  (5.149) 
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5.6.5   Rod Forces from H, F1 and F2 

Ω
770400

156070 −=H , 
Ω
Θ

4374601 =F  (5.155)

Ω
Θ

3329402 =F  (5.156)

N2 = HS2 + F2, N4 = HS4 + F2,  (5.157)

N7 = -HS2 –F1, N9 = -HS4 -F1  (5.158)

N11 = HS11, N13 = HS13 (5.159)

N14 = HS14, N16 = -HS16 (5.160)

N17 = HS17, N19 = -N11 (5.161)

N21 = -N13, N22 = -N14 (5.162)

N24 = -N16, N25 = -N17 (5.163) 

Ω−=Ω= /437460156070,/332940 2618 NN   (5.164) 

N10 = -F1, N5 = F2 (5.165)

5.6.6   Optimization Process 

Selection of a preliminary slope angle:  βopt = 800. 
Determination of rod forces for 800. 

Determination of rod groups having the same cross-sectional area on the basis 
of rod forces  The selected rod groups are as follows: 

 

(a) lower chords 1-2-6-7, governing rod: 7, 
(b) upper chords: 3-4-5-8-9-10, governing rod: 9, 
(c) braces 11-13-14-16-19-21-22-24-18-26 governing rod: 11, 
(d) upper braces 17-25 governing rod: 17. 

5.6.7   Formulae for Cross-Sectional Areas of Governing Rods  

The calculation method is described in Section 5.2.2 by Eqs. (5.4)-(5.11).  
In the case of very long struts with small compressive force, the limitation of 

the strut slenderness can be governing. From the limitation of 

max/ λλ ≤= rKL  (5.166)
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the required radius of gyration is 

max/ λKLr ≥ .  (5.167) 

According to BS 5400 (1983)  .180max =λ  

5.6.8   Formulae for Volume V and Cost K of the Truss  
in the Function of β 

( ) ( ) 1599767 222 VLLALLAV ++++=  (5.168a)

( ) 17171816142111111 22 LALLLLLAV +++++=  
(5.168b)

The cost function contents the cost of material, cutting and grinding of CHS strut 
ends, assembly, welding and painting. 

The cost of material is given by 

VkK MM ρ=  (5.169) 

where an average specific cost of  kM = 1.0 $/kg is considered, ρ = 7.85x10-6 
kg/mm3 for steel. 

The cost of cutting and grinding of CHS strut ends is calculated with a formula 
proposed by Glijnis (1999) 

( ) α
πΘ

sin3.02350

5.2
($)

t

D
kK CGFCG −

=  (5.170)

where kF = 1.0 $/min is the specific fabrication cost, 3=CGΘ  is a factor for work 

complexity, 350 mm/min is the cutting speed, 0.3 is the efficiency factor, diameter 
D and thickness t are in mm, α is the inclination angle of diagonal braces. 

In our case 

( )3213.0

5
GGG

k
K CGF

CG ++
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=
π

 (5.171a) 
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In our case  kF = 1.0 $/min,  Θ = 3,  

( )[ ]321
3107889.03.1 TTTxxVkK FW +++Θ= −κρ   (5.172a)
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1
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tDT  

(5.172d)

15=κ  

The cost of painting is calculated as 
6108.28, −== xkSkK PPPP  $/mm2.  (5.173) 

The superficies to be painted is 

321 pppp SSSS ++=  (5.174a)

( ) ( )54392171 22 LLLDLLDS p ++++= ππ  (5.174b)

( )1816141311112 2 LLLLLDS p ++++= π  (5.174c)

17173 2 LDS p π=  (5.174d)

5.6.9   Search for βopt for Vmin and Kmin 

The search is performed by using a MathCAD algorithm. The results are given in 
Table 5.20. 

Table 5.20 Optimum truss angle for minimum volume and cost 

β0 γ3
0 10-8V mm3 K $ 

79 30.3 1.902 3952 
80 29.9 1.874 3903 
81 29.4 1.854 3855 
82 28.9 1.844 3820 
83 28.4 1.845 3800 
84 27.6 1.857 3796 
85 26.9 1.883 3812 
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It can be seen that the constraint for the angles between the rods is active for 
angle γ3, thus the optimum truss angle is  β = 800. Disregarding the angle con-
straint the optimum for minimum volume would be 820 and for minimum cost 840. 

5.6.10   Selection of Available Profiles 

Table 5.21  shows the available profiles 

Table 5.21 Selected available CHS profiles. For rod 11 the requirement of radius of inertia 
(r) is governing. 

Rod group Governing 
rod 

Required cross-
sectional area 

mm2 

Selected 
CHS profile 

Cross-
sectional area 

1,2,6,7 7 3073 177.8/6 3240 
3,4,5,8,9,10 9 2195 168.8/4.5 2320 
11,13,14,16, 

19,21,24,18,26 
11 734 114.3/5 1720 

(r=38.7>36) 
17,25 17 254 39.7/4 373 

5.6.11   Optimum Mass of the Tower 

The volume (in mm3) an inclined side of the tower calculating with the cross-
section of the selected profiles:  

 

     ( ) ( ) ( )+++++++++= 181614131111599767 5.02222 LLLLLALLALLAV  

         8
1717 1021.22 xLA =+  

 

The mass is  4x2.21x108x7.85x10-6 = 6939 kg. The additional mass of the dia-
phragms of CHS profile 168.8/4.5 is 6.828x2320(10150+6029)x7.85x10-6 = 2012 
kg, together with the mass of the upper part (400 kg) the total mass of the tower is 
9351 kg. The optimum clearance is a2 = 12300 mm.  

5.6.12   Mass Comparison with the Tower Published by Rao (1995)  

Rao has optimized a 400 kV tower of high 44.3 m with lightning conductors 
(groundwires) of diameter 11 mm and electric conductors of diameter 31.77 mm, 
the ground clearance a2 = 8.84 m, rods of L-shaped angles with a bolted type con-
struction. The total mass was 11400 kg. Since the tower of Rao is very similar to 
the present tower, the comparison is realistic. It can be concluded that using  
CHS profiles instead of angles and optimizing the clearance a saving in mass of 
(11400-9351)/11400x100 = 18% can be achieved. 
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6.1   Minimum Cost Seismic Design of a Welded Steel Portal 
Frame with X-Bracing 

Abstract 
 

The calculation of the absorbed energy i.e. the area of the hysteretic loop for rods 
of circular and square hollow sections (CHS and SHS) has been worked out. The 
limiting points of the hysteretic loop have been determined on the basis of ex-
perimental results published in the literature. 

A square symmetric portal frame with four horizontal beams and four columns, 
carrying a silo is designed for vertical and seismic loads. Design rules of Euro-
codes 3 and 8 are used. X-bracing is applied, in which the compressive member 
absorbs the energy by a hysteretic cycle with overall buckling. The cost function 
for the braced portal frame is expressed in function of unknown dimensions of 
beams, columns and braces.  

The beams and columns are constructed from SHS profiles. All joints are fully 
welded. The design constraints are formulated for beams and columns on stress, 
overall buckling and admissible sway for unbraced frame. This sway has two main 
components: the sway of the vertical frames and the deformation of the beam due 
to bending in horizontal plane. The constraint on slenderness of braces is also  
important. 

6.1.1   Absorbed Energy of CHS and SHS Braces Cyclically 
Loaded in Tension-Compression 

Braces play an important role in the earthquake-resistant design of frames. The ef-
ficiency of bracing is characterized by the absorbed energy which can be obtained 
as the area of the hysteretic loop.  

Studies have shown that the first critical overall buckling strength decreases 
during the second and third cycle, but after a few cycles the hysteretic loop be-
comes stable. This degradation is caused by the Bauschinger-effect and by the ef-
fect of residual camber as explained by Popov and Black (1981). Unfortunately, 
these effects cannot be considered by analytical derivations, thus, the characteris-
tics of the stable hysteretic loop will be taken from the experimental data pub-
lished in the literature. 

Our aim is to derive simple closed formulae for the calculation of the area of 
the stable hysteretic loop. The derived formulae enable designers to analyze the 
effect of some important parameters such as the yield stress of steel, end restraint 
and cross-sectional shape, and to work out aspects of optimization, i.e. the increas-
ing of the energy-absorbing capacity of braces. 

The stable hysteretic loop is shown schematically in Fig. 6.1. The characteris-
tics obtained by experiments are summarized in Table 6.1. It can be seen that, for  
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η  and z1 the approximate value of  0.5 is predominantly obtained. The sum of 

relative axial shortenings  x x+ 1   varies in range of 5 - 14. On the basis of these 

data we consider the values η = =z1 0 5.  and  x0 = 1,  x1 = -5. 

 
Fig. 6.1 Characteristics of a stable hysteretic loop 

 

 

Table 6.1 Characteristics of the stable hysteretic loop according to Fig. 6.1 
 

Reference x0 x1 η z1 cross-section 

Jain 1980 2 -12 0.5 1 SHS 

Liu and Goel 1988 2 -10 0.5 0.5 RHS 

Matsumoto 1987 2 -10 0.5 0.5 CHS 

Nonaka 1977 4 -4 0.5 0.8 Solid square 

Ochi 1990 1 -10 0.5 0.5 CHS 

Papadrakakis 1987 1 -4 0.5 0.5 CHS 

Prathuangsit 1978 1 -12 0.5 0.5 I 

Shibata 1982 5 -5 0.5 0.5 I 

Another important problem is the local buckling. According to many authors, 
e.g. Lee and Goel (1987), it is recommended to avoid local buckling. Unfortu-
nately, one can find very few proposed values for the limiting D/t or  b/t  ratios,  
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in the case of cyclic plastic stress. For CHS Zayas et al. (1982) proposed   (D/t)L = 
6820/fy   where  fy   is the yield stress in MPa, thus, for  yield stress of 235 and 355 
MPa   one obtains 29 and 20, respectively. 

For SHS or RHS  Liu and Goel (1988)  proposed  (b/t)L  = 14  for  fy = 371 
MPa, thus, we take for 355 MPa   the value of 15 and for 235 MPa   15(355/235)0.5 
= 19. Sizes of SHS and RHS sections can be found in Appendices A, B. 

The limitation of the strut slenderness plays also an important role. API (1989)  
proposed  KL/r<80. 

The relationship axial force - axial shortening  )( Δ−P  (Fig. 6.2) has been de-

rived for CHS struts by Supple and Collins (1980) using the simple plastic hinge 
method: 

The bending moment at the middle of the rod is   M = aoP,  thus a0 = M/P. The 
plastic axial shortening is caused by curvature, so (Fig. 6.2) 

 

 
 

Fig. 6.2 Post-buckling behaviour and the related specific areas 
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Taking ( )L/xsinay π0=    we obtain 
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Fig. 6.3 Plastic stress distribution 

 
 

The squash load is .2 yy tfRP π=  The plastic stress distribution shown in Fig. 6.3 

can be divided into two parts, one of them is caused by the compressive force, the 
second is caused by the bending moment. The plastic compressive force is 
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from which 
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The bending moment of the plastic zone is 
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where 
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where α  is the end restraint factor, for pinned ends  1=α , for fixed ends 4=α . 

Using notations yx ΔΔ /= , z=P/Py, zo=Pcr/Py,  00 // zPPx ycryel === ΔΔ     

 Eq. (6.8)  can be written in the form 
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For  z<0.4  the following approximation is acceptable 

 

8/1)2/cos( 22 zz ππ −≈    and 4/1)2/(cos 222 zz ππ −≈       (6.11) 

 
and Eq.(6.10) takes the form 
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The areas shown in Fig. 6.2 can be calculated as follows: 
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It is possible to derive similar formulae for SHS struts. The results are as follows. 
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Expressing  z  from Eq. (6.17) we obtain 
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and the area in the post-buckling range is 
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We consider the stable hysteretic loop according to Fig. 6.4. The whole specific 
absorbed energy as the area shown in Fig.6.4 is 

 

2/5.102/5.010 minzxaaa plel
i

i −++=         (6.20) 

 

For ael and  apl  we use Eqs. (6.14), (6.15) or (6.19), but instead of  x0=z0   we cal-
culate with .5.0,00 == ηηη zx  zmin  is calculated using Eq. (6.13) or (6.18)  taking  

x=10  and instead of  x0 taking  0.5x0.   
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The energy absorbing capacity of a strut is  
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Fig. 6.4 Area of the stable hysteretic loop 

6.1.2   Seismic Design of a Portal Frame 

Consider a square symmetrical portal frame shown in Fig. 6.5 carrying a silo. The 
mass of the silo is divided to four forces F acting on the middle of beams. The 
seismic shear forces Fb are acting also in these points. 

6.1.2.1   Calculation of the Seismic Force 

According to Eurocode 8 (2008) 
 

λm)T(SF db 1= ,          (6.22) 

 
where Sd(T1) = the ordinate of the design spectrum at period T1, m = the silo mass, 
λ  = correction factor. Values of the parameters describing the recommended 
Type 1 elastic response spectra are as follows: ground type C is selected, S = 1.15, 
TB = 0.20, TC = 0.60, TD = 2.0. 
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T1 (s) is approximated by the expression: 
 

24040850 11
750

11 .T,H,.C,HCT . ====  s,        (6.23) 

 

for TB<T1<TC  ,     
q

.
SSd

52α= .                         (6.24) 

 
We use the highest value applied for Japan 400.=α , the behaviour factor 
q = 5.5. Thus Sd = 0.4x1.15x2.5/5.5 = 0.2091, required cross-section Class 1  
(plastic). 

For T1 < 2TC    ..850=λ  
Thus, the silo mass m should be multiplied by 0.85x0.2091 = 0.1777. The silo 

mass is 1000 kN, the seismic horizontal force acting on a beam is Fb = 
0.1777x250 = 44.25 kN. 

According to Eurocode 8 (2008) the seismic action has two perpendicular com-
ponents. Therefore this horizontal seismic force should be multiplied by a spatial 
factor. In the case of square symmetry of the structural plan, this factor is 1.3. 
Thus, the actual seismic force is Fb = 1.3x44.25 = 57.52 kN. 
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Fig. 6.5 Supporting X-braced portal frame structure with vertical and horizontal forces 
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The horizontal force acting on the braced frame is 

2/0bb FF −             (6.25) 

 
When the force calculated with Eq. (6.25) is negative then the horizontal force is 

0. In this case the force acting on the brace is  .2/bbr FF =  

Load combination: 121 ==+ ϕψψψ EkEk ;QG , since, for storage struc-

tures, .121 ==ψϕ   

In order to ease the fabrication we use here equal square hollow sections (SHS) 
(Fig. 6.7) for beams and columns, i.e. A1 = A2, h1 =b1 = b2 , t = t1 = t2. Thus, the 
moments of inertia are also equal Iz1 = I z2 = Iy1 = Iy2.. 

6.1.2.2   Normal Forces and Bending Moments in Vertical Frames (Fig. 6.6) 

According to Glushkov et al. (1975) 
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Fig. 6.6 Diagrams for the bending moments and normal forces of a frame 

6.1.2.3   Geometric Characteristics of the Square Hollow Section (Fig. 6.7) 

Areas and moments of inertia are calculated according to DASt Richtlinie 016 
(1986) 

Area of the cross-section for columns and beams 
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moment of inertia for columns and beams 
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where b1 = h1. 

section modulus for columns and beams 
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Fig. 6.7 Dimensions of a square hollow section (SHS) 

6.1.2.4   Calculation of the Elastic Sway  
 

 ue = uf + ub + ut + ut1 ,          (6.34) 
 

where uf = the sway of the frame, ub = displacement due to bending of a beam in 
horizontal plane, ut = beam displacement due to frame corner angle deformation, 
ut1 = beam displacement due to torsion. 

 

2
3

11

1
3

211
2

1
3

111
2

x
EI

L
B

m
B

M

x
EI

H
B

m
B

M

x
EI

H
A

m
A

M

fu ++= ,         (6.35) 

 
where   

 

H
k

k
H;

H

k

k
Am;HbF

k

k
AM

16

13
1216

13
116

13
1 +

+=
+
+=

+
+= ,       (6.36) 



6.1   Minimum Cost Seismic Design of a Welded Steel Portal Frame with X-Bracing 121
 

LxI

HxI
k;H

k

k
H;

H

k

k
Bm;HbF

k

k
BM

1

2
16

3
2216

3
116

3
1 =

+
=

+
=

+
= ,       (6.37) 

 
The displacement ub due to two horizontal forces Fb in the horizontal plane of the 
frame with rigid corners is calculated as follows. The corner bending moment M 
can be obtained from the equation of angular deformations (Fig. 6.8) 
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Considering Eq. (6.38) one obtains 
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The displacement due to angle deformation of the beam caused by the frame cor-
ner angle deformation can be obtained from 
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Finally, the beam deformation due to torsion is 
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6.1.2.5   Constraint on Sway Limitation 

The allowable sway is calculated as follows. The elastic displacement for ductile 
non-structural elements should fulfil the following limitation 
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Fig. 6.8 Bending moment diagram and calculation of angular deformations due to forces Fb 
in the horizontal plane 
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Importance class for power plants is IV. Structural height H = 5000 mm. The rec-
ommended safety factor for importance class IV is 411 .=γ . The reduction factor 

40.=ν . Behaviour factor q = 4 . 

6.1.2.6   Local Buckling Constraints 

For SHS columns and beams of section class 1 (plastic) the constraint is given by: 
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For braces   .19/ ≤tb           (6.45) 

6.1.2.7   Stress Constraint for the Columns 

According to Eurocode 3 (2005) the SHS section is not susceptible to torsional de-
formations, thus 1=LTχ , kyx = 0 and the second constraint in EC3 should not be 

considered. 
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The value of Ky1 and Kx1 are taken according to Eurocode 3 (2005) 
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6.1.2.8   Stress Constraint for the Beams 
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The flexural buckling factor is 
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the effective length factor is Ky2 = 0.5,   
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E is the elastic modulus. 
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min.2χ   is calculated from ( )222 zymax. ,max λλλ = . 
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6.1.2.9   Investigation of the Joint of the Beam and Brace 

Constraint on the beam (chord) plastification 
For a Y joint of SHS profiles according to Static Design Procedure (2009) 
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fy1 is the yield stress of the beam, t1 = t2  thickness of the beam 
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b the brace width, b1 the beam width 
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N0 is the compression force in the beam, A = A2 is the cross-section area of the 
beam. 

Constraint on chord punching shear 
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6.1.2.10   The Cost Function 

The cost function includes the material, fabrication and painting costs as follows  
 

K = KM + KF + Kp,   
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1 10857 −== x.,VkK MM ρρ kg/mm3,       (6.64) 

 
V1 = V + Vb + Vh,            (6.65) 

 
Volume of the frame  
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Volume of X-braces   
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volume of head plates   
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Number of assembled elements 12=κ , with braces 20, the welding cost factor 
and the difficulty factor for a spatial structure  kw = 1.0 $/min,  Θ = 3, the factors 
for welding position to be multiplied with welding times are as follows: downhand 
1, vertical 2, overhead 3.  

The welding cost  
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Welding time for the connection of a SHS beam to a SHS column with 2 vertical, 
one overhead and one downhand single bevel (1/2V) butt SMAW weld of size t1 
and length b1 
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welding time for the connection of a head plate to the frame corner with overhead 
fillet welds of size 5 mm and length 6h1 and with downhand fillet welds of length 
2h1 
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Welding time for joints of braces to beams with fillet welds 
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Welding time for joints of braces together  
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Painting cost 
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The superficies to be painted 
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6.1.2.11   Optimization and Results 

Numerical data: E = 2.1x105 MPa,  G = 0.8x105 MPa,  H = L = 5000 mm, F = 250 
kN, 2Fb = 1.3x88.85 = 115.50 kN. 

The suitable SHS for columns and beams are selected using a cold-formed SHS 
catalogue EN 10219. Since the minimum thickness is limited by the local buckling 
constraint (Eq.28), only that thicknesses can be used, which are larger than this 
limit, e.g. for b1 = 220   t1 = 6.3, for b1 = 250   t1 = 8, for b1 = 260   t1 = 8 and for 
b1 = 300   t1 = 10 mm,  for b1 = 400 t1 = 12 mm Therefore the number of SHS to 
be investigated is limited. 

  
Table 6.2 Data for some brace profiles, dimensions in mm 

 
b t b/t Ab mm2 r λ Fbr kN 

100 6 17 2160 37.9 70 1464 
90 5 18 1640 34.3 77 1037 
80 5 16 1440 30.3 87 816 

 
It should be mentioned that the values of Frb are larger than the required value 

of 115.05 kN. 
Note that the frame without braces fulfils the constraint on sway, since the 

sway is 10.1<16.7 mm. 
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Table 6.3 Volume and cost in function of the dimensions of the frame profiles. The values 
of C1 and C2 show that the profile of beams and column fulfil the constraints on stress. 

 
F kN Fb kN Beam C1 C2 Braces Vx10-8 mm3 K $ 

250 115.05 300x16 0.869 0.979 --- 6.941 11540 

250 0 300x10 0.625 0.933 90x5 5.549 9596 
250 0 300x10 0.625 0.933 80x5 5.435 9389 
250 0 300x10 0.625 0.933 70x4 5.192 8975 

 
 

 

Fig. 6.9 The welded frame corner 

It can be seen that the structural volume and cost can be decreased using 
braces. The measure of savings depends on the brace profile. Table 6.2 shows that 
the profile 80x5 does not fulfil the requirement of 80≤λ , thus it is recommended 
to use profile 90x5 (Table 6.3), for which the savings in volume is 20% and in  
cost 17%. 

Note that the braces of profile 90x5 fulfil the constraint on chord plastification 
(N* = 198.1 > 163.3 kN) and on punching shear (N1

* = 539.7 > 163.3 kN), since 
the acting Nbr is only 115.05 kN, although the capacity Fbr given in Table 6.2 is 
larger than 115.05 kN. 

6.1.2.12   Conclusions 

The horizontal seismic forces and the allowable horizontal sway of a simple frame 
is calculated according to the Eurocode 8 . The frame with rigid joints supports a 
silo, the failure of which caused by earthquake can be dangerous. The stress  
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constraints for columns and beams are formulated according to Eurocode 3 . The 
frame is welded from SHS profiles. For the fabrication reasons the section width 
of columns and beams should be equal. Thus, the unknowns are the width and 
thickness of the basic frame and the braces The minimum thicknesses are limited 
by the local buckling constraint for section of class 1 (plastic). 

The detailed calculation of sway due to bending deformations of the frame in 
vertical and horizontal plane and due to the torsion of the beams is presented. The 
objective function is the structural volume or cost.  

The optimum cross-sections are selected from a discrete series for SHS using a 
systematic search. Calculating the sway components it is found that the deforma-
tion due to torsion of beams and the sway from the angular deformation of frame 
corners can be neglected. 

The governing constraints are the constraints on stress in beams and columns as 
well as the limitation of local and overall slendernesses of braces. 

The use of braces results in significant savings in weight and cost of the whole 
structure. 

6.2   Seismic Design of a V-Braced 3D Multi-storey Steel Frame 

Abstract 
 

The seismic design process is detailed for a spatial V-braced three-bay  
three-storey steel frame. In the case of a 3D frame the seismic forces should be 
multiplied by a factor prescribed in Eurocode 8. In this way the spatial frame can 
be regarded as a plan one. The V-bracing rods of circular hollow section (CHS) 
should absorb the seismic energy, but their overall buckling resistance should be 
smaller than the seismic rod force. The interstorey drift is so small that the braced 
frame can be designed as a non-sway one.  

The beams of rolled UB profile are designed for normal force and bending 
moment, including the effect of the unbalanced force due to the buckling of 
braces. The columns of CHS profile are designed for compression force. The de-
sign of a bolted beam-to-column connection and a bolted joint of a brace is also 
treated. MathCAD algorithms are used to fulfil the design constraints. 

6.2.1   Introduction 

The aim of the study is to show by a numerical problem the seismic design  
process of a spatial steel frame including the effect of concentric V-bracings. In 
the design of braces the energy absorbing capacity is also considered using the  
developed own formulae. 

In the design of braces, beams and columns MathCAD algorithms are used in 
order to exactly fulfil the constraints, i.e. to obtain the most economic structure. 
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The rules of Eurocodes 3 and 8 are applied. Circular hollow sections are used for 
braces and columns and rolled UB profiles are applied for beams. 

The design of the 3D frame is reduced to a planar one multiplying the seismic 
forces by a factor of 1.3. The beams and columns are designed as parts of a  
non-sway frame. The braces are designed to allow the overall buckling and to ab-
sorbing the seismic energy. In the design of beams the unbalanced force due to 
buckling of the compression brace is also considered. 

The beams are subject to compression and bending and the columns are loaded 
by compression. In the design of beams and columns the actions due to seismic 
forces should be multiplied by a factor of 1.25. The design of beam-to-columns 
connections and the joints of braces is included. 

A brief literature survey of V-braced steel frames is given as follows. 
Medhekar and Kennedy (1999a,b) have investigated the seismic design of a 

concentrically braces single- and two-storey building using hollow section braces 
and W-section columns. 

Mualla and Belev (2002) have shown a new friction damper device used for  
V-bracing. 

Moghaddam et al. (2005) have treated the design of concentrically braced steel 
frames. The cross sections of beams and columns were unchanged during the op-
timization process and the braces have been designed to minimize the storey drift. 

Longo et al. (2008) have designed a V-braced 3 bay 4 storey 3D building 
frame. HE European wide flange beam profiles have been used. 

Ragni et al. (2011) have proposed analytical expressions for dissipative brac-
ings and used them for the design of  5-bay 4- and 8-storey frames. 

Roeder et al. (2011) have elaborated a simple design procedure for concentri-
cally braced gusset plate connections considering the yield mechanism of such 
joints. In the appendix a detailed numerical example is given. 

The design steps of the study are as follows. 
 

1. Main dimensions of the given frame 
2. Calculation of non-seismic and seismic loads 
3. Design of circular hollow section (CHS) V-bracings 
4. Design of rolled I-section beams 
5. Design of CHS columns 
6. Design of the beam-to-column connections and joints of braces 

6.2.2   Main Dimensions of the Given Frame 

The investigated frame is a 3D symmetric in plan, three-bay three-storey frame 
with V-bracings (Figure 6.10). 
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6.2.3   Loads 

6.2.3.1   Vertical Loads 

Dead load (G): roof  5.5 kN/m2, floors 5.0 kN/m2, live load (Q) 2.0 kN/m2 
 

3.0,, 22 ==+ ψϕψψψQG ,  for roof  11 =ϕ , for floors  5.02 =ϕ  

 
Roof:   5.5 + 0.3x2 = 6.1 kN/m2,   floors:  5+ 0.15x2 = 5.3 kN/m2 

For the whole area of 8x6x6 = 288 m2 and for all storeys 
 

W = 6.1x288 + 2x5.3x288 = 4809.6 kN 
 
 

L

L

L

L

L L

h

h
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Fig. 6.10 Elevation and ground-plan of the investigated frame. V-bracings are used in the 
outer plans, the central field is not loaded. L = 6 m, h = 3.6 m. 

6.2.3.2   Seismic Load 

According to Eurocode 8 (2008) the horizontal seismic force can be calculated as 
 

λmTSF db )( 1=            (6.76) 

 
For a centrally braced frame of height  3x3.6 = 10.8 m 

 

5.2,298.08.10050.0 75.0
1 === qxT           (6.77) 
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For a subsoil of class C  S = 1.15, TB = 0.2, TC = 0.6, TD = 2, 
For  TB < T1 < TC, calculating with ag = 0.4 m/s2 
 

46.015.14.0/5.2 === xqSxaS gd  and  85.0=λ        (6.78) 

             18806.480985.046.0 == xxFb kN 

 
Distribution of the seismic force for roof and floors 
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These horizontal seismic forces should be multiplied by 1.3 for the symmetric 3D 
frame and divided by 2 for a braced plane. Thus, for a braced plane the following 
horizontal seismic forces are acting (Figure 6.11):  F1 = 654, F2 = 379, F3 = 189 
kN. 

6.2.4   Design of CHS V-Bracings 

6.2.4.1   Constraint on Tensile Stress 

235, =≤ yybb ffAS  kN           (6.80) 

 
where 

 
LFsSb /=            (6.81) 

 
is the tensile/compression force in a brace, F is the sum of horizontal seismic 
forces acting above the brace. 
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6.2.4.2   Constraint on Overall Buckling 

bybcr SfAS ≤= χ ,  
22
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λφφ
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=          (6.82) 

since the compression brace should buckle to absorb the seismic energy. 
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k = 0.7 for 1b brace, k = 1 for 2b and 3b braces. 
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6.2.4.3   Constraint on Strut Slenderness for Seismic Zone 

80≤λ                 (6.86) 

6.2.4.4   Constraint on Energy Absorption Capacity  

Using the formulae derived in Chapter 6.1 
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The CHS dimensions are taken according to EN10210-2. 

 

 
 

Fig. 6.11 Horizontal seismic forces:  F1 = 654, F2 = 379, F3 = 189 kN. b - braces,  
B – beams. 

 

C – columns.  ( )22 2/Lhs +=  

6.2.4.5   Design Results 

Summary of the calculation results are given in Table 6.4. 

 
Table 6.4 Characteristics of bracings. Dimensions in mm, forces in kN. 

 
Brace F Sb Dxt Ab mm2 Tension 

Eq. 6.80 
λ 

Eq. 6.86 
Scr 

Eq. 6.82 
Fbr 

Eq. 6.87 
1b 1222 955 193.7x8 4670 1097 71.4 822 4647 

2b 1033 807 177.8x8 4270 1003 71.4 709 3995 
3b 654 511 177.8x5 2710 637 76.7 455 2558 

 
It can be seen that the braces fulfil the constraints. Fbr is much higher than  

F, since the decrease of the brace dimension is limited by the prescription of   
λ max = 80. 

Let us calculate the deformation of the compressed brace 3b during the overall 
buckling. Using the formulae derived in the Section 6.1 
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39.224.015.2 =+=Δ mm. 
 

The interstorey drift is the projection of the above value   
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This small value of the interstorey drift shows that the braced frame can be de-
signed as a non-sway one. 

6.2.5   Design of Beams 

Beams of UB profile are designed according to EC8 for vertical and seismic loads 
as members of a non-sway frame neglecting the support effect of bracings. The 
seismic forces are multiplied by 1.25. 

Design of the beam 1B (Fig. 6.11). 
 

fy = 335 MPa 
 

Compression force is   
 

N = 1.25x1222 = 1528 kN 
 

Vertical load 
 

p = 5.3x3 = 15.9 kN/m 
 

Bending moment from vertical load as a beam built-up at the ends 
 

M = pL2/12 = 71.55 kNm           (6.95) 
 

According to Eurocode 8 (2008) the beam should be designed also for the unbal-
anced force due to the overall buckling of the compression brace. For the beams 
built-up at the ends 

 
8/,/ VLMLFhV V ==           (6.96) 

 
Stress constraint for N and M+MV  considering also the lateral torsional buckling 
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The results are summarized in Table 6.5. 

 
Table 6.5 Characteristics of beams for braced fields. Stresses in MPa. 

 

brace N (kN) p (kN/m) V (kN) MV (kNm) Profile UB Stress constraints 
Eq.(6.97) Eq.(6.98)  

1B 1528 15.9 733.2 550 610x305x149 0.806<1, 0.758<1 
2B 1291 15.9 621.0 466 610x229x140 0.903<1, 0.952<1 
3B 818 18.3 392.4 294 610x229x101 0.938<1, 0.920<1 
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The beams fulfil the design constraints. 
For the other non-braced fields, where MV = 0 the following beam dimensions 

can be used (Table 6.6). 
 

 
Table 6.6 Characteristics of beams for non-braced fields. Stresses in MPa. 

 
brace N (kN) p (kN/m) V (kN) MV (kNm) Profile UB Stress constraints 

Eq.(6.97) Eq.(6.98) 
1B 1528 15.9 733.2 0 610x229x125 0.35<1,  0.89<1 
2B 1291 15.9 621.0 0 610x229x113 0.35<1,  0.86<1 
3B 818 18.3 392.4 0 533x210x82 0.41<1,  0.94<1 

6.2.6   Design of Columns 

Design of column 1C for overall buckling. 
Compression force from horizontal seismic forces 
 

775
6

6.3
103325.1 == xN h  kN 

 
Compression force from vertical loads 
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2

63.521.6
1.1

2

=+= x
Nv  kN 

 
Total compression force 

 
1106=+= vh NNN  kN 

 
The effect of bending moments can be neglected, since the inertia of columns is 
much less than that of beams. 

Self masses of beams, columns and braces as additional loads for columns are 
also taken into account: for column 3C  8 kN, for 2C 21 kN and for 1C 37 kN. 

The columns can be designed for compression force only. The calculations 
show that the bending moments can be neglected, since the ratio of moments of 
inertia of beams and columns is very small. 

Overall buckling constraint (see Section 6.2.4.2) 
 

yf
A

N χ≤ , fy = 235 MPa        (6.107) 

 
For the column 1C k = 0.7, for columns 2C and 3C k = 1. 
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Characteristics of CHS profiles are taken from EN 10210-2. Sizes can be found 
in Appendix C. 

Design results are given in Table 6.7. 

 
Table 6.7 Characteristics of  CHS columns 

 
Column N (kN) CHS profile A (mm2) r (mm) Constraint  

Eq. (6.107) (MPa) 
1C 1143 219.7x8 5310 74.7 215< 219 
2C 737 193.7x8 4670 65.7 158< 198 
3C 129 114.3x3.6 1250 39.2 103< 143 

 
The column profiles fulfil the design constraints. 

In order to show the economy of CHS profiles let us compare them with UC 
profiles. Since UC profiles are open sections, constraint on flexural-torsional 
buckling should also be taken into account with the following formulae (Farkas 
and Jármai 1997). 
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The design results are given in Table 6.8. The overall flexural buckling constraint 
is checked according to formulae of Section 3.2 with respect to buckling around 
the axis z.  

 
Table 6.8 Characteristics of UC columns. Stresses in MPa. 

 
Column N (kN) UC profile A mm2 Constraint  

Eq.(6.107) 
Constraint   
Eq.(6.108) 

1C 1143 203x203x52 6628 172<195 172<190 
2C 737 203x203x46 5873 125<163 125<185 
3C 129 152x152x23 2925 44<122 44<166 

 



6.2   Seismic Design of a V-Braced 3D Multi-storey Steel Frame 139
 

The comparison of cross-sectional areas in Tables 6.7 and 6.8 shows the econ-
omy of CHS profiles over UC sections. Disregarding the column 3C for which the 
minimal UC profile is used, mass savings about 20% can be achieved by using 
CHS profiles. 

6.2.7   Design of Joints 

6.2.7.1   Beam-to-Column Connections 

Let us check the bolts for 1B beam as shown in Fig. 6.12. 
It is supposed that the bending moment causes forces only in the bolts of flange 

splices.  
The shear resistance of bolts M27 of grade 10.9 (ultimate tensile strength 1000 

MPa) according Eurocode 3 Part 1-8 is 
 

4.458
100025.1

10005730525.02

2

===
x

xxxAfx
F

M

bu
R γ

kN        (6.110) 

 
 

Fig. 6.12 Beam-to-column connection 

 
The forces in flange bolts caused by the bending moment  M = 550 kNm are 
 

FBM = 550000/602.6 = 912.8 kN, 
 

For one bolt  FBM1 = 912.8/4 = 228.2 kN. 
Forces in bolts from normal force N = 1532 kN  FBN = 1532/13 = 117.1 kN. 
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Force in flange bolts from M and N 
 

Ff = 226.2 + 117.1 = 345.3 < 458.4 kN, OK. 

The shear force in the connection from V and p 
 

3.4147.476.366
2
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2

2.733

22
=+=+=+= xpLV

Q  kN      (6.111) 

 

Force in one web bolt  QW = 414.3/5 = 82.9 kN. 
Shear force from N  FBN = 117.1 kN. 
Shear force from Q and N in one web bolt 
 

4.4585.1431.1179.82 22 <=+=WF  kN, OK. 

 
The connections of rolled UB profile beams and CHS columns can be realized as 
shown in Fig. 6.12.  

The beams are connected be bolted splices to flange and web plates welded to 
the columns. 

 

 
 

Fig. 6.13 Bolted joint of a brace 

6.2.7.2   Joints of Braces 

The braces are connected to the columns and beams by bolted joints as shown in 
Fig. 6.13. 
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In the Fig. 6.13 the following dimensions are applied. The normal force acting 
in the brace 1b is F = 955 kN. According to Eurocode 3 Part 1-8 (2002) the load 
capacity of four M30 bolts of grade 10.9 with ultimate tensile strength of 1000 
N/mm2 is 
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The bearing resistance of 4 bolts for the plate thickness of  t = 8 mm is 
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The load capacity of a = 8 mm size fillet welds is (for fy = 235 MPa) 
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The load capacity of the a = 8 mm fillet weld connecting the CHS brace 
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6.2.8   Conclusions 

The overall buckling resistance of V-bracings should be smaller than the rod force 
caused by seismic forces, but the energy absorption capacity of braces should be 
large enough. The beams in the braced bay should be designed also for unbalanced 
vertical force due to buckling of compression braces. According to Eurocode 8, in 
the design of beams and columns the actions due to seismic forces should be mul-
tiplied by a factor of 1.25. 

Since the interstorey drift of braced frame is very small, it can be designed as a 
non-sway one. The beams should be designed for compression force and bending 
moment including lateral- torsional buckling, while the columns are designed for 
overall buckling. 

The columns are designed using also rolled UC profiles for the comparison 
with CHS profiles. In this case the open UC profiles should be checked against 
flexural-torsional buckling. The comparison shows that mass savings of about 
20% can be achieved by using CHS profiles instead of UC sections. 

In the design of braces, beams and columns special MathCAD algorithms are 
used to achieve economy due to fulfilling the design constraints as most exactly as 
possible. 
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7.1   Minimum C ost Design of an Orthogonally  Stiffened Welded Steel Plate  

7.1   Minimum Cost Design of an Orthogonally Stiffened Welded 
Steel Plate with a Deflection Constraint 

Abstract 

An assembly desk is constructed as a square plate stiffened by an orthogonal grid 
of ribs. The residual welding deflection is calculated applying the Okerblom’s 
method. When the ribs are tacked to each other and to the base plate before weld-
ing, then the deflection is decreased by grid effect. The base plate thickness and 
the dimensions of stiffeners are optimized to minimize the cost and to fulfil the de-
flection constraint.. The optimization is performed with and without grid effect 
and it is shown that the grid effect decreases the cost significantly. 

7.1.1   Introduction 

The present study deals with the design of an assembly desk, for which the deflec-
tion constraint assures the exact operation, fitness for assembly and fabrication of 
structural parts. The sufficient stiffness is guaranteed by using a welded stiffened 
plate construction. The shrinkage of eccentric welds connecting the stiffeners  
to the base plate causes deflections, which should be considered in the desk  
design. 

In the case of a square desk an orthogonal stiffening is used. The main aim of 
this study is to show how to calculate the residual welding deflections in the case 
of an orthogonally stiffened plate. We have adapted the Okerblom’s calculation 
method worked out for longitudinal welds of a single straight beam. We apply this 
method for the case of orthogonal stiffenings. 

An orthogonally stiffened plate can be fabricated by two different welding se-
quences as follows: (a) welding of continuous stiffeners in one direction to the 
base plate with a cost effective welding method (SAW), then welding the inter-
rupted stiffeners in other direction using GMAW for longitudinal welds and 
SMAW for nodes of connecting stiffeners, (b) the whole stiffened plate is assem-
bled by tacking of stiffeners to the base plate and to each other, then welding of 
longitudinal welds by GMAW and node welds by SMAW. 

Since in the method (b) the nodes can transfer the bending moments, the resid-
ual deflections can be calculated as a grid structure. The Okerblom’s method is 
used for a grid structure. It is shown that the grid-effect decreases the deflections 
significantly. In the case of open section stiffeners the torsionless grid calculation 
method is used. 

The cost function for both welding sequences are formulated and minimized 
searching for optimum base plate thickness and stiffener dimensions, while the 
number of stiffeners is fixed. The more advantageous welding sequence is deter-
mined by cost comparison. 
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7.1.2   Residual Welding Deflection from Longitudinal Welds  
of a Straight Beam 

The books of Okerblom et al. (1963), Vinokurov (1977), Masubuchi (1980) and 
Kuzminov (1974) give suitable calculation methods. The Okerblom’s method 
gives relatively simple formulae, so it is adapted and applied (Farkas and Jármai 
1997, 1998, 2003, 2008, Farkas 2002).  

In this method it is assumed that (a) the coefficient of thermal expansion and 
the Young modulus are independent from the temperature, (b) the deflections are 
in the elastic range, the Hooke-law is valid, (c) the cross sections of the beam will 
be planar after deflection, (d) the cross section is uniform, (e) the beam is made of 
one material grade, (f) the thermal distribution is uniform along the length of the 
beam and steady state. 

The thermal shrinkage impulse AT, which causes the residual stresses and de-
formations in the structure can be calculated as 
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Q ==η , U arc voltage, I arc current, vw speed of welding, co 

specific heat, η o coefficient of efficiency, q0 is the specific heat for the unit 

welded joint area (J/mm3), Aw is the welded joint area. It can be seen that this for-
mula contents all the important material and welding parameters. Thus, it can be 
used not only for steels but also for other materials, e.g. for aluminium-alloys. 

For a mild or low alloy steels, where oα =12x10-6 [1/Co], coρ = 4.77x10-3 

[J/mm3/Co], the thermal impulse is   
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and the basic Okerblom formulae for the strain at the centre of gravity and the 
curvature are as follows 
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The minus sign means shrinkage. Furthermore 
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is the thermal impulse due to welding, A cross-sectional area, Ix moment of inertia 

of the beam cross-section, Aw  cross-sectional area of the weld, 61085.7 −= xρ  

kg/m3  is the density of steel,  3108.8 −= xNα  kg/Ah (Amper-hour) is the coeffi-

cient of penetration..   
With values of U = 27V, 7.00 =η   for butt welds 

QT (J/mm) = 60.7Aw (mm2),  (7.6)

for SMAW (shielded metal arc welding) fillet welds 

QT = 78.8aw
2  (7.7)

and for GMAW (gas metal arc welding) of SAW (submerged arc welding) fillet 
welds 

QT = 59.5aw
2.  (7.8)

aw is the fillet weld size. 

 

Fig. 7.1 Calculation of the maximum deflection for a simply supported welded beam of 
constant cross-section 

The maximum deflection due to shrinkage of a single eccentric longitudinal 
weld in the case of a simply supported beam of constant cross-section can be cal-
culated using the correlation between the distributed load p, bending moment M 
and deflection w 
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i.e. the deflection can be obtained by calculating the bending moment considering 
the bending moment diagram as a virtual loading (Fig. 7.1) 
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The longitudinal shortening is 

LL GεΔ =   (7.12) 

which is important for fabrication to enable the assembly of structural  
components. 

 

Fig. 7.2 Deformations of a plate stiffened by two perpendicular stiffeners 

7.1.3   Residual Welding Curvatures in an Orthogonally Stiffened 
Plate 

Fig. 7.2 shows the deformations of a plate stiffened by two perpendicular stiffen-
ers. First, the stiffener 1 is welded and its point A moves to point B and the stiff-
eners became the form of 1’ and 2’. Secondly, welding of stiffener 2 causes a  
further curvature and the stiffeners became the form of 1’’ and 2’’. Thus, the cur-
vatures are added to each other. In the case of two stiffeners in a plate of square 
symmetry the curvatures double. It is also the case of more stiffeners of square 
symmetry without grid-effect. 
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7.1.4   The Grid Effect 

This effect is illustrated by an example of a rectangular plate orthogonally stiff-
ened by one-one stiffener (Fig. 7. 3). When the stiffeners are previously tacked to 
the base plate and to each other, the node can transfer the bending moments and 
the grid-effect acts. The unknown force X acting in the node A can be calculated 
using the force method, i.e. from a deflection equation expressing that the  
deflection of two stiffeners caused by welding curvature and by force X are  
identical. 

 

Fig. 7.3 A plate orthogonally stiffened by one-one stiffener 
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Using the method described in Section 2, the deflection of the stiffener 1 from 
the welding curvature is 
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The deflections of the stiffener 2 are 
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The deflection equation can be expressed as 

XMXM wwww 2211 +=−   (7.17) 

the unknown force from Eq (17) is 
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and the deflection of point A considering the grid-effect 
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and without the grid-effect 
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If  C1 = C2=C  

26363.0 CawA =   (7.21)

and 

2
0 5.1 CawA =   (7.22) 

i.e. the grid-effect decreases the deflection by 57%. 
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7.1.5   Assembly Desk of Square Symmetry with 4-4 Stiffeners 

We assume that the stiffeners are previously tacked to the base plate and to each 
other,  the grid-effect acts. In the nodes of 1, 4, 6 and 7 in the Fig. 7.4  forces do 
not act because of symmetry, in the others the same force X acts. This force can be 
determined using a deflection equation. This equation expresses that, for example, 
the deflection of node 2 caused by the shrinkage and force X from the stiffener 1-
1’ and 2-8 is the same. 

7.1.5.1   Solution of the Gridwork from Shrinkage of Welds (Fig. 7.4) 

Deflection of the stiffener 1-1’ at the node 2 from the shrinkage is 
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Deflection of the stiffener 2-8 at the node 2 from the shrinkage 
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and from forces X 

750

11

1550525

2
)82(

322

2

XLLXLLXL
w X =−=−   (7.26)

The deflection equation can be expressed as 
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The unknown force X from Eq. (26) 
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Fig. 7.4 A plate orthogonally stiffened by 4-4 stiffeners 
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The maximum deflection at the node 4 considering the grid-effect is 
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The deflection without the grid-effect, according to the statement detailed in  
Section 3, is calculated as double of the deflection of a stiffener 
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i.e. the grid-effect decreases the deflection by 42%. 

 

Fig. 7.5 Bending moments from uniformly distributed normal load 

7.1.5.2   Solution of the Gridwork from the Uniformly Distributed Normal 
Load (Fig. 7.5) 

Since this load acts after the fabrication, the calculation considers the grid effect. 
The deflection equation for the unknown force Xp is the same as in  

Section 7.2.5.1. 

)82()82()'11()'11( 2222 −+−=−−− XppXpp wwww   (7.31) 

The bending moments in Fig. 7.5 are as follows: 

3
2

3
1 2

3
; paMpaM ==   (7.32) 

The corresponding deflections are expressed as 

( ) 55
5

5
2 8

31

324

125
'11 papa

pa
pawEI pxe =−−=−   (7.33) 

( ) 5
55

5
2 24

29

64848

125
82 pa

papa
pawEI pxe =−−=−   (7.34) 
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( ) 3

3

14
'11 aXwEI pxpxe =−   (7.35) 

( ) 3
2 6

11
82 aXwEI pxpxe =−   (7.36) 

From the deflection equation one obtains 

22

975

16

39

16
pLpaX p ==   (7.37)

The maximum bending moment at the middle of nodes 4 and 6: 

33
3

max 9728.1
624

1231

16

25
papaaX

pa
M p ==+=   (7.38) 

The maximum deflection at the node 4 is 

( ) ( )
xxx

xpp EI
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EIx

apx

EI

ap
www

5
1

5
1

5
1

424

0374.5

396

1617

8

31
82'11 =+=−+−=   (7.39) 

where the intensity of the normal load without safety factors is 

2101
L

V
pp ρ+=   (7.40)

and the moment of inertia Ix is given  in Section 7.1.6.2. 

7.1.6   Minimum Cost Design of the Assembly Desk with 4-4 
Stiffeners Considering the Grid-Effect 

Numerical data: L = 6000, a = 1200 mm,  p0 = 5000 N/m2 = 5x10-3 N/mm2,  
fy = 235, fy1 = fy/1.1, E = 2.1x105 MPa 

7.1.6.1   Stress Constraint 

The factored intensity of the uniformly distributed normal load considering also 
the self mass 

210 1.15.1
L

V
pp ρ+= ,  wLhttLV 82 +=          (7.41) 

1
max

max y
xe

f
W

M
≤=σ   (7.42) 

Ge

xe
xe y

I
W =   (7.43) 
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Fig. 7.6 Dimensions of a stiffener 

Cross-section area of a stiffener (Fig. 7. 6) 

athtA w +=   (7.44) 

The effective width of the base plate according to the DNV design rules 

( )
2

22.0

p

p
e

a
a

λ
λ −

= , 
E

f

t

a y
p 525.0=λ               (7.45) 

Effective cross-section area is 

tahtA ewe +=   (7.46)

The moment of inertia of the effective stiffener cross-section 
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where the distance of the gravity centre is 

2
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A
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w
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+=   (7.48)

7.1.6.2   Deflection Constraint 

1000
1379.00374.5 2

5
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L
wCL

EI
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=≤+=    (7.49)

where 

2
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V
pp

ρ+=   (7.50)
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yQ
xC 310844.0 −=   (7.53) 

25.59 wT aQ = ,   3,4.0 min == www ata mm  (7.54) 

2

t
yy GT −=   (7.55) 

7.1.6.3   Cost Function 

Welding of the base plate with 3 butt welds from 4 strips (SAW) assuming that the 
plate thickness t>15 mm: 

( )L3t10x1033.0x3.1V4kK 9.13
11w1w

−+= ρΘ   (7.56)

where   kw = 1 $/min, Θ1 = 2,  V1 = L2t 
Welding of the continuous and intermittent stiffeners to the base plate and the 

intermittent stiffeners to the continuous ones in 16 nodes: 

( )1
2
w

3
32w4w TL16a10x3394.0x3.1V25kK ++= −ρΘ   (7.57) 

hxaxxT w 416107889.03.1 23
1

−= ,   Θ2 = 3   (7.58)

wLhtVV 813 +=   (7.59)

Painting cost 

KP = kPS,    LhLS 162 2 +=   (7.60)

kP = 28.8x10-6 $/mm2 

Material cost 

kgkVkK MMM /$1,3 == ρ   (7.61)

Total cost 

PwwM KKKKK +++= 41   (7.62)
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7.1.6.4   Results of Optimization 

Optimization is performed using a MathCAD algorithm. Results are summarized 
in Table 7.1. 

Table 7.1 Results of optimization considering the grid effect. Dimensions and deflections 
in mm. The admissible deflection is 6 mm. 

h  tw t wmax K ($) 
240 18 23 5.95 16490 
250 18 21 5.87 15850 
260 19 19 5.95 15670 
270 20 18 5.96 15920 
280 20 17 5.88 15700 
290 21 17 5.77 16370 

 
The optimum is marked by bold letters. The stress constraint is passive, in the 

case of the optimum solution (h = 260 mm) σmax = 80 < 213.6 MPa. 

7.1.7   Minimum Cost Design of the Assembly Desk without Grid 
Effect 

7.1.7.1   Stress Constraint 

The factored intensity of the uniformly distributed normal load considering also 
the self mass 

2
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101 1.15.1
L

V
pp ρ+= ,  (7.63) 

111
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1 8 wtLhtLV +=   (7.64) 
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≤=σ   (7.65) 

3
11max 9728.1 apM =   (7.66) 
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1
1

Ge
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xe y

I
W =   (7.67) 

Cross-section area of a stiffener  

1111 atthA w +=   (7.68)
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The effective width of the base plate  
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Effective cross-section area is 

11111 tathA ewe +=   (7.70)

The moment of inertia of the effective stiffener cross-section 
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where the distance of the gravity centre is 
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7.1.7.2   Deflection Constraint 
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7.1.7.3   Cost Function 

Welding of the base plate with 3 butt welds from 4 strips (SAW) assuming that the 
plate thickness t1>15 mm: 

( )LtxxVkK ww 3101033.03.14 9.1
1

3
11111

−+= ρΘ   (7.80)

where   kw = 1 $/min, Θ1 = 2,  V11 = L2t1. 
Welding of four continuous stiffeners with double fillet welds (SAW) 

( )LaxxVkK ww 8102349.03.15 2
1

3
212

−+= ρΘ   (7.81) 

where 

11112 4 wtLhVV +=   (7.82)

Welding of the intermittent stiffeners with double fillet welds to the base plate and 
to the continuous stiffeners (GMAW-C) 

( )11
2

1
3

3123 8103394.03.121 TLaxxVkK www ++= −ρΘ   (7.83)

1
2

1
3

11 416107889.03.1 hxaxxT w
−=   (7.84)

11231 4 wtLhVV +=   (7.85)

Cost of painting 

KP1 = kPS1,    1
2

1 162 LhLS +=   (7.86)

Material cost 

311 VkK MM ρ=   (7.87)

Total cost 

1321111 PwwwM KKKKKK ++++=   (7.88)

7.1.7.4   Results of Optimization 

Optimization is performed using a MathCAD algorithm. Results are summarized 
in Table 7.2. 
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Table 7.2  Results of optimization without the grid effect. Dimensions and deflections in 
mm. The admissible deflection is 6 mm. 

h1  tw1 t1 wmax1 K1 ($) 
240 18 26 5.795 18570 
245 18 25 5.88 18160 
250 18 24 5.98 17750 
255 19 24 5.94 18230 
260 19 24 5.80 18310 
270 20 23 6.00 18430 
280 20 23 5.75 18580 
290 21 23 5.77 19210 

 
The optimum is marked by bold letters. The stress constraint is passive, in the 

case of the optimum solution (h = 250 mm)  σmax = 90 < 213.6 MPa. 

7.1.8   Conclusions 

The calculation method of residual welding deflection worked out for simple 
beams with longitudinal eccentric welds can be applied for orthogonally stiffened 
plates as well. 

In the case of a plate of square symmetry orthogonally stiffened by 4-4 flat 
stiffeners, two fabrication sequences are investigated as follows: (a) welding of 
continuous welds in one direction and welding of intermittent welds in other direc-
tion, (b) assembly of the whole stiffened plate by tacking and then welding the in-
termittent welds. In the later sequence the grid effect decreases the residual  
welding deflection significantly. 

It can be seen from Tables 7.1 and 7.2 that the fabrication with grid effect de-
creases the total cost by 100(17750-15670)/17750 = 12%. 

7.2   Minimum Cost Design of a Welded Stiffened Steel Sectorial 
Plate 

Abstract 

The most economic stiffening is sought for a steel sectorial plate. Stiffeners of 
halved rolled I-section are welded to the base plate by double fillet welds. The 
plate is subjected to a uniformly distributed normal load. Three stiffening types 
are designed as follows: (a) non-equidistant tangential stiffening with constant 
base plate thickness, (b) equidistant tangential stiffening with stepwise varying 
base plate thickness and (c) equidistant tangential stiffening with constant base 
plate thickness combined with radial stiffeners. 
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Each stiffening is designed so that the maximum stress due to bending from the 
factored normal load in the base plate parts should not exceed the yield stress. Po-
sitions of the non-equidistant tangential stiffeners are calculated by a special 
mathematical algorithm. The costs of material, assembly, welding and painting are 
calculated for each stiffening version and the costs are compared to each other. 

The cost comparison shows that – for given numerical problem – the (b)-type 
stiffening is the cheapest and the (a)-type is the lightest. Type (c) needs too much 
welding and its cost is the highest. 

7.2.1   Introduction 

Welded stiffened plates are widely used in load-carrying structures. The best 
means to decrease the structural weight is to decrease the thickness of plated struc-
tures. Since the thin plates can buckle and vibrate, the best way to eliminate these 
disadvantages is to use stiffenings. 

The present study is focused to a special plate form. Sectorial plates can be 
used in fixed roofs of storage tanks, circular floors or stair landings. Their special 
form needs special stiffenings. In this study these special stiffenings are investi-
gated. 

Three stiffening types are optimized as follows: (a) non-equidistant tangential 
stiffening with constant base plate thickness, (b) equidistant tangential stiffening 
with variable base plate thickness, (c) equidistant tangential stiffening combined 
with radial stiffeners. In the case of these stiffenings the optimization problem 
needs discrete calculation, thus, we do not use here special mathematical optimi-
zation methods, only MathCAD algorithms. 

From the wide variety of stiffener forms we use here the halved rolled I-section 
stiffeners. Their advantage is the large selection of produced profiles and their 
webs need relatively small welds to connect them to the base plate. 

7.2.2   Non-equidistant Tangential Stiffening 

7.2.2.1   Calculation of Stiffener Distances (x0i) 

These distances are determined using the condition that the maximum normal 
stress due to bending in each plate element between stiffeners should not be larger 
than the yield stress. The maximum bending moment in a deck plate element is 
calculated approximately for a simply supported rectangular plate according to 
Timoshenko and Woinowsky-Krieger (1959) 

2
max iMii apM β=   (7.89)

where  ai is the smaller side length and  βi is given in function of  1/ ≥ii ab  in  

Table 7.3. 
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Table 7.3 Bending moment factors 

b/a 1 1.1 1.2 1.3 1.4 1.5 1.6  
104β 479 554 627 694 755 812 862  
b/a 1.7 1.8 1.9 2.0 3.0 4.0 5.0 >5 
104β 908 948 985 1017 1189 1235 1246 1250 

 

Fig. 7.7 Non-equidistant tangential stiffening 

To calculate the length of tangential stiffeners we introduce the factor of  fω = 
2tgα = 0.5359, since we take the half angle of the sectorial plate as α = 150  
(Fig. 7.7). 

The values of Table 7.3 are approximated by the following expressions  
(Fig. 7.7) 

ii ξββ =   if   ωfxxx iii ≤− −1    i.e.   
ωf

x
x i

i −
≤ −

1
1   (7.90)

ii ηββ =   if    ωfxxx iii >− −1   (7.91)

432
0 iiiii edcba ξξξξβξ ++++=   

1−−
=

ii

i
i xx

fx ωξ      (7.92) 

432
0 iiiii edcba ηηηηβη ++++=   

ω
η

fx

xx

i

ii
i

1−−
=      (7.93) 

a0 = -0.08022658,  b = 0.180443,  c = -0.061636,  d = 0.009575,  e = -0.00056537 
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Using Eq. (7.89) from equation 

6/2
1max tfM yi =   (7.94)

one obtains 

Mi

y
i p

ft
r

β6
1

2

=   (7.95)

t is the deck plate thickness,   fy = 235 MPa is the yield stress,  fy1 = fy/1.1  The fac-
tored intensity of the uniformly distributed normal load is pM = 1.5x500 kg/m2 = 
7.5x10-3 N/mm2. 

The sought stiffener distance is 

10 −+= iii xrx   if   
ωf

x
x i

i −
≤ −

1
1   (7.96) 

ωf

r
x i

i =0

  
if    

ωf

x
x i

i −
> −

1
1   (7.97) 

The value of   x0i  can be obtained by iteration with a MathCAD program. 
It should be noted that in this calculation the transverse bending moments are 

neglected but the plate elements are calculated as simply supported ones and it is 
also neglected that their edges are partially clamped. 

7.2.2.2   Design of Stiffeners 

A stiffener is subject to a bending moment 

8/22
max ωfxspM iiMsi =   (7.98) 

where   
2

11 −+ −
= ii

i

xx
s  

and the effective plate width according to design rules of Det Norske Veritas 
(1995) 

i
ii

ei ss 







−=

2
00

8.08.1

ββ
  (7.99)

where 

E

f

t

s yi
i0 =β ,    but  1i0 ≥β   (7.100) 

E = 2.1x105 MPa is the elastic modulus. 
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The required section modulus is given by 

1y

maxsi
i0 f

M
W =  (7.101) 

The cross-sectional area of a stiffener of halved rolled I-section and the effective 
plate part (Fig. 7.8) 
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the moments of inertia  

2

Gi
fii

fii

2

Gi
i1wii1wi

3
i12
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The section moduli are defined as 

Wyi = Iyi/z0i (7.106) 

where z0i is the greater of  zGi and zG1i. 
The required stiffener profile is selected from Table 7.4 to fulfil the stress  

constraint 

iyi WW 0≥  (7.107) 

Table 7.4 UB-profiles used for halved rolled I-section stiffeners (Sales 2007) 

UB profile h b tw tf 
152x89x16 152.4 88.7 4.5 7.7 

168x102x19 177.8 101.2 4.8 7.9 
203x133x26 203.2 133.2 5.7 7.8 
254x102x25 257.2 101.9 6.0 8.4 
305x102x28 308.7 101.8 6.0 8.8 
305x102x33 312.7 102.4 6.6 10.8 
406x178x60 406.4 177.9 7.9 12.8 
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7.2.2.3   Cost Calculation for a Sectorial Stiffened Plate Element 

The fabrication sequence has two parts: 

(a) Welding of the base plate from 8 elements using SAW (Submerged Arc 
Welding) butt welding. The length of the plate (12000 mm) is divided into 8 
parts welded together with 7 butt welds using SAW technology. The total 
length of welds is 

ωfLw 455001 =   (7.108) 

The cost in the fabrication phase (a) is calculated as 

( )1w
2

1w11w1w LtC3.1V8kK += ρΘ   (7.109) 

where 

6
1 1085.7,2min,/$0.1 −=== xkw ρΘ kg/mm3, Cw1 = 0.1559x10-3, 

t10x18.4tf12000
2

50012500
V 7

1 =+= ω  (7.110)

(b) Welding of stiffeners to the base plate and to two edge radial plates to com-
plete a sectorial plate element using fillet welds: 

( ) 





 +++=  s

i
i2st2w2w TTV3nkK ρΘ   (7.111)

where nst is the number of stiffeners,  ,32 =Θ  

++=
i

stis VVVV 12  (7.112)

the volume of the edge radial plates is 

sss thxV 120002=   (7.113)

hs = 250 and ts = 6 mm. 

Volume of a stiffener is 

fii
wii

stiististi tb
th

AfxAV +==
2

, 1
ω   (7.114) 

welding time for a stiffener is 

( )iiwwiwwi bhaCfxaCT 4223.123.1 1
2

3
2

2 ++= ω   (7.115) 

where  3
3

3
2 107889.0,102349.0 −− == xCxC ww  

constants for SAW and SMAW (Shielded Metal Arc Welding) fillet welds,  
respectively, 
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aw = 3 mm, the second part is multiplied by 2, since the welding position is 
mainly vertical. 

The time of welding of the two edge radial plates to the base deck plate is 

120002,3.1 2
3 xLLaCT sswws ==   (7.116) 

Material cost of a complete sectorial element is 

0.1,21 == mmm kVkK ρ $/kg.  (7.117) 

The painting cost of a complete sectorial element is 

6
1 108.28, −== xkSkK PPP  $/mm2,  (7.118) 

ωfxxSSS
i

stis
610782++=    (7.119) 

ss hxS 120002=   (7.120) 

( ) ωfxbhS iiisti 21 +=   (7.121) 

Table 7.5 Stiffener distances and sizes in mm for α = 150 and t = 4 mm 

xi h 

500 - 
1890 152.4 
2824 152.4 

3652 152.4 
4451 152.4 
5239 152.4 
6023 152.4 
6804 152.4 
7585 177.8 

8373 177.8 
9177 203.2 

10009 257.2 
10839 308.7 
11669 308.7 
12500  
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(a) 

 
(b) 

 
(c) 

Fig. 7.8 Non-equidistant tangential stiffening for a base plate thickness of 4 mm. (a) Stiff-
ener positions, (b) cross-section of a stiffener of halved rolled I-section with the effective 
base plate width, (c) welded connection of a stiffener with the side plate of dimensions hs = 
250, ts = 6 mm. 
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The total cost of a sectorial element is 

1211 Pwwms KKKKK +++=  (7.122) 

Results of cost calculation for a sectorial element of α = 150 show that the mini-
mum cost corresponds to the thickness of t = 4 mm. (See Table 7.6.). Table 7.5 
shows the calculated stiffener distances and sizes for α = 150 and t = 4 mm. 

Table 7.6 shows the costs for different base plate thicknesses in $ 

t  mm Km Kw1 Kw2 Kp K 

4 2094 284 933 3125 6437 
6 2588 429 713 2939 6669 
8 3233 606 650 2906 7395 

10 3817 818 530 2815 7980 

 
It can be seen that the minimum material and total cost corresponds to the 

thickness of t = 4 mm. 
Fig. 7.8  shows the non-equidistant tangential stiffening for a base plate  

thickness of 4 mm. 

7.2.3   Equidistant Tangential Stiffening with Stepwise Varying 
Base Plate Thickness 

7.2.3.1   Design of Base Plate Thicknesses 

In this case the radial distance of 12000 mm is divided to n=4, 6 and 8 equal parts 
and, using the same MathCAD algorithm the required base plate thicknesses for 
each part can be calculated.  

7.2.3.2   Design of Stiffeners 

In the design of stiffeners the effective base plate width is calculated using the half 
parts of the corresponding neighbouring plate widths as follows: instead of Eqs. 
(7.99) and (7.100) we use  

n
s

12000=   (7.123) 
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where     
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+ =β ,    but  110 ≥+iβ   (7.128)

and the base plate thickness in the calculation of the cross-sectional area and sec-
tion moduli of a stiffener of halved rolled I-section and the effective plate part is 

2
1++

= ii tt
t   (7.129) 

7.2.3.3   Cost Calculation 

Cost for  n = 4 
 

Thicknesses for plate parts are given in Table 7.7. 

Table 7.7 Thicknesses in mm for plate parts in the case of n = 4 

i 1 2 3 4 
ti 8 11 14 15 

 
The volume of the plate is 

( ) += +

4

1
11 2 iii xxt

sf
V ω ,    xi+1 = xi + 3000 mm, s = 3000  (7.130)

V1 = 5.5948x108 mm3 

The cost of welding of the base plate with butt welds from 4 parts 

$ xtfx.x.VK iiw 5771015590314
3

1
1

23
111 =+=  +

−
ωρΘ  (7.131) 

Cost for n = 6 

Table 7.8 Thicknesses for n = 6 

i 1 2 3 4 5 6 
ti 6 8 9 10 10 11 
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( ) 2000,2000,
2 1

6

1
11 =+=+= ++ sxxxxt

sf
V iiiii

ω  mm (7.132) 

V1 = 4.105x108 mm3 

$ xtfx.x.VK iiw 5831015590316
5

1
1

23
111 =+=  +

−
ωρΘ  (7.133) 

Cost for n = 8 

Table 7.9 Thicknesses for n = 8 

i 1 2 3 4 5 6 7 8 
ti 5 6 7 8 8 8 8 8 

 

( ) 1500,1500,
2 1

8

1
11 =+=+= ++ sxxxxt

sf
V iiiii

ω  (7.134) 

V1 = 3.2355x108 mm3 

574$xtf10x1559.0x3.1V8K
7

1
1i

2
i

3
111w =+=  +

−
ωρΘ  (7.135) 

Costs for welding of stiffeners to the base plate and to the side plates using double 
fillet welds are calculated by Eqs. (7.111-7.122). 

Summary of Results 

Table 7.10 Results for equidistant stiffenings 

n Km Kw1 Kw2 Kp K 

4 4794 577 472 1840 7683 
6 3700 583 584 1916 6783 

8 3077 574 679 1990 6320 

 
It can be seen that the minimum cost solution for equidistant stiffening is the 

case of n = 8, since in this case the thicknesses are smallest. 
Fig. 7.9 shows the tangential stiffening and the base plate thicknesses for n = 8. 

To avoid the coincidence of more welds a distance of 30 mm is proposed. 
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Fig. 7.9 Equidistant tangential stiffening and the base plate thicknesses for n = 8. (a) Stiff-
ener positions, (b) cross-section of a stiffener with the effective widths of the base plate. 

7.2.4   Equidistant Tangential Stiffening Combined with Radial 
Stiffeners 

The equidistant tangential stiffening and a constant base plate thickness is not an 
economic solution, since in this case the outermost plate part is governing for the 
bending stress and the other parts cannot be stressed for the allowable stress. In 
this case it is better to use additional radial stiffeners as well. In the case of com-
bined stiffening the most economic solution is to design near square plate parts, 
since a plate of square symmetry needs the minimal thickness to be stressed by 
bending to allowable stress. 

The maximum side dimension of a square isotropic plate with all edges built-in 
can be calculated using the bending moment factor of  β=0.0513 (Timoshenko and 
Woinowsky-Krieger 1959, p.197) similar that in Eq. (7.95) 

p

f
ta y

β6
1

max =  (7.136) 
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Using the above data one obtains for t = 4, 6 and 8 mm  amax = 1217, 1825 and 
2433 mm respectively. 

The sectorial plate with combined stiffening could be designed as a grillage 
system, but this calculation would be very complicated. Therefore we neglect the 
grillage effect and design the stiffeners as simply supported beams.  

The tangential stiffeners can be designed according to the method shown in 
section 7.2.2.1 and the radial stiffeners as simply supported beams of span length 
amax. Calculations show that the halved rolled I-section of h = 152.4 mm is suitable 
for all radial stiffeners. 

It should be mentioned that the effect of normal load on the local plate buckling 
can be neglected, since – according to Paik and Thayamballi (2003) the normal 
load increases the buckling strength. 

The results of calculation are summarized in Tables 7.11, 7.12 and 7.13. The 
costs are calculated for tangential and radial stiffeners separately. 

Table 7.11 Costs in $ for base plate thickness t = 4 mm 

stiffening Km Kw1 Kw2 Kp K 

tangential 2028 284 715 3179 6200 
radial 233 -- 1130 272 1635 

Total cost 2256 284 1845 3446 7835 

Table 7.12 Costs in $ for base plate thickness t = 6 mm 

Stiffening Km Kw1 Kw2 Kp K 

Tangential 2544 429 578 3032 6583 
Radial 160 -- 801 186 1147 

Total cost 2704 429 1379 3218 7730 

Table 7.13 Costs in $ for base plate thickness t = 8 mm 

Stiffening Km Kw1 Kw2 Kp K 

Tangential 3144 606 484 2967 7201 
Radial 113 -- 606 132 851 

Total cost 3257 606 1090 3099 8052 

 
It can be seen from Tables 7.11, 7.12 and 7.13 that the lowest cost corresponds 

to the solution  t = 6 mm, since in the case of t = 4 mm too much (25) radial stiff-
eners are needed and their welding cost is very high. 

Fig. 7.10  shows the combined stiffening for base plate thickness of 6 mm. 
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Fig. 7.10 The combined stiffening for base plate thickness of 6 mm 

7.2.5   Cost of the Unstiffened Plate 

In order to show the economy of stiffening let us compare the costs of stiffened 
and unstiffened structural version. This comparison answers the question whether 
a thin stiffened or a thick unstiffened structural version is more economic. Such 
comparisons have been calculated for a lot of plates and shells (Farkas 2005). 
From these studies a conclusions can be drawn that, in the case of plates the stiff-
ened thin version is always more economic, since the bending stiffness of an  
isotropic plate is  

( )2

3

112 ν−
= Et

B  (7.137) 

i.e. the thickness plays an important role in the plate strength. 
In the case of the present sectorial plate we can use the data of the book (Vayn-

berg 1970) in which the maximum bending moment is given for the angle  2α = 
280  and for clamped edges: Mmax = 5974 Nmm. For simply supported edges this 
bending moment can approximately be  taken as Mmax1 = 2x5974 = 11948 Nmm. 
From the stress constraint 

6.219
6

12
1max =≤= yf

t

Mσ MPa (7.138) 

one obtains the required plate thickness  t = 18 mm. 
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Using Eqs (7.109, 7.110, 7.117, 7.118, 7.119, 7.122) the material cost is Km = 
5906 $ and the total cost is  K = 10350 $. This means that the cost savings achiev-
able by stiffening is 100(10350-6320)/10350 = 39%. 

7.2.6   Conclusions 

Ten different structural solutions are designed and their costs are compared to 
each other. Tables 7.14, 7.15 and 7.16 summarize the material and total costs for 
these stiffened sectorial plates for the half angle α = 150, radius R = 12500 mm, 
factored uniformly distributed normal load of intensity pM = 7.5x10-3 N/mm2 and 

yield stress fy = 235 MPa. 
Comparing the costs of the different structural solutions it can be concluded 

that, in the present numerical problem the lowest total cost corresponds to  
the equidistant tangential stiffening with variable base plate thickness (n = 8,  
K = $6320).  

Table 7.14 Material and total cost of non-equidistant tangential stiffenings with constant 
base plate thickness 

t  mm Km K 

4 2094 6437 
6 2588 6669 
8 3233 7395 

10 3817 7980 

Table 7.15 Material and total cost of equidistant tangential stiffening with variable base 
plate thickness 

n Km K 

4 4794 7683 
6 3700 6783 

8 3077 6320 

Table 7.16 Material and total cost of equidistant tangential stiffening combined with radial 
stiffeners 

t mm Km K 

4 2456 7831 
6 2704 7730 

8 3257 8052 
 

Similarly low total cost can be achieved by non-equidistant tangential stiffening 
with constant base plate thickness (t = 4 mm, K = $6437). 

The equidistant tangential stiffening combined with radial stiffeners needs 
much higher total cost (t = 6, K = $7730). 
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The lowest mass (or material cost) corresponds to non-equidistant tangential 
stiffening with constant base plate thickness (t = 4 mm, Km = $2094) followed by 
combined stiffening (t = 4 mm, Km = $2456). The solution giving the lowest total 
cost needs larger material cost (n = 8, Km = $3077). These data show that the fab-
rication costs (welding and painting cost) affect significantly the total cost. 

The comparison with the cost of the unstiffened sectorial plate shows that the 
stiffened version is much more economic than the unstiffened one. 
7.3   Optimum Des ign of Welded Stiffened P late Structure  

7.3   Optimum Design of Welded Stiffened Plate Structure  
for a Fixed Storage Tank Roof 

Abstract 

The optimization problem of a welded fixed roof for a vertical storage tank is 
studied. The load from snow and from a 150 mm soil layer is considered.  The 
roof is constructed from stiffened sectorial trapezoidal plate elements and radial 
beams. The stiffeners are of halved rolled I-section and the radial beams are con-
structed from rolled I-sections. To find the minimum cost solution the thickness of 
the base plate, the position, number and size of circumferential stiffeners, the size 
of radial beams as well as the number of sectors is varied. The distances of stiffen-
ers are non-equidistant. In the cost function the cost of material, welding and 
painting is taken into account. 

7.3.1   Introduction 

In 1960 the first author has designed a roof structure for a series of storage tanks. 
The roofs constructed from welded stiffened plate sectorial elements have been 
suitable for carrying the load of a 150 mm soil layer used to decrease the evapora-
tion loss of stored liquid (kerosene). 

From this time the design of stiffened plates has been the main research theme 
for the first author. The problem of selecting the optimal number of stiffeners led 
to the structural optimization and the authors have worked out a lot of studies in 
the field of optimum design of metal structures. 

In the present study this economic design method is applied for a fixed storage 
tank roof constructed from stiffened plate sectorial elements and radial beams. In 
the optimization procedure the optimum values of the following structural charac-
teristics are sought: number and size of radial rolled I-section-beams, the thickness 
and the transverse non-equidistant stiffening of the deck plate elements. 

The roof is designed to carry the snow load as well as the load of 150 mm thick 
soil layer mentioned earlier. Since the deck plate sectorial elements are trapezoidal 
and the deck plate thickness should be constant, the transverse stiffening is de-
signed as non-equidistant. The variable distance of stiffeners is calculated from the 
condition that the deck plate of given thickness should fulfil the bending stress 
constraint in each part between two stiffeners. 
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7.3.2   Loads 

Snow load is calculated according to Eurocode 1 (2003) 

kte sCCs 1μ=   (7.139) 

25.1,1,8.01 ==== kte sCCμ  kN/m2,  thus  s = 0.8x1.25 = 1.0 kN/m2. 

Soil load: 150 mm thick layer of a humid light sand of bulk density 17 kN/m3   

ps = 0.15x17 = 2.55 kN/m2. 

Snow and soil together  s + ps = 3.55 kN/m2, multiplied by a safety factor of 1.5 

pM = 5.325x10-3 N/mm2. 

Safety factor for the self mass of sectorial elements is 1.35, and for self mass of 
radial beams is 1.1. 

7.3.3   Numerical Data (Fig. 7.11) 

Storage tank diameter  D = 20 m, inner ring beam diameter d = 1.0 m, roof angle  
α0 = 150. 

Length of a radial beam L = 9500/cos 150 = 9835 mm. The characteristic sizes 
of a trapezoidal deck plate xA = 618, xB = 10353 mm. α = 180/ω,  where ω = 10, 
12, 14, 16 is the number of sectors. The length of stiffeners is calculated for given 
ω: yi = xifω, where  fω = 2tanα.  

 
Fig. 7.11 A fixed tank roof 



176 7   Stiffened Plates
 

 

Fig. 7.12 Forces from the roof load 

7.3.4   Design of Sectorial Stiffened Deck Plate Elements 

Calculation of stiffener distances (x0i) and the design of stiffeners is described in 
Sections 7.2.2.1. and 7.2.2.2 except of Fig.7.7 which is modified for the present 
case as shown in Fig. 7.13. 

ϖ
180 o

xA=518

xi-1

xi

xB=10353

 

xi-xi-1

xifω

 

Fig. 7.13 Stiffener distances and a part of the base plate 
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Fig. 7.14 Cross-section of a stiffener and connection to the radial beam 

7.3.4.1   Cost Calculation for a Sectorial Stiffened Plate Element 

The fabrication sequence has two parts: 
(a) Welding of the base plate from 7 elements using SAW (Submerged Arc 

Welding) butt welding. The length of the plate (9835 mm) is divided into 7 
parts welded together with 6 butt welds using SAW technology. The total 
length of welds is 

                          ωf30783L 1w =   (7.140)

and the cost is calculated as 

( )1w
2

1w11w1w LtC3.1V7kK += ρΘ  (7.141) 

where 
6

1w 10x85.7,2min,/$0.1k −=== ρΘ kg/mm3, Cw1 = 0.1559x10-3, 

tf10x4581.53tf9835
2

51810353
V 6

1 ωω =+=  (7.142)

(b) Welding of stiffeners to the base plate and to two edge radial plates to com-
plete a sectorial plate element using fillet welds: 

( ) 






 +++=  s
i

istww TTVnkK 222 3 ρΘ  (7.143)

where nst is the number of stiffeners,  ,32 =Θ  
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++=
i

stis VVVV 12  (7.144)

the volume of the edge radial plates is 

225.0198352 ωfthxV sss +=  (7.145) 

ts = 6 mm, hs  equals to the stiffener maximum height + 30 mm, volume of a  
stiffener is 

fii
wii

stiististi tb
th

AfxAV +==
2

, 1
ω  (7.146) 

welding time for a stiffener is 

( )iiwwiwwi bhaCfxaCT 4223.123.1 1
2

3
2

2 ++= ω  (7.147) 

where  3
3

3
2 107889.0,102349.0 −− == xCxC ww  

constants for SAW and SMAW (Shielded Metal Arc Welding) fillet welds, re-
spectively, 

aw = 3 mm, the second part is multiplied by 2, since the welding position is 
mainly vertical. 

The time of welding of the two edge radial plates to the base deck plate is 

22
3 25.0198352,3.1 ωfxLLaCT sswws +==  (7.148) 

Material cost of a complete sectorial element is 

0.1,21 == mmm kVkK ρ $/kg. (7.149) 

The painting cost of a complete sectorial element is 

6
1 108.28, −== xkSkK PPP  $/mm2, (7.150)

ωfxxSSS
i

stis
6104581.532++=   (7.151)

225.0198352 ωfhxS ss +=  (7.152)

( ) ωfxbhS iiisti 21 +=  (7.153)

The total cost of a sectorial element is 

1211 Pwwms KKKKK +++=  (7.154) 
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Results of cost calculation for a sectorial element of ω = 12  show that the  
minimum cost corresponds to the thickness of t = 4 mm. Therefore the further  
calculations are performed for this thickness only. Table 7.17 shows the calculated 
stiffener distances and sizes for ω = 12 and t = 4 mm. 

Table 7.17 Stiffener distances and sizes in mm for ω = 12 and t = 4 mm 

xi h 

518 - 
2197 152.4 
3314 152.4 
4299 152.4 
5248 152.4 

6184 152.4 
7114 152.4 
8041 152.4 
8968 177.8 
9600 177.8 

 
The cost parts in $ for this sectorial element are as follows: Km = 1259, Kw1 = 

212, Kw2 = 639, Kp = 2001, the total cost for one element is Ks = 4112. 

7.3.5   Design of Radial Beams 

Radial beams of rolled I-section (Fig.7.14) are subject to bending and compres-
sion. The load is calculated from snow and soil load (pM), the mass of a sectorial 
element (q) and the self mass (ρ1Ar): 

p = pM + q + ρ1Ar,   q = ρ1V2/L1,  ρ1 = 7.85x10-5 N/mm3, L1 = 9500 mm.  (7.155) 

The maximum bending moment is 

8/2
1max pLM r =  (7.156) 

The compression force is 

00 15sin15cos VMH FFN +=  (7.157) 

where 

20000,2/ === LpLPF MV  mm,  H = 9500 x sin150 = 2459 mm   (7.158) 

MMVH P
dL

PLF
H

F 0333.2
22

1
1 =
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Stress constraint for bending and compression according to Eurocode 3 (2002) 
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where 
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r is the radius of gyration, Ar is the cross-sectional area, 
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The suitable rolled I-profile is selected from an Arcelor product catalogue using 
the British UB profiles. 

7.3.6   Cost of a Radial Beam 

Material cost     

9825,, == RRrRRmM LLAVVkK ρ  mm, (7.164)

cost of welding to the inner ringbeam and to the tank shell 

( )[ ]b4h22x2aC3.1VkK 1
2
w3wR2wW ++= ρΘ  (7.165)

the factor of 2 is used since the welding is mainly vertical. 

Cost of painting 

( ) RPP LbhkK 42 1 +=  (7.166)

Total cost of a radial beam 

PWMR KKKK ++=  (7.167)

7.3.7   Additional Cost 

Material, welding and painting of a deck plate of size 200x6x9825 connecting the 
sectorial elements as well as welding of the sectorial elements to the radial beam 
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RPwRwwAmA LkkLaCVkK 20043.1 2
2 ++= ρ  (7.168) 

VA = 200x6LR (7.169) 

Total cost of the whole roof structure 

( )ARs KKKK ++= ω  (7.170)

7.3.8   Optimization Results 

Table 7.18 and 7.19 summarize the results (masses and costs) for different values 
of ω for a sector and for the whole roof. 

Table 7.18 Masses in kg and costs in $ for a sector containing a sectorial element and a  
radial beam 

ω ρVs Ks ρVR KR 

10 1600 5046 806 1352 
12 1259 4112 729 1248 
14 1072 3556 588 1078 
16 927 3081 588 1078 

Table 7.19 Masses in kg and costs in $ for the whole roof 

ω ρVroof Kroof 
10 24060 66550 
12 23856 67400 
14 23240 68470 
16 24240 70650 

 
It can be seen that ω = 14 and ω = 10 gives the minimum mass and minimum 

cost for the whole roof, respectively. It should be noted that the case of ω = 8 is 
unrealistic, since in that case the sectorial element has not a trapezoidal but a cir-
cular sector form, which needs also  partial radial stiffeners beside of the circum-
ferential ones and the cost increases. 

7.3.9   Conclusions 

Minimum cost design of a fixed roof of a vertical steel storage tank is worked out 
for a numerical model structure. Load of snow and a soil layer is considered. The 
roof is constructed from sectorial stiffened plate elements and radial beams.  
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The number of sectors is varied between 10 and 16. The sectorial elements are 
circumferential stiffened with halved rolled I-section stiffeners welded to the base 
plate. The non-equidistant distances of stiffeners are calculated so that the plate 
parts are equally stressed. The radial beams are constructed from rolled I-sections. 
The cost function contents the cost of material, welding and painting. The cost 
calculation shows that the minimum roof mass and cost corresponds to the number 
of sections of 14 and 10 respectively. 

7.4   A Circular Floor Constructed from Welded Stiffened Steel 
Sectorial Plates 

Abstract 

The problem of finding the most economic (minimum cost) structural version of a 
large diameter circular floor constructed from stiffened sectorial plate elements 
supported by radial beams is a threefold optimization problem: 

 

(a)  Determination of the most economic stiffening of a sectorial plate. The cost of 
tangential non-equidistant stiffening for a fixed number of sectors (ω=12) is 
calculated for different base plate thicknesses (t = 4, 6, 8). The distances of the 
tangential non-equidistant stiffening are determined by using an iterative algo-
rithm. The cost of combined (tangential and radial) stiffening for different 
thicknesses (t = 4,8) is calculated. The costs of various stiffenings show that 
the non-equidistant tangential stiffening and the base plate thickness of 4 mm 
give the minimum cost solution. 

(b) Determination of the optimum dimensions of radial welded box beams for a 
circular floor supported at the centre. 

(c) The total costs of the floor structure calculated for different numbers of secto-
rial plates (8, 12 and 16) show that the number of 12 gives the minimum total 
cost. 

7.4.1   Introduction 

Circular plates can be applied in many steel structures such as floors, roofs, stair 
landings, etc. They can be constructed from sectorial plates supported by radial 
beams. 

The sectorial (trapezoidal) plate elements can be stiffened by tangential or ra-
dial stiffeners or these stiffeners can be combined. The stiffeners can be flat, 
halved rolled I-section (T-shape), trapezoidal or other shapes. They are welded to 
the base plate by double fillet welds. 

We use in the present study halved rolled I-section stiffeners and we investigate 
both tangential and combined stiffening. 
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7.4.2   Problem Formulation 

The problem of finding the most economic (minimum cost) structural version of a 
large diameter circular floor constructed from stiffened sectorial plate elements 
supported by radial beams (Fig. 7.15) is a threefold optimization task: (1) deter-
mination of the most economic stiffening of a sectorial plate, (2) determination of 
the optimum dimensions of radial beams, (3) determination of the optimum  
number of sectors.  

 

Fig. 7.15 A large diameter circular floor with 12 tangentially stiffened sectorial plates 

7.4.3   Solution Strategy for the Three Optimization Phases 

(a)  Calculate the cost of tangential non-equidistant stiffening for a fixed number of 
sectors (ω=12) for different base plate thicknesses (t = 4, 6, 8), then calculate 
the cost for combined (tangential and radial) stiffening for different thick-
nesses (t = 4,8); 

(b) Calculate the optimum dimensions of radial welded box beams for a circular 
floor supported at the centre, using stress and deflection constraints; 

(c)  Cost calculation of the whole floor structure for different numbers of sectors 
(ω = 8,12,16). 

7.4.4   Minimum Cost Design of a Sectorial Plate  

Calculation of stiffener distances (x0i) and the design of stiffeners is described in 
Sections 7.2.2.1. and 7.2.2.2 except of  Fig. 7.7 which is modified for the present 
case as shown in Fig. 7.16. 
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Fig. 7.16 Non-equidistant tangential stiffening 

The applied UB profiles for stiffeners are given in Table 7.4. 
Cost calculation for a sectorial stiffened plate element. 
The fabrication sequence has two parts: 
 

(a) Welding of the base plate from 6 elements using SAW (Submerged Arc 
Welding) butt welding. The length of the plate (9500 mm) is divided into 6 
parts welded together with 5 butt welds using SAW technology. The total 
length of welds is 

ωfLw 275001 =  (7.171) 

The cost in the fabrication phase (a) is calculated as 

( )1
2

1111 3.16 wwww LtCVkK += ρΘ   (7.172)

where 
 

6
1 1085.7,2min,/$0.1 −=== xkw ρΘ kg/mm3, Cw1 = 0.1559x10-3, 

 

tfxtfV ωω
6

1 10875.499500
2

50010000 =+=   (7.173) 

(b) Welding of stiffeners to the base plate and to two edge radial plates to com-
plete a sectorial plate element using fillet welds: 
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( ) 






 +++=  s
i

istww TTVnkK 222 3 ρΘ  (7.174)

where nst is the number of stiffeners,  ,32 =Θ  

++=
i

stis VVVV 12  (7.175)

the volume of the edge radial plates is 

sss thxV 95002=  (7.176) 

hs and ts are the dimensions of the half radial beam web of a box section estimated 
preliminary and obtained by iteration taking into account the self mass of the stiff-
ened sector. 

Volume of a stiffener is 

fii
wii

stiististi tb
th

AfxAV +==
2

, 1
ω  (7.177) 

welding time for a stiffener is 

( )iiwwiwwi bhaCfxaCT 4223.123.1 1
2

3
2

2 ++= ω   (7.178) 

where  3
3

3
2 107889.0,102349.0 −− == xCxC ww  

constants for SAW and SMAW (Shielded Metal Arc Welding) fillet welds, re-
spectively, 

aw = 3 mm, the second part is multiplied by 2, since the welding position is 
mainly vertical. 

The time of welding of the two edge radial plates to the base deck plate is 

95002,3.1 2
3 xLLaCT sswws ==  (7.179) 

Material cost of a complete sectorial element is 

0.1,21 == mmm kVkK ρ $/kg. (7.180) 

The painting cost of a complete sectorial element is 

6
1 108.28, −== xkSkK PPP  $/mm2, (7.181) 

ωfxxSSS
i

stis
610875.492++=   (7.182) 

ss hxS 95002=   (7.183) 

( ) ωfxbhS iiisti 21 +=  (7.184) 
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The total cost of a sectorial element is 

1211 Pwwms KKKKK +++=  (7.185) 

Results of cost calculation for a sectorial element of ω = 12 show that the mini-
mum cost corresponds to the thickness of t = 4 mm. (See Table 7.21). Therefore 
the further calculations are performed for this thickness only. Table 7.20 shows 
the calculated stiffener distances and sizes for ω = 12 and t = 4 mm. 

Table 7.20 Stiffener distances and sizes in mm for ω = 12 and t = 4 mm 

xi 500 1890 2824 3652 4451 5239 6023 6804 7585 8373 9177 1000 

h - 152 152 152 152 152 152 152 178 178 203 - 

 
Combined Tangential and Radial Stiffening 

The equidistant tangential stiffening and a constant base plate thickness is not an 
economic solution, since in this case the outermost plate part is governing for the 
bending stress and the other parts cannot be stressed for the allowable stress. In 
this case it is better to use additional radial stiffeners as well. In the case of com-
bined stiffening the most economic solution is to design near square plate parts, 
since a plate of square symmetry needs the minimal thickness to be stressed by 
bending to allowable stress. 

The maximum side dimension of a square isotropic plate with all edges built-in 
can be calculated using the bending moment factor of β=0.0513 (Timoshenko and 
Woinowsky-Krieger 1959, p.197) similar that in Eq. (7.157) 

p

f
ta

y

β6
1

max =  (7.186) 

For fy = 235 MPa, factored uniformly distributed normal load of intensity p= 
1.5x500 = 750 kg/m2 = 7.5x10-3 N/mm2 and thickness t = 4 mm one obtains amax = 
1217 mm. Fig. 7.17 shows the combined stiffening with near square distances for  
t = 8 mm.  

The sectorial plate with combined stiffening could be designed as a grillage 
system, but this calculation would be very complicated. Therefore we neglect the 
grillage effect and design the stiffeners as simply supported beams. The tangential 
stiffeners can be designed according to the method shown in section 7.2.2.2 and 
the radial stiffeners as simply supported beams of span length 1187 mm.  

The safety against local buckling of the base plate parts is considered by using 
the method of effective plate width. For the effective width there are different 
formulae proposed by Eurocode 3 (2002) or DNV rules (2002). We use here the 
formulae of DNV rules.  

It should be mentioned that the effect of normal load on the local plate buckling 
can be neglected, since – according to Paik and Thayamballi (2003) the normal 
load increases the buckling strength. 
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The corresponding dimension of the radial stiffeners is h = 152.4 mm. It should 
be mentioned that the required thickness of the outermost plate part without radial 
stiffeners would be t = 6.1 mm, thus radial stiffeners should be used. 

For thickness t = 8 mm the maximum side length is amax = 2570 mm. The corre-
sponding combined stiffening is shown is Fig. 7.17. 

 
Fig. 7.17 Non-equidistant tangential and combined stiffening in the case of ω = 12 and  
t = 8 mm 

Cost comparison of the sectors with different stiffenings. 
The costs calculated for non-equidistant tangential and for the equidistant com-

bined stiffening are summarized in Table 7.21. 

Table 7.21 Costs in $ for a sectorial stiffened plate in the case of  ω = 12. Kw3 is the weld-
ing cost of the radial stiffeners. The minimum cost is marked by bold letters. 

Stiffening T Km Kw1 Kw2 Kw3 Kp Ks 
non-equidistant 
tangential 

4 1594 190 558 - 2098 4439 
6 1940 281 482 - 2007 4710 
8 2318 392 422 - 1958 5089 

combined 4 1524 190 511 722 2183 5130 
8 2277 392 341 402 1989 5402 

 
It can be seen that the minimum cost solution is the sector with non-equidistant 

stiffening of thickness t = 4 mm. Therefore this type of sectorial plate will be ap-
plied for other values of ω. 
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7.4.5   Optimum Design of Radial Beams 

In order to facilitate the assembly the sectorial plates have only side plates. These 
plates form the webs of the radial beams of welded box section. When all sectors 
are assembled, these side plates are connected with upper and lower flange plates 
(Fig. 7.18). 

 

Fig. 7.18 Radial beam of box section and the connected stiffened sectorial plates 

The radial beams are designed for bending considering stress and deflection 
constraints. The formulation of the optimum design of a radial box beam is as fol-
lows: find the optimum values of the dimensions hs, ts and the cross-section area 
of a flange Af = bstf to minimize the whole cross-section area 

fss AthA 22 +=   (7.187) 

and fulfil the following constraints: 
 

(a)  stress constraint 
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The bending moment is expressed as 

8/2LpM s= ,  (7.190) 

the average width of the sectorial plate is 5000fω, thus the intensity of the uni-
formly distributed normal load is 7.5x5000 fω = 37.5 fω. Furthermore the self mass 
of the sectorial plate is also taken into account, so 








 ++= fs A
L

V
fp 1

21 21.15.37 ρρ
ω ,  ρ1 = 7.85x10-5 N/mm3. (7.191)

Since Af is not known an iteration is needed. 
The floor is supported at the centre by a column, thus the span length of a radial 

beam is L=9500 mm. 

(b) deflection constraint 
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For the deflection constraint the load intensity is calculated without safety factors, 
thus 

fd A
L

V
fp 1

21 25.2 ρ
ρ

ω ++=   (7.194) 

(c) constraint on local buckling of webs 

;
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β
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s

t

h
 or   ss ht β≥  (7.195) 

where    
yf

235
;69/1 == εεβ  (7.196) 

Considering the local buckling constraint as active the stress constraint can be 
written as 
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substituting Af from Eq. (7.187) into one obtains 
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From the condition 

0=
sdh

dA
  (7.199) 

one obtains the optimum value of  hs from the stress constraint 

3
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Similarly from deflection constraint 
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and                                     
3

4
2 0I

Afw

β
=  (7.202) 

The optimum dimensions of the radial beams are summarized in Table 7.22  
(Fig. 7.18). 

Table 7.22 Optimum dimensions of the radial beams 

ω webs hsxts flanges 
8 530x8 170x8 
12 475x7 160x7 
16 450x7 160x6 

7.4.6   Optimum Number of Sectorial Plates 

Calculation of the total cost of the floor structure. 
The additional cost of the welding of radial beam flanges with double fillet 

welds of size awf =5 mm 

( )wfwfaddwadd LaxxVkK 23
2 103394.03.12 −+= ωρΘ  (7.203) 

where 

LAV fadd ω2=   (7.204) 

and the weld length is 

LLwf ω4=  (7.205) 

The additional painting cost is 

LbkK sppadd ω4=  (7.206)
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The total cost is 

paddaddtotal KKKK ++= ω   (7.207) 

The costs for different numbers of sectorial plates are summarized in Table 7.23. 

Table 7.23 Costs  in $ of different numbers of sectorial plates 

ω K ωK Kadd Kpadd Ktotal 

8 7141 57128 3837 1488 62450 
12 4567 54804 3877 2181 60790 
16 3636 58176 7519 2802 66770 

 
The corresponding masses are summarized in Table 7.24. 

Table 7.24 Masses in kg for different numbers of sectorial plates 

ω G ωG Gadd Gtotal 

8 2684 21472 1623 23095 
12 1604 19248 2005 21253 
16 1281 20496 2290 22786 

It can be seen that the optimum number of sectorial plates is 12, which gives 
the minimum total cost and minimum total mass of the floor. 

7.4.7   Cost Comparison with an Unstiffened Thick-Base-Plate 
Version 

In order to show the cost difference between stiffened thin plate and unstiffened 
thick plate version we calculate the total cost for a structural version in which the 
sectorial plates are unstiffened and the radial beams are of rolled I-section. 

Timoshenko and Woinowsky-Krieger (1959) have given formulae for bending 
of sectorial plates. We use the bending moment for angle of π/4, which corre-
sponds to ω = 8. The maximum bending moment is 

20183.0 RpM M=  (7.208) 

From the stress constraint 

12max

6
yf

t

M ≤=σ  (7.209)

the required thickness of an unstiffened sectorial plate is 

1

6

yf

M
t ≥  (7.210) 
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For our case t = 19.3 rounded 20 mm. 
The required moment of inertia of a radial beam from the deflection constraint 

(Eq. 7.193) 
 

Io = 43.385x107 mm4. 
 

In Eq. (7.193) the value of po should be calculated taking into account the self 
mass of the sectorial plate 

 

8
2

10854.7
8

x
tR

Vp == π
 mm3, 

 

2.2725 1
0 =+=

L

V
fp pρ

ω  N/mm. 

 
We select for radial beams a rolled I-profile of UB457x191x98 with I = 45.73 
x107 mm4. 

Specific self mass of a radial beam is G = 98.3 kg/m. 
Material cost of the whole base plate 

49323$tRkK 2
MMplate == πρ . 

Material cost of the radial beams is 

7471$GL8kK Mrad == . 

Cost of welding of a sectorial plate, using SAW butt welds to connect 7 plate 
strips, the calculated weld length is 23 m  

( ) 2090$23x20x1033.0x3.149323x72kK 9.1
wwplate =+= . 

Cost of welding of the sectorial plates to the radial beams with SAW double fillet 
welds of size 10 mm 

( ) 5898$5.9x8x210x2349.0x3.149323x82kK 2
w1w =+= . 

Cost of painting 

( )( ) 21657$8.192x4428x28R2kK 2
p1p =++= π . 

Total cost is  

101069$KKK8KKK 1p1wwplateradMplateunstiff =++++= . 

The cost difference between the unstiffened and stiffened circular floor structure is 
(101069-62210)/101069x100=38%, thus it can be concluded that the stiffening is 
very cost effective. 
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7.4.8   Conclusions 

A large-diameter circular floor structure is optimized. This welded steel structure 
consists of sectorial stiffened plates and radial beams. The floor is supported by a 
circumferential beam or wall and a column at the centre.  

The optimization procedure is a threefold process as follows: (a) optimum stiff-
ening is sought for a trapezoid-like sectorial plate, (b) optimum dimensions of 
welded box radial beams are determined, (c) optimum number of sectorial plates 
is determined. 

The optima are determined by cost comparisons. A cost calculation method is 
developed and applied. The cost function consists of costs of material, assembly, 
welding and painting. 

The sectorial plates can be stiffened by non-equidistant tangential stiffeners or 
by a combination of equidistant tangential and radial stiffeners. The distances of 
non-equidistant tangential stiffeners are calculated using an algorithm, which con-
siders the condition that all the base plate parts should be fully stressed from  
bending moments. 

The costs of various stiffenings show that the non-equidistant tangential stiffen-
ing and the base plate thickness of 4 mm give the minimum cost solution. 

The optimization of the radial beams is performed by the minimization of the 
cross-section area of the welded box profile with the design constraints of stress, 
deflection and local web buckling. 

The total costs of the floor structure calculated for different numbers of secto-
rial plates show that the number of 12 gives the minimum total cost. 

The stiffened structure is 38% cheaper than the unstiffened one, since the base 
plate thickness is 4 mm instead of 20 mm. 

7.5   Minimum Cost Design of a Cellular Plate Loaded 
by Uniaxial Compression 

Abstract 

Cellular plates are constructed from two base plates and an orthogonal grid of 
stiffeners welded between them. Halved rolled I-section stiffeners are used for 
fabrication aspects. The torsional stiffness of cells makes the plate very stiff. In 
the case of uniaxial compression the buckling constraint is formulated on the basis 
of the classic critical stress derived from the Huber’s equation for orthotropic 
plates. The cost function contains the cost of material, assembly and welding and 
is formulated according to the fabrication sequence. The unknown variables are 
the base plate thicknesses, height of stiffeners and numbers of stiffeners in both di-
rections. The cellular plate is lighter and cheaper than the plate stiffened on one 
side. The Particle Swarm Optimization and the IOSO techniques are used to find 
the optimum. PSO contains crazy bird and dynamic inertia reduction criteria, 
IOSO is based on a response surface technology. 
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7.5.1   Introduction 

Cellular plates can be applied in various structures e.g. in floors and roofs of 
buildings, in bridges, ships, machine structures etc. Cellular plates have the fol-
lowing advantages over the plates stiffened on one side: (a) because of their large 
torsional stiffness the plate thickness can be decreased, which results in decrease 
of welding cost, (b) their planar surface is more suitable to corrosion protection, 
(c) their quasi-symmetric welds do not cause residual distortion. 

In previous studies (Farkas 1985, Farkas and Jármai 2006) it has been shown 
that cellular plates can be calculated as isotropic ones, bending moments and de-
flections can be determined by using classic results of isotropic plates for various 
load and support types.  

A large research project was performed by Williams (1969) who used a welded 
cellular plate model for double bottom of ships. Pettersen (1979) has worked out a 
detailed analysis of double-bottom plates of ships. Evans and Shanmugam (1984), 
Shanmugam and Evans (1984) as well as Shanmugam and Balendra (1986) have 
treated the analytical problems of cellular plates relating to the ship construction. 

A base plate for transportation of heavy structures may be built by using an or-
thogonal grid welded from rolled I-beams. The lower face plate has been joined to 
the grid by plug welds Sahmel (1978). In the revolving frame of surface mining 
equipment (dragline) a platform for boom, cab, power unit and other structural 
parts forms an all-welded multi-cell structure Birchfield (1981). Laser welding 
technology has been used for welding of “Norsial” metallic sandwich plates and a 
corrugated sheet sandwiched between them (Haroutel 1982).  

In the book Farkas and Jármai (1997) some problems can be found about cellu-
lar plates. Welded cellular plates for ships investigated in (Farkas and Jármai 
2003) consist of two face sheets and some longitudinal ribs of square hollow  
section welded between them using arc-spot welding technology.  

In the present study the load is uniaxial compression, the stiffening is con-
structed with longitudinal halved rolled I-section stiffeners, the material is a 
higher-strength steel with yield stress of 355 MPa, the fabrication technology is 
welding (continuous longitudinal fillet submerged arc – SAW - welds). 

7.5.2   The Basic Formulae of Cellular Plates 

The Huber’s equation for the deflection w(x,y) orthotropic plates in the case of a 
uniaxial compression Nx 
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where 

( )yxyxxy BBBBH +++=
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ν
 (7.212) 

is the torsional stiffness of an orthotropic plate, ν = 0.3 is the Poisson’s ratio. 
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The corresponding bending and torsional stiffnesses are defined as 
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E = 2.1x105 MPa is the elastic modulus. 
For cellular plates with the shear modulus G 
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The solution of Eq. (7.211) is given by 
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7.5.3   The Overall Buckling Constraint 

The buckling constraint is given by 
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The classic critical buckling stress σE should be decreased using the above formu-
lae, since it does not include the effect of initial imperfections and residual weld-
ing stresses. The DNV design rules are used for this decreasing (DNV 1995). 

fy is the yield stress. 
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where ny and nx are the spacing of stiffeners in y and x directions (Fig. 7.19). 



196 7   Stiffened Plates
 

The effective widths of plate parts can be calculated according to Eurocode 3 
Part 1-5 (2006) as 

xxexxxexyyeyyyey ssssssss 22112211 ,,, ρρρρ ====  (7.221) 

where 
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Fig. 7.19 Orthogonally stiffened cellular plate and its cross-section 
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11 =yρ    if     673.01 <pyλ            (7.222b) 
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12 =yρ   if     673.02 <pyλ            (7.223b) 
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11 =xρ   if     673.01 <pxλ            (7.224b) 
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12 =xρ   if     673.02 <pxλ            (7.225b) 

 
The distances of the gravity centres are expressed as 
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and the moments of inertia are given by 
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The fabrication constraint makes it possible to weld the fillet welds connecting the 
web of the stiffeners to the upper base plate 

mmbs xy 300, ≥−   (7.230)

The unknowns are as follows: x1=t1 upper cover plate thickness, x2=t2 lower cover 
plate thickness, x3=h height of the I beam, x4=nx number of stiffeners in x-
directions, x5=ny number of stiffeners in y-directions. 

7.5.4   The Cost Function 

There are relatively few papers using cost calculation (Krack et al. 2011, Pav-
lovcic et. al. 2004, Sarma and Adeli 2002, Kravanja et al. 2008). The cost consists 
of the cost of material (KM) and welding (KW). 

VkK MM ρ=   (7.231) 

where kM = 1.0 $/kg, ρ = 7.85x10-6 kg/mm3, V is the volume. 
The welding costs are formulated according to the fabrication sequence. 
 

(a) Welding the upper base plate with SAW (submerged arc welding) butt welds. 
The weld length is ( )001 3 baLW += , the structural volume  ,1001 tbaV =   

,21 =Θ  number of elements .161 =κ  kW = 1.0 $/min. 
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and for  t1< 15 mm  94.1
1

3101033.0 txaC n
WW

−=           (7.232b) 

 

( )11111 3.1 W
n
WWWW LaCVkK +Θ= ρκ .         (7.233) 

 
(b) Welding of longitudinal stiffeners to the upper base plate with two SAW fillet 

welds. 
 

      
( ) ( ) ( ) wWyw1f012y2y02W t4.0a,1n2/thbtaVV,2n,1na2L =+++=+=+= κ ,  

.32 =Θ                (7.234) 
 

( )2
23

2222 102349.03.1 WWWW LaxxVkK −+Θ= ρκ .     (7.235) 

 
(c) Welding of transverse stiffener parts to the upper base plate and to the longitu-

dinal stiffeners, the webs with double fillet welds (GMAW-C gas metal arc 
welding with CO2) and flanges with butt welds. 

 
( )( ),1n2/thbtbVV xw1f023 +++=  ( ),113 ++= xy nnκ   
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( ) ( )( )bhnb21nL 1y0x3W +++=            (7.236) 
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( )1nbn2L xyWf +=                (7.239) 
 

(d) Welding of lower base plate elements to the flanges of stiffeners with SAW  
fillet welds. 
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The total cost is 

4321 WWWWM KKKKKK ++++= . (7.242)

7.5.5   The Optimum Design Data and Results 

The unknowns are as follows: h, t1, t2, nx, ny. 
 

Numerical data 
 
b0 = 8000,  a0 = 24000 mm,  N = 3x107 [N], fy = 355 MPa, E = 2.1x105 MPa. 
 

Ranges of variables are as follows: t = 4 – 40 mm, h = 152.4 – 910.4 mm, the 
maximum value of n is given by the fabrication constraint (Eq. 7.230 or 7.243) 

300
0

+
=

b

b
nmax

 (7.243) 

The nmax values are given in the Table 7.25. 

Table 7.25   nmax- values for rolled I-sections – dimensions in mm 

h 353.4 403.2 454.6 533.1 607.6 683.5 762.2 840.7 910.4 1008.1 
b 126.0 142.2 152.9 209.3 228.2 253.7 266.7 292.4 304.1 302.1 
nmax 18 18 17 15 15 14 14 13 13 13 

 
Approximate formulae have been used to determine the UB profile dimensions 

in the function of the height h. UB profiles are given in Appendix D. 
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The Particle Swarm Optimization and the IOSO techniques are used to find the 
optimum. PSO contains crazy bird and dynamic inertia reduction criteria, IOSO is 
based on a response surface technology (see Chapter 2). 

Table 7.26 shows the discrete optima using PSO and IOSO techniques. The 
number of stiffeners in x direction is relatively small.  

Table 7.26 Optimum values for the cellular plate – dimensions in mm, cost in USD 

Technique x1=t1 

[mm] 
x2=t2 

[mm] 
x3=h 
[mm] 

x4=nx x5=ny Cost 
[$] 

Iteration 
number 

Number of par-
ticles 

PSO 6 5 533.1 2 12 46044 -- 50 
PSO 8 5 454.6 2 13 44849 -- 500 
IOSO 11 4 454.6 2 11 45867 211 -- 
IOSO 8 4 454.6 2 14 43769 522 -- 

 
The discrete values are found finding the continuous ones. At IOSO a paramet-

ric study is needed to do this. At PSO there is a built in calculation for this.  
The number of stiffeners and height of stiffeners have no conflict as it is given in 
Table 7.26. 

7.5.6   Conclusions 

Cellular plates are constructed from two base plates and an orthogonal grid of 
stiffeners welded between them. Such plates have a large torsional stiffness, which 
makes the plate very stiff and economic.  

In the case of uniaxial compression the overall buckling constraint is derived 
from the Huber’s equation for orthotropic plates. The local buckling of plate ele-
ments is considered by effective widths. The fabrication constraint expresses that 
the distance between the stiffeners should be sufficient for welding the stiffeners 
to the upper face plate. 

The unknowns are as follows: upper and lower cover plate thickness, height of 
the halved rolled I-stiffeners, number of stiffeners in x- and y-directions. The cost 
function contains the cost of material, assembly and welding and is formulated  
according to the fabrication sequence.  

The Particle Swarm Optimization and the IOSO techniques are used to find the 
optimum. The two optimizers give nearly the same solution. Both of them are very 
robust techniques.  
7.6   Minimum C ost Design of a Square Box Column  

7.6   Minimum Cost Design of a Square Box Column with Walls 
Constructed from Cellular Plates with RHS Stiffeners 

Abstract 

Rectangular hollow sections (RHS) can advantageously applied in cellular plates 
as an orthogonal grid of stiffeners. Formulae are given for the overall buckling 
strength of a uniaxially compressed rectangular simply supported cellular plate. 
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This strength is much more larger than that of a plate stiffened on one side by 
open section ribs because of the large torsional stiffness of the cellular plate. The 
four walls of a square box column are constructed from cellular plates with tubular 
stiffeners. The cantilever column is loaded by compression and bending. In the op-
timization process the optimal sizes and number of RHS stiffeners in both direc-
tions as well as the deck plate thickness and the width of the box column section 
are sought, which minimize the cost function and fulfil the design constraints. 
Constraint on maximum stress and limitation of the horizontal displacement of  
the column top are considered. The cost function contains the cost of material,  
assembly, welding and painting. 

7.6.1   Introduction 

Box beams and columns of large load-carrying capacity are widely applied in 
bridges, buildings, highway piers, pilons etc. Since the thickness required for an 
unstiffened box column can be too large, stiffened plate elements or cellular plates 
should be used. 

Steinhardt (1975) has proposed a design method for box beams with stiffened 
flange plates using formulae for effective plate width. Nakai et al. (1985) have 
worked out empirical formulae for stiffened box stub-columns subject to  
combined actions of compression and bending.  

Ge et al. (2000) and Usami et al. (2000) have studied the cyclic behaviour and 
ductility of stiffened steel box columns used as bridge piers. Longitudinal flat 
plate stiffeners and diaphragms as well as constant compressive axial force and 
cyclic lateral loading have been considered. Empirical formulae have been  
proposed for ultimate strength and ductility capacity. 

Another papers about bridge piers can be found in a conference proceedings as 
follows: Yamao et al. (2004), Ohga et al. (2004) and Hirota et al. (2004).  

Cellular plates have the following advantages over plates stiffened on one side: 
(a) their torsional stiffness contribute to the overall buckling strength significantly, 
therefore, their height and thicknesses can be smaller and the welding cost lower, 
(b) their symmetry eliminates the large residual welding distortions, which can oc-
cur due to the shrinkage of eccentric welds, (c) their plane surfaces can be better 
protected against corrosion. 

In a study we have elaborated a minimum cost design of a cellular plate subject 
to uniaxial compression (Farkas and Jármai 2008).This method is used in present 
study for a square box column constructed from four walls of equal cellular plates. 

A cantilever column is loaded by a compression force and a horizontal load, 
thus, it is subject to compression and bending. From this loading a compression 
force is calculated for two opposite plate elements, while the remaining plate ele-
ments are subject to compression and bending. Since this loading is not so danger-
ous for the buckling of remaining side plate elements, it is sufficient to design 
only the two main plate elements.  

The aim of the present study is to show that the rectangular hollow section 
(RHS) stiffeners can be applied in welded cellular plates from which steel  
structures of advantageous characteristics can be constructed. 
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Cellular plates consist from two base plates between which a grid of stiffeners 
is welded (Fig. 7.20). In the case of RHS stiffeners the base plate elements are 
welded using square butt CJPG (complete joint penetration groove) SAW (sub-
merged arc welding) welds. Sizes of RHS sections can be found in Appendix B. 

The cost function contents the cost of material, assembly, welding and painting 
and is formulated according to the fabrication sequence. In the material cost the 
cost factors for plates and RHS stiffeners are different. 

In the present numerical problem the following data are given: the cantilever 
column height, the vertical compressive force, the horizontal force acting on col-
umn top, the steel yield strength, the factors for cost calculation. The following 
variables are optimized: width of the square box column section, base plate thick-
ness, number and dimensions of the RHS stiffeners in both directions. Constraints 
on maximum stress and allowable horizontal displacement on the column top are 
considered. 

7.6.2   Characteristics of Cellular Plates 

The basic formulae for cellular plates are given in Section 7.5.2. 
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Fig. 7.20 Cellular plate with RHS stiffeners 

Effective plate widths (Eurocode 3, 2002) 
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fy is the yield stress. 
Effective cross-sectional areas 
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7.6.3   Minimum Cost Design of the Square Box Column 

In the optimum design the following variables should be optimized: the column 
width b0, the outer and inner base plate thickness t, dimensions and numbers of 
stiffeners  

The buckling constraints are formulated according to the Det Norske Veritas 
rules (2002). 

7.6.3.1   Constraint on Overall Buckling of a Cellular Plate Wall (Fig. 7.21) 

A cantilever column is loaded by a compression force and a horizontal load, thus, 
it is subject to compression and bending. From this loading a compression force is 
calculated for two opposite plate elements, while the remaining plate elements are 
subject to compression and bending. Since this loading is not so dangerous for the 
buckling of remaining side plate elements, it is sufficient to design only the two 
main plate elements. 
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Fig. 7.21 A cantilever column of square box cross section. The walls are constructed from 
cellular plates with RHS stiffeners. 
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where the moment of inertia of RHS stiffeners is given by 
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7.6.3.2   Constraint on Horizontal Displacement of the Column Top 
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7.6.3.3   Numerical Data (Fig. 7.20) 

a0 = 15000 mm, Nx = 3x107 [N], steel yield stress fy = 355 MPa, elastic modulus  
E = 2.1x105 MPa, shear modulus G = 0.81x105, density ρ = 7.85x10-6 kg/mm3,  
Poisson ratio  ν = 0.3.   

7.6.3.4   Cost Function 

In our problem the fabrication has two phases:  
 

(1) Fabrication of four cellular plates: (a) welding the grid of RHS stiffeners, (b) 
welding of the deck plate elements to the grid, (c) welding of the base plate 
elements to the grid, except the two outermost plate strips to make it possible 
to weld the transverse stiffeners to the corner diagonal plates. 

 

(2) Fabrication of the whole square box column from four cellular plates: (a) 
welding of the deck plates and the transverse stiffeners to the four corner di-
agonal plates, (b) welding the 8 outermost base plate strips to the corner plates. 

 

The cost functions are formulated according to these fabrication phases. For each 
phase the number of assembled elements, the volume of the assembled structure, 
the characteristics of used welds (size, type, welding method and weld length) 
should be determined as shown in Eq. (7.258). 

 

1a:  Welding of the grid of RHS stiffeners.  

Continuous (ny-1) stiffeners in x-direction of sizes by, cy, tsy (cross-section area 
ARHSy), intermittent (nx-1) ones in y-direction of sizes bx, cx, tsx (ARHSx)  

Number of assembled elements  κ1 = ny-1+(nx-1)ny = nxny-1.  
SMAW (shielded metal arc welding) fillet welds of size  aw = 0.5tsx. 
Volume: ( ) ( ) ( )[ ]yyRHSxxRHSyy cnbAnAnaV 111 001 −−−+−=  

Weld length: ( ) ( )( )11221 −−+= yxxxw nncbL  
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Welding cost: 

( )1
23

111 107889031 wwww Lax.x.VkK −+= ρκΘ ,  (7.258)

6108572 −== x.,ρΘ kg/mm3, kw = 1.0$/min. 

1b:  Welding of deck plate elements to the grid of stiffeners from above. 
 

Special square butt CJPG (complete joint penetration groove) SAW (submerged 
arc welding ) welds. Since their gap is of size  t (plate thickness), the Cw constant 
relating to an I-butt weld is multiplied by 1.5. 
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1c:  Welding of the base plate elements to the grid from outside. The difference 
from 1b is that the two outermost plate strips are not welded to make it possible to 
weld the transverse stiffeners to the corner plates. The other difference is that one 
side of the plate strips second from outside are welded using SAW fillet welds of 
size aw1 = 0.7t instead of square butt welds. 
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Length of square butt welds:  
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Length of fillet welds:   
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Fig. 7.22 The corner of the square box column 

2a: Welding of the whole square box column from four cellular plates using four 

corner diagonal plates of sizes a0, tc and )82( cy tb + (Fig. 7.22). 

Welding of 4x2 SAW fillet welds of size aw1 and length of Lw4 = 8a0 connecting 
the corner plates to the deck plates as well as welding of  8(nx-1) transverse stiff-
eners to the corner plates with SMAW fillet welds of size aw and length of  
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2b:  Welding of the 8nx closing base plate elements to each other using square butt 
welds of length   
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to the base plates and to the corner plates using SAW fillet welds of size aw1 and 
length  Lw5 = 16a0 
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Cost of painting of the surface Sp 

6104.14, −=Θ= xkSkK ppppp  $/mm2, Θp = 2,  Sp = 4a0b0    (7.274) 

Material cost 
 

( )[ ] mRHScycmplatesm KtbtatbakK 48248 000 +++= ρ       (7.275) 

 

( ) ( )[ ]( )ρρ 1110 −−−+−= xyyyRHSxRHSxyRHSyRHSymRHS ncnbAknAakK   (7.276) 

 
kmplates = 1.0 $/kg, kmRHS = 1.24 $/kg.          (7.277) 

 
Total cost 

 
( ) pwwwwwm KKKKKKKK ++++++= 543214       (7.278) 

7.6.3.5   Optimization and Results 

The results of the optimization are summarized in Table 7.27. 

7.6.4   Conclusions 

It is possible to compare the costs of structural versions of the column with the 
same height, loads (Nx = 34000 kN) and constraints on stress and displacement  
(φ  = 1000) as follows: 

 
(1) The stringer-stiffened circular shell with halved rolled I-section stiffeners and 

with a radius of 1850 mm has the minimum cost of K = 70571 (unstiffened K = 
$92100) (Farkas and Jármai 2008a), 

Table 7.27 Optimum values of the variables in function of the limited deflection in the case 
of continuous as well as discrete variables. Dimensions in mm, cost in $. 

 φ  bo t bx cx cy tbx tby nx ny K 

Contin. 1000 4095 8 67.2 41.4 30 17.3 10.2 16.8 2.8 61503 
Discret. 1000 4100 8 70 40 30 18 12 16 2 62433 
Contin. 800 3893 7 86.4 48.7 30 4.6 7.5 18 2.4 57959 
Discret. 800 3900 7 90 40 30 5 8 17 2 58505 
Contin. 600 3281 9.4 68.9 30.6 30 19.3 7.4 11.6 2.6 54960 
Discret. 600 3300 10 60 30 30 20 8 11 2 56936 
Contin. 400 3104 10 73.6 98.7 30 4.0 16.5 10.4 2.4 54549 
Discret. 400 3100 10 80 90 30 5 18 10 2 55136 
Contin. 200 3194 9.3 80.1 48.2 30 11.0 19.6 11.6 2.1 54424 
Discret. 200 3100 10 80 40 30 12 20 11 2 56175 
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(2) The square box structure composed from orthogonally stiffened plates with 
halved rolled I-section stiffeners and with an optimized width of b0 = 4500 mm 
has the minimum cost of K = $76990 (Farkas and Jármai 2008b), 

 

(3) The square box structure with walls of cellular plates with halved rolled  
I-section stiffeners loaded by a slightly different compression force (30000  
instead of 34000 kN) with an optimized width of b0 = 4700 mm has the  
minimum cost of K = $60430  (Farkas and Jármai 2008a). 

 

(4) The present solution with Nx = 30000 kN and walls of cellular plates with RHS 
stiffeners of optimized width of 4100 mm has the minimum cost of K = 
$62432. 

 
The difference between the solutions of (3) and (4) can be explained by the differ-
ence between the bending stiffnesses of RHS and halved rolled I-sections. 

It can be concluded that the cellular box column with halved rolled I-section 
stiffeners is the most economic structural version, since cellular plates have much 
higher torsional stiffness that the plates stiffened one side. 
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Cylindrical and Conical Shells 
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8.1   Minimum C ost Design for Various Diameters  
8.1   Minimum Cost Design for Various Diameters  

of a Ring-Stiffened Cylindrical Shell Loaded  
by External Pressure 

Abstract 

The problem is to find the optimum dimensions of a ring-stiffened circular cylin-
drical shell subject to external pressure, which minimize the structural cost. The 
calculation shows that the cost decreases when the shell diameter decreases. The 
decrease of diameter is limited by a fabrication constraint that the diameter should 
be minimum 2 m to make it possible the welding and painting inside of the shell.  

8.1.1   Introduction 

Cylindrical shells are used in various engineering structures, e.g. in pipelines, off-
shore structures, columns and towers, bridges, silos etc. The shells can be stiffened 
against buckling by ring-stiffeners or stringers or orthogonally. The effectiveness 
of stiffening depends on the kind of load. Many cases of loads and stiffening have 
been investigated by realistic numerical structural models and design aspects have 
been concluded by cost comparisons of optimized structural versions (Farkas and 
Jármai 1997, 2003, 2008). 

Since in Eurocodes design method for stiffened shell buckling is not given, the 
design rules of Det Norske Veritas (DNV 2002) are used. In this new investigation 
newer DNV shell buckling formulae are applied. 

Optimum design of ring-stiffened cylindrical shells has been treated in (Pappas 
and Allentuch 1974, Pappas and Morandi 1980). Results of model experiments for 
cylindrical shells used in offshore oil platforms have been published by Harding 
(1981). Cho and Frieze (1988) have compared the proposed strength formulation 
with DNV rules, British Standard BS 5500 and experimental results.  

The tripping of open section ring-stiffeners is treated by Huang and Wierzbicki 
(1993). Buckling solutions for shells with various end conditions, stiffener geome-
try and under various pressure distributions have been presented by Wang et al. 
(1997) and by Tian et al. (1999).  

In (Akl et al 2002) the adopted approach aims at simultaneously minimizing the 
shell vibration, associated sound radiation, weight of the stiffening rings as well as 
the cost of the stiffened shell. The production cost as well as the life cycle and 
maintenance costs are computed using the Parametric Review of Information for 
Costing and Evaluation (PRICE) model (PRICE System, Mt.Laurel, N.J. 1999) 
without any detailed cost data. 

In the optimization process the optimum values of shell diameter and thickness 
as well as the number and dimensions of ring-stiffeners are sought to minimize the 
structural volume or cost. In order to avoid tripping welded square box section 
stiffeners are used, their side length and thickness of plate elements should be  
optimized. 
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Besides the constraints on shell and stiffener buckling the fabrication con-
straints can be active. To make it possible the welding of stiffeners inside the shell 
the minimum shell diameter should be fixed (2000 mm). The calculations show 
that the volume and cost decreases when the shell diameter is decreased. Thus, the 
shell diameter can be the fixed minimum value. Another fabrication constraint is 
the limitation of shell and plate thickness (4 mm). 

The remaining unknown variables can be calculated using the two buckling 
constraints and the condition of volume or cost minimization. The relation be-
tween the side length and plate thickness of ring-stiffeners is determined be the  
local buckling constraint. To obtain the optimum values of variables a relative 
simple systematic search method is used. 

The cost function contains the cost of material, assembly, welding and painting 
and is formulated according to the fabrication sequence. 

8.1.2   Characteristics of the Optimization Problem 

Given data:  external pressure intensity  p = 0.5 N/mm2,  safety factor γ = 1.5, 
shell length L = 6000 mm, steel yield stress fy = 355 MPa, elastic modulus E = 
2.1x105 MPa, Poisson ratio ν = 0.3, density  ρ = 7.85x10-6 N/mm3, the cost con-
stants are given separately. 

 
Unknown variables: shell radius R, shell thickness t, number of spacing between 
ring-stiffeners n, thus, the spacing between stiffeners is Lr = L/n, the side length of 
the square box section stiffener hr, the thickness of stiffener plate parts tr.  

8.1.3   Constraint on Shell Buckling 

According to the DNV rules (2002) 
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8.1.4   Constraint on Ring-Stiffener Buckling 

The moment of inertia of the effective stiffener cross-section should be larger than 
the required one 
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The distance of the gravity centre of the effective ring-stiffener cross-section 
(Fig.8.1) 
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The moment of inertia of the effective stiffener cross-section 
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The relation between hr and tr is determined by the local buckling constraint 
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For  fy = 355  341 /=δ ,  the required tr is rounded to the larger integer, but  
trmin = 4 mm. 

The required moment of inertia 
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Fig. 8.1 Ring-stiffened cylindrical shell loaded by external pressure 

8.1.5   The Cost Function 

The cost function contents the cost of material, assembly, welding and painting 
and is formulated according to the fabrication sequence. 

The cost of assembly and welding is calculated using the following formula 
(Farkas and Jármai 1997, 2003, 2008) 








 += 
i

wipi
n
wiwiww LCaC.VCkK 311 κρΘ     (8.11)

where kw [$/min] is the welding cost factor, C1 is the factor for the assembly usu-
ally taken as C1 = 1 min/kg0.5, Θ is the factor expressing the complexity of assem-
bly, the first member calculates the time of  the assembly, κ is the number of  
structural parts to be assembled, ρV is the mass of the assembled structure.  

The second member estimates the time of welding,  Cw and n are the constants 
given for the specified welding technology and weld type, Cp is the factor of weld-
ing position (for downhand 1, for vertical 2, for overhead 3), Lw is the weld length, 
the multiplier 1.3 takes into account the additional welding times (deslagging, 
chipping, changing the electrode). 

The fabrication sequence is as follows: 

(a) Welding the unstiffened shell from curved plate parts of dimensions 
6000x1500 mm and of number 

1500

2 πR
np = ,  

which should be rounded to the larger integer. Use butt welds of length 

Lw1 = npL,  123 11 ==== Wp k,LtRV,n, πκΘ ,   (8.12) 
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welding technology SAW (submerged arc welding) 

for t = 4-15 mm  CW1 = 0.1346x10-3 and n1 = 2, (8.13a)

for  t > 15 mm     CW1 = 0.1033x10-3 and n1 = 1.9,   (8.13b)

( )11111
131 W

n
WWW LtC.VkK += ρκΘ .    (8.14)

(b) Welding the ring-stiffeners separately from 3 plate parts with 2 fillet welds 
(GMAW-C –gas metal arc welding with CO2): 

( )2
23

22 1033940313 WWWW Lax.x.VkK −+= ρΘ   (8.15)

where 

( )rrr
r

rr hRth
h

RthV −+





 −= ππ 2

2
42    (8.16)

( ) rWrW t.a,hRL 7042 =−= π   (8.17)

(c) Welding the (n+1) ring-stiffeners into the shell with 2 circumferential fillet 

welds (GMAW-C)  

( )( )3
23

33 1033940312 WWWW Lax.x.VnkK −++= ρΘ   (8.18) 

where  

( ) ( )141 3213 +=++= nRL,VnVV W π   (8.19) 

Material cost 

13 == MMM k,VkK ρ  $/kg  (8.20) 

Painting cost 

610828 −== x.k,SkK PPPP $/mm2,  (8.21) 

( )[ ] ( ) ( ) ( )1
2

412122 +





 −++−++−+= nh

h
RnhhRhnLRLRS r

r
rrrP ππππ     (8.22) 

The total cost 

( ) PWWWM KKKnKKK +++++= 321 1   (8.23) 

8.1.6   Results of the Optimization 

In the following the minimum cost design is obtained by a systematic search using 
a MathCAD algorithm.  
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For a shell thickness t the number of stiffeners n is determined by the shell 

buckling constraint (Eq.8.1) and the stiffener dimensions (hr and tr) are determined 
by the stiffener buckling constraint (Eq. 8.5). 

The search results for R = 1851 and 1500 (Tables 8.1 and 8.2) show that the 
volume and cost decreases when the radius is decreased. Thus, the realistic opti-
mum can be obtained by taking the radius as small as possible. This minimum ra-
dius is determined by the requirement that the internal stiffeners should easily be 
welded inside of shell, i.e. Rmin = 1000 mm. Therefore the more detailed search is 
performed for this radius (Table 8.3). 

Table 8.1 Systematic search for R = 1850 mm. Dimensions are in mm. The minimum cost 
is marked by bold letters. 

t n σ<σadm MPa hr tr Ix>Ireq x10-4 mm4 V x10-5 mm3 K $ 
11 7 126<152 180 6 3352>3341 10490 18770 
12 6 115<143 180 6 3530>3502 10830 18640 
13 5 106<124 190 6 4245>4014 11290 18650 
14 4 99<109 200 6 5050>4888 11710 18620 
15 4 92<121 200 6 5252>4718 12400 19390 

Table 8.2 Systematic search for R = 1500 mm. Dimensions are in mm. The minimum cost 
is marked by bold letters. 

t n σ<σadm MPa hr tr Ix>Ireq x10-4 mm4 V x10-5 mm3 K $ 
8 10 140<157 160 5 1745>1616 6830 13890 
9 8 125<140 160 5 1590>1550 6870 13250 
10 6 112<115 160 5 1995>1885 7130 12900 
11 5 102<106 150 5 2109>2102 7480 12950 
12 5 93<120 160 5 2217>2003 8050 13570 

 
It can be seen from Table 8.3 that the optima for minimum volume and mini-

mum cost are different.  It is caused by the larger value of fabrication (welding 
and painting) cost. The details of the cost for K = $ 7221 are given in Table 8.4. 

Table 8.3 Systematic search for R = 1000 mm. Dimensions are in mm. The optima are 
marked by bold letters. 

t n σ<σadm MPa hr tr Ix>Ireq x10-4 mm4 V x10-5 mm3 K $ 
5 16 150<156 110 4 402>364 3192 8338 
6 12 125<141 100 4 353>296 3177 7631 
7 9 107<123 100 4 387>336 3343 7321 
8 7 94<111 100 4 419>400 3579 7244 
9 5 83<90 110 4 572>557 3854 7221 
10 4 75<82 120 4 759>703 4186 7419 
11 3 68<69 130 4 982>953 4505 7598 
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Table 8.4 Details of the minimum cost in $. (The sum of the welding and painting costs  
is $4196). 

KM KW1 (n+1)KW2 KW3 KP K 
3025 673 474 665 2384 7221 

8.1.7   Conclusions 

The structural volume and the cost decrease when the shell radius is decreased. 
Thus, the shell radius should be taken as small as possible. The minimum radius is 
determined by the limitation that the internal ring-stiffeners should welded into the 
shell (Rmin = 1000 mm).  

The shell thickness and the number of ring-stiffeners can be calculated using 
the constraint on shell buckling. In order to avoid ring-stiffener tripping, welded 
square box section rings are used. The dimensions of the rings can be determined 
from the constraint on ring-stiffener buckling. The constraints on buckling are 
formulated according to the newer DNV design rules. 

In the cost function the costs of material, assembly, welding and painting are 
formulated. The welding cost parts are calculated according to the fabrication se-
quence. The optima for minimum volume and minimum cost are different, since 
the fabrication cost parts are relative high as compared to the whole cost. 

The ring-stiffening is very effective, since in the case of n = 1 (only 2 end stiff-
eners) the required shell thickness is t = 18 mm, the volume is V = 7144x10-3 mm3 
and the cost is K = $10450, i.e. the cost savings achieved by ring-stiffeners is 
(10450-7221)/10450x100 = 31%. 
8.2   Cost Comparison of Optimize d Unstiffened Cylindrical and Conical Shells  

8.2   Cost Comparison of Optimized Unstiffened Cylindrical  
and Conical Shells for a Cantilever Column Loaded  
by Axial Compression and Bending 

Abstract 
 

The problem is to find the optimum dimensions of a cantilever column loaded by 
compression and bending. The column is constructed as circular or conical un-
stiffened shell. In both cases the cost minimum is not limited by a fabrication con-
straint. The cost comparison of both structural versions shows the most economic 
one. 

8.2.1   Introduction 

Columns or towers are used in many engineering structures, e.g. in buildings, 
wind turbine towers, piers of motorways, etc. They can be constructed as rectan-
gular boxes or shells. Walls of boxes can be designed from stiffened plates or  
cellular plates. Shells can be unstiffened or stiffened circular or conical. A ring-
stiffened conical shell is treated for external pressure in the case of equidistant 
stiffening (Farkas and Jármai 2008). 
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Previous studies have shown that, when the constraint on horizontal displace-
ment of the column top is not active, the unstiffened circular shell can be cheaper 
than that of stringer stiffened one. In the present study the unstiffened circular 
shell is compared to the slightly conical one to show the economy of conical shells 
over the circular ones. 

In previous studies the fabrication has been realized by using 3 m long plate 
elements to form unstiffened shell elements. In the present study 1.5 m wide plate 
elements are used. Therefore, the shell thicknesses can be varied in more shell 
parts. With equidistant shell elements of the same thickness the fabrication can be 
realized more easily. 

The optimal thickness for each shell element is calculated from the shell buck-
ling constraint according to the Det Norske Veritas (2002) design rules. 

In the previous studies the fabrication sequence is designed so that the circum-
ferential welds have been realized for the completely assembled shell. In order to 
ease the welding inside the shell the fabrication is changed and it is supposed that 
these welds are welded successively. Thus the next 1.5 m wide shell part is welded 
to the previous longer structure and so the number of assembled parts is always 2. 

Firstly, the conical shell is optimized by using different radii with a constant in-
clination angle. Secondly, this angle is changed to show its effect. Thirdly, the op-
timal circular shell radius is sought to minimize the cost. 

8.2.2   Constraint on Conical Shell Buckling 

According to the DNV rules (2002) the buckling of conical shells is treated like 
buckling of an equivalent circular cylindrical shell.  

The thickness, the average radius and the length of the ith equivalent shell  
part are 
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The inclination angle is defined by 
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The sum of the axial and bending stresses should be smaller than the critical  
buckling stress 

42

1

0

1

2

2
i

y
cri

eii

i

j

i
jF

eii

F
biai

f

tR

L
LH

tR

N

λ
σ

ππ
σσ

+
=≤











+

+=+


−

=
 

 (8.26)

where the reduced slenderness 
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Fig. 8.2 Conical shell cantilever column loaded by axial compression and bending 

The elastic buckling stress for the axial compression is  
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The elastic buckling stress for bending is  
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Note that the residual welding distortion factor 1.5 50 1β− =  when t>9 mm. The 

detailed derivation of it is treated in (Farkas and Jármai 2003). 

8.2.3   The Cost Function 

The cost function contains the cost of material, forming of plate parts to conical or 
circular shell elements, welding and painting and is formulated according to the 
fabrication sequence. 

The material cost is given by 

61085701 −=== x..kg/$.k,VkK MMM ρρ   (8.33)
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The cost of forming of plate parts into conical or circular shell elements 
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The coefficient for the complexity of assembly is  .3=Θ  The specific fabrication 
cost factor is taken as kF = 1.0$/min. 

For a shell element 3 axial butt welds are needed (GMAW-C –Gas Metal Arc 
Welding with CO2). 

( )eiiiFiW LtxxVkK 310152.03.1 94.13
0

−+= κρΘ  (8.36)

The number of assembled elements is  .3=κ  
Cost of welding of circumferential welds between shell elements. The welding 

is performed successively, so one weld is connecting only two parts in each fabri-
cation step. 
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Cost of painting 
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8.2.4   Numerical Data and Results 

L0 = 15 m, this height is divided in 10 shell parts, each length of Li = 1500 mm. 
This uniform length is selected for easy fabrication. NF = 3400 kN, HF = 0.1NF,   
fy = 355 MPa, E = 2.1x105 MPa. 

The calculation is performed by using a MathCAD algorithm. Results are given 
in Tables 8.5, 8.6 and 8.7. 

Table 8.5 Cost parts  ($) of  conical shells of inclination angle 2.860 for different  
radii (mm) 

R0 Rmax KM KF0 KW0 KW KP K 
750 1500 26300 19895 9702 14750 6107 76754 
850 1600 25660 19360 8300 13753 6650 73723 
1050 1800 24750 18492 6536 12300 7736 69814 
1250 2000 24790 17974 5664 11796 8822 69046 
1450 2200 25320 17709 5191 11640 9907 69767 
1650 2400 26090 17565 4881 11754 10990 71280 

 
In Table 8.5 the minimum material cost (volume) and total cost are marked by 

bold letters. It can be seen that the minimum volume and minimum cost corre-
spond to different radii. This difference is caused by high fabrication costs. The 
optimum is found, since the decrease of radii causes increase of thicknesses, 
which increases the material and welding cost, on the other hand the increase of 
radii causes increase of material and painting cost. 

Table 8.6 Cost parts ($) of conical shells of different inclination angles (the average radius 
is 1625 mm) 

Angle R0 Rmax KM KF0 KW0 KW KP K 
4.380 1050 2200 24870 17961 5676 11582 8822 68911 
6.650 750 2500 25160 18246 5920 11424 8822 69572 

 
The thicknesses for the optimal conical shell of inclination angle 4.380 are from 

above as follows: 18, 19, 20 and all others 21 mm. 
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Table 8.7 Cost parts ($) of circular shells for different radii. The minimum cost is marked 
by bold letters. 

R0=Rmax KM KF0 KW0 KW KP K 
1450 25750 18661 7070 13640 7872 72993 
1650 25500 17960 5825 12393 8957 70635 
1750 25500 17920 5596 12385 9500 70901 
1850 25730 17809 5333 12250 10040 71162 

 
The thicknesses for the optimal circular shell of radius 1650 mm are as follows: 

14, 15, 17, 18, 20, 21, 23, 24, 26 and 27 mm. 

8.2.5   Conclusions 

The following fabrication aspects are considered: the change of shell thickness is 
designed in equal distances, the circumferential welds are welded successively  
to ease the welding inside of the shell, only integer numbers are used for shell 
thicknesses. 

The structural volume or components of cost vary with radii in such manner 
that for both circular or conical unstiffened shells optimum radius can be found.  

Three inclination angles of conical shell have been investigated and one of 
them was optimal. 

The comparison of conical and circular shells shows that the cost of optimal 
conical shell is lower than that of circular one, but the difference is not very large 
(70635-68911)/70635x100 = 2.8%. 
8.3  Conical Shell with Non-equidistant Ring- Stiffening Loade d  

8.3   Conical Shell with Non-equidistant Ring-Stiffening Loaded 
by External Pressure 

Abstract 
 

The problem is to design a slightly conical shell loaded in external pressure with 
non-equidistant ring-stiffeners of welded square box section. The optimum shell 
thickness is found, which minimizes the cost function and fulfils the design con-
straints. The length of each shell segment is calculated from the shell buckling 
constraint. The dimensions of ring-stiffeners for each shell segment are deter-
mined on the basis of the ring buckling constraint. The ring-stiffening is very ef-
fective, since the unstiffened shell needs a large thickness, which is unrealistic for 
fabrication. 

8.3.1   Introduction 

Minimum cost design has been worked out for ring-stiffened conical shell with 
equidistant ring-stiffening in (Farkas and Jármai 2008). 
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Ghazijahani and Showkati (2011) have described experiments on conical shell 
models. The measured buckling pressures have been lower than the predicted val-
ues. This differences have been caused by initial imperfections. It can be con-
cluded that these low buckling stresses can be avoided by using ring stiffeners. 

In the present study we select the following structural characteristics: steel, 
slightly conical shell, ring-stiffeners of welded square box section to avoid trip-
ping, non-equidistant stiffening, external pressure, welding. Design rules of Det 
Norske Veritas (2002) are applied for shell and stiffener buckling constraints. 

The variables to be optimized are as follows: length of shell segments for a 
given shell thickness (Fig. 8.3), dimensions of ring-stiffeners (hi, tri). Stiffeners 
should be used at the ends of the shell, thus, two stiffeners are used in the first 
shell segment. The ring stiffeners are placed in a small distance from the circum-
ferential welds connecting two segments to allow the inspection of welded joints, 
this is marked in Fig. 8.3 by dotted lines.  

The cost function includes the cost of material, assembly, welding and painting 
and is formulated according to the fabrication sequence. 

The optimization process has the following parts: 
 

(a) design of each shell segment length for a given shell thickness using the shell 
buckling constraint, 

(b) design of ring-stiffeners for each shell segment using the stiffener buckling 
constraint, 

(c) cost calculation for each shell segment and for the whole shell structure. 
 

These design steps should be carried out for a series of shell thicknesses. On the 
basis of calculated costs the optimum solution corresponding to the minimum cost 
can be determined. 

8.3.2   Design of Shell Segment Lengths 

According to DNV rules (2002), for shell segments between two ring-stiffeners of 
radii Ri and Ri+1 the buckling constraint valid for circular cylindrical shells with 
equivalent radius 

1tan

1
cos,

cos2 2

1

+
=

+
= +

α
α

α
ii

ei

RR
R   (8.40)

iii
n RLR

L

RR
+=

−
= +

+ αα tan,tan 1
0

11   (8.41)

and equivalent thickness 

αcosiei tt =   (8.42) 

 



8.3  Conical Shell with Non-equidistant Ring-Stiffening Loaded 225
 

The normal stress due to external pressure in a shell segment should be smaller 
than the critical buckling stress 
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Using Eqs (8.44), Eq.(8.45) can be written in the form of 

eiei

ei
i tR

L
C

2

023214.014 +=   (8.46)

From the shell buckling constraint Eq. (8.43) the unknown Li can be calculated us-
ing a Mathcad program. 

8.3.3   Design of a Ring-Stiffener for Each Shell Segment 

For ring-stiffeners a square box section welded from 3 parts is selected to avoid 
tripping, which is dangerous failure mode for open-section stiffeners (Fig.8.3). 

The constraint on local buckling of the compressed stiffener flange according to 
Eurocode 3 (2009) is expressed by 

yiri fht /235,42/1, ==≥ εεδδ   (8.47) 

for  fy = 355 MPa  1/δ = 34. 
Calculating with Eq.(8.47) as equality, the only unknown for a square ring-

stiffener is the height hi. This dimension can be determined from the stiffener 
buckling constraint relating to the required moment of inertia of a stiffener section 
about the axis x of the point E, which is the gravity centre of the cross-section in-
cluding the 3 stiffener parts and the effective part of the shell (Fig.8.3). 
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Fig. 8.3 The main dimensions of the conical shell – a shell segment with the ring-stiffener 
of welded square box section 
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The required hi can be calculated from Eq.(8.48). 

8.3.4   The Cost Function 

The cost function is formulated according to the fabrication sequence as follows. 
 

(1) Forming of 3 plate elements for shell segments into slightly conical shape 
(KF0). 

(2) Welding 3 curved shell elements into a shell segment with GMAW-C (gas 
metal arc welding with CO2) butt welds (KF1). 

(3) Welding of n+1 ring-stiffeners each from 3 elements with 2 GMAW-C fil-
let welds (KF2). 

(4) Welding of a ring-stiffener into each shell segment with 2 GMAW-C fillet 
welds (KF3). 

(5) Assembly of the whole stiffened shell structure from n shell segments 
(KF4A). 

(6) Welding of n shell segments to form the whole shell structure with n-1 
circumferential GMAW-C butt welds (KF4W). 

(7) Painting of the whole shell structure from inside and outside (KP). 

The total cost includes the cost of material, assembly, welding and painting 

 PFFFFFM KKKKKKKK ++++++= 43210        (8.53) 
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The volume of the whole structure includes the volume of shell segments (V1i) and 
ring-stiffeners (Vri) 
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where the factor of fabrication difficulty is taken as 3=Θ  and the steel density is 
ρ = 7.85x10-6 kg/mm3. 
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kP = 2x14.4x10-6 $/mm2. 

8.3.5   Numerical Data 

Total shell length L = 15000, side radii Rmin = R1 = 1850 and Rmax = Rn+1 = 2850 
mm, yield stress of steel fy = 355 MPa, with a safety factor for yield stress  fy1 = 
fy/1.1,  external pressure intensity  

p = 0.5 MPa, safety factor for loading γb = 1.5, Poisson ratio  ν = 0.3, elastic 
modulus  E = 2.1x105 MPa. 

8.3.6   Results of the Optimization 

The detailed calculations are carried out for shell thicknesses ti = 14-20 mm. The 
corresponding material and total costs are summarized in Table 8.8. 
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Table 8.8 The material and total costs in $ for investigated shell thicknesses. The optima 
are marked by bold letters. 

ti mm KM K 
14 28490 82280 
16 29620 76150 
18 32390 75040 
20 38170 80120 

Table 8.9 Main dimensions (in mm) of the optimum shell structure (t = 18 mm) 

Ri Li hi tri 
1850 2630 121 4 
2025 2376 134 4 
2183 2189 146 5 
2329 2044 158 5 
2465 1927 170 5 
2593 1831 182 6 
2715 1750 194 6 
2832 (1680) 207 7 

 
It can be seen that the optimum shell thickness for material cost is 14 and for 

total cost 18 mm. This difference is caused by the fact that the fabrication (assem-
bly, welding and painting) cost represents a large amount of total cost. The cost 
data show that, in the fabrication cost a significant part has the forming of plate 
elements into shell shape, welding and painting. 

In order to characterize the dimensions of the optimum structure, the main data 
are given in Table 8.9. 

8.3.7   Conclusions 

The length of each shell segment is calculated from the shell buckling constraint. 
This constraint is similar to that for circular cylindrical shells, but equivalent 
thickness and segment length is used according to the DNV design rules (2002). 

The dimensions of ring-stiffeners for each shell segment are determined on the 
basis of the ring buckling constraint. This constraint is expressed by the required 
moment of inertia of the ring-stiffener cross-section. 

The cost function includes the cost of material, forming of plate elements into 
shell shape, assembly, welding and painting. The fabrication cost function is for-
mulated according to the fabrication sequence. The forming, welding and painting 
costs play an important role in the total cost.  

The cost difference between the maximum and minimum cost in the investi-
gated range of is (82280-75040)/82280x100 = 9%, thus, a significant cost savings 
can be achieved by optimization. 
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The ring-stiffening is very effective, since the unstiffened shell needs a  
thickness of 42 mm, which is unrealistic for fabrication. 

The shell with equidistant ring-stiffening has been optimized in (Farkas and 
Jármai 2008) resulting the minimum cost of  $79210.This means that the shell 
with non-equidistant stiffening is by 5% cheaper. 
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M = Weight; A = Cross-section area; I = Moment of inertia; W = Section modulus; 
i = Radius of gyration; It = Torsion modulus; Theoretical density = 7.85 kg/dm3. 
The cross-sectional properties have been calculated by using nominal dimensions 
H. B and T and corner outer radius R. 
R = 2.0 x T. when T ≤ 6.0 mm. 
R = 2.5 x T. when 6.0 mm < T ≤ 10.0 mm. 
R = 3.0 x T. when T > 10.0 mm. 

 
H x B mm T mmM kg/m A mm2 x 102 Ix = Iy mm4 x 104 Wx = Wy mm3 x 103 ix = iy mm x 10 It mm4 x 104 

25 x 25 2.0 1.36 1.74 1.48 1.19 0.92 2.53 

25 x 25 2.5 1.64 2.09 1.69 1.35 0.90 2.97 

25 x 25 3.0 1.89 2.41 1.84 1.47 0.87 3.33 

30 x 30 2.0 1.68 2.14 2.72 1.81 1.13 4.54 

30 x 30 2.5 2.03 2.59 3.16 2.10 1.10 5.40 

30 x 30 3.0 2.36 3.01 3.50 2.34 1.08 6.15 

40 x 40 2.0 2.31 2.94 6.94 3.47 1.54 11.28 

40 x 40 2.5 2.82 3.59 8.22 4.11 1.51 13.61 

40 x 40 3.0 3.30 4.21 9.32 4.66 1.49 15.75 

40 x 40 4.0 4.20 5.35 11.07 5.54 1.44 19.44 

50 x 50 2.0 2.93 3.74 14.15 5.66 1.95 22.63 

50 x 50 2.5 3.60 4.59 16.94 6.78 1.92 27.53 



232 A  Square Hollow Sections Cold Formed BS EN 10219:1997
 

H x B mm T mmM kg/m A mm2 x 102 Ix = Iy mm4 x 104 Wx = Wy mm3 x 103 ix = iy mm x 10 It mm4 x 104 

50 x 50 3.0 4.25 5.41 19.47 7.79 1.90 32.13 

50 x 50 4.0 5.45 6.95 23.74 9.49 1.85 40.42 

50 x 50 5.0 6.56 8.36 27.04 10.82 1.80 47.46 

60 x 60 2.0 3.56 4.54 25.14 8.38 2.35 39.79 

60 x 60 2.5 4.39 5.59 30.34 10.11 2.33 48.66 

60 x 60 3.0 5.19 6.61 35.13 11.71 2.31 57.09 

60 x 60 4.0 6.71 8.55 43.55 14.52 2.26 72.64 

60 x 60 5.0 8.13 10.36 50.49 16.83 2.21 86.42 

70 x 70 2.5 5.17 6.59 49.41 14.12 2.74 78.49 

70 x 70 3.0 6.13 7.81 57.53 16.44 2.71 92.42 

70 x 70 4.0 7.97 10.15 72.12 20.61 2.67 118.52 

70 x 70 5.0 9.70 12.36 84.63 24.18 2.62 142.21 

80 x 80 2.5 5.96 7.59 75.15 18.79 3.15 118.52 

80 x 80 3.0 7.07 9.01 87.84 21.96 3.12 139.93 

80 x 80 4.0 9.22 11.75 111.04 27.76 3.07 180.44 

80 x 80 5.0 11.30 14.36 131.44 32.86 3.03 217.83 

80 x 80 6.0 13.20 16.83 149.18 37.29 2.98 252.07 

90 x 90 2.5 6.74 8.59 108.55 24.12 3.56 170.26 

90 x 90 3.0 8.01 10.21 127.28 28.29 3.53 201.42 

90 x 90 4.0 10.50 13.35 161.92 35.98 3.48 260.80 

90 x 90 5.0 12.80 16.36 192.93 42.87 3.43 316.26 

90 x 90 6.0 15.10 19.23 220.48 49.00 3.39 367.76 

100 x 100 2.5 7.53 9.59 150.63 30.13 3.96 235.21 

100 x 100 3.0 8.96 11.41 177.05 35.41 3.94 278.68 

100 x 100 4.0 11.70 14.95 226.35 45.27 3.89 362.01 

100 x 100 5.0 14.40 18.36 271.10 54.22 3.84 440.52 

100 x 100 6.0 17.00 21.63 311.47 62.29 3.79 514.16 

100 x 100 7.1 19.40 24.65 340.13 68.03 3.71 589.17 

100 x 100 8.0 21.40 27.24 365.94 73.19 3.67 644.51 

100 x 100 10.0 25.60 32.57 411.08 82.22 3.55 749.84 

110 x 110 2.5 8.31 10.59 202.38 36.80 4.37 314.86 

110 x 110 3.0 9.90 12.61 238.34 43.33 4.35 373.51 

110 x 110 4.0 13.00 16.55 305.94 55.62 4.30 486.47 

110 x 110 5.0 16.00 20.36 367.95 66.90 4.25 593.60 

110 x 110 6.0 18.90 24.03 424.57 77.19 4.20 694.85 

120 x 120 3.0 10.80 13.81 312.35 52.06 4.76 487.72 

120 x 120 4.0 14.30 18.15 402.28 67.05 4.71 636.57 



A  Square Hollow Sections Cold Formed BS EN 10219:1997 233
 

H x B mm T mmM kg/m A mm2 x 102 Ix = Iy mm4 x 104 Wx = Wy mm3 x 103 ix = iy mm x 10 It mm4 x 104 

120 x 120 5.0 17.60 22.36 485.47 80.91 4.66 778.50 

120 x 120 5.6 19.50 24.82 532.25 88.71 4.63 860.31 

120 x 120 6.0 20.80 26.43 562.16 93.69 4.61 913.46 

120 x 120 7.1 23.80 30.33 623.30 103.88 4.53 1056.01 

120 x 120 8.0 26.40 33.64 676.88 112.81 4.49 1162.95 

120 x 120 8.8 28.60 36.48 719.88 119.98 4.44 1252.41 

120 x 120 10.0 31.80 40.57 776.81 129.47 4.38 1376.41 

140 x 140 4.0 16.80 21.35 651.62 93.09 5.52 1023.32 

140 x 140 5.0 20.70 26.36 790.56 112.94 5.48 1255.76 

140 x 140 5.6 23.00 29.30 869.55 124.22 5.45 1390.71 

140 x 140 6.0 24.50 31.23 920.43 131.49 5.43 1478.77 

140 x 140 7.1 28.30 36.01 1031.40 147.34 5.35 1718.74 

140 x 140 8.0 31.40 40.04 1126.77 160.97 5.30 1900.84 

140 x 140 8.8 34.20 43.52 1205.03 172.15 5.26 2055.40 

140 x 140 10.0 38.10 48.57 1311.67 187.38 5.20 2273.90 

150 x 150 4.0 18.00 22.95 807.82 107.71 5.93 1264.76 

150 x 150 5.0 22.30 28.36 982.12 130.95 5.89 1554.13 

150 x 150 6.0 26.40 33.63 1145.91 152.79 5.84 1832.69 

150 x 150 7.1 30.50 38.85 1289.35 171.91 5.76 2134.21 

150 x 150 8.0 34.00 43.24 1411.83 188.24 5.71 2364.08 

150 x 150 8.8 36.90 47.04 1513.12 201.75 5.67 2560.17 

150 x 150 10.0 41.30 52.57 1652.53 220.34 5.61 2839.24 

150 x 150 12.5 48.70 62.04 1817.44 242.33 5.41 3320.84 

160 x 160 4.0 19.30 24.55 987.17 123.40 6.34 1541.45 

160 x 160 5.0 23.80 30.36 1202.36 150.29 6.29 1896.32 

160 x 160 6.0 28.30 36.03 1405.48 175.69 6.25 2238.90 

160 x 160 7.1 32.70 41.69 1587.01 198.38 6.17 2611.42 

160 x 160 8.0 36.50 46.44 1741.23 217.65 6.12 2896.58 

160 x 160 8.8 39.70 50.56 1869.59 233.70 6.08 3140.82 

160 x 160 10.0 44.40 56.57 2047.67 255.96 6.02 3490.29 

160 x 160 12.0 50.90 64.86 2224.36 278.05 5.86 3996.72 

160 x 160 12.5 52.60 67.04 2275.04 284.38 5.83 4113.99 

180 x 180 5.0 27.00 34.36 1736.87 192.99 7.11 2724.16 

180 x 180 6.0 32.10 40.83 2036.52 226.28 7.06 3222.65 

180 x 180 7.1 37.20 47.37 2312.84 256.98 6.99 3768.11 

180 x 180 8.0 41.50 52.84 2545.86 282.87 6.94 4188.56 

180 x 180 8.8 45.20 57.60 2741.73 304.64 6.90 4550.90 
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H x B mm T mmM kg/m A mm2 x 102 Ix = Iy mm4 x 104 Wx = Wy mm3 x 103 ix = iy mm x 10 It mm4 x 104 

180 x 180 10.0 50.70 64.57 3016.80 335.20 6.84 5073.57 

180 x 180 12.5 60.50 77.04 3406.43 378.49 6.65 6049.85 

200 x 200 5.0 30.10 38.36 2410.09 241.01 7.93 3763.30 

200 x 200 6.0 35.80 45.63 2832.75 283.27 7.88 4458.81 

200 x 200 7.1 41.60 53.05 3231.60 323.16 7.81 5222.90 

200 x 200 8.0 46.50 59.24 3566.25 356.63 7.76 5815.18 

200 x 200 8.8 50.80 64.64 3849.59 384.96 7.72 6327.89 

200 x 200 10.0 57.00 72.57 4251.06 425.11 7.65 7071.73 

200 x 200 12.5 68.30 87.04 4859.42 485.94 7.47 8501.74 

220 x 220 6.0 39.60 50.43 3813.36 346.67 8.70 5976.18 

220 x 220 7.1 46.10 58.73 4366.03 396.91 8.62 7009.86 

220 x 220 8.0 51.50 65.64 4828.01 438.91 8.58 7814.84 

220 x 220 8.8 56.30 71.68 5221.35 474.67 8.53 8514.01 

220 x 220 10.0 63.20 80.57 5782.46 525.68 8.47 9532.77 

220 x 220 12.5 76.20 97.04 6673.98 606.73 8.29 11529.63 

250 x 250 6.0 45.20 57.63 5672.00 453.76 9.92 8842.52 

250 x 250 7.1 52.80 67.25 6521.74 521.74 9.85 10387.69 

250 x 250 8.0 59.10 75.24 7229.20 578.34 9.80 11597.77 

250 x 250 8.8 64.60 82.24 7835.39 626.83 9.76 12652.72 

250 x 250 10.0 72.70 92.57 8706.67 696.53 9.70 14197.22 

250 x 250 12.5 88.00 112.04 10161.31 812.91 9.52 17282.65 

260 x 260 6.0 47.10 60.03 6404.54 492.66 10.33 9969.77 

260 x 260 7.1 55.00 70.09 7372.75 567.13 10.26 11716.64 

260 x 260 8.0 61.60 78.44 8178.02 629.08 10.21 13086.86 

260 x 260 8.8 67.30 85.76 8869.18 682.24 10.17 14282.62 

260 x 260 10.0 75.80 96.57 9864.65 758.82 10.11 16035.47 

260 x 260 11.0 81.90 104.37 10475.62 805.82 10.02 17497.85 

260 x 260 12.5 91.90 117.04 11547.88 888.3 9.93 19553.31 

300 x 300 6.0 54.70 69.63 9963.67 664.24 11.96 15433.82 

300 x 300 7.1 63.90 81.45 11516.13 767.65 11.89 18161.09 

300 x 300 8.0 71.60 91.24 12800.69 853.38 11.84 20311.84 

300 x 300 8.8 78.40 99.84 13910.50 927.37 11.80 22194.64 

300 x 300 10.0 88.40 112.57 15519.37 1034.62 11.74 24965.66 

300 x 300 12.5 108.00 137.04 18348.13 1223.21 11.57 30600.78 
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H x B 
mm 

T 
mm 

 

A mm2 x 
102 

 

Ix mm4x 
104 

 

Wx m3 x 
103 

ix mm x 
10 

Iy mm4 x 
104 

Wy mm3 x 
103 

iy mm x 
10 

Iyt mm4 x 
104 

 
40 x 20 2.0 2.14 4.05 2.02 1.38 1.34 1.34 0.79 3.45 

40 x 20 2.5 2.59 4.69 2.35 1.35 1.54 1.54 0.77 4.06 

40 x 20 3.0 3.01 5.21 2.60 1.32 1.68 1.68 0.75 4.57 

40 x 30 2.0 2.54 5.49 2.75 1.47 3.51 2.34 1.18 7.07 

40 x 30 2.5 3.09 6.45 3.23 1.45 4.10 2.74 1.15 8.47 

40 x 30 3.0 3.61 7.27 3.63 1.42 4.60 3.07 1.13 9.72 

50 x 30 2.0 2.94 9.54 3.81 1.8 4.29 2.86 1.21 9.77 

50 x 30 2.5 3.59 11.30 4.52 1.77 5.05 3.37 1.19 11.74 

50 x 30 3.0 4.21 12.83 5.13 1.75 5.70 3.80 1.16 13.53 

50 x 30 4.0 5.35 15.25 6.10 1.69 6.69 4.46 1.12 16.53 

60 x 40 2.0 3.74 18.41 6.14 2.22 9.83 4.92 1.62 20.70 

60 x 40 2.5 4.59 22.07 7.36 2.19 11.74 5.87 1.60 25.14 

60 x 40 3.0 5.41 25.38 8.46 2.17 13.44 6.72 1.58 29.28 

60 x 40 4.0 6.95 30.99 10.33 2.11 16.28 8.14 1.53 36.67 

60 x 40 5.0 8.36 35.33 11.78 2.06 18.43 9.21 1.48 42.85 

70 x 50 2.0 4.54 31.48 8.99 2.63 18.76 7.50 2.03 37.45 

70 x 50 2.5 5.59 38.01 10.86 2.61 22.59 9.04 2.01 45.75 

70 x 50 3.0 6.61 44.05 12.59 2.58 26.10 10.44 1.99 53.62 

70 x 50 4.0 8.55 54.67 15.62 2.53 32.22 12.89 1.94 68.07 
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H x B 
mm 

T 
mm 

A mm2 x 
102 

Ix mm4x 
104 

Wx m3 x 
103 

ix mm x 
10 

Iy mm4 x 
104 

Wy mm3 x 
103 

iy mm x 
10 

Iyt mm4 x 
104 

70 x 50 5.0 10.36 63.46 18.13 2.48 37.20 14.88 1.90 80.77 

80 x 40 2.0 4.54 37.36 9.34 2.87 12.72 6.36 1.67 30.88 

80 x 40 2.5 5.59 45.11 11.28 2.84 15.26 7.63 1.65 37.58 

80 x 40 3.0 6.61 52.25 13.06 2.81 17.56 8.78 1.63 43.88 

80 x 40 4.0 8.55 64.79 16.20 2.75 21.49 10.74 1.59 55.24 

80 x 40 5.0 10.36 75.11 18.78 2.69 24.59 12.30 1.54 64.97 

80 x 60 2.5 6.59 60.13 15.03 3.02 38.61 12.87 2.42 75.07 

80 x 60 3.0 7.81 70.05 17.51 3.00 44.89 14.96 2.40 88.35 

80 x 60 4.0 10.15 87.92 21.98 2.94 56.12 18.71 2.35 113.12 

80 x 60 5.0 12.36 103.28 25.82 2.89 65.66 21.89 2.31 135.53 

90 x 50 2.5 6.59 70.26 15.61 3.27 28.24 11.29 2.07 65.30 

90 x 50 3.0 7.81 81.85 18.19 3.24 32.74 13.10 2.05 76.67 

90 x 50 4.0 10.15 102.71 22.82 3.18 40.71 16.28 2.00 97.70 

90 x 50 5.0 12.36 120.60 26.80 3.12 47.37 18.95 1.96 116.47 

100 x 40 2.5 6.59 79.32 15.86 3.47 18.78 9.39 1.69 50.52 

100 x 40 3.0 7.81 92.34 18.47 3.44 21.67 10.84 1.67 59.05 

100 x 40 4.0 10.15 115.70 23.14 3.38 26.69 13.35 1.62 74.53 

100 x 40 5.0 12.36 135.60 27.12 3.31 30.76 15.38 1.58 87.92 

100 x 50 2.5 7.09 91.20 18.24 3.59 31.06 12.42 2.09 75.39 

100 x 50 3.0 8.41 106.46 21.29 3.56 36.06 14.42 2.07 88.56 

100 x 50 4.0 10.95 134.14 26.83 3.50 44.95 17.98 2.03 112.99 

100 x 50 5.0 13.36 158.19 31.64 3.44 52.45 20.98 1.98 134.87 

100 x 50 6.0 15.63 178.75 35.75 3.38 58.67 23.47 1.94 154.20 

100 x 60 2.5 7.59 103.09 20.62 3.69 46.88 15.63 2.49 103.25 

100 x 60 3.0 9.01 120.57 24.11 3.66 54.65 18.22 2.46 121.67 

100 x 60 4.0 11.75 152.58 30.52 3.60 68.68 22.89 2.42 156.27 

100 x 60 5.0 14.36 180.77 36.15 3.55 80.83 26.94 2.37 187.86 

100 x 60 6.0 16.83 205.30 41.06 3.49 91.20 30.40 2.33 216.44 

100 x 80 2.5 8.59 126.86 25.37 3.84 90.17 22.54 3.24 165.84 

100 x 80 3.0 10.21 148.81 29.76 3.82 105.64 26.41 3.22 196.12 

100 x 80 4.0 13.35 189.47 37.89 3.77 134.17 33.54 3.17 253.79 

100 x 80 5.0 16.36 225.94 45.19 3.72 159.61 39.90 3.12 307.55 

100 x 80 6.0 19.23 258.39 51.68 3.67 182.1 45.53 3.08 357.38 

120 x 40 2.5 7.59 126.71 21.12 4.09 22.30 11.15 1.71 63.77 

120 x 40 3.0 9.01 148.04 24.67 4.05 25.79 12.89 1.69 74.56 

120 x 40 4.0 11.75 186.89 31.15 3.99 31.90 15.95 1.65 94.23 

120 x 40 5.0 14.36 220.81 36.80 3.92 36.93 18.46 1.60 111.35 



B  Rectangular Hollow Section Cold Formed BS EN 10219:1997 237
 

H x B 
mm 

T 
mm 

A mm2 x 
102 

Ix mm4x 
104 

Wx m3 x 
103 

ix mm x 
10 

Iy mm4 x 
104 

Wy mm3 x 
103 

iy mm x 
10 

Iyt mm4 x 
104 

120 x 40 6.0 16.83 249.97 41.66 3.85 40.97 20.49 1.56 125.97 

120 x 50 2.5 8.09 143.97 23.99 4.22 36.70 14.68 2.13 96.03 

120 x 50 3.0 9.61 168.58 28.10 4.19 42.69 17.08 2.11 112.87 

120 x 50 4.0 12.55 213.82 35.64 4.13 53.43 21.37 2.06 144.22 

120 x 50 5.0 15.36 253.89 42.32 4.07 62.62 25.05 2.02 172.44 

120 x 50 6.0 18.03 288.99 48.16 4.00 70.36 28.14 1.98 197.55 

120 x 60 2.5 8.59 161.23 26.87 4.33 55.15 18.38 2.53 132.57 

120 x 60 3.0 10.21 189.12 31.52 4.30 64.40 21.47 2.51 156.34 

120 x 60 4.0 13.35 240.74 40.12 4.25 81.25 27.08 2.47 201.12 

120 x 60 5.0 16.36 286.97 47.83 4.19 95.99 32.00 2.42 242.23 

120 x 60 6.0 19.23 328.01 54.67 4.13 108.77 36.26 2.38 279.67 

120 x 80 2.5 9.59 195.75 32.63 4.52 105.19 26.30 3.31 215.82 

120 x 80 3.0 11.41 230.20 38.37 4.49 123.43 30.86 3.29 255.47 

120 x 80 4.0 14.95 294.59 49.10 4.44 157.29 39.32 3.24 331.24 

120 x 80 5.0 18.36 353.14 58.86 4.39 187.78 46.94 3.20 402.27 

120 x 80 6.0 21.63 406.06 67.68 4.33 215.03 53.76 3.15 468.54 

120 x 80 7.1 24.65 442.06 73.68 4.24 234.41 58.60 3.08 535.11 

120 x 80 8.0 27.24 475.83 79.31 4.18 251.66 62.92 3.04 584.04 

120 x 80 8.8 29.44 501.79 83.63 4.13 264.84 66.21 3.00 623.54 

120 x 80 10.0 32.57 534.14 89.02 4.05 281.14 70.29 2.94 675.59 

120 x 100 2.5 10.59 230.27 38.38 4.66 174.40 34.88 4.06 309.43 

120 x 100 3.0 12.61 271.27 45.21 4.64 205.28 41.06 4.04 367.01 

120 x 100 4.0 16.55 348.43 58.07 4.59 263.24 52.65 3.99 477.84 

120 x 100 5.0 20.36 419.31 69.88 4.54 316.27 63.25 3.94 582.86 

120 x 100 6.0 24.03 484.11 80.68 4.49 364.56 72.91 3.89 682.04 

140 x 60 2.5 9.59 236.55 33.79 4.97 63.43 21.14 2.57 162.67 

140 x 60 3.0 11.41 278.08 39.73 4.94 74.16 24.72 2.55 191.92 

140 x 60 4.0 14.95 355.59 50.80 4.88 93.81 31.27 2.51 247.13 

140 x 60 5.0 18.36 425.89 60.84 4.82 111.16 37.05 2.46 297.97 

140 x 60 6.0 21.63 489.19 69.88 4.76 126.34 42.11 2.42 344.46 

140 x 70 2.5 10.09 260.18 37.17 5.08 89.30 25.51 2.98 213.11 

140 x 70 3.0 12.01 306.24 43.75 5.05 104.69 29.91 2.95 251.99 

140 x 70 4.0 15.75 392.60 56.09 4.99 133.18 38.05 2.91 326.02 

140 x 70 5.0 19.36 471.48 67.35 4.94 158.71 45.35 2.86 395.06 

140 x 70 6.0 22.83 543.10 77.59 4.88 181.44 51.84 2.82 459.09 

140 x 80 3.0 12.61 334.40 47.77 5.15 141.23 35.31 3.35 317.07 

140 x 80 4.0 16.55 429.60 61.37 5.10 180.42 45.10 3.30 411.6 
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H x B 
mm 

T 
mm 

A mm2 x 
102 

Ix mm4x 
104 

Wx m3 x 
103 

ix mm x 
10 

Iy mm4 x 
104 

Wy mm3 x 
103 

iy mm x 
10 

Iyt mm4 x 
104 

140 x 80 5.0 20.36 517.06 73.87 5.04 215.94 53.99 3.26 500.51 

140 x 80 6.0 24.03 597.00 85.29 4.98 247.96 61.99 3.21 583.80 

150 x 50 2.5 9.59 254.08 33.88 5.15 45.17 18.07 2.17 127.74 

150 x 50 3.0 11.41 298.55 39.81 5.12 52.65 21.06 2.15 150.22 

150 x 50 4.0 14.95 381.39 50.85 5.05 66.16 26.47 2.10 192.14 

150 x 50 5.0 18.36 456.29 60.84 4.99 77.87 31.15 2.06 230.05 

150 x 50 6.0 21.63 523.47 69.80 4.92 87.89 35.16 2.02 263.99 

150 x 100 3.0 14.41 460.64 61.42 5.65 247.64 49.53 4.15 507.20 

150 x 100 4.0 18.95 594.60 79.28 5.60 318.57 63.71 4.10 661.63 

150 x 100 5.0 23.36 719.20 95.89 5.55 384.02 76.80 4.05 808.68 

150 x 100 6.0 27.63 834.69 111.29 5.50 444.19 88.84 4.01 948.34 

150 x 100 7.1 31.75 926.59 123.55 5.40 493.46 98.69 3.94 1095.51 

150 x 100 8.0 35.24 1008.13 134.42 5.35 535.65 107.13 3.90 1205.89 

150 x 100 8.8 38.24 1073.93 143.19 5.30 569.53 113.91 3.86 1298.14 

150 x 100 10.0 42.57 1161.70 154.89 5.22 614.41 122.88 3.80 1425.87 

160 x 70 4.0 17.35 549.03 68.63 5.63 150.62 43.04 2.95 389.66 

160 x 70 5.0 21.36 661.61 82.70 5.57 179.88 51.39 2.90 472.53 

160 x 70 6.0 25.23 764.83 95.60 5.51 206.09 58.88 2.86 549.60 

160 x 70 8.0 32.04 908.72 113.59 5.33 243.26 69.50 2.76 683.68 

160 x 80 3.0 13.81 463.81 57.98 5.80 159.03 39.76 3.39 380.34 

160 x 80 4.0 18.15 597.71 74.71 5.74 203.54 50.89 3.35 494.10 

160 x 80 5.0 22.36 721.69 90.21 5.68 244.11 61.03 3.30 601.34 

160 x 80 6.0 26.43 836.01 104.5 5.62 280.89 70.22 3.26 702.06 

160 x 80 7.1 30.33 922.59 115.32 5.52 310.11 77.53 3.20 805.54 

160 x 80 8.0 33.64 1001.22 125.15 5.46 334.95 83.74 3.16 882.33 

160 x 80 8.8 36.48 1063.96 132.99 5.40 354.52 88.63 3.12 945.41 

160 x 80 10.0 40.57 1146.34 143.29 5.32 379.81 94.95 3.06 1030.69 

160 x 90 3.0 14.41 500.79 62.60 5.90 206.79 45.95 3.79 465.40 

160 x 90 4.0 18.95 646.39 80.80 5.84 265.54 59.01 3.74 606.16 

160 x 90 5.0 23.36 781.77 97.72 5.79 319.52 71.00 3.70 739.70 

160 x 90 6.0 27.63 907.19 113.40 5.73 368.91 81.98 3.65 866.01 

160 x 90 7.1 31.75 1005.64 125.70 5.63 409.20 90.93 3.59 997.94 

160 x 90 8.0 35.24 1093.73 136.72 5.57 443.46 98.55 3.55 1096.54 

160 x 90 8.8 38.24 1164.66 145.58 5.52 470.82 104.63 3.51 1178.47 

180 x 100 4.0 21.35 926.04 102.89 6.59 373.89 74.78 4.18 853.85 

180 x 100 5.0 26.36 1124.20 124.91 6.53 451.77 90.35 4.14 1044.79 

180 x 100 5.6 29.30 1236.96 137.44 6.50 495.69 99.14 4.11 1155.01 



B  Rectangular Hollow Section Cold Formed BS EN 10219:1997 239
 

H x B 
mm 

T 
mm 

A mm2 x 
102 

Ix mm4x 
104 

Wx m3 x 
103 

ix mm x 
10 

Iy mm4 x 
104 

Wy mm3 x 
103 

iy mm x 
10 

Iyt mm4 x 
104 

180 x 100 6.0 31.23 1309.61 145.51 6.48 523.83 104.77 4.10 1226.68 

180 x 100 7.1 36.01 1463.36 162.60 6.38 585.55 117.11 4.03 1419.69 

180 x 100 8.0 40.04 1598.49 177.61 6.32 637.47 127.49 3.99 1565.24 

180 x 100 8.8 43.52 1709.13 189.90 6.27 679.66 135.93 3.95 1687.64 

180 x 100 10.0 48.57 1859.47 206.61 6.19 736.41 147.28 3.89 1858.62 

180 x 120 4.0 22.95 1049.97 116.66 6.76 563.81 93.97 4.96 1160.17 

180 x 120 5.0 28.36 1277.37 141.93 6.71 683.97 11.00 4.91 1423.83 

180 x 120 6.0 33.63 1491.34 165.70 6.66 796.30 132.72 4.87 1676.88 

180 x 120 7.1 38.85 1675.73 186.19 6.57 895.15 149.19 4.80 1949.25 

180 x 120 8.0 43.24 1835.33 203.93 6.51 978.44 163.07 4.76 2156.35 

180 x 120 8.8 47.04 1967.28 218.59 6.47 1047.00 174.50 4.72 2332.35 

180 x 120 10.0 52.57 2148.80 238.76 6.39 1140.81 190.13 4.66 2581.64 

180 x 120 12.5 62.04 2352.37 261.37 6.16 1252.33 208.72 4.49 3001.38 

200 x 80 4.0 21.35 1046.02 104.60 7.00 249.80 62.45 3.42 663.60 

200 x 80 5.0 26.36 1269.09 126.91 6.94 300.44 75.11 3.38 808.38 

200 x 80 6.0 31.23 1477.42 147.74 6.88 346.74 86.69 3.33 944.77 

200 x 80 7.1 36.01 1645.72 164.57 6.76 385.82 96.45 3.27 1086.19 

200 x 80 8.0 40.04 1795.76 179.58 6.70 418.23 104.56 3.23 1191.77 

200 x 80 8.8 43.52 1918.00 191.80 6.64 444.20 111.05 3.19 1279.19 

200 x 80 10.0 48.57 2083.06 208.31 6.55 478.48 119.62 3.14 1398.83 

200 x 100 4.0 22.95 1199.71 119.97 7.23 410.78 82.16 4.23 985.38 

200 x 100 5.0 28.36 1459.25 145.93 7.17 496.94 99.39 4.19 1206.29 

200 x 100 6.0 33.63 1703.31 170.33 7.12 576.91 115.38 4.14 1417.03 

200 x 100 7.1 38.85 1910.04 191.00 7.01 646.95 129.39 4.08 1641.19 

200 x 100 8.0 43.24 2090.84 209.08 6.95 705.36 141.07 4.04 1810.72 

200 x 100 8.8 47.04 2239.93 223.99 6.90 753.08 150.62 4.00 1953.68 

200 x 100 10.0 52.57 2444.40 244.44 6.82 817.74 163.55 3.94 2154.13 

200 x 100 12.5 62.04 2658.89 265.89 6.55 892.15 178.43 3.79 2473.75 

200 x 120 5.0 30.36 1649.42 164.94 7.37 750.14 125.02 4.97 1652.00 

200 x 120 6.0 36.03 1929.20 192.92 7.32 874.35 145.72 4.93 1946.73 

200 x 120 7.1 41.69 2174.35 217.44 7.22 985.77 164.30 4.86 2264.63 

200 x 120 8.0 46.44 2385.92 238.59 7.17 1078.97 179.83 4.82 2507.04 

200 x 120 8.8 50.56 2561.86 256.19 7.12 1156.05 192.67 4.78 2713.55 

200 x 120 10.0 56.57 2805.73 280.57 7.04 1262.14 210.36 4.72 3007.03 

200 x 120 12.5 67.00 3099.00 310.00 6.80 1397.00 233.00 4.57 3514.00 

220 x 120 5.0 32.36 2082.19 189.29 8.02 816.31 136.05 5.02 1884.69 

220 x 120 6.0 38.43 2439.12 221.74 7.97 952.40 158.73 4.98 2221.88 
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H x B 
mm 

T 
mm 

A mm2 x 
102 

Ix mm4x 
104 

Wx m3 x 
103 

ix mm x 
10 

Iy mm4 x 
104 

Wy mm3 x 
103 

iy mm x 
10 

Iyt mm4 x 
104 

220 x 120 7.1 44.53 2756.35 250.58 7.87 1076.39 179.40 4.92 2586.02 

220 x 120 8.0 49.64 3029.40 275.40 7.81 1179.49 196.58 4.87 2864.35 

220 x 120 8.8 54.08 3257.58 296.14 7.76 1265.09 210.85 4.84 3101.90 

220 x 120 10.0 60.57 3575.79 325.07 7.68 1383.47 230.58 4.78 3440.33 

250 x 100 5.0 33.36 2553.76 204.30 8.75 609.85 121.97 4.28 1620.11 

250 x 100 6.0 39.63 2992.34 239.39 8.69 709.63 141.93 4.23 1904.54 

250 x 100 8.0 51.24 3714.08 297.13 8.51 875.06 175.01 4.13 2438.66 

250 x 100 10.0 62.57 4384.17 350.73 8.37 1021.08 204.22 4.04 2909.59 

250 x 150 5.0 38.36 3304.18 264.33 9.28 1507.95 201.06 6.27 3284.54 

250 x 150 6.0 45.63 3885.56 310.84 9.23 1768.35 235.78 6.23 3885.80 

250 x 150 7.1 53.05 4426.62 354.13 9.13 2014.87 268.65 6.16 4542.75 

250 x 150 8.0 59.24 4885.79 390.86 9.08 2219.25 295.90 6.12 5050.45 

250 x 150 8.8 64.64 5274.44 421.96 9.03 2391.51 318.87 6.08 5488.32 

250 x 150 10.0 72.57 5825.01 466.00 8.96 2634.20 351.23 6.02 6120.70 

250 x 150 12.5 87.04 6632.67 530.61 8.73 3002.33 400.31 5.87 7314.55 

260 x 140 6.0 45.63 4081.53 313.96 9.46 1567.27 223.90 5.86 3646.18 

260 x 140 7.1 53.05 4647.40 357.49 9.36 1784.54 254.93 5.8 4258.54 

260 x 140 8.0 59.24 5128.80 394.52 9.30 1964.15 280.59 5.76 4731.08 

260 x 140 8.8 64.64 5536.06 425.85 9.25 2115.26 302.18 5.72 5137.89 

260 x 140 10.0 72.57 6112.65 470.20 9.18 2327.67 332.52 5.66 5724.07 

260 x 140 12.5 87.04 6949.76 534.60 8.94 2648.36 378.34 5.52 6820.62 

260 x 180 6.0 50.43 4855.87 373.53 9.81 2763.43 307.05 7.4 5565.69 

260 x 180 7.1 58.73 5555.85 427.37 9.73 3162.31 351.37 7.34 6522.55 

260 x 180 8.0 65.64 6145.21 472.71 9.68 3493.23 388.14 7.29 7266.68 

260 x 180 8.8 71.68 6647.10 511.32 9.63 3774.33 419.37 7.26 7911.95 

260 x 180 10.0 80.57 7363.31 566.41 9.56 4174.13 463.79 7.20 8850.30 

300 x 100 5.0 38.36 4065.22 271.01 10.29 722.77 144.55 4.34 2043.80 

300 x 100 6.0 45.63 4776.79 318.45 10.23 842.35 168.47 4.30 2403.46 

300 x 100 7.1 53.05 5422.43 361.50 10.11 953.92 190.78 4.24 2787.39 

300 x 100 8.0 59.24 5977.86 398.52 10.05 1044.77 208.95 4.20 3080.34 

300 x 100 8.8 64.64 6446.06 429.74 9.99 1120.18 224.04 4.16 3329.01 

300 x 100 10.0 72.57 7106.03 473.74 9.90 1224.41 244.88 4.11 3681.00 

300 x 100 12.5 87.04 8009.59 533.97 9.59 1373.92 274.78 3.97 4291.50 

300 x 150 6.0 51.63 6073.51 404.90 10.85 2079.57 277.28 6.35 4988.47 

300 x 150 7.1 60.15 6946.90 463.13 10.75 2377.98 317.06 6.29 5834.16 

300 x 150 8.0 67.24 7683.57 512.24 10.69 2622.95 349.73 6.25 6490.59 

300 x 150 10.0 82.57 9209.37 613.96 10.56 3125.03 416.67 6.15 7878.65 
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H x B 
mm 

T 
mm 

A mm2 x 
102 

Ix mm4x 
104 

Wx m3 x 
103 

ix mm x 
10 

Iy mm4 x 
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Wy mm3 x 
103 

iy mm x 
10 

Iyt mm4 x 
104 

300 x 150 12.5 99.54 10594.23 706.28 10.32 3594.78 479.30 6.01 9451.90 

300 x 200 6.0 57.63 7370.23 491.35 11.31 3962.19 396.22 8.29 8115.23 

300 x 200 7.1 67.25 8468.59 564.57 11.22 4553.17 455.32 8.23 9524.48 

300 x 200 8.0 75.24 9389.27 625.95 11.17 5041.67 504.17 8.19 10626.50 

300 x 200 8.8 82.24 10178.28 678.55 11.12 5459.26 545.93 8.15 11585.67 

300 x 200 10.0 92.57 11312.70 754.18 11.05 6057.73 605.77 8.09 12987.13 

300 x 200 12.5 112.04 13178.86 878.59 10.85 7059.94 705.99 7.94 15767.68 

400 x 200 6.0 69.63 14789.35 739.47 14.57 5091.63 509.16 8.55 12068.52 

400 x 200 7.1 81.45 17067.90 853.40 14.48 5874.74 587.47 8.49 14169.41 

400 x 200 8.0 91.24 18974.42 948.72 14.42 6517.08 651.71 8.45 15820.22 

400 x 200 8.8 99.84 20619.13 1030.96 14.37 7068.92 706.89 8.41 17259.78 

400 x 200 10.0 112.57 23002.65 1150.13 14.30 7864.40 786.44 8.36 19368.49 

400 x 200 12.5 137.04 27100.50 1355.02 14.06 9260.46 926.05 8.22 23594.07 



Appendix C 
C  Circular Ho llow Section EN 10210-2 

 

Circular Hollow Section EN 10210-2 
C  Circular Ho llow Section EN 10210-2 

 

 
 

A = Cross-section area; I = Moment of inertia; W = Section modulus; i = Radius 
of gyration. 

It = Torsion modulus;n Wt = Section modulus in torsion; Theoretical density = 
7.85 kg/dm3. 

The cross-sectional properties have been calculated by using nominal dimensions 
D and T. 

Theoretical density = 7.85 kg/dm3. 
 

D mm T mm A mm2 x 102 I mm4 x 104 W mm3 x 103 i mm x 10 It mm 4 x 104 Wt mm3 x 103 

26.9 2.0 1.56 1.22 0.91 0.88 2.44 1.81 

26.9 2.5 1.92 1.44 1.07 0.87 2.88 2.14 

26.9 2.6 1.98 1.48 1.10 0.86 2.96 2.20 

33.7 2.0 1.99 2.51 1.49 1.12 5.02 2.98 

33.7 2.5 2.45 3.00 1.78 1.11 6.00 3.56 

33.7 2.6 2.54 3.09 1.84 1.10 6.19 3.67 

33.7 3.0 2.89 3.44 2.04 1.09 6.88 4.08 

33.7 3.2 3.07 3.60 2.14 1.08 7.21 4.28 

42.4 2.0 2.54 5.19 2.45 1.43 10.38 4.90 

42.4 2.5 3.13 6.26 2.95 1.41 12.52 5.91 

42.4 2.6 3.25 6.46 3.05 1.41 12.93 6.10 

42.4 2.9 3.60 7.06 3.33 1.40 14.11 6.66 

42.4 3.0 3.71 7.25 3.42 1.40 14.49 6.84 
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D mm T mm A mm2 x 102 I mm4 x 104 W mm3 x 103 i mm x 10 It mm 4 x 104 Wt mm3 x 103 

42.4 3.2 3.94 7.62 3.59 1.39 15.24 7.19 

42.4 4.0 4.83 8.99 4.24 1.36 17.98 8.48 

48.3 2.0 2.91 7.81 3.23 1.64 15.62 6.47 

48.3 2.5 3.60 9.46 3.92 1.62 18.92 7.83 

48.3 2.6 3.73 9.78 4.05 1.62 19.55 8.10 

48.3 3.0 4.27 11.00 4.55 1.61 22.00 9.11 

48.3 3.2 4.53 11.59 4.80 1.60 23.17 9.59 

48.3 4.0 5.57 13.77 5.70 1.57 27.54 11.40 

60.3 2.0 3.66 15.58 5.17 2.06 31.16 10.34 

60.3 2.5 4.54 18.99 6.30 2.05 37.99 12.60 

60.3 2.9 5.23 21.59 7.16 2.03 43.18 14.32 

60.3 3.0 5.40 22.22 7.37 2.03 44.45 14.74 

60.3 3.2 5.74 23.47 7.78 2.02 46.94 15.57 

60.3 4.0 7.07 28.17 9.34 2.00 56.35 18.69 

60.3 5.0 8.69 33.48 11.10 1.96 66.95 22.21 

76.1 2.0 4.66 31.98 8.40 2.62 63.96 16.81 

76.1 2.5 5.78 39.19 10.30 2.60 78.37 20.60 

76.1 2.9 6.67 44.74 11.76 2.59 89.48 23.52 

76.1 3.0 6.89 46.10 12.11 2.59 92.19 24.23 

76.1 4.0 9.06 59.06 15.52 2.55 118.11 31.04 

76.1 5.0 11.17 70.92 18.64 2.52 141.84 37.28 

76.1 6.3 13.81 84.82 22.29 2.48 169.64 44.58 

88.9 2.5 6.79 63.37 14.26 3.06 126.75 28.51 

88.9 3.0 8.10 74.76 16.82 3.04 149.53 33.64 

88.9 3.2 8.62 79.21 17.82 3.03 158.41 35.64 

88.9 4.0 10.67 96.34 21.67 3.00 192.68 43.35 

88.9 5.0 13.18 116.37 26.18 2.97 232.75 52.36 

88.9 6.0 15.63 134.94 30.36 2.94 269.88 60.72 

88.9 6.3 16.35 140.24 31.55 2.93 280.47 63.10 

101.6 2.5 7.78 95.61 18.82 3.50 191.22 37.64 

101.6 3.0 9.29 113.04 22.25 3.49 226.07 44.50 

101.6 3.6 11.08 133.24 26.23 3.47 266.47 52.46 

101.6 4.0 12.26 146.28 28.80 3.45 292.57 57.59 

101.6 5.0 15.17 177.47 34.93 3.42 354.94 69.87 

101.6 6.0 18.02 206.68 40.68 3.39 413.35 81.37 

101.6 6.3 18.86 215.07 42.34 3.38 430.13 84.67 

108.0 2.5 8.29 115.35 21.36 3.73 230.69 42.72 

108.0 3.0 9.90 136.49 25.28 3.71 272.98 50.55 
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D mm T mm A mm2 x 102 I mm4 x 104 W mm3 x 103 i mm x 10 It mm 4 x 104 Wt mm3 x 103 

108.0 3.6 11.81 161.06 29.83 3.69 322.11 59.65 

108.0 4.0 13.07 176.95 32.77 3.68 353.91 65.54 

108.0 5.0 16.18 215.06 39.83 3.65 430.12 79.65 

108.0 6.0 19.23 250.91 46.46 3.61 501.81 92.93 

108.0 6.3 20.13 261.23 48.38 3.60 522.46 96.75 

114.3 2.5 8.78 137.26 24.02 3.95 274.52 48.03 

114.3 3.0 10.49 162.55 28.44 3.94 325.10 56.88 

114.3 3.6 12.52 191.98 33.59 3.92 383.97 67.19 

114.3 4.0 13.86 211.07 36.93 3.90 422.13 73.86 

114.3 5.0 17.17 256.92 44.96 3.87 513.84 89.91 

114.3 6.0 20.41 300.21 52.53 3.83 600.42 105.06 

114.3 6.3 21.38 312.71 54.72 3.82 625.43 109.44 

127.0 2.5 9.78 189.53 29.85 4.40 379.06 59.70 

127.0 3.0 11.69 224.75 35.39 4.39 449.50 70.79 

127.0 4.0 15.46 292.61 46.08 4.35 585.23 92.16 

127.0 5.0 19.16 357.14 56.24 4.32 714.28 112.48 

127.0 6.0 22.81 418.44 65.90 4.28 836.88 131.79 

127.0 6.3 23.89 436.22 68.70 4.27 872.44 137.39 

133.0 2.5 10.25 218.27 32.82 4.61 436.54 65.64 

133.0 3.0 12.25 258.97 38.94 4.60 517.93 77.88 

133.0 4.0 16.21 337.53 50.76 4.56 675.05 101.51 

133.0 5.0 20.11 412.40 62.02 4.53 824.81 124.03 

133.0 6.0 23.94 483.72 72.74 4.50 967.43 145.48 

133.0 6.3 25.08 504.43 75.85 4.49 1008.86 151.71 

139.7 3.0 12.88 301.09 43.11 4.83 602.18 86.21 

139.7 4.0 17.05 392.86 56.24 4.80 785.72 112.49 

139.7 5.0 21.16 480.54 68.80 4.77 961.08 137.59 

139.7 6.0 25.20 564.26 80.78 4.73 1128.52 161.56 

139.7 6.3 26.40 588.62 84.27 4.72 1177.24 168.54 

139.7 8.0 33.10 720.29 103.12 4.66 1440.58 206.24 

139.7 10.0 40.75 861.89 123.39 4.60 1723.79 246.78 

152.4 3.0 14.08 393.01 51.58 5.28 786.03 103.15 

152.4 4.0 18.65 513.73 67.42 5.25 1027.46 134.84 

152.4 5.0 23.15 629.54 82.62 5.21 1259.08 165.23 

152.4 6.0 27.60 740.56 97.19 5.18 1481.13 194.37 

152.4 6.3 28.92 772.96 101.44 5.17 1545.92 202.88 

159.0 3.0 14.70 447.42 56.28 5.52 894.84 112.56 

159.0 4.0 19.48 585.33 73.63 5.48 1170.67 147.25 
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D mm T mm A mm2 x 102 I mm4 x 104 W mm3 x 103 i mm x 10 It mm 4 x 104 Wt mm3 x 103 

159.0 5.0 24.19 717.88 90.30 5.45 1435.75 180.60 

159.0 6.0 28.84 845.19 106.31 5.41 1690.37 212.63 

159.0 6.3 30.22 882.38 110.99 5.40 1764.76 221.98 

168.3 3.0 15.58 532.28 63.25 5.85 1064.57 126.51 

168.3 3.2 16.60 565.74 67.23 5.84 1131.47 134.46 

168.3 4.0 20.65 697.09 82.84 5.81 1394.18 165.68 

168.3 4.5 23.16 777.22 92.36 5.79 1554.43 184.72 

168.3 5.0 25.65 855.85 101.70 5.78 1711.69 203.41 

168.3 6.0 30.59 1008.69 119.87 5.74 2017.39 239.74 

168.3 6.3 32.06 1053.42 125.18 5.73 2106.84 250.37 

168.3 8.0 40.29 1297.27 154.16 5.67 2594.54 308.32 

168.3 10.0 49.73 1563.98 185.86 5.61 3127.97 371.71 

193.7 4.0 23.84 1072.79 110.77 6.71 2145.58 221.54 

193.7 5.0 29.64 1320.23 136.32 6.67 2640.46 272.63 

193.7 6.0 35.38 1559.72 161.05 6.64 3119.45 322.09 

193.7 6.3 37.09 1630.05 168.31 6.63 3260.09 336.61 

193.7 8.0 46.67 2015.54 208.11 6.57 4031.07 416.22 

193.7 10.0 57.71 2441.59 252.10 6.50 4883.18 504.20 

193.7 12.5 71.16 2934.31 302.97 6.42 5868.62 605.95 

219.1 4.0 27.03 1563.84 142.75 7.61 3127.67 285.50 

219.1 4.5 30.34 1747.24 159.49 7.59 3494.48 318.98 

219.1 5.0 33.63 1928.04 176.00 7.57 3856.08 351.99 

219.1 6.0 40.17 2281.95 208.30 7.54 4563.89 416.60 

219.1 6.3 42.12 2386.14 217.81 7.53 4772.28 435.63 

219.1 8.0 53.06 2959.63 270.16 7.47 5919.26 540.33 

219.1 10.0 65.69 3598.44 328.47 7.40 7196.88 656.95 

219.1 12.5 81.13 4344.58 396.58 7.32 8689.16 793.17 

244.5 6.0 44.96 3198.53 261.64 8.43 6397.07 523.28 

244.5 8.0 59.44 4160.45 340.32 8.37 8320.89 680.65 

244.5 10.0 73.67 5073.15 414.98 8.30 10146.29 829.96 

244.5 12.5 91.11 6147.42 502.86 8.21 12294.83 1005.71 

273.0 4.0 33.80 3058.25 224.05 9.51 6116.50 448.09 

273.0 5.0 42.10 3780.81 276.98 9.48 7561.63 553.97 

273.0 6.0 50.33 4487.08 328.72 9.44 8974.17 657.45 

273.0 6.3 52.79 4695.82 344.02 9.43 9391.64 688.03 

273.0 8.0 66.60 5851.71 428.70 9.37 11703.43 857.39 

273.0 10.0 82.62 7154.09 524.11 9.31 14308.18 1048.22 

273.0 12.5 102.30 8697.45 637.18 9.22 17394.90 1274.35 
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D mm T mm A mm2 x 102 I mm4 x 104 W mm3 x 103 i mm x 10 It mm 4 x 104 Wt mm3 x 103 

323.9 4.0 40.20 5143.16 317.58 11.31 10286.33 635.15 

323.9 5.0 50.09 6369.42 393.30 11.28 12738.85 786.59 

323.9 6.0 59.92 7572.47 467.58 11.24 15144.93 935.16 

323.9 6.3 62.86 7928.90 489.59 11.23 15857.79 979.18 

323.9 8.0 79.39 9910.08 611.92 11.17 19820.16 1223.84 

323.9 10.0 98.61 12158.34 750.75 11.10 24316.68 1501.49 

323.9 12.5 122.29 14846.53 916.74 11.02 29693.05 1833.47 
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British Universal Beams 
 
D  British Universal Bea ms 

 
Dimensions:  BS 4-1: 2005   UB 127-914 
   ASTM A 6/A 6M - 12  UB 1016 
Tolerances: EN 10034: 1993   UB 127-914 
   ASTM A 6/A 6M - 12  UB 1016 

Surface condition: according to EN 10163-3: 2004, class C, subclass 1.  

Characteristics of rolled UB profiles. 

Table D.1 Characteristics of the selected rolled UB profiles (Sales program Commercial 
sections) 

UB Profile h  
[mm] 

b  
[Mm] 

tw  
[mm] 

tf  
[mm] 

AS  
[mm2] 

Iy x10-4 
[mm4] 

152x89x16 152.4 88.7 4.5 7.7 2032 834 
178x102x19 177.8 101.2 4.8 7.9 2426 1356 
203x133x25 203.2 133.2 5.7 7.8 3187 2340 
254x102x25 257.2 101.9 6.0 8.4 3204 3415 
305x102x28 308.7 101.8 6.0 8.8 3588 5366 
356x127x39 353.4 126.0 6.6 10.7 4977 10172 
406x140x46 403.2 142.2 6.8 11.2 5864 15685 
457x152x60 454.6 152.9 8.1 13.3 7623 25500 
533x210x92 533.1 209.3 10.1 15.6 11740 55230 

610x229x113 607.6 228.2 11.1 17.3 14390 87320 
686x254x140 683.5 253.7 12.4 19.0 17840 136300 
762x267x173 762.2 266.7 14.3 21.6 22040 205300 
838x292x194 840.7 292.4 14.7 21.7 24680 279200 
914x305x224 910.4 304.1 15.9 23.9 28560 376400 

1016x305x349 1008.1 302 21.1 40.0 44420 722300 
1016x305x393 1016.0 303 24.4 43.9 50020 807700 

 
Sizes and dimensions of different cross-sections are from Arcelor catalogue 

(Sales program Commercial sections), Ruukki, Roymech, etc. 
http://www.arcelormittal.com/sections/fileadmin/redaction/4-Library/1-Sales_ 

programme_Brochures/Sales_programme/ArcelorMittal_EN_FR_DE.pdf, access 
January 06, 2013. 
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http://www.ruukki.com/~/media/Files/Steel-products/Tubular-products-and-cold- 
formed-steel-sections-data-sheets/Ruukki-Hollow%20sections-dimensions-cross-
sectional-properties.pdf   access January 22, 2013. 

http://www.directsteelsales.com.au/steel-products/shs-squares/square-hollow-
section-shs/  access January 22, 2013. 

http://www.roymech.co.uk/Useful_Tables/Sections/SHS_cf.html 
access January 22, 2013. 
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