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Preface 

This book has been written to serve as the undergraduate-level textbook for the first 
two structural steel design courses in Civil Engineering. 

In this edition, eachchapter was modified to reflect the changes made in the 1993 
AISC LRFD Specification for Structural Steel Buildings and the 1994 LRFD Manual 
of Steel Construction, Second Edition, which consists of 

Volume I: Structural Members, Specifications, & Codes 
Volume 11: Connections 

The chapter on the behavior and design of tension members is located before the 
chapter on connections for tension members, which is separated from the chapter on 
other types of connections. Bolted connections for tension members are discussed 
before welded connections. The long examples in the first edition have been replaced 
by shorter ones. 

Each professor has particular course constraints and preferences of what to 
present in each course. Chapters 1 to 6 probably contain most of the material that is 
taughtin the first steeldesigncourse.Chapters7 tol l  containmaterial tomeet theother 
needs of each professor. Appendix B gives the review material needed for a thorough 
understanding of principal axes involved in column and beam behavior. Appendix C 
provides some formulas for the warping and torsional constants of open sections. 

The LRFD Specification requires a factored load analysis and permits either an 
elastic analysis or a plastic analysis. In our capstone structural design course, the 
students are required to design a steel-framed building and a reinforced-concrete- 
framed building. Since the ACI Code permits only ,an elastic analysis due to factored 
loads, I use only the elastic analysis approach in the capstone structural design course. 
Consequently, Chapter 6 and Appendix A give students a brief but realistic introduc- 
tion to elastic analysis and design of unbraced frames in the LRFD approach. Chapter 
11 should be adequate for those who wish to discuss plastic analysis and design. 
Appendix D provides some handbook information pertaining to plastic analysis. 

vi 



I use the textual material associated with Appendix A in the classroom when- 
ever appropriate. 

The reviewers of this edition were: 
P. R. Chakrabarti, California State University - Fullerton; W. S. Easterling, 
Virginia Tech; S. C. Goel, University of Michigan; R. B. McPherson, New Mexico 
State University; and A. C. Singhal, Arizona State University. 

I am appreciative of their comments, suggestions for improvement, constructive 
criticisms, and identified errors. 

J. C. Smith 
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Introduction 

1.1 STRUCTURAL STEEL 
Steel is extensively used for the frameworks of bridges, buildings, buses, cars, 
conveyors, cranes, pipelines, ships, storage tanks, towers, trucks, and other structures. 

1.1.1 Composition and Types 

Yield strength is the term used to denote the yield point (see Figure 1.1) of the common 
structural steels or the stress at a certain offset strain for steels not having a well- 
defined yield point. Prior to about 1960, steel used in building frameworks was 
ASTM (American Society for Testing and Materials) designation A7 with a yield 
strength of 33 ksi. Today, there are a variety of ASTM designations available with 
yield strengths ranging from 24 to 100 ksi. 

Steel is composed almost entirely of iron, but contains small amounts of other 
chemical elements to produce desired physical properties such as strength, hardness, 
diictility, toughness, and corrosion resistance. Carbon is the most important of the other 
elements. Increasing the carbon content produces an increase in strength and 
hardness, but decreases the ductility and toughness. Manganese, silicon, copper, 
chromium, columbium, molybdenum, nickel, phosphorus, vanadium, zirconium, 
and aluminum are some of the other elements that may be added to structural steel. 
Hot-rolled structural steels may be classified as carbon sfeels, high-strength low-alloy 
steels, and dloy steels. 

Carboii steels contain the following maximum percentages of elements other 
than iron: 1.7% carbon, 1.65% manganese, 0.60% silicon, and 0.60% copper. Carbon 
and manganese are added to increase the strength of the pure iron. Carbon steels are 
divided into four categories: (1) low carbon (less than 0.1570); (2) mild carbon (0.15- 
0.29%); ( 3 )  medium carbon (0.30-0.5970); and, (4) high carbon (0.6&1.70%). Structural 
carbon steels are of the mild-carbon category and have a distinct yield point [see 
curve (a) of Figures 1.1 and 1.21. The most common structural steel is A36, which has 

1 
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Alloy steel [quenched and 
tempered (A514 and A709)] 

(c> 80 -- 
High-strength, low-alloy steel ( A M ,  A441, A572) 

Carbon steel (A36) 

(For a coupon test specimen) 
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FIGURE 1.1 Typical stress-strain curves for steel. 

a maximum carbon content of 0.25 to 0.29%, depending on the thickness, and a yield 
strength of 36 ksi. The carbon steels of Table 1.1 are A36, A53, A500, A501, A529, 
A570, and A709 (grade 36); their yield strengths range from 25 to 100 h i .  

High-strength low-alloy steels [see curve (b) of Figures 1.1 and 1.21 have a distinct 
yield point ranging from 40 to 70 ksi. Alloy elements such as chromium, columbium, 

(c) 

5 = 100 ksi taken at 0.002 offset 

(b) 
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FIGURE 1.2 Enlargement of Figure 1.1 in vicinity of yield point. 
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Table 1.1 Steels Used for Buildings and Bridges 
Steel AsTh4 FY FYThickness Common Usage 
Type Designation (ksi) (hi) (in-) 

Carbon A36 

A529 Grade 42 
Grade 50 

High- A441 
Strength 
low-alloy 

A572 Grade 42 
Grade 50 
Grade 60 
Grade 65 

Corrosion A242 
resistant 

strength, A588 
High- 

low-alloy 

Quenched A514 
& tempered 
low-alloy 
Quenched A852 
and tempered 
alloy 

32 
36 
42 
50 
40 
42 
46 
50 
42 
50 
60 
65 
42 
46 
50 
42 
46 
50 
90 
100 

70 

58-80 
58-80 
60-85 
70-100 
60 
63 
67 
70 
60 
65 
75 
80 
63 
67 
70 
63 
67 
70 
100-130 
110-130 

11 0-190 

Over 8 
To 8 
To 0.5 
To 1.5 
4-8 
1.5-4 
0.75-1.5 
To 0.75 
To 6 
To 2 
To 1.25 
To 1.25 
1.5-4 
0.75-1.5 
To 0.75 
5-8 
4 5  
To 4 
2.5-6 
To 2.5 

To 4 

General; buildings 
General; buildings 
Metal building systems 
Metal building systems 
Welded construction 
Welded construction 
Welded construction 
Welded construction 
Buildings; bridges 
Buildings; bridges 
Buildings; bridges 
Buildings; bridges 
Bridges 
Bridges 
Bridges 
Weathering steel 

Weathering steel bridges 
Plates for welding 
Plates for welding 

weathering steel 

Plates for welding 

copper, manganese, molybdenum, nickel, phosphorus, vanadium, and zirconium 
are added to improve some of the mechanical properties of steel by producing a fine 
instead of a coarse microstructure obtained during cooling of the steel. The high- 
strength low-alloy steels of Table 1.1 are A242, A441, A572, A588, A606, A607, A618, 
and A709 (grades 50 and 50W). 

Alloy steels [seecurve(c)ofFiguresl.l and1.2) donothaveadistinctyield point. 
Their yield strength is defined as the stress at an offset strain of 0.002 with yield 
strengths ranging from 80 to 110 h i .  These steels generally have a maximum carbon 
content of about 0.20% to limit the hardness that may occur during heat treating and 
welding. Heat treating consists of quenching (rapid cooling with water or oil from 
1650°F to about 300°F) and tempering (reheating to 1150°F and cooling to room 
temperature). Tempering somewhat reduces the strength and hardness of the quenched 
material, but sigruficantly improves the ductility and toughness. The quenched and 
tempered alloy steels of Table 1.1 are A514 and A709 (grades 100 and 100W). 

Bolts and threaded fasteners are classified as: 
1. A307 (low-carbon) bolts, usually referred to as common or machine or 

unfinished bolts, do not have a distinct yield point (minimum yield strength 
of 60 ksi is taken at a strain of 0.002). Consequently, the Load and Resistance 
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Factor Design (LRFD) Specification [2]' doesnot permit these bolts to be used 
in a slip-critical connection [see LRFD J1.ll (p. 6-72), J3.l(p. 6-79), and Table 
J3.2(p. 6-81)]. However, they may be used in a bearing-type connection. 

2. A325 (medium-carbon; quenched and tempered with not more than 0.30% 
carbon) bolts have a 0.2% offset minimum yield strength of 92 ksi (0.5-1 in.- 
diameter bolts) and 81 ksi (1.125-1.5 in.-diameter bolts) and an ultimate 
strength of 105 to 120 ksi. 

3. A449 bolts have tensile strengths and yield strengths similar to A325 bolts, 
have longer thread lengths, and are available up to 3 in. in diameter. A449 
bolts and threaded rods are permitted only where greater than 1.5411. 
diameter is needed. 

4. A490 bolts are quenched and tempered, have alloy elements in amounts 
similar to A514 steels, have up to 0.53% carbon, and a 0.2% offset minimum 
yield strength of 115 ksi (2.54411. diameter) and 130 ksi (less than 2.5-in. 
diameter). 

Weld electrodes are classified as E60XX, E70XX, E80XX, E90XX, ElOOXX, and 
EllOXX where E denotes electrodes, the digits denote the tensile strength in ksi, and 
XX represents characters indicating the usage of the electrode. 

1.1.2 Manufacturing Process 

At the steel mill, the manufacturing process begins at the blast furnace where iron ore, 
limestone, and coke are dumped in a t  the top and molten pig iron comes out at the 
bottom. Then the pig iron is converted into steel in basic oxygen furnaces. Oxygen is 
essential to oxidize the excess of carbon and other elements and must be highly 
controlled to avoid gas pockets in the steel ingots since gas pockets will become defects 
in the final rolled steel product. Silicon and aluminum are deoxidizers used to control 
the dissolved oxygen content. Steels are classified by the degree of deoxidation: (1) 
killed steel (highest); (2) semikilled steel (intermediate); and (3) rinrmed steel (lowest). 

Potential mechanical properties of steel are dictated by the chemical content, the 
rolling process, finishing temperature, cooling rate, and any subsequent heat treat- 
ment. In the rolling process, material is squeezed between two rollers revolving at 
the same speed in opposite directions. Thus, rolling produces the steel shape, 
reduces it in cross section, elongates it, and increases its strength. Ordinarily, ingots 
are poured from the basic oxygen furnaces, reheated in a soaking pit, rolled into 
slabs, billets, orblooms in the bloom mill, and then rolled intoshapes, bars, and plates 
in the breakdown mill and finishing mill. If the continuous casting process is used, 
the ingot stage is bypassed. 

A chemical analysis, also known as the heat or ladleanalysis, is made on samples 
of the molten metal and is reported on the mill test certificate for the heat or lot (50- 
300 tons) of steel taken from each steel-making unit. One to 8 hours are required to 
produce a heat of steel depending on the type of furnace being used. 

'We assume that each reader has a copy of the LRFD Manual[2]. Throughout this text, each applicable 
specification and design aid in the LRFD Manual is cited. Also, to enable the reader to quickly locate 
these items, the corresponding page numbers are given 
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Mechanical properties (nludulus of elasticity, yield strength, tensile strength, and 
elongation to determine thedegreeufductility) of steel are determined from tensile tests 
of specimens taken from the final rolled product. These mechanical properties listed 
on the mill test certificate normally exceed the specified properties by a significant 
amount and merely certify that the test certificate meets prescribed steel-making 
specifications. Each piece of steel made from the heat of steel covered by the mill test 
certificate does not have precisely the properties listed on the mill test certificate. 
Therefore, structural designers do not use the mill test certificate properties for 
design purposes. The minimum specified properties listed in the design specifica- 
tions are used by the structural designer. 

1.1.3 Strength and Ductility 

Strength and ductility are important characteristics of structural steel in the structural 
design process. Suppose identical members (same length and same cross-sectional 
area) are made of wood, reinforced concrete, and steel. The steel member has the 
greatest strength and stiffness, which permit designers to use fewer columns in long 
clear spans of relatively small members to produce steel structures with minimum 
dead weight. 

Ductility, the ability of a material to undergo large deformations without 
fracture, permits a steel member to yield when overloaded and redistribute some of 
its load to other adjoining members in the structure. Without adequate ductility, (1) 
there is a greater possibility of a fatigue failure due to repeated loading and 
unloading of a member; and (2) a brittle fracture can occur. 

Strength and ductility are determined from data taken during a standard, tensile, 
load-elongation test. (We contend that more appropriately for a member subjected to 
bending, the area under the momentxurvature curve is a better measure of ductility 
due to bending.) A stress-strain curve such as Figure 1.1 can be drawn using the load- 
elongation test data. On the stress-strain curve, after the peak or irltiniate stretzgfh F,,, 
is reached, a descending branch of the curve occurs for two reasons: 

1. Stress is defined as the applied load divided by the original, unloaded, cross- 
sectional area. However, the actual cross-sectional area reduces rapidly after 
the ultimate strength is reached. 

2. The load is hydraulically applied in the lab. If the load were applied by 
pouring beads of lead into a bucket, for example, no decrease in load would 
occur from the time the ultimate strength was obtained until the specimen 
fractured and a horizontal, straight line would occur on the usual stress- 
strain curve from the ultimate strength point to the fracture point. 

1.1.4 Properties and Behavorial Characteristics of Steel 

For purposes of most structural design calculations, the following values are used 
for steel: 

1. Weight = 490 Ib/ft3. 
2. Coefficient of thermal expansion, CTE = 0.0000065 strain/"F). 
3. Poisson's ratio u = 0.3. 
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1 . 2 4  

The stress-strain curves shown in Figure 1.1 are for room-temperature condi- 
tions. As shown in Figure 1.3, after steel reaches a temperature of about 200"F, the 
yield strength, tensile strength, and modulus of elasticity are sigruficantly influenced 
by the temperature of the steel. Also, at high temperatures, steel creeps (deforma- 
tions increase with respect to time under a constant load). Temperatures in the range 
shown in Figure 1.3 can occur in members of a building in case of a fire, in the vicinity 
of welds, and in members over an open flame in a foundry, for example. 

Temperature and prior straining into the strain-hardening region have an adverse 
effect on ductility. Fractures at temperatures sigruficantly below room temperature are 
brittle instead of ductile. Toughness (ability to absorb a large amount of energy prior to 
fracture) is related to ductility. Toughness usually is measured in the lab by a Charpy 
V-notch impact test in which a standard notched specimen chilled or heated to a 
specified temperature is struck by a swinging pendulum. Toughness, as implied by the 
type of test for toughness, is important for structures subjected to impact loads 
(earthquakes, vertical motion of trucks on bridges, and onelevator cables if an elevator 
suddenly stops). Killed steels and heat-treated steels have the most toughness. As 

1 .o- 

0.8- 

0.6- 

0.4- 

0.2- 

Elevated temperature property 

Room temperature property 
A 

1.2- 

1 .o- 

0.8- 

0.6- 

0.4- 

0.2- 

I 
I 1 I I I I I I )  

400 800 1200 1600 
Temperature( O F )  

Note: For temperatures below 32' F, the properties shown increase; 
however, ductility and toughness decrease. 

FIGURE 1.3 W section. 
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FIGURE 1.4 Tensile test of a W section member. 

shown in Figure 1.4, ductility is sigruficantly reduced after a structure has been 
overloaded into the strain-hardening region. Overloaded was chosen by the author as 
the descriptor since a building framework does not experience strains in the strain- 
hardening region under normal service condition loads except for severe earthquakes, 
for example. However, corners (bends of 90"or more at room temperature) in cold- 
formed steel sections are strained into the strain-hardening range. 

Corrosion resistance increases as the temperature increases up to about 1000°F. In 
the welding process, a temperature of about 6500°F occurs at the electric arc tip of a 
welding electrode. Thus, high temperatures due to welding OCCUT and subsequently 
dissipate in a member in the vicinity of welds. High-strength low-alloy steels have 
several times more resistance to rusting than carbon steels. Weathering steels form 
a crust of rust that protects the structure from further exposure to oxidation. 

Weldability (relative ease of producing a satisfactory, crack-free, structurally 
sound joint) is an important factor in structural steel design since most connec- 
tions in the fabrication shop are made by welding using automated, high-speed 
welding procedures wherever possible. The temperature of the electric arc 
increases as the speed of welding increases, and more of the structural steel mixes 
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with the weld. Steels with a carbon content 50.30% are well suited to high-speed 
welding. Steels with a carbon content > 0.35% require special care during 
welding. 

Members and their connections in a highway or railway bridge truss, for 
example, may be repeatedly loaded and unloaded millions of times during the life 
of the bridge. Some of the diagonal truss members may be in tension and later on in 
compression as a truck traverses the bridge. Even if the yield point of the steel in a 
member or its connections is never exceeded during the repeated loading and 
unloading occurrences, a fracture can occur and is called afatiguefracture. Anything 
that reduces the ductility of the steel in a member or its connections increases the 
chances of a brittle, fatigue fracture. Thus,fatigue strength may dictate the definition 
of nominal strength of members and connections that are repeatedly loaded and 
unloaded a very large number of times during the life of the structure. Indeed, the 
life of a repeatedly loaded and unloaded structure may be primarily dependent on 
the fatigue strength of its members and connections. 

1.1.5 Residual Stresses 

Residual stresses exist in a member due to: 
1. the uneuen cooling to room temperature of a hot-rolled steel product, 
2. cold bending (process used in straightening a crooked member and in making 

3. welding two or more sectionsor plates together to form a built-up section (e.g., 
cold-formed steel sections), and 

four plates interconnected to form a box section). 

Figure 1.5 shows a cross section of a steel rolled shape designated as a W section, 
which is the most common shape used in structural steel design as a beam (bending 
member), a colunzn (axially-loaded compression member), and a beam-colunrn (bcnd- 
ing plus axial compression member). 

FIGUR 

t 
.E 1.5 Local buckling and column buckling. 
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Consider a hot-rolled W section after it leaves the rollers for the last time. 
Consider any cross section along the length of the W section product. The flange tips 
and the middle of the web cool under room-temperature conditions at a faster rate 
than the junction regions of the flanges and the web. Steel shrinks as it cools. The 
flange tips and the middle of the web shrink freely when they cool since the other 
regions of the cross section have yet to cool. When the junction regions of the flanges 
and the web shrink, they are not completely free to shrink since they are intercon- 
nected to the flange tips and the middle of the web regions, which have already 
cooled. Thus, the last-to-cool regions of the cross section contain residual tensile 
stresses, whereas the first-to-cool regions of the cross section contain residual 
compressive stresses. These residual stresses, caused by shrinkage of the last-to-cool 
portions of the cross section and their being interconnected to regions that are 
already cool, have a symmetrical pattern with respect to the principal axes of the 
cross section of the W section. Therefore, the residual stresses are self-equilibrating 
and do not cause any bending about either principal axis of a cross section at any 
point along the length direction of the member. Residual stresses in a W section are 
in the range of 10 to 20 ksi, regardless of the yield strength of the steel. 

1.1.6 Effect of Residual Stresses on Tension Member Strength 

Consider a laboratory tension test of a particular W section member. Some W 
sections have the residual stress pattern shown in Figure 1.6(a), which illustrates 
that: 

1. The maximum residual compressive stress f,, occurs at the flange tips and at 

2. the maximum residual tensile stressf,, occurs at the junction of the flanges and 
midheight of the web. 

web. 

The residual stresses vary through the thickness of the flanges and web. Cross- 
sectional geometry (flange thickness and width, web thickness and depth) influ- 
ences the cooling rate and residual stress pattern. Some W sections are configured to 
be efficient as axial compression members, and other W sections are configured to be 
efficient as bending members. Depending on the cross-sectional geometry, some W 
sections have only residual tensile stresses in the web, with the maximum value 
occurring at the junction of the flanges and web. Furthermore, the magnitude of the 
residual stresses is smaller for quenched and tempered members. Thus, the residual 
stress pattern as well as average values off,, and f,, through the thickness are 
dependent on several variables. Residual stress magnitudes on the order of 10 to 15 
ksi or more occur if the member is not quenched and tempered. 

As shown in Figure 1.6(c), in a tensile test of a W section member: 

1. Fibers in the cross section begin to yield when v,, + T / A J =  F,, ; that is, at 
locations where the residual tensile stress and applied tensile stress add up 
to the yield stress. 

2. All fibers in the cross section yield before the first-to-yield fibers begin to 
strain harden. 
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(c) Stress-strain curve 

FIGURE 1.6 Effect of temperature on properties of steel. 

Strain 

Thus, the second phenomenon is the same condition that occurs in a coupon 
test specimen torch-cut from a flange or the web of a W section, properly 
machined, and laboratory tested to determine the stress-strain curve. Cutting the 
coupon specimen from the member’s flange or web completely removes the 
residual stresses from the coupon specimen. From a comparison of the tension 
tests on the coupon and the member in Figure 1.6 (c), the yield strength is 
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identical. Therefore, the tension member strength is not affected by the presence 
of residual stresses. 

The fatigue strength of a tension member is determined by alternately loading 
(stretching) and unloading the member repeatedly until fracture occurs at the cross- 
sectional location where the tensile stress (frt + TIA,) is maximum during the loading 
cycle. Fatigue fractures can occur when the maximum tensile stress (f,, + T/A,)  is 
much less than Fv . Therefore, the fatigue strength of a tension member is affected by 
the presence of residual stresses. 

1.1.7 Effect of Residual Stresses on Column Strength 

In Figure 1.5, we see that a W section is I-shaped and composed of five elements (one 
vertical element and four horizontal elements). Each pair of horizontal elements is 
called af2ange and the vertical element is called the web. 

Suppose Figure 1.5 is the cross section of a column (an axially loaded 
compression member), of length L .  Let A, denote the cross-sectional area, and let 
P denote the axial compression force applied at each end of the column [see 
Figure 1.7(a)]. If a W section is used as a column, the cross section is composed 
of five compression elements, each of which is subjected to a uniform compressive 
stress of P/A,. Each compression element in a cross section is classified as being 
either stiffened or unstiffeened (projecting). A stiffened compression element is at- 
tached on both ends to other cross-sectional elements. An unstiffened compression 
element is not attached to anything on one end and is attached to another cross- 
sectional element on the other end. When a W section is used as a column, the web 
is a stiffened compression element and each flange is composed of two unstiffened 
compression elements. 

Each of the five compression elements of the cross section in Figure 1.5 
essentially is a rectangle. The longer side of the rectangle is the width and the other 
side is the thickness. Each compression element has a property known as the width- 
thickness ratio or b/t in mathematical terms. For each of the four unstiffened elements 
in Figure 1.5, b = 0.5bfand t = t f ,  where bfis the overall or total width of each top and 
bottom flange and t is the flange thickness. For the stiffened element (the web) in 
Figure 1.5, b = h, andt = t,, where t, is the thickness of the web and, for a W section, 
h, is the clear height of the web. 

If b/t does not exceed the limiting value stipulated in LRFD 85 (p. 6-36) for each 
compression element in a W section, local buckling does not occur before column 
buckling occurs. If b/t of a compression element exceeds the stipulated Kiting 
value, local buckling of the compression element occurs as shown in Figure 1.7 before 
the column buckles and affects the column buckling strength. 

Column buckling strength is affected by the presence of residual stresses. If a W 
section column buckles inelastically, the first-to-cool regions of the cross section 
yield in compression when Vrc + P/A,)= F,. However, the last-to-cool regions of the 
cross section contain residual tension stresses and the applied compressive stress 
(P/A,) .  Consequently, some portions of these last-to-cool regions of the cross 
section are still elastic when inelastic column buckling occurs; that is, (-frt + P/A,)< 
F,, where the negative sign indicates a tension stress and the compression stresses 
are positive. 
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4-J I 

(a) Column or member buckling 

Number of half sine waves is a function of a/b and b/t of flange. 
(b) Flange local buckling of a W section column 

(c) Section 1 - 1 (d) Section 2-2 

Number of half sine waves is a function of d b  and b/t of web. 
(e) Web local buckling of a W section column 

FIGURE 1.7 Stress-strain curves. 
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1.2 STRUCTURAL BEHAVIOR, ANALYSIS, AND DESIGN 
A structure is an assembly of members interconnected by joints. A member spans 
between two joints. The points at which two or more members of a structure are 
connected are called joints. Each support for the structure is a boundary joint that is 
prevented from moving in certain directions as defined by the structural designer. 

Structural behavior is the response of a structure to applied loads and environ- 
mental effects (wind, earthquakes, temperature changes, snow, ice, rain). 

Sfructural analysis is the determination of the reactions, member forces, and 
deformations of the structure due to applied loads and environmental effects. 

Structural design involves: 
1. Arranging the general layout of the structure to satisfy the owner’s functional 

requirements (for nonindustrial buildings, an architect usually does this 

2. Conducting preliminary cost studiesof alternative structural framing schemes 

3. Performing preliminary analyses and designs for one or more of the possible 

4. Choosing the alternative to be used in the final design 
5. Performing the final design, which involves the following: 

(a) Choosing the analytical model to use in the analyses 
(b) Determining the loads 
(c) Performing the analyses using assumed member sizes that were ob- 

(d) Using the analysis results to determine if the trial member sizes satisfy 

(e) Resizing the members, if necessary, and repeating items (c) and (d) if 

6. Checking the steel fabricator’s shop drawings to ensure that the fabricated 
pieces will fit together properly and behave properly after they are assembled 

7. Inspecting the structure as construction progresses to ensure that the erected 
structure conforms to the structural design drawings and specifications 

part) 

and/or materials of construction 

alternatives studied in item 2 

tained in the preliminary design phase 

the design code requirements 

necessary 

Structural analysis is performed for structural design purposes. In the design 
process, members must be chosen such that design specifications for deflection, 
shear, bending moment, and axial force are not violated. Design specifications are 
written in such a manner that separate analyses are needed for dead loads (permanent 
loads), live loads (position and/or magnitude vary with time), snow loads, and effects 
due to wind and earthquakes. Influence lines may be needed for positioning live loads 
to cause their maximum effect. In addition, the structural designer may need to 
consider the effects due to fabrication and construction tolerances being exceeded, 
temperature changes, and differential settlement of supports. Numerical values of 
E and I must be known to perform continuous-beam analyses due to differential 
settlement of supports, but only relative values of E I  are needed to perform analyses 
due to loads. 
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Structural engineers deal with the analysis and design of buildings, bridges, 
conveyor support structures, cranes, dams, offshore oil platforms, pipelines, stadi- 
u m ,  transmission towers, storage tanks, tunnels, pavement slabs for airports and 
highways, and structural components of airplanes, spacecraft, automobiles, buses, 
and ships. The same basic principles of analysis are applicable to each of these 
structures. 

Architectural, heating, air conditioning, and other requirements by the owner 
impose constraints on the structural designer’s choice of the structural system for a 
building. The owner wants a durable, serviceable, and low-maintenance structure, 
and possibly a structure that can be easily remodeled. The structural designer’s 
choice of the structural framing scheme and the structural material are influenced by 
these factors. Sometimes, a special architectural effect dictates the choice of the 
material and framing scheme. 

The engineer in charge of the structural design must 
1. Decide how the structure is to behave when it is subjected to applied loads 

and environmental effects. 
2. Ensure that the structure is designed to behave that way. Otherwise, a 

designed structure must be studied to determine how it responds to applied 
loads and environmental effects. These studies may involve making and 
testing a small-scale model of the actual structure to determine the structural 
behavior (this approach is warranted for a uniquely designed structure-no 
one has ever designed one like it before). Full-scale tests to collapse are not 
economically feasible for one-of-a-kind structures. For mass-produced struc- 
tures such as airplanes, automobiles, and multiple-unit (repetitive) construc- 
tion, the optimum design is needed, and full-scale tests are routinely made to 
gather valuable data that are used in defining the analytical model employed 
in computerized solutions. 

Analyficul models (some analysts prefer to call them mathematical models) are 
studied to determine which analytical model best predicts the desired behavior of 
the structure due to applied loads and environmental effects. Determination of the 
applied loads and the effects due to the environment is a function of the structural 
behavior, any available experimental data, and the designer’s judgment based on 
experience. 

A properly designed structure must have adequate strength, stiffness, stability, 
and durabizity. The applicable structural design code is used to determine if a 
structural component has adequate strength to resist the forces required of it, based 
on the results obtained from structural analyses. Adequate sti f iess is required, for 
example, to prevent excessive deflections and undesirable structural vibrations. 
There are two types of possible instability: 

1. A structure may not be adequately configured either externally or internally 

2. A structure may buckle due to excessive compressive axial forces in one or 
to resist a completely general set of applied loads. 

more members. 
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Overall internal structural stability of determinate frames may be achieved 
by designing either truss-type bracing schemes or shear walls to resist the 
applied lateral loads. In the truss-type bracing schemes, members that are 
required to resist axial compression forces must be adequately designed to 
prevent buckling; otherwise, the integrity of the bracing scheme is destroyed. 
Indeterminate structural frames do not need shearwalls or truss-type bracing 
schemes to provide the lateral stability resistance required to resist the applied 
lateral loads. However, indeterminate frames canbecome unstable due to sidesway 
buckling of the structure. 

In the course work that an aspiring structural engineer takes, the traditional 
approach has been to teach at least one course in structural analysis and to require 
that course as a prerequisite for the first course in structural member behavior and 
design. This traditional approach of separately teaching analysis and design is the 
proper one in our opinion, but in this approach, the student is not exposed to the true 
role of a structural engineer unless the student takes a structural design course that 
deals with the design of an entire structure. In the design of an entire structure, it 
becomes obvious that structural behavior, analysis, and design are interrelated. A 
bothersome thing to the student in the first design of an entire structure using plane 
frame analyses is the determination of the loads and how they are transferred from 
floor slab to beams, from beams to girders, from girders to columns, and from 
columns to supports. Transferral of the loads is dependent on the analytical models 
that are deemed to best represent the behavior of the structure. Consequently, in the 
first structural design courses, the analytical model and the applied loads are given 
information, and the focus is on structural behavior and learning how to obtain 
member sizes that satisfy the design specifications. 

1.3 IDEALIZED ANALYTICAL MODELS 
Structural analyses are conducted on an analytical model that is an idealization of the 
actual structure. Engineering judgment must be used in defining the idealized 
structure such that it represents the actual structural behavior as accurately as is 
practically possible. Certain assumptions have to be made for practical reasons: 
Idealized material properties are used, estimations of the effects of boundary 
conditions must be considered, and complex structural details that have little effect 
on the overall structural behavior can be ignored (or studied later as a localized effect 
after the overall structural analysis is obtained). 

All structures are three-dimensional, but in many cases it is possible to 
analyze the structure as being two-dimensional in two mutually perpendicular 
directions. This text deals only with truss and frame structures. If a structure 
must be treated as being three-dimensional, in this text it is classified as being 
either a space truss or space frame. If all members of a structure lie in the same 
plane, the structure is a two-dimensional or planar structure. Examples of planar 
structures shown in Figure 1.8 are a plane truss, a beam, plane frames, and a plane 
grid. In Figure 1.8 each member is represented by only one straight line 
between two joints. Each joint is assumed to be a point that has no size. Members 
have dimensions of depth and width, but a single line is chosen for graphical 
convenience to represent the member spanning between two joints. Thus, the 
idealized structure is a line diagram configuration. The length of each line 
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(a) Plane truss lying in XY plane 

I t + + i - 
(b) Beam lying in X Y  plane 

Y 
4 

(c )  One story plane frames lying in X Y  plane 

FIGURE 1.8 Examples of planar structures. 

defines the span length of a member, and usually each line is the trace along the 
member’s length of the intersecting point of the centroidal axes of the member’s 
cross section. 

A plane truss [see Figure 1.8(a)] is a structural system of members lying in one 
plane that are assumed to be pin-connected at their ends. Truss members are 
designed to resist only axial forces and truss joints are designed to simulate a no 
moment resistance capacity. 
A pZaneframe [see Figures 1.8 (b-d)] is a structural system of members lying in 
one plane. Each member end is connected to a joint capable of receiving member 
end moments and capable of transferring member end moments between two 
or more member-ends at a common point. 
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(d) Multistory, multibay plane frame lying in X Y  plane 

J 
Y 

(e) Plane grid lying in X Y  plane-all loads in Z direction 

FIGURE 1.8 (continued) 

A plane grid [see Figure 1.8(e)] is a structural system of members lying in one 
plane that are connected at their ends to joints capable of receiving and 
transferring member-end moments and torques between two or more member 
ends at a common point. 

Note that all members of a plane grid lie in the same plane, but all loads are 
applied perpendicular to that plane. For all other planar structures in Figure 1.8, all 
applied loads and all members of the structure lie in the same plane. 
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1.4 BOUNDARY CONDITIONS 
For simplicity purposes in the following discussion, the structure is assumed to be 
a plane frame. At one or more points on the structure, the structure must be 
connected either to a foundation or another structure. These points are called support 
joints (or boundary joints, or exterior joints). The manner in which the structure is 
connected to the foundation and the behavior of the foundation influence the 
number and type of restraints provided by the support joints. Since the support joints 
are on the boundary of a structure and special conditions can exist at the support joint 
locations, the term boundary conditions is used for brevity to embody the special 
conditions that exist at the support joints. The various idealized boundary condition 
symbols for the line diagram structure are shown in Figure 1.9 and discussed in the 
following paragraphs. 

A hinge [Figure 1.9(a)] represents a structural part that is pin-connected to a 
foundation that does not allow translational movements in two mutually 
perpendicular directions. The pin connection is assumed to be frictionless. 
Therefore, the attached structural part is completely free to rotate with respect 
to the foundation. Since many of the applied loads on the structure are caused 
by and act in the direction of gravity, one of the two mutually perpendicular 
support directions is chosen to be parallel to the gravity direction. In conduct- 
ing a structural analysis, the analyst assumes that the correct direction of this 
support force component is either opposite to the direction of the forces 
caused by gravity or in the same direction as the forces caused by gravity. In 
Figure 1.9, the reaction components are shown as vectors whose arrow 
indicates our choice for the assumed direction of each vector. 
A rolIer [Figure 1.9@)] represents a foundation that permits the attached 
structural part to rotate freely with respect to the foundation and to translate 
freely in the direction parallel to the foundation surface, but does not permit any 
translational movement in any other direction. To avoid any ambiguity for a 
roller on an inclined surface [Figure 1.9(c)J, we prefer to use a different roller 
symbol than used on a horizontal surface. A link is defined as being a fictitious, 
weightless, nondeformable, pinned-ended member that never has any loads 
applied to it except at the ends of the member. Some analysts prefer to use a link 
[Figure 1.9(d)] instead of a roller to represent the boundary condition described 
at the beginning of this paragraph. 
Afixed support [Figure 1.9(e)] represents a bedrock type of foundation that does 
not deform in any manner whatsoever, and the structural part is attached to the 
foundation such that no relative movements can occur between the foundation 
and the attached structural part. 
AtransZationalspring[Figure 1.9(Q] isa linkthatcandeformonlyalongitslength. 
Th~s symbol is used to represent either a joint in another structure or a 
foundation resting on a deformable soil. 
A rotational spring [Figure 1.9(g)] represents a support that provides some 
rotational restraint for the attached structural part, but does not provide any 
translational restraint. The support can be either a joint in another structure or 
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t 
(a) Hinge support 

t 
(b) Roller support 

(c) Inclined roller support 

(d) Link support (equivalent to Figure 1 . 8 ~ )  

t 
(e) Fixed support 

A t 
I 

(g) Rotational spring t 
( f )  Translational spring 

1 t (i) Prescribed support movement 
(h) Rotational and translational springs 

FIGURE 1.9 Boundary condition symbols and reaction components. 

a foundation resting on a deformable soil. Generally, as shown in Figures 1.9(g) 
and (h), a rotational spring is used in conjunction with either a hinge, or a roller, 
or a roller plus a translational spring, or a translational spring, or two mutually 
perpendicular translational springs. 

The soil beneath each individual foundation is compressed by the weight of the 
structure. Soil conditions beneath all individual foundations are not identical. The 
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weights acting on the foundations are not identical and vary with respect to time. 
Therefore, nonuniform or differential settlement of the structure occurs at the 
support joints. Estimated differential settlements of the supports are made by the 
foundation engineer and treated as prescribed support movements by the structural 
engineer. Figure 1.9(i) shows a prescribed support movement. 

1.5 INTERIOR JOINTS 
For simplicity and generality purposes in the following discussion, the structure is 
assumed to be a plane frame. On a line diagram structure, an interior joint is a point 
at which two or more member length axes intersect. For example, in Figure 1.10, 
points 2,4,5,7,8, and 10 are interior joints, whereas points 1,3,6, and 9 are support 
joints (or exterior joints, or boundary joints). 

The manner in which the member ends are connected at an interior joint must be 
accounted for on the line diagram. The types of connections for a structure composed 
of steel members can be broadly categorized as being one of the following types: 

1. A shear connection develops no appreciable moment. If the connection at joint 
10 of Figure 1.10 is as shown in Figure 1.11, it is classified by designers as 
being a shear connection. Thus, an internal hinge is shown on the line 
diagram at joint 10 of Figure 1.10 to indicate that no moment can be 
transferred between the ends of members 2 and 10 at joint 10. However, the 
internal hinge is capable of transferring translational-type member-end 
forces (axial forces and shears) between the ends of members 2 and 10 at joint 
10. Note that this type of connection can transfer a small amount of moment, 
but the moment is small and can be ignored in design. 

2. A rigid connection fully transfers all member-end forces. If the connection at 
joint 7 of Figure 1.10 is as shown in Figure 1.12, it is classified by designers as 
a joint that behaves like a rigid (nondeformable) body. Thus, if joint 7 of 
Figure 1.10 rotates 5" in the counterclockwise direction, the ends of members 
1,2,8, and 9 at joint 7 also rotate 5" in the counterclockwise direction. 

3. A semirigid connection is a partial member-end moment transferral connec- 
tion. If the beam-to-column connection at joint 4 of Figure 1.10 is as shown in 

Hinge 
4 o 3  

1 2 5 

At the joint 4 end of member 1, there is an internal hinge plus a 
rotational spring spanning across the hinge. 

FIGURE 1.10 Idealized interior joint conditions. 
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T 0 

k L  
Section A-A 

FIGURE 1.11 Web connection (shear connection). 

Lightly shaded areas are 
column web stiffeners 
(each side of web) 

FIGURE 1.12 Rigid connection: fully welded plus web stiffeners 
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(a) Side elevation and sectional view 

(b) Assumed behavior 

FIGURE 1.13 Behavior of semirigid connection. 

Section A-A 

(c) Deformation of connection 
(separated for clarity) 

Figure 1.13, it is classified by designers as being a semirigid connection. 
(Webster's dictionary definition of semirigid is "rigid to some degree or in some 
parts.") The top and bottom flange angles in Figure 1.13 transfer almost all 
of the beam-end moment to the column. The web angles in Figure 1.13 
transfer almost all the beam-end shear to the column flange and fully ensure 
that the Y direction displacement at the end of member 1 is identical to the Y 
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direction displacement of joint 4. (On the line diagram structure in Figure 
1.10, joints 3,4, and 5 lie on the same straight line that is the longitudinal axis 
of members 6 and 7. Thus, joint 4 is located at the point where the longitudinal 
axes of members 1,6, and 7 intersect.) Consequently, joint4 is treated as being 
rigid in the Y direction. However, the top and bottom flange angles in Figure 
1.13 are not flexuraLly stiff enough to ensure that the flanges of member 1 
always remain completely in contact with the flanges of members 6 and 7. 
Thus, joint 4 cannot be treated as being completely rigid. Therefore, at the left 
end of member 1 in Figure 1.10,a rotational (spiral) spring is shown to denote 
that a rotational deformation occurs between joint 4 and the end of member 
1. It should be obvious that a semirigid connection is capable of developing 
more moment than a web connection can develop, but not as much moment 
as a rigid connection can develop. 

In Figure 1.13, the angles are welded to the beam and bolted to the column. M 
effectively is transferred to the top and bottom flange angles. Consequently, due to 
the action of M, the top flange angle and the web angles flexurally deform, allowing 
the top beam flange to translate a finite amount [see Figures 1.13(c) and (d)]. 
However, the bottom flange angle remains in contact with the column flange. Thus, 
the gap between the end of the beam and the column flange is trapezoidal after the 
angle deformations occur. The bolts resist V and ensure that the beam end does not 
translate in the Y direction. 

1.6 LOADS AND ENVIRONMENTAL EFFECTS 
In structural analysis courses, the analytical model and the applied loads are given 
information, and the focus is on the applicable analysis techniques. In structural 
design, the loads that are to be applied to the analytical model of the structure must 
be established by the structural designer. 

In this country, each state has a building code mandated by law that must be 
used in the design of an engineered structure. The building code gives minimum 
design loads that must be used in the design of a building to ensure a desired level 
of public safety unless the structural designer decides that higher design loads 
should be used. Coping with building codes and determining the applied loads are 
topics covered in a structural design course dealing with the design of an entire 
building. We choose to give only a brief description of loads and environmental 
effects. However, the terminology used in the discussion conforms to the terminol- 
ogy in the building code definitions for the loads and environmental effects. 

All loads are treated as being statically applied to the structure, and the load 
classifications are dead loads, live loads, and impact loads. Environmental efects due 
to snow and ice, rain, wind, earthquakes, temperature changes, differential settle- 
ment of supports, misfit of members, construction tolerances, soil pressures, and 
hydrostatic pressures are converted into statically equivalent applied live loads. 

There are three different types of loads: concentrated loads, line loads, and 
surface loads. Concentrated loads are applied on a relatively small surface area; 
examples are wheel loads of cranes, forklifts, and traffic vehicles (particularly on 
bridges). A Iine loud is confined to a rather narrow strip in the structure; examples are 
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member weights and partition wall weights. As the name implies, suflace loads are 
distributed over a large area; examples are the weight of a floor slab or a roof, wind 
pressure on an exterior wall, and snow on a roof. 

1.6.1 Dead Loads 

Dead loads do not vary with time in regard to position and weight. Thus, they are not 
moved once they are in place and, therefore, are called dead loads. A worn floor or 
roof cover is removed and replaced with a new one in a matter of days. A load that 
is not there for only an interval of a few days in the 50-year life of a structure is 
considered to be a permanent load and is classified as a dead load. Examples are the 
weight of the structure; heating and air-conditioning ducts; plumbing; electrical 
conduits, wires, and fixtures; floor and roof covers; and ceilings. Since the weights 
of the indicated items are provided by their manufacturer, dead loads can be 
estimated with only a small margin of error. 

1.6.2 Live Loads 

Gravity loads that vary with time in regard to magnitude and/or position are called 
livr loads. Examples of live loads are people, furniture, movable equipment, movable 
partition walls, file cabinets, and stored goods in general. Forklifts and other types of 
slow-moving vehicles (cranes in an industrial building and traffic vehicles in a parking 
garage, e.g.) are treated as live loads. An estimated maximum expected value of a live 
load contains a much larger margin of error than an estimated dead load. 

Building codes specify minimum values that must be used for this classification of 
loads in the design of a building. Each designer must use a t  least the minimum values 
stated in the applicable building code. Some representative values of uniformly 
distributed live loads for this classification of loads are 40 psf for apartments, hotel 
rooms, and school rooms; 50 psf for offices in a professional building; 75 to 100 psf 
for retail stores; 100 psf for corridors on the exit floor level of public buildings (80 psf 
for corridors on other floor levels) and for bleachers in a sports arena; 1SO psf for 
library stacks; and 250 psf for warehouses (floors and loading docks). 

Minimum loads for highway bridges are given in the S t a d a r d  Specifications for 
Highzuay Bridges 1121. Designers usually refer to them as the AASHTO specs since 
they are published by the American Association of State Highway and Transporta- 
tion Officials. A lane loading with a roving concentrated load as well as wheel loads 
for a standardized van and for a semitrailer truck are given in these specifications. 

Minimum loads for railroad bridges are given in the Speczfications .for Steel 
Railway Bridges [ 131. Designers usually refer to them as the AREA spccs since they are 
published by the American Railway Engineering Association. 

Occupancy Loads for Buildings 

Traffic Loads for  Bridges 

1.6.3 Roof Loads 

In  some of the loading combinations listed in LRFD A4.1 (p. 6-30), one of the 
independent loadings is shown as L, or S or R, where L,  is roof live load, S is snow 
load, and li is load due to initial rainwater or ice exclusive of the ponding contribu- 
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tion. Some state building codes give minimum load values that must be used for each 
of thesevariables. Other state building codes give only a single minimum load value 
that must be used on the roof. For example, except for counties in either the coastal 
region or the mountainous region of North Carolina, 20 psf is given as the minimum 
load value that must be used on the roof. The coastal region counties are subject to 
hurricane rains and the mountainous region counties are subject to deeper snow 
accumulations. For each county in these regions, a minimum value greater than 20 
psf is listed for either rain or snow. 

Snow Loads 
Snow loads corresponding to a 50-year mean recurrence interval are specified in 
mostbuilding codes. The minimum snow load value that must be used is either listed 
for each county or shown on a map with varying color shades and corresponding 
minimum snow load values for a group of counties. A 1 in. snow accumulation on 
a flat surface weighs about 0.5 psf at mountain elevations and weighs more at lower 
elevations. Snow loads in the range of 20 to 40 psf are commonly found as the 
minimum snow load value listed in building codes. 

If the roof surface is not flat, a reduction factor that is a function of the roof slope 
may be given to convert the snow load specified for a flat roof to a value for a pitched 
roof. However, the snow load specified for a pitched roof is given as acting on a 
horizontal projection of the roof surface. Depending on the profile shape of the roof, 
the snow depth may not be constant over the entire roof surface. The deepest 
accumulations can be expected to occur in the roof valleys. Also, snow drifts can 
occur on a flat roof. If either a flat or sloped roof is below a higher roof on the same 
building or closeenough toa roof on an adjacent tallerbuilding,snow caneither blow 
off or slide off the higher roof onto the lower roof. Thus, snow drifts can be expected 
to occur on some roofs. A structural designer should account for these variations in 
the snow depth on the roof surface, even if the applicable building code does not 
explicitly state that such variations must be considered. 

Rain or Ice Loads 
Some building codes group ice loads with snow loads, but LRFD A4.1 (p. 6-30) 
groups ice loads with rain. Ice can accumulate on members in an exposed structure 
(bridges and signs, e.g.). An ice coating on such members increases the structural 
area exposed to wind. Thus, icing in such cases increases the wind-induced loads as 
well as the gravity direction loads. 

If  the drains for a flat roof become clogged or if rainwater accumulates faster 
than the drains can remove the water, ponding occurs, causing the roof to sag and 
to accumulate more water. Thus, rainwater on a flat roof causes more serious 
problems than snow. A slope of at least 0.25 in./ft is needed on the top surface of a 
flat roof for rainwater to drain properly. Furthermore, in hurricane-prone regions 
120-mph winds occur with the heaviest rainfalls, push the rainwater on a flat roof to 
one side of the roof, and cause ponding. For these conditions, in addition to the 
primary roof drainage system, a secondary drainage system (scuppers, large holes in 
parapet walls) located above the primary drainage system can be installed to prevent 
water from accumulating above a certain level. These roofs are usually designed to 
resist rainwater loads for the rainwater elevation being at the elevation of the 
secondary drainage system plus 5 psf. 
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Roof Live Loads 
Mobile equipment may be used on the roof either during construction or when the 
roof needs repair. Installation or replacement of an air-conditioning unit housed on 
the roof may require a portable crane to be hoisted to a flat roof and used to lift the 
unit into place. A flat roof may be used as an outdoor setting for a restaurant or as a 
helicopter port. These are possible sources of the L, variable in LRFD A4.1 (p. 6-30). 

1.6.4 Wind Loads 

Wind on an enclosed building causes a pressure to occur on the windward vertical 
surface and a suction on the leeward vertical surface. Suction is actually an outward 
pressure-the atmospheric pressure inside the building is greater than the pressure on 
the outside of the leeward wall. Wind causes a suction (uplift) on flat (0 5 15") roof 
surfaces of an enclosed building. On a sloping roof with a mean-height/width 10.3 and 
8 > 15", wind causes pressure on the windward slope and a suction on the leeward slope. 

Maximum wind speeds vary with geographical location (mountain tops and 
coastal regions prone to hurricanes may experience 120-mph winds), types of terrain 
(open, wooded, urban, proximity and shapes of nearby structures), height above the 
ground, air density, and other factors. Wind speed data are collected by the weather 
bureau at an elevation of 10 m (32.8 ft) above ground level. Formerly, a recorded 
wind speed was the speed for a mile of wind flowing past the recording device. Now, 
wind speeds are being recorded for a 3-sec-duration gust of wind, which is the 
familiar type of information given in the local TV weather news. 

The efects due to wind are converted into an equivalent static pressure acting on the 
structure. Wind pressures based on the maximum wind speed for a Byear  mean 
recurrence interval are specified in most building codes. A basic wind pressure (function 
of the mass density of air and the wind velocity) is given in the building code either as 
a formula or in tabular form (pounds per square foot along the height direction of the 
building). Wind velocity is least at ground level and increases along the height 
direction of the building. Shape factors are given for buildings and components of 
buildings. The basic wind pressure is multiplied by the building shape factor and 
possibly other given factors to obtain a design wind pressure that is applied to the 
structure. For example, for an enclosed rectangular-shaped building, a shape factor of 
1.3 (+0.8 on the windward surface and -0.5 on the leeward surface) is not uncommon. 
The design wind pressure distribution up the side of the building is determined and 
converted to wind loads acting on the structural framework accounting for the way the 
cladding is supported. In most cases, the wind loads are applied joint loads. Half of the 
wind load on a wall segment located between two adjacent floor levels and two 
adjacent column lines goes to the floor slab at the top of this wall segment, and theother 
half of the load goes to the floor slab at the bottom of this wall segment. The floor slab 
surrounds the columns and delivers the wind loads as concentrated loads on the 
columns at the floor levels (at the joints of the framework). 

1.6.5 Earthquake Loads 

The effect ofan earthquake on a building is similar to the effect of a football player being 
clipped. For our purposes, say a clip is a hit around or below the knees and from the 
blind side. The football player is unaware that he is going to be hit. Consequently, his 
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feet must go in the direction of the person who hits him, but his upper body does not 
want to move in that direction until the momentum of his lower body tends to drag 
the upper body in that direction. An earthquake consists of horizontal and vertical 
ground motions. The horizontal ground motion effect on a structure is similar to the 
football player being clipped. It is this type of motion that is converted into an 
equivalent static loading to simulate the effect of an earthquake on a building. An 
equivalent static loading (essentially a force F = mu with modification factors 
accounting for seismic zone, type of occupancy, structural load-resisting character- 
istic, and soil-structure interaction conditions) is applied at all story levels and in the 
opposite direction of the ground motion since the foundation of the structure 
remains stationary in a static analysis. All dynamic loads cannot always be replaced by 
equivalent static loads, and a dynamic analysis of the structure subjected to time- 
dependent motions induced by an earthquake or rotating machinery should be 
conducted in such cases. 

1.6.6 Impact Loads 

An impact load is a live load that is increased to account for the dynamic effect 
associated with a suddenly applied load. Impact loads are applicable for cranes, 
elevators, reciprocating machinery, and vehicular traffic on highway or railroad 
bridges. LRFD A4.2 (p. 6-30) stipulates the percentage of increase in live loads to 
account for impact. LRFD A4.3 (p. 6-31) stipulates the horizontal and longitudinal 
crane forces that must be applied to the crane support beam to account for the effect 
of moving crane trolleys and lifted loads. Similar longitudinal forces are applied to 
highway and railway bridges to account for sudden stops of vehicles on a bridge. 

1.6.7 Water and Earth Pressure Loads 

If a structure has walls (or portions thereof) below the ground level, the active earth 
pressure must be applied to these walls. If a portion of a structure extends below the 
water table, water pressure must be applied thereon. Also, water pressure must be 
applied to dams and flumes. 

1.6.8 Induced Loads 

The effects due to temperature changes, shrinkage, differential settlement of supports, and 
misjt  of members [l] are also converted into equivalent static loadings. 

1.7 CONSTRUCTION PROCESS 
If the framework of the structure is made of steel, the construction process involves 
thefubrication,field erection, and inspection of the erected structural steel. The general 
contractor chooses the shop to fabricate the steel and the subcontractor to do the field 
erection of the steel (in somecases, the general contractor erects the steel framework). 
Field inspection is done by an employee hired by the structural engineer and/or the 
architect. Field inspection is an integral part of the construction process and the final 
phase of the design process. 

Fabrication involves interpreting design drawings and specifications, preparing 
shop fabrication and field erection drawings, obtaining the material from a steel mill 
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if the needed material is not in the stockpile, cutting, forming, assembling the material 
into shippable units, and shipping the fabricated units to the construction site. 

The fabricator cuts the main members to the correct length, cuts the connection 
pieces from larger pieces including steel plates, and either punches or drills the holes 
wherever bolted field connections are specified. A shearing machine is used to cut thin 
material, and a gas flame torch is used to cut thick material and main members unless 
extreme precision or a smooth surface is required, in which case the cut is made with 
a saw. If the design specifications do not tolerate as much crookedness in a member as 
the allowed steel mill tolerances, the fabricator reduces the amount of crookedness by 
using presses or sometimes by applying heat to localized regions of the member. 

Bolt holes are made by punching, if possible, or drilling.The holemaking process 
may cause minute cracks or may make the material brittle in a very narrow rim 
around the hole. The LRFD B2 (p. 6-34) requires the structural designer to assume 
that the bolt hole diameter is 1/16 in. larger than the actual hole in order to account 
for the material that was “damaged” by the hole-making process. 

The steel field erection contractor uses ingenuity and experience to devise an 
erection plan that involves lifting the fabricated units into place with a crane. 
Without a proper plan, lifting operations may cause compression forces to occur in 
members of a truss that were designed to resist only tension, for example. Also, 
improperly lifting a plate girder could cause local buckling to occur. Temporary 
bracing generally must be provided by the erection contractor to avoid construction 
failures due to the lack of three-dimensional or space frame stability. After perma- 
nent bracing designed by the structural designer, the roof, and the walls are in place, 
the structure has considerably more resistance to wind loads. Consequently, more 
failures due to wind loads occur during construction due to the lack of an adequately 
designed temporary bracing scheme by the erection contractor. 

1.8 LOAD AND RESISTANCE FACTOR DESIGN 
A building code for a state is prepared by a committee of experienced structural 
engineers and is mandated by law to be used in the design of a public building. The 
state building code defines minimum loads (live, snow, wind) for which the 
structure must be designed, but the structural designer may use larger loads if they 
are deemed to be more appropriate. These service condition loads are called nominal 
loads that are code-specified loads. In the LRFD approach, each nominal load is 
multiplied by a Ioadfacfor. The factored loads are applied to the structure before 
performing structural strength analyses needed in the design process. Either an 
elastic analysis or a plastic analysis due to the factored loads is permitted. LRFD A4.1 
(p. 6-30) requires the following load combinations to be investigated to find the 
critical combination of factored loads: 

1. 1.40  
2. 1 .20 + 1.6L + 0.5 (L, or S or R )  
3. 1.20  + 1.6 (L ,  or S or R )  + (0.5L or 0.8W) 
4. 1.20  + 1.3W + 0.5L + 0.5 ( L ,  or S or R )  
5. 1 .20  k 1.OE + 0.5L + 0.2s 
6. 0.90 f (1.3W or 1.OE) 
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where 

The numerical values are load factors. 
D, L, W, L,, S, and R are nominal loads (code-specified loads). 
D is dead load due to the weight of the structural elements and permanent 
features on the structure. 
L is live load due to occupancy and movable equipment. 
W is wind load. 
L, is rooflive load. 
S is snow load. 
R is load due to initial rainwater or ice exclusive of the ponding contribution. 

Cross-sectional properties listed in the LRFD Manual for rolled sections are 
nominal values. Steel mills have + and - tolerances (see LRFD, p. 1--188) for the cross- 
sectional dimensions of a rolled shape. The permissible variation in area and weight 
is +2.5% (see LRFD, p. 1-189). For a rolled shape that is used as a tension member with 
its ends welded to connections, for example, the limit of internal rrsistance (nominal 
strength) is the cross-sectional area times the yield strength of the steel. If bolted 
connections are used, fracture of the member in the connection region may govern 
the limit of internal resistance. To account for the uncertainty in the cross-sectional 
area and the steel properties, the nonrinnl strcizgtli (resistance) is multiplied by a 
resisfance (strength reduction)factor to obtain thedcsip strcwgfh of a tension member. 
Since a mathematical statement of the design requirement for a tension member is 
more convenient than words, let: 

1. (b = resistancefactor (strength reduction factor) 
2. P, = nominal strength (resistance) for a tension member 
3. P,, = required tensile strength (maximum axial tension force obtained from an 

elastic factored load analysis) 

The LRFD Specification requires that (PP,, 2 Pli. 
Some examples of the strc7ngth reduction factor (resistance factor), (b, are: 

1. qc = 0.85 for axial compression 
2. @, = 0.90 for shear 
3. (bb = 0.90 for flexure (bending moment) 
4. qt = 0.90 for yielding in a tension member 
5. q$ = 0.75 for fracture in a tension member 

The load and resistance factors in the LRFD Specification were developed using 
a probabilistic approach to ensure with a reasonable margin of safety that the 
maximumstrength ofeach memberand eachconnection i n  astructure isnot less than 
the maximum load imposed on each of them. A portion of the margin of safety is in 
the load factors and the other portion is in the resistance factors. 
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In addition to being adequately designed for strength requirements, the struc- 
ture must perform satisfactorily under nominal or service load conditions. Deflec- 
tions of floor and roof beams must not be excessive. In the direction of wind, relative 
deflections of the column ends or story drift due to wind load must be controlled. 
Excessive vibrations cannot be tolerated. Thus, the structural designer must provide 
a structure that satisfies the owner’s performance requirements and the safety 
requirement on strength as imposed by the applicable building code and LRFD 
Specification. 

After the structure has been adequately designed for strength, the structural 
designer investigates the performance of the structure under service conditions. In 
addition to adequate strength, a member and the entire structure must have adequate 
st i fiess for serviceability reasons. Many of the owner’s serviceability requirements 
can be met by ensuring that deflections do not exceed acceptable limits. Some of the 
common serviceability problems are [3]: 

1. Local damage of nonstructural elements (e.g., windows, ceilings, partitions, 
walls) occurs due to displacements caused by loads, temperature changes, 
moisture, shrinkage, and creep. 

2. Equipment (e.g., an elevator) does not function normally due to excessive 
displacements. 

3. Drift and/or gravity direction deflections are so noticeable that occupants 
become alarmed. 

4. Extensive nonstructural damage occurs due to a tornado or a hurricane. 
5. Structural deterioration occurs due to age and usage (e.g., deterioration of 

6. Motion sickness of the occupants OCCUTS due to excessive vibrations caused 
bridges and parking decks due to deicing salt). 

by 
(a) Routine occupant activities (floor vibrations). 
(b) Lateral vibrations due to the effects of wind or an earthquake. 

In Table 1.2, these serviceability problems are categorized as a function of either 

It is customary steel design practice to limit the deflection index to: 
the gravity-direction deflection or the lateral deflection. 

1. L/360 due to live load on a floor or snow load on a roof when the beam supports 

2. L/240 due to live load or snow load if the ceiling is not plastered. 
3. h/667 to h/200 for each story due to the effects of wind or earthquakes-only a 

range of limiting values can be given for many reasons (type of facade, 
activity of the occupants, routine design, innovative design, structural 
designer’s judgment and experience). 

4. H/715 to H/250 for entire building height H due to the effects of wind or 
earthquakes--comment in item 3 applies here too. 

a plastered ceiling. 



1.8 Load And Resistance Factor Design 31 

The deflection index limits for drift are about the same as the accuracy that can be 
achieved in the erection of the structure. The largest tolerable deflection due to live 
load is 0.5% of the member length. Consequently, deflected structure sketches are 
grossly exaggerated for clarity in textbooks. 

To aid in the discussion of how the required strength of a member in a structure 
is determined from a factored load analysis, we choose to use the plane frame structure 
showninFigures 1.14and 1.15 (see Appendix A for the results obtained froma factored 
load analysis). This structure is a roof truss supported by two beam-columns (mem- 
bers 1 to 4 in Figure 1.15). A beam-column is a member that is subjected to axial 
compression plus bending. Behavior and design of beam-columns are discussed in 
Chapter 6. In Figure 1.15, members 1 to 4 and the roof truss ends are interconnected to 
provide resistance due to wind, as well as overall lateral stability of the structure for 
the gravity direction loads. In Figure 1.15, note the moment springs at the foundation 
ends of the columns. In the factored load analysis given in Appendix A, we assumed 
that the moment springs represented a boundary condition of half-way-fixed (G = 2 as 
explained in Chapter 6) due to gravity loads. To provide resistance due to wind 
perpendicular to the plane of Figure 1.15, some bracing scheme (see Figure 1.16 for an 
acceptable scheme) must be devised and designed. 

For Figure 1.14, the nominal loads are: 
1. Dead 

Built-up roof on metal decking = 8 psf 
Purlins = 20 lb/ft 
Truss = 0.15 kips at each interior joint 
Columns = 40 lb/ft 

2. Live (crane loads) 
8.0 kips at joints 6 and 18 
16.0 kips at joint 12 

Table 1.2 Deflection Index and Serviceabilitv Behavior 

Deflection Index 
~ ~~ ~ 

Typical Serviceability Behavior 
h/1000 
h/500 

h/300 or L/300 

L/200 to L/300 
h/200 to h/300 

L/100 to L/200 
h/100 to h/200 

No visible cracking of brickwork. 
No visible cracking of partition walls. 
Visible architectural damage. 
Visible cracks in reinforced walls. 
Visible ceiling and floor damage. 
Leaks in structural facade. 
Cracks are visually annoying. 
Visible damage to partitions and large. 
plate-glass windows. 
Visible damage to structural finishes. 
Doors, windows, sliding partitions, 
and elevators do not function properly. 

Note: 
L = span length of a floor or roof member, 
h = story height. 
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Built-up roof on metal decking 
Purlin (roof beam) spans 30 ft, 

between neighboring trusses 

NOTE: This cross section exists at each 30 feet along the length of the structure. 

FIGURE 1.14 Cross section of an industrial  building. 

Encircled numbers are joint numbers; 
other numbers are member numbers. 

FIGURE 1.15 Joint numbers  a n d  member numbers  for the structure in Figure 1.14. 
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3. Snow 
20 psf (perpendicular to horizontal surface) 

12 psf (pressure) on windward surface 
7.5 psf (suction) on leeward surface 
11 psf (suction) on roof surface 

4. Wind 

For Figure 1.15, the joint loads are given in Appendix A. 

LRFD A4.1 (p. 6-30) load combinations that must be considered are: 

1.4D 

1.2D + 1.6L + 0.5 ( L ,  or S or X) 
1.2D + 1.6 ( L ,  or S or R )  + (0.5L or 0.8W) 

1.2D + 1.3W + 0.5L + 0.5 ( L ,  or S or R )  

0.9D + 1.3W 

Discussions of the structure in Figures 1.14 to 1.16 are made in some other 
chapters of the text. Since the discussions will be related to the required strength of 

-u m 
0 - 
2 
i- 

(a) Plan view hese members and the top chords of roof trusses form a truss to resist wind. 

\ I \ / 

FIGURE 1.16 S i d e  e leva t ion  v i e w  a n d  p l a n  v i e w  of b u i l d i n g  for F i g u r e  1.14 
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connections and members, the following examination of displacements for service- 
ability purposes is presented now. From Appendix A, due to nominal loads: 

1. At joint 2 due to 0.9D + W, Ax = 1.024 in. = 0.0853 ft  = (h/246), where h = 21 ft. 
From item 3 of Table 1.2, a story-drift index of h/246 will be acceptable since 
h/246 lies in the range of h/667 to h/200. 

2. Due to snow plus the crane loads, the vertical deflection at joint 12 is 1.041 
in. = 0.08675 ft  = (L/692), where L = 60 ft. According to item 2 of Table 1.2, the 
live-load deflection should not exceed (L/240) = 0.25 ft  and 0.087 ft is less than 
0.25 ft. Consequently, based on the member properties used for the analysis 
of Figure 1.15, the truss has more than adequate stiffness for gravity loads. 

1.9 STRUCTURAL SAFETY 
The structural designer must provide a structure that satisfies the owner’s performance 
requirements and the strength requirements stipulated by the applicable building code 
and LRFD Spedcation. Safety, serviceability, and economy are accounted for in 
designing a structure to fulfill the intended usage during the expected lifetime. A safe 
structure must perform satisfactorily under the expected loads with little or no damage 
and without injury to the occupants due to any structural malfunctions. For a properly 
designed structure, the probability of a partial or total collapse due to extreme accidental 
overloads must be very small. Since forecasting the future always involves some 
uncertainty, anabsolutelysafestrudureduringitsexpected lifetimecannotbedesigned. 
For example, a record-breaking rainfall, snowfall, windstorm, or earthquake may occur 
for the locale of the building. Thus, the actual loads on the building may exceed the 
maximum expected loads used in the design of the structure. 

The first paragraph on LRFD Commentary, p. 6-169, is: 

The LRFD Specifcation is based on (I) probabilistic models of Zoads and resistance, (2) a 
calibration of the LRFD criteria to the 1978 edition of the AISC ASD Specificationfor 
selected members, and (3) the evaluation of the resulting criteria by judgment and past 
experience aided by comparative design ofice studies of representative structures. 

A brief discussion of the probabilistic model and calibration is presented later. 
However, calibration to fhe 2978AlSCASD Specifcation is related to our discussion of 
structural safety. Hereafter, the 1978 AISC ASD Specification is referred to as the 
ASD (Allowable Stress Design) Specification. 

Consider a plane truss whose member ends are welded to gusset plates (joints in the 
truss). Structural safety of a member in the truss is to be discussed in regard to the ASD 
and LRFD Specifications. Strength terminology in the LRFD Speafication is in terms of 
forces, but the strength terminology in the ASD Specification is in terms of stresses. We 
choose to discuss the strength requirements of both specifications in terms of forces. 

For a tension member in our plane truss, the ASD requirement for strength is 

Pa 2 P, 
where 

Pu = allowable tension force 
P, = maximum tension force 
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(P, is determined from a truss analysis for the required ASD loading combina- 

Let 

tions of service loads applied at the truss joints.) 

pY = ABFY 
where 

Ag = gross cross-sectional area 

Fy = yield stress of steel 

If the force in our tension member reaches Py due to an extreme accidental 
overload, this is classified as a "failure" condition (excessively large deflections 
certainly will occur even though collapse may not occur). To ensure an adequate 
margin of safety against this failure condition, the ASD requirement for strength is 

(Pa = O.6Py) 2 P, 

which can also be written as 

P, =- 2 P, ( :) 
where 

1 10 
0.6 6 

FS (factor of safety ) = - = - = 1.67 

The ASD Specifications from 1924 to 1989 did not give the basis for choosing the 
indicated FS = 1.67, but this choice can be rationalized as follows. Py = AJY is a 
nominal value since neither A, nor F ,  is a perfect parameter. For example, the 
dimensions of a steel section can be manufactured only within acceptable tolerances 
(+ and -). Therefore, we should assume that the minimum failure strength of our 
truss tension member is less than the nominal value by an amount AP which means 
that the minimum failure strength is Py - AP,. We should assume tKat an extreme 
accidental overload of AP, occurs that causes the force in our member to be P, + AP,. 
The failure condition occurs when 

(P, + Us) = (P,  - My) 

and we obtain 
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For 

APs 
= 0.1 and - = 0.5 5 

P Y ps 

we obtain 

1 + 0 5  1.5 
= 1.67 F S = L  - - 

1-0.1 0.9 
- 

Values of FS > 1.67 were appropriately chosen by the ASD Specification writers 
for other failure conditions. Two examples where FS > 1.67 was chosen are: 

1. For a tension member with bolted member-end connections, FS = 1 /0.5 = 2.00 
since the ASD Specification gives P, = 0.5A,FU, where A,  is the effective net 
area and F,, is the specified minimum tensile strength of steel. 

2. For elastic column buckling, 

FS = 23 = 1.92 12 
since the ASD Specification gives 

D 

where P,, is the elastic column buckling load. 

The preceding discussion illustrates that structural design involves a forecast of 
the actual loads and the actual member strengths by estimating in some way that the 
chance of high loads and low strengths will occur. The main variables involved in our 
discussion of structural safety for a proposed steel structure are: 

1. Strength 
(a) Stress-strain characteristics 
(b) Cross-sectional properties 
(c) Workmanship in the fabrication shop and in field erection 
(d) Structural deterioration due to repetitive loads (unloading and reload- 

ing) and corrosion, for example, particularly at the connection locations 
(e) Field inspection and quality control 
(f) Accuracy of the analysis and design calculations 
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2. Loads 
(a) Magnitude 
(b) Position 
(c) Duration 
(d) Load combinations 

3. Consequences of a collapse 
(a) Loss of life 
(b) Property damage 
(c) Lawsuits and legal fees 

The LRFD Specification accounts for the factors that influence strength and 
loads by using a probabilistic basis (involves probability theory and statistical 
methods). This probabilistic basis ensures a more consistent margin of safety 
than was the case in the ASD Specification. In order to discuss how structural 
safety is achieved in the LRFD Specification, we must define the pertinent LRFD 
terminology. 

Each failure condition is referred to as a ”limit state.” A limit state is a condition 
at which a member, a connection, or the entire structure ceases to fufill the intended 
function. There are two kinds of limit states: serviceability and strength. Serviceability 
limit states deal with the functional requirements of the structure and involve the 
control of deflections, vibrations, and permanent deformations. Examples of strength 
limit states are yielding of a tension member, fracture of a tension member end, 
formation of a plastic hinge, formation of a plastic mechanism, overall frame 
instability, member instability, local buckling, and lateral-torsional buckling. Our 
discussion of structural safety is related to the strength limit states. 

Again, consider our truss tension member; yielding of the member is the 
LRFD limit state chosen for our discussion. If we use a generalized notation, the 
discussion can be extended to a limit state of bending in a beam, for example. Let 
R denote the resistance (yield strength P J  of our truss tension member. Let Q 
denote the axial force in the member due to a factored loading combination (for 
convenience, assume that only dead and live loads are involved). Structural 
safety is a function of R and Q, which are random variables. R is random due to 
acceptable tolerances (+ and -), which are necessary in the steel mill (steel- 
making and rolling processes), fabrication shop, and field erection. Dead load is 
random due to the uncertainty in the weight of the nonstructural elements 
(HVAC, sprinkler systems, electrical and communication systems, insulation, 
partitions, and ceilings) and the acceptable tolerances in the dimensions of steel 
members and concrete slab thicknesses, for example. Live load varies from 
structure to structure within a group of supposedly identical structures and 
varies as a function of time for each of these structures. Strength test data can be 
plotted as a histogram or frequency distribution of R (see Figure 1.17). For the 
data used to plot the histogram, statistical definitions can be used to obtain the 
mean (average) R,  and the standard deviation o,, which is a measure of the 
dispersion. Probability theory can be used to fit a continuous theoretical curve 
\probability densifyfunction (PDF) of R ]  to the histogram. Similarly, by using field 
measurement data of dead and live loads, a PDF of Q can be obtained. 
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If the PDF of R is normal or Gaussian, then the analytical form of the PDF of R is 

where 

R ,  =J* x j R  ( x )  dx  - 

0 f = 1: ( x - R , ) ' f R  ( x ) d x  

and the constant 1 / f i  is used so that the normalized PDF of R encloses a unit area: 

Between (R,  - oR) and (R, + oR), the area under the PDF is 0.6827; that is, the 
probability of an occurrence within this range is 68.27"/0. The probability of an 
occurrence between (R, - 20R) and (R, + 2oR) is 95.45%. The probability of an 
occurrence between (R, - 3 0 ~ )  and (R, + 3 b R )  is 99.865%. 

If the PDF of Q is normal or Gaussian, then the previous paragraph is applicable, 
provided that we replace each R with Q. If R and Q are normal random variables and 
if we define Z = R - Q as the safety margin, then Z is a normal random variable. The 
probability of Z < 0 is the probability of failure (achievement of the limit state of 

Frequency 

I R 
Q 

I 
Qm 

R < Q is "failure." 

FIGURE 1.17 Frequency distribution of load Q and resistance R. 



1.9 Structural Safety 39 

Frequency 

Survival 

Failure 

FIGURE 1.18 Reliability index b. 

yielding) for our truss tension member. The equivalent representation of structural 
safety shown in Figure 1.18 was used in the LRFD probabilistic model. Figure 1.18 
is a schematic plot of the PDF of In ( R / Q )  and the shaded area is the probability of 
failure for our truss tension member. In Figure 1.18, is the distance from the 
origin to the mean [In (R/Q)Im. Using 

where 

are the coefficients of variation, we obtain: 

and b is called the reliability (safety) index. Thus, in obtaining b for each strength limit 
state, afirst-order, second-moment (FOSM) probabilistic model was used. This model 
only uses the mean values and coefficients of variation for the random variables 
involved in a particular strength limit state to obtain the reliability index b. For 
increasing values of P I  the probability of failure (achievement of the limit state of 
yielding) for our truss tension member decreases. 
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The reliability index pis only a relative measure of safety and must be chosen to 
give the desired degree of reliability. For each LRFD strength criterion, pwas selected 
by requiring that the LRFD criterion produce the same design as the corresponding 
ASD requirement for an "average" design situation. For example, for the LRFD 
loading combination consisting of gravity loads only, a live-load-to-dead-load ratio 
of 3 was used. This procedure of selecting b is called "calibration" to an existing 
design criterion (1978 AISC ASD Specification in this case). Therefore, the actual 
distribution shape of the PDF of R/Q was not required and the resistance factors were 
chosen such that for D + L or S, targeted values of b = 2.6 for members and b = 4.0 
for members were achieved. Thus, for our truss tension member example, the LRFD 
design requirement for the limits ta te of gross section yielding of the member became 

(@pn = 0 . 9 ~ ~ ~ ~ )  2 pU 
where 

@Pa = design tensile strength 

P,, = required tensile strength 

( P ,  is the maximum value of the tension member force obtained from a factored load 
analysis for all required LRFD load combinations.) 

1.10 SIGNIFICANT DIGITS AND COMPUTATIONAL PRECISION 
Estimated dead loads can be revised after all member sizes are finalized. However, 
estimated live loads and equivalent static loads for the effects due to wind and 
earthquakes are much more uncertain than the estimated dead loads. Perfection is 
impossible to achieve in the fabrication and erection procedures of the structure. 
Also, certain simplifying assumptions have to be made by the analyst to obtain 
practical solutions. For example, joint sizes are usually assumed to be infinitesimal, 
whereas they really are finite. Interior joints and boundary joints may be assumed to 
be either rigid or pinned, whereas they really are somewhere between rigid and 
pinned. Thus, the final structure is never identical to the one that the structural 
engineer designed, but the differences between the final structure and the designed 
structure are within certain tolerable limits. 

A digit in a measurement is a significant digit if the uncertainty in the digit is less 
than 10 units. Standard steel mill tolerance for areas and weights is k2.5% variation. 
Consider a rolled shape in the LRFD Manual with a weight of 100 lb/ft and a cross- 
sectional area of 29.4 in.2. The weight variation tolerance is k0.025(100) = k2.5, and 
the actual weight lies between 97.5 and 102.5 Ib/ft. Since the third digit in 100 is 
uncertain by only 5 units, the 100 lb/ft value is valid to 3 significant digits. However, 
the area variation tolerance is &0.025(29.4) = k0.735, and the actual area lies 
between 28.665 and 30.135 i n . 2 .  There are 14.7 units of uncertainty in the third digit 
of 29.4, and ordinarily only the first 2 digits in the value 29.4 would be significant in 
engineering calculations, which means that 29.0 would be appropriate. In the LRFD 
approach, however, the uncertainty in the 29.4 in.2 area is accounted for in the 
resistance factor and it is appropriate to use the 29.4 in.2value recorded in the LRFD 
Manual. 
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Most computers will accept arithmetic constants having an absolute value in the 
range 1 x 10-3 to 1 x 1038. Some computers will accept a much wider range. A 
computer holds numeric values only to a fixed number of digits, usually the 
equivalent of between 6 and 16 decimal (or base 10) digits. The number of decimal 
digits held is called the precision of the arithmetic constant. 

For discussion purposes, suppose that the loads and structural properties are 
accurate to only 3 significant digits. Most commercially available structural analysis 
software appropriately use at least 16-digit precision in the solution of the set of 
simultaneous equations. In a multistory building, there may be thousands of 
equations in a set. If only 3-digit precision were used in computerized solutions, the 
truncation and round-off errors in the mathematics would in some cases contribute 
as much uncertainty in the computed results as there is in the structural properties 
and loads. 

Reconciliation of the actual number of significant digits in the computed results 
should be made by the structural designer after all of the computed results are 
available. We always make electronic calculator computations using the maximum 
available precision in the same manner that a computer would make them in 
floating-point form. We record our computed results with at least three-digit 
precision and rounded in the last digit. 

PROBLEMS 

Modify Figure 1.15 by deleting the columns (members 1 and 3)  to obtain a determi- 
nate truss supported on a fixed hinge at joint 2 and supported on a roller a t  joint 22. 
Use the nominal loads given in Appendix A for Loadings 1 to 4 a t  joints 3 to 21 and 
23. For the member specified in each of the following problems, from a truss analysis 
find the axial force for each nominal load case (D ,  L, S, and W). Then, see the factored 
load combinations required by LRFD(A4-1) to (A4-6) on LRFD p. 6-30. For the 
member specified in each of the following problems, use the previously found axial 
forces due to nominal loads and find the axial force for each LRFD load combination. 
Since a nominal load was not given for E(earthquake), ignore any load combination 
which is a function of E.  

1.1 Find the axial force in member 33. Indicate which LRFD load combination 
gives P, (the maximum axial tension and/or compression). Compare P, to the 
corresponding P,, given in Appendix A. 

1.2 Find the axial force in member 43. Indicate which LRFD load combination 
gives P ,  (the maximum axial tension and/or compression). Compare P ,  to the 
corresponding P, given in Appendix A. 

1.3 Find the axial force in member 10. Indicate which LRFD load combination 
gives P,, (the maximum axial tension and/or compression). Compare P, to the 
corresponding P, given in Appendix A. 
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1.4 Find the axial force in member 20. Indicate which LRFD load combination 
gives P ,  (the maximum axial tension and/or compression). Compare P, to the 
corresponding P, given in Appendix A. 
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Tension IThm hers 

2.1 INTRODUCTION 
A tension member is designed on the assumption that the member has to provide 
only axial tensile strength. Cables or guy wires are used as tension members to 
stabilize wood poles that support telephone and electricity transmission lines. Steel 
cables (wire ropes) and very slender rods (Lld I 500) have negligible bending 
stiffness. Thus, the assumption that a cable or very slender rod only provides tensile 
strength is indeed very reasonable. A tension member in a truss is fastened by welds 
or bolts at the member ends to either other members or connection plates (gusset 
plates). Truss members do not necessarily have negligible bending stiffness. There- 
fore, if the structural designer wants a structure to behave like a truss (all joints 
assumed to be pins and no bending occurs in any member), the design details must 
be chosen such that negligible bending occurs in each member. This means that the 
design details must (1) provide for all loads except the self-weight of the members 
to actually occur only at truss joints, and (2) ensure that the joints do not cause 
appreciable member-end moments to occur. If a structural designer wants a struc- 
ture to behave in a certain manner, the structural details must be carefully chosen 
such that the desired structural behavior is closely approximated. 

The LRFD definition of design strength is a resistancefactor times the nominal 
strength. Since the resistance factor is less than unity, a resistance factor is a strength 
reduction factor. Separate LRFD design strength definitions are given for members, 
connectors (bolts, welds), and joints (angles, brackets, gusset plates, splice plates, 
stiffeners). The definitions of design strength for connection plates, fillet welds, and 
shear of bolts are given in Chapter 3. 

In the LRFD approach, the members and connections of a structure are designed 
to have adequate strength to resist the factored loads imposed on the structure. For 
a tension member, the design strength is @',, where @ is a resistancefactor (strength 
reduction factor), and P, is the nominal strength (resistance) to be defined in the 
following discussion. For a tension member, the LRFD design requirement for strength 

43 
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is @P,, 2 P,, where P, is the required tensile strength, which is the maximum axial 
tension force obtained from an elastic factored load analysis. 

After the structure has been adequately designed for strength, the structural 
designer investigates the performance of the structure under service conditions. If a 
tension member is too flexible (does not have enough bending stiffness), (1) special 
handling in the fabrication shop and in the field erection stages may be necessary, 
resulting in extra costs; (2) the member may sag excessively due to its own weight; 
and (3) in a building containing large machines with rotating parts or in a bridge truss 
exposed to wind, the member may vibrate too much. Thus, in addition to adequate 
strength, a member and the entire structure must have adequate st#ness for service- 
ability reasons. Many of the owner’s serviceability requirements can be met by 
ensuring that deflections do not exceed acceptable limits (see Section 1.8). 

2.2 STRENGTH OF A TENSION MEMBER WITH BOLTED-END CONNECTIONS 
Consider Figure 2.1, which shows a tension member fastened by bolts to a gusset 
plate. Along the member at some finite distance from the bolts, all cross-sectional 
fibers of the member on Section 2-2 in Figure 2.l(d) can attain the yield strength, 
when the bolts and member-end connection are stronger than the member. I f  all 
cross-sectional fibers of a member yield in tension, the member elongates exces- 
sively, which can precipitate failure somewhere in the structural system, of which 
the tension member is a part. Consequently, yielding on A, of the member is classified 
as a failure condition. 

The member-end connection in Figure 2.1 is called a bearing-type connection since 
the transfer of axial force in the member to the gusset plate is made by bearing of the 
bolts at each bolt hole in the member end and gusset plate. Failure due to shear ofthe 
bolts and bearing at the bolt holes is discussed in Chapter 3, where we find that when 
failure is due either to shear of the bolts or to bearing at the bolt holes, each bolt in 
Figure 2.1 is assumed to transfer P , / 3  from the member to the gusset. Bearing at the 
bolt holes in the member end is shown in Figure 2.l(c), where P denotes the bearing 
(or pushing) force provided by each bolt. 

In the connection region of Figure 2.1, the stress distribution due to the applied 
load is not uniform in the member since some of the cross-sectional elements of the 
member are not bolted to the gusset plate. Hence, a transition region exists in the 
member from the connection region to some finite distance from the connection 
where the stress distribution in the member becomes uniform when yielding occurs. 
Thus, before yielding occurs in the member, the regions of the member end and the 
gusset end containing the bolt holes usually experience strain-hardening, and 
fracture can occur through the bolt holes either in the member end or in the gusset 
plate. In Figure 2.1, fracture of the member end occurs on Section 3-3 that has full P ,  
(or all of P,) on it. Fracture of the gusset end is discussed in Chapter 3. 

In Figure 2.l(e), the cross section of the member is a pair of angles. Each angle 
section consists of two elements, and their centerlines form a capital “L”. Sometimes 
in the LRFD Specification, the elements of an angle section are called legs. When 
some of the cross-sectional elements do not have bolts in them as in Figure 2.1, the 
force in the elements having no bolts must be shunted to the elements where bolts 
exist in order for the bolts to transfer their force to the gusset plate through bearing 
at the bolt holes. Removal of the force from an element that has no bolt in it is made 
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P = total bearing force from each bolt 
3 P =  P u  

I 
I I 1  I I I 

1 1  

OC' (b) Section 1-1 

(a) Member end bolted to gusset plate 

(c) FBD of member (pair of angles) 

(d) Section 2-2 (e) Section 3-3 

FIGURE 2.1 Tension member bolted to a gusset plate 

through shear to an element that has a bolt in it, and the force removal process is 
called shear lug. When the shear lag has to occur in too short a distance on the member 
end, the fracture strength is smaller than when no shear lag exists. The LRFD 
definition offracture on A, (effective net area) accounts for any effect due to shear lag. 

As shown in Figure 2.2(b), another failure mode of the member end can occur 
and is called block shear rupture. Note that a displaced block is pushed out of each 
angle leg that has bolts in it. When block shear rupture occurs, a portion of the 
resistance is due to shear P,, and the other portion of the resistance is due to tension 
P,. Fracture occurs on the plane of the block where the larger resistance exists and 
yielding is conservatively assumed to occur on the other plane of the block. 

All bolt holes are standard holes except when the structural engineer specifies 
an oversized hole. In the fabrication shop, standard bolt holes are punched in the 
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P = bearing force from bolt 
3 P =  P, 

I I 

L Singleangle 
with bolts only in one leg 

(a) FBD of member end 

P = bearing force from bolt 
6 P =  P, 

L Single angle 
with bolts only in one leg 

P, = P, + Pv 

(b) Block Shear Rupture of member end 

FIGURE 2.2 Examples of block shear rupture 

member, when the material thickness does not exceed the hole diameter. The 
nominal diameter of a standard bolt hole (LRFD Table J3.3, p. 6-82) is the bolt 
diameter plus 1/16in. Instrengthcalculations,theholediameterisdefined (LRFDB2, 
p. 6-34) as the nominal diameter of the hole plus 1/16 in. 

For each cited LRFD Specification, the reader should look in the LRFD Commen- 
tary to see if there is any information that may be helpful with the interpretation of 
that specification. 

The LRFD design strength definitions of a tension member with bolted connec- 
tions are: 

1. Yielding on As [see Figures 2.l(c) and (d)] (LRFD D1, p. 6-44) 

$Pn = 0.90FyA, 

where 

F, = specified minimum yield stress (h i )  

A, = gross area of member (in2) 

2. Fracture on A, [see Figures 2.l(c) and (e)] (LRFD D1, p. 6-44, and B3, p. 6-34) 

(PP, = 0.75FUA, 
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where 

F, = specified minimum tensile stress (ksi) 

A, = effective net area of the critical section (in.2) 

A, = A,U when not all cross-sectional elements transfer some of P, 

A, = A,  when all cross-sectional elements transfer some of P, 

A,  = A, - C(fhd,) = net area of member (in.2) 

th = thickness of hole (in.) 

d, = diameter of hole (in.) 

dh = (d + 1/8 in.) for a standard bolt hole 

d = diameter of bolt (in.) 

U = ( 1 - X / L,  ) 5 0.9 = strength reduction factor 

L, = length of connection parallel to P, (in.) 

X = connection eccentricity (in.) (see Figure 2.3) 

U < 1 when all cross-sectional elements of the member do not participate in 
transferring the tension force at the member ends through bearing to the bolts 
and then the bolts transfer their forces through bearing to the gusset plate. 
Figure 2.3 (adapted from LRFD Figures C-B3.1 and C-B3.2) illustrates how 
the connection eccentricity X is to be computed. For the supposed angle(s) 
to be used in Figures 2.3 (b-d) for computing X in the vertical direction, the 
implications are that the vertical leg of the supposed angle section is mea- 
sured from the center of the indicated bolt hole to the free edge of the actual 
section. X in the vertical direction is measured from the center of the 
indicated bolt hole to the horizontal axis through the centroid of the supposed 
angle section. The strength-reduction factor for shear lag is based on the 
researchconducted by MunseandChesson [15] and EasterlingandGirowc[l6]. 

3. Block shear rupture, abbreviated BSR (LRFD J4.3, pp. 6-87 and 6-228) [see 
Figure 2.201) for some examples] When Fdnt 2 0.6F$,,, 

@R, = 0.75(Fdn, + 0.6F/l,) 

When 0.6F&,, 2 F A n t ,  

@R, = 0.75(0.6Fdn, + F,,A,J 

where 

A, = gross area on BSR shear plane(s), in.2 

A,, = gross area on BSR tension plane, in.2 

A,,, = A ,  - [A,,, on BSR shear plane(s)] 

A,, = Agt - [Aholes on BSR tension plane] 
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X = larger of x and 
All c.g. axes are for gross sections. 

(b) Connection eccentricities 
(a) Angle section 

Treat as a 
gross angle 
section. 

X = larger of x and 

(c) C section 

X = larger of x and I. 
Subdivide on y-axis of symmetry. 
Treat each half above centerline of 
hole as a gross angle section. 

(c) W section with bolts in web 

Subdivide on x-axis of symmetry. 
Treat each half as a gross WT section. 

FIGURE 2.3 Connection eccentricity in shear lag reduction coefficient 
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h n p l e  2.1 
The A36 steel member in Figure 2.l(a) is a pair of angles, L3.5 x 3  x 0.25, with the long 
legs fastened to a gusset plate by 0.75-in.-diameter bolts. Use L, = 2 in., s = 3 in., and 
8 = 2 in. The gusset plate thickness is 0.5 in. Find the governing design strength of the 
tension member for a bearing-type bolted connection. 

LRFD, p. 1-62: For a single L3.5 x 3 x 0.25, 

A = 1.56 in.2 x = 0.785 in.; y = 1.04 in. 

The governing design strength of the tension member is the least $Pn value 
obtained from: 

1. Yielding on A, = 2(1.56) = 3.12 i n 2  [see Figures 2.l(c) and (d)] 

$P,, = 0.90F/Ix = 0.90(36)(3.12) = 101 kips 

2. Fracture on A, = A,U [see Figures 2.l(c) and (e)] 

d,, = d + 1/8 in. = 0.75 + 0.125 = 0.875 in. 

t,, = 2(0.25) = 0.500 in. 

d,,t, = 0.875(0.500) = 0.4375 in.2 

A,, = A, - d,,t,, = 3.13 - 0.4375 = 2.69 in.2 

From Figure 2.3(b), we see that: 
(a) the connection eccentricity from the face of the gusset plate isx = 0.785 in. 
(b) the other connection eccentricity for a supposed long leg = g must be 

computed. 

y, = (leg - g) = (3.5 - 2) = 1.50 in. 

A' = A - y,t = 1.56 -(1.50)(1/4) = 1.185 i n 2  

t 

Y =  
Ay - y e  t ( 1% - 0.5 Y ', ) ( 1.56 )( 1.04 ) - 1.50 ( 0.25 )( 3.5 - 1.50 / 2 ) 

= 0.499 in. - - 
A' 1.1875 

x = 0.661 in. 
8 - y ' = 2 - 0.499 = 1.50 in, 

X = larger of 

l - . E / L ,  =1-1.50/6=0.750 { 0.9 
U = smaller of 
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A, = A,U = 2.69(0.750) = 2.02 in? 

@P, = 0.75FJ1, = 0.75(58 ksi)(2.02 in.,) = 87.8 kips 

3. BZock shear rupture [see Figure 2.2@), one-row-of-bolts case] 

L, = L, + 2s = 2 + 2(3) = 8 in. 

A, = L,t = 8(2)(0.25) = 4.00 in .2  

A,, = Ap - Ahole = 4.00 - 2.5(0.4375) = 2.906 in.' 

L, = leg-g = 3.5 - 2 = 1.5 in. 

Ag, = L, t = 1.5(2)(0.25) = 0.75 i n . 2  

A,, = Agt - Aholes = 0.75 - 0.5(0.4375) = 0.53125 in.' 

FA,, = 58(0.53125) = 30.8 kips 

0.6FJn, = 0.6(58)(2.906) = 101.14 kips 

@P, = 0.75(O.6F,/ln, + Fflg,) 

@P, = 0.75[101.14 + 36(0.75)] = 96.1 kips 

@P,, = 87.8 kips, due to fracture on A,, is the governing design strength of the tension 
member. 

The A36 steel member in Figure 2.4 is a pair of angles, L6 x 4 x 0.375, with the long 
legs fastened to a gusset plate by 0.75-in.-diameter bolts. Use L, = 2 in., s = 3 in., g1 = 
2.25 in., andg, = 2.5 in. The gusset plate thickness is 0.5 in. Find the governing design 
strength of the tension member for a bearing-type bolted connection. 

Solution 

L E D ,  p. 1-58: For a single L6 x 4 x 0.375 
A = 3.61 in? x = 0.941 in. y = 1.94 in. 

The governing design strength of the tension member is the least $P, value obtained 
from: 

1. Yielding on Ag 

QP, = 0.90F,,Ag = 0.90(36)(7.22) = 233.9 kips 

2. Fracture on A, = A,U 
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1 

1 4  4 2  4 3  
6 P =  pU 

(a) Member end FBD 

I 
U 

P=#pU P=#pU 

(c) FBD Section 1-1 (d) FBD Section 2-2 

(b) Section3-3 

(e) FBD Section 3-3 

FIGURE 2.4 Tension member with two lines of bolts 

d, = d + 1/8 in. = 0.75 + 0.125 = 0.875 in. 

t h  = 2(0.375) = 0.750 in. 

dbth = 0.875(0.750) = 0.656 in.2 

A,, = Ag - C(d,t,) = 7.22 - 2(0.656) = 5.908 in? 

From Figure 2.3(b), we see that: 
(a) The connection eccentriaty from the face of the gusset plate is x = 0.941 in. 
(b) The other connection eccentricity for a supposed long leg = g must be 

computed: 

ye = (leg - g )  = (6 - 2.25) = 3.75 in. 

A' = A - yet = 3.61 -(3.75)(0.375) = 2.20 in? 

AY-Ytt(k-0-5Yt ) - (3.61)( 1.94) - 3.75( 0.375)( 6 - 3.75 / 2 )  y ' =  - = 0.540 in. 
A' 2.20 

x = 0.661 in. 

g-y'=2.25-0.540=1.71in. 
X = larger of 
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A, = A,,U = 5.908(0.715) = 4.22 in.? 

$Pn = 0.75F,,AC. = 0.75(58 ksi)(4.22 in.2) = 184 kips 

3. Block shear rupture [see Figure 2.2(b), two-row-of-bolts case] 

L,, = L, + 2s = 2 + 2(3) = 8 in. 

A,, = L,,t = 8(2)(0.375) = 6.00 in.] 

A,,,, =A,,, - Aholes = 6.00 - 2.5(0.656) = 4.688 in.? 

L, = leg - g, = 6 - 2.25 = 3.75 in. 

Ax, = L, t = 3.75(2)(0.375) = 2.81 in.2 

A,,, = Ax, - Aholes = 2.81 - 1.5(0.656) = 1.83 in.2 

F,,A,,, = 58(1.83) = 106 kips 

0.6F,,An,, = 0.6(58)(4.688) = 163 kips 

$pn = 0.75(0.6FUA,,,, + F + A q , )  

$Ptj = 0.75[163 + 36(2.81)] = 198 kips 

$P,, = 184 kips, due to fracture on A,, is the governing design strength of the tension 
member. 

2.3 EFFECT OF STAGGERED BOLT HOLES ON NET AREA 
Figure 2.4(a) is the FBD of a tension member separated from a bearing-type bolted 
connection. To ensure that the socket can be fitted on each nut of all bolts in a bolt 
group, LRFD J3.3 stipulates that the minimum spacing center to center between two 
adjacent bolt holes is 2.67d, where d is the nominal diameter of the bolts. To speed up 
the installation of the nuts, the preferred minimum spacing is 3d. In Figure 2.4(a), s 
andg, are the parameters for which the preferred minimum spacing is3d. In Example 
2.2, a pair of L6 x 4 x 0.375 was used as the tension member in Figure 2.4(a). The usual 
gages for the long leg of a L6 x 4 x 0.375 are g1 = 2.25 in. and g2 = 2.5 in. Since g2/3 = 
2.50/3 = 0.833 in., we cannot used > 0.75 in. if we want to use the preferred minimum 
spacing of 3d at g,. Suppose that we want to use d = 1-in.-diameter bolts and the 
preferred minimum spacing of 3d. Then, as shown in Figure 2.5(a), the bolt holes 
must be staggered to ensure that C 2 3d and 2s 2 3d. 

When a staggered bolt hole pattern is used in the connection of a tension 
member, two or more net sections must be investigated to find the critical net 
section for fracture on A,. If fracture occurs on the net section shown in Figures 
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2.5(c) and (d), the fracture surface lies in one plane. However, if fracture occurs on 
the net section of Figures 2.5(e) and (f), the fracture surface does not lie in one plane. 
Figures 2.5(d) and (h) have the same net area and the same fracture design strength. 
However, the internal force in Figure 2.5(h) is smaller than in Figure 2.5(d). 
Furthermore, the internal force on all net sections at and to the left of Section 3-3 
in Figure 2.5(g) is less than P ,  .Therefore, the critical net section (where the fracture 
on A, would occur) is either Figure 2.5(c) or (e). The design strength due to tensile 
fracture in the net section is the smaller value obtained for the net sections in 
Figures 2.5(c) and (e). 

I n  Figure 2.5(e), Section 2-2 shows a potential tensile fracture path across the 
member, and this path is not a straight line. Such a fracture path is called a 
staggered path. If a line segment on the staggered path is not perpendicular to P,,, 
we call that line segment a stagger. As shown in Figure 2.5(e), a stagger has a 
longitudinal component called s and a transverse component called g. If fracture 
occurs on Section 2-2 of Figure 2.5(e), a tensile fracture force exists perpendicular 
to each line segment of Section 2-2. On each stagger, a shear force must exist in 
addition to the tension force. This shear force is required to equilibrate the 
transverse component of the tension force on the stagger. Therefore, a combined 
state of failure stress exists on each stagger and we only need the sum of all fracture 
force components parallel to P,. LRFD 82 (p. 6-34) gives an empirical definition of 
the net area based on the research of Cochrane [14], which when multiplied times 
F,, gives the desired tensile fracture force component parallel to P,. We prefer to 
show this definition as a formula. Let A ,  denote the equivalent gross area for a 
staggered path: 

s 2 t  
A,v, = A ,  +cL 

4 g  
where 

A,? = planar gross section area 

s = longitudinal component of a stagger 

g = transverse component of a stagger 

Then the empirical definition of the net area given in LRFD B2 for a staggered path 
can be written as 

This definition of A,, is applicable for Figures 2.5(e) and (f). 

The A36 steel member in Figure 2.5 is a pair of angles, L6 x 4 x 0.375, with the long 
legs fastened to a gusset plate by 1-in.-diameter bolts. Use L ,  = 2 in., s = 2 in.,g, = 2.25 
in., and g, = 2.5 in. The gusset plate thickness is 0.5 in. Find the governing design 
strength o f  the tension member for a bearing-type bolted connection. 
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1 1 r 
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(b) Gross section 
(a) FBD of the member end 
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(c) Path 1 - 1  4 1  

r , 2  
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(e) Path 2-2 L 2  

(8) Path 3-3 b 3  

(i) Block Shear Rupture for tension on Path 2-2 

(d) FBD Path 1-1  

( f )  FBD Path 2-2 

(h) FBD Path 3-3 

FIGURE 2.5 Staggered bolt configuration in a tension member 
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Solution 

LRFD, p. 1-96: For a pair of L6 x 4 x 0.375, A, = 7.22 in.2 
LRFD, p. 1-59: For L6 x 4 x 0.375, 3 = ( x  = 0.941 in.) 
The governing design strength of the tension member is the least @P, value obtained 
from: 

1. Yielding on A, 

$P, = O.90F,,A8 = 0.90(36)(7.22) = 234 kips 

2. Fracture on A,  = A,U 

l - X / L ,  = 1-0.941/6 = 0.843 { 0.9 
U = smaller of 

d, = d + 1/8 in. = 1 + 0.125 = 1.125 in. 

t h  = 2(0.375) = 0.750 in. 

dhth = 1.125(0.750) = 0.844 

We must compute A ,  for Sections 1-1 and 2-2 in order to determine the critical net 
section. Both sections have full P, on them, but we cannot tell by inspection which 
section has the smaller A,. 

Section 1-1 

s = 2 i n .  

g = (g2 = 2.5 in.) 

A ,  = A , + C  ( - s * t )  =7.22+2 [ ( 2 ) 2  (2)(0*375)] = 7-82 k.2 

4g 4(2.5) 

A,  = A, - C(dhfh) = 7.82 - 2(0.844) = 6.13 in.* 

The critical section forfracture on A, is Section 2-2: 

A, = A,U = 6.13(0.843) = 5.17 in .2  

@P, = 0.75FdP = 0.75(58 ksi)(5.17 = 225 kips 
3. Block shear rupture [see Figure 2.5(i)] 

L, = L, + 2(2s) = 2 + 2(2)(2) = 10 in. 

A,  = L,t = 10(2)(0.375) = 7.50 in.2 

A,, = A,  - A,, = 7.50 - 2.5(0.844) = 5.39 i n . 2  

L,=Zeg-g1=6-2.25=3.75in. 
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=3.11 in.’ 
( 2 ) 2  (2)(0.375) 

4(2 .5 )  
=3.75(2)(0.375)+ 

A,, = A,, - AholPs = 3.11 - 1.5(0.844) = 1.85 in.2 

F,A,, = 58(1.85) = 107.3 kips 

0.6FJn, = 0.6(58)(5.39) = 185.6 kips 

@P,, = 0.75(0.6FUA,,, + FyA,,) = 0.75[185.6 + 36(3.11)] = 223 kips 

@P, = 223 kips, due to BSR, is the governing design strength of the tension member. 

The A36 steel member in Figure 2.6 is a pair of angles, L6 x 3.5 x 0.5, with the long legs 
fastened to a gusset plate by 0.75-in.-diameter bolts. Use L, = 2 in., s = 1.5 in.,g, = 2.25 
in., g, = 2.5 in., and g = 2 in. The gusset plate thickness is 0.5 in. All cross-sectional 
elements of the member contain bolts; therefore, A, = A, , For visualization purposes 
in computing A,,, one angle is shown flattened out in Figure 2.6(c). The design 
strength of the tension member is for a bearing-type bolted connection. Is the design 
satisfactory for P, = 275 kips? 

Solution 

LRFD, p. 1-58: For a pair of L6 x 3.5 x 0.5, A, = 2(4.50) = 9.00 in.2 

1. Yielding on A, 

@P, = 0.90F,,AS = 0.90(36)(9.00) = 291.6 kips 

(@Pn = 291.6 kips) 2 ( P ,  = 275) as required 

2. Fracture on A ,  = A,, 

d,, = d + 1 /8 in. = 0.75 + 0.125 = 0.875 in. 

t,, = 2(0.5) = 1.00 in. 

d,t,, = 0.875(1.00) = 0.875 in., 

A, = A, - Z(d,,f,,) = 7.22 - 0.844 = 6.376 in.* 

For the net section that passes through only hole B, 

A,, = A, - C(d,,t,,) = 9.00 - 0.875 = 8.125 in.2 

@Pv = 0.75FUA, = 0.75(58)(8.125) = 353.4 kips 

(@Pn = 353.4 kips) 2 (P, = 275) as required 
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pair of L6 x 3.5 x 0.5 

(b) Gross section 

7 P =  P, 

(a) Member end FBD 

1.25 "i 3.75 

1 S O  

T 

- 1  
-+ f s =  

7 P =  P, b 1  

(c) FBD of member end flattened out into a plane 

(d) BSR of member end flattened out into a plane 

pu 
>- 

FIGURE 2.6 Bolts in all cross-sectional elements 
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For the net section that passes through holes A and C, 

A, = Ag - s ( d h f h )  = 9.00 - 2(0.875) = 7.25 in.' 

@Pn = 0.75FJ1, = 0.75(58)(7.25) = 315.4 kips 

(@P, = 315.4 kips) 2 [(6/7)P, = 6(275)/7 = 235.7 kips] as required 

For the net section that passes through holes A and B, 

$Pn = 0.75FdA, = 0.75(58)(7.225) = 314.3 kips 

(@Pn = 314.3 kips) 2 (P ,  = 275) as required 

For the net section that passes through holes A, B, and C [see Figure 2.6(c)], 

@P, = 0.75FJe = 0.75(58)(6.375) = 277.3 kips 

($P, = 277.3 kips) 2 (P, = 275) as required 

3. Block shear rupture [see Figure 2.6(d)] 

A,  = CL$ = (8 + 6.5)(2)(0.5) = 14.50 in? 

A,, = A, - Aholes = 14.50 - (1.5 + 2.5)(0.875) = 11.0 in.' 

A,, = C(Ltt)+C =(3.75+1.50)(2)(0.5)+ (2N0-5) ~ 5.475 in. 2 
(1.50) 

4(2.5) 

A,, =Ast - Aholes = 5.475 - (1.5 + 0.5)(0.875) = 3.725 in.' 

FA,, = 58(3.725) = 216.05 kips 

0.6FJ,, = 0.6(58)(5.39) = 382.8 kips 

(bp, = 0.75(0.6F&, + F,,Agt) = 0.75I382.8 + 36(5.475)] = 434.9 kips 

($@, = 434.9 kips) 2 (P, = 275) as required 

The design is satisfactory for P, = 275. 



2.4 Design of a Tension Member With Bolted-End Connections 59 

2.4 DESIGN OF A TENSION MEMBER WITH BOLTED-END CONNECTIONS 
For a tension member with bearing-type bolted connections at the member ends, the 
design requirement for strength is 

W n  2 p, 

and the design strengths qP,, that must be considered are yielding on A,; fracture on 
A,; BSR; and bearing at the bolt holes. The latter is accounted for when the connection 
design strengths are computed in Chapter 3. In Examples 2.1 to 2.4, we found in three 
of the four examples that @Pn due to BSR governed and was only slightly smaller than 
qP,, due to fracture on A,. Lf BSR governs the design, we usually can easily make some 
changes in the connection layout to increase the design strength to a satisfactory 
level. Consequently, in the design of a tension member with bearing-type bolted 
connections at the member ends, we recommend the following itemized approach: 

1. Tentatively choose the bolt diameter, number of bolts, spacing center to 
center between the bolt holes, and the end edge distance. (Note: This step is 
done by the author for the reader since concepts in Chapter 3 must be used 
in making the tentative choices.) 

2. Assume that @Pn due to BSR does not govern. 
3. Using the information given in item 1, pick a trial section that has adequate 

qP,, for both of the following cases: 

a. Yielding on Ag 

($Pn = 0.90F,/,) 2 P, 

A, 2 Pu/(0.90F,,) 

b. Fmcture on Ae = AnLl (illustrated for the most general case) 

(@,, = 0.75FAJ 2 P, 

A, 2 Pu/(0.75F,) 

Ln U = (1 - X / L,  ) 5 0.9, X is unknown before the section has been 
chosen and L, is tentative until all details of the bolt group have been 
finalized. For the design of tension members, the following U values 
(from LRFD C-B3, p. 6-172) are good first estimates: 
(i) U = 0.85 when longer line of bolts parallel to Pu has 2 three bolts. 
(ii) U = 0.75 when longer line of bolts parallel to Py has only two bolts. 

a. If @Pn 2 Pu, the trial section is satisfactory and it becomes the chosen 
section. Exit the design process. 

4. Compute @Pn due to BSR to check our assumption. 
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b. If W,, < P,, increase $P,, by either changing some of the previously chosen 
values in item 1 (to increase the length of the shear plane, e.g.) or by 
choosing a section whose elements in which BSR occurs are thicker. Now, 
compute I/ = ( 1 - 2 / L ,  ) I 0.9 and compare it to the assumed U value. If 
they differ by more than 2% compute @Pn due tofracture on Ac and check 
the strength design requirement for fracture on Ae. If necessary, repeat 
step 4 until the design is satisfactory. 

Examples 2.5,2.7, and 2.8 discuss the design of tension members in the “truss 
region” of the structure shown in Figure 1.15. Stability of this structure in the 
horizontal direction and resistance due to wind loads are ensured by bending of the 
columns (members 1 to 4). The truss-to-column connections at joints 2,3,22, and 23 
will necessarily have to account for bending of the columns, which causes some 
bending in the “truss members” attached to those joints. Consequently, in the plane 
frame analysis of this structure (see Appendix A), the author did not release the 
moment at the end of any member. Therefore, for some of the members in the ”truss 
region” of this structure, the bending effects cannot be ignored. In the final design 
check of such members, P ,  and Mu must be accounted for simultaneously as 
discussed in Chapter 6. In the preliminary design phase (selecting trial member 
sizes) of such members, we account for Mu by using an equivalent P,. 

For members 34 and 43 in Figure 1.15, select the lightest available double-angle 
section with long legs back to back (see LRFD, p. 1-98) of A36 steel that can be used 
in a bearing-type bolted connection. 
For the connection layout shown in Figure 2.1, the author has determined that the 
following values are required for the connection design to be satisfactory with 
standard-size bolt holes: d = 0.75-in.-diameter bolts; s = 3-in. bolt spacing; L, = 1.5-in. 
end edge distance, and each angle thickness t 2 3/16 in. for strength due to bearing 
at the bolt holes of the member. Note that the length of the connection is L, = L, + 2s 
= 1.5 +2(3) = 7.5 in. 
From Appendix A, for members 34 and 43 due to loading 8, we find P ,  = 66.4 kips 
(tension) and Mu = 0.16 ft-kips. In the final design check of these members, P ,  and Mu 
must be accounted for simultaneously as discussed in Chapter 6. In the preliminary 
design phase of a tension-plus-bending member, we account for Mu by using an 
equivalent P,; in this case, we know (from Chapter 6) that a 10% increase in P, is 
adequate. Try equivalent PI, = l.lO(66.3) = 72.9 kips. 

Solutiorr 

Assumptions 

1. Try U = 0.85 since there are three bolts in the longer line of bolts. 
2. @P,[ due to BSR does not govern. 

For yielding on A,, the design requirement is 
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(@Pn = 0.90F@,) 2 (equivalent P, = 72.9 kips) 
L 7 

72.9 
~ = 2.25 in.= 

0.9F,, 0.9( 36) 

Forfracture on A, = A,U, the design requirement is 

[@P, = 0.75F, (A,U)] 2 (equivalent P ,  = 72.9 kips) 

1 = 1.97 in.* 72.9 
A,, 2[ " = 

0.75FuU 0.75( 58)(0.85) 

dhth = (0.75 + 0.125)t = 0.875t 

A ,  = A, - 2(0.875)t = A, - 1.75t 

A, 2 (A,, + 1.75t = 1.97 in.2 + 1.75t) 

Summary of the design requirements 

I. t 2 3/16 in. for each angle due to bearing at the bolt holes. 
2. A, 2 2.25 in.* for yielding on A,. 
3. A, 2 (1.97 + 1.75t) forfracture on A,. 

(a) For t = 3/16 in., we need: 

A, 2 [1.97 + 1.75(0.1875) = 2.30 in.2] 2 2.22 in.2 

Since a pair of angles with long legs back to back is to be chosen, pick the 
trial section from LRFD, pp. 1-96 to 1-99. 
No available section for t = 3/16 in. has All 2 2.30 in2 

(b) For t = 1/4 in., we need: 

A, 2 [1.97 + 1.75(0.25) = 2.41 in.*] 2 2.22 in.2 

Try a pair of L3 x 2.5 x 1 /4, (Ax = 2.63 in2)  2 2.41 in.2 U = 0.85 was assumed; 
check this assumption. 

From Table 2.1 for leg = 3 in., we find g = 1.75 in. From LRFD, pp.1- 64 and 1-65, for 
a single L3 x 2.5 x 1/4, we find x = 0.661 in. and y = 0.911 in. that are needed to 
determine the governing connection eccentricity for each angle. From Figure 2.3(b), 
we see that (1) the connection eccentricity from the face of the gusset plate is x = 0.661 
in.; and (2) the other connection eccentricity for a supposed long leg = g must be 
computed. The y-edge distance is 

ye = (leg -g) = (3 - 1.75) = 1.25 in. 

For simplicity in the following computations, a prime is placed on all variables for 
the supposed-angle section. 

A' = A - yet = 2.63/2 -(1.25)(1/4) = 1.0025 in.2 
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AY - Y ef(leg -0.5Ye - (m)( 0.911) - 1.25( 0.25)( 3 - 1.25/ 2) 
= 0.456 in. y‘= - 

A’ 1 .oo 

x = 0.661 in. 

g-y’= 1.75-0.456 = 1.29in. 
X = larger of 

1 - X / L ,  = 1-1.29/7.5 = 0.828 { 0.9 
U = smaller of 

Since (U = 0.828) < (assumed U = 0.85), revise A, required forfracture on A, to 

A, 2 [1.97(0.85)/0.828 + 1.75(0.25) = 2.46 in.2] 

Try a pair of L3 x 2.5 x 1 /4, (A, = 2.63 in?) 2 2.46 in?. 
This is the original trial section. We cannot find any lighter pair of angles for 
f = 1/4  in. Weight = 9.0 lb/ft. 

(c) For t = 5/16 in. and U = 0.85, the Ax requirement is 

A, 2 t1.97 + 1.75(0.3125) = 2.52 in.2] 2 (2.22 in?). 

Try a pair of L2.5 x 2 x 5/16, (A, = 2.62 in?) 2 2.52 in.2 
Check our assumption that U = 0.85: 

ye = (leg -g) = (2.5 - 1.375) = 1.125 in. 

A‘ = A -yet = 2.62/2 -(1.125)(5/16) = 0.958 in? 

TABLE 2.1 Usual gages in angle legs, inches 

b-4 
g 

1 1 3 1 3 1  
4 2 8 4  5 4 3, 3 2, 2 I- 1- 1- 1- 1 Leg 8 7 6 

7 7 3 5  
8 8 4 8  
- _ - -  1 1 3 3 1  

s 2 2 4 8 8  
3- 3 2, 2 1- 1- 1- 1 1 4- 4 

3 2- 2- 2 
81 2 4 

3 3 2- 1- g2 2 4 

1 1 

1 3 

From LRFD, p. 9-13. 
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Ay - y e t  (leg - 0 . 5 ~ ~  ) - (1.31)( 0.809) - 1.125( 0.3125)( 2.5 - 1.125 / 2) = o.395 in y ' =  - 
A' 0.958 

x = 0.559 in. 
8 - IJ ' = 1.375 - 0.395 = 0.980 in. 

X = larger of 

l - X / L ,  = 1-0.980/7.5=0.869 { 0.9 U = smaller of 

(U = 0.869) > (assumed U = 0.85). Revise A, required forfiucture on A, to 

A, 2 [1.97(0.85)/0.869 + 1.75(0.3125) = 2.47 in2] 

Try L2.5 x 2 x 5/16, (As = 2.62 
cannot find any lighter pair of angles for t = 5/16 in. Weight = 9.0 Ib/ft. 

2 2.47 in2. This is the original trial section. We 

Conclusion: 

Two acceptable sections of equal weight have been found that satisfy the design 
requirements thus far. Our preference is a pair of L3 x 2.5 x 1 /4 with long legs back- 
to-back. Now we must compute @',, due to BSR for the trial section to check our 
assumption that BSR does not govern the design selection. See Figure 2.7: 

d h t h  = (0.75 + 0.125)(2)(0.25) = 0.4375 in? 

L, = 1.5 + 2(3) = 7.5 in. 

A* = (7.5)(2)(0.25) = 3.75 in.2 

A,, = 3.75 - 2.5(0.4375) = 2.656 in? 

A,, = (1.25)(2)(0.25) = 0.625 in .2  

A,, = 0.625 - 0.5(0.4375) = 0.406 in? 

FA,, = 58(0.406) = 23.55 kips 

0.6FAn, = 0.6(58)(2.656) = 92.43 kips 

#Pn = (0.6F,,An, + F,,A$) = 0.75[92.43 + 36(0.625)] = 86.2 kips 

(@', = 86.2 kips) 2 (P, = 66.3 kips) 

As we assumed, BSR does not govern our choice of the section. 

Conclusion: 

Use a pair of L3 x 2.5 x 1 /4; weight = 9.0 lb/ft. 

2.5 STRENGTH OF A TENSION MEMBER WITH WELDED-END CONNECTIONS 
Consider Figure 2.8, which shows a tension member fastened by fillet welds to a 
gusset plate. Along the member at some finite distance from the welds, as shown 



64 Tension Members 

pair of L3 x 2 x 0.25 L" 

7 1.9 kips 

FIGURE 2.7 Block shear rupture of bolted member end 

in Section 1.1.4 and Figure 1.4(c), all cross-sectional fibers can attain the yield 
strength, when the welds and gusset plate are stronger than the member. In the 
region of the member-end connection, an edge on one leg of each angle in Figure 
2.8(c) is not welded to the gusset plate. Therefore, the stress distribution due to the 
applied load is not uniform in the member end. However, the LRFD definitions 
account for a shear lag effect in the member end when only transverse welds are 
used at the member end to transfer the force in the member to the gusset plate. A 
transition region exists from the connection region to some finite distance from the 
connection where the stress distribution in the member becomes uniform when 
yielding occurs in the member. Thus, before yielding occurs in the member, the 
connection region of the member end usually experiences strain-hardening, and 
fracture can possibly occur in the region where strain-hardening occurs due to 
shear lag. 

The LRFD design strength definitions of a tension member without any holes in 
it and with fillet-welded end connections are: 

1. Yielding on A, [see Figure 2.8(b)] (LRFD D1, p. 6-44) 

@',, = 0.90FflP, 

2. Fracture on A, (LRFD D1 p. 6-44) 

@',, = 0.75FJ1, 

where Ap, the effective area, is to be determined from: 

(a) When holes exist in the member (LRFD D1, p. 6-44), 

A, = A,, 

(b) When holes do not exist in the member (LRFD B3, p. 6-34), 

A, = AU 
where A and U are to be determined from: 

(i) When the weld group consists only of transverse welds, 

A = area of the directly connected elements 

u = 1.0 
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- Gusset plate 1 -  

on 1-1 

'1 Fillet weld 

Member: pair ofL3 x 2 x S/16 Gusset plate: 5 x 5/8: 

Fillet welds: 0.25 in.; L ,  = 4.50 in.; L = I .SO in.; L = 3.OU i n  

(a) Member end connection detail 

(c) Section 2-2 (d) Section 3-3 

A =shadedarea 

j"q-JJp 
L = L  

+ 4  

(e) End View 4-4 (t) Block shear rupture of meinhcr end 

FIGURE 2.8 Tension member fillet welded to a gusset plate 

(ii) When the member is a single plate fastened by only longitudinal 
welds for ( L ,  = length of longitudinal weld) I (w = width of plate), 

A =A, 
U = 1.00 when L, 2 2w 

U = 0.87 when 2w > L,2 7 . 5 ~  

U = 0.75 when 1 . 5 ~  > LL 2 70 

(iii) When preceding item (i) or (ii) is not applicable, 

A = A, 
u = (1 - X/L,) 5 0.9 
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L, = length of longest longitudinal weld 

X = connection eccentricity 

3. Blockshear rupfure, abbreviated BSR (LRFD J4.3, p. 6-87)[see Figure 2.8(e) for 
an example] BSR design strength is a function of the weld group arrangement 
in the welded-end connections and the thickness of the block in the member 
end. Welded-end connections are discussed in Chapter 3. 

Since all cases we will discuss have no holes in the members, we can simplify 
the BSR definitions as shown below: 

A, = gross area on BSR shear plane(s) (in.2) 

A, = gross area on BSR tension plane (in?) 

When F,,A, 2 0.6FfiU, 

qP, = O.75(Ffif + 0.6F8,) 

When 0.6FfiU 2 F,A,, 

$P, = 0.75(0.6F,,A, + F 8 , )  

EHampte 2.6 
A fillet weld group arranged as shown in Figure 2.8(a) is used on each long leg of a 
pair of L3 x 2 x 0.3125 of A36 steel to fasten this tension member to a 0.625 in. thick 
gusset plate. Find the governing design strength of the tension member with welded- 
end connections. 

Solution 

LRFD, p. 1-98: For a pair of L3 x 2 x 0.3125, 
A, = 2.93 in.2 

The governing design strength of the tension member is the least (PP, value obtained 
from: 

1. Yielding on Ag = 2.93 

(PP, = 0.90F& = 0.90(36)(2.93) = 94.9 kips 

2. Fracture on A, = A,U 
(PP, = 0.75F,,Ap, 

1 - X / L ,  = 1 - 0.516 / 4.50 = 0.885 { 0.9 
U = smaller of 

= 0.75(58)(2.93)(0.885) = 114.0 kips 

3. Block shear rupfure of the member end [see Figure 2.8(e)] 
A, = L, t = 4.5(2)(0.3125) = 2.8125 in.2 
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A,  = L, t = 3(2)(0.3125) = 1.875 in.’ 

FJt = 58(1.875) = 108.75 kips 

0.6FJP, = 0.6(58)(2.8125) = 97.875 kips 

4Pn = 0.75(F,,Ar + 0.6F,,AV) 

$Pn = 0.75t108.75 + 0.6(36)(2.8125)] = 127.1 kips 

For the tension member shown in Figure 2.8, the governing design strength is 4Pn= 
94.9 kips. 

2.6 DESIGN OF A TENSION MEMBER WITH WELDED-END CONNECTIONS 
For a tension member with welded-end connections, the design requirement for 
strength is 

and the applicable design strengths are yielding on A,, fiacture on A,, and BSR. 
However, if yielding on A, is not the governing case, we usually can easily make some 
changes in the connection layout to increase the other design strengths to a satisfac- 
tory level. Consequently, in the design of a tension member with welded-end 
connections, we recommend the following itemized approach: 

W n  2 p ,  

1. Assume that yielding on A, governs; pick a trial section that satisfies: 

(4Pn = 0.90F,,Ag) 2 P, 

Ag 2 P,/(0.9OFy) 

2. Tentatively choose the weld size and weld lengths. (Note: This step is done by 
the author for the reader since concepts explained in Chapter 3 must be used 
in making the tentative choices.) 

3. Compute qPn due tofracture on A, and BSR: 

(a) If 4Pn 2 P ,  our trial section is satisfactory, it now becomes our chosen 
section, and we exit the design process. 

@) If @Pn < P ,  we must increase $Pn by either changing some of our 
previously chosen values in item 2 (to increase the length of the shear 
plane, e.g.) or choosing a section with thicker elements in those elements 
in which BSR occurs. Repeat step 3 until o w  design is satisfactory. 

Repeat Example 2.5 except, as shown in Figure 2.9, the long legs of each angle section 
are to be welded to a gusset plate. The longer longitudinal weld length is 4.50 in. and 
3/16-in. fillet welds are used. 
From Example 2.5, for members 34 and 43 in Figure 1.15, 

Equivalent P,  = 72.9 kips 
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(a) Joint 12 of Figure 1.15 

Typical member section 

(b) Section 1-1 

FIGURE 2.9 Welded truss joint details for double-angle members. 

Solution 

Assume that yielding on A, is the governing case; we need: 

(@,, = 0.90F8,) 2 (equivalent P, = 72.9 kips) 

A, 2 (72.9/[0.90(36)] = 2.25 in.*) 

Try a pair of L3 x 2 x 1 / 4 :  (Ax = 2.38 in2) 2 2.25; weight = 8.1 lb/ft. 
When the final design check is performed in Chapter 6 for members 34 and 43 in 
Figure 1.15 as a tension-plus-bending member with welded-end connections, we 
will need the governing @Pn which is the least of 

1. For yielding on A, 

= 0.90F8, = 0.90(36)(2.38) = 77.1 kips 

2. Forfracture on A, = A,U 

U = smaller of 
l - X / L ,  = l-0.493/4.50 = 0.890 { 0.9 

@P,, = 0.75FUA, = 0.75(58)(2.38)(0.890) = 92.1 kips 

3. For BSR of the member end (see Figure 2.10) 

A, = L, t = 4.50(2)(0.25) = 2.25 in.2 

A, = L, t = 3.00(2)(0.25) = 1.50 in.2 

0.60F& = 0.6(58)(2.25) = 78.3 kips 

F,A, = 58(1.50) = 87.0 kips 
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A = shaded area 
/ 

(a) End View 2-2 (b) Block shear rupture of member end 

FIGURE 2.10 Block shear rupture of welded member end. 

@P,, = 0.75(FUA, + 0.6F,,AP,) = 0.75[87.0 + 0.6(36)(2.25)] = 101.7 kips 

($P,, = 102 kips) 2 ( P ,  = 66.3 kips) 

The BSR design strength is more than adequate. 
Tentatively select a pair of L3 x 2 x 1/4 for members 34 and 43 for which the 
governing $P, = 77.1 kips is applicable in Chapter 6 when this trial selection is 
checked as a tension-plus-bending member with welded-end connections. 

txample 2.8 
See Figure 1.15 and consider the design of a bottom chord member in the truss 
portion of thisstructure. Asshown inFigure2.11, the top and bottom chord members 
of the truss are to be WT sections of A36 steel. Each truss web member is to be a 
double-angle section with long legs back to back and fillet welded to the WT chord 
members at each truss joint. 

Assume that the same WT section is to be used in Figure 1.15 for members 5 
through 14. From Appendix A, for member 10 due to loading 7, we find P ,  = 114.2 
kips (tension) and M u  = 1.62 ft-kips. In the final design check of these members, P, 
and M,, must be accounted for simultaneously as discussed in Chapter 6. In the 
preliminary design phase of a tension-plus bending member, we account for M u  by 
using an equivalent P,; in this case, we know (from Chapter 6) that a 20% increase in 
P, is adequate. Try Equivalent P,  = 1.20(114.2) = 137 kips. Select the lightest available 
WT7 section of A36 steel for which @P, 2 137 kips. 

Soltitior1 

Assume that yielding on A, governs @P,; the strength design requirement is 

(@P, = 0.90FPPR) 2 (equivalent P, = 143 kips) 

A, t { 137/[0.90(36)] = 4.23 in21  

Fracture on A ,  is not applicable. 
BSR is not applicable. However, BSR of the web of the chosen WT is applicable in the 
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r2 (c) Section 2-2 

n 
t 4 2  

Ll 

(a) Joint 12 of Figure 1.15 

FIGURE 2.11 Truss joint details for WT bottom chord member. 

(b) Section 1-1 

design of members 25 to 43 in Figure 1.15. 
Tentatively select a WT7 x 15 for which: 

@P,, = 0.90F,,Ag = 0.90(36)(4.42) = 143 kips 

@',, = 143 kips is applicable in Chapter 6 when this trial selection is checked as a 
tension-plus-bending member with welded-end connections. 

2.7 SINGLE-ANGLE MEMBERS 
On pp. 6-277 to 6-300 of the LRFD Manual, we now find a separate, supplementary 
specification that deals only with the design of single-angle members. We chose not 
to discuss single-angle members in this chapter since they usually are subjected to 
combined bending and axial force, a topic discussed in Chapter 6. 

2.8 THREADED RODS 
As shown in Figure 1.16, cross braces in roofs and walls may be designed as tension 
members to resist wind and to provide overall structural stability in a three- 
dimensional sense for gravity-type loads. If the roof slope in Figure 1.14 had been 
chosen to be greater than about 15", sag rods might be designed as tension members 
to provide lateral support for the weak axis of the purlins. If sag rods were used in 
Figure 1.14, they would be perpendicular to the purlins and parallel to the roof 
surface. They would function in a manner similar to the saddle and stirrups for a 
horseback rider when the rider stands up in the stirrups. Each end of a sag rod would 
be threaded and passed through holes punched in each purlin web. A nut would be 
used on each end of a sag rod for anchorage. Adjacent sag rods would be offset in plan 
view about 6 in. or less to accommodate installation. 
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If rods are chosen as the tension members for cross bracing, a turnbuckle (see 
LRFD, p. 8-94) may be used at midlength of the rod in order to take up slack and to 
pretension the rod. At each end of the rod, clevises (see LRFD, p. 8-92) or welds may 
be used to fasten the rod to other structural members. 

The opening paragraph of LRFD Chapter D (p. 6-44) states that Sec. J3 (p. 6-79) 
is applicable for threaded rods. LRFD Table J3.2 (p. 6-81) gives the tensile design 
strength of a threaded rod as @’,, = 0.75(0.75F&). 

Select threaded rods for the cross braces shown in Figure 1.16 using A36 steel. 

Solufion 

Figure 1.14 gives the nominal wind load on the ends of the building as 12-psf 
pressure on the windward end and 7.5-psf suction on the leeward end. The total 
factored wind load on the building ends is 1.3(0.012+0.0075)[60(26.75)] = 40.7 kips. 
At least half of this 40.7-kip wind load should be applied at the roof level, and the 
remainder of the wind load is applied at the foundation level. 

Two pairs of cross braces are shown in Figure 1.16@). Hence, there are four identical 
pairs of cross braces that resist wind in the length direction of the building. At any time, 
only one member in each pair of cross braces is in tension due to wind. The other member 
in each pair of cross braces is in compression due to wind and buckles at a negligibly small 
load. When the wind reverses, the other member in each pair of cross braces is in tension 
and resists the reversed wind. Consequently, for each tension member: 

L = J(25.5)’ +(30)’ = 39.37ft. 

P, = (40.7/2)(339.37/30)/4 = 6.68 kips 

and the strength design requirement is 

[@,, = 0.75(0.75F&)] 2 (P ,  = 6.68 kips) 

1 6.68 = 0.205 in.’ - - P” ’ [ 0.75(0.75FU ) 0.75(0.75)(58) 

- 2 0.205 in.’ mi2 
4 
d 2 0.453 in. 

A 1/2 in. diameter rod is acceptable, but no less than a 5/8-in.-diameter rod is 
preferred for ease of handling during construction. Therefore, use a 5/8-in.-diameter 
threaded rod A36 steel. 

2.9 STIFFNESS CONSIDERATIONS 
After the structure in Figure 1.15 is erected, from the factored load combinations in 
Appendix A, we find that members 34 and 43 are required to resist a maximum axial 
tension force of 66.4 kips and a maximum axial compression force of 5.14 kips. In the 
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fabrication shop and in shipping the prefabricated truss, a crane is used to lift the 
prefabricated truss. Unless special lifting procedures are used, members 34 and 43 
may be required to resist a larger compressive axial force due to lifting than is 
required after the structure iserected. The design strength of a compression member 
is given in Chapter 4. A fundamental parameter in the design strength definition of 
a pinned-ended compression member is the maximum slenderness ratio Llr of the 
member, where L is the member length and r is the minimum radius of gyration for 
the cross section of the member. As shown in Appendix B, the definition of radius of 
gyration for any cross-sectional axis x is 

rx = 

where 

I, = moment of inertia about the x-axis 

A = gross cross-sectional area 

1 and r are minimum for the minor principal axis, and are needed to obtain the 
maximum slenderness ratio. 

LRFD B7 (p. 6-37) states that Llr S 300 is preferable for a tension member except 
for threaded rods. LRFD Commentary 87  (p. 6-177) states that the reason for this 
advisory upper limit on L l r  is to provide adequate bending stiffness for ease of 
handling during fabrication, shipping, and erection. If the tension member will be 
exposed to wind or perhaps subjected to mechanically induced vibrations, a smaller 
upper limit on L l r  may be needed to prevent excessive vibrations. 

For the tension member designed in Example 2.7, compute the maximum slender- 
ness ratio. 

Solution 

From Example 2.7 we find that 
1. Member 43 of Figure 1.15 was designed; for this member; L = 90 in. 
2. The design choice was a pair of L3 x 2 x 1 /4  with the long legs separated by 

and welded to a gusset plate at each member end. For the purposes of this 
example, assume that thc gusset plate thickness is 3/8 in. 

See LRFD, p. 1-98, which shows a sketch of a double-angle section and lists the 
properties of sections for the X-and Y-axes which are principal axes since the Y- 
axis is an axis of symmetry. Therefore, for member behavior as a pair of L3 x 2 x 
1 /4 separated 3/8 in. back to back, the minimum r is the smaller of rr  = 0.957 in. and 
ry  = 0.891 in. 

For behavior as a pair of angles, the m n Y n z u t ? i  L / r  = (90 in.)/(0.891 in.) = 101, 
which is much less than the preferred upper limit of 300 for a tension member. 
However, note that the gusset plate exists only at the member ends. Elsewhere along 
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the member length, there is a 3/8-in. gap between the long legs of the pair of angles. 
Double-angle behavior is truly ensured only at the points where the pair of angles 
is tied together (by the gusset plates a t  the member ends). Therefore, we need to 
determine the individual behavior of each angle. For one L3 x 2 x 1 /4, the minimum 
r is rz = 0.435 in. (from LRFD, p. 1-65) and the irzaxinzuriz L / r  = 90/0.435 = 207, which 
is less than the preferred upper limit of 300 for a tension member. 

If we insert a 3/8-in. plate between the long legs at the midlength of the member 
and weld the long legs to this plate, we will ensure double-angle behavior at 
midlength of the member as well as at the member ends. Then, the length for single- 
angle behavior is L = 90/2 = 45 in. and the maximum L / r  = 45/0.435 = 103.5 for single- 
angle behavior. Since 103.5 is very nearly equal to 101 (for double-angle behavior), 
we can conclude that we only need to insert and weld a spacer plate at midlength of 
the member in order to ensure that double-angle behavior is valid. 

PROBLEMS 

2.1 A36 steel; 7/8-in. diameter A325N bolts 

s = 2.75 in. L ,  = 1.5 in. g, = 3 in. y2 = 3 in. 

The tension member is a pair of L8 x 6 x 1 /2  with the long legs bolted to a 10 x 1 gusset 
plate. For the member, compute the design strength due to: 

1. Yielding on A, 
2. Fracture on A, 
3. Block shear rupture 

Is the design satisfactory for P,, = 298 kips? 

2.2 A36 steel; 7/8-in. diameter A325N bolts 

s = 1.5 in. L, = 1.5 in. 8, = 2.25 in. R~ = 2.50 in. 

The tension member is a pair of L6 x 4 x 1 /2  with the long legs bolted to a 9 x 1 gusset 

L 1  

FIGURE P2.1 
Section 1-1 
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plate. For the member, compute the design strength due to: 

1. Yielding on A, 
2. Fracture on A, 
3. Block shear rupture: Failure mode has a staggered tension path and one shear 

Is the design satisfactory for P, = 270 kips? 
plane (L,  = L, + 6s). 

I I I I 
I 

- 1  
Section 1-1 

FIGURE P2.2 

2.3 A36 steel; 1 in. diameter A325N bolts 

S= 3 in.; g = 3 in.; L, = 1.75 in. 

The tension member is a C15 x 33.9 bolted to a 16 x 5/8 gusset plate. For the member, 
compute the design strength due to: 

1. Yielding on A, 
2. Fracture on A, 
3. Block shear rupture 

Is the design satisfactory for P, = 200 kips? 

L - - , 1  

FIGURE P2.3 
Section 1-1 
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2.4 A36 steel 1-in.-diameter A325N bolts 

s = 3 in. g = 3 in. 

The tension member is a C15 x 33.9 bolted to a 16 x 5/8 gusset plate. For the member, 
compute the design strength due to: 

L, = 1.75 in. 

1. Yielding on A8 
2. Fracture on A, 
3. Block shear rupture 

Is the design satisfactory €or P, = 199 kips? 

1 3  

0 

Case 3 

FIGURE P2.4 

‘2 
Paths for fracture on A 

Case 2 
Cases for Block Shear Rupture 

Section 3-3 

L 
1 

Case 1 
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2.5 A36 steel; 3/4-in.-diameter A325N bolts 

s = 3 in. g = 3 in. 

A pair of 10 x 3/8 connector plates is used to butt splice the tension member that is 
a 10 x 3/4 plate. For the member, compute the design strength due to: 

L, = 1.75 in. 

1. Yielding on A, 
2. Fracture on A, 
3. Block shear rupture 

Is the design satisfactory for P, = 240 kips? 

p, - 2 @ g  0 0 O I I .  0 

1 

Secuon 1 - 1  

FIGURE P 2.5 

2.6 A36 steel; 3/4 in diameter A490X bolts 

s = 3 in. g = 3 in. L, = 1.75 in. 

A pair of 10 x 3/8 connector plates is used to butt splice the tension member which 
is a 10 x 3/4 plate. For the member, compute the design strength due to: 

1. Yielding on A, 
2. Fracture on A, 
3. Block shear rupture 
Is the design satisfactory for P,, = 240 kips? 

I: 
f we 

Section 1 - 1  

FIGURE P 2.6 
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2.7 A36 steel; 1-in-diameter A325N bolts 

s = 3 in. L<, = 1.75 in. = 5.5 in. 

The member is a W8 x 31 bolted to a pair of 8 x 5/8 gusset plates. For the member, 
compute the design strength due to: 

1. Yielding on A, 
2. Fracture on A, 
3. Block shear rupture 

Is the design satisfactory for P,, = 280 kips? 

Block shear rupture of each member flange 

- 
I;, 

Scction I - I 

FIGURE P2.7 

2.8 A572 Grade 50 steel; 1-in-diameter A490X bolts 

s = 3 in. g = 7 in. 

The tension member is a pair of C15 x 33.9 bolted to a pair of 10 x 5/8 gusset plates. 
For the member, compute the design strength due to: 

L,. = 1.75 in. 

1. Yielding on A, 
2. Fracture on A, 
3. Block shear rupture 
Is the design satisfactory for P, = 495 kips? 
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k *I 
Section 1-1 

FIGURE P2.8 

2.9 A36 steel; 7/&in.-diameter A325N bolts 

s = 1.50 in. L, = 1.5 in. g1 = 2.25 in. g, = 2.50 in. g = 2.50 in. 

The tensionmemberisapairof L6~4~1/2withalllegsbolted to3/4in.-thicksplice 
plates. The bolt holes are shown on one angle with the short leg flattened down into 
the plane of the long leg. For the member, compute the design strength due to: 

1. Yielding on A, 
2. Fracture on A, 
3. Block shear rupture 

Is the design satisfactory for P, = 308 kips? 

2.10 A572 Grade 50 steel; E70 electrodes; 1 /4-in.-fillet welds 

L,  = 6 in. = overlap length of member end on the gusset plate 

The tension member is a pair of L5 x 3 x 5/16 with the long legs welded to a 5/8 in. 
thick gusset plate. For the member, compute the design strength due to: 

1. Yielding on Ag 
2. Fracture on A, 

Is the design satisfactory for P, = 208 kips? 
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Ml4-d 
g g 

(b) Section along path 1-2-3 

2s 1 

I 

* 1  (a) Side elevation view 

d 
0.5 Pu 

7-T 
(c) FBD of each angle flattened into a plane 

Shaded blocks 
are pushed out 
by the bolts. 

Lv 
(d) BSR mode 

FIGURE P2.9 
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(a) Member end connection detail 

A = shaded area 
t 

(c) End View 2-2 

(b) Section 1-1 

’ %  
L , =  L1 

(d) Block shear rupture of member end 

FIGURE P2.10 

2.11 A36 steel; E70 electrodes; 1 /4-in.-fillet welds 
In the truss joint shown, the vertical member is a pair of L5 x 3 x 5/16 with the long 
legs welded to the web of a WT9 x 23, the horizontal member. 
For the vertical member, compute the design strength due to: 

1. Yielding on A, 
2. Fracture on A, 

Is the design satisfactory for P, = 150 kips? 

2.12 A36 steel; E70 electrodes; 5/16-in.-fillet welds 

L, = 18.5 in. = overlap length of each member end on the splice plate 

A tension member is a C15 x 33.9 butt spliced with a 1 x 10 x (ZL, + 0.5 in.) plate. For 
the member, compute the design strength due to: 

1. Yielding on A, 
2. Fracture on A, 
3. Block shear rupture 

Is the design satisfactory for P, = 295 kips? 
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FIGURE P2.13 

PU 

(b) Section 1 - 1 

A Pu PU 

4 2  

(a) Truss joint detail 
t pu 

(c) Section 2-2 

Section 1 1-1 

FIGURE P2.12 
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2.13 A36 steel; E70 electrodes; 5/16 in. fillet welds; 
L, = 5.25 in.; P, = 270 kips 

Use the equal-leg and unequal-leg double-angle tables in Part 1 of the LRFD Manual. 
Select the lightest acceptable pair of angles with a 3/4-in. separation that satisfies the 
LRFD design requirements for a tension member. 

I 
I 
I 

Cross section 

FIGURE P2.13 

2.14 A36 steel; E70 electrodes; 5/16 in. fillet welds; 
L1=16in.; P, = 300 kips 

Use the MC (miscellaneous channels) table in Part 1 of the LRFD Manual. Select the 
lightest acceptable MC section that satisfies the LRFD design requirements for a 
tension member. 

Section 1-1 
FIGURE P2.14 

2.15 A36 steel; E70 electrodes; maximum acceptable fillet welds 

Assume that the same double-angle section is to be used in Figure 1.15 for members 
5 through 14. From Appendix A, we find that the required axial force in member 10 
is 114.2 kips. To account for bending, increase P ,  by 25% to 1.25(114.2) = 143 kips. 
Select the lightest available double-angle section with equal legs that can be used for 
P,, = 143 kips and A36 steel. 

2.16 Solve Problem 2.15 for a double-angle section with long legs back to back. 



CHAPTER 

Connections for Tension lemhers  

3.1 INTRODUCTION 
Each end of a tension member is fastened by connectors (a group of bolts and/or 
welds) either to connecting elements (plates or rolled sections) or to other members. 
A connection consists of the connecting elements and the connectors. 

In the fabrication shop, the connecting elements usually are fastened to the 
members by welding. At the construction site, the remainder of the connecting 
process is done either by bolting or by welding. Field bolting requires less skilled 
labor and can be done under more adverse weather conditions than field welding. 
If the members are to be connected by field bolting, the bolt holes are punched in the 
fabrication shop. 

A connection may contain a mixture of bolts and welds, only welds, or only 
bolts. The theoretical analysis techniques for a bolted connection and a welded 
connection of the same type usually contain some assumed behavioral features that 
are very similar. Therefore, bolting and welding are discussed in the same chapter. 

The connection for a tension member must be designed to develop at least the 
required force in the tension member. Connections of a structure are designed to 
have adequate strength to transfer the larger of 10 kips (LRFD J1.7, p. 6-71) per 
member and the actual member-end forces due to factored loads between the 
connected member ends. 

3.2 CONNECTORS SUBJECTED TO CONCENTRIC SHEAR 
Connectors on the ends of a truss member and connectors in the splice of a tension 
member are examples of connectors subjected to concentric shear. The analysis 
calculations to determine the governing design strength of the connectors in this type 
of connection are illustrated in the example problems in this chapter. 

LRFD Jl.8 (p. 6-72) states that the connectors must be arranged such that the 
center of gravity of the connector group coincides with the center of gravity of the 
member, unless provision is made for the eccentricity between the two centers of 
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gravity. However, an exception clause is given in LRFD J1.8 for the end connections 
of statically loaded single-angle, double-angle, and similar members. 

Consider Figures 3.l(a) and (b), which show a tension member fastened, 
respectively, by welds and bolts to a gusset plate. Along the member at some finite 
distance from the bolts, all cross-sectional fibers of the member can attain the yield 
strength when the connectors and gusset pIate are stronger than the member. In the 
region of the member-end connection, the stress distribution due to the applied load 
is not uniform in the member since some of the cross-sectional elements of the 
member are not fastened to the gusset plate. Hence, a transition region exists from 
the connection region to some finite distance from the connection where the stress 
distribution in the member becomes uniform when yield occurs. Thus, before 
yielding occurs in the member, the member-end region and the gusset plate usually 
experience strain-hardening, and fracture can possibly occur either in the gusset 
plate or in the member-end region. 

The behavior of connections is more complex than the behavior of the members 
joined by the connections. Most connections are highly indeterminate, and plane 
sections of the connection parts may not remain plane. The length of a connecting 
element is small compared to the length of the member. Therefore, different 
simplifying assumptions of behavior are made for the connection than the members 
joined to the connection. A purely theoretical approach to connections is difficult and 
very nearly impossible. Finite-element analyses of connections are now possible, but 
these analyses are dependent on the behavioral assumptions that must be made in 
the analyses. Therefore, the design of connections is empirical (based on experimen- 
tal evidence and the structural designer’s judgment of how the connections deform). 
Mathematical models used in the analyses of connections are usually only very 
rough approximations of the actual behavior of connections. 

3.3 BOLTING 
In LRFD J3.1 (p. 6-79), we find that: 

1. High-strength bolts are to be tightened by the turn-of-nut method, by 
calibrated torque-wrench, or a direct tension indicator. 

2. High-strength bolts in connections not subject to a load that produces tension 
in the bolts, and where loosening or fatigue is not a design consideration, 
need only be tightened to the snug-tight condition. The definition of snug- 
tight is the tightness obtained by a few ”rattles” of an air-powered wrench or 
the full effort of a worker using an ordinary spud wrench in bringing all plies 
of the connected parts into firm contact. 

An abbrcviated description of the tightening techniques on LRFD, pp. 6-353 to 
386, is: 

1. Turn-of-nut method. The nut is rotated to a snug-tight condition and then is 

2. Calibrated torque-wrench method 
further rotated by the amount stipulated in Table 5 on LRFD, p. 6-385. 

(a) Manually operated torque-wrench 
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L 2  

W@ f Gusset 
Member 

II 

-5.1 I I 
PI' 

I I  x 
Fillet welds 

(a) Member end welded to a gusset plate 

Section 1 - I  

-@ Gusset plate 

Member 

I 

I 

-0 Section 2-2 

(b) Member end bolted to gusset plate 

FIGURE 3.1 Tension member connected to a gusset plate. 

For a 0.75-in.-diameter A325 bolt, a 100 pound force applied at the end of 
a 4 foot long handle is required. 

When the air pressure reaches the level that produces the specified 
torque, a pressure sensor closes the valve at the wrench. 

(b) Air-powered wrench 

3. Direct tension indicator method 
(a) Load indicating washers 

A hardened washer with a series of arch-shaped protrusions on one face 
of the washer. This washer is inserted between the bolt head and the 
gripped material with the arch-shaped protrusions bearing against the 
underside of the bolt head. Thus, a gap exists between the bolt head and 
the surface of the washer. As tightening of the bolt progresses, the arch- 
shaped protrusions are flattened and the gap decreases. A feeler gage is 
used to determine when the gap has been reduced sufficiently to produce 
the required minimum bolt tension. 

A bolt with a splined end that extends beyond the threaded portion of the 
bolt. A specially designed wrench grips the splined end and turns the nut 
until the splined end shears off. The sheared-off end of the intact bolt is 

(b) Load indicating bolts 
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distinctive and provides an easy means of inspection to ensure that the 
required minimum bolt tension was achieved. 

LRFD Jl.8 (p. 6-72) to J1.11 give the applicable bolt grades and the limitations on 
the usage of bolts. 

3.4 TYPES OF CONNECTIONS 
There are two types of bolted connections known as bearing-type and slip-critical 
(known as friction-type prior to 1986). Bolts in a bearing-type connection can be 
tightened by the turn-of-nut method. In a slip-critical connection, high-strength bolts 
must be used and must be tightened by using either a direct tension indicator or a 
calibrated torque-wrench. A field inspection of the bolts in a slip-critical connection 
must be made to ensure that the required minimum bolt tension was achieved 
during tightening. Therefore, the costs due to installation and inspection of bolts in 
a slip-critical connection are greater than in a bearing-type connection. Slip-critical 
connections are needed for joints subject to fatigue, end connectors in built-up 
members, bolts in combination with welds, and in other cases where slip is a 
serviceability concern of the structural engineer. 

3.4.1 Slip-Critical Connections 

Whenhigh-strength bolts in a connection are installed with a specified initial tension 
by using either the calibrated torque-wrench method or the direct tension indicator 
method, a slip-critical connection is obtained. The required minimum bolt tension is 
70% of the minimum tensile strength of the bolt. Due to the specified initial tension 
in the bolts, the connected pieces are precompressed sufficiently such that the 
transfer of member-end forces is made by means of the friction developed between 
the surfaces of the precompressed pieces. 

LRFD J3.8 (p. 6-83) requires that (1) a sufficient number of fully tensioned high- 
strength bolts must be provided to prevent slippage of the member end being 
connected and (2) bearing at the bolt holes must be checked as required in a bearing- 
type connection (in case slippage does occur, the connection must function properly 
as a bearing-type connection). 

From LRFD Appendix J3 (p. 6-130), the design requirement for a slip-critical 
connection on the end of a tension member subjected to factored loads is 

4% 2 Pu 
where 

P, = required strength of the tension member 

p = mean slip coefficient chosen from 

(a) p = 0.33, for unpainted clean mill scale steel surfaces 
(b) p = 0.50, for unpainted blast-cleaned steel surfaces 
(c) p = 0.40, for hot-dip galvanized and roughened surfaces 
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(d) p = established from tests (see LRFD, p. 6-389) 

T, = 0.7 (nominal bolt strength) 

Nb = number of bolts 

N,  = number of slip planes 

(a) @= 1.00, for standard holes 
(b) 4 = 0.85, for oversized and short-slotted holes 
(c) @= 0.70, for long-slotted holes transverse to load direction 
(d) @= 0.60, for long-slotted holes parallel to load direction 

When an applied tension force exists parallel to the bolt length direction at the 
joint and has a required tensile strength of T,, the design requirement for a slip- 
critical connection on the end of a tension member subjected to factored loads is 

3.4.1 BEARING-TYPE CONNECTIONS 
Bolts in a bearing-type connection need only be snug-tight and can be either A307 
bolts or high-strength bolts (A325, A449, A490). The properties for each of these bolt 
grades were given in Section 1.1.1 and are not repeated here. The snug-tight 
condition of tightening bolts removes the slack in the connection, prevents loosening 
of the nuts, and prevents play at the member ends fastened to the connection. The 
initial tension in snug-tightened bolts only generates a small clamping force in the 
connected parts. This clamping force is assumed to be zero in the factored load 
analysis of bearing-type connections and slippage of the connection occurs. As 
shown in Figure 3.2, when slippage OCCLUS, the member end moves in one direction 
and the connecting elements move in the opposite direction until the bolts in the 
connection stop the slippage. The tension force is transferred from the member end 
to the connecting elements by bearing on the bolts such that the bolts are subjected 
to shear. 

3.5 BOLTS IN A BEARING-TYPE CONNECTION 
As shown in Figures 3.2(b) and 3.2(c), failure of a bolt in a bearing-type bolted 
connection is due to shear. Each bolt can be subjected either to single shear or to 
double shear. Only the double-shear strength is used for the case of multiple shear 
since the simultaneous occurrence of a shear failure on more than two planes is 
highly improbable. 

LRFD J3.6 (p. 6-83) and Table J3.2 (p. 6-81) give the single-shear design strength 
of one bolt in a bearing-type connection as 

@Rn =@FJp 
where 

4 = 0.75 
Ap = d2/4 = gross single-shear area of a bolt 

d = unthreaded bolt diameter 
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P, -1y.r- P, --EL+ P, P, 

Tensile fracture on net section 
Plan view of a member lap-splice Elevation view 

Shaded items in each view are bolts in a bearing-type connection 

(a) Tensile fracture on net section 

Q Q 

Single lap-splice (Section 1 - I  ) 
(b) Single shear of bolts 

Double lap-splice (Section 1-1) 

(c) Double shear of bolts 

Base material in contact 
with bolt is compressed 

(d) Bearing failure caused by bolt 

Shear out segment 
of member end occurs 
if the end distance is 
too small f- 

(e) Shear failure due to bearing 

FIGURE 3.2 Bolted lap-splice of a tension member. 

F, = nonzinal shear strength (see Table 3.1) 
The shear design strength for a bolt subjected to double shear is two times the 
single-shear strength. 

For a bolt group in a bearing-type bolted connection on the end of a tension 
member, the strength design requirement is 

@R,, 2 P" 
(PR, = sum of shear design strength of the bolts 
P, = required strength in the tension member 
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Table 3.1 Design Shear Strength of Bolts 

Bolt F” 
Type (ksi) 

A307 24 
A325N 48 
A325X 60 
A490N 60 
A490X 75 

Note: N denotes threads included in the shear plane(s), 
X denotes threads excluded from the shear plane(s). 
Adapted from LRFD, Table J3.2. 

In the bearing-type bolted connection of Figure3.3(a), the gusset plate is 0.50 in. thick, 
6.50 in. wide, and has 0.75-in.-diameter A325X bolts in it. Use L, = 2 in. and s = 3 in. 
The member is a pair of L3.5 x 3  x 0.25. The gusset plate and member are made of A36 
steel. Find the shear design strength of the bolt group. 

Solution 
From Table 3.1 for A325X bolts, F,, = 60 ksi. For double shear of one 3/4-in.- 
diameter bolt, 

A,, = 2(d2/4)  = 2[~(0.75)’/4] = 0.8836 he2 

$R,, =$FA,, = 0.75[60(0.8836)] = 39.76 kips/bolt. 

For the three-bolt group, 
$R,? = 3(39.76) = 119.3 kips 

In the bearing-type bolted connection of Figure3.3(a), thegussetplateis0.50 in. thick, 
6.50 in. wide, and has 0.875-in.-diameter A325N bolts in it. Use L, = 2 in. and s = 3 in. 
The member is a pair of L3.5 x 3 x 0.25. The gusset plate and member are made of A36 
steel. Find the number of bolts required for P ,  = 100 kips. 

Solution 
From Table 3.1 for A325N bolts, F,, = 48 ksi. For double shear of a l-in.-diameter bolt: 

A, = 2(d2/4)  = 2[7~(0.875)~/4] = 1.2026 in.2 
=@FA, = 0.75[48(1.2026)] = 43.29 kips/bolt. 

For the bolt group, the design requirement is 
(Number of bolts)($R, /bolt) L ( P ,  = 100 kips) 

(Number of bolts) L [lo0 kips/(43.29 kips/bolt) = 2.30 bolts] 
Use three bolts. 
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(a) Member end bolted to gusset plate 

(b) Section 1-1 

( c )  FBD of gusset plate 

(d) Section 2-2 (e) Section 3-3 

FIGURE 3.3 Tension member bolted to a gusset plate. 

3.6 BEARING AT THE BOLT HOLES 

As shown in Figures 3.2(d) and (e), bolts in a bearing-type bolted connection can 
cause a bearing failure at the bolt holes. Bearing failure is analogous to laying a 
steel bolt across a stick of margarine. The bolt is harder than margarine. The bolt 
weight bears on and compresses the portion of the margarine stick beneath the 
bolt. Similarly, since bolts are much harder than the steel in the member and the 
gusset plate, almost all deformation due to bearing occurs in the member and in 
the gusset plate. 

The definitions of bearing strength at a bolt hole in a bearing-type connection 
are given in LRFD J3.10 (p. 6-85). The parameters that appear in the bearing 
strength definitions at a standard bolt hole are 

Cp = 0.75 

R, = nominal bearing strength, ksi 
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L, = length (in.) parallel to P, from free end of connected part to center of nearest 

s = spacing distance (in.) parallel to P, between centers of bolt holes 

d = diameter of bolt, (in.) 

t = thickness of critical connected part, (in.) 

F, = tensile strength of connected part, (h i )  

bolt hole (minimum acceptable values of L, are given in LRFD Table J3.4, p. 6-82) 

At the bolt hole nearest the free end of a connected part, 

1. When L, 2 1.5d, and 
(a) Deformation of the bolt holes is a design consideration 

R, = 2.4dtF, 

(b) Deformation of the bolt holes is not a design consideration 

R, = L,tF, I 3.0dtF, 

2. When L, < 1.5d, 

R, = Let€, I 2.4dtF, 

At the other bolt holes, 

1. When s 2 3.0d, and 
(a) Deformation of the bolt holes is a design consideration 

R, = 2.4dtF, 

(b) Deformation of the bolt holes is not a design consideration 

R, = (S - 0.5d)tF, I 3.0dtF, 

2, When s < 3.0d, 

R, = ( S  - 0.5d)tF, 5 2.4dtF, 

For bearing at the bolt holes in a bolted connection on the end of a tension 
member, the strength design requirement is 

wn 2 P, 
@R,, = sum of bearing design strength at the bolt holes 

P, = required strength in the tension member 

Etiample 3.3 
In the bearing-type bolted connection of Figure 3.3(a), the gusset plate is 0.50 in. thick, 
6.50 in. wide, and has 0.75-in.-diameter A325X bolts in it. Use L, = 1.5 in. and s = 2.5 
in. The member is a pair of L3.5 x 3 x 0.25. The gusset plate and member are made of 
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A36 steel. Deformation of the bolt holes is a design consideration. Find the bearing 
design strength of the connection. 

Solution 

From LRFDTable J3.4, p. 6-82, we find that the minimum acceptable value of L ,  = 1.25 
in. at a sheared edge. (L,  = 1.5 in.) 2 1.25 in. as required. 
For the member, the thckness bearing on the bolt is t = 2(0.25) = 0.50 in. For the gusset, 
the thickness bearing on the bolt is t = 0.50 in. The governing thickness is the thinner 
part bearing on the bolt, which is t = 0.50 in. 
At the bolt hole nearest the governing free end 

(L ,  = 2 in.) 2 [1.5d = 1.5(0.75) = 1.125 in.] 

#Rn = 0.75(2.4dtFU) = 0.75(2.4)(0.75)(0.5)(58) = 39.15 kips 

At each of the other bolt holes, 

(s = 2.5 in.) 2 [3d = 3(0.75) = 2.25 in.] 

#R,, = 0.75(2.4dtFU) = 39.15 kips 

For the three-bolt group. the bearing design strength is 

(PR, = 3(39.15) = 117.45 kips 

3.7 CONNECTING ELEMENTS IN A BOLTED CONNECTION 
In the fabrication shop, connections for building trusses usually are made by 
welding. If the entire truss is too large to ship, large segments of the truss are 
fabricated, shipped, and joined together by bolts on the job site to form the 
complete truss. 

Figure 3.2 shows the modes of failure for a bearing-type bolted lap splice of a 
tension member. These modes of failure and some additional ones are applicable for 
the connection in Figure 3.3, which shows a tension member fastened by bolts in a 
bearing-type connection to a gusset plate. Along the member at some finite distance 
from the bolts, all cross-sectional fibers of the member can attain the yield strength 
when the bolts and member-end connection are stronger than the member. In the 
region of the member-end connection, the stress distribution due to the applied load 
is not uniform in the member since some of the cross-sectional elements of the 
member are not bolted to the gusset plate. Hence, a transition region exists from the 
connection region to some finite distance from the connection where the stress 
distribution in the member becomes uniform when yield occurs. Thus, before 
yielding occurs in the member, the member-end region and the gusset-end region 
containing the bolt holes usually experience strain-hardening, and fracture can 
possibly occur through the bolt holes either in the gusset plate or in the member. If 
all cross-sectional fibers of a member yield in tension, the member elongates 
excessively, which can precipitate failure somewhere in the structural system, of 
which the tension member is a part. Although the gusset plate is much shorter than 
the member, the same logic of excessive elongation of the gusset plate due to yielding 
in the gross section also may precipitate failure somewhere in the structural system. 
Hence, tensile yielding in the gross section of the gusset plate is considered to be a 
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limiting condition of failure. In Figure 3.3, fracture of the gusset plate can occur on 
Section 3-3, which has a bolt hole in it. Also, block shear rupture of the gusset plate can 
occur through all bolt holes on a section parallel to the member length (see Figure 3.4). 

At a truss joint, more than one member is usually fastened to a gusset plate. In 
the following discussion, we are only concerned with the design strength of the 
gusset plate at the end of each tension member attached by bolts in a bearing-type 
connection. The simplest possible case is one tension member attached to a gusset 
plate. Equally simple is a lap splice for a tension member [see Figure 3.2(c)]. A lap- 
splice plate and the simplest case of a gusset plate are very short tension members. 
Therefore, except for the definition of fracture on the critical net section, the tensile 
design strength definitions of a lap splice and the simplest case of a gusset plate are 
identical to the definitions of the design strength for a tension member. 

For connecting elements subjected to tension in a bearing-type bolted connec- 
tion, the strength design requirement is 

$R,,L p ,  
QRn = design strength of the connecting elements 

P ,  = required strength in the tension member 

The design strength definitions of the connecting elements are: 

P = bearing force from bolt: P = bearing force from bolt: 
3 P =  P, 6 P =  Pu 

(a) FBD of gusset plate 

r 
l------% P,=P*+P,  I S '  

(b) Gusset plate block shear rupture FBD 

FIGURE 3.4 Examples of block shear rupture. 
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1. Yielding on A, (LRFD J5.2, p. 6-88) [see Figures 3.3(c) and (d) for an example] 

4R, = 0.90F,/lg 

where 

Fy = yield strength 

Ag = gross area of the plate = tpbp 

t, = thickness of the plate 

b, = width of the plate perpendicular to P, 

2. Fracture on A, (LRFD J5.2, p. 6-88, and B2, p. 6-34) [see Figures 3.3(c) and 3.3(e) 
for an example] LRFD Commentary J5.2 (p. 6-229) states that the 0.85A, 
limitation on A, of connecting elements was chosen to agree with test results 
and provide a reserve capacity. This limitation recognizes the limited inelas- 
tic deformation capacity in a connecting-element length that is very short 
compared to a tension-member length. 

where 

$R, = 0.75F,,An 

F ,  = tensile strength 

- A h o h  

0.85 A, 
A, = smallerof 

A, = gross area of the plate = t,b, 

Aholes = U h t h  = sum of bolt hole areas in the cross section 

d, = actual diameter of hole + 1/16 in. 

t ,  = thickness of hole 

For a staggered path across the plate, 

rls 

A,  = t,b, +c( $1 
i=l  

where 

ns = number of staggers on the path 

s = pitch = stagger component parallel to P, 
g = gage = stagger component perpendicular to P, 

t = thickness of plate 

3. Block shear rupture, abbreviated BSR (LRFD J4.3, pp. 6-87 and p. 6-228) (see 
Figure 3.4 for some examples) 
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When FA,, 2 0.6F~l,,, 

@R,, = 0.75(Ffiflt + 0.6F,,A,) 

When 0.6F,,AP,, Z FA,,, 
@R,, = 0.75(0.6FA,, + F,,A,,) 

where 

A, = gross area on BSR shear plane(s), (in.’) 

A,, = gross area on BSR tension plane, (in2) 

A,, = A, - [Ahole on BSR shear plane(s)] 

A,, = A,, - [A,,, on BSR tension plane] 

All bolt holes are standard holes except where otherwise specified. In the 
fabrication shop, standard bolt holes are punched in the member unless the material 
thickness exceeds the hole diameter. The nominal diameter of a standard bolt hole 
(see LRFD Table J3.3, p. 6-82) is the bolt diameter plus 1/16 in. For tensile strength 
calculations, the hole diameter is defined in LRFD B2 as the nominal diameter of the 
hole plus 1 / 16 in. 

In the bearing-type bolted connection of Figure 3.3(a), the gusset plate is0.50 in. thick, 
6.50 in. wide, and has 0.75-in.-diameter A325N bolts in it. Use L, = 2 in. and s = 3 in. 
The member is a pair of L3.5 x 3 x 0.25. The gusset plate and member are made of A36 
steel. Find the governing design strength of the gusset plate. 

Solution 

The governing design strength is the least @R,, value obtained from: 

1. Yielding on A, = b,t, = 6(0.5) = 3.00 in.’ 

@R, = 0.90FYA, = 0.9(36)(3.00) = 97.2 kips 

2. Fracture on A, [see Figures 3.3(c) and (e)]  

dh = actual diameter of hole + 1/16 in. = 3/4 + 1/16 = 7/8 in. 
Ahole = dhth = 0.875(0.5) = 0.4375 in.’ 

A, - Ahole = 3.00 - 0.4375 = 2.5625 in.’ 

0.85A, = 0.85(3.00) = 2.55 in.2 (governs A,,) 
GR,, = 0.75FJn = 0.75(58)(2.55) = 110.9 kips 

3. Block shear rupture [see Figure 3.4(b), one row of bolts case] For one-bolt hole, 

Ahole = 0.4375 (from preceding item) 



96 Connections for Tension Members 

A, = [2 + 2(3)](0.5) = 4.00 in.2 

A,, = A,, - [Aholes on BSR shear plane(s)] 
A,,, = 4.00 - 2.5(0.4375) = 2.906 in? 

A,, = (2.50)(0.5) = 1.25 in.2 

A,, = 1.25 - 0.5(0.4375) = 1.03 in.2 

FAnt = 58(1.03) = 59.8 kips 

0.6F,A ,,*, = 0.6(58)(2.906) = 101.1 kips 

$R,, = 0.75(0.6F,,A,,, + F@,J 
$R,= 0.75[101.1 + 36(1.03)] = 103.6 kips 

A,, = A,, - on BSR tension plane] 

For the design shown in Figure 3.3(a), a summary of our computed design 

1. For the gusset plate (from Example 3.4), 
(a) $R,, = 97.2 kips due to yielding 017 Ax 
(b) $RM = 103.6 kips due to BSR 

strengths is: 

2. For bearing at the bolt holes (from Example 3.3, $R, = 117.4 kips) 
3. For shear of bolt group (from Example 3.1, $R, = 119.3 kips) 
4. For the member (from Example 2.1), 

(a) $P,, = 101.4 kips due to yielding on Ax 
(b) $PM = 96.1 kips due to BSR of the member end 

The governing design strength is 96.1 kips, which is the least of the design strengths, 
and the LRFD strength design requirement is ($Pn = 96.1 kips) 2 P,. 

3.8 WELDING 
Welding of steel is the process of joining two pieces of steel by melting a similar metal 
into the joint between the two pieces of steel. After the molten metal solidifies and cools 
to the temperature of the surrounding air, the weld is stronger than an identically sized 
portion of steel from the base material (the two pieces of steel being joined). 

There are numerous welding processes, but the most important one for structural 
engineers is electric arc welding. For automated shop welds, the submerged (hidden) 
arc weldin8 (SAW) process and the electroslag process (for groove welds primarily; 
however, this process can be used for fillet welds) are used. For field welds, the shielded 
metal arc welding (SMAW) process is used. In the SMAW process, a coated wire called 
a weld elect rode is placed in an electrode holder connected to a variable source of electric 
power. When the free end of the electrode is located close enough to the base material, 
an arc forms between the electrode tip and the base material. The temperature of the 
arc is about 10,000"F. As the weld electrode melts, the coating on the electrode forms 
a gaseous shield to protect the molten metal from the air (preventsoxidation), stabilizes 
the arc, and makes more effective use of the arc energy. The temperature of the molten 
metal is about 6500°F. The temperature in the base material beneath the deposi ted weld 
can be as high as 3500"F, which causes some melting of the base material and 
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intermixing of the two moltenmetals. Residual stresses form in the base material when 
the temperature exceeds 1400'F [29]. 

The types of welds used in civil engineering structures arefillet welds, pmwe 
welds, slut welds, plug welds, and puddle welds. 

Fillet zuelds are discussed in Section 3.8 and used in some example problems. 
About 80% of structural welds are fillet welds since they are the easiest and the least 
expensive ones to make. 

As the name implies,grouve welds are made in a groove whose edges usually must 
be specially prepared. Groove welds are the most efficient welds, but they are also the 
most expensive ones to make. About 15% of structural welds are groove welds. 

A pIug weld is made in a circular hole. A slot weld is made in a slot (elongated hole 
with a circular end or ends). For example, suppose that the length available for fillet 
welds at the end of a plate is not adequate to provide the required design strength. 
A slot can be removed from the center of the plate width to increase the length 
available for welding, and weld material is deposited in the slot. For strength 
purposes, a slot weld can only be used to resist shear. Plug welds and slot welds are 
also used in built-up members to stitch a cover plate to the underlying material in 
order to prevent buckling of the cover plate. 

Puddle welds are used to stitch sheets of metal decking to the underlying top 
flanges of beams that serve as supports for the metal decking. An automatic puddle 
weld device has been developed to allow the welder to stand upright and make the 
puddle welds. This device is held somewhat like one holds a walking cane. The 
electric arc on the bottom tip of the device melts through the deck, forms a puddle 
of molten metal, and fastens the metal decking to the underlying top flanges of the 
beams on which the metal decking is supported. 

3.9 FILLET WELDS 
Figure 3.5(a) and (b) show possible cross sections of a fillet weld. The sides of the 
largest isosceles right triangle that can be inscribed within the cross section of the 
weld are called legs. The leg dimension is the fillet weld size S,. 

For the SMAW (shielded metal arc welding) process, the efective throat thickness 
t,, is the shortest distance from the root of the weld to the hypotenuse of the isosceles 
right triangle; that is, t, = 0.7075,. 

For the SAW (submerged arc welding) process the effective throat thickness is: 

1.  t ,  = S,,, when S, 5 3/8 in. 
2. t ,  = 0.7075, + 0.11 in. when S,, > 3/8 in. 

3.9.1 Strength of Fillet Welds 

In LRFD Table J2.5, p. 6-78, for fillet welds, we find that weld metal with a strength 
equal to or less than matching weld metal is permitted to be used. LRFD uses yield 
strength to denote the grade of a structural steel. The American Welding Society 
(AWS) uses tensile strength to denote the grade of an electrode. The electrode 
grades for SMAW are E60, E70, E80, E90, E100, and E l l 0  where E denotes electrode 
and the numerals are the tensile strength F ,  (ksi) of the electrode. From AWS D1.l 
Table 4.1 [30], we find the following SMAW matching weld electrodes: 
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re is the effective rhroar rhichess 
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FIGURE 3.5 Possible cross sections of a fillet weld. 

1. E70(Fy = 60 ksi; F ,  2 72 ksi) for A36 steel(Fy = 36 ksi; F, 2 58 ksi) 
2. E70(Fy = 60 ksi; F, 2 72 ksi) for A572 Grade 50 steel(Fy = 50 ksi; F ,  = 65 ksi) 
3. E80 for A572 Grades 60 and 65 steel 
4. El00 for A514 steel when t > 2.5 in. 
5. E l l 0  for A514 steel when t 52.5 in. 

When electrodes whose strength is not greater than the strength permitted in 
LRFD Table J2.5 are used in fillet-welded connections on the ends of tension 
members, the fillet welds do not separate from the base material. The weld failure 
mode is fracture of the welds or, as stipulated in LRFD Table J2.5, a shear rupture 
failure alongside the welds in the base material. 

Figures 3.6 to 3.10 show fillet-welded connections on the end of a tension 
member. As shown in Figure 3.6, the failure mode of longitudinal welds is shear 
fracture on each weld throat plane. As shown in Figure 3.7, the failure mode of 
transverse welds is combined tension and shear fracture on each weld throat 
plane. Figures 3.8 to 3.10 depict the more common situation of longitudinal and 
transverse welds being used in the same connection. Tests by Butler et a1 [22] 
have shown: 
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FIGURE 3.6 Fracture of longitudinal welds. 

1. a transverse weld is 50% stronger than a longitudinal weld. 
2. a longitudinal weld is much more ductile than a transverse weld. 

LRFD Appendix J2.4 (p. 6-129) provides an alternative design strength for fillet welds 
that accounts for a transverse weld being 50% stronger than a longitudinal weld. 

For a fillet-welded connection on the end of a tension member, the strength 
design requirement is: 

&I 2 p ,  
eR,, = design strength of the weld group 

P, = required strength in the tension member 
We choose to use the alternative design strength definition for fracture on the throat 
plane of fillet welds (LRFD Appendix J2.4, p. 6-129). For each weld in a fillet-weld 
group, the design strength is 

q ~ , ,  = o.~~(o.~oF,)(o.~o~s,)(~.o + 0.50 ~ i n 1 . 5 e ) ~ ,  



100 Connections for Tension Members IrQ I 

C 

h 
After weld fracture 

c 

P -j - 4 -  
P P  

Before weld fracture 
(a) Plan views 

+ 
P 

P +=A:-+<: 
P 
2 

- P P  - 
II 

2 

Before weld fracture After weld fracture 
(b) Side elevation views 

Combined shear and tension 
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( c )  FBD of a transverse weld 

FIGURE 3.7 Fracture of transverse welds. 

Trl 
As weld fracture occurs 

where 

F,,, = electrode tensile strength 

S ,  = size of fillet weld 

L,,, = length of a weld 

8 = angle (degrees) between P,, and the length-direction axis of a weld 

For a longitudinal weld in a tension member connection, 

e = o  
GR,, = 0.75(0.60F,,,)(0.707SU,)L,,, 

For a transverse weld in a tension member connection, 

8 = 90" 

@R,, = 0.75(0.60F,,,)(0.707S,,)(l.50L,) 
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W ,  

I 
1 

(a) Plan -0 view of a connection 
(b) Section 1 - 1  

Typical member section 
(d) Section 2-2 (c) Block shear rupture modes of a connection plate 

FIGURE 3.8 Weld lengths and block shear rupture of a gusset plate. 

In Figure 3.9(a), E60 electrodes are used for the 1 /4 in. fillet welds; the member is a 
pair of L3 x 2 x 5/16; and, the S/&in.-thick gusset plate is 5 in. wide. A36 steel is used 
for the member and gusset plate. Find the design strength of the fillet welds for L ,  = 
4.50 in., L,  = 1.50 in., and L,  = 3.00 in. 

Solution 

For a longitudinal weld, 

1. Weld fracture: 

@Rn /in. = 0.75(0.60F,xx)(0.707S,) 

@R,r /in. = 0.75(0.60)(60)(0.707)(0.25) = 4.77 kips/in. 

2. Shear rupture of the member alongside a weld: 

@Rn /in. = 0.7S(0.60FU)t = 0.75(0.60)(58)(0.3125) = 8.16 kips/in. 



102 Connections for Tension Members 

-1 A r Gusset plate: 5 x 518 

L3 x 2 x 51 

.02 in. 

Fillet welds: L = 4.50 in. 
0.25 in. welds L 2 =  1.50 in. 
E70 electrodes L = 3.00 in. 

(a) Member end connection detail 

518 4 It 4 + x = 0.516 in. 

(b) Section 1-1 (c) Section 2-2 

'16 

I I 7-r 

?I 
" L 1  " L1 

?I 
(d) Block Shear Rupture possibilities of gusset plate 

FIGURE 3.9 Tension member fillet welded to a gusset plate. 

Since 8.16 > 4.77, weld fracture govems. 

3. Shear rupture of the gusset alongside two welds: 

@R,, /in. = 0.75(0.60FU)f = 0.75(0.60)(58)(0.625) = 16.3 kip~/in. 
Since 16.3 > [2(4.77) = 9.541, weld fracture govems. 

For a transverse weld, 

1. Weld fracture: 

@R,, /in. = (4.77 kips/in.)(1.5) = 7.16 kips/in. 
2. Tension rupture of the gusset alongside two welds: 

@R,, /in. = 0.75FJ = 0.75(58)(0.625) = 27.2 kip~/in. 

Since 27.2 > [2(7.16) = 14.31, weld fracture governs. 
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For the fillet weld group, the design strength is 

C[((PR, /in.)L,] = 2[(4.77)(4.50 + 1.50) + (7.16)(3.00)] = 100.2 kips 

3.9.2 Design of Fillet Welds 

The maximum fillet weld size that can be deposited in one pass is S, = 5/ 16 in. Most 
of the heat given off in the welding process is absorbed by the parts being joined. 
Heat in the deposited weld is absorbed faster by the thicker part being joined. 
Ductility is adversely affected when the weld metal cools too rapidly. Also, the 
thicker base material is stiffer and provides more restraint to shrinkage of the 
deposited weld during cooling. To ensure that enough heat is available in the 
deposited weld for proper fusion of the weld to the base material, a minimum fillet 
weld size is specified in LRFD Table J2.4 (p. 6-75) as a function of the thicker part 
being joined, and L,  2 45, is stipulated in LRFD J2.2b (p. 6-75). L, > 705, is not 
permitted for a longitudinal weld. End returns [shown in Figure 3.10(d) and 
numerically illustrated in Example 3.71 are not required, but they increase the 
ductility of the connection. When an end return is not provided, the distance from 
the weld termination point to the end of the connected part must be at least S,. 
Other limitations and reasons for them are given, respectively, in LRFD J2.2b 

Only the design of SMAW fillet welds will be illustrated. Figures3.10 (c-e) show 
the possible weld arrangements on the end of a pair of L2.5 x 2 x 5/16 used as a 
tension member. In Examples 3.6 to 3.8, we will design SMAW fillet welds for each 
of the weld arrangements to resist P, = 84.9 kips. We will use E70 electrodes and A36 
steel for the member and the gusset plate (f = 3/8 in.). Information applicable ineach 
of the examples is: 

(p. 6-75) and C-J2.2b (p. 6-220). 

1. For thicker part joined, f = 3/8 in. (gusset plate), minimum S, = 3/16 in. 
2. f=5/16in. oftheanglesectiongovemsmaximumSW=5/16-1/16= 1/4in. 
3. We choose to use S, = 1/4 in. 
4. For a longitudinal weld: 

(a) Weld fracture: 

(PR,, /in. = 0.75(0.60F,)(0.7O7Sw) 

= 0.75(0.60)(70)(0.707)(0.25) = 5.57 kips/in. 

(b) Shear rupture of the member alongside a weld: 

(PR, /in. = 0.75(0.60FU)t = 0.75(0.60)(58)(0.3125) = 8.16 kips/in. 

Since 8.16 > 5.57, weld fracture mode governs. 

(c) Shear rupture of the gusset alongside two welds: 

(PR,, /in. = 0.75(0.60FU)t = 0.75(0.60)(58)(0.375) = 9.79 kips/in. 

Since 9.79 < [2(5.57) = 11.141, shear rupture mode governs. 
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(a) Joint side elevation view 

il ? 

3Pair of - 
.- L = L2 
N 

(c) Shortest weld arrangement 

L2.5 

End 

Typical member scctiori 

(b) Section I - I 

I .25 in. 

PI 
(member end FBD) - 

p* 

L = L 2  3 x 2 x 5/16 
4 

returns (Pair of L2.5 x 2 x 5/16) 

2 L 

(d) Welds with end returns 

x 2 x 5/16 

(2.5 - y) = I .69 in 

/;, = 84.0 

T -  J - 0.809 in  

kips 

(e)  Balanced weld arrangernent--c.g. of weld forces and member coincides 

FIGURE 3.10 Welded truss joint details for double-angle members 

5. For a transverse weld, 

(a) Weld fracture: 

@R,? /in. = (5.57 kips/in.)(l.5) = 8.35 kips/in. 

(b) Tension rupture of the gusset alongside two welds: 

@R,, /in. = 0.75FJ = 0.75(58)(0.375) = 16.3 kips/in. 

Since 16.3 < [2(8.35) = 16.71, tension rupture mode governs. 

Note: This failure mode is not listed in LRFD Table J2.5, but it can govern as 
shown when Appendix J2.4 is used to obtain the design weld strengths. 
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6. Other design strength values for the design in Figure 3.10(a) are: 

(a) For yielding on A8 of the member, $Pn = 84.9 kips. 
(b) Forfractureon Aeof themember, Lc> 2.19 in. is required for GP"284.9 kips. 
(c) For BSR of the gusset, LD 2 3.00 in. is required for (pP,,2 84.9 kips. 

EHample 3.6 
For the weld arrangement shown in Figure3.10(c), note that L,  = 2.50 in. is given and 
L, = L, is required. Design the welds for P,, = 84.9 kips using the applicable 
information in the last paragraph preceding this example. 

Solution 

From items 5(b) and 4(c) of the list preceding this example, the design strength of the 
fillet weld group is 

C[($R, /in.)L,,] = (16.3)(2.50) + (9.79)(L2 + L3) 

= 40.75 kips + 19.58L2 

The strength design requirement is 

c[(@R,, /in.)L,,l 2 p, 

(40.75 kips + 19.58LJ 2 84.9 kips 

L, 2 2.25 in 

L, 2 ( L ,  2 3.00 in.) for the required BSR strength [see item 6c] 

Use L, = L, = 3.00 in. for each L2.5 x 2 x 5/16. 

For the arrangement shown in Figure 3.10(d), note that there are end returns and L, 
= L,. Using the minimum permissible length for each end return and the applicable 
information preceding Example 3.6, design the welds for P, = 84.9 kips. 

Solution 

Let L,, = length of an end return. From LRFD J2.2b, at the free end of a tension member: 

1. L,, 2 [2S, = 2(0.25) = 0.5 in.] is required. 
2. If we want the end return to be fully effective in our weld strength calcula- 

tions, L,, 2 [4S, = 4(0.25) = 1.00 in.] is required. 
3. When L,, < 4S,, then S, = L,,/4 (or, when rupture of the base material governs, 

one-fourth of the design strength for rupture of the base material) must be 
used in the weld strength calculations. 
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For each end return, choose L,  = 0.5 in. Since the end returns are transverse 
welds, (Le, = 0.5 in.) < [4S, = 4(0.25) = 1.00 in.], and item (5b) in the itemized list 
preceding Example 3.6 is applicable, the total usable design strength for the end 
returns is 

$Rn /in. = 2(16.3 k/in.)(0.5 in.)/4 = 4.08 kips 

Also, item (4c) in the itemized list preceding Example 3.6 is applicable. The design 
strength of the fillet weld group is 

C[(@R, /in.)L,] = 4.08 kips + (9.79)(L, + L3) 

= 4.08 kips + 19.58L, 

The strength design requirement is 

W $ R ,  /in.)L,12 p ,  
(4.08 kips + 19.58L-J 2 84.9 kips 

L, 2 4.13 in. 

L, 2 (L, 2 3.00 in.) for the required BSR strength [see item 6c] 

From LRFD J2.2b, we find that L, I [70S, = 70(0.25) = 17.5 in.] is required. Use L, = 
L, = 4.25 in. with 0.5-in. end retums for each L2.5 x 2 x 5/16. 

Eaample 3.8 

The weld lengths L, and L, in a balanced-weld arrangement are chosen such that 
the centroid of the weld forces coincides with P, which is the axial force in the 
member. For the balanced-weld arrangement shown in Figure 3.10(e), note that L, 
> L,, and use the applicable information preceding Example 3.6 to design the welds 
for P,  = 84.9 kips. 

Solution 

From items 501) and 4(c) of the list preceding Example 3.6, the design strength of the 
fillet weld group is 

P, = (16.3)(2.50) = 40.75 kips 

P, = 9.79L, 

P3 = 9.79L3 

(PI + P, + P3) 2 ( P ,  = 84.9 kips) 

The strength design requirement is 

[40.75 + 9.79(L2 + L,)] 2 84.9 

(L,  + L3)] 2 4.51 in. 

At P, in Figure 3.10(e), Zh4 = 0 gwes 
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2.5P2 + 1.25P1 = 1.69(PU) 

2.5(9.79L2) + 1.25(40.75) = 1.69(84.9) 

L, = 3.78 in. 

L, 2 (L ,  2 3.00 in.) for the required BSR strength 

L, 2 (4.51 - 3.78 = 0.73 in.) is required. L, 2 [4S, = 4(0.25) = 1.00 in.] also is required. 
Use L, = 3.75 in. and L, = 1.00 in. on each L2.5 x 2 x 5/16. 

[see item 6(c)] 

3.10 CONNECTING ELEMENTS IN A WELDED CONNECTION 
A gusset plate (a member-end connector plate) may have an irregular shape [see 
Figure 3.10(a)] to accommodate the fastening of several member ends at a joint. The 
gusset plate shape in Figure 3.9(a) is the simplest form of a gusset plate. More than 
one connector plate or more than one connecting element may be used. 

Figure 3.8(c) shows examples of block shear rupture of the connecting element 
at the end of members 10 and 39. Block shear rupture is a tearing failure mode that 
can occur along the perimeter of welds. As shown in Figures 3.8(c) and (g), a block 
of materialcanbe tornout of theconnection. AsshowninFigure3.11,iffracturestarts 
to occur on the tension plane of the block, yielding simultaneously occurs on the 
shear plane@) of the block. Fracture occurs on the block plane(s) that provides the 
larger possible fracture force. 

In Figure 3.8(a), the connecting elements can fail by yielding on their gross 
sections. For the middle plate, block shear rupture can occur as depicted for members 
10 and 39 in Figure 3.8(c). 

In Figure 3.6, the connecting elements can fai l  by yielding on their gross sections 
or by shear rupture between the pair of dotted lines along path a-a. If width w1 of the 
middle plate is larger than implied, block shear rupture can occur for the middle 
plate as depicted for members 10 and 39 in Figure 3.8(c). 

In Figure 3.7, the connecting elements can fail by yielding on their gross sections 
b-b and c-c. If the width w, of the middle plate is large, block shear rupture can occur 
for the middle plate as depicted for members 10 and 39 in Figure 3.8(c). 

The LRFD design strength definitions for failure of the connecting element(s) in 
a welded connection are: 

1. Yielding on As of the connecting element@) [LRFD J5.2(a), p. 6-88] 
(see Figure 3.9 Section 3-3 for an example) 

$Rn = 0.90FYA, 
where 

F ,  = yield strength 

Ag = gross area of the plate = tpbp 

t, = thickness of the plate 

b, = width of the plate perpendicular to P, 

2. Block shear rupture (LRFD J4.3, p. 6-87) 
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(see Figure 3.8(c) for examples) For welded connections, there are no holes; 
therefore, let 

A, = gross area on BSR shear plane(s) 

A, = gross area on BSR tension plane 

When F,,A, L 0.6FUA,, 

$Rn = 0.75(FUA, + 0.6F,,A,) 

When 0.6 F,,A,, >F,,A, 

@Rn = 0.75(0.6F,A7, + F,,A,) 

3. Stwur rripfure strength (LRFD J4.1, p. 6-87). 
[see path a-a on the plates in Figures 3.6(a) and (b) for an example] 

$Rll = 0.75(0.6F,AV) 

and the parameters are as previously defined for block shear rupture. 

hample 3.9 

Find the design strengths of the 5 x 5/8 gusset plate of A36 steel in Figure 3.9(a). See 
Figure 3.11 for the BSR failure mode of this gusset plate. 

Soliition 

1. Yielding on A,? = 5(0.625) = 3.125 in.2 

$R,l = 0.9FflP, = 0.9(36)(3.125) = 101.25 kips 

2. Block shear rupture 

F, ,A ,  = (58 ksi)(4.25 in.)(0.625 in.) = 154.06 kips 

0.60F,,4, = 0.60(58 ksi)(6.75 in.)(0.625 in.) = 146.81 kips 

$Rn = 0.75[FI,A, + 0.6F,,A,] 

@Rn = 0.75[354.06 + 0.6(36)(6.75)(0.625)] = 183.9 kips 

For the design shown in Figure 3.9(a), a summary of our computed design 
strengths is: 

1. For the gusset plate (from Example 3.9) 

(a) (PR,, = 101.25 kips due to yielding on As 
(b) (PR,, = 183.9 kips due to BSR 

2. For the weld group (from Example 3.5, (PR,, = 100.2 kips) 
3. For the member (from Example 2.6) 



Problems 109 

Yield 

Fracture plane 

plane 

Gusset plate --I 

(a) Tensile fracture and shear yielding possibility 

t-. L v  *I i - 7  Fracture plane 

PI - 
I\ Yield plane 

Gusset plate --I 

(b) Tensile yielding and shew fracture possibility 

For the 5/16 by 5 in. gusset plate shown in Figure 3.Y(a). 

L,  = 3.50 + ( 5  - 3.50)/2 = 4.25 in. 
L,, = 6.75 in.  

Figure 3.11 Block shear rupture possibilities for a gusset plate. 

(a) @Pn = 94.9 kips due to yielding on Ax 
(b) @Pn = 114 kips due to fracture on A(, 
(c) #Pn = 127 kips due to BSR 

The governing design strength is 94.9 kips, wtuch is the least of the design strengths, 
and the LRFD strength design requirement is (@Ptl = 94.9 kips) 2 P,. 

PROBLEMS 

3.1 A36 steel; 7/8-in.-diameter A325N bolts 

s = 2.75 in. L, = 1.5 in. g, = 3 in. g, = 3 in. w, = 3 in. 

The tension member is a pair of L8 x 6 x 1/2 with the long legs bolted to a 10 x 

1. Bolt shear 
2. Bearing at the bolt holes 
3. The gusset plate (yielding on A,; fracture on Atl)  

Is the design satisfactory for P ,  = 298 kips? 

1 gusset plate. Compute the design strength for: 
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L 1  
FIGURE P3.1 

Section 1-1 

3.2 A36 steel; 7/8-in.-diameter A325N bolts 

The tension member is a pair of L6 x 4 x 1/2 with the long legs bolted to a 9 x 1 
s = 1.5 in.; L, = 1.5 in.; g1 = 2.25 in.; g, = 2.50 in.; W, = 2.25 in. 

gusset plate. Compute the design strength for: 

1. Bolt shear 
2. Bearing at the bolt holes 
3. The gusset plate (yielding on A,; fracture on A, for each path with full P, on it) 

Is the design satisfactory for P, = 270 kips? 

I I  

e 0 0 0  

I 
- 1  

Section 1-1 
FIGURE P3.2 

3.3 A36 steel; 1-in.-diameter A325N bolts 

s=3in.; g = 3 i n . ;  L,= 1.75in.; we=3.5in.  

The tension member is a C15 x 33.9 bolted to a 16 x 5/8 gusset plate. Compute 
the design strength for: 

1. Bolt shear 
2. Bearing at the bolt holes 
3. The gusset plate (yielding on A,; fracture on A,) 

Is the design satisfactory for P, = 200 kips? 



Problems 111 

the 

PU 

4- 

- 
Lt? I I 1  

I .  
I I  

-1 

FIGURE P3.3 
Section 1-1 

3.4 A36 steel; 1-in.-diameter A325N bolts 

s = 3 in. g = 3 in. L, = 1.75 in. W, = 3.5 in. 
The tension member is a C15 x 33.9 bolted to a 16 x 5/8 gusset plate. Compute 

design strength for: 

1. Bolt shear 
2. Bearing at the bolt holes 
3. The gusset plate (yielding on Ag; fracture on A,,) 

Is the design satisfactory for P, = 200 kips? 

FIGURE P3.4 
Section 1 - 1 

3.5 A36 steel; 3/4 in diameter A325N bolts 

s = 3in. g = 3 in. L, = 1.75 in. 

which is a 10 x 3/4 plate. Compute the design strength for: 
A pair of 10 x 3/8 connector plates is used to butt splice the tension member 

1. Bolt shear 
2. Bearing at the bolt holes 
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3. The splice plates (yielding on A,; fracture on A,) 

Is the design satisfactory for P, = 240 kips? 

3.6 A36 steel; 3/4-in.-diameter A490X bolts 

s = 3 in. g = 3 in. L, = 1.75 in. 

which is a 10 x 3/4 plate. Compute the design strength for: 
A pair of 10 x 3/8 connector plates is used to butt splice the tension member 

1. Bolt shear 
2. Bearing at the bolt holes 
3. The splice plates (yielding on As; fracture on A, for each path with full P, on it ) 

Is the design satisfactory for P, = 240 kips? 

3.7 A36 steel; 1-in. diameter A325N bolts 

L, = 1.75 in.; 

member end. Compute the design strength for: 

s = 3 in. g = 5.5 in 
Each flange of the member(W8 x 31) is bolted to an 8 x 5/8 gusset plate at the 

1. Bolt shear 
2. Bearing at the bolt holes 
3. The gusset plate (yielding on A,; fracture on A,) 

Is the design satisfactory for P, = 280 kips? 
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Block shear rupture of each member tlangc 

- 
P, 

Section 1 - 1  

FIGURE P3.7 

3.8 A572 Grade 50 steel; 1-in. diameter A490X bolts 

s = 3 in.; g = 7 in.; L ,  = 7.75 in. 
The tension member is a pair of C15 x 33.9 bolted to a pair of 10 x 5/8 gusset 

1. Bolt shear 
2. Bearing a t  the bolt holes 
3. The gusset plates (yielding on A,; fracture on All; block shear rupture) 

Is the design satisfactory for PI, = 495 kips? 

plates. Compute the design strength for: 

-w asp,, 

k .I 
Section 1 - I  

FIGURE P3.8 
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3.9 A36 steel; 7/8-in.-diameter A325N bolts 

s = 1.50 in.; L, = 1.5 in.; g1 = 2.25 in.; g, = 2.50 in.; g = 2.50 in. 

The tension member is a pair of L6 x 4 x 1/2 with all legs bolted to 3/4 in. thick 
splice plates. Compute the design strength for: 

1. Bolt shear 
2. Bearing at the bolt holes 

Is the design satisfactory for P, = 308 kips? Design the splice plates. That is, 
specify the minimum acceptable combination of widths for the vertical and horizon- 
tal plates such that the pair of plates is satisfactory for P, = 308 kips due to yielding 
on A,; fracture on A,, ; and block shear rupture. 

2s 1 

I 
I ‘I 

I I 

,1 (a) Side elevation view 

I44k-d 
g g 

(b) Section along path 1-2-3 

FIGURE P3.9 

3.10 A572 Grade 50 steel; E70 electrodes; 1 /4-in. fillet welds; w, = 1.5 in. 

L, = 6 in. = overlap length of member end on the gusset plate 

The tension member is a pair of L5 x 3 x 5/ 16 with the long legs welded to a 
5/8 in. thick gusset plate. Compute the design strength for: 

1) fracture of the fillet welds 
2) the gusset plate (yielding on A8) 

Is the design satisfactory for P, = 208 kips? 
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J 
L 

b l  
(a) Connection details 

PU 
-m 

(b) Section 1-1 

FIGURE P3.10 

3.11 A36 steel; E70 electrodes; 1/4-in. fillet welds 

In the truss joint shown, the vertical member is a pair of W x 3 x 5/16 with the 
long legs welded to the web of a WT9 x 23 which is the horizontal member. L ,  = 
(d - k - S,) = overlapping length of the L5 x 3 x 5/16 member end on the web of the 
WT9 x 23. S, = size of the fillet weld; d and k are properties of the WT9 x 23. Compute 
the design strength for: 

1) the welds 
2) block shear rupture of the connector plate (web of WT9 x 23). 

Is the design satisfactory for P, = 150 kips? 

(b) Section 1 - 1  

1 2  

(a) Truss joint detail 

FIGURE P3.11 

7- 
(c) Section 2-2 
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3.12 A36 steel; E70 electrodes; 5/16 inch fillet welds; P, = 300 kips 

A tension member (C15 x 33.9) is welded to a t x 16.5 in. gusset plate. Compute 
the minimum acceptable thickness for the gusset plate due to yielding on A,. Use the 
preferred increment for thickness on LRFD pl-133 and choose the actual minimum 
acceptable thickness that can be used. Each end return of the weld group is 0.25d, 
where d = depth of C15 x 33.9 section. Find the minimum value of L, that satisfies the 
design requirement for the welds. 

-1 

I I 

1 
I 
+ L 1  - pu 

I 

-1 

FIGURE P3.12 
Section 1-1  

3.13 A36 steel; E70 electrodes; 3/8-in. fillet welds; L,  = 5.25; P, = 270 kips 

A pair of L6 x 4 x 7/16 with long legs welded to a w x 3/4 in. gusset plate serves 
as a tension member. Compute the minimum acceptable value of w for the gusset 
plate due to yielding on A Assume that the preferred increment for width is 1 / 8  in. 
and choose the actual minimum acceptable w that can be used. Compute the design 
strength for: 

8' 

1. Fracture of the fillet welds 
2. The gusset plate (yielding on A,; block shear rupture) 

(a) Connection details (b) Section 1 - 1 

FIGURE P3.13 
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L ,  
I4 
I 
I 
I 

3.14 A36 steel; E70 electrodes; use the maximum acceptable fillet weld size 

A tension member (C15 x 33.9) is to be butt-spliced for P,, = 323 kips with a t x 14 
x ( 2 4  + 0.5 in.) splice plate. Choose the minimum acceptable splice plate thickness 
(see LRFD, p.1-133). Fillet welds are located as shown in the cross section and on the 
back side of the web of the C15 x 33.9 at the ends of the splice plate. Find the minimum 
acceptable value of L,. Ignore block shear rupture. 

- 1  
I 

b *  E L 1  :+ 
I pu 
I 



Columns 

4.1 INTRODUCTION 
A member subjected only to an axial compressive force is called a column. Practically 
speaking, it is impossible for a member to be subjected only to an axial compressive 
force. When a lab test of such a member is conducted, locating the centroid of the 
member's cross section at the member ends in order to apply the axial force 
concentrically cannot be done perfectly. Also, the member is not perfectly straight. 
Consequently, the initial crookedness increases as the axial compression force is 
applied. Hence, the member is subjected to a combination of bending and axial 
compression; such a member is called a beam-column. However, as we will see in 
Chapter 6, the design strength definition of a beam-column is an interaction equation 
that contains a term due only to column action and another term due only to bending 
action. This chapter deals with column action only. Chapter 5 deals with bending 
action only. 

In a truss analysis, only an axial tension or an axial compression force is assumed 
to exist in each member. Also, there are other situations where the designer deems 
that bending is negligible and considers only column action in the design of a 
compression member. Consequently, for practical reasons as well as for the subse- 
quent treatment of beam-columns, we need to consider column action as a separate 
topic. 

Figure 4.1 shows a compression member bolted to a gusset plate. Examination 
of the FBD in Figure 4.l(c) shows that the maximum compressive force in the net 
section for a bearing-type bolted connection is always less than the axial compressive 
force in the gross section. Therefore, if the only holes in a compression member are 
at the member ends for a bolted connection, the net section is not involved in the 
design strength definition of a column. 

As shown in Figure 4.2, when the axial compressive force in a pinned-ended 
member reaches a certain value called the critical load, or buckling load, the member 
buckles. If the column is a W section, the buckled shape is a half sine wave in the XZ- 

118 
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r Gusset plate 

1 
I 

- 
-0 

(a) Member end bolted to gusset plate 

@I 

P = total bearing force from each bolt 
3 P  = Pu 

ac, 
(d) Section 1-1 

(b) Section 2-2 

38 
(c) FBD of member end (pair of angles) 

FIGURE 4.1 Compression member bolted to a gusset plate. 

(e) Section 3-3 

plane. This type of buckling is called column buckling. If the flange and web elements 
of the W section are not properly configured, 'local buckling of these cross-sectional 
elements can occur before column buckling occurs. Therefore, both types of buckling 
must be discussed in this chapter. For the W sections usually chosen to serve as a 
column, the flange and web elements have been configured such that local buckling 
does not occur before column buckling occurs. The simplest type of column buckling 
isfzexurul buckling, which denotes that the member bends about one of the principal 
axes when the column buckles. No twisting of the cross section occurs for flexural 
buckling. If the cross section twists when column buckling occurs, ths  is called 
flexural-torsional buckling. 

4.2 ELASTIC EULER BUCKLING OF COLUMNS 
As shown in Figure 4.3, the boundary conditions of a column significantly influence 
the buckled shape, which can be used to compu te the buckling load. The chord length 
between the points of inflection on the buckled shape is called the effective length KL, 
where L is the member length. For an isolated column, values of K are shown in 
Figure 4.3 for various boundary conditions. In Section 4.5, we will discuss how to 
determine K for a column that is integrally connected to other members in a structure. 
For simplicity, we choose to use a pinned-ended column [case (d) of Figure4.31 in our 
initial discussion. For a pinned-ended column, note that K =1 and KL = L. 
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(a)  Prior to loading 
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Buckled shapc j ::;;hen 

I is reached 

f -+ H = O  

I P  
(c) Buckled FBD 

I 
M ~ = P r  r 

I P  

(b) Section 1-1  (d) FBDat z 

FIGURE 4.2 Elastic pinned-ended column 

The first theoretical buckling load solution was published in 1744 by Leonhard 
Euler [4] for a flagpole column [case (a) of Figure4.31. In 1759, Euler [5] published the 
solution for a pinned-ended column. In his solutions, Euler assumed that the 
member was elastic, prismatic, and perfectly straight before the axial compressive 
load was applied. As the axial load was slowly applied, he assumed that the member 
remained elastic and perfectly straight until the value of the axial load reached the 
critical load, or buckling loud. Then, he reasoned that the member had reached a state 
of critical equilibrium and buckled into an assumed shape that was dependent on the 
boundary conditions at the member ends. Consequently, as Euler chose to do, we 
refer to the value of the axial compressive load at which the member buckles as  the 
critical load. 

The prismatic, pinned-ended member in Figure 4.2(a) is assumed to be perfectly 
straight before the axial compressive load, P, is slowly applied. Also, the member is 
assumed to be weightless and elastic. When P reaches the critical load value P,, the 
member bows into a bent configuration, and the cross section does not twist when 
bowing occurs. Bowing or bending occurs about the cross-sectional axis of least 
resistance, which is the minor principal axis y. Note that the member deflects in the 
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Per+ 
‘ I  

K=2.I K = 2.0 
(2.0) (2.0) 

(a) (b) 

Remarks: 
I .  x marks a point of inflection at which M = 0 
2. K = values are recommended for design 

(theoretical values of K )  

FIGURE 4.3 Effective length of isolated columns. 

direction of the major principal axisx, which is perpendicular to the bending axis. At 
an arbitrary distance z from the origin of the member, the bending moment in the 
buckled member is 

which can be substituted into the moment curvature relation 
My =Px (4.1) 

to obtain the governing differential equation 

For mathematical convenience, let c2 =PI(El,);  then Eq. (4.3) becomes 

d z x + c 2 x  = (J 
dz = 

The solution of Eq. (4.4) is 

x = A sin cz+B cos cz 

(4.4) 

(4.5) 
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At z = 0, the boundary condition is x = 0, which requires B = 0. At z = L, the boundary 
condition is x = 0 = A sin(cL), which has a non-trivial solution only when CL = nz, 
where n is an integer number, and 

For a column pinned on both ends as shown in Figure 4.2, n = 1 is applicable and 
gives the least buckling load, which is 

z2El, 
L2 

Pm =- (4.7) 

For mathematical convenience, let 

where 

As = gross area of the cross section 

r,, = radius of gyration about y axis 

By substituting ly = A r: into Eq. (4.7) and then dividing both sides of the resulting 
equation by Ag , we ottain the critical stress: 

Note that we could not find a value for the coefficient A in Eq. (4.5). We only 
determined that A must be greater than zero. Therefore, the buckled shape in Figure 
4.2 is a half sine wave with an indeterminate amplitude, A > 0. 

4.3 EFFECT OF INITIAL CROOKEDNESS ON COLUMN BUCKLING 
Perfectly straight members cannot be manufactured. As shown in Figure 4.4, each 
rolled steel section has an initial curvature upon arrival at the fabrication shop. Note 
that e is the maximum deviation from a straight line connecting the member ends and 
L is the member length. If e > L/lOOO, some of the crookedness must be removed since 
e 5 L / l O O O  is required for the member to be acceptable. For a rolled steel section, the 
average value o fe  = L/1500 (see LRFD Commentary E2, p. 6-192). 

The behavior of an initially crooked member subjected to axial compression is 
shown in Figure 4.5, where the maximum out-of-straightness was assumed to occur 
at midheight of the member. L/r is a fundamental parameter in Eq. (4.8), which is the 
critical stress definition for an initially straight, pinned-ended member. L/r is called 
the slenderness ratio, in which L is the member length and r is the radius of gyration 
for the axis about which bending would occur for Euler buckling (initially perfectly 
straight member). The effect of initial crookedness on the critical load is greatest in 
the range 50 < L/r < 135 for a column of A36 steel. Based on experimental and 
theoretical investigations in which the cross section did not twist when buckling 
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(a) Camber (member is bent about x-axis) (b) Section 1-1 

X 

Y +w 
(d) Section 2-2 

(c) Sweep (member is bent about y-axis) 

FIGURE 4.4 Initial crookedness: camber and sweep. 

occurred, the LRFD Specification writers chose the following definitions for an 
elastic, prismatic, pinned-ended column with an out-of-straightness of e = L/1500: 

0.877 a E l  
P, = 

L2 

If the column is not pinned-ended, then 

0.877 a E l  

w2 pc, = 

which can be written as 

F, =( T)Fy 0.877 

where 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

Ac is computed for the principal axis having the larger slenderness ratio, KL/r, and L 
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Euler buckling occurs 

(Initially perfectly 
straight member) - x = 0 prior to buckling 

t P  
(a) Initially crooked member 

pcr 

- 
X 

(b) Load vs. deflection for e = 0 

LRFD assumptions: 
(1) e = U15OO 
(2) 9, = 0.877 (Euler T.,.) 
(3) Column design strength 

- 4 e  It 
(c) Load vs. deflection for initially crooked member 

FIGURE 4.5 Initially crooked, elastic, pinned-ended column. 

is the distance between braced points for each principal axis. When Ac 2 1.5, Eq. (4.13) 
is applicable. 

For a column that is elastic when buckling occurs, the LRFD design requirement is 

@ P n  = p,, (4.15) 

where 

@<P, = column design strength 

P, = nominal column strength 

@< = 0.85 = column strength reduction factor 
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(4.16) 

P,, = required column strength 

and P,, is obtained from a structural analysis for factored loads. 

4.4 INELASTIC BUCKLING OF COLUMNS 
As explained in Section 2.4, the residual stress pattern shown in Figure 4.6(a) is 
representative of some W sections. The r r i m i i r i i i i r i  coniprcwiue residiinl s t r e s f , [  occurs 
at the flange tips and at midheight of the web, and the uinxiiriiiriz terzsilc rcsiriiial strcss 
frl occurs at the junction of the flanges and the web. 

Consideranaxialcompression laboratory testofa pinned-ended W section member 
of A36 steel. If we assume that the member is perfectly straight and twisting does not 
occur during buckling, elastic buckling occurs when [see Figures 4.4(a) and (b)] the 
maximum compressive residual stress plus the applied stress is less than F,,. For A36 
steel, whenf, + P,,/A, < 36 ksi, none of the compression fibers are yielding and elastic 
buckling occurs [see Figure 4.6(c)]. If we choose L/r small enough to prevent elastic 
buckling from occurring, the compressive stress-strain curve [see Figure 4.6(c)] for a W 
sectioncontaining residual stresses becomes nonlinear ‘ifter the flange tips begin to yield 
and inelastic buckling occurs. As shown in Figure 4.6(c), the slope of the compressive 
stressstrain curve for inelastic buckling is called the tnngcrit iiiodirliis ofdnsticity E,. 

I f  twisting does not occur during buckling of a prismatic, pinned-ended column 
that was originally perfectly straight, the inelastic critical load is 

n 2 E , I ,  
P,, = 7 

L- 
(4.17) 

If the column has an out-of-straightness of e = L/1500, the LRFD inelastic critical load 
definition can be written as 

0.877 n ’ E , I  
(4.18) 

L 2  PL, = 

and the corresponding inelastic critical stress can be written as 

(4.19) 

and E ,  is derived below [see Eq. (4.23)]. 

L/1500, the inelastic LRFD definitions can be written as 
For a column that is not pinned-ended, but has an out-of-straightness of LJ = 

(4.20) 

(4.21) 



f rc 

(a) Residual stresses 
A g  

(b) Axial compression stress 

Stress 

Line is tangent to stress-strain curve 

Inelastic column buckling 

Elastic column buckling 

Strain (c) Stress-strain curve for axial compression 

FIGURE 4.6 Perfectly straight W section member. 

As in LRFD E2 (p. 6-47), Eqn (4.21) can be written as: 

F,, = (0.658) F, (4.22) 

Equation (4.22) is applicable when A, I 1.5, where Ac is Eq. (4.14) for the principal axis 
having the larger slenderness ratio, KLIr. 

We can equate Eq. (4.19) and (4.22) and solve for 

(4.23) 

which is useful for inelastic buckling problems. 
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For a column that is inelastic when buckling occurs, the LRFD design require- 
ment is 

@$'n = Pu (4.24) 
where 

@?,, = column design strength 

Pn = nominal column strength 

@c = 0.85 = column strength reduction factor 

Cp, P, = 0.85Ag F,, = 0.85Ag (0.658)'' Fy 

Pu = required column strength 

and P, is obtained from a structural analysis for factored loads. Equation (4.25) is 
applicable when AcIl.5, where Ac is Eq. (4.14) for the principal axis having the larger 
slenderness ratio, U / r ,  and L is the distance along the member between braced 
points for each principal axis. 

See Figure 4.7 in which we summarized the LRFD definitions of the nominal 
column strength (critical load) for a prismatic, axially loaded compression member 
that: 

2 
(4.25) 

1. Does not twist when column buckling occurs by bending about the principal 

2. Contains a realistic, representative, residual stress pattern. 
3. Has an out-of-straightness of e = LLl500. 
4. Is composed of compression elements for which local buckling does not occur 

before column flexural buckling occurs. 

axis having the larger KL/Y ratio. 

Local buckling does not occur before column flexural buckling occurs if the 
width-thickness ratio of each compression element does not exceed the applicable 
A, in LRFD Table B5.1 (p. 6-38). Example 4.1 illustrates the definitions of the width- 
thickness ratios and the applicable A, expressions for a W section. 

4.5 EFFECTIVE LENGTH 
The efective length (equivalent pinned-ended length) KL of a column is the chord 
length between the points of inflection (M = 0 points) on the buckled column shape 
and L is the actual length of the column between braced points for each principal axis. 
See Figure 4.3 for some examples of buckled shapes and K values for isolated, 
individual columns. KL must be determined for each principal axis of the cross 
section. For example, an individual W section column may be fixed at the base and 
free at the top [see case (a) of Figure 4.31 for bending about the major principal axis, 
but may be fixed at the base and hinged at the top [see case (e) of Figure 4.31 for 
bending about the minor principal axis. 

For a column in an unbraced frame, the unbraced frame (sidesway uninhibited) 
nomograph on LRFD p. 6-186 can be used to obtain an approximate value of K > 1 
for in-plane, elastic column buckling. For a column in a braced frame, the braced 
frame (sidesway inhibited) nomograph on LRFD p. 6-186 can be used to obtain K 5 
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1.J 

l c  is for the principal axis with the larger KUr 
c,, = A F 8 cr 

FIGURE 4.7 LRFD column design strength. 

1, or we can conservatively use K = 1. Julian and Lawrence [31] made the assumptions 
stated on LRFD p. 6-186 in deriving the equations for the effective length factor K for 
a column in a plane frame. They used one of the derived equations in preparing the 
sidesway uninhibited nomograph on LRFD p. 6-186 for an unbraced frame. The other 
derived equation was used in preparing the sidesway inhibited nomograph on LRFD 
p. 186 for a braced frame. For discussions on the derivation of these equations, see 
Kavanagh [ 111, Galambos [8], and Chen and Lui [34]. Instead of using the nomographs 
on LRFD p. 6-186 to determine K ,  we prefer to use the following approximate version 
of the formulas used to generate the nomographs. These approximate formulas have 
appeared in the French design rules since 1966 [32]. Consider column m, which spans 
between joints i and j in a plane frame. For column rn in a braced frame, the effective 
length factor K ,  for a principal axis of bending is 

3G,G, +1.4(Gl +GI )+0.64 

3G,G, +2.0(Gl +GI )+1.28 
K ,  = 

For column wz in an unbraced frame, 

_ _  w G , G ,  +4.0(Gl +GI  )+7.5 
K t f l  = d GI +G, +7.5 

The relative stiffness at a typical joint is 

(4.26) 

(4.27) 

(4.28) 
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An A36 steel W14 x 90 section is used as an axially loaded compression member and 
the effective length is K L  = 20 f t  for both principal axes. Use LRFD Table B5.1 (p. 6-38) 
to show that local buckling does not occur before column buckling occurs. Then, use 
the LRFD definitions summarized in Figure 4.7 to find the column design strength. 

Sol 11 tion 

From LRFD p. 1-30, for a W14 x 90: 

A = 26.5 in.2 d = 14.02 in. k = 1.375 in. 

An axis of symmetry is a principal axis; therefore, the x- and y-axes are the principal 
axes. Since the x-axis has the larger moment of inertia value, the x-axis is the major 
principal axis and the y-axis is the minor principal axis. Properties for these axes are 

1, = 999 in.4 

l,, = 362 in.4 

r, = 6.14 in. 

ry = 3.70 in. 

Check the b/t requirements of the compression elements (LRFD Table B5.1, p.6-38): 

1. For the flange (unstiffened element), 

Flange local buckling does not govern (PP,,. 
2. For the web (stiffened elenrent), 

Web local buckling does not govern (PI',,. 
The formulas in Figure 4.7 are valid since local buckling does not govern (PP,. 

Since ( r ,  = 6.14 in.) > (r ,  = 3.70 in.) and (KL) ,  = (KL) ,  = 20 f t  = 240 in., we know that ( K L /  
r).,, > ( K L / r ) ,  and the cross section bends about the y-axis when column buckling 
occurs. Therefore, 
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2: = 0.529 

Fcr = (0.658 It ) F, = (0.658 0.529 )( 36 ksi ) = 28.85 ksi 

&P,, = 0.85AZm = 0.85(26.5)(28.85) = 650 kips 

An A36 steel W14 x 90 section is used as an axially loaded compression member and 
the effective length is KL = 20 ft for both principal axes. Use the LRFD column 
design table on p. 3-20 to find the column design strength. 

Solution 

Enter LRFD p. 3-20 at (KL), = 20 ft  for a W14 x 90 and F = 36 hi. Find CpP,, = 650 kips. 
In Example 4.1 we found qP,, = @Pny = 650 kips, wh ix  agrees with the value in the 
LRFD column design table. Therefore, Example 4.1 shows how an entry in the LRFD 
column design table for W sections was obtained. 

An A36 steel W14 x 90 section is used as an axially loaded compression member with 
(KL), = 20 ft  and (a), = 10 ft. For this section, we showed in Example 4.1 that local 
buckling does not govern @’,. Therefore, find the column design strength. 

Solution 

From LRFD p. 1-30, for a W14 x 90: 

OSb, 
A = 26.5 in. d = 14.02in. k = 1.375in. - = 10.2 - - - 25.9 

t f  t w 

Since (KLIr), > (KLIr),,, the cross section bends about the x axis when column buckling 
occurs. 
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F ,  = (0.658)': F, = ( 0.658)o'92 (36) = 33.2 ksi 

(PP, = (PPm = O.85ARc, 

(PP, = 0.85(26.5)(33.2) = 748 kips 

An A36 steel W14 x 90 section is used as an axially loaded compression member with 
(KL),  = 20 ft and (KL),  = 10 ft. Use the LRFD column table to find the column design 
strength, which is governed by the larger of (KL), and (KL),/ (r,/rJ . 

Solution 

Enter LRFD p. 3-20 for a W14 x 90 and Fy = 36 ksi. At (KL),  = 10 ft, find @Pny = 767 kips. 
Column design strength values for (KL), are not given, but they can be easily 
obtained from the given information. At the bottom of the LRFD column table, find 
rJry=1.66foraW14x90.Enter thetableatUU),/(r,/ry) =20/1.66= 12.05ft;uselinear 
interpolation to find 

(PP,, = 749 - 0.05 (749-738) = 748.45 kips 

(PP, = 748 kips (smaller of @P,, and @Pny ) 

wluch agrees with the solution obtained in Example 4.3. 

The following are given P, = 300 kips; (KL), = 20 ft  (KL),  = 10 ft  and A36 steel. For each 
nominal depth Listed, find the lightest W section that satisfies the LRFD specifica- 
tions for axial compression: 

1. W14 
2. w12 
3. w10 
4. W8 

Solution 

The design requirement is (PP, 2 (P, = 300 kips). 
We start by selecting a section that satisfies the design requirement for the y-axis. 

For this selected section we use its r,/r,ratio Listed at the bottom of the column table 
and compute (U),/(r,/r,). If (KL),/(r,/rJ > (KL), , column buckling occurs with the 
section bending about the x axis, and we must enter the column table with an 
assumed value for (KL),/ (r,/ry) in order to choose a section that satisfies the design 
requirement. Assume that r,/rywiU be the same as it was for the section selected for 
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the y-axis. If rJryfor the selected section differs significantly from the assumed value, 
compute a revised value of (KL)J(r , /rJ  to use in making the next selection. 

1. Select the lightest W14 that satisfies the design requirement. For F,, = 36 ksi, 
enter LRFD p. 3-21 at ( K L ) ,  = 10 f t  and find the least value that exceeds 300 
kips. If y-axis bending governs the column design strength, we find that a 
W14 x 43 
For a W14 x 43, rJry = 3.08 is found at the bottom of the table and is used to 
compute the following assumed value for entering the table to make the 
selection that satisfies the design requirement for the x axis: 

= 312) L 3001 is the lightest choice. 

(KL)J  (rJrJ = 20/3.08 = 6.49 f t  

W14 x 43 [$P, = = 350)] > = 312) 2 300 

This is the lightest W14 that satisfies the design requirement. Note that the 
assumed value of rx/r,  = 3.08 used in entering the table at 6.49 f t  was the same 
as the r,/r,value for the section selected for the x-axis. That is, the assumption 
made was correct. 

2. Select the lightest W12 that satisfies the design requirement. For F, = 36 ksi, 
enter LRFD p. 3-25 at ( K L ) ,  = 10 ft  and find 

W12 x 45 ($P,l, = 330) 2 300 

Enter at (KL) , / ( r J ry )  = 20/2.65 = 7.55 f t  and find 

W12 x 45 ($Pnx = 360) > ($P,, = 330) 1300 

Note that when the LRFDcolumn table is being used to determine the column 
design strength, @Pn is governed by the larger of ( K L ) J  (rJrJ and (KL),,.  

3. Select the lightest W10 that satisfies the design requirement. For F,, = 36 ksi, 
enter LRFD p. 3-27 at (KL), = 10 ft and find 

W10 x 45 ( @',,y = 337) 2 300 

Enter at ( K L ) , / ( r x / r J  = 20/2.15 = 9.30 ft and find 

W10 x 45 ($P,l, = 346) > (q+d',,,, = 337) 2 300 

4. Select the lightest W8 that satisfies the design requirement. For F, = 36 ksi, 
enter LRFD p. 3-28 a t  (KL),, = 10 f t  and find 

W8 x 48 ((JP~,,, = 362) 2 300 

Enter at ( K L ) x / ( r x / r J  = 20/1.74 = 11.5 f t  and find 

(@P,lx = 342) 2 300 W8 x 48, 

Note: For W8 x 40, (q%',ly = 298) = 300, but ( ( J P , ~ ~  = 280) < 300. W8 x 40 does not 
satisfy the design requirement. The lightest W8 choice is 

W8 x 48, ( I P P , ~ ~  = 362) > (@Pny = 342) 2 (P,,  = 300 kips) 
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Figure 4.8 is an unbraced plane frame. Due to sidesway buckling, all members bend 
about their x-axis. At the support joints, use the recommended G values given in the 
last paragraph on LRFD p. 6-186. Use Eqs. (4.27) and (4.28) to find (KL), for columns 
1 to 5. Also find 4P,,, for members 1 to 5. 

Solution 

W12 x 120 (Ag = 35.3 in?; I ,  = 1070 in?; Y, = 5.51 in.) 
W30 x 173 (I, = 8200 in?) 
W30 x 116 (I, = 4930 h.4) 
From the last paragraph on LRFD p. 6-186, 

GI = 10 

G, = 10 

G,= 1 

At the interior joints of Figure 4.8, 

G, = 

1070 
20 

4930 
30 

__ 

- 
= 0.326 

1070 1070 -+- 
2o ' l5 =0.338 G, = 4930 8200 -+- 
30 40 

From Eq. (4.27), the effective length factors for columns 1 to 5 are 

1.6G1G, +4(G, +G, )+7.5 
G, + G, + 7.5 

= 1.74 
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3oft 4oft 4oft 30 Er 

All columns ale w12 x 120. 

FIGURE 4.8 An unbraced plane frame. 

1.6G3G, +4(G, +G, )+7.5 
G, +G, +7.5 

= 1.74 

1.6G4GJ +4(G4-+G,)+7.5 
G, + G, + 7.5 

= 1.20 

1.6G6G, +4(G, +G7)+7.5 
G, +G, +7.5 

= 1.24 

l.6G7G8 +4(G, +G8)+7.5 
G, + G, + 7.5 

On LRFD p. 3-23 for a W12 x 120 and Fy = 36 hi, for each of the columns 1 to 5, enter 
at (HJ,/(r,/rJ and find $Pm : 

[ (KL)/(r /rJ] ,  = 1.74(20)/1.76 = 19.77 ft 

= 1.10 

($Pm), = 799 kips 

( $Pnr)2 = 799 kips 

[(a)/ (rflJI2 = 1.74(20)/1.76 = 19.77 ft 

[(KL)J(Y&,,,)], = 1.20(15)/1.76 = 10.23 ft 
($P& = 996 kips 

[(KL)J(rJrJ], = 1.24(20)/1.76 = 14.09 A 
( $Pnr), = 927 kips 

[(KL)J(rJr,J5 = 1.10(15)/1.76 = 9.375 ft 

(@Pm)5 = 994 kips 
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In Eq. (4.28), all members are assumed to be elastic, and a point of inflection (M = 
0) is assumed to occur at midspan of each girder in the frame. A girder (restraining 
member) is a bending member that is attached to one or more column ends at a 
particular joint in a frame. Each girder end provides a rotational resistance at the 
column end(s) when column buckling occurs for the frame. At each end of a girder, the 
girder-end rotational stiffness in Eq. (4.28) is assumed to be 3El/Ox2) = 6EZ/L. To account 
for inelastic column buckling and the M = 0 point not being at midspan of the elastic 
girders in an unbraced frame, the definition of the relative joint sh$?zess parameter G is 

(4.29) 

z = E,/E is as defined in Eq. (4.23) 

actual girder end rotational stiffness 
Y =  ( 6 E I  / L ) 8  (4.30) 

For example, when the far end of a girder in an unbraced frame is: 

1. fixed, then y= (4EI/L)/(6EI/L) = 0.667. 
2. hinged, then y= (3EI/L)/(6EI/L) = 0.5. 

Eqns (4.29) and (4.23) are also valid for braced frames, for which we must use 
actual girder - end rotational stiffness 

Y =  ( 2  E l  / L (4.31) 

For example, when the far end of a girder in a braced frame is: 

1. fixed, then y= (4EI/L)/(2EI/L) = 2. 
2. hinged, then y= (3EI/L)/(2EI/L) = 1.5. 

Using z= E,/E = 1 is conservative, as was done in Eq. (4.28), but the correct y must 
be used for each girder. 

4.6 LOCAL BUCKLING OF THE CROSS-SECTIONAL ELEMENTS 
Suppose an identical amount of material is made into closed shapes (pipes and tubes) 
and open sections (W, C, and L). When the cross-sectional area is the same for all 
shapes, the shape with the largest radii of gyration and with compression elements 
thick enough to prevent local buckling is the most efficient shape for resisting a 
compression load. Steel pipes (LRFD, p. 3-36) and structural steel tubes (LRFD, p. 3- 
39) are very good shapes for a column cross section, but attaching other members to 
these shapes can be difficult and expensive. The open sections are less efficient 
column sections, but attaching beam and girder sections to them is routine. 

Some examples of stiffened and unstiffened compression elements in column 
cross-sectional shapes are shown in Figure 4.9 to further clarify the definitions for 
compression elements. 
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3 
(a) Stiffened compression elements 

Larger b/t governs 

Larger b/t governs 

(b) Unstiffened (projecting) compression elements 

FIGURE 4.9 Cross-sectional compression elements. 

Examples of the local buckling mode shapes for the flange and for the web of a W 
sectionare shown in Figure4.10. Also, in Figure4.10, we assumed that the flange and 
the web buckled independently of each other. 

Theoretical discussions of elastic buckling ofthin-plate elements are available [6,7] 
and give Eq. (4.32) as the critical stress for elastic buckling of thin-plate elements 
subjected to a uniaxial, uniform, compressive stress [see Figure 4.ll(a)]: 

kn2E 
12( 1 - v 2  ) ( b / t ) 2  

F,, = (4.32) 

where 

k = constant depending on a h  and the edge support conditions 

E = modulus of elasticity 

v = 0.3 = Poisson's ratio 

b/t = width-to-thickness ratio of the plate 

a/b = length-to-width ratio of the plate 

See Figure 4.11(b) for example values of k. For a/b 2 4, the half wave length of the 
buckled shape is on the order of the width b. 

As shown in Figure 4.10 at any cross section: 
1. When local buckling ofa W sectionj7atige occurs, the local buckling mode shape 

is antisymmetric and the web provides some rotational resistance. Parallel to 
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I -  n - 1  

Number of half sine waves is a function of d~ and b/f of flange. 
(a) Flange local buckling of a W section column 

(b) Section 1- I (c) Section 2-2 

Number of half sine waves is a function of d h  and l ,/l  of web 
(d) Web local buckling of a W section column 

FIGURE 4.10 Local buckling modes in a W section column. 

2. 

the applied compressive stress, one flange edge is free and the other edge (at 
the junction of the flange and web) can be assumed to be such that k = 0.7 
(about midway between hinged and fixed). Each halfof a W sectionflange is an 
uiistiffened cotitpression element. 
When focal biickfing ofa W secfbn  zveb occurs, the local buckling mode is 
symmetric and the flanges provide considerable rotational resistance since 
for column buckling, the structural designer must prevent twisting of the 
cross section at the member ends and at any intermediate, weak axis, column- 
braced points. Therefore, the flanges are restrained at the ends of each 
unbraced column length, and the torsional resistance of the flanges can be 
developed in each unbraced column length. At each junction of the web and 
flanges, the web edge is somewhere between fully fixed and hinged. The web 
is a stiffened compression element for which we can assume that k = 5.0 
(longitudinal edges are about one-third fixed). 
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kn2 E 
F,, = 

12 ( l - V 2  ) ( b / t ) 2  

t = plate thickness 
b = plate width 
a = plate length 

Boundary conditions 
of unloaded edges &I are shown below 

(a) Long plate with loaded edges simply supported 

Boundary conditions 
Case of unloaded edges k 

1 One edge simply 0.425 
supported, other 
edge free 

One edge fixed 1.277 
against rotation, 
other edge free 

3 Bothedges 4.00 
simply supported 

4 Oneedgefixed 5.42 
against rotation, 
other edge simply 
supported 

5 Both edges fixed 6.97 
against rotation 

(b) Section 1-1 

k b =i 

- - -  

FIGURE 4.11 Coefficients of k for Eq. 4.32 (adapted from [25]). 

Note the following: 
1. When local buckling of the compression elements in a column cross section 

occurs, these elements continue to resist some more compressive load until 
a considerable amplitude of the column buckled shape occurs. However, 
when column buckling occurs, the member cannot resist any more compres- 
sive axial load. 

2. Inelastic local buckling of plates can occur when either the b/t ratio or the L/t 
ratio is small enough. 

Fortunately, we seldom have to deal directly with Eq. (4.32). For frequently 
encountered situations, experts on plate buckling have chosen realistic k values 
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based on currently available theoretical and experimental research, satisfactory 
performance of existing structures, and engineering judgment to devise definitions 
of critical stress for local buckling of column cross-sectional elements. For example, 
buckling experts used F,/Fy = 0.7 to account for the presence of residual stresses and 
imperfections in uniformly compressed elements and made the following choices of 
k to obtain the indicated A, expressions on LRFD p. 6-38: 

1. Unstiffened elements: 

Single angles: k = 0.45 

Flanges: k = 0.7 

Stems of tees: k = 1.28 

A, = 76 / f i  
A, = 95 / 

A, = 127 / 

2. Stiffened element 

Web of a W section column: k = 5.0 A, = 253 / f i  
When b/t of each compression element in a column cross section is less than A, 

on LRFD p. 6-38, local buckling of a compression element in a column cross section 
does not occur before column buckling occurs, and the design strength of a column 
is given by LRFD E2 (p. 6-47). 

When local buckling of a compression element in a column cross section occurs 
and limits the column buckling strength, LRFD B5.3 (p. 6-37) refers the reader to 
LRFD Appendix B5.3 (p. 6-105) for the reduced design strength definition of a 
column. 

Figure 4.12 provides some explanatory information to aid in coping with LRFD 
Appendix B5.3 when local buckling of a compression element in a column cross 
section limits the column design strength. The possible conditions that may be 
encountered are: 

1. The column cross section contains only unstiffened elements [see Figure 
4.12(a)]. Astress reductionfactor Q, [seeLRFD,p. 6-106; Eqs. (A-B5-1 to6)] must 
be computed for the unstiffened element having the larger b/t ratio. Q, must 
be used in computing the critical stress F ,  due to local buckling [LRFD, p. 6- 
107; either Eq. (A-B5-15) or (A-B5-16)1. Then, the column design strength is 
computed: @Pfl = 0.85A cr. If flexural-torsional buckling can occur, Q, must 
be used in computing t aF e critical stress F, due to flexural-torsional buckling 
[LRFD Eq. (A-E3-l), p. 6-48]. The smaller of F ,  due to local buckling and F ,  
due to flexural-torsional buckling must be used in computing the column 
design strength: @P,, = O.85AFc,. Example 4.13 illustrates the computations 
involved in computing $P,, for a column cross section containing only 
unstiffened elements. 

2. The column cross section contains only stiffened elements [see Figure 
4.12b1, an area reduction factor Q, must be computed for each stiffened 
element having b/t > A,. The definition of Q, = A, /A where A, = Ag - Z A,  
and A, = the ineffective area of a stiffened element. h e  ineflective areas in 
Figure 4.12(b) are the cross-hatched areas. Q, must be used in computing 
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the critical stress F,, [LRFD, p. 6-108; either Eq. (A-B5-15) or (A-B5-16)). 
Unfortunately, the ineffective areas are a function of F,,, and an iterative 
procedure must be used to determine Q,. Then, the column design strength 
is computed: @Pn = 0.85A$,,. 

3. The column cross section contains unstiffened and stiffened elements [see 
Figure 4.12(c)]. Q = Q,Q, must be used in computing the critical stress F,,. 
Then, the column design strength is computed: @Pn = 0.85A$,,. See items 1 
and 2, respectively, for the computations of Q, and Qa. The governing F,, is the 
least F, value computed as described in items 1 and 2. 

I 

Q = Qs is governed by larger b/t '7 
is a stress reduction factor (see LRFD B5.3a) 

(a) Sections have only unstiffened compression elements 

A = an ineffective area 

Each cross-hatched area 
is an ineffective area. 
Qa is an area reduction factor 

(b) Section has only stiffened compression elements 

Q,= [LRFD Eqn (A-B5-3) or (A-B5-4)] 

Ai  = an ineffective area 

The cross-hatched area 
is an ineffective area. 

(c) Section has unstiffened and stiffened compression elements 

FIGURE 4.12 Slender compression elements. 
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The objective of this example is to illustrate how to obtain the column design 
strength when local buckling of un unstfleened compression element occurs and 
reduces the column buckling strength. For F, = 36 ksi, (KL), = 6 ft, and a WT8 x 
13, find $P,. 

Solution 

WT8 x 13 

As = 3.84 in? d = 7.845 in. 
br = 5.50 in. 

t, = 0.250 in. 
t, = 0.345 in. 

Y ,  = 2.47 in. 

When b/f of the flange element and/or stem element exceeds the applicable ;L, 
from LRFD Table 85.1 (p. 6-38), local buckling may limit $Pnx: 

O e 5  b, - 0.5( 5.50) (7- 0.345 

FLB does not occur, but stem local buckling may limit $P,. LRFD Appendix B5.3a 
[item (d) on p. 6-1071 and B5.3d must be used to compute $Pnx: 

- - 20’ooo =0.564 20 , 000 Q, = 
F,, (d l t , ) ’  36(31.38)’ 

See LRFD B5.3d: Q, = 1.00 since our section has only unstiffened elements. LRFD Eq. 
(A-B5-12): 

Q = QSQ, = Qs (1.00) = Q, 
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F,, = Q( 0.658)QA:x F ,  = 0.564( 0.658)0~M”28 ( 3 6 )  = 19.80 ksi 

CpPnx = 0.85A,F, = 0.85(3.84)(19.80) = 64.62 kips 

If we had incorrectly used LRFD E2 to compute CpP,,, we would have obtained #Pnx 
= 112.4 kips. Since 112.4/64.62 = 1.739, if we had not accounted for stem local 
buckling, we would have overestimated the design strength by 73.9%. 

The objective of this example is to illustrate how to obtain the column design strength 
$PnY for a W21 x 44 and Fy = 36 ksi when local buckling of a stiffened compression element 
occurs and reduces the column buckling strength. 

Solution 

w21 x 44: 

A, = 13.0 in. 

From LRFD Table B5.1 (p. 6-38), 

ry = 1.26 in. t, = 0.350 in. h/ t ,  = 53.6 h = 53.6tW = 18.76 in. 

LRFD Appendix B5.3b (item ii) and B5.3~ must be used in computing CpP, when 
WLB (web local buckling) may limit the column design strength. Note that FLB 
does not occur. 

The procedure for determining the design strength due to WLB is outlined in 
this paragraph. First, we must use LRFD Eq. (A-B5-12) to determine a reduced 
effective width be of the web (the stiffened element). See Figure 4.13 where the 
cross-hatched area is the ineffective area. Then, LRFD Eq. (A-B5-14) is used to 
determine Q,, which is an area reduction factor. Since Q, = 1.00 [see LRFD B5.3~ (item 
ii)], Q = Q,Q, = LOOQ, = Q, . Next, either LRFD Eqn (A-B5-15) or (A-B5-16) is used 
to compute the critical stress T,. Finally, @PnY = 0.85A8,, gives the column design 
strength due to WLB. 

Unfortunately,f in LRFD Eq. (A-B5-12) is F,; therefore, the procedure described 
in the previous paragraph is an iterative procedure. That is, we must assume a value 
offin order to determine be and at the end of the procedure we find F,,. If the assumed 
f = F,, we compute (PP,, = 0.85A$,,; otherwise, we assume another value of J 
determine be, and so forth. Fortunately, LRFD Appendix B.5.3~ states that Ag and r 
are for the actual cross section. For this example, we use Ag = 13.0 in.* and Y,, =1.26 in. 
as tabulated in the steel manual for the W21 x 44 section. 
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The (KL), value at which WLB ceases to limit $Pny is obtained from the condition 
that Q, = 1, which occurs for the value offthat gives b, = h in LRFD Eq. (A-B5-12). 

2 

f = (E) = 22.28 ksi 
53.6 

Then, as shown, we obtain the (a), value at which WLB ceases to govern $Po,. 
Assume that AY I 1.5: 

[ F,, = (0.658) n:r Fy ] = (f = 22.28 ksi) 

For F,  = 36 h i ,  we obtain 

=i.im a, =i.0707 1 log (22.28 / 36) 
log (0.658) 

azCy = 

(KL), =120.3 in. = 10.02 ft 

For (KL), 2 10.02 ft, WLB does not govern $Pny and LRFD E2 is applicable for the 
determination of $Pny. However, for 0 5 (KL), < 10.02 ft, LRFD Appendix B5.3b to 
B5.3d must be used to determine $Pny using an iterative procedure: 

X 

FIGURE 4.13 W section with a slender compression element. 
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1. At (KL),  = 0, assume that Q = (Q, = 0.95) and find 

QA', =0.95(0)2 = 0  

f = F,, = Q (  0.658)Q"b F, = 0.95( 0.658)'" (36) = 34.2 ksi 

2. Usingf= 34.2 ksi and h / t ,  = 53.6 in LRFD Eq. (A-B5-12), we find 

[ $ = $[ 1- 5 3 . 6 m )  57.2 
= 45.571 < (t = 53.6) 

A-t :  ( h / t ,  - b e  / t w  ) 13.0-(0.350)* (53.6-45.57) 
- - = 0.924 

A 13.0 (2, = 

Recall that we had assumed Q, = 0.95; so, perform another iteration cycle. 
3. Assume that Q = Q, = 0.928 and find 

f = F,, = 0.928 ( 0.658) O.O0 ( 36 ) = 33.41 ksi 

4. Usingf= 33.41 ksi and h l t ,  = 53.6 in LRFD Eq. (A-B5-12), we find 

[$=&il- 5 3 . 6 J r  57'2 ] = 45.991 < (;" = 53.6) 

13.0 - (0.350) (53.6 - 45.99) 
13.0 

= 0.928 Q ,  = 

Recall that we had assumed Q, = 0.928; therefore, we can proceed to the next 
step. 

5. Use F,, = 33.41 ksi to compute the column design strength: 

@Pny = 0.85A,j,F,, = 0.85(13.0)(33.41) = 369 kips 

The iterative procedure illustrated for (KL) ,  = 0 is applicable for 0 I (KL) ,  < 10.02 ft 
and 0.928 5 Q, < 1 in this example. 
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4.7 FLEXURAL-TORSIONAL BUCKLING OF COLUMNS 
In the previous discussions in this chapter, we assumed that the buckled shape of a 
column was due to bending about the principal axis with the larger KL/r value and 
that the cross section did not twist when column buckling occurred. This is called the 
f7esural rirode of column buckling. However, it is possible that a doubly symmetric 
cross section (W section, e.g.) only twists when the column buckles; this is called the 
forsronnl i irod~ of column buckling. Singly symmetric cross sections (T section, 
channel, equal-leg angle) in which the shear center does not coincide with the 
centroid (see Figure 4.14) and unsymmetric cross sections (an angle with unequal 
legsand built-up sections) bend and twist when the column buckles; this is called the 
flexiivril-foisioiznl nzode of column buckling. Theoretical discussions of torsional and 
flexural-torsional modes of elastic column buckling are available [ H I .  

For unsymmetric cross sections, the critical load must be determined from the 
flexural-torsional buckling mode (see LRFD E3, pp. 6-47 and 6-48). 

Consider a column whose cross section is a W section. When the member-end 
supports and any intermediate weak-axis column braces prevent twisting of the 
cross section a t  these points, only flexural column buckling can occur, providedthat 
local buckling is prevented. However, if  the intermediate weak-axis column braces 
are designed to prevent only a translation perpendicular to the weak axis and do not 
prevent twist of the cross section, the unbraced length for torsion is the member 
length, whereas the maximum distance between the intermediate braces is the 
unbraced length for flexure. Consequently, when the intermediate weak-axis col- 
umn braces do not prevent twist of the cross section, the critical load is the smaller 
value obtained from the torsional buckling mode [see LRFD, p. 6-110; Eq (A-E3-5)] 
and the flexural buckling mode. 

Two WT7x45 sectionsareobtained by cutting the web of a W14 x90at middepth 
along the length direction. Suppose that we usea WT7x45asa 6-ft-long compression 
member in a truss. The column design strength for this member can be found from 
LRFD p. 3-96. In a truss analysis, each member is assumed to have pinned ends. 
Therefore, using ( K L ) ,  = ( K L ) ,  = 6 f t  and F, = 36 ksi on LRFD p. 3-96, we find that 
$P,, = 366 kips (smaller of qV,,x = 366 kips and $P,, = 389 kips). 

See Figure 4.15~1. When -y is the gravity direction, zu = member weight/ft causes 
the member to bend as shown. Since zu passes through the shear center, the member 
bends about the x-axis and deflects in the gravity direction without twisting at any 
cross section along the member length. Now, if  we slowly apply the P forces on the 
member ends, these P forces cause the amplitude of the deflected shape to increase 
as we increase P. This enables us to conclude that for bending about the x-axis of a 
WT section used as a column, the WT section does not twist andflexural coluiirn 
bucklirzg is the buckling mode. If b/f of each element in the cross section satisfies LRFD 
85.1 (p. 6-32), the applicable definition of $P,,, is given in LRFD E2 (p. 6-39). If b/f of 
any element in the cross section exceeds A, in LRFD B5.1, then local buckling governs 
QP,,, and LRFD B5.3(pp. 6-87 to 89) must be used to compute 

See Figure 4.15~. When x is the gravity direction, w = member weight/ft causes 
the member to bend as shown. Since IU does not pass through the shear center, the 
member deflects in the gravity direction and twists (0, occurs) at  each cross section 
along the member length, except at  the member ends where 0; = 0 is required (see 
LRFD 136, p. 6-37). Now, if we slowly apply the P forces on the member ends, these 
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W section Cruciform Hollow tube Pipe section 
Note: Shear center coincides with centroid. 

(a) Doubly symmetric sections 

t 

T- 
t t 

/c- Axis of symmetry 

Note: Dot shows location of shear center. 
Shear center does not coincide with centroid. 

(b) Singly symmetric sections 

FIGURE 4.14 Column cross sections. 

axial forces P cause the deflected shape to increase as we increase P. This enables us 
to conclude that for bending about the y-axis of a WT section used as a column, the 
WT section bends and twists and flexural-torsional buckzing is the buckling mode. 
When b/t of each element in the cross section satisfies LRFD B5.1 (p. 6-38), in which 
case LRFD E3 (p. 6-48) is the applicable definition of qPq. When b/t of any unstiffened 
element in the cross section exceeds ;t, in LRFD B5.1, then local buckling may govern 
@Pn and LRFD B5.3a (p. 6-106) must be used to compute Qs, which is a strength 
reduction parameter in the applicable definition of F ,  (LRFD E3d, p. 6-108). 

W T 7 ~ 4 5  Fy=36 

The objective of this example is to illustrate how 4PnX = 366 kips and #P,, = 389 kips 
on LRFD p. 3-96 were computed for WT7 x 45 Fy = 36 ksi at (KL), = (KLly = 6 ft. 

Solution 

wT7 x 45 

A = 13.2 in* d = 7.01 in. t ,  = 0.440 in. b - 14.52 in. l -  r,, = 3.70 m. tf = 0.710 in. rx = 1.66 in. 

On LRFD p. 3-96,4P, = 366 kips due toflexural buckling was computed as follows: 
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l+ 

+ + P 
-c 

w = member weight/ft 
i r  P 

c - -z 
$$A Fx 

Note: Dot shows location of shear center. 
(b) Section 1-1  (c) Section 2-2 

" t  "1 w = member weirrht/ft 

I 1 - v  

I' L 
(d) Bending about y axis 

- 1  

FIGURE 4.15 Buckling modes of a WT section column. 

[? = 0.5( 0.710 14.520) & - 15.8) 

d 7.010 
t ,  0.440 

Local buckling does not govern @Pm. 
Flexural buckling [LRFD E2 (p. 6-39)] is applicable: 

(Aa =y 72'1*66 /% = 0.486137) A:x = 0.2366 
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= 0.85(13.2)(36)(0.658°.2366) = 365.8 kips 

On LRFD p.3-96, @Pny = 389 kips due topexural-torsional buckling was computed as 
follows. From LRFD p. 1-166: 

= 2.03 in4 Y, = 4.12 in. H = 0.968 

From LRFD p.6-19: 
G = 11,200 ksi. 

In the @Pm solution, we found that local buckling does not govern 4Pn. Therefore, we 
proceed to LRFD p. 648: 

FCv = (0.658) Fy = ( 0.658)0.01763 (36) = 35.29 ksi 

1- 1 7 1  1- 4( 35.29)( 101.5)( 0.968) = 34.71 ksi 
(35.29 + 101.5) 

@PnY = O.85AFnp = 0.85(13.2)(34.71) = 389.4 kips 

Our computed values of @Pm = 366 kips and @Pny = 389 kips agree with those 
tabulated on LRFD p. 3-96 for (KL), = (KL) = 6 ft and Fy = 36 ksi. 

For comparison purposes, compute @fin,  due to flexure only: 

$Pay = 0.85(13.2)(36)(0.658°.~76) = 396 kips 
This is 396/389 = 1.018 times larger than the correct value (flexural-torsional buckling 
solution). 

4.8 BUILT-UP COLUMNS 
The flexural column buckling behavior of two individual C sections that are not 
interconnected in any way is shown in Figure 4.16(a) for bending about the y-axis. 
Note that slippage between the two sections occurs everywhere along the member 
length, except at midlength of the member. Maximum slippage occurs at each 
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Section 1 - 1 

(a) Behavior of two individual C sections 

Section 2-2 

(b) Behavior of two interconnected C sections 

FIGURE 4.16 Flexural buckling of a doubly symmetric, built-up column. 

member end. As shown in Figure 4.16(b), if a 3/8-in.-thick spacer plate is inserted 
between the channel webs at the proper locations and welded or fully-tensioned 
bolted to the C sections, a built-up column is obtained. For simplicity, we refer to the 
spacer plate and its welds or bolts as a connector. Connectors are uniformly spaced 
along the member length. The distance between connectors or between a connector 
and a member end is chosen such that the column design strength of two single 
channels is not less than the column design strength of the built-up section (a pair of 
channels). The flexural buckling behavior of the built-up column is as shown in 
Figure 4.16(b) since the connectors prevent any slippage between the two joined 
sections. Therefore, the connectors are subjected to shear when the built-up column 
bends about the y-axis. LRFD E4 (p. 6-48) specifies that the definitions of (KL/r), on 
LRFD p. 6-48 are to be substituted for (Kwr),  in computing the column flexural strength 
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(LRFD E2, p. 6-47) for the y-axis of our built-up section (a pair of C sections). When the 
built-up column bends about the x-axis, the connectors are not subjected to shear. 
LRFD E2 is applicable for computing the column flexural strength for x-axis bending. 

For built-up columns, LRFD E4 (p. 6-48) is applicable. Suppose that the built-up 
column is a pair of L4 x 3 x 3/8 with long legs back to back separated by and 
connected to a 3/8-in.-thick gusset plate at each member end. In order to ensure 
double-angle member behavior, the two angles will be connected to each other by 
placing a 3/8-in.-thick spacer plate between the long legs at one or more intermediate 
locations along the member length. Each spacer plate is either fully-tensioned bolted 
or welded to the two angles and becomes a connector. Let u = connector spacing and 
rz = radius of gyration of the minor principal axis of a single angle. The connector 
locations must be such that h / r Z  for each single angle is not greater than three- 
fourths the maximum KL/r value for double-angle behavior. L is the member length 
for double-angle behavior. 

A pair of A36 steel LA x 3 x 3/8 with long legs back to back is used as a 6-ft-long 
compression member in a truss. The long leg of each angle is adequately welded at 
the member ends to a 3/8-in.-thick gusset plate. A 3/8-in.-thick spacer plate is 
inserted between the long legs of the angles at intervals of 2 ft along the member. Each 
spacer plate is welded to the long leg of each angle and becomes an intermediate 
connector for the built-up member. 

In a truss analysis, each member is assumed to have pinned ends. Therefore, 
using (KL),  = (KL), = 6 ft and Fy = 36 ksi on LRFD p. 3-70, we find (PPn = 119 kips 
(smaller of (PPn, = 128 kips and (PP = 119 kips) and two intermediate connectors are Y required. The connector spacing is 

L 72 in. 
n + l  2+1 

a=---= - 24 in. 

The purpose of this example is to illustrate how @PnX = 128 kips and $PnY = 119 kips 
were obtained on LRFD p. 3-70 for the problem described when u = 24 in. (two 
intermediate connectors). 

S o h  fion 
Double-angle section properties are 

A = 4.97 in.2 r,  = 1.26 in. y = 1.28 in. ry = 1.31 in. 

I ,  = AY: = 4.97(1.26)* = 7.89 in.' 
I ,  = Ar; = 4.97(1.31)' = 8.53 in.' 

The shear center is on the y-axis at midthickness of the shorter angle legs. Twist of the 
cross section is prevented only at the member ends: 

x ,  = o ;  x,' = o  
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0.375 = 1.0925; yo' = 1.19 
f 

2 2 
yo =y--=1.28-- 

= 4.50 7.93 + 8.53 
= O +  1.19+ 

A 4.97 
- 2  2 (1, +I, 1 r, = x ,  +yo' + 

( x o '  +Yo') 0+1.19 1 - - = 0.736 - - 
4.50 - 2  

H = l -  
r0 

F, = J4.50 = 2.12 

Note: We could have used LRFD p. 1-173 for a pair of LA x 3 x 3/8 with long legs back 
to back with a 3/8 in. separation to find 

Fo = 2.12 and H = 0.735 

From LRFD Table B5.1 (p. 6-38), 

Local buckling does not limit the column design strength. 

1. For x-axis bending of a double-angle section, LRFD E2 (p. 6-47) is applicable. 

(?)= = 1.26 72 = 57.14 

[ acx = = O.MO~]  < 1.5; a;, = 0.4107 
29,000 

$Pm = 0.85(4.97)(0.658)0~41m(36) = 128 kips 

This agrees with $Pm = 128 kips on LRFD p. 3-70. Also see item 3. 

occurs. LRFD E4 (p. 6-48) and LRFD E3 are applicable. 
2. For y-axis bending of the double-angle section, flexura1-torsional buckling 

= 54.96 72 

h x + 0.5s 0.782 + 0.5( 0.375) = 1.103 - a=- - 
'rib 'yy, 0.879 

24 = 27.30 a 
rib 0.879 
_ -  - 
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_______~__  

(54.96)2 + 0'82(1'103)2 (27.30)2 = 57.93 (?In, =k [ l+( l .103)2]  

(A',, = y,r'" 29,000 = 0.6497) < 1.5; A:,, = 0.42210 

F,, = (0.658)04221(36) = 30.17 ksi 

For torsional buckling only, the section behaves as two single angles. On LRFD 
p. 1-1.59, for a single angle (L4 x 3 x 3/8) we find: 

I = 0.123 in.4 ; To = 1.98 in. 

= 141.69 ksi GI - 11,200(0.123) F,, = - - 
A?<: 2.48( 1.98)2 

From LRFD p. 6-48, Eq. (E3-I), 

I- 
30.17)( 141.69)(0.736) = 28,30 ksi 

FLrjt = 2( 0.736) (30.17+141.69)2 ---I 
QP,,, = @AA,Fcf, = 0.85(4.97)(28.30) = 119.55 kips 

This agrees with @P,,, = 119 kips on LRFD p. 3-70. Also see item 3. 
3. LRFD E4 (p. 6-48) requires the connector spacing a to be chosen such that 

( KL/r  j x  { KL/r ,,, 
[ :), 2 0.75 times the larger of 

= 37.27 5 [ 0.75( 57.93) = 43.451 as required 1 24 in. [(F), =[4), =0.644 in. 

Therefore, a = 24 in. ( 1 1  = 2 intermediate connectors) is an acceptable choice for this 
built-up member. Between two adjacent connectors, the built-up column behaves as 
two single angles. For z-axis Dendbzg of each L4 x 3 x 3/8, LRFD E2 is applicable: 



4.8 Built-up Columns 153 

A = 2.48 in.2, rz = 0.644 in., a = 24 in. ( K L  / Y ) ~  = 37.27 

[ A c z  = y[K 29,000 = 0.418) < 1.5; AfZ = 0.1747 

For the two single angles: 

$Pn2 = 2[0.85(2.48)(0.658)0-'747(36)] = 141 kips 

The built-up column design strength is only 9.2% less than that for two single angles 
with a pinned-ended length a. 

The top chord members of the truss in Figure 1.15 are to be selected. The same pair 
of angles with long legs back to back and welded to 3/8-in.-thick gusset plates is to 
be used for members 15 to 24. Select the lightest acceptable pair of A36 steel angles. 
Specify the number of intermediate connectors that are needed. 

Solution 

From Appendix A for member 20 and loading 7, P, = 122.5 kips and Mu = 1.91 ft-kips. 
In the final design check of these members, P, and M,, must be accounted for 
simultaneously, as discussed in Chapter 6. In the preliminary design phase of a 
compression-plus-bending member, we account for Mu by using an equivalent P,; in 
this case, we know (from Chapter 6) that a 10% increase in P, is adequate. Try 
equivalent P, = l.lO(122.5) = 135 kips: 

- 

(12 ir1./ft){(30)~ +(2.5)2 

5 
= 72.25 in.  = 6.02 ft Lm = 

At ( K L ) ,  = ( K L ) ,  = 6.02 ft  on LRFD p. 3-69 we find 
1. L4 x 3 . 5 ~  3/8 (QP,, = 135) 2 (equivafent P!, = 135) and 18.2 lb/ft. 
2. Two intermediate welded or fully-tensioned bolted connectors are needed. 

Therefore, the intermediate connector spacing must not exceed 
72.25 in./(2 + 1) = 24.08 in. 

fHaiRpli? 4.12 

The objective of this example is to illustrate how two entries in the column table were 
obtained for a double-angle section when local buckling limits the design strength. 
For F, = 50 ksi, ( K L ) ,  = ( K L ) ,  = ( K L ) ,  = 10 ft, and a pair of L5 x 3 x 1/4 with the long 
legs back to back and 3/8 in. separators, find QPnX and QP,,y. 



Solution 

(: = 201, (a, = = 10.7 
76 1 

Therefore, LRFD Appendix B5.3a and c must be used in computing $Pn,, which is 
limited by local buckling of the angle legs with the larger b/f value. 

Q, = 1.340 - 0.00447 ( b / t ) = 1.340 - 0.00447 ( 20.0) @ = 0.708 

This agrees with Q, = 0.708 given on LRFD p. 1-97. Q, is a stress reduction factor, Qg, 
is the local buckling stress, and F, is defined on LRFD p. 6-108 [either LRFD Eq. (B5- 
15) or (B5-16) is applicable]. 

Q = Q,QQ = Q, (1.00) = Qs = 0.708 

(a, a = 0.979 JEG = 0.824) < 1.5 

Qk:x = (0.824)’ = 0.679 

$Pnx = 0.85A,Q(0.658Qi’ )Fy 

= 0.85( 3.88)( 0.708)( 0.658)0679 (50) = 87.9 kips 

This agrees with $P,, = 88 kips given on LRFD p. 3-68 at (KL), = 10 ft for a pair of L5 
x 3  x 1/4 and Fy = 50 h i .  
Solution for qPny 

OnLRFDp.3-68at (KL),=10ftforapairofL5x3x1/4andFy=50ksi,twoconnectors 
are required. 

u = (120 in.)/(2 + 1) = 40 in. u/ri = 40/0.663 = 60.33 

(KL/r), = 120/1.21 = 99.17 

u/ri I [0.75(KL/r), = 74.381 as required 

h x + 0.5 s 0.657 + 0.5 (0.375) = o,981 - a=- - --- 
’rib rywr 0.861 
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(5) = /(99.17)2 + 0'82(0*981)2 ( 40 )' = 103.45 
m [ 1+ (0.981)' ] 0.861 

LRFD Appendix B5.3d, p. 6-108, must be used to compute Fq: 

103*45m JT = 1.1505) < 1.5; QAzCy = 1.3236 
K 29,000 

Fcry = 0.708( 0 . 6 5 f ~ ) ' ~ ~  (50) = 20.34 ksi 

LRFD E3, p. 6-48, must be used to compute F+. 
From LRFD p. 1-158, for a single L5 x 3 x 1/4 : 

J = 0.0438 To = 2.45 

From LRFD p. 1-173, for a pair of L5 x 3 x 1/4 with s = 3/8 in.: 

H = 0.634 To = 2.54 

r 1 

Fop = 20.34 + 42.13 [ 1- ,/.I 1- ( 20'34 )( )( o'634 ) = 16.47 h i  
2( 0.634) (20.34 + 42.13) 

qPny = (PA, Fop = 0.85( 3.88)( 16.47) = 54.3 kips 

This agrees with IpP,,, = 55 kips on LRFD p. 3-68. 

4.9 SINGLE-ANGLE COLUMNS 
If a compression member is a single-angle section with only one angle leg fastened 
at the member ends to a gusset plate, the compression force is applied eccentrically 
loaded as shown on LRFD p. 3-104. The member is subjected to biaxial bending plus 
compression and should be treated as a beam-column as illustrated in LFWD 
Example 3-8 (p. 3-104). 

A separate specification and commentary devoted only to single-angle mem- 
bers are given on LRFD pp. 6-277 to 6-300 and must be used to check the design 
strength requirements for single-angle members. LRFD column tables are given on 
LRFD pp. 3-107 to 3-116. 

4.10 STORY DESIGN STRENGTH 
Suppose the plane frame in Figure 4.17(a) is sufficiently braced out of plane such that 
only in-plane sidesway buckling can occur. Based on the LRFQ definitions for 



column design strength, factored loads applied as shown in Figure 4.17(b) are the 
maximum acceptable ones for the sidesway buckling mode. The factored loads 
shown in Figure 4.17(b) were computed as follows: 

1. For the exterior columns (W14 x 48) F ,  = 36 ksi, 

= Gbmom= 

1.6GlG, +4(G,  + G I  )+7.5 

G I  +G, +7.5 
= 1.84 KtTt = 

( K L ) J ( r J r J  = 1.84(15)/3.06 = 9.02 ft  

@P,, = 365 kips (from LRFD p. 3-21) 

2. For the center column (W14 x 61) Fy = 36 ksi, 

G~ = Gbottom= lo 

= 0.474 640 / 15 
2(1350/30) 

G, = G,,, = 

'1.6GlG, +4(G,  +GI )+7.5 

G ,  +GI +7.5 
= 1.78 

(KL)J(rJrjr,)  = 1.78(15)/2.44 = 10.94 ft  

@P,,, = 471 kips (from LRFD, p. 3-21) 

Note that the factored loads in Figure 4.17(b) were obtained from the LRFD 
design requirement of @P,,, 2 P,,  for each column in the frame. The applied joint loads 
that produce sidesway buckling for Figure 4.17(b) are P,, = P, /@= 365/0.85 = 429.4 
kips at the corner joints and P,,, = P, /@= 471 /0.85 = 554.1 kips at the center joint. Also 
note that Eqs. (4.27) and (4.28) are based on the assumption that all columns in the 
frame buckle simultaneously. Since the axial force and the axial deformation in each 
girder are negligibly small when sidesway buckling of the frame occurs, the top end 
of all columns translates the same amount A.  When sidesway buckling occurs, the 
sum of the top-end column moments is I: P,,A = [2(429.4) + 554.114 = 1412.94. In an 
acceptable LRFD design, the sum of the top end column moments is I: P,A = [2(365) 
+ 47114 = 12016. Yura [17] illustrated that the applied load configuration shown in 
Figure 4.1 7(b) is not the only acceptable set of PI, values that can be deduced from the 
sidesway buckling mode. He illustrated that other sets of P,, values are acceptable, 
as we show in Figure 4.17(c), when L: P,, 5 the story design strength = Z(@P,,J and 
when P,, in each column is less than its $P,, , , I _ F ,  value, which is obtained from the no- 
sway buckling mode. To numerically illustrate the preceding statement, suppose the 
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A36 steel. 
All niembers bend about their niiijor principul axis 
when sidesway buckling occurs. 

(a) A n  isolated plane frame 

365 kips 47 1 kips 365 kips 

V Z P ,  = 1201 kips V V A A A 
(b) Design loads obtained from LRFD Figure C-C2.2 

(c) Other possible design load configurations (see text discussion) 

FIGURE 4.17 Sidesway buckling of a plane frame. 

columns in Figure 4.17(d) are braced out of plane such that (KL) ,  = 7.5 ft. For the in- 
plane no-sway buckling mode, K ,  < 1, and we can conservatively use ( K L ) ,  = 15 ft for 
each column. From LRFD p. 3-21, we find for no-sway buckling that: 

1. For each W14 x 48, 

[ (KL) ,  = 7.5 ft] > [(KL)x/(rJr,,) = 15/3.06 = 4.90 ft] 

@',I ( n s J  = @'try = 384 kips 

2. For the W14 x 61, 

[ ( K L ) ,  = 7.5 ft] > [ ( K L ) x / ( r J r y )  = 15/2.44 = 6.15 ft] 

@PI, (ns) = @P,, = 510 kips 
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Thus, we can choose any set of P, values for Figure 4.17(c) that satisfies the following 
requirements: 

For example, if we choose [P, = P, (2) = 346 kips] I [$P, fm, = 384 kips] and [P, (3) = 
509kips]I(~P,,,~,=510kips),then[I;P,=2(346)+509= 1201]11201 kips.Thischosen 
set of P, values satisfies the preceding requirements and is an acceptable set of P, 
values for Figure 4.17(c). As shown in the following discussion, the story design 
strength may be applicable for all columns in a story of an entire structure. 

The one-story structure in Figure 4.18 is unbraced in each direction. Note that 
each column cross section in Figure 4.18(a) is rotated 90" with respect to its 
neighboring cross sections. This was done to provide some major principal-axis 
column bending strength for resisting sidesway buckling in both directions (x  and 
y). As shown in Figure 4.18(b), the connection of the beam end to the minor axis of 
the column was chosen for illustration purposes as a hinge. A concrete slab exists on 
top of the beams shown in Figure 4.18(a) to provide a flat roof surface. This concrete 
roof slab is stiff in the xy-plane and ensures that the top ends of all columns translate 
the same amount in the x-direction if sidesway buckling occurs in the XZ-plane. 
Similarly, the top ends of all columns translate the same amount in the y-direction if 
sidesway buckling occurs in the YZ-plane. Therefore, each of the three plane frames 
in each direction contributes to the story buckling strength (total roof level load that 
causes sidesway buckling to occur). In the following discussion, we show how to: 

1. Determine the story design strength due to sidesway buckling of a single- 

2. Allocate the column axial compressive forces due to a uniformly distributed 
story structure. 

factored load on the roof. 

Only two bays in each direction were chosen in Figure 4.18(a) to simphfy the 
illustrated calculations. The concepts in the following discussion are applicable to 
any number of bays in each direction, but the calculations for more than two bays in 
each direction would overshadow what we are trying to convey. Also, rigid connec- 
tions could have been chosen where hinges are shown. 

Figure 4.19 is an enlargement of Figure 4.18(b) and shows the estimated #PM 
values for each column due to sidesway buckling. These values were estimated as 
shown in the following discussion. 

Column 2 in Figure 4.19(a) is pinned on both ends and does not provide any 
sidesway buckling resistance. For columns 1 and 3 in Figure 4.19(a), 

Gi = Gbottom= 10 

G, = G,, = 485/15 =1.4 
1350 / 60 
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1.6GiGj +4(Gi + G j  )+7.5 
K ,  = K ,  = i Gi +Gj  +7.5 

= 2.01 

(KL)/(rJrJ = 2.01(15)/3.06 = 9.85 ft 

$Pnx = 355 kips (from LRFD p. 3-21) 

Columns 4 and 6 in Figure 4.19(b) are pinned on both ends and do not provide 
any sidesway buckling resistance. For column 5 in Figure 4.19(a), we obtain 

Gi = Gbottom= 10 

30 A 

I?--H H7--- 
9 1  I I 

I I I 
I 

I I 
I I 1 X 

A36 steel; all columns: W14 x 48; all girders: W24 x 55 

(a) Roof framing plan 

30 A 30 ft 30 ft 

1 2 3 4 5 6 
7 8 9 1 4 7 
2 5 8 3 6 9 

Dots are hinges at the top column ends. 
@) Plane frame views 

FIGURE 4.18 One-story unbraced frame. 
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G .  = 
I 

485 / 15 
2 [ 0.5 ( 1350 / 30)] 

= 0.719 

1.6G,G, + 4 ( G ,  +G,)+7.5 

G,  + G, + 7.5 
= 1.84 

(KL)J(rJr,,) = 1.84(15)/3.06 = 9.02 f t  

@Pnx = 365 kips (from LRFD p. 3-21) 

For sidesway buckling in the x-direction of Figure 4.18(a), the lower bound 
estimate of the story design strength = = 2(2)(355) + 365 = 1785 kips. As 
mentioned, the concrete roof slab ensures that A in Figures 4.18(a) and (b) is identical, 
and for the buckled configuration we obtain PA = 17854, which is the secondary 
moment produced by the factored loads due to a sidesway deflection of A. 

For sidesway buckling in the y-direction of Figure 4.18(a), the lower bound 

355 kips 

I 2 3 
7 8 9 
2 5 8 

(a) One pinned-ended column case 

4 5 6 
I 4 7 
3 6 9 

(b) ‘Two pinned-ended columns case 

FIGURE 4.19 Design loads for sidesway buckling of a plane frame. 
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estimate of the story design strength = C(@',,, ) = 2(365) + 2(355) = 1440 kips, which 
is less than 1785 kips obtained for the x-direction. Therefore, the lower bound 
estimate of the story design strength = 1440 kips (y-direction governs). 

Some of the columns in Figure 4.18 do not provide any resistance to sidesway 
buckling. However, for a uniformly distributed factored loading on the roof, all 
columns in Figure4.18(a) will have an axial compression force in them. For preliminary 
design purposes, if we compute the axial compression force in each column using 
tributary loads as shown in Figure 4.20 and ignore the primary bending moment (Mil,) 
at the top ends of the columns with rigid beam-to-column connections, we find 

1. PI, in the corner columns (1,3,7, and 9), 
2. 2P, in the side columns (2,4,6, and 8), and 
3. 4P,, in the center column (5). 

Thus, the total factored roof loading = 4(Pll )+ 4(2P,, ) + 4P,, = 16P,, 
Notc: Inchapter 6, we will discuss how tocompute an cquivnleiif PI, that accounts 

Y 

Shaded tributary arcas iire shown for each column. 
For a uniformly distributed load on the roof surlacc, 
column loads from the tributary a r e a  arc shown below. 
Note: These loads are valid for preliminary design purpose> 

f, on columns I ,  3, 7, and 9 
2': on colurnns 2 ,4 .h ,  and 8 
4': on column 5 

FIGURE 4.20 Uniformly loaded structure 
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for the effect due to Mu,. In the present discussion, we assume that the effect due to 
Mu, is negligible since we do not know how to account for it at the present time. 

The lower bound estimate of the story design strength = 1440 kips, and the total 
factored roof loading cannot exceed 1440 kips for a satisfactory LRFD design. Thus, 
16P, = 1440 kips and P, = 90 kips, 2P, = 180 kips, and 4P, = 360 kips. 

For no sidesway buckling (braced frame buckling) of Figure 4.18(a), K = 1 for all 
pinned-ended columns and K < 1 for the columns rigidly connected at the tops to the 
girders. If we conservatively use K = 1 for the latter columns, (KL),  = (a), = 15 ft and 
$Pfl = ( $P,,, = 270 kips) for each column. Since [C($P,, ) = 9(270) = 2430 kips] > 1440 kips, 
the governing story design strength is 1440 kips Jue to sidesway buckling in the y- 
direct ion. 

Column 5 of Figure 4.20 is the most heavily loaded column. For the sidesway 
buckling mode, this column has an axial compression force of (4P, = 360 kips) > ($Pfl 
= 270 kips for no sway buckling), and a stronger column needs to be chosen. Since 
(W, = 180 kips) < ($Pfl = 270 kips for no-sway buckling) and (P ,  = 90 kips) < (@Pn = 
270 kips for no-sway buckling), sidesway buckling in the y-direction governs the 
design strength of the other columns in Figure 4.18(a). 

If the factored loading on the roof is not uniformly distributed as assumed in 
Figure 4.20, the most heavily loaded column can have P, < 270 kips in the sidesway 
buckling mode and P, = 270 kips in the no sidesway buckling mode. In the sidesway 
buckling mode, C P,  I 1440 kips with P, < 270 kips in any of the columns are the 
limiting conditions. That is, in the sidesway buckling mode the distribution of the 
column P, values can be arbitrary, provided that P, < 270 kips in any column and 
C P, 2 1440 kips. 

Suppose that we are performing the preliminary design of the structure in 
Figure 4.18(a) for P, = 90 kips in columns 1,3,7, and 9; P, = 180 kips in columns 2,4, 
6, and 8; and P,  = 360 kips in column 5 and CP, = 1440 kips. As shown, we can choose 
to use W14 x 48 and F = 36 ksi columns for all except column 5. For the no sidesway 
buckling mode of cofumn 5, the design requirement is $Pny 2 ( P ,  = 360 kips). For 
column 5, F, = 36 ksi and (KL),  = 15 ft; a W14 x 61, ($P,,, = 412 kips) > ( P ,  = 360 kips), 
is the lightest acceptable W14 choice. Note that using the W14 x 61 for column 5 in 
Figure 4.18(a) increases the story buckling strength for sidesway deflection in the 
x-direction, but does not affect the story buckling strength for sidesway in the 
y-direction. Since the govening story buckling strength is due to sidesway deflection 
in the y-direction, no further design check calculations are necessary. For preliminary 
design purposes, a W14 x 48 for columns 1 to 4 and 6 to 9 and a W14 x 61 for column 
5 are acceptable choices. 

PROBLEMS 
4.1 Find (PP,, for W14 x 90, F ,  = 65 ksi; (KL),  = (KL),  = 20 ft. 

4.2 Find $P,, for W14 x 90, F,  = 65 ksi; (KL),  = 20 ft; (KL),  = 10 ft. 

4.3 Find $P,, for W14x 90, Fy= 65 ksi; (KL),=12 ft; (KL), = 6 ft. 

4.4 Use LRFD p. 3-20 and find (PP,, for W14 x 90, F,  = 50 ksi; (KL), = (KL), = 20 ft. 

4.5 Use LRFD p. 3-20 and find $Pfl for W14 x 90, F,  = 50 ksi; (KL),  = 20 ft; 
(KL),  = 10 ft. 
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4.6 Given P, = 550 kips; (a), = 20 ft; (KL), = 10 ft; Fy = 50 ksi, find the lightest 
acceptable 

(a) W14 
(b) w12 
(c) w10 
(4 W8 

4.7 F, = 36 ksi. Girders are as shown in Figure P4.7. All members bend about their 
major axis for in-plane frame buckling. All columns are W12 x 65 and (KL), = L . Use 
Eq. (4.27) to find K, . Find the column design strength for members 1 to 3. 

W24x 76 8 W24x 76 

FIGURE P4.7 

4.8 Solve Problem 4.7 for Fy = 50 ksi. 

4.9 Fy = 36 h i .  Girders are as shown in Figure P4.7. All members bend about their 
major axis for in-plane frame buckling. All columns are W12 x 65 and (KL),  = L . Use 
Eq. (4.27) to find K, . Find the column design strength for members 6 to 8. 

4.10 Solve Problem 4.9 for Fy = 50 hi. 

4.11 Fy = 36 ksi. Girders are as shown in Figure P4.7. All members bend about their 
major axis for in-plane frame buckling. All columns are W12 x 65 and (KL), = L . Use 
Eq. (4.27) to find K, . Find the column design strength for members 4 and 5. 

4.12 Solve Problem 4.11 for Fy = 50 ksi. 

4.13 A pair of L6 x 4 x 1/2 with long legs back-to-back and 3/4-in.-thick 
separators spaced at intervals of 80 in. along the member length is used as a 
compression member in a truss. (a), = (KL),  = 20 ft. Find 

4.14 A pair of L6 x 4 x 3/4 with long legs back to back and 3/4in.-thick 
separators spaced at intervals of 80 in. along the member length is used as a 
compression member in a truss. M L ) ,  = (KL), = 20 ft. Find $P" for F, = 65 h i .  

4.15 A pair of C12 x 30 with tie plates spaced at intervals of 4 ft  along the member 
length is used as a compression member in a truss. See Figure P4.15 for the cross- 
section dimensions. (KL), = (KL), = 20 ft. Find @'" for F, = 36 ksi. 

for Fy = 36 ksi. 
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9 in. 
FIGURE P4.15 

4.16 P, = 360 kips; F,  = 36 ksi; (KL) ,  = (KL),  = 20 ft. Find the lightest pair of angles 
with 3/8-in.-thick separators to serve as a compression member in a truss. Specify the 
minimum acceptable number of intermediate connectors and the maximum connec- 
tor spacing. 

4.17 Solve Problem 4.16 for F ,  = 50 ksi. 

4.18 P, = 240 kips; Fy = 36 ksi; ( K L ) ,  = ( K L ) ,  = 16 ft. Find the lightest pair of angles 
with 3/8-in.-thick separators to serve as a compression member in a truss. Specify the 
minimum acceptable number of intermediate connectors and the maximum connec- 
tor spacing. 

4.19 Solve Problem 4.18 for F ,  = 50 ksi. 

4.20 P, = 240 kips; Fy = 36 ksi; (KL) ,  = 8 ft; (KL) ,  = 16 ft. Find the lightest pair of 
angles with 3/8-in.-thick separators to serve as a compression member in a truss. 
Specify the minimum acceptable number of intermediate connectors and the maxi- 
mum connector spacing. 

4.21 Solve Problem 4.20 for Fy = 50 ksi. 

4.22 P, = 200 kips; F ,  = 36 ksi; (KL) ,  = ( K L ) ,  = 10 ft. Find the lightest acceptable 

4.23 Solve Problem 4.22 for Fy = 50 ksi. 

4.24 P,, = 200 kips; F, = 36 ksi; ( K L ) ,  = 5 ft; (KL),  = 10 ft. Find the lightest acceptable 

4.25 Solve Problem 4.24 for F ,  = 50 ksi. 

4.26 P, = 130 kips; Fy = 36 ksi; ( K L ) ,  = 5 ft; (KL) ,  = 10 ft. Find the lightest acceptable 

4.27 Solve Problem 4.26 for Fy = 50 ksi. 

WT section to serve as a compression member in a truss. 

WT section to serve as a compression member in a truss. 

WT section to serve as a compression member in a truss. 
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4.28 AstructuraltubeST20~12~5/16(LRFD,p. 1-126)ofFy=46ksisteelisused 
as a column for (a), = 20 ft and (KL),  = 10 ft. Using LRFD Eq. (A-B5-11) on p. 6-107 
and Eqs. (A-B5-15) to (17) on p. 6-108, find thecolumn design strength. The width of 
each stiffened compression element in the structural tube is the applicable outside 
dimension minus 2r. Assume that r = 2t (see last paragraph on LRFD, p. 1-120). Use 
F ,  = 16.5 ksi. 

4.29 Solve Problem 4.28 for a ST20 x 12 x 3/8. 

4.30 Using LRFD Eq. (A-B5-9) on p. 6-107 for F, = 36 ksi, verify that Q, = 0.563 
as shown on LRFD p. 1-77 for a WT8 x 13 used in a truss as a compression member. 
Using LRFD Eqs. (A-B5-15) to (17) on LRFD p. 6-108, compute @P,,, and @P,,, for (KL), 
= ( K L ) ,  = 10 ft. Using LRFD Eqns (A-E3-1) to (4) and (6) on pages 6-109 and 110, 
compute @P,Iy. Compare the computed $P,,, and (PP,,, values to those on LRFD p. 3- 
95 for a WT8 x 13 and (KL), = (KL), = 10 ft. 

4.31 Solve Problem 4.30 for a WT7 x 11. 

4.32 Solve Problem 4.30 for a WT6 x 20 and F, = 50 ksi. 

4.33 Using LRFD Eq. (A-B5-3) on p. 6-106 for Fy = 36 ksi, verify that Q, = 0.804 
as shown on LRFD p. 1-101 for a pair of L5 x 3 x 1 /4 used in a truss as a compression 
member, with the short legs separated at the member ends by a 3/8-in.-thick gusset 
plate. Using LRFD E2 to E4 and Appendix E, compute @Pn, and @P,, for ( K L ) ,  = ( K L ) ,  
= 8 ft and ( K L ) ,  = a = 32 in. Compare your computed design strength values to those 
on LRFD p. 3-77 for a pair of L5 x 3 x 1/4 and (KL) ,  = (KL) ,  = 8 ft. 

4.34 Solve Problem 4.33 for F,  = 50 ksi. 

4.35 All members of the plane frame in Figure P4.35 are A36 steel and bend 
about their strong axis when sideswaybucklingoccurs. All columns are W14 x 74 and 
all girders are W21 x 44. The exterior columns are rigidly connected to the girder. The 
interior columns are pinned at each end, but the girders are continuous (contain no 
hinges). Weak-axis column bracing is provided only at the column ends. Find the 
story buckling strength. Find the maximum percentage of the story buckling load 
that can be allocated to each interior column. 

FIGURE P4.35 
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4.36 Solve Problem 4.35 for Fy = 50 h i  steel. 

4.37 All members of the plane frame in Figure P4.37 are A36 steel and bend 
about their strong axis when sidesway buckling occurs. All columns are W14x 74 and 
all girders are W21 x 44. The interior columns are rigidly connected to the girder. The 
exterior columns are pinned at eachend. Weak-axis column bracing is provided only 
at the column ends. Find the story buckling strength. Find the maximum percentage 
of the story buckling load that can be allocated to each exterior column. 

30 ft 30 ft 30 ft 

FIGURE P4.37 

4.38 Solve Problem 4.37 for Fy = 50 ksi steel. 

4.39 AU members of the plane frame in Figure P4.39 are A36 steel and bend about 
their strong axis when sidesway buckling OCCUTS. The girder is a W27 x 94. The left 
exterior column is rigidly connected to the girder, but the right exterior column is 
pinned at each end. Weak-axis column bracing is provided only at the column ends. 
For the factored loads shown, choose the lightest acceptable W14 for each column. 

750 kips 750 kips 

FIGURE P4.39 

4.40 All members of the plane frame in Figure P4.40 are A36 steel and bend 
about their strong axis when sidesway buckling occurs. All girders are W27 x 94. The 
exterior columns are rigidly connected to the girder. The interior columns are pinned 
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at each end, but the girders are continuous (contain no hinges). Weak-axis column 
bracing is provided only at the column ends. For the factored loads shown, choose 
the lightest acceptable W14 for each column. 

500 kips 750 kips 750 kips 500 kips 

FIGURE P4.40 

4.41 All members of the plane frame in Figure P4.41 are A36 steel and bend 
about their strong axis when sidesway buckling occurs. All girders are W27 x 94. The 
interior columns are rigidly connected to the girder. The exterior colunns are pinned 
at each end. Weak-axis colwnn bracing is provided only at the column ends. For the 
factored loads shown, choose the lightest acceptable W14 for each column. 

500 kips 750 kips 750 kips 500 kips 

4 4 4 4 

FIGURE P4.41 

4.42 Girders are as shown in Figure P4.7. All members bend about the x-axis for 
in-plane frame buckling. Fy = 36 ksi. All columns are W12 x 65. (KL),  = L for all 
columns. Use Eq. (4.27) to find K, . Find the story design strength for members 3,5, 
and 7. 

4.43 Solve Problem 4.42 for F ,  = 50 ksi. 

4.44 Girders are as shown in Figure P4.7. All members bend about the x-axis for 
in-plane frame buckling. F = 36 ksi. All columns are W12 x 65. (KL), = L for all 
columns. Use Eq. (4.27) to &d K,. Find the story design strength for members 1,2, 
4,6,  and 8. 

4.45 Solve Problem 4.44 for Fy = 50 ksi. 
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Beams 

5.1 INTRODUCTION 
A beam is defined as any structural member that bends and/or twists due to the 
applied loads, which do not cause an internal axial force to occur in the member. 
Therefore, an applied load on a beam cannot have any component parallel to the 
member length. Concentrated and distributed loads between the member ends, and 
member-end moments, are examples of applied loads on a beam. 

For notational convenience on structural drawings and in structural design 
calculations, beams are sometimes categorized as follows: 

1. Girders are the beams spaced at the largest interval in a floor or roof system. 
They support the most load in a floor or roof system. The primary loads on 
girders are the reactions of other beams and possibly some columns. 

2. Floor beams support joists. 
3. joists are the most closely spaced beams in a floor system. They support the 

concrete floor slab. Steel joists may be either rolled sections or fabricated 
open-web joists (small trusses). 

4. Roof beams support purlins. 
5. Purl ins  are the most closely spaced beams in a roof system. Purlins support 

the roof surface material and may be open-web joists, hot-rolled sections, o r  
cold-formed sections. 

6. Spandrel beaim support the outsideedgesof a floor deckand theexterior walls 
of a building up to next floor level. 

7. Lintels span over window and door openings in a wall. A lintel supports the 
wall portion above a window or door opening. 

8. Girts are exterior wall beams attached to theexterior colutnns inan industrial- 
type building. They support the exterior wall and provide bending resistance 
due to wind. 

168 
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9. Stringers are beams parallel to the traffic direction in a bridge floor system 
supported at panel points of trusses located on each side of the bridge deck. 

10. Diaphragms are beams that span between the girders in a bridge floor system 
and provide some wheel load distribution in the direction perpendicular to 
traffic. 

5.2 DEFLECTIONS 
In the second paragraph of LRFD Chapter L (p. 6-98), we find: ”Limiting values of 
structural behavior to ensure serviceability (for maximum deflections, accelerations, 
etc.) shall be chosen with regard to the intended function of the structure.” 

LRFD L3.1 states: ”Deformations in structural members and structural systems 
due to service loads shall not impair the serviceability of the structure.” 

LRFD L3.3 states: ”Lateral deflection or drift of structures due to code-specified 
wind or seismic loads shall not cause collision with adjacent structures nor exceed 
the limiting values of such drifts which may be specified or appropriate.” 

The LRFD Specification does not provide any guidelines on the limiting values 
for beam deflections and for drift (system deflections due to and in the direction of 
wind, e.g.). Therefore, the structural designer must decide what the appropriate 
limiting deflection values for each structure are based on experience, judgment, the 
satisfactory performance of a similar structure, and the owner’s intended use of the 
structure. Table 1.2 gives some suggested limiting values for beam and drift 
deflections. 

Deflections must be considered in the design of almost every structure. In the 
interest of minimizing the dead weight of high-rise structures, high-strength steel 
members are used wherever they are economically and structurally feasible. Con- 
sider a 20-ft.-long W section member, for example. The member weight is a function 
of only one variable, the cross-sectional area. As the member weight decreases, the 
cross-sectional area and the moments of inertia decrease, and the member becomes 
more flexible and permits larger deflections to occur. Consequently, controlling 
deflections becomes more of a problem when the dead weight of the steel members 
is minimized. If a high-rise structure sways too much or too rapidly, the occupants 
become nauseated or frightened although no structural damage may occur. Simi- 
larly, the public becomes alarmed if a floor system of a building or a bridge is too 
flexible and noticeably sags more than a tolerable amount. Also there are situations, 
such as a beam over a plate glass window or a water pipe, where excessive 
deflections can cause considerable damage if they are not controlled by the structural 
designer. If the roof beams in a flat roof sag too much, water ponds on the roof, 
causing additional sagging, more ponding, which can rupture the roof surface, and 
extensive water damage can occur to the contents of the structure. Consequently, it 
is not unusual for deflections to be the controlling factor in the design of a structure 
or the design of a member in a structure. 

Construction can only be done within tolerable limits. For example, columns 
cannot be perfectly plumbed and foundations cannot be placed perfectly in plan 
view nor in elevation view. Deflections that occur during construction due to these 
imperfect erection conditions, wind, temperature changes, and construction loads 
must be controlled by the steel erection contractor to ensure the safety of the 
structure, the construction workers, and the public. Total collapses of steel structures 
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have occurred during construction because the erection contractors did not provide 
adequate drift control bracing and/or adequate shoring to limit gravity direction 
deflections during construction. 

The deflected shape of a structure due to service conditions sometimes can be 
economically controlled by precambering the structure. Precambering (see LRFD 
L1, p. 6-98) is achieved by erecting the structure with built-in deformations such that 
the structure deflects to or slightly below its theoretical no-load shape when the 
maximum service loads occur on the structure. For example, suppose that the bottom 
chords of a simply supported plane truss are deliberately fabricated too short. When 
the truss is assembled, the interior truss joints displace upwardly. When the service 
loads occur, each interior truss joint displaces downward to or slightly below its no- 
load, camberless position. 

Current structural design practice is to design the structural members to have 
adequate strength to resist bending moment, shear, and axial force (if applicable). 
Then, gravity direction and drift deflections are checked to determine if they are 
adequately controlled to ensure the desired level of serviceability. Some of the 
common serviceability problems were stated in Section 1.1.4. 

5.3 SHEAR 
The design requirement for shear is 

where 
&, = 0.90 
V ,  = required shear strength 
Vn = nominal shear strength, which is defined later 

The design approach for a beam whose cross section is a W section, for example, 
is to select the lightest W section that satisfies the design requirement for bending and 
to check the selected section for all of the other design requirements [shear and 
serviceability (deflection and vibration control), for example]. If any of the other 
design requirements are not satisfied for the selected section, the structural designer 
must either choose another section that satisfies all of the design requirements or 
appropriately modify the selected section to satisfy all of the violated design 
requirements. 

For W section and C section beams, satisfying the design requirement for shear 
usually is not a problem, except for the following cases: 

1. A beam end is coped (see Figure 5.12(e); LRFD Fig. C-J5.1, p. 6-228; LRFD Fig. 
8-59, p. 8-226). If the beam end has a bolted connection (see LRFDFig. C-J5.1, 
p. 6-228), the design shear rupture strength (see LRFD J4, p. 6-87) must be 
determined. If the beam end is coped and has a welded connection, the coped 
web depth must be used in the nominal shear strength definition. 

2. Holes are made in the beam web for electrical, heating, and air-conditioning 
ducts, for example. The net web depth must be used in the nominal shear 
strength definition. Also, web stiffeners may be needed around the holes to 
strengthen the web. 
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3. The beam is subjected to a large concentrated load located near a support. For 
W and C sections bending about their strong axis, the web resists all of the 
shear. Most likely, web stifieners (see Sections 5.14 and 5.15; LRFD K1.8 and 
K1.9, p. 6-96) will be needed at the support and at the concentrated load 
points, and we would satisfy LRFD Appendix F2 (p. 6-113) in the region 
between the web stiffeners. For W and C sections bending about their weak 
axis, each flange resists half of the shear. 

If a beam does not have any holes in the web nor any coped ends, the following 
formulas are applicable for W and C sections subjected to shear in the plane of the web. 

1. When ( h / f , ) < ( 4 1 8 / E )  
skar yielding of the web is the mode of failure, and the nominal shear strength 
definition is (see LRFD F2.2, p. 6-56) 

V,, = 0.6F,fwd 

2. When ( 4 1 8 / E )  < ( h / t ,  ) I (523/ E)  
inelastic shear buckling of the web is the mode of failure, and the nominal shear 
strength definition is 

3. When ( 5 2 3 / E )  < ( h /  f , ) I 260 

elastic shear buckling of the web is the mode of failure, and the nominal shear 
strength definition is 

For unsymmetric sections and for weak-axis bending of singly-symmetric or 
doubly-symmetric sections, the shear design strength definition is given in LRFD H2 
(p. 6-60). 

For the design shear strength definition of other sections, see LRFD Appendix 
F2 (p. 6113) and LRFD Appendix G3 (p. 6-124). 

Also, see LRFD Figure C-K1.2 (p. 6-234) for a sketch pertaining to LI2FD K1.7 (p. 
6-95), which gives the design shear strength definition for a column web panel 
subjected to high shear. 

Since shear usually is not a problem for rolled sections used as a beam, we chose 
not to have any examples dealing only with shear. 

5.4 BENDING BEHAVIOR OF BEAMS 
The hot-rolled steel section most commonly used as a beam is the W section [see 
Figure 5.l(a)], which is doubly symmetric and I-shaped. A W section is config- 
ured for economy to provide much more bending resistance about the major 
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principal axis than about the minor principal axis. Therefore, the following 
discussion begins with the behavior of a W section beam subjected to an applied 
moment that causes the member to bend about the major principal axis of the 
cross section. 

Figure 5.l(b) shows a W section beam of infinitesimal length subjected only to 
bending about the major principal axis x of the cross section. A cross section in the 
xy plane prior to bending is assumed to remain a plane section in the rotated 
position after bending occurs. Therefore, as shown in Figure 5.l(c), the strain 
diagram is linear; the maximum compressive strain is denoted as E, and the maximum 
fens& strain is denoted as E ~ .  The rate of change of 0, = do, l d z  in Figure 5.l(b) is 
called the curvature @,, which can be computed as shown in Figure 5.l(c) for small 
slope theory. 

t y  

w 
(a) Cross section 

:pi a' a 

2 
_d 

- 
b 'b  & = -  

I dz 
& E  

d l 2  d l 2  f#J = t a n @  =L=L 

(b) Differential segment (c) Strain diagram 

M ,  < S, Fy Partially 
plastic 

Completely elastic 

8 F, 

Assumption: There are no residual stresses in the W section. 

(d) Stress diagrams 

FIGURE 5.1 Uniform bending of infinitesimal-length W section. 
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To simplify the discussion, we temporarily assume there are not any rcsidiiul 
stresses in the member. For a particular steel grade, the stress-strnin relation for each 
cross-sectional fiber is as shown in Figures 2.1 and 2.2. I f  the cxfrcnre f iber straiiis, E, 

and E,, do not exceed the yield strain,  E ~ ,  on the appropriate stress-strain curve, the 
stress diagram is E times the strain diagram (see the completely elastic case in 
Figure 5.l(d) or, alternatively, the bending stresses can be computed by using the 

j7cxii re f o r m  u la: 

where the minus sign accounts for the chosen sign convention: a tensile stress is 
positive and a compressive stress is negative. In the cross-sectional region where 
y is negative in Figure 5.l(a), only tensile stresses exist in Figure 5.l(d) due to the 
applied moment in Figure 5.l(b), and tensile stresses are positive. Therefore, the 
minus sign in the flexure formula is needed for the bending stress to have the 
correct sign. 

In Figure 5.l(d), note that we chose to use arrows instead of signs to denote 
compressive and tensilestresses acting on the right end of the beam segment. For the 
completely elastic case in Figure 5.l(d), the extreme fiber stresses due to M, are 
denoted as fblc (maximum compression stress due to bending about the x-axis) and 
fill, (maximum tension stress due to bending about x-axis). 

Eventually we will have to be prepared to deal with cross sections that are not 
symmetric about the bending axis. Therefore, we choose to make the following 
definitions for a cross section that is not symmetric about the x-axis: 

1. Let yc and yf, respectively, be the absolute value of y in the flexure formula 
when the stress in the cxtrenie coniprcssiortfibcr and in the e.~frcvnr tcrrsionfib~r, 
respectively, are computed. 

2. Let 

1 ,  S>, = -  
Y c 

Then, the maximum compression stress due to x-axis bending is 

M 
f =1 

s I< 

XC 

and the maximum tension stress due to x-nxis bending is 

M 
f =I 

s X I  

i t  

If the cross section is symmetric about the .r-nxis, let 
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The value of S,, the elastic section modulus for x-axis bending, is given in Part 
1 of the LRFD Manual for each W section. 

WhenMxinFigure5.1(b)producesextreme fiber strains (seeFigure 5.l(c)) that 
exceed the yield strain but are less than the strain-hardening strain, the bending 
stresses are as shown in the partially plastic case (see Figure 5.l(d)) and cannot be 
computed by the flexure formula. These bending stresses must be obtained from 
the stress-strain relations (see Figure 2.2). The completely plastic case in Figure 
5.l(d) is theoretically impossible since the strain at the bending axis is always zero. 
However, in laboratory tests the plastic bending moment, Mpx = Z$,, where Zxis the 
plastic section modulus for x-axis bending, can be developed and exceeded as shown 
in Figure 5.2 on the moment-curvature diagram. When the curvature in Figure 5.2 
is only two times the curvature at first yield, M, = 0.97M,,. For A36 steel, the 
curvature at which strain hardening begins to occur is about 12 times the yield 
curvature; that is, &,, = 12$y. 

As shownin Figure 5.3, due to uneven cooling there are residual stresses ina hot- 
rolled W section. The extreme fiber at each flange tip has the maximum residual 
compressive stress, F,,, which is assumed to be 10 ksi (see LRFD Fl.Za, p. 6-54). 
Therefore, based on the assumption stated in the note of Figure 5.3, the top comer 
fibers in Figure 5.3(a) begin to yield whenMJS, + F, = F,. Figure 5.4 shows the effect 
of residual stresses on the momentarvature relation for x-axis bending of a W 

A 

Assumption: There are no residual stresses in the W section. 

FIGURE 5.2 Moment-curvature for X-axis bending of a W section. 
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Residual stresses in each flange: 
F, = maximum compressive residual stress 
Fn = maximum tensile residual stress - -  bf 

(a) Plan view of flange Residual stresses in the web: 
F, and cl same as noted for flanges 
Note: For a linear variation of residual 

stresses across the flange width 
and along the depth direction of 
the web, F,= Fn = F, 

LRFD page 6- 18 gives 
F, = 10 ksi for rolled sections 

(b) Side elevation view of web 

FIGURE 5.3 Residual stresses in a W section. 

Ignores residual stresses 

* @x 

FIGURE 5.4 Effects of residual stresses on moment-curvature. 
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section. When residual stresses are accounted for, the elastic limit for M, is M, = S, 
(Fy - F,, ). Also, the fibers that yielded first will be the first fibers to strain harden. 
However, the maximtinz nominal bending strength defined in the LRFD Specifications 
is the internal bending moment for the completely plastic case of Figure 5.l(d). 

5.5 PLASTIC BENDING 
The purpose herein is to illustrate how 

1. to locate the plastic neutral axis (PNA) 
2. to compute the plastic moment for x-axis bending M,, of a singly-symmetric, 

I-shaped section for which: 
a. all elements are made of the same grade of steel 
b. the flange elements are made of a higher grade of steel than the web 
element. 

For illustration purposes, let all of the elements in Figure 5.5 have the same yield 
strength, Fy = 36 ksi. We can treat Mrlx as a C = T couple separated by a lever arm a. 
Let: 

A ,  = section area subjected to compression yield stress 

A,  = section area subjected to tension yield stress 

A = total cross sectional area. 

Since (C = A,F,) = (T = A,F,), this requires that A, = A, = A / 2 ,  which enables us to 

Fy = 36 ksi 

f 1  F,, = 36 ksi 

(a) Cross section (b)  Stresses (c) Forces 

FIGURE 5.5 PNA o f  a singly-symmetric section 
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locate the PNA. 

A = 2(12) + 20(0.5) + 2(9) = 52 in.2 

A 52 
2 2  
- = 26 in.2 

Since the area of the top flange = 2(12) = 24 in.2 is less than A/2 = 26 in.*, the PNA is 
located at 

y, = d - y, = (2 + 20 + 2) - 6.00 = 18.00 in. 

The procedure for computing M,, is to decompose the compression and tension 
regions into shapes for which we can easily find their area and centroid. The internal 
force acting at each of these centroids is a stress volume = F 8 , .  To obtainMq,, we use 
the definition of internal forces and their distances from the PNA as shown in Figure 
5.6, and we sum moments a t  the PNA location. 

M,,, = C ( W ,  ) + C ( d , / T /  ) 

C ,  = F,,Acl = 36(2)(12) = 864 kips 

C, = F f l C Z  = 36(4)(0.5) = 72 kips 

T, = FyAll = 36(2)(9) = 648 kips 

12 in. 
F, = 36 ksi 

PNA 

+f I .  
l w  = -  in. + T2 

A L  
t 

I in. Fy = 36 ksi 
9 in. 

M p x  =3C1 +IOT2+19TI 

(c) Forces (a) Cross section (b) Stresses 

FIGURE 5.6 Plastic moment of a singly-symmetric section. 
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T, = FyAtz = 36(16)(0.5) = 288 kips 

d,, = y, - yc1 = 6 - 1 = 5 in. 

dc2 = yc - yc2 = 6 - (1 + 3) = 2 in. 

dtl = yt - yt1 = 18 - 1 = 17 in. 

dt2 = yt - yt2 = 18 - (1 + 9) = 8 in. 
Mpx = 5(864) + 2(72) + 17(648) + 8(288) 

= 17,784 in.-kips = 1482 ft-kips 

To ensure elastic behavior due to service condition loads, LRFD F1.l (p. 6-52) restricts 
Mpx to 1.5F,,S, for homogeneous sections. Therefore, we need to compute 1.5FyS,!. 
From the bottom or tension surface of the section, the elas tic neutral axis (ENA) for th~s 
section is located at 

= 13.27 in. (9)( 2)( 1)+ (20)( 0.5)( 2 + 10) + (12)( 2)( 23) - 690 
52 

0*5(20)3 +10(1.27)’ =5360 +24(9.73)’ +- 9(2)3  +18(12.27)’ + 

-- 
18 + 10 + 24 Y t  = 

12(2)3 I, =- 
12 12 12 

= 403.9 in.3 1 5360 s =r=- 
y 13.27 xt 

1.5FYS, = 1.5(36)(403.9) = 21,810 in.-kips = 1817 ft-kips 

(computed M ,  ) = 1482 ft-kips 
1.5FyS, = 1817 ft-kips 

M ,  = smaller of 

Mpx = 1482 ft-kips 

For the hybrid, singly-symmetric, I-shaped section in Figure 5.7, let F = 36 ksi 
and Fyr = 50 ksi. The PNA is the axis that subdivides the axial yield force Py mto two 
equal parts. 

uw 

py = Fyf (q) + Fyupw 

= 50 (24 + 18) + 36(10) = 2460 kips 

- py =12.30 kips 
2 

For the top flange, 

[ FyrAr = 50( 24) = 1200 kips] < 

Therefore, the PNA is located at 

y = 2 + (1230-1200) = 3.67 in, 
36( 0.5) 



5.5 Plastic Bending 179 

Y, = d - yc = (2 + 20 + 2) - 3.67 = 20.33 in. 

To obtain Mpx, we use the definition of internal forces and their distances from 
the PNA as shown in Figure 5.8, and we sum moments at the PNA location. 

C, = F,,pll, = 50(2)(12) = 1200 kips 

C, = Fdk = 36(1.67)(0.5) = 30.06 kips 

Tl = Fypllt = 50(2)(9) = 900 kips 

T, = Fd,, = 36(18.33)(0.50) = 329.94 kips 

d, ,  = y, - ylc = 3.67 - 1 = 2.67 in. 

dl, = yt - ylt = 20.33 - 1 = 19.33 in. 

Mpx= 2.67(1200) + 1.835(30.06) + 19.33(900) + 10.165(329.94) 

= 23,649 in.-kip~ = 1972 ft-kips 

To ensure elastic behavior due to service condition loads, LRFD F1.l (p. 6-52) restricts 
Mpx to 1.5Fgxt for hybrid sections. Therefore, we need to compute 1.5FyfSx,. From the 

(a) Cross section 

Ff = 50 ksi 

.- 
3 x 
II 

Fg 4 t = 50 ksi 

(b) Stresses 

T 

(c) Forces 

FIGURE 5.7 PNA of a hybrid section. 
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9 in. 

- 
1.83 in.  

T 

c 
4 ,i 

I in. T 

(a) Cross section (b) Stresses (c) Forces 

FIGURE 5.8 Plastic moment of a hybrid section. 

previous example, the elastic properties for this section are: y, = 13.27 in.; I ,  = 5360 
in4;  S,, = I, l y ,  = 403.9 i n 3  

1.5FdS,, = 1.5(50)403.9 = 30,293 in.-kips = 2524 ft-kips 

(computed M,, ) = 1972 ft-kips 

1 . 5 F 6 S x ,  = 2524 ft-kips 
M,, ,  = smaller of 

M,,, = 1972 ft-kips 

Figure 5.9(a) shows a W section beam subjected to applied member end 
moments that cause bending to occur about the x-axis of the cross section. When the 
bending moment due to the self-weight of the member is assumed to be negligible, 
the bending moment is constant [see Figure 5.9(b)] along the member length. As 
shown in Figure 4.4, the member has some initial crookedness defined as camber (x- 
axis bending) and sweep (y-axis bending). 

As shown in Figure 5.5, the member end moments in Figure 5.9(a) can 
conceptually be replaced with a couple. Due to the tension force of the couplc, 
below the x-axis of the W section the fibers elongate and their sweep crookedness 
decreases. Due to the compression force of the couple, above the x-axis of the W 
section the fibers shorten and their sweep crookedness increases. Thus, the 
compression flange plus a small portion of the adjoining web can be imagined to 
be a column that will buckle about the y-axis of the W section when the axial 
column force C reaches the critical value. Note that column buckling about the x- 
axis for the imagined column cannot occur. The bottom half of the member is in 
tension. Any tendency of the imagined column to move some more in the 
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(a) Ukform x-axis bending of a W section beam 

I 
(b) M, diagram Z 

X I 

z , and z 2  are Lb values. 
Lbis the distance between laterally braced points 

(c) Plan view of the compression flange in (a) 

Laterally braced point 
of compression flange 

FIGURE 5.9 Beam subjected to member-end moments. 

deflected beam direction (in the negative y direction) would be transferred 
through the web of the W section and resisted by the tension force in the bottom 
half of the member. 

If the intermediate lateral braces for the compression flange in Figure 5.9 are 
removed, we get Figure 5.10, which is the fundamental case in the LRFD 
definition of lateral-torsional buckling (LTB) of a W section subjected to x-axis 
bending. 

For Lb > &(defined later in Eq. 5.9) in Figure 5.10, the failure mode is elastic LTB 
and the critical value of M,, is (see [6,  p. 2531 or [7, p. 1601): 
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I -  - 1  
(a) Uniform X-axis bending of a W section 

1 \top flange 

w is the warping angle between the end planes of top and bottom flanges. 

(b) Plan view of (a) 

(c) Section 1-1 

FIGURE 5.10 Lateral-torsional buckling of a W section beam. 

whichis LRFDEq. (Fl-13) (p. 6-55) withouttheC,parameter.Jis the torsionalconstant 
of a cross section and C, is the warping constant of a cross section. Values of J and C, 
are given on LRFD pp. 1-146 to 1-174 for hot-rolled sections. It should be noted that 
M,, I M, (see Figure 5.4); that is, the effect of residual stresses is accounted for in 
defining the condition of elastic LTJ3. 

For L, 5 L,(defined later in Eq. 5.2) in Figure 5.10, the failure mode is plastic 
bending moment for x-axis bending, M,,, is reached before LTB occurs and 

M ,  = smaller of 

For L, < L, I L,  in Figure 5.10, the failure mode is inelastic LTB. 
A summary of the described behavior for the member in Figure 5.10 is given in 

Figure 5.11, which also contains some information that we will discuss in the next 
two sections of this chapter. In Figure 5.1 1, the small turned-down arcs with numbers 
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n ep [n 2 3 assumed (see footnote C on LRFD page 6-39)] 

Point 2-3 L,, S L p ,  then M, = ( MP = 2, Fy ) 
Point3-i iLp < Lb 6 L,,then M, SM, < MP 

e 
FIGURE 5.11 Mm vs. 0 at ends of W section beam subjected to uniform bending. 

beneath them denote that either LTB has occurred and/or local buckling (of the 
compression flange or the compression zone of the web) has occurred. 

The behavior of a W &on beam subjected to applied member end moments that 
cause uniform bending to occur only about the y-axis also needs to be discussed. For 
this type of W section bending, LTB cannot occur. However, local buckling of each half 
flange that is in compression due to bending about the y-axis can occur if the width- 
thickness ratio exceeds a certain limit 4 (see Section 5.5). When local buckling is 
prevented, as the applied member-end moment increases from zero up to M ,  = S, (F ,  
- F,  ), where F, = 10 ksi is the maximum residual stress for a rolled section, the stresses 
arecompletelyelasticandcanbecomputedbyusingtheflexureformula,f=M /$and 
the extreme fiber stresses are MJSV L F,  where S, is the elastic section mod& for y- 
axis bending and the minus sign applies for the flange tips, which are in tension due 
toM,,. Whenlocalbucklingisprevented, the plastic moment fory-axisbendingM can 
be reached. To ensure elastic behavior due to service condition loads, LRFD F1.lyp. 6- 
52) restricts Mm to 1.5F2, for homogeneous sections, which means that 

M ,  = smaller of 

The behavior of other cross sections (channels, tees, double angles) subjected to 
uniform bending about the major principal axis is discussed later. Also, the behavior 
of a W section beam subjected to unequal applied member-end moments, which 
cause bending to occur about the x-axis, is discussed later. 
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5.6 LIMITING WIDTH-THICKNESS RATIOS FOR COMPRESSION ELEMENTS 
When a W section beam is subjected to bending about the x-axis, one flange and half 
of the web are in compression (see Figure 5.1). Therefore, if the W section elements 
are not properly configured, local buckling of these compression elements can occur 
and be the phenomenon that controls the design bending strength. As shown in 
Figure 5.10, LTB of the beam can also occur and be the phenomenon that controls the 
design bending strength. 

Local buckling and LTB are not always independent phenomena. For discus- 
sion purposes, suppose that we choose a W10 x 26 section of A36 steel for some beam 
tests to be conducted in a laboratory. In each beam test described here, local buckling 
of the web cannot occur (the reader can verify this after we have completed the 
discussion on the limiting width-thickness ratios for compression elements). In each 
beam test, an identical W10 x 26 section of length L is subjected to uniform x-axis 
bending and the only variable is L, (the distance between the laterally braced points 
of the compression flange). 

In our first beam test, the compression flange is laterally braced at L,  = L,,, where 

300 ry 
L,, =- dc- 

where L, is the largest possible value of L, for which M, can be reached. The 
compression flange will begin to deflect in the lateral direction when M,, is reached 
at about 6, = 26, in Figure 5.11, but the capacity to resist moment will not be reduced 
until local buckling in the compression flange occurs at 6,2 36?. 

In our second beam test, L, = OSL, whereas the beam length L is the same as in 
the first beam test. M,, will be reached as before, but the capacity to resist moment 
will not be reduced until one of the following conditions occurs at 6,2 36,: 

1. Local buckling of the compression flange will occur and either immediately 

2. Lateral-torsional buckling will occur and either immediately or after a very 
or after a very short time lapse LTB will occur. 

short time lapse local buckling of the compression flange will occur. 

In our third beam test, L, = 0 (the compression flange is continuously laterally 
braced along the beam length L,  which is the same as in the previous tests). M,, will 
be reached and local buckling of the compression flange will occur at about 6, = 9OP, 
but LTB cannot occur. 

The preceding discussion indicates that local buckling and LTB are not neces- 
sarily independent phenomena. For simplicity, wherever it is possible to do so, they 
are treated independently in the research literature and theoretically oriented 
textbooks [6, 71. At first glance of LRFD B5 (p. 6-36), local buckling appears to be 
treated independently. However, on looking more carefully we find that LRFD 85.2 
and B5.3 are listed under the topic entitled ”Local Buckling.” The most complicated 
and less frequently needed LRFD Specifications are located in the LRFD Appendices. 
Therefore, an in-depth look at LRFD Appendix F1 (p. 6- l l l ) ,  which is cited in LRFD 
B5.3, is not appropriate at this point in our discussion. Consequently, the reader will 
have to accept our statement that local buckling and LTB are not treated as two 
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completely independent topics in the LRFD Specifications. Furthermore, we believe 
that students will gain a better understanding of the material that needs to be 
presented now if we show how LTB is related to local buckling in the AISC 
Specifications. 

For a W section or a channel subjected to bending about the x-axis to reach M, 
(see point 2 on Figure 5.11) and to develop an inelastic rotation of at least 3QP before 
either local buckling or LTB occurs, the following requirements must be satisfied: 

1. For the flanges (see first item in LRFD Table 85.1, p. 6-38), 

b 65 - 5 -  

I J T  (5.3) 

For a W section [see LRFD B5.1 (first item a)-an unstiffened element]: b / t  
= 0.5bf /$ . Note: 0.5bf l f ,  is tabulated in the LRFD Manual Part 1 for each W 
section. For a C section [see LRFD B.l (first item b)-an unstiffened element]: 
b l f  = b, /(average t f ) .  

2. For the web [see LRFD Table B5.1 (webs in flexural compression)], 

(5.4) 

See LRFD B5.1 (second item a)-a stiffened element-for the definition of h. 
See LRFD Manual Part 1 where hlt, is tabulated for each W section. For a C 
section, h = T.  

3. For the compression flange (see LRFD F1.2a, p. 6-53), each L, 5 L,, where L, 
is the distance between two adjacent laterally braced points. 

The width-thickness rafio of each compression element in a beam cross section and 
the unbraced length of the beam compression flange are parameters we must use in 
the determination of the nominal bending strength. Therefore, the requirements of 
these parameters are stated in Section 5.8 for each nominal bending strength 
definition. 

.7 LATERAL SUPPORT 
Figures 5.12 and 5.13 show examples of how the compression flange of a W section 
beam can be laterally braced. For each W section in Figure 5.12, the top flange is 
assumed to be the compression flange in the following discussion. It must be noted 
that twisting of the beam cross sections at the beam ends (at the beam supports for 
gravity direction loads) must be prevented. When an interior lateral brace does not 
prevent twisting of the cross section, LRFD K1.5 (p. 6-93) must be satisfied. 

Continuous lateral support ( L ,  = 0) is provided for the top beam flange in Figure 
5.12(a) if the concrete slab is attached to supports that prevent translation of the slab 
in the direction perpendicular to the web of the W section beam. See Figure 10.3, 
which shows shear studs welded to the top flange of a W section at specified intervals 
along the length direction of the W section. When the specified interval between the 
shear studs is small enough, continuous lateral support is provided for the top beam 
flange. Also, the shear studs prevent the concrete slab from slipping along the length 
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Flange encased in 
concrete slab 

Truss (see Figure 5.13 (a)) 
(b) 

Purlin (roof beam) 
Stiffener @late) 

Braces 
C section 

Tension flange 

(4 
(C) 

(e) (0 

W section in each part is the member being laterally braced 
LRFD K1.5 (p. 6-93) must be satisfied for (a), (e), and ( f ) .  
Note: Also see Figure 5.13. 

FIGURE 5.12 Examples of lateral support for a W section beam. 

direction of the beam, and we have a composite section. A portion of the concrete slab 
is the top of the composite section, and the W section is the remainder of the 
composite section whose behavior we will discuss in Chapter 10. When the shear 
studs in Figure 10.3 are omitted and if the metal decking is adequately welded to the 
top beam flange at sufficiently small intervals along the beam length, calculations 
may show that continuous lateral support is provided for the top flange of the beam. 

As shown in Figure 5.12@), X braces can be used to provide lateral bracing at 
intervals along the beam length. The X braces can be single angles, for example. 
Alternatively, as shown in Figures 5.12(c) to 5.12(f), cross beams can be used to 
provide lateral bracing at intervals along the beam length. In Figure 5.13(a), a truss 
is provided to prevent translation of the cross beams and the X braces in the direction 
perpendicular to the web of the W section being laterally braced. 

Figures 5.12 and 5.13 show some ways that lateral bracing can be provided to 
ensure that the design bending strength requirement (@M, 2 M, ) is satisfied before 
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Comments for (a) and (b): 
Floor framing plans of a 

30 by 3041 bay between 
the W section columns. 

The main members span 
between the columns. 

Curved lies show the 
lateral-torsional buckling 
pattern of the main members. 

In (a) the in-plane 
X-braces and interior 
members form plane trusses 
which laterally brace the main 
members at three locations. 

(a) Main members are laterally braced at five locations 

Comments continued: 
In (b) there is no 

in-plane X-bracing and no 
interior member is capable 
of providing lateral bracing 
for any main member. 

Dotted lines in (a) and 
(b) show the location of 
X-braces in the vertical 
plane. X-braces, columns, 
and main members form a 
plane tmss to resist wind 
in the horizontal direction. 

(b) Main members are laterally braced only at the column locations 

FIGURE 5.13 Lateral bracing of main beams in a floor system. 

LTB occurs. Lateral braces must prevent both twist and lateral deflection of the 
member’s cross section at laterally braced points. Spacing (Lb), stiffness, and strength 
of the lateral braces must be adequately chosen to prevent LTB before the design 
bending strength requirement (@Mnx 2 Mu) is satisfied. The requirements for braces 
in a braced frame, weak-axis column bracing, and lateral bracing of beams are 
discussed in Chapter 7. The LRFD Specification does not give any guidelines for the 
bracing requirements of frames, columns, and beams. 

5.8 HOLES IN BEAM FLANGES 
LRFD B10 (p. 6-37) gives the criteria that must be used to determine when we must 
account for the holes in a flange of a beam. We are to treat the flange as an isolated 
tension member and compute its strengths due to fracture on A, and yielding on Ag. 
When the fracture-on-A, strength exceeds the yielding-on-A, strength, we can ignore 
the holes and use the flexural properties of the gross section. When the yielding-on- 
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As strength exceeds the fracture-on-Ae strength, the flexural properties must be 
computed in accordance with the flange having an effective area of 

c f  

(5.5) 

where Afi = net area of flange treated as a tension member. Consequently, 

A h o h  = Ad - (5.6) 
whereAgf= gross area of flange, and a deduction forAholes in the flange must be made 
in the cross-sectional properties involved in checking the serviceability require- 
ments and in computing the design bending strength. 

5.9 DESIGN BENDING STRENGTH 
The design requirement for bending strength is 

@&, 2Ml, 

where 

M u  = required bending strength 

#,,Mn = design bending strength 

&, = 0.9 

M, = nominal bending strength, which is defined later 

To begin our discussion, we consider only a beam whose cross section is either a W 
or C section. For y-axis bending, $&4, > M u  must be satisfied at the point on the beam 
where the moment due to factored loads is maximum. For x-axis bending, $$A,,, 2 
Mu,  must be satisfied in each L, region. 

When the width-thickness ratio of each compression element in either a singly 
or doubly symmetric cross section of a beam does not exceed the applicable Ap given 
in LRFD Table 85.1 (p. 6-38), the LRFD definition of the x-axis flexural design 
strength is &Mnx, where $b = 0.9 and M,, is the x-axis nominal bending strength. 

See LRFD F1.2 (p. 6-53) for the preceding definition of the flexural design 
strength. We prefer to say this is the definition of the x-axis design bending strength 
to be consistent with previously introduced LRFD terminologies: design tensile 
strength (for tension members) and design compressive strength (for columns). 

For a beam whose cross section is either a W or C section bending about the x- 
axis, the nominal bending strength is 

L ,  2 L, 

(5.7) 
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(5.8) 

(5.9) 

F ,  = 10 ksi 

12.5 M,,, 
c, = 2.5Mm,, +3M, + 4 M ,  + 3 M ,  (5.10) 

This new C, formula is applicable when the M, diagram is not constant in an 
L ,  region. The parameters in the C, formula are: 

M,,, = absolute value of maximum M in an L, region 

MA = absolute value of M at O.25Lb 

M, = absolute value of M at 0.5L, 

M, = absolute value of M at 0.75Lb 

Exception: 
C, = 1.0 is applicable for cantilevers and overhangs when the free end is not 
braced. 

65 . - 640 ; L, > L ,  
0.5 b, 

3.When -2- --<- 
t /  K ’  f, JFY 

(5.11) 

Note: M,, vs. L,  defined in items 1,2 and 3 is conceptually illustrated in Figure 
5.14 for C, = 1 in items 2 and 3. See Figure 5.15 for the effect of C, > 1 on the 
nominal bending strength. 
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Mnr 

M 
PX 

M rx 

A 
Straight line; Cb= 1 curve for 

LRFD Eqn (Fl-2) page 6-53 

- - -  

LRFD Eqn (Fl-13) page 6-53 

LP 

Note : Bending strength information is valid provided 
0.5 b,h, and Wtw do not exceed 
given on LRFD page 6- 38. 

FIGURE 5.14 Mnx vs L, of a W section beam subjected to uniform bending. 

LP Lb 
L r  

M 2  = smaller of Cb M I  and Mpx . 
M 4  = smaller of Cb M g  and Mpx . 

FIGURE 5.15 Mnx vs L, of a W section beam subjected to non-uniform bending. 
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When either 0.5bf/$ or h/t,of a W section or a channel subjected to x-axis bending 
exceeds the value of A? (LRFD Table B5.1) but does not exceed the value of A, (LRFD 
Table B5.1), LRFD Appendix F (p. 6-111) must be used to determine the nominal 
bending strength due to inelastic local buckling. 

When either 0.5bf/t or h/f, of a W section or a channel subjected to x-axis bending 
exceeds the value of ir (LRFD Table B5.1), LRFD Appendix F must be used to 
determine the nominal bending strength due to elastic local buckling. 

For a beam whose cross section is either a W or C section, when 

the y-axis nominal bending strength is 

(5.12) 

Otherwise, see LRFD Appendix F1.7. 
Equation (5.5) also applies for any bending axis of solid circular and square 

sections as well as for bending about the minor principal axis of any non-built-up 
section (see LRFD F1.7). For minor axis bending, if the width-thickness ratio of any 
compression element exceeds the appropriate Ap (LRFD Table 85. l), LRFD Appendix 
F must be used to determine the nominal bending strength. 

For a beam whose cross section is either a T section or a double-angle section 
with zero separation between the back-to-back legs, when 

0*5b, 95 . d 127 I- -5- 
tf JFY, f w  lif'l 

the x-axis nominal bending strength is 
1.5 S I F ,  when stem in tension 
S ,  F ,  when stem in compression (5.13) M,, = smaller of M,, and 

M,, = - % J W ( B + j l + B ? )  
L b  

(5.14) 

where the plus sign for B applies when, due to x-axis bending, the stem (the vertical 
element in a T-shaped section) is in tension and the minus sign for B applies when 
the stem is in compression. 

The x-axis nominal bending strength for a beam whose cross section is a double- 
angle section fastened to connector plates between the back-to-back legs at intervals 
along the member length is as defined in Eqs. 5.13and 5.14, when 

-I- b 76 

f & -  
is true for each leg in each angle. 
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In Part 4 of the LRFD Manual, we find beam design aids. The information given 
on the pages prior to each design aid should be read before trying to use it to perform 
a design. 

In the Z ,  table on LRFD pp. 4-16 to 4-21, we find that W40 x 174, W14 x 99, W14 
x 90, W12 x 65, W10 x 12, W8 x 10, and W6 x 15 have a superscript b on them. The W6 
x 15 also has a superscript c on it. These superscripts b (for Fy = 50 ksi) and c (for Fy 
= 36 ksi) are footnote symbols to warn the reader that, for the indicated value of F,: 

1. Flange local buckling (FLB) governed (PM,I, for these sections. 
2. The GM,, value listed for these sections is really (PM,,, due to FLB and the listed 

L, value is really the L, at which FLB ceases to govern (PM,,. 

In this table, except when Fy = 36 ksi and 50 ksi, we need the Z ,  values to compute @MP, 
= ZS, ,  which is valid when 

Otherwise, local buckling governs (PMnx and we must use LRFD Appendix F to 
compute the maximum possible value of (PM,,, . 

Starting on LRFD p. 4-113 for F, = 36 ksi and LRFD p. 4-139 for Fy = 50 ksi, we 
find a plot of (PMnx for C, = 1 vs. Lb for each W section. Historically, these plots have 
been called beam design charts and they correctly account for those cases for which 
flange local buckling governs (PMnX. For each W section in the beam design charts, the 
shape of the plotted information is similar to Figure 5.14, but the information 
continues across several LRFD pages. 

A simply supported beam whose span L = 30 ft. is subjected only to the following 
uniformly distributed loads: 

Dead = 0.8 kips/ft (includes estimated beam weight) 
Live = 1.4 lups/ft 

There is no design limitation on deflection and the compression flange can be 
laterally braced such that Lb < L!). Select the lightest W section of A36 steel that is 
acceptable to serve for the described beam. 

Solution 

From LRFD A4.1 (p. 6-30), the governing factored loading is 

9 ,  = 1.20 + 1.6L = 1.2(0.8) + lh(1.4) = 3.2 kips/ft 

See Figure 5.16 for the shear and moment diagrams due to this factored loading. 
The applicable design requirements are: 

1. @Mnx 2 Mu, in each L, I L,, region. 
2. lpvn2 v,. 
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y t  q,, = 3.2 kips/ft 

I ,  . 
48 kips L = 30 ft 48 kips 

FIGURE 5.16 Load, shear, and moment diagrams for Examples 5.1 to 5.3. 

Assume that shear does not govern the selection. Since L,  I L, everywhere along the 
beam, the selection criterion for the L, I L, region where the maximum moment 
occurs is 

(@M,,= @MPJ 2 (Mux = 360 ft-kips) 

On LRFD p. 4-19 and in the 4Mp,column for Fy = 36 ksi, since each boldface section 
is the lightest within each group, we look at the boldface sections until we find for 
a W24 x 55 that 

(@Mpx = 362 ft-kips) 2 (Mu = 360); L,, = 5.6 ft 

Since L / L ,  = 30/5.6 = 5.36, choose 6 @ (Lb  = 5.0 ft) = ( L  = 30 ft). 

Check shear: 

We can find @V,= 181 kips from the bottom of LRFD p. 4-46, but we prefer to illustrate 
how that tabular value was computed: 

= 69.7 418 418 

#V,,= 0.9(0.6Fyt,d) 

rev,= 0.9(0.6)(36)(0.395)(23.57) = 181 kips] > (Vr, = 48) 

Use W24 x 55 (F,, = 36 ksi) and (L, = 5.0 ft) 2 (Lp = 5.6 ft). 
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For the simply supported beam in Figure 5.16, there is no design Limitation on 
deflection and the compression flange can be laterally braced such that L, 2 L,. Select 
the lightest W section of A572 Grade 65 steel that is acceptable to serve for the 
described beam. 

Solution 

See Figure 5.16 for the factored loading, shear diagram, and moment diagram. 
LRFD p. 4-46 does not list @Mp, for Fv = 65 ksi, so we must proceed as follows: 

M, = smaller of 

Assume that local buckling does not govern (PM,,. For hot-rolled W sections, 

(2 = 1.15) < 1.5 

Therefore, Mpx = Z, F,, and we need 

[@M,, = @Mpx = O.9Zx(65 hi)] 2 (Mu, = 360 ft-hps = 4320 in.-kips) 

1 4320 2, 2 [ 0.90 = 73.8 in3 

From LRFD p. 4-19, 

try W18 x 40: (Z ,  = 78.4) 2 73.8 

Check flange and web (see LRFD p. 1-33 for the section properties) 

[ = 5.7 1 I ( A p  = = 8.06 FLB is not applicable. 
65 1 

( 2 = 51-0) 5 ( = 79.4) WLB is not applicable. 

$M,, = $Mp, is valid as we assumed, and we need to choose L, I L,: 

L ,  =- - - 300(1'27) = 47.26 in .  = 3.94 ft 
300 ry 

E K 5  

Check shear 
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= 51.9 ($=51.0)<[ K = E  418 418 

#V,= 0.9(0.6Fyt&) 

[#V, = 0.9(0.6)(65)(0.315)(17.9) = 198 kips] 2 (V, = 48) 

Use W18 x 40 (Fy = 65 ksi) and (Lb = 3.75 ft) 5 (L, = 3.94 ft) 

For the simply supported beam in Figure 5.16, the compression flange can be 
laterally braced such that L, < L . The maximum acceptable deflection due to service 
live load is Span/360 = (360 in{/360 = 1.00 in. Select the lightest W section of A572 
Grade 50 steel that is acceptable to serve for the described beam. 

Solution 

See Figure 5.16 for the factored loading, shear diagram, and moment diagram. 
From LRFD p. 4-19, 

try W18 x 50: (#M,,= 379 ft-kips) 2 ( M ,  = 360); L, = 5.8 ft. 

Check deflection 

Service live load, w = 1.4 kips/ft; limiting deflection = 1.00 in.: 

5 w ~ ~  5(1.4k/ft)(30ft)4 (12in./ft)3 
384 EI 

= I 1 0  in. - - 
384 ( 29,000 ksi ) ( 800 in. ) A,,. = 

( A , ,  = 1.lOin.) > (limiting deflection = 1.00 in.) (NG) 

Try W21 x 50: (#Mpx = 413 ft-kips) 2 (M, = 360); L, = 4.6 ft. 

[ A  mar. = ,.lo( g )  = 0.894 in.] 5. ( limiting deflection = 1 .OO in.) (OK) 

Check shear 

1 418 - 418 -=49.4 

[@V, = 0.9(0.6)(50)(20.83)(0.380) = 214 kips] 2 (V, = 48) 

Use W21 x 50 ( F ,  = 50 ksi) and (Lb = 3.75 ft) I (L, = 4.6 ft). 



196 Beams 

For the simply supported beam in Figure 5.16, there is no design limitation on 
deflection and the compression flange can be laterally braced only at the supports 
andatintervalsofL,=L/3=30/3= lOft(seeFigure5.17).Select thelightestw section 
of A36 steel that is acceptable to serve for the described beam. 

Solution 

12.5Mm,, 
2.5Mm,, +3M,  +4M,  +3M,  

c, = 

C, = 1 when the moment diagram is constant within an L,  region. The middle L,, 
region on the moment diagram in Figure 5.17 has the largest moment and, since the 
moment diagram is close to being constant in this region, we know that C, = 1: 

= 1.0135 12.5( 360) 
2.5 ( 360) + 3( 350) + 4 ( 360) + 3( 350) 

c, = 

For the end L, regions, MI,, = 320 ft-kips and 

= 1.59 12.5( 320) 
2.5 ( 320) + 3( 110) + 4 ( 200) + 3 ( 270) 

c, = 

The selected section must satisfy $M,,,2 Mu, in all L, regions. When all regions have 
the same I!,,, we choose the W section for the region where MJC, is greatest, which 
is the middle L, region where C, = 1.01 and Mu, = 360 ft-kips. Since C, = 1, we can find 
the lightest acceptable W section by going directly to LRFD p. 4-128 [the page on 
which we find $Mn,2 (Mu, = 360) in the beam design charts for C, = 11. Plot the point 
whose coordinates are (L,, M,,,, ) = (10 ft, 360 ft-kips). Any curve that passes through 
this point or any curve that lies above and to the right of the plotted point is a 
satisfactory solution since $M,,y 2 (M,,, = 360 ft-kips). Solid-line curves indicate the 
lightest choice in each region. Therefore, the solid line on or closest to, but above and 
to the right of, the plotted point is the lightest section that satisfies QM,,, 2 Mu,. 

c = 159 b C,> = 1.59 Cb = 1.01 

L/, = 10 ft ' L/, = 10 ft L, = l o f t  
- -  - -  

FIGURE 5.17 Moment diagram for Example 5.4. 
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Try W21 x 62 (@Mf,, = 363 ft-kips at Lb= 10 f t )  2 (M,,, = 360 ft-kips) 

Check shear 

From LRFD p. 4-48, 

( @Vf, = 163 kips) 2 (V,, = 48) 

Use W21 x 62 (F, = 36 ksi). 

For the simply supported beam in Figure 5.16, there is no design limitation on 
deflection and the compression flange can be laterally braced only at the supports 
and at midspan; L,= 15 ft (see Figure 5.18). Select the lightest W section of A36 steel 
that is acceptable to serve for the described beam. 

Solution (a) 

From the last case shown in the figure on LRFD p. 4-9, we find that C, = 1.30 is 
applicable for our example. When C,, > 1, use the selection procedure given in Figure 
5.19, which for our example gives: 

1. From LRFD p. 4-19, the lightest section for which $MI,,> Mu,  is 

W24 x 55: ($MI,,= 362 ft-kips) 2 (Mu,l = 360 ft-kips) 

L,, = 5.6 ft; L,  = 16.6 ft; $Mrx = 222 ft-kips; BF = 12.7 

2. (Lp = 5.6 f t )  < (Lb= 15 ft) I ( L ,  = 16.6 ft) 
3. By Method 1, 
M,,,/C, = 360/1.30 = 277 is found on LRFD p. 4-130. At L,  = 15 f t  for W24 x 55, 

we find that [($M,, for C, = 1) = 2431 < ( M J C ,  = 360/1.30 = 277). A W24 x 55 
is not acceptable. 

4. In the beam designcharts, any section having @M,,,2 ( M u r  = 360 ft-kips) whose 
line passes through or lies above and to the right of (Lb, M,,,/C, ) = (15,277) 

c = 1.30 

Lh = 15 ft  

Cb = 1.30 

Lb = 15 ft 
b - -  - -  

FIGURE 5.18 Moment diagram for Example 5.5. 
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Enter LRFD p4-15 through 4- 21 with values for Mu, L,, cb 
Find lightest section for which (PMpx 2 Mu 

 his is a trial section; note its values of : ( P M ~ ~  , (PM,, L~ , L, , BF I 

Enter LRFD p4-113 to 4-166 in the vicinity of - 
At L, for the current trial section, find 

M ,  =((PM~ for c,= I )  

1 1 

Exit (PMm = smaller of 

GO to LRFD p4-15 through 4-21 - Try next heavier section for which $MpX 2 M, 

FIGURE 5.19 Beam-design procedure for F,  = 36 ksi and F, = 50 ksi. 

is acceptable. The first line above the plotted point is W24 x 62. The first solid 
line above the plotted point is W21 x62. Both sections are acceptable and have 
the same weight. 

For W21 x 62: 

C,M,  = 1.30( 314) = 408 
@MPx = 389 ft - kips i (PM nx = smaller of 

((PM,, = 389 ft-kips) 2 (Mu, = 360) (OK) 
(@V, = 163 kips) 2 (V, = 48) (OK) 

Use W21 x 62 (Fy = 36 ksi). 
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For W24 x 62: 

C , M ,  = 1.30(287.5) = 374 i $Mpx = 413 ft - kips 
@Mm = smaller of 

(qMnx = 374 ft-kips) 2 (Mu = 360) 

(qV, = 198 kips) 2 (V, = 48) 
(OK) 

(OK) 
Use W24 x 62 (Fy = 36 hi) .  

hample S.6 

Lateral braces are provided only at the supports and at midspan. The factored beam 
weight is accounted for in the concentrated load. There is no limiting deflection 
criterion to be satisfied. Find the lightest W section of A36 steel (see Figure 5.20). 

Solution 

The information shown in Figure 5.21 was obtained from Case 13 on LRFD p. 4194. 
Find qMnx: 

W18 x 50: (@Mpx = 273 ft-kips) 2 (Mu* = 263) 

W21 x 50: (#Mpx = 297 ft-kips) 2 (Mu = 263) 

Enter the LRFD beam design charts in the vicinity of the larger of 

Mu, /cb = 263/2.24 = 117 ft-kips (for first L b  region) 

Mu / c b  = 219/1.67 = 131 ft-kips (for second L b  region) 

On LRFD p. 4162, W18 x 50 and W21 x 50 appear to the right of and above the point 
whose coordinates are (Lb,Mu /cb) = (14 ft, 131 ft-kips). 
Check W18 x 50. 
For the first L b  region. 

(Lp = 6.9) < ( L b  = 14) (L,  = 20.5) and c, = 2.24 

Lb = 14 ft Lb =14ft 

FIGURE 5.20 Sketch for Example 5.6. 
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I I 

15.6 15.6 

21Y 

--- 
263 

Cb = 2.24 Ch = 1.67 

Lb = 14ft Lb = l4ft  

FIGURE 5.21 Load, shear, and moment diagrams for Example 5.6. 

C,M, = 2.24( 221) = 495 
$Mp,  = 273 ft - kips 

$Mnx = smaller of 

($MnX = 273 ft-kips) 2 (MuX = 263) (OK) 

For the second L, region: 

(L, = 6.9) < (Lh = 14) I (L, = 20.5) and C, = 2.24 

C,,M, = 1.67( 221) = 369 
$ M p x  = 273 ft - kips 

$M nx = smaller of 

($l~l,,~ = 273 ft-kips) 2 (M,,, = 219) (OK) 

Use W18 x 50 (Fr = 36 ksi). 

Repeat Example 5.6 accounting for moment redistribution as permitted by LRFD 
A5.1 (p. 6-31) for moment diagrams obtained from an elastic factored load analysis. 
These permitted adjustments in the moment diagram enable the structural designer 
to obtain a solution that is close to the plastic design solution (discussed in Chapter 



5.9 Design Bending Strength 201 

11). For W sections used as beams, Mpx/M(yie,d)x = ZJ /SJy ranges from 1.10 to 1.18 
and the average is 1.14, which is a 14% increase in tending strength for inelastic 
behavior. The 10% reduction innegative moments at the supports for elasticanalyses 
is close to the redistribution of moment that is obtained in the plastic design solution. 

Solution 
See LRFD A5.1. The maximum possible reduction in the moment at the left support 
is 0.1(263) = 26.3 ft-kips. Note that we cannot change the moment at the right support 
in this example. Try reducing 263 ft-kips by 26 ft-kips and increasing 219 ft-kips by 
(26 + 0)/2 = 13 ft-kips. The adjusted moment diagram is Figure 5.22. 
Try W21 x 44: (@Mp, = 258 ft-kips) 2 (M,,, = 237) 

Enter the LRFD beam design charts in the vicinity of the larger of 
( L p  = 5.3) < (Lb = 14) I (L, = 15.4) 

1. - - - -- 237 - 104 ft - kips (for first L,  region) 
C, 2.27 

2. - 232 = 139 ft - kips (for second L ,  region) 
C, 1.67 

For the first L,  region, 

C , M ,  = 2.27(173) = 393 
@M,,x = 258 ft - kips 

@Mnx = smaller of 

(@M,lx = 258 ft-kips) 2 (Mux = 237) (OK) 
For the second Lb region, 

C,M, = 1.67( 173) = 289 
@Mpx = 258 ft - kips 

@Mnx = smaller of 

(@M,r, = 258 ft-kips) 2 (Mur = 232) (OK) 

Use W21 x 44. 
For Example 5.4, either W18 x 50 or W21 x 50 was needed. Thus, by accounting for 
LRFD A5.1, we can use W21 x 44, and the savings is 6 lb/ft, which is 100(6/50) = 12% 
less steel. 

M u  + 232 

231 
Cb = 2.27 Cb = 1.61 

L h  = 14 ft L b  = 14 ft 

FIGURE 5.22 Moment diagram for Example 5.7. 
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5.10 When Local Buckling Governs @Mm 

When (b/f) > A, (see LRFD B5.1 and Table 85.1, p. 6-38) for any compression element 
in a beam cross section, local buckling of one or more compression elements occurs 
before M,, can be developed due to bending. Figure 5.23 illustrates local buckling 
of the compression flange and compression zone of the web due to a bending 
moment. For any compression element in a beam cross section, when Ar 2 (b/f) > A,/ 
inelastic local buckling occurs and when (b/f) > Ar, elastic local buckling occurs. 
Also, for sections where LTB can occur, LTB may govern (bM,, when L, > L,. LRFD 
Appendix F must be used to determine @Mnx when inelastic local buckling governs. 
LRFD Appendices B and F must be used to determine (bMnx when elastic local 
buckling governs. 

a - 1  
~ ~~ 

I -  ~ 

Number of half sine waves is a function of a/b and b/z of flange. 
(a) Range local buckling of a W section beam 

T T T T 
(b) Section 1 - 1  ( c )  Section 2-2 

I -  U 

Number of half sine waves is a function of a/b and b/r of web. 
(b) Web local buckling of a W section beam 

FIGURE 5.23 Local buckling modes of a W section beam subjected to uniform bending. 
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This example illustrates some computations of @Mu whenflange local buckling (FLB) 
and LTB of a W section must be considered. 
Find (PM,, for a W6 x 15 (Fy = 50 ksi) and values of L, > L,as specified in the solution. 

Solution 

W6 x 15: 

A =4.43 in.2; S, = 9.72 in.3; Z, = 10.8 in.3; I, = 9.32 in.4; ry = 1.46 in. 

O.5bf/$= 11.5; h/f ,  = 21.6; C, = 76.5 in.6 and, J = 0.10 in? 

Is LRFD Appendix F applicable? 

1. [ t = 21.6) ( = 90.5) WLB is not applicable. 

FLB and LTB of the W6 x 15 must be investigated. The definitions given for the first 
item in LRFD Table A-F1.l (p. 6-114) are applicable for a W section. As shown in this 
example, LRFD Eq. (A-F1-3) is applicable for FLB and LRFD Eq. (A-F1-4) is appli- 
cable for LTB. 
Find @MN for FLB 

141 =22.3 ) > [ -- '-rfbf - 11.51 > (A,  = 9.19) 

LRFD Eq. (A-F1-3) is applicable: 

M ,  = ZJ, = (50)(10.8) = 540 in.-kip~ = 45.0 ft-kips 

M ,  = (F, - F,)S, = (50 - 10)(9.72) = 388.8 in.-kip~ = 32.4 ft-kips 

Note: The M',  notation was chosen to be compatible with LRFD p. 47 

11.5-9.19 M i x  = 45.0 - (45.0 - 32.4) 

[@M,, = 0.9(42.8) = 38.5 ft-kips] < (@Mpx = 40.5 ft-kips) 
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M’nx is the maximum acceptable design bending strength and is valid for (see last 
formula on LRFD p. 4-7): 

M’,,, = 42.8 ft-kips (due to FLB in our example) 

= 61.94 in. = 5.16 ft 
300 ‘‘Y - 300 ( 1.46 ) L ,  =- - E r n  

9‘72 
= 0.00247287 

4 (76.5) 

-~ 

L ,  = 146(2741’44) /q+O.OO247287( 50-10)2 = 179.73 in. = 14.98 f t  
50 - 10 

2 45.0 - 42.8 [ 45.0 - 32.4 ) = 639 ft 
L6 = 5.16 + (14.98 - 5.16) 

Note: See LRFD p. 4-21 for a W6 x 15 (Fy = 50 ksi). The preceding calculations show 
how the $Mpx = 38.6 ft-kips and L ,  = 6.8 ft entries were computed by the person who 
prepared that page. 

Find ( I M , , ~  for LTB 

For this example, LTB must be considered when L,  > (L’p = 6.89 ft). 
Note: In LRFD Appendix F, this condition is shown as A/, < A I A, and A > Lr 
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’ EAG’ = 2741.44 x l= - l l  s x  2 

2 

= 0.00247287 

We choose to illustrate the calculations for L, = 16 f t  = 192 in. 

( A  = Ldr,, = 192/1.46 = 131.507) > (A, = 123.105) 

From LRFD Eq. (A-F1-4), p. 6-111, 

M,, = M,, = S F c ,  

For the first shape in LRFD Table A-F1.l (p. 6-114), 

1+- A F c ,  = 

For C, = 1, 

+ (2741.44)‘ (0.00247287) 
= 36.55 ksi 

2 ( 131.507) 
Fcr = 131.507 

M,, = M,, = S$,, = 9.72(36.55) = 355.3 in.-kips = 29.6 ft-kips 

Since (M,,, = 29.6 ft-kips) < [M’,, = 42.8 ft-kips (due to FLB)], LTB governs and @Mn, 
= 0.9(29.6) = 26.6 ft-kips. On LRFD p. 4-165 for a W6 x 15, the beam chart only goes 
up to L,  and our L, > L,. So, we cannot check an entry on the C, = 1 curve due to LTB 
for L, > L,. However, we recommend that the point (16 ft, 26.6 ft-kips) be plotted since 
we have computed it and connect this point with a slightly concave upward line 
(almost a straight line) to the end of the existing curve. 

Etiample 8.9 

For all rolled W sections and F ,  2 100 ksi, 

The I-shaped section with the most slender web is an M12 x 11.8 and for F,  = 100 ksi 
(highest available grade of steel), 
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Therefore, this example illustrates some computations of $Mm when WLB and LTB 
of a built-up W section must be considered. A built-up W section is composed of three 
plates (two flange plates and a web plate) joined by continuous fillet welds to form 
an I-shaped section. 
For a built-up W57 x 18 x 206 (Fy = 50 h i )  with values of L, > L, as specified in the 
solution, find $M,. 

Solution 

W57 x 18 x 206 (see LRFD, p. 4184): 
A = 60.5 in?; d = 58.0 in.; $=  1 in.; 
S, = 1230 in.3; Z, = 1370 in.3; Iy = 972.39 in.4; Y,, = 4.01 in.; 0.5b/tf = 9; h/t, = 
56/(7/16) = 128; C, = 789,507 in.6; J = 13.56 in? 

bf= 18 in.; h = 56 in.; t, = 7/16 in. 

We computed the last six of these properties. For a built-up W section composed of 
three plate elements, the definitions for C, and J are 

t,b: ( h + f f  ) *  
24 

c,  = 

where 
b = width of a plate element 

f = thickness of a plate element 
Is LRFD Appendix F applicable? 

FLB is not applicable. 

WLB and LTB must be considered. The definitions given for the first shape in LRFD 
Table A-F1.l (p. 6-94) are applicable. As shown here, for our example LRFD Eq. (A- 
F1-3) is applicable for WLB and LRFD Eq. (A-F1-4) is applicable for LTB. 
Find $Mu for WLB 

(A, = 90.5) < (a = 128) 5 a, = - = 137.2 [ E  1 
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and LRFD Eq. (A-F1-3) is applicable: 

Mpx = Zp,, = (1370)(50)/12 = 5708 ft-kips 

M ,  = ST, = (1230)(50)/12 = 5125 ft-kips 

@M; = 0.9( 3332) = 2998 ft - kips 

M’, is the maximum acceptable design bending strength when WLB governs and 
is valid for 

M L = 3332 ft - kips ( due to WLB in our example) 

300 r,, 
L ,  =-= 300(4’01) = 170.13 in. = 14.186 ft E r n  

4 (789.507) l2 = 0.213025 xz =”( I Y  =[ 972.39 ][ 11,200(13.56) 

Since F, = 16.5 ksi for welded shapes, 

L ,  = 4~01(932*278)~1+,,/1+0.0213025(50-16.5)2 = 219.03 in. = 18.25 ft 
50 - 16.5 

L’p = 14.18 + (18.25 - 14.18) ( z;:IiE) = 30.77 ft 

Find @Mnx for LTB 

For this example, LTB must be considered when L, > (L’p = 30.77 ft): 

a=-  L b  

TY 
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300 300 a, =- = = 42.43 

x 1 =- * /?=932.278 
S X  

2 X, = ?( 4 c  Q) = 0.213025 

1, 

A r  = 932*278 fiL,/l+ 0.213025( 50 - 16.5)’ = 54.62 
50 - 16.5 

For this example, LTB does not govern until 

For Cb= 1, F,, =32.5 ksi occurs at d=114.86and L,= r,A= 4.01 (114.86) =460.6 in. = 38.38 
ft. We choose to illustrate the calculations for L b  = 40 f t  = 480 in.: 

From LRFDEq. (A-F1-4):M,,=MC,= SF,,. From the first iteminTable A-F1.l of LRFD 
Appendix F, 

A F,, = 

For C, = 1, 

= 30.09 ksi 932.278 fi + ( 932.278)’ (0.213025 ) 

119.7 d 2 (119.7) 
F‘, = 

M,, = M,, = SJ,, = (1230)(30.09) = 37,006 in.-kips = 3083.8 ft-kips 

Since ( M n X  = 3084 ft-kips) < [M’,,, = 3332 ft-kips (due to WLB)], LTB governs and 

$MI,, = (0.9)(3084) = 2775 ft-kips 

Next Page
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6.1 INTRODUCTION 
In this chapter, we discuss the behavior and design of members in frames for which 
LFGD Chapters C (p. 6-41) and H (p. 6-59) are applicable. 

Figure 6.l(a) is an example of an industrial building during the early stages of 
construction. After the steel framework is erected, a flat roof, sidewalls (XU- planes), 
and a roll-up door are to be installed in each endwall (YZ -planes). The roll-up doors 
serve two functions: (1) as the endwalls when the doors are closed and (2) as openings 
to permit vehicles to enter the building. For discussion purposes, assume that the 
diagonal members are either single angles or threaded rods and all other members 
are W sections. 

In Figure 6.l(b), the weak axis of the columns (vertical members) and the 
strong axis of the beams (horizontal members) are chosen as the bending axis. 
Since the weak-axis bending strength of the columns is much less than the strong- 
axis bending strength of the beams, all members in Figure 6.l(b) are connected 
such that a negligible moment is transferred between the member ends at each 
joint. Since all members are pinned-ended, diagonal members are provided to 
brace (stabilize) the frame against horizontal-in-plane movement and to resist 
the wind force on the endwalls (roll-up doors). The diagonal members are either 
single angles or threaded rods, which are strong in tension and weak in compres- 
sion. When the wind force direction is as shown in Figure 6.l(b), member 1 is in 
compression and only has a very small buckling strength. Therefore, member 1 
is assumed to be inactive when the structural analysis due to wind is performed. 
When the wind force direction in Figure 6.l(b) is reversed, member 1 is in tension 
and member 2 is assumed to be inactive in the structural analysis due to wind. 
This type of frame is classified as a brucedfiume. The deflected structure is not 
shown, but Ax at the top right joint is the horizontal component of the elongation 
in member 2. Thus, the horizontal movement of a braced frame is limited by the 
choice of stiffness for the braces. 

247 



248 Members Subject to Bending and Axial Force 

t '  

(a) Structure has braced frames (XU planes) and unbraced frames (YZ planes) 

(b) Braced frame 

Figure 6.1 Braced and unbraced frames. 
(c )  Unbraced frame 

Consider Figure 6.l(c). In order to span across the roll-up door openings and to 
resist lateral forces due to wind on the sidewalls, the strong axis of the beams and the 
strong axis of the columns are chosen as the bending axis. A connection must be 
designed to fully transfer bending moment between the connected member ends. 
This type of frame is classified as an unbraced frame. The horizontal movements in an 
unbraced frame can only be determined from an indeterminate structural analysis 
that accounts for the bending action of the members in the frame. 

Consider the structure represented in Figure 6.1 and the load combinations 
given in LRFD A4.1, p. 6-30. Due to wind on the finished building and with the roll- 
up doors closed, there is a pressure on the windward side of the building, a suction 
on the leeward wall, and a suction on the flat roof. Suction on the roof is an upward 
load, whereas gravity loads (dead and live) on the roof are downward. All members 
in the unbraced frame and the roof member in the braced frame are subjected to an 
axial force and bending due to the load combinations given in LRFD A4.1. For an 
unbraced frame, the load combinations of most concern to the structural engineer 
cause an axial compressive force and bending to occur in the members. We refer to 
a member subjected to bending and an axial compressive force as a bmm-colirnin. 

6.2 MEMBER-SECOND-ORDER (PF) EFFECTS 
Figure 6.2(a) shows a braced frame for which the exterior walls are attached to girts 
and the exterior walls are subjected to factored wind loads w, and zu2. The length 
direction of the girts is perpendicular to the plane of Figure 6.l(a). The girts are 
attached to the exterior flanges of the columns at 4-ft intervals, for example, along the 
column length. Consider the LRFD (A4-6) load combination assuming that 1.3W is 
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greater than 0.9D. On the roof, the factored wind load is upward and the factored 
dead load is downward. For the wind direction shown, member 1 would be inactive 
(would not resist any load). Member 3 is subjected to bending and an axial tensile 
force. Members 4 and 5 are beam-columns. 

Figure 6.2(b) shows a braced frame for which the exterior wall panels are 
attached to beams. The beams span perpendicularly to the plane of Figure 6.2(b) and 
are located only at the pinned joint locations. The loading in Figure 6.2(b) is as 
defined in LRFD load combinations (A4-3), (A4-4), or (A4-6). In each of these cases, 
the factored wind load on the roof is upward (due to suction), and the other factored 
loads are downward (due to gravity). Therefore, for the load direction shown on 
member 4 in Figure 6.2(b), the assumption is that the sum of the factored gravity 
direction loads exceeds the factored wind load. Member 1 is inactive for the wind 
direction shown in Figure 6.2(b) and member 4 is a beam-column. 

Member 3 in Figure 6.2(a) is subjected to an axial tension force and bending. As 
shown in Figure 6.3, the deflection and bending moment are decreased due to the 

Q f  4 Q f  

L 

y2 
(a) Exterior walls attached to girts on members 3 and 5 

9 
1 

I 
y2 

(b) Exterior walls attached to beams at hinge locations 

Figure 6.2 Braced frame and 0.9D + 1.3W loading combination. 



250 Members Subjecf to Bending and Axial Force 

(a) Member 3 of Figure 6.2(a) 

L 0.5h J 

(b) Primary moment diagram is for P = 0 

P r Deflection curve after P was applied P 

I- Deflection curve before P was applied 

- PS, 

(c) Secondary moment diagram = P(Fna1 deflected shape) 

w h 2  
8 

(d) Combined moment diagram = (b) + (c); M,, =I -Pac  

Figure 6.3 Secondary bending effects due to axial tension force. 

effects of the axial tension force. Therefore, it is conservative to ignore the secondary 
effects on deflection and moment when the design requirements for strength and 
serviceability are checked for such a member. 

Member 4 in Figure 6.2(b) is a beam-column. As shown in Figure 6.4, every- 
where along the member the deflection and bending moment increase due to the 
effects of the axial compression force. For elastic behavior of a beam-column (from 
pp. 15 and 29 of [6]) ,  

6 CO 6 ,  =- 
1 - P  

where 
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(a) Member 4 of Figure 6.2(b) 

L 0.Sh 

(b) Primary moment diagram is for P = 0 

P r Deflection curve before P was applied 
P _ _ _ -  

L Deflection c w e  after P was applied 

(c) Secondary moment diagram = P@ml defected shape) 

w h 2  
8 (d) Combined moment diagram = (b) + (c); M,, =A + P 6 ,  

Figure 6.4 Secondary bending effects due to axial compression force. 

a2El 
L2 

P, =- 

I and L are for the axis of bending 

6, = maximum deflection when P = 0 

6, = maximum deflection when P > 0 

The maximum secondary bending moment [see Figure 6.4(c)] is 

M ,  = P6, 

and the maximum total bending moment [see Figure 6.4(d)] is 
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The memher-secondu y-bending effects must be accounted for in checking the 
LRFD serviceability and strength design requirements for a beam-column. When the 
member-end moments are not zero, the member-secondary-bending effects are less 
pronounced. For other boundary conditions and/or other types of loads in Figure 
6.4(a), the required bending strength can be obtained by using the information from 
LRFDTableC-Cl.1 (p.6-183)inLRFDEq. (C1-2)(p.6-41)andML,=OinLRFDEq.(C1- 
1). That is, the required bending strength for a beam-column in a braced frame is 

M u  = B , M ,  

where 

M,, = required primary-bending strength 

B ,  = amplification factor that accounts for member second-order (I%) effects 

C,,, = factor that accounts for type of load and member-end moments 

C,, = 1 + yp (from LRFD, p. 6-181) 

yis  given in LRFD Table C-C1.l, p. 6-183. 

p = -  p,, 
p, 

P, = required column strength 

where 1 and KL are for the axis of bending. For a conservative approach, use K = 1. 
Otherwise, determine a value of K < 1 from either Eq. (4.26) (or from the sidesway 
inhibited nomograph on LRFD, p. 6-186) or LRFDTableC-C2.1 (p. 6-184). If the reader 
does not prefer to use the definition of C,, = 1 + yp shown here for a beam-column 
subjected to a transverse loading, the C,, values given in LRFD Cl(b) (p. 6-42) are 
applicable. 

For a beam-column not subjected to a transverse loading, C,, is obtained from 
LRFD Eq. (Cl-3), which is 

C, =0.6-0.4(M, / M 2 )  

where M,/M, is the ratio of the smaller and larger absolute-valued primary mo- 
ments at the member's supports in the plane of bending. M, /M2 is positive when the 
member is bent in reverse curvature. M,/M,is negative when the member is bent in 
single curvature. 

The LRFD definitions applied to the member in Figure 6.4 are 
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where 

For the general case, when M # 0 on both member ends, the maximum moment 
occurs within the span of a beam-column when [ B ,  = Cr,j/(l - PJPe)] > 1. 

6.3 SYSTEM-SECOND-ORDER (PA) EFFECTS 
Figure 6.5(a) shows an unbraced frame subjected to a factored load combination. The 
reaction directions assumed in Figure 6.5(a) are typical for the structure and the 
factored load combination shown. Note that all members are beam-columns. In the 
following discussion, as permitted by LRFD A5.1, p. 6-31, the required strength due 
to factored loads isobtained from elastic first-order analyses for whch superposition 
is valid. 

Figure 6.5(b) shows the primary moment diagram due only to the loads that 
cause no lateral translation of the frame joints (or no sidesway of the frame) to occur. 
The required primary bending strength for each member due to this portion of the 
factored load combination is denoted as MN.r The member-secondary-moment (P6) 
associated with M,, must be accounted for in checking the LRFD strength design 
requirements for a beam-column and the required bending strength is M ,  = B,MNT. 

Figure 6.5(c) shows the primary moment diagram due to the loads that cause 
lateral translation of the frame joints to occur. The required primary bending strength 
for each member due to this portion of the factored load combination is denoted as M,,. 

Figure 6.5(d) shows the second-order effect due to sidesway of the entire 
structure. This system-secondary-moment (PA) must be accounted for in checking the 
LRFD strength design requirements for a beam-column. 

Some of the commercially available structural analysis software packages can 
perform elastic P-DELTA analyses [9] that account for the system-secondary- 
moment (PA). In an elastic P-DELTA analysis, the solution for all the needed load 
combinations can be obtained in one computer run. For example, for the structure 
and loading shown in Figure 6.5, a first-order analysis (FOA) is performed. The 
system-secondary-moment in each member is obtaincd from the FOA results. For 
each column, PA is the product of the member-end axial force and the relative lateral 
movements of the member-end axial forces. As shown in Figure 6.6, equivalent 
member-end shears, PA/L, are computed and applied to create the PA effect in the 
next FOA. At each joint, the algebraic sum of the equivalent member-end shears 
gives an equivalent applied joint load that is added onto the original loads. Then, a 
FOA is performed for this modified loading. If any joint displacement changes by 
more than a specified amount (f2%, e.g.), new equivalent applied joint loads are 
computed and added onto the original loads. Again, a FOA is performed for the 
latest modified loading. The iterative process is terminated when no joint displace- 
ment changes by more than the specified amount in an iteration cycle. Unless an extra 
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b 
L3 

(a) Original loading on a symmetric structure 

O 1  4 lQ 

Primary moment diagram 
(b) Loads that do not cause any sidesway 

A n  

Primary moment diagram 
(c) Loads that cause sidesway 

Secondary moment diagram 
(d) Second-order (PA ) effects due to PA effect 

Figure 6.5 One-story unbraced frame. 

joint is inserted at or close to the location of the maximum deflection in each member, 
the P-DELTA analyses do not account for the member-secondary-moment (Pb). 

Only a few of the available computer analysis software packages can perform 
a second-order analysis that can solve for the results due to only one load combina- 
tion in each computer run. The secondary effects on joint displacements (rotations 
and translations), member-end forces, and member-end stiffness coefficients are a 
function of the axial force in each member of the structure. 

Since not all available structural analysis software can perform P-DELTA 
analyses, LRFD C1 (p. 6-41) gives an approximate procedure that can be used in lieu 
of a second-order analysis. In the first edition, we dealt exclusively with this 
approximate procedure. However, in this edition, we will only use the approximate 
procedure to account for the member-seconda y-moment (Pg), and we will account for 
the system-seconda y-moment (PA) by giving results from a P-DELTA analysis. ouf 
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I 

(a) FOA for factored loads 
I- 

lPA v; =( +) 
A 2  = A x w -  AX(7, 

(b) PA Effects for Member 2 

A I = A x ( 7 ) -  A X ( @  

(c) PA Effects for Member 1 

H' = V ' - V '  
7 1 2  

(d) Equivalent joint loads 

Figure 6.6 Equivalent joint loads to account for PA effects. 

reason for doing this is that we assume that the reader has, or needs to obtain, a 
structural analysis package that performs a P-DELTA analysis of unbraced frames 
and accounts for the system-secondary-moments (PA). 

6.4 ELASTIC FACTORED LOAD ANALYSES 
Prior to performing the elastic factored load analyses of an unbraced frame, the 
strudural designer performs approximate analyses for gravity loads only and for 
lateral loads (wind and/or earthquake) only. Approximate solutions for the re- 
quired LRFD load combinations are obtained by superposing the results found in the 
approximate analyses. The approximate solutions are used for preliminary design 
purposes to obtain estimated member sizes to use in the first computer run of the 
displacement-method analyses. Then, drift and deflections are checked. If necessary, 
some member sizes are increased to improve serviceability. Also, for any member 
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that does not satisfy the strength requirements given in LRFD Chapter H, a new 
member size is chosen and used in the next computer run. The described design 
process is continued, if necessary, until all serviceability and strength requirements 
are satisfied in the unbraced frame. 

Some vendors of structural analysis software are including features that per- 
form structural design tasks. These software packages also provide the capability of 
performing P-DELTA analyses (described in Section 6.2). The P-DELTA analyses 
account for the second-order (PA) effects required by LRFD C1 (p. 6-41). When such 
a package is being used, computing the LRFD interaction equations to check for each 
member in an unbraced frame for all required factored load combinations is a routine 
task. Each effective length factor is automatically computed, when needed, for each 
principal axis of each member. The LRFD column-strength and beam-strength 
definitions are automatically computed for each member using section properties 
from a built-in database of the hot-rolled steel sections. 

Some observations: 
1. LRFD C1 (p. 6-41) requires us to account for second-order effects. 
2. Design features are being included in the structural software; we now have 

structural analysis and design software packages. 
3. Consider the unbraced frame in Figure 6.7(a) subjected only to factored 

gravity direction loads on member 3. Since no sidesway occurs due to this 
loading, there are no system-secondary-moments (PA); that is, the results for this 
loading from a FOA and P-DELTA analysis are identical. Equivalent joint 
loads to account for the PA effects can be computed at each joint, but they 
have an appreciable effect only at joints that translate a significant amount in 
the direction of the equivalent joint loads. 

4. Unless an extra joint is inserted at or close to the location of the maximum 
deflection in each member, a P-DELTA analysis does not account for the 
member-secondary-moments (P6). Figure 6.6 was prepared for columns, but a 
similar one can be prepared for each half of a subdivided beam. For that case, 
PA/(O.5L) is the equivalent end shear for each half of member 3 in Figure 
6.7(a), and when an extra joint is inserted at midspan of member 3, the 
equivalent joint load is 2PA/(O.5L). 

5. Member-seconda y-moments (P6) are significant only in those beam-columns 
for which the maximum moment occurs within the span; that is, when [ B ,  = 
C”J(1 - Pu/PJl > 1. 

Some recommendations: 
1. After a structural design assumption is made, thereafter it must be used 

everywhere in the design process unless it is replaced by another assumption 
and the design process is restarted. For example, suppose that either G =10 
(for a hinged support) or G = 1 (for a fixed support) is used as recommended 
on LRFD p. 6-186 to obtain an effective length factor for a column. Then, a 
rotational spring of the appropriate stiffness must be included at that support 
in the P-DELTA analyses. Also, the connection between the column end and 
the support as well as the support itself must be designed for the reactions 
that account for the assumed value of G. 
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(a) Rotational springs at the supports 

(b) Member 4 substituted for  rotational springs 

(6EVL) 8 
- - -  

(6EUL) 8 

( c )  Member 4 when sidesway of structure in (b) occurs 

Figure 6.7 Rotational springs at the supports 

2. Perfect hinges at supports and completely fixed supports should not be 
acceptable boundary conditions in the P-DELTA analyses of an unbraced 
frame. Boundary condition effects on drift, deflections, and effective length 
are as important as accounting for the second-order (PA) effects. In some 
cases, the effects of boundary conditions are more important. 

At the supports of a multistory building, G = 2 may be an appropriate choice to 
assume before the support conditions are completely known. Using a spring to 
represent G = 2 at a support attracts exactly half as much moment to a support as a 
completely fixed support when the loading consists only of gravity loads. We need 
to derive a rotational spring constant k,  to represent any desired value of G at a 
support. Due to the symmetry of Figure 6.7(a), Figure 6.7(b) is equivalent to Figure 
6.7(a). When sidesway buckling of Figure 6.7(b) occurs, there is a point of inflection 
at midspan of member 4 as shown in Figure 6.7(c). Therefore, 
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k =-!l(F) G l  1 

If we wish to account for inelastic column buckling, then 

1 

and E ,  is obtained from Eq. (4.23). 

6.5 MEMBERS SUBJECT TO BENDING AND AXIAL TENSION 
The strength design requirement for a W section subjected to an axial tension force 
and bending is given in LRFD H1.l: 

W 

where 
P, = required tensile strength 

Mu = required bending strength 

x = subscript that denotes the strong bending axis 
y = subscript that denotes the weak bending axis 

$Pn = design tensile strength (LRFD D1) 

$Mn = design bending strength (LRFD F1) 

As shown in Section 6.2, secondary bending effects can be ignored for a 
member subjected to an axial tension force and bending. Therefore, Mu,, MUY, 
and P, can be obtained directly from an elastic FOA. 
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In Example 2.5, for A36 steel and a bearing-type bolted connection, a pair of L3 x 2 
x 1 /4  with long legs back to back was chosen as the trial section for the tension and 
bending members 34 and 43 in Figure 1.15. From Example 2.5, we also know: 

and P, = 66.3 kips (tension) Mu = 0.18(12) = 2.16 in.-kips 

qPn = 0.75F, (A,U) = 0.75(58)(1.9425)(0.9) = 76.0 kips 

Does the trial section satisfy the LRFD H1.1 strength design requirement? 

Solution 
L, = (KL), = (KL), = L = 7.5 ft = 90 in. 

1. For beam effects, 
the double-angle section properties for s = 3/8 in. that will be needed are 
LRFD p. 1-98 

S, = 1.08 in.3 1, = Act;" = 2.38(0.891)2 = 1.89 in.4 

LRFD p. 1-160 

J = 2(0.0270 in.4) 

LRFD Table 85.1 (p. 6-38) does not give a local buckling criterion for flexural 
compression of a double-angle section. Take a conservative approach and 
use the local buckling criterion for axial compression, which is 

b d-y - 3-0.993 
t t  0.25 

- 

Local buckling does not govern qMvx. Therefore, LRFD F1.2~ (p. 6-55) for 
double-angle beams with stems in compression is applicable for computing 
W n x :  

B = -23(  t)g = -2.3( &)J"g = 4 .454  
2( 0.0270) 

B + J z  = -0.454 + 4- = 0.644 
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= 35.0 in. - kips 
0.9S,Fy =0.9(1.08)(36)=35.0 

0.9MC, = 0.9(129.4) = 116 
$Mnx = smaller of 

L. For axial tension effects, 

[PJ($P,)  = 66.3/76.0 = 0.8721 2 0.2 

3. Check LRFD Eq. (Hl-la), p. 6-59: 

0.872+- - = 0.927 51.00 (OK) [ ;(3 ] 
EHample 6.2 

In Example 2.8, for A36 steel and welded connections, a WT7 x 15 was chosen as the 
trial section for the tension-and-bending members 5 to 14 in Figure 1.15. From 
Example 2.8, we also know: 

P, = 114.2 kips (tension) and Mu = 1.62(12) = 19.4 in.-lups 

$P, = 0.9FA, = 143 kips 

Does the trial section satisfy the LRFD H1.l strength design requirement? 

Solution 
L, = (KL), = ( K L )  = L = 6 ft = 72 in. 

Y 

1. For beam effects, 
The section properties that will be needed are: 

LRFD p. 1-78 

d= 6.92 in. S, = 3.55 in.3 ly = 9.79 in.4 

LRFD p. 1-166 
J = 0.190 in.4 

LRFD Table B5.1 (p. 6-38) does not give a local buckling criterion for flexural 
compression of a WT stem. Take a conservative approach and use the local 
buckling criterion for axial compression, which is 

Local buckling does not govern GMflx. Therefore, LRFD F1.2~ (p. 6-55) for a 
WT with the stem in compression is applicable for computing @Mflx: 
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B + 4 5  = -1.59 + d m  = 0.288 

nJ29,000( 9.79)( 11,200)( 0.190) 
72 

(0.288) = 808.9 in - kips M', = 

= 115 in - kips 
0.9S,FY = 0.9( 3.55)( 36) = 115 
0.9 M c ,  = 0.9( 809) = 728 

@MflX = smaller of 

2. For axial tension effects, 

[PJ(@P,)  = 114.2/143 = 0.7991 2 0.2 

3. Check LRFD Eq. (Hl-la), p. 6-59: 

19*4 = 0.949 51.00 (OK) [ O-799+9(115) ] 
6.6 BEAM-COLUMNS 

The strength design requirement for a W section subjected to bending and an axial 
compression force is given in LRFD H1.2: 

p ,  
@J'n 

1. When - 2 0.2, 

P 
2. When 2 < 0.2, 

4pfl 

&+[%+mM_) s 1.00 

where 
P, = required column strength 

@Pn = column design strength 
M u  = required bending strength 
@Mn = design bending strength 

(LRFD E2) 
(LRFD C1) 

(LRFD F1) 
x = subscript that denotes the strong bending axis 
y = subscript that denotes the weak bending axis 
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Mu, and Mu, must be obtained from one of the following: 
1. Elastic P-DELTA analysis 
2. Elastic second-order analysis 
3. Definition of Mu given in LRFD C1 for elastic FOA 
4. Plastic second-order analysis 
The design requirement for shear is given in LRFD F2 (p. 6-56) and, when P, is 

a compression force in a column of a multistory building, in LRFD K1.7 (p. 6-95). 
A beam-column is subjected to bending and an axial compression force. A brief 

review of the column design strength and the beam design strength for a W section 
is appropriate before the example problems are presented. 

Consider a W section used as a beam-column. From LRFD Table B5.1 for column 
action only, local buckling does not govern @P,, when 

and the design compressive strength is @Pn = 0.85A where F,, is as defined in LRFD 

KL, the effective length, for each principal axis of a column is needed to 
determine the compressive design strength. KL is the chord distance between two 
adjacent M = 0 points on the buckled shape. A n M  = 0 condition occurs at a real hinge 
and at a point of inflection on the buckled shape. Each principal axis has a slenderness 
ratio KL/r, where r is the radius of gyration for the principal axis associated with KL. 
When column flexural buckling occurs, the member bends about the principal axis 
having the larger slenderness ratio. If KL and rare different for each principal axis, 
KL/r must be computed for both principal axes to determine which axis has the larger 
KL/r value. For a built-up column, LRFD E4, E2, and Appendix E3 are applicable. 

LRFD Table C-C2.1 (p. 6-183) gives K values for an isolated column having 
different boundary conditions. Inanunbraced frame, lateral stability depends on the 
bending stiffness of the connected beams and columns. For design purposes, either 
use Eq. (4.27) or the sidesway uninhibited nomograph on LRFD p. 6-186 to determine 
K for a column in anunbraced frame. For a better estimate of K, the inelastic definition 
of G given in Eq.(4.29) can be used. In a braced frame, lateral stability is provided by 
diagonal bracing, shear walls, or equivalent means. For a column in a braced frame, 
K=l  can be conservatively chosen. Alternatively, Eq. (4.26) or the sidesway inhibited 
nomograph on LRFD p. 6-186 can be used to determine K. 

Column design strength values are given in the LRFD column tables (pp. 3-16 
to 3-116) for sections frequently used as a column. 

For a W section used as a beam-column, the strong-axis design bending strength 
4Mnx is defined in LRFD F1 when all indicated restrictions obtained from LFWD 
Table 85.1 (pp. 6-38 to 6-39) are satisfied: 

E2. When local buckling governs qP,, , then F ,  is C f  efined in LRFD Appendix B. 
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[l-z]] when- ” 20.125 
@b ‘y 

where 

If any of the preceding restrictions is not satisfied, the design bending strength is 
defined in LRFD Appendix F (p. 6-111). Beam charts (4Mnr vs. L, curves) for C, = 1 
are given on LRFD pp. 4-113 to 4-166 for W and M sections. For C, > 1, 

[ ;h:l @M = smaller of 

a, = (4Mnr for Cb = 1) 

The weak-axis design bending strength is 4Mny = 0.9Z,,Fy when 

0.5 b 

Otherwise, flange local buckling governs 4Mny and either LRFD Eq. (A-F1-3) or (A- 
F1-4) is the applicable definition of M,. 

6.7 BRACED FRAME EXAMPLES 
An isolated beam-column is chosen for simplicity to illustrate the basic concepts 
involved in a member whose ends cannot translate perpendicularly to the member 
axis. However, these basic concepts are applicable to a floor member extracted from 
a multistory braced frame (see Figure 6.8) at the ith floor level, for example. Assume 
for discussion purposes that Figure 6.8 is only one bay of a multibay section on the 
interior of a building and that the lateral loads shown must be resisted only by the 
members shown. Suppose that a permanent partition wall is situated directly above 
each floor member. The wall only needs to extend barely above the ceiling level. An 
air gap exists between the bottom of the floor member and the top of the partition 
wall beneath the floor member. Each floor member is subjected to the uniformly 
distributed dead weight of the partition wall situated above the floor member. If the 
diagonal braces are designed to resist only tension, the axial compression force in the 
floor member at the ith floor level due to the factored wind loads shown is 
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- ith floor member 

b 
Figure 6.8 Multi-story braced frame. 

In Part 4 of the LRFD Manual, any effects of local buckling were correctly 
accounted for in computing the beam design strength values given in the design aids. 
Therefore, we can use these values without having to check to see if local buckling 
governs. 

In Part 3 of the LRFD Manual, any effects of flange local buckling were correctly 
accounted for in computing the column design strength values given in the design 
aids. Therefore, we can use these values without having to check to see if web 
buckling governs. 

In Part 3 of the LRFD Manual, a footnote symbol is placed on each section for 
which the web must be checked when that section is used as a beam-column to see 
if web local buckling governs q3Mnx. 

Any section that is used as a beam-column and not listed in Part 3 of the LRFD 
Manual must be checked to see if web local buckling governs #M,, . Example 6.7 has 
a member for which this web check is required. 
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The W12 x 65 (F,, = 36 h i )  beam-column in Figure 6.9 is subjected to bending about 
the x-axis only due to the factored distributed load. Lateral braces are provided only 
at the member ends. Does the W12 x 65 satisfy the requirements of LRFD H1.2? 

Solution 

1. For beam effects, 
the maximum primary moment is called M,, since that is the name used for this 
parameter in LRFD Eq. (Cl-l), which is applicable in item 2: 

M,, = 9,,L2/8 = 0.66(30)2/8 = 74.3 ft-kips 

C, = 1.14 (from the next-to-last case in LRFD Table 4-1, p. 4-9) 

LRFD p. 4-19 
$Mpx = 261 ft-kips 

LRFD page 4-130 
L, = 30 f t  a, = 212.5 ft-kips 

= 242 ft - kips I C,M, = 1.14(212.5) = 242 
$Mpx =261 

$Mnx = smaller of 

2. For beam-column effects, 
LRFD Eq. (Cl-1) is applicable: 

Mu, = BI(MNT ) + B2(0) = B,(74.3 ft-kips) 

C,, = 1 (see LRFD, p. 6-183) 

4 
Pu = 161 kips 

q = 0.66kipdft 

$, = L =  30 ft 

Cross section 

Figure 6.9 Example 6.3. 
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= 1.1585 - 1 .o c m  - 
B, = largerof (1-P,, / P e )  1-161/1177' 

[l.oo 
Mu, = 1.1585(74.3) = 86.1 ft-kips 

3. For column effects: 
LRFD p. 3-24 can be used to obtain @Pn: 

(KL), - 30 
[(KL)~ =30ft]> - - = 17.14ft 

4. Check LRFD Eq. (Hl-la), p. 6-59: 

[ 0.581 + ;( E) = 0.8971 I 1.00 (OK) 

= 1.1585 

The W12 x 65 (F = 36 h i )  beam-column in Figure 6.10 is subjected only to x-axis 
bending due to tke factored distributed load. Lateral braces are provided such that 
L, = 15 ft; (KL), = 15 ft. Does the W12 x 65 satisfy the requirements of LRFD H1.2? 

S o h  tion 
1. For beam effects, 

M ,  = 0.86(30)2/8 = 96.8 ft-kips 

C, = 1.30 (from the last case in LRFD Table 4-1, p. 4-9) 

LRFD p. 4-19 

$Mpx = 261 ft-kips 

LRFD p. 4-130 

L, = 15 ft MI = 254.5 ft-kips 

= 261 ft  - kips 
C , a ,  = 1.30(254.5) = 331 i $M,  = 261 

$MnX = smaller of 
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qu = 0.86 kip& 

Figure 6.10 Example 6.4. 

2. For beam-column effects 
LRFD Eq. (Cl-1) is applicable: 

M ,  = Bl(MNT ) + B2(0) = Bl (96.8 ft-kips) 

C, = 1 (see LRFD, p.6-183) 

= 1.285 
= 1.285 - - 

B ,  = largerof I ( l -Pu cm /P , )  1-261/1177 
[ 1.00 

M ,  = 1.285(96.8) = 124.4 ft-kips 

3. For column effects: 

r 1 

>[(KL)y =15ft] 

(PP, = ((PPm = 458 kips) 

( -=-- pu 261 -0.570)2 0.2 
(PP, 458 

4. Check LRFD Eq. (Hl-la), p. 6-59: 

[0-571+9(261) 124 =0.994 ] 51.00 (OK) 
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The beam-column in Figure 6.11 is subjected only to x-axis bending due to the 
factored concentrated load. Lateral braces for both flanges are provided only at the 
supports and midspan. Does a W12 x 72 (Fr = 50 ksi) satisfy LRFD H1.2? 

Solution 

1. For beam effects, 
LRFD p. 4-19 

qMpx = 405 ft-kips 

The primary moment diagram from case 13 on LRFD p. 4-194 is shown in 
Figure 6.11. 
For the first Lb region, M, = 150 ft-kips and 
LRFD p. 4-196 

Lb = 15 ft = 384 ft-kips 

cb = 1.67 (from case 2 in LRFD Table 4-1, p. 4-9) 

= 405 ft - kips 
C , M ,  = 1.67(384) = 642 
$Mpx = 405 

$M nx = smaller of 

For the second Lb region, M,, = 180 ft-kips and: 

= 2.24 12.5 M - 12.5 ( 180) c, = - 
2.5 M,,, + 3 M A  + 4 M ,  + 3 M ,  2.5 ( 180) + 3 ( 67.5) + 4 ( 15) + 3 (97.5) 

= 405 ft - kips 
C , M ,  = 2.24( 384) = 860 
@Mpx = 405 

@M,, = smaller of 

Q ,  = 32 kips 
P" 

C b  = 1.67 Cb = 2.24 
L = L / 2 =  15ft L b = L 1 2 =  15ft 6 

5QU32 z 150 ft-kips 

M diagram (LRFD p. 4-194 Case 13) 

5QU32 z 150 ft-kips 

M diagram (LRFD p. 4-194 Case 13) 

3QL116 = 180 ft-kips 
Figure 6.11 Example 6.5. 
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2. For beam-column effects, 

p = PJP,= 350/2060 = 0.170 

C,,, = 1 - 0 . 3 ~  (see LRFD p.6-183) 

C,, = 1 - 0.3(0.170) = 0.949 

1 = 1.143 
= 1.143 

0.949 

1.00 1 
M,,, = 1.143(180) = 206 

3. For column effects, 
for y-axis buckling, it is conservative to use (KL) ,  = 15 ft. For x-axis buckling, 
see case (e) on LRFD p. 6-184: 

(KL), = 0.8(30) = 24 ft 

@pn = (@P,, = 694 kips) 

= 0.504 2 0.2 1 p, 350 
@P,, 694 

4. Check LRFD Eq. (Hl-la), p. 6-59, in all L, regions. 
Since P, , @Pn ,and @Mpx are identical in both L, regions, only the L, region with 
the larger Mu,  must be checked: 

0.504+- - = 0.956 5 1.00 (OK) [ XZ) ] 
6.8 UNBRACED FRAME EXAMPLES 

The examples deal with the basic concepts involved in performing the LRFD 
interaction equation design check for a beam-column in an unbraced frame using the 
results from a P-DELTA structural analysis that accounts for the system-secondary- 
moments (PA), but does not account for the member-secondary-moments (P6). There- 
fore, when [B ,  = CJ(1 -P,/P,)] > 1, theM,,valueobtained from thecomputer results 
will have to be increased to account for the member-secondary-moments (I%). 
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For member 3 in Figure 1.15, assume that L, = (KL), = 21 ft. See Appendix A for the 
P-DELTA solutions. Does a W12 x 40 (Fy = 36 ksi) satisfy LRFD H1.2? 

Solution 
1. For column effects, 

the lateral stability of the structure in Figure 1.15 is achieved by bending of 
members 1 to 4 and their interaction with the truss. To obtain an estimate of 
(KL), for sidesway frame buckling, convert the truss to an equivalent beam 
(see Figure 6.12). From Appendix A, 
Members 5 to 14: 

A = 5.00 in? 1 = 20.9 in.4 

Members 15 to 24: 
A = 5.89 in? 1 = 23.3 ina4 

For the truss as an equivalent beam, try 

1 = 0.85[44.2 + (5.00 + 5.89)(27)2] = 6786 ina4 
The 0.85 factor was chosen based on experience. The assumed value of 1 = 
6786 was verified by comparing the behavior of the assumed structure and 
the original structure subjected to the nominal wind loading in Appendix A: 

310/21 = 0.1305 
G22 = 6786/60 

G, =1 

1.6G,G, +4(G2, +G, )+7.5 
= 1.19 

G, + G, + 7.5 

Figure 6.12 Example 6.6: Equivalent structure for Fig. 1.15. 
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$Pfl = ($Pfly = 147.5 kips) 

For member 3 in Figures 1.15 and 6.13, L = 21 ft. From loading 8 in Appendix A: 

P, = 64.6 kips; M, = 44.1 ft-kips; MZ4 = 13.2 ft-kips 

2. For beam effects, 

= 2.08 12.5( 44.1) c -  
- 2.5(44.1)+3(29.8)+4(15.4)+3(1.1) 

= 155 ft - kips 
Cbii!il = 2.08( 117.5) = 244 
$Mpx = 155 

4Mm = smaller of 

3. For beam-column effects, 
Is LRFD Eq. (Cl-1) applicable? 

C, = 0.6-0.4( Ml /M2 ) = 0.6-0.4( 13.2/44.1) = 0.480 

11.00 J 
LRFD Eq. (Cl-1) is not applicable; i.e., no member-secondaly-moment(P6) 
needs to be computed, and Mu, = 44.1 A-kips. 

PI 

P I  

Figure 6.13 Example 6.6: Member 3 in Fig. 1.15. 
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- - = 0.438 2 0.2 1 p, 64.6 [-- @Pn 147.5 

4. Check LRFD Eq. (Hl-la), p. 6-59 for loading 8: 

[ 0.438 + :( E) = 0.6901 I 1.00 (OK for loading 8) 

5. Check LRFD Eq. (Hl-la), p. 6-59 for loading 10 
From Loading 10 in Appendix A, 

P, = 33.1 kips M ,  = 62.0 ft-kips 

Obviously, C, > (C, in loading 8); therefore, 

M,, = 44.1 ft-kips 

$Mnx = ($Mpx = 155 ft-kips) 

From the loading 8 solution we know that no member-secondary-moment (P6) 
needs to be computed and Mu, = 62.0 ft-kips: 

(x 147.5 

[ 0.224 + $( g) = 0..580] I 1.00 (OK for loading 10) 

Only 69% of the W12 x 40 (F,, = 36 ksi) section’s strength capacity is needed, 
and a lighter W section can be chosen for strength. However, when the 
serviceability requirements were checked at the end of Section 1.8, a W12 x 
40 was found to be barely satisfactory for controlling drift. Therefore, a 
W12 x 40 is the lightest acceptable column section. 

For F,, = 36 ksi and the results given below from a P-DELTA analysis for Figure 6.14: 

1. Check serviceability. Our limiting choices due to nominal loads are 
Maximum drift = L,  /350 = (180 in.)/350 = 0.514 in. 
Maximum live-load deflection = L, /360 = (360 in.)/360 = 1.00 in. 

2. Check LRFD strength requirements (H1.2, p. 6-60). 

In Figure 6.14: 

k, = 68.2 ft-kips/degree (accounts for G, = G, = 10) 

Members 1 and 2: W14 x 48 
Member 3: W21 x 44 

L = 15 ft. L,  = (KL) ,  = 7.5 ft 
L = 30 ft. L, = (KL) ,  = 6 ft 
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Figure 6.14 Example 6.7: Structure and loading. 

Nominal loads are: 
Dead: w = 1.5 kips/ft 
Live: w = 1 kips/ft 
Snow: w = 0.6 kips/ft 
Wind w = -0.507 kips/ft H ,  = 2.4 kips H ,  = 1.5 kips 

P-DELTA analyses were performed for each of the required LRFD load combina- 
tions (p. 6-30) to check the LRFD strength requirements and for 0.9D + W to check 
drift. The results we need from the P-DELTA analyses are: 

1. Ax = 0.300 in. at joint 3 due to 0.9D + W 
2. Ay = -0.386 in. at midspan of member 3 due to L 
3. For member 2 (see Figure 6.15): 

(a) For 1.2D + 1.6L + 0.5S, 

Y, = 55.5 kips; M, = 14.0 ft-kips; M, = 176.7 ft-kips 

M4h M 2  L2 
Figure 6.15 Example 6.7 Column 
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W 

4 4 t t t 
0 

Figure 6.16 Example 6.7 Girder 

(b) For 1.20 + 1.6s + 0.8W 

Y2 = 36.5 kips M2 = 14.8 ft-kips M4 = 130.9 ft-kips 

4. For members 3 and 4 (see Figure 6.16) and 1.20 + 1.6L + 0.5S, 

X, = 12.71 kips Y3 = 55.5 kips 

M3 = 176.7 ft-kips M, = 176.7 ft-kips 

At X, = Y3 / W, = 15 ft, M, = 239.6 ft-kips. 

Solution 

Check serviceability: 

(Ax = 0.300 in.) I (maximum drift = 0.514 in.) (OK) 

(4 = 0.386 in.) S (maximum live-load deflection = 1.00 in.) (OK) 
Check member 2 for strength (LRFD H1.S p. 6-60). W14 x 48, F,, = 36 h i .  For 1.20 + 
1.6L + 0.5s (governing load combination): 

1. For column effects, 

G, = 10 G, = (485/15)/(843/30) = 1.15 

1.6G,G4 +4(G, +G,)+7.5 
G, +G, +7.5 

= 1.94 

gP,, = (#Pm = 358 kips) 

2. For beam effects, 
LRFD p. 4-19 

(Lb = 7.5 ft) I (Lp = 8.0 ft), gMm = (@MpI = 212 ft-kps) 
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3. For beam-column effects, 
Is LRFD Eq. (Cl-1) applicable? 

C, = 0.6- 0.4( MI / M 2  ) = 0.6- 0.4( 14.0D76.7) = 0.568 

= 1.00 
= 0.597 - - 

/ P , >  l-55.5/1138 

LRFD Eq. (Cl-1) is not applicable; that is, no member-secondary-moment (P6) 
needs to be computed, and M, = 176.7 ft-kips: 

(=+==0.911 2 212 

Check member 3 for strength (LRFD H1.2, p. 6-60). W21 x 44 (Fv = 36 hi): 
1. For beam-column effects, 

12.7 - p,, 12.7 -=-- I @P,, 0.9AFy 0.9( 13.0)( 36) 

A,  = [ 1 - 2.75 (0.0302)] 

WLB is not applicable. 
Is LRFD Eq. (Cl-1) applicable? 

C, =l-0 .4(Pu /P, )=1-0.4(12.7/1862) ~ 0 . 9 9 7  

1 = 1.004 
- - 0'997 = 1.004 

1-12.7/1862 
p.00 J 

M ,  = l.rn(239.6) = 240.6 ft-kips 
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2. For beam effects, 

(Lb = 6 ft) > (L, = 5.3 ft) 

12.5 (240.6) c -  = 1.008 
- 2.5( 240.6) + 3( 236.4) + 4( 240.6) + 3( 236.4) 

C,m,  = 1.008( 250) = 252 
@Mpx = 258 ft - kips 

@Mnx = smaller of 

@MnX = 252 ft-kips 

3. For column effects, 
See Figure 6.14. Since the axial compression force in members 1 and 2 is not 
negligible, the braced frame formula or nomograph on LRFD p. 6-186 cannot 
be used to obtain K,  for the girder. Be conservative and use K,  = 1: 

, 8.06 

( F)y = 1.26 72 = 57.14 

[ Ac =- Kk/r - 574 IT -- - o . ~ o 9 ]  < 1.5 A: = 0.4107 
29,000 

@Pn = 0.85(13.0)(0.658°.4107)(36) = 335 kips 
... - 

I& = 
= 0.0379 < 0.2 1 

4. Check LRFD Eq. (Hl-la), p. 6-59: 

(1 250 

All cited W sections are acceptable for strength and serviceability. 

6.9 PRELIMINARY DESIGN 
Consider the task of sizing the girders and columns in an unbraced multistory plane 
frame for an office building. See the required LRFD load combinations in LRFD A4.1. 
Assume that the building does not have to be designed to resist an earthquake 
loading. 

When there are no more than about six stories above ground level in a typical 
unbraced multistory office building, one of the load combinations that is not a 
function of wind generally produces the axial force and bending moment values that 
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cause the sum in the applicable interaction equation [LRFD Eq. (Hl-la) or (Hl-lb)] 
to be a maximum for each member. We recommend that the ACI Code shear and 
moment coefficients [lo] be used as the approximate method of analysis to obtain the 
girder-end shears and moments. However, to account for an estimate of the second- 
order effects, we recommend that the center-to-center span length be used instead of 
the clear span as stated in the ACI Code coefficients. At each joint in the plane frame 
that has two column ends, allocate half the unbalanced girder-end moment to each 
column end. The axial force in each column is obtained by summing the girder-end 
shears and beam-end shears at all floor levels for whch the column is the vertical 
supporting member. Using this approach, we obtain estimated values of Mu, and P, 
for each column. Then we use procedure 2 to select a trial column section to use in 
the first computer run of the P-DELTA analyses for all required LRFD load combi- 
nations. 

Beam-Column Prelimina y Design Procedure 1 (a beam section is desired) 

This procedure is recommended when the member is predominantly a beam and the 
designer wants to use the beam charts to select a trial section. 

Convert P, to an equivalent Mu, = Pu(d/2). Assume that the desired span-depth 
ratio is L/d = 20, which gives d = L/20 and equivalent Mu, = P,L/40. Use the LRFD 
beam charts to select the lightest trial W section for which (PM,, 2 (Mu,  + PuL/40). 

Beam-Column Prelimina y Design Procedure 2 (a column section is desired) 

Use the LRFD column tables to select a trial section for which 

where 
1. rn = the subsequent approximations value of rn given on LRFD p. 3-12. 
2. u = factor given in LRFD column tables. Let u = 3 to get started. 

Note: Each trial W section in Examples 6.6 to 6.7 was selected by using 
procedure 2. 

Procedure 2 was obtained from LRFD Eq. (Hl-lb): 

Convert rn,, to an equivalent m, for later convenience purposes: 
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To be conservative, assume that &M,, = @dM,,. Therefore, 

@ b M n x  'x 

@ b M n y  ' y  

u = - -  _ -  

where Z,  and Z, are the plastic section moduli given in Part 1 of the LRFD Manual. 
For the W sections listed in the column tables: 

1. For W14, 2 I u 54 .  Only for the lightest three sections is u > 3. 
2. For W12, 2.20 I u 53.42. Only for the lightest three sections is u > 3. 
3. For W10, 2.12 5 u 5 2.77. 
4. For W8, 2.15 5 u 5 2.16. 

Therefore, we recommend u= Z,/zy = 3 as the assumed value for the first trial section. 
If we replace rn, by m, we obtain 

@CPfl +, + m ( M u x  + u M , y ) ]  
where 

which can be estimated as shown here. 
For cb = 1, Lb = (a),, [(fi) , /(rJr,)] I (a),, F ,  = 36 ksi, and F ,  = 50 ksi: 

1. @P,, can be obtained from the column tables for a given (KL),. 
2. @&I,,, can be obtained from the beam design charts for Lb = (a),. 

Use Procedure 1 and select the lightest W section of A36 steel for 

P, = 12.8 kips M ,  = 241 ft-kips 

L = 30 ft C, = 1 L, = (KL), = 6 ft (KL),  = 30 ft 

Solution 

1 Equivalent M u ,  = 

From LRFD p. 4-130, 

Cb = 1 plot point: (Lb = 6, Mu, = 251) 

W21 x 44 (@Mu = 250) = 251 

This is how we chose the W21 x 44 for member 3 in Figure 6.14 for the loads stated in 
Example 6.7, where we checked a W21 x 44 for strength and found it was acceptable. 
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Use Procedure 1 and select the lightest W section of A36 steel for 

P, = 12.8 kips Mu, = 241 ft-kips 

L = 30 ft cb = 1.67 Lb = (a), = 15 ft (a), = 30 fi 

Solution 

Equivalent M u  = 

From LRFD p. 4-19, 

W21 x 44 (#Mpx = 258) 2 251 

From LRFD p. 4-132, 

cb = 1.67 plot point (Ly M&b) =(15,251/1.67 = 150) 

W21 x 44 lies to right of and above this point. Choose W21 x 44 as the trial section. 

Use Procedure 2 and select the lightest W12 and lightest W14 of A36 steel for 

P, = 261 kips; Mu, = 96.8 ft-kips 

L = 30 fi; cb = 1.67; Lb = (a), = 15 ft; (a), = 30 ft 

Solution 

1. For W12 and Fy = 36 ksi, 
LRFD p. 3-12 for KL = 15, m = 1.55 

#Pn 2 [P, + mMux = 261 + (1.55)(96.8) = 411 kips] 
LRFD p. 3-24 

(a), = 15 W12 x 65 (@Pny = 485) 2 412 
[ ( a ) J ( r J r , )  = 30/1.75 = 17.14 ftl > [ (a), = 151 

[#P, = #Pm = 460 - 0.14(14) = 458 kips] 2 412 

Try W12 x 65. (This is how we chose the W12 x 65 for Example 6.4.) 

2. For W14 and Fy = 36 ksi 
LRFD p. 3-12 for KL = 15, rn = 1.4 

#Pn 2 [ P ,  + mM,  = 261 + (1.4)(96.8) = 397 kips] 
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LRFD p. 3-21: 

(KL) ,  = 15 W14 x 61, (@Pny = 412) 2 397 

[ (KL)J(r / , )  = 30/2.44 = 12.3 ft] < [ (KL) ,  = 151 

(@Pn = @Pny = 412 kips) 2 397 
Try W14 x 61. 

Use Procedure 2, LRFD column tables, F,  = 36 ksi, and select the lightest W14 and 
W12 for 

P, = 50.9 kips M,,, = 186 ft-kips 

L = 15 ft L, = (KL) ,  = 7.5 ft ( K L ) ,  / ( r J r y )  = 9.51 ft 

Solution 

1. For W14 and F,  = 36 ksi 
LRFD p. 3-12 for K L  = 9.5 ft, m = 1.5 

@Pn 2 [P,  + mMux = 50.9 + (1.5)(186) = 330 kips] 

LRFD p. 3-21 
W14 x 48 (@Pnx = 358) 2 330 

Try W14 x 48. 

2. For W12 and F ,  = 36 ksi 
LRFD page 3-12: For K L  = 9.5 ft., rn = 1.7 

$Pn 2 [P,  + mMux = 50.9 + (1.7)(186) = 367 kips] 

LRFD p. 3-25: 
W12 x 50 (@Pn, = 376) 2 367 

Try W12 x 50. 

PROBLEMS 
6.1 In Example 2.7, for A36 steel and a welded connection, a pair of L3 x 2 x 1 /4 

with long legs back to back was chosen as the trial section for members 34 and 43 in 
Figure 1.15. Also known from Example 2.7: 

P, = 66.3 kips (tension) and Mu = 0.18(12) = 2.16 in-kips 

@Pn = 0.90F,,Ap, = 0.90(36)(2.38) = 77.1 kips 

Does the trial section satisfy the LRFD H1.l strength design requirement? 

6.2 See Figure P6.2. For Fy = 36 ksi, q,, = 1.2 kips/ft; PI, = 170 kips; (KL) ,  = L,  = 
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L = 10 ft, assume that yieIding on A, governs (PP, and select the lightest acceptable W 
section that satisfies the LRFD H1.l strength design requirement. 

L 

FIGURE P6.1 

6.3 Solve Problem 6.2 for F,  = 50 ksi. 

In Problems 6.4 to 6.10, does the W section indicated in each problem satisfy the 

6.4 See Figure P6.4. W12 x 45, F, = 50 ksi. 

LRFD C1 and H1.2 requirements for a beam-column? 

q, = 1.0 kips/ft P,, = 85 kips (KL) ,  = L,, = 15 f t  L = 30 f t  

L 

FIGURE P6.4 

6.5 See Figure P6.5. W12 x 120, F,  = 50 ksi. 

Q,, = 60 kips P, = 360 kips ( K L ) ,  = L, = 12 ft L = 24 f t  

& 

FIGURE P6.5 

6.6 See Figure P6.6. W12 x 90 F,  = 36 ksi. 

M, = 130 kips P, = 600 kips (KL) ,  = L, = L = 12 ft 

FIGURE P6.6 



282 Members Subject to Bending and Axial Force 

6.7 See Figure P6.7. W14 x 61 Fy = 36 ksi. 

MI = 170 kips M, = 60 kips P, = 90 kips (KL) ,  = Lb  = 10 ft L = 20 ft 
(KL), / (TJY,)  = 9.51 f t  

FIGURE P6.7 

6.8 In Example 4.11 for A36 steel, a pair of L3 x 2 x 1/4 with long legs back to 
back and welded to a 3/80-in.-thick gusset plate was chosen as the trial section for 
members 5 to 14 in Figure 1.15 and in Appendix A. From Example 4.11, for these 
beam-columns we also know: 

@Pn = 135 kips P, = 122.5 kips M u  = 1.91 ft-kips 

Does the trial section satisfy the LRFD H1.2 strength design requirement? 

6.9 Select the lightest acceptable WT section of A36 steel that satisfies LRFD 

6.10 Solve Problem 6.9 using Fy = 50 ksi steel. 

H1.2 for members 5 to 14 in Figure 1.15 and in Appendix A. 

In Problems 6.11 and 6.12, the member in each indicated figure is subjected to 
bending about the x-axis. Select the lightest acceptable W section from the indicated 
column section series that satisfies the requirements of LRFD C1 and H1.2 for the 
stipulated grade of steel. 

6.11 For Figure P6.4, W12, F, = 50 ksi, 9, = 0.86 kips/ft; P ,  =.261 kips; 

6.12 For Figure P6.5, W12, Fy = 50 ksi, Q, = 32 kips; P, = 350 kips; (KL) ,  = L b  

6.13 See Figure 6.13. F, = 50 ksi. 

Members 1 and 2: W12 x 40 
Member 3: W18 x 35, L = 30 ft; 
k, accounts for G = 10 at joints 1 and 2. 

(KL),  = L b  = 15 ft; L = 30 ft. 

= 15 ft; L = 30 ft. 

L = 15 ft; L, = (KL), = 15 ft 
L, = (KL), = 6 ft 

Nominal loads are: 
Dead: w = 1.5 kips/ft 
Live: w = 1 kips/ft 
Snow: w = 0.6 kips/ft 
Wind: w = -0.507 kips/ft H ,  = 2.4 kips 

P-DELTA analyses were performed for each of the required LRFD load combi- 
H4 = 1.5 kips 

nations (p. 6-30) and the results at the ends of Member 3 are: 
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1. For 1.213) + 1.6L + 0.5S, 

X3 = 13.0 kips Y3 = 55.5 kips; M3 = 180.5 ft-kips; M4 = -180.5 ft-kips 

2. For 1.213) + 1.6s + 0.5L 

X3 = 11.45 kips Y3 = 48.9 kips M3 = 159 ft-kips M4 = -159 ft-kips 

Does the design satisfy LRFD H1.2 (p. 6-60)? 

FIGURE P6.13 

6.14 See Figure 6.14. Fy = 50 ksi. 

Members 1 and 2: W14 x 48, L = 15 ft; 
Member 3: w21 x 44, L = 36 ft; 
k, accounts for G = 10 at joints 1 and 2. 

L, = (KL) ,  = 15 ft 
L b  = (a), = 6 ft 

Nominal loads are : 

Dead: w = 1.5 kips/ft 
Live: w = 1 kips/ft 
Snow: w = 0.6 kips/ft 
Wind: w = -0.507 kips/ft H3 = 2.4 kips H4 = 1.5 kips 

P-DELTA analyses were performed for each of the required LRFD load combi- 

1. For 1.2D + 1.6L + 0.5s 

nations (p. 6-30) and the results at the ends of member 3 are: 

X3 = 19.5 kips Y3 = 66.6 kips M3= 270.8 ft-kips M4 = -270.8 ft-kips 

2. For 1.2D + 1.6s + 0.5L 

X3 = 17.2 kips Y3 = 58.7 kips M3 = 239 ft-kips M ,  = -239 ft-kips 
Does the design satisfy LRFD H1.2 (p. 6-60)? 

6.15 See Figure 6.15. Fy = 50 ksi. 

Members 1 and 2: W10 x 33, L = 15 ft; 
Member 3: W10 x 39, L = 15 ft; 
Members 4 and 5: W24 x 62, L = 36 ft; 

Lb = (KL),  = 15 f t  

Lb = (a), = 6 ft. 
Lb = (KL), = 15 f t  
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k, accounts for G = 10 at joints 1 to 3. 
Nominal loads are: 

Dead: w = 1.5 kips/ft 
Live: w = 1 kips/ft 
Snow: w = 0.9 kips/ft 
Wind: w = -0.507 kips/ft H ,  = 2.4 kips 

P-DELTA analyses were performed for each of the required LRFD load combi- 

1. For 1.20 + 1.6L + 0.5S, 

H ,  = 1.5 kips 

nations (p. 6-30) and the results at the ends of members 4 and 5 are: 

X, = 5.22 kips 

X, = 5.22 kips 

Y, = 55.2 kips 

Y6 = 55.2 kips 

M, = 72.4 ft-kips 

M ,  = 580.7 ft-kips 

M, = -580.7 ft-kips 

M, = -72.4 ft-kips 

2. For 1.20 + 1.6s + 0.5L, 

X, = 5.07 kips M, = -564.1 ft-kips 

X, = 5.07 kips Y6= 81.0 kips M ,  = 564.1 ft-kips M, = -70.3 ft-kips 

Y, = 53.6 kips M, = 70.3 ft-kips 

Does the design satisfy LRFD H1.2 (p. 6-60)? 

FIGURE P6.15 

6.16 See Figure 6.16. F ,  = 50 ksi. 

Members 1 to 4: W14 x 43, 
Member 5: W21 x 44, 
Member 6: W18 x 35, 
k, accounts for G = 2 at joints 1 and 2. 

L = 12.5 ft; L,  = ( K L ) ,  = 12.5 ft. 
L = 30 ft; 
L = 30 ft; 

L, = (KL),  = 6 ft. 
L, = (KL), = 6 ft. 

Nominal loads are: 

Dead: ws = 2.61 kips/ft 
Live (reduced): w, = 1.54 kips/ft 
Snow: w, = 0.9 kips/ft 
Wind: w6 = -0.507 kips/ft 

zu, = 2.1 kips/ft 

H3 = 3.25 kips 
H, = 1.62 kips 

H4 = 2.03 kips 
H, = 1.02 kips 
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P-DELTA analyses were performed for each of the required LRFD load combi- 
nations (p. 6-30) and the results at the ends of members 5 and 6 are: 

1. For 1.20 + 1.6L + 0.5S, 

X, = -18.2 kips Y3 = 83.9 kips M, = 349.3 ft-lups 

X, = 31.9 kips Y5 = 44.55 kips M, = 190 ft-kips 

2. For 1.20 + 1.6s + 0.5L, 

X, = -25.7 kips 

X, = 33.3 kips 

Y, = 58.5 kips 

Y5 = 59.4 kips 

M, = 254 ft-kips 

M, = 241 ft-kips 

Does the design satisfy LRFD H1.2 (p. 6-60)? 

6.17 See Figure 6.17. F,, = 50 ksi. 

W 

UI 

H 6  

H 4  

M4 = -349.3 ft-kips 

M, = -190 ft-kips 

M4 = -254 ft-kips 

M, = -241 ft-kips 

P6.16 

Members 1 to 4: W10 x 33, L = 12.5 ft 
Members 5 to 6: W10 x 39, L = 12.5 ft 
Members 7 to 8: W24 x 62, L = 30 f t  
Members 9 to 10: W21 x 50, 
k, accounts for G = 2 at joints 1 to 3. 

L, = (KL),  = 12.5 f t  
L, = (KL) ,  = 12.5 f t  

L, = (KL),  = 6 f t  
L, = (KL) ,  = 6 ft  

L = 30 ft 

Nominal loads are: 

Dead: w7 = w8 = 2.61 kips/ft 
Live (reduced): w7 = w8 = 1.54 kips/ft 
Snow: w9 = wl0 = 0.9 kips/ft 
Wind: w9 = wl0 = -0.507 kips/ft 

w9 = w , ~  = 2.1 kips/ft 

H4 = 3.25 kips 

H7 = 1.62 kips 

H ,  = 2.03 kips 

H9 = 1.02 kips 
P-DELTA analyses were performed for each of the required LRFD load combi- 
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nations (p. 6-30) and the results at the ends of members 7 to 10 are: 

1. For 1.20 + 1.6L + 0.5s 

X, = -8.88 kips 

X, = -8.88 kips 

X, = 14.87 kips 

X, = 14.87 kips 

Y4 = 71.1 kips 

Y5 = 96.7 kips 

Y7 = 38.1 kips 

Y8 = 51.0 kips 

M4 = 157.5 ft-kips M5 = -541.6 ft-kips 

M ,  = -157.5 ft-kips 

M8 = -282.7 ft-kips 

Mg = -89.6 ft-kips 

M5 = 541.6 ft-kips 

M7 = 89.6 ft-kips 

M8 = 282.7 ft-kips 

2. For 1.20 + 1.65 + 0.5L 

X, = -11.0 kips 

X, = -11.0 kips 

X, = 14.9 kips 

X, = 14.9 kips 

Y4 = 50.4 kips 

Y, = 66.7 kips 

Y, = 49.9 kips 

Y, = 68.9 kips 

M, = 124.0 ft-kips 

M, = 369.3 ft-kips 

M7 = 102.7 ft-kips 

M, = 386.8 ft-kips 

M ,  = -369.3 ft-kips 

M, = -124.0 ft-kips 

M, = -386.8 ft-kips 

M, = -102.7 ft-kips 

3. For 1.20 + 1.6s + 0.8W 

X4 = -6.95 kips 

X, = -8.34 kips 

X, = 14.5 kips 

X, = 13.4 kips 

Y4 = 39.5 kips 

Y, = 52.3 kips 

M4 = 83.5 ft-kips 

M ,  = 280.5 ft-kips 

M ,  = -309.1 ft-kips 

M ,  = -121.2 ft-kips 

Y7 zz 44.5 kips 

Y, = 61.7 kips 

M7 = 86.3 ft-kips 

M ,  = 344.6 ft-kips 

M ,  = -351.7 ft-kips 

M ,  = -94.7 ft-kips 

Does the design satisfy LRFD H1.2 (p. 6-60)? 

w W 

FIGURE P6.17 



CHAPTER 

Bracing Requirements 

7.1 INTRODUCTION 
This chapter discusses bracing requirements and provides conservative guidelines 
adapted from Winter [18], McGuire [19], and Galambos [20] for the preliminary 
design of the bracing. The following types of bracing are considered: 

1. Diagonal bracing in a braced frame (LRFD C1 and C2.1) 
(a) Cross braces (each truss diagonal is designed as a tension member) 
(b) K braces (one K-truss diagonal is in compression; other diagonal is in 

tension) 
2. Weak-axis column braces (LRFD B4) 
3. Compression flange braces of a beam (to prevent lateral-torsional buckling) 

7.2 STABILITY OF A BRACED FRAME 
In the following discussion, we assume that lateral stability for the braced frame 
direction of a structure is to be provided by diagonal bracing in vertical, cantilever, 
plane trusses (see Figures 7.1 to 7.5). 

The structure in Figure 7.1 is composed of unbraced frames in the Y-direction 
and braced frames in the X-direction. Only a two-bay by three-bay structure was 
chosen to simpllry the graphical presentation. The flat roof slab for this structure is 
assumed to be rigid in-plane and adequately fastened to the roof framing members 
such that the joints at the top end of all columns translate the same amount when the 
structure is subjected to wind independently in each of the X-and Y-directions. 
Therefore, each of the three diagonal braces provides one-third of the total bracing 
required for the sum of the weak-axis column buckling loads and the total factored 
wind load in the X- direction. If a structure has more bays in the X-direction than 
shown in Figure 7.1, the structural designer probably will choose to locate some of 
the required diagonal bracing in two or more bays (see Figure 7.2). 

287 
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A36 steel; All columns: W14 x 48; All girders (Y direction): W24 x 55 
(a) Roof framing plan 

15 ft 

Y 

(b) Section l-l(unbrdced frame) 

z L &  L=3Oft  & L 

(c) Section 2-2 (braced frame) 

Figure 7.1 One-story building. 

The lateral bracing in the Y-direction of Figure 7.1 must provide adequate 
stiffness to control drift and adequate strength to prevent overturning for each of the 
required loading combinations [LRFD Eqs. (A4-1) to (A4-6)]. For simplicity in the 
discussion, lateral bracing is discussed only for each of the loading combinations 
defined by LRFD Eqs. (A4-3) and (A4-4). The size of the diagonal braces can be 
chosen using the preliminary design guidelines given here. Then, accounting for 
second-order effects (LRFD C1 and C2.1), a structural analysis of the vertical, 

4 spaces at L = 4L -I 
Figure 7.2 Bracing in more than one bay. 



7.2 Stability ofa Braced Frame 289 

Diagonal cross braces are to be 
designed as tension members. 
Only one diagonal is active at a 
time. mhyft m O = h / L  

(a) Details of the ideal braced bay in Figure 7.1 

Maximum aCCeptdbk out-of-plumb is 
ug = h i500  

X 

k - - 

(b) Actual erection position 

V ]  = ( P ,  / I  + P, u ) / L  

(c) Final deflected position I Y L  P = V,/sin O I 
Figure 7.3 Tension-member cross braces. 

cantilever, and plane trusses containing the diagonal braces must be performed to 
ensure lateral stability of the structure in the Y-direction. In this lateral stability 
analysis, axial deformation of all members in the vertical bracing system shall be 
included (LRFD C2.1). In the preliminary design guidelines given for sizing the 
diagonal braces, axial deformation of only the diagonal braces is included. 

As shown in Figure 7.3, during construction the columns cannot be perfectly 
plumbed and are erected with an acceptable out-of-plumbness u, I h/500 (see 
LRFD, p. 6-254). The diagonal braces are installed in this out-of-plumb position 
and subsequently subjected to nominal loads that increase as construction progresses 
to completion. 

7.2.1 Required Stiffness and Strength of Cross Braces 

The derivations for the required stiffness and strength of a typical diagonal brace in 
Figure 7.3(c) are made for a loading combination that contains a term for wind. The 
solutions for a loading combination that does not contain a wind term are obtained 
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by deleting the term involving the factored wind force P, from the solutions that 
contain a term for wind. P, is the sum of the column buckling loads to be resisted by 
one diagonal brace. P, is the total factored load to be resisted by one diagonal brace 
due to wind on the end of the building and is applied in the X- direction. P, and P, 
are applied to the joint at the top end of the diagonal brace. 

At reaction 2 in Figure 7.2(c), C M y  = 0 gives 

P, h + P, u 

L 
v, = 

where 
u, = original out-of-plumbness 

u1 = drift that occurs due to P, and P, 

u = (u, + u,) = the final deflected position of the column tops 

The force in the brace is 
V ,  - P,h+P,u 

Pb =- 
sin6- Lsin6 

and the elongation of the brace is 

(eb  = cos 6) = [(PLEA), = pb/s,] 

where S, = (EA/L), is the actual stiffness of the brace. Thus, for this loading 
combination, the required stiffness is 

Pb V,  /sin 6 
eb  ucos6 

s, =-= 

P,h+P,u - P, + P , h / u  
uLsin6 cos6 Lsin6 cos6 

s, = - 

To be conservative, assume that the maximum out-of-plumbness u, = h/500 exists 
and the maximum acceptable value of additional drift u1 occurs. Note that u, is due 
to factored loads and must be chosen by the structural designer since the LRFD 
Specification does not give any guidelines on the maximum acceptable drift. For 
serviceability of a steel framework structure, the drift index is customarily chosen to 
be in the range of h/667 to h/200. For 1.2D + 1.6L and L / D  = 3, this corresponds to 
1.5(D + L).  To be conservative, we recommend that u =  1.5(h/200) = 3h/400 = h/133 
be used in the preliminary design of the brace. Thus, the required stiffness is 

( P ,  + 133 P, ) 
['b =(?),I2 L S i n 6  COS6 

For a tension member, the LRFD strength requirement is 

(Ls in6)  
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Thus, the strength requirement is 

Summary 
The design requirements for each diagonal brace are 

1. For stiffness, 

2. For strength 

The preceding preliminary design guidelines for a one-story building can be 
applied in each story of a multistory building (see Figure 7.4). Then, in the story for 
which the diagonal brace is being designed, the definitions of P, and P, are 

nc 

P, = C P ,  
j=1 

where 

nc = total number of columns in the story 

P, = @Pny of the jth column in the story 

P, = C W j  
j=i+l 

where 

ns = total number of stories 

i = number of the floor level in the story 

Wj = total factored wind load applied at the jth floor level 

Consider a brace that is perpendicular to the members being braced. As in the 
preceding discussion, let P, denote the compressive force being braced. Tempo- 
rarily, assume that the brace does not have to resist lateral loads due to wind or 
earthquakes. The long-standing conservative rule of thumb is that the required 
strength of this brace is 0.02Pu. If the brace is inclined to the members being braced 
as in Figure 7.l(c), 0.02Pu is the horizontal component of the required strength of the 
brace. However, the brace must have adequate s t z f iess  and strength to quallfy as 
lateral bracing. 
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ith floor member 

Figure 7.4 Multistory braced frame. 

The diagonal braces in Figure 7.l(a) are to be designed for the bracing configuration 
in Figure 7.l(c) and the following conditions: 

F ,  =36 ksi F, =58 ksi h = 15 ft; L = 30 ft; 

sin 6 = 0.447 tan 6 = h/L = 15/30 = 0.5 6 = 26.57"; 

Select the minimum acceptable diameter A36 threaded rod to serve as the diagonal 
brace in Figure 7.l(b) for the following LRFD load combinations: 

Loading 1 

1.2D + 1.6s + 0.5L which is LRFD (A4-3) 
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Loading 2 

1.2D + 1.3W + 0.5L + 0.5s which is LRFD (A4-4) 

For all loadings, use P, = CP,, where P,l = nominal strength of each column. 
In loading 2, assume that P,, = 3.30 kips. 

Solutioii 

Compute P, = XP, for the W14 x 48 columns of A36 steel. For each exterior column, 

For each interior column, 
r 1 

Therefore, weak-axis column strength governs. From the LRFD column tables, we 
find (bP, = @PI,,,. = 270 kips for each column. Each diagonal brace must provide the 
weak-axis bracing for four columns. Therefore, each diagonal brace must be satisfac- 
torily designed for: 

Loading 1 

P, = CP,l = 4(270/0.85) = 1271 kips 

Loading 2 

P, = 1271 kips and P,,, = 3.30 kips 

The strength design requirement is 

From LRFD Table J3.2 (p. 6-81), the design tensile strength for an A36 threaded rod is 

$JP,~ = 0.75 (0.75Fl,A,,) 

= 0.75 (0.75)(58 ksi)A, = 32.625A,, 

where A, = gross area of the threaded rod. 
Loading 2 governs P,, : 

h (  PI,, + P, /133) 
L S i n O  

P, = 

(15)(3.30+1271/133) 
(30)( 0.447) 

- - = 14.4 kips 

To satisfy the strength requirement, we need 
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((Pp, = 32.625Ab) 2 (pb = 14.4 kips) 
A, 2 (14.4/32.625 = 0.441 in.2) 

(d2/4) 2 0.441 i n . 2  

d 2 0.7496 in. 

Try d = 3/4 in. threaded rod: (A, = 0.442 in?) 2 0.441 in.2 
Note: By the 2% rule-of-thumb method, 

P, = 0.02(1271 + ~ .~O) /COS 6 = 32.1 kips 
which would require 32.1/14.4 = 2.22 times more strength than we actually need. 

Check the stiffness design requirement, which is 

1 Pu +133P, ) 
[ ’ b  =(y)b]’[  ( I  s d  . c o d )  

- - l5 = 33.56 ft 
h L ,  =- 

sm6 0.447 

For loading 1, 

For loading 2, 
p ,  + 133 p ,  - 1271 + 133( 3.30) = 143 ft 
Lsin6 cos6 (30)(0.447)(0.894) 

Since 382 > 143, we would use a 3/4in.-diameter threaded rod as the diagonal brace. 
For this choice of threaded rod, note that L/d = 33.56(12)/0.75 = 537, and for threaded 
rods we prefer to use d 2 5/8 in. and L/d 5 500, which corresponds to L/r 5 2000. 

Instead of the threaded rod chosen in Example 7.1, suppose that either a single- 
angle or double-angle tension member with field-welded end connections is to be 
selected for the diagonal brace. If the welds are adequately designed such that the 
tension member govern the design strength, (Pp, is the kis t  of 0.90F&,, 0.75F,/,U, 
and (PR, for block shear rupture. A, of the diagonal brace must be chosen such that 

- 

h ( P ,  +P,  /133) 
(Lsine) 

are satisfied for strength and stiffness. 
Instead of the threaded rod chosen in Example 7.1, suppose that either a single- 

angle or double-angle tension member with bolted end connections is to be selected 
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for the diagonal brace. If the bolts are adequately designed such that the tension 
member governs the design strength, @Pn is the least of O.90Fflb, 0.75F"Z.I (Ab- Aholes), 
and @Rn for block shear rupture. A, of the diagonal brace must be chosen such that 

h(Pu + P ,  /133) 
( L  s ine )  

are satisfied for strength and stiffness. 

7.2.2 Required Stiffness and Strength of K Braces 
Figure 7.5 shows how the diagonals of a K truss participate to provide lateral bracing 
for a braced plane frame. The axial force in each diagonal is P,. One diagonal is in 
tension and the other diagonal is in compression. Thus, the strength requirement of 
qbP, 2 P, must be satisfied for both diagonals and @Pn of the compression diagonal 
usually is smaller than (PP, of the tension diagonal. However, when the wind 
direction is reversed, the original tension diagonal becomes a compression diagonal. 
Therefore, both diagonals must be identical. 

Z L L = 3 0 f t  4 

tan O =  hl( L12) 

(a) Section 2-2 (braced frame) of Figure 7.  I(a) 

V, = ( P ,  h + P,, u ) l L  e b =  ucostl 

tan 0 = h / (  L l 2 )  

Pb = V, I sin 0 

(b) Final deflected position 

Figure 7.5 K-truss braces. 
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The derivations for the required stiffness and strength of each diagonal brace in 
Figure 7.5(b) are similar to those for the cross braces. The design requirements are: 

1. For stiffness, 

1 [s, =(?) 2 ( P u  +133P,) 

( L  sin e cos e )  
2. For strength, 

h ( P ,  + P ,  /133) 

( L  sin e) W" 2 

The diagonal braces in Figure 7.l(a) are to be designed for the bracing configuration 
in Figure 7.5 and the following conditions: 

F,, =36 ksi F ,  =58 ksi h = 15 ft L = 30 ft 

tan 8 = h/ (L/2) = 15/15 = 1 8 = 45" sin 0 = 0.707 

Select the minimum acceptable pair of A36 steel angles that can serve as the diagonal 
brace in Figure 7.5 for the following LRFD load combinations: 

Loading 1 

1.20 + 1.6s + 0.5L which is LRFD (A4-3) 

Loading 2 

1.20 + 1.3W + 0.5L + 0.55 which is LRFD (A4-4) 

For all loadings, use P, = CP,, where P,, = nominal strength of each column. 
In loading 2, assume that P,  = 3.30 kips. 
Select the pair of angles for: 

1. Welded-end connections 
2. Bolted-end connections 

Solution 

Note that Example 7.2 is Example 7.1 with the following changes: 

1. K braces (Figure 7.5) are to be designed instead of X braces [Figure 7.l(c)] 
2. A pair of angles is to be selected instead of a tie rod. 

Therefore, from Example 7.1, each diagonal brace must be satisfactorily designed for 

Loading 1 
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P,, = CP, = 4(270/0.85) = 1271 kips 

Loading 2 
P ,  = 1271 kips and P,,, = 3.30 kips 

The strength design requirement is: 

k ( P ,  +P, /133) 

(Lsin8) 

For loading 1, P, = 0, and 

= 6.76 kips 
k ( P,k / 133) - ( 1271)( 15) / 133 

(Lsin8) (30)( 0.707) 
P, = - 

For loading 2, P, = 3.30, and 

(15)(3.30+1271/133) 
(30)( 0.707) 

Pb = = 9.09 kips 

Assume that @Pa 2 9.09 kips for the diagonal as a compression member will govern 
the size. (KL) ,  = (KL),, = 15/0.707 = 21.2 ft. From LRFD p. 3-70, a pair of L4 x 3 x 0.25 
with two intermediate connectors and A = 3.38 in.2 is chosen. (@P, = 17 kips) 2 9.09 
kips. 

Check the stiffness design requirement, which is 

(p , ,  +133p, ) 
[s, =(L;4) , ]2[  (Lsin8 cos8) 

For loading 1, 

= 84.8 kipdft 
1271 - - p,, 

Lsin8 cos8 (30)( 0.707)( 0.707) 

For loading 2, 

P, + 133P, - 1271 + 133 ( 3'30) = 114 kips/ft 
(Lsin8 cose) - (30)(0.707)(0.707) 

Since 4624 > 114, more than adequate stiffness is provided. 
Now, we must check the diagonal brace as a tension member: 

1. Check the strength of the tension diagonal with welded-end connections: 

@FFpx = 0.9(36)(3.38) = 110 kips 

@F& = 0.75(58)(0.85)(3.38) = 125 kips 
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($P, = 110 kips) 2 17 kips 

Therefore, the compression design strength governed as assumed. 
The welds will be designed for $P, = 17 kips instead of Pb = 9.09 kips. That is, 
the design compressive strength of the member will be developed in the 
design of the welds. For E70 electrodes and 3/16-in. fillet welds, the strength 
of the transverse welds on the ends of the pair of angles is 

[2(0.75)(0.6)(70)(0.707)(3/16)(4)(1.5) = 50.1 kips] 2 17 kips 

Thus, no longitudinal welds are needed for strength on a tension member and 
there is no block shear rupture condition to check. However, ductility will be 
improved by using longitudinal welds with end returns instead of the 
transverse welds. 

2. Check the strength of the tension diagonal with bolted-end connections. 

The bolts will be designed for $P, = 17 kips instead of P, = 9.09 kips. For one 5/8-in.- 
diameter A325N bolt in double shear, (#R, = 22.1 kips/bolt) 2 17 kips is adequate at 
each end of the member. 

Check bearing: 

2 (0.25) > 0.375 in.; the 3/8-in.-thick separator plate governs. 

$R, = 0.75(2.MfFU) = 0.75(2.4)(0.625)(0.375)(58) 

[$R, = 24.5 kips/(bolt location)] 2 17 kips (OK) 
Check design tension strength: 

When there is only one bolt, we use the recommendation on LRFD page 6-172 which is 

A, = net area of the connecting element in each angle 

[@,,Ap, = 0.75(58)(2)(0.25)(4 - 0.75) = 70.7 kips] 2 17 kips (OK) 

Check block shear rupture: 

The minimum end distance is the larger of 1.125 in. and 1.5(0.625) = 0.9375 in 

Ahole = 0.5[2(0.25)(0.75)] = 0.1875 in.’ 

A, = 2 (1.125)(0.25) = 0.5625 in.’ 

A,, = Ap - Ahole = 0.375 in.’ 

Agt = 2 (0.25)(1.5) = 0.75 in.’ 

A,, = A,, - Ahole = 0.5625 in.2 

@R, = 0.75(F,,An, + 0.6F8,) = 0.75[58 + 0.6(36)](0.5625) 

(@R, = 33.6 kips) 2 17 kips (OK) 
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7.3 WEAK AXIS STABILITY OF A COLUMN 
For a pinned-ended, W section column (see Figure 7.6), (PP,, governs the column 
design strength. A perfectly straight and perfectly plumb column does not exist. The 
LRFD definition for @P, contains the assumption that the initial crookedness is a half 
sine wave with an amplitude of u, = L/1500 [see Figure 7.6(c)]. The maximum 
acceptable out-of-plumbness is U, = L/500 [see Figure 7.6(d)]. Figure 7.6(e) shows 
the buckled configuration of an imperfect, pinned-ended, W section column. 

Let n denote an integer (n  2 2), and h = L/n denote the distance along the column 
length between laterally braced points. Then (KL), = (h  = L/n). Figures 7.7(c-e) are for 
the case n = 2. For a pinned-ended column, (KL), = L. For some W sections used as 
columns, rJr, > 3. The larger of (KL)J (rJrJ and (KL),, governs the column design 
strength #Pn . In Figure 7.7(c), when 

and when elastic buckling OCCUTS, (PP, for this column is four times (PI', of the pinned- 
ended column in Figure 7.7(a). By bracing the weak axis of a column [see Figures 
7.7(c) to 7.91 at a sufficient number of points such that 

(a) Perfect column 

L 

L - 
I 2 

I 

(C) 

P+l A 

d d 

~ 

a 

(c) Initially crooked column. 

(d) Out of plumb column, 
(e) Buckled configuration. 

Half sine wave is assumed, u ,  = L /  lo00 
U, = L 1500 

(b) Section 1-1 

Figure 7.6 Pinned-ended column. 
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- ‘h 

I hinge 
I 

I Figure (e) = Figure (d) 

then qP,, = In Figure 7.7(c), the roller support at midheight of the column is shown 
to indicate that a weak-axis column brace exists at this location. Using a roller support 
to indicate column-braced points at intermediate locations along the length is custom- 
ary in textbooks until more specific details are required. In the following discussion, 
an elastic spring [see Figure 7.7(c)] is used to indicate a weak-axis column brace. The 
elastic spring may be thought of as an axially loaded member whose axial stiffness is 

where subscript b denotes brace, and 
s b  = (PLEA), 

P, = axial force in the brace 
L, = length of the brace 

A, = gross area of the brace 
E, = modulus of elasticity of the brace 

‘ t  
I - X  

(b) Section 1-1 

(a) Pinned-ended column 

‘h 

h =  L i 2 
(c) Weak-axis brace at midheight 

A - R  

(d) Buckled column 

(e) Used in mathematical 

Figure 7.7 One weak-axis brace for a column. 

derivations 
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The axial strength of the brace is (f#)Pn)b and ($pn)b 2 Pb is required, where P ,  is the 
force in the brace when weak-axis column buckling occurs. If a brace with 
adequate stiffness and strength is located at the L/n points along the height of a 
pinned-ended column, then (KL),, = (h = L/n). If h < (KL)Jr,./ry), then we have 
strengthened the column such that @',, = @',,. The purpose of the following 
discussion is to provide guidelines on what is adequate stiffness and strength for an 
intermediate column brace. 

The braces must be installed such that they prevent lateral translation and 
twisting. If twisting is not prevented at the braces, the governing column design 
strength will be due to torsional buckling for (KL), = L. 

7.3.1 Bracing Stiffness and Strength Requirements when h = L/2 

In Figure 7.7(c), the buckled shape is two half sine waves. There is a point of 
inflection on the sine curve at the midheight support. Therefore, the internal bending 
moment M = 0 at this location. This is important to remember since the following 
discussion is based on M = 0 at the laterally braced points. Since M = 0 at each braced 
point, for mathematical and graphical convenience we use pinned-ended, straight- 
column segments between the braced points as shown in Figures 7.7(e) to 7.9. In 
Section 7.3.5, we will show how to cope with the situation when the point of inflection 
on the buckled shape does not occur at a braced point. 

If less stiffness is provided than that shown in the following derivation, the 
weaker symmetrical mode shape [Figure 7.7(a) with a dimple at the brace location] 
will develop. Thus, it is essential that the brace have at least the required stiffness 
shown here. 

In Figure 7.7(e), the maximum out-of-plumbness U, = L/500 and the maximum 
out-of-straightness u, = L/ lOOO have been assumed for the weak-axis buckled shape 
with one intermediate lateral brace Pb. Note that P,, (LRFD nominal column strength 
for the y-axis) is the buckling load. Also, note that we have chosen to be more 
conservative by using u, = L/1000 than the u, = L/1500 assumed in the LRFD column 
strength definition. 

For the FBD shown in Figure 7.7(e), from C My = 0 at the bottom support, 

LR'+U,P,,, = hPb 

From C F, = 0, 

From C My = 0 at the top end of the bottom column segment as a FBD, 

h R =  O+U P,, (", 1 
As recommended by Winter [18], assume that u1 = u, in u = u, + ul; then, 

Pb = O.oO8Pfly 
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Pb is the required bracing strength to produce P, for the buckling shape of two half 
sine waves, each of length h = L/2. 

Since U,/2 and u, existed when the brace was installed, then 

Pb =SbUl 

8 Pny s, =- 
L 

s b  is the required bracing strength to produce Pny for the buckling shape of two half 
sine waves, each of length h = L / 2 .  

The design requirements of an axially loaded member serving as the brace are 

(@,,)b >(Pb =0.008Pny) 

7.3.2 Bracing Stiffness and Strength Requirements when h = W3 
The buckled shape for Figure 7.8(a) is three half sine waves, and this antisymmetric 
mode shape is the one desired. If less stiffness is provided than that shown in the 
following derivation, the weaker symmetrical mode shape (only one half sine wave 
with a dimple between the braces) shown in Figure 7.8(b) will develop. Thus, it is 
essential that the brace have at least the required stiffness shown here. 

From Z My = 0 at the bottom support, 

LR = U,Pny + hP, = 2hPb 

From C F,  = 0, 

From C My = 0 at the top end of the bottom column segment, 

Assume that u1 = u, in u = u, + ul; then 
Pb = 0.018Pny 

Since UJ3 and u, existed when the brace was installed, then 

Pb = s , u ,  
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TFR 
(a) Desired buckled shape 

u, = L1500 
u, = Lllooo 
u =  UO+ u, 

Pb = Sb u1 

d 
+ R  
b 

P 
ny 

(b) Weaker buckled shape 

Figure 7.8 Two weak-axis braces for a column. 

7.3.3 Bracing Stiffness and Strength Requirements when h = U4 
The buckled shape for Figure 7.9 is four half sine waves, and this antisymmetric 
mode shape is the one desired. If less stiffness is provided than that shown in the 
following derivation, the weaker symmetrical mode shape (only one half sine wave 
with dimples at the brace locations) will develop. Thus, it is essential that the brace 
have at least the required stiffness shown here. 

Even though all braces are assumed to have the same stiffness in Figure 7.9, the 
theoretical mode shape relation is that the displacement at the center brace is 
maximum and the displacement at the other two braces is 0.707 times the maximum 
displacement. These relations are shown in Figure 7.9. 

From Z My = 0 at the bottom support, 

LR’ + U, Pw + 2 hPb = 0.707( h + 3 h )  Pb 

From Z F, = 0, 



304 Bracing Requirements 

5' 
L 
4 

- _  - 

u, = L1500 
u, = LllOOo 

u = u,+ u' 

u =  uo+ u 

I pny 
Figure 7.9 Three weak-axis braces for a column. 

From C My = 0 at the top end of the bottom column segment, 

Assume that u1 = u, in u = u, + ul; then, 

Ph = 0.0273 PnY 
Since U,/4 and u, existed when the brace was installed, then, 

Pb = S b U *  

s, =- 
27.3 Pny 

L 

7.3.4 Bracing Stiffness and Strength Requirements When h = Lln for Large n 

The buckled shape is n + 1 half sine waves and is antisymmetric. If less stiffness is 
provided than that shown below, the weaker symmetrical mode shape (only one 
half sine wave with dimples at the brace locations) will develop. Thus, it is essential 
that the brace have at least the following required stiffness and strength: 
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'-1 
r4 m 

0 
a 

Pb = 0.008 nPnY 

4 QI 

'? 
2 
0 

'.3.5 When Point of Inflection Does Not Occur at a Braced Point 

For the structure in Figure 7.10, we showed [l, pp. 651-6531 that the M = 0 point is 
at 0.5179L from the bottom support, whereas the brace is at 0.6L from the bottom 
support. 

From C Mu = 0 at the bottom support, 

LR ' + U P,, = 0.6 Pb L 

D 
' "Y R'=0.6Pb -- 
500 

From C F,  = 0, 

P,Y R = 0.4 Pb + - 
500 

The ordinate of the half sine wave at the braced point is 0 . 9 5 1 ~ ~  where u, is the 

Formathematicalconvenience, assume that u1 = 0.951~; thus, u = 0.951 (u, + u l ) .  
From I; My = 0 at the top end of the bottom column segment, 

ordinate at midheight of the column. 

0.5179 LR = (0.998 u / 0.951 + 0.5179 U , ) P,, 

P, = 0.0101 P,, 

X 

u, = L / 5 0 0  
u, = L/lOOo 
u =  u,+ u ,  

Pb = Sb u ,  

' t  
I-- 
Section 1-1 

Figure 7.10 Weak-axis column brace does not occur at M = 0 point. 
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Since U, and u, existed when the brace was installed, then 

pb = sbu, 

10.7 Pny 
L 

s, =- 

If elastic buckling occurs, according to the LRFD column strength definition, 

Pny =0.877[ K 2 E I  ] = 0.877( 3.73n2EI L2 ) 
(0.5179 L)' 

Since 0.5179L is very close to 0.5L, we can use the solutions for Pb and S, obtained 
in Section 7.3.1 for h = L / 2  and compare the requirements. Again, if elastic buckling 
occuls when the brace is placed at midheight of the column, 

] = 0.877 (":El) - 

The strength required for a brace at 0.6L from the bottom end of the column as shown 
in Figure 7.10 is 0.010(3.73)/ [0.008(4)] = 1.17 times the strength required for a brace 
at midheight of the column. The stiffness required for a brace at 0.6L from the bottom 
end of the column as shown in Figure 7.10 is 10.7(3.73)/ [8(4)] = 1.25 times the 
strength required for a brace at midheight of the column. Thus, the reader should not 
blindly use the stiffness and strength guidelines given in Sections 7.3.1 to 7.3.4 if the 
braces are not placed at h = L/n points along the column length. 

7.3.6 Example Problem 

See Figure 7.11 for the structure in which we&-& column bracing is to be provided. 
Member 1 mustbedesignedasatensionmember tobracethetopendofthefourcolumns. 
Seesection7.2.1 forthedesignrequirementsofthismember.Member2mustbedesigned 
as a tension member to brace the weak axis of the four columns at midheight and to 
transfer the tension force in member 1 to the foundation support. Select the minimum 
acceptable diameter A36 threaded rod to serve as the diagonal braces. 

Solution 

For each column, 
@Pn = (PP,, = 364 kips 

@Pny = 384 kips 
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I d  
(a) Side elevation view (braced frame) 

')1 L = 3 0 f t  4 
I T  

(b) Section 1 - 1 (an u n b d  frame) (c) section 2-2 

A36 steel; All columns: W14 x 48; All girders (Y direction): W24 x 55 

Figure 7.11 Example 7.3 one-story building. 

For Member 1, 

P, = 4 (364/0.85) = 1713 kips 

P, = 2.48 kips (an assumed value for illustration purposes) 

The strength design requirement is: 

h( P, + P, /133) 

( L  sin 6 )  

From LRFD Table J3.2 (p. 6-81), the design tensile strength for an A36 threaded rod is 

@Pfl = 0.75 (0.75FJb) 

(bp,, = 0.75 (0.75)(58 h i )  A, = 32.625Ab 

where A, = gross area of the threaded rod. 

For Member 1, 

Loading 2 governs Pb : 

h ( P w  +P,  /133) 
L sine 

Pb = 

15( 2.48+1713/133) 
30 ( 0.707 ) 

= 10.9 kips - - 
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To satisfy the strength requirement, we need 

(@Pn = 32.625Ab) 2 (P,  = 10.9 kips) 

A, 2 (10.9/32.625 = 0.334 in?) 

(xd2/4) 2 0.334 in.2 

d 2 0.652 in. 

Try d = 3/4 in. threaded rod: (Ab = 0.442 in.2) 2 0.334 i n . 2  

Check the stiffness design requirement, which is 

( P, + 133 P, ) 
['b =(?),I2[ (Lsin0 cos6)  

= 21.2 ft 
15 - -- h L ,  =- 

sin0 0.707 

Since 605 > 136 and [L/d = 21.2(12)/0.75 = 3391 I500, a 3/4-in.-diameter A36 steel 
threaded rod is acceptable for member 1. 

Member 2 

Since h = L/2 = 7.5 ft, Section 7.3.1 gives the design requirements for a weak-axis 
column brace at midheight: 

(@Pn), 2 ( P b  =0.O08Pn,) 

[s, =(?),]2> 

We must add the axial force from member 1 to the strength requirement since 
member 2 transfers the force in member 1 to the foundation support: 

P, = 10.9 + (0.008)(1713)/0.707 = 30.3 kips 

To satisfy the strength requirement, we need 

(@Pn = 32.625Ab) 2 (P,  = 30.3 kips) 

A, 2 (30.3/32.625 = 0.929 in.2) 

(xd2/4) 2 0.929 in.2 

d L 1.09 in. 

Try d = 1.125-in. threaded rod: (A, = 0.994 in2) 2 0.929 in.2 
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Check the stiffness design requirement: 

Sb = 29,000(0.994)/21.2 = 1360 kips/ft 

We must add the vertical component of the axial force from member 1 to the stiffness 
requirement since member 2 transfers the force in member 1 to the foundation 
support: 

8 [1713 + 0.707(10.9)]/15 = 918 kips/ft 

Since 1360 > 918 and [L/d = 21.2(12)/1.125 = 2261 1500, a 1.125-in.-diameter threaded 
rod is acceptable as the diagonal brace. 

7.4 LATERAL STABILITY OF A BEAM COMPRESSION FLANGE 
For lateral bracing purposes, the compression flange and the top half of the web of 
a W section beam can conservatively be treated as a column. Thus, the cross-sectional 
area of the equivalent column is A, = A/2, where A is the gross area of the W section 
used as a beam. Then, the design requirements given in Section 7.3 can be used to 
design the lateral braces located at intervals of h = L/n along the length of a beam to 
prevent lateral-torsional buckling. 

Each flume girder spanning 30 ft in Figure 7.12 is a W24 x 55, F = 36 ksi that was 
designed assuming lateral braces were to be provided at intervafs of h = L/n = 30/4 
= 7.5 ft. The lateral braces are to be provided by a pair of angles as shown in Figures 
7.12(b) and (c) in conjunction with the cross braces shown in Figure 7.12(b). Design 
the bracing members. 

Solution 
We have a simply supported W24 x 55, F,, = 36 ksi that spans 30 ft with lateral 

bracing provided at intervals of 7.5 ft. From the LRFD beam charts, @Mnx = 337 ft-kips 
for C,  = 1 and L b  = 7.5 ft: 

12.5Mm,, 
2.5Mm,, +3M, +4M,  +3M, 

c, = 

12.5 c, = = 1.06 
2.5+ 3( 55/64) + 4(  15/16) + 3( 63/64) 

C , M ,  = 1.06(337) = 357 
@Mpx = 362 ft - kips 

@MnX = smaller of 

@MnX = 357 ft-kips 

Treat QMnx = 357 ft-kips as a couple with a lever arm of 

a = 0.95d = 0.95(23.57) = 22.4 in. = 1.87 ft 
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t t t 
I Span=30ft I 

I -  - 1  
(a) Each flume girder: W24 x 55 

Lateral bracing member 

+Web stiffener Web stiffener 
w24 x 55 w24 x 55 

I -  
@) Section 1 - I 

7.5 ft - 1  

4 spaces @ 7.5 = 30 ft 
3% 

.5 ft 

Lateral bracing member 
(c )  Top plan view L Diagonal brace 

I- 4 spaces @ 7.5 = 30 ft 
(d) Plan view of buckled W24 x 55 flume girder compression flange 

Figure 7.12 Example 7.4 lateral braces for two girders. 

Then, the axial compressive force in the equivalent column [see Figure 7.12(d)] is 

P, = 357/1.87 = 191 kips 

The force for which lateral bracing is to be provided is 

P,, = P,/@ = 191 /0.85 = 225 kips 

From Section 7.3.3 for h = L/4, the design requirements for the brace are 

Pb = 0.0273 P, 

27.3 Pny 
L s, =- 

Pb = 0.0273(225) = 6.14 kips 



7.4 Lateral Stability ofa Beam Compression Flange 311 

From LRFD p. 3-64, for (KL),  = (KL), = 7.5 ft and P ,  = 6.14 kips, try a pair of L2 x 
2 x 1 /4 with two intermediate spacers: 

($Pn = 10.0 kips) 2 (P, = 6.14 kips) 

Check the stiffness requirement: 

[S, = 29,000(0.960)/7.5 = 3712 kip~/ft] 1 [27.3(228)/30 = 2071 (OK) 
Use a pair of L2 x 2 x 1/4 with two intermediate spacers as the lateral brace between 
the top flanges of the W24 x 55 flume girders. In Figure 7.12(b), each web stiffener 
serves as the end-connector plate for the pair of L2 x 2 x 1 /4 and prevents twisting 
of the W24 x 55 at each brace location. 

Choose a pair of angles welded at their ends to the underside of the top flange 
of each W24 x 55 to serve as the bracing diagonals in Figure 7.12(c). For the end 
diagonals that must resist an axial compression force: 

Pd = (3P,)/0.707 = 3(6.22)/0.707 = 40.0 kips 

L = 7.5/0.707 = 10.6 ft 

From LRFD p. 3-64, try a pair of L3.5 x 3 x 1 /4: 

(@Pfi = 46 kips) 2 (Pb = 40.0 kips) 

Check the stiffness requirement: 

[ S ,  = 29,000(3.13)/7.5/0.707 = 17,120 kip~/ft] 2 [27.3(3)(228)/30 = 6221 (OK) 
Use a pair of L3.5 x 3 x 1 /4. 
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Connections 

8.1 INTRODUCTION 
The theoretical analysis techniques for a bolted and a welded connection of the same 
type usually contain some assumed behavioral features that are very similar. 
Consequently, we believe that the most appropriate presentation is to discuss 
bolting and welding for a particular type of connection and then to move on to the 
discussion of another type of connection. Connectors subjected to concentric shear 
were discussed in Chapter 2. 

8.2 CONNECTORS SUBJECTED TO ECCENTRIC SHEAR 
In this type of connection (see Figure 8.1), the resultant force acting on the connectors 
does not coincide with the center of gravity of the connectors. The alternate 
terminology is that the resultant force acting on the connectors is eccentric with 
respect to the center of gravity of theconnectors. Figure 8.1 shows the following cases 
of the connectors being subjected to eccentric shear: 

1. A bracket plate is fastened to the flange of a column to support a load [see 
Figures 8.l(a) and (b)]. LRFD pp. 12-5 to 12-10 contain some tabular informa- 
tion that is useful in the design of a bracket plate. 

2. A plate is shop-welded either to the flange or to the web of a column and 
either bolted or field-welded to a beam web at the ends of a simply supported 
beam [see Figure 8.l(c)]. The connectors on the beam end are subjected to 
eccentric shear and a negligible moment. However, the groove weld connect- 
ing the plate to the column flange is subjected to shear and eccentric tension 
(see Section 8.5). 

3. A shear splice of a beam [see Figure 8.l(d)] is connected only to the ends of 
each beam web. Therefore, each spliced member end has a shear and a 
negligible moment that must be transferred through the splice to the adjacent 
spliced member end. 

322 
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(a) Plate bolted to column flange (b) Plate welded to column flange 

1 

I- (d) Beam shear splice 

(c) Plate welded to column flange and bolted to beam web 

FIGURE 8.1 Connectors subjected to eccentric shear. 

Two methods of analysis for connectors subjected to eccentric shear will be 
discussed: the ultimate strength method and the elastic method. The ultimate strength 
method allows more economical fastener groups to be used, provides a more 
consistent factor of safety, and was used in the preparation of the tabular information 
in LRFD Tables 8-18 (p. 8-40) through 8-25 (p. 8-87) for bolt groups and in LRFD 
Tables 8-38 (p. 8-163) through 8-45 (p. 8-210) for weld groups. However, the ultimate 
strength method is an iterative procedure. If a structural designer has a connection 
configuration that does not conform to one of those shown in the LRFD tabular 
information, the elastic method is simpler and more conservative, but in some cases 
it is excessively conservative. We choose to describe the methods of analysis for 
connector groups subjected to an eccentrically applied failure load that is inclined to 
the vertical axis of the connector groups. 

8.2.1 A Bolt Group Subjected to Eccentric Shear 

Ultimate Strength Method 
The following discussion is applicable for a bearing-type connection and is based on 
the description given by Crawford and Kulak [21]. 

Figure 8.2(a) shows the free-body diagram of a bracket plate subjected to an 
inclined, factored load that is applied at a point whose eccentric location with respect 
to the center of gravity of the bolt group is denoted by ex and ey. At a point called the 
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instantaneous center of rotation (ICR), only a pure rotation pof the bracket plate is 
assumed tooccur.TheICRpointislocatedataninitiallyunknowndistanceofe,,,with 
respect to the center of gravity of the bolt group. 

The forces at the holes in the bracket plate are due to bearing of the bolts on the 
bracket plate. Each bearing force is assumed to be perpendicular to its radius from 
ICR. For the ith force, 

Fi =en (1 - e 'o r ,~  )o.55 

where 

DSSB 
en = least of DBSBH [ DSCSB 

I 
I 

(a) FBD of bracket plate (b) Components of eccentric force 

(c) Details for ith bearing force 

FIGURE 8.2 Ultimate strength method for eccentric shear of a bolt group 
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DSSB = design shear strength of a single bolt 

DBSBH = design bearing strength at a single bolt hole 

DSCSB = design sliprritical strength of a single bolt (if applicable) 

e = 2.718 (base of natural logarithm) 

ri = radius from ICR to the center of the ith bolt hole 

P = 4naJ~m 

& = 0.34 in. (from LRFD p. 8-30) 

T,, = radius from ICR to the center of the most remote bolt hole 

The three equations of statics are 

z F i  sin 6; -P ,  sin a: = 0 
i=l 

n cFi cos6, -Pu cos a = 0 
i=l  

n 

[ ( e o ,  + e x )  cos a+e,sin alp, - - ~ T , F ,  = O  
i= l  

and the parameters are defined in Figure 8.2. 
In these equations, the known parameters are the bolt spacings (g and s), ex, 

e , a, and @rn. We want to find the value of P, from the last equilibrium equation 
tkat also satisfies the first two equilibrium equations. An iterative procedure 
must be used to find this value of P,. For an assumed value of eox, the ICR point 
is located, T,, is determined, and P, ii, F ,  and 6, are computed. P, is then 
determined from the last equilibrium equation. If this value of P, satisfies the first 
two equilibrium equations, the assumed value of eOx was correct. Otherwise, we 
must assume another value of eox and repeat the process. Obviously, a computer 
program needs to be written to conduct the iterative search for the correct value 
of eox. Let F,  and F, respectively, be the absolute value obtained on the left-hand 
side of the first and second equilibrium equations. Then, we can start by assum- 
ing eox = 0.10 in. and increase eox by an increment of 0.02 in. until F, /(P, sin a) I 
0.01 and F,/(P, cos a) I 0.01, which means we ensure that no more than a 1% 
discrepancy in equilibrium can occur. This type of procedure was used to obtain 
the C values given in LRFD Tables 8-18 (p. 8-40) through 8-25 (p. 8-87), where 
C = Pu/(@rn). If we use the LRFD tabular values, the LRFD strength-design 
requirement for the bolt group is 

[ w n = c( tbr, ) ] 2 pu 
Note: LRFD p. 8-32 tells us for these tables that: 

1. Linear interpolation on any given page is acceptable. 
2. Linear interpolation between pages is not acceptable. 
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Elastic Method 
The eccentric force components in Figure 8.3(a) are transferred to the center of 
gravityof thebolt group that necessitates,asshowninFigure8.3(~), that wealsomust 
have M = e,V, + ep, at the center of gravity of the bolt group. Then, the following 
assumptions are made: 

1. At each bolt hole location due to V ,  only, there is an upward force of V,/n, 
where n = total number of bolts. 

2. At each bolt hole location due to H ,  only, in the negative x-direction there is 
a force of H,/n, where n = total number of bolts. 

3. DueonlytoM=e,V, +eP,,theplateisassumed torotateaboutCG (thecenter 
of gravity of the bolt group) and in the direction of p. A radius is connected 
from CG to the center of each bolt hole. As shown in Figure 8.3(d), F ,  due only 

t-3 
(a) FBD of bracket plate 

(b) Components of eccentric force 

M = e ,V ,  + e H ,  Y 

(c) Forces at CG of bolt group 

(d) Details for ith bearing force due to M shown in (c)  

FIGURE 8.3 Elastic method for eccentric shear of a bolt group 
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to M is assumed to be perpendicular to Y , .  The moment of F ,  about CG is r,F,, 
and this moment is opposite to the direction of M. Also, we assume that F, is 
proportional to Y,, which can be mathematically written as F, = r , P .  

Since p is unknown, we can arbitrarily choose p = F, /r l .  Then 

Fi = ri (:] 
and the equilibrium condition that must be satisfied is 

which enables us to obtain 

1 = 1  

and 

Let 

Fi = ri (:) 
F,, = Ftsin8, 
F,, = F,  C O S ~ ~ ,  

Then, the shear in the most heavily loaded bolt is 

F, =/(?+Fr, ) ’  + ( + + F y , ) 2  

The LRFD strength-design requirement for the most heavily loaded bolt is 

@Rri 2 ‘ j  

where 

@Rn = least of [ t6 
DSSB = design shear strength of a single bolt 

DBSBH = design bearing strength at a single bolt hole 

DSCSB = design slip-critical strength of a single bolt (if applicable) 

The elastic method is not iterative, but it gives an excessively conservative value 
of Fi in some cases. 
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For the bearing-type connection shown in Figure 8.4, we are given the following 
numerical information: A36 steel bracket plate,g = 3 in., s = 6 in., ex= 5 in., minimum 
bearing thickness = 0.5 in., and four 7/8-in.-diameter A325X bolts in single shear. 

The objectives of this example are to obtain the maximum acceptable value of P, 
for this bolt group by using: 

1. LRFD p. 8-46 
2. The ultimate strength method equations 
3. The elastic method equations 

Solution 1 

From LRFD p. 8-24, 

Cpr, = 28.1 kips/bolt = (single shear of one bolt) 

From LRFD p. 8-26, 

Cpr, = (91.4 kips/in.)(0.5 in.) = 45.7 kips/(bolt hole) 

From LRFD p. 8-46, for g = 3 in., s = 6 in., ex= 5 in., and n = 2 bolts in each vertical row 
of the bolt group, we find C = 2.10, which enables us to compute the LRFD strength- 
design requirement for the bolt group: 

[ @R, = C (  Cprn ) = 2.10( 28.1) = 59.0 kips] 2 P, 

w 
FIGURE 8.4 Example 8.1 
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Solution 2 

Try e,, = 2.40 in. 

x1 = 2.40 - 1.5 = 0.9 

x2 = 2.40 + 1.5 = 3.9 
y1 = 3 

y2 = 3 

r3 = r1 = 3.1321 

r4 = r2 = 4.9204 

Y - =  4.9204 

p=-= -=  Am 0.06910 
r m  4.9204 

Ti 
i=l 

F~ =&pr, ( 1 - e ' o r i ~  

F3 = F, = 26.28 

F4 = F2 = 27.58 

= 2[ 3.1231( 2628) + 4.9204 ( 27. 

A 

5), =4t  

2 ri Fi 

cox + e x  
- 436*03 = 58.92 kips i=l p,  =-- 

2.40 + 5.00 

4 26.28( 0.9) + 27.58( 3.9) [ 3.1321 4.9204 
FY = C F i  cos 6; = 2 

i=l 

Vertical equilibrium is only violated by 0.17% and another iteration cycle is not 
needed. P, = 58.9 kips is very nearly the same as Pu = 59.0 kips found in Solution 1. 

Solution 3 

Try P, = 59.0 kips: 
M = e p u  = 5(59) = 295 in.-kips 

At each bolt hole due only to P, = 59.0 kips, there is an upward force of 59.0/4 = 

At each bolt hole due only to M = 295 in.-kips, all radii are equal and 
14.75 kips. 

Y: =x: +y: =(1.5)'+(3)' =11.25 

x r z  = 4(11.25)=45.0 
4 

i=l 

i= l  
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For i = 1 to 4, 

Fi = 3.354(6.56) = 22.0 kips 

22.0( 3)  
3.3541 F,, = F, sin ei = - = 19.7 

The resultant force on the most heavily loaded bolt is 

F ,  = 1 7  ( F X j )  + -+F,, = /- = 31.51 

which is 31.51/27.58 = 1.14 times the force in the most heavily loaded bolt by the 
ultimate strength method. 

Since the LRFD strength requirement is that @Rfl 2 F p  by the elastic method the 
maximum acceptable value of P, = (28.1/31.51)(59.0) = 52.6 kips. 

By the ultimate strength method, the maximum acceptable value of P, = 59.0 
kips. Therefore, by using the ultimate strength method in this example, we can have 
59.0/52.6 = 1.12 times more applied load than we can have according to the elastic 
method. 

For the bearing-type connection shown in Figure 8.5, we are given the following 
numerical information: A36 steel bracket plate; g = 5.5 in.; s = 3 in.; ex = 15 in.; 
minimum bearing thickness = 0.5 in.; 7/8-in.-diameter A325X bolts in single shear; 
P, = 100 kips; and a = 45". Using LRFD p. 8-55, find the number of bolts required. 

Solution 

From LRFD p. 8-24, 

@,, = 28.1 kips/bolt = (single shear of one bolt) 

From LRFD p. 8-26, 

Cpr, = (91.4 kips/in.)(0.5 in.) = 45.7 kips/(bolt hole) 

On LRFD p. 8-55, for g = 5.5 in., s = 3 in., ex = 15 in., and n = 5 bolts in each vertical 
row of the bolt group, we need 

[@, =C(@rfl)=C(28.l)]>(P, =100kips) 

C 2 3.56 

For n = 5 bolts in each vertical row of the bolt group, we find C = 3.64 and [@R, = 
3.64(28.1) = 102 kips] 2 (P ,  = 100 kips). 
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e ox 

FIGURE 8.5 Example 8.2 

8.2.2 A Weld Group Subjected to Eccentric Shear 

Ultimate Strength Method 
The following discussion is based on the descriptions given by Butler et al. [22] and 
Lesik and Kennedy [33]. 

Figure 8.6(a) shows the free-body diagram of a fillet weld group fastened to a 
bracket plate subjected to an inclined, factored load that is applied at a point whose 
eccentric location with respect to the center of gravity of the weld group is denoted 
by e, and e . At the ICR point, only a pure rotation b of the bracket plate is assumed 
to occur. d e  ICR point is located at an initially unknown distance of eOx with respect 
to the center of gravity of the bolt group. 

The shear force on each of two typical differential elements in the weld group 
is shown in Figure 8.6(a). Each shear force is assumed to be perpendicular to its 
radius from ICR. For the ith force, 

F,  ={Pn =0.75(0.6F,A,)(l.0+0.50~in'~~ 6)[p(1.9-0.9p)]0.3} 

where 

F ,  = weld electrode strength 

(AJi  = (0.707S,L,)i 

(SJi = weld size 

(LJ, = weld length chosen for the ith element 

6; = angle measured in degrees as shown in Figure 8.6(c) 

ri = radius from ICR to center of i-th element 
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(b) Components of eccentric force 
(a) FBD of weld group 

.. ... ....... , . . ... ../_ ..,., ., x.:.:::::::?:. m X1 

ICR 

Each theta angle is measured in degrees 
from the lengthdirection axis of a fillet weld 
to the force on the differential weld element. 

(c) Details for the force on a weld element 

FIGURE 8.6 Ultimate strength method for eccentric shear of a weld group 

T, = radius from ICR to center of element with minimum AU/ri 

[ A .  = 17.39(e+6)-O.@ s, I i  5 2.72(s, ) i  

The three equations of statics are 
n C F ~  -P, sina = 0 

i=l 

n CF, -P, cosa = 0 

[(e, + e x  ) cos a+e, sin alp, - $ T i ~ i  = o 
where Fi and Fyj, respectively, denote the x and y components of Fi.  In these 
equations, the known parameters are the dimensions and properties of each fillet 

i = l  

i = l  
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weld in the weld group, ex, e,,, and a .  We want to find the value of P, from the last 
equilibrium equation that also satisfies the first two equilibrium equations. An 
iterative procedure must be used to find this value of P,. For an assumed value of e,,, 
the ICR point is located, Fi is computed for an appropriately chosen (LJi, and P, is 
then determined from the last equilibrium equation. If this value of P, satisfies the 
first two equilibrium equations, the assumed value of e,, was correct. Otherwise, we 
must assume another value of e,, and repeat the process. Obviously, a computer 
program needs to be written to conduct the iterative search for the correct value of 
eo,. Let F ,  and F ,  respectively, be the absolute value obtained on the left-hand side 
of the first and second equilibrium equations. Then, we can start by assuming eox = 
0.10 in. and increase e,, by an increment of 0.02 in. until F ,  /(P, sin a) 50.005 and F Y /  
(P, cos a) I 0.005. This type of procedure was used to obtain the C values given in 
LRFD Tables 8-38 (p. 8-163) through 8-45 (p. 8-210). If we use the LRFD tabular 
values, the LRFD strength-design requirement for the weld group is 

( 4 R n  = 16CC,S,L, ) 2 P, 
where 

C = tabular value (which includes 4 = 0.75) 

C, = electrode coefficient from LRFD Table 8-37 

S, = weld size (in.) 

L, = length of connection (in.) 

P, = required strength of weld group (kips) 

Note: LRFD p. 8-157 tells us for these tables that: 

1. Linear interpolation on any given page is acceptable. 
2. Linear interpolation between pages is not acceptable. 
3. C, accounts for 

(a) The C values being done for E70 electrodes. 
(b) Additional strength reduction factors of 0.9 for E70 and E80 electrodes, 

and 0.85 for El00 and E l l0  electrodes; these strength reductions account 
for the uncertainty of the extrapolation from E70 test results to higher 
strength electrodes. 

Elastic Method 
Figure 8.7(a) shows a weld group subjected to eccentric shear. For mathematical 
convenience, each weld is considered to be a line coincident with the edge of material 
to be welded. Thus, each weld is treated as having an effective throat thickness of 
t, = unity. For the weld group in Figure 8.7(a): 

1. The area i s A  = 2b + d. 
2. The center of gravity of the weld group is located at 

- b 2  
A 

x = -  

3. The polar moment of inertia is 
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H, 

X 

(a) FBD of weld group 

"U /jpu 
HU 

(b) Components of eccentric force 

M = ex V ,  + e H, Y 

(c) Forces at CG of weld group 

(d) Details for ith force due to M shown in (c) 

FIGURE 8.7 Elastic method for eccentric shear of a weld group 

2 b 3  + 6 b d 2  + d 3  +6Fbd 
12 

I = I ,  + I ,  = P 

The eccentric force components in Figure 8.7a are transferred to the center of 
gravity of the weld group that necessitates, as shown in Figure 8.7(c), that we also 
must have M = e,V, + ep, at the center of gravity of the weld group. Then, the 
assumptions made are: 

1. Due to V ,  only, there is an upward force per inch of weld length of qY = 

2. Due to H ,  only, in the negative x-direction there is a force per inch of weld 

3. Due only to M = e,V, + eyH,, the plate is assumed to rotate about the center 

V,/A. 

length of 9, = H,/A. 

of gravity of the weld group and in the direction of p. 
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A radius is connected from CG to the center of each differential weld element. 
As shown in Figure 8.7(d), Fj due only to M is assumed to be perpendicular to rj. The 
moment of Fj about CG is rjFj, and this moment is opposite to the direction of M .  Also, 
we assume that Fi is proportional to rt, which can be mathematically written as F j  = 
Y I P .  Then, at a point whose coordinates are (x,  y), the force per inch of weld length in 
the x- and y- directions, respectively, is 

! MY 
9 x  =I 

P 

, Mx 
9y =I 

P 

Let qidenote the maximum value due to the sum of the force components found 
in items 1 to 3. Then, the shear per inch of weld length in the most heavily loaded 
differential weld element is 

9 I =\/'bx +9: + ( 9 y  +9$ 
Note that for thejth differential weld element, 9x and 4: are in the same direction; 
also, qY and q i  are in the same direction. The LRFD strength design requirement is 

where 

@Fw = 0.75 (0.60FExx) 

FExx = weld electrode strength 

t, = 0.707Sw 

The elastic method is not iterative, but it gives an excessively conservative value of 
q, in some cases. 

For the fillet-welded connection shown in Figure 8.8, we are given the following 
numerical information: A36 steel bracket plate; b = 4 in.; d = 8 in.; ex = 12 in.; E70 
electrodes (C, = 1); and 5/16-in. fillet welds. Obtain the maximum acceptable value 
of P, for this weld group by using: 

1. LRFD p. 8-187 
2. The elastic method equations. 

Solution 1 

From LRFD p. 8-187, for kL = (b = 4 in.), L = (d = 8 in.), and a L  = (ex= 12 in.), which means 
that k = 0.5 and a = 1.5, we find C = 0.706 and 

P, = 16CC,SJ = 16(0.706)(1)(5/16)(8) = 28.2 kips 
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w 
FIGURE 8.8 Example8.3 

Solution 2 

A = 2b + d = 2(4) + 8 = 16 in .2  

2b3 +6bd2 +d3 +6Tbd 
12 

I, = 

2(4)3 +6(4)(8)* +(8)3  +6(1)(4)(8) 
12 

I, = = 197.33 in. 

@,t, = 0.75(0.60)(70)(0.707)(5/16) = 6.96 kip~/in. 
Try P,  = 28.2 kips: 

M = ep, = 12(28.2) = 338 in.-kips 

Due to P,  only, there is an upward force per inch of weld length of 

qy = P,JA = 28.2/16 = 1.76 kip~/in. 

At (xi. yi) = (3,4) due only to M = 338 in.-kips, 

The resultant force on the most heavily loaded point in the weld group is 

9 j  = d w = 1 / ( 6 . 8 6 ) ~  +(1.76+5.156)* =9.74kips/in. 
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By the elastic method, the shear/in. at the most heavily loaded point is qj= 9.10 kips/ 
in. Since the LRFD strength requirement is that $FJ, 2 qj, by the elastic method 

P, = (6.96/9.74)(28.2) = 20.2 kips 

Recall that P, = 28.2 kips for the ultimate strength method for which, in this example, 
we can have 28.2/20.2 = 1.40 times more applied load than we can have according 
to the elastic method. 

For the fillet-welded connection shown in Figure 8.8, we are given the follow- 
ing numerical information: A36 steel bracket plate; b = 4 in.; d = 8 in.; ex= 12 in.; 
E70 electrodes (C, = 1); and P, = 50 kips. Using LRFD p. 8-187, find the required 
weld size. 

Solution 

From LRFD p. 8-46, for kL = (b = 4 in.), L = (d = 8 in.), aL = (ex= 12 in.), which means 
that k = 0.5 and a = 1.5, we find C = 0.706 and 

S, 2 {Pu/(16CC,L)= 50/[16(0.706)(1)(8)] = 0.553 in.} 

Use S, = 9/16 in. 

8.3 BOLTS SUBJECTED TO TENSION AND PRYING ACTION 

Figure 8.9 shows a hanger connection in which the bolts are subjected to tension. 
Also, the top bolt in the angle section of Figure 1.12(c) is subjected to tension. The 
bolts in the web angle of Figure 1.12(c) are subjected to shear and tension due to a 
small bending moment (see Section 8.7). 

As shown in Figures 8.9(c) and (d), each bolt is subjected to a direct tension force 
T + Q, where T = Pu/4 and Q is a prying force. For this type of connection, according 
to LRFD J3.3: 

1. A high-strength bolt must be used. 
2. The required bolt strength is T + Q. 

Fully tensioned bolts should be used in bolt groups subjected to prying action 
in order to reduce the deformations of the connection parts and the prying forces. The 
empirical analysis and design procedures given on LRFD pp. 11-5 to 11-11 may be 
used for hanger connections. The minimum feasibly possible value of b in Figure 8.9 
should be chosen to reduce the prying force. See LRFD p. 11-11 for an example 
problem. 

As shown in Figure 8.10, preferably the hanger should be stiffened to eliminate 
prying action. If more than one bolt on each side of the hanger web is used, hanger 
stiffeners should be used. 
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1*  

Stiffener may be required 
for the bottom flange. 
See LRFD K 1.8. 

0 

1J + P, = 4 T  

(a) Side elevation view 

Girder 7 
Stiffener 

u Hanger 

t pu 
(b) Section 1 - I  

6 9  
Q T + Q  T + Q  Q 

Right half of flange ti T 

2T M I K T  
(c) Deformed hanger (d) Flange bending moment diagram 

FIGURE 8.9 T section hanger connection 

f 
FIGURE 8.10 Stiffened T section hanger connection 
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8.4 BOLTS SUBJECTED TO TENSION AND SHEAR 
Figure 8.11 shows a truss diagonal member used to provide tension bracing for a 
braced frame. The vertical component of P ,  subjects the bolt group at the end of the 
tension member to uniform shear. The horizontal component of P, subjects the bolt 
group at the end of the tension member to uniform tension. Each bolt in this bolt 
group is assumed to resist an equal share of each component of P,. LRFD J3.7 and 
LRFD Table J3.5 (p. 6-84) give the needed design information for these bolts in a 
bearing-type connection. LRFD Figure C-J3.1 (p. 6-226) shows the interaction curve 
as three straight lines approximating an ellipse. This figure is the basis for the limiting 
tensile stress equations given in LRFD Table J3.5. If a slip-critical connection is 
desired, LRFD J3.8 and LRFD Tables J3.1 and J3.6 are applicable. 

Column u 
(a) Side elevation view 

U L r  
(b) Section 1 - 1 

110 kips 

LA x 3 x 0.25 

FIGURE 8.11 Bolts subjected to shear and tension 
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For the bearing-type connection shown in Figure 8.11, determine the number of 
7/8-in.-diameter A325X bolts required. 

Solution 
Try four bolts: 

1 0.707 P, - 0.707( 110) = 32.3 ksi - 
nA, 4(0.6013) 

[ F, = 117-1.5fD = 117-1.5(32.3) = 68.55ksiI I90ksi 

Since (F,  = 68.6) 2 V, = 32.3), four bolts are acceptable if the bearing strength is 
adequate. 

If a slip-critical connection is desired in Example 8.5, are four l-in.-diameter A325X 
bolts adequate? Assume standard bolt holes, 0 = 30.6 kips, L = 45.8 kips, and the 
governing factored loading combination is 1.20 + 1.6L. Therefore, P, = 110 kips (the 
same as in Example 8.5) and 0 + L = 76.4 kips. 

S o h  t ion 

The service tension force in each of the four bolts is 

0.707( 0 + L )  - 0.707( 76.4) = 13.5 kips - 
4 4 

T =  

From LRFD Table J3.1, the minimum pretension force is Tb = 51 kips: 

1 0.707 T 0.707 (13.5) = 12.15 
0.7854 

The limiting shear strength is 

F,  = [ 1-- l) (17ksi)= ( 1-- ';f)(17)=12.5ksi 

Since (F ,  = 12.5) 2 Vu = 12.15), four bolts are adequate for a slip-critical connection if 
the bearing strength is adequate. 

8.5 CONNECTORS SUBJECTED TO ECCENTRIC TENSION AND SHEAR 
Figures 8.12 and 8.13 show examples of beam-to-column connections in which the 
connectors are subjected to eccentric tension (due to a bending moment) and shear. 
Since we preferred to show the eccentric force (reversed beam reaction) in Figures 
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pu 
e .  1 

Section 1-1 

(a) Beam seat angle bolted to column flange 

Fdet welds and returns. 
Note: For clarity, these 
welds were omitted in the 
leftmost view. - 

Section 2-2 
(b) Beam seat angle welded to column flange 

FIGURE 8.12 Connectors for beam-seat angles 

8.12(a) and (b), the beam sitting on the beam seat and the required top angle to 
provide lateral bracing of the top beam flange were not shown. These omitted details 
are shown in the figures on LRFD pp. 9-128 and 9-138. 

8.5.1 Weld Groups 
The design strength of the welds on a beam seat [see Figure 8.12@) and the figure on 
LRFD p. 9-1281 is given in LRFDTable 9-7 (p. 9-137) for some seat angle sizes. Entries 
in LRFD Table 9-7 (p. 9-137) were computed by the elastic method for this weld 
group. In the elastic method for this weld group treated as line elements, the welds 
are subjected to a shear/in. of 

D 

where ZLw = sum of the line element lengths (including the returns) in the weld 
group. Also, the weld returns are subjected to a tension/in. of 

where 
= distance from top of weld group to neutral axis 

I = moment of inertia of weld group 
e = distance from weld group to beam reaction P, 

Note: Examples 8.10 and 8.11 illustrate how to determine the value of e used in 
computing any entry in LRFD Table 9-7 (p. 9-137). 
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Section 1 - 1 

Notes: 
Column flange stiffeners 
shown may be required. 
The welds were omitted 
in both views for clarity. 
The required welds are: 
(1) A fillet weld each 
side of the beam web. 
(2) Either a full 
penetration weld 
between each flange and 
the plate or a fillet weld 
all around each flange. 

(a) Plate welded to beam end and bolted to column flange 

(b) Gabled frame 

(c) Moment splice at the crown of a gabled frame 

FIGURE 8.13 Connectors for beam-end plates 

The design requirement is 

[ @FW f ,  = 0.75( 0.6 F E x x )  (0.707SW ) ]  2 ( q  = 4.9:) 
Alternatively, if we conservatively ignore the weld returns, the special case on LRFD 
p. 8-163 for the ultimate strength method of a weld group can be used to determine 
the design strength of the welds on a beam seat. 

For the weld group described in Figure 8.13(a), the procedure recommended on 
LRFD p. 10-24 can be used. In this procedure, if only fillet welds are used, the 
eccentric tension is assumed to be resisted by the fillet weld group surrounding the 
beam tension flange and the shear is assumed to be resisted by the fillet weld group 
on the beam web. Therefore, in this procedure the eccentric tension and shear are 
uncoupled; that is, they are treated independently. 
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8.5.2 Bolt Groups 

For the elastic method and the ultimate strength method, respectively, Figures 
8.14(a) and 8.14@) schematically show the bolt tension force distributions that 
without much thought appear reasonable to assume in a bearing-type bolt group 
subjected to a bending moment and a shear. If either of these bolt tension force 
distributions is assumed, Figure 8.14 is applicable for Figures 8.12 and 8.13, and 
LRFD J3.7 is applicable for the bolts since they are subjected to tension and shear. We 
will show how involved the elastic method and the ultimate strength method are for 
the bolt tension force distributions assumed in Figure 8.14. Then, other bolt tension 
force distributions that may be assumed in certain cases to simplify the mathematics 
will be noted. 

Consider a bolt group that has m vertical lines of bolts and n horizontal rows of 
bolts. The total number of bolts in the bolt group is nb = mn. For example, in Figure 
8.14, m = 2, n = 5, and nb = 10. Other parameters common to both methods are 

T># k = 3  

/jj= fc 

(a) Elastic method 

n = 5  

4- 7@ 
Mu 

1 

FY 
(b) Ultimate strength method 

Note: These assumed bolt group behaviors are shown on a plate 
welded to a beam end and bolted to a column flange (not shown). 

FIGURE 8.14 Bolts subjected to shear and eccentric tension 
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a = depth of compression stress block 

b = width of compression stress block 

di = distance from neutral axis to ith row of bolts in tension 

Ai = mA, = total area of bolts in ith row of bolts in tension 

A, = area of one bolt 

k = number of first row of bolts above neutral axis (in Figure 8.14, k = 3) 

Elastic Method 
The neutral axis is found by taking moments about the bottom edge of the compres- 
sion zone: 

U 
n 

- ( a b ) = C ( a + d ,  3 ) A i  
i=k L 

An iterative procedure must be used to determine u, and then the moment of 
inertia is 

a 3 b  I = - + x A i d f  
i=k 

and the tension force in the ith row of bolts is 

M , A i d i  
1 

T .  = 

which is valid for i = k to n. The tension stress in each bolt in the ith row is 

and must not exceed the tension stress limit F ,  given by the formulas in LRFD Table 
J3.5. If we assume that each bolt in the bolt group resists an equal amount of shear, 
then the bolt shear stress fD is 

where 

Vu = factored shear force acting on the bolt group 

nb = total number of bolts in the bolt group 

A, = area of one bolt 

Ultimate Strength Method 
Equilibrium of horizontal forces requires that 

i=k 
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where 

Fy = yield stress of the plate 

Ti = mA$, 

A, = area of one bolt 

F ,  = tension stress limit specified in LRFD Table J3.5 is a function offo. 

The usual assumption for the bolt shear stressf, is that 

where V ,  = the factored shear force acting on the bolt group. 
Since k is unknown, an  iterative procedure must be used to determine 

and then the design bending strength of the connection is 

0.9F,,a2b 
+ $ d i T i  

2 i=k 
(PMn = 

The design requirement is that (PM, 2 Mu. 
As we noted prior to the presentation of the elastic method and the ultimate 

strength method, there are other bolt tension force distributions that may be assumed 
in certain cases to sirnphfy the mathematics. Bolt force distributions that are assumed 
in the LRFD Manual procedures for beam seats and end plates will be noted. 

The various bolt group types customarily used for beam seats are shown on 
LRFD p. 9-128. The shear design strength of the bolts for each bolt group type is given 
in LRFD Table 9-6 (p. 9-136). In preparing this table, the tension in the bolts due to 
Mu = P,e was ignored. For example, from LRFD p. 8-24 for a 0.75-in.-diameter A325N 
bolt in single shear, we find thatfv = 36.0 ksi and (PR, = 15.9 kips/bolt. For six bolts, 
+R, = 6(15.5) = 93.0 kips, which agrees with the shear design strength of 93.0 kips 
given on LRFD p. 9-136 for connection type C (six bolts). The LRFD Manual does not 
give a justification for ignoring Mu = P,e in a bolt group on a beam seat and accounting 
for Mu = Pue in a weld group on a beam seat. 

For mend plate welded to an entire section of a beam end and bolted to a column 
flange, the bolt force distributions assumed in the LRFD Manual design procedure 
are stated in the first paragraph on LRFD p. 10-24. The bolts located an equal distance 
above and below the beam tension flange are assumed to resist tension only. The 
tension force in each of these bolts is assumed to be equal. (PFt from LRFD Table J3.2 
(p. 6-81) or, alternatively, LRFD 8-15 (p. 8-27) is used in choosing a sufficient number 
of these bolts to develop the beam flange force. 

MU F, =- 
d - t ,  
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where 
Mu = required factored beam end moment 

d = depth of the chosen beam section 
?= flange thickness of the chosen beam section 

The other bolts in the bolt group are assumed to resist only shear. The shear force in 
each of these bolts is assumed to be equal. LRFD Table I-D (p. 8-24) is used in choosing 
a sufficient number of these bolts to develop the required factored beam end shear V,. 

8.6 TRUSS MEMBER CONNECTIONS AND SPLICES 
An adequate number of bearing-type connection and splice examples for tension 
members was given in Chapter 2. For compression members in trusses, the member- 
end and splice end forces must be developed by the connectors. Therefore, the 
discussion in Chapter 2 for connectors in tension member ends is also applicable for 
the connectors in truss compression member ends. If a truss compression member 
needs to be field spliced, the moment of inertia for each principal axis of the splice 
connection parts should not be less than those of the compression member being 
spliced. Also, the buckling strength of the splice connection parts must not be less 
than the column design strength. 

Since Chapter 2 contains only bearing-type connections, a discussion of slip- 
critical connections is given. When high-strength bolts are fully tensioned, the parts 
being connected are clamped together by the tension force in the bolts. A friction 
force equal to the clamping force times the coefficient of friction on the clamped 
surfaces is developed. If the maximum axial force in the member due to service loads 
does not exceed the available friction force, the connection is classified as being slip- 
resistant. According to LRFD Commentary J3.8 (p. 6-226), slippage occurs at about 
1.4 to 1.5 times the maximum service load. LRFD J3.8 (p. 6-83) and LRFD Tables J3.5 
and J3.6 give the information needed for slip-critical connections, which may be 
designed either at service loads or at factored loads. In LRFD Table J3.6, the nominal 
slip-critical shear strength of a high-strength bolt is really the nominal friction force 
per bolt that can be counted on to occur in a slip-resistant connection. Slip-critical 
connections must also satisfy the design requirements as a bearing-type connection. 

See Figure 2.6 and Example 2.6 where, due to factored loads, the governing design 
strength of the connection was found to be 50.6 kips. If we want this connection to 
be satisfactory as a slip-critical connection, what is the maximum acceptable force 
due to service loads? Assume that LD = 1.5, where L is live load and D is dead load, 
and assume the loading combination that governs is 1.20 + 1.6L. 

Solution 
1.20 + 1.6(1.50) = 50.6 kips 

0 = 50.6/3.6 = 14.1 kips 

L = 1.5(14.1) = 21.2 kips 
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Required maximum service load = D + L = 35.3 kips. 
See LRFD p. 8-29. Due to service loads for one 0.75-in.-diameter A325 bolt in a 

standard-sized hole and subjected to double shear, the maximum acceptable slip-critical 
shear = 15.0 kips/bolt. In Figure 2.6(a), there are three bolts in the connection. Therefore, 
the maximum acceptable service load = 3( 15) = 45.0 kips. Since 45.0 235.3, the connection 
satisfies all W’D design requirements when the three bolts are fully tensioned. 

If the required maximum service load = D + L = 52.1 kips, for example, then the 
number of bolts needed for the connection to qualify as being slip-resistant would be 
52.1/15 = 3.47 bolts and four bolts would have to be used. 

8.7 COLUMN BASE PLATES 
Suggested column base plate details are given on LRFD p. 11-55. The suggested 
design procedure on LRFD p. 11-57 to 11-60 for a column base plate is applicable 
when the base plate is required to transfer only an axial compression force from a 
column to a reinforced concrete footing or to a reinforced concrete pedestal (pier). 
Two example problems are given on LRFD p. 11-60 and 11-64. Suggested anchor bolt 
details are shown on LRFD pp. 8-88 to 8-91. 

The LRFD Manual does not suggest a design procedure for a column base plate 
when the column is subjected to an axial compression and bending. For the two 
eccentrically loaded column cases shown in Figure 8.15, we recommend the follow- 
ing design procedure based on the ultimate strength method. 

In Figure 8.15(a), the base plate dimensions are denoted as 

B = width 
H = d + 2 h ’  

t = thickness 
where 

d = depth of the column section 
h’ 2 (w, + C,) 

we = minimum edge distance (see LRFD pp. 6-82,11-57) 
C, = minimum clearance for socket wrench head (see LRFD p. 8-13) 

H is estimated prior to entering the base plate design procedure. Consequently, 
H is known in the base plate design procedure. For welding purposes, we need B L 
b,+2(S, + 1/16 in.), where b,= flange width of the column section. B, = minimum B 
required for bearing strength is computed as shown for each case. The required 
values in inches for B and Hare rounded up to either the next integer or the next even 
integer depending on the availability of the desired plate size. See LRFD p. 1-133 for 
the preferred increment of thickness. 

Our discussion assumes that the design bearing strength of the concrete is 

GcP,, =0.6(1.7fc’Al ) =  1.02f,‘AI 

which was obtained from LRFD Eq. (J9-2) for A, 2 4A, where 

A, = area of base plate resting on the concrete support 

A, = area of concrete support on which the base plate sits 
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p-+T+q 
Section 1-1 

Section 2-2 

(b) Large eccentricity case 

(a) Small eccentricity case 
FIGURE 8.15 Eccentrically-loaded column base plates 

Case 2 ; (e = MY / PY) I H/6 
For the assumption that a plane section remains plane when subjected to an axial 
compression plus bending, when e = H / 6  the neutral axis is located at the left end of 
the base plate. Therefore, no anchor bolt is required to resist any tension due to Mu 
when e = H / 6 .  

The depth of the rectangular compression stress block is conservatively as- 
sumed to be u = H- 2e [see Figure 8.15(a)]. Equilibrium of the vertical forces requires 
that 

[ (bc P p  = ( 1.02 f,'B, )( H - 2 e ) ] = P, 

where B,  = minimum B required for bearing strength 

P" 
1.02fc'(H-2e) 

At the face of the most heavily loaded column flange, the design bending 

B ,  = 

strength requirement is 
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[ $JM = 0.9 F,  B ( i) ] 2 [ 1.02f:B h ' ( :)] 
where B = actual value chosen for base-plate width 

2.27 fc'B 
t 2 h '  

If B is large enough, the critical sections are in the vicinity of the column flange 
tips [see Figure 8.15(a)]. Note that the location of these sections is identical to the 
assumptiononLRFDp. 2-101,butwechose tousebinsteadofn todenotethedistance 
from these sections to the edge of the plate. To be conservative, the plate design 
bending strength is computed only for the length a: 

[ @Mn = 0.9FYa (;)'I 2 [ 1.02 fiub( T ) (  b --)I B m  

which requires that 

Case 2: (e = MJPJ > W6 
As shown in Figure 8.15@), the anchor bolts on the left end of the base plate are 
required to resist tension. This case is considerably more complex than case 1. 
However, the base plate thickness formulas derived in case 1 are applicable for case 
2 and are not repeated here. An additional base plate thickness requirement for 
plastic bending of the plate due to T, [see Figure 8.15@)] is 

iTu (Xiwe t 2 2.108 

where T,  = required tension strength of anchor bolt group. 
Equilibrium of the vertical forces requires 

T,  = C,  - P,  
where 

c, = 1.02fc'Ba 

in which B and u are unknown. 
Moment equilibrium requires 

T ,  ( h - : ) + P ,  (Y)=M, 
Substitution of T, = C, - P, and then substituting for C, we find that 

1.02 fc'B 
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in which B is unknown and h is approximately known. For example, initially we can 
assume that h = H - (minimum we ). Alternatively, we can assume that h = H - 0.5h'. 

For a trial value of B 2 [bf+ 2 (S, + 1/16 in.)], we can compute a and T,. Then, we 
can use the following procedure adapted from Shipp and Haninger [23] to determine 
the size and the number of anchor bolts required to produce T,. An identical anchor 
bolt group will be used on the compression end of the base plate. If the governing 
loading combination includes wind, an identical anchor bolt group on each end of 
the base plate will be necessary since the direction of Mu reverses when wind 
reverses. 

Let n denote the total number of anchor bolts; thus, there are n/2 anchor bolts 
on each end of the base plate. Each anchor bolt is assumed to resist an equal amount 
of shear. The design requirement for the anchor bolts that produce T, is 

where 
qR,, = design tension strength of one anchor bolt (p. 8-27) 

C, = shear coefficient (accounts for the effects of various shear failure surfaces) 
C, = 1.10 when the base plate is embedded in the concrete support and the top 

surface of the base plate is flush with the support surface 
C, = 1.25 when the base plate is recessed in grout 

C,  = 1.85 when the base plate is supported on, but not recessed in, grout. 

If a structural designer wants to try a particular anchor bolt group having n / 2  
bolts of a certain size on each end of the base plate, the required value of B can be 
computed by using the following formulas: 

M u  + P ,  ( h - $ )  

p, + T ,  

pu +Tu B2- 
1.02 fcra 

Select an A36 steel base plate for the following reaction requirements of a W14 x 99 
column: P, = 524 kips, Mu = 120 ft-kips = 1440 in.-kips, and V, = 24 kips due to 1.2D 
+ 1.6L + 0.5(L, or S or R). For the support, assume that the concrete grade is 3 ksi. 

Solution 

For a W14 x 99, b,= 14.57 in. and d = 14.16 in. 
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For an anchor bolt diameter d,, the minimum value of h’ = 4.25d,. We need an 
estimated anchor bolt diameter to begin our design. When case 1 is applicable, the 
anchor bolt diameter required for strength is zero since T,  = 0. However, for erection 
purposes we would not use less than a 0.75-in.-diameter for the column size used in 
this example. Larger anchor bolt diameters may be required when case 2 is appli- 
cable. From LRFD p. 8-13 for a 0.75-in.-diameter bolt, the minimum socket wrench 
head clearance is C, = 1.25 in. From LRFD p. 6-82 for a 0.75-in.-diameter bolt, 
(minimum we ) = 1.25 in. However, LRFD Table 11-3 (p. 11-57) indicates the hole 
diameter in a base plate for a 0.75-in.-diameter bolt should be 1.3125 in., which is 
larger than what was assumed on LRFD p. 6-82, and we find a revised estimate of 
(minimumw,)=1.25in.+(1.3125-1.25)=1.3125in.AssumethatHl[14.16+2(1.25 
+ 1.3125) = 19.3 in.]. Try H = 20 in. and h‘ = (20 - 14.16)/2 = 2.92 in. 

Since (e = M,/P, = 1440/524 = 2.75 in.) I (H/6 = 20/6 = 3.37 in.), Case 1 is 
applicable and a = H - 2e = 20 - 2(2.75) = 14.5 in. For strength, we need 

= 11.81 in 524 - - p,  B ,  = 
1.02fc’(H-2e) 1.02(3)(14.5) 

Since (b,= 14.57 in.) > 11.8 in., choose B = 16 in., which gives 

b = [16 - 0.8(14.57)]/2 = 2.17 in. 

The required base plate thckness is 

For the investigated loading combination, a 16 x 20 x 1.25 baseplate is needed. 
If we only want to use an anchor bolt group with n = 4 bolts and a base plate 
embedded in grout, the required tension design strength of one bolt is 

From LRFD p. 8-27 for a 0.75-in.-diameter A325 bolt, we find that (@Rn = 29.8 kips/ 
bolt) 2 7.5 kips/bolt. 

Select an A36 steel base plate for the following reaction requirements of a W14 x 99 
column: P, = 280 kips, M u  = 240 ft-kips = 2880 in.-kips, and V ,  = 48 kips due to 1.20 
+ 1.3W+ 0.5L + O.5(Lr or S or R). For the support, assume the concrete grade is 3 ksi. 

Solution 

For a W14 x 99, b,= 14.57 in. and d = 14.16 in. Try d, = 0.875 in.; h‘ = 4.25db = 3.72 in.; 
H 2 [d + 2’ = 14.16 +2(3.72) = 21.6 in.]. In Example 8.8, for a different loading 
combination, we needed B = 16 in. Try a base plate size of B = 16 in. and H = 22 in., 
which gives h’ = (22 -14.16)/2 = 3.92 in. and b = 2.17 in. 
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u = 20.75 - 

Since (e = MJP, = 2880/280 = 10.29 in.) > (H/6 = 22/6 = 3.67 in.), Case 2 is 
applicable. Try h = H - 2.25 in. = 23 - 2.25 = 20.75 in: 

= 6.36 in. 
280( 41.5 - 23) + 2 (2880) (20.75) - 

1.02 ( 3)( 16) 

P,, (2h-H)+2MU 
1.02 f ,’B 

T,, = 1.02 fJBa - P, = 1.02( 3)( 16)( 6.36) - 280 = 31.4 kips 

If we only want to use an anchor bolt group with n = 4 bolts and a base plate 
embedded in grout, then the required tension design strength of one bolt is 

From LRFD p. 8-27 for a 7/8-in.-diameter A325 bolt, we find that 

($Rn = 40.6 kips/bolt) 2 430.7 kips/bolt 

t 2 [ 2 . 1 0 8 , / y  Tu ( h , - w , )  = 2.108,/: 31.4( 3.92 - 2.25) = 0.64 in.] r , __ 1 

’ = 0.64 in. ’ =2’1w( 
36(16) 

For the investigated loading combination, a 16 x 23 x 1.75 base plate embedded in 
grout with four headed 7/8-in.-diameter A325 anchor bolts is adequate. 

8.8 COLUMN SPLICES 
Suggested column splice details for columns in a multistory building are given on 
LRFD pp. 11-64 to 11-91. Column splices are usually occur at 4 ft above the finish floor 
level, which means that the same W section is used in two stories. 

An axial compressive force usually can be totally transferred by bearing of the 
upper column on the lower column at the splice location. This requires that the 
column ends at the splice locations be milled to provide a smooth bearing surface. 
The section depth of the upper column is usually less than the section depth of the 
lower column. This requires that filler plates or shims be inserted between the splice 
plates and the upper column flanges. In some cases, as shown in case III on LRFD p. 
11-75 and in case IX on LRFD p. 11-89, a butt plate must be welded to the bottom end 
of the upper column end at a column splice location to provide an adequate bearing 
seat on the top end of the lower column. 

The column splice plates must be designed to resist the required factored 
moment and shear in the column at a splice location. When all the required factored 
axial compression force in a column cannot be resisted by bearing, the remainder of 
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this force must be resisted by the splice plates and their connectors. All the required 
factored axial tension force in a column must be resisted by the splice plates and their 
COMeCtOrS. 

8.9 SIMPLE SHEAR CONNECTIONS FOR BEAMS 
The connections for this category are designed to transfer only the required factored 
shear at the end of the beam from the beam end to the column. 

Definitions of fully restrained (FR) and partially restrained (PR) connection 
types are given on LRFD p. 6-25. In the structural analysis of the structure shown in 
Figure 1.10, joints 2,5,7, and 8 are rigid (nondeformable). FR connections must be 
designed at these joints. An FR connection must have adequate strength and stiffness 
to transfer the required shear and bending strengths at the beam ends to the column 
without any appreciable change in the angle between each beam and column. At 
joint 10 in Figure 1.10, the beam end is hinged to the column. A PR connection is 
designed at joint 10 to transfer only the required beam end shear to the column. At 
joint 4 in Figure 1.10, there is a rotational spring between the end of member 1 and 
the column. A PR connection is designed to transfer the required beam end shear and 
the required rotational spring moment from member 1 to the column. When loads 
are applied to the structure, there is a sigruficant change in the angle between the left 
end of member 1 and the columns. The moment at the end of member 1 is on the order 
of 20 to 60% of the moment that would exist if the left end of member 1 were rigidly 
attached (fully restrained) at joint 4. 

When the moment capacity of the connected parts is negligible in PR construc- 
tion, the terminology "simple framing" is often used to describe the type of 
construction. When no moment is to be transferred by a connection, structural 
designers refer to the connection as a simple connection, a shear connection, or a no- 
moment connection. Simple connections are designed to be flexible enough to allow 
the beam end essentially to rotate freely as assumed at a hinge in structural analysis. 

Simple shear connections commonly used for beams are web framing angles, 
beams seats, shear end-plate connections, and single plates. Information for each of these 
connections is given in LRFD Part 9. The simple connection choice is often a matter 
of personal preference, but there are situations when the choice is dictated by 
framing conditions, fabrication costs, and convenience in field erection. 

Suggested details for beam-to-beam connections are given on LRFD pp. 9-179 
and 10-66. The top flangesof allbeamsinafloorsystemmustbeatthesameelevation. 
For two mutually perpendicular sets of beams in a floor system, the beam ends in one 
set must be coped to eliminate the otherwise interfering flanges (see LRFD pp. 8-226, 
10-66). Tabular information that is useful in the required checking of block shear 
rupture at coped beam ends is given on LRFD pp. 8-214 to 8-224. 

8.9.1 Beam W e b  Connections 
Recommended design procedure information for all-bolted double-angle COMW- 
tions and example problems are given on LRFD pp. 9-11 to 9-14. Tables of these 
connections are given on LRFD pp. 9-22 to 9-87. Although a gage of 3 in. is shown in 
these tables, other gages may be used, provided that the design bearing strength is 
reduced for a gage in the range of 2.67d to 3d, where d = bolt diameter. As permitted 
by footnote c in LRFD Table J3.4 (p. 6-82), the minimum end distance of 1.25 in. is 
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used. These connections are designed on the assumption that the effects due to 
eccentric shear are negligible. Therefore, each bolt in these connections is assumed 
to resist only an equal share of the required beam end shear (see LRFD Table 9-2, p. 
9-22). The design strength of the connection angles is assumed to be governed by 
shear through the net section. In a bearing-type connection, the design strength of the 
connection may be governed by bearing on the beam web or on the connection 
angles. The length of the connection angles should be at least T/2, where T is the flat 
height of the beam web. If the connection angle length is less than T, the angles should 
be attached on the web as close as possible to the compression flange of the beam in 
order to provide lateral stability for that flange. 

Recommended design procedure information for one-sided all-bolted double- 
angle connections and example problems are given on LRFD pp. 9-161 to 163. A bolt 
group in each leg of the single angle is subjected to an eccentric shear that must not 
be ignored. The tabular information can be used to design a bolt group subjected to 
an eccentric shear. In welded web connections, either a WTsection or a flat plate may 
be less expensive than a web framing angle and serves the same structural purpose. 
However, as shown in the figure on LRFD p. 9-128, we would install either a top angle 
or a flat plate to provide lateral support for the compression beam flange. 

Recommended design procedure information for bolted/welded and all-welded 
double-angle connections and example problems are given on LRFD pp. 9-15 to 9- 
20. Tables of these connections are given on LRFD pp. 9-88 to 9-90. The weld group 
on each side of the beam web is subjected to an eccentric shear that is not ignored in 
the design of these connections. 

8.9.2 Unstiffened Beam Seats 

Recommended design procedure information for all-bolted unstiffened beam seats, 
example problems, and tables for these connections are given on LRFD pp. 9-128 to 

Recommended design procedure information for all-welded unstiffened beam 
seats, example problems, and tables for these connections are given on LRFD pp. 9- 
132,9-135, and 9-137. 

A single angle may serve satisfactorily as an unstiffened beam seat when the 
required factored beam end shear is small. For a beam supported by a seat angle, as 
shown in the figure on LRFD p. 9-128, either a light angle or plate must be attached 
either to the top flange of the beam or to the upper portion of the beam web to provide 
lateral support for the compression beam flange. Usually, an L4 x 4 x 0.25 is chosen 
for this top angle. 

Since the entries in Table 9-7 for a 4-in. outstanding leg of an angle for a welded 
beam seat are identical to the corresponding entries in Table 9-6 for a bolted beam 
seat, the critical section for bending of the angle leg was assumed to be the same 
whether a bolted beam seat or a welded beam seat is used. This is consistent with the 
assumption that the bolt group is subjected only to shear. In Figure 8.16(b), we show 
the assumed deformation of the seat angle. Only the outstanding leg of the angle is 
subjected to bending. The inclined bearing force between the beam and the beam seat 
has a horizontal component that pins the heel of the seat angle against the column 
flange. Therefore, the following design bending requirement of the outstanding 
angle leg must be satisfied: 

9-136. 
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Column web 

3 N 
e =  -+- 

4 2  

Heel of seat angle remains in 
contact with the column web. 

(b) Assumed behavior 

3 N  
e, = e - ( t + :) = 8 + 5 - t 
(a) Beam seat details 

FIGURE 8.16 Bolted beam-seat connection 

=0.225FyBt2 >(Mu = P u e c )  1 
where 

B = length of beam seat angle section 

t = thickness of beam seat angle section 

e, = eccentricity of the beam reaction P ,  with respect to the critical section 

e = eccentricity of the beam reaction P, with respect to the heel of the angle 

e = 0.75 + N / 2  

N = bearing length defined in the next paragraph 

e, = e - ( t  + 0.375) = 0.375 + N / 2  - t 

Note: t + 0.375 is assumed to be representative of the value of k for an angle section. 
In preparing LRFD Tables 9-6 and 9-7, a beam setback of 0.75 in. was assumed 

and is made in the following discussion. The critical section in bending is at the toe 
of the fillet, which is assumed to be located at t + 0.375 in. from the heel of the angle. 

If beam web yielding [LRFD Eq. (K1-3)] governs the minimum bearing length 
Nq required on the angle leg, 

N, =-------- '' 2.5k 
F p t w  
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If beam web crippling [LRFD Eq. (Kl-5)] governs the minimum bearing length 
N ,  required on the angle leg, 

The actual bearing length used in preparing the LRFD Manual tables was 

The bearing length N is the larger of Nv, N,, and N,,,. Assume that the bearing 
force is uniformly distributed on the bearing length N: 

e, = 0.75 + N/2 - (f + 0.375) = 0.375 + N/2 - f 

The value of f that satisfies the design bending strength requirement for the 
angle leg is 

~ 

-P, +J[Pu +0.9FyB(0.375+N/2)]Pu 

0.45 Fy B 
f 2  

Compute t for the desired value of B; the usual values of B are 6 and 8 in. 
Let n be the required number of bolts in a beam seat. The design requirement for 

a bearing-type bolt group in a beam seat is that n 2 P J R ,  where R, is the smaller of 
the single shear design strength of one bolt and the bearing design strength at one 
bolt location. 

See figures on LRFD p. 9-128. Venfy entries LRFD Table 9-6 for the following: 
The beam seat is LA x 4 x 0.75 x 8 Fy = 36 hi., and a type D bolted connectionis used 
with three A325N bolts; d = 7/8 in. The beam is a W16 x 50: 

t, = 0.380 in. fr= 0.630 in. d = 16.26 in. k = 21/16 in. Fy = 36 hi. 

Solution 

Bolt shear strength 
The bolts are assumed to be subjected only to shear. For single shear, 

@R, = 3(21.6) = 64.8 kips 

which agrees with the tabulated value on LRFD p. 9-136. 

Bending strength of the outstanding leg 
As noted, N,,, was used for the bearing length N in preparing the LRFD tables. Also, 
t, = 3/8 in. was used in preparing the LRFD tables: 
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= 2.04 in. pu - 55 N, =- - 
2 Fry t 2( 36)( 0.375) 

For illustration purposes, we will also compute Nq and N,. 
For the prevention of web yielding, 

2.5k = P U  N, =-- 
Fptw 36 (0.380) 

For the prevention of web crippling: 

N, =( ?)[ 51 (0.380) 55 1/36 (0.630) / 0.380 
-l]( %)I5 = -0.385 in. 

The bearing length N is the larger of Nq, NW, and N,: 

N = N,,, = 2.04 in. 

For the bending strength requirement of the seat angle, we need: 

-P, + J [ P ,  +0.9FyB(0.375+N/2)]P, 

0.45 F ,  B 
t >  

-55 + ,/[ 55 + 0.9( 36)( 8)( 0.375 + 2.04/2)]( 55) 

0.45 ( 36)( 8) 
t 2  = 0.744 in. 

Use t = 0.75 in. If we wish to verrfy the design bending strength tabulated in the LRFD 
Manual, we proceed as follows: 

N 
2 

e,  = e - ( t  +0.375) = 0.375 + - - t 

= 2.06 in. 
55.6 

2 ( 36)( 0.375) 
- (PRn N = N  =-- 

2 Fry t m 

e,  =0.375+-- 2*06 0.75 = 0.655 in. 
2 

0.225( 36)( 8 ) (  0.75)’ 
0.655 (PR,, = P ,  = = 55.6 kips 

and the tabulated bending strength on LRFD p. 9-136 is (PR, = 55.6 kips. 
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Alternatively, 
which requires the 
strength: 

we could have treated the design bending strength as unknown, 
following approach for the determination of the design bending 

N e, = e - (  t + o m )  = o m + - -  t 
2 

Substitute N into e, and e, into Mu to find 

$R,, = P, = b + & G  

where 

b=2F,f,,, (f-0.375)=2(36)(0.375)(0.75-0.375)=10.125 

~ = 0 . 9 F , ~ f , F , B t ~  = 0.9(36)(0.375)(36)(0.75)' = 1968.3 

Thus, we obtain the design bending strength: 

@R,, = P,  = 10.125+ y'( 10.125)2 + 1968.3 = 55.6 kips 

See the figures on LRFD p. 9-128. Verify the entries in LRFD Table 9-7 for the 

The beam seat is L7 x 4 x 0.75 x 8, F, = 36 ksi. with5/16 in. E7Oxx fillet welds. The beam 
is a W21 x 62: 

t, = 0.400 in. f,= 0.615 in. d = 20.99 in. k = 11/8 in. F,, = 36 ksi 

following. 

Solution 

Weld design strength 

The welds are assumed to be subjected to shear and bending. According to LRFD p. 
9-132, this design strength was computed using the elastic method. Include the 
length of the weld returns in q, due to shear. Ignore the length of the weld returns in 
qM due to bending moment (see Figure 8.17): 

S, = 5/16 in. 

B =2S, = weld return length = 0.625 in. 
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B = 2Sw 

H 

S,= weld size 

FIGURE 8.17 Example 8.11 

$R,, = P, = 10.125 + J( 10.125)2 + 1968.3 = 55.6 kips 

e = 0.75 + N/2 

= 0.0370 P, pu - P U  N = N  =-- 
2F,t, 2(36)(0.375) 

[$ (0.6FE,t,) = 0.75(0.6)(70)(0.707SW)] 2 q is required. 

Solve for P,, which is renamed as the design strength $Rn: 
$Rn = 55.0 kips 

and the tabulated value on LRFD p. 9-137 is $Rn = 53.4 kips. 

Bending strength of the outstanding leg 
As noted, N,,, was used for the bearing length N in preparing the LRFD tables. Also, 
t,, = 0.375 in. was used in preparing the LRFD tables: 

= 1.85 in. 
50 

2( 36)( 0.375) 
- pu N, =-- 

2 F, t ,  

For illustration purposes, we will also compute Nq and Nw,. For the prevention of 
web yielding, 

36 ( 0.400) 
2.5 k = P U  

F p  t 1” 
N =-- 

WY 
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For the prevention of web crippling, 

50 
51( 0.400)2 1/36*0.615/0.400 

- 1]( s) l5 = -2.35 in. 

The bearing length N is the larger of NW, N,, and N,: 
N = (N, = 1.85 in.) 

For the bending strength requirement of the seat angle, we need 

-Pu +,/[P,, +0.9FyB(0.375+N/2)]Pu 

0.45 Fy B 
f >  

-50 + 4 [ 50 + 0.9( 36)( 8)( 0.375 + 1.85 / 2)]50 
0.45( 36)( 8) 

f 2  =0.687 in. 

Use f = 0.75 in. The computations for the verification and determination of the design 
bending strength are identically the same as in Example 8.10. 

8.9.3 Stiffened Beam Seats 

When the required factored beam end shear exceeds the design strengthvalues listed 
in the unstiffened beam seat table, the beam seat angle is stiffened by either vertical 
angles or plates to eliminate bending in the outstanding leg of the seat angle. 

Recommended design procedure information for all-bolted stiffened beam 
seats, example problems, and tables for these connections are given on LRFD pp. 9- 

Recommended design procedure information for bolted/welded stiffened 
beam seats, example problems, and tables for these connections are given on LRFD 

The paired stiffener angles shown in the figure on LRFD p. 9-138 can be 
separated to accommodate column gages. A filler or spacer plate should be inserted 
in the separation gap and stitch-bolted as one does in a double-angle column when 
the angles are not in contact. 

138 to 9-144. 

p. 9-140,9-143, and 9-146. 

See the figures on LRFD p. 9-138. Venfy the entries in LRFD Table 9-8 for the 
following. Use A36 steel. 
The beam seat is a 6 x 10 x 0.375 plate stiffened by a pair of W x 5 x 5/16 x 8.625, and 
attached by a type Abolted connection (sixA325Nbolts;d = 7/8 in.) toa W3Ox99beam. 
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Solution 

Bolt shear strength 

The bolts are assumed to be subjected only to shear. For single shear, 
4Rn = 6(21.6) = 129.6 kips 

which agrees with the tabulated value on LXFD p. 9-144. 
Pair of angle stiffenem 

For the bearing strength, LRFD J8.1 (p. 6-89): 
#& = 0.75 (1.8FA) 

The effective bearing length of the stiffener is the outstanding leg length minus 
0.75 in: 

Apb= 2(5 - 0.75)(5/16) = 2.66 in.2 

#R,, = 0.75(1.8)(36)(2.66) = 129 kips 

which agrees with the tabulated value on LXFD p. 9-144. 
Check width-thickness ratio 

When the angle legs are in continuous contact, 

If the angles are separated, a thicker angle is required to satisfy the limiting width- 
thickness ratio. 

See the figures on LRFD p. 9-138. Venfy the entries in LRFD Table 9-9 for the 

The beam seat is a 6 x 12 x 0.375 plate stiffened by a 6 x 15 x 0.625 plate and attached 
by 5/16 in. met welds (E7OXX) to a W30 x 116 (f, = 0.565 in.) 

Solution 
For the stiffener plate, 

following. use A36 SteeL 

(t = 0.625 in.) > (f, = 0.565 in.) as required 

(t = 0.625 in.) 2 [2(5/16) = 0.625 in.] as required 

Check the width-thickness ratio: 

asrequired 
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FIGURE 8.18 Example 8.13 

Design strength of the S, = 5/16 in. welds: 
The welds are assumed to be subjected to shear and bending. This design strength 
was computed using the elastic method (see Figure 8.18): 

- pu =O.0278Pu q = - =  pu p, 
A 2(L+B)-2 (15+3)  

From the top of the weld group to the centroid of the weld group is 

=6.25 in. 2( 15)( 7.5) 
2(15+3) 

c =  

+15(7.5-6.25)2 +3(6.25)* =844 ! 
W=6in. 

Since the only variables on LRFD p. 9-145 are W, L, and the weld size, assume that 

N = W- 0.75 = 6-0.75 = 5.25 in. 

= 3.375 in. N 5.25 
2 2 

e = W - -  =6--  

Mc p, (3.375)( 6.25) 
= 0.0250 P" 

q M  =I= 844 

q = d m  

[@(0.6FE,f,) = O.75(O.6)(7O)(O.707Sw)] 2 q is required 

Solve for P,, which is renamed as the design strength @Rn: 
(PR, = 186 kips 

and the tabulated value on LRFD p. 9-145 is (PR, = 154 kips. 
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8.9.4 Shear End-Plate Connections 

At the end of a beam, as shown in the figure on LRFD p. 9-91, a plate can be shop- 
welded to the beam web and field-bolted to a column flange to serve as the means 
to transfer the required factored beam end shear to the column. This type of 
connection is classified as a shear end-plate connection. Recommended design proce- 
dure information for these connections is given on LRFD pp. 9-91 to 9-127. The end 
plate should be attached on the beam web as close as possible to the compression 
flange of the beam in order to provide lateral stability for that flange. 

8.9.5 Bracket Plates 

On LRFD p. 12-5, there are two figures of bracket plates. Design information for these 
bracket plates is given on LRFD pp. 12-5 to 12-10. LRFD Table 12-1 gives the critical 
net section indicated in the figure for that table. For the bracket plate, the design 
bending requirement for the extreme fiber in tension is 

( +Mn = O.9FyS,, ) 2 P,e 

where 

S,, = net section modulus of the critical section 

e = eccentricity of the beam reaction P, with respect to the critical section 

Examples 8.1 and 8.2 discussed the design strength of a bolt group for a bracket 
plate. For design purposes (to select the required number of bolts), the tables on 
LRFD pp. 8-40 to 8-87 can be used. 

8.10 MOMENT CONNECTIONS FOR BEAMS 
The connections for this category are designed to transfer the required factored shear 
and moment at the beam end to the supporting member. 

8.10.1 Beam-to-Beam Connections and Splices 

Suggested design details for moment connections and splices of a beam are shown 
on LRFD pp. 10-57 and 10-66. In a floor system, one may desire that the lighter loaded 
set of intersecting beams be continuous at their supports (the heavier loaded set of 
intersecting beams, which are usually called girders). As shown on LRFD pp. 10-57 
and 10-66, the beam end shears at the girder supports are resisted by either web 
connections or by beam seats. The continuous beam end moments are transferred 
either through top and bottom splice plates or through top splice plates and the beam 
seats. 

The moment to be transferred can be treated as a couple whose lever arm is d + tp, 
where d is the beam depth being connected and fp is the thickness of the connection plate. 
The top splice plate is subjected to a tension force of T ,  = M,/(d + tp)  where Mu is the 
required moment at the continuousbeam support. If a tensionsplice plate isbolted to the 
beam flange being C O M & ~ ~ ,  the chosen splice plate must satisfy LRFD J5.2. 

For a splice plate that transfers a compression force of C, = Mu / (d  + t,), the 
limiting width-thickness ratios on LRFD p. 6-39 forflange cover plates are applicable. 
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If the continuous beam is designed by assuming that 

then, for the compression splice plate we must require that 

where b is the plate width between the lines of bolts in the splice plate and t is the 
thickness of the splice plate. At the splice gap location, the design compressive 
strength requirement of a compression splice plate is that 

( o , P ,  = 0.85A,Fy ) 2 C, 
where Ag is the gross area of the splice plate. 

8.10.2 Beam-to-Column Connections 

Suggested design details for this type of connection are shown on LRFD pp. 10-10, 
10-22, and 10-23. Only two of the suggested possibilities (see Figures 8.19 and 8.20) 
are mentioned in this text. 

For the extended end-plate connection shown in Figures 8.13 and 8.19, the 
suggested design procedure information is given on LRFD pp. 10-21 to 10-35. There 
are comprehensive example problems in the LRFD Manual, and we see no need to 
provide any additional examples. 

The criteria given on LRFD pp. 10-35 to 10-42 must be used to determine when 
column web stiffeners aligned with the beam flange ends are required. A paragraph 
on LRFJ3 p. 10-25 encourages the avoidance of such stiffeners. According to research 
by Curtis and Murray [24], excessive column flange bending at the beam tension 
flange does not occur when the column flange thickness satisfies the following 
criterion: 

t,, > JT O.9Fyb, 

where 

b, = effective column flange length region subjected to bending (in.) 

b, = 2 . 5 ~ ~  for four-bolt arrangement (in.) [see Figure 8.19(a)] 

b, = 3.5pb+ s4 for eight-bolt arrangement (in.) [see Figure 8.19(b)] 

s4 = 2p, + tpt 

The other parameters are defined on LRFD p. 10-24. 
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(a) Fbur-bolt -t 

-- 
(b) Eight-bolt anangement 

u 
section 2-2 

FIGURE 8.19 Moment end-plate connection 

FIGURE 8.20 Top and bottom plate connection 
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8.11 KNEE OR CORNER CONNECTIONS 
LRFD Figure 10-29 (p. 10-67) shows examples of knee or comer connections fre- 
quently used in one-story frames designed using FR connections. 

Figure 8.21(a) shows a square-knee connection. The beam extends to the edge of 
the exterior column flange and sits on a base plate (cross-hatched element) welded 
to the top end of the column. A plate is welded to the end of the beam and to the 
exterior column flange. 

As shown in Figure 8.21@), the tension flange forces must be transferred by 
shear into the beam web. Usually, a pair of beam web stiffeners is required from the 
points C to D to transfer some of the column flange force C, via fillet welds subjected 
to shear into the web of the girder. If either the design shear strength or the design 
buckling strength of the beam web is not adequate, a pair of diagonal web stiffeners 
must be provided from points A to C. 

& 
Section 1-1 

(a) Side elevation view 
I- T- 
1 

- 
I- f 

' h  
TB 

(b) FBD of flanges and web 

L 

FIGURE 8.21 Comer connection 
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Design the square-knee connection in Figure 8.21 for a W24 x 55 beam and a W14 x 
82 column. For the W24 x 55 section, the required strengths are V, = 60 kips, P, = 24 
kips, and Mu = 320 ft-kips. For the W14 x 82 section, the axial compressive design 
strength is @Pn = 558 kips and the required strengths are V,, = 24 kips, P, = 60 kips, 
and Mu = 320 ft-kips. Use A36 steel and E70 electrodes. 

Solution 
In Figure 8.21(b), assume: 

1. The beam flange forces are 

Mu p,, 320(12) 24 
0.95d 2 0.95(23.57) 2 

TD =---= - - = 160 kips 

Mu p,, - 320(12) 24 
0.95d 2 0.95(23.57) 2 

c, =- +-- +-=184 kips 

2. The column flange forces are 

M u  p,, 320(12) 60 
0.95d 2 0.95(14.31) 2 

c, =-+-= + - = 313 kips 

Design the beam end plate: 

The beam flange width is 7.01 in. and the column flange width is 10.13 in. Choose the 
end plate width as 8 in. to accommodate fillet welds on the column flange. Since the 
end plate is in tension, the design strength requirement for yielding on As is 

[0.9(36)(8t)] 2 (TB = 253) 

t 2 0.976 in. is required. Use t = 1 in. 

The column flange thickness is 0.855 in. and the end-plate thickness is 1 in. The 
thicker part joined is 1 in., for which the minimum acceptable S, = 5/16 in. and the 
maximum acceptable S, = 15/16 in. Try S,= 5/8 in. The design requirement for the 
weld group on the column flange is 

[0.75(0.6)(70)(0.707)(0.625)(8 + X,)] 2 (TB = 253) 

L, 2 10.2 in. is required for S, = 0.625 in. to develop the column flange force TB = 253 
kips. On the end of the beam web, the design requirement for the weld group is 

[0.75(0.6)(70)(0.707S,)(2)(21)] 2 (TB = 253) 
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For strength, S, 2 0.277 in. is required. Use S, = 5/16 in., which is the minimum 
acceptable weld size. 

Check the beam web: 

( h  / t ,  = 54.6) 5 (187,/= = 69.7) 

From B to A in Figure 8.21, the design shear strength of the web is 

4V,, = 0.9(0.6)(36)(21)(0.395) = 161 kips 

which is less than the required strength TB = 253 kips. Therefore, on the beam end, 
there is an excess force of 253 - 161 = 92 kips. If the web buckling strength from LRFD 
K1.6 in the A to C direction is inadequate, a pair of diagonal web stiffeners must be 
designed. 

From D to A, the design shear strength of the web is 

+V,, = 0.9(0.6)(36)(11)(0.395) = 84 kips 

which is less than the required strength TD = 160 kips. Therefore, parallel to the top 
beam flange, there is an excess force of 160 - 84 = 76 kips. If the web buckling strength 
from LRFD K1.6 in the A to C direction is inadequate, a pair of diagonal web stiffeners 
must be designed. The diagonal length of the web in compression is 

d ,  = 4- = 23.7 in. 

From LRFD K1.6 @. 6-94), the web buckling design strength is 

+R,, =0.9 [ 4100(0'395)3 *] = 57.6 kips 
23.7 

and the required strength is 

P,, = J(92)' +(76)2 = 119 kips 

Since +R,, c P,, a pair of diagonal web stiffeners must be designed for the region from 
A to C for P,, = 119 kips. 

In Figure 8.20, the ends of the diagonal stiffener need to be mitered to fit the 
corners in bearing since the diagonal compression force exists at points A and C. The 
length of the diagonal stiffener is 

L, =.\1(23.57-20.505)' +[14.32-2(0.855)]' =25.85 in. 

From LRFD K1.9 (p. 6-96), KL = 0.75 (25.85) = 19.4 in. is the effective length of the pair 
of diagonal web stiffeners to be installed between points A and C. 

Try a pair of 3.25 x 23.75 x t plates: 

1 b 325 - = - = 8.67 s; - = 15.8 as required. 
t 0.375 

Since the ends of the diagonal stiffener are mitered to fit the corners inbearing, LRFD 
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J8.1 (p. 6-89) requires that 

[& = 0.75(1.8)(36AJ] 2 (119 - 57.6 = 61.4 kips) 

[A, = 2( 3 . 2 5 + 2 - %  0395 l5)t]>1.26 in.* 

t 2 0.251 in. is required. Use t = 0.25 in. 

From LRPD K1.9 @. 6-96), the effective area of the diagonal web stiffener is 

A, = 2(3.25)(0.25) + (25)(0.395)(0.395) = 5.53 in? 

The moment of inertia for column buckling perpendicular to the web plane is 

= 6.83ine4 0.25[ 2 ( 3.25) + 0.395 J 
12 

I, = 

= 17.5 0.75 ( 25.85) ($1, = 1.11 

From L,RFD E2 (p. 6-39): 

ac = i7.5,/3ZEi% = 0.617 a: = 0.380 

[ qPn = 0.85( 5.53)( 0.658°3ao )( 36) = 144kipI 2 ( P ,  = 119kips) 

Therefore, a pair of 3.25 x 0.25 x 23.75 plates is adequate. 
Minimum fillet welds along the stiffener must be provided to prevent buckling 

of each individual web stiffener plate as a column in the direction of the plane of the 
beam web. The thicker part joined is 0.395 in. and the minimum fillet weld size is 
3/16 in. 

Check the beam web at point C in Figure 8.21(b). Since the diagonal stiffener is 
required, we would automatically provide a pair of web stiffeners from C to D. From 
the FBD of this stiffener in Figure 8.20(b), the required compressive strength of the 
stiffener from C to D is 

LRFD J8.l @. 6-89) requires 
P, = 313 - (92 + 60) = 162 kips 

[@,, = 0.75(1.8)(36Ab] 2 161 kips 

[A, = 2( 3.25+*-G 0395 15)t] 2 3.31 in.2 

t 2 0.660 in. 
 US^ t = 0.75 in. 
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From C to D, the design shear strength of the beam web is 

$Vn = 0.6(36)(23.57)(0.395) = 181 kips 

($Vn = 181 kips) 2 (P, = 161 kips) 

Since this design strength is so close to the required strength, we would extend the 
stiffener to the toe of the top web fillet. Therefore, the strength requirement of the 
weld group (4 welds) is 

4 [0.75(0.6)(70)(0.707S,)(21)] 2 (P ,  = 161) 

The weld leg size required for strength is S, 2 0.086 in., and the minimum acceptable 
S, = 0.25 in. for the 0.75-in. thicker part joined. Use S, = 0.25 in. 

PROBLEMS 
8.1 Select an A36 steel base plate for the following reaction requirements of a 

W14 x 82 column: P ,  = 400 kips, Mu = 120 ft-kips, and V, = 30 kips. For the support, 
assume that the concrete grade is 3 ksi. 

8.2 Select an A36 steel base plate for the following reaction requirements of a 
W14 x 82 column: P, = 200 kips, Mu = 300 ft-kips, and V, = 60 kips. For the support, 
assume that the concrete grade is 3 hi. 

8.3 A pair of LA x 3.5 x 0.5 is fillet welded to a column web (t, = 0.510 in.) and 
bolted to a beam end (t, = 0.510 in.). Five 0.75-in.-diameter A325N bolts in a bearing- 
type connection with standard size bolt holes are in the 3.5-in. angle legs and the 
beam web. The pair of angles, the beam, and the column are A36 steel. 

Use LRFD Table 9-3 (p. 9-88) and determine the required weld size for the weld 
group. Venfy the design strength tabulated for weld group B. This design strength 
was computed using the elastic method. Include the length of the weld returns in qo 
due to shear. Ignore the length of the weld returns in 9,,, due to bending moment (see 
Figure P8.3): 

B = 2Sw 

k - 4  

S,,, = weld size 

FIGURE PS.3 
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PU PU 
A 2(L+2SW) 41, =-= 

S, = weld leg size 

2S, = weld retum length 

e = 2.25 in. (from LRFD, p. 8-271) 

q = d d  +q; 
[t#1(0.6F,tJ = 0.75(0.6)(70)(0.707Sw)] 2 q is required 

Solve for P,, which is renamed as the design strength @Kn. 
8.4 Solve Problem 8.3 for 7/8-in.-diameter A325N bolts. 

8.5 Solve Problem 8.3 for 1-in.-diameter A325N bolts. 

8.6 Solve Problem 8.3 for A307 bolts. 

8.7Using LRFD Tables 9-2 and 9-3, select a pair of angles bolted to beam web and 
welded to column flange. The beam is a W24 x 55 and the column is a W14 x 82. The 
weld group on the pair of angles is also on the column web. Use A36 steel for the 
angles, the beam, and the column. Use 0.75-in.-diameter A325N bolts in a bearing- 
type connection. The required shear strength of the beam end is 100 kips. 

8.8 Solve Problem 8.7 for A307 bolts. 

8.9 As shown on LRFD p. 9-89, a pair of L3 x 3 x 5/16 is fillet-welded to a column 
web and to a beam end. The pair of angles, the beam, and the column are A36 steel. 
Venfy the entries given in LRFD Table 9-4, using: 

(a) LRFD Table 8-42 for weld group A. 
(b) The elastic method for weld group B. Include the length of the weld 

returns in ql, due to shear. Ignore the length of the weld returns in qM due 
to bending moment (see Figure P8.9): 

p,  P U  

A 2(L+2SW) 9 =-= 

S, = weld leg size 

2S, = weld retum Iength 

Mc (Pue)(L/2) - 3(P,e) q M  =-= -- 

e=3in .  

I 2 ( ~ ~ / 1 2 )  L~ 
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S,= weld size 

FIGURE pS.9 

q=dqO’+q; 

[+(0.6F,te) = O.75(O.6)(7O)(O.707Sw)] 2 q is required 

Solve for P,, which is renamed as the design strength @,,. 

8.10 If the web thickness of the beam and the column in Problem 8.9 is t, = 0.510 
in., do the weld sizes for Problem 8.9 satisfy LRFD J2.2b (p. 6-75)? 

8.11 Use LRFD Table 9-4 to select a pair of angles and the weld sizes to be used 
for the following conditions. The beam is a W24 x 55 and the column is a W14 x 82. 
Weld group B is on the column web. Use A36 steel for the angles, the beam, and the 
column. The connection must develop the design shear strength of the beam end. 

8.12 Determine the block shear rupture strength of the connection in Example 
9-1 (p. 9-16) by using: 

(a) LRFD equations for BSR 
@) LRFD Tables 8-47 and 8-48 (pp. 8-215 to 8-224) 

8.13 Determine the block shear rupture strength of the connection in Example 
9-2 @. 9-18) by using: 

(a) LRFD equations for BSR 
(b) LRFD Tables 847 and 8-48 (pp. 8-215 to 8-224). 

8.14 See the figure on LRFD p. 9-91. Verify the entries in Table 9-5 for the end- 

8.15 Repeat Example 9-6 and Problem 8.14 for Fy = 36 ksi. 

8.16 See LRFD pp. 9-161 and 9-162. Venfy the entries in Table 9-11 for the 

8.17 See LRFD p. 9-163. Verify the entries in Table 9-12 for the connection 

plate connection designed in Example 9-6 (p. 9-92). 

connection designed in Example 9-13 (p. 9-163). 

designed in Example 9-14 (p. 9-166). 
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8.18 For the bearing-type connection shown in Figure P8.18, we are given the 
following numerical information: A36 steel bracket plate and column, g = 5.5 in., s = 
3 in., ex = 6 in., column flange thickness = 0.855 in., 0.75-in.-dia.meter A325X bolts in 
single shear, and P,, = 50 kips. Use TXFD p. 8-52 to determine the number of bolts 
required. Use LRFD pp. 12-5 to 12-10 to determine the required bracket plate 
thickness for M = PJ?. 

I I I  I * 

FIGURE P8.18 

8.19 For the bearing-type connection shown in Figure P8.18, we are given the 
following numerical information: A36 steel bracket plate and column, g = 8 in., s = 
3 in., ex = 14 in., column flange thickness = 0.710 in., 7/8-in.diameter A325X bolts in 
single shear, and P,, = 75 kips. Use TXFD p. 8-52 to determine the number of bolts 
required. Use LRFD pp. 12-5 to 12-10 to determine the required bracket plate 
thickness for M = PJ?. 

8.20 For the welded connection shown in Figure P8.20, we are given the 
following numerical informatio~~ A36 steel bracket plate and column, b = 4 in., d = 
10 in., e, = 12 in., column flange thickness = 0.855 in., E70 electrodes for the fillet 

FIGURE P8.20 
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welds, and P, = 50 kips. Use LRFD p. 8187 to determine the required weld size. 
Determine the required bracket plate thickness such that M/S, 2 0.9Fy, where 

M = P,e 

S, = 1, = elastic section modulus of the bracket plate 
d / 2  

Also, the cantilevered plate length divided by the thickness must not exceed 
A, =95/JFy 

8.21 For the welded connection shown in Figure P8.20, we are given the 
following numerical information: A36 steel bracket plate and column, b = 12 in., d = 
14 in., ex = 14 in., column flange thickness = 0.710 in., E70 electrodes for the fillet 
welds, and P, = 100 kips. Use LRFD p. 8-187 to determine the required weld size. 
Determine the required bracket plate thickness such that M / S ,  2 0.9Fy, where 

M = P,e 

- elastic section modulus of the bracket plate 
I 

d /2  
s, =x- 

Also, the cantilevered plate length divided by the thickness must not exceed 
A, = 9 5 / E  

8.22 Design the beam splice shown in Figure P8.22 Use A36 steel for the pair of 
splice plates and the W24 x 55 beam. The required shear strength of the beam ends 
is V, = 121 kips. Use 0.75-in.4iameter A325X bolts in a bearing-type connection and 
E70 electrodes. Determine the required number of bolts, the weld size, and the size 
of each splice plate. 

uu 
I I 

FIGURE P8.22 

8.23 Design the beam splice shown in Figure P8.22. Use Fy = 50 ksi steel for the 
pair of splice plates and the W24 x 55 beam. The required shear strength of the beam 
ends is V,  = 167 kips. Use l-in.-diameter A325X bolts in a bearing-type connection 
and ESO electrodes. Determine the required number of bolts, the weld size, and the 
size of each splice plate. 

8.24 Solve Example 8.5 for the tension member inclined at tan a = 0.5. 
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8.25 Solve Example 8.6 for the tension member inclined at tan a = 0.5. 

8.26 Design a beam splice as shown in LRFD Figure 10-20 (p. 10-57). Use A36 
steel for the splice plates and the W24 x 55 beam. The connection must develop $MpI 
= 330 ft-kips and @V,, = 121 kips. Use 7/8-in.-diameter A325X bolts in a bearing-type 
connection and E70 electrodes. Determine the required number of bolts, the weld 
size, and the size of each splice plate. The girder is a W30 x 90. 

8.27 Design an all-welded beam splice similar to the welded half of LRFD Figure 
10-20 (p. 10-57). Use A36 steel for the splice plates and the W24 x 55 beam. The 
connection must develop $Mpx = 362 ft-kips and $V,, = 121 kips. Use E70 electrodes. 
Determine the required weld sizes, the beam seat size, and the size of the splice plate. 
The girder is a W36 x 135. 

8.28 Solve LRFD Example 10-2 (p. 10-16) for Mu = 362 ft-kips, a factored beam 
end shear of 66 kips, and a factored column web shear of 36 kips. Also, LRFD 
Example 10-6 Solution A is applicable. 

8.29 Solve Problem 8.28 for a W24 x 55 beam framed to a W14 x 82 column. M u  
= 503 ft-kips. The factored beam shear is 92 kips. The factored column web shear is 
50 kips. Use F,, = 50 ksi steel for the connection parts. Use l-in.-diameter A325X bolts 
and E80 electrodes. 
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Plate Girders 

9.1 INTRODUCTION 
In LRFD Chapter G (p. 6-58), we find that flexural members are classified as either 
beams or plate girders. Some of the characteristics of beams and plate girders need 
to be illustrated. Therefore, we choose to state the characteristics of beams and plate 
girders in separate figures. 

The characteristics of a beam are given in Figure 9.l(d), where Fd is the yield 
strength of the flanges. Infmediafe web stiffeners, as shown in Figure 9.2(a) for a plate 
girder, are not allowed in the definition of a beam. However, bearing web stiffeners as 
shown in Figure 9.l(a) may be required by LRFD K1.9 (p. 6-96). A beam may be a 
built-up hybrid section (F,of the web and flanges may be different). LRFD Appendix 
G (p. 6-203) states that inelastic web buckling in a hybrid flexural member is 
dependent on the flange strain. 

Thecharacteristicsof aplufegirderare giveninFigure9.2(c),whereFy,istheyield 
strength of the flanges. Bearing web stiffeners as shown in Figure 9.2(a) may be 
required by LRFD K1.9 (p. 6-96). Intermediate web stiffeners may be required by 
LRFD F2.3 (p. 6-113) or, when tmsionfie2d action is utilized (see Figure 9.4), by LRFD 
G4 (p. 6-125). Intermediate web stiffeners [see Figure 9.2(a)] are not required when 
either of the following conditions is satisfied: 

1. h l t ,  S 4 1 8 I G  

2. @Vn 2 V" 

where 

FF = yield strength of the web 

V,, = required shear strength 

@Vn = design shear strength given in LRFD F2.2 (p. 6-56) 

h and f, are defined in Figure 9.l(b). 

366 
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ection 1-1 is typical cross section except at supports and 
concentrated load points. 

(a) Side elevation view 

h s  

y 4  

d 
2 

- _  - 

d 
2 

- -  - 

Rolled section (W section) Welded section 

(b) Section 1-1 when cross section is doubly symmetric 

(d) Beam characteristics are: 
Rolled or welded section. 

-<- 
:w j$- 

t w  yt Intermediate web stiffeners 
[see LRFD F2.3, @. 6-56)] 

~~x (c) Section 1-1 when cross section is singly symmetric are an excluded characteristic. 

FIGURE9.1 Beam. 

If intermediate web stiffeners are required, the member is a plate girder and the 
maximum permissible value of h/fw is given on LRFD p. 6-122 

a h 2000 
1. For 41.5: Maximu-=- 

h 
t w  &- 

a h 14,000 
h 

2. For ->1.5: Maximm--= 

where 
Fd = yield strength of the flanges 

u = clear distance between intermediate web stiffeners 

h and t, are defined in Figure 9.2(b). 



368 Plate Girders 

Intermediate web stiffeners (if required) -/ 
A 

L 
2 
- 

(a) Side elevation view of left half span length 

X lzJI$ 
2 

Doubly symmetric section Singly symmetric section 

(b) Section 1 - 1  when LRFD G4 stiffeners are not used 

(c) Plate Girder characteristics are: 
Rolled or welded section. Either or both of the following: 

h 970 >- - 
I W  &- 
Intermediate web stiffeners are required by LRFD F2.3 or G4. 

FIGURE 9.2 Plate girder. 

As shown in Figure 9.2(b), the most commonly used built-up section for a plate 
girder is composed of two flange plates fillet-welded to a web plate. Some other cross 
sections that have been used for a plate girder are shown in Figure 9.3. Any of the 
sections in Figures 9.2 and 9.3 may be a hybrid section; that is, for example, the web(s) 
may be Fy = 36 ksi steel and the flanges may be Fy = 50 ksi steel. 

In a multistory office or hotel building, large column-free areas (ballroom, 
dining room, lobby) may be needed or desirable. Either a built-up plate girder or a 
truss may be the economical choice to span these column-free rooms and to support 
the columns in the stories above these rooms. Students want design rules without 
any exceptions to be given for them to use in deciding the most economical type of 
flexural member for a specific design situation. Such rules are impossible for us to 
give, but the following guidelines may be helpful: 

1. For rolled beams, an economical depth is L/20 to L/50, where L is the span 
length. See LRFD Table 4-2 (p. 4-30). 
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r T 

A 

Notes: 
Groove welds at each end of 

the plate are not shown. 
Usually the grade of steel 

for the plate is chosen to be less 
than the grade of steel for the 
WT sections to create a hybrid 
section. For example: 

Plate : Fy = 36ksi 
WT Fr = 50ksi 

(a) Rolled built-up section 

(c) Box section (d) Delta section 

FIGURE 9.3 Plate girder cross sections. 

2. For built-up beams and plate girders, an economical depth is L/15 to L / 8 .  
Simple spans of 70 to 150 feet are typical for plate girders in buildings and 
highway bridges. Shorter simple spans are economical in unusual cases and 
railway bridges. Longer continuous spans of 90 to400 feet are feasible, but for 
the longer spans the section depth varies from a maximum at the supports to 
a minimum at midspan. 

3. For parallel chord trusses, an economical depth is L/12 to L / 8 .  

A built-up plate girder usually has the following advantages when compared 

1. Lower fabrication cost. 
2. Fewer field erection problems, but a larger crane capacity may be required. 
3. Fewer critical points in the member at which design requirements may 

govern. In a truss, if an overload occurs in any member or connection, the 
result may be a disaster. However, if an overload occurs only at one point in 
a plate girder, some of the neighboring material may help prevent a disaster. 

to a truss: 

We restrict the discussion to the case where the required strengths are deter- 
mined from an elastic factored analysis. In the LRFD Specification, there are two 
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design procedures for plate girders. We choose to restrict the following discussion 
to the case for which the cross sections shown in Figures 9.l(b) to (c) and 9.2(b) are 
applicable. The two design procedures for this case are referred to as: 

1. Conventional Design Method A brief description of the plate girder behavior 
for this design method is given in Section 9.2. See Section 5.10 and Example 
5.8 for the design of bearing web stiffeners. 

2. Tension Field Design Method A brief description of the plate girder behavior 
for this design method is given in Section 9.3. See Section 5.10 and Example 
5.8 for the design of bearing web stiffeners. The Tension Field Method is not 
applicable for 
(a) Web-tapered girders 
(b) Hybrid girders 
(c) The member-end panels in a nonhybrid girder 
(d) Any panels of a nonhybrid girder for which 

According to a statement on LRFD p. 6-249, plate girders usually are more 
economical when they are designed by the Conventional Method. The reason cited 
for this is that i f  a thicker web is used, fewer intermediate web stiffeners are required 
(possibly none are required) by the Conventional Method than for the Tension Field 
Method. Consequently, considerably less fabrication time is required when the 
number of intermediate web stiffeners can be held to a minimum or to none. By 
making the web thicker (adds more steel cost), which requires fewer intermediate 
web stiffeners, skilled labor costs can be signhcantly reduced, and the overall 
fabrication cost may be less than for a minimum girder weight design by the Tension 
Field Method. 

9.2 CONVENTIONAL DESIGN METHOD 
LRFD F2 (p. 6-53) is applicable for shear. LRFD F2.3 is applicable for the intermediate 
(transverse) stiffeners. For bending, when LRFD F1.l to F1.2 are not applicable, 
LRFD G (p. 6-58) invokes: 

1. LRFD Appendix F1 (p. 6-111) when h / t I 970 / JFsd 
2. LRFDG2(p.6-122)when h / t ,  >970/& 

Except for having to design intermediate web stiffeners (LRFD F2.3), this 
method involves the familiar design requirements for a beam when 
h / t ,  I 970 / &However, the determination of the design shear strength (LRFD 
F2) is more complex than for a beam, and the design bending strength may have to 
be determined from LRFD Appendix F1 for which there are no available design aids 
similar to the C, = 1 beam charts. When h / t , > 970 / &previously undiscsussed 
definitions must be used to determine the design bending strength (LRFD, Appen- 
dix G2). Since there are no available design aids similar to the C, = 1 beam charts for 
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LRFD Appendices F1 andG2, the design process is iterative (a trial section is checked 
and, if necessary, revised, checked, and so on until the design requirements are 
satisfied). However, on LRFD pp. 4-183 to 4-185, some tabular information is 
provided as a guide for selecting a trial section whose depth is in the range of 45 to 
92 in. Also, the tables on LRFD pp. 6-155 to 6-158 may be useful in choosing the 
intermediate stiffener spacings such that the design requirement for shear is satisfied. 

9.2.1 Design Strength Definitions 
Thedefinitionsthat follow arenotvalid for a web-tapered girder for which the reader 
should see LRFD Appendix F3 (p. 6-118). 

For a plate girder subjected to bending about the strong axis only, the design 
requirements are 

1. W n r w A x  

2. &Vn 2 v, 
where W, and eVVn are the design bending and shear strengths, Mu, and V, the 
required bending and shear strengths 

For the Conventional Design Method, the design strength definitions are: 

1. Design bending strength &Mn, 

h 640 and -5- 0-5bf 65 When -<- - 
tf FY tw Ef 

for nonhybrid girders, &M, is defined in LRFD F1. (p. 6-52 to 6-56). 

and - 0*5bf 65 When ->- 
tf FY 

@4, is defined in LRFD Appendix F1 (pp. 6-111). 

h 970 When ->- 
tw Ef 

&M, is defined in LRFD Appendix G2 (p. 6-122), which states that the 
governing definition is the smaller value obtained from: 
(a) Tension-flange yield: 

w, =O.9(S, ,Wy,  ) 
(b) Compression-flange buckling: 

4Mnx = 0*9( sxc RF'G R e  Fcr ) 
where 
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IZ+a, ( 3 m - m 3  ) 
12 + Za, 

R ,  = for hybrid girders 

Re = 1 for nonhybrid girders 

a, = ratio of web area to compression flange area 

h, and t, are defined in Figure 9.2(b) 

s, = &/yc and s,, = IJy, 
I, = moment of inertia for strong-axis bending (in.4) 

y, = distance from x-axis to the extreme fiber in tension (in.) 

Fyt = yield stress of tension flange (ksi) 

yc = distance from x-axis to the extreme fiber in compression (in.) 

F,, = critical compression flange stress (ksi) (see definitions in next paragraph) 

m = F,/F,, 

In the following equations and conditional relations, the slenderness param- 
eters A, Ap, A,, and C,, are as defined subsequently for Iateral-torsional buckling (LTB) 
andflange local buckling (FLB). F,, must be computed for LTB and FLB; the smaller F,, 
governs: 

(a) When d 5 A,,, 

(b) When A, < A I A r ,  
Fcr = FyJ 

(c) When d >  A,, 
f- 

L PG F,, = - 
d2 

For LTB, 

L, = laterally unbraced length of the compression flange (in.) 

rT = radius of gyration of a T section comprised of the compression flange and 
one-third of the compression web area 

756 A, =- 

K 
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C, = 286,OOOC, 

C, = a bending parameter defined in LRFD Eq. (Fl-3), p. 6-53 

For FLB: 
0.5 b, A=- 

f f 

65 L p  =- 
.JFyt 

Jm 
230 A, = 

C, = 26,2OOk, 
4 k, =- 

dh/t, 
0.35 I k, 2 0.763 

2. Design shear strength @,V, 
From LRFD F2 (p. 6-56), we find: 

(a) If intermediate stiffeners are not used, t,.e design requirements are 

or $V,, 2 V ,  h h 418 
- - I260  andeither -I- 
f W t w  G 

where @Vn is defined in LRFD F2 (pp. 6-56 and 6-113). 
When 

h 418 -2- 1IFr. 
web shear yielding governs the design shear strength: 

#V,, =0.90(0.6FFA,) 

When 
418 h 523 -<-<- JT tw JFYW 

inelastic web buckling governs the design shear strength: 

I 418 / 
h / t w  

When 
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elastic web buckling governs the design shear Strength: 

(b) If intermediate stiffeners are used, the design requirements are as 
follows. When a/h 5 1.5, 

h 2000 and MaXiIn~m-=- 
5 k, =5+- 

(a /h) ’  t w  JFyr 
When 3.0 2 a/h > 1.5, 

h 14 , 000 and M a ~ i ~ n ~ m - =  5 

(a/h)’ 
k, =5+- 

When a /h  > 3 or a/h > (260/h/fuS2, 

When 

-<187 2 
f W i; 

web shear yielding governs the design shear strength: 

4bv, = 0.90 ( 0.6 Fp A ) 
When 

~ - 

inelastic web buckling governs the design shear strength: 

I 418 / & 
h / t w  

When 

elastic web buckling governs the design shear strength: 
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9.2.2 Intermediate Stiffener Requirements 

Intermediate stiffeners are not required when h / t , I 418 / 
where +vVn is determined from the formulas given in item 2a of Section 9.2.1. 

or when @,Vn 2 V,, 

The design requirement for intermediate stiffeners is 

I,, 2 at: j 
where 

[ j = --2]2 0.5 

u = clear distance between intermediate web stiffeners 

I,, = moment of inertia about an axis in the web center for a pair of stiffeners or 

h and t, are defined in Figure 9.2(b). 

about the face in contact with the web plate for a single stiffener 

See LRFD F2.3 (p. 6-118) for some clearly stated, restrictive conditions for 
intermediate stiffeners and their fasteners. 

9.2.3 Design Examples 
LRFD Example 4-10 (p. 4-168) is an example of the Tension Field Design Method. 
LRFD Example 4-1 1 (p. 4176) is an example of the Conventional Design Method and 
illustrates the following items: 

1. 

2. 

3. 
4. 

Design of a hybrid girder for F A  = 36 ksi and Fvr = 50 ksi 

Determination of the design bending strength for L, = 0 
Design of the intermediate stiffeners 

LRFD Example 4-12 (p. 4-180) is for a nonhybrid member that does not require any 
intermediate stiffeners, and since 

this member is a built-up beam and not a plate girder. 
The general design procedure for the Conventional Design Method when L, = 0 

is illustrated in LRFD Example 2 (p. 4176). Therefore, in the following examples, we 
choose to illustrate some strength calculations for a trial section. 
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The built-up W57 x 18 x 160 section on LRFD p. 4-184 is chosen as a trial section and 
needs to be investigated for the following conditions: 

L, = 20 ft C, = 1.15 Fp = Fvf = 36 ksi 

1. Find @V,, when intermediate web stiffeners are not used. 
2. Find QV,, in a panel for which u/h = 60/56 = 1.07 when intermediate web 

3. Find QMflX. 
stiffeners are used. 

Solution 1 

A, =(56)(7/16) =24.5 i11 .~  

For an wtiffened web in a plate girder, from LRFD F2.2 (p. 6-113) we find that 

- = - = 128 5 260 as required [ 1: (7/16) 56 1 
k, = 5  

26400 ( 24'5 )( = 178 kips 
26,400 A k, ]=0.9[ 

(128) ] 
These computations illustrate how a QV, value listed in the table on LRFD p. 4-184 
was computed. 

If intermediate web stiffeners are not used, from LRFD F2.3 (p. 6-113) we find 
for our example that 

h 418 418 
( t , = 1 2 8 )  > [ JFYW = = 69.7 

($V, = 178 kips) 2 V ,  is required. 

Solution 2 

From LRFD F2.2 (p. 6-113), we find that 

(- a = - 60 = 1.07) I 3.0 S [  (El* = (g)' = 4.131 
h 56 
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= 9.356 
5 5 

( a / h ) 2  (60/56)* 
k, =5+-----=5+ 

26,40OA, k, 26400( 24.5)(9.356) 
$V, = 0.9[ ~ ] =  0.9[ (128)’ 

hit,,) 

Solution 3 

LRFD Appendix F (p. 6-111) is applicable. The three limit states that may need to be 
investigated to determine the governing $Mn, are: 

a. Flange local buckling (FLB) 
b. Web local buckling (WLB) 
c. Lateral-torsional buckling (LTB) 

$Mnx must be computed for each applicable limit state, and the least of these 
computed values is the governing value of $Mn,. 

From LRFD p. 4-184, 

br = 18 in. 5 = 5/8 in. h,, = 56 in. 

t, = 7/16 in. Z, = 980 i n 3  S, = 854 in.3 

For a nonhybrid member, since (Z,/S,  =980/854 = 1.15) < 1.5, 

$Mpx = O.9Fy Z,= 0.9 (36)(980) = 31,752 in.-kips = 2646 ft-kips 

which is applicable for all three limit states. 
a. For FLB (see LRFD pp. 6-111 and 6-114): 

( Fyr - F, ) = (36 - 16.5) = 19.5 ksi 
F, = 36 ksi FL = smaller of 

- 0.3536 5 0.763 1 4 
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162 - 162 a, = JF,/k, - j m  =21*8 

(a, = 10.8) < ( A = 14.4) I (a, = 21.8) 

4MrX = 0.9 F t  S,= 0.9 (19.5)(854) = 14,988 in.-kip~ = 1249 ft-kips 

b. For WLB (See LRFD pp. 6-111 and 6-114): 

Re = 1.0 (nonhybrid member) 

4M, = 0.9RFgI= 0.9(1.0)(36)(854) = 27,670 in.-kips = 2306 ft-kips 

c. For Lm (See LRFD pp. 6-111 and 6-114): cb = 1.15 and Lb = 20 ft, 
Also, we will need the following section properties: 

( 5 / 8) ( 18) 56 (7 / 16) 
=2[ 12 ]+ 12 =607.9 in.4 

fib; ( h  + tf )‘ (5/8)( 1 q 3  [ 56 +( 7 /16)]’ 
= 486,971 in.6 - c, = - 

24 24 
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300 300 50.0 
AP =-=-= J F y t J 3 6  

= 0.924 

a, =- '1 JW = "4- 19.5 = 155 
FL 

(ap = 50.0) c (a = 66.7) 5; (a, = 155) 

QIMm = 0.9 F, S,= 0.9 (19.5)(854) = 14,988 in.-kip~ = 1249 ft-kips 

0.1 < (I, /I, = 0.5) < 0.9 

C, = 1.15 is applicable 

66*7 - 50'0 = 2787 ft - kips ( 155- 50.0 )] 2646 - (2646 - 1249) 

Summary for the determination of qMW: 
a. For FLB: 

b. For WLB: 

c. ForLTB: 

QIMW = 2189 ft-kips 

wW = 2516 ft-kips 

w, = 2787 ft-kips 

The governing value is $MW = 2189 ft-kips. 

The built-up W57 x 18 x 160 section on LRFD p. 4184 is chosen as a trial section and 
needs to be investigated for the following conditions: 

L, = 20 ft C, = 1.15 Fp -36 ksi Fs6= 50 ksi 

1. Find QIV" when intermediate web stiffeners are not used. 
2. Find qV,, in a panel for which u/h = 60/56 = 1.07 when intermediate web 

3. Find QIMm. 
stiffeners are used. 
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Solution 2 and 2 

These solutions for CpV, are the same as in Example 9 .l. 

Solution 3 

LRFD Appendix F (p. 6-111) is applicable. The three limit states that may need to be 
investigated to determine the governing CpM,, are: 

a. FLB 
b. WLB 
c. LTB 

CpM,, must be computed for each applicable limit state, and the least of these 
computed values is the governing value of CpMnx. 
From LRFD p. 4-184: 

bf = 18 in. 

t, = 7/16 in. 

t/ = 5/8 in. 

Z, = 980 in.3 

From LRFD pp. 6-111 and 6-114, we find that for a hybrid member, M,, is to be 
computed from the fully plastic stress distribution and is applicable for all three limit 
states. For a doubly symmetric hybrid section, 

h, = 56 in. 

S, = 854 in.3 

Z,F, +ZmF, 
1.5SXF,,, 

M ,  = smaller of 

where 

Z,, = ZA, [ 9) = 2(18)(0.625) ( 57.25 2 0’625 ) = 637 in. 3 

(637)(50) + (343)(36) = 44,198 in. - kips 
1.5(854)(50) = 64,050 in. -kips 

M,, = smaller of 

@Mpx = 0.9 (44,198) = 39,778 in.-kips = 3315 ft-kips 

a. ForFLB: 

( Fyr - F, ) = (50-16.5) = 33.5 ksi 
FV = 36 ksi 

F, = smaller of 



9.2 Conventional Design Method 381 

4 4 

= 16.6 162 
JF,Ik,=1/33.5/0.3536 a, = 

( ap = 9.19) < ( a  = 14.4) I (a, = 16.6) 

@M,, = 0.9 F ,  S,= 0.9 (33.5)(854) = 25,748 in.-kips = 2146 ft-kips 

b. For WLB, 

From Appendix G2 (p. 6-123) we find for a hybrid member that 

= 2.18 A 56(7/16) 
A ,  M(0.625) 

Fp 36 

a =A= 

m = - = - = 0.72 
FYf 50 

12+a, (3m-m3 ) - 12+2.18[3(0.72)-(0.72)3 ] - 
12+2a, 12 + 2( 2.18) 

$M,, = 0.!3RJyF, = 0.9 (0.9716)(50)(854) = 37,339 in.-kips = 3112 ft-kips 

c. For LTB,, C, = 1.15 and L, = 20 ft. 

From Example 9.1: 

I,, = 607.9 in.4 yV = 3.60 in. J = 4.49 in.4 C, = 486,971 in.6 
X, = 681 X, = 0.924 A, = 155 
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IC -- -- 
854 1 = 681 29,000(47.0)(11,200)(4.49) 

2 

A, = "../- = =,/- 33.5 = 117 
F L  

( ap = 42.4) < (a = 66.7) I (A, = 117) 

$Ma = 0.9 F L  S,= 0.9 (33.5)(854) = 25,748 in.-kips = 2146 ft-kips 

0.1 c (I, /Z,, = 0.5) < 0.9 

C, = 1.15 is applicable 

66.7 - = 3374 ft - kips ( 117-42.4 )] 3315 - (3315 - 2146) 

Summary for the determination of $Mnx: 
a. For FLB: 

qM,, = 2493 ft-kips 

b. For WLB: 
qM, = 3151 ft-kips 

c. ForLTB: 
@M, = 3374 ft-kips 

The governing value is @M, = 2493 ft-kips 

The built-up W57 x 18 x 160 section on LRFD p. 4-184 is chosen as a trial section and 
needs to be investigated for the following conditions: L b  = 20 ft, C, = 1.15, Fp = Fyr = 
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36 h i ,  and #Vn 2 (V, = 360 kips) in the end panel. Note that except for the @Vn 2 (V, 
= 360 kips) requirement in the end panel, the other conditions are identical to those 
in Example 9.1. Find the intermediate web stiffener spacing required to satisfy @Vn 
2 (V, = 360 kips). 

Solution 

From Example 9.1 or from LRFD page 4-184, $Vn = 178 kips when intermediate web 
stiffeners are not provided. Since 4Vn 2 (V, = 360 kips) is required, we must provide 
intermediate web stiffeners. 

Enter LRFD Table 9-36 (p. 6-155) with 

56 -128 - h 
t ,  (7/16) 
__-- 

360 =14.7ksi w n  vu -=-= 
A ,  A ,  56(7/16) 

and find a trial value of a/h = 0.98 for which a = 0.98(56) = 54.9. Try a = 55 in. and 
a h  = 55/56 = 0.982 in LRFD F2.2 (p. 6-113): 

= 10.18 5 k, =5+-=5+ 
( a l h ) ’  (0,982)’ 

(: = 128) > [ mE = 2 3 4 , / F  = 124.51 

A ,  =(56)(7/16) = 24.5 in.’ 

26,400( 24.5)( 10.18) = 362kips I @vn =0.9[ 26,400A ~ k, ]=o.9[ 
h l t w  ) (128) ‘ 

($Vn = 362 kips) 2 (V, = 360 kips) as required for a/h = 0.982 and a = 55 in. 

Use a = 55 in. 

The built-up W57 x 18 x 206 section on LRFD page 4-184 is chosen as a trial section 
and needs to be investigated for the following conditions: 

L b  = 20 ft Cb= 1.15 Fyw = Fyr’ 36 ksi 

1. Find @Vn when intermediate web stiffeners are not used. 
2. Find@M,. 
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Solution 1 

For an unstiffened web in a plate girder, from LRFD F2.2 (p. 6-113) we find that 

- - ~ = 128 5 260 as required 
t ,  (7/16) 56 1 

FromLRFDp.4-184andfootnoteconpage4-185, @V,, = 177.6kipswhenintermediate 
web stiffeners are not used. 

Solution 2 

From LRFD p. 4-184, for a W57 x 18 x 206: 

bf= 18 in. tf= 1 in. h, = 56 in. 

t, = 7/16 in. Z, = 1370 in? S, = 1230 in.3 

For a nonhybrid member, since (Z ,  / S, =1370/1230 = 1.11) < 1.5, 

@Mpx = 0.9F,,ZX= 0.9 (36)(1370) = 44,388 in.-kips = 3699 ft-kips 

which is applicable for all three limit states. 
a. For FLB, 

1 

$Ma, = (@Mp, = 3699 ft-kips) 

b. For WLB: 

From LRFD p. 6-123, for a nonhybrid member we find that R, = 1.0: 

@Mr, = 0.9RJy,S, = 0.9 (1.0)(36)(1230) = 39,852 in.-kips = 3321 ft-kips 

128 -Io7 = 3555 ft - kips 
(162-107) 

@M nx = 3699 - ( 3699 - 3321 ) 

c. For LTB, C, = 1.15 and L, = 20 ft. Also, we will need the following section 
properties: 

1 , = 2  [l(:i)' ___ ]+ 56(7/16)3 = 972.4 in.4 
12 

L J 
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t,b; ( h + t ,  1’ 1 ( ~ ) ~  (56+1)* 
24 24 

c,  = - - = 789,507in.‘ 

4 c w  4(789,507)( 972.4 11,200(13.56) 1230 1’ = 0.213 

( F ,  - F ,  ) = (36-16.5) = 19.5 ksi 

Fp =36ksi I 1 2  = smaller of 

A, = s J m  = = 151.6 
FL 

(a, = 50.0) < ( A  = 59.85) I ( ar = 151.6) 

(PM,, =: 0.9 F ,  S, = 0.9 (19.5)(1230) = 21,587 in-kips = 1799 ft-kips 

= 4042 ft - kips > (PMpx 59.85 - 50.0 
151.6 - 50.0 

(PMm =((PMpx =3699 ft-kips) 

Summary for the determination of (PM,,: 

a. ForFLB: 
(PM, = 3699 ft-kips 

b. For WLB: 
(PMm = 3555 ft-kips 
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c. ForLTB: 
@Mm = 3699 ft-kips 

The governing value is @Mu = 3555 ft-kips. 

The built-up section used in Example 9.4 is chosen as a trial section and is investi- 
gated for the following conditions: 

L b = 6 0 f t  C b = l  F,=Fd=36ksi 

Find @Mm. 

Solution 

See Example 9.4 for the FLB and WLB solutions. 
From Example 9.4, 

ry = 4.01 in., ilp = 50.0, X, = 932.3, X, = 0.213, 

a, = 151.6, s, = 1230 in.3 4~~ = 1799 fi-kips @M~, = 3699 ft-kips 

c. ForLTB, 

From LRFD pp. 6-111 and 6-114, we find that 

@MnX = (0.9M, = 0.9S,F, ) 

C , X ,  f i  l+- = LO(932.3)fi 1- = 14.4 ksi F, = a 179.6 2( 179.6) 

4Mm = [ @M, = 0.9( 1230)( 14.4) = 15,941 in. -kips = 1328 ft - kips] 

Summary for the determination of @Mm: 

a. For FLB 
@M, = 3699 ft-kips 

b. For WLB: 
@M,, = 3555 ft-kips 

c. ForLTI3: 
@M, = 1328 ft-kips 

The goveming value is @M, = 1328 ft-kips 
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9.3 TENSION FIELD DESIGN METHOD 
LRFD Appendix G (p. 6-122) must be used for shear and the intermediate stiffeners. 
None of the design strength definitions in LRFD Appendix G have been previously 
discussed in this text, and they are more complex than those in LRFD Appendix F1. 
The design procedure for this method is also iterative as described in Section 9.2 for 
the Conventional Design Method. 

For the Tension Field Method, a structurally efficient web chosen to barely satisfy 
the design requirement for shear is so slender that web buckling occurs in each panel 
between the intermediate web stiffeners. However, the post buckling strength of the 
web can be utilized if the intermediate web stiffeners are properly designed to keep the 
flanges in their origrnal location as described in the next paragraph. 

Consider Figure 9.4, which shows a simply supported plate girder subjected to 
a factored loading that is symmetric with respect to midspan. The maximum shear 
occurs at the supports and the maximum moment occurs at midspan. In the vicinity 
of the maximum shear, shear web buckling occurs in the diagonal compression 
direction in each panel between the intermediate web stiffeners. The length direction 
of the ripples due to shear web buckling is parallel to the long direction of the shaded 
areas in Figure 9.4. After shear web buckling occurs, the following analogy is valid 
when the intermediate web stiffeners are properly designed. The intermediate web 
stiffeners are analogous to the vertical compression members in a truss. The diagonal 
tension region (shaded in Figure 9.4) of each panel between the intermediate web 
stiffeners is analogous to a diagonal tension member in a truss. In the vicinity of 
maximum moment,flexurul web buckling occurs in the top region of each panel 
between the intermediate web stiffeners. The design bending strength of the plate 
girder cross section is affected by flexural web buckling. As shown in Figure 9.4, the 
compression flange line is curved due to the factored loading. Curvature of the 
compression flange causes compression in the web, and the compression is perpen- 
dicular to the flange. Therefore, in the region of maximum moment, the post 
buckling strength of the web must be sufficient when assisted by the intermediate 
web stiffeners to prevent local buckling of the compression flange in the plane of the 
web direction. In the region of maximum moment, the intermediate web stiffeners 
are analogous to the vertical compression members in a truss. 

Notes: 
Bearing stiffeners are shown at the reactions and the concentrated loads. 
Intexmediate stiffeners are shown between the bearing stiffeners. 
The shaded areas of the web are "diagonal tension members." 

FIGURE 9.4 Tension-field action in a plate girder. 
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9.3.1 Design Strength Definitions 

According to LRFD Appendix G3 (p. 6-103), tension field action is not permitted for: 

1. Hybrid and web-tapered girders. 
2. The end panels in a nonhybrid girder. 
3. The panels of a non-hybrid girder for which a/h > 3 or a h  > (260 / h / t w ) 2 .  This 

restriction is to prevent a girder from being too flexible perpendicular to the 
web for handling purposes during fabrication, shipping, and field erection. 

For these cases, the Conventional Design Method must be used. 

requirements are: 
For a plate girder subjected to bending about the strong axis only, the design 

1. 4 @ n x  2 Mux 
2. qvvn 2 vu 
3. When intermediate stiffeners are required and when 

0.9 V,, 0.9 M,,, 
0.60 I - 5 1.00 and 0.75 I ___ I 1.00 

VU MU 

the following flexure-shear interaction equation must be satisfied at each 
stiffener location: 

where &Mnx and 
strengths, and 

VU M UX 

w n x  w n  +0.625- 51.375 

&Vn, respectively, are the design bending and shear 

I$ = 0.9 

Mu, = required bending strength 

Vu = required shear strength 

For the Tension Field Design Method, the design strength definitions are: 
1. Design bending strength &Mnx The design bending strength definitions are 

the same as those given for the Conventional Design Method in Section 9.2.1, 
and they are not repeated here. 

(a) When 
2. Design shear strength $vV,, From LRFD G3 (p. 6-103), we find that: 

web shear yielding governs the design shear strength: 

@V,, = 0.90( 0.6FpA, ) 
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(b) When 

we have 

5 

( a l h ) ’  
k ,  =5+- 

Cu = ratio of ”critical” web stress, according to linear buckling theory, to 
the shear yield stress of the web. C, is determined as follows. When 

inelastic web buckling governs the design shear strength for which: 

When 

elastic web buckling governs the design shear strength for which: 
44,000 k” c,  = 

( h / t w  I*  F ,  
Note: In the member-end panels, the Conventional Design Method must be used to 
determine @Vn. 

9.3.2 Intermediate Stiffener Requirements 

Intermediate stiffeners are not required when 

where 

187 J5/Fy,l 
h / t w  

c ,  = 

or 
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In order to satisfy LRFD G1 (p. 6-122), stiffeners may be required regardless of 
any other LRFD Specification. For such cases, Appendix F2.3 is applicable for the 
design of the stiffeners. 

When tension field action is utilized, the design requirements for intermediate 
stiffeners are 

I,, 2 at : j  

0.15Dhtw(1-C,)--18t~ v u  

+Vn 

j = 0.5 when u/h 2 7 

2.5 otherwise j = -- 
( 

where 

a = clear distance between intermediate web stiffeners (in.) 

h and t, are defined in Figure 9.2(b) 

Ist = moment of inertia about an axis in the web center for a pair of stiffeners or 
about the face in contact with the web plate for a single stiffener (in.4) 

A,, = stiffener area (in.*) 

FFt = yield stress of the stiffeners (hi) 

D = 1 when a pair of stiffeners is used 

D = 1.8 when a single angle stiffener is used 

D = 2.4 when a single plate stiffener is used 

C, and +Vn are as defined in item 2b of Section 9.3.1 

V ,  = required shear at the stiffener location 

The intermediate stiffeners are load-bearing and in compression when tension 
field action is utilized. These stiffeners must be designed such that the following 
requirements from LRFD Table B5.1 (p. 6-38) are satisfied: 

[ &] for plate web stiffeners b 
t 
- <  & = -  

[ &] for angle web stiffeners b 
t 
- -< A,=-- 
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Note: When the Conventional Design Method must be used to determinefVfl, LRFD 
F2.3 (p. 6-113) is applicable for the design of the intermediate stiffeners. 

9.3.3 Design Examples 

LRFD Example 4-10 (p. 4-168) is an example of the Tension Field Design Method and 
illustrates: 

1. 

2. 

3. 

4. 
5. 

Design of a nonhybrid girder: Fu = 50 ksi. 

Determination of the design bending strength when lateral braces for the 
compression flange are provided only at the supports and at the two 
concentrated load points: 

(a) For the two end regions: L, = 17 ft and C, = 1.67. 
(b) For the center region: Lb = 14 ft and C, = 1. 

Design of the intermediate stiffeners. 
In the end panels, the Conventional Design Method is required and is used, 
but for the other panels the Tension Field Design Method is applicable and 
is used. 

The general design procedure for the Tension Field Method when Lb I Lp is 
illustrated in LRFD Example 4-10 (p. 4-168). Therefore, in the following examples we 
choose to illustrate some strength calculations for a trial section. 

Change thewebof thesectioninvestigatedinExample9.4 toa56x 1/4plate. Thenew 
section properties are: A, = 56(1/4) = 14.0 S, = 1135 in.3, and Z ,  = 1222 in? Using 
the Tension Field Design Method wherever applicable, perform the following 
design tasks: 

1. In the end panels (at the supports of a simply supported plate girder), the 
Tension Field Design Method is not permitted. Using the Conventional 
Design Method, find the required a h  such that +Vfl = 177.6 kips, which is the 
same design shear strength in Example 9.4 when intermediate web stiffeners 
were not used. 

2. In all other panels the Tension Field Design Method is permitted since 
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Find the required a/h for an interior panel such that @V,, 2 (V, = 160 kips) and 
design a single-plate intermediate stiffener. 

3. Find @Mflx. 

Solution 2 

To find a h  of the end panels, enter LRFD page 6-155 with: 

- 224 h 
t W 

_ -  

which indicates that we should try a/h = 0.48; a = 0.48(56) = 26.88 in. Try a = 27 in. and 
a/h = 27/56 = 0.482 in. for the determination of @V,, in LRFD F2.3 (p. 6-113). 

C 4 J J k, =5+-=5+ = 26.52 
( a l h ) ’  (0.482) ’ 

(t = ,241, [ 2 3 4 E  = 234/% = 201) 

= 175.8 kips I 9vn =0.9[ 26400 ~ A k ]=w[ 26,400( 14.0)( 26.52) 
hltw ) (224)’ 

V ,  = 177.6 kips exceeds @V,, = 175.8 kips by 1% for a = 27 in. and a/h = 27/56 = 0.482 
in. Use a = 26 in. and a/h = 26/56 = 0.464 in. for which (@Vn = 187 kips) 2 (V, = 177.6 
kips) as required. 

Solution 2 
To find a/h for an interior panel in which @Vfl 2 (V, = 160 kips) is required for tension 
field action, enter LRFD p. 6-157 with 

= 224 
h 

t w 

- 

= 11.4 ksi 
A w  14.0 

which indicates that we should try a/h = 1.3; a = 1.3(56) = 72.8 in. Try a = 73 in. for the 
determination of @Vfl in LRFD Appendix G3 (p. 6-124), which is applicable since 

= - = 1.3036) I [ (3)’ h / t ,  = (z)’ = 1.3471 23.0 

= 7.94 5 k, =5+-=5+ 
( n / h ) ’  (1.3036)2 
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44,00Ok, - 44,000(7.94) = o.1934 c, = - 

F, ( h /  t ,  ) 2  36( 224)2 

I 1.154- J q5Vn =0.9(0.6AwF,) C, + 

= 170 kips 1 - 0.1934 
@Vn = 0.9( 0.6)( 14.0)( 36) 0.1934 + [ 1.154- 

Usea = 73 in. and a/h = 73/56 = 1.3036 in. for which (q5Vn = 170 kips) 2 (V, = 160 kips) 
as required. 

Design a single-plate intermediate stiffener. When tension field action is uti- 
lized, the design requirements for intermediate stiffeners are 

160 
170 

0.15(2.4)(56)(0.25)(1-0.1934)--18(0.25)2 

Try 6 x 1/2 plate. (As, = 3.00) 2 2.70 in.2 and (b/t = 12.0) 5 15.8 as required. 
Check required I,,. Since ( a h  = 1.3036) 2 1,j = 0.5. 

I , ,  2 [ a t  5 j  = 73( 0.25)3 (0.5) = 0.570in. 1 is required 

! 0.5 (6)  
= 36.0 2 0.570 in.4 as required 

Use a single 6 x 1 / 2  plate as the intermediate web stiffener. 

Solution 3 
a. For tension flange yield, 

q5M "* = 0.9 ( S,, R, Fyt ) = 0.9 ( 1135)( 1.0 )( 36) = 36,774 in - kips = 3064 ft - kips 
b. F,, for FLB, 
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c. F,forLTB, 

Also, we will nee 

C, = 1.15 

F, =Fyr 

and Lb=20ft 

the follow -Ig section properties a, .I T section composed of 
the compression flange andAJ3, where A,= tw(h,/2) = 0.25(56/2) = 7.00 in?: 

A ,  7.00 
3 3 

A, = A ,  +-=18.0+-=20.3 

= 486 in. 
1( 1Q3 

12 
(56.0 / 6)( 0.2$ 

12 
+ I, =Iy =- 

F, =Fsd 
d. For compression flange buckling, 

A ,  14.0 a ,  =-- - - = 0.778 
A, 18.0 

0.778 
1200 + 300 (0.77'8) 

[ 224-- E) ~0 .966  ] 21.0 R,, =1- 

@Mnz = 0.9 ( S, R ,, R e  F ,  ) = 0.9 ( 1135)( 0.966)( 1.0 )( 36) = 35,518 in - kips = 2960 ft - kips 

Summary for the determination of @Mw by the Tension Field Design Method: 
a. For tension-flange yield: 

d. For compression-flange buckling: 

@M,, = 3064 ft-kips 

$Mu = 2960 ft-kips 

The governing value is @Mm = 2960 ft-kips. 
Since Mu was not given in the problem statement, we are unable to perform the 
jlexure-shear interaction check required by UZED G5 (p. 6-125). 

The solution for this example was obtained for the purpose of comparison to the 
solution in Example 9.4 by the Conventional Design Method for the built-up W57 X 
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18 x 206 section on LRFD p. 4-184 chosen as a trial section and investigated for the 
following conditions: L b  = 20 ft, cb = 1.15, and Fvw = Fd = 36 ksi. 

The solutions obtained in Example 9.4 were: 

1. $Vn = 177.6 kips when intermediate web stiffeners were not used. 
2. Summary for the determination of +Mu: 

a. For FLB: $M, = 3699 ft-kips 
b. For WLB 
c. For LTB: $M, = 3699 ft-kips 

The governing value is #Mnx = 3555 ft-kips. 

$Mnx = 3555 ft-kips 

A comparison of the results for Examples 9.4 and 9.6 is as follows: 

1. In Example 9.4, t ,  = 7/16 in. and the Conventional Design Method was 
applicable. In Example 9.6, t, = 1 /4 in. and the Tension Field Design Method 
was applicable except for the web in the end panels. 

2. In Example 9.4, the web plate weight = (7/16)(56)(490/144) = 83.4 lb/ft. 
The bearing stiffeners are assumed to be identical in both examples. In 
Example 9.6, the web plate weight = (1/4)(56)(490/144) = 47.6 lb/ft. The 
weight of one intermediate stiffener (56 x 6 x 0.5 plate) is 48 lb. For a girder 
span of 80 ft, 12 intermediate stiffeners are required, which is 12(48/80) = 
7.2 lb/ft due to these stiffeners in Example 9.6. According to a queried 
fabricator, due to fabrication labor this 7.2 lb/ft costs about 4.8 times as 
much as an equivalent weight in the thicker web of the member in 
Example 9.4. Thus, for the member in Example 9.6, the total effective web 
weight accounting for the difference in fabrication costs is about 47.6 + 
4.8(7.2) = 82.2 lb/ft, which is 1.2 lb/ft lighter (1.4% lighter) than the web 
in Example 9.4. 

3. The design bending strength for the member in Example 9.6 divided by the 
design bending strength for the member in Example 9.4 is (2960 ft-kips)/ 
(3555 ft-kips) = 0.833. Therefore, the member in Example 9.6 is 17.7% weaker 
in bending than the member in Example 9.4. The member designed by the 
Tension Field Method is not the preferred choice for the comparison design 
examples. 

The built-up section used in Example 9.6 is chosen as a trial section and is investi- 
gated for the following conditions: L, = 60 ft, Cb = 1, and Fp = Fyr= 36 h i .  Find #JM, 
for compression flange buckling due to LTB. 
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Solution 

300 300 A, =- JFyt = -j=g = 50.0 

{ Fcr =1.0(36)[1-2( 147*2-50*0 126-50.0 )] = 13.0 ksi } I ( F ,  = 36 ksi) 

ar R,, =1- I 1200 + 300 a,  
L 

X,, = smaller of 
0.778 970 

1- 1200 + 300( 0.778) (,,,-m 
1 .o 

= 1.024 

@Mnx = 0.9( S,R,,R,Fc, ) = 0.9(1135)(1.0)(1.0)(13.0) = 13,280 in.- kips = 1107 ft -hps 

Summary for the determination of @Mnx by the Tension Field Design Method 
a. For tension flange yield: 

@Mnx = 3064 ft-kips 

d. For compression-flange buckling: 
@Mnx = 1107 ft-kips 

The governing value is 4Mnx = 1107 ft-kips. 

For comparison purposes, the summary from the solution in Example 9.5 for the 
determination of @Mnx by the Conventional Design Method is given here: 

a. For FLB: 
b. For WLB: 
c. For LTB: 

@Mnx = 3699 ft-kips 

QM,, = 1328 ft-kips 
@Mnx = 3555 ft-kips 

The governing value is @Mnx = 1328 ft-kips. The member designed by the Tension 
Field Method is 16.6% weaker, more expensive to fabricate, and is not the preferred 
choice for the comparison design examples. 
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PROBLEMS 
9.1 Is the section investigated in Example 9.1 satisfactory to use for the factored 

loading shown in Figure W.1? If the section is satisfactory for shear and moment, 
design full-depth web stiffeners at the unframed member ends and at the concen- 
trated load points. See Section 5.10 and Example 5.8 for the design of these stiffeners. 

5 1.2 kips 5 1.2 kips 5 I .2 kips 

0.192 Wft + 
Lb= 20 ft L b =20ft L b = 2 0 f t  Lb= 20 ft 

FIGURE P9.1 

9.2 Is the section investigated in Example 9.2 satisfactory to use for the factored 
loading shown in Figure P9.2? If the section is satisfactory for shear and moment, 
design full-depth web stiffeners at the unframed member ends and at the concen- 
trated load points. See Section 5.10 and Example 5.8 for the design of these stiffeners. 

5 1.2 kips 5 1.2 kips 5 1.2 kips 

0.675 Wft 

A A  
Lb=20ft Lb = 20 ft Lb= 20 ft  Lb= 20 ft 

FIGURE P9.2 

9.3 The section investigated in Example 9.4 is to be used for the factored loading 
shown in Figure P9.3. Find the maximum permissible value of the uniformly 
distributed load 4,. 

19.1 kips 41 .O kips 19.1 kips 

I-* Lb=20ft 4- Lb= 20 ft Lb= 20 ft  Lb= 20 ft 

FIGURE P9.3 

9.4 For LRFD Example 4-10 (p. 4-168), find the minimum web thickness that can 
be used in the Conventional Design Method without any intermediate web stiffen- 
ers. Make a comparison of these two solutions as we did at the end of Example 9.6 
(see items 2 and 3). 
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9.5 For LRFD Example 4 1 3  (p. 4180), try a girder section with 1.25 x 18 flange 
plates and a 0.25 x 50 web plate. Use the Tension Field Design Method wherever 
applicable. Design the intermediate stiffeners. Make a comparison of these two 
solutions as we did at the end of Example 9.6 (see items 2 and 3). 

9.6 A plate girder that spans 60 ftbetween two columns in a multistory building 
is to be designed. This girder is one of a series over an assembly room where the 
columns were deleted within the assembly room. The overall girder depth cannot 
exceed 73.5 in. Service loads on the girder are as follows: live = 0.84 kips/ft; dead = 
2.35 kips/ft (includes an estimate for the girder weight). Concentrated loads (from 
the columns above the girder) at 20 f t  from each end of the girder are as follows: live 
= 110 kips; dead = 31 kips. Use the Conventional Design Method without any 
intermediate web stiffeners and F = 36 ksi for all steel. Assume that the governing 
LRFD loading combination is 1.d + 1.6L. 

9.7 Solve Problem 9.6 using Fy = 50ksi for the flanges and Fy = 36 ksi for the web. 

9.8 Solve LRFD Example 4-12 (p. 4176) by the Tension Field Design Method 
using Fp = F,,= 50 ksi and a web thickness of 7/16 in. Try a 28 x 2.5 in. flange plate. 
Try a = (30 in., 5 @ 42 in., 2 @ 120 in.). Design the intermediate web stiffeners using 
a single plate for each stiffener. Make a comparison of these two solutions as we did 
at the end of Example 9.6 (see items 2 and 3). 

9.9 Solve Problem 9.6 by the Tension Field Design Method using a web plate 
thickness of 1 /4 in. 

9.10 Solve Problem 9.7 by the Tension Field Design Method using a web plate 
thickness of 1 /4 in. 
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1 0  

10.1 INTRODUCTION 
In this chapter, a composite member is defined as consisting of a rolled or a built-up 
structural steel shape that is either filled with concrete, encased by reinforced 
concrete, or structurally connected to a reinforced concrete slab (see Figures 10.1 to 
10.3). Composite members are constructed such that the structural steel shape and 
the concrete act together to resist axial compression and/or bending. 

Most likely the reader has seen a highway bridge of composite steel-concrete 
construction at the various stages of construction. The girders are structural steel 
members with shear studs (steel connectors) welded to the top flange of each girder 
at discrete intervals along the length direction of the bridge, as shown in Figures 
10.2(a) and 10.3. A shear stud is shaped like a bolt with a cylindrical head, but the 
shear stud does not have threads. After the steel pdershavebeenereded, a concrete 
slab is poured on the top surface of the girders [see Figure 10.2(a)] or on a cold-formed 
steel deck supported by the girders (see Figure 10.3), and the concrete encases the 
shear studs. When the concrete has cured, the steel girders and the concrete slab are 

(a) Concrete filled 
I 1 

FIGURE 10.1 Composite column sections. 

399 
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1 Reinforcing steel 
Reinforced concrete slab I L  Shear stud 

(a) Steel beam interactive with and supprting a concrete slab 

(b) Concrete-encased steel beam 

FIGURE 10.2 Composite beam sections. 

interconnected at discrete intervals by the shear studs. At the interconnected points, 
the concrete slab is prevented from slipping relative to the top surface of the steel 
girders. The steel connectors are subjected to shear at the concretesteel construction 
interface, which explains why the steel connectors are called shear studs. Loads that 
occur on the bridge surface after the concrete slab has cured are resisted by flexural 
action of the composite steel-concrete construction. 

There are more LRFD specifications for composite flexural members than 
composite compression members. Consequently, we chose the following discussion 
sequence: composite columns, composite beams, and composite beam columns. 

10.2 COMPOSITE COLUMNS 
As shown in Figure 10.1, composite columns consist of rolled or built-up steel shapes 
that are either filled with concrete or encased by reinforced concrete. 

An axial compression load is applied at the top end of the column by whatever the 
column was designed to support. The bottom end of the column sits on a surface 
capable of providing the bearing forces from the steel and concrete in the composite 
column. Since the bottom end of the column is supported, the steel and concrete 
composing a composite column act together to resist the axial compressive load. Note 
that in most cases there is not any need for steel connectors in a composite column in 
order for the steel and concrete to act together in resisting an axial compressive load. 
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Cold-formed steel deck 

(a) Ribs parallel to beam 

L Rib of cold-formed steel deck 

@) Ribs perpendicular to beam 1 
(c) Section 1-1 

FIGURE 10.3 Cold-formed steel deck and composite beam sections 

A steel pipe or tube filled with concrete is the most efficient type of composite 
column. The perimeter steel provides stiffness and confinement of the concrete core, 
which resists compression and prevents local inward buckling of the steel encase- 
ment. The triaxally confined concrete core in some cases is capable of resisting a 
compressive strength in excess offc’ which is the 28-day compressive strength of a 
concrete cylinder. This type of composite column has the toughness and ductility 
needed for earthquake-resistant structures. 

When a structural steel shape is encased by concrete [see Figure lO.l(b)], a 
longitudinal steel reinforcing bar is located in each corner of the encasing concrete. 
Lateral ties are wrapped around the longitudinal bars at sufficiently close intervals 
along the member length. These U-shaped ties stabilize the longitudinal bars during 
construction and prevent outward local buckling of the longitudinal bars when an 
axial compression load is applied after the concrete has cured. Prior to failure of the 
composite column, the reinforced concrete encasing the steel shape prevents local 
buckling of the compression elements in the steel shape. The minimum acceptable 
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amount of longitudinal and transverse reinforcement in the concrete encasement is 
approximately the same as the minimum amount specified for a tied reinforced 
concrete column. The behavior of this type of composite column is similar to the 
behavior of a tied reinforced conrete column. At a uniform compressive strain of 
0.002, the encasing concrete starts to become unsound, and spalling is likely to occur. 
A section analysis for an eccentrically loaded composite column may be performed 
with the assumption that strains vary linearly across the section with a maximum 
acceptable compressive strain of 0.003 in the concrete. 

Perhaps the most popular application of concrete-encased steel shapes is the 
perimeter columns in tube-type high-rise buildings. In high-rise construction, the 
steel shape is placed many stories prior to the placement of the encasing concrete. 
Therefore, the steel shape alone resists the axial compressive load until the encasing 
concrete has been placed and has cured sufficiently to resist some of the load. 
Temporary lateral bracing of the steel shapes may be required during construction 
until the encasing concrete has cured sufficiently [ 0.75ffaccording to LRFD Com- 
mentary I1 (p. 6-203)]. Concrete subjected to compression creeps (the shortening 
deformation continues to increase with respect to time without any increase in the 
compressive stress), but steel does not creep. When composite columns are used, a 
carefully controlled construction process must be maintained to ensure that the 
floors remain level (within the allowable tolerance limits). This is particularly true 
when some of the columns within a story are not composite columns since the rate 
of shortening is different for composite and noncomposite columns. 

Chapter 10 in the Guide to Stability Design Criteriafor Metal Structures [25] 
provides the reader with a discussion on the behavior of composite columns, 
laboratory test results, and analytical studies. 

10.2.1 Limitations 

LRFD I2 (p. 6-61) gives the following restrictions on composite columns: 
1. A, 2 0.04Ag is required, where A, is the cross-sectional area of structural steel 

and Ag is the gross cross-sectional area. Otherwise, the member is to be 
designed as a reinforced concrete column in accordance with ACI 318-92R [lo]. 

2. Concrete encasing a steel core must be reinforced with longitudinal bars and 
lateral ties. Spacing of the lateral ties must not exceed two-thirds of the least 
dimension of the composite cross section. A minimum clear cover of 1.5 in. 
outside all reinforcement is required for fire and corrosion protection. The 
minimum cross-sectional area of the lateral ties and longitudinal bars is 0.007 
in.Z/in. of bar spacing. Longitudinal bars provided only for the attachment of 
the lateral ties do not have to be continuous at the floor levels. However, any 
load-carrying longitudinal bars in the member must be continuous at the 
floor levels. 

3. For normal weight concrete, 8 ksi 2 f,’ 2 3 ksi is required, where f,’is the 
specified compressive strength. For lightweight concrete, f f2  4 ksi is re- 
quired. The reasons for these restrictions are explained in LRFD Commen- 
tary I2 (p. 6-203). 

4. For the structural and reinforcing steel, Fy S 55 ksi is required in the strength 
calculations. This stress level corresponds to a limit compressive strain of 
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0.0018. The encasing concrete starts to become unsound at a uniform com- 
pressive strain of about 0.002 and subsequently spalling is likely to occur. 
Since Fy = 60 ksi reinforcing steel is coIILmonly used, it should be noted that 
for this grade and higher grades of steel, the analyst must use Fy = 55 ksi in 
the strength calculations. 

5. To ensure that structural steel tubes and pipes filled with concrete yield prior 
to the occurrence of local buckling, the following thicknesses are required 

(a) t 2 b dv is required for each face width b in a tube. 

(b) t 2 D dv is required for a pipe wit5 an outside diameter of D. 

These values are the same as those given in the ACI Code. 
6. When concrete encases a steel core consisting of two or more steel shapes, 

lacing, tie plates, or batten plates must be used to interconnect the steel shapes 
to prevent buckling of each shape prior to the hardening of the concrete 
encasement. 

7. At connections, the transfer of load to concrete must be by dired bearing to 
prevent overloading either the structural steel section or the concrete. When 
the supporting concrete area exceeds the loaded area on all sides, the design 
strength of the concrete is 

(P,P, 5 0.6(1.7fc'A, ) 
where A, is the loaded area and the limit shown is due to bearing. Note: When 
the supporting concrete area is identical to the loaded area, the LRED 
specifications do not give the limiting design strength of the concrete due to 
bearing. For this case, we would use 

(P, P, 5 0.6 ( 0.85fc'A ) 
which is based on Section 10.15.1 of the ACI Code [lo]. 

10.22 Column Design Strength 
The design compressive strength of a composite column is as defined in LRFD E2 (p. 
6-47) with the following modifications: 

1. Ag in LRFD E2 is replaced with A, = gross area of structural steel shape. 
2 r in LRFD E2 is replaced with rm, which is the larger of: 

(a) The radius of gyration of the steel shape about the flexural buckling axis. 
(b) 0.3 times the overall thickness of the composite cross section in the plane 

of buckling. 
3. Fy and E in LRFD €2 are replaced, respectively, with 

F,,,,, =F,+c ,F , (A , /A , )+c , (A , /A , )  

E m  = E + c3E,  (A, / A ,  ) 

A, = cross-sectional area of concrete, (in.2) 
where 
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A, = cross-sectional area of longitudinal reinforcing bars, (in2) 
A, = cross-sectional area of the structural steel shape, (in?) 

E = 29,000 ksi 
E ,  = w *.’ 

w = unit weight of concrete, (pcf) 
f,’= concrete strength, (ksi) 

Fy = specified minimum yield stress of structural steel shape, (ksi) 
Fyr = specified minimum yield stress of longitudinal reinforcing bars, (ksi) 

c1 = 1.0, cz = 0.85, c3 = 0.4 for concrete-filled steel shapes 

c1 = 0.7, c2 = 0.6, c3 = 0.2 for concrete-encased steel shapes 

Using these definitions, we find that the design compressive strength of a 
composite column is 

@, P,, = 0.85A, F,, 
where 

F, = (0.658 ) Fmy when A, I 1.5 

0.877 when A, > 1.5 

a =- - 
r m n  k 

Column design strength tables are provided as a design aid on LRFD pp. 5-73 
to 5-142 for some configurations of composite columns. For other choices of struc- 
tural steel shapes, or concrete grades, or longitudinal and lateral reinforcing bars and 
their arrangements, the preceding formulas are applicable. 

On LRFD p. 5-129 for a ST14 x 10 x 0.375 filled with concrete and (KL), = 30 ft, verify 
the @P, = 548 kips entry. 

S o h  tion 
Check the wall thickness: 

(t=0.375 ‘ “ , ‘ [ € ~ ~ = 1 4 ~ ~ = 0 . 3 2 2  in.] asrequired 

Ag = A, + A, 

A, = area of concrete 

For the composite section: 
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From LRFD p. 1-127, ST14 x 10 x 0.375, A, = 17.1 in.2 and r, = 4.08 in. According to 
LRFD p. 1-120, the outside comer radius of a structural tube was assumed to be two 
times the tube thickness in computing the listed section properties. The area to be 
deducted for the concrete due to the four comers is 

ACOlll,, = ( 4 - ~ ) (  2t)’ 

= (4 -~ ) [2 (0 .375) ] ’  =0.483 in.’ 

A ,  = bh-A,o,,,, - A ,  

= 10( 14) - 0.483 - 17.1 = 122.4 in. 

A ,  = A ,  + A ,  = 122.4+17.1= 139.5 in.’ 

(ASIA, = 17.1/139.5 = 0.123) 2 0.04 as required 

Determine F,, and Em: 

c1 = 1 c2 = 0.85 c3 = 0.4 

A ,  122.4 
A ,  17.1 
- = - = 7.16 

CZfC’A 
A ,  

F = Fy + - = 46 + 0.85 (3.5)( 7.16) = 67.3 ksi my 

E ,  = w1.5 f i  = 1451.5 a 3 2 6 7  ksi 

E m  = E+- = 29000+0.4(3267)(7.16) = 38,357 ksi 

rmY = ry (ST14xlOxO.375) = 4.08 in. 

c 3 E J  

A ,  

K L  / rm 360/ 4.08 Jz -- - 1.18 a; = 1.382 n 

a 2  
@Pny = 0.85 (0.658 cy F,A, ) 

@Pny = 0.85(0.658)’.382 (67.2)(17.1) = 548 kips 

This agrees with the @P,, = 548 kips entry on LRFD p. 5-129. 

For the compositeST14 x 10 x 0.375 column in Example 10.1, determine the minimum 
acceptable area of a bearing plate located on the concrete at the top of the column. 
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Solution 
From LRFD p. 5-129: 

Composite ST14 x 10 x 0.375 
(KL), = 30 ft, @Pn = 548 kips 

From LRFD p. 3-45, 
Bare ST14 x 10 x 0.375 

(KL), = 30 ft, @Pm = 396 kips. 

@Pm = @Pn -@Pm = 547-396 = 151 kips 

= 42.3 in.2 151 
1.7@,fc' 1.7( 0.6)( 3.5) 

is required since (AB = 42.3 in.2) c (A, = 122.6 in?) 

in., which give (A, = 42.6 in.2) 2 42.3 in.2 as required. 
For a plate withh/b = 1.4 (ratio of tube dimensions), choose b = 5.5 in. and h = 7.75 

Venfy the @Pn = 1420 kips entry at (KL), = 30 ft on LRFD p. 5-81 for a W12 x 120 (Fy 
= 36 ksi) encased by concrete (ff = 3.5 ksi) such that the composite column 
dimensions are b = h = 20 in. 

Solution 

Check the lateral reinforcement (no. 3 at 13 in. on center) requirements: 

Maximum tie spacing = 0.667(20) = 13.3 in. 

(Tie spacing = 13 in.) I 13.3 in. as required. 

For one no. 3 bar, 

(A, = 0.11 ins2) 2 [0.007(13) = 0.091 in?] as required 

Check the longitudinal reinforcement (four #9) requirements: 

Clear cover = 1.5 in. is required. 

Bar spacing = thickness - 2 (clear cover + d,) - d,  
Bar spacing = 20 -2 (1.5 + 0.375) - 1.128 = 15.1 in. 

For one no. 9 bar, 

For the composite section, 
(A, = 1.00 in.*) 2 [0.007(15.1) = 0.106 in?] as required 

Ag = bh = 20(20) = 400 in .2  

From LRFD p. 1-38 for a bare W12 x 120: 
A, = 35.3 in? and ry = 3.13 in. 



10.2 Composite Cohmns 407 

For four no. 9 bars, 
A, = 4(1.00) = 4.00 in? 

A, = Ag - (A, + A,.) 

= 400 - (35.3 + 4.00) = 361 in., 

(AJA, = 35.3/400 = 0.0883) 2 0.04 as required 

Determine F, and Em: 
c1 = 0.7 C, = 0.6 c3 = 0.2 

= 10.2 A, - 361 
A, 35.3 
- -  - 

A, - 400 - - - = 0.113 
A, 35.3 

= 36+0.7(55)(0.113)+0.6(3.5)(10.2) = 61.8 ksi 

E ,  = wI5 = 145’.5 2f35 = 3267 hi 

c3EcA 
As 

rT = larger of 

E m  = E+2 = 29OOO+0.2(3267)(10.2) = 35,665 ksi 

(ry of W12 x 120) =3.13in. 

0.3b = 0.3( 20) = 6.00 in. 

rmy = 6.00 in. 

a2 
@Pny = 0.85( 0.658 cy Fmy A, ) 

@Pny = 0.85( 0.658)0.632 (61.8)( 35.3) = 1423 kips 
This agrees very well with the @Pn = 1420 kips entry on LRFD p. 5-81. 
Nofe: Before the encasing concrete hardens, @Pn = 538 kips (from LRFD, p. 3-23). 

On LRFD p. 5-78 for a W14 x 68 (Fy = 36 h i )  encased by concrete( fi = 3.5 h i )  such 
that the composite column dimensions are b = 18 in. and h = 20 in., 

1. Verify rm/rmy = 1.22. 
2. For (KL), = 30 ft and (ZUJy = 15 ft, determine @Pn. 
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Solution 

( rx of W14 x 68) = 6.01 in. 
0.3 h = 0.3 (22) = 6.60 in. 

rmX = larger of 

rmx = 6.60 in. 

( ry of W14 x 68) = 2.46 in. 

0.3 b = 0.3(18) = 5.40 in. 
rmY = larger of 

Y,,, = 5.40 in. 

rmx - 6.60 
- - - = 1.22 
rmy 5.40 

> ( K L ) ,  =15 ft 
1.22 

Enter LRFD p. 5-78 at 24.6 ft for F,, = 36 ksi and find 

qP,, = ($Pnx = 1088 kips) 

10.3 COMPOSITE BEAMS WITH SHEAR CONNECTORS 
The most common case of a composite beam is a steel shape that supports and 
interacts with a concrete slab as shown in Figures 10.2(a) and 10.3. Either a solid 
reinforced concrete slab [Figure 10.2(a)] or a concrete slab poured on a steel-ribbed 
metal deck (Figure 10.3) can be used. In either case, the shear studs shown or some 
other type of shear connectors are essential to ensure composite beam action. If the 
steel-ribbed metal deck in Figure 10.3 has embossments on the upper surface to bond 
the deck to the concrete slab, the steel deck is classified as a composite deck, and the 
steel deck can be used in the reinforcement requirement for the concrete slab. 

10.3.1 Composite Construction 

In shored construction, temporary shores are used to help the structural steel members 
support the poured concrete. Temporary shores are gravity direction supports 
located beneath the bottom flange of the steel shape at discrete intervals along the 
beam length and between the permanent beam supports. After the concrete has 
cured sufficiently, the temporary shores are removed. For shored construction, 
composite beam action supports all loads (dead weight of the structure and loads 
applied on the top surface of the concrete slab). 

In unshored construction, temporary shores are not used, and only the structural 
steel members support the freshly poured concrete. After the concrete has cured 
sufficiently [0.75f; is specified in LRFD 13.4 (p. 6-65)], composite beam action 
supports the loads applied on the top surface of the concrete slab. Therefore, the 
structural steel members must be adequately designed to support all factored loads 
that exist before the concrete has cured sufficiently. When an elastic stress distribution 
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is required, superposition must be used in the member section analysis. In stage 1 the 
structural steel members support all factored permanent loads before the concrete 
has cured sufficiently. In stage 2, composite beam action supports the factored loads 
applied after the concrete has cured sufficiently. When a piastic stress distribution is 
permitted and used, load tests have shown that the factored loads can be assumed 
to be resisted by composite beam action for unshored construction. 

10.3.2 Effective Concrete Flange Width 
The behavior of a concrete slab compositely connected by shear studs to steel beams 
may be conceptually described as follows. A uniform gravity direction load on the 
top surface of the slab causes: 

1. Compression forces in the gravity direction to occur between the slab and the 

2. Longitudinal shear forces to occur in the shear studs at the concrete-steel 
steel beams. 

interface. 

Along their length direction and at the top surface of their flanges, the steel beams 
are subjected to a gravity direction distributed load and to longitudinal shear forces 
at the shear stud locations. Therefore, each steel beam is subjected to an eccentrically 
applied axial compressive load and a lateral load. These loads are distributed along 
the member length. 

The concrete slab transfers the gravity direction load via an interactive compres- 
sion force to the steel beams. Also, the concrete slab is subjected to longitudinal shear 
forces at the bottom surface of the slab and distributed along the length direction 
centerlines of the steel beams. Due to the eccentric longitudinal shear forces, the in- 
plane compressive stress distribution in the concrete slab is not uniform. Along the 
lines where the eccentric longitudinal shear forces are applied, the compressive 
stress is maximum. Midway between these lines of eccentric longitudinal shear 
forces, the compressive stress is minimum. If the distance between these lines of 
eccentric longitudinal shear forces is increased, the maximum compressive stress 
divided by the minimum compressive stress also increases. To simplify the cross- 
sectional analysis of a composite beam, the compressive stress distribution described 
is assumed to be constant across an effective slab width attached at the shear studs 
to a steel beam. The cross section of each composite beam in Figures 10.2(a) and 10.3 
consists of the structural steel shape and the effective flange width of the concrete 
slab, which are interactively connected by the shear studs, which transfer the 
longitudinal shear forces. 

Three criteria are given in LRFD 13.1 for the determination of the effective 
concrete slab width. On each side of the beam centerline, the effective concrete slab 
width is the least of the following values: 

1. b, = L/8, where L =beam span length. 
2. b, = S/2, where S = distance to the centerline of the adjacent beam. 
3. b, = distance to the edge of the slab. 

For a composite beam on the interior of the concrete slab [see Figure 10.4(a)], the 
effective flange width is b = b,, + b,R. 
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(a) ~n interior composite member - 
Edge of slab 

(b) An exterior composite member 

FIGURE 10.4 Effective slab width. 

For a composite beam on the exterior edge of the concrete slab [see Figure 

Examples involving the determination of the effective flange width are given at 
10.4(b)], the effective flange width is b = b, + blR. 

the end of Section 10.3.4. 

10.3.3 Shear Design Strength 
Only the shear design strength of the web for the structural steel shape is usable, and 
LRFD F2 (p. 6-56) is applicable for the determination of $Vn, which acts parallel to the 
gravity direction on a composite beam cross section. The shear perpendicular to the 
gravity direction is named horizontal shear in the LRFD Specification. In the 
behavioral discussion we used the terminology longitudinal shear instead of horizontal 
shear. Horizontal shear requirements are given in the next section. 

10.3.4 Shear Connectors 
LRFD 15.1 (p. 6-67) defines the material requirements for shear studs and channel 
shear connectors. The length of a shear stud must be at least four stud diameters. For 
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other types of shear connectors, LRFD I6 is applicable. 

concrete slab must be transferred by shear connectors and is defined as follows: 
The horizontal shear force at the interface between the steel beam and the 

I. In regions ofpositive moment (top surface of the concrete slab is in compres- 
sion), the total horizontal shear between the maximum moment point and the 
zero moment point is the least of 
(a) 0.85 fc' Act which is the maximum possible compressive force in the 

effective width of the concrete slab. 
(b) AsFY which is the maximum possible tensile force in the structural steel 

shape. When a hybrid structural steel shape is used, ZAsF is applicable, 
and the sum is made for all elements in the cross section of &e steel shape. 

(c) ZQ, which is the sum of nominal strengths of the shear connectors in the 
indicated region. 

2. In regions ofnegative moment (top surface of the concrete slab is in tension), the 
total horizontal shear between the maximum moment point and the zero 
moment point is the smaller of 
(a) A F which is the maximum possible tensile force in the longitudinal 

(b) ZQ,, which is the sum of nominal strengths of the shear connectors in the 

When either item lc or 2b governs the definition of the total horizontal shear, this 
behavior is classified as partiul composite action. Otherwise, the behavior is classified 
asfull composite action. 

For a shear stud embedded in a solid concrete slab, the nominal strength of one 
shear connector is 

9. remforcing steel. 

indicated region. 

where 
A, = cross-sectional area of a shear stud, (in?) 

F, = minimum specified tensile strength of a shear stud, (hi) 

For a channel shear connector embedded in a solid concrete slab, the nominal 
strength of one shear connector is 

Qn = 0.3 ( t ,  +0.5tw ) L c  

where 
fr = flange thickness of channel shear connector, (in.) 

1, = web thickness of channel shear connector, (in.) 

L, = length of channel shear connector, (in.) 

When full composite action is desired, the minimum required number of shear 
connectors in each region between a maximum moment point and an adjacent zero 
moment point is the total horizontal shear in each region divided by Q,. 

When partial composite action is desired, let N = trial number of shear connec- 
tors in a region between a maximum moment point and an adjacent zero moment 
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point. The total horizontal shear transferred in the indicated region = XQ, = NQ,. Then, as 
described later in Section 10.3.5 and as illustrated in Example 10.12, the design 
bending strength (PM, for partial composite action must be calculated to determine 
if the design requirement (PM, 2 M u  is satisfied. 

Shear connectors may be uniformly spaced within each region. However, the 
number of shear connectors placed between each concentrated load point and the 
nearest zero moment point must be sufficient to develop M u  needed at each 
concentrated load point. The following restrictions on the placement and spacing of 
shear connectors are imposed by LRFD 15.6: 

1. Minimum lateral concrete cover is 1 in. except for shear connectors installed 
in the ribs of a steel deck. 

2. d I 2.5tf, where d = stud diameter and fr= thickness of beam flange to which 
studs are welded. However, d > 2.5ffis permissible for studs located over the 
web in a solid slab. 

3. Minimum longitudinal spacing of studs is 6d in solid slabs and 4d in the ribs 
of a steel deck. 

4. Minimum transverse spacing of studs is 4d in all cases. However, see LRFD 
Figure C-15.1, p. 6-215, for special provisions when the studs are staggered. 

5. Maximum spacing of studs is eight times the total slab thickness. 

There are special provisions for shear studs embedded in concrete on a formed 

1. The usual practice is to field-weld the studs through the steel deck to the beam 
flange. When the studs are shop-welded to the beam flange, holes must be 
made in the steel deck at the stud locations. 

steel deck (see LRFD Figure C-13.3, p. 6-211): 

2. Maximum stud diameter is 0.75 in. 
3. When the ribs in the steel deck are perpendicular to the steel beam: 

(a) The steel deck must be anchored to all supporting members at a spacing 
I 16 in. Welds at the studs and puddle welds (or other devices) elsewhere 
are acceptable anchorages. 

(b) Concrete below the top of the steel deck must be ignored in calculating 

(c) Longitudinal spacing of shear studs I 36 in. 
(d) Nominal strength of one shear connector is 

4 .  

where 

A, = cross-sectional area of a shear stud, (in2) 

F ,  = minimum specified tensile strength of a shear stud, (ksi) 

0.85 w 

N, = number of shear studs in one rib at a beam intersection 
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(N, I 3 must be used in the R, formula; however, more than three studs may be 
installed.) w,, h ,  and H, are defined in LRFD Figure C-13.3 p. 6-211. H, I (h, + 3) must 
be used in the computations. 

4. When the ribs in the metal deck are parallel to the steel beam: 
(a) Asshowninthelast figureof LRFDFigureC-13.3~. 6-211,ataribthedeck 

may be cut longitudinally and separated to form a concrete haunch over 
the steel beam. 

(b) Concrete below the top of the steel deck can be included in calculating Ac. 
(c) When h, 2 1.5 in., wr 2 2 in. is required for the first stud in the transverse 

direction; for Nstuds where N 2 2, wr 2 [2 in. + 4 (N -l)d] is required where 
d = stud diameter, (in.) 

(d) When wr/hr < 1.5, the nominal strength of one shear connector is 

where 

A, = cross-sectional area of a shear stud, (in.2) 

F ,  = minimum specified tensile strength of a shear stud, (ksi) 

[ R,, = y( 2 - 1 . 0 ) ]  51.0 

w, h, and H, are defined in LRFD Figure C-13.3 p. 6-211. H, 5 (h, + 3) must 
be used in the computations. 

Figure 10.5 shows the cross section of a fully composite structural system consisting 
of a solid 5-in.-thick concrete slab connected via shear studs to the top flange of steel 
beams. 

Beams: 
W16 x 31 A, = 9.12 in.2 f r  = 0.440 in. F,, = 36 ksi. 

L = 30 ft = simply supported span length, 

S = 10 ft  = transverse spacing, 

Concrete: 
fc’ = 3.5 ksi w = 145 pcf 

E ,  = w ’ . ~  Jfr = 145 1s f i  = 3267 ksi. 

Shear studs: 
d = 0.75 in. H, = 4d = 3 in. F, = 60 ksi 

For full composite action, determine: 
1. b = effective concrete slab width for an interior steel beam. 
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Solid 5 in. thick slab 

I4 s= loft S=10ft ’ s= loft 4 L A  L A  - -  r -  

All W sections are interior beams. 

FIGURE 10.5 Example 10.5. 

2. V, = horizontal shear force that must be transferred. Assume that the interior 

3. Minimum required number of shear studs. 
composite beam is subjected to a uniformly distributed factored load. 

Solution 2 

The effective slab width on each side of the beam centerline is the smaller of 

L 30(12) 
8 8 
-=-=45 in. 

Therefore, the effective slab width, b = 2(45) = 90 in. 

Solution 2 

In a positive moment region, the horizontal shear force that must be transferred for 
full composite action is 

0.85fc’Ac = 0.85(3.5)(90)(5) = 1339 kips 
Asfy = 9.12( 36) = 328 kips 

V,  = smaller of 

V,, = 328 kips 

Solution 3 

Check the stud diameter. Unless each stud is welded directly over the beam web, 

d I [2.5tf= 2.5(0.440) = 1.10 in.] 

(d = 0.75 in.) S 1.10 in. as required 

is required 

For one 0.75-in-diameter shear stud, the nominal shear strength is 

(Q, = 0.5A,, m) A,F, 

A,, = ~ ( d / 2 ) ~  = ~ ( 0 . 7 5 ) ~  / 4  = 0.4418 in.’ 
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A g ,  = 0.4418(60) = 26.5 kips 

[ 0.5( 0.4418),/- = 23.61 5 26.5 

Q, = 23.6 kips/stud 

Between the maximum positive moment point and each adjacent zero moment 
point, the minimum required number of shear studs is 

N = V,/Q, = 328/23.6 = 13.9 

Use 14 shear studs between midspan and each simple support. The minimum 
total number of shear studs required is 2(14) = 28. For only one shear stud directly 
over the beam web at each location, 

Stud spacing = 30(12)/28 = 12.9 in. 

Minimum spacing = 6d = 6(0.75) = 4.5 in. 

Maximum spacing = 8tslab = 8(5) = 40 in. 

For placement convenience, use stud spacing = 12 in. and 30 studs. 

Solve Example 10.5 for the exterior beam configuration shown in Figure 10.6. 

Solution 1 

The effective slab width on the interior side of the beam centerline is the smaller of 

- 45 in. L 30(12) -=-- 
8 8 

-60 in. s lO(12) -=-- 
2 2 

The effective slab width on the exterior side of the beam centerline is the smaller of 

Edge distance = 1 f t  = 12 in. 
Therefore, the effective slab width is 

b = 12 + 45 = 57 in. 

Solution 2 

In a positive moment region, the horizontal shear force which must be transferred for 
full composite action is 
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Solid 5 in. thick slab 

1 ft (edge distance) 

FIGURE 10.6 Example 10.6. 

0.85 ffA, = 0.85( 3.5)( 57)( 5) = 848 kips 
Asfy = 9.12(36) = 328 kips 

V,  = smaller of 

Vh = 328 kips 

Solution 3 

Same as in Example 10.5. 

Solve Example 10.5 with the following modifications: The 5-in. total slab thickness 
consists of a 2-in. concrete topping on a 3-in. formed steel deck, with the deck ribs 
spanning perpendicular to the steel beam as shown in Figure 10.7 

H, = 4.5 in. = shear stud height 
h, = 3 in. = deck rib height 

w, = (4.5 + 7.5)/2 = 6.00 in. = average rib width 

t, = 2 in. = thickness of concrete slab above the steel deck 

Solution 1 

Check the special requirements when the concrete slab is poured on a formed steel 
deck: 

(h, = 3 in.) < 3 in. as required 
(t, = 2 in.) 2 2 in. as required 

(w, = 6.00 in.) 2 2.0 in. 
(d = 0.75 in.) 5 0.75 in. 

(H, = 4.5 in.) 1 (h, + 1.5 in. = 3 + 1.5 = 4.5 in.) as r 

as required 
as required 

The solution is the same as in Example 10.5. 

Solution 2 

quir d 

The concrete below the top of the steel deck must be ignored in calculating A,. In a 
positive moment region, the horizontal shear force that must be transferred for full 
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I I 

I- 
I - -  - -  - -  - -  

h , =  3in. 7.5 in. I 4.5 in. I 4.5 in. 
I 

1.5 in. 1.5 in. 

t 
W16x31 L 

Ribs of metal deck are perpendicular to length centerline of W 16 x 3 1, 

FIGURE 10.7 Example 10.7. 

composite action is 

0.85fc'Ac = 0.85( 3.5)( 90)( 2 )  = 459 kips 
Asfy = 9.12(36) = 328 kips 

V, = 328 kips 

V ,  = smaller of 

Solution 3 

For one O.7!j-in.-diameter shear stud, the nominal shear strength is 

(Q, = 0.5A, m) 5 L F ,  

A 2 ,  = 0.4418(60) = 26.5 kips 

N,  = number of shear studs located in each rib 

Try Nr = 2 since (from Example 10.5) stud spacing c 12 in. is probable for N, = 1 and 
R, < 1: 

[ R ,  = 0'85wr ( s - l . O ) = x ( ? -  0'85(6) 4*5 1.0 ) = 0.601 ] 5 1.0 
hr JN, hr 

[ Q, = 0 . 6 0 1 ( 0 . 5 ) ( 0 . 4 4 1 8 ) , / ~  = 14.2 kips] I 26.5 kips 

Q, = 14.2 kips/stud 

Between the maximum positive moment point and each adjacent zero moment 
point, the minimum required number of shear studs is 
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N = Vh/Qn = 328/14.2 = 23.1 

Use 24 shear studs (12 pairs) between midspan and each simple support. The total 
number of shear studs required is 2(24) = 48: 

Longitudinal stud spacing = 30(12)/24 = 12.9 in. 

Minimum spacing = 12 in. (rib spacing) 

Maximum spacing = St,,, = 8(5) = 40 in. 

For placement convenience, use 60 studs and longitudinal spacing = 12 in: 

Minimum lateral spacing = 4d = 4(0.75) = 3 in. 

For each pair of shear studs, use lateral spacing = 3 in. 

directly over the beam web, 
Check the stud diameter. Since each pair of shear studs cannot be welded 

(d = 0.75 in.) I [2.5$= 2.5(0.440) = 1.10 in.] as required 

10.3.5 Flexural Design Strength 

For a composite beam with shear connectors, there are two design bending strength 
definitions. One definition is for the positive moment region and the other definition 
is for the negative moment region. 

In the positive moment region of a fully composite beam with shear connectors, the 
design bending strength QM, is determined as follows: 

Positive Moment Region 

1. When h / t I 640/E , Q = 0.85 and M, is calculated from the plastic stress 

distribution on the composite section. For convenience, this calculation of M, 
is named the plastic section analysis. The assumptions made in performing 
a fully composite plastic section analysis are [see LRFD Figure C-13.1 (p. 6- 
207)]: 

(a) Concrete tensile strength is zero. A uniform compressive stress of 0.85fc' 
is applicable for the concrete compression zone. 

(b) A uniform stress of F is applicable in the tension and compression zones 
of the structural steel shape. 

The resultant of the forces in the compression zone is equal to the 
resultant of the forces in the tension zone. This is an equilibrium require- 
ment and is not an assumption. 

2. When h / t > 640 /E, Cp= 0.9, and M, is calculated from the superposition 

of elastic stress distributions on the composite section. For convenience, this 
calculation of M, is named the elastic section analysis. The effects of shoring 
must be considered in computing M,. The assumptions made in performing 
an elastic section analysis are: 
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(a) Strain is proportional to the distance from the neutral axis. 
(b) Steel stress is E times steel strain, but cannot exceed Fy. For a hybrid 

structural steel shape, strain in the web may exceed the yield strain; 
however, at such locations, the stress that must be used in the calculations 
is FyU. 

(c) Concrete tensile strength is zero. Concrete compressive stress is E p  times 
concrete compressive strain, but cannot exceed 0.85f: 

The resultant of the forces in the compression zone is equal to the 
resultant of the forces in the tension zone. This is an equilibrium require- 
ment and is not an assumption. 

Negative Moment Region 
In the negative moment region of a fully composite beam with shear connectors, the 
design bending strength @M, can be determined from either of the following 
definitions: 

1. Only the structural steel shape can be used to determine @M, in accordance 
with LRFD F1 (p. 6-52). 

2. @Mn can be determined using @ = 0.85 and M, calculated for the composite 
section from a fully composite plastic section analysis [see LRFD Figure C- 
13.1 (p. 6-2031, provided that: 

(a) For the structural steel shape, 0.5b, / tf I 65 /K , h / t uI I 640 /E , 
and L, S Lp for the flange not in contact with the concrete slab or the metal 
deck. 

(b) Adequately designed shear connectors exist in this region. 
(c) Longitudinal reinforcement in the effective width of the slab is ad- 

equately anchored such that ArFY can be fully developed. 

For the fully composite section in Example 10.5 and shored construction, determine 
@Mm* 

Solution 

From Example 10.5, we have 
Effective slab width, 

Solid slab thickness, 
b=90in. 

t = 5 i n .  

A = 3.5 ksi 

0.85fc’A, = 0.85 (3.5)(90)(5) = kips 

AS=9.12in.2 tW=0.275in. t f = O . 4 4 O i n .  d=15.88in. 
W16 x 31: 
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Fy = 36 h i  A S Y  = 9.12(36) = 328.32 kips 

(PMpx = 146 ft-kips Lp = 4.9 ft. 

(hit, = 51.6) I ( 6 4 O / E  = 640/* = 106.7) 

When h / t ,  < 6 4 0 / E ,  (P = 0.85 and M ,  is calculated from the plastic stress 

distribution on the composite section. From LRFD Eq. (C-13-5), p. 6-207, we find that 

(PM, = 0 . 8 5 [ C ( d ,  + d , ) + A , F , , ( d ,  - d 2 ) ]  

d, = distance from top of the W section to compressive concrete force 

d, = distance from top of the W section to compressive steel force 

d, = 0 when there is no compressive steel force 

d, = 0.5d of the W section 

These formulas are valid for positive bending of a W section compositely connected 
to the effective concrete slab width. Since 

(C = 328.32 kips) = (Py = A,Fy = 328.32 kips) 

the plastic neutral axis (PNA) is located at or above the concrete-steel interface. The 
depth of the compressive stress block acting on the effective concrete slab width in 
the plastic section analysis is determined from horizontal force equilibrium: 

= 1.226 in. - 328.32 - ASFY a=------- 
0.85fc’b 0.85( 3.5)( 90) 

Since (a = 1.226 in.) < ( t  = 5 in.), the PNA is located in the slab. 

d, = t - a/2 = 5 - 1.226/2 = 4.387 in. 

d, = 0 

d, = 15.88/2 = 7.94 in. 

(PMnx = 0.85(328.32)(4.387 + 7.94) = 3440 in. - kips = 286.7 f t  - kips 

Note that: 
1. On LRFD p. 5-28 for a W16 x 31: 

PNA = top flange location (TFL) 

Y1 = 0  

[2.5tf= 2.5(0.440) = 1.10 in.]Q, = 328 kips 

Y2 = t - a/2 = 5 - 1.226/2 = 4.387 in. 

@Mnx = 286.5 ft-kips 

which is the same as the value computed here. See LRFD p. 5-6 for the 
definitions of the column headings for the table on LRFD p. 5-28. 
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2. (Composite $M,,J/ (steel $MpJ = 286.7/146 = 1.96; The composite section is 
1.96 times stronger in bending than the steel section alone for L, I Lp. 

For the fully composite section in Example 10.7 and shored construction, determine 
@Mm- 

Solution 

When the steel deck ribs are perpendicular to the steel beam, the concrete below the 
top of the deck niust be neglected. Only the 2-in. concrete topping on the steel deck 
can be considered in the determination of $Mnx. 

From the solution for Example 10.8, PNA was located in the slab and (a = 1.226 in.) 
< (t, = 2 in.). For the current example problem, the steel deck is entirely within the tension 
zone of the concrete slab. Therefore, the solution for the current example problem is 
identically the same as the solution for Example 10.8 and #Mm = 286.7 ft-kips. 

For the fully composite section in Example 10.8 and unshored construction, deter- 
mine @Mnx. 

Solution 

The solution for Example 10.8 is also valid here since #MnX is determined for a 
fully composite section and the plastic stress distribution. Therefore, $MnX = 286.7 
ft-kips. However, the steel beam alone must be checked for adequacy to resist all 
loads applied before the concrete strength in the slab becomes 0.75f; . Those 
loads are: 

1. Deadloads 
Beam 

Slab 

0.031 kips/ ft 

thickness = 5 in. width = 10 ft  

weight = (5/12)(10)(0.150) = 0.625 kips/ft 

D = 0.031 + 0.625 = 0.656 kips/ft 

Assume 20 psf: 
2. Liveloads 

L = 0.02(10) = 0.2 kips/ft 
LRFD Commentary on Strength During Construction (p. 6-210) should be studied 



422 Composite Members 

before dealing with the following solution. If we use the load factors in LRFD A4.1 
(p. 6-30), the factored loading on an interior steel beam is the larger of 

q,, = 1.40 = 1.4(0.656) = 0.918 k/ft 

9" = 1.20 + 1.6L = 1.2(0.656) + 1.6(0.2) = 1.11 k/ft 
for which the required bending strength is 

M, = 9uL2/8 = 1.11 (30)2/8 = 124.9 ft-kips 

If the forms for the concrete slab are attached to the compression flange of the 
steel beam, 

Lb = 0 

[$M, = ($Mpx = 146 ft-kips)] 2 (M, = 125 ft-kips) as required 

If the forms for the concrete slab are not attached to the compression flange of the 
steel beam, try a lateral brace at midspan: 

Lb = 15 ft cb = 1.75 

C , M ,  = 1.67(84.8) = 142 ft-kips 
$Mpx = 9.12( 36) = 146 ft - kips 

$Ma = smaller of 

[$M, = 142 ft-kips)] 2 (M, = 125 ft-kips) as required 

Also, the serviceability requirement for deflection should be checked using I, of the 
W16 x 31, service condition loads (D and L), and the applicable deflection limitation 
according to the governing building code for the construction site. 

In the design requirement for shear that is $Vn 2 V,, note that $Vn is the design 
shear strength of the W16 x 31 web only for a composite beam regardless of the type 
of construction (shored or unshored). The live loading after the concrete has 
hardened usually is larger than the construction live loading. Therefore, the factored 
loading after the concrete has hardened will govern V,, unless there is a heavy 
construction load applied near the beam support. 

Solve Example 10.5 with the following modification: The interior composite beam is 
subjected to the loading shown in Figure 10.8. 

Solution 2 and 2 

These solutions are the same as in Example 10.5 

Solution 3 

The solution in Example 10.5 is applicable up to the statement that we need 14 shear 
studs between midspan and each simple support. Also, from the solution to Example 
10.8 or from LRFD p. 5-28 for a W16 x 31, 
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i Q' = l5 iQu=lSk ips  

10 ft 

FIGURE 10.8 Example 10.11. 

PNA = TFL 
Y1 = o  

ZQ,, = 328 kips 
Y2 = t - a/2 = 5 - 1.226/2 = 4.387 in. 

(#Mm = 286.5 ft-kips) 2 (Mu = 285 ft-kips) as required at midspan 

Therefore, 14shearstudsbetweeneachsimplesupportandmidspanaresatisfactory. 
An additional requirement in this example is that the number of shear studs Np 

placed between each concentrated load point and the nearest zero moment point 
must be suffiaent to develop Mu needed at each concentrated load point. In order to 
satisfy the additional requirement, we can enter LRFD p. 5-28 for a W16 x 31: 

Y2 = 4.5 in. 

(@Mu = 275 ft-kips) 2 (Mu = 270 ft-kips) 

xQn = 285 kips 

which probably is adequate at the concentrated load point. Try 
N p  = (XQ,,)/Q,, = 285/23.6 = 12.08 

For 12 shear studs, 

V,, = 12(23.6 kips/stud) = 283.2 kips 

= 1.058 in. Vk 283.2 a=-- 
0.85 fc'b - 0.85( 3.5)( 90) 

Y2 = 5 - ~ / 2  = 5 - 1.058/2 = 4.47 in. 

(#Mm = 274 ft-kips) 2 (M,, = 220 ft-kips) 

as required at each concentrated load point. Therefore, we must use at least 12 shear 
studs between each support and the adjacent concentrated load point. If these studs 



424 Composite Members 

are uniformly spaced, the stud spacing in the indicated regions is 10 ft = 120 in./12 
= 10 in. Use 12 studs spaced 10 in. on center in the indicated regions. 

In the region between the two concentrated load points, the maximum shear 
stud spacing = 40 in. can be used. For this spacing, at least (10 ft = 120 in.)/(40 in./ 
stud) = 3 shear studs must be provided in the region between the two concentrated 
load points. However, for fully composite action 4 shear studs are required in this 
region since 14 -12 = 2 shear studs are required between the concentrated load point 
and midspan. 

The minimum total number of studs required in this example is the larger of 4 
+ 2(12) = 28 and 2(14) = 28. 

Solve Example 10.11 with the following modification: For the moment diagram in 
Figure 10.9, use partial composite action and determine the number of shear studs. 

Solution 

We can enter LRFD p. 5-28 for a W16 x 31: 

Y2 = 4.5 in. 

($Max = 246 ft-kips) 2 (Mu = 232.5 ft-kips) 

XQ, = 197 kips 

which probably is adequate at midspan. Try 

N i=. (XQ,)/Q, = 197/23.6 = 8.35 P 

For eight shear studs, 

V,  = S(23.6 kips/stud) = 188.8 kips 

= 0.705 in. Vh - 188.8 a=- 
0.85fc’b - 0.85( 3.5)( 90) 

a 0.705 Y2 = 5-- = 5-- = 4.65 in,  
2 2 

(@Mnx = 245 ft-kips) 2 (M, = 232.5 ft-kips) as required at midspan. 

We can enter LRFD p. 5-28 for a W16 x 31: 
Y2 = 5 in. 

(@MnX = 221 ft-kips) 2 (Mu = 220 ft-kips) 

ZQ, = 197 kips 

which may be adequate at midspan. Try 

N = (ZQ,)/Q, = 118 kips/23.6 = 5.00 P 
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i Qu = l 2  kips i Qu = l2  kips 

1 I + + + 
9, = 1 k/ft 

10 ft 10 ft 10 ft 

FIGURE 10.9 Example 10.12. 

For five shear studs, 

Vh = 5(23.6 kips/stud) = 118.0 kips 

= 0.441 in. vJl - 118 a=- 
0.85fc’b - 0.85( 3.5)( 90) 

a 0.441 Y2 = 5--  = 5-- = 4.78 in. 
2 2 

($Mm = 219.2 ft-kips) = (M, = 220 ft-kips) 

as required at eachconcentrated load point. Therefore, only five shear studs between 
each simple support and the adjacent concentrated load point are satisfactory. 

For the 8 - 5 = 3 shear studs required between each concentrated load point and 
midspan, the spacing = 60/3 = 20 in. is less than the maximum spacing = 40 in. 
Therefore, the minimum total number of required shear studs is 2(8) = 16. 

Let us verify that $Mnx = 245 ft-kips obtained by interpolation from the tables is 
the correct value at midspan for eight shear studs between each simple support and 
midspan. 

c = [vh = g(23.6 kips/stud) = 188.8 kips] 

Py = ASY = 9.12(36) = 328.32 kips 

py +c - 328.32 + 188.8 = 258.56 kips -- 
2 2 

Location of PNA is in the flange at yp from the top of the W section: 

= 0.3507 in. 0*5(Py -t C) -C - 258.56 - 188.8 - 
bf FY 5.525 ( 36 ) Y p  = 
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d,  = Y2 = 4.65 in. 

d2 = 0.5 yp = 0.5(0.3507) = 0.175 in. 

d3 = 0.5d = 0.5(15.88) = 7.94 in. 

(PMm = 0.85[C(d, + d2)+A8FY (d3 - d2)I 

= 0.85[188.8(4.65 + 0.175) + 3.28.32(7.94 - 0.175)] 

= 2941.3 in.-kips = 245.1 ft  - kips 
This is the same as $M, = 245 ft-kips, which was obtained by interpolation from the 
table on LRFD p. 5-28. 

Let us venfy that (PM, = 219.2 ft-kips obtained by interpolation from the tables 
is the correct value at the concentrated load point for five shear studs between each 
simple support and the adjacent concentrated Ioad point: 

C= [V,, = 5(23.6 kips/stud) = 118.0 kips] 

py + 328.32 + 118.0 = 223.16 -- - 
2 2 

Location of PNA is in the web at yp from the top of the W section: 

Area of top flange plus the two fillets = 2.68 in.2 

0.5(Py +C)-C-2.68Fy 
y = t f +  

t W F Y  
P 

223.16-118.0-2.68(36) = 1.404in. yp = 0.440+ 
0.25( 36) 

d ,  = Y2 = 4.78 in. 

2.68( 36)( 0.440/2) +0.25( 36)( 1.404 - 0.440)' / 2  = o.242 in. d ,  = 
2.68( 36) + 0.25( 1.404 - 0.440)( 36) 

d3 = 0.5d = 0.5(15.88) = 7.94 in. 

(PM, = 0.85[C(d1 = d2) + A,Fy (d3 - dJ] 

(PM, = 0.85[118.0(4.78 + 0.242) + 328.32(7.94 - 0.242)] 

(PM, = 2652 in. - kips = 221 ft  - kips 

This is very nearly the same as #M, = 219.2 ft-kips, which was obtained by double 
interpolation from the table on LRFD p. 5-28. 

For the fully composite section in Figure 10.10, determine #M, in a positive moment 
region. The steel beams are the built-up W57 x 18 x 206 investigated in Example 5.9 
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for F,, = 50 h i .  Properties of the concrete flange are 
Effective slab width, 

Solid slab thickness, 

b = 9 0 i n .  

t=5 in .  

f,’ = 3.5 ksi 

E ,  = wI5 = 14515 = 3267 h i  

Solution 

From LRFD p. 4-184 and Example 5.9, W57 x 18 x 206, Fr = 50 ksi: 

A, = 60.5 I, = I, = 35600 in.4 d = 58 in. 

b=90in. 
1-  ‘I I5 in. 

W57x18x206 

(a) An interior, fully composite section 

btr = blr 

1 
(c) Transformed composite section 

FIGURE 10.10 Example 10.13. 

(b) Actual stresses 

@) Stresses on transformed section 
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(hit, =128)>(640/E=640/&6=90.5)  

(PM:, = 2998 ft - kips 

which is valid for L, 5 (L6 = 30.77 ft )and the steel shape alone. 
For the fully composite section, when h/  t w  > 6 4 O / E  , Cp = 0.9 and M,, is 

calculated from the elastic stress distribution on the composite section (see Figure 
10.10). The concrete is transformed to steel and the flexural formula is used for 
computing the elastic stresses: 

pE = E / E ,  = 29,000/3267 = 8.877 

b,, = b / p ,  = 90/8.877 = 10.14 in. 

A,, = b,,t = 10.14(5) = 50.7 in? 
Locate the neutral axis: 

A,,f/2+A, ( t+d /2 )  

At, +As 
YnR = 

= 19.6 in. - 50.7(2.5)+60.5( 5+29) - 
50.7 + 60.5 

The moment of inertia for the transformed section is obtained from the parallel axis 
theorem: 

10.14( 5)3 
12 

+ 50.7( 19.6 - 2.5)2 + 35 , 600+ 60.5( 34 - 19.6)* I t ,  = 

I , ,  = 63,076 in? 

The section moduli for the extreme compression fiber and the extreme tension fiber, 
respectively, are 

S, = l,, / yc = 63,076 / 19.6 = 3218 in.3 

S,, = I,, / y, = 63,076 / ( 5 + 58 - 19.6) = 1453 in.3 

The stress in the extreme compressive fiber must be limited to 0.85fc’and the stress 
in the extreme tension fiber must be limited to F,,: 

0.85f’, rESxc = 0.85 (3.5) (8.877) (3218) = 84,984 in. - kips 

0.85 fcfpESxc = 84,984 in.-kips 
S,,F, = 1453(50) = 72,650 in.- kips M,, = smaller of 

@M,, = 0.9(72,650) = 65,385 in.-kips = 5449 ft-kips 

Note: If partial composite beam action had been used for this example, the effects of slip 
shouldbeaccountedfor (seeLRFDp. 6-208) incomputingthedesign bendingstrength. 
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10.4 CONCRETE-ENCASED BEAMS 
Shear connectors are not required for this type of composite action. A steel beam 
totally encased in concrete cast with the slab [see Figure 10.2@)] may be assumed to 
be bonded to the concrete, when: 

1. Concrete cover below and on all edges of the steel shape is at least 2 in. 
2. The top flange surface of the steel shape is at least 1.5 in. below the top of the 

concrete slab and at least 2 in. above the bottom of the concrete slab. 
3. The concrete encasement is adequately reinforced with welded wire mesh or 

reinforcing bars to prevent spalling of the concrete. 

Local buckling and lateral-torsional buckling do not have to be considered after 
the concrete encasement has hardened since the concrete encasement prevents the 
occurrence of these types of failure. Therefore, the design bending strength is $M,, 
where 4 = 0.90 and M ,  can be determined from either of the following methods: 

1. The plastic stress distribution on the steel section alone (Mnx = Mpx = ZFY). 
2. The elastic stress distribution on the composite section, considering the effects 

of shoring. 

For method 2 and shored construction, bending stresses due to factored loads 
are based on the properties of the transformed composite section. Concrete on the 
tension side of the neutral axis is not included in the transformed section. For the 
concrete on the compression side of the neutral axis, each concrete width is divided 
by p E  = E&, thereby transforming the concrete width to an equivalent width of steel. 
Bending stresses are computed by the flexural formula, f = M,y/l,, where f is the 
bending stress at a point of interest located at a distance y from the x axis and I, is the 
moment of inertia of the transformed section. At the extreme fiber in either flange of 
the steel shape, f I Fy is required. At the extreme compression fiber of the transformed 
section, f =  0.85fc’p, is required. 

For method 2 and unshored construction, stresses are computed at two stages 
and superimposed: 

1. Stage 1 (prior to hardening of the concrete) 
The steel section alone resists the loads until the concrete has hardened. The 
extreme fiber stresses in the steel section are 

f = M J S x t  and f = M J S , ,  

M u  = factored moment at section where stresses are to be superimposed 

where 

I, = moment of inertia for the steel section 

y, = distance from x-axis to the extreme tension fiber in the steel section 

yc = distance from x-axis to the extreme compression fiber in the steel section 
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At the extreme fiber in either flange of the steel shape,fl Fy is required. 
2. Stage 2 (after the concrete has hardened) 

Bending stresses due to factored loads applied after the concrete has hard- 
ened are based on the properties of the transformed composite section. 
Concrete on the tension side of the neutral axis is not included in the 
transformed section. For the concrete on the compression side of the neutral 
axis, each concrete width is divided by pE = E / E ,  thereby transforming the 
concrete width to an equivalent width of steel. Bending stresses are com- 
puted by the flexural formula,f = MJ& wherefis the bending stress at a 
point of interest located at a distance y from the x-axis and I ,  the moment of 
inertia of the transformed section. 

For the stresses superimposed from stages 1 and 2 

1. At the extreme fiber in either flange of the steel shape,fl Fy is required. 
2. At the extreme compression fiber of the transformed section, f = 0.85f;pE is 

required. 

Determine 4Mm and IpM, for the concrete-encased W14 x 68 (Fy = 36 h i )  shown on 
LRFD p. 5-78 when this composite section is used as a beam. 

f; =3.5ksi b=18in., h=20in. 

For the concrete, 

Solution 
According to LRFD 13.3 (p. 6-65), we can choose either of the two definitions given 
for the determination of the design bending strength about each principal axis. We 
choose to use the simpler definition, which is for the plastic stress distribution on the 
steel section alone. Local buckling and lateral-torsional buckling are prevented by 
the concrete encasement, when the concrete encasement satisfies the following 
minim- requirements: 

1. Concrete cover below and on all edges of the steel shape is at least 2 in. On the 
edges, 

[Cover = (18 - br>/2 = (18 - 10.035)/2 = 3.98 in.] 2 2 in. 
Beneath the bottom flange, 

[Cover = (22 - d)/2 = (22 - 14.04)/2 = 3.98 in.] 2 2 in. 

2. The top flange surface of the steel shape is at least 1.5 in. below the top of the 
concrete slab and at least 2 in. above the bottom of the concrete slab. 
The top flange surface is 3.98 in. below the top of the concrete. When the 
section being investigated is as shown in Figure 10.2(b) and when the 
concrete slab thickness t 2 (2 + 3.98 = 5.98 in.), this requirement is satisfied. 
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3. The concrete encasement is adequately reinforced with welded wire mesh or 
reinforcing bars to prevent spalling of the concrete. 

From LRFD 12.1.b: 
1. For the longitudinal steel: 

Minimum A, = 0.007(2)(11- 0.375 - 1.128/2) = 0.141 in.’ 

[A, = 4(1.00) = 4.00 in?] 2 0.141 in? as required 

2. For the stirrups, 

Minimum clear cover = 1.5 in. 

Minimum A, = 0.007(12) = 0.084 in.’ 

[A, = 2(0.11) = 0.22 in.2] 2 0.084 in? as required. 

Since the concrete encasement satisfies all minimum requirements, the design 
bending strengths are 

@Mm = 0.9Z$, = 0.9(115)(36) = 3726 in.-kips = 310.5 ft-kips 

@MnY = O.9ZTy = 0.9(36.9)(36) = 1196 in.-kip~ = 99.6 ft-kips 

10.5 DEFLECTIONS OF COMPOSITE BEAMS 
As described on LRFD p. 5-9, deflections calculated on the basis of the lower bound 
moment of inertia ILg may be satisfactory in checking serviceability requirements. 
For a concrete slab connected to the top flange of a steel shape and fully composite 
beam action, LRFD Figure 5-4 (p. 5-10) shows the definitions for the cross section to 
be used in calculating fLg in a positive moment region. Formulas are given on LRFD 
p. 5-10 for the location of the elastic neutral axis YENA and for fm. Values of ILB are listed 
on LRFD pp. 5-50 to 5-65 for some plastic composite sections in a positive moment 
region. If there is a negative moment region, Im = I ,  of the steel shape. For partially 
composite beam action, LRFD Eq. (C-13-6) onp. 6-208 is the recommended definition 
for the effective moment of inertia, which accounts for slip at the concrete-steel 
interface in a positive moment region. 

For a composite beam consisting of a steel shape encased by concrete (see Figure 
10.11), for simplicity we recommend the following approach for calculating a value 
of the moment of inertia in a positive moment region: 

1. On the cracked section, transform the concrete in the compression region to 
steel. The transformed concrete width is 

4, = b/PE 
where 

E ,  = w ’ . ~  
f,’ = specified compressive concrete strength (hi)  

w = unit weight of concrete (lb/fP) 
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k b 4 
r I 

II] 
(a) Composite section 

I" k b 4 TFion Concrete 

-L 

(b) Cracked cross section 

(c) Areas of transformed section 

FIGURE 10.11 Assumptions for transformed moment of inertia. 

2. Compute Y,, which is the location of the neutral axis of the transformed 
section with respect to the top of the slab: 

A, = area of the steel shape 

A, = area of the reinforcing steel 

A,, = A, + A, 

A = A,, + b,, Y ,  

3. Calculate the moment of inertia of the transformed section: 

where I ,  = (I, of the steel shape) 
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Determine the moment of inertia for the concrete-encased W14 x 68 (Fy = 36 ksi) 
shown on LRFD p. 5-78 when this composite section is used as a simply supported 
beam. 

Solution 

E ,  = w f l=  145 1.5 &? = 3267 ksi 

pE = E / E ,  = 29,000/3267 = 8.877 

b,, = b / p E  = 18/8.877 = 2.028 in. 

A, = 20.0 in.2 

A, = 4(1.00) = 4.00 in.2 

A,, = A, + A, = 20.0 + 4.00 = 24.0 in.* 

45.97+J(45.97) '  +8(24.0)(11.0)(2.028) 

2 * 2.028 
= 8.38 in. Y", = 

In the region where the section is cracked, the moment of inertia of the transformed 
section is 

2.028 (8.38) 
3 

- - +723+24.0(11.0-8.38)2 = 1286 in.' 

In the region where the section is not cracked, the moment of inertia of the 
transformed section is approximately obtained as follows: 

A,, = b& - A,, = 2.028(22) -24.0 = 20.62 in.' 

Equivalent b, = A,,/h = 20.62/22 = 0.937 in. 

(Equivalent b,, ) h 2 

Equivalent I, = +I, +A, (%) 12 
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where 

d,  = y-direction distance between the reinforcing steel bars 

d , = h - 2 d C  

d ,  = structural cover for the reinforcing steel bars 

d, = 22 - 2 (1.5 + 0.375 + 1.128/2) = 17.12 in. 

Equivalent I, = 0.937 (22) +723+4.W( 5) 1712 = 1848 in.4 
12 

The gective moment of inertia is taken as the average of the inertia values in the 
uncracked and cracked regions. Therefore, in the deflection calculations use ElH, 
where 

E = 29,000 ksi 

Iq= (1848 + 1286)/2 = 1567 in.4 

Determine the moment of inertia for the fully composite section in Example 10.8 
when this member is used as shown in Figure 10.12 for q,, = 2.95 kips/ft. 

Solution 

Left reaction = (30 - 19)(38)(2.95)/30 = 41.1 kips 

Zero shear point occurs at x = 41.1/2.95 = 13.93 ft 

Maximum positive Mu = 41.1(13.93)/2 = 286.3 ft-kips 

Maximum negative M, = 2.95(8)2/2 = 94.4 ft-kips 

Information applicable in the positive moment region is, from Example 10.8: 

W16 x 31 PNA = Tn, Y1= 0, Y2 = 4.387 in., $Mu = 286.7 ft-kips 

From LRFD p. 5-28, we find that lLB = 1069 in?. 
In the negative moment region, we can conservatively use 

ZLB =Ix of the W16 x 31 = 375 in? 

(@Mm = 128 ft-kips) 2 (Mu = 94.4 ft-kips) 
(@Mu was obtained from the LRFD beam charts for W16 x 31, cb = 1 and &, = 8 ft.) 

In the region between the supports, the average I,, = (1069 + 375)/2 = 722 inU4 
is appropriate. For the cantilevered region, ZLB = 375 in.4 is appropriate. In the 
negative moment region, we can utilize the reinforcing steel (no. 4 at 6 in. on center, 
A, = 0.4 h2/ft)  to obtain a larger value of ZLB and @Max when this steel is properly 
anchored and the number of shear studs provided is adequate. In this problem, 
partial composite action for a shear stud spacing approximately equal to the 40-in. 
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t t t t t 
1, & 

30 ft 
(a) Loading and span information 

I’ ‘I- * *  -1 

- 1  L A  - -  _ -  k s=  loft S=lOft ’ s=  loft .I 
All W sections are interior beams 

(b) Section 1-1 

b=Win.  4 1.5 in. 
I 

3.5 in. I 
I 

3.5 in. I 
W16 x 31 I+ 

(c) An interior, fully composite member at Section 1-1 

FIGURE 10.12 Example 10.16. 

maximum stud spacing probably will be sufficient for deflection control purposes. 
LRFD Eq. (C-13-6) (p. 6-208) can be used to compute an estimate of ILB for the negative 
moment region when I, for the bare steel section is not adequate. 

10.6 COMPOSITE BEAM-COLUMNS 
Doubly and singly symmetric composite beam-columns must satisfy LRFD H1 (p. 6- 
59) with the following modifications: 

1. In LRFD Eq. (Hl-la) and (Hl-lb): 
qPn is as defined for a composite column (see Section 10.2.2). Conse- 
quently, the seven limitations given in Section 10.2.1 must be satisfied. 
When (PJqP,,) 2 0.3, 

where M,,, is the nominal bending strength determined from plastic 
stress distribution on the composite cross section. 

@vfn = 0.85Mnc 
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An approximate formula for M,, from LRFD Eq. (C-14-1) on p. 6-213 is 

M,, = F y Z + i ( h ,  - 2c , )A ,F , ,  + [ h 2  2 1.7fc’h ] A w , ,  

where 

Z = plastic section modulus of the steel section (in.S 

Fy = yield strength of the steel shape (h i )  

A,  = web area of an encased steel shape (in2) 

A,  = 0 for a concrete-filled steel shape 

A, = total area of longitudinal reinforcing steel (in2) 

Fy = yield strength of longitudinal reinforcing steel, (ksi) 

c, = (c, + c,)/2 

c, = distance from compression face to longitudinal reinforcing steel in that face (in.) 

c, = distance from tension face to longitudinal reinforcing steel in that face (in.) 

h, = width of composite cross section parallel to the plane of bending (in.) 

h, = width of composite cross section perpendicular to the plane of bending (in.) 

When (PJ$P,) < 0.3, $&ln is linearly interpolated at PJ$Pn on the straight line 
joining point C = [0.85MnC, (PJ$Pn) = 0.31 and point B = [&Mns, (Pu/$Pn) = 01, 
where wns is the design bending strength for a beam as defined in LRFD 
13.2 for plastic stress distribution on the composite cross section. For conve- 
nience and conservatism, we may choose to use $flnB =0.9ZFy. 

If shear connectors are required for P ,  = 0, they must be provided when ( P J  
$P,) 50.3. 

2. In LRFD Eqn (Hl-3) and Eqn (Hl-6): 

where A,, Fmy, and 1; are as defined in Section 10.2.2. 

On LRFD p. 5-78, we find a W14 x 68 (Fy  = 36 h i )  encased by concrete (fc’ = 3.5 ksi) 
such that the composite column dimensions are b = 18 in. and h = 20 in. This section 
is to be used as a beam-column. Determine the design flexural strengths &Mnx and 
I$@,,, needed in the interaction formulas. 
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Solution 

When (PJ@P,) 2 0.3, 

@&,I = 0.85MflXC 

1 
3 

Mflrc = Z,F,  +- ( h - 2 ~ ~  )A,Fy, + 

C, = 1.5 + 0.375 + 1.128/2 = 2.44 in. 

A, = 4(1.00) = 4.00 in? 

Fyr = 60 ksi 

A, = t& = 0.415(14.04) = 5.83 in.2 

A S Y  = 5.83(36) = 209.9 kips 

1.7f; b = 1.7 (3.5) (18) = 107.1 kips/in. 

Mn, = 115( 36) + [ 22-2: 2'44)]( 4.00)( 60) + ( - '2' - - ::;:;)( 209.9) 

Mnxc = 7407 in.-kips 

@Jvl,, = 0.85M,,, = 0.85(7407) = 6296 in.-kips = 525 ft-kips 

Note: On LRFD p. 5-78, the value listed for @Jvlflx = 535 ft-kips. 

@@ny = 0.85MnyC 

M,, =ZyFy +-(b-2c,)ArF 3 1 " + (' 2 1.7flh A ~ F ~ ) A w F y  

1.7f; b = 1.7 (3.5) (22) = 130.9 kips/in. 

MflyC = 36.9(36)+[ '8-2:2.")](4.00)(60)+ ( E-E 2 130.9) (209.9) 

MnyC = 3931 in. - kips 

&Mny = 0.85Mnc = 0.85(3931) = 3341 in.-kips = 278 ft-kips 

Note: On LRFD p. 5-78, the value listed for @Jvlfly = 279 ft-kips. 

When (PJ@Pn) < 0.3, @@,, is obtained at P,,/@P, on the straight line joining point 
C = [0.85MflXc = 525 ft-kips, (PJ@P,) = 0.31 and point B = [&Mflxs, (PJQP,) = 01, where 
@JvlnxB =O.9ZJy = 0.9(115)(36) = 3726 in.-kips = 311 ft-kips. 

@Jvl,,,, is obtained at P&P, on the straight line joining point C = [0.85MnY, = 278 
ft-kips, (PJ@P,) = 0.31 and point B = [@JvlflyB, (PJ@P,) = 01, where @&fnyB =0.9ZJy = 
0.9(36.9)(36) = 1196 in.-kips = 99.6 ft-kips. 

Note that the applicable value of P, =A$,,,, / A: in LRFDEqs. (Cl-2) (p.6-41) and 
(Cl-5) (p. 6-42) can be obtained for this composite section from the values listed in 
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lines 3 and 4 up from the bottom on LRFD p. 5-78. For example, if P, is desired for 
(a), = 30 ft, 

P, = 246 (104) / (30)2 = 2733 kips 

10.7 DESIGN EXAMPLES 
LRFD pp. 5-12 to 5-17 contain design examples for a concrete flange compositely 
connected to steel beams. The tables in Part 5 of the LRFD Manual are used in these 
design examples. 

LRFD pp. 5-68 to 5-71 contain design examples for a concrete-encased column, 
a concrete-filled column, and a concrete-encased beam-column. The tables in Part 5 
of the LRFD Manual are used in these design examples. 

PROBLEMS 
10.1 On LRFD p. 5-136 for a structural steel tube ST14 x 10 x 0.375 filled withfc' 

= 5 ksi concrete and (a), = 30 ft, venfy the $P,, = 593 kips entry. 

10.2 For the composite column in Problem 10.1, determine the minimum 
acceptable area of a bearing plate located on the concrete at the top of the column. 

10.3 On LRFD p. 5-89 for anFy = 50 ksi, W14 x 120 encased by concrete and (KL), 
= 30 ft, venfy the $P,, = 2070 kips entry. 

10.4 On LRFD p. 5-90 for an Fy = 36 h i ,  W14 x 68 encased by concrete: 

(a) Verify rm/r = 1.22. 
(b) For (KL), = % ft and (KL)y = 15 ft, determine $P,. 

10.5 A fully composite structural system consists of a solid 5-in.-thick concrete 

Beams 

Simply supported span length 

Transverse spacing 

Concrete 

slab connected via shear studs to the top flange of steel beams: 

W24 x 62 Fy = 36 ksi 

L=40ft 

S=12ft 

E ,  = w 1.5 R= 145'.' lf35 = 3267 hi f,' = 3.5 ksi 

Shear studs 

w = 145 pcf 

d = 3 / 4 i n .  HS=4d=3in.  FU=60ksi 

For full composite action, determine 
(a) Effective concrete slab width b for an interior steel beam. 
(b) Horizontal shear force V,,, which must be transferred. Assume that the 

interior composite beam is subjected to a uniformly distributed factored 
load. 

(c) Minimum required number of shear studs. 
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10.6 Solve Problem 10.5 with the following modification: The 5-in. total slab 
thickness consists of a 2-in. concrete topping on a 3-in. formed steel deck with the 
deck ribs spanning perpendicular to the steel beam. Shear stud height is H, = 4.5 in. 
Deck rib height is h, = 3 in. Average rib width is w, = (4.5 + 7.5)/2 = 6.00 in. Thickness 
of concrete slab above the steel deck is t, = 2 in. 

10.7 For the fully composite section in Problem 10.5 and shored construction, 
determine qMm. The composite beam is subjected to a uniformly distributed load q, 
= 1.2 kips/ft and a concentrated load Q, at each third point of the span. Determine 
the maximum acceptable value of Q,. Determine the minimum acceptable number 
of shear studs. 

10.8 For the fully composite section in Problem 10.6 and shored construction, 
determine qMm. The composite beam is subjected to a uniformly distributed load qu 
= 1.2 kips/ft and a concentrated load Q, at each third point of the span. Determine 
the maximum acceptable value of Q,. Determine the minimum acceptable number 
of shear studs. 

10.9 Use the solution information from Examples 10.4 and 10.14 in the interac- 
tion equation for P, = 544 kips, C, = 0.85, and B, = 0. Determine the maximum 
acceptable value of Mu. 

10.10 Use the solution information from Example 10.4 and Example 10.14 in the 
interaction equation for P, = 163 kips, C, = 0.85, and B, = 0. Determine the maximum 
acceptable value of Mu. 

10.11 Simply supported beams spanning 30 f t  and spaced at 7.5 ft on centers are 
to be made composite with a solid concrete slab whose properties are thickness = 5 
in., weight = 145 pcf, andf,’ = 3.5 ksi. Shored construction is to be used. Select the F 
= 36 ksi steel beam required to support a service live load of 200 psf and a service dead 
load of 68 psf (does not include an estimate for the beam weight). Also determine the 
number of 0.75 -in.-diameter shear studs required and the service live-load deflec- 
tion. 

10.12 Solve Problem 10.11 for unshored construction. 

10.13 Solve Problem 10.11 with the concrete slab being a 3-in. topping on a 3-in.- 
deep steel deck, with an average rib width of 6 in. The ribs are oriented perpendicular 
to the beam centerline. Lightweight concrete (w = 115 pcf) is to be used. Change the 
service dead load to 62 psf. 

10.14 Solve Problem 10.13 for unshored construction. 
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11 

11.1 

Plastic Rnalysis and Design 

INTRODUCTION 
This chapter introduces the concepts and methods of plastic analysis for continuous 
beams and one-story frames in which the member ends are rigidly interconnected at 
the joints. A book written by Beedle [28] in 1958 was used as a textbook for plastic 
analysis and design for nearly 30 years. Beginning with Kazinczy of Hungary in 1914, 
Beedle gives an extensive list of references on the development of plastic analysis and 
design. 

The concepts of plastic analysis and design are dependent on the great ductility 
of steel and the plastic plateau characteristic shown on the stress-strain curves for Fy 
= 36 and 50 ksi in Figure 1.2 (see Section 1.1.3). Members used in plastic analysis are 
primarily those W sections for which the plastic moment M, is reached and 
maintained until bending deformations well into the plastic range occur before 
plastic buckling of the compression elements occurs (see Section 5.4). 

In a continuous beam subjected to a uniformly distributed load, for example, 
yielding first occurs at the support where the maximum bending moment occurs. As 
the load is increased, the relative distribution of moment changes along the continu- 
ous member, and yielding at the first yield location continues to occur until the 
plastic moment is reached. If the load is further increased, plastic bending deforma- 
tions increase without any increase in moment at the first yield location (a plastic 
hinge has formed), and the plastic moment is reached at other locations. When the 
plastic moment is reached at a sufficient number of locations, plastic bending 
deformations increase at eachof these locations without any increase in load (a plastic 
collapse mechanism has formed). 

At each plastic hinge location, except at the last plastic hinge to form, the 
compression flange must be laterally braced. For a W section subjected to 
bending about the major axis, except at the last plastic hinge to form, adjacent to 
each plastic hinge the laterally unbraced length L, of the compression flange must 
not exceed 

440 
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where 
Fy = specified minimum yield strength of the compression flange (hi)  

MI = smaller moment at the ends of an unbraced length (in.-kips) 

M ,  = larger moment at the ends of an unbraced length (in.-kips) 

ry = radius of gyration about minor bending axis (in.) 

(M,/MJ is positive when moments cause reverse curvature 

For each Lb region with one end located at the last plastic hinge to form and in 
L, regions not adjacent to a plastic hinge, L b  > L is ermissible. For these Lb regions, 
the flexural design strength +Mnx must be deterrmned as for beams analyzed by 
elastic methods (see Chapters 5,6, and 9). 

When design by plastic analysis is used, the following LRFD Specification 
requirements must be satisfied: 

@ p. 

1. LRFD A5.1 (p. 6-31)-The steel must exhibit a plastic plateau on the stress- 
strain curve; consequently, Fy I 6 5  ksi must be used. 

2. LRFD B5.2 (p. 6-36)-Compression elements in the section must have a 
width-thickness ratio 5 4 [see LRFD Table B5.1 (p. 6-32)]. 

3. LRFD C2 (p. 6-42)-The axial force in a column caused by factored gravity 
plus factored horizontal loads shall not exceed 0.85+&Fy in a braced frame 
nor 0.75+p,Fy in an unbraced frame. 

4. LRFD E1.2 (p. 6-47)-The column design strength must be governed by 
inelastic column buckling; that is, the requirement is that 

5. LRFD F1.2d (p. 6-55)-The compression flange must be laterally braced at 
each plastic hinge location, except at the last plastic hinge to form, and such 
that Lb I L@, where 

Lb = laterally unbraced length of the compression flange 

LpI = limiting value of Lb for plastic design 

For an I-shaped member with the compression flange larger than the tension 
flange and bending about the major axis, 

For solid rectangular bars and symmetric box beams bending about their 
major axis, 
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There is no limit on Lb for members with circular or square cross sections or 
for any member bending about its minor axis. 
In the L b  region of the last plastic hinge to form, and regions not adjacent to 
a plastic hinge, qMm must be determined from LFRD F1.2 to F1.4. 

6. LRFD H1.2 (p. 6-6O)-M, shall be determined in accordance with LRFD C1 
which stipulates that second-order (PA) effeds shall be considered in the 
design of frames and the requirements stated in item 3 above must be 
satisfied. 

7. LRFD I1 @. 6-61) - qMm of composite members shall be determined from the 
plastic stress distributions specified in LRFD 13. 

The following discussion pertains to item 6 in the preceding list of requirements. 
In our plastic analyses of one-story frames, we use a first-order plastic analysis since 
that has been the traditional approach. LRFD C1 requires second-order (PA) effects 
to be considered in the design of frames, but does not give an approximate procedure 
to determine Mu based on a first-order plastic analysis. For one-story frames, we 
recommend the following approach to account for second-order effects. 

For a member subjected to axial compression and bending in a PCM for which 
sidesway does not occur 

Case2 

M u  = BlMpnn 
where 

Mp.. = maximum moment in each Lb region from the plastic collapse mechanism 

C,,, = 0.85 for a member subjected to transverse loads 

Otherwise, C,,, = 0.6 - 0.4M1/M2 

M1/M2 = ratio of smaller to larger moments at the ends of an region 

Ml/M2 is negative when the member is bent in single curvature in an L, region 
Otherwise, Ml/M2 is positive 

P, = axial compression force obtained from the plastic collapse mechanism 

Pel = z2EZ/(KL)2 
Z and KL are for the axis of bending 

K I 1 for braced frame members 
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B, accounts for the local second-order PGeffect. There is not any global second-order 
PA effect when sidesway does not occur. 

Case 2 
For a member subjected to axial compression and bending in a PCM for which 
sidesway occurs, 

Mu = B 2 M p  
where 
Mp.. = maximum moment in each L, region from the plastic collapse mechanism 

ZPu = required axial strength of all columns in a story 

ZPa = L: [n2EI/(KL)2] of all columns in a story 

I and KL are for the axis of bending 

K > 1 for unbraced frame members 

B, accounts for the PA effect when sidesway occurs. Since we cannot separately 
determine the portion of Mp.. due only to the lateral loads and the portion of M p  
due only to the gravity loads, Mp.. due to all loads is amplified by B,. This approach 
overcompensates for the PA effect, but Case 2 usually does not govern for one-story 
frames. For multistory frames, we recommend that Mu be obtained from a second- 
order plastic analysis that directly accounts for the PA effect. 

11.2 PLASTIC HINGE 
In Figure 11.1, the simply supported beam is subjected to a concentrated load at 
midspan. For convenience in the following discussion, assume that the member 
weight is negligible. For strong-axisbending, the load W, causes the plastic moment 
Mpx to occur at the maximum moment location. When the load W,has been applied, 
the beam has no more resistance to bending at the maximum moment point until 
strain-hardening starts to occur (see Figure 5.4). Accounting for strain-hardening is 
not easy or necessary. It is conservative to ignore the extra bending strength due to 
strain-hardening. Thus, in plastic analysis, the plastic moment is accepted as being 
the maximum possible moment. Also, for a simple plastic theory, the moment- 
curvature relationship (see Figure 5.4) is idealized as linearly elastic up to M p  and 
plastic thereafter. Using this idealized moment-curvature relationship is permis- 
sible for a plastic analysis to determine the required bending strength since the 
presence of residual stresses does not affect the plastic moment (see Figure 5.6). 

A plastic hinge is a zone of yielding due to flexure in a structural member. The 
plastic hinge length $ is the beam region length in which the moment exceeds the 
yield moment. As shown in the following discussion, Lph is dependent on the 
geometry of the cross section and the loading configuration. In Figure 11.1, the 
moment diagram due to a single concentrated load is linear. Since 

Mpx = Fyzx 
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then 

- Plastic hinge 

W U  

0.5L 0.5L 

(a) X-axis bending of a W section beam 

(b) Y-axis bending of a W section beam 

FIGURE 11.1 Plastic hinge. 

where 
Z, = plastic section modulus 

S, = elastic section modulus 

For W sections used asbeams, the shape factor Z,/S,ranges from 1.10 to 1.18 and the 
average is 1.14. For some W sections used as columns, Z,/S, ranges as high as 1.23. 
From similar triangles on the moment diagram in Figure 11.1, 

Mpx - M ,  - F &  
L L P h  

-- 
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11.3 

For Zx/Sx = 1.14, 

Similarly, for weak-axis bending, 

L,,, = 0.1228L = L / 8  

For a uniformly distributed load, 

Lph = 0.35L for strong-axis bending 

Lp,, = 0.5771, for weak-axis bending 

For a simple plastic theory, the moment-curvature relationship is idealized as 
linearly elastic up to M p  and plastic thereafter, all of the plastic rotation is assumed to 
occur at the plastic hinges, and the length of each plastic hinge is assumed to be zero. 
This means that the idealized load-deflection curve for the member and loading 
shown in Figure 11.1 is linearly elastic up to W,, and is plastic thereafter. At a plastic 
hinge location, the member behaves as though it were hinged with a constant 
restraining moment M,. For the member and loading shown in Figure 11.1, a 
mechanism (geometrically unstable structure) consisting of the real hinges at the 
member ends and the plastic hinge at midspan forms when W, causes M, to occur 
at midspan. Since the real hinges cannot resist any moment and the plastic hinge 
cannot resist any additional moment after M ,  occurs, the structure does not have any 
bending strength to resist any load after W,, has been applied. Therefore, for the 
member and loading shown in Figure 11.1, W,, is the plastic collapse load. 

PLASTIC COLLAPSE MECHANISM 
In a continuous beam, the maximum moment points occur at the supports and 

at a point of zero shear between the supports. In regard to the strength concepts of 
plastic analysis, the behavior of an interior span of a continuous beam is the same as 
for a fixedended beam. Thus, for graphical convenience, we choose to discuss the 
behavior of a fixedended beam (see Figure 11.2). For the idealized moment- 
curvature relationship (linearly elastic up toMp and plastic thereafter), plastic hinges 
form at each support when the applied load value is w p h r  which is obtained from 
wp,,L2/12 = Mpx. As shown in Figure 11.3, when the applied load is increased from w,,, 
to the plastic collapse load w,,, the member behavior is elastic between the supports, 
and the member-end moments remain constant at their maximum value of M We 
see that the first plastic hinge forms at the supports (maximum moment pomt as 
defined by elastic behavior). Then, redistribution of moment occurs until a plastic 
hinge forms at the zero shear point between the supports when the applied load 
value is w,,. Each beam segment between plastic hinges is able to move without any 
increase in load. A system of such beam segments is called a prustic corlapse mechanism, 
which is an unstable structure until strain hardening occurs at one or more of the 
plastic hinge locations. In Figure 11.2@), the deflected shape of the PCM (p2astic 

px' 



446 Plastic Analysis and Design 

G 
wL2 
12 
- 

3 
wL2 
12 
- 

I- 0.5L 0.5L 4 
(a) Elastic behavior 

r De.fl& shapc of plastic collapse mechanism 

I- 0.5L 0.5L 4 
(b) Behavior aftex formation of the plastic collapse mechanism occus 

FIGURE 11.2 Moment redistribution. 

colhpse mechanism) is shown as straight beam segments between the plastic hinges. 
When the PCM forms, eachbeam segment is bent due to Mp.. but the further behavior 
(motion) of the PCM does not involve any additional bending of any beam segment, 
and the PCM behavior is identical to a h-kipsage of straight bars connecting real 
hinges. This fact is very useful in performing a plastic analysis by a method that 
involves the motion of the PCM due to an imposed virtual displacement. 

The types of independent mechanisms are shown in F i p  11.4 and discussed 
here: 

1. Beam Mechanism This mechanism can form in any span of a continuous beam 
and, as shown in Figure 11.4, in any member of a frame. For a member 
subjected to a uniformly distributed load, there is only one possible beam 
mechanism and only three possible plastic hinge locations (only two possible 
plastic hinge locations if one member end is a real hinge). For a beam 
subjected to concentrated loads at n locations between the member ends, 
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I ,  I I ,  
I 

Apn A, Aah 

Midspandeflectim 

FIGURE 113 Idealized loaddeflection curve for beam in Figure 11.2. 

there are n possible beam mechanisms and n + 2 possible plastic hinge 
locations (only n + 1 possible plastic hinge locations if one member end is a 
real hinge). 

2. Panel Mechanism This mechanism can occur due to lateral loads. 
3. Joint Mechanism This mechanism can occur at the junction of three or more 

members. 
4. Gab& Mechanism This mechanism is characteristic of gabled frames and 

involvesspreadingof thecolumntopswithrespecttothecolumnbases.Various 
combinations of the independent mechanisms canbe made to form a c o m p -  
ite mechanism. Examples of some composite mechanisms are shown in Figure 
11.5. 

For a structure that is indeterminate to the nth degree, let the number of 
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(a) Beam mechanisms 

(b) Panel mechanism A f A a  
(c) Joint mechanism 

(d) Gable mechanisms 

FIGURE 11.4 Independent mechanisms. 

redundants be denoted by NR = n. The number of independent mechanisms NlM for 
such a structure is 

NIM = NPPH - NR 

where NPPH = number of possible plastic hinge locations. 

11.4 EQUILIBRIUM METHOD OF ANALYSIS 
The equilibrium mefhod of plastic analysis is useful for solving beam mechanisms in 
continuous beams and frames. This method is also useful for solving a plane frame 
for which there is only one redundant. In this method the objective is to find an 
equilibrium moment diagram in whichM, IM, and Mu = M, at a sufficient number 
of locations to produce a PCM. In the preceding notation, Mu is a moment diagram 
value due to factored loads and M, is the required plastic hinge strength. The steps 
in the analysis procedure are: 
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FIGURE 11.5 Composite mechanism. 

1. Select the redundant(s). For a continuous beam, the moments at the supports 

2. Draw the moment diagram for the factored loads. 
3. Draw the moment diagram for the redundant(s). 
4. Assume that a plastic hinge forms at a sufficient number of locations to 

5. Solve the moment equilibrium equation for M,. 
6. Check to see if Mu I Mu,. 

are chosen as the redundants. 

produce a PCM. 

Our purpose in the analysis is to determine Mu, for the governing plastic collapse 
mechanism. A value of Mu, obtained by the equilibrium method is a lower bound 
value. Therefore, the governing value of Mupis the maximum of the required strength 
values. 
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A beam mechanism is simpler than a composite mechanism for a frame. 
Therefore, we begin our discussion for the equibilibrium method and continuous 
beams. 

Use Fy = 36 ksi and the equilibrium method of plastic analysis. In Figure 11.6 the same 
W section is to be used for both spans. Select the lightest acceptable W section 
assuming lateral braces can only be provided as stated in Figure 11.6 for the 
following conditions: 

Dead load 
W, = 7.10 kips W, = 11.9 kips w = 0.533 kips/ft 

(W,, W, and w contain an estimate accounting for the member weight.) 

Live load 
W, = 22.8 kips W, = 34.2 kips w = 2.10 kips/ft 

The governing LRFD loading combination is 1.20 + 1.6L. 

Solution 

The factored loads are 

W,, = 1.2(7.10) + 1.6(22.8) = 45.0 kips 

W, = 1.2(11.9) + 1.6(34.2) = 69.0 kips 

W, = 1.2(0.533) + 1.6(2.10) = 4.00 kips/ft 

In Figure 11.7(a), each real hinge location and each possible plastic hinge location is 
numbered for convenience in the following discussion. The number of independent 
mechanisms NZM are 

NIM = N P P H -  NR = 5 - 2 = 3 

The three independent mechanisms are shown in Figure 11.7(b-d). 
The redundants are chosen as the support moments at points 4 and 6. For span 

1, there is only one redundant Mu which is the moment at point 4. As shown in Figure 
11.8(a), M4 causes tension in the top fiber of the section at the support and this is a 

- -  - -  
4 @ ( L b  =I0 f t )=40  ft 

4 - -  - -  
L, =4Oft 

e 
L ,  =30 ft 

FIGURE 11.6 Example 11.1: structure and loading. 
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45.0 kips 69.0 kips - 
4.00 wft 

f f + 
I I I 

1 2 3 4 5 
Comments: 
1. Point 1 is a real hinge location. 
2. Points 2 to 6 are possible plastic hinge locations. 
(a) Governing factored loading: 1.20 + 1.6L 

6 

2 
(b) PCM 1-24 

3 
(c) PCM 1-3-4 

4.00 wfi 

(d) PCM 4-5-6 5 

FIGURE 11.7 Example 11.1: plastic collapse mechanism. 

negative moment. For convenience, we let the moment vector show the correct 
direction and M4 is the magnitude of this vector. Hence, M 4  is an absolute value. 

As shown in Figure 11.8@), the moment diagram is drawn by parts for the 
factored loads and the redundant applied on a simply supported beam. The factored 
loads cause a positive moment and the redundant causes a negative moment. 

For PCM 1-2-4, the equilibrium requirements at the possible plastic hinge 
locations are: 

1. -M4 = -MUp 
where M ,  = required plastic hinge strength. 

2. ( M 2  = 5 3 0 - 3 M , )  1 = M ,  
Since M4 = M ,  we obtain 

4 - M ,  = 530 ft-kips 
3 
M ,  = 397.5 ft-kips 
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45.0 kips 69.0 kips 

?V4 = 6 1 + -  M4 
30 

10 ft 10 ft 

2 3 

M4 v, =53--  
30 

t 
Note: 
M4 is the magnitude of the indicated moment vector. 

(a) Loading and member end forces 

5 
3 Note: 

M4 is an absolute value. 
(b) Factored moment diagram 

2 
PCM 1-24 

PCM 1-3-4 3 

(c) Possible plastic collapse mechanisms 

FIGURE 11.8 Example 11.1: span 1 

2 2 
3 3 

3. M ,  =610--M, =610--(397.5)=345ft-kips 

Since 
(M3 = 345 ft-kips) I (Mup  = 397.5 ft-kips) 

no moment ordinate exceeds Mu, = 397.5 ft-kips and PCM 1-2-4 governs for 
span 1. 

We could have started the solution for span 1 by assuming that PCM 1-3-4 
governs and for illustration purposes this is done. For PCM 1-3-4, the equilibrium 
requirements at the possible plastic hinge locations are: 

1. -M, = -Mu, 

M , = 6 1 0 - - M , ) = M U Y  2 
3 
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Since M ,  = Mu,, we obtain 

5 - M u ,  = 610 ft-kips 
3 
Mu, = 366 ft-kips 

1 1 
3 3 3. M ,  = 530--M, = 530--(366)=408 ft-kips 

Since 

the governing PCM must contain a plastic hinge at point 2. 
(M2 = 408 ft-kips) > (Mup = 366 ft-kips) 

Mu, values obtained by the equilibrium method are lower bound values. 
Therefore, the required plastic hinge strength in span 1 cannot be less than the 
maximum computed value, which is Mu, = 397.5 ft-kips. Also we know that for the 
correct value of M u ,  all ordinates on theM diagram are less than or equal toM,,. Both 
these important facts were illustrated in the above calculations. 

w ,  =4.w kipdft 

Span = 40 ft M4Gk t 80 kips 
Note: 
M4 = M ,  = is the magnitude of the indicated moment vector. 

(a) Loading and member end forces 

1 
-M4 -7 ( M 4  + M d  

(c) Factored moment diagram 

(d) Composite factored moment diagram 

FIGURE 11.9 Example 11.1: span 2 
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As shown in Figure 11.9(a), for span 2 there is only one possible PCM, and there 
are two redundants (M4 and Md. However, since the structure and loading for this 
span are symmetric with respect to midspan, M4 = M, and as illustrated in Figure 
11.9(d), we can easily find M y  = 400 ft-kips. 

Since the same W section 1s to be used in both spans, span 2 governs and Mup = 
400 ft-kips. Therefore, the Mu diagram is shown in Figure 11.10. At each ordinate on 
the M u  diagram, the LRFD design requirement for strong-axis bending is 

4Mm 2 Mu 
where i$Mm is the design bending strength for strong-axis bending. Therefore, at the 
plastic hinge locations, we must require 

4Mpx 2 M ,  
where 

$MPx = 0.9F&. = design plastic hinge strength 

Mup = required plastic hinge strength 

Using LRFD p. 4-18 for Fv = 36 h i ,  we find that 

W24 x 62 ( #Mpx = 413 ft-kips) 2 (Mup = 400 ft-kips) 

is the lightest W section that satisfies the design bending requirement at the plastic 
hinge locations, when the lateral bracing requirements are satisfied. 

Using the information given in Figure 11.10, check the lateral bracing require- 
ments. Note that Figure 11.10 shows the Mu diagram associated with the governing 
plastic collapse mechanism. This is the moment diagram that should be used in 
checking the lateral bracing requirements. Therefore, in the following Lpl formula, 
we have shown the definitions as they apply to the M ,  diagram associated with the 
governing plastic collapse mechanism. On the left side of the plastic hinge at the 
center support, we must require that 

Lpd 2 (Lb = 10 ft) 

145.0 kips 169.0 kips 4.00 wft 

4 @ ( L *  =10 f t )=40  ft 

mftk m!ik 

FIGURE 11.10 Example 11.1: final moment diagram. 
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where 

Fy = specified minimum yield strength of the compression flange (ksi) 

M, = smaller moment at the ends of the L b  region (ft-kips) 

M2 = larger moment at the ends of the region (ft-kips) 

yY = radius of gyration about weak axis (ft.) 

(M,/M,) is positive when moments cause reverse curvature 

Mu, = required plastic hinge strength (ft-kips) 

Fy = 36 ksi 
Therefore, 

MI = 343 ft-kips 

Mu, = 400 ft-kips 

yY = 1.38 in. = 0.115 ft 

M,/M, ,  = 343/400 = 0.8575 

L ,  = [ 3 6 0 0 + 2 2 0 0 ( 0 . 8 5 7 5 ) ] ~  = 17.53 ft 
(36) 

(Lpd = 17.53 ft) 2 ( L b  = 10 ft) as required 

On the right side of the plastic hinge at the center support, we must require that 

Lpd 2 ( L b  = 10 ft) 
Since M , / M ,  = 200/400 = 0.5, 

L ,  =[3600+2200(0.5)]-=15.0 (0 115) ft 
(36) 

(Lpd = 15.0 ft) 2 ( L b  = 10 ft) as required 

On the left side of the plastic hinge at the right support, we must require that 

Lpd 2 ( L b  = 10 ft) 
Since M , / M ,  = 200/400 = 0.5, 

(0 115) 
(36) 

L ,  = [ 3600 + Z O O (  0.5) J - = 15.0 ft 

(Lpd = 15.0 ft) 2 ( L b  = 10 ft) as required 
For the other L b  regions, the design bending requirement is 

w?lX 2 Mu 



456 Plasfic Analysis and Design 

where 

@Mpx [ @Mnx = smaller of 

MI = (@MnX for C, =1) 

12.5 M c, = 
2.5Mm,, +3M, +4M,  +3M, 

where 
M,,, = absolute value of maximum M in the L b  region 

MA = absolute value of M at quarter point in the L, region 
M, = absolute value of M at middle point in the Lb region 

M, = absolute value of M at three-quarter point in the L b  region 

For the L, = 10 ft region at the left support, 

= 1.67 12.5(397) 
2.5( 397) + 3( 99.25) + 4( 198.5) + 3( 297.75) 

c, = 

and from LRFD p. 4-128 we find that 

[ C,M, = 1.67(355) = 592 ft - kips] > ( @MpX = 413 ft - kips) 

Therefore, (@MnX = 413 ft-kips) 2 (Mu = 397 ft-kips) as required. 
For the L,  = 5 ft region at the 45.0 kip load, 

(Lb = 5 ft) I (Lp = 5.8 ft) 

Therefore, (@Mnx = 413 ft-kips) 2 (Mu = 397 ft-kips) as required. 
For each L,  = 10 ft region at the last plastic hinge to form (at midspan of span 2), 

= 1.13 12.5( 400) 
2.5( 400) + 3( 287.5) + 4( 350) + 3(  387.5) 

c, = 

From LRFD p. 4-128, we find that 

[ C , M ,  = 1.13( 355) = 401.2 ft - kips] < ( @Mpx = 413 ft - kips) 

Therefore, (@Mnx = 401 ft-kips) 2 (Mu = 400 ft-kips) as required. 

lightest acceptable W section for this example problem. 
All design bending requirements are satisfied for a W24 x 62, which is the 

The objective of this example is to perform an equilibrium method of plastic analysis 
to determine the loading that causes the PCM to form in the structure of Example 11.1 
when a W24 x 62 section is used. Therefore, the loads in Figure 11.11 are unknown 
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69 
45 w' W ,  =3.56Wu /(40 ft) + + + 

I I I 

20 ft 20 ft 

1 2 3 4 5 6 
In both spans, the member is W24 x 62 @Mp = 413 ft -kips. 

FIGURE 11.11 Example 11.2: structure and loading. 

and the moment at each possible plastic hinge location is @Mpx = 413 ft-kips. We 
assume that the loads shown in Figure 11.7 increase proportionately to cause the 
PCM for the indicated W section. Consequently, the 45.0-kip load is replaced by W,, 
the 69.0-kip load is replaced by (69/45)Wu, and the uniform load is replaced by (4 
kips/ft)(40 ft)/(45 kips)W, /(40 ft) = 0.0889 kips/ft. 

Solution 

For span 1, the loads in Figure 11.12 are unknown and the moment at each possible 
plastic hinge location is @Mpx = 413 ft-kips. Therefore, M, = 413 ft-kips. When a plastic 
hinge forms at point 2, the moment equilibrium requirement is 

(M2  = 11.78WU - 138) = 413 

10 ft 
413 ft- kips 

t V ,  = 1.178 W, - 13.77 kips 
V, = 1.355 W, + 13.77 kips 

(a) Loading and member end forces 

(b) Moment diagram 

FIGURE 11.12 Example 11.2: span 1. 



458 Plastic Analysis and Design 

which gives 

When a plastic hinge forms at point 3, the moment equilibrium requirement is 

which gives 
W, = (413 + 275)/13.55 = 50.8 kips 

Plastic collapse loads obtained by the equilibrium method are lower bound 
values. Therefore, the loads that produce plastic collapse in span 1 cannot be less 
than the least computed value of W, and (69/45) W,. The governing PCM for span 
1 has a plastic hinge at point 2 and W, = 46.8 kips and (69/45)W, = 71.8 kips are 
required to produce this PCM. If the PCM in span 2 forms first, the equilibrium 
method requires 

W, = (413 + 138)/11.78 = 46.8 kips 

(M3 = 13.55W, - 275) = 413 

which gives 
(w, = 0.O889Wu) = 8(2)(413)/ (40)* = 4.13 k/ft 

w, = 46.5 kips 
Therefore, the governing PCM for the entire structure is the PCM in span 2. The 
loads that produce this PCM and the corresponding moment diagram are shown 
in Figure 11.13. 

Modify Example 11.1, for the reasons stated, to obtain the conditions shown in Figure 
11.14: 

1. Change w, from 4.00 kips/ft to 3.60 kips/ft to cause MUp to be different for 
each span. 

-413 ftk -413 ftk 

FIGURE 11.13 Example 11.2: final moment diagram. 
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2. Choose L b  = 10 f t  for all regions to illustrate that the Lpd requirement may not 

In Figure 11.14, a different W section is to be used in each span. Lateral braces can 
only be provided at intervals of Lb = 10 ft. Use F = 36 ksi and the equilibrium method 
of plastic analysis. Select the lightest acceptabfe W section for the span in which the 
governing PCM occurs. Use the actual $Mpx of the selected section in the determina- 
tion of M, for the other span. 

Solution 
In Figure 11.15, the information for span 1 is the same (except for the L b  values) as in 
Example 11.1 from which we find that M, = 397.5 ft-kips. For span 2, 

dictate the choice of the section. 

Select the lightest available W section for span 1. M ,  = 397.5 ft-kips and Lb = 10 ft. 
Using LRFD p. 4-18 for F,, = 36 ksi, we find that 

W24 x 62, ($Mpx = 413 ft-kips) 2 (Mup = 397.5 ft-kips) 

is the lightest W section that satisfies the design bending requirement at the plastic 
hinge locations in span 1 when the lateral bracing requirements are satisfied. 

At the right support of span 1, 
M ,  = 345 ft-kips 

MUp = 397.5 ft-kips 
rV = 1.38 in. = 0.115 ft 

M , / M U p  = 345/397.5 = 0.8679 

(0.115) L ,  =[3600+2200(0.115)]- = 17.6 ft 
(36) 

(Lpd = 17.6 ft) 2 (Lb  = 10 ft) as required 
Between the two concentrated loads, L b  = 10 ft 

= 1.0553 12.5 ( 397) c -  
- 2.5( 397)+3( 358)+4( 371)+3( 384) 

3.60 wft 

- 4 @ ( &  =10 f t )=40 ft 

35 ft L -  35 ft - -  
First W section Second W section 

FIGURE 11.14 Example 11.3 structure and loading. 
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10 ft 

t ,  d 3 - S  30 

(a) Factored loading and member end forces 

(b) Moment diagram -398 ft-kips (b) Moment diagram -398 ft-kips 

FIGURE 11.15 Example 11.3: span 1. 

From LRFD p. 4-128 we find that 

[ C,M, = 1.0553(355) = 374.61 < ( @Mpx = 413 ft-kips ) 
Therefore, (@Mu = 375 ft-kips) < (Mu = 397 ft-kips), which is not satisfactory. Enter 
LRFD p. 4-128 with L, = 10 ft and M,/C, = 397.5/1.0553 = 377 ft-kips. We find there 
are two sections of the same weight that may be satisfactory: 

1. W21 x 68 (q5Mpx = 432 ft-kips) 2 (Mu, = 398 ft-kips) and ry = 1.80 in.: 

[ C , M ,  = 1.0553( 406) = 4281 < ( @ M ,  = 432 ft-kips ) 
(@Mnx = 430 ft-kips) 2 (Mu = 397 ft-kips) as required 

L,, = [ 3600 + 2200( 0.8679)] (1*80/12) = 22.96 ft > ( L ,  = 10 ft) as required 
(36) 

W21 x 68 with L, = 10 ft is satisfactory. 
2. W24 x 68, (q5Mpx = 478 ft-kips) 2 (Mu, = 398 ft-kips) and r,, = 1.87 in.: 

[ C a ,  = 1.0553(450) = 4751 < (q5Mpx = 478 ft-kips) 

(@MnX = 475 ft-kips) 1 (Mu = 397 ft-kips) as required 

L ,  = [ 3600 + 2200( 0.8679)] (1*87/12) = 23.85 ft > (L ,  = 10 ft) as required 
(36) 

W24 x 68 with L, = 10 ft is satisfactory. 
Suppose we choose to use the W24 x 68 section in span 1 since, as shown in Figure 
11.16, this gives us the maximum benefit for span 2. Assume that a plastic hinge 
forms at x = 20 ft from the left support. The moment equilibrium requirement is 

1 
2 

720 - -( 478 + Mu, ) = Mu, 

which gives Mu, = 321 ft-kips. 
In Figure 11.16, using M, = Mu, = 321 ft-kips and ZM = 0 at point 6, we find that 
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the reaction at the left support is 75.9 kips. The zero shear point occurs at x = 75.9/ 
3.60 = 21.08 ft from the left support, and the maximum positive moment is323 ft-kips. 
Therefore, 321 <Mu, < 323 and we can conservatively use Mu, = 323 ft-kips. The final 
moment diagram is shown in Figure 11.17. 

For span 2, try 
W24 x 55 (@Mpx = 362 ft-kips) 2 (MUp = 323 ft-kips) 

At the right support, 
MI = 180 ft-kips 

r,, = 1.34 in. = 0.112 ft 
M,/M,,  = 180/323 = 0.5573 

L, = [3600+2200(0.5573)]--1--- = 15.0 f t  

Mu,  = 323 ft-kips 

(0  112) 
(36) 

(Lpd = 15.0 ft) 2 ( L b  = 10 ft) as required 
For the Lb = 10 ft region on the right side of midspan: 

= 1.113 12.5 ( 323 ) c -  
- 2.5 (323) + 3( 314) + 4 ( 287) + 3 (243) 

From LRFD p. 4-128, we find that 

[ C b M ,  = 1.113(305) = 340 ft - kips] < ( @ M p x  = 362 ft-kips ) 
(@M,, = 340 ft-kips) 2 ( M u  = 323 ft-kips) as required 

W24 x 55 with Lb = 10 ft is satisfactory for span 2. 

provided such that L b  = 20 ft. As in the preceding solution, we might try 
For illustration purposes in span 2, suppose that lateral bracing can only be 

w = 3.60 kipdft 

Ic w)M6 Span = 40 ft ti 478 ft-kips 
(a) Loading and member end moments using span I plastic design strength 

1 - ( 478 + M,  ) 4 7 8  

2 
(b) Moment diagram 

FIGURE 11.16 Example 11.3: span 2. 
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- *  

I 45.0 kips I 69.0 kips 3.60 Wft 

FIGURE 11.17 Example 11.3 final moment diagram. 

W24 x 55, ( $Mpx = 362 ft-kips) 2 (Mup = 323 ft-kips) 

At the right support, from the previous solution we know that 

(Lpd = 15.0 ft) c (Lb = 20 ft) 

This section is not satisfactory. To obtain a satisfactory section, we need: 

1. $Mpx 1 (Mup = 323 ft-kips) 
2. Lpd = [3600 + 2200(0.5573)](ry/12)/(36) 2 20.0 ft 

which requires rv 2 1.79 in. 
For the W24 series, the lightest choice is 

W24 x 68 (rv = 1.87 in.) 2 1.79 in. 

($Mpx = 478 ft-kips) 2 (Mup = 323 ft-kips) 

For the W21 series, the lightest choice is 

W21 x 68, (yY = 1.80 in. ) 2 1.79 in. 

(@Mpx = 432 ft-kips) 2 (Mup = 323 ft-kips) 

For the W18 series, the lightest choice is 

W18 x 76, ( Y ~  = 2.61 in. ) 11.79 in. 

(#Mpx = 440 ft-kips) 1 (Mup = 323 ft-kips) 

Therefore, when L, = 20 ft in span 2, the lightest acceptable choice is either W24 x 68 
or W21 x 68. 
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X L - x  

FIGURE 11.18 Example 11.4: structure and loading. 

Use F,, = 36 ksi and the equilibrium method of plastic analysis. For the structure and 
loading shown in Figure 11.18, determine x, which locates the last plastic hinge to 
form in the governing PCM. Also determine M,. 

Solution 
As shown on the first free-body diagram in Figure 11.19, the shear is zero at x, and 
we can determine the left reaction R, as a function of x. This enables us to determine 

R, = W , X  v =  0 

I 
RI = W , X  ' R2 

w x2 [ Mw = w ,  L(i) - R,  L ]  5 2 
w L2 w,*2 
- $ - - W " X L =  2 

x 2 + 2 x l - L 2  = o  

x = ( - 1  k f i )  L =0.414L 

M, = 
w , x z  ~ , ( 0 . 4 1 4 L ) ~  - - = 0.0858 wy Lz 

2 2 

FIGURE 11.19 Example 11.4 locations and computations of MuI. 
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Mu, as a function of w, and x .  The second free-body diagram enables us to determine 
Mu, as a function of w, and L. Equating these two requirements of Mu, enables us to 
solve for 

x = 0.414L 

w,x2 Mu, = -- - 0.0858 w L2 
2 

As shown in Figures D.3 to D.9 of Appendix D, the solution for this example is useful 
in the determination of plastic analysis formulas for continuous beams subjected to 
a uniformly distributed load. 

As shown in Figure 11.20, we can replace a uniformly distributed load with an 
equivalent set of concentrated loads, which can be used to obtain an approximate 
value of Mu,. For the last two sets of concentrated loads, the approximate value 
obtained for Mu, is only 2.75% less than the correct value. The indicated procedure 
can be used to replace the factored member weight by an equivalent set of concen- 
trated loads when all other loads are concentrated loads. 

w = 4.70 kipdft + + + 
L = 30 ft 

6 3 Mv 3 6 

392 ft - kips 

ft - kips 

3 M, 3 3 

= 35.25 kips 

17.625 kips 35.25 kips 

7.5 ft 7.5 ft 7.5 ft 
M, = 353 ft -kips - - - - 

4 4 M, 4 4 

FIGURE 11.20 Example 11.4: solution using concentrated loads. 
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Use Fy = 36 ksi and the equilibrium method of plastic analysis. For the structure and 
loadings shown in Figure 11.21, determine Mu, for the governing PCM. For member 
3, (KL),  = L, = 5 ft. For members 1 and 2, (KL)  = L, = 15 ft. Use the recommended 
design procedures in Section 6.6 for beam-cofumns. Select the lightest acceptable 
W18 for member 3 and the lightest acceptable W14 for members 1 and 2. 

Solution 
Our recommended approach given in Section 11.1 is used. In this approach, a 
tentative member size is needed in order to compute B,  and B,. Therefore, we assume 
that B, =1, select trial sections for loading 1, and check these trial sectionsfor loadings 
2 and 3. 

3.12 Wft 

5 ft 

k 30 f t  4 
Loading 1: LRFD Eqn (A4-2) 

2.65 Wft 

3.04 kips 

A A 
Loading 2: LRFD Eqn (A4-3) 

Loading 3: LRFD Eqn (A4-4) 

FIGURE 11.21 Example 11.5: structure and loadings. 



466 Plastic Analysis and Design 

For loading 1 in Figure 11.21 and the equilibrium method of plastic analysis, 
we find 

M, = 175.5 ft-kips 

The governing PCM and the corresponding moment diagram are shown in Figure 
11.22. 

Using recommended Procedure 1 inktion 6.6 to account for the axial compres- 
sion force, select a trial section for which 

4Mpx 2 (Mup + PUL/40) 
For member 3, try 

@Mpx 2 [176 + 11.7(30)/40 = 185 ft-kips] 

W18 x 40, (4Mpx = 212 ft-kips) 2 185 ft-kips 

3.12Wft  

M, = 175.5 ft -kips 

I" 
11.7 kips 11.7kips 

1 5 f t  + 15ft f 
46.8 kips 46.8 kips 

M diagram is plotted on tension side of neutral axis of each member. 

FIGURE 11.22 Example 11.5: PCM for loading 1. 
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For members 1 and 2, try 

CpMpx 2 [176 + 46.8(15)/40 = 194 ft-kips] 

W14 x 48, (@Mpx = 212 ft-kips) 2 194 ft-kips 

For loading 2 in Figure 11.21, we need to use the information shown in Figure 
11.23 where the redundant is chosen as the horizontal reaction at the right support. 
Note that w, = 2.65 kips/ft on the girder for loading 2 is less than w, = 3.12 kips/ft 
on the girder for loading 1. Therefore, we know that the beam mechanism solution 
for loading 2 does not govern. 

Assume that the composite PCM shown in Figure 11.23(d) governs for loading 
2. Let the moment ordinates that lie inside the frame be positive moments. At point 
4, the moment equilibrium requirement is 

(-M4 = -15H) = -M, 

2.65 Wft 

7 . 6 7 3  & 
1 

kips 1 5 P 0  160.7 ftk 

t r K 4  
(a) Note: Fig. (a) = Fig. (b) + Fig. (c) 

2.65 Wft 
45.6 45T-l 321.4 

tr x 4  
x=41.21/2.65 = 15.57 ft 

(C) 

Note: 
These moment diagrams are 
plotted on the tension side of 
the neutral axis for each member. 

(d) Governing PCM for Fig. (a) 

FIGURE 11.23 Example 11.5: PCM for loading 2. 
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Due only to the redundant H, the vertical reaction at each support is zero. Conse- 
quently, before we determine HI we can find the location of M3, which is at the zero 
shear point in the girder for all loads. At point 3, the moment equilibrium require- 
ment is 

(M3 = 321.4 -15H) = M,, 

Substitution of (-15H) = -Mu, gives 
2M,, = 321.36 ft-kips 

H = 160.7/15 = 10.71 kips 

Since M I (Mu, = 161 ft-kips) everywhere along the moment diagram in Figure 
11.23(a), the assumed composite PCM is the governing PCM for loading 2. 

To account for Pdeffects, B#,, is the required plastic hinge strength. Therefore, 
we must compute B,. = 1/ (1 - CP,/cp,,). For sidesway frame buckling of members 
1 and 2, 

M,, = 160.7 ft-kips 

Gbottorn = 10 
Gtop = (485/15)/(612/30) = 1.58 
(KL),  = 2.01(15)(12) = 361.8 in. 

Z Z E I / ( K L ) ~  = ~~(29,000)(485)/(361.8)~ = 1060.5 kips 
Pe2 = 2(1060.5) = 2121 kips 

CP, = 38.23 + 41.27 = 79.5 kips 
B,  = 1/ (1 - XP,/XPe2) = 1/(1- 79.5/2121) = 1.039 

[B$4,, = 1.039(161) = 167 ft-kips] < [Mu, = 175.5 ft-kips (for loading l)] 
Loading 2 does not govern. 

11.24 shows that the results of this analysis is M,, = 115.1 ft-kips: 
For loading 3 in Figure 11.21, we use the process described in loading 2. Figure 

CP, = 23.0 + 28.0 = 51.0 kips 

B, = 1/ (1 - CP,,/XP,,,) = 1/(1 - 51.0/2121) = 1.025 

[ B f l , ,  = 1.025(115) = 118 ft-kips] < [M,, = 175.5 ft-kips (for loading l)] 
Loading 3 does not govern. 

1.70 Wft 115.1 

115.1 ftk 

x = 27.9711.70 = 16.45 ft t 
28.0 kips 

t 
28.0 kips 

FIGURE 11.24 Example 11.5: PCM for loading 3. 
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Loading 1 governs. Perform the designchecks. See Figure 11.22. No appreciable 
sidesway occurs due to this loading. However, sidesway frame buckling is not 
prevented and (PP,, due to sidesway frame buckling must be considered. 

Check members 1 and 2: W14 x 48 Fy = 36 ksi. 

As a column, 

Check LRFD C2.2 (p. 6-43): 
0.75A$, = 0.75(14.1)(36) = 381 kips 

(P, = 46.8 kips) I (0.75A8, = 381 kips) as required 

For sidesway frame buckling, 

K, = 2.01 (from loading 2 calculations) 

(KL), = 2.01(15) = 30.2 f t  

See LRFD p. 3-21 for W14 x 48, Fy = 36 ksi. The section has no flag on it. Therefore, 
local buckling does not govern (PP, and, when we get to the beam-column check, web 
local buckling does not govern (PM,,: 

[(KL), = 15 ft] > [(KL)J(YJYJ = 30.2/3.06 = 9.87 ft] 

(PP, = ((PPnY = 270 kips) 

(15)( 12)/1.91 dj” ] 
= 1.057 < 1.5 as required 

K 29,000 

As a beam, 

(PMpx = 212 ft-kips 

rY = 1.91 in. = 0.159 f t  

= O  MI - 0 
Mu, 176 

[3600+2200(0)](0.159) 
36 

L,, = = 15.9 ft 

(Lpd = 15.9 ft) 2 (Lb = 15 ft) as required 

As a beam-column, 

Mu, = B,M,, = B ,  (176 ft-kips) 

[ g ,  = C m x / ( l  - PJpe+)] 2 1 is required 
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C, = 0.6 - 0.4(0/165) = 0.6 

= 0.607 0.6 cm - 
(1-Pu / P m )  - (1-46.8/4284) 

B ,  = larger of is required 

M, =B1(176 ft-kips) = l.OO(176) = 176 ft-kips 

[PJ(@P,) = 46.8/270 = 0.1731 < 0.2 

(- 2 212 

W14 x 48, Fy = 36 ksi is acceptable for members 1 and 2. 

Check member 3, W18 x 40, Fy = 36 ksi: 

= 0.0306 5 0.125 1 
J36 " I  

p,, 11.7 11.7 
@Py 0.9AFy 0.9( 11.8)( 36) 
-=-= 

(t = 51.0) I [ A, = [ 1 - 2.75( 0.0306)]- = 97.7 as required 

As a beam, 

yY = 1.27 in. = 0.10583 f t  

At the member ends, 

MI = 176 - 3.12 [30 - 2(5)]'/8 = 20 ft-kips 

-- M1 2o -0.102 
Mu, 176 

(Lpd = 11.2 ft) 2 ( L b  = 5 ft) as required 

Elsewhere along the member length, 

(Lp = 5.3 ft) 2 (Lb = 5 ft) 
Therefore, everywhere along the member length/ 

qjMm = (qjMpx = 212 ft-kips) as required 
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As a column, 

Since the axial compression force in members 1 and 2 is not negligible, the braced 
frame nomograph on LRFD p. 6-186 cannot be used to obtain K, for member 3. Be 
conservative and use K, = 1. (WY = 5 ft = 60 in. (given in the problem statement): 

(KL/r), = 60/1.27 = 47.2 

(KL/r), = 360/7.21 = 49.9 (governs +Pn) 

a: = 0.313 

+Pn = 0.85(11.8)(0.658)0.313(36) = 317 kips 

[PJ(#PJ = 11.7/317 = 0.03691 c 0.2 

As a beam-column, 

B, = larger of 0.86 and 1.00 

Mu = B1(176) = l.OO(176) = 176 ft-kips 

W18 x 40, Fy = 36 ksi is acceptable for Member 3. 
Serviceability checks need to be performed for deflection and drift at service 

loads, as we did in Example 6.4, which is for very nearly the same structure and 
loadings. 

11.5 VIRTUAL WORK METHOD OF ANALYSIS 
The virfuaI work method of plastic analysis is useful for solving all types of mecha- 
nisms. This method is particularly useful for frames in which the geometry is 
complicated and/or for which there is more than one redundant. 

Our purpose in the analysis is to determine MUp for the governing plastic 
collapse mechanism. A value of MV obtained by the virtual work method is an upper 
bound value. Therefore, the governing value of M ,  is the least of the required 
strength values. The objective is to find a mechanism (independent or composite) 
such that Mu I MUp for each member in the structure. 

Immediately after the assumed plastic hinges have formed in an assumed PCM, 
we imagine that the structure only moves through a small additional displacement 
(an increment of the actual displacement that would occur). Since we wish to limit 
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this increment to a small displacement, we choose to say that this is a virtual 
displacement. Let 8 denote an angle in radians. For small displacement theory, sin 
8 = tan 0 = 8. For the imposed virtual displacement on the assumed mechanism, the 
internal work done by the plastic hinges is equated to the external work done by the 
loads. 

The steps in the analysis procedure are: 
1. Identify the location of each possible plastic hinge, the number of possible 

plastic hinges NPPH, the number of redundants NR, and the number of 
independent mechanisms, NlM = NPPH - NR. 

2. Identify the independent mechanisms and, whenever applicable, at least one 
possible composite mechanism. 

3. For each mechanism, solve the virtual work equation of equilibrium for M,,,. 
4. Check to see if M u  5 Mu,. If this is true, we have found the correct PCM. 

Otherwise, we repeat steps 3 and 4. 

In Figure 11.25 the same W section is to be used for both spans. Use F ,  = 36 ksi and 
the virtual work method of plastic analysis. Determine the governing PCM and M U p .  

Solution 

The number of independent mechanisms is 

NlM = NPPH - N R  = 5 - 2 = 3 

These independent mechanisms are shown in Figure 11.25. No other mechanisms 
are applicable. 

For span 1, try PCM 1-2-4: 

The internal work done at each plastic hinge is the product of Mu, and the angle 
through which the plastic hinge moves. The external work done at each concentrated 
load is the product of the concentrated load and the displacement through which the 
load moves. For mathematical convenience, we choose to say that the imposed 
virtual displacement is the smallest angle 8 in the displaced configuration of the 
assumed PCM. All of the other virtual displacements must be expressed in terms of 
8. Equating internal work and external work gives 

M,, (38 +e) = 45 (208) + 69 (ioe) 
Since 6+ 0, we can divide both sides of the equation by 8. For PCM 1-2-4, we obtain 

Mu, = 397.5 ft-kips 

We could perform the moment check and prove that this is the correct PCM for span 
1. Instead, we will compute the Mu,  for each possible PCM to illustrate that a 
solution obtained by the virtual work method is a lower bound solution. 
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- -  L -  - -  L -  

1 2 3 4 
(a) Governing factored loading 

- -  - -  - -  
5 6 

- -  

20 10% 0 ,  

(b) PCM 1-2-4 

(c) PCM 1-3-4 

(d) PCM 4-5-6 

FIGURE 11.25 Example 11.6: structure, loading, and PCM. 

For span 1, try PCM 1-3-4. Equating internal work and external work gives 

M,, (36 +20) = 45 (loel + 69 (206) 

Mu, = 366 ft-kips 

For span 1, the maximum value obtained for Mu, = 398 ft-kips is the governing 
value for this span. However, the governing value of Mu, may be dictated by span 
2 since the same W section is to be used in both spans. 

For span 2, PCM 4-5-6 is the only possibility: 

The external work is w, = 4.00 kips/ft times the triangular area whose boundaries are 
the original beam line and the mechanism lines. Equating internal work and external 
work gives 

1 M,, (e+2e+e)  = 4.00 -(40)(20e) [: 
Mu, = 400 ft-kips 

PCM 4-5-6 governs and M = 400 ft-kips. This is verified in Figure 11.26 by plotting 
the Mu diagram and showing that Mu 2 (Mu, = 400 ft-kips). YP 
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45.0 kips 69.0 kips 
I 1 4.00 wn 

mfik 

FIGURE 11.26 Example 11.6 final moment diagram. 

In Figure 11.27, a W24 x 62, $Mpx = 413 ft-kips is used in both spans. Use the virtual 
work method of plastic analysis. Determine the governing PCM and the plastic 
collapse loads. 

Solution 
For span 1, try PCM 1-24 Equating external work and internal work gives 

W, (206) + (69/45)Wu (106) = 413 (36 +6) 
W, = 46.8 kips 

We could perform the moment check and prove that this is the correct PCM for span 
1. Instead, we will compute W, for each possible PCM to illustrate that a solution 
obtained by the virtual work method is a lower bound solution. 

For span 1, try PCM 1-3-4 
W, (106) + (69/45)W, (206) = 413 (36 +26) 

W, = 50.8 kips 
For span 1, the minimum value obtained for W, = 46.8 kips is the governing value for 
this span. However, the governing value of W, may be dictated by span 2 since the 
same W section is to be used in both spans. 

For span 2, PCM 4-5-6 is the only possibility. Equating external work and internal 
work gives 

0.O889Wu -(40)(206) = 413(6+26+6) c: I 
W, = 46.5 kips 

PCM 4-5-6 governs and W, = 46.5 kips. This is verified in Figure 11.28 by plotting the 
Mu diagram and showing that Mu 5 (Mup = 413 ft-kips). 
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w, =3.56WU /(40 ft) + + + 
- -  - -  - -  - -  

loft I loft loft I 20 ft mft 
1 2 3 4 5 6 

Inbothspans. thememberis W24x62 @4, =413ft-kips. 

(a) Governing factored loading 

(b) PCM 1-2-4 

a ,108 2e 

(c) F'CM 1-3-4 +UP 

r e  

(d) PCM 4-5-6 

FIGURE 11.27 Example 11.7 structure, loading, and PCM. 

46.5 kips 71.3 kips 
I 1 4.13 k/ft 

413 ftk 

-413 ftk -413 ftk 

FIGURE 11.28 Example 11.7: final moment diagram. 
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loft loft 

Use Fy = 36 ksi and the virtual work method of plastic analysis. In Figure 11.29, a 
different W section is to be used in each span. In both spans, L, = 0 for the top flange 
and L, = 10 ft for the bottom flange wherever lateral braces are needed. Select the 
lightest acceptable W section for span 1. Use the actual 4Mpx of the selected section 
for span 1 in the determination of Mu, for span 2. 

- -  - -  - -  - -  - -  - -  b 
loft X 4 0 - x  

S o h  t ion 

For span 1, try PCM 1-2-4: 

M,, (38 +e) = 45 (208) + 69 (ioe) 
Mu,  = 397.5 ft-kips 

As shown in Figure 11.30, the moment check reveals that this is the correct PCM for 
span 1. 

2e ioe, e 

(b) PCM 1-2-4 

(c) PCM 1-3-4 M"P(l) 

- e  

(d) PCM 4-5-6 

FIGURE 11.29 Example 11.8: structure, loading, and PCM. 
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45.0 kips 69.0 kips 

398 ftk 
loft 1 loft i lof t  + -  

39.73 

397 

-398 ftk 

FIGURE 11.30 Example 11.8: span 1. 

Using LRFD p. 4-18 for Fy = 36 ksi, we find that 

W24 x 62, (@Mpx = 413 ft-kips) 2 (Mup = 398 ft-kips) 

is the lightest W section that satisfies the design bending requirement at the plastic 
hinge locations in span 1, whenthe lateral bracing requirements are satisfied. 

At the right support of span 1, 

MI = 345 ft-kips 

M, = 398 ft-kips 

ry = 1.38 in. = 0.115 ft 

(0.115) 
L, =[3600+2200(0.780)]-~17.0 ft 

(36) 

(Lpd = 17.0 ft) 2 ( L b  = 10 ft) as required 

For the top flange in span 1, Lb = 0; therefore, where the top flange of the W24 x 62 is 
in compression, we find that (@Mnx = @Mpx = 413 ft-kips) 2 (Mu = 398 ft-kips). Use W24 
x 62 for span 1. 

For span 2, assume that the plastic hinge at point 5 in PCM 4-5-6 OCCLUS at 
midspan: 

1 M, (6+26+6)=4.00 -(40)(206) 

M, (2)= 342 ft-kips 

[: 
As shown in Figure 11.31, the moment check reveals that the correct MuP(2) cannot be 
more than 343 ft-kips. 
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45.0 kips 69.0 kips 
I I 3.60 wft 

-413 ftk 

FIGURE 11.31 Example 11.8: final moment diagram. 

For span 2, try 

W24 x 55, (@Mpx = 362 ft-kips) 2 (Mu, = 343 ft-kips) 

At the right support, L, = 10 ft for the bottom flange: 

MI = 180 ft-kips 

Mu, (2) = 343 ft-kips 

ry = 1.34 in. = 0.112 ft 

= 0.475 0.9M1 - 0.9(181) -- 
343 

UP 

(0.112) 

(36) 
L ,  = [ 3600 + 2200 ( 0.475)] ___ = 14.5 ft 

(Lpd = 14.5 ft) 2 (L ,  = 10 ft) as required 

For the top flange in span 2, L, = 0; therefore, where the top flange of the W24 x 
55 is in compression, we find that 

(#Mu = @Mpx = 362 ft-kips) 2 (Mu = 343 ft-kips). 

Use W24 x 55 for span 2. 
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Use Fy = 36 ksi and the virtual work method of plastic analysis. For the structure and 
loadings shown in Figure 11.32, determine M ,  for the governing PCM. 

Solution 
The beam mechanism shown in Figure 11.33 governs for loading 1, which is 
symmetric and gives 

M,, ( e + 2 e + e )  = 3.12[ $ i o ) ( i 5 e ) ]  

M ,  = 175.5 ft-kips 
For loading 2, the panel mechanism shown in Figure 11.34(a) is assumed to govern 
for illustrative purposes and we obtain 

M ,  (e + e) = 3.0qi5q 

M ,  = 22.8 ft-kips 

From the moment check [see Figure 11.34(b)], we find that: 
1. This is not the correct PCM since M > (Mup = 22.8 ft-kips). 
2. The correct value of Mup lies in the range of 298.6 ft-kips > M ,  > 22.8 ft-kips. 
3. We should investigate a composite mechanism containing a plastic hinge at 

approximately 14.43 ft from the left end of the girder. 

3.12 Wft 

k 30 ft 4 
(a) Loading 1 

I 3.04 kips I 

d d 
(b) Loading 2 

FIGURE 11.32 Example 11.9 structure and loadings. 
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3.12 Wft 

d 
15 ft 15 ft m 

FIGURE 11.33 Example 11.9 no-sway mechanism. 

2.65 k/ft 
3. 

(a) Panel mechanism 

2.65 Wft 22.8 ftk 
22.8 ftk 

30 ft 

38.23 41.27 

14.43 ft 

22.8kk 22'8 
298.6 ftk 

(b) Moment check 

Figure 11.34 Example 11.9: panel mechanism and moment check. 
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For gravity loads plus wind on a one-story frame, as we have shown in the 
preceding calculations, the panel mechanism is not likely to be the governing 
PCM. Therefore, we usually assume that the composite mechanism [see Figure 
11.35(a)] governs and perform the moment check to verify our assumption. Note 
that the plastic hinge in the girder is assumed to occur at 14 ft from the left end 
of the girder. Since supports 1 and 5 are real hinges for our structure, we can find 
the vertical reactions and the correct point of zero shear at which there is a plastic 
hinge in the composite mechanism. However, if both (or either one) of supports 
1 and 2 are fixed instead of being hinged, we cannot find the correct point of zero 
shear. Therefore, we chose to illustrate the general procedure which involves an 
assumed location of the zero shear point. For the assumed PCM in Figure 
11.35(a), we obtain 

2 3 4 
14 ft 16 ft 

2.65 Wft 

t38.23 
(a) Trial FCM 

u4 = u = u = 1 5a 

I 

4 I . 2 7 M  

x = 41.27/2.65 = 15.57 ft 

(b) Moment check 

FIGURE 11.35 Example 11.9: composite mechanism and moment check. 
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Mu, [2(0!++)]=3.04(150!)+2.65 -(3Ov) [: I 
Fromthemechanismrelations,wefindandsubstitutea= 6 andv= 166toobtain 

M, = 160.6 ft-kips 

From the moment check [see Figure 11.35@)], we find that the correct value of Mu, 
lies in the range of 160.8 ft-kips > M > 160.6 ft-kips. We can conservatively use Mu, 
= 160.8 ft-kips as the correct value JMuF. Note that this correct value of M ,  = 161 ft- 
kips does lie in the range of 298.6 A-lups > Mup > 22.8 ft-kips found in the panel 
mechanism investigation. 

The instantaneous center method illustrated in Figure 11.36 can be used to 
obtain the mechanism relations. When the roof is not flat, the instantaneous center 
method is the most direct procedure for finding the mechanism relations. 

h+15 15 
14 +16 - 14 
h = 17.14 ft 
u = u  - u  =u4 

u2 = 1501 
u4 = 15p = h e  

v = 14a = 168 

- _- 

2 -  3 

14 ft 16 ft 

h 

FIGURE 11.36 Example 11.9: composite PCM. 
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Use Fy = 36 ksi and the virtual work method of plastic analysis to determine M, for 
the structure and loadings shown in Figure 11.37. Assume that the two roof girders 
are identical and all plastic hinges form in the roof girders. 

Solution 

For illustration purposes, find My' due to loading 1 for the gable mechanism shown 
in Figure 11.38(a). The mecharusm relation is obtained by observing that the 
horizontal deflection at point 2 is 

ug = 15a = 208 

FIGURE 11.37 Example 11.10: structure and loadings 
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(a) Gable mechanism 

: 
(b) Loading on roof 

I- 40 ft 40 ft 4 

7 

(c) Vertical deflection diagram of roof 

(d) Moment check 

FIGURE 11.38 Example 11.10 panel mechanism for loading 1 

The virtual work equation is 

Mu, [2 (6+a)+(a+a)]  = 2.65 -( 80v4)  [: 1 
Substitution of 

4 160 
3 3 a=--8 and u4  =40a=---8 

gives M, = 770.9 ft-kips. 
To perform the moment check shown in Figure 11.38(d), we proceed as follows. 

The vertical loading of 2.65 kips/ ft is resolved into components perpendicular to and 
parallel to the roof girder. From moment equilibrium at the left end of the girder, we 
find that the shear at the right end of the girder is 13.46 kips. The zero shear point is 
located at (13.46 kips)/(2.32 kips/ft) = 5.80 ft from the right end of the girder and the 
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I.. 

moment at this point is 771 + 13.46 (5.80)/2 = 810 ft-kips, which exceeds our 
computed value of Mu, = 771 ft-kips. Therefore, we know that the correct value of Mu,  
lies in the range of 810 ft-kips > Mu, > 771 ft-kips. Since 810/771= 1.05, if we choose 
to say that Mu, = 810 ft-kips, our Mu, is not more than 5% larger than the correct Mu,. 
In addition to having found a very good estimate of MU,, we also have found that 
plastic hinges numbered 3 and 4 in Figure 11.39(a) (the correct PCM for loading 1) 
are located x = 40 - 5.80 (40/42.72) = 34.57 f t  from the eaves. 

Assume that x = 34.5 ft in Figure 11.39(a) and compute Mu,. The mechanism 
relation is 

u2 = (34.5/40)15a = 208 

The virtual work equation is 

- 

M u ,  [ 2( 8 + a ) + 2 (  a ) ]  = 2.65[ (80-69.0)+L( 2 69.0)]v4 

Substitution of a = 1.5468 and v4 = 34.5a gives Mu, = 786 ft-kips, which lies in the 
previously established range of 

(810 ft-kips > Mu, > 771 ft-kips) 

The preceding calculations for a uniformly distributed load take less time to 
perform than the case of concentrated loads at the purlin locations on the roof girder. 
Purlins are spaced at about 5 or 6 ft along the roof girder axis. We have shown for a 

2.65 Mft 

Ic + + + + + + + 

X X 
4 * 4 b 

4 b 
40 ft 40 ft 

(a) Governing PCM for loading I 

FIGURE 11.39 Example 11.10: composite PCM for loading 1. 
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uniformly distributed load that the correct locations of the plastic hinges, numbered 
3 and 4 in Figure 11.39(a), are approximately at a purlin location. Therefore, the 
solution for a uniformly distributed load is a very good approximation of the 
solution for the concentrated loads case. For preliminary design purposes, gabled 
frame solutions based on a uniformly distributed roof loading can be used. 

We have determined that Mup = 786 ft-kips for loading 1 in Figure 11.37. Usually, 
the loading combination that includes wind does not govern Mup for a gabled frame. 
Now we need to show that loading 2 does not govern Mu or we must compute the 
goveming value of Mup. We prefer to compute M ,  for &e generalized version of 
loading 2 and the composite mechanism shown in Figure 11.40. As we will show, the 
deletion of H, from this solution gives us the exact solution for only a uniformly 
distributed load. 

W" + + + + + + + 

I' - 1  

(b) Composite mechanism 

FIGURE 11.40 Example 11.10 composite PCM for loading 2. 



22.5 Virtual Work Method of Analysis 487 

We need to locate the instantaneous center of rotation (ICR) point for the 
structural segment connecting points 3 and 6 in Figure 11.40. From similar triangles, 
we find that 

-=- Y h l + R 6  

X L 
where 

y = h l + ( i ) h ,  = h l + -  2xh 
L / 2  L 

Solving for R, we obtain 

2 1  
R 6 = 7 + 2 h  lL - h  

The horizontal displacement at point 6 is 
u 6  = h l P  = R 6 8  

which gives the following mechanism relation: 

The vertical displacement at point 3 is 

v 3  = x a = ( L - x ) e  

which gives the following mechanism relation: 

The virtual work equation is 

M, [ ( a + e ) + ( e + p ) ] =  -wYLv3 1 + H , h l a  
2 

Substitution of the mechanism relations gives 

M, = 

Differentiating M, with respect to x, setting this result to zero, and solving for x give 

x = -  ,,,i -1+ /Qpyq} 1+- 1- 
h2 

For o w  loading 2 (see Figure 11.37), H,, = 7.1 kips, w,, = 2.00 kips/ft, L = 80 ft, h, = 20 
ft, and h, = 15 ft. Substitution of these values into the preceding formulas gives us x 
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= 33.26 ft and Mu, = 624 ft-kips. Therefore, loading 1 governs and M ,  = 786 ft-kips. 
Note that if we set H, = 0 and w, = 2.65 kips/ft in the formuIas obtained for the 
composite mechanism of loading 2, we obtain x = 34.44 ft and Mu, = 786 ft-kips. 
Therefore, the formulas for x and M ,  are valid for the case when H, = 0. 

See the structure and loadings shown in Figure 11.41. Use Fy = 36 ksi. Assume that 
the simultaneous occurrence of the beam mechanisms for loading 1 is the governing 
PCM and determineM, for each member by the equilibrium method. Use the virtual 
work method and the relative Mu, values obtained from loading 1 to verify that 
loading 2 does not govern the Mu, values. 

Solution 

For loading 1 and the beam mechanisms [see Figure 11.42(a)], we find, for member 1, 

3.12 k/ft 

(a) Loading I 

2.65 Wft 
12.74 kips k (b) Loading 2 

(c) Real and possible plastic hinge numbers 

FIGURE 11.41 Example 11.11: structure and loadings. 
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3.12 Wft 

60 ft 30 ft - -  
(a) Loading 1 and PCM 

(b) Moment diagram 

FIGURE 11.42 Example 11.11: composite PCM for loading 1. 

For member 2, 

The moment check [see Figure 11.42@)], establishes the indicated Mu, for the 
columns. If loading 1 (loading combination that does not involve wind) governs, we 
have established that Mu, = 176 ft-kips for members 2 and 5, Mu, = 527 ft-kips for 
member 4, and Mu, = 702 ft-kips for members 1 and 3. If we choose the least of these 
values as the base value and express the other values as a function of this base value, 
we find that the relative Mu, values are Mu, for members 2 and 5,3M, for member 
4, and 4M,, for members 1 and 3. 

Now, we choose to prove that loading 2 does not govern the Mu, values. Any 
assumed composite mechanism solution for which the required moment diagram 
ordinates do not exceed the Mu, values obtained for loading 1 is proof that loading 
2 does not govern the Mu, values. We choose to investigate the trial PCM shown in 
Figure 11.43(b). The total internal virtual work is 

Wint = Mu, (28) + 4MU,8 + 3MU,8+ M,,B = 16M,,B 

and the total external virtual work is 

w,, = 12.74(15e)+2.65 -(60)(30e) J = 2576.18 [: 
From Win, = Wex,, we find that Mu, = 161 ft-kips, 3M,, = 483 ft-kips, and 4M,, = 644 ft- 
kips. When we perform the moment check [see Figure 11.43(c)], we find that our trial 
PCM has enabled us to prove that loading 2 does not govern the Mu, values. 
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12.74 kips 

30.2 

aft 30 ft - -  
76.3 122.4 39.8 

(a) hading 2 and the reactions for the trial PCM 

e 

(b) Trial PCM 

(c) Moment diagram 

FIGURE 11.43 Example 11.11: composite PCM for loading 2. 

We have established that loading 1 govern and M, = 176 ft-kips for members 
2 and 5, M, = 527 ft-kips for member 4, and M, = 702 ft-kips for members 1 and 3. 

We can use the approach illustrated for two bays and a one-story frame when 
there are two or more bays. As the number of bays increases, a loading combination 
that involves wind is less likely to govern the relative Mu, values. 

11.6 JOINT SIZE 
In a frame, the plastic hinges do not form at the intersection of the member 
centerlines as we assumed in the preceding example problems. Consider a one- 
story rectangular frame (see Figure 11.44). If we use the same W section for 
members 1 and 3, due to a larger axial force in member 3, the plastic hinge at the 
intersection of members 1 and 3 will form at the end of member 3. If the W section 
chosen for member 3 is not the same as the one chosen for member 1, the plastic 
hinge will form at the end of the weaker member. At the intersection of members 
1,2, and 4, there are three possible plastic hinge locations (one at the end of each 
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(a) Member numbers, real and possible plastic hinge numbers 

(b) Corner (or eave) connection u 
(c) Connection at interior joint 

FIGURE 11.44 Connection details at corner and interior joints. 

of the intersecting members). Actually/ as we have described, the plastic hinges 
form at the interface of the beam and column members. This interface is at the 
connection locations. Hence, connections are coincident with plastic hinge loca- 
tions. Connections must be strong enough to develop the required plastic hinge 
strength for an assumed inelastic rotation capacity of 3 (see footnote c on LRFD p. 
6-39) at the plastic hinge in a member. According to LRFD p. 6-171, the “target” 
reliability index is /3= 3.0 for members and p = 4.5 for connections. The larger value 
of p= 4.5 means that the connections are expected to be stronger than the members 
they connect. This means that a plastic hinge at a joint is expected to form outside 
the connection in one of the interconnected member ends. Therefore, the plastic 
collapse strength of the frame is somewhat larger than that predicted on the basis 
of centerline dimensions. Thus, if we ignore the joint size in the plastic analysis, the 
results obtained are conservative. 

In a gabled frame (see Figure 11.45), the eave connection usually is haunched in 
some manner. Sometimes, the crown connection is also haunched. In design, we 
assume that a plastic hinge will not form within a haunch. Therefore, in the plastic 
analysis made for the final design considerations, we should assume plastic hinge 
locations on each end of the haunch. This complicates the plastic analysis computa- 
tions somewhat, but our final analysis assumptions should be a reasonably good 
representation of how we intend for the structure to behave. 

If a beam mechanism governs in a plastic analysis of a frame, we can use the clear 
span of the beam when we compute Mu,,. The clear span of the beam is the distance 
between the column flanges. If the column has not already been designed, we use an 
assumed depth of the column section in computing the clear span and check our 
assumed depth. 
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(b) Eave connection 
A 
(a) Gabled frame 

(c) Haunched eave connections 

(d) Crown connections 

FIGURE 11.45 Connection details for gable frames. 
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PROBLEMS 
11.1 For the structure and loading in Figure P1l.l, find the correct PCM and MUp.  

102 kips 

- a  - -  
20 ft ' l o f t  

FIGURE P1l.l 

11.2 Solve Problem 11.1 with the uniform load replaced by 23.5 kips at each 
support and 47 kips at the third span points. 

11.3 See Appendix D, Figures D.8 and D.9. For five spans of L = 30 ft, w, = 0.832 
kips/ft, L, = 0 for the top flange, L, = 6.0 ft wherever needed for the bottom flange, 
Fy = 36 ksi, select the lightest acceptable W sections for each case and compare the 
total weights. 

11.4 Solve Problem 11.3 for Fy = 50 ksi and I,,= 4.0 ft for bottom flange. 

11.5 See Figure P11.5. For the 30-ft span, L, = 10 ft. For the 36-ft span, L, = 9 ft. 
Use Fy = 36 ksi and the same W section in both spans. Select the lightest acceptable 
W section. 

24 36 64 kips 

k - -  - -  
l o f t  l o f t  l o f t  ' 18 ft 18 ft 

4 
FIGURE P11.5 

11.6 See Figure P11.6. For the 30-ft span, L, = 10 ft. For the 36-ft span, L, = 9 ft. 
Use Fy = 36 ksi. Select the lightest W section that is satisfactory for the 30-ft span. Use 
this W section in the other span and design a pair of cover plates only in the region 
indicated by a heavy line. 

24 36 64 kips 

l o f t  * lo f t  18 ft 18 ft  )-I 
FIGURE P11.6 
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11.7 See Figure P11.7. For the 30-ft span, Lb = 10 ft. For the 36-ft span, Lb = 9 ft. 
Use Fy = 36 ksi. First, select the lightest W section that is satisfactory for the 30-ft span. 
Use @M for this W section in the PCM for the other span and select the lightest 
acceptafie w section for the 36-h span. 

24 36 64 kips 

18 ft 18 ft 4 
FIGURE P11.7 

11.8 see Figure P11.8. For the 30-ft span, Lb = 10 ft. For the 36-ft span, L b  = 12 ft. 
Use Fy = 36 ksi. First, select the lightest W section that is satisfactory for the 30-ft span. 
Use @M for this W section in the PCM for the other span and select the lightest 
acceptafie w section for the 36-h span. 

26 52 kips 78 78 

12ft 12ft 4 + 
FIGURE P11.8 

11.9 !ke Figure P11.9. For the 30-ft span, Lb = 10 ft. For the 36-ft span, L b  = 12 ft. 
Use Fy = 36 ksi. First, select the lightest W section that is satisfactory for the 36-ft span. 
Use @M for this W section in the PCM for the other span and select the lightest 
acceptafie w section for the 30-h span. 

26 52 kips 

12ft 12 ft 4- 

FIGURE P11.9 

11.10 InFigureP1l.lO,useLb= 7.5ftandFy=36ksi. Selectthelightestacceptable 
W section. 

4.40 wft + + + + + + 
b 30 ft - -  3oft - 

FIGURE Pl1.10 
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11.11 InFigureP11.11,useL,=7.5ftandFy=36hi.Selectthelightestacceptable 
W section. 

4.40 wft + + + + + + 
k 30 ft 30 ft 4 

FIGURE Pl1.11 

11.12 InFigureP11.12, useL, = L/4ineachspan, the same W section in all spans, 
and Fy = 36 hi. Select the lightest acceptable W section that is valid for all spans. 

4.40 wft + + + + 
30 ft 40ft 30 ft 

FIGURE Pl1.12 

11.13 In Figure P11.13, use L, = L/4 in each span and F, = 36 hi. First, select the 
lightest acceptable W section that is valid for the exterior spans. Use CpM for this W 
section in the PCM for the interior span and select the lightest acceptabg W section 
for the 40-ft span. 

4.40 wft 
r I I I I I I i 

FIGURE P11.13 

11.14 In Figure P11.14, use L, = L/4 in each span and F, = 36 hi. First, select the 
lightest acceptable W section that is valid for the interior span. Use 
section in the PCM for the exterior span and select the lightest 
for the 30-ft spans. 

4.40 wft 

FIGURE p11.14 
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1r 4 + 4 + 4 - 
6.35 kips 

11.15 In Figure P11.15, use Fy = 36 h i ,  L b  = 6 ft for the girder, and L b  = (KL), = 20 
ft for the column. Select the lightest acceptable W section for the girder. Select the 
lightest acceptable W12 section for the column. Also, select the lightest acceptable 
W14 section for the column. Use the lighter of the two column selections. 

3.12 Wft 

1' 

(a) Loading 1 

1r + + + + 

- - 4 + 4 + 4 
7.92 kips 

1I 

(a) Loading 1 
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the lightest acceptable W12 section for the column. Also, select the lightest acceptable 
W14 section for the column. Use the lighter of the two column selections. 

11.17 Finish Example 11.10. Use Fy = 36 ksi, eight equal spaces of L, for the 
girder, and L, = (KL),  = 20 ft for the column. Select the lightest acceptable W section 
for the girder. Select the lightest acceptable W12 section for the column. Also, select 
the lightest acceptable W14 section for the column. Use the lighter of the two column 
selections. 

11.18 Finish Example 11.11. Use Fy = 36 ksi, Lb  = 6 ft for the girders, and L, = (KL),  
= 15 f t  for the columns. Select the lightest acceptable W section for each girder. Select 
the lightest acceptable W12 section for each column. Also, select the lightest accept- 
able W14 section for each column. Use the lighter column selections. 

11.19 In Figure P11.19, use Fy = 36 ksi, five equal spaces of L, for the girder, and 
L, = (KL)  = 20 ft for the column. Assume that the plastic hinges form only in the 
girders. 8elect the lightest acceptable W section for the girders. Select the lightest 
acceptable W12 section for the column. Also, select the lightest acceptable W14 
section for the column. Use the lighter of the two column selections. 

2.65 k/ft 

1 

(a) Loading I 

2.00 Wft 

1 

(b) Loading 2 

FIGURE P11.19 
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11.20 In Figure P11.20, determine the relative values of Mu,, for the trial PCM 
shown. Compare these values with those that were obtained in Example 11.11 when 
the side-wind load was applied in the opposite direction. 

(b) Trial PCM 

FIGURE P11.20 



Computer Output for an EHample of an Elastic, 
Factored load Analgsis 

STAAD (structural analysis and design), a proprietary computer software program of 
Research Engineers, Inc., Yorba Linda, CA, was used to obtain a P-DELTA analysis of a 
plane frame (Figures 1.14 and 1.15) from the structure shown in Figure 1.16. 

The output from STAAD begins immediately after Figure A.1 in which the 
STAAD sign conventions for input and output are given. For the user's convenience, 
STAAD places a number in front of each line of input and prints these line numbers 
in the output. The elastic P-DELTA analysis was performed for applicable LRFD 
Load Combinations (A41) to (A46) (p. 6-30) and accounts for the second-order (PA) 
effects due to joint displacements. Therefore, we do not have to use LRFD Eq.(Cl-1) 
(p. 6-41) in designing the members of this structure. To minimize the number of 
output pages, member-end forces are listed for only the governing members and a 
few other members to indicate the range of axial force and bending moments. 

ForceY 

ForceX 
joint 
forces X 

x-trans Mom-Z A 
joint 

7 
~~ 

(a) Positive vector directions of global information 

(b) Positive vector directions of member-end information 
FIGURE A.l Positive directions of global and local forces. 

499 
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1. 
2. 
3. 
4. 
5. 
6. 
7. 

9. 
a .  

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 

19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 

29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
3 8 .  

1 8 .  

28. 

39. 
40.  
41. 
42. 
43. 
44. 
45. 

STAAD PLANE (SEE FIGURES 1.14 - 1.17) 
UNIT KIP FEET 
JOINT COORDINATES 
1 0. 0.; 2 0. 21.; 3 0. 25.5 
4 6. 21.; 5 6. 26.; 6 12. 21.; 7 12. 26.5 
a i a .  21.; 9 18. 27.; 10 24. 21.; 11 24. 27.5 
12 30. 21.; 13 30. 28.; 14 36. 21.; 15 36. 27.5 
16 42. 21.; 17 42. 27.; i a  48. 21.; 19 48. 26.5 
20 54. 21.; 21 54. 26.; 22 60. 21.; 23 60. 25.5 
24 60. 0. 
MEMBER INCIDENCES 
1 1 2; 2 2 3; 3 24 22; 4 22 23 
5 2 4; 6 4 6; 7 6 a; a a 10; 9 10 12 

10 12 14; 11 14 16; 12 16 18; 13 i a  20; 14 20 22 
15 3 5; 16 5 7; 17 7 9; i a  9 11; 19 11 13 

25 4 5; 26 6 7; 27 a 9; 28 10 11; 29 12 13 
30 14 15; 31 16 17; 32 i a  19; 33 20 21 

20 13 15; 21 15 17; 22 17 19; 23 19 21; 24 21 23 

34 3 4; 35 5 6; 36 7 8; 37 9 10; 38 11 12 
39 12 15; 40 14 17; 41 16 19; 42 18 21; 43 20 23 
UNIT INCHES 
MEMBER PROPERTIES 
1 TO 4 PRISMATIC AX 11 .8  IZ 310. 

15 TO 24 PRISMATIC AX 5.89 IZ 23.3 

26 TO 32 PRISMATIC AX 2.38 IZ 2.17 

5 TO 14 PRISMATIC AX 5. IZ 20.9 

25 33 PRISMATIC AX 3.13 IZ 3.83 

34 TO 43 PRISMATIC AX 2.38 IZ 2.17 
CONSTANTS 
E 29000. ALL 
UNIT FEET 
SUPPORTS 
1 24 FIXED BUT KMZ 140.6 
* UNITS ARE FT-KIPS/DEGREE 

LOADING 1 
* VALUE SHOWN IS FOR G = 2 AT THE SUPPORT 

* DEAD 
JOINT LOADS 
5 7 9 11 15 17 19 21 FY -2.20; 3 23 FY -1.10 

13 FY -2.90 
4 6 a 10 12 14 16 i a  20 FY -0.20; 2 22 FY -10.90 
* 
LOADING 2 
* LIVE LOAD (CRANES) 
JOINT LOADS 
6 18 FY - 8 . ;  12 FY -16. 
* 
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46. LOADING 3 
47. * ROOF LOAD (SNOW) 
48. JOINT LOADS 

50. * 
51. LOADING 4 
52. * WIND LOAD 
53. JOINT LOADS 
54. 3 FX -0.085 FY 1.; 23 FX 0.085 FY 1. 
55. 5 7 9 11 FX -0.170 FY 2.; 15 17 19 21 FX 0.170 FY 2. 

49. 5 7 9 11 13 15 17 19 21 FY -3.60; 3 23 FY -1.80 

13 FY 2. 
56. MEMBER LOADS 
57. 1 2 UNIFORM GX 0.240; 3 4 UNIFORM GX 0.150 
58. * 
59. LOADING 5 
60. * 0.9D + W - - TO CHECK DRIFT 
61. REPEAT LOAD 
62. 1 0.9 4 1. 
63. * 
64. LOADING 6 
65. * 1.4D 
66. REPEAT LOAD 
67. 1 1.4 
68. * 
69. LOADING 7 
70. * 1.2D + 1.6L +0.5R 
71. REPEAT LOAD 
72. 1 1.2 2 1.6 3 0.5 
73. * 
74. LOADING 8 
75. * 1.2D + 0.5L +1.6R 
76. REPEAT LOAD 
77. 1 1.2 2 0.5 3 1.6 
78. * 
79. LOADING 9 
80. * 1.2D + 1.6R + 0.8W 
81. REPEAT LOAD 
82. 1 1.2 3 0.5 4 0.8 
83. * 
84. LOADING 10 
85. * 1.2D + 1.3W + 0.5L + 0.5R 
86. REPEAT LOAD 
87. 1 1.2 4 1.3 2 0.5 3 0 . 5  
88. * 
8 9 .  LOADING 11 
90. * 0.9D + 1.3W 
91. REPEAT LOAD 
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92. 1 0.9 4 1.3 
93. * 
94. PDELTA ANALYSIS 
95. * 
96. * OUTPUT FOR DRIFT & DEFLECTION CHECKS 
97. LOAD LIST 1 TO 5 
98. PRINT JOINT DISPLACEMENTS LIST 2 3 12 

JOINT DISPLACEMENTS - (INCHES RADIANS) 

JT LOAD X-TRANS Y-TRANS Z-ROTAN 

2 1 -0.03821 -0.01705 -0.00083 
2 -0.05922 -0.01178 -0.00130 
3 -0.05508 -0.01326 -0.00119 
4 1.04229 0.00818 -0.00023 
5 1.03581 -0.00714 -0.00100 

3 1 0.01814 -0.01891 -0.00118 
2 0.02927 -0.01421 -0.00185 
3 0.02610 -0.01599 -0.00170 
4 1.00881 0.00980 0.00106 
5 1.05344 -0.00718 0.00001 

12 1 0.00000 -0.35005 0.00000 
2 0.00000 -0.55002 0.00000 
3 0.00000 -0.49100 0.00000 
4 1.01927 0.27932 0.00006 
5 1.04743 -0.03551 0.00007 

99. * 
100. * OUTPUT FOR STRENGTH CHECKS 
101. LOAD LIST 6 TO 11 
102. PRINT REACTIONS ALL 

SUPPORT REACTIONS - (KIPS FEET) 

JOINT LOAD FORCE-X FORCE-Y MOM Z 

1 6 0.88 32.41 -4.31 
7 2.77 62.38 -13.63 
8 2.69 64.58 -13.22 
9 -3.53 27.84 21.41 

10 -6.01 30.25 36.21 
11 -7.15 6.36 40.68 

24 6 -0.88 32.41 4.31 
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7 -2 * 77 62.38 13.63 
8 -2.69 64.58 13.22 
9 -4.42 29.72 27.85 

10 -6.92 33 .31  44.10 
11 -5.78 9 .31  37.48 

103.  PRINT MEMBER FORCES L I S T  1 TO 5 10  1 4  15 20 24 
25 29 33 34 39 43 

M E R  END FORCES - ( K I P S  FEET) 

M LOAD 

1 6 

7 

8 

9 

1 0  

11 

2 6 

7 

8 

9 

1 0  

11 

3 6 

7 

8 

9 

J T  AXIAL SHEAR-Y MOM-Z 

1 32.41  -0.88 
2 -32 .41  0.88 
1 62.38 -2.77 
2 -62.38 2.77 
1 64.58 -2.69 
2 -64.58 2.69 
1 27.84 3.53 
2 -27.84 0.50 
1 30.25 6.01 
2 -30.25 0.54 
1 6.36 7.15 
2 -6.36 -0.60 

-4.31 
-14.38 
-13.63 
-45.49 
-13.22 
-44 .11  

21 .41  
12.28 
36.21 
24.45 
40.68 
41.37 

2 16.48 2.09 11.59 

2 47.39 6.68 37.12 

2 49.54 6.32 35.67 

3 -16.48 -2.09 -2.06 

3 -47.39 -6.68 -6.06 

3 -49.54 -6.32 -6 .21  
2 14.49 -3.06 -13.18 
3 -14.49 3.92 -2.44 
2 16.99 -5.58 -24.91 
3 -16.99 6.98 -3.19 
2 -2.82 -7.99 -38.48 
3 2.82 9.39 -0.64 

24 32 .41  0.88 4 . 3 1  

24 62.38 2.77 13.63 

24  64.58 2.69 13.22 

24 29.72 4.42 27.85 

22 -32 .41  -0.88 14.38 

22 -62.38 -2.77 45.49 

22 -64.58 -2.69 44 .11  
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10 

11 

4 6 

7 

8 

9 

10 

11 

5 6 

7 

8 

9 

10 

11 

10 6 

7 

8 

9 

10 

11 

14 6 

22 
24 
22 
24 
22 

22 
23 
22 
23 
22 
23 
22 
23 
22 
23 
22 
23 

2 
4 
2 
4 
2 
4 
2 
4 
2 
4 
2 
4 

12 
14 
12 
14 
12 
14 
12 
14 
12 
14 
12 
14 

20 

-29.72 
33.31 
-33.31 
9.31 
-9.31 

16.48 
-16.48 
47.39 
-47.39 
49.54 
-49.54 
15.66 
-15.66 
18.90 
-18.90 
-1.03 
1.03 

2.98 

9.46 
-9.46 
9.01 
-9.01 
-2.56 
2.56 

5.04 

8.59 

-2.98 

-5.04 

-8.59 

-35.78 
35.78 

114.24 

109.64 

31.27 

40.60 
5.66 

-114.24 

-109.64 

-31.27 

-40.60 

-5.66 

2.98 
22 -2.98 

-1.90 
6.92 
-2.82 
5.78 
-1.68 

-2.09 
2.09 
-6.68 
6.68 

6.32 

8.04 

12.54 
-8.56 
9.44 

0.67 
-0.67 
1.91 
-1.91 
1.96 
-1.96 
0.27 
-0.27 
0.19 
-0.19 
-0.62 
0.62 

-6.32 

-7.50 

-11.66 

0.04 
-0.04 
-0.22 
0.22 
0.01 
-0.01 
0.03 
-0.03 
-0.06 
0.06 
-0.02 
0.02 

-0.67 
0.67 

40.67 
44.10 
62.00 
37.48 
41.91 

-11.59 
2.06 

-37.12 
6.06 

6.21 
-36.33 
1.31 

-55.92 
1.36 

-35.67 

-39.38 
-1.13 

2.79 
1.26 
8.37 
3.46 
8.44 
3.71 
0.90 
0.70 
0.46 
0.59 
-2.90 
-0.84 

-0.17 
0.48 

0.95 

1.31 
-0.17 
0.40 
-0.59 
0.33 
-0.04 
-0.11 

-1.26 
-2.79 

-1.62 

-0.81 
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7 

8 

9 

1 0  

11 

1 5  6 

7 

8 

9 

10 

11 

2 0  6 

7 

8 

9 

1 0  

11 

2 4  6 

7 

8 

9 

10 

20 9 . 4 6  
22 - 9 . 4 6  
20 9 . 0 1  
22 - 9 . 0 1  
20 9 . 4 0  
22 - 9 . 4 0  
20 1 4 . 4 8  

2 0  1 0 . 2 5  
22 - 1 4 . 4 8  

22 - 1 0 . 2 5  

3 1 5 . 4 8  

3 4 6 . 4 1  

3 4 6 . 8 7  

3 1 8 . 5 2  

3 2 4 . 6 4  

3 5 . 1 8  

5 - 1 5 . 4 8  

5 - 4 6 . 4 1  

5 - 4 6 . 8 7  

5 - 1 8 . 5 2  

5 - 2 4 . 6 4  

5 - 5 . 1 8  

1 3  3 6 . 1 6  

1 3  1 2 2 . 4 7  

1 3  1 1 2 . 4 8  

1 3  3 2 . 4 3  

1 3  4 4 . 7 5  

1 5  - 3 6 . 1 6  

1 5  -122 .47  

1 5  -112 .48  

15  - 3 2 . 4 3  

1 5  -44 .75  
1 3  - 4 . 1 4  
1 5  4 . 1 4  

2 1  1 5 . 4 8  

2 1  4 6 . 4 1  

2 1  4 6 . 8 7  

2 1  9 . 4 1  
23 - 9 . 4 1  
2 1  9 .77  
23 - 9 . 7 7  

23 - 1 5 . 4 8  

23 - 4 6 . 4 1  

23 - 4 6 . 8 7  

- 1 . 9 1  
1 . 9 1  

- 1 . 9 6  
1 . 9 6  

- 0 . 9 8  
0 . 9 8  

- 1 . 3 3  
1 . 3 3  

-0.53 
0 .53  

0 . 5 0  

1 . 2 3  

1 . 2 9  

0 .56  

0 . 7 0  
-0 .70  

0 . 1 1  
- 0 . 1 1  

0 . 1 1  
- 0 . 1 1  

0 .33  
- 0 . 3 3  

0 . 3 8  
- 0 . 3 8  

0 . 1 0  
- 0 . 1 0  

0 . 1 1  
- 0 . 1 1  
- 0 . 0 3  

0 . 0 3  

- 0 . 5 0  

- 1 . 2 3  

- 1 . 2 9  

- 0 . 5 6  

- 0 . 5 0  
0 . 5 0  

1 . 2 3  

1 . 2 9  
- 0 . 3 6  

0 . 3 6  
-0 .37  

0 . 3 7  

-1.23 

- 1 . 2 9  

- 3 . 4 6  
- 8 . 3 7  
- 3 . 7 1  
- 8 . 4 4  
- 1 . 6 3  
- 4 . 3 4  
- 2 . 1 0  
- 6 . 0 8  
- 0 . 6 2  
- 2 . 5 2  

2 . 0 4  
1 . 2 0  
6 . 0 2  
3 . 3 6  
6 .15  
3 .57  
2 . 3 5  
1 . 2 8  
3 . 0 6  
1 . 5 8  
0 . 5 3  
0 . 1 6  

0 . 0 4  
0 . 6 1  

- 0 . 3 0  
1 . 9 1  
0 . 1 0  
1 . 9 2  
0 . 0 3  
0 . 5 6  

0 .70  
-0 .07  
- 0 . 0 9  

- 1 . 2 0  
- 2 . 0 4  
-3 .36  
- 6 . 0 2  
- 3 . 5 7  
- 6 . 1 5  
- 0 . 8 9  
- 1 . 3 6  
- 0 . 9 5  
- 1 . 4 6  

-0 .13  
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11 

25 6 

7 

8 

9 

10 

11 

29 6 

7 

8 

9 

10 

11 

33 6 

7 

8 

9 

10 

11 

34 6 

7 

8 

21 -9.17 
23 9.17 

4 13.53 
5 -13.53 
4 41.33 

4 41.59 
5 -41.59 
4 10.93 
5 -10.93 
4 13.07 
5 -13.07 
4 -3.96 

5 -41.33 

5 3.96 

12 -1.72 
13 1.72 

13 14.40 

13 8.69 
12 -1.51 
13 1.51 
12 -4.55 
13 4.55 
12 0.64 
13 -0.64 

12 -14.40 

12 -8.69 

20 13.53 

20 41.33 

20 41.59 

20 13.90 

20 17.92 
21 -17.92 
20 0.73 
21 -0.73 

21 -13.53 

21 -41.33 

21 -41.59 

21 -13.90 

3 -21.88 
4 21.88 

4 66.32 
3 -66.43 

3 -66.32 

0.25 
-0.25 

-0.30 
0.30 
-1.09 
1.09 
-1.06 
1.06 

0.24 
-0.30 
0.30 
0.09 
-0.09 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.01 
-0.01 
0.01 
-0.01 

0.30 
-0.30 
1.09 
-1.09 
1.06 
-1.06 
0.32 
-0.32 
0.43 

0.04 

-0.24 

-0.43 

-0.04 

0.04 

0.38 
-0.38 
0.37 

-0.04 

0.46 
1.02 

-0.72 
-0.70 
-2.28 
-2 * 20 
-2.21 
-2.14 
-0.53 
-0.57 
-0.65 
-0.72 
0.27 
0.18 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.02 
0.01 
0.03 
0.02 
0.02 
0.02 

0.72 
0.70 
2.28 
2.20 
2.21 
2.14 
0.79 
0.71 
1.07 
0.94 
0.14 
0.04 

0.02 
-0.05 
0.04 

0.06 
-0.18 



9 

1 0  

11 

39 6 

7 

8 

9 

10 

11 

43 6 

7 

8 

9 

10 

11 

4 
3 
4 
3 
4 
3 
4 

12  
1 5  
12 
1 5  
12  
15 
12 
1 5  
12  
1 5  
12  
1 5  

20 
23 
20 
23 
20 
23 
20 
23 
20 
23 
20 
23 
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66.43 
-18.23 

18.23 
-22.09 

22.09 
5.14 

-5 .14  

0.92 
-0.92 
-7.47 

7.47 
0.30 

-0.30 
-0.46 

0.46 
- 4 . 5 1  

4 . 5 1  
-2.53 

2.53 

-21.88 
21.88 

66.32 

66.43 

21.82 

27.96 

0.52 

-66.32 

-66.43 

-21.82 

-27.96 

-0 .52  

-0.37 -0.16 
0.05 0.09 

-0.05 0.03 
0.08 0.13 

-0.08 0.05 
0.03 0 .11  

-0.03 0 .12  

0.00 -0.02 
0.00 0.02 

-0 .01  -0.07 
0 . 0 1  0.07 
0.00 -0.06 
0 .00  0.06 
0 . 0 0  0.00 
0 .00  0.03 
0.00 - 0 . 0 1  
0.00 0 .04  
0.00 0.02 
0.00 0 .01  

-0 .04  0.05 
0.04 -0.02 

-0.38 0.18 
0.38 -0.04 

-0.37 0.16 
0.37 -0.06 

-0 .01  0.12 
0 .01  0.05 

-0.02 0.19 
0.02 0.10 
0.03 0 . 1 1  

-0.03 0.12 
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