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Abstract

Computer-aided approaches are widely used in modern medicinal
chemistry to improve the efficiency of the discovery phase. Fatty acid
amide hydrolase (FAAH) is a key component of the endocannabinoid
system and a potential drug target for several therapeutic applications.
During the past decade, different chemical classes of inhibitors, with
different mechanisms of action, had been developed. Among them, alkyl
carbamic acid biphenyl-3-yl esters represent a prototypical class of active
site-directed inhibitors, which allowed detailed pharmacological character-
ization of FAAH inhibition. Both ligand- and structure-based drug design
approaches have been applied to rationalize structure–activity relation-
ships and to drive the optimization of the inhibitory potency for this
class of compounds.
In this chapter, we review our contribution to the discovery and optimi-

zation of therapeutically promising FAAH inhibitors, based on a carbamic
template structure, which block FAAH in an irreversible manner exerting
analgesic, anti-inflammatory and anxiolytic effects in animal models. The
peculiar catalytic mechanism of FAAH, and the covalent interaction with
carbamate-based inhibitors, prompted the application of different com-
puter-aided tools, ranging from ligand-based approaches to docking
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procedures and quantum mechanics/molecular mechanics (QM/MM)
hybrid techniques. Latest advancements in the field are also reported.

I. Introduction

Fatty acid amide hydrolase (FAAH) is a mammalian membrane protein
responsible for the hydrolysis and inactivation of biologically active amides
(Piomelli, 2003), including the endocannabinoid anandamide and ago-
nists of the peroxisome proliferator-activated receptors, such as oleoy-
lethanolamide and palmitoylethanolamide (Muccioli, 2010).

The catalytic mechanism of FAAH is unique among mammalian
enzymes in that it involves a catalytic triad consisting of two serine residues
(Ser217 and Ser241) and one lysine residue (Lys142), rather than the
more common serine–histidine–aspartate triad found in classical serine
hydrolases (McKinney and Cravatt, 2005). It has been proposed that
Lys142 might serve as a key acid and base in distinct steps of the catalytic
cycle (Fig. 1). As a base, it would activate the Ser241 nucleophile for attack
on the substrate carbonyl. As an acid, Lys142 would protonate the sub-
strate leaving group, leading to its expulsion. The effect of Lys142 on
Ser241 nucleophile strength and on leaving group protonation occurs
indirectly, via the bridging Ser217 of the triad which acts as a ‘‘proton
shuttle’’ (Lodola et al., 2005; McKinney and Cravatt, 2005).

Genetic or pharmacological inactivation of FAAH enzyme leads to anal-
gesic, anti-inflammatory, anxiolytic, and antidepressant effects in animal
models (Bambico et al., 2009), without producing the undesirable side
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FIG. 1. Proposed catalytic mechanism of FAAH in presence of fatty acid ethano-
lamides. R represents the lipophilic chain of the substrate. Hydrogen bonds are dis-
played with pink dotted lines.
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effects observed with cannabinoid receptor agonists (Piomelli, 2005). FAAH
represents therefore an attractive therapeutic target for the treatment of
several central nervous system disorders (Petrosino and Di Marzo, 2010).
FAAH enzyme activity is blocked by a variety of classical serine hydrolase

inhibitors such as sulfonyl fluorides, fluorophosphonates, a-ketoesters, a-
ketoamides, trifluoromethylketones, and acyl-heterocycles (Seierstad and
Breitenbucher, 2008). Other classes of inhibitors, characterized by an
improved drug-like profile, have also been reported (Minkkilä et al.,
2010). These include piperazinyl-(pyridinyl)urea- and carbamate-based
compounds (Mor and Lodola, 2009) which have been shown to inhibit
FAAH by covalently modifying the enzyme’s active site, that is, through
carbamoylation of the nucleophile Ser241 (Alexander and Cravatt, 2005;
Ahn et al., 2007).
Among these carbamoylating agents, N-alkylcarbamic acid aryl esters

emerged as the first promising class of compounds capable to inhibit
FAAH in vivo, gaining considerable interest for the treatment of anxiety,
inflammation, and pain (Kathuria et al., 2003; Piomelli et al., 2006; Sit
et al., 2007). More recently, other classes of carbamate derivatives and
related compounds (Gattinoni et al., 2010) have been developed by
academic and industrial groups. For more detailed information, the read-
er is referred to reviews dedicated to FAAH inhibitors (Seierstad and
Breitenbucher, 2008; Minkkilä et al., 2010).
The design of N-alkylcarbamic acid aryl esters as FAAH inhibitors has

been widely supported by the application of computer-aided drug design
(CADD) techniques (Marshall and Beusen, 2003). By definition, CADD
uses computational methods to discover and improve biologically active
compounds. This was also the case for FAAH, as both ligand-based drug
design (LBDD) and structure-based drug design (SBDD) have been ap-
plied to rationalize structure–activity relationships (SARs), helping the
design of novel FAAH inhibitors.
The LBDD approach is usually applied when structural information on

the target macromolecule is missing (Marshall and Beusen, 2003). LBDD
relies on the hypothesis that compounds with comparable physicochemi-
cal properties behave similarly in biological systems. Pharmacophore
models as well as quantitative SARs (QSARs) can therefore be developed
based on the analysis of known ligands. The QSAR approach is based on
the search for a mathematical relationship between the biological activity
of a series of compounds and their structural descriptors, usually encoding
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a chemical or physicochemical information (e.g., lipophilicity, electronic
properties, steric hindrance, etc.) (Hansch and Leo, 1995). Classical
QSAR variables usually account for the magnitude of a structural property,
but they do not provide information about their spatial distribution in the
molecular surroundings (Selassie, 2003). Thanks to computer graphics,
vector descriptors have been developed, allowing the rationalization of
structure–activity data within a three-dimensional (3D) setting. The possi-
bility to represent molecular properties in a 3D space is evocative of the
supposed ligand–receptor interaction process and makes intuitive the
meaning of the QSAR models (Favia, 2011). The most popular 3D-
QSAR methodologies are comparative molecular field analysis (CoMFA)
and comparative molecular similarity indices analysis (CoMSIA) (Tropsha,
2003). These methods, correlating differences in biological activity with
changes in shape and in the intensity of noncovalent interaction fields
‘‘around’’ (CoMFA) or ‘‘on’’ (CoMSIA) the molecules, have been success-
fully applied in numerous drug-discovery projects, both in retrospective
analysis and in supporting the design of new compounds (Tropsha, 2003;
Mor et al., 2005).

The SBDD approach is based on availability of the 3D structure of the
biological target, usually obtained by X-ray crystallography or NMR studies
(Hardyet al., 2003). If anexperimental structureof the target isnot available,
homologymodels canbedevelopedbasedon theexperimental structureof a
related protein (Fiser et al., 2002). Given the 3D-structure of the target,
ligands can be (i) designed directly into the target binding site using inter-
active graphic tools (Marshall and Beusen, 2003) or (ii) built and placed
within the binding site using a molecular docking approach (Kitchen et al.,
2004). Molecular docking attempts to predict the preferred conformation
andorientationof a compound into a specific cavity (i.e., the binding site) of
the target molecule, assigning a ‘‘score’’ to all the identified bindingmodes
(Kroemer, 2007). The reliability of a docking strategy mainly relies on the
quality of the scoring function (Leach et al., 2006). In the past decades,
several approaches have been developed to estimate the free energy of
binding, with different levels of accuracy. The most rapid and less computa-
tionally demanding methods are the empirical or knowledge-based scoring
approaches, which are based either on simple energy functions or on the
frequency of occurrence of different atom–atom contact pairs in complexes
of known structure (Klebe, 2006). The minimalism of the energy function
together with the lack of conformational sampling make these approaches
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extremely fast, but rather inaccurate (Michel andEssex, 2010).However, the
most rigorous andaccuratemethods, which involve slowgradual transforma-
tions between the states of interest, by using molecular dynamics (MD)
simulations, are extremely time-consuming (Deng and Roux, 2009). In
this respect, computational approaches based on enhanced samplingmeth-
ods (Branduardi et al., 2007; Colizzi et al., 2010; Woods et al., 2011) seem
quite promising, as they have the potential to make accurate predictions at
reasonable computational costs.
One of the most important aspects when trying to predict the binding

mode of an active compound along with the potencies of a set of similar
ligands is the time required for calculating their affinity. While screening of
virtual libraries demands a high throughput of ligands, and thus the time
spent on evaluating a single compound needs to be short, when the binding
mode of a ‘‘lead’’ compound is relatively certain it may be desirable to
perform time-consuming calculations, to improve the accuracy of the pre-
diction ( Jorgensen, 2009). In spite of the theoretical aspects behind the
‘‘scoring problem,’’ various lead identification (Villoutreix et al., 2009) and
optimization (Andricopulo et al., 2009; Carmi et al., 2010; Solorzano et al.,
2010) projects have been successfully carried out by applying SBDD techni-
ques, indicating that theoretical approaches cangive apractical and valuable
contribution to the design of bioactive compounds.
This review focuses on the application of computational methods to the

design and development of FAAH inhibitors belonging to the class of N-
alkylcarbamic acid aryl esters. Early investigations, when the 3D structure
of FAAH was still unknown, were based on LBDD techniques, including
QSAR and 3D-QSAR methods, while more recent advancements were
obtained applying SBDD approaches. These included (i) molecular dock-
ing, (ii) combined quantum mechanics/molecular mechanics (QM/MM)
simulations, and (iii) linear interaction energy (LIE) calculations.

II. Ligand-Based Drug Design

QSAR and 3D-QSAR methods have been successfully applied to the
design of N-alkylcarbamic acid aryl esters as FAAH inhibitors (Tarzia
et al., 2003; Mor et al., 2004; Minkkila et al., 2010), suggesting that for
covalent ligands of similar reactivity, the recognition phase plays a pivotal
role in explaining differences in the inhibitory potency (Tarzia et al.,
2006).
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Carbamates 1 and 2 reported in Fig. 2 are representative of the most
active compounds developed in the early phase of our FAAH project,
having IC50 values of 324 and 396 nM, respectively. Analysis of their
molecular structures allowed to get a first insight into the shape require-
ments for the aromatic substituent. Conformational analysis of the benzy-
loxyphenyl fragment of 2 revealed two families of accessible
conformations, differing in the torsion angle around the O��CH2 bond,
with the two phenyl rings in anti or in gauche conformation (Tarzia et al.,
2003). The gauche conformation of 2 more closely resembled the shape of
the naphthyl derivative 1 when the compounds were superimposed via
their common carbamate group (Fig. 3A). This led us to hypothesize that
a bent shape of the carbamate O-substituent could favor enzyme inhibi-
tion, possibly by allowing a better steric complementarity between the
inhibitor and the FAAH active site. To test this hypothesis, we conducted
a systematic exploration of the steric requirements of the aromatic substit-
uent by preparing a series of carbamate derivatives where the shape of the
O-group was modified. Compounds with lipophilic O-substituents charac-
terized either by a straight (e.g., 6-ethylnaphthalen-2-yl, (E)-4-styrylphenyl,
biphenyl-4-yl) or by a bent shape (e.g., 8-bromonaphthalen-2-yl, (Z)-4-
styrylphenyl, biphenyl-3-yl) were prepared. As a result, greater inhibitory
potencies were obtained for those compounds characterized by a bent
shape. In particular, we observed the strongest FAAH inhibition for the m-
biphenyl derivative URB524 (compound 3, Fig. 2), whose IC50 value
(63 nM) indicates a 36-fold greater potency than the isomeric p-biphenyl
derivative (IC50¼2297 nM).
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FIG. 2. Representative FAAH inhibitors synthesized during the discovery phase.
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The comparison between 4-styrylphenyl isomers and between the differ-
ently substituted 2-naphtyl derivatives was suggestive of a similar trend.
This prompted us to calculate a 3D-QSAR model, trying to correlate steric
descriptors with inhibitory potency (Tarzia et al., 2003). The inhibitors
were mutually superposed via their common carbamate group and a
CoMSIA model was obtained, correlating inhibitor potency, expressed
on a � log scale (pIC50), with the molecular shape. A partial least squares
(PLS) model with two latent variables provided good descriptive and
predictive power (R2¼0.82, s¼0.32, q2LOO¼0.54) for the 14-compound
set of O-aryl N-alkylcarbamic acid esters (Tarzia et al., 2003). The coeffi-
cients of the steric field are depicted in Fig. 3B as isopotential surfaces. A
large and deep favorable region was observed for the aryl substituent, as
illustrated by the green and blue volumes at the bottom of Fig. 3B
respectively, indicating the positive effect on inhibitory potency exerted
by the presence of a substituent in this region of space. This region
encompasses the second ring of the b-naphthyl substituent and the distal
phenyl of the styryl substituent in its (Z)-configuration. It is reasonable to
assume the proximity of this region to the binding site surface of FAAH,
which would result in an improvement of steric interactions between the
enzyme and the inhibitor. Thus, the O-aromatic moiety, which is hypothe-
sized to serve as a leaving group in the reaction leading to enzyme

(A) (B)

FIG. 3. (A) Superposition of compounds 1 (green carbon atoms) and 2 (white
carbon atoms) in its gauche and anti conformations. (B) CoMSIA contour plots for a set
of carbamate FAAH inhibitors. Compounds are represented with lines, with the excep-
tion of 2 (white carbons) and 3 (orange carbons) represented with capped sticks. The
surfaces highlight regions of space where the influence of the steric potential on pIC50 is
more significant. The color codes are: blue, very positive; green, positive; yellow,
negative.
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carbamoylation, would exert its effect on inhibitory potency at an early
recognition stage of the process. A small region with moderately negative
coefficients is represented by the yellow surface at the bottom left of
Fig. 3B, opposite to the point of attachment of the phenyl O-substituent
on the carbamate group. It indicates that straight substituents can be
accommodated at the binding pocket in a less efficient manner than the
folded ones. As mentioned earlier, the most relevant example is repre-
sented by the p-biphenyl derivative, whose potency is much lower than that
of the m-biphenyl isomer. The CoMSIA coefficients suggest the existence
of a large cavity with a curved shape in the active site of the enzyme, where
suitable O-substituents can be accommodated, favoring the interaction of
their carbonyl group with the active serine.

The most promising compound of this series, the biphenyl-3-yl deriv-
ative URB524 (compound 3, Fig. 2), was selected as the lead structure
for potency optimization. A two levels experimental design, based on
positive and negative levels for lipophilicity (p) and for an electronic
descriptor (s), was performed, introducing four substituents (methyl,
trifluoromethyl, amino, and carbamoyl) in meta and in para position of
the distal phenyl ring (Mor et al., 2004). The 30-methyl and 30-amino
derivatives resulted as potent as the parent compound (Table I), while
the 30-carbamoyl derivative (compound 4, URB597, Fig. 2) was more
potent than URB524. Substitution in the para position was not favorable,
as all the para-derivatives were less active than URB524 (Mor et al.,
2004). This limited exploration led to the identification of the best
inhibitor of the carbamate series, the 30-carbamoyl derivative URB597
endowed with an IC50 of 4 nM (Mor et al., 2004) which has become a
standard reference in the field of FAAH inhibition.

The significant increase in potency of URB597, compared to the parent
compound URB524, suggests that the 30-carbamoyl group could undertake
polar interactions at the binding site, supporting the idea that weak forces
might have a pivotal role in controlling biological processes that involve
the formation and break of covalent bonds.

To search for a statistical relationship between physicochemical proper-
ties and inhibitor potency, additional substituents were inserted at the 30

position of the biphenyl-3-yl group. These substituents were selected to
introduce a balanced variation of their lipophilic, steric, and electronic
properties. Analysis of the IC50 values shows that hydrophilic groups
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(15–20, Table I) have a favorable effect on inhibitory activity. On the
contrary, the introduction of large, lipophilic substituents (11–13) led to
a drop in inhibitory activity. Several compounds in this set were more
active than URB524, although none of them was better than the 30-
carbamoyl derivative URB597. A plot of pIC50 values versus p (Fig. 4)

Table I

Inhibitory Potency (pIC50) on FAAH and Physicochemical Descriptors for a Series of
Cyclohexylcarbamic Acid 30-Substituted Biphenyl-3-yl esters

H
N O

O

R

Compounds R pIC50 pa MRb HBc

3 ��–H 7.20 0.00 1.03 0
4 ��C(O)NH2 8.34 �1.49 9.81 1
5 ��CF3 6.84 0.88 5.02 0
6 ��CH3 7.21 0.56 5.65 0
7 ��NH2 7.19 �1.23 5.42 1
8 ��F 7.02 0.14 0.92 0
9 ��OC(O)NHc-C6H11 6.44 1.06 36.13 1
10 ��C6H5O 6.38 2.08 27.68 1
11 ��C6H5 6.25 1.96 25.36 0
12 ��CH2C6H5 5.73 2.01 30.01 0
13 ��n-C3H7 6.96 1.55 14.96 0
14 ��NO2 7.30 �0.28 7.36 1
15 ��SO2NH2 7.58 �1.82 12.28 1
16 ��C(O)CH3 8.04 �0.55 11.18 1
17 ��CN 7.47 �0.57 6.33 1
18 ��OH 8.06 �0.67 2.85 1
19 ��CH2OH 8.06 �1.03 7.19 1
20 ��(CH2)2OH 7.73 �0.77 11.8 1

aSubstituent lipophilicity.
bMolar refractivity.
cHydrogen bonding capability.
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shows a negative correlation between inhibitory activity and lipophilicity,
also indicated by Eq. (1):

pIC50 ¼ �0:49 �0:07ð Þpþ 7:26 �0:09ð Þ ð1Þ

n ¼ 18 r 2 ¼ 0:74 s ¼ 0:37 F ¼ 46:0 q2 ¼ 0:66 SDEP ¼ 0:40

The inclusion of an indicator variable, set to one for substituents able to
undertake hydrogen bonds (HB) and to zero for lack of hydrogen bond-
ing capability, in combination with MR provided an alternative model:

pIC50 ¼ �0:046 �0:009ð ÞMR þ 0:80 �0:18ð ÞHBþ 7:29 �0:17ð Þ ð2Þ

n ¼ 18 r 2 ¼ 0:76 s ¼ 0:37 F ¼ 23:2 q2 ¼ 0:67 SDEP ¼ 0:39

These QSAR models strongly suggest that the introduction of polar sub-
stituents at the meta position of the distal phenyl ring leads to a significant
improvement of the pIC50 value, likely due to formation of polar interac-
tion (i.e., H bonds) with hydrophilic amino acid residues within the FAAH
channel.
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FIG. 4. Plot of FAAH inhibitory potency (pIC50) versus lipophilicity (p) for com-
pound 3 (URB524) and its meta-substituted derivatives (4–20).
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III. Structure-Based Drug Design

The availability of the crystal structure of FAAH covalently bound to
methyl arachidonyl phosphonate (Bracey et al., 2002) allowed us to look
for a molecular rationalization of the QSAR models (reported in the
previous section of this review) by performing docking simulations. Dock-
ing of URB597 within FAAH active site suggested two alternative binding
orientations, both consistent with the observed SAR and with the carba-
moylation of the nucleophile Ser241 (Basso et al., 2004; Mor et al., 2004).
In the first binding orientation (Fig. 5A), the m-biphenyl moiety of
URB597 occupies the acyl chain binding (ACB) channel of FAAH, while
in the second one (Fig. 5B), the cyclohexyl ring occupies the ACB channel
and the O-aryl group is placed in the cytoplasmic access (CA) channel. In
both orientations, residues able to undertake H bonds (Thr488 in orien-
tation A; Gln273 in orientation B, see Fig. 4) could be found close to the
30-position of URB597 biphenyl portion, accounting for both QSAR equa-
tions (1) and (2). To discriminate between these two binding modes, we
modeled the mechanism of covalent adduct formation by URB524 in
FAAH (Lodola et al., 2008) using a hybrid QM/MM approach
(Mulholland, 2005), validated for FAAH catalysis (Lodola et al., 2005,
2009).

(A) (B)

FIG. 5. Docking of URB597 into FAAH binding site, in two alternative orientations
(A and B). Carbons of the inhibitor are colored in green, those of FAAH in black. The
secondary structure of the enzyme is also displayed (b sheets are colored in cyan, a
helices in red, loops in gray).
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At the same time, we prepared a new series of N-alkylcarbamic acid
biphenyl-3-yl esters (Table 2). Starting from the lead compound URB524,
steric and lipophilic requirements of the N-substituent for FAAH inhibi-
tion were explored, and the results were further analyzed applying molec-
ular modeling techniques (Mor et al., 2008). The LIE method (Aqvist and
Marelius, 2001) was employed to estimate the binding affinity of the
compounds docked in both orientations A and B. Correlative models
based on LIE descriptors were built and compared.

A. QM/MM Mechanistic Modeling

Application of hybrid QM/MM methods (Lonsdale et al., 2010) allows
the simulation of enzyme-catalyzed reactions. In the QM/MM approach,
the simulation system (i.e., the enzyme–substrate complex) is computa-
tionally separated into two subsets: the ‘‘core’’ that contains the reacting
fragments and is described by a QM method (semiempirical, ab initio, or
density-functional theory (DFT)), and the contiguous protein, repre-
sented by a classical force field (Senn and Thiel, 2009). With this ap-
proach, it is possible to treat systems composed by thousands of atoms and
to describe the potential energy surfaces (PESs) relevant to enzymatic
chemistry (Lonsdale et al., 2010) with an affordable computational effort.

In the case of FAAH, noncovalent complexes with URB524 were built
according to orientations A and B (Fig. 5). These complexes were solvated
and equilibrated by MD simulations. The geometry of the resulting FAAH-
inhibitor structures was optimized applying a hybrid QM/MM potential
and then used for mechanistic investigation. In the QM/MM modeling,
the terminal methylamine fragment of Lys142 side chain, the side chains
of Ser217 and Ser241, and the whole inhibitor were treated at the PM3
QM level, while the other atoms were treated with the CHARMM22 force
field (MacKerell et al, 1998). The covalent bonds crossing the boundary
between the QM and MM regions were treated by introducing three link
atoms (Field et al., 1990), which are included in the QM subsystem
(composed by 62 atoms in total). The adiabatic mapping approach
(Lonsdale et al., 2010) was used to calculate PESs, generating models of
the transition states (TSs) and intermediates along the carbamoylation
pathway. To correct for possible shortcomings in the energetics due to the
known limitations of the PM3, DFT energy corrections, at B3LYP/6-31
þG(d) level, were also applied. The carbamoylating reaction of the
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nucleophile Ser241 was modeled in three main steps (Fig. 6): (i) formation
of the tetrahedral intermediate (TI, C); (ii) expulsion of the m-biphenate
with formation of O-carbamoylated Ser241 (E); and (iii) m-biphenate
protonation and formation of neutral Lys142 (G). Appropriate reaction
coordinates were applied (Lodola et al., 2008) to ensure the overall progress
of the reaction. Energetics of Ser241 carbamoylation by URB524 in
both orientations, at B3LYP/6-31þG(d)//PM3-CHARMM22, is reported
in Fig. 7.
In orientation A, the first step of the carbamoylation reaction (activation

of Ser241 followed by nucleophilic attack on the inhibitor carbonyl carbon
forming the TI (C)) has an energy barrier of 35 kcal/mol. Although
stabilized by the oxyanion hole, the TI is much less stable than the reactant
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FIG. 6. Main steps of Ser241 carbamoylation in FAAH. Structures A–G are
significant configurations along the reaction pathway.
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complex (by 29 kcal/mol). Expulsion of the m-biphenate anion produces
E with a very low barrier, indicating that this event is effectively concerted
with TI formation. During this process, the carbonyl carbon assumes a
planar geometry, while the carbonyl oxygen maintains its interaction with
the oxyanion hole. A double proton transfer (E–G) terminates the cata-
lytic cycle. Protonation of the biphenate oxygen by Ser217 is concerted
with proton transfer between Lys142 and Ser217 and represents the rate-
limiting step of the whole process, with a barrier of 44 kcal/mol. Carba-
moylation occurs much more easily in orientation B. The barrier for the
formation of the TI (C) (30 kcal/mol) is 5 kcal/mol lower than in orien-
tation A. The TI (C) is a transient configuration and is greatly stabilized by
the oxyanion hole (the energy of C is only 15 kcal/mol above the reac-
tant). Breakdown of the tetrahedral intermediate takes place with a very
low barrier, and so is effectively concerted with the first reaction step.
Opposite to what observed for orientation A, the product of the reaction,
E, is more stable than the starting structure A by 4 kcal/mol. This key
difference arises from crucial interactions at the active site. Indeed, when
the cyclohexyl ring is placed in the ACB channel (orientation B), it
assumes a more favorable orientation, allowing the carbonyl oxygen of
the carbamoylated Ser241 to better interact with the oxyanion hole.
Moreover, the charged oxygen on the biphenate leaving group accepts a
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short hydrogen bond from Ser217 H2 and is also well positioned to ‘‘feel’’
the field effect of the positively charged Lys142 which at this stage of the
reaction lives in its protonated form. This stabilization is weaker in orien-
tation A, as the m-biphenate oxygen, residing in the ACB channel, remains
further away from the catalytic triad than in orientation B.
The third step of carbamoylation (E–G) takes place without a significant

energy barrier in orientation B, as protonation of the m-biphenate is
favored by the proximity of Ser217, which is also well oriented to depro-
tonate Lys142. The resulting product G is very stable: it is the most stable
configuration along the modeled pathway in orientation B (�18 kcal/
mol), consistent with the experimentally observed irreversible inhibition
of FAAH (Tarzia et al., 2003).
These calculations suggest that carbamoylation of Ser241 likely occurs

starting from binding orientation B, as in orientation A the reaction has a
significantly higher barrier, and leads to an unstable product. This predic-
tion has been recently confirmed by the crystallographic structure of the
FAAH-URB597 carbamoylated adduct (Mileni et al., 2010), suggesting that
QM/MM-based mechanistic modeling can give a practical contribution in
ongoing inhibitor design (De Vivo, 2011).

B. LIE Calculations

In the case of covalent inhibitors, it is difficult to obtain an accurate
estimation of the binding free energy to an enzyme target, as it depends
not only from the stereoelectronic complementarity between the enzyme
and the inhibitor, but also on the chemical reactivity of the inhibitor
(Tarzia et al., 2006). Our investigation on the SAR of N-alkylcarbamic
acid biphenyl-3-yl esters started from the approximation that, for com-
pounds with similar reactivity, the inhibitory potency should be linearly
related to the free energy of the recognition process. In this context, it
should be possible to predict differences in pIC50 for a series of inhibitors
by simulating the enzyme–inhibitor recognition process (i.e., with molec-
ular docking), and then estimating the binding affinity with a suitable and
relatively accurate computational method.
The LIE approach is based on the linear response approximation, which

estimates DG of ‘‘noncovalent’’ binding of a small molecule to a target
protein as a function of polar and nonpolar energy components, that are
considered linearly related to electrostatic and Van der Waals interactions
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between the ligand and its environment. The free energy of binding for
the protein–ligand complex is calculated considering two states: the
‘‘free’’ ligand, in a solvent environment, and the ligand bound to the
solvated protein.

The LIE method applied to FAAH inhibitors implements the formula-
tion proposed by Jorgensen (Carlson and Jorgensen, 1995), where the
Surface Generalized Born (SGB) continuum model is used for solvent
representation (Ghosh et al., 1998). In the resulting SGB-LIE approach
the free energy of binding is calculated as:

DGbind¼a U bvdwh i� U fvdwh ið Þþb U belech i� U felech ið Þþg U bcavh i� U fcavh ið Þ
ð3Þ

where b refers to bound state and f refers to the free state.
In Eq. (3), (hUbvdwi�hUfvdwi) estimates, by means of a Lennard–Jones

potential, the variation of steric energy associated with ligand binding;
(hUbeleci�hUfeleci) describes the change of electrostatic energy due to
ligand desolvation and its accommodation into the protein binding site;
the last term (hUbcavi�hUfcavi) accounts for the energy penalty due to the
formation of a cavity within the solvent. The bracket notation indicates
that an ensemble average of the energy terms should be taken into
account for binding energy calculations. However, local sampling with
energy minimization proved to be able to provide reasonable results in
several cases, with limited or no reduction in the accuracy of DG estima-
tion, and this approach was applied also to our set of FAAH inhibitors.

In the SGB-LIE equation, Eq. (3), all the terms are evaluated for the
interaction between ligand, both in the free and in the bound state, and its
environment. a, b, and g are free coefficients which were calculated by
fitting the experimental free energies of binding for a training set of
ligands with known protein affinity values. This empirical fitting can
partially compensate the limits of the method, due to the neglection of
conformational changes, intramolecular strain, and entropic effects.

The 22 N-alkylcarbamic acid biphenyl-3-yl esters, with different sizes,
shapes and branching of the substituent on the nitrogen atom (Table II)
were docked into the FAAH binding site. Two families of complexes,
corresponding to orientations A and B, were generated, and SGB-LIE
calculations were performed (Mor et al., 2008). The interaction energy
terms, referring to van der Waals (vdw), electrostatic (elec), and cavity
(cav) components, were calculated for free and bound inhibitors.
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Table II

Inhibitory Potency (pIC50) on FAAH and SGB-LIE Components (Expressed in kcal/
mol) in Binding Orientation B for a Series of N-Alkylcarbamic acid biphenyl-3-yl esters

H
N O

O

R

Compounds R pIC50

Orientation B

DUvdw DUelec DUcav

URB524 7.20 �46.75 2.91 �2.68

21
H3C

4.86 �34.97 1.43 �2.14

22 6.16 �38.04 2.13 �2.40

23

CH3

H3C 6.28 �42.66 3.92 �2.45

24
(CH2)3

H3C 6.95 �43.63 2.91 �2.58

25
(CH2)5

H3C 7.24 �42.28 2.39 �2.89

26
(CH2)7

H3C 7.28 �46.81 4.89 �3.18

27 7.27 �45.58 4.02 �2.50

(Continued )
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TABLE II (Continued )

Compounds R pIC50

Orientation B

DUvdw DUelec DUcav

28 7.47 �45.32 4.93 �2.60

29 7.18 �43.90 2.12 �2.72

30 5.39 �42.36 7.45 �2.86

31 6.86 �47.30 9.45 �2.68

32

O

6.76 �45.99 3.82 �2.53

33 (CH2)2
6.32 �52.43 12.96 �2.88

34 6.67 �52.13 9.83 �2.89
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TABLE II (Continued )

Compounds R pIC50

Orientation B

DUvdw DUelec DUcav

35 7.23 �54.51 13.02 �2.99

36 8.27 �55.45 13.22 �3.01

37 (CH2)4
8.03 �52.62 8.14 �3.21

38 (CH2)6
7.89 �51.31 �0.17 �3.45

39

O

N
(CH2)6

7.40 �50.89 5.21 �3.45

40 (CH2)8
8.27 �60.87 9.82 �3.81

41 (CH2)4
8.11 �60.85 10.73 �3.77
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The difference between these energy values (bound minus free) was used
to build LIE equations by multiple regression analysis (MRA). While for
orientation A no significant model was found, an acceptable equation was
obtained for orientation B, using the standard SGB-LIE approach. The
resulting Eq. (4) explained 71% of pIC50 variation and showed a good
predictive power (q2¼0.61).

pIC50 ¼ �0:187 �0:046ð ÞDUvdw � 0:141 �0:034ð ÞDUelec

þ0:375 �0:513ð ÞDUcav
ð4Þ

n ¼ 22 r 2 ¼ 0:71 s ¼ 0:49 F ¼ 15:9 q2 ¼ 0:61 SDEP ¼ 0:53

Internal correlation among X variables ( rDUvdw
,Duelec¼�0.71; rDUvdw

,
Ducav¼0.84; rDUelec

,Ducav¼�0.40) affects the uncertainty for the cavity
term coefficient (0.375�0.513), suggesting that DUcav itself is a negligible
term. The model indicated that vdw interactions give the most significant
contribution (i.e., with the largest coefficient/standard error ratio) to
binding energy. vdw energy is strongly related to the closeness of ligand
and enzyme surfaces. Electrostatic interactions also showed a significant
effect: because chemical modulation in this set of compounds mainly
addressed size and shape, this result can be a consequence of the comple-
mentarity between inhibitors and the binding site. In fact, the carbamic
group of all these inhibitors may form several hydrogen bonds (e.g., with
oxyanion hole residues and with Met191 backbone carbonyl, see Fig. 8),
and a high steric complementarity allows a more efficient electrostatic
interaction. However, interpretation of the DUelec term is complicated by
the fact that it also includes the contribution of the SGB solvent reaction-
field energy. On the basis of these results, SGB-LIE values fairly reproduce
the SAR profile for the carbamate inhibitors reported in Table II only
when these compounds are placed within the FAAH active site in binding
orientation B. It is nice to observe that a similar conclusion emerged from
QM/MM mechanistic simulations.

The reliability of these theoretical models was tested by introducing at
the 30-position of the biphenyl nucleus of one of the most potent inhibi-
tors of the series, compound 36, a substituent able to form hydrogen
bonds, that is, the carbamoyl group, also present in URB597. The signifi-
cant gain in pIC50 (from 8.27 to 9.20) displayed by URB880 (Fig. 8)
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confirmed that concurrent positioning of the lipophilic N-alkyl group
within the ACB pocket and of the biphenyl moiety within the more
hydrophilic CA cavity favors inhibitory potency (Mor et al., 2008).

IV. Recent Advances

Despite their relatively long history, FAAH inhibitors characterized by a
carbamic structure are still a hot topic both in the field of computational
medicinal chemistry and in pharmacology. Brief highlights of the most
recent developments in these fields are presented in this paragraph. It has
been recently shown that N-alkylcarbamic acid biphenyl-3-yl esters are a
highly versatile class of covalent inhibitors, as their intrinsic reactivity can
be easily tuned by chemical manipulation (Vacondio et al., 2009). In fact,
it is possible to enhance their chemical (and metabolic) stability by simply
introducing electron-donor substituents in conjugated positions of the
proximal phenyl ring. This increases the electron density around the
carbonyl carbon, limiting its reactivity toward nucleophiles. However,
while the introduction of electron-donor groups (e.g., p-OH or p-NH2)
significantly improves the stability of these carbamates versus nucleophiles,
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including those present in liver and plasmatic carboxylesterases (Clapper
et al., 2009), the same substitution does not affect the interaction with
FAAH. This unexpected lack of correlation between reactivity and FAAH
inhibitory potency might be due to the ‘‘unique’’ catalytic mechanism of
FAAH. QM/MM mechanistic modeling of FAAH carbamoylation in pres-
ence of the cyclohexylcarbamic acid biphenyl-3-yl ester URB524 and its
p-OH (URB694) and p-NH2 (URB618) analogues showed that FAAH is
insensitive to the intrinsic reactivity of the carbamate group, as the crucial
TS of the reaction is dominated by a proton transfer and not by a
nucleophilic attack (Lodola et al., 2011). This finding could help in the
development of a new generation of ‘‘stabilized’’ carbamate inhibitors
that, while retaining good in vitro potency for FAAH, would display longer
half-life in plasma, making them significantly more potent in vivo, and
more selective versus off-target carboxylesterases, than current inhibitors.

In this scenario, novel FAAH inhibitors with an unprecedently seen
pharmacokinetic profile have been recently reported (Clapper et al.,
2010). These new compounds markedly differed in their ability to access
the central nervous system from the first generation of carbamic-based
FAAH inhibitor. Among them, the p-hydroxyl derivative of URB597,
namely URB937, suppressed FAAH activity in peripheral tissues of mice
and rats but failed to affect FAAH activity in the brain. Despite the inability
to access brain and spinal cord, URB937 attenuated behavioral responses
indicative of persistent pain in rodent models of peripheral nerve injury
and inflammation. These findings indicate that brain-impenetrant FAAH
inhibitors might offer a new therapeutic option for pain treatment.
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Abstract

We review recent theoretical and algorithmic advances for the modeling
of protein ligand binding free energies. We first describe a statistical
mechanics theory of noncovalent association, with particular focus on
deriving the fundamental formulas on which computational methods are
based. The second part reviews the main computational models and algo-
rithms in current use or development, pointing out the relations with each
other and with the theory developed in the first part. Particular emphasis is
given to the modeling of conformational reorganization and entropic
effect. The methods reviewed are free energy perturbation, double
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decoupling, the Binding Energy Distribution Analysis Method, the poten-
tial of mean force method, mining minima and MM/PBSA. These models
have different features and limitations, and their ranges of applicability
vary correspondingly. Yet their origins can all be traced back to a single
fundamental theory.

I. Introduction

Molecular recognition forms the basis for virtually all biological processes.
Understanding the interactions between proteins and their ligands is key to
rationalize molecular aspect of enzymatic processes and the mechanisms by
which cellular systems integrate and respond to regulatory signals. From a
medicinal perspective, there is great interest in the development of comput-
er models capable of predicting accurately the strength of protein–ligand
association ( Jorgensen, 2004). Structure-based drug discovery models seek
to predict receptor–ligand binding free energies from the known or pre-
sumed structure of the corresponding complex (Guvench and Mackerell,
2009;Mobley et al., 2010).Within this class ofmethods, docking and empiri-
cal scoringapproaches (BrooijmansandKuntz, 2003;McInnes, 2007),which
are useful in virtual screening applications (Shoichet, 2004; Zhou et al.,
2007), are now routinely employed in drug discovery programs. This review
focuses on a class of computational methodologies based on the fundamen-
tal physical and chemical principles that governmolecular association equi-
libria (Gilson and Zhou, 2007; Shirts et al., 2007; Deng and Roux, 2009;
Mobley and Dill, 2009; Chodera et al., 2011). Given a sufficiently accurate
model of molecular interactions, thesemethods have the potential to incor-
porate greater detail and achieve sufficient accuracy to address aspects of
drug development such as ligand optimization, and to address questions
such as drug specificity and resistance.

Despite their potential, physics-based models of protein–ligand binding
are not widely employed in academic and industrial research, and their
effectiveness as predictive tools remains uncertain (Mobley and Dill, 2009;
Mobley et al., 2010; Chodera et al., 2011). There are clearly many reasons
that this is the case. Models of this kind are more computationally demand-
ing than alternative empirical techniques and require expert training for
setting them up properly. Early applications of physics-based models of
binding, when molecular models, computer algorithms, and computer
hardware technologies had not reached a sufficient level of maturity,
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eventually yielded discouraging results, likely dissuading adoption by the
current generation of researchers (Chipot and Pohorille, 2007).
In the past decade, however, a revival of the field has taken place with

the development of better atomistic models and simulation algorithms,
and more powerful computers. A new awareness of the limits of applica-
bility of the technologies and the interplay between the various elements
of the models have recently led to more trustworthy and realistic out-
comes. As the models become more widely employed and these technical
developments progress to produce more precise and reproducible results,
it is also important to remain aware and deepen our understanding of the
statistical mechanics theory of binding on which these models are based.
Thermodynamically, the strength of the association between a ligand

molecule and its target receptor is measured by the standard free energy
of binding. A statistical mechanics theory of molecular association equili-
bria exists which is nowadays well understood and widely accepted (Gilson
et al., 1997). Various computational implementations of this theory have
been proposed. Computational models cannot capture all of the complex-
ities of molecular interactions, and all of them, implicitly or explicitly,
apply approximations or simplifications. Knowledge of the relationships
between the theory and its implementation helps to appreciate the mean-
ing and limits of approximations. This knowledge can also serve as a guide
in the design of more realistic computational models and can suggest
approaches for the analysis of the results in ways that further our under-
standing of the binding process. It is only relatively recently found that
subtle but potentially critical aspects of the theory have been fully appre-
ciated and are being incorporated into computational models.
Theoretical accounts of the theory of binding are somewhat scattered in

the current literature and the various descriptions are often tailored to
specific numerical implementations and applications, making it often
difficult to resolve commonalities. The purpose of this review is to partially
fill this gap. The first part describes a statistical mechanics theory of
noncovalent association, with particular focus on deriving the fundamen-
tal formulas on which computational methods are based. This section also
introduces the thermodynamic quantities that often appear in the recent
literature as well as their nomenclature. The second part reviews the main
computational models and algorithms in current use or development,
pointing out the relations with each other and with the theory developed
in the first part.
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II. Theory of Noncovalent Binding

A. Statistical Mechanics Formulation of Molecular
Association Equilibria

Consider an ideal solution of receptor molecules R and ligand mole-
cules L in equilibrium with their complexes RL. The affinity between the
two species can be expressed by the standard binding free energy DGb

�

associated with the bimolecular reaction

R þ L Ð RL ð1Þ
given by

DG
�
b ¼ �kT lnKb; ð2Þ

where Kb is the dimensionless binding constant expressed as

Kb ¼ RL½ �=C�

R½ �=C�ð Þ L½ �=C�ð Þ
� �

eq

; ð3Þ

where [. . .] are concentrations, C� is the standard state concentration
(often set as 1 M or 1 molecule/1668 Å3), and the eq subscript states
that all concentrations are evaluated at equilibrium. It should be noted
that this quasi-chemical description of binding is based on the idea that
the bound complex RL can be treated as a distinct chemical species. As
further discussed below, this is a reasonable approach if the interaction
between the ligand and the receptor is strong, yielding a thermodynami-
cally stable complex. We make this implicit assumption in what follows,
noting, however, that if the receptor–ligand interactions are weak and
nonlocalized, it would be more appropriate to treat the receptor/ligand
mixture as a nonideal solution of the components.

A statistical mechanics expression for the binding constant is available
under these assumptions, which, when a generally small pressure–volume
term is neglected, can be expressed as (Gilson et al., 1997)

Kb ¼ C�

8p2
ZN ;RLZN

ZN ;RZN ;L
; ð4Þ

where ZN is the configurational partition function of the solvent bath
composed of N molecules, and ZN,RL, ZN,R, and ZN,L are the configuration-
al partition functions of the complex, receptor, and ligand, respectively, in
solution. A critical aspect of this formulation is that each partition
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function includes only the internal degrees of freedom of each species.1

For example (to simplify notation here and elsewhere, we omit Jacobian
factors for curvilinear coordinates)

ZN ;L ¼
ð
dxLdrse

�bU xL;rsð Þ ð5Þ

is the configurational partition function of the ligand placed in an arbi-
trary position and orientation in solution integrated over the 3nL�6
internal degrees of freedom of the ligand xL, where nL is the number of
atoms of the ligand, rs denotes the degrees of freedom of the solvent, and
U(xL, rs) is the potential energy of solventþ ligand system. The six external
degrees of freedom of the ligand zL (three translations and three rota-
tions) correspond to as many additional internal degrees of freedom of
the complex specifying the position and orientation of the ligand relative
to the receptor (Boresch et al., 2003). The configurational partition
function of the complex is then written as

ZN ;RL ¼
ð
bound

dxRdxLdzLdrse
�bU xR ;xL;zL;rsð Þ; ð6Þ

where the integral runs over all conformations of the complex that are
deemed bound, for example, those in which the ligand is within a specified
binding site. A convenient choice is to use the theexternal coordinates of the
ligand relative to the receptor todefine this state (Gilsonet al., 1997;Boresch
et al., 2003). An indicator function I(zL) is introduced set to 1 for values of zL
corresponding to positions and orientations of the ligand which are consid-
ered bound to the receptor and zero otherwise. Note that, in this formalism,
the value of the binding constant depends on this arbitrary definition of the
complex, raising the question of how to choose it appropriately. This is a
more general issue which is further discussed below.The integral of I(zL)
measures the extent of the defined bound stateð

dzLI zLð Þ ¼ VsiteOsite; ð7Þ

whereVsite is the integral over translational coordinates andOsite the integral
over theorientational coordinates.Vsite represents thephysical volumeof the
binding site, while Osite measures the allowed range of orientations of the

1The separation of the overall translations is exact, while the separation of rotational
degrees of freedom neglects vibrational–rotational couplings. The latter is generally a valid
approximation at physiological temperature.
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ligand in the complex. If I(zL) is independent of the orientational coordi-
nates (such that is the definition of the complex is basedonly on theposition
of the ligand relative to the receptor), then Osite¼8p2.

B. Alchemical Formulation

In order to make Eq. (4) amenable to computation, it is convenient to
express it in terms of combinations of ensemble averages. To do so, we
need to express ratios of partition functions in Eq. (4) such that numera-
tors and denominators have the same number and types of degrees of
freedom. This is achieved by multiplying and dividing Eq. (4) by Eq. (7)
times the configurational partition function of the ligand in vacuum

ZL ¼
ð
dxLe

�bU xLð Þ; ð8Þ

yielding the following equivalent expression for Kb

Kb ¼ Vsite

V �
Osite

8p2
e�b DG2�DG1ð Þ; ð9Þ

where V� ¼1/C�. In Eq. (9), DG2, defined by

e�bDG2 ¼
Ð
dxRdxLdzLdrsI zLð Þe�bU xR ;rsð Þe�bU xLð Þe�bu xL ;zL ;xR ;rsð ÞÐ

dxRdxLdzLdrsI zLð Þe�bU xR ;rsð Þe�bU xLð Þ

¼ e�bu xL;zL;xR ;rsð Þ
D E

RslvþLgas

;

ð10Þ

is the free energy for establishing receptor–ligand and solvent–ligand
interactions, while the ligand is in the receptor binding site (where I(zL)
is nonzero). The quantity

u xL; zL; xR; rsð Þ ¼ U xR; xR; zL; rsð Þ � U xR; rsð Þ � U xLð Þ ð11Þ
is the binding energy between the ligand and the receptor plus solvent
environment; U(xR, rs) is the potential energy of the receptor–solvent
system in absence of the ligand, and U(xL) is the internal potential energy
of the ligand. Similarly, DG1, defined by

e�bDG1 ¼
Ð
dxLdzLdrsI zLð Þe�bU rsð Þe�bU xLð Þe�bu xL;zL;rsð ÞÐ

dxLdzLdrsI zLð Þe�bU rsð Þe�bU xLð Þ

¼ e�bu xL;zL;rsð Þ
D E

slvþLgas

;

ð12Þ

is the free energy for establishing ligand–solvent interactions (the same as
the solvation free energy of the ligand).
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As specified in Eqs. (10) and (12), the free energy changes DG2 and DG1

are expressed as averages over the ensembles corresponding to, respec-
tively, the free solvated receptor with the ligand in the gas phase
(RslvþLgas), and the pure solvent with the ligand in the gas phase (slv
þLgas). In either case, the ligand is located in the binding site, as specified
by the indicator function I(zL), but not interacting with the receptor and
the solvent. We will therefore refer to these states as decoupled.2

By inserting Eq. (9) in Eq. (2), we finally obtain an expression for the
standard binding free energy

DGo
b ¼ DGo

t þ DGr þ DG2 � DG1; ð13Þ
where

DGr ¼ �kT ln
Osite

8p2
ð14Þ

is a free energy penalty (Osite is smaller than 8p2) for restricting the
isotropic distribution of ligand orientations in solution to the those
allowed in the complex, and

DGo
t ¼ �kT ln

Vsite

V � ð15Þ

is the free energy for transferring the ligand from a solution at concentra-
tion C� to a volume of size Vsite. For later use, we define here the quantity
DGI, as the concentration-independent component of the standard free
energy of binding,

DGI ¼ DG2 � DG1; ð16Þ
which will be referred to as the interaction free energy of binding. As the
other terms in Eq. (13) can be evaluated analytically, it is the computation
of the interaction free energy which is the main goal of computer simula-
tions of binding.
The alchemical thermodynamic path underlying Eq. (13) is illustrated

in Fig. 1. The overall binding process (upper horizontal equilibrium) is

2However, note that integration over the external degrees of the freedom zL for the
solvation free energy calculation (Eq. (12)) is unnecessary and has been explicitly indicated
only for consistency with the thermodynamic cycle indicated below; both the solution and gas
phases are homogeneous and isotropic, and therefore, integration over the translational and
rotational degrees of freedom zL yields a canceling factor of VsiteOsite in both the numerator
and the denominator of Eq. (12).
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decomposed into a thermodynamic cycle with three distinct processes.
The ligand is first transferred from the bulk solution at concentration C�

to a volume in the bulk solution identical to the binding site volume
(left downward process) including any imposed orientational restraints.
The free energy associated with this first step is DGt

oþDGr given by
Eqs. (15) and (14). In the second step (bottom horizontal process), the
ligand is transferred from this volume in solution to an equivalent volume
in the gas phase; as noted above, the free energy change for this step is the
negative of the solvation free energy of the ligand. Finally (right upward
process), the interactions of the ligand with the receptor and the solvent
are turned on while the ligand is confined within the receptor binding
site. This decomposition of the binding free energy forms the basis of the
double-decoupling class (Deng and Roux, 2009; Mobley and Dill, 2009) of
computational methods that will be discussed later in this review.

C. Potential of Mean Force Formulation

An equivalent statistical mechanics formulation for the binding constant
follows from the direct binding process corresponding to the upper hori-
zontal process in Fig. 1. The binding constant effectively measures the
probability of occurrence of configurations of the system inwhich the ligand
is found within the binding site, that is conformations in which I(zL) is
nonzero, relative to the unbound conformations where I(zL)¼0. It should
be thereforepossible to compute thebinding constant bymeansof a suitable

Rsolv 
+ Lsolv,C�

Rsolv 
+ Lsolv,site Rsolv 

+ Lgas,site

RLsolv

ΔGt
�
 
+ ΔGr ΔG2

−ΔG1

ΔGb
�

FIG. 1. Thermodynamic cycle illustrating the decomposition of the standard
binding free energy [Eq. (13)]. Rsolv is the solvated receptor, Lsolv,C� (upper left) is the
ligand in solution at concentration C�, Lsolv,site (lower left) is the ligand solvated seques-
tered in the binding site, Lgas,site (lower right) is the ligand in the gas phase in a volume
equal to the binding site volume, and RLsolv is the solvated complex.
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direct thermodynamic path connecting these two conformational states
without resorting to intermediategasphase thermodynamic states.Toderive
such a formalism, note that the product of partition functions in the numer-
ator of Eq. (4) can be written as ZN,RLZN¼Z2N,RL, where Z2N,RL is the config-
urational partition function of the complex in a solution with twice as many
solvent molecules. Similarly, the denominator can be written as Z2N,RþL, the
partition functionof theunbound statewhen the receptor and the ligandare
at infinite separation in a solutionwith 2N solventmolecules. For sufficiently
large N so that finite size effects are negligible, the ratio between Z2N,RL and
Z2N,RþL is independent ofN and can be written as ZN,RL/ZN,RþL.The expres-
sion for the binding constant then becomes

Kb ¼ C�

8p2

Ð
dxRdxLdzLdrsI zLð Þe�bU xR ;xL;zL;rsð Þ
Ð
dxRdxLdrse�bU xR ;rsð Þe�bU xL;z�L;rsð Þ ; ð17Þ

where zL* specifies an arbitrary position of the ligand in the solvent bulk
sufficiently removed from the receptor so that it does not interact with it.
Equation (17) can be rewritten as (Jorgensen, 1989; Luo and Sharp, 2002)

Kb ¼ C�

8p2

ð
dzLI zLð Þe�bDF zLð Þ; ð18Þ

where DF(zL) is the potential of mean force (PMF) along the zL coordi-
nates, that is the free energy of the system when the position and orienta-
tion of the ligand are fixed at zL relative to the receptor. From Eq. (17), we
see that DF(zL) is defined as

e�bDF zLð Þ ¼
Ð
dxRdxLdrse�bU xR ;xL;zL;rsð Þ

Ð
dxRdxLdrse

�bU xR ;xL;z
�
L;rsð Þ ; ð19Þ

which explicitly sets to zero the PMF at zL*. In practice, the binding PMF is
computed along only one of the dimensions of zL (a receptor–ligand
distance d, typically), while the other five coordinates are averaged or
kept fixed (Woo and Roux, 2005; Lee and Olson, 2006).

D. Implicit Representation of the Solvent

More concise expressions for the binding constant are obtained by
removing explicit integration over the solvent degrees of freedom by
introducing the solvent PMF. Starting, for example, from Eq. (4), we
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multiply and divide by ZN
2 and divide each partition function by ZN. The

solvent partition function yields a factor of 1. The ZN,R/ZN ratio can be
expressed as

ZN ;R

ZN
¼

Ð
dxRdrse�bU xRð Þe�u xR ;rsð Þe�bU rsð ÞÐ

drse�bU rsð Þ ¼
ð
dxRe

�bU xRð Þe�bW xRð Þ; ð20Þ

where U(xR) is the intramolecular potential energy of the receptor, u(xR, rs)
denotes the receptor–solvent interaction energy, U(rs) is the solvent–solvent
potential energy, and W(xR) is the solvent PMF for the xR conformation of
the receptor defined by (Roux and Simonson, 1999)

e�bW xRð Þ ¼
Ð
drse�bu xR ;rsð Þe�bU rsð ÞÐ

drse�bU rsð Þ ¼ e�bu xR ;rsð Þ
D E

slv:
ð21Þ

Based on Eq. (21), the solvent PMF is interpreted as the solvation free
energy of the receptor when this is fixed in conformation xR. The other
ratios of partition functions can be treated similarly to define the solvent
potentials of mean force, W(xL) and W(xR, xL, zL), for the ligand and the
complex. Finally, by a similar derivation that yielded Eq. (9), we can write
(Gilson et al., 1997)

Kb ¼ Vsite

V �
Osite

8p2
ZRL

ZRþL
¼ Vsite

V �
Osite

8p2
e

�bDGI
; ð22Þ

where ZRL and ZRþL are the configurational partition functions of the
complex in the bound and uncoupled states, respectively, and the inter-
action free energy DGI is defined by their ratio as

e�bDGI ¼
Ð
dxRdxLdzLI zLð Þe�b U xRð ÞþW xRð Þ½ �e�b U xLð ÞþW xLð Þ½ �e�bu xL;zL;xRð ÞÐ

dxRdxLdzLI zLð Þe�b U xRð ÞþW xRð Þ½ �e�b U xLð ÞþW xLð Þ½ �

¼ e�bu xL;zL;xRð Þ
D E

RþL
;

ð23Þ

which is formally equivalent to Eq. (10) with potential energies U replaced
by effective potential energies Ueff¼UþW. The effective binding energy u
in Eq. (23) has the same form as in Eq. (11) expressed in terms of
differences of effective potential energies

u xL; zL; xRð Þ ¼ Ueff xR; xL; zLð Þ � Ueff xRð Þ � Ueff xLð Þ: ð24Þ
It is straightforward to show, from the definition of the solvent PMF
(Eq. (21)), that the effective binding energy is the interaction free energy
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with explicit solvation (Eq. (16)) for a fixed conformation (xL, zL, xR) of
the complex. Eq. (23) then expresses a combination rule to obtain the
total interaction free energy for binding by averaging over the ensemble of
the conformations of the uncoupled state of the complex.
Note that the meaning of the average hiRþL in Eq. (23) is different than

in Eq. (10). In both averages, the ligand is sequestered in the binding site
region; however, in Eq. (10), the ligand is considered as not interacting
with either the receptor or the solvent, whereas in Eq. (23), the average is
over the conformations of the receptor and the ligand while both of these
interact with the solvent continuum in absence of the binding partner
(note the absence of the binding energy term in the denominator of
Eq. (23)). The standard binding free energy can then be written as

DGo
b ¼ DGo

t þ DGr þ DGI; ð25Þ
where DGt

o and DGt
o have the same meaning as in Eq. (13), and DGI is

defined by Eq. (23). The PMF DF(zL) in Eq. (19) can be similarly
expressed in terms of the solvent PMF and the effective potential energy.
From a computational point of view, the most noticeable difference be-

tween the expression for the binding free energy in explicit solvent (Eq. (13))
and that in implicit solvent (Eq. (25)) is that the latter involves only one free
energy calculation (DGI), whereas the former is based on the difference
between two free energy calculations (one for the transfer of the ligand in
solution, yielding DG1, and another for its transfer to the complex, DG2).

1. Connection with Potential Distribution Theory

A useful representation for the standard binding free energy DGb
o

in the implicit solvent representation is obtained by writing the average
hexp(�bu)iRþL in Eq. (23) in terms of a probability distribution density of
the effective binding energy (Gallicchio et al., 2010):

e�bDGI ¼ exp �buð Þh iRþL ¼
ð
dup0 uð Þe�bu; ð26Þ

where p0(u), formally defined as

p0 uð Þ ¼ d u xL; zL; xRð Þ � u½ �h iRþL; ð27Þ
is the probability distribution for the effective binding energy over the
ensemble of conformations in the uncoupled state (see above) that is the
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state in which the ligand is in the binding site of the receptor, but both
interact only with the solvent continuum. Note that, as discussed above,
Eq. (26), although derived in the implicit solvent representation, is valid
in general. In the explicit solvent representation, p0(u) is interpreted as
the distribution of binding free energies for fixed conformations of the
complex drawn from the ensemble of conformations obtained when the
ligand and the receptor are not interacting.

The larger the value of the integral in Eq. (26), the more favorable is the
binding free energy. An example of a p0(u) distribution is illustrated in
Fig. 2. As further discussed in Section III.C, the magnitude of the p0(u)
distribution at positive, unfavorable, values of the binding energy u mea-
sures the entropic thermodynamic driving force which opposes binding,
whereas the tail at negative, favorable, binding energies measures the
energetic gain for binding due to the formation of ligand–receptor inter-
actions. The interplay between these two opposing forces ultimately deter-
mines the strength of binding.

Equation (26) has the same form as the fundamental equation of the
potential distribution theorem (PDT) (Widom, 1982; Beck et al., 2006), of
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FIG. 2. Example of a calculated binding energy distribution p0(u) from reference
(Gallicchio et al., 2010). The curves to the left correspond to the exp(�bu) and k(u)�
exp(�bu) p0(u) functions (rescaled to fit within the plotting area). The integral of the
latter is proportional to the binding constant (Eq. (26)).
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which the particle insertionmethod of solvation thermodynamics (Pohorille
and Pratt, 1990) is a particular realization (Widom, 1963). In particle inser-
tion, the standard chemical potential of the solute, m, is written in terms of the
probability distribution p0(v) of solute–solvent interaction energies, v,
corresponding to the ensemble in which the solute is not interacting with
the solvent:

e�bm ¼
ð
dv p0 vð Þe�bv : ð28Þ

This expression is equivalent to Eq. (26) with the solute–solvent interac-
tion energy v replaced by the protein–ligand binding energy u. It follows
that the formalism described above for the binding free energy can be
regarded as a ligand insertion theory for protein–ligand binding, where the
protein atoms and the solvent continuum play the same role as the solvent
molecules in particle insertion.
A known result of PDT is a relationship between p0(v), the probability

distribution of solute–solvent interaction energies in the absence of
solute–solvent interactions, and p1(v), the corresponding probability dis-
tribution in the presence of solute–solvent interactions (Lu et al., 2003).
In the present notation, we have

p1 vð Þ ¼ ebme�bvp0 vð Þ; ð29Þ
where m  is the chemical potential. The corresponding expression linking
p0(u), the probability distribution of ligand–protein binding energies for
the uncoupled (RþL) reference state, and p1(u), the probability distribu-
tion for the bound state RL, is

p1 uð Þ ¼ ebDG1e�bup0 uð Þ; ð30Þ
where DGI is defined by Eq. (26). It follows that p1(u) is proportional to
the integrand in Eq. (26) for the interaction free energy. Note, however,
that this does not imply that the interaction free energy can be computed
by integration of p1(u), as obtained, for example, from a conventional
simulation of the complex in the presence of ligand–receptor interactions.
The integral of the normalized probability distribution p1(u), which is by
definition unitary, does not contain any information about the interaction
free energy. As expressed by Eq. (30), the proportionality constant be-
tween p1(u) and the integrand of Eq. (26) is related to the interaction free
energy, which is exactly the quantity we are seeking to compute.
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The p1(u) distribution is nevertheless a useful quantity for the analysis of
the relative contributions to the binding free energy. Using Eq. (26), we
can write Eq. (22) as

Kb ¼
ð
duk uð Þ; ð31Þ

where, based on Eq. (30),

k uð Þ ¼ Vsite

V �
Osite

8p2
e

�bu
p0 uð Þ ð32Þ

can be interpreted as a measure of the contribution of the conformations
of the complex with binding energy u to the binding constant. We thus
call the function k(u) the binding affinity density (Gallicchio et al., 2010)
(see Fig. 2). The binding affinity density k(u) is proportional to p1(u), the
binding energy probability distribution in the bound state. (The critical
distinction between the two is that the integral of the latter is equal to 1,
whereas the integral of the binding affinity density is equal to the binding
constant.) It thus follows that the relative contributions to the binding
constant of two macrostates, one with binding energy u1 and another with
binding energy u2, are simply given by their relative populations in the
ligand-bound state when the interactions between the ligand and the
receptor are fully turned on.

E. Definition of the Bound State

The expressions for the standard binding free energy presented above
depend on the definition of the bound state through the indicator
function I(zL). This function can be chosen, for example, so as to as
much as possible include only conformations that lack receptor–ligand
clashes, or it can be defined at a coarser level by specifying, for example,
an enveloping sphere containing the binding site of interest. As the choice
of I(zL) is to some level arbitrary, there is a question as to which definition
is appropriate. This issue has been reviewed in a number of studies (Gilson
et al., 1997; Luo and Sharp, 2002; Mihailescu and Gilson, 2004). The main
conclusion is that if the binding is strong and specific (as formally defined
below), the specific choice for the definition of the bound state is for the
most part irrelevant as long as it covers all important conformations of the
complex. The conditions of strong and localized binding are the same
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conditions at the basis of the quasi-chemical description of the noncova-
lent binding equilibrium embodied in Eq. (3).
Consider, for example, Eq. (18). The largest contributions to the inte-

gral come from regions where the binding PMF DF(zL) is large and
favorable and exp[�bDF(zL)] is large compared to 1, the value obtained
in regions where the receptor and the ligand are not significantly inter-
acting. If the minima of DF(zL) are deep and localized, that is binding is
strong and specific, the choice of the domain of integration has a small
effect on the value of the integral as long as it covers all the regions where
DF(zL) is deep.
This analysis has been confirmed in at least one recent molecular

simulation study (Gallicchio et al., 2010), in which the binding constant
of a T4-Lysozyme complex was computed using Eq. (22) by varying the
extent of the definition of the binding site region (Fig. 3). The results
showed that, provided that it contains the main binding site, the binding
site volume has a small effect on the computed binding constant. The
variations at small binding site volumes in Fig. 3 are due to the fact that in
this regime, the binding site definition misses some important conforma-
tions of the complex. The nearly constant behavior at larger binding site
volumes are found to be due to a cancellation between the increasing Vsite
term in Eq. (22) and the linear decrease of the exp[–bDGI] term with
increasing binding site volume definition. Enlarging the binding site
definition beyond the space that can be physically occupied by the ligand
does not appreciably change the value of the integral in the numerator of
Eq. (23) because the additional volume contains only points zL that cause
ligand–receptor overlaps, where u(xL, zL, xR) is large and exp[�bu(xL, zL,
xR)] is small. However, the integral at the denominator, which does not
contain the u(xL, zL, xR) energy term, increases linearly with increasing
binding site volume definition, thereby canceling the Vsite term at the
numerator of Eq. (22). The result is a nearly invariant value of the binding
constant. This example also shows that the values of DGt

o,DGr and DGI in
Eqs. (13), (16), and (25) are not unique. An increase in the chosen
binding site volume, for instance, lowers the values of DGt

o and DGr at
the expense of DGI that becomes less favorable so that their sum remains
nearly constant. Therefore, it is important in binding free energy calcula-
tions of this kind to include the appropriate standard state terms to obtain
answers that are not as affected by arbitrary model parameters.
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FIG. 3. The complex between phenol and the L99A/M102Q T4 mutant of lyso-
zyme (PDB ID 1LI2, A). The ligand is highlighted in green. The surface surrounding the
ligand represents the binding site which is buried and completely surrounded by protein
atoms. The computed binding constant for this complex as a function of the size of the
binding site volume (B), using Eq. (22) with (full line) and without (dashed line) the
inclusion of the Vsite/V

� term (in this calculation, Osite/8p
2¼1). The binding constant

(full line) is fairly constant around Kb¼6�109 for Vsite>500 Å3, whereas exp[�bDGI]
(dashed line) decreases linearly in this region. The two curves meet fortuitously at
Vsite¼1668 Å3, where Vsite/V

� ¼1. These calculations were conducted with a distance-
dependent model (Gallicchio et al., 2010), which underestimates desolvation effects and
overestimates affinity. The dependence on site is, however, representative of systems of
this kind.
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The example above involved a buried binding site. For calculations
involving surface sites (as well as buried sites for binding site volumes
large enough to extend into the solvent), however, the binding constant is
expected to vary linearly with the volume of the binding site for large
enough binding sites. Which value of the binding site volume is then
appropriate? One simple answer is that in practical terms, as discussed
above, if the binding is strong and localized, most reasonable choices for
the binding site will yield reasonably accurate results. For example, dou-
bling Vsite would decrease the binding constant by a factor of 2 and
increase the binding free energy by only �0.4 kcal/mol at room tempera-
ture, a relatively small change compared to typical strong protein–ligand
binding affinities of the order of �10 kcal/mol. This occurs because the
slow logarithmic dependence of the binding free energy on Vsite is not as
significant compared to the larger effect due to strong ligand–receptor
interactions.
For weak and less localized binding, however, the dependence on Vsite

would be more noticeable. In addition, from a theoretical perspective, we
would like to understand the paradox that, even though Eq. (4) depends
on an arbitrary definition of the complex, the binding constant is a
measurable quantity. This has led to the conclusion that, apparently,
‘‘Nature knows how to define the complex, even if we do not’’ (Groot,
1992). Mihailescu and Gilson (2004) have reviewed this issue and con-
cluded that, first of all, the theoretical expression for the binding constant
depends on the experimental technique used. Only methods based on
spectroscopic reporting (such as fluorescence quenching) (Barbieri et al.,
2007) can be shown to be modeled by the quasi-chemical theory consid-
ered here. (Equilibrium dialysis techniques, e.g., follow a different but
related law (Mihailescu and Gilson, 2004), which does not require a
definition of the binding site volume.) Moreover, Mihailescu and Gilson
conclude that the definition of the binding site volume most appropriate
to reproduce measurements based on spectroscopic reporting is the
exclusion zone of the complex, generally defined as the region that includes
the binding minimum and the source of the spectroscopic signal, and
extends up to a point where there would be enough space to allow a
second ligand to interact more strongly with the receptor (Mihailescu and
Gilson, 2004).
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F. Thermodynamic Decompositions

The free energy of binding is the result of a delicate balance between
opposing thermodynamic forces. The main driving force toward binding is
the formation of receptor–ligand interactions. However, these occur at the
expense of solvent interactions producing desolvation effects that often
oppose binding. Intuitively, binding is necessarily accompanied by the loss
of translational freedom, and therefore, entropic forces tend to disrupt
complex formation. In addition, both the ligand and the receptor lose
free energy to adapt their conformations to match those compatible for
binding. Given the complexity of the process, it is very difficult to predict
variations of the binding equilibrium. To rationalize binding affinities, it is
therefore often beneficial to consider contributions to the binding free
energy each easier to rationalize than the total. We summarize below three
relevant decompositions.

1. Enthalpy/Entropy Decomposition

A decomposition of the binding free energy into entropic and enthalpic
contributions seeks to separate energetic factors from factors related to
the loss of conformational freedom (Zhou and Gilson, 2009). Obvious
candidates in this role are the entropy and enthalpy of binding, which
reflect changes in standard thermodynamic potentials. The standard
binding entropy is by definition given by the temperature derivative of
the standard binding free energy. From Eq. (13):

DS∘
b ¼ � @DG∘

b

@T
¼ k ln

Osite

8p2
Vsite

V ∘
� DG2 � DG1

T
þ DU2 � DU1

T
; ð33Þ

where

DU2 ¼ Uh iRLslv
� Uh iRslvþLgas

ð34Þ
is the change in average potential energy for establishing receptor–ligand
and solvent–ligand interactions, and

DU1 ¼ Uh iLslv
� Uh islvþLgas

ð35Þ
the change in average potential energy for establishing solvent–ligand
interactions. The standard binding enthalpy is given by:
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DH ∘
b ¼ DHb ¼ DG∘

b þ TDS∘
b ¼ DU2 � DU1: ð36Þ

From these expressions, we immediately see that only the entropy of
binding depends on the standard concentration C∘¼1/V∘ through the
first term on the r.h.s. of Eq. (33) which corresponds to the work
DGt

∘þDGr for imposing translational and orientational constraints. We
will refer to this term as the translational entropy of binding

DS∘
t ¼ kln

Osite

8p2
Vsite

V ∘
; ð37Þ

whereas we will use the term interaction entropy to refer to the concen-
tration-independent remainder DSI defined from Eq. (16) by

DSI ¼ � @DGI

@T
¼ �DG2 � DG1

T
þ DU2 � DU1

T
: ð38Þ

The standard entropies and enthalpies of binding are measurable quanti-
ties. They are often obtained directly by isothermal calorimetry or by
measuring variations of binding constant with temperature (Serdyuk
et al., 2007). Although they yield quantities directly comparable to experi-
mental measurements, Eqs. (33) and (36) are rarely used in computational
studies with explicit solvation because of the difficulties of converging the
changes in total average potential energies DU2 and DU1, which are given by
the difference of two large values (each average in Eqs. (34) and (35) scales
as O(N), where N is the size of the system, whereas their difference, which is
local to the binding site, is O(1)). Estimating DSb

∘ by evaluating DGb
∘ over a

range of temperatures and evaluating the derivative by finite differences
(Levy and Gallicchio, 1998) is also problematic because using a small
temperature range causes amplification of statistical errors, whereas using
a large temperature range may introduce systematic bias.
Equation (33) is not valid with implicit solvation because in this case,

unlike the potential energy U(x), the effective potential energy Ueff(x) is
temperature dependent. From Eq. (23), we have (Chang et al., 2007)

DSI ¼ � @DGI

@T
¼ �DGI

T
þ DUeff

T
� D

@W

@T

� �
; ð39Þ

where

DUeff ¼ Ueffh iRL � Ueffh iRþL ð40Þ
is the change in total effective potential energy upon turning on receptor–
ligand interactions and
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D
@W

@T

� �
¼ @W

@T

� �
RL

� @W

@T

� �
RþL

: ð41Þ

is the corresponding change in the average temperature derivative of the
solvent PMF. The binding enthalpy is again given by DGb

∘þTDSb
∘ or

DHb ¼ DUeff � TD
@W

@T

� �
: ð42Þ

The sum of the first two terms in the r.h.s. of Eq. (39) is usually referred to
as the configurational entropy of binding (Zhou and Gilson, 2009)

DSconf ¼ �DGI

T
þ DUeff

T
; ð43Þ

whereas the last term, which would be zero for a temperature-independent
potential, corresponds to the change in solvent entropy. Similarly, the last
term in the r.h.s. of Eq. (42) is the solvent contribution to the binding
enthalpy.

It can be shown that (Zhou and Gilson, 2009) Eq. (43) is equivalent to
taking the difference of the entropies of the bound and uncoupled states
each evaluated using the fundamental equation

S ¼ �k

ð
dxr xð Þlnr xð Þ; ð44Þ

where r(x)¼exp[�bU(x)]/Z is the configurational distribution function.3

One interesting result from Eqs. (39) and (42) is that the @W/@T terms
cancel out when evaluating the interaction free energy as DGI¼DHb�
TDSI, yielding

DGI ¼ DUeff � TDSconf : ð45Þ
Consequently, the configurational entropy and the effective enthalpy of
binding form a valid decomposition in that their sum, together with the
appropriate concentration-dependent terms in Eq. (25), and without
approximation, gives the standard binding free energy. On the other

3In principle, Eq. (44) should include an additional constant term corresponding to the
multiplicative factor necessary to make the classical partition function dimensionless. This
term, which cancels the dimensions of the distribution function within the logarithm in
Eq. (44), is omitted here for brevity because it cancels out when taking differences between
the quantities corresponding to the unbound and bound states.
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hand, DUeff and DSconf, lacking proper solvent contributions, do not
directly reflect the measurable entropies and enthalpies of binding. Con-
versely, DUeff and DSconf are not directly measurable thermodynamic
quantities. Nevertheless, the effective enthalpy/configurational entropy
decomposition can yield valuable insights on the driving forces in favor
and against association. Moreover, because they are evaluated with implicit
solvation, these quantities are also more amenable to computation relative
to the full binding entropies and enthalpies. Indeed, as discussed below,
some computational methods with implicit solvation, such as molecular
mechanics/Poisson–Boltzmann plus surface area (MM/PBSA), are based
on Eq. (45) and independent estimates of DUeff and DSconf.

2. The Reorganization Free Energy

Working within the implicit solvent representation, we can think of the
binding process as occurring in two separate steps. First, the ligand and
the receptor reorganize their conformational ensembles to match those of
the bound complex, and then receptor–ligand interactions are estab-
lished. As there is no change in the configurational distributions of the
binding partners, from Eq. (44), we see that the entropy change for the
second step is zero. Moreover, the enthalpy change for the second step is
limited to the establishment of the receptor–ligand interaction energy
huiRL, where u is the binding energy defined by Eq. (24) and the RL
subscript denotes averaging over the bound conformations of the com-
plex. The remainder, DGreorg, defined by the identity

DGI ¼ DGreorg þ uh iRL ð46Þ
is then the free energy for the reorganization step.
By adding and subtracting hUeff(xR)þUeff(xL)iRþL fromEq. (46) and using

Eqs. (24), (40), and (43), we can rewrite the reorganization free energy as

DGreorg ¼ DUreorg � TDSconf ; ð47Þ
where DSconf is the configurational entropy defined above, and

DUreorg ¼ Ueff xRð Þ þ Ueff xLð Þh iRL � Ueff xRð Þ þ Ueff xLð Þh iRþL ð48Þ
is the reorganization energy defined as the change in the average internal
potential energies of the receptor and the ligand in going from to the
unbound state to the bound state while they are not interacting.
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Equation (47) confirms that the configurational entropy corresponds to
the entropic cost of reorganizing the conformational ensembles of the
binding partners to form the complex.

The reorganization free energy is necessarily positive because without
mutual interactions, the ligand and the receptor would spontaneously relax
to their conformational ensembles at a lower free energy. Therefore based on
Eq. (46), we conclude that the average binding energy huiRL is the only term
that can be favorable to binding, while reorganization always opposes it.

In some applications, other definitions of the reorganization free energy
appear in which the intermediate state is one in which the receptor and the
ligand conformational ensembles by construction do not match exactly
those of the complex (Mobley et al., 2007a). Consider, for example, Fig. 4
in which the binding free energy (here, the ligand is assumed to be already
placed in the binding site) is decomposed into the free energy DGreorg* of
restraining the ensembles of conformations of the receptor and the ligand
in solution to chosen macrostates R* and L* (for instance, an application is
described below in which the R*macrostate is defined with respect to a side-
chain conformation). The free energy for this process is related to the
population PRþL*, defined as the probability of finding a conformation
belonging to the macrostate, in the absence of restraints:

DG�
reorg ¼ �kT lnP �

RþL: ð49Þ
Following this step, we consider the binding free energy, DGI*, between
the R* and L* species, that is, the binding free energy when the receptor

R + L RL

(RL)*R* + L*

ΔG*reorg
ΔG*release

ΔG*
I

ΔGI

FIG. 4. Thermodynamic cycle illustrating the restrain-and-release decomposition
of the interaction free energy (Eq. (51)). Although not indicated, the ligand here is
assumed to be always sequestered in the binding site. R and L represent the free receptor
and ligand, R* and L* represent the receptor and ligand restrained within a conforma-
tional macrostate, (RL)* represents the complex in which receptor and ligand are
restrained within their macrostates, and RL represents the free complex.
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and the ligand are limited to the chosen macrostates. DGI* is defined, for
example, as in Eq. (23) where in addition to the binding site indicator
function I(zL), indicator functions I(xR) and I(x

L
) are present which limit

the range of the receptor and ligand internal degrees of freedom. In
general, the resulting state of the complex, denoted by (RL)* in Fig. 4,
does not match the full complexed state RL because in the former, the
receptor and the ligand are limited to their respective macrostates. If the
chosen macrostate encompasses most of the conformational ensemble of
the complex, the (RL)* and RL species are virtually equivalent. Otherwise,
we need to consider the free energy difference, DGelease*, of releasing the
macrostate restraints in the complexed state, given by

DG�
release ¼ kT lnP �

RL; ð50Þ
where PRL* is the population of the macrostate when the ligand and the
receptor are interacting. Putting all together, we finally obtain

DGI ¼ DG�
I þ kT ln

P �
RL

P �
RþL

; ð51Þ

which expresses DGI as the sum of a term, DGI* corresponding to the
binding free energy of a macrostate of the complex plus a free energy term
corresponding to the preparation and release of this macrostate.
The result in Eq. (51) also very clearly shows that to accurately estimate

the binding free energy, it is sufficient to sample only those macrostates
whose population is affected by the binding reaction. From Eq. (51), we
see that DGI¼DGI* as long as PRþL*¼PRL*, that is, the binding free energy
computed within a chosen macrostate is an accurate estimate of the
binding free energy if the population of the macrostate is approximately
the same in the unbound and bound states. So, for example, it is not
strictly necessary to thoroughly sample regions of a protein receptor far
away from the binding site as these are often not substantially affected by
the binding of the ligand. Arguably, it is precisely for this reason that
computer simulations, which necessarily sample a very small fraction of
conformational space, can be applied to the computation of binding free
energies. Equation (51) is also the basis for the ‘‘restrain-and-release’’
double-decoupling method discussed below which is useful in cases when
it is convenient to conduct the binding free energy calculation within a
limited portion of conformational space.
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3. Conformational Decomposition

We showed in Section II.D.1 that the binding affinity density measures
the contribution of the conformations with a particular binding energy to
the overall binding constant. In this section, we generalize this result in
the conformational dimension. Often, the affinity between a receptor and
a ligand is the result of not one but multiple binding modes differing, for
example, in the orientation of the ligand in the binding site. We would
then like to estimate the contribution of each mode to the total binding
free energy. As discussed later, this question has computational relevance
in that if we have a way to combine the binding free energies of multiple
modes into a single overall binding free energy, then it would be possible
to simplify the calculation by treating each mode separately. As we show, in
this section, a conformational decomposition of this kind is possible.

Let us work in the implicit solvent representation using the binding
energy distribution formalism presented in Section II.D.1. Given a set of
macrostates i¼1, . . .,n of the complex, we consider the joint probability
distribution p0(u, i), expressing the probability of observing the binding
energy u while the complex is in macrostate i. Assuming that the set of
macrostates collectively covers all possible conformations of the complex
(which is always possible by including a ‘‘catch-all’’ macrostate), we can
express p0(u) as a marginal of p0(u, i):

p0 uð Þ ¼
X
i

p0 u; ið Þ ¼
X
i

P0 ið Þp0 ujið Þ; ð52Þ

where we have introduced the conditional distribution p0(u|i) and the
population P0(i) of macrostate i in the uncoupled reference state and used
the relationship p0(u, i)¼P0(i)p0(u|i) between the joint and conditional
distributions. By inserting Eq. (52) into Eq. (32), we have

k uð Þ ¼
X
i

P0 ið Þki uð Þ; ð53Þ

where

ki uð Þ ¼ Vsite

V ∘

Osite

8p2
p0 ujið Þe�bu ð54Þ

represents the binding affinity density for macrostate i. In analogy with
Eq. (31), we define a macrostate-specific binding constant
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Kb ið Þ ¼ e�bDG∘
b ið Þ ¼

ð
du ki uð Þ ¼ Vsite

V ∘

Osite

8p2
e�bu� 	

RþL;i
; ð55Þ

where h. . .i
RþL,i represents an ensemble average in the unbound state of

the complex limited to macrostate i. The macrostate-specific binding
constant Kb(i) represents therefore the binding constant that would be
measured if the conformations of the complex were limited to macrostate
i. From Eqs. (55) and (53), the sum of the macrostate-specific binding
constants weighted by the macrostate populations P0(i) is the total binding
constant:

Kb ¼
X
i

P0 ið ÞKb ið Þ: ð56Þ

Equation (56) expresses the fact that each conformational macrostate
contributes to the total binding constant proportionally to its macro-
state-specific binding constant Kb(i) weighted by the population, P0(i),
of the macrostate in the unbound state (Jayachandran et al., 2006). Using
Eq. (2), the composition formula for the binding free energy
corresponding to Eq. (56) is

DG∘
b ¼ �kT ln

X
i

P0 ið Þe�bDG∘
b ið Þ; ð57Þ

where DGb
∘(i) is the standard binding free energy for macrostate i.

Although Eqs. (56) and (57) have been derived in the implicit solvation
representation, it can be shown that they are valid in general. In the
explicit solvent representation, the macrostate i refers to the solvated
state for the receptor and for the gas phase for the ligand, and it is
assumed that the same definition of macrostate i is used for both legs of
the double-decoupling process (Eqs. (10) and (12)). Equation (57) also
forms the basis of integration over parts approaches (Jayachandran et al.,
2006; Mobley et al., 2006; Boyce et al., 2009) to the calculation of binding
free energies. The idea is that the binding free energy can be obtained by
the appropriate combination of the binding free energies of a series of
binding modes. These methods are attractive because it is easier to localize
the calculation to a macrostate than achieving equilibration between
distinct binding modes. The challenge is to identify the collection of
modes that contribute the most to the total binding free energy.
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Misidentification of the highest contributing mode can introduce major
errors, while neglecting secondary modes generally has a smaller effect on
accuracy (Mobley et al., 2006; Gallicchio et al., 2010).

The ratio P0(i)Kb(i)/Kb measures the relative contribution of macro-
state i to the overall binding constant. We can see that a large macrostate-
specific binding constant Kb(i) is not a sufficient condition for a large
contribution to the overall affinity. It must be also the case that the
macrostate has a significant population P0(i) in the unbound state.
This result can be interpreted as a generalization of the reorganization
free energy concepts developed in Section II.F.2. DGreorg¼kT ln P0(i)
measures the reorganization free energy penalty for restraining the system
into macrostate i in the unbound state, whereas DGb

∘(i) measures the
association free energy in that macrostate. For a macrostate to contri-
bute significantly to the binding affinity, the reorganization penalty
and the association gain must combine so as to be favorable overall to
binding.

It is straightforward to show from Eqs. (55) and (30) that (Gallicchio
et al., 2010)

P0 ið ÞKb ið Þ
Kb

¼ P1 ið Þ; ð58Þ

where

P1 ið Þ ¼
ð
dup1 u; ið Þ ð59Þ

is the population of macrostate i in the bound state. In other words, this
analysis shows that the relative contribution of macrostate i to the binding
constant is equal to the physical population of that macrostate of the
complex. If a particular binding mode of the complex can be observed, by,
for example, X-ray crystallography, it can be concluded therefore that its
population is high and that it likely contributes significantly to the binding
affinity.

It is also of interest to estimate the effect of having missed a particular
binding mode in a binding free energy calculation. An expression for the
binding constant, Kb(� j), when macrostate j, say, has been missed can be
derived by removing the corresponding term in the sum in Eq. (56) and, in
addition, by renormalizing the macrostate populations so that they add to
one. The result is
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Kb �jð Þ ¼ Kb � P0 jð ÞKb jð Þ
1� P0 jð Þ : ð60Þ

From this result, we can see that, as expected, missing macrostate j has a
large effect in the computed binding constant if this macrostate provides a
large contribution to the overall binding constant (the P0(j) Kb(j) term in
Eq. (60)). It also shows, however, that the binding constant can also be
severely overestimated if the j macrostate is highly populated in solution
(the 1�P0(j) term at the denominator is small). In other words, large
errors in binding free energy calculations are expected either if important
macrostates of the bound complex are missed or if important macrostates
of the unbound states are missed. The latter occurs because the calcula-
tion would underestimate the free energy required to reorganize the
binding partners into their bound ensembles.

III. Computational Methods

The development of a statistical mechanics theory of noncovalent associ-
ation is only the first step in the development of computational models and
methods for the calculation of binding affinities. To begin with, the expres-
sions for the free energy of binding presented above depend on the defini-
tion of a potential energy function U(x). We also require some prescription
to generate ensembles, or set of conformations x of the system, compatible
with the thermodynamic state of the system and the potential energymodel.
In this review, we focus on all-atom classical force fields (Cornell et al., 1995;
Jorgensen et al., 1996; MacKerell et al., 1998; Schuler et al., 2001) energy
models, and on molecular dynamics (MD) or Monte Carlo (MC)-based
conformational sampling methods, which are most commonly applied
models for protein–ligand binding free energy estimation. Atomistic force
field models are not reviewed further here except to say that they are
parametrized functions of the Cartesian coordinates of the atoms of the
system, describing electrostatic, dispersion, and steric noncovalent interac-
tions as well as covalent interactions between atoms. Force fields are used
with explicit representations of solvent molecules (water in the applications
described below), as well as in conjunctionwith implicitmodels of hydration
(Lazaridis andKarplus, 1999; Bashford andCase, 2000;Wagoner andBaker,
2006; Chen et al., 2008; Gallicchio et al., 2009).
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A very active and rich area of research is focused on the development of
computer algorithms for the evaluation of free energies (Chipot and
Pohorille, 2007) given an energy model. One class of free energy methods
applicable to binding free energy simulations is based on connecting the
unbound and bound states by a suitable thermodynamic path. At a
fundamental level, thermodynamic path methods are capable of computing
ratios of partition functions as in Eq. (4). Another class of free energy
methods, often referred to as end point methods, compute binding free
energies by explicitly estimating the free energies of the bound and
unbound states (Swanson et al., 2004).

A. Free Energy Estimators

Equations (10) and (12), for explicit solvation, and Eq. (23), for implicit
solvation, suggest a simple algorithm to the computational evaluation of
binding free energies by means of exponential averaging of the binding
energy in an appropriate reference ensemble. In practice, these expres-
sions suffer from several limitations and are rarely implemented as such.
Instead, suitable free energy estimators have been developed which are dis-
cussed in this section.

Equations (10), (12), and (23) are particular realizations of the free
energy perturbation (FEP) identity (Zwanzig, 1954), which states that the
free energy difference DG between two states 1 and 0 is

DG ¼ �kT ln
Z1

Z0
¼ �kT ln e�bDU xð Þ

D E
0
; ð61Þ

where Z1 and Z0 are the corresponding configurational partition functions
and DU(x)¼U1(x)�U0(x) is the difference of potential energies between
state 1 and 0 (the perturbation), and the average is over conformations x
sampled from the reference state 0. In our case, state 1 is the bound state
and state 0 is the uncoupled state of the complex. Because they are very
difficult to converge, however, in binding free energy applications, the
FEP formulas are rarely evaluated directly. To understand why, consider,
for example, Eq. (26) and Fig. 2. The distribution of binding energies in
the unbound state, p0(u), is largest for large positive values of u. This is
expected since in this state the ligand is restrained in the binding site
where, in the absence of receptor–ligand interactions, the ligand is more
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likely to sample conformations with unfavorable clashes with receptor
atoms rather than conformations with favorable interactions. The values
of u in the extreme negative binding energy range correspond to the low-
energy conformations of the complex, which are very rarely visited in
absence of ligand–receptor interactions. On the other hand, the exponen-
tial factor, exp(–bu), amplifies the contribution of these conformations to
the integral in Eq. (26), causing the average to be dominated by rare
events. This results in unreliable results, requiring the accumulation of an
inordinate, and practically unachievable, number of independent samples
to reach convergence (Pohorille et al., 2010).
An equivalent way to assess this problem is to consider the distribution,

p1(u) of binding energies in the bound ensemble (illustrated in Fig. 2 as a
dashed curve). We concluded above (Eq. (31)) that most of the contribu-
tion to binding comes from conformations where p1(u) is large. The
amount of overlaps between p1(u) and p0(u) is a measure of the probabili-
ty that one of these conformations is generated by chance in the
uncoupled ensemble. As we can see from Fig. 2, the amount of overlap
is small and the binding affinity is expected to be difficult to assess by
sampling only the uncoupled ensemble. This is a general result, which
states that the FEP formula is applicable for the computation of free
energy difference between closely related states whose distributions of
the perturbation energy overlap significantly (Lu and Kofke, 2001;
Chipot and Pohorille, 2007; Pohorille et al., 2010).
The technique known as stratification (Chipot and Pohorille, 2007) is a

general way to circumvent the problem of poor overlap between energy
distribution functions in FEP binding free energy calculations. The first
ingredient is a l-dependent hybrid potential, which at l¼0 typically
corresponds to the unbound state and at l¼1 corresponds to the
bound state. A straightforward, although not necessarily optimal, choice
for the hybrid potential in binding free energy calculations is

U xR; xL; zLjlð Þ ¼ U xRð Þ þ U xLð Þ þ lu xR; xL; zLð Þ; ð62Þ
where U(x

R
)þU(x

l
) represents the energy in the unbound state and u is

the binding energy. Here, we have used the notation for implicit solvation
denoting for simplicity the effective potential as U. The expression for
hybrid potential, Eq. (62), can easily be adapted to the solvation andbinding
steps (Eqs. (12) and (10)) with explicit solvation. The hybrid potential
defines a thermodynamic path connecting the unbound and bound states
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through an arbitrary number of unphysical intermediate states at 0<l<1 in
which the receptor and the ligand are only partially coupled. In addition,
states with similar l have similar characteristics and, in particular, similar
binding energy distributions with significant overlap, allowing the applica-
tion of the FEP formula for the computation of their free energy difference:

G l2ð Þ � G l1ð Þ ¼ �kT ln
Zl2

Zl1
¼ �kT ln e�bDlu� 	

l1
; ð63Þ

where Dl¼l2�l1. Given a set of n intermediate states at l¼li, the free-
energy difference can then be evaluated as the sum of the free-energy
differences between intermediate states

DG ¼ G l ¼ 1ð Þ � G l ¼ 0ð Þ ¼ �kT
X
i

ln e�bDliu
� 	

li
; ð64Þ

where Dli¼liþ1�li. More generally, when the expression for the hybrid
potential is not linear in l, Dliu in Eq. (64) is replaced by U(liþ 1)�U(li).

Because it is based on the sum of well-behaved terms, the FEP stratifica-
tion formula, Eq. (64), is much easier to convergence that the direct
application of the FEP formula between the unbound and bound states.
The procedure entails performing multiple MD or MC simulations to
collect samples at each l. The more intermediate states are employed;
the fewer samples are needed to converge each term but more terms need
to be evaluated. A number of techniques have been developed to optimize
the l schedule in FEP calculations and to assess the reliability if individual
free energy estimates based, for example, on the analysis of neighboring
distributions (Chipot and Pohorille, 2007; Pohorille et al., 2010).

The thermodynamic integration (TI) formula, which is sometime used in
binding free energy calculations (Michel and Essex, 2010), can be consid-
ered the continuous limit of Eq. (64) for Dli!0

DG ¼
ð1
0
dl

@U

@l

� �
l
¼

ð1
0
dl uh il; ð65Þ

where the last equality follows from Eq. (62). The TI formula is formally
derived from the identity

@G lð Þ
@l

¼ �kT
@lnZ lð Þ

@l
¼ @U lð Þ

@l

� �
l
: ð66Þ

Equation (64) expresses each individual free energy difference in terms of
an exponential average. One limitation of the exponential average is that, as
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discussed above, it works well only if conformations relevant for the target
state are sampled in the reference state, or in other words, if the binding
energy distribution in the reference state envelopes that of the target state.
The result is that often one perturbation direction gives different results
than theother (hysteresis), with the one going in the direction of decreasing
entropy (for binding the one starting from the unbound state) usually being
more accurate (Lu and Kofke, 2001). In some cases, however, neither
direction may work well unless the l spacing is made very small. In recent
years, more efficient free energy estimators have been developed. The
Bennet acceptance ratio (BAR) formula (Bennett, 1976; Lu et al., 2003)

DG lð Þ ¼ C � kT ln
f �b Dlu � Cð Þ½ �h il1
f b Dlu � Cð Þ½ �h il2

; ð67Þ

where f(x)¼ l/[lþexp(x)] is the Fermi function and C is a constant
determined iteratively, has been shown to be an optimal free energy
estimator with respect to the minimization of the statistical variance. It is
also symmetric with respect to the perturbation direction. The BAR for-
mula is based on the introduction of a fictitious intermediate state whose
distribution is enveloped by the distributions of both end states and peaks
where they most overlap. Consequently, the BAR formula requires only
that the two distributions overlap to some extent, rather than requiring
that one is enveloped in the other as for the exponential averaging
formula. The BAR formula has for the most part replaced the exponential
averaging formula in modern FEP binding free energy calculations.
A FEP approach can also be used to compute the binding free energy

using the binding PMF approach (Eqs. (18) and (19)). In this case,
techniques to compute free energy changes along a thermodynamic
path described by a structural order parameter can be considered. For
example, the distance measure d(l) of the ligand from the binding site.
Samples are generated at a reference receptor–ligand distance, and the
potential energy changes DU resulting from displacing the ligand distance
from the receptor by Dd¼d(liþ1)�d(li) are computed in the context of
Eq. (64) or (67). More commonly, however, the binding PMF is expressed
in terms of the probability density p(d) of the receptor–ligand distance

DF dð Þ ¼ �kT ln
p dð Þ
p d�ð Þ ; ð68Þ

where d* is some reference large distance corresponding to the solvent
bulk. Because it is difficult to sample a large range of distances in one
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simulation, multiple simulations are conducted each employing a differ-
ent auxiliary confining potential designed to bias sampling in one limited
range of distances (Woo and Roux, 2005). In this technique, generally
known as umbrella sampling, each simulation generates a biased distribu-
tion. The data from all of the simulations are then combined and unbi-
ased using reweighting techniques such as the weighted histogram analysis
method (WHAM) (Ferrenberg and Swendsen, 1989; Kumar et al., 1992;
Gallicchio et al., 2005). The WHAM equations in this case are expressed as

P dið Þ ¼ n dið ÞP
lnlfl exp �bol dið Þ½ � ; ð69Þ

where P(di)¼p(di)Ddi is the unbiased probability to find the system at
distance bin i of size Ddi centered at di and n(di) is the number of samples
collected from all simulations in this bin. The denominator is a sum over
the simulations, each at a different value of l. nl is the total number of
samples collected at the simulation at l, ol(di) is the value of the biasing
potential at l corresponding to bin i, and finally,

f �1
l ¼

X
i

exp �bol dið Þ½ �P dið Þ ð70Þ

is a normalization factor related to the free energy, kT ln fl, of the system
at l relative to the unbiased system. Equations (69) and (70) are solved
iteratively until convergence. The binding free energy is then computed by
integrating the binding PMF over the binding site region (Eq. (18)).

The usefulness of WHAM as a binding free energy estimator extends to
alchemical methods as well. As further described below, WHAM has been
used to implement Eq. (23) by choosing the binding energy u as thermo-
dynamic path parameter and setting as biased potential ol(u)¼lu
(Gallicchio et al., 2010). From Eq. (62), the unbiased system at l¼0 is
the unbound state and l¼1 corresponds to the bound system, and
consequently, Eq. (70) evaluated at l¼1 yields the interaction component
of the binding free energy:

DGI ¼ kT Infl¼1: ð71Þ
More recently, the multistate Bennett acceptance ratio (MBAR) method
has been developed (Tan, 2004; Shirts and Chodera, 2008), which, in a
way, unifies the BAR and WHAM free energy estimators. Like WHAM, it
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combines in a statistically optimal way data from multiple values of l to
compute the overall binding free energy (rather than froma sumof pairwise
terms as in the FEP (Eq. (64)). It also resembles WHAM in terms of
formulation. In fact, it is equivalent to WHAM in the limit that bin sizes
aremade so small so as to containonly one sample, ornone.However,MBAR
reduces to the BAR estimator when only two states are considered. The
MBAR free energy estimator is preferable to WHAM because it does not
require the definition of a histogram grid, and it is preferable to BAR
because it more efficiently utilizes the samples generated at each l so that
all of them contribute to free energy differences. Because, in addition, it
combines the generality of both methods, theMBAR is expected to become
a widely employed estimator in binding free energy calculations.

B. Double Decoupling

The double-decoupling method (Gilson et al., 1997; Deng and Roux,
2009; Mobley and Dill, 2009) is an alchemical approach to the calculation
of standard binding free energies (often referred to as absolute binding
free energies in the literature). It implements Eq. (13), where the com-
putations of the free energies of transfer, DG1 and DG2, of the ligand from
the gas phase to, respectively, the solution and receptor environments
form the core of the method. The name double decoupling comes from
thinking of the two opposite processes of decoupling the ligand from the
solution and receptor environments. Equations (12) and (10) are imple-
mented using either the TI (Eq. (65)) or the staged FEP/BAR (Eqs. (64)
and (67)) free energy estimators.
Double decoupling has been used recently to compute the standard

binding free energies of a variety of protein–ligand complexes. The L99A
and L99A/M102Q mutants of T4-lysozyme (Eriksson et al., 1992; Graves
et al., 2005) have been the most studied systems; the small size of the
ligands, the relative simplicity of the binding sites, and the availability of
high-quality structural and thermodynamic data (Morton et al., 1995; Wei
et al., 2002) have made these systems particularly well suited for testing the
validity of various computational protocols (Deng and Roux, 2006; Mobley
et al., 2007b; Boyce et al., 2009). A number of double-decoupling studies
(Jayachandran et al., 2006; Wang et al., 2006) have also targeted a series of
inhibitors of the FKBP12 receptor (Holt et al., 1993). Applications to the
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trypsin (Jiao et al., 2008; Jiao et al., 2009) and the ribosomal peptidyl-
transferase receptors (Ge and Roux, 2010) have also been recently
reported.

From a computational perspective, the three main issues in double-
decoupling simulations are (i) the extent of conformational sampling
(discussed in detail in Section III.F), (ii) the definition of the binding
site volume by restraining potentials, and (iii) the use of soft-core hybrid
potentials.

As discussed above, the definition of the complexed state and the
concentration dependence of the standard state are formally introduced
by a binding site indicator function I(zL). As discussed (Gilson et al., 1997;
Boresch et al., 2003), I(zL) can be defined in terms of a continuous
function which interpolates from values near 1 within the binding site
region to values near 0 outside it. A common choice is to set

I zLð Þ ¼ e�bUrestr z
Lð Þ; ð72Þ

where Urestr is a suitable restraining potential that depends only on the
external coordinates of the ligand. This definition is computationally
convenient because it is differentiable and, as we can see by inserting
Eq. (72) in Eq. (10) or in Eq. (23), the indicator function can be
implemented by means of restraining potentials easily included in poten-
tial energy routines of MD packages. Note that, because the restraining
potential is present in both the unbound states, it does not contribute to
the binding energy (Eqs. (11) and (24)). Also note that the definition
above makes the definition of the complexed state temperature depen-
dent, potentially affecting in unwanted ways the temperature dependence
of binding free energies. This dependence can be removed by adjusting
the strength of Urestr according to the simulation temperature.

Some early absolute binding free energy calculations (Jorgensen et al.,
1988), as well as more recent ones (Fujitani et al., 2005), did not account
properly for the standard state definition. Moreover, ligand restraints are
sometime described as a convenient computational device to enhance
convergence by not letting the ligand wander into the whole simulation
volume when it is uncoupled from the receptor (Deng and Roux, 2009).
But, as discussed above, they are in fact a necessary input of the method;
they implicitly provide a definition of the complexed state without which it
is not possible to define its free energy. Boresch et al. (2003) have
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introduced a general framework to define the six external degrees of
freedom z

l
of the ligand based on the positions (expressed in spherical

polar coordinates) of three reference atoms of the ligand relative to three
reference atoms of the receptor. This leads to three coordinates that
specify the overall translation of the ligand (one distance and two angles)
and another set of three coordinates (three angles) that determine the
orientation of the ligand in the binding site. Restraining potentials can be
applied only on the translational coordinates or also on the orientational
coordinates. For harmonic or flat-bottom harmonic restraints, the binding
site volume VsiteOsite in Eq. (7) can be evaluated analytically. In other
circumstances, the integration of the indicator function can be obtained
numerically with high accuracy, as it involves at most six coordinates. Some
early studies (Miyamoto and Kollman, 1993) employed multiple distance
restraints between ligand atoms and receptor atoms, which, as pointed out
by Boresch et al. (2003), is incorrect based on this formalism, as it would
introduce couplings between the external ligand coordinates and the
internal coordinates of the receptor and the ligand.
It has been observed that a hybrid potential linear in l as in Eq. (62)

leads to instabilities in the calculations of free energies near l¼0
(Steinbrecher et al., 2007; Michel and Essex, 2010), when the ligand
and the receptor are nearly uncoupled. Under these conditions, confor-
mations are generated in which receptor and ligand atoms interpenetrate
each other and yielding very large values of the binding energies. These
cause instabilities in Eq. (63) which are difficult to overcome unless the l
spacing is very fine (small Dl). These difficulties have led to the develop-
ment of so-called soft-core hybrid potentials which avoid large perturbation
energies near the end point of the transformation. A popular class of soft-
core potential employs a l-dependent modified distance function in the
evaluation of Lennard–Jones and Coulombic interactions. For example,

uLJ r jlð Þ ¼ 42LJ
1

alþ r=sLJ

 �6h i2 � 1

alþ r=sLJ

 �6h i

8><
>:

9>=
>; ð73Þ

is a soft-core version of the Lennard–Jones pair potential. Note that uLJ(r/l)
above is finite for any nonzero value of l allowing particles to interpenetrate
each other. This functional form also ‘‘grows’’ particles gradually, reducing
the fluctuations of the free energy estimator at small l. Decomposing the
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decoupling steps such that electrostatic interactions is turned off before
Lennard–Jones has also been shown to improve convergence.

C. Binding Energy Distribution Analysis Method

The binding energy distribution analysis method (BEDAM) (Gallicchio
et al., 2010) is an absolute binding free energy alchemical method based
on an implicit description of the solvent. It computes the binding free
energy by means of Eq. (26) where the distribution of binding energies
p0(u) is computed numerically. The numerical difficulties in the applica-
tion of Eq. (26) is illustrated in Fig. 2. Because low binding energies are
very rarely sampled when the ligand is not guided by the interactions with
the receptor, the accurate calculation of the important low-energy tail of
p0(u) cannot be accomplished by brute-force collection of binding energy
values from a simulation of the complex in the uncoupled state. Instead,
samples are collected from a series of biased MD simulations of the complex
with biasing potential lu. In going from l¼0 to 1, the system progressively
samples more and more favorable binding energies. The replicas collective-
ly sample a wide range of unfavorable, intermediate, and favorable binding
energies which are unbiased and combined together by means of the
WHAM to yield the unbiased probability density p0(u) (Gallicchio et al.,
2005), which is then used in Eq. (26) to compute the binding free energy.
The ladder of l values is chosen so that uniform coverage of the range of
binding energies important for binding is achieved. In particular, the low
binding energy tail of p0(u), although small in magnitude, is reliably
estimated because the relative precision of the binding energy distribution
p0(u) computed by WHAM depends mainly on the number of samples
collected at binding energy u, rather than the value of p0(u) itself.

Although, as discussed in Section II.D.1, the binding energy distribution
formalism on which BEDAM is based is valid in general, in practice, it is
only applicable with implicit solvation. This is because in BEDAM the
effective binding energy is part of the potential energy of the system,
requiring fast evaluation of u and its gradients for MD conformational
sampling. With explicit solvation, however, each evaluation of the effective
binding energy would entail a costly and impractical binding free energy
calculation (see discussion near Eq. (24)).
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In a recent study (Gallicchio et al., 2010) using the OPLS force field
with the AGBNP2 (Gallicchio et al., 2009) solvation model, BEDAM was
shown to accurately identify ligand binders from nonbinders in a chal-
lenging set of candidate ligands to T4 lysozyme receptors (Fig. 3) failed by
docking programs. In addition, the standard binding free energies of the
binders were found to be in good agreement with experimental measure-
ments. In contrast, energy-only estimators, which do not include entropic
and energy reorganization effects, did not correctly reproduce the experi-
mental rankings. As with other full free energy models of binding, BEDAM
implicitly incorporates entropic and reorganization effects. In this study,
the reorganization free energies were evaluated using Eq. (46) and shown
to be large and, in many cases, the discriminating factors between binders
and nonbinders. Analysis of the binding energy distributions, as described
in Section II.F.3, allowed the decomposition of the binding free energies
into conformational contributions based on the orientation of the ligand
within the binding pocket. It was found that in many cases, several binding
modes contributed nearly equally to the total binding free energy.
There are clear parallelisms between BEDAM and conventional binding

free energy methods such as double decoupling. They are both alchemical
methods that utilize a hybrid potential of the form in Eq. (62) to build a
thermodynamic path between the unbound and the bound states. The
binding energies collected in BEDAM can yield directly the binding free
energy by means of the f factors (Eq. (70)) returned by WHAM or MBAR.
One advantage of BEDAM over double decoupling is that BEDAM esti-
mates the binding free energy from a single perturbation leg rather than
from the difference of two separate free energy calculations with double
decoupling. This feature is potentially advantageous for more rapid con-
vergence of the binding free energies of highly polar and charged ligands,
which, in double-decoupling and end point approaches discussed below,
are the result of a nearly complete cancellation between the large free
energies of the unbound and the bound states (Deng and Roux, 2009).
The challenges in BEDAM calculations are similar to those discussed

above in the context of double decoupling. In addition, BEDAM relies on
the quality of the implicit solvent potential. To obtain accurate binding
free energies, care should be taken to achieve the correct balance between
direct interaction and hydration forces (Gallicchio et al., 2009). As
discussed below to further enhance the conformational sampling of
ligand–receptor conformations, BEDAM employs a l-hopping replica
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exchange (RE) algorithm. The problem of the convergence of free energy
differences near l¼0 is evidenced by the long tail of the p0(u) distribution
at large energies which is difficult to estimate accurately. Recent versions of
BEDAM employ a soft-core hybrid potential of the form U(l)¼U0þlf(u),
with f(u)¼umax tanh(u/umax), where umax is some maximum ceiling for
the binding energy, which has been shown to improve convergence
without appreciably affecting free energy estimates.

D. PMF Approach

The binding PMF approach described in Section II.C is an example of a
nonalchemical transformation to the calculation of absolute binding free
energies. Numerical applications of the PMF formula have a long history
in the study of dimerization of simple solutes (Jorgensen, 1989; Payne
et al., 1997), and few applications have been reported for protein–ligand
binding free energy estimation (Woo and Roux, 2005; Lee and Olson,
2006; Deng and Roux, 2009). The main advantage of PMF calculations is
that they can be conducted with explicit solvation, but, unlike double-
decoupling methods, they do not suffer from the large cancellation between
the solvation and binding components (DG1 and DG2 in Eqs. (12) and
(10)). PMF calculations are therefore easier to converge for the binding
between charged ligands and receptors whose solvation free energies can be
of the order of �100 kcal/mol. The disadvantage of the PMF approach is
that it relies on the presence of a physical unobstructed path for the ligand
to reach the binding site from solution. This limitation basically prevents
the application of the method to buried binding sites.

Computationally, it is impractical to obtain the PMF along all of the six
external ligand coordinates. Typically, only one coordinate is used
corresponding to a displacement distance d along an approach path
from the bulk solution to the binding site. The other coordinates are
either fixed (Woo and Roux, 2005) or averaged (Lee and Olson, 2006). In
the former case, the work necessary to restrain the angular position and
orientation of the ligand relative to the receptor is computed separately
(Woo and Roux, 2005). The PMF is computed along the approach coor-
dinated by biased sampling and reweighting, as discussed above. In the
reported applications (Woo and Roux, 2005; Lee and Olson, 2006),
harmonic biasing potentials were employed.
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E. Relative Binding Free Energies

Often in pharmaceutical applications (Reddy and Erion, 2001), we are
interested in the difference of binding free energy between two related
compounds to the same receptor. Computational methods designed to
compute directly relative binding free energies, rather than the
corresponding standard binding free energies, have been developed and
resulted in some of the first applications of free energy methods to
protein–ligand binding (Tembe and McCammon, 1984). Relative binding
free energy calculations (commonly referred to as FEP calculations) con-
stitute the majority of protein–ligand binding calculations conducted in
academic and industrial settings, and a variety of techniques have been
developed to improve their efficiency and accuracy. This body of work has
been thoroughly reviewed (Oostenbrink and van Gunsteren, 2005; Chipot
and Pohorille, 2007; Jorgensen and Thomas, 2008; Jorgensen, 2009;
Knight and Brooks, 2009; Michel and Essex, 2010). In this section, we
sketch out the foundations of the method based on the statistical mechan-
ics theory presented above and point out connections between relative
and absolute binding free energy calculations.
The difference of standard binding free energies, DDGb

o¼DGb
o(B)�D

Gb
o(A), between two ligands B and A is equivalently expressed as the ratio

of the corresponding binding constants (Eq. (2)). Using Eq. (4), and
assuming that both ligands bind to the same binding site of the receptor
R, we arrive at the following expression

e�bDDGo
b ¼ Kb Bð Þ

Kb Að Þ ¼
ZN ;RB

ZN ;RA

ZN ;A

ZN ;B
¼ e�b DDGR BAð Þ�DDGslv BAð Þ½ �: ð74Þ

where DDGR(BA) is the difference in free energy of complexes RB and RA
and DDGslv(BA) is the difference in solvation free energies between
ligands B and A. We see that the relative free energy of binding is
independent from the standard state concentration. Also, the ratios of
partition functions in Eq. (74) can be expressed as averages, similar to
those in Eqs. (10) and (12),4 based on the difference in potential energy

4Note that these averages still contain the I(zL) indicator functions (assumed to be the same
for the two ligands). Like absolute binding free energies, therefore, relative binding free
energies are dependent on the definition of the complexed state. This aspect is often over-
looked in the literature.
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between the ligands averaged over the ensembles of one of the ligands in
the binding site and in solution, without resorting to intermediate gas
phase state for the ligands. Given a suitable l-dependent interpolation
potential connecting the potential energies of the two ligands, these
averages can be computed with the alchemical free energy estimators
discussed in Section III.A. Two main mutation techniques, single topology
and dual topology (Michel and Essex, 2010), exist to map the potential
energy of one ligand to the other.

Relative binding free energy calculations are expected to be more
efficient than computing the difference of the corresponding absolute
binding free energies when the two ligands are similar to each other.
Conversely, it is difficult to set up an interpolation potential and converge
the relative binding free energy when the two ligands have very different
chemical structures. However, ligand similarity alone is not a sufficient
condition for obtaining reliable relative binding free energies. As in
absolute binding free energy calculations, one of the main challenges is
the extent of conformational sampling. It has been observed, for example
(Boyce et al., 2009; Gallicchio et al., 2010), that even slight ligand mod-
ifications can cause large changes in the main ligand binding mode. In
these cases, the sampling of both binding modes is required to yield
reliable results, thereby reducing the computational advantage of relative
binding free energy calculations over absolute ones. Relative binding free
energy calculations are also considered less suitable than absolute ones to
assess the reliability of algorithms and force fields against experimental
data (Shirts et al., 2010; Chodera et al., 2011).

F. RE Conformational Sampling

Conformational equilibria relevant for the binding process occur on
time scales which are unattainable with conventional MD even with the
fastest supercomputers available. A commonly employed strategy to en-
hance sampling involves the application of biasing forces, and, as we
discussed above, alchemical free energy methods employing hybrid poten-
tials and PMF approaches employing umbrella potentials can be consid-
ered as belonging to this general class of methods. It has been shown in
many contexts (Woods et al., 2003a,b; Murata et al., 2004; Liu et al., 2005,
2006; Bussi et al., 2006; Piana and Laio, 2007; Roitberg et al., 2007;
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Hritz and Oostenbrink, 2008; Neale et al., 2008; Yeh et al., 2008; Jiang
et al., 2009; Gallicchio et al., 2010; Jiang and Roux, 2010; Khavrutskii and
Wallqvist, 2010; Meng and Roitberg, 2010; Mitsutake et al., 2010) that
generalized ensemble conformational sampling methods based on paral-
lel RE algorithms (Sugita and Okamoto, 1999) can speed up by orders of
magnitude the convergence of biased simulations. The key aspect of
parallel RE algorithms as applied to alchemical calculations is that simula-
tions at different values of l, which are executed in parallel, periodically
exchange l values, thereby allowing conformational transitions to occur at
the value l at which they are more likely to do so and, by so doing, to
achieve more efficient exploration of conformational space. Some bind-
ing-induced conformational changes are more likely to occur at large
ls when the interaction between the ligand and the receptor is stronger,
while others, such as reorientation of the ligand as a whole, are more likely
to occur at small ls when motion is less restricted. With RE, both kinds of
conformational changes occur more easily in each individual replica
causing a larger variety of conformations to appear at each l, as opposed
to, for example, conventional MD at fixed l¼1 which is likely to explore
only one or at most few conformations. Methods such as RETI (Woods
et al., 2003a), FEP/REMD (Jiang et al., 2009), and BEDAM (Gallicchio
et al., 2010) are examples of binding free energy methods that employ this
l-hopping strategy (Gallicchio and Levy, 2011).

G. Mining Minima

Unlike the thermodynamic path methods discussed above, the mining
minima (MM) binding free energy method (Chang and Gilson, 2004) is
one of two examples of end point methods (the other being the MM/
PBSA method below) that will be discussed in this review. The MM free
energy estimator is unique in that it does not rely on MD/MC importance
sampling of conformations. Instead, the method estimates configurational
integrals by unweighted sampling of conformations around a set of select-
ed low-energy states of the molecular system (Head et al., 1997). This
feature constitutes both the main advantage and the main limitation of the
method. On one hand, MM does not suffer from slow rates of conforma-
tional transitions typical of importance sampling algorithms. On the other
hand, this advantage is counterbalanced by the challenge of performing a
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sufficiently complete enumeration of the important stable minima of the
system. Consequently, the method has been applied with implicit solvation
and it has been most useful in the study of association equilibria, such as
host guest systems (Chang and Gilson, 2004; Chang et al., 2007; Rekharsky
et al., 2007; Moghaddam et al., 2009), with manageable number of degrees
of freedom. Applications to protein–ligand binding equilibria have been
also recently reported (Chen and Foloppe, 2010).

MM seeks to compute the binding free energy in the implicit solvent
representation by explicitly computing each of the configurational inte-
grals ZRL and ZRþL in Eq. (22) and expressing the standard binding free
energy in terms of the end point of the equilibrium as the difference of
the free energies of the binding partners:

DGI ¼ GRL � GR þ GLð Þ; ð75Þ
where G

rl
is the free energy of the complex and the binding partners,

where

GRL ¼ �kT lnZRL ð76Þ
and similarly for GR and G

l
. Given a set of minima j, located by conforma-

tional sampling (Chang and Gilson, 2003), the configurational partition
function, Z’P

j zj, of each state is approximated as the sum of local
configurational partition functions zj corresponding to each minimum
defined schematically as

zj ¼
ð
j

dxe�b U xð ÞþW xð Þ½ �; ð77Þ

where x represents the system coordinates and the integral is considered
limited to the macrostate in the vicinity of the minimum. Local integrals
are then computed by normal mode analysis assuming harmonic behavior
augmented by numerical treatment of anharmonic deviations (Chang
et al., 2003; Chang and Gilson, 2004). As mentioned above, the validity
of the MM approach has been confirmed in several numerical applications
(Chang and Gilson, 2004; Chang et al., 2007; Rekharsky et al., 2007;
Moghaddam et al., 2009; Chen and Foloppe, 2010).

The MM method leads naturally to the study of the enthalpic and
entropic components of the binding affinity (Chang et al., 2007; Zhou
and Gilson, 2009). As described in Section II.F.1, the binding free energy
in the implicit solvent representation is decomposable into the change of
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average effective potential energy DUeff and the change in configurational
entropy DSconf (Eq. (45)). These can be expressed in terms of the average
energies and entropies of the end point states computed as sums over
minima. For example,

Ueffh i ¼
X
j

pj Ueffh ij ; ð78Þ

where pj¼ zj/Z is the population of the macrostate corresponding to
minimum j and hUeffij is its average potential energy. Similarly, it can be
shown from Eq. (44) that the configurational entropy can be expressed as
(Zhou and Gilson, 2009)

Sconf ¼
X
j

pjSj � k
X
j

pj lnpj ; ð79Þ

where Sj is the configurational entropy of macrostate j, which can be
estimated from the harmonic approximation discussed above. From
Eq. (79), we see that contributions to the configurational entropy of
binding come from both narrowing of energy well (changes in Sj upon
binding) and redistribution of populations among the stable states (the
second term in r.h.s. of Eq. (79)), with both being important, and, often,
determinant factors in ligand binding (Chang et al., 2007; Gilson and
Zhou, 2007).

H. MM/PBSA and MM/GBSA Approaches

MM/PBSA method (Kollman et al., 2000; Gouda et al., 2003; Chong
et al., 2009) and its generalized Born variant (MM/GBSA) are, like the MM
method above, an example of an end point approach to the calculation of
binding free energies. Unlike the MM method, however, it is based on MD
to sample conformational space. MD, like any other importance sampling-
based method, is not suitable for computing directly configurational
integrals, as in the MM method. Instead, MM–PBSA computes the binding
free energy from using the enthalpy/entropy decomposition approach
(Eq. (45)) with implicit solvation (the Poisson–Boltzmann (PB) model for
MM/PBSA (Baker, 2005) and the generalized Born (GB) model for MM/
GBSA (Bashford and Case, 2000; Chen et al., 2008)). In principle, a
decomposition of this kind also applies to explicit representations of the
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solvent (see e.g., Eqs. (33) and (36)); however, given the challenge of
converging entropy and enthalpy changes with explicit solvation (Levy and
Gallicchio, 1998), in practice, the method is limited to implicit solvent
representations.

In MM/PBSA, the enthalpic term DUeff is computed as the difference
between the average total potential energies in the bound and unbound
states, collected from MD trajectories of the the free ligand, free receptor,
and their complex, which can be obtained from either explicit or implicit
solvent MD simulations. The same approaches discussed above in the
context of the MM method are applicable to the calculation of configu-
rational binding entropies. So, while in principle, MM/PBSA is a rigorous
formulation of the free energy of binding limited in principle only by the
accuracy of the potential energy model, in practice, MM/PBSA applica-
tions have implemented the theory with varying degree of rigor.

Partly due to the limited extent of conformational sampling afforded by
MD, the change in configurational entropy is often estimated from one of
few conformational macrostates (Kollman et al., 2000; Foloppe and
Hubbard, 2006) possibly neglecting contributions to the entropy change
resulting from changes in populations of stable states (Eq. (79)). The
quasiharmonic approximation (Levy et al., 1984) has also been employed
to estimate the configurational entropy change; however, its accuracy for
systems with multiple occupied energy wells has been questioned (Chang
et al., 2005; Lee and Olson, 2006). In some MM/PBSA applications, the
entropic terms have been neglected (Brown and Muchmore, 2007).

Difficulties in converging potential energy differences due to noise
originating from the bulk of receptor–receptor interactions have led to
single-trajectory approaches (Lee and Olson, 2006; Brown and Muchmore,
2007) in which the conformational ensembles for the free ligand and
receptor are taken from the ensemble of the bound complex. This effec-
tively replaces DUeff in Eq. (40) with the average binding energy huiRL
neglecting therefore reorganization energy contributions (Eq. (48)).
When, in addition, entropic effects are neglected, the binding free energy
is equated to the average binding energy (Brown and Muchmore, 2006).
At this level of theory, all entropic and reorganization effects are neglected
potentially leading to gross overestimation of binding affinities and lack of
ability to discriminate binders from nonbinders (Gallicchio et al., 2010).
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I. Studies of Ligand and Receptor Reorganization

The binding free energy (Eq. (46)) is often the result of a large cancella-
tion between the favorable work, huiRL, of forming receptor–ligand inter-
actions and the unfavorable work DGreorg to localize and reorganize the
conformational ensembles of the ligand and receptor to their bound
conformational states. While drug design is often concerned with strength-
ening receptor–ligand interactions, the reorganization component can play
a fundamental role in regulating binding specificity in cases where varia-
tions of binding energies huiRL are expected to be small. In such cases,
optimization of binding affinity can proceed by strategies aimed at preor-
ganizing the ligand for binding, that is by minimizing DGreorg.
For example, reorganization has been successfully used as the design

principle for the optimization of the presentation of HIV epitopes for
vaccine development (Lapelosa et al., 2010). This particular application
was concerned with identifying modes of display of an HIV epitope on the
surface of a rhinovirus vaccine vehicle in such a way that it would bind
strongly to a known neutralizing antibody. Because the displayed epitope
needs to necessarily reproduce the interaction of the antibody with HIV
target, the binding interface between the epitope and the antibody is
biologically restrained. In thermodynamic terms, the binding energy can
be regarded as fixed and therefore preorganization of the epitope to the
bound conformation is the only viable route for optimizing the binding
affinity. Based on these reorganization concepts, molecular simulations
were conducted which identified those presentation constructs with the
highest fraction of epitope conformations compatible with antibody com-
plexation (Lapelosa et al., 2009). Subsequent biochemical work confirmed
the computational prediction and, remarkably, yielded some of the most
antigenic vaccine constructs of this kind to date (Lapelosa et al., 2010).
In another recent example (DeLorbe et al., 2009), optimization of a

class of inhibitors was achieved by chemical rigidification of the ligands
into their bound conformations. In this case, structural analysis indicated
that enhanced binding was indeed solely due to smaller reorganization
penalties rather than stronger receptor–ligand interactions. Interestingly, in
thiswork, itwas regardedasparadoxical the fact thatenhancedbindingwasnot
due to a reduced entropic penalty as expected, but rather to amore favorable
enthalpicgain.However, this shouldnotbe regardedas surprisingconsidering
that (seeEq. (47)) reorganization has both entropic and enthalpic signatures.
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Evidently, before rigidification, the ligands had to surmount an energetic
penalty to form their bound conformations from their predominant solution
conformations. The rigidified ligands instead did not suffer this penalty to the
same extent, resulting in a more favorable binding enthalpy.

A number of recent studies have focused on ligand reorganization, which
is simpler to model than receptor reorganization. Both Yang et al. (2009)
and, on a more extensive set of systems, Gao et al. (2010) observed better
correlation with experimental affinities when single-trajectory MM/GBSA
scores were combined with ligand reorganization free energy estimates. As
discussed above, the single-trajectory MM/GBSA model approximates the
binding free energy with the ligand–receptor average binding energy, huiRL,
which, although easier to converge, omits sometimes critical reorganization
free energy components (Eq. (46)). By introducing the ligand reorganiza-
tion free energy, some of these effects are recaptured without substantially
compromising the quality of the convergence, as most of the fluctuations in
theMM/GBSA estimators come from themuchmore numerous degrees of
freedom of the receptor. The ligand reorganization is defined as the sum of
the ligand reorganization defined as (see Eq. (48))

DUreorg Lð Þ ¼ Ueff xLð Þ� 	
RL

� Ueff xLð Þ� 	
RþL

; ð80Þ
and the change of ligand configuration entropy �TDSconf(L). The latter is
evaluated using the harmonic and quasiharmonic approaches discussed
above. Gao et al. (2010) adopted a particularly rigorous entropic model
incorporating both multiple minima (Eq. (79)) and anharmonic correc-
tions (Kolossvary, 1997; Chang and Gilson, 2004). It has been recently
confirmed (Okumura et al., 2010) that MD sampling aided by tempera-
ture RE can also be used to accurately compute ligand reorganization free
energies. Interestingly, it is observed (Yang et al., 2009) that the ligand
configurational entropy does not always oppose binding. In a number of
cases, there is a gain of entropy (positive DSconf(L)) counterbalanced by an
unfavorable reorganization energy. The same conclusion is suggested by
the experimental work of DeLorbe et al. (2009) discussed above. This
phenomenon might be quite general as it is known (Perola and Charifson,
2004) that ligands tend to form more extended, and possibly more
flexible, conformations when bound to the receptor (Perola and
Charifson, 2004) than in solution, where hydrophobicity causes them to
adopt more compact conformations.
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Binding modeling studies explicitly incorporating receptor reorganiza-
tion effects are also beginning to appear. Major challenges exist due to the
size of conformational space and the rarity of conformational transitions.
Some recent studies have focused on the role of protein side-chain motion.
Mobley et al. (2007a) have introduced a confine and release method to
model the free energy associated with the conformation variability of a
selected set of side chains in the binding site region. The technique consists
of evaluating the binding free energy with the receptor side chains placed in
various rotamer states. These are then combined, based on Eq. (51), with
the free energy differences between rotamer states with and without the
ligand present to yield the total binding free energy. In a number of cases, it
was shown that including these terms improved the accuracy of binding
affinity predictions (Mobley et al., 2007a,b; Boyce et al., 2009) Similarly, a
two-dimensional Hamiltonian RE FEP approach has been proposed to
soften side-chain torsional barriers ( Jiang and Roux, 2010).

IV. Conclusions

The accurate estimation of protein–ligand affinities remains one of the
most difficult problems in computational biophysics. Atomistic free energy
models of binding are progressively improving and will continue to repre-
sent important tools to further our understanding of molecular recogni-
tion phenomena and contribute to pharmaceutical research. Better
potential models, more efficient computational algorithms, and faster
computers are driving this progress forward. As this is happening, it is
important that the relationships between theory and calculations remain
clear and well understood. We have reviewed the statistical mechanics
theory of binding, and we have shown how current computational meth-
ods and applications relate to the fundamental theory. These models have
different features and limitations, and their ranges of applicability vary
correspondingly. Yet their origins can all be traced back to a single
fundamental theory. It is our hope that finding these commonalities will
be useful to novices and experts alike to help them navigate the expanding
universe of binding free energy methodologies and find novel ways to use
them to study complex molecular recognition problems.
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Abstract

The development of characterization techniques, advanced synthesis
methods, as well as molecular modeling has transformed the study of
systems in a well-established research field. The current research chal-
lenges in biocatalysis and biotransformation evolve around enzyme discov-
ery, design, and optimization. How can we find or create enzymes that
catalyze important synthetic reactions, even reactions that may not exist in
nature? What is the source of enzyme catalytic power? To answer these and
other related questions, the standard strategies have evolved from trial-
and-error methodologies based on chemical knowledge, accumulated ex-
perience, and common sense into a clearly multidisciplinary science that
allows one to reach the molecular design of tailor-made enzyme catalysts.
This is even more so when one refers to enzyme catalysts, for which the
detailed structure and composition are known and can be manipulated to
introduce well-defined residues which can be implicated in the chemical
rearrangements taking place in the active site. The methods and techni-
ques of theoretical and computational chemistry are becoming more and
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more important in both understanding the fundamental biological roles
of enzymes and facilitating their utilization in biotechnology. Improve-
ment of the catalytic function of enzymes is important from scientific
and industrial viewpoints, and to put this fact in the actual perspective as
well as the potentialities, we recommend the very recent report of Sander-
son [Sanderson, K. (2011). Chemistry: enzyme expertise. Nature 471, 397.].

Great fundamental advances have been made toward the ab initio design
of enzyme catalysts based on molecular modeling. This has been based on
the molecular mechanistic knowledge of the reactions to be catalyzed,
together with the development of advanced synthesis and characterization
techniques. The corresponding molecular mechanism can be studied by
means of powerful quantum chemical calculations. The catalytic active site
can be optimized to improve the transition state analogues (TSA) and to
enhance the catalytic activity, even improve the active site to favor a desired
direction of some promiscuous enzymes. In this chapter, we give a brief
introduction, the state of the art, and future prospects and implications of
enzyme design. Current computational tools to assist experimentalists for
the design and engineering of proteins with desired catalytic properties
are described. The interplay between enzyme design, molecular simula-
tions, and experiments will be presented to emphasize the interdisciplin-
ary nature of this research field. This text highlights the recent advances
and examples selected from our laboratory are shown, of how the applica-
tions of these tools are a first attempt to de novo design of protein active
sites. Identification of neutral/advantageous/deleterious mutation plat-
forms can be exploited to penetrate some of Nature’s closely guarded
secrets of chemical reactivity.

In this chapter, we give a brief introduction, the state of the art, and
future prospects and implications of enzyme design. The first part
describes briefly how the molecular modeling is carried out. Then, we
discuss the requirements of hybrid quantum mechanical/molecular me-
chanics molecular dynamics (QM/MM MD) simulations, analyzing what
are the basis of these theoretical methodologies, how we can use them with
a view to its application in the study of enzyme catalysis, and what are the
best methodologies for assessing its catalytic potential. In the second part,
we focus on some selected examples, taking as a common guide the
chorismate to prephenate rearrangement, studying the corresponding
molecular mechanism in vacuo, in solution and in an enzyme environ-
ment. In addition, examples involving catalytic antibodies (CAs) and pro-
miscuous enzymes will be presented. Finally, a special emphasis is made to
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provide some hints about the logical evolution that can be anticipated in
this research field. Moreover, it helps in understanding the open direc-
tions in this area of knowledge and highlights the importance of computa-
tional approaches in discovering specific drugs and the impact on the
rational design of tailor-made enzymes.

I. Introduction: State of Art

Catalysis is at the heart of almost every chemical transformation process,
and it remains at the core of chemical research, with its far-reaching
impact on both applied and basic research, being detailed understanding
of the active species and their related reaction mechanism of great inter-
est. This insight helps to refine the fundamentals of catalysis and, in a very
practical manner, can help researchers to optimize existing catalyst for-
mulations or develop completely new ones. The field can be subdivided
into three areas of homogeneous, heterogeneous, and enzyme catalysis.
Homogeneous catalysts operate in the same phase as the reactants, while
heterogeneous catalysts are present in a phase different from that of the
reactants; usually, the catalyst is a solid surface. Enzyme catalysts are
specialized proteins. For both homogeneous and enzyme catalysis, it has
been possible to reach molecular-scale insight into the structure of the
active site and the reaction mechanism for a multitude of catalysts and
chemical reactions (Herrmann and Cornils, 2002; Ferreira et al., 2004;
Garcia-Viloca et al., 2004; Siegbahn et al., 2007). This has been achieved by
combining various structural characterization techniques, kinetic investi-
gations, and computational studies for each system.
Enzymes are molecular machines which catalyze chemical reactions in

living organisms. They can be considered as highly evolved machinery
developed by nature, they catalyze reactions with formidable efficiency
and specificity under mild conditions. Enzymes become a source of inspi-
ration to chemists, demonstrating what could be achieved with a full
understanding of the underlying principles of nature, and they have
long provided a stimulus for researchers to make artificial equivalents.
Our quest to understand the physical basis of this catalytic power, which is
pivotal to our understanding of biological reactions and our exploitation
of enzymes in chemical, biomedical, and biotechnological processes, is
challenging and has involved sustained and intensive research efforts for
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more than 100 years (for reviews see, e.g., Cannon and Benkovic, 1998;
Cleland et al., 1998; Neet, 1998; Warshel, 1998; Herrmann and Cornils,
2002; Benkovic and Hammes-Schiffer, 2003; Ferreira et al., 2004; Garcia-
Viloca et al., 2004; Siegbahn et al., 2007). Considerable efforts have been
devoted for several decades on the development of enzyme-like catalysts
with tailored properties by rationally manipulating natural and artificially
synthesized biomolecules. One of the great challenges is to design artificial
systems with catalytic efficiencies and specificities rivaling natural compo-
nents. It is of great scientific interest and practical need to construct
enzymes with new catalytic properties and enhanced stabilities.

The transition state (TS) is of strategic importance within the field of
chemical reactivity, and it has been remarked recently by Williams (2010),
‘‘The key to understanding the fundamental processes of catalysis is the
transition state (TS): indeed, catalysis is a transition-state molecular recog-
nition event. Practical objectives, such as the design of TS analogues as
potential drugs, or the design of synthetic catalysts (including catalytic
antibodies), require prior knowledge of the TS structure to be mimicked.’’
Therefore, a challenging aspect of chemical reactions is the need to obtain
an accurate description of the energy and the configuration of the TS.

Enzymes can achieve rate enhancements of up to 21 orders of magni-
tude relative to uncatalyzed reactions. To explain this enormous catalytic
power, Pauling proposed the concept of transition-state stabilization, in
which the role of the enzyme is to reduce the height of the potential-
energy barrier that must be overcome for the reaction to occur (Pauling,
1948a,b) as it was quoted in his 1948 New Scientist article (Pauling, 1948a,
b): ‘‘I believe that an enzyme has a structure closely similar to that found
for antibodies, but with one important difference, namely that the surface
configuration of the enzyme is not so closely contemporary to its specific
substrate as is that of an antibody to its homologous antigen, but is instead
complementary to a unstable molecule with only transient existence—
namely the ‘activated complex’ for the reaction that is catalyzed by the
enzyme. The mode of action of an enzyme would then be the following:
the enzyme would show a small power of attraction for the substrate
molecule or molecules, which would become attached to it in its active
surface region. This substrate molecule, or these molecules, would then be
strained by the forces of attraction to the enzyme, which would tend to
deform it into the configuration of the activated complex, for which the
power of attraction of the enzyme is the greatest.’’
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The concept of transition-state stabilization implies that enzymes have
evolved active-site structures that are more complementary to the TS than
the ground state of their cognate substrates. Now, it has been possible to
test the details of active-site interaction directly through site-specific muta-
genesis, which historically has been focused on active-site residues that
function in acid–base catalysis, electrostatic stabilization, H-bonding, and
so on; electrostatic stabilization of the TS is the predominate mechanism
for tighter binding of the TS than the substrate to the enzyme, although
other contributions such as hydrophobic interactions would facilitate
proper orientation of the substrate/TS in the active-site pocket, which is
preorganized in effect by the structure of the enzyme.
Improvement of the catalytic function of enzymes is essential from

scientific and industrial viewpoints. Enzymes are key targets for drug
discovery, and they are increasingly used in industrial processes such as
bioenergy production. Thus, it is important to understand how they
achieve their remarkable efficiency. Computational studies offer an alter-
native method toward obtaining key structural as well as chemical reactivi-
ty information (Brent and Bruck, 2006). Computational modeling can be
used to resolve the reaction mechanisms and analyzing the causes of
catalysis (Garcia-Viloca et al., 2004; Mulholland, 2005; Warshel et al.,
2006; Alexandrova et al., 2008; Lonsdale et al., 2010). The methods and
techniques that are the basis of these simulations allow calculating the
energy profile of the chemical reaction to be catalyzed, analyze unstable
species in the reaction path, study alternative mechanism when a specific
mutation is carried out, and calculate specific contributions to catalysis.
The use of molecular modeling techniques is capable to provide with

the relevant amount of atomic information for the design and optimiza-
tion of both natural and synthetic enzymes. Computational techniques are
nowadays broadly used in many areas of chemistry and biology to under-
stand and predict the atomic behavior of molecules. As it was remarked by
Carter and Rossky (2006), ‘‘The detailed description from theory of the
complex chemical processes driving the sequence of events in the molec-
ular machines of biology and the design of those targeted by modern
nanoscience is a reasonable goal. The expectation that an in-depth under-
standing of such complex systems is on the horizon is supported by recent
history. At the outset of the 21st century, TCC has arrived at a position of
central importance not only for theorists but also in the laboratories of
most experimentalists and in many disciplines. These disciplines include
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not only chemistry but also biochemistry, chemical engineering, molecular
biology, biomedical engineering, geophysics, and materials science. The
prevalence of molecular calculations via quantum chemistry and the
models of molecular mechanics as guidance and support for experimental
research is a result of the maturation of concepts, methods, and algo-
rithms developed over many decades within theoretical Chemistry. Theo-
retical chemists have adapted their tools for use in industry and by
experimentalists. It is then interesting to ask what new tools and deeper
insights one might expect to be routinely accessible to researchers in the
not too distant future.’’

The use of computational techniques for the design of de novo proteins
(Bolon and Mayo, 2001; Garcia-Viloca et al., 2004; Mulholland, 2005;
Warshel et al., 2006; Alexandrova et al., 2008; Lodola et al., 2008;
Lonsdale et al., 2010; Nanda and Koder, 2010) or metal binding proteins
(Summa et al., 2002; Maglio et al., 2007; Lu et al., 2009) has already
showed interesting applications. Quantum chemistry is an enormous
field of study that consists of three main approaches: ab initio (Hehre
et al., 1986; Szabo and Ostlund, 1996), density functional theory (DFT)
(Parr and Yang, 1989; Koch and Holthausen, 2001), and semiempirical
quantum mechanical methods (Elstner et al., 1998; Clark, 2000; Thiel,
2007). The main strength of quantum chemistry lies in its ability to
quantitatively describe chemical structures, energetics, and reactions. Al-
though experimental techniques such as X-ray crystallography, NMR, and
other spectroscopic methods are critical for studying enzyme structure,
they are sometimes unable to answer questions concerning detailed cata-
lytic mechanisms. Computational approaches allow the direct assessment
and characterization of the enzyme–substrate and enzyme–product com-
plexes, as well as metastable intermediates and transition structures. Sim-
ulation also enables enzyme reaction energetics to be dissected into
individual contributions, and numerous ways to analyze the data. Thus,
computer simulation can provide important information which is comple-
mentary to experiments.

Enzymes are highly versatile and proficient catalysts. Optimized by
Darwinian evolution over millions of years, they can greatly accelerate
chemical reactions while ensuring high substrate specificity, as well as
exquisite enantioselectivity and stereoselectivity. However, there are
often significant discrepancies between an enzyme’s function in nature
and the specific requirements for ex vivo applications envisioned by
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scientists and engineers. Computer-based methods are becoming increas-
ingly important and complementary to wet laboratory experiments in
studying the structure and function of biomolecules. Molecular docking
is a frequently used tool in structure-based rational drug design. Although
early efforts were hindered by limited possibilities in computational
resources, due to recent advances in high performance computing, virtual
screening methods became more and more efficient. These methods
contributed to the development of several drugs and drug candidates
that advanced to clinical trials. Examples include lead compounds to
prevent myocardial infarction, to treat HIV infection, Alzheimer’s disease,
rheumatoid arthritis, and many other diseases (Thomas, 2007; Clark, 2008;
Jorgensen, 2009). Docking programs simulate how a target macromole-
cule (receptor, enzyme, or nucleic acid) interacts with small molecule
ligands, such as substrates, inhibitors, or other drug candidates. To model
the binding between the ligand and the target molecule, their known
three-dimensional structures are superimposed and the fit between the
key sites of the target molecule and the ligand is then analyzed.
Although structure-based computational simulations are useful tools in

drug discovery (Alonso et al., 2006), enzyme function is closely linked to
enzyme dynamics, and several techniques have been developed to probe
this relationship (Karplus et al., 2005; Boehr et al., 2009; Ma and Nussinov,
2010). NMR, X-ray crystallography, single-molecule experiments, and
simulations clearly demonstrate that the free enzyme dynamics already
encompass all the conformations necessary for substrate binding, preor-
ganization, transition-state stabilization, and product release.
Fast and inexpensive docking protocols combined with accurate but

more costly molecular dynamics (MD) techniques are a logical approach
to predict reliable protein–ligand complexes (Karplus and McCammon,
2002). The advantage of this combination lies in their complementary
strengths and weaknesses, where docking is used to find the correct
conformation of a ligand neglecting receptor flexibility, and MD simula-
tion is then applied to optimize complex structures by treating both ligand
and receptor in a flexible way. To obtain reliable docking results, three
complementary docking methods, Autodock, FlexX, and Genetic Optimi-
zation for Ligand Docking (GOLD; Bursulaya et al., 2003; Kontoyianni
et al., 2004), can be used. Presently, structure-based sequence comparison
provides valuable hints for the rational optimization of inhibitors, by
identifying less conserved surrounding residues and structural differences.
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Enzyme engineering by directed evolution has become the strategy of
choice for tailoring the catalytic, biophysical, and molecular recognition
properties of target proteins (Lutz and Bornscheuer, 2009). The methods
of directed evolution, based on several rounds of mutagenesis in combi-
nation with efficient screening or selection, have been particularly success-
ful in this effort owing to the high complexity of protein structures and
our limited understanding of the protein structure–function relationships.
Long-term efforts to assist directed evolution in focusing on the regions in
protein structures relevant for the function as well as to design enzymes
de novo led to development of a large variety of computational tools.

The ultimate goal of enzyme engineering is a true rational design, which
aims at de novo engineering of enzymes (Kaplan and DeGrado, 2004). The
scope of this approach is obvious; instead of using experimental
approaches that are time, money, and intensive resource, enzyme engi-
neering can be performed entirely in silico using fast computational algo-
rithms (Zanghellini et al., 2006). Computational de novo design relies on
the introduction of amino acid residues essential for catalysis into existing
scaffolds (Gerlt and Babbitt, 2009). The underlining idea, based on the
seminal hypothesis of Pauling (Pauling, 1946, 1948a,b), is that enzymes
enhance chemical reactions by lowering an activation barrier due to
stabilization of the TS by the residues of the active site. This principle
implies that all proteins capable of binding to the TS could function as
enzymes. Pauling’s concept forms the basis of a computational approach
that has recently yielded several de novo enzymes (Damborsky and
Brezovsky, 2009). Initially, TS of the reaction and the idealized active-
site geometry is modeled using quantum mechanics. Libraries of protein
scaffolds are then searched to identify potential binding pockets that bind
tightly to the TS and retain the desired geometry of the functional groups.
Using geometry-based identification, the TS is matched with the binding
site and the position of the TS and the catalytic side chains is optimized.
Finally, the remaining residues for tight binding of the TS are designed
and the designs are ranked on the basis of TS binding energy and catalytic
geometry. The first step in this approach is the generation of an in silico
model of TS. Next, individual amino acids are positioned around it to
create an active site that stabilizes the TS in a computational process that
uses quantum mechanical calculations.

Computer packages have been pioneering to the de novo design of
enzymes, such as the programs DEZYMER (Hellinga and Richards,
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1991), ORBIT (Dahiyat and Mayo, 1996), and ROSETTA (Zanghellini
et al., 2006). In particular, Siegel et al. (2010) have used Rosetta method-
ology to computational design of enzyme catalysts for a stereoselective
bimolecular Diels–Alder reaction. The design methodology starts from
three-dimensional atomic models of minimal active sites (theozymes)
consisting of the reaction TS and protein functional groups involved in
binding and catalysis. In fact, some Web sites using internet resources,
such as Folding@home (http://folding.stanford.edu) and Rossetta@-
home (http://boinc.bakerlab.org/rosetta), can be cited in this context.
Various protein scaffolds are evaluated for their ability to accommodate
the de novo active site using MM modeling software such as RosettaMatch
(Zanghellini et al., 2006; Das and Baker, 2008; Jiang et al., 2008;
Rothlisberger et al., 2008; Murphy et al., 2009). These scaffolds are
generated by taking a high-resolution structure of different natural pro-
teins and virtually removing the amino acid side chains from the ligand
binding pocket. In the final step, the remaining amino acid side chains in
the pocket are computationally redesigned for high substrate specificity
and tight TS binding. In another case of computational design, Faiella
et al. computationally not only designed the active site but also calculated
the scaffold to accommodate it from first principles (Faiella et al., 2009).
In addition to the sequence and structure-based design strategies, quan-

tum mechanical (QM) and MD calculations, as well as machine-learning
algorithms, have become invaluable tools to effectively explore the impact
of amino acid substitutions on protein structure and stability. Together,
these concepts offer promising predictors for altering protein features
such as substrate specificity, stereoselectivity, and stability by enzyme
redesign (but leaving the catalytic machinery of the native biocatalyst
intact), as well as the creation of new function by de novo design. Molecular
modeling techniques seem quite promising to provide with the relevant
amount of atomic information for the design and optimization of natural
or synthetic enzymes. Computational techniques are nowadays broadly
used in many areas of chemistry and biology to understand and predict
the atomic behavior of molecules. In fact, the use of computational
techniques for the design of de novo proteins (Nanda and Koder, 2010)
has already showed interesting applications. In addition, increasing insight
in the mode of action of enzymes and the advances in computational
modeling techniques have led to the de novo design of artificial enzymes
with unnatural catalytic activities (Jiang et al., 2008). To date, several
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technologies have been developed to achieve this goal: namely, computa-
tional design, catalytic antibodies (CAs), and mRNA display. These meth-
ods rely on different principles, trading off rational protein design against
an entirely combinatorial approach of directed evolution of vast protein
libraries, and very recently, Golynskiy and Seelig (2010) have reviewed and
compared these methods and their potential for generating truly de novo
biocatalysts. However, a note of caution is mandatory here: more stabiliza-
tion of the (often putative) TS is not sufficient to create efficient catalysts,
because in many cases the rate determining step of the catalytic activity is
not associated to the chemical event (bond breaking/forming processes);
then, the entire pathway including the diffusion of substrate or the release
of the product needs to be included in the simulation.

An appropriate approach to study enzymatic reactions is to combine the
highest accuracy QM level description of active center with an approxi-
mate description, for example, using classical molecular mechanics (MM),
of its surrounding. These methods are known under the generic name of
QM/MM techniques (Warshel and Levitt, 1976). In such simulations, the
QM algorithm is typically called millions of times to generate the energy,
forces, and charge distribution of the reaction center in the presence of
electrostatic interactions with the MM environment (Senn and Thiel,
2009). The advantages of such an approach have long been recognized,
and they are today standard methods for the treatment of reactivity in
complex systems. Several reviews on the method are available (Warshel,
2003; Vreven and Morokuma, 2006; Senn and Thiel, 2007a,b, 2009; Hu
and Yang, 2008; Sousa and Ramos, 2008; Truhlar, 2008; Kamerlin et al.,
2009; Acevedo and Jorgensen, 2010; Mata, 2010). This QM/MM approach
has been extensively applied to study enzymatic systems (Warshel and
Levitt, 1976; Monard and Merz, 1999; Martı́ et al., 2004a,b; Riccardi
et al., 2006; Zhang, 2006; Gao, 2007; Hu and Yang, 2008; Senn and
Thiel, 2009), indicating the reliability of the existing QM/MM methods
for describing real-world chemical reactions (Field et al., 1990; Gao and
Xia, 1992; Thompson, 1996; Gao and Freindorf, 1997; Cui and Karplus,
2000a,b; Martin et al., 2000).

Computational designs can provide the close to atomic resolution pre-
dictions. The optimum way to understand the function of enzymes is to
accomplish a perfect structural and time resolution of their catalytic
chemical reactions to obtain results that explain experimental studies
but also to provide complementary information not accessible in

90 FERRER ET AL.



experiment. Exactly, this is at least in principle possible by a quantum
mechanical description-based QM/MM plus MD treatment. Reliability and
predictability of calculations on such systems depend crucially on the
accuracy of these necessarily approximate electronic structure methods.
Unfortunately, to date, there still is not an universal and well-established
computational protocol for the study of reaction mechanisms in enzymes.
Over the past years, a vast empirical knowledge of catalysis and catalysts

for an enormous number of reactions has been accumulated. However, it
is only recently that we are moving away to attempt a rational design of
biological systems tailored to specific reactions. In this chapter, we address
the problem of the first-principles design of catalytic functions. In general
terms, we are applying MD and free-energy simulations with hybrid QM/
MM potentials to study several enzyme-catalyzed reactions. The aim of this
report is to give the interested reader a realistic overview on the current
state of art in QM/MM MD simulations applied to the phenomena of
enzyme catalysis, emphasizing the potential without disguising its present
limitations, and to provide illustrative examples from our own work.
Herein, we highlight the recent progress of this exciting field and mainly
focus on the theoretical simulations and application explorations. Some
perspectives are also given to illustrate the opportunities as well as chal-
lenges in the future.

A. Quantum Mechanics/Molecular Mechanics (QM/MM) Approaches

Quantum mechanics/molecular mechanics (QM/MM) approaches are
today well-established methods for the study of chemical reactivity in
complex systems, in which a wide range of environments can be simulated,
from aqueous solutions, to enzymes or zeolites. Several techniques have
been developed and applied for inorganic (Sushko et al., 2000; Sulimov
et al., 2002; Sherwood et al., 2003; Bandura et al., 2004; Mysovsky et al.,
2004; Sokol et al., 2004; Danyliv et al., 2007) and bio/organic systems
(Colombo et al., 2002; Laio et al., 2002a,b; Laio and Parrinello, 2002;
Piana et al., 2004; Sebastiani and Rothlisberger, 2004), metal catalytic
centers in proteins (Sherwood, 1998; VandeVondele et al., 2002;
Magistrato et al., 2004; Kastner et al., 2007), molecular crystals (Kimmel
et al., 2008), bioinorganic systems (Deeth, 2004; Neese, 2006; Senn and
Thiel, 2009; Siegbahn and Himo, 2009; Robles et al., 2011), and solutions
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(Stefanovich and Truong, 1997; Rohrig et al., 2003; Sherwood et al., 2003;
Dal Peraro et al., 2004; Dahlke and Truhlar, 2007a,b; Lin and Truhlar,
2007; Zhang et al., 2007).

Different reviews on this hybrid methodology have been published,
showing their amazing development and application (Warshel, 2003;
Vreven and Morokuma, 2006; Lin and Truhlar, 2007; Senn and Thiel,
2007a,b, 2009; Hu and Yang, 2008; Kamerlin et al., 2009; Acevedo and
Jorgensen, 2010). The system is divided into regions and treated with
accurate and computationally expensive methods only the part where
necessary, whereas the reminder is treated at a lower level of theory and
less demanding computational cost. The first will correspond to the active
site and some selected amino acids, where the phenomena of chemical
interest (forming/breaking bond processes) are taking place. This region
can be treated with accurate and computationally QM expensive methods
only the part where necessary, while the remainder is treated at a lower
and less demanding level of theory as MM. The role of the latter is mainly
to introduce environmental effects. This combined approach allows for
the study of chemical reactivity in large complex systems which would
otherwise be computationally prohibitive. In this QM/MM methods, the
QM algorithm is typically called millions of times to generate the energy,
forces, and charge distribution of the reactive region in the presence of
electrostatic interactions with the MM environment (Senn and Thiel,
2009). Despite the use of QM methods only in the reactive region, the
QM computations are often the bottleneck in such simulations. The
computational savings of QM/MM stem from the local nature of chemis-
try, such that QM can be used on only a small locus of the system.The total
Hamiltonian is given by

Ĥ ¼ ĤQM þ ĤMM þ ĤQM=MM ð1Þ
where the first term is the Hamiltonian for the QM system in vacuo and the
second represents the MM energy for the remaining atoms. The interac-
tion between the two regions is given by the last term. Several different
QM/MM schemes have been proposed, basically differing on the form of
this term. They can be grouped into three distinct formulations (Bakowies
and Thiel, 1996): mechanical, electrostatic, and polarization coupling.
Very recently, Warshel et al. have been presented a sound discussion on
the inclusion of electrostatic effects in the context of QM/MM calculations
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(Kamerlin et al., 2009). In this way, a reasonable potential-energy surface
(PES) can be obtained, which includes the more important effects on the
energetics of the process under study, at a moderate computational cost.
However, knowledge of the PES is not enough to correctly describe

chemical reaction in condensed media. When studying chemical reactivity
in solution, solids, or enzymatic active sites, one is faced with a substantial
difference with respect to gas phase reactivity. In this last case, the reactant
and the TS usually correspond to single structures, and the thermodynamic
properties can be obtained by applying statistical thermodynamics to the
energy levels of these structures. In solution or enzymatic environments,
there are a large number of conformations accessible to the environment
and then one could find a myriad of stationary structures that could be
assigned as reactants or TSs for a particular process. Thus, the statistical
treatmentmust include the exploration of a significant ensemble ofminima
and transition structures appearing on the PES to properly define the
reactant andTSs.This ensemble canbegeneratedusingdifferent simulation
techniques asMonte Carlo orMD. Information obtained from these simula-
tions can be then used to derive thermodynamic information and in partic-
ular the activation free energy, which can be related to the rate of a chemical
reaction through the use of TST. Several approximations can be used to
solve the dilemma. Roughly speaking, one must renounce to include the
quantum subsystem flexibility in the simulation, or alternatively one is then
compelled to use a low-level electronic description, which usually means
semiempirical Hamiltonians such as AM1, PM3, etc. (Dewar et al., 1985).
In order to overcome the quantitative limitations imposed by the use of

semiempirical Hamiltonians in the description of the PES, several meth-
odologies have been proposed. One obvious solution is to develop a new
parametrization exclusively for the process under study (specific reaction
parameters, SRP; Rivail et al., 1991; Tomasi and Persico, 1994). This has
been adopted in a number of cases, but it is not always easy to improve
simultaneously the reaction and activation energies. Moreover, continuity
problems can arise if one is interested in multistep reactions, as far as
different parameterizations may be required. Other possibility is to include
correction terms to the PES based on valence-bond theory (Cramer and
Truhlar, 1995). This has been successfully used provided the semiempirical
Hamiltonian gives a good qualitative PES. Other strategies have been pro-
posed to obtain ab initio QM/MM free-energy profiles using a simple refer-
ence potential (e.g., empirical valence bond; Kollman et al., 2001).
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One powerful strategy to correct low-level energy functions for potential of
meanforce(PMF)calculations is theuseof interpolatedcorrectionsathighest
quantumdescription (Ruiz-Pernia et al., 2004). This proposal is an extension
of the interpolated corrections methodology developed by Truhlar and
coworkers (Nguyen et al., 1995; Corchado et al., 1998; Chuang et al., 1999)
for gas-phase dynamical calculations. In this method, the energy difference
between structures computedat the low level anda chosenhigh level iswritten
as a function of the distinguished reaction coordinate used to follow the
chemical transformation and conveniently interpolated through the use of
cubic splines (Renka, 1993). While this procedure has been shown to intro-
duce a systematic improvement in the results at a very low additional compu-
tational cost, it still relies on the assumption that the low-level energy surface is
qualitatively reasonable. Effectively, one of themost important limitations for
this method is the dependence on the AM1/MM minimum energy path,
which can sometimes dramatically differ from the one obtained usingHamil-
tonians of higher level of theory. In other words, this simple one-dimensional
correction scheme allows for displacements of the TS along the reaction
coordinate but not in other directions. An approach to introduce corrections
beyond this one-dimensional scheme, in the context of enzymatic reactions,
was made by Field and coworkers (Proust-De Martı́n et al., 2000).

An extension of this methodology and following the interpolated cor-
rection scheme was proposed in our group (Ruiz-Pernia et al., 2006). In
this strategy, the correction energy is expressed as a function of two
geometrical coordinates relevant in the description of the chemical reac-
tion. For example, if the process under study can be described using an
antisymmetric combination of bond forming and bond breaking distances
(dBB�dMB), then the correction energy is mapped on a two-dimensional
PES obtained as a function of these distances (dMB;dBB). Figure 1 illus-
trates this situation, showing the minimum energy paths and transition
structures corresponding to a QM/MM calculation using a low-level quan-
tum treatment (LL/MM) or a high level (HL/MM). As it can be seen, in
general, the transition structure described on the high-level surface can be
found in an advanced or delayed position along the reaction coordinate
(dBB�dMB) or along an orthogonal direction. These displacements can be
especially important when the high-level TS is considerably more associa-
tive or dissociative than the low-level one, that is, when the low-level energy
surface has important qualitative drawbacks. In principle, this correction
scheme is obviously more general than the previous procedure and it can
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be employed for PES-based applications (localization of stationary points
and calculation of minimum energy paths, for example).
A most accurate but more computationally expensive methodology is

the dual level strategy (Martı́ et al., 2005a,b). In this modified QM/MM
approach, the ‘‘low-level’’ QM description of the quantum region is
corrected during the optimization procedure by means of a ‘‘high-level’’
calculation in vacuo, keeping the QM–MM interaction contribution at a
quantum ‘‘low-level.’’ This allows computation of energies, gradients, and
Hessians including the polarization of the QM subsystem and its interac-
tion with the MM environment, both terms are calculated using the low-
level method at a reasonable computational cost. This methodology is
based in the Micro–Macro Iteration Optimization Algorithm (Moliner et al.,
1997; Turner et al., 1999; Monard et al., 2003; Prat-Resina et al., 2003,

dMB

dBB

HL/MM

++

++

LL/MM

FIG. 1. Qualitative illustration of the minimum energy paths and transition struc-
tures on the potential energy surface obtained as a function of the breaking bond (dBB)
and making bond (dMB) distances using a high- (HL, in blue) or a low-level (LL, in red)
description of the QM subsystem. The HL transition structure (in black on the blue line)
is displaced with respect to the low-level one (in black on the red line) essentially in a
direction orthogonal to the antisymmetric combination dBB–dMF. A possible transition
structure (in blue) corresponding to the use of one-dimensional corrections along the
distinguished reaction coordinate is also shown. Adapted from Ruiz-Pernia et al., 2006.

HYBRID SCHEMES BASED ON QM/MM SIMULATIONS 95



2004; Vreven et al., 2003). In this algorithm (see Fig. 2), a partition of the
full space of coordinates of the system into a control space and comple-
mentary space subsets is done: those atoms or molecules directly involved
in the reaction process (plus may be some rounding molecules or resi-
dues) are included in the control space, while the rest defines the com-
plementary space. Then, optimization of structures can be efficiently
carried out in coupled iterations over these two subspaces: at each step
of the control space Hessian guided optimization, the rest of the system is
fully relaxed merely using gradient vectors. This strategy leads to stationary
structures with the adequate number of negative eigenvalues for a reduced
Hessian matrix (the one defined for the control space). In a typical
application of the micro/macro iteration approach, the control space
usually contains the coordinates of up to �100 atoms, while the comple-
mentary space can include a number of atoms two orders of magnitude
larger. When searching stationary structures, this is usually translated into
about 101 Hessian guided optimization steps in the control space and up
to 102–103 gradient-based optimization steps in the complementary space
at each control space movement. This last number of cycles is of course
highly dependent on the size of the system and of the gradient of the
considered structure. Anyway, a typical application in enzymes or
condensed media can amount up to 103 or even more energy and gradient

Complementary
Space

Control
Space

Slow-Hessian guided

Fast-gradient guided

FIG. 2. Representation of the micro–macro iteration scheme for geometry opti-
mizations in very large systems.
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evaluations to fully relax a stationary structure, which means that only low
cost computational methods can be employed to describe the QM region
(except in those cases where the QM subsystem contains very few atoms).
Whereas upcoming computational power allows using higher electronic
Hamiltonian approaches such as ab initio or based in DFT to describe the
quantum region, the usually large amount of gradient vector evaluations
needed during the macrosystem minimization procedure turns this way
almost impracticable for hybrid QM/MM MD simulations, still making
semiempirical methods the most suitable one. In this way, the HL term
must be evaluated only during the optimization of the control space, while
the LL terms are devoted to avoid the more time consuming complemen-
tary space optimization. This method has shown to provide considerably
better descriptions than standard QM/MM calculations at the semiempir-
ical level, while the computational cost is still reasonable but higher than
the interpolation methodology one (Martı́ et al., 2005a,b). The dual level
method is based on two different quantum treatments for the QM region,
one LL method (usually a semiempirical Hamiltonian) and the other HL
method (usually, DFT or ab initio correlated methods; Ruiz-Pernia et al.,
2004, 2006; Martı́ et al., 2005a,b).

II. Potential of Mean Force/Free-Energy Calculations

Minimum (potential) energy pathways can in favorable cases provide a
reasonably picture of the chemical processes in enzymatic reactions. How-
ever, it is desirable, and often necessary, to compute free-energy pathways
to understand these complex processes in more realistic detail. Free-
energy simulations based on statistical sampling can provide reasonable
estimates of the free-energy changes associated with a chemical reaction.
The free-energy change along a given reaction coordinate (x) is called the
PMF (W) and can in principle be generated from MD simulations:

W xð Þ ¼ C 0 � kT ln r xð Þh i ð2Þ
where C0 is an arbitrary constant and r(x) the probability distribution
function of the selected coordinate. During a molecular simulation, the
probability density can be evaluated measuring the number of times that
the system has a value of the coordinate between x and xþDx, N(x). If the
total number of configurations collected in the simulation is M, the
histogram of the coordinate can be constructed as
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r xð Þh iDx ¼ N xð Þh i
M

ð3Þ

When high-barrier processes are considered, direct simulation will result in
getting stuck in the low energy regimes of the end states and it is unlikely that
the transition of interest would ever be observed in the limited simulation
time. In other words, the whole range of values of interest of the reaction
coordinate cannot be covered in reasonable simulation times for regions
exceeding few times kT. Several approaches have beendeveloped in order to
address the sampling problem, such as using biasing potentials or reducing
the phase space to sample the relevant degrees of freedom (Amadei et al.,
1993; Hamelberg et al., 2004). One of the most successful approaches used
to improve the sampling of all the configurational space of interest is the
umbrella sampling technique. In this method, the simulation is carried out
in the presence of an additional biasing potential Vumb(x), introduced to
enhance the sampling in the neighborhood of a particular value of the
coordinate x (Torrie andValleau, 1974; Roux, 1995). A very common choice
is a harmonic function of the form:

Vumb ¼ 1

2
Kumb x� xrefð Þ2 ð4Þ

The question is now to recover the full distribution function of the
unbiased system, from the distribution of the biased simulation windows.
The weighted histogram analysis method (WHAM) provides an optimal
way to combine the data collected in the simulations (Kumar et al., 1992).
Comparisons of various approaches for calculating QM/MM free ener-

gies can be found in different references (Kastner et al., 2006; Ytreberg
et al., 2006; Senn and Thiel, 2007a,b, 2009; Hu and Yang, 2008; Acevedo
and Jorgensen, 2010).

III. Applications

A. Chorismate Mutase as a Working Example

The conversion of (�)-chorismate to prephenate catalyzed by choris-
mate mutase (CM; Haslam, 1993) is shown in Scheme 1. This reaction is
part of the shikimate pathway which produces aromatic amino acids in
plants, fungi, and bacteria (Haslam, 1993), making CM a potential target
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for herbicides, fungicides, and antibiotics. CM provides an important test
of theories of enzyme catalysis, and of modeling methods, due to four
main advantages: (i) the rearrangement of chorismate to prephenate
catalyzed by the enzyme has its counterpart in solution, and experimental
(Andrews et al., 1973; Copley and Knowles, 1987; Kast et al., 1996a,b;
Gustin et al., 1999) and theoretical (Lyne et al., 1995; Carlson and
Jorgensen, 1996; Hall et al., 2000; Martin et al., 2000; Guo et al., 2001;
Kangas and Tidor, 2001; Bruice, 2002; Barbany et al., 2003; Hur and
Bruice, 2003; Mandal and Hilvert, 2003; Martı́ et al., 2003a,b) studies
have demonstrated that the reaction takes place following the same mo-
lecular mechanism. This is a very important feature as it allows to directly
compare the results obtained in both media and to get insights into the
role of the enzyme. We have to keep in mind that it is quite frequent that
catalysts accelerate the chemical rate by changing the mechanism, and in
such a case, the comparisons would not give information of the generic
aspects of enzyme catalysis; (ii) there are data available in the literature
(Andrews et al., 1973; Copley and Knowles, 1987) that offers the opportu-
nity to compare theoretical and experimental results. Further, although
some debate appeared in the literature as to what step was the rate limiting
in CM, more recent studies based on kinetic isotope effects have demon-
strated that the chemical reaction is preponderantly rate limiting in this
enzyme (Gustin et al., 1999); (iii) no covalent bonds are formed between
the substrate and the protein, avoiding technical problems of frontier
treatments between QM and MM regions, such as the use of boundary
atoms. This allows a simple division of both subsystems, that is, schemati-
cally depicted for the enzymatic reaction in Fig. 3; (iv) since the
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SCHEME 1. Pseudodiaxial–pseudodiequatorial conformational equilibrium of
chorismate and Claisen rearrangement of chorismate to prephenate.
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rearrangement of chorismate to prephenate is an unimolecular reaction,
the first step of the energy profile depicted in Scheme 1, the contribution
of bringing two separated reactant species together to form the Michaelis
complex (MC) in a bimolecular process, is simplified into a conformation-
al problem: the work of changing a nonreactive chorismate conformer
structure into a new one which is ready to proceed the rearrangement to
prephenate (see Scheme 1). This enzyme is relatively simple, but none-
theless is at the center of controversies regarding the origin of its catalytic
efficiency (Martı́ et al., 2001). In order to simulate the step of conversion
from chorismate to prephenate, the PMF profiles in aqueous solution and
in the enzyme were obtained in our laboratory using the antisymmetric
combination of the forming and breaking bond distances as the distin-
guished reaction coordinate (see Fig. 4). From the analysis of this figure, it
appeared that the difference between the solvent and enzyme theoretical
free-energy barriers obtained at AM1/MM level is in very good agreement
with the experimental data (8.7 vs. 9.1 kcal mol�1, respectively), although

FIG. 3. The full system is divided into a QM region and an MM region. The blue
shaded area shows the MM frozen atoms.
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the absolute barriers are overestimated due to the use of the AM1 Hamil-
tonian to describe the QM region.
As mentioned above, this enzymatic system presents, as one of the

advantages, the fact that no covalent bonds exist between the QM and
the MM regions. This feature allows one to carry out a very interesting
decomposition analysis of the potential-energy barrier in aqueous solution
and in the enzymatic environment. The total QM/MM activation energies
obtained in aqueous solution or in the presence of the enzyme environ-
ment can be written as the following sum:

DE{ ¼ DE{
QM þ DE{

int þ DE{
MM ð5Þ

where DEQM is the in vacuo energy relative to R using the solute/substrate
structures obtained in the QM/MM calculations, DEint is the solvent–
solute or enzyme–substrate interaction energy relative to R, and DEMM is
the MM energy relative to R structure. According to this decomposition,
the energy barrier of the reaction is the sum of three contributions, which
are given in Table I for the reaction in water and in BsCM.
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FIG. 4. Free-energy profiles, obtained in terms of QM/MM PMFs, for the chor-
ismate to prephenate rearrangement obtained in solution (blue line), catalyzed by
B. subtilis chorismate mutase, BsCM (black line) and catalyzed by E. coli, EcCM (red line).
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It must be kept in mind that the reported values in Table I come from
the average of the structures appearing in QM/MM MD generated at the
maximum (TS) and the minimum (reactant state, RS) of the free-energy
profiles in Fig. 4. The MD simulations were calculated until convergence
of the differences in energies. Nevertheless, as previously mentioned,
these results have to be treated with caution and the conclusions have
to be considered as qualitative because they can be affected by large
statistical errors, especially the change in the MM environment energy.
As can be seen in the table, the main contribution to the potential-energy
barrier lowering does not come from the solute or the substrate energy,
which in fact is in the opposite trend, but from the preferential interaction
of the enzyme with the TS. It must be emphasized that the nature of this
contribution is essentially electrostatic. It can be surprising that while the
interaction contribution is much more important (in an absolute sense) in
the enzyme than in water, the energetic change of the environment is very
similar in both media. In aqueous solution, this last term is very close to
one half the value of the interaction energy as predicted by linear response
solvent models, while in the enzyme, this represents a much lower relative
contribution (7.5%). Inside the enzyme, there is a large electrostatic effect
associated with a very small reorganization. This analysis is in agreement
with the preferential stabilization of the TS by electrostatic interactions in
the enzyme than in water as previously pointed out by Warshel (1991,
1998) and Strajbl et al. (2003). Most recently, they have evaluated the
binding free energy of the ground state and the TS in CM, demonstrating
that the enzyme works by transition-state stabilization (TSS; Strajbl et al.,

Table I

Experimental and AM1/MM Averaged Values for the Free Energy and Potential-
Energy Barrier and Its Components (see Eq. (5)) for the Chorismate Rearrangement

in Water Solution and in BsCM (from Martı́ et al., 2001)

DGexp
{ DG{ DE DEQM DEint DEMM

Aqueous solution 24.5a 38.0 39.0 40.4 �2.7 1.4
BsCM 15.4b 29.3 27.1 42.1 �16.2b 1.2

All values are in kcal mol�1.
aFrom Andrews et al. (1973).
bFrom Kast et al. (1996a).
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2003). The evaluation of the different contributions to the reduction of
the activation energy, using linear response methods, established that TSS
resulted from electrostatic effects.
The geometrical and energetic analysis of the TS and the MC reveals the

importance of the Glu78 residue; the Arg90 that activates the ether bond
and stabilizes the TS; or the role of Arg7, Tyr108, and Arg115 that present
direct ionic interactions to the substrate being catalytically significant, in
addition to their obvious role in binding, as has been emphasized also by
Lee et al. (2002). Lee et al. arrived to this conclusion from QM/MM PESs
in BsCM along the reaction coordinate using a Hartree–Fock wavefunction
not only to treat the substrate but also the side chains of Glu78 and Arg90
(Lee et al., 2002).
Hilvert et al. (Aemissegger et al., 2002) studied the Cope rearrangement

of carbachorismate to carbaprephenate (see Scheme 2) and tested the
catalytic activity of BsCM against this reaction. In the carba analogues, the
ether oxygen is substituted by an apolar methylene group. No significant
catalytic activity was found in this case. To elucidate the origin of the
enzymatic ability to speed up the chorismate rearrangement to prephe-
nate, we carried out a comparative analysis of the TS of the Claisen and
Cope reactions in the active site of BsCM (Martı́ et al., 2004a,b).
The electrostatic interaction established between residues of the enzyme

active site and the carboxylate groups of the substrate considerably
reduces the calculated free-energy barriers for both reactions in the
BsCM active site. Effectively, the two carboxylate groups must be
approached during the reaction processes, and the electrostatic repulsion
associated with the diminution of the distance between the negative
charges is largely compensated by the interactions established with
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SCHEME 2. Cope rearrangement of carbachorismate to carbaprephenate.
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positively charged residues of the active site (Arg7, Arg63, Arg90, and
Arg116; see Fig. 5). However, the ability of the enzyme to reduce the
energy barrier is larger (by about 3 kcal mol�1) in the case of the Claisen
reaction. This differential catalytic effect is mainly attributed to the en-
hanced electrostatic interaction established between the ether oxygen
atom and Arg90 in the TS of the chorismate to prephenate
rearrangement.

The electrostatic interactions established between the substrate and the
enzyme play a primary effect reducing the free-energy barriers, but in
addition, they also have consequences on the reactant structures. If the
transition structures are going to be stabilized, then those reactant struc-
tures closer to these would be also relatively favored. In the active site,
reactant structures have smaller distances between the carboxylate group
than in solution, and thus a more pseudodiaxial character, becoming then
more similar to the transition structures. The enzyme structure, whose
active site would be exquisitely complementary to the TS thus stabilizing it
more than the substrate and reducing the barrier (Strajbl et al., 2003), has
a considerable effect on the reactants. In the global energy balance, the
equilibrium among reactant substrate conformers is displaced toward
those reactive conformations that are geometrically closer to the TS,

Cys88

Ala9 Tyr108

Arg116

Arg63

Arg90

Glu78

Cys75 Ala59

FIG. 5. Snapshot of the chorismate to prephenate TS in the active site of BsCM.
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thus avoiding the energetic penalty associated with the deformation of the
full enzyme–substrate system. Consequently, the final conclusion for this
system is that the origin of the catalysis has to be searched for in the
enzyme structure. This structure, designed to stabilize the TS relative to
the in-solution process, obviously has consequences on the RS, favoring
structures which are more similar to those appearing in the TS. Then, the
two effects of the enzyme on the reaction process, stabilizing the TS and
deforming the RS geometry, can be viewed as two faces of the same
coin (Martı́ et al., 2004a,b). Another integrated vision was proposed by
Warshel (1998) and Villà and Warshel (2001) According to these authors,
the apparent NAC effect proposed by Bruice (2002) is not the reason
for the catalytic effect but the result of the TS stabilization; the key catalytic
effect is electrostatic in nature. However, since the charge distribution
of the TS and the reactive reactants is similar, the stabilization of the
TS leads to reduction in the distance between the reacting atoms in
the RS.

B. Designing CAs: TSA

Pauling’s seminal idea concerning enzymatic catalysis is that an enzyme
lowers the energy of TS (Pauling, 1946, 1948a,b, 1960). Evidence in
support of this proposal is the fact that stable compounds that resemble
the TS, TSAs, are competitive inhibitors of enzymes (Wolfenden, 1972).
One approach to TSA design is to establish the nature of the enzymatic TS
and to synthesize chemically stable analogues with similar features
(Schramm, 2003). Raso and Stollar pioneered the use of TSAs as happens
in immunization processes to synthesize new catalysts, CAs (Raso and
Stollar, 1975). The study of processes associated with the activity of CAs
provides opportunity to examine and understand enzyme catalysis and
vice versa. In-depth knowledge of enzyme activity can be used to improve
the specificity, selectivity, and efficiency of these new catalysts (Schultz and
Lerner, 1995). CAs are especially interesting as catalysts for those reactions
for which no enzyme is known (Schultz and Lerner, 1993).
The simplest kinetic scheme used to understand enzymatic and CA

processes is that proposed by Michaelis and Menten, which proceeds
with the formation of a substrate–catalyst complex (the MC) before the
product-forming step during which the catalyst is recovered (Mader and
Bartlett, 1997).
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In the simplest version, the reaction takes place through a single TS
(Eq. (6)).

Eþ S Ð MC ! TS ! Pþ E� ð6Þ
The activation free energy of the catalyzed reaction step can be related to
that of a counterpart uncatalyzed process through the binding energies of
the MC and the TS (Eq. (7)).

DG{
cat ¼ DG{

uncat þ DGTS
bind � DGMC

bind ð7Þ
Here, DGcat

{ and DGuncat
{ are the free energies of activation for the catalyzed

and the uncatalyzed reactions, while DGbind
TS and DGbind

MC reflect the affi-
nities of the protein for the TS and the MC, respectively. According to this
scheme, the catalytic power of enzymes comes from the larger affinity of
the enzyme for the TS than for the MC, since DGbind

TS �DGbind
MC is a negative

quantity. Antibodies are synthesized on the basis of their affinity for a TSA
(DGbind

TSA ), a quantity expected to be correlated with the binding energy of
the true TS of the reaction to be catalyzed (DGbind

TS ). Thus, CAs are
expected to provide a lower activation free energy.

However, initial expectations for CAs as catalysts have not been fully met.
First of all, CAs are not as efficient as the enzymes. Second, not all antibodies
that stabilize TSAs are catalysts of the reaction. Finally, there are cases where
after a process ofmaturation (which results in an increased affinity of theCA
for the TSA), a paradoxical decrease in the catalytic power is observed,
relative to the initial or germline CA (Ulrich et al., 1997).

Different arguments have been proposed to explain these findings.
First, the fact that CAs present modest rate enhancements relative to
those of enzymes could be due to the low affinity between the CA and
the TSA that can be developed by the immune system. This affinity is
apparently not enough to result in the TS affinity required for a substantial
increase of the reaction rate. During the process of maturation, the TSA–
CA affinity (in terms of the dissociation constants calculated for the TSA)
increases to ca. 10�10, while the TS–enzyme affinity increases to 10�23

(Mader and Bartlett, 1997). Second, even when the CA–TSA affinity could
be improved enough, to date, it has been difficult to elicit antibodies that
are as effective at differentiating the ground state from the TS (Mader and
Bartlett, 1997). In this regard, Schultz et al. have stressed the lack of
flexibility of the CAs (Mundorff et al., 2000). The introduction of somatic
mutations, which lead to an increase in binding affinities, can cause a
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significant restriction in the relative orientation of the substrate, thereby
decreasing the rate constant (Mundorff et al., 2000). The increased
binding affinity of the affinity-matured antibody stabilizes the substrate
in a catalytically unfavorable conformation. Thus, it would be possible to
rationalize why some CAs do not act as catalysts. Finally, as also suggested
by Mader and Bartlett (1997), it is not possible to devise very accurate
TSAs; that is, the TSA cannot be similar enough to the true TS. As a
consequence, an improvement in DGbind

TSA would not be directly translated
into an improvement in DGbind

TS . All these problems arise because of an
important issue of timescales. In its continuous processes of evolution,
nature has brought forth countless mechanisms for complex biochemical
reactions, but the biological selection process that produces the antibody
differs from that governing enzyme evolution by an enormous factor: a
timescale of weeks in the former in contrast to a process occurring over
millions of years in the latter.
The methods and techniques of computational chemistry provide excel-

lent tools for obtaining molecular details of catalytic processes (Marti et al.,
2008). With the aim of increasing the stability of the TSs, scientists design
CAs based on their affinity to TSAs. In this process, the effect of the CA on
the RS is completely lost. According to our work, CAs usually present low
catalytic efficiency (relative to that of enzymes) and even inverse correla-
tions between maturation process and catalytic power not only because the
TSA does not properly represent the TS but mainly because the MC is not
considered in the improvement process. Enzymes and CAs have evolved
with different purposes: the former to decrease the activation free energy
of the reaction and the latter to increase the binding energy for the TSA
(and for the TS). In the first case, the target is the difference between the
binding energy of the TS and the MC (DGbind

TS �DGbind
MC ), while in the

second case, attention is focused on DGbind
TSA (which is related to DGbind

TS ),
and the MC is not considered at all.
QM/MM simulations can be used as a computer-aided rational-design

protocol to overcome some of the limitations of standard rational-design
techniques and that is tested for the chorismate to prephenate simple
metabolic reaction (Villà and Warshel, 2001; Bruice, 2002; Benkovic and
Hammes-Schiffer, 2003; Garcia-Viloca et al., 2004) (see Scheme 1). CMs
from different organisms, such as Bacillus subtilis (BsCM; Chook et al.,
1993) or Escherichia coli (EcCM; Lee et al., 1995), exhibit similar kinetic
properties, although they may share little sequence similarity. Further,
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a CA with modest CM activity was prepared against a TSA of CM (Hilvert
et al., 1988; Hilvert and Nared, 1988),and its three-dimensional structure
was determined at 3.0-Å resolution (Haynes et al., 1994). We studied the
chorismate to prefenate rearrangement on this system and compared to
the results obtained for natural enzymes such as B. subtilis (BsCM; Chook
et al., 1993) or E. coli (EcCM; Lee et al., 1995).

The free-energy profiles obtained for the chorismate to prephenate
rearrangement in aqueous solution, in the two CM enzymes (BsCM and
EcCM), and in the 1F7 CA are depicted in Fig. 6, whereas our best
estimation of the free-energy barriers is listed in Table II. The resulting
profiles are in accordance with the expected results: the catalytic efficiency
of the 1F7 appears between the catalytic power of both enzymes (which are
very close to each other) and the reaction studied in solution.

The most remarkable result in Table II is that the computed catalytic
power of the different tested proteins (DDGtheo

{ ) is in very good agreement
with that of experimental (DDGexp

{ ). This fact validates the employed
methodology, giving encouragement for its use in obtaining a deeper
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FIG. 6. Free-energy profiles (in terms of potential of mean force, PMF) for the
chorismate to prephenate rearrangement obtained in the different environments: BsCM
(black line), 1F7 (red line), 1F7 (N33S) mutant (purple line), and in aqueous solution
(blue line). The reaction coordinate is the antisymmetric combination of the interatom-
ic distances of the breaking and forming bonds, C3� � �O4 and C1� � �C6, respectively.
Adapted from Martı́ et al. (2007).
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insight into the catalysis in the enzymes and 1F7. Further to free-energy
barriers, Fig. 6 can be used to identify the position of the TS and the MC
along the reaction coordinate, defined as the antisymmetric combination
of the breaking and forming bonds, C3��O4 and C1��C6, respectively.
Considering that the values of the reaction coordinate of the different TSs
are very close (see Fig. 6), if the difference of the reaction coordinates
between the TS and the MC is small, the pre-equilibrium of the substrate
(see Scheme 1) will be displaced toward the chair-like structure of the
chorismate. In this regard, although the free-energy profile is rather flat in
the minimum region, we could deduce a direct relationship between the
difference in the reaction coordinate at the MC and the TS and the value
of the free-energy barrier (Martı́ et al., 2007). The smallest differences are
obtained in the enzymatic processes (1.4 and 1.5 Å for the BsCM and
EcCM, respectively), whereas the largest difference is obtained in the
solvent environment (2.3 Å). An intermediate value of 1.8 Å was deter-
mined for 1F7, thus fitting the order in the free-energy barriers. Roughly
speaking, water molecules fit to the substrate structure in solution, while
the protein induces conformational changes in the substrate.
The analysis of the averaged structures obtained in the different

biological systems allows determination of which interactions favor the
stabilization of the TS. Fig. 7 presents the averaged interaction energy,
electrostatic and van der Waals contributions, of individual residues with

Table II

Theoretical Free-Energy Barriers (in kcal mol�1) for the Uncatalyzed Chorismate to
Prephenate Rearrangement Compared with the Catalyzed Reaction by BsCM, EcCM,

1F7, and 1F7 (N33S) Mutant CA

Water BsCM EcCM 1F7 1F7 (N33S)

DGtheo
{ 29.3a 20.6a 20.9 27.5 23.0

DDGtheo
{ 0.0 �8.7 �8.4 �1.8 �6.3

DGexpt
{ 24.5b 15.4b 17.2c 21.6d –

DDGexp
{ 0.0 �9.1 �7.3 �2.9 –

Data from Hilvert et al. (1988).
aValues are taken from Martı́ et al. (2007).
bValues are taken from Martı́ et al. (2001).
cValues are taken from Chook et al. (1993).
dValues are taken from Lee et al. (1995).
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the substrate at the corresponding TSs. Several conclusions can be
obtained from this kind of analysis: for both enzymes, BsCM and EcCM,
the favorable interactions take place through the positively charged resi-
dues (mostly arginine residues) with the two negatively charged carboxyl-
ate groups of the substrate and the negative charge that develops on the
ether oxygen (Khanjin et al., 1999). Concerning the 1F7, the magnitude of
all the interactions is dramatically smaller than in the enzymes except for
the interaction established with ArgH95, which presents similar values to
the enzymatic ones. In fact, it seems that the 1F7 does not properly interact
with the two carboxylate groups of the substrate, leaving them partially
exposed to the solvent. Therefore, these results suggest that the substrate
fits better in the enzyme active sites than in the CA pocket, which is in
agreement with the previous observation concerning the reaction coordi-
nate values in theMC:much closer to theTS in theCMs than in the 1F7 case.
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It is also important to point out that the pattern of interactions obtained
in the TS of the 1F7 is not equal to the TSA–CA structure determined by
the X-ray diffraction study. Thus, for instance, AsnH33 presents a notice-
ably different orientation in the TS–CA with respect to the TSA–CA
complex: although the hydrogen atoms of the amino group interact
with the hydroxy group of the inhibitor in the later, in the TS–CA
complex, there are steric interactions between this residue and the ali-
phatic hydrogen atoms of the substrate that impede optimum positioning
of the substrate into the cavity. As a result, strong interactions between the
carboxylate group and amino acid residues of the inner part of the cavity
are prevented, as is depicted in Scheme 2. The low capability of the 1F7 to
enhance the rate constant of the chorismate to prephenate rearrangement
can be understood from this analysis. The strong stabilizing interactions
observed in the enzyme between both carboxylate groups and the protein
are not reproduced by the immune-system process when eliciting antibo-
dies against a stable molecule that resembles, but is not equal to, the TS of
the desired chemical transformation.
From the conclusions obtained by comparing BsCM and EcCM with 1F7

(see above), we proposed and checked in silico mutations that may im-
prove the efficiency of the 1F7 CA. Thus, we changed the AsnH33 residue
to a serine that would facilitate a better accommodation of the substrate in
the cavity of the CA due to its smaller size, presumably enhancing the
interactions of the substrate with the residues located in the inner part of
the cavity. Once this mutation was carried out, the free-energy profile of
the new 1F7-N33S, also presented in Fig. 6, was obtained by using the same
procedure as in the previous calculations. This mutation yields a notice-
able decrease in the free-energy barrier, in comparison with the PMF
obtained for 1F7. The corresponding activation free energy reported in
Table II is 4.5 kcal mol�1 lower than the original 1F7 CA and only
2.4 kcal mol�1 above the most efficient BsCM enzyme. This diminution
would imply an increase in the rate constant by a factor of 103 at room
temperature, compared with 1F7 CA. Stabilization of the TS, as a conse-
quence, preferentially selects and optimizes those reactant conformers
that resemble the TS, thereby displacing the pre-equilibrium to the reac-
tive reactant conformers. The reaction-coordinate difference between
reactants and TS is now 1.6 Å, a value closer to the enzymes than to that
calculated for the 1F7. The analysis of the substrate–protein interactions in
the TS, presented in Fig. 7D, reveals that our predictions have been
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confirmed, at least in the computed structures and energies; the new CA
presents a more favorable pattern of interactions than the 1F7. The most
important effect of the mutation is the extra space generated in the cavity,
allowing the ring of the substrate to slightly rotate and its carboxylate groups
to optimize the interactions with the available residues between the TS and
the cavity (see Scheme3). Inparticular, the interactions establishedbetween
the carboxylate group and residues such as AsnH35 and AsnH50 are stron-
ger in the mutated CA. Simultaneously, the interactions with the water
molecules are reduced, which is similar to the situation observed in the
CMs. The steric hindrance of the AsnH33 with the substrate in 1F7 prevents
this movement, whereas in the mutated CA, a combination of the smaller
size of the residue and the weaker interaction established with the substrate
facilitates a more favorable relative orientation in the CA cavity, thus reduc-
ing the free-energy barrier of the chemical step.

It has been suggested that the limited structural diversity of the immune
system imposes inherent limitations on catalytic efficiency (Backes et al.,
2003). This work shows how our methodology, combined with other
experimental strategies, may be used to determine whether the antibody
scaffolds are evolutionary dead ends or can be further improved, as seems
to be the case for 1F7. The study of TS–protein complexes, which have
been demonstrated not to be equal to the TSA–protein structures
obtained from experimental techniques, can be used to decide which
residues should be changed in the active site of the CA to reduce the
free-energy barrier of the catalyzed chemical transformation. Computer-
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aided rational design might be used, not only as a first step for directed
laboratory evolution experiments but also to shed some light on the
divergent evolution of enzyme superfamilies.

C. Toward Understanding of the Promiscuity in Enzyme Catalysis

Traditional views on enzymatic activity usually remark on their high
efficiency and specificity. However, it has been recently suggested that this
paradigm, which has dominated thinking in this field, could be too
simplistic. Many enzymes have been found to present more than one
catalytic activity, thus being capable of catalyzing secondary reactions at
an active site that was, in principle, specialized to favor a primary reaction
(Copley and Knowles, 1987; O’Brien and Herschlag, 1999; Aharoni et al.,
2005; Khersonsky et al., 2006; Toscano et al., 2007). This phenomenon is
known as catalytic promiscuity (Zanghellini et al., 2006). Nevertheless,
Hult and Berglund (2007) recognized that, apart from this catalytic
promiscuity (based on the ability of a single enzyme active site to catalyze
several chemical transformations), there are two more major classes of
promiscuity: condition promiscuity (enzymatic activity in various reaction
conditions different from their natural ones), and substrate promiscuity
(enzymes with a broad substrate specificity) and catalytic promiscuity
(based on the ability of a single enzyme active site to catalyze several
chemical transformations; Jensen, 1976; O’Brien and Herschlag, 1999;
Glasner et al., 2006; Bershtein and Tawfik, 2008).
In most cases, catalytic proficienciesi for the promiscuous activities are

much lower than that for the parent reaction, not exceeding (kcat/Km)/k2
values of 1013–1015 and typically much less than that (O’Brien and
Herschlag, 1999; Jonas and Hollfelder, 2008). Nevertheless, kinetic ana-
lyses of a significant amount of promiscuous enzymes reveal large rate
accelerations for their secondary activities. Babtie et al. (2010) suggest that
these large values imply that binding and catalysis can be highly efficient
for more than one reaction, challenging the notion that proficient cataly-
sis requires specificity. Growing numbers of reported promiscuous activ-
ities indicate that catalytic versatility is an inherent property of many

iCatalytic proficiency, (kcat/Km)/k2, is a ratio of the second-order rate constants for the
enzyme-catalyzed reaction and the uncatalyzed reaction in solution; it is a measure of TS
stabilization by an enzyme.
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enzymes, showing that this is an important research field, as stressed by Wu
et al. (2010) and Busto et al. (2011). Understanding protein promiscuity is
becoming increasingly important, not only for the structural, mechanistic
implications of this manifestation of infidelity of molecular recognition, as
marked by Tawfik and Khersonsky (2010) but also for providing a raw
starting point for the evolution of enzymes, as a new duplicated gene
presenting low activity would provide a start for adaptative evolution
(O’Brien and Herschlag, 1999). Thus, the introduction of new enzyme
activities by protein engineering can be extremely useful in biotechnology
(Nobeli et al., 2009). The use of new enzymes can be applied as an elegant
and power synthetic methodology allowing the development of eco-friend-
ly processes and the development of catalysts (proteins) that accelerate the
rate of more than one chemical transformation in the same active site,
(Busto et al., 2011; Wu et al., 2010). Obtaining a protein scaffold, from a
wild-type enzyme or a modified one by protein engineering, capable of
catalyzing more than one step of a full synthetic process, even at ambient
conditions of pressure and temperature, could reduce the costs associated
with the productions of chemicals. Further, according to previous studies,
promiscuous activities exhibit high plasticity as they can be readily
increased by means of one or few mutations, allowing reaching the
threshold to be improved under selective pressure (Khersonsky et al.,
2006). Instead, primary activity presents a large robustness against muta-
tions (O’Brien and Herschlag, 1999). In this context, enzyme promiscuity
has been proposed to play a role in the divergent evolution of enzymes by
providing a head start in activity and a possible selective advantage to a
duplicated gene (O’Brien and Herschlag, 1999; Bornscheuer and
Kazlauskas, 2004; Khersonsky et al., 2006; Hult and Berglund, 2007).
Then, the study of enzyme promiscuity can help to understand how new
enzymatic functions may have emerged from a molecular scaffold during
natural divergent evolution. In fact, new enzymatic functions can evolve in
the period of years or even months, as happened recently with new
synthetic chemicals or drugs (O’Brien and Herschlag, 1999).

There are at least two different strategies that can be used to obtain
novel enzymes by means of mutations on existing enzymes. The first one is
based on directed evolution, which consists of successive rounds of ran-
dom mutations or recombinations followed by screening or selection
(Arnold, 1998). This powerful tool does not require a deep knowledge
of the details of the catalytic mechanism. A second strategy is the rational
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design that implies directed mutation on particular residues of the active
site (Morley and Kazlauskas, 2005). This strategy requires details about the
process and the effect of the enzymatic environment on the reaction
mechanism. The methods and techniques of computational chemistry
have become a promising complementary tool to assist in the design of
new enzymes. Thus, combinatorial optimization algorithms that integrate
ligand docking and placement of amino side-chain rotamer libraries have
been used to identify sequences that form complementary ligand-binding
surfaces. Nevertheless, although impressive results have been obtained
(O’Brien and Herschlag, 1999), some drawbacks are behind these meth-
odologies. First, the structure of the backbone of the protein remains
frozen during the functional design modeling, not introducing its inher-
ent flexibility and lacking dynamic effects; second, the real TS of the
catalyzed chemical reaction step, including the protein environment,
has not been taken into account.
We will explore the advances evident in the catalytic promiscuity, chem-

ical transformations that may differ in the functional group involved (type
of bond formed or cleavage) and/or in the catalytic mechanism of bond
making and breaking (Dwyer et al., 2004; Lassila et al., 2005). In this
section, we present a computational approach to improve secondary
catalytic activities of promiscuous enzymes. In particular, we take as test
cases the PchB and the MbtI, two enzymes capable of catalyzing the
chorismate to prephenate rearrangement. As previously demonstrated
for the study of this reaction catalyzed by natural enzymes and CA, the
method based on the use of MD simulations employing hybrid QM/MM
methods (Warshel and Levitt, 1976) is a powerful in silico tool to get a
detailed knowledge of the reaction mechanisms and, in particular, the TS
and the free-energy profiles of the reaction, taking into account the effect
of the protein environment (Martı́ et al., 2007. The results rendered by
this kind of study provide clues to propose mutations on active side
residues that reduce the free-energy barrier of the chemical reaction
step, which hopefully should be reflected in an increase of the rate
constant.
Isochorismate pyruvate lyase (IPL), from Pseudomonas aeruginosa, PchB,

catalyzes isochorismate transformation into pyruvate and salicylate
(Scheme 4), but it also presents secondary activity catalyzing the transfor-
mation of chorismate into prephenate (see Scheme 1; Gaille et al., 2002;
DeClue et al., 2005; Künzler et al., 2005). In fact, this promiscuous CM
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activity was used to ascribe a 1,5-sigmatropic reaction mechanism to its
native or primary activity, because CMs are well known to catalyze pericy-
clic reactions (DeClue et al., 2005; Künzler et al., 2005). The recently
obtained X-ray structure reveals that PchB is a structural homolog of some
CMs, despite the low sequence identity (Siegel et al., 2010). Thus, this
enzyme is an excellent candidate to improve its secondary activity by
means of few mutations.

The second candidate, salicylate synthase (SS) from Mycobacterium
tuberculosis, MbtI, initiates the biosynthesis of siderophores by converting
chorismate to salicylate SS. Nevertheless, three more distinct activities have
been described for wild-type MbtI in vitro: isochorismate synthase (IS),
IPL, and CM (see Scheme 5). It has been observed that SS, IS, and IPL
activities require the presence of Mg2þ in the active site, while the last one
is observed for wild type in the absence of this cation in its active site
(see Scheme 5). A note of caution has to be introduced at this point, as
these results have been recently questioned by Ziebart and Toney, who
have found that, after doubly purification, the CM activity was abolished or
significantly reduced (Ziebart and Toney, 2010). Anyway, we can use this
protein scaffold as a benchmark to study the CM activity and to check the
viability of the conversion of chorismate to prephenate in its active site.
Moreover, by comparison with the most efficient CM catalysts, EcCM and
BsCM, we could try to suggest mutations that improve this activity, as
previously done with the 1F7 CA.

Free-energy profiles, in terms of PMF, for the chorismate to prephenate
reaction carried out in water and in the active site of BsCM, PchB, and
MbtI are shown in Fig. 8. As expected, the catalytic efficiency of BsCM are
much higher than that of PchB (Martı́ et al., 2008) and MbtI (Ferrer et al.,
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SCHEME 4. Isochorismate pyruvate lyase catalyzes isochorismate transformation
into pyruvate and salicylate.
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2011). PchB andMbtI provide free-energy barriers of 2.3 and 3.8 kcal mol�1

lower than in aqueous solution, respectively, whereas BsCM is able to
diminish the free-energy barrier by about 8.0 kcal mol�1. As shown in
previous sections, the chemical reaction is preceded by a pre-equilibrium
between a pseudodiequatorial and a pseudodiaxial form of chorismate, the
last one being the reactant conformer closer to the pseudodiaxial TS of the
catalyzed reaction. A deep comparative analysis of the averaged reactant
structures obtained in the differentmedia shows a lesser diaxial character of
the reactants in the active site of PchB and MbtI than in the active site of
BsCM. In aqueous solution, as previously pointed out, the diequatorial
chorismate was in fact the lowest energy conformer of reactants. Keeping
inmind that the TS of the reaction presents a diaxial character, it seems that
BsCM constrains the substrate avoiding a complete relaxation that would
render a nonreactive reactant conformation (Martı́ et al., 2007). PchB and
MbtI are not able to constrain this favorable substrate conformation into
reactants, probably due to the fact that the active sites are not perfectly suited
to accommodate the substrate of this reaction (Martı́ et al., 2008, 2009;
Ferrer et al., 2011).
To understand the different behavior of the PchB with respect to the

CMs, we are comparing the interactions of the enol pyruvyl moiety of the
substrate in the PchB and EcCM (which is the most closely related
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structure) active sites. Thus, a deeper insight into the substrate–protein
pattern of interaction in EcCM reveals that there is a hydrophobic valine
residue (Val35) that constrains the position of the ether bridge. The
equivalent residue in PchB is a smaller alanine (Ala38) that cannot
perform the same role. Thus, we decided to carry out an in silico mutation
of this residue to a larger one (from Ala to Ile) and to repeat the PMF for
the chorismate to prephenate reaction. The result of this mutation is that
the mentioned dihedral angle evolution on the mutated PchB enzyme is
closer to the CMs than to the native PchB or water. This geometrical
behavior is reflected in the energetics, as shown in Fig. 8; the free-energy
barrier in the mutated PchB is 4.4 kcal mol�1 lower than the native PchB,
being only 2.0 kcal mol�1 above the primary reaction catalyzed by BsCM.

In fact, Mayo and coworkers, after performing 19 possible amino acid
substitutions applied over six different positions of the engineered CM
domain of the EcCM, obtained a Val35Ile mutation that renders an
increase in the kcat of about 1.5 times (Lassila et al., 2007). Moreover,
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FIG. 8. Free-energy profiles (in terms of PMFs) for the chorismate to prephenate
rearrangement obtained in different environments: BsCM (black line), PchB (red line),
PchB-A38I (purple line), MbtI (green line), MbtI-I207F (yellow line), and in aqueous
solution (blue line). The reaction coordinate is the antisymmetric combination of the
interatomic distances of the breaking and forming bonds, C3� � �O7 and C1� � �C9, respec-
tively. EcCM renders a profile that almost superimpose to the one of BsCM, as shown in
Fig. 6.
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mutation of Val to Ala (the same residue present in PchB) reduces the kcat
by a factor of 2. Thus, the overall effect for a Ala35Ile mutation in EcCM is
an increase of the kcat by a factor of 3. Obviously, the predicted effect for
the same mutation in the equivalent position in PchB (Ala38Ile) is much
larger, which is consistent with the fact that this enzyme is not specialized
in the catalysis of the chorismate to prephenate rearrangement. Our
results are then both a prediction about the effect of a mutation on
PchB and an interpretation about the success of Val35Ile mutation in
EcCM. A mutation of Val by a similar but larger amino acid at position 35
would keep the enol pyruvyl moiety in a diaxial conformation, closer to
the TS geometry, and reducing then the free-energy barrier. In this sense,
QM/MM MD simulations of the Val35Ile variant of EcCM have been
carried out, verifying that the proposed mutation increases the diaxial
character of reactants.
In addition, we can check whether the primary activity of PchB (the IPL)

is more robust than the secondary activity (CM) under selected mutations.
In our simulations, the PchB-A38I mutant also displays an improved rate
constant with respect to its primary activity, but the free-energy barrier
diminution observed upon mutation is significantly lower than that
obtained for its secondary activity (Martı́ et al., 2009).
In order to improve the CM activity of the highly promiscuous MbtI, and

trying to increase the diaxial character of reactants in its active site, the 207
position initially occupied by an isoleucine has been exchanged by a
phenylalanine, a much larger amino acid which, presumably, should be
translated into a more constrained substrate, thus keeping the ether
bridge into a more diaxial conformation and then favoring population
of more reactive conformations. Our AM1/MM MD simulations show how
this I207F mutation renders a diminution of the active site volume by
about 13% (using a probe radius of 1.4 Å, we estimated that the averaged
volumes of the active sites are 542 and 470 Å3 for wild type and mutant,
respectively). The resulting averaged structure after performing this mu-
tation was superposed of reactant structures of wild type and mutant. The
comparison shows how the two carbon atoms to be bounded, C1 and C9,
appear at a shorter distance in the mutant than in the wild type (3.25 and
3.30 Å, respectively).
Another interesting effect of the I207F mutation is observed in the

behavior of the O7–Arg405 interaction. Thus, while this distance is sub-
stantially increased from reactants to the TS in the wild-type enzyme (from
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2.68 to 2.86 Å), this distance remains almost unchanged in the mutant
(from 2.83 to 2.87 Å). As the interaction between an arginine residue
(Arg90) and the ether oxygen stabilized the TS with respect to reactants in
the BsCM (Martı́ et al., 2001, 2003a,b, 2004a,b), and considering that
similar charge on O7 is obtained in reactants and TS in wild type and
I207F, the smaller change of O7–Arg405 distance from reactants to the TS
of the latter would contribute to reduce the free-energy barrier with
respect to the wild-type. Obviously, the lengthening of the O7–Arg405
distance in the MC could also lead to a slight increase of KM. The resulting
free energy of activation render differences between the uncatalyzed
reaction and the two catalyzed reactions, by BsCM and MbtI, of 8.7 and
3.8 kcal mol�1, respectively (Ferrer et al., 2011). These results predict that
the catalytic rate constant for the CM activity of MbtI would be about 4000
times lower than that for BsCM, in very good agreement with the values
deduced from the experimentally measured rate constants (Andrews et al.,
1973; Kast et al., 1996a,b), from which activation free-energy differences of
9.1 and 4.7 kcal mol�1 can be obtained applying transition state theory
(TST) in its simplest version. The I207F mutant was 1.2 kcal mol�1 lower
than that for the wild-type MbtI, which would represent an enhancement
of the rate constant by a factor of 7 at 310 K.

The agreement of our theoretical predictions with the experimental data
obtained on the PchB (Lassila et al., 2005, 2007) and on the MbtI (Andrews
et al., 1973; Kast et al., 1996a,b) allows being confident in our computational
protocol. In this sense, we have been able to explain the origin of the effects
observed in native enzymes after single mutations. As a consequence, im-
provement of the role of promiscuous enzymes can be guided by computa-
tional protein engineering. This method can be directly applied to the
design of new enzymes, and the benchmark provides a powerful in silico
test for guiding improvements in computational enzyme design.

IV. Conclusions and Outlook

In the past years, theoretical and technological advancements have
produced an impressive improvement of computational facilities
providing a wide range of methodologies, economically and conceptually
accessible for a huge number of researchers in different fields of molecu-
lar sciences. Molecular modeling has established itself as an important
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component of applied research in areas such as drug discovery, catalysis,
and (bio)polymers. Improvements in the methods and techniques of
theoretical and computational chemistry coupled with the increasing
speed of computational hardware are making possible to perform predic-
tive modeling on ever larger systems. Electronic structure calculations
(Martin, 2004) represent nowadays one of the most commonly used
approaches by the physical–chemical community, allowing highly accurate
description of systems with a large number of atoms, that is, systems with
an order of atoms of 102–103 and more (Hung and Carter, 2009), and the
results can have a significant impact on real-world problems. Simulation
allows researchers to explore temporal and/or spatial domains that are
not accessible by present experimental methods. For example, different
chemical reaction pathways not directly accessible by experiment can be
explored to learn why they are not favorable or to find missing steps in a
complex multistep mechanism. Accurate simulations can actually replace
experimental measurements that are too costly, too difficult, or too dan-
gerous to perform. Computational chemistry has become an enabling tool
for the design of processes for controlling and enabling chemical trans-
formations, leading to higher selectivity and lower environmental impact
and energy consumption. However, there is still a lot of work to do. As a
matter of fact, modeling at the electronic level of systems with high
configurational complexity is still challenging. In this sense, as Truhlar
(2008) says, ‘‘Computations on complex systems are, in my opinion, the
current frontier of theoretical chemistry.’’
The main problem is both practical and conceptual as the different

observables to be modeled depend on processes occurring at different
length, energy, and time scales. Computational tools typically employed
for systems of such dimensions are classical simulations which, however,
produce reliable results as far as transitions in quantum degrees of free-
dom do not take place. However, when the observables of interest explic-
itly involve quantum degrees of freedom, for example, chemical reactions,
their modeling should be derived from statistical averages of genuine
quantum states interacting with fluctuating perturbing environments. In
the past years, our group has been focusing its efforts in this direction,
producing a theoretical–computational methodology, whose main feature
is to describe at electronic level a portion of a large molecular system
maintaining the complexity of the overall system.
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After more than a half century of investigation into the origins of
enzyme catalysis, it is gratifying to see the extensive new insights that
can be gleaned. It is important to emphasize that the conceptual basis
for enzyme catalysis has moved to a straightforward correlation among
structure, dynamics, and function (Zalatan and Herschlag, 2009). Com-
puter simulations can provide important insights into the energetic ori-
gins of substrate specificity and help to predict the effects of mutations
quantitatively, as demonstrated from numerous previous investigations.
Working in the area of computational and theoretical chemistry, we have,
in the past decades, focused on the application of modern computational
techniques, that is, quantum chemical calculations, to studies of structure,
bonding, and chemical reactivity and have had opportunities to collabo-
rate with a number of experimental chemists. We have applied MD
simulations with hybrid QM/MM potentials to study several enzyme-cata-
lyzed reactions earlier, related with CM.

This chapter reviews some of the modeling methods currently in use,
providing illustrative examples of applications of the hybrid QM/MM MD
simulations to challenges in CA and promiscuity of enzymes, and finally
discusses prospects for future modeling approaches. This study has dealt
with the development and application of QM/MM schemes into internal
energy optimizations and MD simulations to study chemical rearrange-
ment involved in the enzyme catalysis. The basis of the investigations
presented in this chapter is the chorismate to prephenate rearrangement,
and we have shown how to compute its electronic properties within
complex environments. In this review, we have demonstrated how realistic
and accurate simulations of reactions in solution and in enzymes become
feasible by using QM/MM MD methods. The application of such methods
will provide a comprehensive understanding of reactions in solution and
in enzymes: enzyme mechanisms, the effect of mutations to understand
the differential reactivity and selectivity, are becoming a key part of asses-
sing the validity of mechanistic proposals. Our results are in good agree-
ment with existing experimental findings. Moving forward, a number of
extensions of this work should be explored. Most importantly, to make
simulations of this type into a predictive tool, these ideas should be
applied to a wider array of enzyme systems. The present juncture is an
exciting one, providing intellectually provocative models of enzyme catal-
ysis that suggest new avenues for experimental and computational
investigations.
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In the spirit of Richard Feynman’s adage ‘‘what I cannot create, I do not
understand’’ (Feynman, 1989), the ultimate challenge is to find a funda-
mental understanding of the intricacies of protein structure and function,
that is, we need to answer the question: How does enzyme work? Specifi-
cally from a physical chemistry perspective, and of direct relevance to this
review, we are starting to unravel some of the important aspects in enzyme
catalysis; that is, how the characterization of reactants, products, possible
intermediates, and TS encodes the chemical reactivity. Pursuing and
understanding this is important because, with such relationships in
hand, we can begin to build peptides and proteins to order. This is
known as rational, or de novo protein design. Of course, this is the basic
instinct of chemists, physicists, and engineers, but importantly and along
with ab initio protein-structure prediction, it also provides the acid test of
our understanding of the enzyme catalysis problem.
Zhang et al. point out that ab initio QM/MM MD with umbrella sam-

pling can be considered as a state-of-the-art approach to simulate enzyme
reactions (Zhou et al., 2010). Nevertheless, challenges remain, especially
for further improvement of fast QM methods, more rapid mapping of
free-energy surfaces and enhanced configurational sampling of biomole-
cules. The methodology presented above can be further extended to
explore an even wider range of essential properties. Nonetheless, the
present computational study provides a detailed characterization of the
structure, dynamics, and reactivity of a series of important mutations.
Additionally, rigorous experimental verification of designed models is
essential in improving potential functions. The exclusion of conforma-
tional heterogeneity in proteins and conformational changes associated
with catalysis in current enzyme designs could also explain the similar
catalytic performance of de novo enzymes and their corresponding CAs.
Focusing largely on the chemical step in the catalytic cycle, the reliance on
TS models in the form of actual analogues or simulated theozymes was
argued not to properly account for events such as substrate binding,
product release, and conformational changes, hence capping the perfor-
mance of present designs.
In summary, theoretical contributions to the design of catalysts from

first principles come at many levels: (i) Modeling and understanding
catalytic processes at the electronic/atomistic level, that is, proposing
atomic structures, suggesting reaction pathways, computing reaction ener-
getics, modeling reaction dynamics, characterization of stationary points
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on PESs: minima (reactants, products, and possible intermediates) and
TSs, and identifying key parameters controlling a catalytic process. (ii)
Developing methods for bridging the large gaps in temporal and spatial
scales that separate elementary molecular processes from the statistical
behavior that governs chemical kinetics. (iii) Identifying general trends
and unifying principles common or specific to various classes of catalytic
phenomena: heterogeneous, homogeneous, and biological. At the level of
electronic structure theory, there is no distinction between solid, molecu-
lar, and biological catalysts. (iv) Theory will therefore be an important
component in the integration of the different subfields of catalysis. The
development of a common language in heterogeneous, homogeneous,
and enzyme catalysis. (v) Creating databases of both theoretical and
experimental results and developing methodologies to perform data
mining and optimization approaches to guide mutations as well as a
design of new catalytic systems.

As noted above, a key goal for catalysis research is the integration of
skills across a wide range of areas, including catalyst synthesis, catalyst
characterization, determination of reaction pathways and the dynamics of
elementary processes, and theoretical methods for predicting the struc-
ture of active centers and their catalytic properties. The direct coupling of
theory and experiment is an extremely strong combination and is needed
to advance catalytic science and our understanding of how to control
chemical transformations. No single experiment reveals every detail and
no calculation is perfect, but the combination provides the most profound
and detailed insights into how chemical reactions proceed and how we can
control their finest details. In general, a multidisciplinary approach has to
be taken, comprising (i) first-principles description of the actual chemical
reaction, not only of the TS but also of the complete reaction pathway
including the physical processes (diffusion of substrate and/or product),
(ii) more dynamic molecular modeling algorithms also accounting for
protein flexibility. Future developments in this area, including new algo-
rithms and simplified models, are expected to have a major impact on the
rational design of tailor-made enzymes. These results will fuel the estab-
lishment of quantitative relationships between enzyme structure and its
catalytic activity. In the long term, we expect that this will enable predictive
enzyme engineering and truly de novo design of biocatalysts, the ‘‘holy
grail’’ of biomolecules. Techniques like the in silico mutations shown
above will be more common, which in turn is likely to lead to applications
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in rational computational protein design. In this respect, the replay of
Lonsdale et al. (2011) on a comment of Canepa (2010) emphasizing that
energy barriers for enzyme-catalyzed reactions calculated with QM/MM
methods can be in excellent agreement with activation energies derived
from experiments, supporting the applicability of TST for enzymatic
reactions can be remarked. Roos et al. (2009) have been published a
key review giving a detailed description of the principles and concepts
of conceptual DFT and highlighting its success to study enzymatic catalysis.
Combined experimental and theoretical model studies are successful in

disentangling structure–reactivity relationships as demonstrated for en-
zyme-catalyzed reactions. Model systems may be characterized at the atom-
ic level experimentally, which allows for direct comparison with theoretical
modeling and allows useful correlations with systems of practical rele-
vance. It is important to note that it is crucial to have appropriate experi-
mental techniques at ones disposal to look at this. Although experimental
methods usually tend to become more expensive with time, computational
methods will become cheaper as computers become faster. In combina-
tion with new developments in the methods and techniques of theoretical
and computational chemistry, this suggests that computational
approaches for the discovery and development of catalysts hold great
promise for the future. In this respect, the very recent work of Shaik
and coworkers (Cho et al., 2011) on the reaction mechanism of allene
oxide synthase (AOS) can be cited. Difley et al. (2010) have recently
reviewed the basic concepts in first-principles modeling of the electronic
properties of disordered organic semiconductors, by means of QM/MM
techniques, allowing to incorporate the influence of the heterogeneous
environment on the diabatic states. Sushko et al. (2010) have presented a
QM/MM method for metal–organic interfaces, which incorporates con-
tributions from long-range electron correlation, characteristic to metals
and nonbonded interactions in organic systems. This method can be used
to study structurally irregular systems. It is also important to cite the
articles of Norskov et al. (Christensen and Norskov, 2008; Norskov et al.,
2009) on the molecular view of heterogeneous catalysis toward the compu-
tational design of solid catalysts by using a combination of theoretical
methods, mainly DFT methods, detailed experiments on model systems,
and synthesis and in situ characterization of catalysts, a complete atomic-
scale insight into the structure and mechanism of surface-catalyzed reac-
tions is provided. In addition, Norskov et al. used DFT to calculate the
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formation energies of (2,2) nanorods, (3,3) nanotubes, and the (110) and
(100) surfaces for the case of 15 different rutile and 8 different perovskite
metal oxides (Mowbray et al., 2010). In this sense, the recent paper of
Bligaard (2009) on the linear energy relations and the computational
design of selective hydrogenation/dehydrogenation catalysts need to be
cited, as well as the paper of Feibelman (2010) in which this author
conclude that ‘‘applying DFT to decipher the meaning of well-character-
ized experimental data is apt to be more successful than to predict
molecular level structure.’’

Over the past century, we have accumulated a vast empirical knowledge
of catalysis and catalysts for an enormous number of reactions. However, it
is only recently that we are moving away from this empirical approach and
we are attempting a rational design of materials tailored to specific reac-
tions. Paul and Nardelli (2010) address the problem of the first-principles
design of catalytic surfaces for the activation and reduction of carbon
dioxide. Computational simulations have become a very important tool
that complements experiments by bringing important information not
easily obtained from experimental measures. We believe that this type of
approach will expand in the coming years, enhancing the performance of
conventional catalysis research.

At the heart of catalysis is the control of chemical transformations, and
the ability to predict reaction rates is key to gaining a fundamental
understanding of catalytic processes. Thus, computational studies need
to put structure and dynamics on an equal footing. The ability to reliably
predict reaction rates is lagging the ability to predict thermodynamics and
kinetics. This is still the case for simple gas-phase processes and is certainly
true for complex reactions in solution, in the large inorganic molecules
relevant to homogeneous catalysis, in enzymes, and on surfaces for which
even the dynamics of molecules moving on the surface are difficult to
predict reliably. Characterization of the long-time and rare-event dynamics
typical of catalyzed reactions is seriously limited for computational
approaches and presents a challenge. In some cases (e.g., photocatalysis
and charge transfer catalysis), quantum effects in dynamics are important,
and methods are just now becoming available to treat such processes.

We stress that there are still several issues to be addressed by using QM/
MM methods. One is the accurate calculation of excited electronic states
using hybrid methods which are not present for the ground state and for
conventional methods. Accurate modeling of excited states of large
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molecular systems represents one of the greatest challenges to modern
quantum chemistry. For example, in order to gain appropriate insight in
catalytic phenomena involving transition metals, that is, metalloenzymes,
where different electronic states can present similar energies, the nature
of excited-state structures must be evaluated. In these cases, the ordering
of the states may not be the same between different levels of theory, and
one must ensure to combine corresponding states. Therefore, a careful
investigation of the strengths and weaknesses of such methods is extremely
important before their wide application in production calculations. In
addition, a reaction could also be triggered by a transition of the enzymat-
ic complex to a significantly different state from what is reached through
thermal fluctuations such as electronic excited states in photoactivated
enzymatic reactions. The basic argument for the importance of excited-
state dynamics in enzyme processes is the lowering of the activation
barrier. The ways of achieving the excited state, such as photoabsorption
and ligand binding, have been discussed and exemplified in various cases
of enzymes by Petersen and Bohr (2010). Very recently, Deuss et al. (2011)
have been reviewed the progress in the design and application of ligand
systems based on peptides and DNA and the development of artificial
metalloenzymes.
Another research line to be developed is the investigation of the effect

of pressure on the physical/chemical properties of biomolecules using
QM/MM MD methods. This is essential for the knowledge of the intermo-
lecular interactions and their effects on the molecular geometries, the
electronic distributions, and ultimately, the chemical stability and reactivi-
ty. Indeed, the application of static pressure allows a fine-tuning of the
intermolecular distances, without changing the temperature and compo-
sition of the system. This may have important applications in the study of
biological systems at high pressure (Meersman et al., 2006; Winter et al.,
2007; Mishra and Winter, 2008). Moreover, enzymes are not naked; they
are dressed in a solvent. What is the explicit effect of the solvent on the
dynamics of the reaction to be catalyzed? Are the various steps controlled
by activation enthalpies or activation entropies? It is well recognized that
QM/MM methods are best to describe short-ranged, explicit interactions,
whereas continuum models are a better alternative for long-ranged,
mediated interactions. The combination of the two methods by a three-
layered QM/MM/ PCM structure could therefore incorporate the strong
points of both models by allowing an explicit description of solvation in
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the vicinity of the solute and an implicit description through the continu-
um beyond a given solute–solvent distance. This goal has been achieved
very recently by Kongsted and coworkers (Steindal et al., 2011). The
novelty of this approach is in the development and implementation of a
QM linear response formalism of a fully polarizable QM/MM/PCM inter-
face, where both the MM and the PCM layers are self-consistently
polarized.

Another open question is: How will the enzyme reaction change as a
function of temperature and pressure? The application of pressure to
molecular systems is known to produce both reversible and irreversible
changes of the covalent bonds (Hemley, 2000; Schettino et al., 2005),
when the intermolecular distances are sufficiently reduced. High-pressure
chemistry may be very selective and may give unexpected products due to
the constraints by which molecules are bound in the high-density phases:
the high viscosity in liquids and the relative orientations and distances in
crystals. However, in comparison with the temperature, the effect of
pressure on both reaction mechanics and reaction rates in aqueous solvent
and/or enzyme catalysis has not been explored thoroughly. Application of
hydrostatic pressure allows tuning of both intermolecular and intramolec-
ular interactions, and it can be used to understand the changes of chemi-
cal reactivity under the condition of external stimuli such as pressure.
Therefore, accurate theoretical treatment and computational methods to
study chemical reactivity of complex chemical systems, such as biomole-
cules, at different external pressure are necessary to support, complement,
and also predict the outcome of experimental data (Heremans and
Smeller, 1998; Ludwig, 1998; Kato and Hayashi, 1999; Silva et al., 2001).

Computers will not replace chemists, and data mining methods will not
replace mechanistic studies. These methods will simply be part of the
chemist’s toolbox in the twenty-first century. As with this initial report,
continued collaboration among experimentalists and theorists will be
essential as we continue our research for understanding of enzyme cataly-
sis phenomena. To close this section, we select the last paragraph of a very
recent paper by Zaera (2010):‘‘New catalytic materials should always be
designed with particular applications in mind. Ideally, that design should
be guided by the basic chemical principles extracted from mechanistic
studies using surface science and theoretical tools, which should provide
an indication of the type of active sites required to improve on the activity
and, perhaps more importantly, the selectivity of the processes being
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addressed. It is via this symbiotic relationship between fundamental mech-
anistic studies and new synthetic methodology that true advances can be
expected in the quest to design highly selective catalysts in an effective and
rational way from first principles.’’
As theoretical and computational chemists continue to grapple with an

ever-changing landscape of funding opportunities and justifications for
our art, we do not hesitate to strongly advocate the case for exploiting
enzyme for connecting chemistry as a discipline, to a broader swath of
science. These research efforts, aided by design, will dictate how scientists
and engineers design next-generation of biomolecules. Advances in merg-
ing catalysis are of course not possible without understanding catalytic
systems on an atomic level. Molecular modeling is nowadays an indispens-
able research tool for catalyst tailoring (Catlow, 1996; Rothenberg, 2008),
providing also a basis for the unification of all branches of catalysis. We
have been additionally fortunate to have been able to interest and engage
a wide range of collaborators in some of these projects, and their skills and
expertise have made our journeys both fruitful and intellectually satisfying.
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Abstract

In this chapter, we review recent approaches and results when studying
membrane and protein dynamics by means of dissipative particle dynamics
(DPD). First, we introduce and discuss DPD as a method, for example, the
choice of the thermostat, which is of interest when constructing a DPD
code. Then, we review important results on pure membranes and lipid–
water systems that have been obtained with DPD. Finally, we focus on
simulations of membranes with associated or embedded model proteins
that may trigger future research on the fundamental interactions of lipids
and proteins in the context of living cells.
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I. Introduction

Biological systems, for example, cells and tissues, are highly complex in
structure and function. Investigating their dynamic properties therefore is
a major challenge for biologists, chemists, and physicists. Modern experi-
mental methods allow one to observe complex cellular structures and
processes, sometimes even with single-molecule precision. Moreover,
chemical reactions and interactions as well as mechanical and thermody-
namic quantities can be quantified thoroughly even in vivo. We can
nowadays access quantities and properties from the visible macroworld
down to the nanolevel of individual molecules and atoms. However, every
experimental technique is naturally limited in its applicability and its
capability to report on information of the system of interest. Light micros-
copy methods, for instance, are very powerful in picturing structural and
dynamic features of biological matter on length scales above the optical
resolution limit. However, they can typically not discriminate objects
beyond the diffraction limit, with the notable exception of specialized
single-molecule techniques that trade in a higher spatial resolution for a
loss in temporal resolution. Another example is methods of structural
biology, for example, NMR, X-ray crystallography, or cryo-electron micros-
copy. All of these allow one to determine atomic structures and features of
complex molecules but require a large ensemble of identical particles and
a considerable acquisition time for revealing the desired information.

When experiments fail to yield the desired information about a system,
computer simulations lend themselves as a powerful alternative. Simulations
allow one to access parts of a system in detail, and the emerging quantitative
results yield a link to the data from experimental approaches. Simulation
models for science and technology have been developed already in the early
days of the computer and became—with the increasing performance of
computers—a standard tool in physics, chemistry, and applied sciences and
engineering. Research on biological matter and biological processes can
rely today on a wide choice of well-established simulation methods, from
detailed all-atom descriptions to simplified procedures that model events on
supramolecular length scales. With the latter, it is possible to access a variety
of different problems that cannot be addressed with all-atom approaches,
for example, fluid dynamics, complex chemical reactions, or tissue struc-
ture. Depending on whether one is concerned with the structure and
internal motion of single molecules, or the dynamics and interactions of
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a larger number of molecules, or the behavior of larger volumina where
single-molecule effects can be neglected, one can choose between micro-
scale models (covering nanometers and nanoseconds), coarse-grained me-
soscale models (micrometers and microseconds), or continuum models
that are based on (partial) differential equations.
A general bottleneck for all simulations is the limited processor speed of

computers. Bound by current technology, only a fairly limited number of
calculations can be performed within a reasonable period. Therefore, the
number of individual particles and their interactions is restricted. To be
more specific, simulations in atomic detail are typically bound to some
nanometers and some 10 ns. Aiming at structures and processes on larger
length and time scales, coarse-grained or mesoscopic simulations have to
be employed in which a certain number of atoms is combined to single
beads that interact via effective forces. The loss of structural details is
hence compensated by the gain in system size and simulation time.
In this chapter, we review a powerfulmesoscopic simulation tool, dissipative

particle dynamics (DPD), as well as the results obtained with this approach.
Indeed, DPD had originally been designed to model simple and complex
fluids and was later extended to include also the description of polymers and
lipid membranes. Going beyond technical details of the simulations, we will
focus, inparticular,onresultsobtainedfor (bio)membranes.Wewillfirst givea
comprehensive and detailed description of DPD as a method. Subsequently,
we will explain how fluids or softmatter systems aremodeled byDPD and how
physical theory and experiment can be related.We will put some emphasis on
howDPDcan be implemented into a program code, that is, which integration
scheme for the equations of motion is best, and how the model can be
calibrated. Then, we will report on the structural and dynamic features of
lipidmembranes thathavebeen investigatedbyDPDso far. In this context,our
focus is on showing the wide range of questions that can be treated with DPD
andhowonepracticallyproceedswhenemployingDPDfora specificproblem.

II. Setting Up DPD Simulations

A. Why Use DPD for Simulating Biomembranes?

When studying (bio)membranes by simulation approaches, collective
phenomena like membrane-mediated protein–protein interactions or pro-
tein-induced shape changes are the most interesting subjects, as they are
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hard to tackle experimentally. Time scales involved in these processes are
given by the requirement that lipids and proteins can freely diffuse within
microseconds. Additionally, we have to consider that also the solvent is
responsible for some characteristic properties of our system, for example,
the fluctuation dynamics of the membrane (Lin and Brown, 2006).

To gain a microscopic understanding of such processes, the straightfor-
ward way would be to include all atoms and calculate the interactions
between them. Such an approach is realized in all-atom molecular dynam-
ics (MD) simulations. This widely used simulation technique is a powerful
tool, for example, when studying conformational changes of proteins in
the context of drug design. Usually, MD takes into account a variety of
geometrical (bonds, angles) and physical (electrostatics, Van der Waals)
interactions. All atoms are modeled as rigid bodies with a finite size. The
use of a hardcore potential for excluded-volume interactions nonetheless
demands short integration steps to prevent particle overlaps. Also, the
long-range interactions are computationally very expensive given the
smallest scales (about 1 Å) and the number of particles in the system. As
a result, MD simulations typically are limited to scales of tens of nan-
ometers and tens of nanoseconds. Still, full atomistic simulations of
membrane systems or membrane proteins have been used to study, for
example, water passage through a membrane pore (de Groot and
Grubmuller, 2001) or the formation of a small vesicle (de Vries et al.,
2004).

Much larger length and time scales can be addressed by continuum
methods with the membrane being represented by an elastic sheet. Here,
the physics of the membrane is modeled by sets of partial differential
equations that are fueled by hydrodynamic equations and the famous
Helfrich Hamiltonian (Helfrich, 1973) for elastic deformations of mem-
branes. However, for continuum methods, it is difficult to handle individ-
ual molecules or complex spatial structures. Also, topological changes
(membrane rupture and fission) are demanding topics.

The systems on which we focus in the remainder are best characterized
on scales between the molecular dimension of lipids and the micron size
of cells. They are hence best suited for a mesoscopic simulation technique.
Here, the number of degrees of freedom of the system is reduced with
respect to MD by coarse graining, that is, grouping several atoms into
effective beads. Only those properties that are expected to influence the
collective phenomenon of interest, for example, the amphiphilic nature of
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lipids, are taken into account. An example of such a method is coarse-
grained MD (see, e.g., Ollila et al., 2009) where several molecules are
treated as a single particle with a given hydrophobicity so that a lipid
molecule consisting of more than 100 atoms can be represented with only
10 particles of two types: hydrophilic heads and hydrophobic tails. Still, the
particles interact via a hardcore potential in this approach which requires
small integration steps for the equations of motion. This constraint is
softened by DPD.

B. Basic Ideas of DPD

DPD is a well-established explicit solvent mesoscale simulation tech-
nique that is related to coarse-grained MD methods (Shillcock, 2008).
In DPD, several atoms are combined to larger beads that represent a small
bulk of material as illustrated in Fig. 1. To account for the friction due to
internal (hidden) degrees of freedom, a dissipative force is introduced.
The positions of single atoms in a bead are smeared out, and thus, a
softcore potential allowing for an overlap of beads can be used here. In
this way, one looses atomic details, yet one can achieve a substantially
larger temporal range as compared to the above-mentioned methods.
DPD was introduced by Hoogerbrugge and Koelman in 1992

(Hoogerbrugge and Koelman, 1992) for simulations of hydrodynamic
phenomena. The method was further developed to the currently used
formalism by Español and Warren (1995) who introduced the fluctuation–
dissipation theorem into the original algorithm to couple frictional and
stochastic forces. In this way, the statistical mechanics of the beads is
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FIG. 1. Scheme of DPD coarse graining. One water bead (W) represents about
three water molecules, DPD lipids are formed from a hydrophilic head bead (H), and a
chain of hydrophobic tails (T) connected by Hookean springs.
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consistent with the Gibbs canonical ensemble, and it yields the correct
thermodynamics at sufficiently long time and length scales.

The motion of the ith DPD bead is governed by Newton’s equations of
motion

dri
dt
¼ vi; ð1Þ

m
dvi
dt
¼ FT

i ; ð2Þ

where ri is the position of the bead’s center of mass, vi is the bead velocity,
and Fi

T is the total force acting on the bead. The total force Fi
T exerted on

a free bead is given by three contributions: the dissipative force Fi
D, the

random force Fi
R, and a conservative linear repulsive force Fi

C that mimics
excluded-volume interactions,

FT
i ¼

XN
j 6¼i

FC
ij þ FD

ij þ FR
ij

� �
: ð3Þ

Here, N denotes the number of all beads in the system. The potentials in
DPD are assumed to be short ranged, that is, all forces are nonzero only if
the distance between two beads i, j is rij¼ |ri� rj|< r0. The cutoff radius r0
therefore defines the effective bead size and sets the smallest internal
length scale. Typically, r0¼1 is used for convenience; translation to SI
units is possible (see below).

C. Forces in DPD

1. Character of Beads

The repulsive conservative force that mimics excluded volume interac-
tions (Fig. 2) is usually given by

FC
ij ¼ aij 1� rij

r0
Þeij :

�
ð4Þ

Here eij¼ rij/rij is the unit vector pointing from particle j to i. The repul-
sion parameter aij depends on the combination of the two interacting
particles and hence defines the interaction of different bead types. In the
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most basic setup, the system consists of three DPD bead types only:
hydrophobic tail beads (T), hydrophilic head beads (H), and water
beads (W). The values of the repulsion constants depend on the system
but frequently are assumed to obey aWW¼aHH¼aTT�aHW and
aWT¼aHT�2 . . .5aWW to implement amphiphatic lipids in a water envi-
ronment. A concrete example of the interaction matrix used by Shillcock
and Lipowsky (2002a) is:

aij ¼ kBT

r0

W H T
W 25 35 75
H 35 25 50
T 75 50 25

0
BB@

1
CCA: ð5Þ

D. Connecting Particles to Larger Structures

Larger entities like lipids and proteins are usually constructed by con-
necting individual beads i, j via a harmonic potential with equilibrium
distance l0:

Uharm rij ;iþ1
� � ¼ kharm

2
rij ;iþ1 � l0
� �2

: ð6Þ

In bead-spring polymer models, also finite extensible nonlinear elastic
(FENE) bonds with a potential UFENE� r0

2 ln[1�(r/r0)
2] are used. The

force derived from the FENE potential is approximately linear at small and
intermediate distances, that is, it is equivalent to Eq. (6) for short

W

W

W W

H

T

aij

r0 rij

Fij
C

FIG. 2. Two beads i, j repel each other by a conservative force FC that is linear and
vanishes at the cutoff distance r0. The strength of the repulsion is determined by the two
bead types via the repulsion parameter aij.
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distances. It grows, however, dramatically when the interparticle distance
gets large, hence preventing a too large separation. In many simulations,
no drag force is applied to lipids and proteins and the connecting springs
oscillate around an equilibrium length only due to thermal motion. The
harmonic potential is here sufficient to maintain the integrity of the
structures.

The rigidity of a hydrocarbon chain model is considered by a three-
point bending potential assigned to three consecutive beads

Ubend ri;iþ1; riþ1;iþ2
� � ¼ kbend 1� cos y� y0ð Þð Þ; ð7Þ

where cos(y)¼ei, iþ 1 � eiþ 1, iþ 2. For a straight linear arrangement, y0¼0.
In some simulations, y0 6¼0 may be required, and here the force acting on
bead i has the form

F ¼ kbendsin y� y0ð Þ ejk � eij eij � ejk
� �� �

rij jsin yj : ð8Þ

1. DPD Thermostat

The dissipative force FD represents the viscous drag on a bead due to the
atomistics friction with neighboring molecules. The random force FR,
however, encodes thermal kicks that a bead receives from its neighbors.
These two forces commonly assume a form:

FD
ij ¼ �goD rij

� �
eij � vij
� �

eij ; ð9Þ

FR
ij ¼ �soR rij

� �
eijxij : ð10Þ

The weight function oD(r)¼(1� r/r0)
2 is nonzero only for r 2[0, r0], and

the Gaussian white-noise term xij is a random variable with zero mean and
unit variance, uncorrelated for different pairs of particles at different
times.

The random and dissipative forces act as a heat source and sink,
respectively, and hence they are often referred to as the DPD thermostat.
These two forces are further coupled via the fluctuation–dissipation theo-
rem (Español and Warren, 1995), that is, the parameters s and g (which
represent the friction coefficient and the noise amplitude) satisfy the
relation
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s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTg

p
; ð11Þ

which provides a correct NVT ensemble (fixed particle number N, volume
V, and temperature T). In addition, the weight functions are related
as oD(r)¼[oR(r)]2. Commonly chosen parameters are s¼3, giving
g¼9/2 for imposing a thermal energy of kBT¼1 (Nikunen et al., 2003).
As mentioned already above, different bead types are distinguished only

via the conservative force FC, that is, via the repulsion parameter aij. Owing
to Newton’s third law (Fij¼�Fji), the sum of all forces in the system
(including the thermostat forces) vanishes and (angular) momentum is
conserved (Groot, 2004a). Moreover, the total force between all particles
in a subset of the system vanishes, too. The total acceleration of any such
volume of liquid is then given only by the sum of forces that cross its
boundary, which is the starting condition for the derivation of the Navier–
Stokes equation. This intrinsic implementation of hydrodynamics is a
major advantage of DPD as compared to other simulation techniques.
In Brownian motion approaches, for example, the random force is not
pairwise, but it is related to a fixed heat bath so that momentum is no
longer conserved.

2. Alternative Methods of Temperature Control

Besides the DPD thermostat, several other methods can be used to
control the system’s temperature. The Nosé–Hoover thermostat (Nosé,
1984; Hoover, 1985) is widely used in MD. Here, a heat bath is introduced
as an integral part of the Hamiltonian by adding an extra term—an
artificial variable with an artificial mass. The disadvantage of the Nosé–
Hoover thermostat is that it does not satisfy Galilean invariance, that is, a
preferential inertial reference frame is singled out by the implementation
of the thermostat. Hence, the motion of the center of mass of the system
has to be explicitly corrected for, otherwise temperature increases. This is,
in particular, problematic for nonequilibrium simulations. Further, the
Nosé–Hoover thermostat is a global algorithm with a uniform, unrealistic
dissipation of energy in the system. Hence, it does not allow for a local
temperature control. Another approach often used in MD simulations is
the Berendsen thermostat (Berendsen et al., 1984) that efficiently imposes
a desired temperature. However, it suppresses fluctuations of the kinetic
energy and hence does not reproduce the canonical ensemble, especially
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for small systems. Usually, it is used in combination with the Nosé–Hoover
thermostat for an initial equilibration.

The DPD thermostat introduced above was worked out as a modification
of the Langevin thermostat (Grest and Kremer, 1986). In both methods, a
random force and a constant friction are applied to all particles. The two
forces are related via a fluctuation–dissipation theorem. Similar to the
DPD thermostat, the Langevin thermostat is a stochastic, local method
where the energy dissipation in the system is spatially localized. In contrast
to the DPD implementation, each particle has its own heat bath that is
independent of all other particles. Another stochastic realization is Ander-
sen’s scheme (Andersen, 1980) which consists in a velocity rescaling. The
velocity of a particle is periodically exchanged with that of a bath particle.
This procedure mimics collisions with bath particles at a specified temper-
ature T. The strength of the coupling to the heat bath is given by a
collision frequency G. The drawback of the Andersen and Langevin
thermostats is the absence of momentum conservation and thus a lack
of hydrodynamics. In both stochastic thermostats, propagation of momen-
tum is disturbed due to uncorrelated random forces, that is, a reliable
reproduction of viscosity is problematic. In case that transport properties
play a role in the system of interest, the DPD thermostat is hence the
method of choice.

A variation of the DPD technique based on the Andersen thermostat was
introduced by Lowe (Lowe, 1999; Koopman and Lowe, 2006). Similar to
Andersen’s thermostat, an exchange frequency G is used to assign new
particle velocities from a Maxwell distribution. This stochastic velocity is,
nevertheless, imposed on pairs of neighboring particles in such a way that
the overall momentum is conserved. This method shares many above
mentioned advantages of the DPD thermostat (locality, Galilean invari-
ance, conservation of momenta) and satisfies the detailed balance condi-
tion1 as in Andersen’s method. The viscosity of the fluid in this method is
proportional to the exchange frequency G which, in turn, determines the
thermostat efficiency. Therefore, when aiming at a good thermostat sam-
pling, a low viscosity regime cannot be accessed.

1The principle of detailed balance describes the relation of transition probabilities P
between two states A and B for a system in equilibrium: NAP(A!B)¼NBP(B!A), where NA,B

denotes the number of particles in each state. The transition processes must be reversible,
which in the DPD thermostat is violated by the dissipative force.
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In this context, an important characteristics of the system is the dimen-
sionless Schmidt number, Sc. It is defined as the ratio of kinematic viscosity
V and the diffusion coefficient D. In a fluid, momentum transport is rapid
via interparticle forces while mass transport happens on a different time
scale. In other words, the displacement of particles is slow in comparison
to momentum transport. As a result, a rather high Schmidt number is
obtained for fluids, Sc�103. In DPD, the soft-core potential does not allow
for such an efficient momentum transport. In a DPD fluid, the intrinsic
viscosity is of the same order as the diffusion coefficient and the Schmidt
number hence has a low, gas-like value, Sc�1. Thus, when the viscous time
scale is matched to experimental data, the diffusion in the DPD fluid is
overestimated. Using the Lowe–Andersen method, one can achieve a
much higher viscosity. This can be crucial when the correct representation
of viscous flow is essential. However, in some cases, a simulation technique
with fast diffusion is useful. For molecular processes that are diffusion
controlled, the DPD thermostat allows to observe the phenomena of
interest within a shorter simulation time (Groot, 2004b).

E. Integrating the Equations of Motion

Knowing the initial conditions and the forces acting on each bead, we
are interested in how the system will evolve in time. For this purpose,
various numerical methods for integrating the equations of motion exist.
The most intuitive one, the Euler method, is based on an approximation
of first derivatives. While it is a straightforward way to calculate the
trajectories, it is inaccurate and numerically instable especially for larger
time-steps Dt. In contrast, Velocity-Verlet (VV) approaches fall into the
class of second order methods of numerical integration (similar to the
basic Verlet or the Leapfrog algorithms). Even more precise higher order
algorithms, for example, Runge–Kutta, can be used, but their accuracy is
counterbalanced by the increased computational demand.
The standard algorithm for numerically integrating the equations of

motion for DPD is a modified Velocity-Verlet algorithm (DPD-VV)
(Nikunen et al., 2003). The VV algorithm assumes the acceleration of a
particle to depend on its positions only and not on velocity. This is not
fulfilled for nonconservative systems. In DPD, the dissipative force is
velocity dependent and the velocities, in turn, are governed by the
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dissipative forces. In DPD-VV, it is accounted for that in an approximate
manner by updating the dissipative forces additionally at the end of every
iteration step.

In case of the NVT ensemble, where a fixed simulation box is used, the
integration can be performed according to Nikunen et al. (2003). The
calculation of the dynamics of the system is performed for Nsteps iterations
where the positions and velocities of all particles are updated. In every
step, a new velocity is calculated for each bead according to the total force
acting on it. Subsequently, the new positions are calculated from the
velocities, and the forces are reevaluated in accordance with the new
conformation. At the end, the velocities are updated and the dissipative
force is changed accordingly. The DPD-VV integration scheme hence
reads:

1. Calculate velocities vi  vi þ 1
2m FC

i Dt þ FD
i Dt þ FR

i

ffiffiffiffiffi
Dt
p� �

2. Update positions xi xiþviDt
3. Calculate all forces Fi

T¼PN
i 6¼ j(Fij

CþFij
DþFij

R)
4. Calculate velocities

(a) v0i  vi þ 1
2m FC

i Dt þ FR
i

ffiffiffiffiffi
Dt
p� �

(b) vi  v0i þ 1
2m FD

i Dt
� �

5. update the dissipative force Fi
D

6. calculate physical quantities of interest.

Please note here that the contribution of the random force scales as
ffiffiffiffiffi
Dt
p

due to the imposed Wiener process (Español and Warren, 1995; Groot,
2004a). In the self-consistent version of the integrator, the loop over steps
(4b) and (5) is repeated until the instantaneous temperature has reached
its limiting value. A more efficient scheme can be used that only includes
these steps once, as it was shown to give a sufficiently good performance
(Nikunen et al., 2003). The random variable xij is supposed to exhibit a
Gaussian distribution, the production of which is computationally fairly
expensive. Using the central limit theorem, a more efficient way is possible
via the use of appropriately normalized random numbers drawn from a
uniform (box) distribution. No statistical difference was found between
simulations using the two types of random variables (Español and Warren,
1995).
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Including a barostat into the equations of motion (cf. below) increases
the computational costs significantly. Therefore, a barostat is typically used
only in the initial equilibration phase of the simulation. After the system
has achieved equilibrium, the basic DPD algorithm with fixed box dimen-
sions is used instead.

F. Barostat

Natural (bio)membranes are considered to have zero surface tension,
and there are several strategies to achieve this in simulations. A commonly
used technique is combining DPD with a Monte Carlo algorithm to update
the box size at random time points (de Meyer et al., 2008a). Another
method is to find the lipid density for a tensionless membrane within a
box of fixed dimensions by trial and error, for example, by successively
adding more lipids into the system.
Here, we would like to present a real-time relaxation method—the

barostat algorithm introduced by Jakobsen (2005). This method is an
analogy of the Langevin piston barostat used in MD simulations (Feller
et al., 1995). Here, the simulation box is allowed to shrink and expand due
to a virtual piston, so that in every step, all particle positions are rescaled
according to the ‘‘breathing’’ of the simulation box. The size of the
simulation box changes upon the action of a piston force Fb described
by the Langevin equation. The force Fb acts along the edges of the
simulation box, and its size depends on several contributions: the differ-
ence between the actual and the target pressure (P–P0) in the
corresponding direction, DPD bead momenta pi, a dissipative force pro-
portional to the piston force vb, and a random force dependent on a
random variable xb

Fb ¼ DV P � P0ð Þ þ d

Nf

X
i

p2i
m
� gbub

Mb
þ sbxb
2Mb

ffiffiffiffiffi
Dt
p : ð12Þ

Except for the degrees of freedom Nf of N beads in d¼3 dimensions
(Nf¼dN–d), there are three additional degrees of freedom that represent
the three edge lengths of an orthorhombic box. The mass of the pistonMb

is given by Mb¼(Nfþd)kBTt
2, where t is the characteristic barostat time

which is set to t¼2 (cf. discussion in Jakobsen, 2005). As there are in
general different fluid phases in the system, the pressure P is a tensor
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Pxy ¼ 1
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þ
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i

F Cx
i r

y
i

 !
; ð13Þ

where the indices x, y denote any pair of the three space coordinates. The
target pressure P0 has the value of P0¼23.649kBT/r0

3 (Jakobsen, 2005).
The dissipation of the piston, sb, and the coefficient for the random force,
gb, are again related via the dissipation–fluctuation theorem

s2b ¼ 2gbMbkBT ð14Þ
Here, gb¼10/t¼5.

When using the barostat, the volume V of the simulation box is slightly
fluctuating around the initial value. The Langevin framework, however,
does not lead to unphysical oscillations of the simulation box as observed
in case of some other barostat implementations. The barostat algorithm
introduced in Jakobsen (2005) also requires a shorter equilibration time
and is characterized by shorter correlation times of various system para-
meters as compared to other methods. For practical use, it is important that
the couplingof thepressure to the systemdoesnot enforce theuse of smaller
time-steps Dt. For details on how to include the barostat into the integration
of the equations of motion, we refer the reader to Jakobsen (2005).

G. Initial and Boundary Conditions

DPD simulations are typically performed in an orthorhombic box with
periodic boundaries, that is, a particle that escapes the box at one bound-
ary reappears via the opposing boundary of the box with the same velocity.
The bilayer is spread in a horizontal plane parallel to the base of the box,
and it virtually continues in all the images of the simulation box forming
an infinite yet periodic membrane (cf. the analogy to crystals in solid state
physics). The box size has to be chosen sufficiently large in order to
suppress finite size effects, especially interaction of the bilayer with its
periodic images in vertical direction. For some applications, one also has
to consider the influence of the box on bilayer fluctuations, as periodic
boundaries impose a planar noncurved arrangement on the membrane.

If a proper concentration of lipids and water beads is randomly
distributed in the box, a membrane will spontaneously self-assemble after
a sufficient time. For speeding up the equilibration part of the simulation,
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we usually used a predefined membrane setting where concrete starting
positions in the midplane of the box are assigned to lipid beads. In particu-
lar, lipids are arranged initially as a regular crystal which prevents flipping of
lipids from one leaflet to the other within the first simulation steps. The
values for all initial velocities are taken from aMaxwell–Boltzmann distribu-
tion with the desired temperature as an input parameter.

H. Choosing Parameters

The above described potentials and forces are sufficient for setting up a
model membrane in an explicit water solvent. Due to the amphiphilic
nature of the lipids, a membrane forms spontaneously (Venturoli and
Smit, 1999). Membrane properties in the DPD model are comparable to
experimental results, for example, concerning the lateral stress profile,
area compression modulus, or the bending rigidity (cf. below).
A typical set of parameters used in simulations is spring stiffness

kharm¼128kBT/r0, equilibrium bond length l0¼0.5r0, and bending rigidity
kbend¼20kBT/r0 in conjunction with the interaction matrix Eq. (5)
(Shillcock and Lipowsky, 2002a). Lipids are typically modeled either as a
single chain consisting of one hydrophilic head bead and several hydro-
phobic tail beads (HTn) or as a double-chain (Hm(Tn)2) (cf. also Fig. 7).
The mass of all beads as well as the temperature is usually set to unity, while
the beaddensity of thewhole system isr¼3/r0

3. The initial lipid area density
in the membrane is r�2.8/r0

2, and the distribution of particle velocities is
well captured by a Maxwell–Boltzmann distribution. For integrating the
equations of motion, it is safe to use time-steps <0.05 in order to avoid
deviations from the imposed temperature beyond 2% (Groot and Warren,
1997). When dealing with membranes, this estimate has to be even more
careful (Jakobsen et al., 2005a), a reasonable choice is Dt¼0.01.

I. Testing and Calibrating the Simulation

To confirm the functionality of the program code and to calibrate the
simulation, physical quantities can be measured and compared to data in
the literature. Here, we discuss how to concretely determine the relevant
observables and which values indicate a properly operating simulation
code.
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1. Temperature

During the whole simulation, the temperature has to be constant on
average with fluctuations around the imposed temperature. The tempera-
ture of a system with N free particles of mass m is given via the kinetic
energy and the equipartition theorem, that is,

kBTh i ¼ m

3N

X
u2i : ð15Þ

Due to the DPD thermostat, the temperature fluctuates only slightly around
the imposed temperature (defined here via kBT¼1; see Fig. 3). After a very
short period of equilibration, the temperature becomes constant with small
fluctuations. The peak in the first steps of the simulation is caused by the
random initial positioning of water beads, which can occasionally overlap
and thus experience an extremely strong repulsion. This effect relaxes
quickly, and owing to the choice of a sufficiently small time-step, such an
overlap does not occur any more after the initial equilibration.

2. Bead Velocity

The average velocity of all beads, that is, the velocity of the system’s
center of mass,

2.25 U/kBt
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1.75
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t/Dt
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FIG. 3. Temperature fluctuates around unity as requested by the parameter set-
tings. Note the logarithmic x-axis that highlights the initial relaxation in more detail.
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yh i ¼ 1

N

XN
i¼1

yi ð16Þ

is zero throughout the simulations. The distribution of the absolute

velocities u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y þ u2z

q
assumes the form of a Maxwell–Boltzmann

distribution (Fig. 4)

p uð Þ ¼
ffiffiffi
2

p

r
m

kBT

� 
3=2

u2 exp
�mv2
2kBT

� 

: ð17Þ

3. Density Profiles

In a systemofwater beads and lipids (which formamembrane), the density
of different bead types is not uniform. One characteristics of the model is
obtainedbymeasuring the averagedensity of beads in 0.25r0 thick slices of the
simulationboxparallel to themembraneplane.As canbe seen inFig. 5, below
and above the membrane, there is a water layer of a homogeneous density
r¼3r0

3, whereas the water density is zero in the hydrophobic core of the
membrane due to stronghydrophobic interactions betweenwater and hydro-
phobic tail beads. Lipid heads show up as peaks at the solvent–membrane
interface and lipid tail beads fill the space between the two lipid head peaks.
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FIG. 4. The Maxwell–Boltzmann distribution (red line) characterizes the distribu-
tion of absolute velocities of beads (filled squares).
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Lipid tails are slightly compressed, and themembrane core is filledupwith an
almost homogeneous density. Thus, the lipid chains are disordered in a way
that is characteristic for the fluid phase of a lipid bilayer. There is a visible dip
in the bead density in themidplane of the bilayer indicating that all lipid tails
terminate near to the bilayer midplane. Yet, this dip is not very deep as the
lipids of opposite layers are slightly interdigitated. From Fig. 5, we can also
infer the membrane thickness h by measuring the distance between the
centers of mass of the head beads in opposing leaflets. The value h�3.8r0
yields a means to link the intrinsic length scale r0 to the membrane thickness
observed in experiments (h¼30–40 Å).

4. Barostat

The action of the barostat can be probed by calculating the dimension-
less compressibility of water

k�1 ¼ V

dV 2h ir : ð18Þ

To this end, a DPD system consisting of only free water beads (repulsion
parameter aij¼25kBT and density r¼3/r0

3) is simulated and the fluctua-
tions of the box volume dV are recorded. The parameter choice should

4

3

rr0
3

2

1

0
-4 -3 -2 -1 0 1 2 3 4 z/r0

FIG. 5. Density profile of beads in the simulation box along the bilayer normal
(z-axis). Hydrophobic tail beads are depicted with a full black line, hydrophobic heads
with a red dotted line, and water with a blue dashed line.

160 GUIGAS ET AL.



reproduce correctly the compressibility of water (Groot and Warren,
1997), and indeed, using a simulation box of (15r0)

3 for 106 time-steps,
the measurement yielded k�1¼15.95, in a good agreement with Groot
and Warren (1997) where k�1¼15.98 was found.
Fluctuations of the box edges caused by the barostat piston can be seen

in Fig. 6. Here, the barostat was used for the whole simulation (106). The
membrane is placed in the xy plane. The initial planar density of lipids was
too low and so the box xy-dimension had to decrease. This is compensated
by an expansion in z direction so that the volume and bead density are
conserved. We can see that approximately after 2�105 time-steps, the
system fluctuates only slightly around the steady-state value indicating
that this is a sufficient period for equilibration.
The effect of the piston on membrane surface tension is also shown in

Fig. 6. Surface tension can be computed from the pressure tensor as
(Marrink and Mark, 2001)

s ¼ Lz Pnorm � Plath ið Þ; ð19Þ
where Pnorm is the component of pressure in the direction normal to the
bilayer plane (here: z direction) and hPlati is the average of tangential
components, Pxx and Pyy. After the equilibration, the mean surface tension
is zero.
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FIG. 6. Fluctuations of the box due to the barostat action. (A) While the coupled
x- and y-edges (green) are shrinking, the z-edge (blue) is expanding to keep the volume
V (red) constant. (B) The center of mass stays in the middle of the simulation box (x, y,
z—red, green, blue). (C) The surface tension of the membrane fluctuates around zero.
Data for all graphs come from the same simulation run.
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5. Conversion to SI Units

Simulation units are defined by the simulation time Dt¼0.01 and the
cutoff radius for interaction between two beads, r0¼1. For a conversion to
SI units, we will take into account that one water bead represents Nw¼3
water molecules (Groot and Rabone, 2001) and the volume occupied by a
single water molecule is Vw¼30 Å (Lu et al., 1993). The overall density of
beads set up in typical simulations is r¼3r0

� 3. In a simulation box con-
taining only water, a unit volume r0

3 contains three water beads, that is,
nine water molecules of 30 Å3 each. In this way, we find

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rNwVw

3
p

¼ 6:43 Å: ð20Þ
In case of a heterogeneous composition of the system, where beads of
different types form structures, the density varies throughout the simula-
tion box. The effective volume (how much space can be occupied by one
bead) depends on the local density of the given bead type, and it is
influenced by the interactions with the surrounding. Knowing the number
of lipids in the bilayer of a given equilibrated area, we obtain a surface area
of �65 Å2 per lipid which corresponds to the value for lipids in a
biological membrane (Lantzsch et al., 1994). One hydrophobic tail bead
then corresponds to roughly 3.8 hydrocarbon groups.

To match the time units, we can similarly compare the diffusion coeffi-
cient of a single lipid with experimental values. Doing so, the system yields
roughly �90 ps for a single time-step Dt¼0.01(Schmidt et al., 2008).

III. Investigating Structure and Dynamics of
Membranes with DPD

Using the outlined DPD method, a variety of biologically and biophysi-
cally important problems can be and have been addressed. In this section,
we will first review some results on the physical chemistry of lipid bilayers.
This will include the interdigitation of lipids, that is, the coupling of
membrane leaflets, the phase behavior of bilayers with multiple lipid spe-
cies, and topological changes due to fusion and fission events. The second
part of this section is devoted to the interaction of proteins and membranes.
In particular, we will discuss membrane-mediated interactions between
proteins that are likely to play a pivotal role in protein sorting in eukaryotes.
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A. Physical Properties of Model Lipid Bilayers

The earliest simulation of a surfactant bilayer with DPD was performed in
1999 by Venturoli and Smit (1999). Here and in later papers by Groot and
Rabone (2001) and Shillcock and Lipowsky (2002b), it was shown that
within the DPD formalism, the self-assembly of amphiphilic surfactant
molecules like lipids to a bilayer can be modeled. Shillcock showed that
both single-chain HTn and double-chain Hm(Tn)2 lipid models can be used
without compromising the gross results (Shillcock and Lipowsky, 2002b).
Both models yield a bilayer self-assembly with similar density profiles for
water, lipid head, and tail beads. As expected, water is excluded from the
bilayer core for both settings due to the strong repulsion of water beads and
lipid tails. Figure 7 displays sketches of the two basic lipid models and a
simulation snapshot of a membrane after completed self-assembly.
For single-chain lipids, the bending stiffness of the chain turned out to

be a crucial parameter for membrane stability while this was much less an
issue for double-chain lipid models. Imposing a chain stiffness helped to
orient single-chain lipids along the bilayer normal, reduced the event of
an upside-down lipid, and also prevented an interdigitation of the leaflets.
Further, it was found that when using double-chain lipids, m�3 was
necessary to protect the tail from water and yield stable and well-ordered
bilayers.

(A) (B)

FIG. 7. (A) Single chain HTn and double-chain Hm(Tn)2 lipid models have been
considered in DPD. Shown examples are HT3 and H3(T6)2 with hydrophilic heads (H) in
light blue and hydrophobic tails (T) in light red. (B) Self-assembled membrane consisting
of HT3 lipids (water not shown for better visibility).
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An important parameter characterizing a lipid bilayer is its lateral
pressure profile, p(z). This quantity has been suggested to influence
structure and function of membrane proteins (de Kruiff, 1997) and
modulate the action of anesthesia (Cantor, 1997). However, there is no
experimental technique to quantify the lateral pressure profile while it can
be calculated by mean field approaches or via membrane simulations
(Goetz and Lipowsky, 1998; Venturoli and Smit, 1999; Shillcock and
Lipowsky, 2002b). The pressure profile p(z) is defined as the difference
of the normal and the lateral components of the pressure tensor summed
over all potentials. When determining p(z) in simulations, one averages
the contribution from all bead–bead interactions (i.e., repulsion, bond
potential, and chain stiffness) over thin slices along the membrane nor-
mal. The general structure of the lateral pressure profile is characterized
by maxima at the monolayer–water interfaces, which appear due to the
repulsion of hydrophilic beads (water and lipid head) with the hydropho-
bic lipid tail beads. The adjacent minima are due to the Hookean bond
potential of the lipids, while the inner maxima near the monolayer mid-
plane are caused by the chain stiffness potential. The general features of
the lateral pressure profile of a DPD membrane hence agree well with the
results of more detailed MD simulations (Goetz and Lipowsky, 1998). In
fact, the use of hardcore Lennard–Jones potentials in MD (in contrast to
soft-core potentials in DPD) neither causes a major difference in p(z) nor
changes the pressure profile for single and double-chain lipid models in a
gross way (Shillcock and Lipowsky, 2002b).

By integrating the pressure profile across the bilayer, one can calculate
the surface tension, s. The surface tension increases with the projected
area per lipid A, as this affects the relative contributions of the repulsion,
bond potential, and chain stiffness in p(z). For the preferred area per
lipid, A0, the surface tension vanishes. Enlarging the head group or
reducing the lipid tail length shifts the zero surface tension to larger
values of A for both single- and double-chain lipids. The dependence on
head group size is, however, less pronounced for the double-chain model
(Shillcock and Lipowsky, 2002b).

Surface tension, area per lipid, and the lipid length are related to the
area stretch modulus K via s¼K(A�A0)/A0. Choosing the right DPD
parameters, experimentally reported values can be obtained for K
(Shillcock and Lipowsky, 2002b). Moreover, the bilayer bending rigidity
k can be estimated via K, and the bilayer thickness d via k¼Kd2/48 or by
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monitoring the undulations of the membrane. Reasonable values of a few
10kBT can be found for DPD simulations, with the precise value being
mainly influenced by the lipid chain stiffness. For increasing lipid length,
also k increases. It is worth noting, however, that changing DPD para-
meters will affect not only a single observable, for example, k, but it will
also affect other quantities. Determining parameter sets that help to
mimic an experimental data set therefore can become quite tedious. In
addition, lipid chain length and chain asymmetry were found to influence
the physical structure of a lipid bilayer (Illya et al., 2005).

B. Multicomponent Membranes

DPD offers the possibility to study membranes composed of more than
one lipid species. A lipid species carrying long saturated chains together with
another lipid species carrying oneormoredouble bondswas considered, for
example, in Illya et al. (2006). Both lipid types had a structure H3(T6)2, yet
with a weaker repulsion between the tail beads of the second lipid type in
order to mimic the tighter packing of unsaturated fatty acid chains in the
bilayer core. These two lipid species were seen to separate in the simulations,
that is, they formed domains. A single-component bilayer made of the
unsaturated lipids had a bending rigidity almost twice as large as a bilayer
composed solely of the saturated species, due to the closer packing. In
membranes consisting of both species, the bending rigidity monotonically
increased with an increasing concentration of unsaturated lipids.
When combining two lipid species of similar preferred packing area but

different lengths (H3(T6)2 and H3(T8)2), no domain formation was ob-
served. The area stretching modulus and the bending rigidity changed
nonmonotonically (Illya et al., 2006).
Aiming at a phase separation and the formation of lipid domains, also

other models were proposed (Yamamoto and Hyodo, 2003; Laradji and
Sunil Kumar, 2004, 2005, 2006).Here, two lipid species formeddomainsdue
to an increase in the repulsive force between the beads of the different
species. This approach is a simple and effective way to induce domain
formation and to set a line tension between the two emerging phases.
Starting with an initial random configuration in a vesicle, the dynamics
and time course of domain formation and coalescence were studied
(Laradji and Sunil Kumar, 2004, 2005, 2006) (see also below for details).
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C. Structure of Lipid Aggregates

Lipids immersed in water do form different types of aggregates, depend-
ing on the lipid type. Micelles, vesicles with a bilayer membrane, or
inverted structures of cubic or hexagonal phases can be obtained. In
DPD simulations, it is also possible to induce the formation of different
lipid aggregate structures. Due to the finite size of the simulation box, it
depends on the number fraction of lipids and the preferred area of the
used lipid species which structure may form. Typically, a lipid number
fraction in the range 3–6% results in a flat bilayer (Shillcock and Lipowsky,
2002b). With lower numbers, the formation of micelles is observed,
whereas a higher lipid number induces the formation of complex three-
dimensional structures.

It was demonstrated that DPD simulations can also model the self-
assembly of lipids to vesicles (Yamamoto et al., 2002). The lipid concen-
trations necessary for this to happen were 5–10 vol%. Vesicle formation
was observed with different initial configurations, that is, with lipids being
randomly dispersed in the box and with lipids being already preassembled
to a bilayer. In both cases, the pathway of vesicle formation included an
intermediate step in which lipids formed an oblate bilayer, a kind of
stretched bilayer-like micelle. This object subsequently changed to a vesi-
cle by collapsing, enclosing water, and sealing itself to a vesicle. Single
chain lipids with a short tail had a higher potential for forming vesicles
compared to lipids with a longer chain. The aggregation time of double-
chain lipid was seen to be faster than that of single-chain lipids, due to the
larger radius of gyration of the former and the related larger probability to
meet another lipid.

Inverted hexagonal and cubic phase also have been studied with DPD
(Da-Wei et al., 2004). Here, a bond angle potential with a strength of 5kBT
instead of 20kBT (Shillcock and Lipowsky, 2002b) was used, bearing in
mind that the dependence of the area stretch modulus K with decreasing
area per molecule was then more consistent with experimental data.
Notably, the lateral pressure profile did not change its gross features
with this modification. Using a single-chain lipid HTn with n¼1, . . ., 12
and various lipid head sizes (1�1.2r0) at various lipid concentrations and
temperatures, different normal micellar phases (spherical, rodlike, and
disklike) were found at low lipid concentrations while stacks of lipid
bilayers and inverted hexagonal phases were observed (depending on n)
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for higher concentrations. These results show that DPD is fully capable of
reproducing the rich lipid phase behavior known from theory and experi-
ments despite strong approximations underlying the model.

D. Phase Diagrams of Lipid Bilayers

Lipid bilayers were experimentally found to adopt different phases
depending on the lipid composition and temperature. A typical example,
phosphatidylcholine (PC) membranes are in the gel state at low tempera-
tures and in a fluid state at higher temperatures. The difference between
the phases is the ordering of the lipids’ fatty acid chains. At low tempera-
tures, most lipid bilayers are in the subgel phase Lc where the hydrocarbon
tails exhibit a high order. Here, lipids are tilted with respect to the bilayer.
At higher temperatures, membranes adopt a lamellar gel phase, depend-
ing on the structure of the lipids head group. This can be either the Lb

phase in which lipids are oriented parallel to the membrane normal (e.g.,
phosphatidylethanolamine, PE) or the Lb0 phase in which lipids are tilted
with respect to the membrane normal (e.g., PC). In both phases, the order
of the lipid tails is still high albeit lower than in the Lc phase. At higher
temperatures, the liquid crystalline phase La or other fluid phases are
found in which lipids are disordered. Also, phase coexistence is possible,
and its consequence for cells is currently an active area of research.
A series of DPD studies by Smit and coworkers is devoted to the phase

behavior of membranes (Kranenburg et al., 2003a,b, 2004a,b; Kranenburg
and Smit, 2004, 2005; de Meyer and Smit, 2009). In this context, the
considered observables are the area per lipid (A), the bilayer thickness (h),
and the chain overlap and interdigitation characterized by Doverlap¼(2Lz

�Dc)/Lz with Dc being the thickness of the hydrophobic core and Lz

being the distance between the first and the terminal chain bead projected
onto the bilayer normal. Moreover, the angular order parameter of lipids
can be considered, that is, S¼h3 cos2 y�1i/2 with y being the angle
between the lipid and the bilayer normal. Also, the in-plane radial distri-
bution function of lipid head beads may be examined as an observable.
In Kranenburg et al. (2003a,b), the phase behavior of membranes of

single-chain lipids HT5 and double-chain lipids H3(T4)2 was studied.
Membranes consisting of single-chain lipids were found to be in the Lb

phase at low temperature (kBT¼0.8, 0.9), that is, a high order parameter
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of the lipid chains (S>0.8) was observed. This indicates that the chains
aligned along the bilayer normal. The radial distribution function also
showed pronounced peaks as compared to higher temperatures, indicat-
ing a more structured organization of lipid head groups in the bilayer
plane. At higher temperature (kBT�1), lipids were in the liquid crystalline
phase La (S�0.5) and the membrane thickness decreased. While for
single-chain lipids there was no tilt of lipids observed in the gel phase
(Lb), double-chain lipids were tilted (Lb0).

For some lipid species with large head sizes or strong head–head
repulsion parameters, membranes were found to be in the interdigitated
gel phase LbI at low temperatures, where the termini of the lipids pene-
trated the opposing monolayer (visible in bead density plots). The inter-
digitation was also reflected in a reduced thickness of the lipid bilayer and
in an increased area per lipid.

In addition to the above, the existence of a rippled phase Pb0 at the
transition between Lb0 and La was observed for strong head–head repulsion
(Kranenburg et al., 2004a; Kranenburg and Smit, 2005). In the rippled
phase, the membrane is segmented in thick and thin regions in an alternat-
ing fashion. While in thick regions lipids of the opposing monolayers are
strictly separated, they overlap in the thinner regions. Moreover, lipids are
tilted in thick zones but not in thin zones. The stability of this particular
membrane organization grew with increasing lipid tail length. From their
observations, the authors interpreted the rippled phase as a 50–50% coexis-
tence of the Lb0 (or the Lc) and the La phase.

Alcohol-induced interdigitation was also examined by DPD
(Kranenburg and Smit, 2004; Kranenburg et al., 2004b). The addition
of alcohol to membrane systems is known to influence the transition
temperature in dependence on the alcohol molar fraction and tempera-
ture. In the simulations, a lipid model H3(T7)2 was chosen that can be
mapped onto DSPC; alcohol was modeled by short single-chains HTn with
n¼1, 2, 3. At low alcohol concentrations, a noninterdigitated phase
formed, whereas at high concentrations, a fully interdigitated phase was
stabilized. Between these two extremes, a coexistence region was observed.
The interdigitation was explained by the formation of voids in the hydro-
phobic core of the bilayer upon alcohol insertion.

Another study of membrane phase behavior with DPD inspected the
action of cholesterol (de Meyer and Smit, 2009). Here, double-chain lipids
H3(T4)2 (corresponding to DMPC) were combined with a model of
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cholesterol that consisted of a single head group followed by a ring
structure representing the sterol part of the molecule. The DMPC–choles-
terol phase diagram had a rich structure with various phases. Further, the
so-called condensation effect was observed in these simulations in quanti-
tative agreement with experiments. This effect reflects that lipid and
cholesterol do not mix ideally. Instead, the area per molecule is much
lower as compared to an ideal mixing. The main phase transition temper-
ature was found to increase upon adding cholesterol to the membrane
due to the conical-shaped cholesterol being incapable of protecting the
hydrophobic core of the membrane as efficiently as normal lipids. At high
temperature, this could be compensated by fluctuations of the lipids, yet at
lower temperatures, it forced the membrane to adopt the more ordered Lo

state. Indeed, the condensation effect was seen to vanish when changing
the cholesterol model’s shape toward a more cylindrical form.
In summary, DPD also provides an excellent tool to faithfully explore

the rich phase behavior of membranes.

E. Membrane Fission and Fusion

1. Membrane Budding and Fission

A large variety of biological phenomena like endo- and exocytosis or
intracellular protein trafficking rely on budding and fission events of lipid
membranes. The length scales relevant for these events are below 100 nm,
and DPD simulations hence are an adequate tool to investigate these
dynamic topological membrane deformations.
The release of small vesicles from a large paternal vesicle consisting of

two different lipid species with the same geometry (single-chains HT3) was
studied quite extensively (Yamamoto and Hyodo, 2003; Laradji and Sunil
Kumar, 2004, 2005, 2006). The repulsion between the two lipid types was
set to be stronger than the repulsion between two lipids of the same
species, that is, a segregation of lipids was enforced. The initial setting
of the simulations was taken as a preformed vesicle of heterogeneous
composition with a small, self-healing hole to prevent an initial osmotic
pressure (Laradji and Sunil Kumar, 2004, 2005, 2006), or alternatively as a
self-forming vesicle with homogenous composition derived from an initi-
ally flat bilayer (Yamamoto and Hyodo, 2003). In the latter approach,
about 30% of the lipids were changed to the second lipid species after the
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vesicle had equilibrated. In both approaches, a demixing of the two lipid
species was observed and the emerging domains coalesced with time.
Under appropriate conditions, the domains formed buds and pinched
off from the paternal vesicle as microvesicles.

The coalescence dynamics was characterized via the net interface length
L between the two phases and the domain number NC (Laradji and Sunil
Kumar, 2004, 2005, 2006). Both parameters showed a power-law decrease
in time according to L� t�0.3 and NC� t�2/3. Moreover, the dynamics of
domain coalescence was seen to depend on the state of the vesiculation
process. Relevant parameters for vesicle formation were the lateral tension
of the paternal membrane, its bending modulus, the line tension between
the domains (set by the repulsion strength between the two lipid species),
and the spontaneous curvature of the buds (Laradji and Sunil Kumar,
2005). A low line tension was seen to inhibit the pinch-off of even large
buds. Successful vesiculation events happened within very short times
(500–1000 DPD time units) (Laradji and Sunil Kumar, 2005).

Details of the fission event have been investigated in Yamamoto and
Hyodo (2003). The authors observed two possible pathways, depending on
the repulsion between the two lipid species and on the membrane bend-
ing rigidity. In the first fission pathway, a domain formed a bud with a neck
at the domain edge. The neck then tightened until the microvesicle was
released from the paternal membrane. This process of fission is in agree-
ment with predictions from continuum theories like the bending elastic
model for the case of a small bending rigidity or a large interfacial energy.
It also fits to experimental observations. The second fission scenario was
observed for strong segregation of the two lipid species (induced by an
increased repulsion), or when the bending rigidity was reduced via tuning
the water–lipid repulsion for one lipid species. In this fission process, a cut
along the bud boundary induced the fission, that is, the paternal vesicle
was left with a hole that slowly closed again. This fission pathway was also
observed when the thermal undulations of the membrane were increased.

Further, vesiculation from a planar membrane was studied (Hong et al.,
2007). While standard DPD simulations fix the total number N of beads in
the system and employ periodic boundary conditions, the authors chose
here a variable number of beads with fixed boundary conditions. Adding/
removing lipids to/from the membrane according to a density criterion
(add/remove when density is low/high) allowed for the observation of
vesiculation even in fairly small systems. Periodic boundary conditions with
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a fixed number of lipids, in general, suppress large deformations (bud-
ding or fission events) as they try to maintain a flat membrane. Only if the
size of the bud is considerably smaller than the total size of the membrane,
the perturbation becomes small enough to allow for budding and/or
pinch-off events. Using their nonstandard approach, Hong et al. (2007)
observed budding and fission of a preformed circular domain of one lipid
species from a planar membrane of a second lipid species. Again, the
interplay of line tension, membrane bending modulus, and surface ten-
sion was found to influence the emergence and duration of the budding
event. A higher line tension did speed up the budding process consider-
ably. Further, the time of bud formation increased with the size of the
domain.

2. Membrane Fusion

The inverse process of vesiculation, that is, fusion events, has been
investigated in a series of papers by Shillcock, Lipowsky, and coworkers.
The fusion of a single vesicle with a planar membrane (Shillcock
and Lipowsky, 2005; Grafmüller et al., 2007, 2009) was examined as
well as the fusion of two vesicles with each other (Gao et al., 2008).
The lipid model in these studies was H3(T4)2 which can be mapped
onto DMPC.
As a result, the authors found that fusion of a vesicle with a planar

membrane is possible only if both membranes are under tension, that is,
both had to have an increased area per molecule. No fusion was observed
when vesicle and planar membrane were initially relaxed (Shillcock and
Lipowsky, 2005). Instead, the vesicle adhered to and spread onto the
planar membrane. With a growing membrane tension (i.e., molecular
area A), the fusion probability increased linearly to a maximal value of
about 90% and decreased thereafter (Grafmüller et al., 2009). Fusion was
observed in only 50–70% of all simulations, rendering the event unreliable
and stochastic. Membranes that did not undergo fusion relaxed their
tension by other pathways, for example, via rupture of the vesicle or the
planar membrane (at high tensions), or via a hemifusion of the two
membranes bilayers at the contact region (at low tensions). Making fusion
a more reliable event thus requires additional forces, for example, via
specialized proteins like SNAREs.
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The observed fusion pathway was as follows (Grafmüller et al., 2007,
2009): as an initial event, the vesicle adhered to the planar membrane.
Then lipids started to perform an interbilayer flip-flop from the vesicle to
the membrane. Lipid tails moving through the head groups connected the
hydrophobic cores of the adherent two bilayers. A partially fused, strongly
disordered membrane patch established within the contact region. Next,
lipids started to reorder and to form a small domain of a single hemifused
bilayer that expanded and ruptured to form a full fusion pore. The fusion
time depended on the tension. For high tension, the fusion time tf
(measured from first contact of the two membranes to the opening of the
fusion pore) was well below 1 ms, while smaller tensions yielded tf�12 ms
(Grafmüller et al., 2007). Long fusion times corresponded to an intermedi-
ate adherent state of the vesicle. Comparing two different vesicle sizes (15
and 30 nm), fusionwas faster andhappenedmore likely for smaller (15 nm)
vesicles. However, it seems that rather the ratio of vesicle radius to the planar
bilayer area difference than the actual vesicle size primarily influences the
fusion time (Grafmüller et al., 2007).

During the fusion process, energetic barriers had to beovercomebetween
the vesicle adhesion to the membrane and the first lipid flip, and between
the first flip and the formation of the hemifused domain (Grafmüller et al.,
2007, 2009). The corresponding times were seen to decrease exponentially
with increasing membrane tension, suggesting that the energy barriers
should depend linearly on tension.

F. Dynamics of Membrane Proteins

Biological membranes are not pure lipid bilayers but rather are crowded
with membrane proteins that associate with the bilayer. Membrane pro-
teins contribute roughly 30% of the net weight of a typical biomembrane,
and about one-third of a cell’s proteome is membrane proteins. Mem-
brane proteins are involved in a multitude of tasks like cell–cell commu-
nication, signal transfer, enzymatic reactions, or connection of the
membrane to the cell’s cytoskeleton.

DPD was used in a number of studies to examine the physical properties
and dynamics of membrane proteins and their interactions with the embed-
ding lipid bilayer. In particular, the problem of hydrophobic matching
of transmembrane proteins and its consequences were addressed.
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The simplest transmembrane proteins consist of two hydrophilicmoieties at
either endof an extendedhydrophobic domain (typically an a-helix).When
the hydrophobic part of the protein does not match the thickness of the
hydrophobic bilayer core, one speaks of a ‘‘hydrophobic mismatch’’. Hy-
drophobicmismatch can be positive or negative, depending on whether the
protein’s hydrophobic domain is longer or shorter, respectively, than the
membrane’s hydrophobic core. In both cases, deformations of the local
lipid bilayer structure have been predicted which compensate for the expo-
sure of hydrophobic regions to the solvent. Effects like a changedmobility of
proteins or nonspecific membrane-mediated forces between proteins can
be expected.
In DPD, a transmembrane protein can be modeled as a cylinder con-

sisting of hydrophobic beads with one or more layers of hydrophilic beads
at the bases of the cylinder (see Fig. 8A). The cylindrical structure can be
achieved by a hexagonal arrangement of bead chains, and the number of
‘‘shells’’ around the central chain determines the in-plane protein radius.
Adjacent beads in the cylinder are interconnected by spring potentials,
which make the cylinders fairly rigid. In such a model, both the protein
radius and length are variable.

1. Perturbations of the Lipid Bilayer due to Membrane Proteins

Several DPD studies (Venturoli et al., 2005; Guigas and Weiss, 2008;
Schmidt et al., 2008) examined the local bilayer deformation due to an
embedded transmembrane protein. In order to explore the effects of a
positive or negative hydrophobic mismatch on the state of the lipid
bilayer, the hydrophobic length of the protein was systematically varied.
Venturoli et al. (2005) used in their study a two-chain lipid model
(H3(T5)2, similar to DMPC), while we have used a reduced lipid model,
HT3 (Guigas and Weiss, 2008; Schmidt et al., 2008).
These studies found that transmembrane inclusions of different lengths

differ in the average tilt angle of the protein with respect to the bilayer
normal. A rather weak tilting was observed for proteins with a negative or a
vanishing hydrophobic mismatch, whereas a monotonic increase of the
tilting with an increasing positive mismatch was seen (Venturoli et al.,
2005; Schmidt et al., 2008). The increase in tilting was stronger for
proteins with small radii as compared to those with larger radii
(Venturoli et al., 2005). The presence of a mismatched transmembrane
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protein changed the local membrane thickness, that is, the bilayer thick-
ness locally adapted to the protein length (Venturoli et al., 2005; Guigas
and Weiss, 2008; Schmidt et al., 2008) as d¼d0þdl exp(�x/x) with d0
denoting the unperturbed bilayer thickness, and dl, x being the thickness
increment and the typical relaxation distance.

The thickness change dl grew monotonically with increasing mismatch,
until it reached a constant value for large positive mismatches beyond
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FIG. 8. (A) A model transmembrane protein consisting of a hexagonal cylinder of
beads (Guigas and Weiss, 2006, 2008; Schmidt et al., 2008). Head groups are depicted in
blue and tail groups in red. (B) Transmembrane proteins form clusters due to a
hydrophobic mismatch with the embedding membrane (Schmidt et al., 2008). Two
trimers can be seen as well as two monomers. For clarity, proteins are depicted in dark
gray. (C) The interaction of two proteins can be characterized by the potential of mean
force (PMF). The depth of the potential well indicates a bound state at short interpro-
tein distances that increases with positive (blue curve) and negative (red curve) hydro-
phobic mismatch (data from Schmidt et al., 2008).
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which the protein only increased its tilting angle. The decay length x of
the thickness deformation was found to have typical values of about 1 nm.
Inspecting the order parameter S of the lipids in the vicinity of the

protein, lipids showed a higher ordering in an annulus of size x around
the protein (Schmidt et al., 2008). In particular, lipids were found to be
less tilted close to a protein with a positive hydrophobic mismatch and
more strongly tilted close to a protein with a negative mismatch.

2. Mobility of Membrane Inclusions

DPD also allows one to determine stationary transport coefficients, for
example, diffusion constants. In Guigas and Weiss (2006), the depen-
dence of the lateral and the rotational diffusion coefficient on the radius
of transmembrane proteins with no mismatch was examined. The authors
tested proteins with radii up to 40 nm. Objects with a diameter larger than
10 nm would rather represent large membrane inclusions, for example,
lipid microdomains or protein clusters. To be able to achieve system sizes
that are large enough for these inclusions, the authors used for some
of their simulations an implicit solvent variant of DPD. In contrast to
standard DPD, the solvent-mediated attraction of lipids was replaced here
by an attractive force between hydrophobic beads of neighboring lipids.
In all these simulations, rotational and translational diffusion coeffi-

cients were determined for different protein radii R from the protein’s
(angular) mean-square displacement. Both the lateral and the rotational
diffusion coefficients were found to vary systematically with protein radius,
showing a logarithmic decrease with R for lateral diffusion and a
power-law decrease �1/R2 for rotational diffusion. These results are in
agreement with theoretical predictions derived in amean-field perturbative
approach (Saffmann and Delbruck, 1975). For large protein radii, where
the perturbative prediction fails (Hughes et al., 1981), a crossover from
the logarithmic behavior toward D/1/R2 was found for the translational
diffusion coefficient. This result may be explained by drawing the analogy of
theprotein’s diffusion to theedgewisemotionof a thindisk inwhich internal
fluctuations are excited due to the surrounding lipids’ impact.
It was shown later that the gross result does not change when the

protein exhibits a hydrophobic mismatch (Guigas and Weiss, 2008).
Only 20–30% lower values of the translational diffusion coefficient were
observed while the radius dependence still followed the theoretical
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prediction (Hughes et al., 1981). Indeed, the different protein lengths
were reflected in varying effective membrane viscosities.

3. Membrane-Mediated Protein–Protein Interactions

Many DPD studies (Schmidt et al., 2008; de Meyer et al., 2008a,b;
Morozova and Weiss, 2010; Schmidt and Weiss, 2010) dealt with nonspe-
cific, lipid-mediated interactions of transmembrane proteins with varying
degrees of hydrophobic mismatching. Such interactions have been pre-
dicted, for example, from elastic continuum theories and capillary forces.

In accordance with these theoretical predictions, Schmidt et al.
(Schmidt et al., 2008) observed that membrane proteins with the same
hydrophobic mismatch spontaneously formed stable clusters (see Fig. 8B).
The strength of this interaction was determined from the potential of
mean force (PMF) of two equally shaped transmembrane proteins embed-
ded in a lipid bilayer. The PMF is defined as the negative logarithm of the
distance distribution (i.e., the pair correlation function) of the proteins. A
uniform sampling of all protein distances within the simulation box can be
achieved by an umbrella sampling (de Meyer et al., 2008a). An alternative
approach to obtain the same information is to monitor the distance and
net forces acting on the two proteins (Schmidt et al., 2008). However, in
cases of a strong protein interaction, this method may suffer from a lack of
statistics for large protein distances.

The PMFs obtained for mismatched proteins had a deep minimum at
short interprotein distance, indicating a bound state of the two proteins
(see Fig. 8C) (Schmidt et al., 2008). Depth and width of the potential well
increased for positive and negative hydrophobic mismatches, reaching
binding energies of up to 12kbT for large mismatches. At interprotein
distances corresponding to the thickness of one and two lipids, additional
side minima were observed that mean field theories did not predict.
Most likely, these minima reflect the discrete distances of ordered lipid
‘‘shells’’ around the protein. For larger distances, the potentials essential-
ly became flat. From the PMF, one can determine the mean first passage
time from the bound to the free state. These dimer lifetimes
increased exponentially with increasing hydrophobic mismatching. Simu-
lations of large ensembles of proteins further revealed a cluster formation
that correlated with the strength of the hydrophobic mismatch. While
for vanishing mismatch at best transient dimers and trimers were

176 GUIGAS ET AL.



observed, long-lived assemblies like octamers and nonamers appeared for
large positive or negative mismatches.
In a follow-up study, it was shown that proteins with different hydropho-

bic mismatch can segregate into homo-oligomers (Schmidt and Weiss,
2010) if the difference in mismatch is sufficiently large. If this condition is
not met, hetero-oligomers with a dipole-like arrangement formed, that is,
proteins with the same mismatch aimed at being next neighbors and tried
to reduce their contact to the second protein species. Indeed, both effects
may be crucial for understanding protein trafficking in the early secretory
pathway of eukaryotes (Schmidt and Weiss, 2010).
The PMF of membrane-mediated protein–protein interactions was also

studied by De Meyer (de Meyer et al., 2008a). Here, comparable results
were found for proteins with small radii and for large proteins with
negative mismatch. As a slight difference, a weak repulsive barrier between
proteins at intermediate protein distance was detected here. Proteins with
large radii and a vanishing or positive mismatch gave potentials of a
completely different shape without any pronounced minima but with
weak repulsive and attractive elements at short and intermediate protein
distances.
At the heart of the reported clustering of membrane proteins lies the

system’s wish to reduce its total energy. Indeed, in order to protect
hydrophobic groups from water, lipids experience severe geometrical
constraints near to a protein. This is ultimately reflected in the lipids’
order parameter and the bilayer thickness (cf. above). To gain entropy for
the whole system, a reduction of the lipid–protein interface is favorable
and hence proteins start to cluster. This phenomenon is similar to the
spontaneous formation of micelles when lipids are immersed in water.
A measure for the quality of the hydrophobic shielding was suggested in

de Meyer et al. (2008a) via the ratio of lipid head fraction to lipid tail
fraction at each point in the membrane plane. For values larger than
unity, this observable indicates a high density of lipid heads and thus a
good shielding. The authors show that minima and maxima (i.e., regions
of mutual protein attraction and repulsion) found in the PMF are related
to good and bad shielding of proteins separated by the respective
distances.
Further, it was determined that the interaction between a single protein

and a cluster or between two clusters differed from that between two single
proteins (de Meyer et al., 2008b).
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In addition to the membrane-mediated interaction of transmembrane
proteins, also the partitioning behavior on heterogeneous membranes for
various degrees of hydrophobic mismatching was studied (Schmidt and
Weiss, 2010). Consistent with earlier results, proteins partitioned to the
domains that matched best their hydrophobic length. Again, this parti-
tioning may be key for understanding cellular protein sorting. Related to
protein sorting, also the influence of acylation of transmembrane proteins
was explored (Morozova and Weiss, 2010). Acylation was found to signifi-
cantly enhance the tilting of transmembrane proteins and, as a conse-
quence, to alter hydrophobic mismatch-induced clustering and the
partitioning on phase-separated bilayers (Morozova and Weiss, 2010).
Thus, acylation can be used as a posttranslational regulator of transmem-
brane length-induced sorting. These results support recent experimental
findings that indicated a role of acylation in regulating the trafficking
behavior of vital transmembrane proteins.

Finally, also the influence of cholesterol on protein aggregation was
studied via DPD (de Meyer et al., 2008b). The authors found larger clusters
of transmembrane proteins with positive mismatch in the presence of
cholesterol as compared to cholesterol-free membranes. This effect mainly
arose due to the formation of cholesterol-enriched and cholesterol-deplet-
ed zones surrounding proteins, which improved the hydrophobic shielding.

G. Altering Biomembrane Properties by Exogenous Factors

One of the first applications of DPD to biomembranes highlighted the
effect of nonionic surfactants, in particular, alcohol ethoxylates, on mem-
brane morphology (Groot and Rabone, 2001). Such surfactants can be
found in detergents and were, for example, shown to inhibit bacterial
growth. By measuring the diffusion of water across the membrane, Groot
and Rabone showed that small transient holes appear in the membrane at
40% mole fraction of C6E8. At 60% and 70% holes remained permanently.
With the surfactant, C12E6 permanent holes occurred only at 90% mole
fraction. Thus, the size of surfactant head group determines the extent of
membrane damage. In the same study also the rupture properties of
bilayers with different surfactant fractions were investigated. The inclusion
of surfactants considerably reduced the stress resistance of the bilayer, that
is, rupturing the membrane was easier.
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DPD is especially useful for studies of large membranes where the
behavior on the level of single lipid molecules is of interest. In Jakobsen
et al. (2005b), the influence of the action of the enzyme phospholipase
PLA2 on membrane structure was investigated. PLA2 catalyzes the hydro-
lysis of phospholipids, producing a lysolipid and a fatty acid, that is, the
enzyme works as scissors that cut a lipid with two hydrophobic tails into
two unequal parts. Due to high demands on computational power, the
dynamics of the enzyme activity and the concrete process of cleavage were
not taken into account, but rather the mechanical properties after the
cleavage were monitored. Varying the fraction of hydrolysis products in
one of the membrane leaflets, these simulations showed that the bilayer
integrity was not compromised, yet the fluctuations increased strongly due
to a reduced bending stiffness. Concomitantly, the lateral diffusion of
lipids was enhanced, especially in the leaflet where the enzyme activity
had taken place. Cleavage products also showed an enhanced probability
for flipping to the opposite leaflet (flip-flop).

H. Conclusion

The above examples highlight that DPD is a powerful and yet fairly easy
method to study biomembrane properties with and without proteins on a
mesoscale. Neglecting details on the subnanometer level, DPD allows for
studying longer length and time scales than MD approaches. The meso-
scale at which DPD can be efficiently used helps to bridge the gap between
experimental and theoretical results and hence provides an excellent tool
in a multiscale approach to biomembranes.
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ATHI N. NAGANATHAN,* AGUSTÍ EMPERADOR,* OLIVER CARRILLO,* AND
J. L. GELPÍ*,†,‡
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Abstract

Flexibility is the key magnitude to understand the variety of functions of
proteins. Unfortunately, its experimental study is quite difficult, and in
fact, most experimental procedures are designed to reduce flexibility and
allow a better definition of the structure. Theoretical approaches have
become then the alternative but face serious timescale problems, since
many biologically relevant deformation movements happen in a timescale
that is far beyond the possibility of current atomistic models. In this
complex scenario, coarse-grained simulation methods have emerged as a
powerful and inexpensive alternative. Along this chapter, we will review
these coarse-grained methods, and explain their physical foundations and
their range of applicability.
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I. Introduction

Biological macromolecules, and in particular proteins, are large and
flexible entities, which perform their biological action when embedded in
solvent, either water or the membrane phospholipids. Analysis of current
version of the Protein Data Bank (PDB; Berman et al., 2000; http://www.
pdb.org) illustrates that proteins of known experimental structure range
typically between 500 and 7000 atoms, but in some cases, protein systems
reach more than 16,000 atoms (see Fig. 1). As experimental resolution
techniques advance, the size histogram in Fig. 1 is expected to displace to
the right side due to the incorporation of large protein assemblies to the
database. However, the real problem in protein simulation originates from
the need to introduce solvent in the calculation, which dramatically
increases the number of particles in the system. For example, in our
MoDEL (Molecular Dynamics Extended Library) database, that contains
atomistic molecular dynamics (MD) simulations of representative PDB
proteins in water (largely enriched in domain-sized proteins), typical
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FIG. 1. Distribution of protein atoms in 2010 version of the Protein Data Bank
(PDB). Inset corresponds to the distribution of atoms in solvated protein systems in our
MoDEL database (http://mmb.pcb.ub.es/MoDEL).
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simulation systems range from 10,000 to 50,000 atoms, but some systems
have more than 150,000 atoms (see Fig. 1), that is, we are dealing with
systems with up to half a million degrees of freedom. If we are interested in
studying protein interactions, diffusion, or aggregation processes,
simulated systems can easily reach many millions degrees of freedom,
making atomistic simulation very complex.
As noted in the previous paragraph, size is a major limitation for the

atomistic simulation of proteins, but often even more dramatic than the
size problem is the time problem. Proteins are flexible, they move contin-
uously, and therefore biological function cannot be understood without
considering protein dynamics. Unfortunately, proteins move as a result of
atomic vibrations happening in the nanosecond timescale, while most
biologically relevant protein motions happen in the millisecond to second
range. Thus, in order to follow, with atomistic detail, a biologically relevant
protein motion, its energy (and associated forces) should be computed at
least 1012 times. For a typical system of 50,000, the calculation of just
interatomic distances would require of the order of 1021 floating point
operations, not far from the Avogadro number.
Protein dynamics can be studied by different techniques, the most

rigorous one being atomistic MD. In this approach, all atoms of the system
are included at the same level of detail and their trajectories are deter-
mined by simple integration of Newton’s (or closely related) equations of
motion:

mi a
!

i ¼ � dE

d r!i
ð1Þ

v!i tð Þ ¼ v!i t ¼ 0ð Þ þ
ðt ¼dt

t ¼ 0
a!i tð Þdt ð2Þ

r!i tð Þ ¼ r!i t ¼ 0ð Þ þ
ðt ¼dt

t ¼ 0
v!i tð Þdt ð3Þ

where t stands for time, r for the position, v for the velocity and a for the
acceleration of atom i. The potential energy E is computed by using
potential functions containing both bonded (stretching, bending, and
torsion) and nonbonded interactions (van der Waals and electrostatic).
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Stretching and bending are represented by harmonic expressions, torsions
by Fourier series, electrostatics by Coulombic r�1 term and van der Waals
by a Lennard–Jones r�12, r�6 term. These functional terms have been
carefully parametrized, using experimental data and high-level quantum
mechanical calculations as reference. It is not our purpose to comment
these methods here and we just address the reader to suitable reviews of
both atomistic MD and atomistic force fields (McCammon et al., 1977;
Brooks et al., 1988; Karplus and McCammon, 2002).

Since its development in the seventies, MD has increased its popularity
and it is now a technique used routinely by a large number of laboratories
around the world. Several programs running highly optimized codes are
available, often with free or almost free license scheme for (at least)
academic groups. The improvement of MD codes and the development
of more efficient and powerful computers have made MD simulations
possible in the microsecond timescale for small proteins, while for the
larger systems (more than million atom systems have been considered),
‘‘state-of-the art’’ simulations are at least one order of magnitude shorter.
Databases such as MoDEL (Rueda et al., 2007a; Meyer et al., 2010) or
Dynameomics (Van der Kamp et al., 2010) compile and make available to
the community the near-equilibrium (10–100 ns range) dynamics of pro-
teins in water for nearly 2000 representative proteins (see Fig. 2), covering
a good percentage of unique-proteins PDB space (see Fig. 3).

In summary, MD is now a mature and widely used technique which
provides results of high quality. Unfortunately, despite its successes we
cannot ignore the existence of four fundamental problems that handicap
its practical applicability: (i) the use of MD requires access to large
computer resources and a notable degree of expertise in the setup of
simulations; (ii) MD simulations are very costly and even with the best
computer resources, human-collection time can extend into the months
(or even years) timescale; (iii) timescale accessible to MD simulations is
still far from that required to properly represent many biologically relevant
transitions; and finally, (iv) data mining of hundreds of gigabytes of
trajectories is complex, with a small signal/noise ratio and again requires
significant experience and special computer equipment.

Development of tools for the automatization of the setup of MD simula-
tions, which take care of completing missing atoms in crystal structure, of
relaxing bad contacts, choosing suitable ionization states for titrable group
of proteins, detecting the placement of structural waters and ions,
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defining topologies, creating the solvent environment, and performing
the thermalization and equilibration, will surely open-up MD to a broader
community. Initiatives such as MDWeb go in this direction (http://mmb.
pcb.ub.es/MDWeb; see Fig. 4). Similar initiatives, but centered in the data
mining of trajectories (Camps et al., 2009; see http://mmb.pcb.ub.es/
MoDEL and http://mmb.pcb.ub.es/FlexServ) will be of great help for
facilitating trajectory analysis to nonexperts. Finally, many other initiatives,
such as the Distributed European Infrastructure for Supercomputing
Applications (DEISA; http://www.deisa.eu) or Scalalife (http://www.scala-
life.eu), are now being developed to facilitate the access of MD users to
high-performance computers. In parallel, software developers are making
a tremendous effort to develop programs able to use parallel architectures
(Phillips et al., 2005; Hess et al., 2008) and porting of all these codes to GPU
architectures is an ongoing process (Harvey et al., 2009; Voelz et al., 2010).
Major advance in the field will come from the use of MD-specific computers
(http://www.deshaw.com/), which can increase by two to three orders of
magnitude the size of the system or the length of the collected trajectory.
However, even with all these spectacular technical improvements, MD will
remain a technique far too slow and complicated to provide the interactivity
that experimental biologists often require. This is the main motivation for
the development of approximate coarse-grained models, where, in order to
increase computer efficiency, we accept a certain loss of accuracy with a
significant reduction in structural resolution. Such a loss of resolutionmight
in fact be beneficial for deriving more intuitive description of many biologi-
cally processes (such as large conformational transitions or protein aggre-
gation) occurring in the mesoscopic scale.

II. Coarse-Grained Potentials

The coarse graining of a protein implies always the compression of a
series of atoms in a pseudo-particle and a simplification in the representa-
tion of the solvent that is: (i) neglected, (ii) simulated as a continuum, or
(iii) represented by pseudo-particles which account for clusters of solvent
molecules. In all cases, the simplification implies the need to recalibrate
the potential function (the force field) or use information-based poten-
tials to describe intraprotein interactions. The most common level of
coarse graining for proteins involves the representation of every residue
by a single particle located at the Ca. Refinements of the model that have
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been explored by some authors consist of using additional particles to
mimic the side chains or some backbone atoms.

A. Gō-Like Potentials

Originating from the early works of Gō and coworkers (Taketomi et al.,
1975), these potentials are the basis of many of the currently used infor-
mation-based potentials. Gō potentials are typically used in conjunction
with a Ca coarse-graining of the protein and consider that any two residues
that are in contact in the three-dimensional structure of the protein have a
favorable interaction, while if they are not in contact such interaction is
none or unfavorable:

E ¼
X
i;j

Di;jeij ð4Þ

where i and j stand for protein particles (typically residue Ca), di, j is a Dirac
function which takes value �1 if the two residues are in contact and 0 or þ1
otherwise,andeij isaenergyconstantequal forallpairs(uncoloredGōpotential;
eij¼ e) or different (colored Gō potentials). Despite its extreme simplicity Gō
potentials have been quite successfully used to study protein folding and have
been crucial in the development of some of today’s most accepted theories of
folding (see review in Go, 1983). Very recently, these potentials have increased
in complexity adopting a formalism, which resembles that of atomistic physical
models, like that in Onuchic’s functional (Clementi et al., 2000).

V ¼ Vbonded þ Vangle þ Vdihedral þ V native
nonbonded þ V nonnative

nonbonded ð5Þ

V ¼Pbonds Kr r � r0ð Þ2 þPangles Ky y� y0ð Þ2

þPdihedrals K
1ð Þ

f 1� cos f� f0ð Þ½ � þ K
3ð Þ

f 1� cos3 f� f0ð Þ½ �
n o

þPnative e 5
sij
rij

0
@

1
A

12

� 6
sij
rij

0
@

1
A

102
4

3
5þPnonnative e

s0
rij

0
@

1
A

12 ð6Þ

where in the three first terms, r, y, and f are the bond length, angle, and
dihedral angle, respectively. The corresponding subscripts ‘‘0’’ stand for
values in the experimental structure. The fourth term corresponds to the
Lennard–Jones-like (LJ) stabilization energy represented as a 12-10
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function that acts on only those contacts present in the native state.
Here, rij and sij identify the distance between atoms i and j in one snapshot
and in the native state, respectively (rij ¼ rij

!�� �� and sij ¼ r 0ij
!��� ���). The

fifth term is a excluded volume function that energetically disfavors any
close nonnative contact (s0¼4 Å). In typical implementations of this
model, native contacts are identified with a 5-Å heavy-atom cutoff exclud-
ing up to i� iþ3 sequential neighbors. Such a contact calculation pre-
serves the number of atomic contacts per residue that depends on the size
of the amino acid. Nearest-neighbor energy terms are usually defined by:
Kr¼100e, Ky¼20e, Kf

(1)¼ e, and Kf
(3)¼0.5e, where e sets the energy scale.

Onuchic’s Gō-like potentials coupled, for example, to Langevin dynam-
ics sampling algorithms (see below) are being extensively used to analyze
experimental biophysical measures on protein folding and unfolding
(Clementi et al., 2000, 2003).

B. Harmonic Potentials

They can be understood as an evolution of Gō-like potentials, as they
penalize the deviation on native inter-residue distances. These potentials
have became very popular for the study of the ‘‘near-equilibrium’’ dynamics
of proteinswhen implemented in sampling techniques derived fromnormal
mode analysis (NMA). The basic assumption when using these potentials is
that a protein behaves as an elastic network model (ENM; Tirion, 1996;
Atilgan et al., 2001), where usually Cas act as network nodes which are
connected by harmonic springs. Note that the number of springs runs with
the number of residues in the protein (N), as (N�1)!, and accordingly,
direct application of ENM will result in an artifactual over-rigidification of
the protein as theprotein size is increased. This problemcanbe corrected by
using, for example, a distance-dependent cutoff that annihilates the inter-
actions between remote residues, leading to an energy functional as that
developed inEqs. (7)–(10), where the energy (E) to distort a protein from its
equilibrium conformation (rij

0), considered a energy minimum, is given by
the pairwise Hookean potential (Tirion, 1996):

E ¼
X
i 6¼j

Kij rij � r 0ij

� �2
ð7Þ

where rij stands now for the distance between residues i and j (represented
by the corresponding Ca in the protein configuration), and Kij stands for
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the spring constant. The force of the spring restricting the motion of the ij
residue pair is computed as:

Kij ¼ 1

2
kGij ð8Þ

k being a phenomenological constant (in energy/distance2 units) and G
being a Kirchhoff topology matrix of inter-residue contacts, where ijth
element for i 6¼ j¼1, . . .,N, is equal to 1 if residues i and j are within the
cutoff distance rc, or zero otherwise:

Gij ¼ �1 if rij � rc
0 if rij > rc

�
ð9Þ

The diagonal elements (iith) are equal to the coordination number or
residue connectivity taken as:

Gii ¼ �
XM
jjj 6¼i

Gij ð10Þ

Despite their simplicity, functionals as those shown in Eqs. (7)–(10) are able
to provide quite accurate representation of the near-equilibrium dynamics
of many proteins but are extremely dependent on the selected cutoff for
remote interactions, which can have different optimal values for each pro-
tein (often difficult to predict a priori (Sen and Jernigan, 2006)). This led to
thederivationofnewmethodswhere thediscreteHamiltonian is replacedby
continuous functions, typically dependent on the inverse exponential of the
inter-residue distance (rij ¼ rij

!�� ��). Thus, Hinsen et al. (2000) derived a
function for the spring strength by fitting to a local minimum from a single
MD simulation. This procedure leads to a force constant definition with
stronger couplings for neighbors along the backbone, and a sixth power of
distance for the rest of the interactions. The distinction of short- and long-
range terms was dependent on a short cutoff, and the formulation also
included aprotein-fitted scaling factor for the global energetics, which limits
its general applicability. Kovacs et al. (2004) proposed a simpler sixth-power
exponential, whichdoes not require any cutoff andhas become very popular
in current elastic network implementations:

Kij ¼ C
r 0

rij

� �6

ð11Þ

192 OROZCO ET AL.



where the proportionality constant C (usually taken as 40 kcal/(mol Å2))
controls the global rigidity of protein contacts, and r0 is normally taken as
3.8 Å, which is approximately the mean Ca–Ca distance between any pair
of consecutive residues.
Different authors have tried to improve harmonic potentials by, for

example, defining rigid blocks (Tama et al., 2000), by scaling differently
covalent and non-covalent contacts (Kondrashov et al., 2006), by adding
short-range terms (Moritsugu and Smith, 2007), or by defining distin-
guished chain interactions by a bond-cutoff ( Jeong et al., 2006). Following
these directions, we have recently (Orellana et al., 2010) developed a
hybrid approach calibrated using a large database of atomistic MD trajec-
tories of representative proteins (Rueda et al., 2007a; Meyer et al., 2010).
The analysis of MD simulations showed that the topology of nearest-
neighbor interactions, the basis of the secondary structure, is the main
component in the large motions traced by ENM (Rueda et al., 2007a;
Meyer et al., 2010). Accordingly, the method (named essential-dynamics
elastic network model, ed-ENM; Orellana et al., 2010) treats differentially
the sequential and nonsequential (‘‘Cartesian’’) contacts. For the first M
sequential contacts, a fully connected matrix is used, while Cartesian
contacts are treated using a continuum distance-dependent function
with a calibrated size-dependent cutoff, which helps to remove artifactual
long-range interactions. Therefore, the elements of the topology matrix
are defined as:

Gij

if Sij � M ; ¼ �1

otherwise
¼ �1 if rij � rc
¼ 0 otherwise

�8<
: ð12Þ

and the matrix G has always 2Mþ1 nonzero-diagonal entries defining
neighbor chained contacts. Accordingly, the force constants Kij are depen-
dent, not only on the Cartesian but also on the sequential distance:

Kij

¼ C seq�
Sns
ij ; if Sij � M

otherwise
¼ C cart�

rij

� �nc
¼ 0 otherwise

; if rij � rc

(
8>><
>>: ð13Þ

where values for all terms (ns¼2 and Cseq¼60 kcal/(mol Å2); nc¼6 and
C cart¼6 kcal/(mol Å2), in energy units) were obtained by fitting to appar-
ent force constants and structural variance profiles obtained in a large
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number of atomistic MD simulations. A value of M¼3 was used for
sequential interactions based on MD simulations, which were also instru-
mental to define the cutoff radii (rc), which is computed using an empiri-
cal logarithmic relationship with the size of the protein. This formalism
guarantees sequential contacts which decay quickly with the number of
connecting bonds (see Fig. 5) and a continuum decay of the strength of
Cartesian contacts up to a cutoff. Attempts to improve the formalism by
adding ‘‘color’’ to the topological relations, that is, different spring con-
stants for different physical interactions, or by adding differential weights
to different secondary elements, did not yield to clear improvements in
the results (Orellana et al., 2010).

The hybrid ENM outlined above can work coupled to any sampling tech-
nique (see below) and provides quite accurate representations of the near-
equilibrium dynamics properties of proteins at both the global (essential
dynamics, global variance) and local levels (B-factor distribution), represent-
ing a significant improvement with respect to simpler schemes (see Fig. 6).

C. Flat Potentials

In recent years, the use of discontinuous flat potentials (also named
stepwise potentials) has gained popularity due to its use in discrete MD
sampling algorithms (Zhou and Karplus, 1999; Ding et al., 2005;

i, i + 1 (»100 kcal/(mol Å2))

Cai + 3

Cai + 2

Cai + 1

Cai

i, i + 3 (»1 kcal/(mol Å2))
i, i + 2 (»10 kcal/(mol Å2))

FIG. 5. Formulation of the ed-ENM model. The ed-ENM is a nearest-neighbor-
based model, maintaining the secondary structure stereochemistry, where the three first-
order constants acquire values close to a 100:10:1 ratio.
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Emperador et al., 2008a). These potentials are based on the idea that for
coarse-grained calculations, the continuum physical potentials can be
approximated as a series of discontinuous potentials defined by square
wells. The simplest flat square potential describes atoms as hard spheres
undergoing hardcore collisions, which are then defined by an interaction
potential with an infinite step at the distance corresponding to the sum of
the hard sphere radii of two particles (Fig. 7A). Stepwise potentials can
also be used to represent strong interactions between particles, which are
described as square-well potentials with infinite walls and well amplitude
taken from a typical particle–particle distance vibration at room tempera-
ture (Fig. 7B). This type of potentials can be easily implemented in Gō-like
strategies using then the experimental inter-residue distance to define the
center of the well (Emperador et al., 2008a).
Flat potentials can be also adapted to work within the physical or

pseudo-physical strategies (see Section II.D and also Emperador et al.,
2008b, 2010). In this case, nonbonded terms like Coulomb and Van der
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dynamics treatment of atomistic molecular dynamics simulations (ED) and from ENM
models incorporating a simple cutoff scheme, the inverse exponential decay function
proposed by Kovacs and the hybrid method developed in our group. The good qualita-
tive value of all ENM calculations is evident, as is clear the better performance of our
hybrid approach.
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Waals interactionscanbealsorepresentedwithsquare-wellpotentialswithone
or several steps depending on the accuracy required. For example, potential
function shown in Fig. 7C can be used to represent a Van der Waals or an
electrostatic interaction between two particles with opposite charge neglect-
ing long-range effects. Introduction of additional wells can help in the repre-
sentation of long-range attractive effects. Stretching and bending terms are
easily approximated by a single square well centered at equilibrium values
(Fig. 7C). Torsional terms needed to reproduce one to four particle interac-
tions can be introduced by simply fitting Fourier expansions to discrete
square-well potentials, using one to four distances as rotation variable and
adjusting well barriers to potential torsional terms (see Fig. 7D).

Flat potentials have the advantage of allowing the treatment of trajec-
tories within the ballistic regime which guarantees a good computational
efficiency (see below). Besides, they can be used to reproduce not only
near-equilibrium dynamics of proteins (as ENM-NMA) but also local
rearrangements like those happening during protein–protein interac-
tions, very large transitions, or even protein folding events (Ding and
Dokholyan, 2008). Additionally, the functional allows a very simple imple-
mentation in mixed calculations with different degree of granularity in the
representation of the protein.
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FIG. 7. Examples of flat potentials that can be used to approach physical potentials
(see text for discussion).

196 OROZCO ET AL.



D. Physical and Pseudo-physical Potentials

There are a large variety of coarse-grained potentials that try to maintain
a physical foundation while reducing the degrees of freedom of the system
and accordingly increasing computational efficiency. One of the most
popular ones is the MARTINI force field developed by Marrink and cow-
orkers (Marrink et al., 2007, 2009). The force field, very popular in
membrane simulation, has also an elegant protein implementation,
which follows a four-to-one mapping, that is four heavy atoms are repre-
sented by a single bead, which can be annotated in four types: polar,
nonpolar, apolar, and charged. Within each type, there are subclassifica-
tions based on the hydrogen bond donor/acceptor capabilities, or by the
polarity. An interesting aspect of this force field is that water is explicitly
included using also the four-to-one mapping strategy (i.e., one bead
represents four water molecules). The interactions between beads are
represented as the addition of ‘‘bonded’’ and ‘‘nonbonded’’ terms:

V ¼ Vbonded þ Vnonbonded ð14Þ
Bonded terms (Vbonded) take care of keeping the covalent structure of the
protein, maintaining the chirality of the protein and the secondary struc-
ture (note that MARTINI is really a pseudo-physical force field since
require previous structural knowledge on the target protein).

Vbonded ¼
X
bonds

Kb rij � r 0ij

� �2
þ
X
angles

Ka cos’ijk � cos’0
ijk

� �2
þ

X
dihedral

Kd 1þ cos yijkl � y0
ijkl

� �h i
þ

X
imp dihedral

Kid yijkl � y0ijkl
� �2 ð15Þ

where i, j, k, and l are ‘‘beads’’; rij stands for the bond distance between atoms
i and j; ’ijk stands for the bond angle (i–j–k); and yijkl represents the dihedral
(i–j–k–l). The equilibrium values are always denoted by superindex ‘‘0.’’
Nonbonded terms account for interactions between non-neighboring

beads, which are modeled by means of a Lennard–Jones-like potential and a
screened Coulombic term applied only to interactions between charged
particles.

Vnonbonded ¼ 4
X
i;j

e�ij
sij
rij

� �12

� sij
rij

� �6
" #" #

þ
Xcharged
i;j

qiqj
erij

ð16Þ

where i and j stand here for nonbonded beads separated by a distance
rij, and eij* and sij are the standard Lennard–Jones parameters for
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noninteracting particles. The Coulombic term (where q stands for bead
charges) extends only for charged pairs and is screened by a relative
dielectric constant (e¼15) and by a shifting procedure which reduces
slowly interactions to zero for distant interactions. All the bonded and
nonbonded terms appearing in Eqs. (15) and (16) have been carefully
parametrized to reproduce experimental data.

The MARTINI force field was created to be implemented easily in the
same MD simulation algorithms that are used for atomistic simulations,
particularly GROMACS simulation package (Hess et al., 2008). Since
beads weigh typically from 48 to 72 amus, intra-bead vibrations are slow.
This allows the use of large integration steps (up to 40 fs), which com-
bined with the drastic reduction in the degrees of freedom in the system
leads to a dramatic increase in the performance of the MD simulation.
This explains the popularity of MARTINI force field, especially in the
study of membranes (Marrink et al., 2009).

Related force fields, which try to maintain potential functions similar to
the ‘‘all-atoms’’ ones, have been developed by different groups. For
example, Schulten and coworkers (Shih et al., 2006) have developed a
force field where each residue is represented by two beads, one represent-
ing backbone and the other (different for each residue) the side chain.
The potential energy function is represented by a CHARMM-like
(McKerell et al., 1995) potential (similar to that in Eqs. (15) and (16)),
where the different terms are calibrated to reproduce atomistic MD results
on the same system (Shih et al., 2006). The same group has developed
much more aggressive coarse-graining approaches, where beads (repre-
senting in some cases hundreds of atoms) are not centered in real residues
but are spread around the protein to get an as accurate as possible
reproduction of the protein shape (Arkhipov et al., 2006a). Again, effec-
tive potentials are fitted to reproduce the behavior found in atomistic MD
simulations with the same system (Arkhipov et al., 2006a,b). These force
fields have provided very interesting results in the study of very large
viruses or in the analysis of cooperative effects of multiple protein aggre-
gates (Arkhipov et al., 2006a,b; Shih et al., 2006). As with MARTINI,
Schulten potentials are created to facilitate implementation in atomistic
MD simulation codes, particularly NAMD (Phillips et al., 2005), using
Langevin’s dynamics and continuum representation of solvent.

Scheraga and coworkers developed another coarse-grained model based
on pseudo-physical potentials (Liwo et al., 2005). The method, which has
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been implemented into a variety of sampling techniques, defines proteins
as a combination of two types of beads, one to represent the center of the
peptide bonds and the other, of different sizes, to represent the side
chains. The corresponding force field (named UNRES) contains up to
10 terms accounting for different types of backbone and side-chain inter-
actions, including coupling terms which are commonly ignored in other
force fields. The different terms are parametrized using statistical data on
folded structures from PDB and quantum mechanical and atomistic
dynamics simulations of protein fragments (Liwo et al., 2005, 2007).
The UNRES force field has provided quite encouraging results in the
prediction of protein structure and in the representation of protein
folding (Liwo et al., 2005, 2007; Khalili et al., 2006).
Sorensen and Head-Gordon (2002) developed another one-bead

model, similar in structure to the MARTINI one, where each residue is
represented by a Ca centered bead and potential energy is determined as:

Vbonded ¼
X
bonds

Kb rij � r 0ij

� �2
þ
X
angles

Ka �’ijk � ’0
ijk

� �2
þ

X
dihedral

Kd1 1þ cosy½ � þ Kd2 1� cosy½ � þ Kd3 1þ cos3y½ �þ

Kd4 1þ cos yþ p=4ð Þ½ � þPi;j 4e
�
ij S1

ij

sij
rij

0
@

1
A

12

� S2
ij

sij
rij

0
@

1
A

62
4

3
5

ð17Þ

where the meaning and the purpose of the different terms are similar to
that in MARTINI force field (see above) with the exception that the two
scaling coefficients S1 and S2 increase the flexibility of the pseudo Len-
nard–Jones term to account for different type of nonbonded residue–
residue interactions. As in many other models, solvent is not treated
explicitly, and the parametrization of the constants in Eq. (17) comes
from the statistical analysis of known proteins and/or from atomistic
simulations. These potentials are typically run in conjunction with Lange-
vin MD simulation protocols and a continuum representation of solvent
(Sorensen and Head-Gordon, 2002).
Coarse-grained potentials outlined here are just a small fraction of the

universe of continuum potentials which try to maintain a physical founda-
tion but in reality introduce knowledge-based terms (e.g., in the torsional
term, or in the parametrization of the nonbonded terms). As noted, discon-
tinuous flat potentials designed to reproduce physical potentials have also
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beenused in thecontextofdiscreteMDsimulations to studydifferentaspects
of protein structure and interactions (see previous paragraph).

III. Sampling Techniques

Irrespective of the nature of the Hamiltonian used to reproduce the
dependence of the energy on the protein conformation, the study of
flexibility requires the use of sampling techniques, which evaluate the
degree of structural variation predicted for the different protein particles
at working temperature.

A. Normal Mode Analysis

It is possible to determine analytically the expected sampling of a single
particle moving in one dimension, subject to very simple potential func-
tions like the Hookean spring, since Newton’s equation reads as:

M
@2 x! tð Þ
@t2

¼ �K x! tð Þ ð18Þ

where M is the mass of the particle, x stands for the displacement of the
particle from equilibrium spring length, and K being the spring constant.
General solution for this type of equations has the exponential form:x(t)
¼Aeiwt (A being the constant and o the frequency of the oscillator), which
means that after some algebra Newton’s equation can be rewritten as:

o2MA ¼ AK ð19Þ
and the sampling distribution along time becomes defined simply by:

x! tð Þ ¼ Acos t

ffiffiffiffiffi
K

M

r !
ð20Þ

For a system of N particles in Cartesian space subject to a series of
connected springs, Eqs. (18)–(20) take matrix form, for example,
Eq. (18) reads as:

M €R
!

tð Þ þH R
!

tð Þ ¼ 0 ð21Þ
where H is the Hessian matrix, defined as the matrix of second derivatives
of the energy with respect to the coordinates, and the vector R(t) stands
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for the particle coordinates at time t; note that for compactness we have
moved here to the compact notation for time derivative. This equation is
solved by diagonalization of the mass-weighted Hessian matrix which
yields a series of eigenvectors (u) and a series of eigenvalues (the frequen-
cies, o), which define the normal modes, that is the movements expected
for the different particles as: R

!
tð Þ ¼ A u!cos otð Þ.

In summary, starting from a harmonic potential, NMA yields a series of
eigenvectors and eigenvalues obtained by diagonalization of the Hessian
matrix. The eigenvectors are a lineal combination of atomic movements,
which indicate global movement of the proteins (the essential deforma-
tion modes), while the associated eigenvalues indicate the expected dis-
placement along each eigenvector in frequencies (or distance units if the
Hessian is not mass-weighted), that is, the impact of each deformation
movement in the total protein motion. Thus, protein dynamics is repre-
sented as a simple combination of vibrations along the set of eigenvectors.
The lowest frequency eigenvectors tend to represent more collective,
largest amplitude motions, and can trace functional rearrangements
and transitions (Sorensen and Head-Gordon, 2002; Moritsugu and
Smith, 2007).
NMA can be applied in conjunction with any continuum and differen-

tiable potential energy function. This is done by assuming that protein
conformation is at one stationary state R and that deformations are going
to be small and Gaussian, making it possible to expand any potential
function as a Taylor series (with i and j being particles):

V Rð Þ¼V R0

 �þX

i

@V

@ri

� �
0

ri� r 0i

 �þ1

2

X
i;j

@2V

@ri@rj

� �
0

ri� r 0i

 �

rj � r 0j

� �
þ . . .

ð22Þ
where for the sake of simplicity we have skipped here the vector notation.
Note that for a stationary point, assuming the reference value V(R0) as
zero and neglecting higher-order terms, Eq. (22) leads to a harmonic
expression, which enters nicely into the NMA framework:

V Rð Þ ¼ 1

2

X
i;j

kij ri � r 0i

 �

rj � r 0j

� �
ð23Þ

where kij stands for the elements of the second-derivative matrix (the
Hessian matrix).
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The practical use of NMA with all atom nonharmonic potentials pre-
sents three major problems: (i) the complex behavior of solvent, which
cannot fit into the model implicitly assumed in Eq. (22), (ii) the need to
be in an energy minimum (otherwise some frequencies will be imaginary),
and (iii) the cost of evaluating the Hessian for complex potential func-
tions. All these problems have hampered the use of NMA coupled to
atomistic or even coarse-grained physical potentials, favoring its applica-
tion in conjunction with ENMs (see above), where reference structure is
by definition a minimum, water is ignored and force field is by definition
fully harmonic.

ENM–NMAmethods have been used quite extensively for the description
of large deformation movements in proteins (Tirion, 1996; Hinsen et al.,
2000; Tama et al., 2000; Atilgan et al., 2001; Krebs et al., 2002; Kovacs et al.,
2004; Jeong et al., 2006; Kondrashov et al., 2006; Sen and Jernigan, 2006;
Moritsugu and Smith, 2007; Orellana et al., 2010). If accurate ENM poten-
tials are used, the method is able to reproduce with reasonable accuracy
experimentalB-factor distributions, and thepatternof flexibility detected in
NMR experiments (Abseher et al., 1999; Yang et al., 2007) and also in
atomistic MD simulations (Rueda et al., 2007b; Orellana et al., 2010).
Using these techniques, different authors have proven that biologically
relevant movements (i.e., those essential for protein function) are very
often correlated with the most relevant deformation modes (i.e., those
leading to large collective movements in the proteins). Methods to trace
transitions between conformational states of the proteins based on displace-
ments along theessential deformationmodeshavebeendevelopedandhave
been largely used to obtain firstmechanicalmodels of large conformational
transitions (Krebs et al., 2002; Kong et al., 2006; Moritsugu and Smith, 2007;
Dobbins et al., 2008; Rueda et al., 2009). Approaches based on ENM-NMA
methods have been developed to improve fitting of protein structures to
electron-density maps, especially those derived from electron microscopy
(Phillips, 2006). Relatedmethods have been derived to introduce flexibility
in protein docking (Rueda et al., 2009). Recent efforts in the area are
focussing on improving the formalism of ENM, in relaxing the definition
of the reference structure and in performing the NMA using internal rather
than Cartesian coordinates (Ma, 2009; Mendez and Bastolla, 2010), which
reduces the cost of the calculation and guarantees that structures generated
by considering activation of a reduced number of deformation modes
maintain chemical sense.
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B. Monte Carlo

In the ergodic regime, protein flexibility can be simulated as a Markov
chain of movements. According to the popular Metropolis algorithm the
sampling is obtaining by perturbing randomly an initial configuration of
the protein R

!
0

� �
to generate a trial configuration R

!0
0

� �
. This new

configuration will be accepted, and accordingly considering part of the
sampling (i.e., R

!
1 ¼ R

!0
0) if its energy (as determined by force field) is

smaller than that of the initial configuration (i.e., E R
!0

0

� �
� E R

!
0

� �
);

otherwise, the probability of acceptance depends of a Boltzmann proba-
bility function which for a given temperature makes more likely the
acceptance of (R

!0
0 as E R

!0
0

� �
approaches to E R

!
0

� �
). When the trial

movement is not accepted, the new configuration is considered equal to
the previous one (i.e., R

!
1 ¼ R

!
0). The process is then repeated millions of

times to guarantee proper sampling of all the degrees of freedom. A
flowchart of metropolis Monte Carlo (mMC) simulation in chemical
systems can be then summarized as shown in Fig. 8, where we present
the algorithm for a general configurational variable X, in our case, where
we limit to consider only conformational movement (R¼X).
In order to improve computational efficiency, the practical use of mMC

implies the generation of the trial configuration created by perturbing a
previously accepted conformation. The magnitude of the perturbation is
adjusted in trial calculations in such a way that the average acceptance rate
will be around 40–50% (average acceptance rates out of this range lead to
lower sampling efficiency). Monte Carlo methods are typically used in
conjunction with representation of the systems by means of internal
coordinates, focusing sampling in the torsional degrees of freedom. This
strategy is however complex for its application to proteins and in general
to any polymer, since small changes in a backbone torsion can introduce
dramatic changes in the coordinates of distant residues and accordingly
large steric clashes which would lead to a very low acceptance rate, and,
accordingly, to a very poor sampling efficiency. This problem has been
solved by introducing sampling strategies which couple several torsions to
avoid large Cartesian movements in terminal residues (Ulmscheneider
and Jorgensen, 2003). Current computer programs for mMC simulations
in proteins, like MCPRO (Jorgensen and Tirado-Rives, 2005), work with
atomistic physical potentials but can easily be adapted to work with a
variety of coarse-grained pseudo-physical potentials.
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Monte Carlo simulations have the advantage with respect to NMA that
no harmonicity is assumed for the derivation of sampling, allowing then
the detection of large anharmonic conformational transitions. Unfortu-
nately, this generality is gained at the expense of a much larger computa-
tional effort. Compared with sampling techniques in Cartesian space, such
as molecular or Langevin dynamics, mMC has the advantage that the user
can select the important degrees of freedom, focusing then the sampling
effort in relevant coordinates. Unfortunately, the later advantage can
become a problem in cases where selecting a priori the important degrees
of freedom is not obvious. An additional shortcoming of MC that cannot
be ignored is the loss of the time coordinate in the simulation, something
which represents a major problem in nonequilibrium simulations.

Recently, strategies to couple Monte Carlo with ENM-NMA have been
suggested (Rueda et al., 2007b), the idea is not to sample directly the
residue movements on the ENM potential, but to activate the movements

Original configuration
(R0), E(R0)

Generate random move
(R�t), E(R�t)

Compute acceptance probability
Paccept= min(1,exp(-DE)/kbT)

Define working conf
(Rt) = (R0)  

Accepted?

No

Yes

(Rt) = (R1)  (Rt) = (R1)  

(R1) = (R0)  (R1) = (R�t)

Store (R1) Store (R1)

FIG. 8. Flowchart of the metropolis Monte Carlo sampling algorithm.
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of the proteins as displacements along the essential deformation modes.
Trajectories of the particles can then be obtained using a back projection
to Cartesian space. According to this procedure, a set of modes are
selected and movements along them are randomly made and its associated
energy is computed using Einstein’s equation for harmonic oscillator:

V DR
!� �

¼ 1

2

XM
i¼1

kBT

li
DR
!
i

� �2
ð24Þ

where the DRi, multidimensional vector, represents the displacement
along principal deformation mode i, l stands for eigenvectors (in dis-
tance2 units) obtained by diagonalization of the nonmass-weighted Hes-
sian matrix, kB is Boltzmann constant, and T is the absolute temperature.
The sum is typically extended to a limited set of essential deformation
modes.
Equation (24) can be generalized by adding perturbational terms in any

coordinate space, allowing then to escape from pure harmonic represen-
tation, or can be modified as to give higher weight to essential deforma-
tion modes that, for example, overlap better to a given transition vector or
that correlate with a higher-order motion in a given region of the protein.
The result is that we can bias the sampling to guarantee better represen-
tation of biologically relevant degrees of freedom.

C. Langevin Dynamics

Just 3 years after the publication of Einstein’s description of Brownian
motion, Paul Langevin modeled the continual movement of particles
suspended in a fluid with Newton’s second law. He considered that the
Brownian motion of a particle (of mass m) in a fluid is due to the
molecular-thermal agitation of the surrounding solvent (which lead to
random collisions on the particle, x

!
) and a dispersive force accounting

for the viscous resistance the particle feels on going through the fluid
(�g v!) at velocity v!. Mathematically, it can be set as:

mi
d v!i

dt
¼ mi

_v!i ¼ �g v!i þ x
!

i tð Þ ð25Þ

where for the sake of simplicity, the random force is supposed to satisfy
two conditions (Kubo, 1959, 1965; Lemons, 1977): (i) the stochastic
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process x
!

tð Þ is Gaussian with zero mean, and (ii) its autocorrelation
function has the form

x
!

i tð Þ x
!

j t
0ð Þ

D E
¼ s2DijD t � t 0ð Þ ð26Þ

where s2 is the standard deviation (also named noise intensity) associated
with the Gaussian process x(t) whose expression is defined below
(Eq. (29)), dij is the Kronecker’s delta and d(t� t 0) is the Dirac’s delta.

The considerations made above about the forces acting on the Brow-
nian particle inspired physicists and biologists to apply them in the
resolution of the equation of motion of proteins in the case that an
explicit environment is substituted by a continuum media, which behaves
in a stochastic way. Within the Langevin dynamics approach, the equations
of motion of a protein become defined as:

m _v!i ¼ F
!

i � g v!i þ x
!

i tð Þ ð27Þ
where for sake of simplicity we have used compact notation for time
derivatives. The force F

!
i acting on the different protein particles comes

typically from a potential energy V r!ð Þ,

F
!

i ¼ � @V r!ð Þ
@ r!i

ð28Þ

Note that at the limit of high friction and low forces, Eq. (27) converges to
Brownian’s equations of motion, while in the absence of collisions with the
continuum solvent, it converges to Newton’s equations of motion. Note
also that besides of representing the solvent, friction and noise terms play
together to create a natural thermostat for the system. Thus, the random
energy shots given by the noise term are balanced by the dissipative force
given by friction, keeping then constant the temperature. Note that
friction and stochastic collision dissipation terms are related by the so-
called fluctuation–dissipation relation:

s2 ¼ 2mikBTg ð29Þ
which means that the standard deviation of noise can be expressed as a
function of the mass of the particle, the temperature of the thermal bath,
and the factor of the dissipation force. If more particles have to be
considered, one has to use a different noise term with such a different
standard deviation with the corresponding particle mass.
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Formulation of Eq. (27) in integral form largely facilitates the posterior
numerical analysis. For this purpose, we should first define a characteristic
time t¼mg� 1 accounting for the loss of energy due to the dissipation
term. Dividing all terms in Eq. (27) by g and using the identity:

t v!i þ v!i ¼ te�t=t d

dt
et=t v!i

� �
ð30Þ

we obtain:

d

dt
et=t v!i

� �
¼ m�1

i et=t F
!

i þ x
!

i

� �
ð31Þ

whose integration leads to the following integral expression for the veloci-
ty at time D t:

v!i ¼ eDt=t v!0
i þ m�1e�Dt=t

ðDt
0

F
!

ie
t 0=tdt 0 þ

ðDt
0

x
!

i tð Þet 0=tdt
� 

ð32Þ

Considering an integration time step D t small enough as to assume that
the force has a constant value Fi

0 during the integration, we can rewrite
Eq. (32) as:

v!i ¼ e�Dt=t v!0
i þ g�1 1� e�Dt=t

� �
F
!0

i þ m�1

ðDt
0

x
!

i tð Þe t 0�Dtð Þ=tdt 0 ð33Þ

Note that we are forced to maintain the explicit integral for the noise
function (last term in Eq. (33)), since unlike the force, it is not a smooth
and deterministic function, and, accordingly, we cannot assume that it takes
a constant value at integration step.Theupdatedposition canbeobtainedby
integrating both sides with respect to time to provide the new position:

r!i ¼ r!0
i þ t 1� e�Dt=t

� �
v!0
i þ Dt

l
1� t

Dt
1� e�Dt=t
� �� �

F
!0

i

þ g�1m�1

ðDt
0

1� e t 0�Dtð Þ=t
� �

x
!

i dt
0

ð34Þ

where again we cannot skip the explicit integral formalism for the noise
contribution to the new position. Fortunately, these stochastic contribu-
tions to the updating of positions and velocities have the shape of the so-
called stochastic integral (Van Kampen, 1981; Gardiner, 1989):ðDt

0
G tð ÞdW tð Þ � sG 0ð Þ u! 0ð ÞDt1=2 þ O Dt3=2

� �
ð35Þ
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where G(t) is an arbitrary analytical function and dW(t) corresponds to a
differential Wiener process (dW tð Þ ¼ x

!
idt ). Assuming a small time step,

we can approximate the integral up to leading order in dW(t), where u(0)
is a Wiener process of variance equal to 1.

Implementation of Langevin equations with different types of pseudo-
physical coarse graining is straightforward using in most cases standard
highly optimized atomistic MD codes, or other more specifically developed
codes in the case of simpler harmonic potentials (Emperador et al., 2008a;
Camps et al., 2009). In these cases, Langevin dynamics offers the advan-
tage with respect to NMA that the introduction of perturbation terms (not
harmonic in nature) is straightforward and that updating of the reference
coordinates for the different harmonic terms along time, or any sampling
variable is also very simple.

D. Discrete Molecular Dynamics

This technique is related to standard MD but avoids the integration of
Newton’s equations of motion by assuming a ballistic regime, that is, by
considering that the particles move at constant velocity in flat wells (see
below). Under these conditions, the position of a particle after some
period of time (the minimum collision time) is given by:

r!i t þ tcð Þ ¼ r!i tð Þ þ v!i tð Þtc; ð36Þ
where r!i and v!i stand for positions and velocities, and tc is the minimum
among the collision times tij between each pair of particles i and j:

tij ¼
�bij �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bij 2 � vij 2 rij 2 � d2


 �q
vij 2

; ð37Þ

where interparticle distance rij is the modulus of r!ij ¼ r!j � r!i , the
relative velocity vij is the modulus of v!ij ¼ v!j � v!i , bij ¼ r!ij � v!ij , and d
is the distance corresponding to the wall of the square well. Note that if
the inner term of the square root is negative (i.e., negative collision times),
the two particles will not collide.
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When two particles collide (assuming elastic collision regime), there is a
transfer of linear momentum in the direction of the vector r!ij and
accordingly:

mi v
!

i ¼ mi v
!

i
0 þ D p

! ð38Þ

mj v
!

j þ D p
! ¼ mj v

!
j
0

where the prime denotes the variables after the collision.
In order to calculate the change in velocities upon collision, the velocity

of each particle is projected in the direction of the vector r!ij and
conservation rules are applied:

miui þ mjuj ¼ miui
0 þ mjuj

0 ð39Þ

1

2
miui

2 þ 1

2
mjuj

2 ¼ 1

2
miui

02 þ 1

2
mjuj

02 þ DV ; ð40Þ

where ui, uj are the projections of the velocities vi, vj along the direction
r!ij and DV stands for the height of the step in the interatomic potential.
The transferred momentum can be easily determined from:

Dp ¼ mimj

mi þ mj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uj � ui


 �2 � 2
mi þ mj

mimj

� �
DV

s
� uj � ui


 �( )
; ð41Þ

Note that the two particles can overcome the potential step as long as:

DV <
m1m2

2 m1 þ m2ð Þ uj � ui


 � 2 ð42Þ

Otherwise, the particles rebound and Eq. (41) reduces to:

Dp ¼ mimj

mi þ mj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uj � ui


 �2q
� uj � ui


 �� �
ð43Þ

which taking the negative solution of the root leads to:

Dp ¼ 2mimj

mi þ mj
ui � uj


 � ð44Þ

This corresponds to the transfer of linear momentum in the case of an
infinite wall, like those used to prevent steric clashes or the infinitely deep
square wells used to define covalent bonds.
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In practice, a DMD calculation is an extremely simple process: (i) create
a list of events (‘‘collisions’’), (ii) compute the changes in velocities after
first collision, (iii) update collision list and repeat the process. Since no
integration is made, there is no need to recompute energies, forces,
positions and velocities every few femtoseconds, and trajectories progress
from collision to collision, irrespective of the collision time. The technique
is then ideal to represent systems with very slow dynamics (for example
diffusion processes), where traditional MD (or related techniques) will be
rather inefficient. As noted above, DMD requires the use of flat well
potentials, which implies some intrinsic simplification, but using a reason-
able combination of flat well potentials quite reasonable approximation to
physical potentials can be achieved (Zhou and Karplus, 1999; Ding et al.,
2005; Ding and Dokholyan, 2008; Emperador et al., 2008a,b, 2010).
Despite its simplicity, the technique seems able to provide reasonable
approximation to the real dynamics of proteins, with a very small compu-
tational cost. Practical applications of DMD in a variety of cases, from
equilibrium dynamics of proteins to folding, docking or protein aggrega-
tion have been published (Zhou and Karplus, 1999; Ding et al., 2005;
Ding and Dokholyan, 2008; Emperador et al., 2008a,b, 2010). In order to
allow a more general use, the technique has been recently implemented in
our webservice-based tool FlexServ (http://mmb.pcb.ub.es/FlexServ;
see Fig. 9).

IV. Conclusions

The improvement in computer codes and the development of new
hardware are dramatically increasing the range of applicability of atomistic
models coupled to MD simulation protocols. However, there are and there
will be many cases, in the near future, where atomistic MD simulation is
not recommended for several reasons: (i) the timescale of the dynamic
process is too large, (ii) the system is too large, or (iii) there is a strong
requirement for a fast response. In these cases, the latest generation of
coarse-grained modeling techniques provides us with powerful tools to
gain qualitative insight into the protein dynamics.

Recent software developments are approaching coarse-grained model-
ing to general users, by allowing access to web pages and web applications
which can be used remotely by nonexpert users (Fig. 9). We are then
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facing a scenario, where coarse-grained analysis of protein flexibility will
be done as a routine task in biology laboratories, even by nonexperts with
little or no knowledge on the physical foundations on the analysis that is
performed. We will also witness the systematic use of coarse-grained
technique as a prior step to much more demanding atomistic MD simula-
tions. Clear examples in the later area are going to be frequent in the
representation of complex conformational transitions by means of state-of-
the-art techniques such as steered MD, umbrella sampling, or meta-dy-
namics, which require to be effective some previous knowledge of the
preferred transition pathway. Finally, even not discussed in this chapter,
we can expect an explosion of hybrid methods combining low and high
resolution of proteins and of methods based on the ‘‘open boundary’’
paradigm, where atomistic and coarse grain representation of parts of the
protein will interchange as trajectory evolves.

FIG. 9. General Scheme of our FlexServ webpage for accessing to a battery of
coarse-grained methods using as input PDB entries.
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Abstract

In the past two decades, there has been increasing concern about the
potentially adverse effects of exogenous endocrine active substances (EAS)
that alter the function of the endocrine system by interfering with hor-
mone regulation. The mechanistic pathways by which EAS may elicit
adverse effects, such as developmental and reproductive toxicity, often
involve direct binding to nuclear hormone receptors. Certainly, the best
studied nuclear receptor is the estrogen receptor (ER). Large-scale in vitro
and in vivo methods have been developed to assess the estrogenic toxicity
of chemicals. However, there are financial and animal welfare concerns
related to their application. Quantitative structure–activity relationship
(QSAR) approaches have proven their utility as a priority setting tool in
the risk assessment of EAS. In addition, the models help to clarify the
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binding mode of the interacting substances. As estrogen-mediated effects
are usually related to ligand–receptor interactions, and as there have been
comprehensive structural studies on the ER, molecular modeling together
with other in silico approaches provide a suitable means of studying these
estrogenic effects. This chapter provides an overview of the molecular
modeling approaches applied to ligand–ER interactions. The progress in
the field is outlined, and some critical issues are analyzed based on recently
published models where these approaches are applied.

I. Introduction

In the 1996 European Workshop on the Impact of Endocrine Disrupters
onHumanHealth andWildlife (EC, 1996), an endocrine-disrupting chemi-
cal (EDC) was defined as an exogenous substance or mixture that alters the
function of the endocrine system and consequently causes adverse health
effects in an intact organism, or its progeny. It is important to distinguish
between endocrine active substances (EAS), that is, chemicals that interact
with and affect the functioning of the endocrine system, but which do not
necessarily trigger or contribute to the development of adverse effects in
humans or wildlife, and endocrine disruptors (EDs), which according to the
Weybridge definition, are EAS that are additionally associated with evidence
of adverse effects at the in vivo level. Currently, there are no internationally
harmonized criteria for determining the ED status of a chemical, which
means that the label of ED is not consistently applied.

Over the past decade, there has been a focused international effort to
identify the possible adverse effects of the EAS on humans and wildlife.
Chemicals capable of acting as EAS include pesticides, pharmaceuticals,
natural foodstuffs, and industrial chemicals. Ecological exposures to such
substances are primarily from industrial and wastewater treatment efflu-
ents, whereas human exposures are mainly through the food chain
(Kavlock et al., 2008). Regarding the possible human health effects of
EAS, concerns have been related to effects on male reproductive health,
hormone-dependent cancers, and effects on the immune system. There
have even been links to rises in obesity and diabetes. In relation to the
environment, concerns have been related to effects on development,
growth, and reproduction of the living organisms.

In many cases, EAS act by direct binding to a nuclear hormone receptor
(NR). This interaction, which triggers a cascade of molecular events
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resulting in effects at the in vivo and population levels, is referred to as a
molecular initiating event. NRs are ligand-inducible transcription factors
involved in the regulation of specific target genes, and they are of critical
importance for cellular processes such as cell growth, differentiation, and
metabolic processes (McKenna and O’Malley, 2002). Members of the NR
superfamily include receptors for various steroid hormones as estrogen,
androgen, progesterone, several corticosteroids, retinoic acid, thyroid
hormones, vitamin D, and dietary lipids (the peroxisome proliferator-
activated receptor, PPAR).
The manner in which ligand binding regulates the activity of NRs is

through a distinct ligand-inducible receptor conformation that triggers a
number of downstream events resulting in the up- or downregulation of
gene expression. Binding of EAS to the receptor may mimic the biological
effect of a hormone, thus initiating the cell’s normal response to the
naturally occurring hormone at the wrong time or to an excessive extent
(agonistic effect). Alternatively, EAS may bind to the receptor but not
activate it. Instead, the presence of the chemical in the receptor prevents
binding of the natural hormone (antagonistic effect). A third category of
ligands, termed selective estrogen receptor modulators (SERMs), have the
ability to act as both agonists and antagonists, depending on the cellular
and promoter context.
The largest and best studied group of NRs is the estrogen receptor (ER)

family. It mediates the effects of the steroid hormone estradiol (E2) in
males and females. It is needed for the development and maintenance of
reproductive tissues but is also present in a number of nonreproductive
tissues, such as bone, liver, brain, and the cardiovascular system
(Katzenellenbogen, 1996; Katzenellenbogen et al., 1997).
Since the discovery in the 1930s that compounds which were structurally

unrelated to E2 could mimic its effects, scientists have investigated the
estrogenic activity of a vast range of both naturally occurring and man-
made chemicals. Such studies have revealed numerous structural motifs
that are able to bind to ER and exert either estrogenic or antiestrogenic
activities. Whereas most possess a phenol group—a prerequisite for high-
affinity binding—these compounds exhibit, in addition, a huge variety of
molecular scaffolds with diverse connectivities (Fang et al., 2001; Pike, 2006).
While traditional in vitro assays for detecting potential ED binding may

be a suitable choice for prioritizing chemicals for additional in vivo animal
studies, there are limitations related to the time and cost associated with
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screening thousands. In contrast, the development and application of
in silico models could be a more viable approach when setting priorities
for further experimental evaluation (Tong et al., 2003). Beyond predic-
tion, these models offer numerous additional benefits as (i) elucidation of
existing structure–activity relationships, (ii) providing insights into
mechanisms of action (e.g., agonist vs. antagonist), (iii) identifying key
structural features associated with high/low activity, (iv) suggesting new
design strategies, and (v) narrowing the dose range for planned assay
(Fang et al., 2003).

Among the numerous in silico approaches that have been applied to the
modeling of estrogenic effects, those that make use of the three-dimen-
sional (3D) structures of both the receptor and the ligand, referred to
here as 3D molecular modeling approaches, play an important role. The
first reason is that the molecular modeling is directly applicable to recep-
tor-mediated effects, as discussed above. Second, high-resolution crystallo-
graphic structures are available of the ER–ligand-binding domain (LBD)
bound to a range of ligands (Fig. 1). This provides further opportunities to
rationalize receptor–ligand structure–activity relationships using molecu-
lar modeling approaches.

In this study, we provide an overview of the recent advances in the
modeling of the estrogen-related, receptor-mediated toxicity through
application of molecular modeling tools, which are based on 3D structures
of the ligands and the receptor. The three main sections describe the
structural and functional characterization of the ER and its ligands, the
available modeling methodology including 3D QSAR techniques, pharma-
cophore identification, docking, virtual screening (VS), as well as case
studies on the modeling of ligand–ER interactions.

II. Structural Studies of the Estrogen Receptor and Its

Ligands

A. Structural Characterization of Estrogen Receptor Subtypes

Two ERs, ERa and ERb, regulate gene expression in response to estro-
gen exposure. They are encoded by distinct genes or separate chromo-
somes and display unique and overlapping physiological roles that
are highly dependent on the tissue and cell type (Shanle and Xu, 2011).
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Both ER subtypes possess a modular organization that is characteristic of
theNRs—five functional domains from theN- toC-termini, designatedA/B,
C (DNA-binding domain, DBD), D, E (LBD), and F (Fig. 2) (Evans, 1988).
There are two parts associated with distinct activation functions (AF1 and

AF2) that facilitate transcriptional activation of target gene expression by
promoting interactions with coregulator proteins. The first one is a part of
A–B regulatory domain, and its action is independent of the presence of
ligand. The transcriptional activation of AF1 is normally very weak, but it
does synergize with AF2 in the LBD to produce a more robust upregulation
of gene expression. The A–B domain is highly variable in sequence between
both subtypes (�20%). C domain containing DBD is highly conserved
(>90% sequence identity between both subtypes). It is responsible for
binding to DNA at estrogen response elements. The site for hormone
recognition is located in the carboxy-terminal LBD. It contains AF2 whose
action is dependent on the presence of a bound ligand. AF2 in the LBD is
localized in a conformationally flexible region and is involved in recruit-
ment of coactivators and corepressors (Pike, 2006). ERa andERbhave rather
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FIG. 1. Ligands commonly used in ER structural studies.
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different AF1domains: they share only 18% similarity, and theAF1domainof
ERa enhances estrogen-induced expression of reporter genes to a greater
extent than that of ERb (Shanle and Xu, 2011). The AF2 consists of a helices
that form a hydrophobic groove to which cofactors can bind.

Numerous crystal structures have been determined for the LBDs of both
subtypes, and these have given a detailed insight into the structure and
alterations during the ligand binding. The LBDs of the both subtypes ER
share about 60% sequence identity. However, the residues composing the
E2 binding sites in ERa and ERb are identical except two pairs (see below).

Because of the significance of the receptor-mediated effects, the LBDs are
the focus of scientific attention. The overall structure of ER LBD adopts the
classical helical sandwich fold (Fig. 3A). Twelve a-helices are arranged into
three layers (Wurtz et al., 1996). The two parallel outer layers sandwich a
central, orthogonal one that occupies the top half of the LBD fold. Thus, a
cavity is formed in the lower part of the domain where the ligand binds. The
bound ligand induces conformational changes allowing dimerization and
DNA binding. The resultant LBD conformation depends on the steric
parameters of the ligands and determines what type of coregulator is
recruited: the binding of agonists favors coactivator recruitment, leading
to transcriptional activation, whereas binding of antagonists favors corepres-
sor interaction, leading to inhibition of transcriptional activation.

Many EAS compete with the endogenous estrogen at the ER-binding site,
directly influencing the ER signaling. Therefore, the receptor-mediated
mechanism of EAS action is probably the best studied disruption of the ER
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A/B DBD LBDD F

552   595
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N-ERb
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FIG. 2. Schematic presentation of ERa and ERb with the functional domains
(A/B, DBD, D, LBD) and activation functions (AF1 and AF2) indicated.

222 TSAKOVSKA ET AL.



signaling. Crystal structures of theLBDsof the twoER subtypes reveal features
of the binding pockets that are important to understand which compounds
may display estrogenic activity through direct interaction with the receptor.
However, even in one structural series of ligands, large changes in affinity
often result from minor stereochemical changes. These unique ligand-bind-
ing properties are due to the size and flexibility of the ligand-binding pocket.
The ER is unusual among the steroid receptors in that the size of the binding
pocket is considerably larger than the ligand(450and390 Å3 forERa andERb
pockets, respectively, and 245 Å3 for E2 molecule) (Brzozowski et al., 1997;
Pike et al., 1999), thus allowing a diverse set of small molecules to access the

(A) (B)

FIG. 3. (A) Structure of the ERa ligand-binding domain with bound estradiol
(PDB ID 1ERE, Brzozowski et al., 1997). The upper part of the domain appears to be a
stable, rather rigid structure, and the lower part, in which the ligand is accommodated,
appears to be more flexible and dynamic (Katzenellenbogen and Muthyala, 2003). The
protein 3D structure is drawn as a ribbon and colored according to the secondary
structure (red—helices, yellow—strands, blue—turns, light gray—loops); E2 is rendered
in a space-filling form with the C-atoms colored in dark gray and the O-atoms in red. (B)
A closer view of the E2 binding pocket with the residues involved: Met343, Leu346,
Thr347, Leu349, Ala350, Glu353, Leu384, Leu387, Met388, Leu391, Arg394, Phe404,
Met421, Ile424, Leu428, Gly521, His524, Leu525, Met528. The amino aids are shown in
stick rendering and colored by atom types: C, dark gray; O, red; N, blue; S, yellow; the C-
atoms in the residues that make HBs with E2 (Arg394, Glu353, and His524) are colored
in magenta. The water molecule is presented as a red ball. The ligand surface is colored
by atom types and the structure is shown in green lines. The figures were generated by
MOE (MOE 2010.10).
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pocket. Figure3A illustrates the structureof thewholeLBDofERa andFig. 3B
the E2 binding site with the residues involved in interactions with the
ligand (in a different orientation compared to Fig. 3A for a better view).
The pocket is composed of about 20 amino acids and one water molecule.
The residues interactwitheachotherandwithwater throughhydrogenbonds
(HBs).Thehighaffinity toE2 is a result ofhydrpophobic interactionsandHBs
between the hydroxyl group of E2, a water molecule in the cavity and amino
acid residues in the ligand-binding pocket.

In particular, the network between the phenolic hydroxyl in A-ring of E2,
water molecules, and amino acids Glu353 and Arg394 of ERa and Glu305
and Arg346 of ERb is of critical importance for estrogenic activity (Fig. 4).
On the other side of theE2molecule, thehydroxy groupof theD-ring shares
a HB with His524 in ERa and His475 in ERb. EAS binding directly to ER
share structural similarities with E2: they have a phenolic group that mimics
the steroidal A-ring of E2 and a rigid scaffold of high hydrophobicity. The
second hydroxy group if present is recognized by a single histidine (His524
orHis475). The orientation of these histidines is flexible and can accommo-
date different ligand-binding modes. Thus, the basic estrogen pharmaco-
phore is well established and consists of two appropriately spaced hydroxy
groups at either end of a near-planar hydrophobic scaffold (Anstead et al.,
1997). Both receptors differ by two pairs of residues: Met421 corresponds to
Ile373 andLeu384 toMet336 inERa andERb, respectively. Even slight, such
differences can contribute to subtype selectivity to some chemicals, al-
though both receptors bind E2 with similar affinities.

LBD flexibility is another feature determining the ability of the ER to
bind diverse chemicals. Rigid regions recognize the estrogenic features
such as the phenolic ring and hydroxyl–hydroxyl separation. The flexible
ones allow accommodation of bulky substituents like the long side chains
of SERMs. Flexibility also allows the ER to shrink the volume of the cavity
to better accommodate smaller ligands (Pike, 2006).

B. Estrogenic Endocrine Active Substances

Estradiol, estrone, and estriol are the main endogenous mammalian
estrogens. The exogenous compounds that interfere with the normal ER
signaling include pharmaceuticals, industrial chemicals, pesticides, and
phytoestrogens (Fig. 5).
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FIG. 4. Binding of the ligand E2 (green) in: (A) ERa (PDB ID 1ERE); (B) ERb
(PDB ID 3OLS, Mocklinghoff et al., 2010). The key residues involved in HB interactions
(magenta dot lines) are rendered in balls and sticks with C-atoms colored in magenta;
the differing residues Met421 and Ile373 in ERa; and Leu384 and Met336 in ERb are
rendered in sticks and colored according to the atom types (C, dark gray; O, red; N, blue;
S, yellow; polar H, light gray). HBs are scored in percents according to the distance and
orientation of the polar atoms: the higher the score, the closer they are to the optimal
values. This figure was generated by MOE.
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1. Pharmaceuticals

Many synthetic estrogens have been designed for pharmacological pur-
poses. They are constructed by certain substitutions on the steroidal
estrogen skeleton that increases estrogenic potency by enhancing binding
to the ER. However, substitution with large moieties at given positions may
lead to antiestrogenic effects (Katzenellenbogen and Muthyala, 2003).

Pharmaceuticals

Diethylstilbestrol
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4-Methylbenzylidene
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FIG. 5. Exogenous EAS: pharmaceuticals, industrial chemicals, pesticides,
phytoestrogens.

226 TSAKOVSKA ET AL.



There are alsomany classes of synthetic, nonsteroidal estrogens. A number
of nonsteroidal estrogens have been developed as tissue-selective estrogens—
SERMs (Grese and Dodge, 1998). These agents are used for breast cancer
prevention and treatment and for menopausal hormone replacement.
Because estrogen pharmaceuticals are rationally constructed for their

hormonal effects in the body, these compounds are not typically thought as
potential EDCs in humans. Nevertheless, some of these compounds have
been found in rivers and streams where they can affect aquatic wildlife
(Sumpter, 1998). The use of certain estrogen pharmaceuticals such as
anabolic agents in livestock can result in residual levels in meat or animal
by-products through which other animals and humans can be exposed.

2. Industrial Chemicals and Pesticides

Quite a number of man-made compounds, or their metabolites, have
been found to have estrogenic activity. Although these are typically of low
potency, some are very lipophilic and potentially environmentally persis-
tent and bioaccumulative compounds. For example, certain components
of plastics, dialkyl phthalates used as plasticizers, and bisphenol A, a
component of thermostable polycarbonate polymers, have been reported
to be weak estrogens (McLachlan, 2001).
A number of highly chlorinated aromatic substances have been found to

have estrogenic activity. These include polychlorinated biphenyls (PCBs),
which are typicallymixtures ofmany isomers with varying degrees of chlorine
substitution (Layton et al., 2002). The highest potency is found with PCB
metabolites that have a parahydroxy group (Connor et al., 1997), but the
binding affinities are still relatively low. Methoxychlor and DDT are organo-
chlorine pesticides that can exhibit estrogenic activity through interaction
with both subtypes of ER. In addition, a variety of nonaromatic chlorinated
pesticides have been reported as estrogens. For instance, endosulfan and
dieldrin are polycyclic and heavily chlorinated (Soto et al., 1994), and though
they are not phenols, each of them has a polar moiety that might fulfill this
function.

3. Phytoestrogens

These are naturally occurring compounds in plants that mimic steroidal
estrogens. They have polyphenolic structures and include flavonoids, lig-
nans, coumestans, and stilbenes. These natural estrogens are low-affinity,
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low-potency ligands for the ER. Exposure occurs mainly through dietary
intake of food, including fruits, herbs, vegetables, and especially soy which
contains high levels of these agents. Among the different classes of phyto-
estrogens, flavonoids are one of the most widespread in the food.

Many of the phytoestrogens that are natural components in food are
generally considered to confer a health benefit (Katzenellenbogen and
Muthyala, 2003). Nevertheless, concerns have been raised about the possi-
ble health consequences of exposure to phytoestrogens in certain situa-
tions. For instance, many animal studies indicate that phytoestrogens can
compete for ER binding and modulate its normal function; in transgenic
estrogen reporter mice, genistein inhibited the estrogenic response of E2
in the liver (Shanle and Xu, 2011).

III. Molecular Modeling Approaches to Investigate Estrogen

Receptor-Mediated Toxicological Effects

QSARs correlate the change in the binding affinity within a series of
ligands with the same mechanism of action and comparable manner of
binding to the changes in their structures (Kubinyi, 1995). While their
primary function in the drug design is lead discovery and optimization, in
the field of toxicology, they have played an important role as a priority
setting tool for risk assessment. In this context, it is important to note that
the observation, or prediction, of receptor binding does not constitute
proof of endocrine-disrupting effects. It is simply one molecular event
among a whole series of events (mode-of-action pathway) which under
certain circumstances may lead to endocrine-related effects.

QSARs based on three-dimensional models (3D QSARs) are of particu-
lar interest when discussing ER-mediated effects. These models rely on the
3D structures of the ligands and binding sites in order to quantify the
ligand–receptor interactions and to help in clarifying the molecular
mechanisms of interactions.

The ER is one of the main targets investigated using QSAR and molec-
ular modeling approaches in the identification of potential EDCs. Usually,
the models are based on in vitro data. Various tests have been developed to
estimate the potential estrogenic effect of chemicals in vitro. They can be
divided roughly into three groups: (i) ER competitive binding assays
estimating the binding affinity of a ligand to ER; (ii) reporter-gene assays,
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encoding not only ligand–ER binding but also transcriptional and transla-
tional effects; and (iii) cell proliferation assays (Devillers et al., 2006).
Taking into account the complexity of the ED phenomenon, it should

be noted that while QSAR approaches provide a useful means of simulat-
ing specific key events, they cannot on their own address the entire
phenomenon. To capture the entire sequence of events comprising the
mode of action would require the development of a battery of in silico tools
integrated with in vitro methods (Roncaglioni and Benfenati, 2008).

A. Three-Dimensional Quantitative Structure–Activity Relationships

As the binding of EAS to the ER receptor depends on the 3D structures of
both ligand and receptor, different 3D QSAR models have been derived for
predicting ER-binding affinity. Compared to classicalQSAR approaches, they
allow for better understanding and estimation of the ligand–receptor inter-
action. However, one should take into account that these methods are based
on the assumption of the same binding mode of ligands. Thus their applica-
tion to large databases with structurally heterogeneous compounds could be
problematic or at least would require precise selection of subsets and devel-
opment of a number of models for the different training sets.
These methods are based on the concept of molecular interaction fields

(MIFs). The main idea is placing the structure of interest that is prelimi-
narily optimized within a lattice that simulates the receptor environment
and calculating interaction energies of the molecule with a probe (e.g.,
carbon atom) in each intercept of the grid.
The GRID method was the first MIF to calculate interaction energies

between a targetmolecule andmonoatomic probes suchas a carbonyl oxygen
atomor a negative carboxyl oxygen atom, or polyatomic probes such as water,
an amino group, or a methyl group. Although fully empirical, it allows a
precise evaluation of the total interaction energy as the sum of three compo-
nents, namely (1) van der Waals interactions; (2) electrostatic interactions;
and (3) hydrogen bonding (Goodford, 1985; Cruciani, 2006).
Among the MIF 3D QSAR approaches, comparative molecular field

analysis (CoMFA) has been widely used to correlate the differences within
3D MIFs with the binding affinity to ER (Kubinyi, 1993). The more recent
3D QSAR approach, comparative molecular similarity indices analysis
(CoMSIA), has also been widely applied in the field of ER modeling
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(Klebe, 1998). Both approaches require the studied structures to
be appropriately aligned and ‘‘placed’’ in a cubic grid that simulates the
receptor space. CoMFA evaluates the interaction energy between a probe
atom and each atom in the aligned molecules in regularly spaced grid
points. In the standard implementation of the method, only Lennard-
Jones and Coulomb potentials for calculation of the steric and electrostat-
ic energies, respectively, are used to describe the enthalpic contribution to
the free energy of binding. Because of the singularity of these potentials at
the atomic positions, their applicability is restricted to regions outside the
molecules. In addition to the standard CoMFA method, an empirical
hydrophobic field-like 3D function has been calculated with the program
HINT (hydrophobic interactions) and imported into the SYBYL imple-
mentation of CoMFA. The addition of hydrophobicity describes the en-
tropic contribution to the ligand–receptor interactions and appears to
offer increased interpretability of the CoMFA models (Kellogg et al.,
1991). The CoMSIA method calculates steric, electrostatic, and HB
donor and acceptor similarity indices of aligned molecules at regularly
spaced grid points occupied by a common probe atom. The most impor-
tant contributions responsible for binding affinity are considered to be
covered by these properties. Gaussian-type functions with no singularities
are used, so in contrast to CoMFA, no arbitrary definition of cutoff values
is required. Both CoMFA and CoMSIA use the partial least squares analysis
to correlate the structural parameters calculated in the 3D QSAR analysis
with the biological activity of interest (Wold et al., 2001). The model built
can be used to predict the activity of new structures. Based on the model,
so-called contour maps can be built. They identify the structural regions
corresponding to differences in the fields which contribute most (about
80% of the signal) to the differences in investigated activity.

The 3D QSAR analysis requires preliminary geometry optimization and
energy minimization of the molecular structures as the bioactive confor-
mation—the one that interacts with the receptor—is generally assumed to
be a low-energy conformation. For this purpose, molecular mechanics,
semiempirical, or ab initio quantum chemical methods are used.

As 3D QSAR is based on the assumption of the same mechanism of
action and the same binding mode of the molecules, the alignment of the
structures is a critical step in the modeling process. It is based on the
potential pharmacophore points or the common structural skeleton in the
absence of the pharmacophore hypothesis.
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The pharmacophore modeling is an important step in the 3D QSAR
analysis. In fact, the pharmacophore is a 3D representation of the arrange-
ments of key structural features that are responsible for binding of the ligands
to the receptor. These may include HB donor and acceptor groups, hydro-
phobic regions, ionizable groups, etc. A pharmacophore search is rather
extensive procedure that requires energyminimization, conformational anal-
ysis of flexible ligands as well as alignment of potentially important structural
features for various conformers using least squares fitting (Madden and
Cronin, 2010). The selection of the molecules to be superimposed is very
important in order to obtain significant results.
Despite the fact that there are many crystallographic studies of ER and

that crystallographic data are considered, in general, as the most reliable
structural information to be used for molecular design, pharmacophore
modeling and other ligand-based molecular modeling techniques still
have an important place in the field of ER modeling. This is because
the docking studies could meet some general problems related to crystal-
lization process: (i) possible inadequate resolution of crystallographic
structures; (ii) possible structural distortions of the ligand–protein com-
plex during crystallization; (iii) lack of information on hydrogen atoms in
the crystallographic structures; (iv) crystallographic structures generally
ignore structural heterogeneity related to protein anisotropic motion and
discrete conformational substates (Taha et al., 2010). In addition, 3D
QSAR models could be very informative for predictive purposes.
Another 3D approach, named COREPA COmmon REactivity PAttern,

was developed by Mekenyan and Serafimova (2009). The COREPA ap-
proach is a probabilistic classification method which assesses the impact of
molecular flexibility on stereo electronic properties of chemicals. Similar-
ity between chemicals is analyzed by comparing their conformational
distributions, and the system automatically identifies the parameter that
best discriminate chemicals in groups. A Bayesian decision tree is then
developed for classifying untested chemicals.

B. Multidimensional Quantitative Structure–Activity Relationships

One of the critical points in CoMFA analysis is its limitation to a single
conformation of each ligand. It is appropriately addressed in 4D QSAR
(Hopfinger et al., 1997; Ekins et al., 1999; Vedani et al., 2000) in which
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each ligand molecule is presented by an ensemble of conformations,
orientations, and protonation states, respectively.

The basic concept of 5DQSAR reflects the situation that accommodation
of ligands into the binding site is often facilitated by the adaptation of
the protein to the ligand topology (induced fit)—a mechanism triggered
by the interaction between the smallmolecule and the protein. The induced
fit may be local including rearrangement of few side chains or global by
including main chain alterations (Vedani et al., 2006). In addition to
alteration in the topology of the binding pocket, the induced fitmay change
the hydrophobicity of subpockets or the solvent accessibility of the binding
site. Based on experimental data, the impact of the induced fit on ligand
binding has been investigated and consequently appropriate algorithms
have been developed and implemented in the Quasar software by Vedani
et al. (1998). Quasar generates a family of quasi-atomistic receptor surro-
gates that are optimized using a genetic algorithm. Thus it addresses the
situation when the structure of the receptor is unknown. A hypothetical
receptor is developed by means of 3D surface which surrounds the ligand
structures at the van derWaals distance. Its topology reflects the shape of the
binding site. The surface is populated with properties mapped onto it,
representing important information such as hydrophobicity, electrostatic
potential, and hydrogen-bonding ability (Lill et al., 2005).

Further, a 6DQSAR approach has been developed by the same group that
allows for consideration of different solvationmodels, and it has been imple-
mented in the Quasar software. Besides classical 3D structural presentations,
the approach considers also the possibility for more than one bound con-
formations, the induced fit ligand–receptor interaction, and the solvation
effect. The solvation terms (ligand dessolvation and solvent stripping) are
independently scaled for each different model within a surrogate family of
receptors, reflecting varying solvent accessibility of the binding pocket.

Based on these multidimensional QSAR approaches, VirtualToxLab has
been developed. This is a commercial tool for predicting endocrine-disrupt-
ing potential by simulating and quantifying the interactions with aryl hydro-
carbon, estrogen alpha/beta, androgen, thyroid alpha/beta, glucocorticoid,
liver X, mineralocorticoid, and PPAR gamma (Vedani and Smiesko, 2009;
Vedani et al., 2009). It also includes metabolic considerations by simulating
interactions with the enzymes CYP450 3A4 and 2A13. The tool is based on
the combined use of automated flexible docking with multidimensional
QSAR. Flexible docking is based on Yeti software (Vedani et al., 2005).
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It aims at identifying all potential orientations and conformations of a small
molecule within the binding pocket. The docking protocol includes two
steps: (i) the simulation of induced fit, allowing the protein to adapt its
shape to the different orientations and conformations of the small molecule
during the search procedure and (ii) the consideration of solvent effects
(typically water). Multidimensional QSAR is based on the Quasar software.

C. Receptor-Based Approaches

These techniques are used when the structure of the receptor is known.
They yield important information concerning the spatial orientation of
the ligands in the binding site and predict the binding free energy thus
evaluating the strength of the ligand–receptor interactions (Höltje et al.,
2008). They are often used as a complementary tool to improve the quality
of the developed 3D QSAR models. In particular, docking can be applied
to generate potential bioactive conformations for further QSAR analysis.
As a source of the 3D receptors’ structures often the Protein Data Bank

(http://www.pdb.org/pdb) is used. It is a free access repository of experi-
mentally determined protein structures which is continuously enriched and
updated. Once the structures of the ligands and receptor are available,
differentdocking algorithms canbe applied to ‘‘place’’ the ligand structures
into the receptor-binding site. Two main problems exist here: (i) which is
the ligand conformation that interacts with the receptor and (ii) how to
calculate the free energy of binding (scoringproblem).Different algorithms
usedifferent scoring functions to quantify protein–ligand interactions.Most
approaches rely on molecular mechanics force fields. Others use available
experimental data to obtain parameters for some relatively simple functions
that allow quick estimation of the binding energy (Höltje et al., 2008). The
estimated values allow discrimination between active and inactive mole-
cules. However, the developed scoring functions are still far from a precise
description of the highly complex terms that need to be taken into account
when the free energy is quantified.
Two main strategies exist for the placement of the molecules into the

receptor pocket (Schneider and Baringhaus, 2008): either the whole
molecule is docked (like DOCK [Kuntz et al., 1982], GLIDE [Friesner
et al., 2004], GOLD [Jones et al., 1997] programs), or it is virtually
dissected into structural fragments that are reconstructed in the binding
site (e.g. FlexX program [Rarey et al., 1996]).
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The protein structure should be treated as flexible in ligand docking.
However, for a long time, this has been computationally impossible. The
development of docking algorithms taking protein flexibility into account
has started recently, aided by the development of hardware technologies.
Thus, based on the consideration of flexibility, the docking procedures
can be classified into three categories: (i) rigid body docking—both
protein and ligand are treated as rigid; (ii) semiflexible docking—only
the ligand is considered flexible; and (iii) fully flexible docking—both
ligand and protein are treated as flexible.

Some programs take into account the flexibility of the receptor during
docking, for instance the Surflex-Dock method (Jain, 2009); others per-
form postdocking optimization of the protein–ligand complexes consider-
ing different levels of protein atom flexibility, for instance AMMOS
(Pencheva et al., 2008).

VS is designed for searching in large electronic databases of chemical
structures by using computational analysis. It aims at selecting a limited
number of candidate molecules that are likely to be active against a particu-
lar biological receptor. VS could be considered as a logical extension of 3D
pharmacophore-based database searching or molecular docking. Thus, VS
approaches can be classified into two categories: pharmacophore-based
virtual screening (PBVS) and docking-based virtual screening (DBVS).

IV. Molecular Modeling of Estrogen Receptor-Mediated

Toxicological Effects: Case Studies

3D QSAR and receptor-based modeling are of particular interest when
ER-mediated toxicological effects are investigated. There are several stud-
ies that report molecular modeling results of ligands–ER interactions. An
extensive (but not exhaustive) list of recently developed models as pub-
lished in the literature is provided in Table I, and the models are discussed
in more details in the sections below.

A. Ligand-Based and Combined Molecular Modeling Studies

Various CoMFA and CoMSIA studies were performed with different
datasets over the years, as described in a number of reviews (Devillers
et al., 2006; Lill and Vedani, 2007; Roncaglioni and Benfenati, 2008;
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Table I

Examples of Ligand- and Receptor-Based Modeling Studies for Prediction of ER Binding (Ordered According to the Appearance
in the Sections)

Bioeffect Computational approach Dataset: chemical class/size Reference

Estrogenic potency
to the hERa

CoMSIA; docking Polybrominated diphenyl ethers, para-
hydroxylated polybrominated diphenyl
ethers, and brominated bisphenol A
compounds: 26 substances

Yang et al. (2010)

ERa and ERb
binding

CoMFA; docking 3-Arylquinazolinethione derivatives: 45
substances

Xiao et al. (2008)

ERa and ERb
binding

CoMFA; GRID 6-Phenylnaphthalenes and 2-
phenylquinolines: 81 substances

Salum et al. (2008)

ERa binding CoMFA; 2D; Hologram
QSAR

Flavanoids, dihydrobenzoxathiins, and
dihydrobenzodithiins: 127 substances

Salum et al. (2007)

MCF-7 inhibition CoMFA; CoMSIA; GRIND
QSAR

Raloxifene analogues: 15 substances Menezes et al. (2006)

ERa binding CoMSIA; docking Rhenium complexes and organic ligands: 29
substances

Wolohan and Reichert,
(2007)

ERa and ERb
binding

CoMFA Diphenolic azoles: 104 substances Demyttenaere-Kovacheva
et al. (2005)

ERb binding Pharmacophore modeling Diverse set of ERb ligands: 119 substances Taha et al. (2010)
MCF-7 inhibition Pharmacophore modeling Structurally different SERMs: 53 substances Brogi et al. (2009)
ER binding Pharmacophore modeling Flavones, coumestans, isoflavones,

triphenylethylenes, steroids, etc.: 137
substances

Islam et al. (2008)

hER binding COREPA Structurally diverse dataset: 645 substances Serafimova et al. (2007)
hERa binding Multidimensional QSAR;

docking
Structurally diverse substances: 106

substances
Vedani et al. (2005)

(Continued)



TABLE I (Continued)

Bioeffect Computational approach Dataset: chemical class/size Reference

hERa binding Molecular dynamics;
docking-based virtual
screening

Structurally diverse dataset: 3500 substances Sivanesan et al. (2005)

rER binding Docking-based virtual
screening

Structurally diverse dataset: 281 substances Rabinowitz et al. (2009)

ERa and ERb Docking Structurally diverse dataset: 12 substances Kiss and Allen (2007)
ERa binding Pharmacophore virtual

screening; docking-based
virtual screening

Database of 32 actives and 1990 nonactives Chen et al. (2009)

hERa binding Molecular dynamics;
docking

PCBs, plasticizers, and pesticides: 43
substances

Celik et al. (2008)

hERa binding docking Phenol-related derivatives: 14 substances Nose et al. (2009)
ERa and ERb
binding

Shape signatures tool;
docking

Commercially available organic chemicals:
200,000 substances

Wang et al. (2006)

hERa binding Docking Polychlorinated compounds: 7 substances D’Ursi et al. (2005)



Lo Piparo and Worth, 2010). They give useful information that is often
combined with the X-ray crystallographic data and the results from other
QSAR approaches, thus outlining a consistent picture of the important
structural features of different structural classes to bind to the ER pocket.
The results are used as 3D search queries to mine 3D libraries for new ER
ligands, to predict the biological activities of the new ligands, to help in
better understanding the binding mode of the ligands, and to outline the
structural requirements for ligands selectivity to the ER subtypes.
Among the more recent studies is the 3D QSAR to predict estrogenicity

of polybrominated diphenyl ethers, para-hydroxylated polybrominated
diphenyl ethers, and brominated bisphenol A compounds to the human
ERa (hERa), using a training set of 26 compounds (Yang et al., 2010).
Based on the molecular conformations developed from molecular dock-
ing, predictive CoMSIA models were developed with the following statisti-
cal parameters: correlation coefficient r2¼0.949; standard error of
estimate SEE¼0.24; cross-validated correlation coefficient q2¼0.72, and
predictive correlation coefficient rpr

2¼0.68 (six compounds in the test
set). Because of the limited size of the group studied, the particular
benefit of the models needs to be further demonstrated.
The study of Xiao et al. (2008) explored the selectivity requirements of

3-arylquinazolinethione derivatives for binding with ERb versus ERa using
CoMFA and docking. Docking results indicated that the 3-arylquinazoli-
nethione derivatives are of an ideal length for forming tight HBs between
the 40-hydroxyl and Glu305 and Arg346 at one end of the ERb pocket and
between the 7-hydroxyl and His475 at the other end. CoMFA models
successfully predicted the inhibitory activity against ERb (r2¼0.97;
SEE¼0.20; q2¼0.64; rpr

2¼0.62) and the of ERb/ERa selectivity
(r2¼0.96; q2¼0.52; SEE¼0.15; rpr

2¼0.70). Both the CoMFA and the
molecular docking results consistently suggested that the introduction of
an appropriate bulky group into the structures increases the ERb inhibi-
tory activity and reduces the ERa inhibitory activity, thus improving the
selectivity of the designed ligands.
With the same aim to outline the selectivity features for subtype binding,

CoMFA studies were performed on a dataset of 81 ER modulators
(6-phenylnaphthalenes and 2-phenylquinolines) for which binding affinity
values were collected for both ERa and ERb by Salum et al. (2008). The
models were developed on a training set of 65 compounds and the
remaining 16 compounds were used as a test set. CoMFA models showed
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rather similar statistical parameters: (i) for ERa: r2¼0.94, q2¼0.76, and
rpr

2¼0.80; (ii) for ERb: r2¼0.96, q2¼0.73, and rpr
2¼0.88. Five ER crystal

structures were used in GRID/PCA investigations to generate MIF maps.
The several similarities between the GRID/PCA pseudocontour plots and
QSAR 3D CoMFA contour maps were detected. Based on the CoMFA
model of each receptor, they outline structural regions involved in the
ER subtype selectivity.

The same authors used CoMFA and HQSAR (hologram QSAR) analyses
on a large set of ERa modulators and developed predictive 3D and
HQSAR models (Salum et al., 2007). A structurally diverse dataset was
used including three major chemical classes, namely flavanoids, dihydro-
benzoxathiins, and dihydrobenzodithiins. A training set of 99 compounds
was used to generate binding affinity models, and 28 structures were
selected from different chemical classes to form the external test set.
The information for the ligand-binding conformations was adopted
from the receptor-binding site. For that purpose, docking procedure was
applied using GOLD docking program. Based on this, predictive models
were obtained (r2¼0.93, q2¼0.79, SEE¼0.26). The external predictive
ability was expressed as residuals between experimental and calculated
values. The maximal residual was 0.42 log units. The models outline
higher importance of the steric fields, explained by the fact that ER
ligand-binding cavity possesses hydrophobic features which must be fitted
correctly by selective ligands. Contour maps were built that were informa-
tive for the design of new modulators.

A set of 15 raloxifene analogues was analyzed by Menezes et al. (2006)
using GRIND QSARs. For this purpose, MIFs were computed using the
GRID program. GRIND descriptors were calculated by ALMOND program
(Pastor et al., 2000). They describe the geometry of the interaction in an
alignment-independent way. GRIND QSAR models were built and out-
lined the favorable formation of several HBs as well as favorable p–p
interactions in the ER pocket. CoMFA and CoMSIA models were devel-
oped as well (36 structures in the training set), revealing steric, electro-
static, and HB atom modifications that can cause variations in binding
potency.

Wolohan and Reichert (2007) used a genetic algorithm to model a
diverse set of novel rhenium-based ER ligands with relative-binding affities
(RBA) to ERa with respect to 17b-estradiol. The binding properties were
studied with a combination of CoMSIA and docking. A total of 29 ER

238 TSAKOVSKA ET AL.



ligands consisting of 11 rhenium complexes and 18 organic ligands were
docked inside the LBD of ERa utilizing the program GOLD. The top-
ranked poses were used to develop CoMSIA models from a training set of
22 randomly selected compounds. The model combining CoMSIA steric,
electrostatic, and hydrophobic indices together with the polar volume
showed highest predictive ability among the different runs (r2¼0.94;
q2¼0.68; SEE¼0.24). Analysis of the scoring functions from GOLD
showed particularly poor correlation to RBA ERa. In comparison, the
combined CoMSIA and polar volume model ranked correctly the ligands
in order of increasing RBA. Thus the utility of this method as a prescreen-
ing tool in the development of novel rhenium-based ER ligands was
demonstrated.
A study of the structural requirements for ERa and ERb selectivity was

performed by Demyttenaere-Kovatcheva et al. (2005). CoMFA models
were developed for a training set of 72 benzoxazole and benzisoxazole
derivatives and validated on a test set of 32 compounds. The models
developed for ERa and ERb had statistical parameters as follows: for
ERa: r2¼0.91 and q2¼0.60; for ERb: r2¼0.95 and q2¼0.40.
A number of pharmacophoric hypotheses for estrogen-binding ligands

were developed using the Catalyst software (2005). It enables automatic
pharmacophore construction by using a collection of structurally diverse
molecules with activities ranging over a number of orders of magnitude.
The models outline the importance of hydrophobic, hydrophobic aromat-
ic regions as well as HB donors, acceptors for the binding activities. For
example, Taha et al. (2010) developed pharmacophore models for a
diverse set of 119 ERb ligands as collected from the literature. The
affinities were expressed as the concentrations of the test compounds
that displaced 50% of the bound [3H]17b-estradiol. The structures were
carefully selected (i) to have significantly dissimilar affinities to EDa and
EDb to allow development of selective models for EDb ligands; (ii) to have
wide structural diversity; and (iii) to span big range of affinity values (over
4.0 orders of magnitude). A total of 210 pharmacophore models emerged
from 24 automatic CATALYST modeling rounds. Classical QSAR analysis
was performed to search for the best combination of pharmacophore(s)
and 2D descriptors (calculated by employing the C2.DESCRIPTOR mod-
ule of CERIUS2 software, Accelrys Inc.) capable of explaining bioactivity
variation across the dataset. The models were built for the training set of
96 compounds and tested on the remaining 23 compounds giving rPRESS

2
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of 0.54–0.56. Four binding hypotheses were outlined in the best QSAR
equations suggesting the existence of distinct binding modes accessible to
ligands within the EDb-binding pocket. Based on the similarity between
them, they were merged in two hybrid models. The resulting models and
associated QSAR equations were employed to screen the National Cancer
Institute list of compounds (238,819 compounds) and an in-house built
database of known drugs and agrochemicals (2602 compounds) to search
for new ERb ligands. After screening with the models and filtering with
Lipinski’s and Veber’s drug-likeness rules, a list of 1176 and, respectively,
409 compounds (for NCI database) and 73 and, respectively, 57 com-
pounds (for the in house database) for both models was extracted.

Brogi et al. (2009) explored the pharmacophore features of a compre-
hensive set of SERMs derivatives, tested for their inhibitory activity
toward MCF7 cell line. The existence of a quantitative correlation be-
tween inhibition of MCF7 human breast carcinoma cell line proliferation
(measured by IC50 values) and ERa receptor binding (RBA by competi-
tion with 17b-estradiol) has been reported for a series of SERM deriva-
tives structurally related to raloxifene. This suggests that receptor
binding is the first step in the pathway that leads to inhibition of
tumor cell proliferation. Specifically, a dataset of 53 SERMs belonging
to several different structural classes was compiled. These compounds
covered four orders of magnitude activity range, centered at the IC50
median value of 13 mM, and included active and less active derivatives
reported in the literature as well as metabolites isolated and tested by
authors. The selected SERMs were divided into a training set of 24
compounds and a complementary test set of 29 compounds. The gener-
ated pharmacophore hypothesis by Catalyst software consisted of five
features, namely one hydrophobic, two hydrophobic aromatic, one HB
acceptor, and one HB donor. A screening of the Asinex GOLD collection
database was performed by coupling pharmacophore hypothesis with a
docking filtration, which resulted in a selection set of 12 new scaffolds to
be investigated as potential SERMs. The inhibitory activity of these
compounds was evaluated in vitro using MCF7 human breast adenocarci-
noma cell line. Ten of the 12 compounds were found to be active with
inhibitory activity between 26 and 188 mM thus confirming the utility of
the pharmacophore hypothesis generated.

A pharmacophore model was developed by Islam et al. (2008) on a
training set of 35 compounds, including flavones, coumestans, isoflavones,
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triphenylethylenes, steroids with a phenolic A-ring, etc. It outlined the
presence of an aromatic ring and a hydrophobic region at a distance of
3.816 Å and two HB acceptors at a distance of 11.975 Å as crucial for
binding affinity to ER. Testing the model on a set of 102 substances gave
correlation coefficient r2¼0.96.
COREPA method was used to derive an hER-binding affinity model for a

dataset of 645 chemicals making use of the scaffold of high-affinity syn-
thetic ER ligands (Serafimova et al., 2007). Analysis of reactivity patterns
based on the distance between nucleophilic sites resulted in identification
of distinct interaction types: a steroid-like (AB) type described by frontier
orbital energies and distance between nucleophilic sites with specific
charge requirements; an AC type where local hydrophobic effects are
combined with electronic interactions to modulate binding; and mixed
ABC (AD) type. Chemicals were grouped by type, after which COREPA
models were developed within specific RBA ranges. Analysis of the models
showed that AB mechanism is probably associated with contribution of
stereoelectronic and global HINTs: the functional parameter Q_Distance
(parameter combining the distance between two nucleophilic atoms and
charge of one of these sites) and log Kow are used as COREPA discrimi-
nating parameters. Typical for the AC mechanism were found to be HINTs
only, where the parameter describing local hydrophobicity and log Kow
appears to be discriminative. Interactions underlying the third group of
chemicals (ABC type) are described again by stereoelectronic and global
hydrophobic parameters, Diameff (effective cross-section diameter),
EHOMO (energy of the highest occupied molecular orbital), and log
Kow. The performance of the models was illustrated by screening of 232
chemicals tested for rER (rat ER). The screening exercise showed a
concordance of 0.60 between the predicted hER and experimentally
observed rER data, accounting for the distribution of chemicals across
the potency bins. This result is comparable with the interspecies correla-
tion coefficient between hER and rER, which is 0.68.
The VirtualToxLab was used to estimate the binding affinity of small

molecules toward the ER based on the X-ray crystal structure of the hERa
ligand-binding domain with bound diethylstilbestrol (Vedani et al., 2005).
A dataset of 106 diverse ER-binding molecules (comprising six molecular
classes, including steroids, biphephyls, and stilbestrols) was used—88
training and 18 test set. The structures were docked to the binding pocket,
and each complex was fully optimized using the Yeti software. Up to four
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binding modes per molecule were accepted thus composing the input
data for multidimensional QSAR, using the Quasar software. The compar-
ison between the constructed receptor surrogate and the binding site at
the true biological receptor showed that characteristic properties (H-bond
acceptor residues, H-bond donor residue, and the residues forming the
larger hydrophobic pocket) are well identified by the receptor surrogate.
The resulting multidimensional QSAR model had a q2¼0.903 and a
rpr¼0.89.

B. Docking and Virtual Screening Studies

Several factors make the ER very suitable for docking and VS: (i) there is
a large quantity of data in terms of both X-ray data available for ER–ligand
complexes and binding affinity data for many ligands; (ii) knowledge of
the critical protein–ligand binding motifs in the LBD; and (iii) the bind-
ing pocket of ER is well defined in terms of size, shape, and polarity (Knox
et al., 2008).

As already discussed, binding of an agonist or antagonist to ER leads to
significant conformational changes. Thus, it is important to take into
account the flexibility of the receptor during docking by using relevant
docking and VS tools.

Based on the principles of molecular mechanics, AMMOS provides five
different levels of protein atoms flexibility—from rigid to fully flexible
protein, while the ligands are always flexible. Applied to ER, receptor
relaxation with AMMOS led to considerable improvement of the enrich-
ment factors, retrieving 83% of the actives after docking in the top 3% of
the processed database (Pencheva et al., 2008).

The molecular dynamics (MD) simulations allow including full flexi-
bility of the ligand-binding pocket by generating an ensemble of protein
conformations. For instance, an ensemble of 51 energetically favorable
structures of the hERa-binding pocket was collected from MD simula-
tions in the study of Sivanesan et al. (2005). Detailed analysis of the MD
results showed that nine amino residues were highly flexible and, in
turn, influence the ligand binding (Asp351, Ile326, Phe404, Met421,
Ile424, Phe425, His524, Met528, and Lys540). It is worth noting that
among those are His524 involved in HB interaction with E2 and Met421
shown to differ in ERb (Fig. 4). In silico screening of 3500 EDCs against
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these flexible ligand-binding pockets was performed by docking with the
FlexX program. The proposed MD-based in silico screening approach
had higher hit rates than the rigid crystal structure. Thirty-two com-
pounds were found to bind better to the flexible ligand-binding pockets
compared to the crystal structure. These compounds, though belonging
to different chemical classes, possess the features typical for the natural
hormone 17b-estradiol.
Another important consideration when the ER-mediated effects are

investigated is the purpose of the modeling study. Rabinowitz et al. out-
lined some particularities depending on the purpose of the study—drug
discovery versus toxicity screening. For the pharmaceutical industry, the
purpose of the initial screen is to limit the number of chemicals that
proceed to the next phase of testing, and here, the exclusion of some
active chemicals is a reasonable cost. In contrast, minimizing the number
of false negatives is critical when screening environmental chemicals
because the expectation is that positive chemicals will be tested later in
an experimental protocol (Rabinowitz et al., 2008).
Exploring the possible computational approaches for chemical screening

and testing prioritization the same authors performed VS of a library of 281
environmentally relevant chemicals into four rat ER targets (Rabinowitz
et al., 2009). Ninety-five percent of the chemicals in the library were not
active. Two docking protocols were applied—eHiTS (Zsoldos et al., 2006)
and FRED (McGann et al., 2003). According to the score-based ranking, all
of the active molecules were discovered in the top 16% of the ranked
chemicals. When a pharmacophoric filter was applied on the basis of the
geometry of binding to the ER, the results were improved, and all of the
active molecules were discovered in the top 8% of the chemicals.
Kiss and Allen (2007) applied docking algorithms to predict and rank

ligands according to their binding affinities. They docked two ligand
subsets, ER agonists (seven structures) and SERMs (five structures), to
ERa and ERb, utilizing the Lamarckian genetic docking algorithm, as
implemented in AutoDock (Morris et al., 1998) and the potentials of
mean force scoring function. The ligands were ranked based upon the
calculated ligand–receptor interaction energies, as well as experimental
RBAs. r2 values, ranging from 0.55 to 0.93, indicate a good correlation
between the virtual and experimental ranking.
A comparative studyof twoVSapproaches, PBVSandDBVS,was performed

by Chen et al. (2009) using eight pharmacologically important and
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structurally diverse target proteins, including ERa. For each target, the phar-
macophoremodel was constructed basedon severalX-ray crystal structures of
this target protein in complex with ligands (mostly inhibitors), and one high-
resolution crystal structure of the ligand–protein complex was used to gener-
ate the model for DBVS. LigandScout software was used for pharmacophore
generation (Wolber and Langer, 2005). Three docking programs, namely
DOCK, GOLD, and Glide, were used in the DBVS. Docking-based methods
showed varying performance depending on the nature of the target binding
sites. In comparison, for most cases, the pharmacophore-based method out-
performed the docking-based methods, and the average PBVS enrichment
over the virtual screens against the eight targetswasmuchhigher than thoseof
DBVS. For ERa, in particular, using PBVS, 9 of 32 actives were recovered
among the top 5% of the database, and this result was superior compared to
DBVS where a maximum of two actives were identified.

In the study of Celik et al. (2008), the binding of 43 compounds to the
hERa LBD was investigated. The dataset included selected PCBs, plastici-
zers, and pesticides, which were considered to be potential EDCs. Differ-
ent conformations of the hERa LBD were used as identified by MD
simulations. Glide program was applied for docking. It was found that
most suspected EDCs could bind in the steroid-binding cavity, interacting
with at least one of the two hydrophilic ends of the binding pocket. The
best binders were the pesticides. It was predicted that these compounds
can interact with the different conformations of hERa LBD with compara-
ble affinities indicating that they can serve as universal binders to the
hERa LBD, regardless of the receptor conformation.

Nose et al. (2009) suggested a new method to discriminate between
agonist and antagonist binding to ER. The method was based on the
estimated difference between binding energy in the activation conforma-
tion and the inactivation receptor conformation. The agonists were found
to be more stable in the activation conformation, while antagonists were
more stable in the inactivation conformation. A parameter was suggested
to reflect these differences. This agonist/antagonist differential-docking
screening method was used to evaluate 4-(1-adamantyl)phenol—one of
the essential raw materials for nanoporous organosilicate thin films. It was
predicted as an agonist of the hERa and this was confirmed by testing in a
reporter-gene assay.

Wang et al. (2006) applied a multistep computational approach to a
database of 200,000 commercially available organic chemicals in order to
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identify potential EDCs. First, the Shape Signatures tool was applied. This
is a computational tool that compares molecules on the basis of similarity
in shape, polarity, and other bio-relevant properties. 4-Hydroxy tamoxifen
and diethylstilbestrol were used as input queries. The hits identified by
Shape Signatures method were docked inside the ligand-binding pocket of
both the ERa-agonist and the ERa-antagonist X-ray crystal structures. Most
of the compounds had better docking scores to the antagonist form of
ERa, thus predicting them to be antagonists. On the basis of GOLD scores,
eight compounds were predicted to be active and they were subsequently
tested. The experimental values versus the calculated one gave r2¼0.65.
D’Ursi et al. (2005) characterized the molecular interaction of seven

EAS with ER and other steroid receptors, using flexible docking protocol.
AutoDock and QXP (McMartin and Bohacek, 1997) programs were used.
The chemicals were organic polychlorinated compounds, including DDT,
its metabolites DDE and DDD, and the hydroxylated PCB derivative
(PCB-OH). All ligands docked in the buried hydrophobic pocket. The
interaction was characterized by multiple hydrophobic contacts involving a
different number of residues facing the binding pocket, depending on the
orientation of the ligands. The EAS ligands did not display a unique
binding mode; this was explained with their lipophilicity and flexibility,
which conferred on them a great adaptability in the large and hydropho-
bic binding pocket of steroid receptors.

V. Conclusions

In the past few years, there has been significant progress in the compu-
tational modeling of the ER, and this can be attributed to a number of
factors: (i) the ER is involved in a variety of molecular pathways of
physiological and toxicological relevance; (ii) various regulatory initiatives
to identify potential EDCs have led to intensive application of computa-
tional modeling, for both cost and animal welfare reasons; (iii) the various
crystallographic studies of the ER make it very suitable object for explora-
tion with different molecular modeling techniques. Historically, the 3D
QSAR techniques were the first to be applied. Thus, not surprisingly, a
number of 3D QSAR models exist in the scientific literature. They are
informative when ligand binding to the ER needs to be predicted and/or
new active ligands need to be constructed. Of course one should bear in
mind the limitation of these approaches to ligands with the the same
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mode of action, which restricts their application to structurally homoge-
nous series of ligands. Further, when analyzing and applying such models
one should carefully judge the quality of the model—many of the existing
models still need more precise estimation of their robustness and external
predictivity.

In view of the considerable progress in structural studies of the ER and
the availability of X-ray structures with sufficiently high resolution, recep-
tor-based techniques such as docking and VS are being increasingly
exploited. This allows large chemical inventories to be screened and the
number of compounds for experimental testing to be dramatically re-
duced. There are some issues that should be taken into account: (i) the
quality of the test data; (ii) preparation of the ligand library for docking;
(iii) the choice of docking protocols and scoring functions; and (iv)
consideration of the protein flexibility. These needs should direct the
future scientific efforts in the field. Finally, in order to improve our ability
to describe and predict the (beneficial and adverse) effects of EAS, the
information derived from the use of in silico methods will need to be
integrated with data generated by in vitro methods, including high-
throughput screening approaches. This approach will provide a means
of linking apical effects and adverse outcomes at the in vivo and popula-
tion levels with key events, such as receptor–ligand binding, in the under-
lying molecular pathways.
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Abstract

G protein-coupled receptors (GPCRs) belong to a large superfamily of
membrane proteins and they mediate many physiological and pathological
processes in cell signaling. GPCRs exhibit remarkable structural homology in
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spite of large diversity in their amino acid sequence and their function.
The efficacy of an agonist depends on the nature of the molecule, as well
the receptor and intracellular proteins that the receptor couples to. Many
GPCRs show basal activity to various extents even in the absence of any
stimulating ligands. They achieve fine modulation in signaling specificity
through adapting an ensemble of conformations rather than a two-state
model of inactive and active states. There is ample experimental evidence
to show that GPCRs exist in an ensemble of conformations and binding of
agonists, and the intracellular signaling proteins, such as the trimeric G-
proteins, cooperatively activate and stabilize the active state of the receptor.
Crystal structures of class A GPCRs have shown that the structure of the active
state is different from the inactive state. The signaling specificity achieved by
the activation process of GPCRs is determined not only by the lowest energy
receptor state as in the crystal structure but also by the range of nearly
degenerate conformational states that the receptor explores. Multiscale
computational techniques play a key role in integrating the sparse and
fragmented data obtained from experiments to map the potential energy
landscape of the receptor, as well as the conformational ensemble of states. In
this review, we demonstrate the power of the multiscale methods and delin-
eate the need for further development of such multiscale computational
methods to study the ensemble of inactive and active states for GPCRs. We
review the insights into the receptor activation that emerged from a conflu-
ence of biophysical experimental as well as computational data.

I. Introduction

G-protein-coupled receptors (GPCRs) are seven helical transmembrane
(TM) proteins with remarkable structural homology given their diversity
in sequence and function. The ligands that activate the receptor for cell
signaling are known as agonists. The size and shape of the agonists for
GPCRs vary from photon to small molecules, to proteins. Upon binding of
an agonist, the receptor stabilizes a conformational state with high affinity
for coupling either with G-proteins or with other proteins involved in
G-protein-independent signaling pathways (Lefkowitz and Shenoy,
2005). The conformational state with both agonist and G-protein bound
is the ‘‘active state’’ of the receptor. GPCRs are pleiotropic in function,
and the G-protein-coupling signaling pathways lead to varied biological
effects inside the cell (Hamm, 1998; Johnston and Siderovski, 2007). The
non-G-protein-dependent pathways such as those mediated by b-arrestin
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family of proteins lead to activation of MAPK signaling pathways inside the
cell (Azzi et al., 2003; Shenoy et al., 2006; Violin and Lefkowitz, 2007). A
given agonist could activate the same GPCR with varied efficacies for
different signaling pathways depending on the protein that the receptor
couples to in the intracellular region. This property of the agonist is called
‘‘functional selectivity’’ (Galandrin et al., 2007; Urban et al., 2007;
Kenakin, 2008) or ‘‘biased agonism’’ (Kenakin, 2007). A ligand–receptor
pair could achieve functional selectivity for different signaling pathways by
changing the conformation of the receptor.
Many GPCRs exhibit ‘‘basal activity’’ even in the absence of any agonist

leading to the conclusion that they are highly dynamic and adapt many
conformations (Seifert and Wenzel-Seifert, 2002; Bond and Ijerman, 2006).
The basal activity is suppressed upon binding of an inverse agonist, stabiliz-
ing an ‘‘inactive’’ conformation of the receptor. Thus the receptor could, in
the absence of any ligand or any intracellular protein coupling, adopt an
ensemble of conformational states (Vaidehi and Kenakin, 2010).
Subsequent ligand and intracellular protein binding stabilizes a conforma-
tional state from this ensemble that leads to triggering a specific signaling
pathway and a specific biological effect. Thus mapping the ensemble of
receptor active and inactive conformational states is important in under-
standing the signal transduction mechanisms and in drug discovery.
Recently, the crystal structures of a thermostabilized turkey b1 adrener-

gic receptor (b1-AR) with full and partial agonists bound have been solved
(Warne et al., 2011). The receptor conformations with agonists bound
exhibit marginal conformational changes upon agonist binding. These
observations on b1-AR structure are consistent with another crystal struc-
ture of human b2 adrenergic receptor (b2-AR) bound covalently to a high-
affinity agonist (Rosenbaum et al., 2011). However, the crystal structure of
b2-AR bound to an agonist and a G-protein mimic (nanobody) shows
larger conformational changes in the intracellular region of the receptor
where it couples to the G-protein (Rasmussen et al., 2011). The receptor
conformation in this crystal structure could be the closest representation
of the active state of a GPCR. Thus both the G-protein and the agonist
binding are required to stabilize the receptor in the active state.
The mechanism and dynamics of how the receptor goes from the inactive
to the active state are still unknown. It is likely that agonist binding causes
reshuffling of short-range interhelical contacts that trigger large-scale
domain motions in the receptor leading to activation. Thus a combination
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of both atomistic and coarse grain computational techniques is needed to
delineate the activation mechanism.

Here, we review the current state of our knowledge in understanding
the activation mechanism of GPCRs and offer insights into the activation
pathways. In particular, we focus on the insights obtained from a combi-
nation of biophysical experimental results combined with multiscale
computational methods used to understand the conformational ensem-
bles and activation of GPCRs.

II. Conformational Flexibility in GPCRs

A. Experimental Evidence for Conformational Changes
upon Activation of GPCRs

There is ample experimental evidence in the literature demonstrating
the conformational flexibility of GPCRs in the presence and absence of
ligands (Ghanouni et al., 2001; Vaidehi 2010). The agonist-independent
basal activity exhibited by many GPCRs (Seifert and Wenzel-Seifert, 2002)
along with certain single point mutations (constitutively active mutants)
that lead to a marked increase in basal activity (Cotecchia, 2007) clearly
demonstrates that the receptor can sample active state conformations even
in the absence of agonists. Biophysical studies on the visual receptor
rhodopsin, using spin-labeling techniques, solid-state NMR, fluorescent
spectroscopy, computational methods, and crystal structure of the partially
active state opsin show several interhelical contacts also known as ‘‘confor-
mational switches’’ made and broken upon activation (Krishna et al.,
2002; Hubbell et al., 2003; Schertler, 2005; Park et al., 2008; Ahuja and
Smith, 2009; Zaitseva et al., 2010). These conformational changes that
happen during rhodopsin activation have been documented in previous
reviews (Hubbell et al., 2003; Ahuja and Smith, 2009). Briefly, comparison
of the rhodopsin and opsin crystal structures shows considerable confor-
mational changes in the intracellular region of TM5 and TM6. TM5 also
shows elongation of the helix in this region. Comparatively smaller
changes have been observed in the extracellular loop 2 (ECL2) (Ahuja
and Smith, 2009). There are substantial rearrangements in all the three
intracellular loops in the opsin structure. Thus it is evident that activation
is associated with considerable conformational changes in the receptor.
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Comparison of the inactive and active state of the human b2-AR crystal
structures (Cherezov et al., 2007; Rosenbaum et al., 2011) shows side-chain
rearrangements in the extracellular region especially on the three con-
served serines on TM5 (shown in Fig. 1A). There is larger bulge on TM5
around P2115.50 in the active state (shown in pink in Fig. 1A and B)
compared to the inactive state (shown in green in Fig. 1A and B). Here,
we have used GPCR-specific residue numbering (Ballesteros and
Weinstein, 1995). The first number refers to the TM helix in which the

FIG. 1. Comparison of crystal structures of the partial inverse agonist-bound
inactive state (pdb ID: 2RH1) and agonist/nanobody-bound active state of human b2-
AR (pdb ID: 3P0G). (A) Extracellular view of the ligand binding site showing small
changes in the side chains of the residues in the binding site. The agonist and inverse
agonist bind in the same region of the receptor; note the increase in bulge at the Pro on
TM5 indicated by an arrow. (B) Intracellular view showing the large movement of
transmembrane helix 6 at the G-protein binding site. (C) Breaking and making of
hydrogen bond networks in the carazolol-bound and agonist/nanobody-bound crystal
structures of human b2-AR. The hydrogen bonds formed in the carazolol-bound struc-
ture are shown in magenta, while the ones in the nanobody-bound structure are shown
in green.
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residue is located, and the second number indicates the location of this
residue with respect to the most conserved residue on that helix being
numbered 50. TM1 shows a change in the tilt angle inwards toward the
interior of the protein in the active state. Figure 1B shows conformational
changes in the intracellular region of the protein. There is a large outward
movement of TM6 similar to that of opsin but substantially larger (13.5 Å
is the distance between the Ca atoms of K2676.29 on TM6 in the active and
inactive state) movement than in opsin. There is an inward movement of
TM3 and TM7. The intracellular loop 2 forms a helix in the active state,
and it is unstructured in the inactive state. The change in helical arrange-
ment in the active structure leads to the breaking of a few interhelical
hydrogen bonds and formation of new ones (Fig. 1C). In the inactive
crystal structure of b2-AR, the side chain of Y2195.58 on TM5 forms a
hydrogen bond with the backbone of L2726.34 on TM6. In the active
crystal structure, this hydrogen bond is disrupted as the intracellular
end of TM6 moves outward. Additionally, the hydrogen bond between
N1965.35 at the extracellular end of TM5 and W173 (backbone) on ECL2 is
broken. The active state b2-AR structure shows a few new hydrogen bonds
that were absent in the inactive structure. S2075.46 on TM5 forms a
hydrogen bond with T1183.37 on TM3 as well as with the hydroxyl group
of the polycyclic moiety of the agonist BI-167107. Mutating S2075.46 only
affects agonist binding and not antagonist binding (Rosenbaum et al.,
2011). Both S2075.46 and T1183.37 are conserved in many biogenic amine
GPCRs. Thus S207–T118 hydrogen bond could be an important molecular
switch for stabilizing the active state in several class A GPCRs. Another new
hydrogen bond that is observed in the active b2-AR structure is between
Y1995.38 on TM5 and backbone of T1644.56 on TM4. Several new hydrogen
bonds are formed near the intracellular interface of TM3, involving the
DRY motif. D1303.49 on TM3 forms a hydrogen bond with T682.39 on TM2,
and Y1323.51 forms a hydrogen bond with R2215.60 on TM5. These hydro-
gen bonds stabilize the inward tilt of TM3 in the active conformation.

B. Dynamics and Conformational State Ensemble for GPCRs

Kobilka and coworkers have measured the conformational changes
upon activation of human b2-AR purified in detergents, by agonists and
partial agonists using bimane-labeled fluorescence spectroscopy
(Swaminath et al., 2005; Yao et al., 2006). Fluorescent tags attached to
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select locations on the receptor are excited, and the resulting quenching
of fluorescence is monitored. Depending on the local receptor environ-
ment, both the lifetime and intensity of the fluorescence can vary and this
gives an estimate of the conformational changes in the receptor. Using a
fluorophore attached to the intracellular end of TM6 in b2-AR, it was
found that in the absence of any ligand, the receptor shows a single
population of fluorescence lifetime (Ghanouni et al., 2001). Antagonists
reinforced this single fluorescence peak, whereas agonists showed an
additional peak in fluorescence lifetime population distribution. This
additional peak, which was absent for antagonists, is indicative of a distinct
receptor conformation stabilized by the agonists and is indicative of the
active state of the receptor. Moreover, the position of the peak differed
between full and partial agonists suggesting that different agonists stabilize
distinct receptor conformations. The above results serve as evidence for
multiple active states of GPCRs. These analyses have shown that agonists
with different efficacies could stabilize different conformations of
the receptor.
More recently, Sunahara and coworkers have reconstituted the bimane-

labeled monomeric human b2-AR in high-density lipid nanoparticles that
mimic the lipid environment in the cell more closely than the detergent
solution and studied the effect of various agonists, inverse agonists, neutral
antagonist, and G-proteins on the conformational states of the receptor
(Yao et al., 2009). This study shows that the change in fluorescence
intensity and frequency that reflect a receptor conformational change is
similar upon full agonist or the Gs protein binding. However, the confor-
mational changes upon binding of both full agonist and Gs protein
binding are significantly larger than either one of them binding alone.
These studies also showed that an inverse agonist prevents the receptor
from forming a complex with the G-protein but does not disrupt the
preformed receptor–G-protein complexes. Thus it is evident from these
measurements that the receptor conformational states are slightly differ-
ent depending on whether inverse agonist, or full agonist or the G-protein
is bound. The receptor conformation is very different when both the
G-protein and agonist are bound. This points to the fact that the receptor
G-protein coupling is weak in the absence of the agonist (possibly the low-
affinity state of the receptor) but gets substantially enhanced in the
presence of the agonist (a high-affinity state of the receptor). These results
are direct evidence that the receptor takes many conformational states
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depending on the ligand. There exists a conformational ensemble of
receptor states, a subset of which gets selected upon ligand and/or G-
protein binding. Bouvier and coworkers have performed some elegant
bioluminescence resonance energy transfer experiments in intact cells,
showing that agonist binding is biphasic (Galés et al., 2005; Galandrin
et al., 2007; Leduc et al., 2009), and kinetic fluorescence resonance energy
transfer studies show a dependence of the efficacy of an agonist on the
rate of conformational change in the GPCRs (Lohse et al., 2008).

C. Insights on Conformational Flexibility from Thermostable Mutants

Tate and coworkers derived thermostable mutant GPCRs by mutating
most of the residues in the receptor to alanine and selecting for either
agonist or antagonist binding at elevated temperatures. Thus these
mutants are chosen to stabilize the receptor conformation selectively in
an agonist- or antagonist/inverse agonist-bound conformational state
(Magnani et al., 2008; Serrano-Vega et al., 2008; Shibata et al., 2009;
Tate 2010). An increase in thermal stability of 21 �C was achieved for
turkey b1-AR mutant called m23. This mutant was crystallized with an
antagonist cyanopindolol subsequently (Warne et al., 2008). Recently,
Warne et al. also crystallized other thermostable mutants with partial
agonists, dobutamine and salbutamol, and full agonists, carmoterol and
isoprenaline (Warne et al., 2011). However, the structural basis for the
thermal stability of the mutants is not known from experiments. Molecular
dynamics (MD) simulations of the wild-type and three thermostable
mutants of b1-AR showed that the flexibility of the receptor structures is
similar in the wild-type as well as in the thermostable mutants. The
stabilizing mutations stabilized the functional microdomains of the
GPCR structure in an inactive conformation and hence provided more
stability to the inactive conformation (Balaraman et al., 2010). Functional
microdomains are conserved regions in the receptor structure that make
interhelical contacts which break upon activation (Ballesteros et al., 1998).
Thus while the overall receptor conformation of the thermostable mutant
may still be flexible, the functional microdomains are constrained in their
inactive state. These simulations clearly demonstrate that GPCRs exist in
an ensemble of conformational states and the number of degenerate states
in the ensemble is lowered upon thermostabilizing mutations, compared
to the wild type (Balaraman et al., 2010).
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III. Computational Approaches for Studying
Conformational Ensembles of GPCRs

Computational methods contribute substantially to the understanding of
the activationmechanismofGPCRs, as well as tomap the receptor active and
inactive conformational ensembles. These processes are not fully accessible
by experimental methods. Given that GPCRs are highly dynamic, crystal
structures are clearly inadequate to explain their functional behavior
emerging from the receptor dynamics. However, crystal structures are an
important starting point to studying the dynamics of the receptor using
computational methods. Additionally, it is experimentally challenging to
obtain the crystal structure or any structural information of the true active
conformational state of the receptor. The structural information obtained
fromNMR and fluorescence spectroscopic techniques are sparse and hence
require computational methods to integrate this experimental information
to provide amolecular level understanding and rationalization of the recep-
tor activation. In this section,we enumerate the computationalmethods and
their use in bridging between structure and function of GPCRs. Specifically,
we describe the computational methods used in predicting the active con-
formational state from the inactive state crystal structure as well as the
activation pathway of GPCRs. We will exemplify the fact that multiscale
methods, with a combination of coarse grain and fine grain all-atom meth-
ods, are required to understand the conformational ensembles of GPCRs.

A. Coarse Grain Simulation Methods for Mapping
Conformational Changes upon Activation

The conformational changes effected by the agonist and G-protein
binding lead to the activation of the receptor. Such processes happen in
the range of microseconds, and molecular level insight into the confor-
mational changes and the energetics of activation will greatly aid our
understanding of the physiology of GPCRs. All-atom MD simulations in
explicit lipid bilayer and water are commonly used to study the dynamics
of membrane protein structures (Pitman et al., 2005; Isin et al., 2008;
Khelashvili et al., 2008; Dror et al., 2009). For example, the recent micro-
seconds of all-atom MD simulations starting from the inverse agonist-
bound b2-AR show that there are two possible inactive states for the
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receptor (Dror et al., 2009). The results of all these simulations show no
semblance even to the beginnings of the activation process. This is because
all-atom MD simulations are inadequate to map the large-scale conforma-
tional changes resulting from activation of the receptor.

1. Targeted MD Methods

Targeted MD methods such as metadynamics that drive the receptor
structure from the inactive state to the active state have been successful in
capturing the gross features of activation (Laio and Parrinello, 2002; Provasi
andFilizola, 2010). Inmetadynamics simulation, aGaussian term is added to
the potential energy to discourage the system from returning to already
sampled states. This allows efficient sampling of rugged free-energy surfaces
by facilitating barrier crossing. The pitfall of thesemethods is the bias that is
used todrive the inactive conformational state to theactive state.Rather than
predicting the active state, these methods require prior knowledge of the
receptor active state and are thus limited by the paucity of the available
information. Also in metadynamics, the results are sensitive to the para-
meters of the driving force. Finally, a prudent selection of reaction coordi-
nates (statistically independent conformational changes that define the
activation events) is critical for identifying the intermediates and major
steps toward activation. Using metadynamics and an active state model of
rhodopsin based on the crystal structure of opsin, Filizola and coworkers
have identified several intermediates along the activation pathway that are
characterized by successive tilts of TM6 (Provasi and Filizola, 2010).

2. Elastic Network Models

The elastic network model (ENM) method is a coarse grained method
for mapping the direction of movement along the low frequency modes
without excessive computational cost (Bahar et al., 2010). In ENMs, the
protein is modeled as a collection of beads connected by springs: here,
beads refer to single or clusters of residues and springs represent the inter-
residue contacts. The ENM method has been used to study the key events
in the activation of rhodopsin. Using simulated thermal unfolding and
ENM analysis, Rader et al. identified the regions in the rhodopsin struc-
ture that are responsible for maintaining the stability of the protein core
that include domains near the retinal binding site and the conserved
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disulfide bond between the cysteines on TM3 and ECL2 (Rader et al.,
2004). In a later work, an ENM description of activated rhodopsin was
developed, where the connections between the elastic nodes were based on
experimentally obtained inter-residue distance constraints (Isin et al., 2006).
Such models have been successful in predicting fluorescence decay rates of
rhodopsin mutants and have identified residues that could play key roles in
the activation process. Recently, Romo et al. compared ENMs to observations
from microsecond MD simulations of several GPCRs (rhodopsin, b2-AR,
cannabinoid receptor 2) and showed that the parameters such as force
constants and equilibrium distances in ENM could be optimized to improve
predictions of the lower-frequency motions and thus reproduce results from
very long timescale MD simulations (Romo and Grossfield, 2011).

3. The Discrete Conformational Sampling Method for GPCRs

The LITiCon computational method samples the receptor conforma-
tion in the coarse grain degrees of freedom, thus avoiding the built in bias
in targeted MD methods (Bhattacharya et al., 2008a,b; Balaraman et al.,
2010; Bhattacharya and Vaidehi, 2010). In the LITiCon method, the seven
helices are treated as rigid bodies connected by flexible loops. The seven
transmembrane helices are rotated in a desired range of rotation angles
(typically the range is þ40� to �40�) in increment of �5� or smaller as
desired by the user. The side-chain conformations are optimized for each
backbone conformation generated using a rotamer library, and the
potential energy is minimized using the all-atom forcefield function.
This method generates an energy landscape for the GPCR in the rota-
tional space of the TM helices. The local minima in the resulting energy
landscape are identified, clustered, and sorted by total protein interaction
energy and also by ligand binding energy. The global minimum state of
this energy landscape is chosen as the most stable state of the protein with
other nearly degenerate minima representing the ensemble of possible
conformational states. Such coarse grain rigid body optimization techni-
ques had been used to predict membrane protein structures (Filizola et al.,
1998; Pappu et al., 1999; Vaidehi et al., 2002; Barth et al., 2009). In LITiCon,
these coarse grain sampling techniques are used to predict the ensemble of
active and inactive states starting from the inactive state crystal structure.
Starting from the crystal structure of b2-AR, the remodeling of the
energy landscape of b2-AR by inverse agonists and agonists of varied
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efficacies was calculated using computational method, LITiCon
(Bhattacharya and Vaidehi, 2010).

The energy landscape of inverse agonist (carazolol)-bound receptor
ensemble shows a broad and deep potential well centered around the
inactive state crystal structure, with high barriers to access the well-sepa-
rated agonist-stabilized states that are located in an energetically unfavor-
able region outside this potential well. On the contrary, agonist-bound
energy landscapes such as that of norepinephrine and epinephrine are
highly flexible with a broad potential well of energetically favored states.
The agonist-bound states show a favorable energy channel connecting the
inverse agonist (carazolol)-bound conformational state to the norepineph-
rine or to the epinephrine-bound state (Fig. 2). This implies that the
receptor is flexible and able to sample the inverse agonist states while
bound to norepinephrine. Alternately, the inverse agonist carazolol
trapped the receptor in the inactive conformation, making the agonist-
bound states inaccessible, thus reducing the basal activity of the receptor.
This reduction in basal activity could be due to the reduced affinity of the
inactive state of the receptor toward G-protein (Galés et al., 2005).

B. Computational Methods to Calculate Activation Pathways for GPCRs

A detailed mapping of the conformational transition pathway leading to
GPCR activation is very difficult to achieve with experiments because all of
the intermediate states are short lived. Conventional all-atom MD simula-
tions are limited to short timescale processes as well as limited in the
conformational search as shown by some microsecond simulations on
GPCRs (Grossfield et al., 2008; Dror et al., 2009; Rasmussen et al.,
2011). Therefore, the coarse grain approaches, presented in the section
above, although lower in resolution compared to all-atom simulations,
would facilitate crossing transition barriers between conformations and
sample large conformational changes. Using biased all-atom molecular
dynamics methods, Provasi and Filizola calculated the possible activation
pathways of the GPCR, bovine rhodopsin starting from the crystal struc-
ture of a photoactivated deprotonated conformation of rhodopsin to the
structure of partially activated ligand-free opsin in the presence of all-trans
retinal. The free-energy landscape calculated along the trajectories using a
path collective variable approach shows that the inactive and partially
active opsin states are connected by at least two different pathways, with
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at least four metastable states characterized by different levels of outward
movement of TM6 along the pathway of activation.
Bhattacharya and Vaidehi alternatively developed a Monte Carlo meth-

od to calculate the pathway going from inactive state to the agonist-bound
state (Bhattacharya et al., 2008a,b; Bhattacharya and Vaidehi, 2010).
Starting from the crystal structure of the inactive state of b2-AR, the
ligand-stabilized conformations of various agonists, partial agonists, and
inverse agonist were predicted. The Monte Carlo method was used to
search for the minimum energy pathway going from the inactive state to
the ligand-stabilized states (shown in Fig. 3A). The percentage
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conformational change calculated along the minimum energy pathway
correlates well with the fluorescent intensity lifetime measurements on b2-
AR as shown in Fig. 3B. Further, the receptor conformations generated
along the minimum energy pathway can be used to map the
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conformational ensemble of several kinetic intermediates as well as ligand-
stabilized states.

C. Need for Multiscale Methods to Map the
Conformational Ensemble of GPCRs

Targeted MD approaches sample wider conformational space and can
lead to active state conformation starting from the inactive state. These
approaches lead to a simulated activation pathway that could provide
insight into intermediate structures along the pathway. The caveat is
that these simulations are limited by the knowledge of the active state
structure. However, the LITiCon method that samples based on coarse
grain degrees of freedom avoids any such bias. However, the limitations
are that the energy landscape is generated on a coarse grain grid search
and could miss significant barriers along the activation pathway. Multiple
all-atom MD simulations in explicit lipid and water, starting from various
structures along the coarse grain minimum energy pathway from the
Monte Carlo-LITiCon procedure, could provide a powerful approach to
map the conformational ensemble of GPCRs in the active and inactive
states. Roux and coworkers have studied the conformational transition in
Src activation by generating a swarm of all-atom MD trajectories starting
from targeted MD simulation structures along the activation pathway of
Src (Yang et al., 2009).
Starting from various LITiCon generated coarse grain structures along

the minimum energy activation pathway of human b2-AR, Niesen et al.
performed multiple all-atom MD simulations to generate a swarm of trajec-
tories tomap the conformational ensemble sampled by the receptor without
any ligand and the receptor with agonists of varied efficacies. They analyzed
the conformational space sampled by the b2-AR in the absence of any ligand
and in the presence of full agonist norepinephrine, partial agonist salbuta-
mol, and partial inverse agonist carazolol. These results were calculated
usingprincipal component analysis on the swarmof all-atomMDtrajectories
starting from various conformations along the minimum energy pathway
calculated from coarse grain method LITiCOn. The apoprotein (without
any ligand bound) samples a wider range of conformational space than any
ligand-bound receptor. Inverse agonist-bound receptor conformations are
confined to a subset of smaller conformational space, while agonist norepi-
nephrine bound shows wider conformational span. The crystal structures of
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the agonist and inverse agonist-bound conformations b2-AR are located in
themost densely populated regions in this conformational ensemble. This is
clear evidence that the binding of an agonist leads to conformational
selection of the various low-energy minima that are sampled by the apor-
eceptor (Niesen et al., 2011).

IV. Activation Mechanism of GPCRs

A. Activation Mechanism of Class A GPCRs

The activation of GPCRs proceeds through a discrete set of conforma-
tional changes and intermediates. One of the major goals is to understand
the activation pathway by mapping all these intermediates using both
experimental techniques and computational methods. A detailed
mapping of the conformational transition pathway and the conformation-
al substates leading to GPCR activation is very difficult to achieve with
experiments because many of the intermediate states are short lived and
not accessible in the experimental timescales. In the previous section, we
introduced the computational methods such as targeted MD and directed
Monte Carlo methods that have been used to calculate the minimum
energy pathway of activation.

Using site-directed spin labeling, the change of mobility of different
residues on TM6 upon rhodopsin photoactivation were measured
(Dunham and Farrens, 1999; Hubbell et al., 2003). They identified that
a well-conserved interhelical salt bridge between TM3 and TM6 (popularly
known as the ‘‘ionic lock’’ in the GPCR community) breaks upon activa-
tion of rhodopsin (Farrens et al., 1996). The breaking of the ionic lock in
rhodopsin leads to the flexibility of helix 6, and hence, it moves away from
helix 3 in the intracellular part of the receptor. Overall, these changes can
be interpreted as a complex motion of TM6, combining both rotation
and outward tilt, as discussed by the authors. The spin-labeling results also
suggest a lack of deformation in the helices, since none of the spin
labels on the outer surfaces of the helices showed any change in mobility.
This indicates that the conformational changes in rhodopsin involve
mainly rigid body helical movements. Results from other spin-labeled
residues indicate a movement of TM2 toward TM4. The conformational
change in TM6 is further corroborated by the interhelical cross-linking
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experiments using disulfide and zinc binding (Schwartz et al., 2006).
Cross-links involving the intracellular end of TM6 blocked transducin
activation, whereas cross-links toward the extracellular end retained
activity.
The inter-residue distance constraints obtained from the above experi-

ments can be used in MD simulations in driving the conformational
changes involved in activation. These simulation results provide a molecu-
lar level visualization of the activation process. For example, distance
measurements from NMR on rhodopsin have been used as constraints
in MD simulations by Smith and coworkers to uncover the mechanism of
activation of rhodopsin (Hornak et al., 2010). These studies showed a
displacement of ECL2 from all-trans retinal upon photoactivation (Ahuja
and Smith, 2009). It was suggested that steric interaction with the C19
methyl group of retinal triggered the conformational change in ECL2,
since removing the C19 methyl group prevented activation. NMR data also
showed a rearrangement of the hydrogen bond network near TM3–TM5
interface, where the hydrogen bond between H2115.46 backbone and
E1223.37 is disrupted and a new hydrogen bond is formed between
H2115.46 side chain and E1223.37. Recently, Ye et al. used Fourier trans-
form IR spectroscopy on azido-Phe incorporated rhodopsin to study the
early movements of TM6 in going through the various substates of rho-
dopsin activation (Ye et al., 2010). They observed that helix 6 undergoes
an anticlockwise rotation (when viewed from the extracellular region) in
the early stages of activation much before the fully active state is reached.
Thus there are several receptor substates that form an ensemble in the
pathway to activation. The ionic lock is one of the features of the inactive
state of rhodopsin that is broken upon activation. Although the residues
that make the ionic lock between helices 3 and 6 are highly conserved
across all class A GPCRs, the ionic lock is not present in any of the other
class A GPCR crystal structures of the inactive state. This could be because
11-cis-retinal, the inverse agonist for rhodopsin, is covalently linked to the
receptor, thus completely annulling the receptor basal activity. All other
class A GPCRs bind to diffusible ligands and show some level of basal
activity. In these receptors, the inactive state is again an ensemble of states,
as evidenced from all-atom MD simulations of b2-AR (Dror et al., 2009;
Balaraman et al., 2010). Thus the tight ionic lock could be a feature of
completely quiet receptor state.

MULTISCALE COMPUTATIONAL METHODS FOR GPCRS 269



While information on rhodopsin activation was obtained using spin
labeling, NMR, and disulfide and zinc cross-linking, the activation dynam-
ics of another class A GPCR, the human b2-AR, was studied using fluores-
cence lifetime measurements pioneered by Kobilka and coworkers. Using
a fluorophore attached to the intracellular end of TM6 in b2-AR, time-
resolved fluorescence spectroscopy was used to record the change in
fluorescence intensity with time upon agonist binding (Swaminath et al.,
2004, 2005). While full agonists epinephrine and norepinephrine showed
a biphasic change in fluorescence (fast change followed by a slower
change), partial agonists, dopamine and salbutamol, showed monophasic
fast and slow changes, respectively. These results indicate that the full and
partial agonists stabilize distinct active states and follow different pathways
toward activation.

Besides fluorescence, NMR spectroscopy has been used to probe con-
formational changes to the ECLs of b2-AR, near the salt bridge between
K3057.33 on TM7 and D192 on ECL2 (Bokoch et al., 2010). This salt bridge
is observed in the crystal structure of inverse agonist-bound b2-AR. NMR
spectroscopy using 13C-labeled methylated lysine side chains showed a
change in chemical environment of the K3057.33 side chain (in compari-
son to apoprotein) upon inverse agonist binding. Antagonist binding,
however, showed a minimal change, while agonist binding leads to a
weakening of the salt bridge. These results imply that agonists bound to
the orthosteric site can modulate the ECL conformations and vice versa.
The crystal structures of the inactive state of the GPCRs show the con-
served water molecules near the highly conserved functional microdo-
mains of the receptor: D2.50 on TM2, the conserved WxP motif in TM6
and NPxxY motif on TM7. Since these residues are conserved among all
class A GPCRs, the water molecules near them could be important to the
structural stability of the receptors and possibly the activation process as
well. Notably, none of these water molecules are observed in the crystal
structure of the active state of b2-AR. The conserved waters in this struc-
ture are either absent or not well resolved. The water molecules are
proposed to serve as bridges in communicating the activation signal
from the ligand binding site to the G-protein binding site at the intracel-
lular surface of the receptors (Angel et al., 2009b). Recently, experiments
and computational studies have uncovered the role of water in the activa-
tion of rhodopsin, as discussed in the next section. Future experiments
using methods such as radiolytic protein footprinting will delineate the
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role of water molecules in the activation of b2-AR and other GPCRs (Angel
et al., 2009b; Orban et al., 2010).

B. Role of Water in Receptor Activation

There are emerging studies highlighting the role of water molecules on
activation of rhodopsin and other class A GPCRs. Angel et al. (2009a)
analyzed the water molecules observed in the available GPCR crystal
structures and showed that there is increased disorder as well as rearrange-
ment of water molecules upon activation. Angel et al. also labeled selected
residues in the TM region of rhodopsin using radiolytic footprinting
method to identify the differences in the position of tightly bound waters
in the inactive and active state of rhodopsin (Angel et al., 2009b). This
analysis showed that activation of the receptor is accompanied by rearran-
gements in tightly bound waters and these waters could act as allosteric
communicators of signals from outside the TM region to the cytoplasmic
region. Changes in rates of oxidation observed when comparing ground
state and activated receptor reflect local structural changes upon forma-
tion of both Meta II and opsin. Using a combination of MD simulations
and magic angle spinning NMR, Grossfield et al. showed that water
molecules interact with several conserved residues showing that they
play an important role in activation of rhodopsin.

C. Insights into the Role of Water from All-Atom MD Simulations

In rhodopsin and other GPCRs, modulation of the helical kink caused
by conserved proline residue in TM6 is proposed to play a role in the
activation of the receptor (Shi et al., 2002). Based on previous Monte
Carlo simulations (Shi et al., 2002), it has been speculated that
the modulation of the proline kink in TM6 could be the result of the
change in the side-chain rotamer of the nearby highly conserved W2656.48.
This movement of the side chain of W2656.48 upon activation has not been
observed in any of the GPCR crystal structures of the active or partially
active states so far but has been observed in the NMR measurements of
rhodopsin activation (Ahuja and Smith, 2009). It is possible that this effect
is dynamic and can be observed only in solution. In the MD simulation of
the trans-retinal-bound activated rhodopsin, Bhattacharya et al. observed a
strong correlation between the rotamer angle of W2656.48 and the kink

MULTISCALE COMPUTATIONAL METHODS FOR GPCRS 271



angle of TM6 hinged on the P2676.50 as shown in Fig. 4. The change in the
side-chain rotamer of W2656.48 is assisted by a number of water molecules
that have penetrated the region as shown in Fig. 5. The diffusion of water
into the protein cavity weakens the hydrogen bond between H2115.46 and
W2656.48 and assists in the movement of the side chain of W2656.48. The
energy required for breaking this hydrogen bond comes from the forma-
tion of new water mediated hydrogen bonds between the neighboring
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FIG. 4. Dynamics of residues are important for activation of GPCRs. Methods such
as NMR and MD simulations are required to observe this dynamics. Shown in this figure
is the dynamics of the side chain of W2656.48 that modulates the helical kink in TM6, as
seen in the MD simulations. Water plays a critical role in assisting this dynamics. (A) The
torsional angle (torsion is measured between the Cb and Cg atoms of W2656.48) of
W2656.48 and the helical kink angle of TM6 as function of time; (B) the torsion angle
of the side chain of W2656.48 and number of water molecules in the vicinity of the
conserved proline that causes the helical kink, as function of time; (C) TM6 kink angle
as function of the torsion angle of the side chain of W2656.48. The gray curve represents
the actual data (block averaged over 0.5 ns), whereas the dark line represents the best fit
trend line. The equation of the fitted trend line and the correlation coefficient are
shown in the box. This shows a correlation between the dynamics of the side chain of
W2656.48 and the helical kink.
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water molecules and both the residues H2115.46 and W2656.48. During the
course of the dynamics, the side chain of W2656.48 traverses through
several intermediate states such as the ones shown in the snapshots in
Fig. 5. These intermediate side-chain conformations are stabilized by the
formation of hydrogen bonds with the neighboring waters. When the
W2656.48 side chain moves from one intermediate state to the next, a
few water-mediated hydrogen bonds are broken and new ones are formed
to stabilize the rotamer in the next intermediate state. Therefore, water
directly assists in the movement of the side chain of W2656.48 by providing
stabilizing contacts to all the intermediate rotamer conformations and in
lowering the energy barrier involved in the side-chain movement of
W2656.48 upon activation.
Several MD studies have highlighted the role of water in the activation

of rhodopsin and other GPCRs. During 1.5 ms of MD simulations involving
all-trans retinal-bound rhodopsin, there was a large influx of water into the
transmembrane region (Grossfield et al., 2008). Using NMR, this increase
in internal hydration was attributed to the Meta-I intermediate. MD
simulations on squid rhodopsin showed a continuous water channel to
extend from the retinal binding site to the helical proline kink of TM6
(Jardón-Valadez et al., 2008). Additionally, the network of water-mediated

TM3

W2656.48

TM6 TM7

FIG. 5. The dynamics of the side-chain conformation of W2656.48 is assisted by
water. Shown in this figure are water molecules that form a ‘‘water wire’’ with W2656.48

and TM7. Formation of this water wire facilitates the side-chain movement of W2656.48.
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hydrogen bonds between highly conserved residues Y3067.53 of NPxxY
motif on TM7, D832.50 on TM2, and W2656.48 of the WxP motif on TM6
was stable throughout the simulation. The water channel and the water-
mediated hydrogen bond network have been hypothesized to relay the
signal from the retinal isomerization site to the intracellular interface of
the receptor. Microsecond MD simulations on the cannabinoid CB2
receptor have shown that agonist entry into the binding site triggers a
conformational change to the TM6–TM7 interface followed by an influx of
water into the transmembrane cavity connecting the ligand binding do-
main to the intracellular surface of the receptor (Hurst et al., 2010). The
role of water in modulating the movement of the side chain of W3866.48

was studied using microsecond scale MD and metadynamics (Selent et al.,
2010). Hydrated sodium ions were shown to bind to an allosteric site
between the conserved aspartate D802.50 on TM2, the NPxxY motif on
TM7, an S1213.39 on TM3, and W3866.48 on TM6 in the human dopamine
D2 receptor. During the course of MD, water molecules clustered around
the positively charged sodium ion modulated the side-chain movement of
the W3866.48 residue. The above results collectively suggest that transmem-
brane water molecules help in transducing the activation signal from the
ligand binding site to the functional microdomains and to the G-protein
binding interface of the receptor Additionally, water can aid the diffusion
of soluble ligands into the binding cavity.

V. Concluding Remarks

GPCRs are highly dynamic and exist in an ensemble of conformations
even in the absence of any ligand. Ligand binding leads to conformational
selection and selective stabilization of certain conformations, thus causing
a population shift. There is further shift in population of various states
upon binding of intracellular proteins such as the G-proteins or b-arrestin.
Existence of the ensemble of receptor conformations is consistent with the
fact that the same ligand shows varied efficacies to different downstream
effectors or different signaling pathways. This has been termed as ‘‘func-
tional selectivity’’ or ‘‘biased agonism.’’ The crystal structures are only one
of the low-energy conformations in the ensemble, and the signaling
specificity achieved by the activation process of GPCRs is determined
not only by the lowest energy receptor state as in the crystal structure
but also by the range of nearly degenerate conformational states that the
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receptor explores. However, crystal structures serve as an excellent starting
conformation point for mapping the ensemble of conformations describ-
ing the dynamics and efficacy.
The receptor gets stabilized in the active state only in the presence of

both the agonist and the G-protein as revealed in the recent crystal
structure of b2-AR with agonist and nanobody (mimic of the G-protein)
bound. This crystal structure in conjunction with the results from other
biophysical experiments on purified proteins shows that TM6 undergoes
large outward movement upon activation. Water plays an important role in
lowering the energy barriers for breaking of interhelical hydrogen bonds
and making of new ones.
Computational methods have been used extensively in modeling GPCR

structure and dynamics. It is amply clear that long timescale all-atom MD
simulations starting from any single state, such as the inactive state of the
receptor, do not map the entire ensemble of conformational states that
the receptor would sample, including the active state. We have clearly
demonstrated that coarse grain methods are useful in mapping multiple
conformational states of the receptors although these conformations are
of low resolution. Combining the coarse grain methods, with all-atom MD
simulations, gives a better sampling of the conformational ensemble of the
receptor as well as a description of the activation process. The multiscale
computational methods, in conjunction with the crystal structures of
GPCRs, can be used to successfully address the problem of receptor
flexibility in functionally specific drug design.
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time monitoring of receptor and G-protein interactions in living cells. Nat. Methods
2, 177–184.

Ghanouni, P., Gryczynski, Z., Steenhuis, J. J., Lee, T. W., Farrens, D. L., Lakowicz, J. R.,
et al. (2001). Functionally different agonists induce distinct conformations in the G
protein coupling domain of the b2 adrenergic receptor. J. Biol. Chem. 276,
24433–24436.

Grossfield, A., Pitman, M. C., Feller, S. E., Soubias, O., Gawrisch, K. (2008). Internal
hydration increases during activation of the G-protein-coupled receptor rhodopsin.
J. Mol. Biol. 381, 478–486.

Hamm, H. E. (1998). The many faces of G protein signaling. J. Biol. Chem. 273,
669–672.

Hornak, V., Ahuja, S., Eilers, M., Reeves, P. J., Sheves, M., Smith, S. O. (2010). A view of
the activated state of rhodopsin from guided molecular dynamics simulations.
J. Mol. Biol. 396, 510–527.

Hubbell, W. L., Altenbach, C., Hubbell, C. M., Khorana, H. G. (2003). Rhodopsin
structure, dynamics, and activation: a perspective from crystallography, site direct-
ed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Adv. Protein Chem.
63, 243–290.

Hurst, D. P., Grossfield, A., Lynch, D. L., Feller, S., Romo, T. D., Gawrisch, K., et al.
(2010). A lipid pathway for ligand binding is necessary for a cannabinoid g protein-
coupled receptor. J. Biol. Chem. 285, 17954–17964.

Isin, B., Rader, A. J., Dhiman, H. K., Klein-Seetharaman, J., Bahar, I. (2006). Predispo-
sition of the dark state of rhodopsin to functional changes in structure. Proteins 65,
970–983.

Isin, B., Schulten, K., Tajkhorshid, E., Bahar, I. (2008). Mechanism of signal propaga-
tion upon retinal isomerization: insights from molecular dynamics simulations of
rhodopsin restrained by normal modes. Biophys. J. 95, 789–803.

Jardón-Valadez, E., Bondar, A.-N., Tobias, D. J. (2008). Dynamics of the internal water
molecules in squid rhodopsin. Biophys. J. 96, 2572–2576.

Johnston, C. A., Siderovski, D. P. (2007). Receptor-mediated activation of heterotri-
meric G-proteins: current structural insights. Mol. Pharmacol. 72, 219–230.

Kenakin, T. (2007). Functional selectivity through protean and biased agonism: who
steers the ship? Mol. Pharmacol. 72, 1393–1401.

Kenakin, T. (2008). Functional selectivity in GPCR modulator screening. Comb. Chem.
High Throughput Screen. 11, 337–343.

Khelashvili, G., Grossfield, A., Feller, S. E., Pitman, M. C., Weinstein, H. (2008).
Structural and dynamic effects of cholesterol at preferred sites of interaction with
rhodopsin identified from microsecond length molecular dynamics simulations.
Proteins 76, 403–417.

MULTISCALE COMPUTATIONAL METHODS FOR GPCRS 277



Krishna, A., Menon, S. T., Terry, T. J., Sakmar, T. P. (2002). Evidence that helix 8 of
rhodopsin acts as a membrane-dependent conformational switch. Biochemistry 41,
8298–8309.

Laio, A., Parrinello, M. (2002). Escaping free energy minima. Proc. Natl. Acad. Sci. USA
99, 12562–12566.

Leduc, M., Breton, B., Gals, C., Le Gouill, C., Bouvier, M., Chemtob, S., et al. (2009).
Functional selectivity of natural and synthetic prostaglandin EP4 receptor ligands.
Pharmacol. Exp. Ther. 331, 297–307.

Lefkowitz, R. J., Shenoy, S. K. (2005). Transduction of receptor signals by beta-arrestins.
Science 308, 512–517.

Lohse, M. J., Nikolaev, V. O., Hein, P., Hoffmann, C., Vilardaga, J.-P., Bünemann, M.
(2008). Optical techniques to analyze real-time activation and signaling of G-
protein-coupled receptors. Trends Pharmacol Sci. 29, 159–165.

Magnani, F., Shibata, Y., Serrano-Vega, M. J., Tate, C. G. (2008). Co-evolving stability
and conformational homogeneity of the human adenosine A2a receptor. Proc. Natl.
Acad. Sci. USA 105, 10744–10749.

Niesen, M., Bhattacharya, S., Vaidehi, N. (2011). Conformational selection upon ligand
binding in G-protein coupled receptors. J. Am. Chem. Soc. accepted.

Orban, T., Gupta, S., Palczewski, K., Chance, M. R. (2010). Visualizing water molecules
in transmembrane proteins. Biochemistry 49, 827–834.

Pappu, R. V., Marshall, G. R., Ponder, J. W. (1999). A potential smoothing algorithm
accurately predicts transmembrane helix packing. Nat. Struct. Biol. 6, 50–55.

Park, J. H., Scheerer, P., Hoffman, K. P., Choe, H.-W., Ernst, O. P. (2008). Crystal
structure of the ligand-free G-protein coupled receptor opsin. Nature 454, 183–187.

Pitman, M. C., Grossfield, A., Suits, F., Feller, S. E. (2005). Role of cholesterol and
polyunsaturated chains in lipid�protein interactions: molecular dynamics simula-
tion of rhodopsin in a realistic membrane environment. J. Am. Chem. Soc. 127,
4576–4577.

Provasi, D., Filizola, M. (2010). Putative active states of a prototypic G-protein-coupled
receptor from biased molecular dynamics. Biophys. J. 98, 2347–2355.

Rader, A. J., Anderson, G., Isin, B., Gobind Khorana, H., Bahar, I., Klein-
Seetharaman, J. (2004). Identification of core amino acids stabilizing rhodopsin.
Proc. Natl. Acad. Sci. USA 101, 7246–7251.

Rasmussen, S. G., Choi, H. J., Fung, J. J., Pardon, E., Casarosa, P., Chae, P. S., et al.
(2011). Structure of a nanobody-stabilized active state of the b2 adrenoceptor.
Nature 469, 175–180.

Romo, T. D., Grossfield, A. (2011). Validating and improving elastic network models
with molecular dynamics simulations. Proteins 79, 23–24.

Rosenbaum, D. M., Zhang, Z., Lyons, J. A., Holl, R., Aragao, D., Arlow, D. H., et al.
(2011). Structure and function of an irreversible agonist–b2 adrenoceptor com-
plex. Nature 469, 236–240.

Schertler, G. F. X. (2005). Structure of rhodopsin and the metarhodopsin I photo-
intermediate. Curr. Opin. Struct. Biol. 15, 408–415.

278 VAIDEHI AND BHATTACHARYA



Schwartz, T. W., Frimurer, T. M., Holst, B., Rosenkilde, M. M., Elling, C. E. (2006).
Molecular mechanism of 7TM receptor activation—a global toggle switch model.
Annu. Rev. Pharmacol. Toxicol. 2006(46), 481–519.

Seifert, R., Wenzel-Seifert, K. (2002). Constitutive activity of G-protein-coupled recep-
tors: cause of disease and common property of wild-type receptors. Naunyn Schmie-
debergs Arch. Pharmacol. 366, 381–416.

Selent, J., Sanz, F., Pastor, M., De Fabritiis, G. (2010). Induced effects of sodium ions
on dopaminergic G-protein coupled receptors. PLoS Comput. Biol. 6, e1000884.

Serrano-Vega, M. J., Magnani, F., Shibata, Y., Tate, C. G. (2008). Conformational
thermostabilization of b1-adrenergic receptor in a detergent-resistant form. Proc.
Natl. Acad. Sci. USA 105, 877–882.

Shenoy, S. K., Drake, M. T., Nelson, C. D., Houtz, D. A., Xiao, K., Madabushi, S., et al.
(2006). Beta-arrestin-dependent, G protein-independent ERK1/2 activation by the
beta2 adrenergic receptor. J. Biol. Chem. 281, 1261–1273.

Shi, L., Liapakis, G., Xu, R., Guarnieri, F., Ballesteros, J. A., Javitch, J. A. (2002).
b2 adrenergic receptor activation. Modulation of the proline kink in transmem-
brane 6 by a rotamer toggle switch. J. Biol. Chem. 277, 40989–40996.

Shibata, Y., White, J. F., Serrano-Vega, M. J., Magnani, F., Aloia, A. L., Grisshammer, R.,
et al. (2009). Thermostabilization of the neurotensin receptor NTS1. J. Mol. Biol.
390, 262–277.

Swaminath, G., Xiang, Y., Lee, T. W., Steenhuis, J., Parnot, C., Kobilka, B. K. (2004).
Sequential binding of agonists to the beta2 adrenoceptor: kinetic evidence for
intermediate conformational states. J. Biol. Chem. 279, 686–691.

Swaminath, G., Deupi, X., Lee, T. W., Zhu, W., Thian, F. S., Kobilka, T. S., et al. (2005).
Probing the beta2 adrenoceptor binding site with catechol reveals differences in
binding and activation by agonists and partial agonists. J. Biol. Chem. 280,
22165–22171.

Tate, C. G. (2010). Practical considerations of membrane protein instability during
purification and crystallization. Methods Mol. Biol. 601, 187–203.

Urban, J. D., Clarke, W. P., von Zastrow, M., Nichols, D. E., Kobilka, B., Weinstein, H.,
et al. (2007). Functional selectivity and classical concepts of quantitative pharma-
cology. J. Pharmacol. Exp. Ther. 320, 1–13.

Vaidehi, N. (2010). Dynamics and flexibility of G-protein coupled receptor conforma-
tions and their relevance in drug design. Drug Discov. Today 15, 951–957.

Vaidehi, N., Kenakin, T. (2010). The role of conformational ensembles of seven
transmembrane receptors in functional selectivity. Curr. Opin. Pharmacol. 10,
775–781.

Vaidehi, N., Floriano, W. B., Trabanino, R., Hall, S. E., Freddolino, P., Choi, E. J., et al.
(2002). Prediction of structure and function of G-protein coupled receptors. Proc.
Natl. Acad. Sci. USA 99, 12622–12627.

Violin, J. D., Lefkowitz, R. J. (2007). Beta-arrestin-biased ligands at seven-transmem-
brane receptors. Trends Pharmacol. Sci. 28, 416–422.

Warne, T., Serrano-Vega, M. J., Baker, J. G., Moukhametzianov, R., Edwards, P. C.,
Henderson, R., et al. (2008). Structure of a b1-adrenergic G-protein-coupled recep-
tor. Nature 454, 486–491.

MULTISCALE COMPUTATIONAL METHODS FOR GPCRS 279



Warne, T., Moukhametzianov, R., Baker, J. G., Nehmé, R., Edwards, P. C., Leslie, A. G.,
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Abstract

Modern implicit solvent models for macromolecular simulations in
water–proton bath are considered. The fundamental quantity that implicit
models approximate is the solute potential of mean force, which is
obtained by averaging over solvent degrees of freedom. The implicit
solvent models suggest practical ways to calculate free energies of
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macromolecular conformations taking into account equilibrium interac-
tions with water solvent and proton bath, while the explicit solvent ap-
proach is unable to do that due to the need to account for a large number
of solvent degrees of freedom. The most advanced realizations of the
implicit continuum models by different research groups are discussed,
their accuracy are examined, and some applications of the implicit solvent
models to macromolecular modeling, such as free energy calculations,
protein folding, and constant pH molecular dynamics are highlighted.

I. Introduction

Computer simulations in which solvent molecules are treated explicitly
represent one of the most detailed approach to study the influence of
solvation on biomolecules (Brooks et al., 1988). However, an accurate
description of the aqueous environment for realistic biomolecular simula-
tions, that is, via method of molecular dynamics (MD), requires a large
number of solvent molecules to be placed around it (Karplus and
McCammon, 2002; McDowell et al., 2007). In practical simulations, a
large fraction of computer time is spent calculating a detailed trajectory
of the solvent molecules, while it is the solute behavior that is primarily of
interest. Despite their cost, computer simulations with explicit solvent
molecules are not exempt from approximations, for example, difficulties
arise in calculations involving charged molecules when long-range elec-
trostatic interactions are truncated or summed over periodic array of
simulation boxes using Ewald techniques (Hűnnenberg and
McCammon, 1999). While free energy perturbation methods, based on
microscopic simulation of a macromolecule with explicit solvent, may in
principle be suitable for free energy calculations (Kollman, 1993; Radmer
and Kollman, 1997), this in practice meets with tremendous difficulties
due to the large molecular size and the need to sample adequately over
large number of solvent and solute conformations and properly evaluate
long-range electrostatic interactions (Bogusz et al., 1998; Kollman et al.,
2000). An accurate calculation of the free energy of a macromolecule in
an aqueous solution requires sampling over the whole volume of accessi-
ble phase space. While it is possible for structurally highly organized
macromolecule from the results of a simulation, the same is difficult
task for a solvent. Partly due to these difficulties, approximate schemes
treating the solvent implicitly have been developed in past decades; some
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of them are reviewed (Roux and Simonson, 1999; Bashford and Case,
2000; Chen and Brooks, 2008; Onufriev, 2008). Elaboration of implicit
models of water and proton bath as a solvent media is important task for
reliable simulation of proteins with many titratable groups at a given
solvent pH. This chapter reviews modern explicit solvent models applica-
ble for calculating the free energy of a macromolecule in aqueous solution
and simulation via method of MD at constant pH.

II. Formulation of General Implicit Solvent Model for
Calculating Conformational Free Energy

A. Transport of a Protein from Gas Phase into Water–Proton Bath

Toavoid thedifficult problemofproperly sampling solvent configuration,
an implicit description of solvation can be adopted, and thereby obtained a
partition function of the solute in which the interactions with the solvent are
represented through a solvation potential or potential ofmean force (PMF)
which depends explicitly on the solute’s coordinates (Hill, 1986; Vorobjev
et al., 1998; Roux and Simonson, 1999). The partition function, Z of a solute
molecule (atomic coordinates x) in a solvent (coordinates y) can be written
as the ratio of the partition functions for solution and pure solvent systems
(containing identical numbers of solvent molecules)

Z ¼
Ð
dx
Ð
dy exp �b Um xð Þ þ Ums x; yð Þ þ Uss yð Þ½ �f gÐ

dyexp �b Uss yð Þ½ � ð1Þ

Here, Um(x) is the intramolecular potential energy, Ums(x,y) is the poten-
tial energy of the solute–solvent interactions, and Uss(y) is the potential
energy of the solvent–solvent interactions. This can be rewritten as a
partition function with solvent-mediated interactions between atoms of
the solute molecule:

Z ¼
ð
dx exp �b Um xð Þ þW xð Þ½ �f g ð2Þ

where the sum [Um(x)þW(x)] presents an effective energy, and

exp �bW xð Þ½ � ¼
Ð
dy exp �b Ums x; yð Þ þ Uss yð Þ½ �f gÐ

dy exp �bUss yð Þ½ � ð3Þ
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Here, W(x) is the free energy of solvation or PMF of the solute molecule
with conformation x. Considering scaled molecule–solvent interaction
with coupling parameter l, the solvation free energy, W(x), can be written
in the framework of the free energy perturbation method:

W xð Þ ¼
ð1
0
dl

Ð
Ums x; yð Þdy exp �b lUms x; yð Þ þ Uss yð Þ½ �f gÐ

dy exp �b lUms x; yð Þ þ Uss yð Þ½ �f g ð4Þ

This provides an expression suitable for a microscopic simulation. Consid-
ering a multistep sequential ‘‘turning on’’ of different types of solute–
solvent interactions in Eq. (4), one can see that the process of dissolving a
gas-phase protein in water in the presence of hydrogen ions can be
modeled as a four-stage thermodynamic process (Honig et al., 1993;
Ripoll et al., 1996; Vorobjev et al., 2008): (stage 1) creation of a solute-
sized cavity in water; (stage 2) insertion of the zero-charged protein (with
all atoms having zero partial charges) into the cavity in water; (stage 3)
charging of the protein to the gas-phase partial atomic charges q0¼
(q01, . . .,q

0
N) in which all ionizable groups are maintained neutral; and

(stage 4) an equilibrium titration of the protein at a given pH (Fig. 1). The
first three stages of this partition describe the solvation free energy of a
protein with fixed gas-phase partial charges on all atoms q0

W x;q0
� � ¼ Gcav xð Þ þ Gvdw xð Þ þ Gpol x;q

0
� � ð5Þ

where Gcav(x) is the free energy for creation of the molecular cavity in
water (stage 1), Gvdw(x) is the free energy of van der Waals interactions
between the solute and the water solvent (stage 2), Gpol(x,q

0) is the
free energy of polarization of the water solvent by the protein with gas-
phase partial charges on all atoms (stage 3), DGinz(x,pH) is the free
energy of equilibrium titration of protein for a given pH and conforma-
tion x which leads to a change of the protein gas-phase partial atomic
charges q0 of the neutral ionization microstate z0¼(z01, . . ., z

0
z), all z

0
i¼0,

where z is the total number of titratable protons (or groups), to a
new values qinz for equilibrium ionization state hzi which is coupled
with conformation x and pH value. The whole thermodynamic cycle
defines the free energy Gt(x,pH) of transport of a single protein molecule
into water at a given pH in an instantaneous microscopic conformation x:

Gt x;pHð Þ ¼ W x;qoð Þ þ DGinz x;pHÞð ð6Þ

284 VOROBJEV



Gcav

H+

q0

qº0

qinz

(stage 1)

(stage 2)

(stage 3) 

(stage 4) 

Gvdw

Gpol

q0

DGinz

FIG. 1. Thermodynamic cycle of transport of molecule from gas phase into water–
proton bath; q0 is partial atomic charges in the gas phase in which all ionizable groups
are neutral; (stage 1) creation of a solute-sized cavity in water; (stage 2) insertion of the
zero-charged protein (with all atoms having zero partial charge) into the cavity in water;
(stage 3) charging of the protein to the gas-phase partial atomic charges q0¼(q01, . . .,
q0N); and (stage 4) an equilibrium titration of the protein at a given pH value, qinz is
partial atomic charges of titrated protein.
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It should be noted that a transport of the neutral protein molecule from
gas phase into water solvent at a given pH is not accompanied by the
transfer of a net charge. The protein molecule becomes charged in water–
proton bath due to equilibrium proton binding and releasing into solvent,
that is, by means of equilibrium redistribution of protons between the
solvent and the solute in a given conformation x. The total free energy of
protein for a given conformation x in the solvent at given pH is equal to

Gðx;pHÞ ¼Um x;q0
� �þW x;q0

� �þ DGinz x;pHð Þ ð7Þ
where Um

0(x;q0) is the intramolecular conformational potential energy of
the protein computed in the gas-phase with gas-phase atomic charges (q0).
A prediction of conformational preference of proteins in water–proton
bath based on Eq. (7) makes it more reliable (Arnautova et al., 2009).

Considering all phase space of a solute molecule as a sum of subspaces A,
B, . . ., each of which describes a distinctmacroscopic solute conformation, it
follows from Eq. (2) that the free energy GA of a solute molecule in a
macroscopic conformation A can generally be presented in terms of average
configurational energy and entropy over the molecular degrees of freedom

GA¼ Umðx;q0Þ� �
A
þ W x;q0

� �þ DGinz x;pHð Þ� �
A
� TSc ð8Þ

where h iA denotes an average over micro-configurations of the conforma-
tion A, SA is the entropy of the conformation A, which can be estimated
over MD trajectory in quasi-harmonic approximation (Srinivasan et al.,
1998; Vorobjev et al., 1998; Kollman et al., 2000).

III. Continuum Solvent Models

A. Free Energy of Nonpolar Interactions

The sum of free energy of solvent cavity formation and solute–solvent
van der Waals interactions presents a free energy of nonpolar solvation (or
hydration) Gnp:

Gnp¼GcavþGvdw ð9Þ
The nonpolar solvation has a complex physical nature, and the associated
energy generally has a small amplitude than the polar counterpart; how-
ever, it is well appreciated that hydrophobic association is one of the
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principal interaction that determines biomolecular structures (Scheraga,
1998). Recently, it was well understood that the nonpolar solvation should
include two terms, that is, the free energy of solvent cavity Gcav formation
and solute–solvent van der Waals free energy Gvdw. These two terms are
balanced each other depending differently on structure and conformation
of interacting chemical groups (Chen and Brooks, 2007). Their sum
describes a length-scale dependence of the free energy of solvating hydro-
phobic solutes and free energy of hydrophobic association (Chen and
Brooks, 2008). Further, we consider recent advanced implicit models
describing the cavity and solvent–solute van der Waals free energies.

B. Free Energy of a Solvent Cavity

Analysis of the nonpolar free energy in the integral form of thermody-
namic perturbation theory (Roux and Simonson, 1999), experimental
data (Hermann, 1972; Ben-Naim and Marcus, 1984; Ben-Naim, 1990),
microscopic simulations on small systems (Hummer et al., 1995, 1996;
Wallqvist and Berne, 1995a,b), and scaled particle theory (Reiss et al.,
1960; Pierotti, 1976; Postma et al., 1982; Jackson and Sternberg, 1994,
1995) shows consistently that the cavity free energy changes linearly with
the surface S of the cavity

Gcav � gmicroS ð10Þ
where the cavity surface is defined as a smooth molecular surface (MS)
confining the molecular solvent-excluded volume (SEV) (Connolly,
1983a; Vorobjev and Hermans, 1997) or in some applications as a solvent-
accessible surface (SAS) (Chothia, 1974; Richards, 1977). The SAS is gener-
atedby the center ofwater solventprobemolecule,modeledas a rigid sphere
of radius Rw¼1.4 Å, when this rolls about external van der Waals surface of
protein atoms, each represented by a spherical ball of atomic van der Waals
radius Rvdw,i. It is common practice to assume that the atomic van der Waals
radii are independent of atomic charges. TheMS is generated by the inward-
facing surface of the solvent probemolecule, when it rolls about the van der
Waals surface of the molecule. The proportionality factor, gmicro, is a micro-
scopic surface tension. An optimum choice for the proportionality factor,
gmicro, between surface area and cavity free energy is coupled with the choice
of a type of surface, the MS or the SAS and remains to be determined.
Simulations with an explicit water model show the free energy of creating
an uncharged ‘‘bubble’’ in an aqueous solution to be proportional to the
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macroscopic surface of the cavity, with an interfacial surface tension similar
to the experimental gas-solvent surface tension, gmacro, for bubbles well
exceeding a water molecule in size (Jackson and Sternberg, 1994). The
value of the microscopic surface free energy, gmicro, used to compute Gcav

is smaller because, on a molecular scale, the microscopic surface of an
interface is much more irregular and somewhat larger than the
corresponding macroscopic surface. For planar atomic arrays of densely
packed van der Waals atomic spheres either in contact or interpenetrating
up to 30%, one finds the smoothmacroscopic surface to be smaller than the
irregularmicroscopic surface by a factor of about 0.66 (Vorobjev et al., 1998;
Vorobjev and Hermans, 1999). Correspondingly, the microscopic surface
free energy should be smaller than themacroscopic surface tension of water
by the same factor.With experimental gmacro equal to 102 cal/(mol Å2), this
gives a value of 67 cal/(mol Å2) for gmicro, in good agreement with the
estimate of 70 cal/(mol Å2) that has been found to optimize the correlation
between the results of free energy estimates and experimental data for
protein stability and protein–protein binding of mutant proteins (Jackson
and Sternberg, 1995; Novotny et al., 1997).

Recently, the analytical generalized Born plus nonpolar (AGBNP) im-
plicit solvent model has been presented, which includes estimators for
solute cavity formation work and solute–solvent van der Waals energy
(Gallicchio et al., 2002; Levy et al., 2003; Gallicchio and Levy, 2004).
The cavity formation free energy term is described by Eq. (11), where
cavity term Gcav is presented as a sum over partial atomic surfaces si with
atom-dependent scaling factors gi

Gcav ¼
X
i

gi si ð11Þ

A set of atomic factors gi are adjusted empirically on a training set of small
molecules, a uniform value gi¼117 cal/(mol Å2) independent on atom
type. Solvent-accessible atomic surfaces si have been calculated as van der
Waals surface of atoms with increased atomic radii Ri¼si/2þ0.5 Å, where
si is OPLS forcefield van der Waals parameter (Jorgensen et al., 1996).
The improved implicit solvation model AGBNP2 (Gallicchio et al., 2009)
describes the cavity formation free energy by Eq. (11) with various gi which
are obtained from fitting Eq. (11) to the hydration energies of alkane
cavities. The atomic parameters gi are in the range of 117–129 cal/(mol/
Å2), for details see Table I in the chapter (Gallicchio et al., 2009).
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C. The Solute–Solvent van der Waals Interactions

The free energy Gvdw(x) of solute–solvent van der Waals interactions can
be accurately estimated by averaging the potential energy of solute–solvent
van der Waals energy over MD trajectory �100 ps with explicit solvent for a
solute frozen at a given conformation x (Vorobjev et al., 1998). This is a
good approximation because the free energy of solvent reorganization
due to the weak attractive van der Waals interaction with the solute is small
(Tomasi and Persico, 1994). Due to a short-range nature of van der Waals
potential, the energy Gvdw can be approximated by the linear expression
over area of molecular surface S,

Gvdw xð Þ ¼ �gvdwS ð12Þ
The average proportionality factor gvdw¼þ30(�17)cal/(mol Å2) has
been found from MD simulations of the solute–solvent van der Waals
energy for a set of medium-sized proteins in an explicit SPC water
(Vorobjev et al., 1998). The consistency of the implicit model in reprodu-
cing the cavity term and solute–solvent van der Waals energy is demon-
strated by the agreement between the distance dependence of the implicit
solvent PMF of nonpolar interactions between two methane molecules on
the distance r in water with the PMF calculated by microscopic simulations
via Monte-Carlo and MD (Vorobjev and Hermans, 1999). A recent study
(Sobolevski et al., 2007) confirmed the observation that MS area in the
Eqs. (10) and (12) provides a reasonable description of hydrophobic
association of hydrocarbons and reproduces desolvation maximum of
the rigorous PMF of hydrophobic association calculated by the MD free
energy simulation in an explicit water solvent.
The nonpolar hydration free energy of Eq. (9) has been modeled by

SAS area empirical models (Ooi et al., 1987; Langlet et al., 1988; Honig
et al., 1993; Simonson and Brünger, 1994; Sitkoff et al., 1994; Tomasi and
Persico, 1994; Juffer et al., 1995) which are still widely employed (Lee
et al., 2000; Fogolary et al., 2001; Pellegrini and Field, 2002; Curutchet
et al., 2003; Jorgensen and Tirado-Rives, 2004; Wagoner and Baker, 2006;
Chen and Brooks, 2007, 2008).
The AGBNP model describes the solute–solvent van der Waals free

energy by expression which is obtained as integral of van der Waals
solute–solvent interactions over the solvent volume modeled as a uniform
continuum (Levy et al., 2003).
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Gvdw¼
X
i

ai
ai

Bi þ Rwð Þ3 ð13Þ

where

ai ¼ � 16

3
prwews

6
iw ð14Þ

where rw¼0.033428 Å�3 and siw and eiw are the OPLS force field para-
meters (Jorgensen and Madura, 1985) for van der Waals potential between
atom i and water oxygen, Bi is the Born radius of atom i in the molecule of
given conformation and Rw¼1.4 Å is radius of water molecule. The values
of parameters ai�1 have been set so as to reproduce as best as possible the
solute–solvent van der Waals energies of individual atoms of a large set of
proteins and small molecules obtained from the results of explicit solvent
simulations with TIP4P3 (Jorgensen and Madura, 1985; Levy et al., 2003;
Gallicchio et al., 2009). It should be noted that the description of the
nonpolar hydrations via Eqs. (11) and (13) with atomic scaling factors ai
and gi empirically accounts for a dependence of atomic van der Waals radii
Rvdw,i on atomic charges.

D. Solvent Polarization Free Energy

The protein’s charges (charge qi is at position ri) for conformation x¼
(r1, . . ., rN) induce in the solvent a polarization charge density, hrpol(r)i,
which produces an electrostatic potential, Vpol(r), at the point ri

Vpol rið Þ� � ¼ ð rpol rð Þ
D E
jr � rij dr ð15Þ

The polarization free energy is a work done in a charging process in which
the charges of the protein are gradually ‘‘turned on’’ by factor l

Gpol ¼
ð1
0
dl
X
i

qi Vpol rið Þ� �
l

� � ð16Þ

With a linear response approximation for solvent polarization, Vpol and
rpol both are proportional to l, and this gives

Gpol ¼ 1

2

X
i

qi

ð rpol rð Þ
D E
jr � rij dr ð17Þ
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In a dynamics simulation with explicit solvent, rpol is identical with the
distribution of the average charges of the solvent atoms, and a common
approach is to use Eq. (16) to compute Gpol with thermodynamic integra-
tion or perturbation (Kollman, 1993).
The validity of the linear response approximation for the solvent reac-

tion potential of an aqueous solvent has been examined by direct simula-
tions of its dependence on l in MD free energy simulations (Jayaram et al.,
1989; Roux et al., 1990; Levy et al., 1991; Rick and Berne, 1994; Hummer
et al., 1995; Aqvist and Hansson, 1996; Vorobjev and Hermans, 1999). In a
majority of simulations of polar and charged molecules, a nearly linear
response has been observed for a moderately charged solute, that is, one
whose partial atomic charges do not exceed �1 e and whose electrostatic
field near the solute surface does not exceed 50 kT/(e Å).

E. Continuum Electrostatic Poisson Model

The validity of linear response approximation assumes that the calculation
of theaverage-inducedpolarizationchargedensity, hrpol(r)i, canbedonealso
in the framework of macroscopic electrostatics, that is, with an implicit con-
tinuum solvent description. The average electrostatic potentialF(r) contains
contributions from the fixed charges of the protein and the inducedpolariza-
tion charges in the solvent, according to the Poisson equation,

r2F rð Þ ¼ �4p
X
i

qid r � rið Þ � 4p rpol rð Þ
D E

ð18Þ

and with use of standard relations connecting the average-induced charge
density hrpol(r)i with the average polarization, and the polarization with
the electric field (Jackson, 1975; Landau and Lifshitz, 1988), one obtains
Poisson equation with a position-dependent dielectric constant D(r)

rD rð ÞrF rð Þ ¼ �4p
X
i

qid r � rið Þ ð19Þ

If the position-dependent dielectric constant D(r) is known, Eqs. (18) and
(19) define the distribution of hrpol(r)i for a given conformation of the
protein so that Gpol can be calculated with Eq. (17).
A fundamental question is how to model the distribution of the dielec-

tric constant, D(r). Inside the protein molecule’s SEV, the dielectric
constant DI¼1 because the solvation free energy has to be calculated for

ADVANCES IN IMPLICIT MODELS OF WATER SOLVENT TO COMPUTE 291



a fixed internal degrees of freedom and nonpolarizable charge distribu-
tion, in a single conformation (Roux et al., 1999). In the solvent space, it is
common practice to use the bulk water solvent dielectric constant D0¼80.
Near the water–solute interface, the density of water drops sharply, over a
distance of about 0.5 Å, from the bulk density to zero, as it has been shown
by extensive MD simulation of solvent density around proteins (Lounnas
et al., 1994). Therefore, a model with a sharp stepwise approximation to
the solvent density is reasonable. Based on integral equations of liquids
(Beglov and Roux, 1996, 1997), it was shown that the position-dependent
dielectric constant D(r) can be modeled by the equation

D rð Þ ¼ Di þ yðrÞðD0 � DiÞ ð20Þ
where y(r) is a sharp switching function equal to zero inside the SEV. The
exact choice of where to locate the solute–solvent dielectric boundary is
empirical and compensate for deviations of the actual dependence of the
dielectric constant from the assumed step functionnear the protein surface.
An optimal set of atomic radii defining dielectric interface MS has been
calculated by fitting the implicit model polarization free energy to a set of
experimental data (Sitkoff et al., 1994) and/or data obtained by calculations
via free energy perturbationmethodwith explicit solvent for a training set of
small molecules (Nina et al., 1997, 1999; Vorobjev et al., 2008).

F. A Smooth Molecular Surface

The method used to compute the dielectric interface in Eqs. (19) and
(20) must be defined with precision because it is crucial component for an
accurate prediction in macromolecular electrostatic applications. It is
assumed that the MS is a good approximation of a dielectric surface
border between high dielectric polar solvent and low dielectric interior
of solute molecule in continuum dielectric methods on the base of
numerical solution of the Poisson equation (19) (Zauhar and Morgan,
1988; Rashin, 1990; Sharp and Honig, 1990; Juffer et al., 1991; Vorobjev
et al., 1992; Rashin et al., 1994; Bharadwaj et al., 1995; Vorobjev and
Hermans, 1997; Vorobjev and Scheraga, 1997; Vorobjev et al., 1998,
2008). Calculation of molecular properties on the MS and integration of
a function over the MS require a numerical representation of the MS as a
manifold S(si,ni,Dsi) of boundary elements (BEs), where si, ni, and Dsi are
coordinates, normal vector in outward direction, and area of a small
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surface element. The MS contains three types of components or faces,
which are termed ‘‘contact,’’ ‘‘saddle,’’ and ‘‘concave reentrant,’’ accord-
ing to whether the solvent probe sphere simultaneously touches one, two,
or three atoms, respectively (Connolly, 1983a,b, 1985). The true Con-
nolly’s MS of a protein may contain hundreds of singular regions with
singularities in the direction of the normal vector. The direction of the
normal vector n is not continuous in the vicinity of a singular point of the
MS (Vorobjev and Hermans, 1997). Singularities called cusps and holes
appear when the probe can almost, but not quite, pass through a group of
two or three atoms of the protein (Connolly, 1985; Zauhar, 1995; Vorobjev
and Hermans, 1997). It has been shown (Vorobjev and Hermans, 1997;
Vorobjev and Scheraga, 1997; Vorobjev et al., 1998) that accurate solution
of Poisson equation via BE method needs MS with smoothed singularities.
None of programs, MSROLL (Connolly, 1985), MSEED (Perrot et al.,

1992), MS (Varshney et al., 1994), and MSMS (Sanner et al., 1996), were
specifically designed for the BE method application and provide a dot MS
of poor quality as was tested by (Vorobjev and Hermans, 1997) to be used
with BE method. The Connolly’s method of MS calculation (Connolly,
1983a,b, 1985) has been revised, and a new method generating sooth
invariant molecular surface (SIMS) (Vorobjev and Hermans, 1997) has
been developed. The SIMS method (i) produces a near-homogeneous dot
distribution, (ii) is invariant to molecular rotation and translation, and
(iii) recognizes all types of singularities of the MS and smoothed them with
specified minimal radius of curvature. An optimal practical choice of the
radius of the smoothing sphere is �0.4 Å. The SIMS method generates a
dot MS of good numerical quality, which can be used in a variety of
implicit continuum models for calculating solvation free energy and for
molecular electrostatics with the BE method in dielectric continuum
models. The influence of a choice and composition of BEs on conver-
gence of the solution of the Poisson equation by numerical methods has
been investigated in details using Connolly’s MSROLL (Connolly, 1985)
and SIMS programs to generate BE on the solute–solvent dielectric surface
(Kar et al., 2007). It has been found that the SIMS program generates the
BEs of better quality and achieves convergence faster using smaller num-
ber of the surface elements than the MSROLL program, by a factor of
�1.5–2.0, in the test on a set of 35 medium-sized proteins. A complete
description of the SIMS method can be found elsewhere (Vorobjev and
Hermans, 1997). The timing of the SIMS method is somewhat better than

ADVANCES IN IMPLICIT MODELS OF WATER SOLVENT TO COMPUTE 293



the timing of Connolly’s method, the CPU time scales as the number of
atoms in the molecule (Vorobjev et al., 1998). The SIMS program is
available from the authors on request (ynvorob@niboch.nsc.ru).

G. Fast Adaptive Multigrid Boundary Element Method

The evaluation of the solvent polarization charge density for proteins for a
complicated atomic charge distribution is done numerically with Eqs. (19)
and (20) using finite-element methods in 3D space or on the dielectric
surface boundary. The finite difference (FD) method solves Poisson (or
Poisson–Boltzmann) equation in differential form Eq. (19) using multigrid
elements in 3D space of rectangular box which includes the solute and a
volume of solvent around it (Honig et al., 1993; Madura et al., 1994;
Simonson and Brünger, 1994; Sitkoff et al., 1994; Holst and Saied, 1995;
Holst et al., 1994, 2000; Rocchia et al., 2002; Zhou et al., 2008). The alterna-
tive is a BE method which is used for numerical solution of an integral
equation over the dielectric boundary, to which the original Poisson equa-
tion (19) can be analytically converted (Bharadwaj et al., 1995). The BE
method finds a solution in terms of electrostatic potential and/or solvent
polarization charge density induced on BEs tessellated the solute–solvent
dielectric surface (YoonandLenhoff, 1990; Juffer et al., 1991;Vorobjev et al.,
1992, 1998; Bharadwaj et al., 1995; Vorobjev and Scheraga, 1997; Lu et al.,
2006; Lu and McCammon, 2007; Vorobjev et al., 2008). The BE method
shows its invariance to rotation and translation of the solutemolecule, and a
comparison ofmultigrid BE and FDmethods shows (Bharadwaj et al., 1995)
that the BE method exhibits a higher degree of consistency. Improved
methods of solving the Poisson equation for inhomogeneous dielectric
media using multigrid and multilevel techniques have been developed
(Holst et al., 1994; Goel et al., 1995; Holst and Saied, 1995; McKenney and
Greengard, 1995; Douglas, 1996; Zhou et al., 1996; Rocchia et al., 2002).
Multilevel and multisized BE techniques have been applied to the iterative
BE method (Rashin, 1990; Vorobjev et al., 1992; Rashin et al., 1994; Zauhar
and Varnek, 1996). The iterative BE methods suffer from slow convergence
and are more time consuming than multigrid FD methods.

Recently, a new efficient implementations of the BE method have been
developed (Lu et al., 2006; Lu and McCammon, 2007; Vorobjev et al.,
2008). The BE integral equation, to which the Poisson equation (19) is
analytically converted (Bharadwaj et al., 1995), is solved by the fast
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adaptive multigrid boundary element (FAMBE) method (Vorobjev and
Scheraga, 1997; Vorobjev et al., 2008) for the induced surface polarization
charge density s(t)

s tð Þ ¼ f

ð
S

s sð Þ t � sð Þn tð Þds
jt � sj3 þ f

DI

X
i

ntEi tð Þ ð21Þ

where f¼(1/2p)(DI –D0)/(DIþD0) and n(t) is the outward normal vector
to the MS at point t, DI and D0 are the dielectric constants inside and
outside the surface, respectively, and Ei(t) is electrostatic field generated
by the charge i at the surface point t. The induced charge density s(t)
approximates the average solvent-induced charge density, in Eq. (15). The
solvent polarization free energy Gpol can be found with Eq. (17), replacing
volume integral and volume charge density with surface integral and
surface charge density s(t)

Gpol ¼ 1

2

X
i

qi

ð
S

s sð Þ
jr � rijds ð22Þ

Since the term Ei(t) is linear in the charges qi, it is possible to split s(t)
given by Eq. (21) into a sum of terms, each one of which represents the
induced polarization charge density, si(t), generated by a single group of
charges. The FAMBE method splits Eq. (21) into set of independent
minor BE equations, one each for the induced polarization charge density
generated by a single charge (or small compact group of charges)

si tð Þ ¼ f

ð
S

si sð Þ t � sð Þn tð Þds
jt � sj3 þ f

DI
ntEi tð Þ; i ¼ 1; 2; . . . ð23Þ

the total surface charge, s(t) is the sum of the components si(t). The
reason for such decomposition is that the integral equation, Eq. (23), for
each component, si(t), can be converted into a discrete linear equation of
low dimensionality of a matrix Mi over the set i of adaptive multisized BEs

si ¼ Misi þ Ei ð24Þ
For each charge, qi the size of the BEs steadily increases with distance R from
the source of the molecular electrostatic field. Thereby theMS is tessellated
by theunique setofmultisizedBEs, thusway, for anygiven singlecharge qi the
dimension of the vector of surface charge densitiessi and of thematrixMi is
significantly lower than the total number of surface elements that would be
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encountered if the surface were tessellated by the finest uniform BEs in
Eq. (21). The number of multisized BEs NMBE, that is, the matrixMi size for
any single charge qi, which tessellates an MS with area AS scales as:

NMBE � nlocln
AS

Aloc

� 	
ð25Þ

where nloc and Aloc are the average number of BEs and the size of the local
area with the finest tessellation. Each minor matrix (24) is solved by the
preconditioned biconjugate gradient method (Press et al., 1988). Only a
few iterations (five or six) are needed to find a solution of linear equa-
tion (24) with a relative accuracy of 10�4–10�5. The estimated computa-
tional complexity of the FAMBE method scales as:

Complexity � Nz nlocln
AS

Aloc

� 	
 �2
ð26Þ

where nloc and Aloc are the average number of BEs and the size of the local
area with the finest tessellation, andNz is the number of charges (or charged
groups) in the solute molecule. The further details of the FAMBE method
can be found elsewhere (Vorobjev et al., 2008). Test calculations for several
proteins show that theCPUtimeof theFAMBEmethod scales approximately
linearly with the number of atoms of the molecule. The FAMBE method
(Vorobjev et al., 2008) shows a high degree of internal self-consistency and
higher accuracy and speed of calculations in comparison with one of the
latest realization of BE method by other authors (Lu et al., 2006; Lu and
McCammon, 2007). The free energy calculated with the FAMBE method
includes dependenceon salt effects implicitly (Vorobjev et al., 2008). A good
numerical quality and a high speed suggest the FAMBEmethod as ideal tool
for apost-processingofMDtrajectories for freeenergyestimations viaEq. (8)
with important applications for systems undergoing a large conformational
changes. The FAMBE program is available from the authors on request
(ynvorob@niboch.nsc.ru).

H. Generalized Born Model

However, solving the Poisson equation by the fastest available methods is
still too time consuming to be used for calculation of solvation energy and
atomic forces on the fly as it is required in the method of MD. Therefore,

296 VOROBJEV



other simplified and significantly faster approaches like the generalized
Born (GB) method has received considerable recent attention (Bashford
and Case, 2000; Onufriev, 2008). In this model, the electrostatic contribu-
tion to the free energy of solvent polarization is defined analytically

Gpol ¼ � 1

2

1

DI
� 1

D0

� 	X
i;j

qiqj

fGB rij
� � ð27Þ

where rij is distance between protein charges qi, qj, Di, and D0 are internal
and external molecular volume dielectric constants, and fGB(r) is a func-
tion that interpolates between ‘‘effective Born radius’’ Bij, of atoms i,j
when the distance between atoms rij is short, and rij itself at the large
distances rij (Still et al., 1990)

fGB rij
� � ¼ r 2ij þ BiBj exp � r 2ij

4BiBj

 !" #1=2
ð28Þ

where Bi, Bj are effective Born radii of atoms i and j. The basic idea of the
GB approach can be viewed as an interpolation formula between analytical
solutions for a single sphere and for widely separated spheres. Considering
protein with one charged atom qi, the self-polarization free energy of the
charge qi via the Poisson equation method equation is

GP
i;pol¼

1

2
qi

ð
S

siðsÞh i
js� ri j ds ð29Þ

where si(s) is a polarization charge density induced by the protein charge
qi over the molecular surface S of the protein. On the other hand, GB,
Eq. (27), defines that self-polarization energy as

GGB
i;pol ¼ � q2i

2Bi

1

DI
� 1

D0

� 	
ð30Þ

Comparing Eqs. (27) and (30), one obtains a formal way to define ‘‘ideal’’
effective Born radius Bi of atom i of the protein in particular conformation

Bi ¼ � q2i
2GP

i;pol

1

DI
� 1

D0

� 	
ð31Þ

Incorporation of salt effects in the GB model is achieved by the simple
substitution
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1

DI
� 1

D0

� 	
! 1

DI
� exp �kf rij

� �� �
D0

� 	
ð32Þ

where k is the Debye–Hükcel screening parameter. The goal of the GB
model can be thought of as an effort to find a relatively simple analytical
formula, which for real molecular conformations will reproduce, as much
as possible, the results of the Poisson equation. The GB model using the
‘‘ideal’’ Born atomic radii Bi, which are defined by Eq. (31), provides the
accurate approximation of the Poisson polarization free energy of proteins
(Onufriev et al., 2002; Feig et al., 2004) with errors within a few percent
�1–3%. It should be noted that calculation of the ‘‘ideal’’ Born radii set
on the base of Eq. (29), that is, by solving Poisson equation, thought to be
impractical (Bashford and Case, 2000); therefore, much effort have been
done to find a more rapid and still reasonable approximations for the
effective Born radii to its ‘‘ideal’’ values. Assuming that effective Born radii
can be computed efficiently for each atom of molecule, computational
advantage of the GB model relative to numerical FD or BE solution
becomes apparent, the GB formula is simple: its analytical derivatives
with respect to atomic positions provide electrostatic atomic forces re-
quired in the MD simulation method.

Usually, the effective Born radii Bi are estimated by expression
using Coulomb field approximation (CFA) (Still et al., 1990) for electro-
static field completely neglecting a solvent reaction field in a solvent
and protein volume. The CFA self-polarization free energy Gi

CFA of a
charge qi

GCFA
i ¼ q2i

2� 4p
1

D0
� 1

DI

� 	ð
r>SEV

dV

r � rij j4 ð33Þ

where SEV is the solvent-excluded volume. The effective Born radii in the
CFA approximation are defined as

B�1
i ¼ R�1

i;vdw � 1

4p

ðSEV
r>Rvdw;i

dV

r � rij j4 ð34Þ

where Rvdw,i is van der Waals radius of atom i. The volume integral of
Coulomb field energy density (Eq. (34)) is evaluated by numerical inte-
gration (Still et al., 1990) over the volume of the van der Waals spheres of
the solute atoms instead of the SEV volume, that is
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B�1
i ¼ R�1

i;vdw � 1

4p

ðvdw
r>Rvdw;i

dV

r � rij j4 ð35Þ

It implies a definition of a solute volume in terms of a set of van der Waals
atomic spheres, rather than as the SEV confined by a complex MS com-
monly used in the Poisson calculations (Connolly, 1983a; Vorobjev and
Hermans, 1997). A closed form of analytical expressions for two over-
lapping spheres from which expression for volume integral has been
derived in the pairwise approximation is given by (Schaefer and
Froemmel, 1990; Hawkins et al., 1996). Originally, the GB model with
HTC (Hawkins et al., 1996) Born radii formula (35) has been developed
for small molecules, where it was found to reproduce solvation energies
and individual charge–charge interactions quite well (Hawkins et al., 1996;
Curutchet et al., 2003) if a slightly reduced values for atomic van der Waals
radii R0

i,vdw¼Ri,vdw�0.09 Å are used. For macromolecules, the approach
based on Eq. (35) with integral over the van der Waals volume tends to
underestimate the values of Born radii for buried atoms (Onufriev et al.,
2002) because the integration procedure for Eq .(35) treats small vacuum-
filled crevices between the van der Waals spheres of protein atoms as being
filled with water. The HTC formula assigns Born radii for medium-sized
proteins in narrow interval �1.5–4.0 Å, while the range of values for the
‘‘ideal’’ Born radii is much large �1.5–10 Å. Two approximations are used
by the HTC-Born radii model (Eq.(35)): (i) the CFA, which neglects a
solvent reaction field; (ii) van der Waals volume of integration is a crude
approximation of the excluded solvent volume ESV. The OBC-Born radii
model (Onufriev et al., 2004) defines Born radii by an empirical function
of volume integral equation (35) with empirical parameters. The OBC-
Born radii model improves accuracy of Born radii estimation for proteins
so that the OBC distribution of Bi(OBC) covers interval 1.5–6 Å. However,
the deviation of the OBC-Born radii for buried atoms from the ‘‘ideal’’
Born radii is still large so that, for many buried atoms, the OBC-Born radii
are lower by the factor of 2–3, compared to its ‘‘ideal’’ values.
Other attempts to improve GB model (Im et al., 2003; Lee et al., 2003)

named as GBSV/MS model use (i) more realistic definition of a protein
volume as a union of smoothed solvent exclusion functions centered on
atoms, to approximate the rigorous SEV more accurately, but still compu-
tationally effectively, and (ii) corrected CFA is used for definition of self-
polarization free energy of charged atoms. The self-polarization energy
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Gpol,i has been expressed as a sum of empirical correction terms to the
CFA (Lee et al., 2003; Feig et al., 2004) and demonstrated great improve-
ment over the CFA for the calculated effective Born radii. The last
corrected GB models (Lee et al., 2003; Feig et al., 2004; Mongan et al.,
2007a,b) have a good agreement for polarization free energy with calcula-
tions by the Poisson equation method, showing relative errors of about 3–
5%. Currently, a variety of the corrected GB models are implemented in a
modern simulation packages, for example, AMBER and CHARMM. Be-
cause of their algorithmic simplicity and reasonable accuracy, they are
commonly used in many applications (Onufreiv, 2008). A recent study
(Chen, 2010) continues to search for a more effective and accurate GB
models for Born radii as a series of empirical correction terms to the CFA
(Lee et al., 2003; Feig et al., 2004). The GBSV/MS2 model suggests
empirical expression for Born radii with three parameters, instead of
two in the original GBSV/MS model of Lee et al. (2003). The GBSV/
MS2 model has been parameterized by minimizing the root-mean-square
deviation (RMSD) error between GB and Poisson results for effective Born
radii and self-polarization free energy of all atoms for 22 small proteins. It
was found that the average relative unsigned errors for GBSV/MS2 Born
radii DB¼h|Bi(GBSV/MS2)�Bi(ideal)|/Bi(ideal)i�0.25, for buried atoms
with Bi>4 Å. Many buried atoms still have much lower effective Born radii
in the GBSV/MS and GBSV/MS2 models up to factor 2.0, compared to the
values of the respective ‘‘ideal’’ Born radii (Chen, 2010). This discrepancy
leads to errors in estimation of pair atom–atom electrostatic interactions
and respective forces. This observation shows a limitation of approaches
developing an accurate GB model based on an empirical corrections for
self-polarization free energy.

Levy’s group has been developing analytical version of GB model during
past decade (Gallicchio et al., 2000, 2002; Levy et al., 2003; Gallicchio and
Levy, 2004; Gallicchio et al., 2009). The most elaborated AGBNP2 (analyt-
ical GB nonpolar) model (Gallicchio et al., 2009) introduces two key
innovations to the nonpolar (has been discussed earlier) and electrostatic
components. The electrostatic solvation model in the AGBNP is based on
the HTC (Hawkins et al., 1996) pairwise descreening GB scheme, whereby
the Born radius of each atom is obtained by summing an appropriate
descreening function over its neighbors. The main distinction between
the AGBNP method and conventional HTC pairwise descreening volume
integral implementation is that in the AGBNP method, the solute volume
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is modeled as a set of overlapping atomic spheres which in turn are
approximated by the Gaussian density functions proposed by (Grant
and Pickup, 1995). The solute volume is computed by the inclusion–
exclusion formula. The model defines analytically the self-volume and
van der Waals surface of atom i with a set of empirically adjusted switching
functions. The Born radii of the AGBNP model are obtained by analytical
evaluation of the integral equation (35) over the volume occupied by the
solute atoms (Gallicchio and Levy, 2004). The AGBNP2 model (Gallicchio
et al., 2009) introduces method to approximate the SEV by the van der
Waals integration volume of Eq. (35) using empirically augmented van der
Waals radii and volume rescaling factors, while keeping the analytical
expressions obtained for van der Waals intersecting spheres. Validation
of the AGBNP2 method of integration over approximately defined SEV is
done by a direct comparison of Born radii Bi(AGBNP2) with calculation of
the Born radii Bi(SEV) over accurate numerically defined SEV. The com-
parison shows that the AGBNP2 model improves estimation of Born radii
of the AGBNP model which integrates Eq. (35) over the volume occupied
by the van der Waals spheres of solute atoms. The average ratio
Bi(AGBNP2)/Bi(SEV)�1.2–2.0, while the ratio Bi(AGBNP)/Bi(SEV)�
1.4–3.0 for buried atoms with Born radiuses Bi(SEV)>5 Å. In spite of
that deficiency, the AGBNP2 model is implemented in the MD packages
and shows a reasonable performance on a large set of test proteins
(Gallicchio et al., 2009).
A different expression to compute the effective Born radii was proposed

in the study (Grycuk, 2003), the ‘‘R6 radii’’, as an alternative to the CFA
approximation (34)

B�1
i ¼ R�3

vdw;i �
3

4p

ðSEV
r>Rvdw;i

dV

r � rij j6
 !1=3

ð36Þ

Unlike the CFA radii in Eq. (34), the ‘‘R6 radii’’ formula is exact for any
location of a charged atom within a perfect spherical solute in the limit
D0/DI>>1 (Morgan et al., 2007b; Aguilar et al., 2010). It has been shown
that when ‘‘R6 radii’’ are computed by accurate numerical integration
over exact MS or SEV (Morgan et al., 2007b), the resulting effective Born
radii are in very close agreement with ‘‘ideal’’ Born radii. The study of
Aguilar et al. (2010) suggests a new analytical method (AR6) to compute
the effective Born radii as empirical function based on R6 integral
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equation (36) with pairwise van der Waals approximation of the SEV
molecular volume and several molecular volume correction terms to
approximate more exactly the ‘‘true’’ molecular volume in a vicinity of
the atom in question. Finally, the AR6 effective Born radii are defined by
empirical function with several parameters which are defined by parame-
trization. The RMSDbetween the inverse effective AR6 and the ‘‘ideal’’ Born
radii for medium-sized protein lysozyme is about 0.064. It actually means that
Born radii of buried atoms with Born radii Bi>3 Å, that is, Bi

�1<0.3, are
estimatedby theAR6modelwitherrors>20%and theerror is increasedup to
50%fordeeplyburiedatomwithBornradiiBi>6 Å.Thisobservation suggests
that accurate and numerically fast analytical or numerical approximation of
the exact SEVmolecular volume is themodern research frontier for improve-
ment in theGBapproximation. It should benoted that for the small drug-like
molecules the AR6 model with cavity term, of Eq. (11), and van der Waals
solvation term, of Eq. (13), reproduces the experimental solvation free
energies with good accuracy, the RMSD error is equal to 1.73 kcal/mol.

IV. Protein Ionization

A. PMF of Equilibrium Titration

Transport of protein molecule from gas phase into a water–proton bath
is accompanied by an ionization of titratable residues. The work required
for that is the free energy of ionization DGinz (Eq. (6)). This free energy
is the implicit titration potential of mean force (IT-PMF) for a protein in
water–proton bath. A rigorous statistical mechanical formulation of IT-
PMF has been considered by Baptista et al. (1997) in terms that eliminate
the explicit reference to a variable number of protons. The IT-PMF
free energy DGinz(x,pH) of protein at a given pH in water solvent is
defined as

DGinzðx;pHÞ ¼ �kT ln
X
n;z

exp
nm� DG x; zð Þð Þ

kT


 �
ð37Þ

where DG(z,x) is a free energy of a protein at ionization microstate z¼
(z1, . . ., zz) relative to the neutral state z0 in water, for the conformation x,
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DG x; zð Þ ¼ G x; zð Þ � G x; z0
� � ð38Þ

n is a total number of bound protons for the ionization microstate z, m is a
chemical potential of protons, that is, m¼�kT�(ln 10)pH. A canonical MD
simulation of a protein with free energy described by Eq. (37) at constant
temperature is the constant pH MD (CpHMD) simulation of the titratable
system in the IT-PMF. To perform such simulation, one has to express
DGinz(x,pH) in terms of quantities that can be computed. The implemen-
tation of the implicit titration potential DG(x,pH) for CpHMD method
developed by Baptista et al. (1997)) was too simplified because it was based
on the mean field approximation, that is, the pair correlation of ionization
degrees hzizji of sites i,j has been approximated as a product hzizji�hzii�hzji,
and the average values of hzii have been calculated by modified Tanford–
Kirkwood method (Tanford and Roxby, 1972), assuming a spherical shape
for the protein.
An accurate practical implementation of the IT-PMF addresses two

questions: (i) What is the optimal algorithm to compute the multisite
ionization equilibrium and related free energy and atomic forces? (ii)
What is the optimal protocol to produce fast and accurate CpHMD
simulations? A practical solution of the first problem is provided by the
new method FAMBEpH (Vorobjev et al., 2008) which generalizes FAMBE
method (Vorobjev and Scheraga, 1997) for calculating the free energies of
solvent polarization Gpol(x) and ionization DGinz(x,pH), in Eqs. (5) and
(6), of a protein at a given pH. The FAMBE method is used for a fast
evaluation of the ‘‘ideal’’ Born atomic radii calculating the self-polariza-
tion free energy of each charged atom of the protein. The GB method
with ‘‘ideal’’ Born radii allows one to perform analytical calculation of all
electrostatic atomic forces for MD simulation. Thereby the FAMBEpH–GB
method provides one with (i) the solvation free energies of the ionizable
residues in water, (ii) an accurate estimation of an average ionization
degrees hzii, their pair correlations hzizji, and (iii) the free energy of
ionization and respective atomic forces due to the IT-PMF. The IT-PMF
gives an instant equilibrium response of the proton bath at given pH;
therefore, the CpHMD with the IT-PMF can be more effective, then the
commonly used today’s approaches which are based on an explicit sto-
chastic titration method considering explicitly a vast number of ionization
microstates which are generated randomly (Mongan et al., 2004;
Machuqueiro and Baptista, 2006; Williams et al., 2010).
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B. Practical Calculation of PMF of Implicit Titration

The ionization free energy, DGinz(x,pH), can be calculated by thermo-
dynamic integration method as a titration process from zero hydrogen-ion
concentration to a given value of pH via the Tanford–Schellman integral
(Tanford, 1970; Schellman, 1975). From Eq. (37), it follows

@DGinz x;pHð Þ
@pH

¼ kT ln10ð Þ
X2x
i¼1

yi zi x;pHð Þh i ð39Þ

where hzi(x,pH)i represents the average ionization degree of site i in the
protein in conformation x and parameter yi is equal to 1 or �1 if the
ionizing group is a base or an acid, respectively. Integrating over pH one
obtains practically treatable expression (Yang and Honig, 1993; Vorobjev
et al., 2008) to calculate the free energy of ionization

DDGinzðx;pHÞ � DDGinzðx;1Þ ¼ kT ln10ð Þ
XN
i¼1

yi

ðpH
1

zi x;pHð Þi
D Eh

� zi;mod pHð Þ� ��dpH ð40Þ
where the functions hzi(x,pH)i and hzi,mod(x,pH)i represent the average
ionization degree of site i in the protein in conformation x, and in the
isolated model compound, respectively and

DDGinz x;pHð Þ ¼ DGinz x;pHð Þ � DGinz;mod x;pHð Þ ð41Þ
is the free energy of ionization of protein relative to the total free energy
of ionization of the all titratable residues in model compounds. For site i
in protein conformation x at a given pH, the average ionization degrees
hzi(x,pH)i can be calculated by a Monte-Carlo random walk in the space of
the ionization microstates z

zi x;pHð Þi
D E

¼ 1

Zinz

X2x
z

zi exp �DG
x; z;pHÞ

kT

� 		�
ð42Þ

where Zinz is the partition function over all ionization microstates. It is
shown (Vorobjev et al., 2008) that a direct calculation of the free energy
from partition function

DGinzðx;pHÞ ¼ �kT ln
X2x
z

exp
�DG x;z;pHð Þ½ �

kT

( )
ð43Þ
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and calculation by the integral, Eq. (40), give well-coincided numerical
values for protein BPTI. The free energy DG(x,z,pH) has an electrostatic
nature and can be represented as the sum of energies of ionization of
individual titratable residues and energies of their pair electrostatic inter-
actions in solution

DGðx;z;pHÞ ¼
Xx
i¼1

zi ½yikBT ln 10ðpH � pKmod;iÞ þ ðDgiðxÞ � Dgmod;iÞ �

þ 1

2

XN
i 6¼j

zizjDwij xÞð ð44Þ

where Dgi(x) is an increment of the total electrostatic energy in a solvent
due to ionization of one titratable group i of the protein with all other
titratable groups kept in the zero ionization state; Dgmod,i is an increment
of the total electrostatic energy of the model compound i due to its
ionization in a solvent; pKmod,i is an ionization constant of the model
compound i; and Dwij(x) is the excess electrostatic potential between
ionized sites i,j with respect to the nonionized sites.
In general, the total energy DGinz(x,pH) of Eq. (43) can be presented

relative to any reference ionization microstate zr. Assuming that the
DGr

inz(x,pH) is the free energy of ionization of the protein at a given
pH with respect to the reference ionization microstate zr, from Eq. (43),
one obtains

DG r
inz x;pHÞ þ G x; zr;pHÞ ¼ DG0

inzðx;pHÞ þ G x; z0;pH
� ��� ð45Þ

FromEq. (45), it follows that theenergyDGr
inz(x,pH)has aminimal absolute

value if the reference ionization microstate zr is equal to the most probable
ionizationmicrostate zpwithminimalenergyG(x,zp,pH).Theexpression for
the free energy DGp

inz(r,pH) follows from Eqs. (44) to (45)

DGp
inz x;pHð Þ ¼ DG0

inz x;pHð Þ �
Xx
i¼1

z
p
i yi kBT ln10 pH� pKmod;i

� h

þ Dgi xð Þ � Dgmod;i

� �� � 1

2

Xx
i 6¼j

z
p
i z

p
j Dwij xð Þ ð46Þ

where zpi is ionization degree of the titratable site i in the most probable
ionization microstate zp. Finally, the total free energy G(x,pH) of a protein
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in water–proton bath can be presented relative to the most probable
ionization microstate zp

G x;pHð Þ ¼ U p
mol xð Þ þ Gp

cav xð Þ þ Gp
pol xð Þ� �þ DGp

inz x;pHð Þ ð47Þ
The first three terms of this equation describe physically real protein
structure in the ionization microstate zp; the IT-PMF DGp

inz(z,pH)
describes correction due to deviations of the equilibrium ensemble of
ionization microstates from the ionization microstate zp. The PMF
DGp

inz(z,pH) of implicit titration has a minimal amplitude for the optimal
ionization microstate zp.

Atomic forces produced by the IT-PMF DGp
inz(x,pH), Eq. (46), are

defined by expression

@DGp
inz x;pHð Þ
@rl

¼ @DGðx; z;pHÞ
@rl

* +
z

�
Xx
i¼1

z
p
i

@

@rl
Dgl xð Þ

� 1

2

Xx
i 6¼j

z
p
i z

p
j

@

@rl
Dwij xð Þ ¼

Xx
i¼1

zih i � z
p
i

� � @
@rl

Dgl xð Þ

þ 1

2

Xx
i 6¼j

zizj
� �� z

p
i z

p
j

h i @

@rl
Dwij xð Þ ð48Þ

Electrostatic energy Dgi(x) of ionization of the titratable group i, energies
of pair interactions Dwij(x) of titratable groups i,j, the optimal ionization
microstate zp¼(zp1, . . ., z

p
z) and average ionization degrees hzii, and pair

correlations hzizji of ionization degrees of titratable groups i,j are calculat-
ed by the method FAMBEpH (Vorobjev, et al., 2008). An effective calcula-
tion of the gradients Dgi(x) and Dwij(x) over coordinate of atom ri is done
in the framework of the GB method with ‘‘ideal’’ FAMBE defined Born
radii.

C. Method FAMBEpH–GB

Method FAMBEpH–GB is the method FAMBEpH conjugated with the
GB model which uses the FAMBE defined ‘‘ideal’’ Born radii. Method
FAMBEpH solves the Poisson equation by the FAMBE method and calcu-
lates a set of partial polarization densities si(s) generated by each atom i
with atomic charge qi on the MS of protein molecule. The energy of
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solvent polarization Gpol(x) of the FAMBE method depends on surface
integral over the protein MS

Gpol xð Þ ¼ 1

2

X
i

qi

ð
S

si sð Þds
xi � sj j þ

1

2

X
i 6¼j

qi

ð
S

sj sð Þds
xi � sj j

¼Pi gi xð Þ þ 1

2

X
i 6¼j

wij xð Þ
ð49Þ

where gi is the energy of solvent self-polarization by atom i, and wij is the pair
interaction of atoms i,j due to the solvent polarization. The FAMBEmethod
is very effective to calculate a full set of partial atomic polarization densities
si(s), polarization energy, and atomic forces for a given protein conforma-
tion x. However, amultiple calculation of the forces on the fly by the FAMBE
method forMDsimulations is still timeconsuming.Toaccelerate calculation
of electrostatic interactions and atomic forces due to solvent polarization,
themethod FAMBEpH is conjugated with the GBmethod. The FAMBEpH–
GB method calculates a full set of ‘‘ideal’’ atomic Born radii Bi for a given
conformationxof theproteincalculating the setof self-polarizationenergies
gi(x) for all protein atoms by the method FAMBE

gi xð Þ ¼ qi
2

ð
S

si sð Þds
ri � sj j ð50Þ

where S is the protein MS. The ‘‘ideal’’ Born atomic radii Bi of the atom i is
the radius which gives the GB self-polarization energy equal to the one
defined by the FAMBE method, that is

Bi ¼ 1

D0
� 1

DI

� 	
q2i

gi xð Þ ð51Þ

The total energy of solvent polarization of the GB method is a sum of
atomic self-polarization energies, gi

GB and the PMF wij
GB of pair interac-

tions of atoms i,j

GGB
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1
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� 1
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ð52Þ
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By definition, the GB method with ‘‘ideal’’ Born atomic radii reproduces
exactly the values of atomic self-polarization energies gi

FM calculated by
the FAMBE method. It is shown by us that the pair atom–atom potentials
wij(FAMBE) calculated by the FAMBE method and potentials wij(GB)
calculated by the GB method with ‘‘ideal’’ Born radii are coincided with
average unsigned error �1.5%. Therefore, a calculation of electrostatic
energies and atomic forces for a given conformation x of a protein can be
done by the GB method without loss of accuracy. A reliable protocol
calculating the CpHMD trajectory consists of (i) periodic update of opti-
mal ionization microstate, (ii) calculation of MD trajectory of a protein
in the ‘‘frozen’’ optimal ionization microstate zp during time
tMD(frozen-z)�1–2 ps, (iii) periodic update of the set of ‘‘ideal’’ atomic
Born radii Bi, which are dependent on the protein conformation, with
update time tB. It is found that a reasonable values of tB�0.01–0.03 ps or
tB is equal to 10–30 elementary MD time steps of typical length of 0.001 ps
for simulations at temperature T�300 K.

V. Examples of Simulations with Implicit Solvent Models

A. Practical Advantages of an Implicit Solvent Models

The implicit solvent models have several advantages over the explicit
molecular water representation in MD simulation (Onufriev et al., 2004):
(i) the computational cost associated with the use of implicit models is
considerably smaller than the cost of representing water explicitly, (ii) the
implicit models describe an instantaneous solvent dielectric response,
which eliminate the need for the lengthy equilibration of water that is
necessary in explicit water simulations, (iii) the solute molecule can more
quickly explore the available conformational space due to absence of
viscosity and ‘‘solvent reorganization energy barriers’’ associated with
explicit water environment, (iv) the implicit continuum model corre-
sponds to solvation in an infinite volume of solvent avoiding possible
artifacts of solute replica electrostatic interactions in the periodic systems
typically used with explicit solvent models, (v) estimating free energies of
solvated structures is much more straightforward than with explicit water
models. The same is true for the implicit titration methods which describe
an instant response of a proton bath and eliminate the need for a vast
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number of ionization microstates to model equilibrium ionization state.
Therefore, a real implicit solvent model finds a wide application in bio-
molecular simulations. A new implicit solvent model should be carefully
optimized in conjunction with particular force field to reproduce the
experimental solvation energies for representative set of small molecules,
the PMF of interactions between pairs of protein side chains in explicit
solvent and the conformational equilibrium for peptides (Chen and
Brooks, 2008; Gallicchio et al., 2009; Chen, 2010).

B. Free Energy of Protein Decoys and Protein Decoy Discrimination

During the past decade, genome sequencing has revealed a vast number
of new unknown sequences. The growing gap between the solved struc-
tures by the X-ray or the NMR methods increases the usefulness and
interest in the development of reliable computational methods to predict
unknown structures. All-atom force fields and implicit solvation models
represent a very important tool for scoring and refining protein models
produced by coarse grain and heuristic methods such as ROSETTA
(Bradley et al., 2005), TASSER (Zhang and Skolnick, 2004), 3D-SHOT-
GAN (Fisher, 2003), and so forth. These methods were shown to produce
sets of models which contain relatively accurate native-like models, but
these methods are usually not able to identify the native-like conforma-
tions reliably among a set of other nonnative conformations. A necessary
requirement for free energy prediction method to produce accurate
protein structure models is that they must recognize the native state of
the protein or a set of similar native-like conformations as models having
lowest free energies. Scoring of a large set of protein models to discrimi-
nate native or near-native conformations from nonnative structures is a
quality test which is carried out for free energy models.
Tests on a set of misfolded proteins have shown that solvation term is

important part of the total free energy of protein in a solvent and improves
success rate of discrimination native structure from decoys (Lazaridis and
Karplus, 1998). The CHARMM 19 force field with GB solvent model was
able to identify the misfolded structures with more than 90% accuracy
(Dominy and Brooks, 2002). A high success rate has been reported for
discrimination test of a set of protein decoys performed by Felts et al.
(2002) using a local energy minimization with OPLS all-atom force field
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and GBNP implicit solvent model (Gallicchio et al., 2002). Native struc-
tures have a lowest free energy for almost 90% of proteins considered
(Felts et al., 2002). Later, Wroblewska and Skolnick (2007) found that a
long MD relaxation of protein decoys with AMBER/GB force field led to
significant deterioration of discriminative ability of the force field. The
lowest energy structures were obtained from the short �5 ps native MD
trajectories for 70% proteins, while a longer relaxation up to �2 ns
decreases the success rate of discrimination of the native structures up
to 20%.

The FAMBE method in conjunction with CHARMM19 force field was
used by Vorobjev et al. (1998) and Vorobjev and Hermans (2001) for
estimation of an average protein solvation energy hW(x,q)i, Eq. (5), over
an equilibrated MD trajectories of �50–100 ps obtained for protein decoy
structures in explicit water. It was found that for all proteins of Park and
Lewit decoy set and for a set of the CASP3 protein models the native
structures were correctly found to be more stable than decoy structures for
all proteins considered Vorobjev and Hermans (2001).

It was recognized that discriminative ability of a force field and solvation
model depends on quality of protein decoy set and on the protocol used
to compute free energies of protein decoys (Vila et al., 2005; Arnautova
et al., 2009). When local energy minimization or a short MD trajectory is
substituted by a long MD trajectory of nanosecond timescale, decoy con-
formations become to be well relaxed within a given force field and
solvation model, unfavorable atom–atom contacts disappear, and discrim-
ination of native-like structure from a set of competing decoys becomes
being a real challenge. It was shown (Arnautova et al., 2009) that discrimi-
native accuracy on a high quality independently generated decoy set of the
ECEPP05 force field (Arnautova et al., 2006) combined with FAMBEpH
solvation–ionization model, Eq. (8) (Vorobjev et al., 2008), and structure
relaxation is superior with success rate �89%, compared to other less
elaborated solvation models.

C. Protein Folding

All-atom MD simulations with implicit GB and nonpolar solvation of ab
initio protein folding have been reported for small proteins, 20-residue trp-
cage protein (Simmerling et al., 2002; Lee and Olson, 2010), 36-residue
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villin headpiece, and 46-residue helix bundle (Onufriev, 2008). The
average helicity and conformational equilibria of b-hairpin of several
model peptides versus temperature have been modeled by Chen (2010)
using the improved GBSW/MS2 implicit solvation model. The MD folding
simulations of trp-cage protein ‘‘NLYIQWLKDGGPSSGRPPS’’ were struc-
turally determined by NMR (PDB ID: 1L2Y). Lee and Olson (2010)
have used GBMV2 implicit solvation model and replica exchange script
aarex.pl of the CHARMM simulation package of version c33b2 in conjunc-
tion with the self-guided Langevin dynamics. Several simulations each
of length 100–200 ns were performed starting from extended model
of protein structure or experimental NMR-defined structure. These simu-
lations allowed one to reconstruct free energy folding landscape, estimate
the melting temperature of the native structure with a reasonable accuracy
of about 10	 and gain insights into folding mechanism.

D. Constant pH MD Simulations

The charges of atoms of titratable groups are not being fixed during
conformational changes of protein in a solvent at fixed pH value, as it is
assumed in commonly used MD simulations. The protein atomic charges
and conformation are strongly coupled, and this coupling can affect
protein folding pathway and stability of different conformations. Over
past decade, several methods have been proposed which enable MD to
be carried out at constant pH with changing protonation states. These
CpHMD methods can be classified into two categories: methods of explicit
stochastic titrations, which consider physical ionization microstates and
methods of implicit titrations without explicit references to titratable
protons.
The explicit stochastic titration methods (Mongan et al., 2004; Baptista

et al., 1999; Machuqueiro and Baptista, 2006; Williams et al., 2010) operate
directly in physical ionization phase space; ionization microstates are ran-
domly generatedandacceptedor rejectedon thefly according toMetropolis
criterion of the Monte-Carlo method during the course of the MD simula-
tion. The GBmodel was used to calculate (i) relative free energies of ioniza-
tion microstates and (ii) atomic forces to propagate MD simulation of the
accepted ionization microstate. Due to a large number of ionization
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microstates�109 for a medium-sized protein with�30 titratable residues, a
convergence of that hybrid MC–MDmethod is slow (Williams et al., 2010).

The recent works (Lee et al., 2004; Khandogin and Brooks, 2005;
Khandogin and Brooks, 2006; Khandogin et al., 2006) represent an ad-
vanced realization of the explicit l-titration method using the method of l-
dynamic (Kong and Brooks, 1996) to simulate proton binding/release by
a set of titratable sites. The method of Lee et al. (2004)) describes the
protonation/deprotonation process at titrating residues by a set of contin-
uous variables li, the end points of which define deprotonated (li¼1) and
protonated (li¼0) states. The total phase space of a titratable protein is
extended by the set of titration variables li. The l-titration free energy
profile for each titratable proton is predefined by additional simulations
with GBSW solvent model. To produce movement along the titration
variables li, the Nose–Hoover method (Nose, 1984; Hoover, 1985) is
used. The titration variables li are coupled with effective masses which
move in the effective li-dependent potential by conventional MD method.
The protonation dependence of the electrostatic energies is incorporated
through the atomic partial charges on atoms of the titrating residue, which
are interpolated between the values in the protonated and deprotonated
states linearly over li. Further development of the l-titration method
(Khandogin and Brooks, 2006) includes a coupling of continuous titration
with replica exchange method and an improved GBSW solvent model with
salt-screening Debye function for energy and force calculation. The REX
protocol enables to enhance sampling of protonation and conformational
states; the accuracy of the REX CpHMD method is demonstrated by 1 ns
titration simulation of 10 proteins. The experimental pKa values of these
proteins are reproduced with RMSD of 0.6–1.2 with maximum errors of
1.0–4.2 pK units for buried residues.

The CpHMD simulation method with implicit titration PMFs, Eqs. (43)
and (44), without explicit reference to ionization microstates, and titrat-
able protons are ongoing research which is not explored in details. The
CpHMD with implicit titration PMF in general potentially is more effective
approach than available explicit titration methods because the implicit
titration PMF describes an instantaneous response of proton bath, which
eliminate the need to run a large ensemble of explicit ionization micro-
states for each protein conformation to model average equilibrium ioni-
zation degree of titratable groups at given pH.
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E. Limitations of Current Implicit Continuum Solvent
Models and Further Direction

The fundamental approximation of finite-sized molecular solvent by
continuum solvent eliminates a number of effects that depend on the
finite size of water molecules, such that (i) water–water correlations and
inhomogeneous solvent density and its dielectric response, in a vicinity of
protein MS and inside a deep pockets or grooves; (ii) tightly bound water
molecules and water bridges, which may be important for stability of
macromolecular structure and protein folding; (iii) coupling between
values of atomic charges and radii defining SEV and respective MS.
These limitations of modern implicit solvent models are well known and
can be partially corrected introducing new features to the available mod-
els. An important limitation for transferability of implicit solvation models
is that their optimized parameters are tightly coupled with the specific
molecular force field used for modeling intramolecular potential energy,
and therefore, they are generally are not transferable. Use of the MS
surface in the modern implicit models GBSV/MS2 (Chen, 2010) and
AGBNP2 model (Gallicchio, et al., 2009) instead of van der Waals atomic
surface implicitly accounts for the finite size of water molecule and
considerably improves quality of that models in reproducing of a desolva-
tion maximum of the accurate PMF between charged groups calculated
with explicit solvent via free energy perturbation simulations. The most
recent AR6 GB model (Aguilar et al., 2010) looks very promising if a better
and still fast approximation for the SEV or the MS will be developed. The
AGBNP2 model (Gallicchio et al., 2009) introduces implicit short-range
hydrogen bonding correction function, which describes an additional
hydrogen bonding interaction of solute donor (acceptor) with virtual
solvent water molecule. Water bridge hydrogen bonding between two
solute atoms can be modeled also by a similar method. Dependence of
atomic radii defining solute–solvent dielectric interface on atomic charges
has been recently studied. It was found that linear function of atomic radii
on atomic charges describes this dependence reasonably and has been
parametrized for small molecules (Hou et al., 2010). In general, two
independent atomic radii sets can be considered for calculating the
solute–solvent dielectric surface interface for continuum dielectric
model, the first one is for neutral and the second one is for ionized
residues of a protein, respectively. Thereby the modern implicit solvent
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models demonstrate a number of options for self-improvements to be-
come more accurate and fast in approximations of the most detailed
explicit solvent model. It is likely that improvements in the implicit solvent
models accompanied by careful optimizations of implicit model empirical
parameters with accumulation of practical experience will make the im-
plicit solvent models a standard well-defined powerful option of a modern
simulation packages for computational structural biology.
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González-Lafont, A., 95–97
Goodford, P. J., 229
Goodsell, D., 243
Gopala Krishna, A., 256
Gotor-Fernandez, V., 113–114
Gouda, H., 69–70
Gould, I. R., 53
Grafmüller, A., 171, 172
Grant, J. A., 243
Graves, A. P., 51–52, 59–60, 66, 73
Greengard, L., 294
Gregory, B. W., 227

Grese, T. A., 227
Grest, G. S., 152
Grisshammer, R., 260
Gronenborn, A., 202
Groot, R. D., 43, 151, 153, 154, 157, 160–161,

162, 163, 178
Grossfield, A., 261–263, 264–265, 273–274
Grubmuller, H., 146
Gryczynski, Z., 256, 258–259
Guarnieri, F., 260, 271–273
Guidoni, L., 91–92
Guigas, G., 162, 173–174, 175–177
Guijarro, A., 22
Gumbart, J., 186–188, 198
Guo, H., 98–101
Gupta, S., 270–271
Gustin, D. J., 98–101
Gutiérrez-de-Terán, H., 98–101
Guvench, O., 28

H

Haak, J. R., 151–152, 287–288
Halgren, T. A., 233
Halliday, R., 243
Hall, R. J., 98–101
Hall, S. E., 263–264, 265–267
Hamelberg, D., 97–98
Hammes-Schiffer, S., 83–84, 107–108
Hamm, H. E., 254–255
Hang, J. F., 294–296
Hannongbua, S., 4–5
Hansch, C., 3–4
Hansmann, U. E., 293–294
Hanson, M. A., 11, 106–107, 257–258
Hansson, T., 291
Haranczyk, M., 90, 92–93
Hardy, L. W., 4–5
Hart, W., 243
Harvey, J. N., 124–125
Harvey, M. J., 186–188
Haslam, E., 98–101
Hawkins, G. D., 299, 300–301
Hawley, R. C., 298–299
Hayashi, R., 128
Haynes, M., 107–108

328 AUTHOR INDEX



Head-Gordon, T., 199, 201
Head, M. S., 67–68
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Lennard–Jones parameters, 197–198
MARTINI force field, 197
nonbonded residue interactions, 199
non-neighboring beads, 197–198
quantum mechanical and atomistic

dynamics simulations,
198–199

Protein Data Bank (PDB), 184–185, 184f
sampling techniques
discrete molecular dynamics, 208–210
Langevin dynamics, 205–208

metropolis Monte Carlo (mMC)
simulation, 203–205

normal mode analysis, 200–202
structural variation, 200

simplification, atoms, 188–190
2010 version

MoDEL, 187f
simulations, 187f

Protein ionization
equilibrium titration

CpHMD, 303
IT-PMF, 302–303

FAMBEpH-GB method
CpHMD trajectory, 308
solvent polarization, 307

implicit titration
electrostatic nature, 305
structure, 306
thermodynamic integration

method, 304
Protein–ligand binding affinities, modeling

BEDAM, 62–64
docking and empirical scoring

approaches, 28
double decoupling

described, 59
indicator function, 60
L99A and L99A/M102Q mutants,

59–60
ligand restraints, 60–61
simulations, 60
soft-core hybrid potentials, 61–62

force fields, 53
free energy estimators

BAR formula, 56–57
binding PMF approach, 57–58
bound ensemble, 55
l-dependent hybrid potential, 55–56
exponential average, 56–57
implicit solvation, 54
MBAR method, 58–59
perturbation and distribution, 54–55
stratification technique, 55–56
TI formula, 56
umbrella sampling, 57–58
WHAM, 57–58

ligand and receptor reorganization

SUBJECT INDEX 349



Protein–ligand binding affinities, modeling
(continued)
chemical rigidification, 71–72
entropic model, 72
favorable and unfavorable work, 71
HIV epitopes, 71
MM/GBSA model, 72
protein side-chain motion, 73

MM binding free energy methods, 67–69
MM/PBSA and MM/GBSA approaches
configurational entropies, 70
enthalpy/entropy decomposition,

69–70
single-trajectory approaches, 70

noncovalent binding theory
alchemical formulation, 32–34
bound state, 40–43
conformational decomposition,

50–53
enthalpy/entropy decomposition,

44–47
implicit solvent representation, 35–40
molecular association equilibria,

30–32
PMF formulation, 34–35
receptor–ligand interactions, 44
reorganization free energy, 47–49

physics-based models, 28–29
PMF approach, 64
RE conformational sampling, 66–67
relative binding free energies
vs. absolute binding free energies, 66
described, 65–66
pharmaceutical applications, 65

statistical mechanics theory, 29
thermodynamic path and end point

methods, 54

Q

QM/MM. See Quantum mechanics/
molecular mechanics

QSARs. See Quantitative structure-activity
relationships

Quantitative structure-activity relationships
(QSARs)

assays, 228–229
binding affinity and risk

assessment, 228
event simulation, 229
GRIND, 238
hologram, 238
multidimensional
4D, 231–232
5D and 6D, 232
Quasar software, 232
VirtualToxLab and docking protocol,

232–233
three-dimensional (3D)
vs. classical approaches, 229
CoMFA and CoMSIA method,

229–230
COREPA, 231
crystallization process, 231
estrogenicity prediction, 237
geometry optimization and energy

minimization, 230
MIFs, 229
pharmacophore modeling, 231

Quantum mechanics/molecular mechanics
(QM/MM) mechanistic model
application, 12
binding orientation, 15
energy profile, 13–15, 14f
Ser241 steps, 12–13, 13f
URB597, FAAH, 11f, 12–13

S

Sampling techniques, protein
discrete molecular dynamics
covalent bonds, 209
DMD calculation, 209
Newton’s equations, 208

Langevin dynamics, 205–208
metropolis Monte Carlo (mMC)

simulation, 203–205
NMA, 200–202
structural variation, 200

SAS. See Solvent-accessible surface
Selective estrogen receptor modulators

(SERMs), 240
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SERMs. See Selective estrogen receptor
modulators

SGB. See Surface generalized born
SIMS. See Sooth invariant molecular surface
Solvent-accessible surface (SAS), 287–288,

289
Sooth invariant molecular surface (SIMS),

293–294
Structure-based drug design (SBDD)

inhibitory potency vs. lipophilicity,
10f, 11

LIE calculations, 15–21
N-alkylcarbamic acid, 12, 17t
QM/MM mechanistic model, 12–15
URB597, 11, 11f

Surface generalized born (SGB)
approach, 16–20
continuum model, 16
SGB-LIE equation, 16

T

Thermodynamic integration (TI)
formula, 56

Transition state analogues (TSA)
activation free energy, 106
CA affinity, 106–107
design, 105

protein structures, 112–113
Transmembrane (TM)

helix, 257–258
proteins, 254–255
region, 271

TSA. See Transition state analogues

V

Van der Waals interactions, solute–solvent
AGBNP, 289–290
free energy, 289

Velocity-Verlet (VV) algorithm
DPD

dissipative force, 153–154
integration, 154

vs. Euler method, 153

W

Weighted histogram analysis method
(WHAM)
binding free energy estimators, 58–59
umbrella sampling, 57–58

WHAM. See Weighted histogram analysis
method
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