
Modeling and Optimization in Science and Technologies

Fundamentals of 
Bioinformatics and 
Computational Biology

Gautam B. Singh

Methods and Exercises in MATLAB



Modeling and Optimization in Science
and Technologies

Volume 6

Series editors

Srikanta Patnaik, SOA University, Orissa, India
e-mail: patnaik_srikanta@yahoo.co.in

Ishwar K. Sethi, Oakland University, Rochester, USA
e-mail: isethi@oakland.edu

Xiaolong Li, Indiana State University, Terre Haute, USA
e-mail: Xiaolong.Li@indstate.edu

Editorial Board

Li Cheng, The Hong Kong Polytechnic University, Hong Kong
Jeng-Haur Horng, National Formosa University, Yulin, Taiwan
Pedro U. Lima, Institute for Systems and Robotics, Lisbon, Portugal
Mun-Kew Leong, Institute of Systems Science, National University of Singapore
Muhammad Nur, Diponegoro University, Semarang, Indonesia
Luca Oneto, University of Genoa, Italy
Kay Chen Tan, National University of Singapore, Singapore
Sarma Yadavalli, University of Pretoria, South Africa
Yeon-Mo Yang, Kumoh National Institute of Technology, Gumi, South Korea
Liangchi Zhang, The University of New South Wales, Australia
Baojiang Zhong, Soochow University, Suzhou, China
Ahmed Zobaa, Brunel University, Uxbridge, Middlesex, UK



About this Series

The book series Modeling and Optimization in Science and Technologies (MOST)
publishes basic principles as well as novel theories and methods in the fast-evolving
field of modeling and optimization. Topics of interest include, but are not limited
to: methods for analysis, design and control of complex systems, networks and ma-
chines; methods for analysis, visualization and management of large data sets; use of
supercomputers for modeling complex systems; digital signal processing; molecular
modeling; and tools and software solutions for different scientific and technologi-
cal purposes. Special emphasis is given to publications discussing novel theories
and practical solutions that, by overcoming the limitations of traditional methods,
may successfully address modern scientific challenges, thus promoting scientific
and technological progress. The series publishes monographs, contributed volumes
and conference proceedings, as well as advanced textbooks. The main targets of the
series are graduate students, researchers and professionals working at the forefront
of their fields.

More information about this series at http://www.springer.com/series/10577



Gautam B. Singh

Fundamentals of
Bioinformatics and
Computational Biology
Methods and Exercises in MATLAB

ABC



Gautam B. Singh
Department of Computer Science

and Engineering
Oakland University
Rochester, Michigan
USA

ISSN 2196-7326 ISSN 2196-7334 (electronic)
ISBN 978-3-319-11402-6 ISBN 978-3-319-11403-3 (eBook)
DOI 10.1007/978-3-319-11403-3

Library of Congress Control Number: 2014949497

Springer Cham Heidelberg New York Dordrecht London

c© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



To my family



Preface

The integration of computers in life sciences has been growing for the last
two decades. While the first release of GenBank contained a mere half a
million DNA sequence bases in 1982, the current release of GenBank has
exceeded 100 giga bases of data. With data comes computational challenges
for analysis, interpretation, visualization and integration of information. That
in a nutshell is the reason to familiarize undergraduate students in computer
science and engineering with the nature and use of biological data and thus
become prepared to meet the demands of high tech careers in the twenty-first
century.

The intended audience of this textbook are students in computer science,
engineering and information technology at the undergraduate or lower grad-
uate level. The material is primarily presented in a simplified manner and
extensive details are left out. However, pointers to appropriate references
should guide those who are interested in exploring specific topics in greater
detail.

Topics in this textbook are organized into three parts. Part I of this book
provides some background to the field of bioinformatics and an introduction
to molecular biology and genetics. A survey of biological databases is also
included. The material in this part is considered to be fairly fundamental
and should be covered in all courses, graduate and undergraduate.

Part II of the book covers methodologies for retrieving information from
biological databases and covers simple boolean searches, sequence alignment
algorithms, protein alignment, scoring matrices, alignment tools and bio-
linguistic methods. Undergraduate students should cover basic retrieval tech-
niques and advanced topics such as PAM and BLOSUM may be included
based on the amount of time available and level of preparation of the stu-
dents.

Part III of the book covers the topics related to sequence analysis and
covers algorithms for finding patterns and detecting genes.

Part IV focuses on topics in phylogenetics and systems biology and covers
the algorithms for distance, character and probabilistic methods for inferring
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phylogeny. Also described are some key algorithms for analyzing micro-chip
data.

The book is an offshoot of our project aimed at creating bioinformatics
educational resources for undergraduates in computer science and engineer-
ing. This project is sponsored by the National Science Foundation, USA.
Additional details for the project and bioinformatics educational resources
are available from http://bioflow.secs.oakland.edu.

The author would like to acknowledge the efforts by students who partic-
ipated in creating resources for the NSF sponsored bioinformatics project:
Kenneth DeMonn, Nirmala Venkatraman, David Poe, Guy Lima, Kellie Mc-
Gowan and Ashwin Kottam. Their work influenced the content and the pre-
sentation in this text.

For the BioFlow project we are also analyzing student learning styles
in collaboration with Professor Christine Hansen, Department of Psychol-
ogy, Oakland University. The results from obtained from the student as-
sessment studies were very valuable in providing insight into methods that
made this text more comprehensible for computer science and engineering
undergraduates.

Rochester, MI Gautam B. Singh
USA June 2014
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Chapter 1

Introduction to Bioinformatics

Sequencing of biomolecules began in 1951 when Sanger and Tuppy deduced
the thirty residue protein from the insulin B-chain. It was only after 25 years
that real DNA sequencing methodologies were developed by Maxim & Gilbert
and by Sanger et al. Today, we are sequencing tens of millions of bases of
DNA sequences a year and undertaking the sequencing of genomes from whole
organisms. During these times, the sequence databases have continued their
exponential growth rate. The computational research in bioinformatics aims
at enhancing the retrieval, analysis and interpretation of information that is
embedded within the biological databases containing the DNA and protein
sequences.

In a manner similar to the transformation of physics and chemistry, the
study of biology has been undergoing a transformation since the 1990s. This
transformation is aimed at the integration of computational sciences and in-
formation technology into the study of life sciences. This transformation has
been driven by the computational requirements of genomic research. The
experiment-rich field of biology has been generating data at an exponential
rate, while there is a dearth of tools for information analysis and visualiza-
tion. Furthermore, the challenges faced in bioinformatics stem largely from
the fact that the languages and techniques utilized in the field of molecular
biology are descriptive and experimental in nature, while the methodology
in computer science and mathematics is generally based on analytical and
precise formulations.

1.1 What Is Bioinformatics?

Bioinformatics is an emerging discipline that draws upon the strengths of
computer sciences, mathematics, and information technology to determine
and analyze genetic information. Bioinformatics leverage synergies between
computational and biological sciences. Although the field of bioinformatics
originally aimed at extracting information embedded within the 3 billion
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bases of human DNA, the field has evolved to realize its capabilities for
studying information content and information flow in biological systems and
processes in general.

Earlier bioinformatics research aimed at mapping individual genomes and
calculating differences to estimate population diversity. The study of bioin-
formatics now encompasses genomes from other species besides humans. For
example, other genomes of interest are those of microbes, plants and fungi.
An analysis of plant genome databases leads to advances in the agricultural
arena by helping produce plants that are resistant to diseases and have higher
yields. Understanding microbial genomics facilitates the development of new
therapies for combating infectious diseases. Furthermore, computational anal-
ysis of fungal and microbial genomes serve as valuable smaller scale model
organisms that lead to understanding functional genomics and improving
technological development for applications at a larger “human” scale.

Originally, in the mid-1980s, the field of bioinformatics was defined as the
subject of genetic data collection, analysis and dissemination. Bioinformatics
has come a long way since then and now aims at complex mathematical
modeling and simulation as well. For example, bioinformaticians now aim at
developing computational models for differential regulation of gene expression
that occurs in-vivo in a tissue-specific manner. Thus, the field of biology now
turns towards mathematics and computation sciences to help make further
advancements for understanding its core theoretical principles.

Such a dependence by biological science on the algorithms and formula-
tions provided by analytical sciences was borne out of the necessity to analyze
and make interpretations from the large volume of data generated by the Hu-
man Genome Project. Biologists look towards computational sciences to help
bridge the gap between experimental observations and gaining an under-
standing of how living systems and processes perform their functions. Such
a creation of novel biological knowledge in the case of diseases, for example,
could lead to our predictive inference on the prognosis and preventive ther-
apeutic treatment based on our understanding of diagnostics data through
integrative bioinformatics models.

From an information technology perspective, therefore, bioinformatics may
be defined as a scientific discipline encompassing acquisition, storage, pro-
cessing, analysis, interpretation and visualization of biological information.
It encompasses frameworks, theories, algorithms, techniques and tools from
mathematics, computer science and biology with the aim of understanding
the significance of a variety of biological data.

1.2 The Human Genome Project

Leveraging the technological advancements in molecular biology and genet-
ics in the mid-1980s, the Human Genome Project was initiated with the goal
of enabling progress and benefits in biomedicine. The two main goals of the
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Human Genome Project were to identify all the approximately 25–30,000 hu-
man genes, and to determine the sequences of the 3 billion chemical base pairs
that make up human DNA. Completed in 2003, the Human Genome Project
(HGP) was a 13-year project coordinated by the U.S. Department of Energy
and the National Institutes of Health. Coincidentally, the completion of the
human DNA sequence in the spring of 2003 also marked the 50th. anniversary
of Watson and Crick’s discovery of fundamental structure of DNA.

The HGP was truly an international effort, although significant advance-
ments of its goals were accomplished in the United States. Other contributors
included the Wellcome Trust (U.K.) who was major partner during the early
years of its inception in the 1990s. Contributions to its advancements are also
attributed to the commitments by countries such as Japan, France, Germany,
China, and others. Being an international effort, the HGP was supported by
the technological advancements in database and information retrieval with
networking technologies that supported international collaborations.

The completion of the Human Genome Project was celebrated in April
2003 and also marks the completion of the sequencing of the human genome.
However, this event also marked the beginning of the post-genome informatics
era where scientists are collaboratively engaged in understanding the biolog-
ical function in an integrative manner. As an illustration, consider the initial
analysis of the draft human genome sequence that was published in 2001 by
the International Human Genome Sequencing Consortium which estimated
that the human genome contains only about 20,000 to 30,000 protein-coding
genes, an estimate that was significantly lower than previous estimates of
around 100,000.

This lower estimate came as a shock to many scientists because counting
genes was viewed as a way of quantifying genetic complexity. With around
25,000, the human gene count would be only about 25% greater than that of
the simple roundworm C. elegans at about 20,000 genes. Thus, science today
is embarking upon unraveling the complexity in coordination and regulation
of genetic networks in contrast to the number of genes a being the determining
factor in an organism’s complexity.

Thus, an understanding of biological function is not possible using the se-
quence information alone. Complete understanding of life’s complex processes
often necessitates a convergence of computational modeling and experimen-
tal sciences. This, incidentally is also the recipe for effective bioinformatics
research.

1.3 Genome Data Statistics

The National Center for Biotechnology Information, or the NCBI, is part
of the National Library of Medicine. The National Library of Medicine is a
component of the National Institutes of Health and the U.S. Department of
Health and Human Services. The NCBI was established in 1988 as a national
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Fig. 1.1 The growth of the nucleotide database GENBANK since its inception
till March 2006. The size of the database as well as the number of sequences de-
posited has been undergoing an exponential growth ever since GENBANK’s incep-
tion. Source of data: http://www.ncbi.nlm.nih.gov/GenBank/genbankstats.html

resource for molecular biology information. NCBI creates public databases
and develops software tools for analyzing genome data.

GenBank is the NIH genetic sequence database, an annotated collection
of all publicly available DNA sequences. NCBI is host to the GenBank nu-
cleotide sequence database. Submitters to GenBank contribute over 3-4 mil-
lion new DNA sequences per month to the database. As of 2013, there are over
150 billion bases in approximately 170 million sequence records in the various
GenBank dataset divisions. The data represents both individual genes and
partial and complete genomes of over 165,000 organisms. GenBank provides
sequences from single genes from organisms as diverse as humans, elephants,
earthworms, fruit-flies, apple trees, and bacteria as well as the sequences for
organisms’ complete genomes.

As illustrated in Fig. 1.1 the total database size and the number of se-
quences in the nucleotide database GenBank has been growing exponentially.
This growth rate has continued despite the completion of the genome project
and is fueled by scientists’ interest in continuing to sequence other organisms
and plants and mankind’s interest in biological diversity.
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1.4 Applications of Bioinformatics

There are many applications of the burgeoning field of bioinformatics. Bioin-
formatics is not limited in its applications and in general can be applied
to any computational inquiry for solving biological problems. Some of the
common applications of bioinformatics are listed below. However, it must
be emphasized that the list below is by no means exhaustive. At its core of
bioinformatics is an application of computational and mathematical problem
solving algorithms to further the understanding of a biological system. Thus,
the applications of bioinformatics is really an open ended list.

• Pattern Discovery: The need to discover patterns stems from the ob-
servation that whenever nature finds a mechanism (the evolution of the
eye for example) which bestows a differential fitness to an organism, the
mechanism is often reused. Such a reuse of successful recipes also occurs at
the molecular level implying that biological sequences belonging to distant
species share common patterns in their genetic makeup. Through compu-
tational analysis and modeling, bioinformatics algorithms help in discovery
and functional interpretation of these biological patterns.

• Protein Folding: After a gene has been transcribed and translated, the
linear polypeptide chain folds into a three dimensional protein within
a matter of seconds or minutes. The protein can only function after it
has acquired a three dimensional structure as its interactions with other
molecules is largely governed by the protein’s shape. Even after a concerted
effort over the past few decades, computational algorithms for predicting
the protein structure from a protein sequence continues to be an unsolved
problem. A solution to this problem will enable scientists to accurately
model biochemical pathways and lead to effective drug design in-silico
without the need for extensive experimentation.

• Alignment and Homology: Sequence alignment is a methodology for
arranging biological sequences to identify regions of similarity between
them. The extent of similarity, or homology, between the DNA from a
variety of organism may be used to determine evolutionary relationships
and degrees of divergence between them. The type of ancestry would let
us establish if a certain structures observed evolved from some structure in
a common ancestor (such as arms in humans and wings on bats) and also
infer function of an anonymous sequence based on the known function of
a homologous sequence. There are a number of computational challenges
in developing newer and integrative homology algorithms that can infer
homology using data from sequence and structure.

• Orthologs and Paralogs: Homologous features share an evolutionary
history. Orthologs and paralogs are both homologs, but have more specific
meanings: Orthologs have diverged because of a speciation event such as
a gene like Antp in fruit fly D. melanogaster diverged from the gene mab-
5 in roundworm C. elegans – that is these two genes evolved from the
same gene in their common ancestor. In contrast, paralogs have diverged



8 1 Introduction to Bioinformatics

because of a gene duplication event in an ancient ancestor as is probably
the case with mab-5 and lin-39 in C. elegans. Also consider the example of
the gamma-globin genes in the Anthropoidea which duplicated before the
new world monkeys diverged from the lineage to humans and apes. That
would make gamma-1-globin and gamma-2-globin paralogous. However,
the gamma-1 in humans is orthologous to gamma-1 in chimpanzees. Thus,
it is sometimes difficult to distinguish orthologs from paralogs. Sophisti-
cated computational models are needed to effectively develop taxonomies
and gene trees and discover novel instances of convergent evolution.

• Information Retrieval and Data Mining from Biological
Databases: The explosive growth of sequence and biological information
has created new challenges for data representation, access, and analysis.
With the size and the need for access to this data continually increas-
ing, maintaining database performance and availability is a challenging
task. In-silico biology, is a term that life science companies use to re-
fer to the computational tools that translate raw experimental data into
workable models or simulations to identify targets for drug development.
Bioinformatics tools for processing the overwhelming amount of data gath-
ered through genome research, such as the Human Genome Project, are
essential to fuel the in-silico life science research. Genome database search-
ing entails developing computational tools for identification of protein-
encoding regions of a genome and assign functions to these genes on the
basis of sequence similarity with other genes of known function.

• Data Integration from Multiple Modalities: Researchers in molecu-
lar biology and medicine rely heavily on progress in data management and
quality assurance as the necessary underpinnings for effectuating progress.
Advancements in life sciences, and particularly in areas like drug develop-
ment, systems biology, or personalized medicine, are dependent on integra-
tion of data from myriad experiments, longitudinal studies, and levels of
detail. Numerous unsolved problems, for example the integration of data
from proteomics mass spectroscopy and gene sequences, requires fulfilling
a vast information gap-filling through data rationalization. These issues
are moving towards the forefront as advancements in instrumentation is
rapidly generating larger quantities of data in a high throughput manner.
The next big challenge is expected to be the integration of genomics, pro-
teomics and individualized medical data routinely collected by hospitals.

• Analysis of Biological Sequences and Pattern Discovery: A good
understanding of the probabilistic nature of biological sequences is the
key to statistical modeling of biological sequences. Genome sequence data
analysis leads to the design of novel tools for effective prediction of bio-
logical function. Sequence analysis research focuses on finding patterns in
biological sequences and associating these patterns with functions neces-
sary for pathways that support life forms. Some of the pattern detection
encompasses looking for short range patterns such as binding and initia-
tion sites, while other computational techniques seek to model long range
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patterns such as genes, locus control regions, matrix attachment regions,
and helitrons where a consensus sequence or even a consensus structure of
the model is not yet known. Inductive learning approaches are needed to
analyze known data and induce mathematical models that learn as new
discoveries are made.

• Micro-arrays and Differential Gene Expression: The thousands of
genes and their products expressed in a given living organism function in
a coordinated and complex manner. The discovery of genes has been fol-
lowed by various techniques for detecting genes based on their expression
levels as gene expression is correlated with the tissue type. For example,
the genes that are expressed in the liver are not the same set of genes
expressed in kidneys, with the exception of certain housekeeping genes
required for processes common to all cells that are expressed in all cells.
Methods of identifying differential expression in genes have been devel-
oped to establish the levels of gene expression in various tissue types. This
can be particularly useful in cancer studies, where mutations that can am-
plify or turn off gene expression occur in malignant samples. These days
the gene chip or microarray technology is greatly accelerated the speed
of performing a differential gene expression analysis. With gene chips one
can monitor the whole genome using a single chip allowing researchers to
better understand the interactions among thousands of genes simultane-
ously. Among the many applications of micro-arrays or gene chips are gene
discovery, disease diagnosis, drug discovery, and toxicology research. Gene
expression studies using gene chips draw upon the advances in computa-
tional analysis and statistics, image processing and data management.

• Gene Regulatory Networks: Gene regulatory networks (GRNs) are the
on-off switches that act like rheostats and control the level of expression
for each gene by controlling whether and to what level the gene will be
transcribed into RNA. These networks are a collection of DNA segments
that interact with each other and other substances in the cell and govern
the overall rate at which the network is transcribed into mRNA. In a graph
theoretic model, the nodes of a GRN are proteins and edges represent
individual molecular reactions or protein interactions. Edges may have
arrowheads and thus be inductive where the increase in the concentration
of one leads to the interaction of the other, or inhibitory (with a circle)
where the increase in one leads to the decrease in the other. GRNs thus
capture the chemical dynamics of the cell. Construction and simulation
of GRNs offer many challenges in mathematical modeling, simulation and
visualization.

• Metabolic Pathway Models: Metabolic network reconstruction and
simulation enables us to gain insight into molecular mechanisms that re-
late the genome to molecular physiology. The metabolic pathway breaks
down a metabolic cycle such as glycolysis, Krebs cycle, or pentose phos-
phate pathway into their respective reactions and enzymes and analyzes
their interactions. Enzymes and genes are correlated by searching genomic
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databases. Continual validation of metabolic pathways is needed to keep
the pathway database consistent.

Further Readings

1. Searls, D.B.: An online bioinformatics curriculum. PLoS Comput. Biol. 8(9),
e1002632 (2012)

2. Maojo, V., Kulikowski, C.A.: Victor Maojo and Casimir A Kulikowski. Bioinfor-
matics and medical informatics: collaborations on the road to genomic medicine?
J. Am. Med. Inform. Assoc. 10(6), 515–522 (2003)

3. Li, J., Doyle, M.A., Saeed, I., Wong, S.Q., Mar, V., Goode, D.L., Caramia, F.,
Doig, K., Ryland, G.L., Thompson, E.R., Hunter, S.M., Halgamuge, S.K., El-
lul, J., Dobrovic, A., Campbell, I.G., Papenfuss, A.T., McArthur, G.A., Tothill,
R.W.: Bioinformatics pipelines for targeted resequencing and whole-exome se-
quencing of human and mouse genomes: a virtual appliance approach for instant
deployment. PLoS One 9(4), e95217 (2014)

4. Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to
modular cell biology. Nature 402(6761 suppl.), C47–C52 (1999)

5. Csete, M.E., Doyle, J.C.: Reverse engineering of biological complexity. Sci-
ence 295(5560), 1664–1669 (2002)

6. Ouzounis, C.A.: Rise and demise of bioinformatics? promise and progress. PLoS
Comput. Biol. 8(4), e1002487 (2012)

7. Dymond, J.S., Scheifele, L.Z., Richardson, S., Lee, P., Chandrasegaran, S.,
Bader, J.S., Boeke, J.D.: Teaching synthetic biology, bioinformatics and engi-
neering to undergraduates: the interdisciplinary build-a-genome course. Genet-
ics 181(1), 13–21 (2009)



Chapter 2

Introduction to Molecular Biology

Molecular biology overlaps the fields of biology and chemistry and mainly
aims at developing an understanding of the interactions between the various
systems of a cell, including the interrelationship of DNA, RNA and protein
synthesis as well as with uncovering the manner in which these interactions
are regulated.

Researchers in molecular biology use specific techniques native to molec-
ular biology. However, there is considerable diffusion of ideas from other dis-
ciplines such as genetics and biochemistry; there does not seem to be a clear
boundary that delineates these fields anymore as the researchers borrow tech-
niques and methodologies from all these related fields.

Biochemistry is defined to be the study of the chemical substances and
vital processes occurring in living organisms. Genetics concerns itself with
the effect of genetic differences on organisms which often is associated with
the absence of a genes as in the study of “mutants.” Mutants are organisms
which lack one or more functional genes with respect to the so-called “wild
type.”

Molecular biology synthesizes the above viewpoints by studying the molec-
ular underpinnings of the processes related to genetics. Specifically, those re-
lated to the replication, transcription and translation of the genetic material
– the so called central dogma of molecular biology discussed later in this
chapter.

2.1 Cell Structure

Every cell typically contains hundreds of different kinds of macromolecules
that function together to generate the behavior of the cell. Computer graphic
of a typical animal cell and its contents or the organelles is shown in Fig. 2.1.

The big and round structure is the nucleus, which carries the cell’s genes
in the form of DNA and controls cellular activities via genes. The nucleolus
is located within the nucleus and is the site for ribosome synthesis. The oval

c© Springer International Publishing Switzerland 2015 11
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bodies are mitochondria which are responsible for the production of ATP
through the oxidation of carbohydrates and provide the cell with energy.

The folded, dotted structures are rough endoplasmic reticulum where the
folds of membrane carry ribosomes that synthesize proteins. The smooth en-
doplasmic reticulum is involved in the lipid synthesis. The round bodies con-
taining small particles are vesicles are the lysosomes or peroxisome. Lysosome
contains hydrolytic enzymes for intracellular ingestion, while peroxisome is
responsible for hydrogen peroxide synthesis and degradation and expelling
some of the matter through the cell’s outer plasma membrane. The vesicles
are made by the golgi apparatus which is the folded structure is the packaging
center and the site for manufacture of carbohydrates.

Fig. 2.1 The structure of an animal cell

Most proteins are synthesized by ribosomes in the cytoplasm. This process
is also known as protein biosynthesis or simply protein translation. Some pro-
teins, such as those to be incorporated in membranes (membrane proteins),
are transported into the ER during synthesis and are also processed further
in the golgi apparatus.
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2.1.1 Genome

The term genome was coined by Hans Winkler, a Professor of Botany at the
University of Hamburg, in 1920 to collectively refer to the complete genetic
material of an organism. The genome contains an organism hereditary infor-
mation encoded in the DNA and packaged into the chromosome. The genome
encompasses both the genes and the non-coding sequences of the DNA. More
precisely, the genome of an organism is a complete DNA sequence of one set
of chromosomes; for example, one of the two sets that a diploid individual
carries in every somatic cell.

The term is sometimes qualified in a manner to refer to the complete
genetic material is in nuclear genome might be used to refer to the complete
set of nuclear DNA, can be applied to organelles such asmitochondria genome
or chloroplast genome to refer to the complete contents of the DNA found in
mitochondria or chloroplast respectively.

Every somatic cell contains two copies of each chromosome where one is
inherited from each parent. Each pair of chromosome is often referred to as
a homologous pair where both the chromosomes contain a gene for the same
trait at exactly the same loci. A given location in the homologous chromosome
pair thus contains a gene pair representing the two alleles for that gene with
each allele originating from the two parents. For example, one allele in a
fruit fly may code for the flies to have long wings, while the other allele may
code for flies to be wingless. Alternatively, both the alleles may code for long
wings, or may code for no wings at all. Where the two alleles are different
the genotype or the genetic makeup is referred to as heterozygous while the
genotype is referred to as homozygous when the two alleles are the same.

The phenotype is the actual expression of the genotype. Purple flowers,
brown eyes, or wingless fruit flies are all examples of phenotypes. In a het-
erozygous individual, the phenotype of the organism is determined by which
of the allele is dominant. In the example, whether a heterozygous fruit fly
has long wings or no wings depends upon which of the two alleles, the one
for long wings or the one for no wings, is dominant. The trait of the domi-
nant allele is expressed, while that of the recessive allele is suppressed. For a
homozygote, the expression or the phenotype is the same as that coded by
the two identical alleles.

The biological information contained in a genome is encoded in its deoxyri-
bonucleic acid (DNA). The DNA is a macromolecule that contains discrete
units of protein coding segments called the genes. Current estimates place the
number of genes in the humans to be around 25,000 encoded in on 23 chro-
mosomes. The total length of the human nuclear genome is 3×109 base pairs.
Note that the length of DNA only considers the of one of the homologous
chromosome pairs.

The chromatin, the constituent DNA in a chromosome, becomes observable
under a microscope when it is packed in the shape shown in Fig. 2.2 during
the metaphase of a cell division or mitosis. While the diameter of a strand
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Fig. 2.2 Each chromosome contains a single molecule of DNA organized into sev-
eral orders of packaging. The packaging of a chromosomes in metaphase is shown
where the compact packaging causing length of the chromosome to be about 0.0001
times the length of the DNA molecule. Reprinted from National Human Genome
Research Institute’s Educational Resources.

of DNA is only 2 nm, several levels of packaging facilitated through the
packaging proteins called the histones, the chromosomes themselves have a
diameter of 1400 nm or 1.4 microns. In order for a gene to be expressed, the
loci of the genome containing the gene must be in an open conformation and
not tightly packaged as in a metaphase chromosome.
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2.1.2 DNA: Deoxyribonucleic Acid

The DNA molecules consist of two complementary chains that are twisted
together to form a double helix. The DNA molecule is comprised of four
nucleotide bases belonging to two classes. These four bases are adenine (A),
guanine (G), cytosine (C) and Thymine (T). The two classes to which these
bases belong are purine and pyrimidine. The bases A and G belong to the
class purine while C and T belong to the class pyrimidine. The DNA double
helical structure is formed by the hydrogen bonding between purines and
pyrimidines. The DNA is often thought of as a spiral staircase where the sides
of this ladder consist of deoxyribose residues linked together with phosphate
bonds and the “rungs” of the ladder are made up of a hydrogen bonded
purine and pyrimidine pair.
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Fig. 2.3 DNA molecule and nucleotide bases. (a) Cytosine (G) always pairs with
Guanine (G) while Adenine (A) always pairs with Thymine (T). (b) Triple hy-
drogen bonds are formed between every C:G pairings while two hydrogen bond
exists between each A:T pairs. Reprinted from National Human Genome Research
Institute’s Educational Resources.

Fig. 2.3 shows the structure of a DNA molecule. The DNA is a double
stranded molecule with base C pairing with the base G and base A pair-
ing with T. The pairing is not chemical in nature but rather mediated with
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hydrogen bonding. This enables the DNA to adopt a single stranded confor-
mation with relative ease as is needed during the cellular processes leading to
replication and transcription. The bonding between bases C and G is stronger
as characterized by a triple hydrogen bond between this pair. The bases A
and T on the other hand are paired using a double hydrogen bond. Generally,
due to the C:G bond being stronger, there is ample evidence to suggest that
genes are located in the CG rich areas of the genome.

The DNA is read from the direction of 5’ (five-prime) to 3’ (three-prime).
These labels are indicative of the free carbon atom on the sugar phosphate
backbone of the DNA molecule. The 5’ carbon on the reverse, or complemen-
tary strad is located directly opposite from the nucleotide base attached to
the 3’ end of the forward strand and vice versa. Further, as the DNA occurs
in a double stranded conformation, the length along the molecule is measured
in units of base pairs or bp.

Example 2.1
Consider a 10-bp DNA sequence TAAGCCTGTA. WIthout more information we
will assume that the sequence provided is for a 5’ to 3’ read for forward
strand. This corresponds to a left to right read. The forward and reverse
strands would be shown as follows:

5’ forward strand 3’

T A A G C C T G T A

| | | | | | | | | |

A T T C G G A C A T

3’ reverse strand 5’

The reverse strand, also read from the 5’ to 3’ direction, will thus be read
from right to left. This would correspond to the sequence TACAGGCTTA.

End of Example

2.1.3 Genes

Genes are discrete functional units located on the genome. A gene codes for
a protein; that is, a gene is comprised of the blueprint of how a particular
protein is to be synthesized. This blueprint is written in an alphabet com-
prised of the four characters {A,C,T,G}. Only about 1–2% of the genome
codes for the approximately 20,000–25,000 genes in the human genome. The
percentage of coding regions in other eukaryotes1 is comparable.

The function of the remainder of the DNA is relatively unknown but is gen-
erally believed to be associated with differential regulation of gene expression

1 Organisms where the DNA is packaged inside the nucleus are called eukaryotes,
while DNA floats freely in the cytoplasm in a prokaryote. Higher level life forms,
such as mammals, plants, reptiles and fungi are eukaryotes. Lower level life forms
such as bacteria are prokaryotes.
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Fig. 2.4 A eukaryotic gene is comprised of protein coding exons interspersed by
non-coding intervening sequences called introns. Reprinted from National Human
Genome Research Institute’s Educational Resources.

and programmed cell death. As shown in Fig. 2.4, the genes in eukaryotes
are organized into intervening regions or introns that do not code for protein.
As is further explained in Section 2.2.2, the protein sequence is derived by
splicing out the intronic regions before the mature RNA transcript is syn-
thesized in the cytoplasm. The number and size of introns vary in different
genes. Albeit the introns do not code for proteins, their number and location
is often indicative of evolutionary relationships between specific genes. For
example, all apolipoprotein genes, affecting lipoprotein metabolism, have a
similar number and size of introns and share a common ancestry.

The organization of a eukaryote gene is shown in Fig. 2.5. The boundaries
between the introns and exons are generally well defined. All introns have
a dinucleotide GT at their 5’ end and the dinucleotide AT at their 3’ end.
The open reading frame (ORF) is a contiguous sequence of bases on the
chromosome that could code for a protein.

The open reading frames or ORFs begin with the trinucleotide ATG which
is considered as the universal start codon specifying the initiation of protein
synthesis and is located on the 5’ end of a gene. The 3’ end of an open
reading frame is a stop codon which could be a TAA, TAG or TGA and marks
the termination of protein synthesis. Thus, a gene is demarcated by a start
and stop codon.
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Fig. 2.5 The blueprint of an eukaryotic gene. The gene is demarcated by a start
and stop codon. Upstream from the start codon are the CAAT and TATA blocks
which facilitate in the process of gene expression. In eukaryotes, the genes are
characterized by the presence of intervening sequences that are spliced out of the
primary transcript which is capped with a poly-A tail to synthesize the mature
RNA which is ultimately used in the synthesis of proteins in the a cell’s cytoplasm.

Upstream from the start codon are the CAAT and TATA boxes which fa-
cilitate in the process of gene expression. The TATA-boxes are found in most
genes and are located about 20–30 base pairs upstream of the transcription
start codon ATG. The TATA-boxes are thought to direct transcriptional en-
zymes to the appropriate site for initiating transcription. The CAAT-boxes
occur about 70–90 bases upstream of the start codon and are also thought
to regulate and facilitate transcription.

2.2 Central Dogma

The central dogma of molecular biology was first proffered by Francis Crick
in 1958. Given the three types of information carrying biopolymer sequences,
namely the DNA, the RNA and the proteins, the central dogma limits the
information transfer capability of a given type of biopolymer to another. It
essentially states that once the information transfer has occurred to its final
state, the information transfer may not be reverted back.

The final state of information flow is the protein as shown in Fig. 2.6.
Thus, after a protein has been formed using the information stored on the
DNA, the DNA information is not recoverable from protein. Neither may the
information from protein be transferred to RNA or to other proteins.2 In
this manner, the central dogma of molecular biology concerns itself with the
detailed residue-by-residue transfer of sequential information and represents
a framework for understanding the transfer of sequence information between
biopolymers.

As illustrated in Fig. 2.6, the flow of information occurs from a DNA to
DNA molecule during replication where a template strand DNA is used to

2 Except in the very rare cases where the information from a prion may be trans-
ferred to other proteins.
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RNA ProteinDNA
Transcription Translation

Replication

Fig. 2.6 Central Dogma. DNA replicates during cell division where the information
on a strand of DNA is used to synthesize a complementary strand. Information on a
strand of DNA is transferred to RNA during transcription. The information encoded
in a RNA molecule is translated by the ribosome to synthesize a poly-peptide chain
which folds into a protein.

synthesize the complementary strand with the help of the enzyme DNA poly-
merase. The flow of information from DNA to RNA occurs during transcrip-
tion when the nuclear enzyme RNA polymerase synthesizes messenger RNA
from the coding strand of the double helix (DNA). The single stranded RNA
molecule provides the template utilized by the ribosomes for the translation
where the chain of amino acids representing the coded protein is synthesized.

2.2.1 Replication

The replication of DNA precedes cell division. An exact copy of DNA must
be made to pass on genetic information to the progenitor daughter cells. The
DNA must be replicated faithfully and any errors in the replication process
represent genetic mutations. Replication is initiated by the enzyme helicase
which unwinds the superhelix and splits the two strands apart at the AT-rich
origin of replication regions. With the two strands exposed, the sequence of
bases on each of the separated strands serves as a template for synthesizing
complementary set of bases by enzymes such as DNA polymerase.

In human DNA, the copy rate of DNA can reach around 80 bases per
second, while some prokayotes are able to replicate DNA at the rate of 1000
bases per second. The missing molecules in of the ribose-phosphate backbone
are added by the enzyme ligase. The replication process consumes the original
strands. As shown in Fig. 2.7 (a), this results in the creation of two identical
strands of DNA where the two new double-stranded molecules created are
each comprised of one original strand paired with the other newly-synthesized
strand. Thus, DNA replication is defined as a semi-conservative process.

Since the average human chromosome contains about 150 million nu-
cleotides, the process of copying a single chromosome would take about a
month. However, the process actually takes close to an hour since there are
many places on the chromosome where replication simultaneously begins. As
illustrated in Fig. 2.7 (b), the synthesized DNA around the replication origins
creates “replication bubbles” of that finally fuse and form two new molecules.
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Fig. 2.7 Replication of the DNA. (a) Dark strand shown is the copy resulting
from the replication process. Reprinted from National Human Genome Research
Institute’s Educational Resources. (b) Simultaneous initiation of replication at AT-
rich replication origins grow into bubbles that eventually merge to create a copy of
DNA.

The completion of DNA replication is the pre-requisite for the two types
of cell divisions, namely mitosis and meiosis. Each type of cell division is
preceded by a DNA synthesis phase where a sister chromatid is formed. The
sister chromatid for each chromosome in the homologous pair is attached at
the centromere. Thus, if sister chromatids are also counted, the total number
of chromosomes in a cell right before division is 4 ·N after each of the 2 ·N
chromosome is replicated during the synthesis phase preceding mitotic or
meiotic cell division. The mitotic cell division produces two daughter cells
each with 2 · N chromosomes while a meiotic cell division produces four
daughter cells each with N chromosomes.

Cell Division - Mitosis

In mitotic cell division, each cell with 2·N chromosomes produces two daugh-
ter cells with 2 · N chromosomes each. Prior to the division, the parent cell
undergoes DNA synthesis, where the cell’s genetic material is duplicated in
anticipation of mitotic division, often referred to as binary fission. The entire
cell cycle is often divided into four stages: G1, S, G2 and mitosis. The G1

phase, or the first growth phase, immediately follows mitosis with the cell’s
DNA present in an unreplicated state. G1 is followed by S or the synthe-
sis phase where the genetic material is replicated in the semi-conservative
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manner discussed above and where each chromosome is doubled to form its
sister chromatid with the centromere serving as the point of attachment. This
is followed by another growth phase called G2 which lasts till the mitotic di-
vision ensues. The stages of mitosis, commenced after G2 phase, are shown
in Fig. 2.8.

(a) Prophase (b) Metaphase

(c) Anaphase (d) Telophase

Fig. 2.8 Mitosis. The cell division produces diploid cells. The DNA in the cell must
be replicated before the cell division can occur. The DNA replication results in the
synthesis of the sister chromatid shown for each of the chromosome. All chromatid
pairs are split into two diploid daughter cells.

During mitosis prophase, the chromosomes condense and become visi-
ble under a light microscope with each chromosome consisting of parallel
strands called the sister chromatids held together by the centromere. During
prophase, the nuclear membrane disappears. During metaphase, the chro-
mosomes contract and move towards the center of the cell and spindle fibers
form and extend from the centromere to the centrioles located at the opposite
poles of the cell. During the anaphase, each of the chromosomes held together
at the centromere divide and move to the opposite poles of the cell. Finally,
in telophase, the cytoplasm divides and nuclear membrane forms around the
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chromosome which begin to de-condense again. The end of mitosis marks the
beginning of the interphase and growth phase for the two daughter cells.

In a mitosis cell division diploid daughter cells are produced. The diploid
daughter cells each have 2N chromosomes corresponding to the homologous
pair derived from each parent. The mitotic division is followed, in case the
daughter cells need to further divide, by the growth and synthesis phase
where the DNA is again replicated in the daughter cells.

Cell Division - Meiosis

Under meiosis cell division haploid or germ cells are produced. The gametes
are haploid cells and have N chromosomes where a non-sex diploid cells have
2 · N chromosomes comprising of the N homologous pairs. The fusion of a
male gamete (e.g. the sperm cell) and a female gamete (the egg cell) results
in the embryonic cell having 2 ·N chromosomes.

The meiosis is preceded by one round of DNA synthesis followed by two
special cell divisions. The first round of cell division is called the reduction
division because the number of chromosomes is reduced from 2 ·N to N as
the two homologous chromosomes are segregated into different daughter cells.
During the first metaphase, as shown in Fig. 2.9 (b), the nuclear membrane
disappears and the bivalent chromosomes line up along the center of the cell
and the spindle connects the centromeres and the centrioles in the opposite
poles of the cell. During the anaphase of the first division shown in Fig. 2.9 (c),
the homologous chromosomes comprising each bivalent separate from each
other and move to the opposite poles. The sister chromatids remain attached
at the centromere which, unlike mitosis, do not split during reduction division.

The second cell division is not preceded by DNA synthesis. The second
cell division is similar to mitosis as each of two sister chromatids attached
at the centromere line up along the central plane of the cell and split into
the the two daughter cells during the anaphase shown in Fig. 2.9 (e). Four
gametes, with N chromosomes each, form during the telophase. Thus, in the
case of humans, the daughter cells after meiosis have 23 chromosomes, while
the daughter cells after mitosis have 46 chromosomes.

It is also worth noting that the reduction division in meiosis is often ac-
companied by a cross-over event as shown in Fig. 2.9 (b). As the homologs
line up along the central plane of the cell, parts of their genetic material
may be exchanged before they are split up during anaphase I. Such an ex-
change is called cross-over and is basis for genetic diversity. As is evident in
Fig. 2.9 (f), two of the gametes contain genetic material that is a combina-
tion of the materials exchanged between the two homologs. Exactly one of
the four daughter cells will be become fertilized and as such the probability
is 1

4 each that one of the recombined gametes or one of the “pure” homologs
will be passed to the offspring.
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(a) Prophase (b) Metaphase I

(c) Anaphase I (d) Telophase I

(e) Anaphase II (f) Telophase II

Fig. 2.9 Meiosis. The meiotic division of a diploid cell produces haploid daughter
cells known as the gametes

2.2.2 Transcription

A transcription unit is the stretch of DNA that is transcribed into an RNA
molecule. The process of transcription is divided into three stages, namely,
initiation, elongation and termination. Transcription is initiated with the
binding of RNA polymerase to the promoter in DNA. The DNA unwinds
and produces a small open complex and RNA synthesis begins and as the
complex moves along the template DNA strand the RNA product is elon-
gated. The transcription elongation also involves a proofreading mechanism
whereby incorrectly added mRNA is replaced. The transcription terminates
when a stop codon is encountered in the template DNA strand. This is accom-
plished by the formation of a secondary hairpin loop that RNA transcription
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complex come off the DNA template. A protein designated ”Rho” can pull
the mRNA away from polymerase.
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Fig. 2.10 The transcription of a gene results in the synthesis of a primary tran-
script which is subsequently spliced to remove the introns before the mature tran-
script is released into the cytoplasm where the translation machinery assembles the
protein coded by the gene.

The main stages in transcription and the processing leading to the mature
RNA which is ultimately used for synthesis of proteins is shown in Fig. 2.10.
The primary transcript is a large strand of RNA which extends from the
original 5’ to 3’ ends and is formed from the entire gene sequence comprising
of the exons and introns. The RNA is formed by Watson-Crick base pairing
rules. That is, primary transcript contains a A, C, G, or U wherever the DNA
sequence contains a T, G, C or A respectively. Note that the base Uracil (U)
is used in an RNA sequence instead of thymine (T).

The primary transcript comprising of a large RNA strand is very unstable
and is quickly modified in order to stabilize it by adding a cap structure to the
5’ end and a string of adenylic acid (poly A) tail at the 3’ end. The introns
are then removed and the exons are spliced together to form the mature RNA
which is transported to the cytoplasm for synthesis of protein. Although the
exact mechanism for RNA splicing is not well understood, it is evident that
the consensus dinucleotides GT and AG at the 5’ and 3’ ends of exon/intron
boundaries are crucial for this cleavage to effectively occur.
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Fig. 2.11 The mature RNA is synthesized by the ribosome which recruits the
tRNA with the anticodon that matches the codon in the mRNA sequence. The
individual amino acids are linked to form the peptide chain of the coded pro-
tein. Reprinted from National Human Genome Research Institute’s Educational
Resources.

2.2.3 Translation

The translation process converts the mature mRNA sequence derived from
the coding regions on the DNA into the corresponding polypeptide chain
which ultimately folds into the protein that the DNA sequence codes for. In
eukaryotic cells, while the site of transcription is the cell nucleus, the site
for translation is the cytoplasm. The mRNA carries the protein synthesis
instructions from the cell’s nucleus to the cytoplasm and must be transported
out of the nucleus into the cytoplasm for the synthesis of proteins. This
process occurs on the ribosomes located in the cytoplasm.

The mRNA is bound by the ribosome at a nucleotide triplet, or codons. The
initial binding site is usually initiator methionine codon, designated by AUG,
downstream of the ribosome binding site. The mRNA moves over the surface
of the ribosome and successive trinucleotides that code for amino acids are
brought into position. The transfer-RNA or tRNA, also an RNA molecule,
brings amino acids to the mRNA-ribosoome binding site that correspond to
the ribosome-RNA binding triplet. The amino acid recruited by tRNA line
up along the previously synthesized amino acids. As this amino acid is linked
to the growing polypeptide chain, the tRNA is released and the mRNA moves
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further along the ribosome bringing the next codon triplet into position for
translation.

Phe (F) Ser (S) Tyr (Y) Cys (C)

Phe (F) Ser (S) Tyr (Y) Cys (C)

Leu (L) Ser (S) STOP STOP

Leu (L) Ser (S) STOP Trp (W)

Leu (L) Pro (P) His (H) Arg (R)

Leu (L) Pro (P) His (H) Arg (R)

Leu (L) Pro (P) Gln (Q) Arg (R)

Leu (L) Pro (P) Gln (Q) Arg (R)

Ile (I) Thr (T) Asn (N) Ser (S)

Ile (I) Thr (T) Asn (N) Ser (S)

Ile (I) Thr (T) Lys (K) Arg (R)

Met (M) Thr (T) Lys (K) Arg (R)

Val (V) Ala (A) Asp (D) Gly (G)

Val (V) Ala (A) Asp (D) Gly (G)

Val (V) Ala (A) Glu (E) Gly (G)

Val (V) Ala (A) Glu (E) Gly (G)
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Fig. 2.12 Genetic Code. The genetic code is used in translating the genomic
mRNA to protein. Amino acids may be abbreviated using a 3-letter or a 1-letter
code. Amino acids corresponding to the triplet on the mRNA are abbreviated as
follows. Ala (A): alanine; Arg (R): arginine; Asn (N): asparagine; Asp (D): aspar-
tic acid; Cys (C): cysteine; Gln (Q): glutamine; Glu (E): glutamic acid; His (H):
histidine; Ile (I): isoleucine; Leu (L): leucine; Lys (K): lysine; Met (M): methion-
ine; Phe (F): phenylalanine; Pro (P): proline; Ser (S): serine; Thr (T): threonine;
Trp (W): trytophan; Tyr (Y): tyrosine; Val (V): valine.

This process is repeated in a 5’ to 3’ direction until a specific termina-
tion codon (UAA, UAG or UGA) is reached. The polypeptide chain is then
released and the mRNA and ribosome disassociate. There are 64 combina-
tions possible with three bases in every codon triplet. However, there are
only 20 amino acids which occur naturally which serve as the building blocks
for proteins. As is shown in Fig. 2.12 all amino acids, with the exception of
tryptophan, are coded by more than one triplet. This means that the genetic
code is degenerate. The alternative triplets for a given amino acid only vary
by change in the third base of the triplet.
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2.3 Gene Expression

Transcription is the process through which a DNA sequence in the nucleus
is copied to produce a complementary RNA sequence. This process is done
under the aegis of an RNA polymerase enzyme. Thus, the transcription is
the mechanism by which genetic information is transferred from the protein
coding DNA into mRNA, or messenger RNA, which ultimately leads to the
synthesis of proteins. Transcription differs from replication in that only one
strand of the DNA, referred to as the template strand, is used make mRNA.
Thus, while the DNA exists as a double-stranded molecule, the RNA exists
as a single stranded molecule. The complete schematic of the gene expression
process is shown on Fig. 2.13.

In humans, a given cell may express anywhere between 1,000 to 10,000 of
the possible 25,000 genes. Thus, a kidney cell will express a different set of
genes than a liver cell which in turn will express a different set of genes than
a brain cell. Some of the genes are expressed in response to the environmental
factors while other expression patterns are in response to feedback mecha-
nisms and genetic circuits typical of normal growth and differentiation. The
ability a cell to express a different set of genes from the common repertoire is
called differential gene expression. Furthermore, even when the total number
of genes in humans is around 20,000–25,000, eukaryote cells have the ability
to further modify the primary transcript via alternative splicing en-route to
the synthesis of mature RNA or mRNA. In this process, blocks of mRNA
are cut out and rearranged, to produce different arrangements of the original
sequence. This increases the number of possible proteins that are synthesized
from a single gene sequence!

Proteins are also often modified after translation to become active. For
example, although insulin is produced as a 82-amino acid molecule called
proinsulin, 31-residues are subsequently removed before it becomes an active
hormone. In general the chain of amino acid synthesized by the ribosomes
undergoes several levels of folding as shown in Fig. 2.14. The primary struc-
ture of the protein is simply the sequence of amino acid residues. In some
cases proteins may attach with non-protein groups to become active as in
the case of hemoglobin where the heme group must be attached before the
protein becomes functional. The secondary structure of the protein refers to
the structure formed by the bonding between different polypeptides. For ex-
ample, hydrogen bond formed between a group of polypeptides may result
in the twisting of the peptide backbone forming an α-helix. The tertiary and
the quaternary structure of a protein refers to its three dimensional form.
The three dimensional shape represents the most efficient form and the most
favorable arrangement for the protein to perform its function.
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Fig. 2.13 The expression of genes involves the transcription of DNA into a mRNA
which in the case of eukaryotes is further spliced before the mature RNA is re-
leased into the cellular translation processes convert it to the corresponding pro-
tein. Reprinted from National Human Genome Research Institute’s Educational Re-
sources.

2.4 Gene Linkage

Genetic linkage is defined as the joint co-inheritance of alleles. In the theory
that each gene is inherited independent of others, know as an independent as-
sortment of alleles, an organism can pass on an allele without regard to which
allele was passed on for a different gene. However, given the independent as-
sortment of genes that are physically close to each other on the chromosome,
such an independent assortment may not occur during meiosis. Thus alleles
that are on the same chromosome are more likely to be inherited together.
These alleles are said to be linked.
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Primary protein structure
is sequence of a chain of amino acids

Tertiary protein structure
occurs when certain attractions are present 
between alpha helices and pleated sheets.

Secondary protein structure
occurs when the sequence of amino acids 
are linked by hydrogen bonds

Quaternary protein structure
is a protein consisting of more than one 
amino acid chain.

Amino Acids

Alpha helix

Pleated sheet

Alpha helixPleated sheet

Fig. 2.14 The function of a protein is largely determined by its structure. After
the poly-peptide chain of the amino acid molecule has been synthesized, the linear
chain undergoes several levels of folding to reach its final stable structure. Reprinted
from National Human Genome Research Institute’s Educational Resources.
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Fig. 2.15 Prior to the first meiotic division where the homologous chromosomes
are segregated, portions of one chromosome in the homologous pair may cross over
with the other as they line up along before division. Such a cross over results in
the production of (a) gametes where genes originally linked in the parent cell are
no longer linked in the gametes, or as in (b) continue to be linked in the gametes.

As shown in Fig. 2.15, the two alleles that are close to each other have a
greater chance of remaining linked in the gametes during meiosis. Because
there is some crossing over of DNA when the homologs segregate during
the reduction division in meiosis, alleles on the same chromosome can be
separated and go to different cells. There is a greater probability that two
alleles will be separated if a cross-over occurs if the alleles are far apart on
the chromosome. When two genes are located on the same chromosome, they
will usually be inherited as a single unit. When two genes are often inherited
together, they are said to be linked and referred to as linkage groups. For
example, in fruit flies the genes affecting eye color and wing length are linked
and inherited together because they appear on the same chromosome.

The probability of the genes getting segregated is proportional to the dis-
tance between them. Thus the relative distance between them is calculated
using the percentage of offsprings of an organism showing two linked genetic
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traits and comparing them to the percentage of the offspring where the two
traits are not inherited together. The percentage of the population of descen-
dants that does not show co-inheritance of both traits is thus an indication
of the distance between them.

The linkage distance between genes is measured in the units of centimor-
gans (abbreviated cM) which is a unit of recombinant frequency for measuring
genetic linkage. One centimorgan is equal to a 1% chance that a marker at one
genetic locus on a chromosome will be separated from a marker at a second
locus due to crossing over in a single generation. Another unit of recombina-
tion frequency is the map unit or m.u. One m.u. represents a recombination
frequency of 1% and thus a map unit is synonymous with centimorgan. In
humans, a centimorgan corresponds roughly to a megabase of DNA sequence.

2.5 DNA Sequencing

The process of sequencing a DNA involves determination of the precise order
of nucleotides within a DNA molecule. The advent of rapid DNA sequencing
methodology is expected to have a positive impact on biological and medical
research and discovery since the knowledge of DNA sequences is indispensable
for biological research, diagnostics, and therapeutics. It is due to the rapid
DNA sequencing with modern DNA sequencing technologies that we are able
to sequence complete genome sequencing of numerous organisms including
the human genome and other animals, plants, and microbial species.

DNA sequencing techniques involve determining the sequence of fragments
of short segments of the target sequence and assembling them together in a
manner similar to solving a jigsaw puzzle. The short 500-1500 bp segments
are sequenced using Maxim-Gibert or Chain Termination techniques.

Maxim-Gilbert method allows the use of purified samples of double-
stranded DNA to be used without further cloning and uses radioactive la-
beling at one 5’ end of the DNA and purification of the DNA fragment to
be sequenced. Chemical treatment generates breaks at a small proportion of
one or two of the four nucleotide bases in each of four reactions (G, A+G, C,
C+T) [1]. Due to the technical difficulties with Maxim-Gilbert, the Chain-
Termination method developed Sanger and coworkers in 1977 became the
method of choice. Sanger sequencing is the method which prevailed since the
80’s [2].

However, the great demand for high speed sequencing is giving rise to
the next-generation sequencing methods. The NGS has been applied to ap-
plications such as genome sequencing, genome resequencing, transcriptome
profiling (RNA-Seq), and DNA-protein interactions (ChIP-sequencing) [3]. It
should be noted as we are moving towards personalized medicine, the scope of
resequencing – studying the variability of individual genome when compared
to the that of species – will become significant.
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There is a high demand for sequencing at low-cost with technologies that
parallelize the sequencing process and producing thousands or millions of
sequences concurrently are coming into the forefront. High-throughput se-
quencing technologies are expected to lower the cost of DNA sequencing when
compared to the traditional chain termination methods and make large vol-
umes of data available for bioinformaticians to explore commonalities and
differences between sequences [4, 5].

2.6 Summary

This chapter presented a brief overview of molecular biology and genetics.
Coverage of topics includes the the central dogma of molecular biology, gene
expression, and protein folding. This chapter is meant to provide an overview
of the broad topics that are important for understanding the basis for signif-
icant biological features that must be taken into account for biological data
analysis techniques and systems. Further details on the topics covered in this
chapter and other relevant topics may be found in standard textbooks on
molecular biology and genetics.

. Traditional textbooks may be referred for detailed account of cellular
processes. Creativity and adaptations in molecular biology are, for example,
discussed in [11]. Discussions on Polymerase Chain Reaction (PCR) used for
amplification of DNA is provided in [12] and [13].

Computational difficulties relating to the Human Genome Project are dis-
cussed by Robbins [14] and Frenkel [15]. Robbins presents the viewpoint that
organism’s viability is a result of a complex interactions of many “cellular
processes.”

The “programming metaphor” where the cellular DNA is likened to a
computer program is discussed by Atlan [16]. Hofstadter discusses the rela-
tionships between molecular biology, mathematical logic and music [17].
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2.7 Exercises

Genetic Code. Under the standard code, ATG is the initialization code. In
rare cases, translation in eukaryotes can be initiated from codons other than
ATG. The standard code currently allows initiation from TTG and CTG in
addition to AUG.

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys

TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys

TTA L Leu TCA S Ser TAA * Ter TGA * Ter

TTG L Leu i TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg

CTC L Leu CCC P Pro CAC H His CGC R Arg

CTA L Leu CCA P Pro CAA Q Gln CGA R Arg

CTG L Leu i CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser

ATC I Ile ACC T Thr AAC N Asn AGC S Ser

ATA I Ile ACA T Thr AAA K Lys AGA R Arg

ATG M Met i ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly

GTC V Val GCC A Ala GAC D Asp GGC G Gly

GTA V Val GCA A Ala GAA E Glu GGA G Gly

GTG V Val GCG A Ala GAG E Glu GGG G Gly

Another shorthand notation of representing the standard genetic code
where the IUPAC character encoding for the proteins is utilized is as
follows:

AAs = FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG

Starts = ---M---------------M---------------M----------------------------

Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG

1. Consider the following DNA sequence:

ACCCA TAGGG AGACA TAGTA GATCC ATTAG

(a) Perform a 6 frame translation of a given DNA strand.
(b) Compute the length of Open Reading Frames (ORF) in each of 6 frames.

Based on your analysis, which strand and which frame within that
strand has the highest likelihood for coding.

2. Given that the following DNA sequence is part of an intron-less gene,
provide the sequence of the corresponding mRNA sequence as well as the
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sequence of protein assuming the first frame is the coding frame. Assume
that the organism uses standard genetic code for translation.

atgagc aagcac atacaa ctccaa agacgc cc t tag

3. Given that the following DNA sequence, show the sequence of nucleotides
in the six standard frames. Recall, that there are three forward and three
reverse reading frames, and that the fourth frame is the first frame on
the complementary strand. The sequence reads in your answer must all be
from 5’→3’ end.

aggagt aagccc ttgcaa ctggaa atacac cca t tg

4. Given the following DNA sequence, provide its reverse complement:

ACTGAC TCGAAT TGGACC CCTTAA

5. Given the following DNA sequence, provide the mRNA sequence produced.
Assume that the entire sequence belongs to an exon and no bases are
spliced out.

ATGGAC TCGAAT TGGACC CCTTAA

6. The length of a bacterial genome is 4.7× 106 bp. Assuming that the DNA
replication rate in bacteria is 300 bps, how long will it take a bacterial
culture to grow 100-fold in size.

7. Using the standard genetic code, compute the translation for the following
sequence in the first forward frame.

CATGGAGCCT CTTGCAGCTT ACCCGCTAAA

8. Given the following sequence of DNA, determine the largest possible open
reading frame. Note that the ORF might occur in the reverse complement
strand. So, in order to assign the ORF to a strand you must test out the
ORF lengths in all six, i.e. the three forward and three reverse, strands.

ATGGAC TCGAAT TGGACC CCTTAA



Chapter 3

Biological Databases

As computer technology becomes more integrated into biological science, the
amount of data that needs to be tracked has been experiencing unprecedented
growth. Data sources range from biological sequences to 3D structures, to
DNA traces, to proteomic gels. The wide range of biological databases pro-
viding essential information related to the life sciences is evident in the snap-
shot of small subset databanks available to biomedical researchers shown in
Fig. 3.1. Databases have become an essential tool for research in biotechnol-
ogy today.

Life science databases have generally been classified into the following cat-
egories:

• DNA and protein sequence databases. These are sometimes referred to as
primary databases

• Genomics and the databases capturing the sequence of whole genomes
• Protein domain/family and structure databases encompassing protein and

other bio-molecular structure. These are sometimes referred to as sec-
ondary databases

• Databases that track Mutations and polymorphism
• Proteomics databases track information on 2D gel and mass spectroscopy
• Databases tracking information on metabolism and related pathways
• Bibliography databases
• Terminology and Ontological databases
• Other databases providing specialized functions

Nucleic acids (and primary protein sequences) are at the core of molecular
biology and are fundamental to the research in bioinformatics as a variety
of tools are developed to fully unravel the patterns and functional control
signals as well as protein coding regions found in the genomic databases. An
important distinction exists between the primary and secondary databases.
Generally, the primary sequence data is archival in nature, while the sec-
ondary data sets are curated prior to their public release. Thus, in a sense
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AATDB, AceDb, ACUTS, ADB, AFDB, AGIS, AMSdb, 
ARR, AsDb, BBDB, BCGD, Beanref, Biolmage,

BioMagResBank, BIOMDB, BLOCKS,      BovGBASE,
BOVMAP, BSORF, BTKbase, CANSITE, CarbBank,
CARBHYD, CATH, CAZY, CCDC, CD4OLbase, CGAP,

ChickGBASE, Colibri, COPE, CottonDB, CSNDB, CUTG,
CyanoBase, dbCFC, dbEST, dbSTS, DDBJ, DGP, DictyDb,
Picty_cDB, DIP, DOGS, DOMO, DPD, DPlnteract, ECDC,
ECGC, EC02DBASE, EcoCyc, EcoGene, EMBL, EMD db,
ENZYME, EPD, EpoDB, ESTHER, FlyBase, FlyView,
GCRDB, GDB, GENATLAS, Genbank, GeneCards,
Genline, GenLink, GENOTK, GenProtEC, GIFTS,
GPCRDB, GRAP, GRBase, gRNAsdb, GRR, GSDB,

HAEMB, HAMSTERS, HEART-2DPAGE, HEXAdb, HGMD,
HIDB, HIDC, HlVdb, HotMolecBase, HOVERGEN, HPDB,
HSC-2DPAGE, ICN, ICTVDB, IL2RGbase, IMGT, Kabat,
KDNA, KEGG, Klotho, LGIC, MAD, MaizeDb, MDB,
Medline, Mendel, MEROPS, MGDB, MGI, MHCPEP5

Micado, MitoDat, MITOMAP, MJDB, MmtDB, Mol-R-Us,
MPDB, MRR, MutBase, MycDB, NDB, NRSub, 0-lycBase,
OMIA, OMIM, OPD, ORDB, OWL, PAHdb, PatBase, PDB,
PDD, Pfam, PhosphoBase, PigBASE, PIR, PKR, PMD,
PPDB, PRESAGE, PRINTS, ProDom, Prolysis, PROSITE,

PROTOMAP, RatMAP, RDP, REBASE, RGP, SBASE,
SCOP, SeqAnaiRef, SGD, SGP, SheepMap, Soybase,
SPAD, SRNA db, SRPDB, STACK, StyGene,Sub2D,

SubtiList, SWISS-2DPAGE, SWISS-3DIMAGE, SWISS-
MODEL Repository, SWISS-PROT, TelDB, TGN, tmRDB,
TOPS, TRANSFAC, TRR, UniGene, URNADB, V BASE,
VDRR, VectorDB, WDCM, WIT, WormPep, YEPD, YPD,

YPM, etc ..................

Fig. 3.1 A small snapshot of biological databases
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the primary databases represent the experimental results, with some inter-
pretation offered by the researchers in the form of the annotations associated
with the sequence data. For example, the ubiquitous nucleotide database is
GenBank, which contains primary sequence data, as is the Protein Databank
(PDB) which is a database of nucleic acid and protein structures.

3.1 Nucleotide Databases

The three collaborative nucleotide databases are quite similar in the content
and periodically exchange information to keep their contents synchronized on
a daily basis. These databases include sequences submitted directly by sci-
entists and genome sequencing centers and sequences gleaned from literature
and patents. The three databases, each of which has the capability to assign
a unique accession number to every sequence based on codes preallocated to
each center, belong to the International Nucleotide Sequence Database Col-
laboration are the GenBank at the National Library of Medicine (Bethesda,
United States), DNA Data Bank of Japan (DDBJ, Mishima, Japan) and the
European Molecular Biology Laboratory (EMBL) nucleotide database from
the European Bioinformatics Institute (EBI, Hinxton, UK). For example,
based on the accession number assignment scheme, the human globin se-
quence with the accession number was originally added to the collaborative
database by GenBank, while the alpha globin was added to the collabora-
tive database by EMBL. For the sake of brevity, the collaborative nucleotide
sequence databases will be henceforth collectively referred to as GenBank.

3.1.1 GENBANK

GenBank is the genetic sequence database maintained by the National In-
stitute of Health (NIH). It is comprised of an annotated collection of all
publicly available nucleotide and protein sequences. Generally, the records
in the GenBank database are comprised of contiguous stretches of DNA or
RNA that have been annotated to add information to the raw sequence seg-
ments within that record. Presently, the records in GenBank are based upon
the direct submission of DNA sequences by the original authors along with
some level of data curation by the GenBank staff facilitating the search and
retrieval of the submitted records.

GenBank was designed and created by the National Center for Biotechnol-
ogy Information (NCBI), a division within the National Library of Medicine
within the NIH. These three centers provide separate data entry points and
maintain data formats that are somewhat unique to their configuration. How-
ever, since all three are part of one international consortium and information
between them is exchanged daily, thus making them same data available to
the research community at-large.
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LOCUS       AY279110                2704 bp    DNA     linear   PRI 09-MAR-2005
DEFINITION  Alouatta belzebul beta globin gene, complete cds.
ACCESSION   AY279110
VERSION     AY279110.1  GI:33415416
KEYWORDS    .
SOURCE      Alouatta belzebul (black-and-red howler monkey)
  ORGANISM  Alouatta belzebul
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
            Mammalia; Eutheria; Euarchontoglires; Primates; Platyrrhini;
            Cebidae; Alouattinae; Alouatta.
REFERENCE   1  (bases 1 to 2704)
  AUTHORS   Prychitko,T., Johnson,R.M., Wildman,D.E., Gumucio,D. and Goodman,M.
  TITLE     The phylogenetic history of New World monkey beta globin reveals a
            platyrrhine beta to delta gene conversion in the atelid ancestry
  JOURNAL   Mol. Phylogenet. Evol. 35 (1), 225-234 (2005)
   PUBMED   15737593
REFERENCE   2  (bases 1 to 2704)
  AUTHORS   Prychitko,T.M., Goodman,M. and Johnson,R.M.
  TITLE     Direct Submission
  JOURNAL   Submitted (18-APR-2003) Anatomy, Wayne State University, 540 East
            Canfield 4340 Scott Hall, Detroit, MI 48201, USA
FEATURES             Location/Qualifiers
     source          1..2704
                     /organism="Alouatta belzebul"
                     /mol_type="genomic DNA"
                     /db_xref="taxon:30590"
     mRNA            join(<952..1043,1174..1396,2228..>2356)
                     /product="beta globin"
     CDS             join(952..1043,1174..1396,2228..2356)
                     /codon_start=1
                     /product="beta globin"
                     /protein_id="AAQ18218.1"
                     /db_xref="GI:33415417"
                     /translation="MVHLTGDEKAAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFE
                     SFGDLSTPDAVMHNPKVKAHGKKVLGAFSDGLAHLDNLKGTFAQLSELHCDKLHVDPE
                     NFRLLGNVLVCVLAQHFGKEFTPQVQAAYQKVVAGVANALAHKYH"
ORIGIN      
        1 taatctgagc caagtctgga agaccttttc ctttcctacc cctacttttt aagtcacaga
       61 agnttctctg ttttcccaga aactttttca gatgagtcca ggcagaaaca gttanatgtc
      121 cccagtnaac ctcccatttg acaccactga ttaccgtatt gttagtcata ctttgggttg
      181 tgagtgactt tttacttatt tgtatttttt actgcattaa aagatctcta gtttttcatc
      241 tctggtttcc caaaatctaa taagtaactg ttacacagaa cacactgatt tgtatttatt
      301 ctgtttttag acatcattta ttagttacat gagcaaatta agaaaaactg aacaacaaca
      361 aatgaataaa tgcatatata tattttctta ccagaaggtt ttaatccaaa tcaggagaag
      421 atatacttag aactgaggta gaattttcat ccattctgtc ctgtaattat tttgcatatt

.  .  .
     2281 caccccacaa gtgcaggctg cctatcagaa agtggtggct ggtgtggcta atgccctggc
     2341 tcacaagtac cactaagttc cctttcctgc tgtccaattt ctattaaagg ttcctttgtt
     2401 cccaaagtcc aactattaaa cttggggata ttacggaggg ccttcagcat ctggattctg
     2461 cctaataaac aacatttatt ttcattgcaa tggtgtattt aaattatttc tgaatatttt
     2521 actcaaaagg gcatgtggga agtcagtgca ttgaaaacat aaagaaatga actagttcaa
     2581 accttgggaa aatacactat atctttaact ccatgaaaga agttgaggct gcaaacagtt
     2641 aatgcacctt gacagcagcc cctgatgcct atgccttatt cacccctaag aaaaggattc
     2701 aagt
//

Sequence Origin, 
Taxonomy 

Accession #, 
Sequence length, 
Molecule type

Protein 

Translation

DNA Sequence
Data

Features

References

Fig. 3.2 A GENBANK sequence record

A sample entry of the GenBank database is shown in Fig. 3.2. As is demon-
strated in this record, the raw sequence data is stored along with an array
of ancillary annotations. The data format for this sequence is that utilized
by the GenBank flat file system. It is, however, possible to transform this
sequence into a variety of other formats, including those used in the EMBL
database, as well as the FASTA format which is generally a minimalist for-
mat where most of all annotations have been stripped away. Interested readers
should complete Exercise 5 for gaining more information on retrieval from
GenBank in a variety of formats. Let us next turn to dissecting the entries
of the GenBank entry shown in Fig. 3.2.
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The Header or Locus Line

The header, or the locus line, of a GENBANK sequence record specifies its
locus name. It also provides the length of the DNA sequence, the molecule
type that was sequenced to define the sequence data. Additionally, the major
database division to which the sequence is categorized, and the date the
sequence record was made public are also specified.

The significance of the locus name is mostly historic going back into the
days when the sequence records represented a single gene loci and the search
for records was facilitated with the use of characteristic locus names such as
HUMHBB or SV40 denotes human β-globin gene and simian virus respec-
tively. The locus name has lost its significance these days; however, since
many software tools rely on the presence of a unique locus name, the locus
name is often replaced with the sequence accession number.

The second item in the header is the length of the sequence. Sequence
length ranges from 1 to 350,000 base pairs (bp) in a single record with the
sequence records larger than 350 kb (kilobases, or thousand bases) begin
allowed when they represent a single gene. NCBI seldom accepts sequences
smaller than 50 bp and larger than 350 kb are represented as segmented
or “contigged” sets. Current release of GENBANK contain sequence records
that are longer than 350 kb.

The third item of the sequence defines the molecule type of the sequence
record. The molecule type is DNA or RNA and also indicates the strandedness
(single, ss or double ds) of the sequence. The molecule type is intended to
represent the original biological molecule that was sequenced to determine
the sequence. The acceptable molecule types are DNA, RNA, tRNA, rRNA,
mRNA, and uRNA.

The fourth item of the locus line represents the GENBANK division code,
which is a three letter code that connotes the taxonomic or database clas-
sification of the sequence record. The division codes were once utilized to
break up the database into more manageable sized partitions. For example,
the human sequences were grouped within the PRI or the primate division of
GENBANK. Such taxonomic classifications were augmented with database
divisions such as Expressed Sequence Tags (EST), Sequence Tagged Sites
(STS) and High Throughput Genome sequences (HTG). The CON or con-
tigged division is interesting as it is comprised of sequence records that are
virtual and define sequences as they are constructed by piecing together se-
quence records that contain actual sequence data.

The fifth item of the locus line represents the date field that defines the
date the record or an update was made public. Thus, if the record is updated
after it was first made public, the date field would specify the date when the
updated record was made public. The dates are primarily meant to serve as a
guide for the users and are not considered as legally binding for establishing
precedence in patent applications.
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The Definition, Accession, Version, and Keywords

The definition line (or “def line”) attempts to summarize the biology of the
sequence record. The definition line is displayed when sequence similarity
results are displayed as when, for example, the GENBANK is searched by a
tool such as BLAST. In the general format for the definition line shown below,
the full genus-species names are used in the definition line in accordance with
the agreements between the international collaborative databases.

Genus species product name (gene symbol) mRNA or gene, complete cds.

The accession number represents the primary key to reference a given
record in the database. Accession number exists in one of two formats: the
older format, known as the “1+5” format comprised of a single character fol-
lowed by five digits; the newer format, or the “2+6” format comprises of two
letters followed by six digits. All GENBANK accession numbers are recorded
on a single line with the word ACCESSION appearing at the beginning of
the line. Although most sequences in GENBANK have a single accession
number, some sequences have multiple accession numbers recorded on the
ACCESSION line. In these instances, the first accession number is consid-
ered to be the primary accession number. Sometimes the primary accession
number is the replacement for an older accession number which is recorded
as the secondary accession number to enable users to link the two accession
numbers.

The VERSION line following the ACCESSION number line contains the
accession.version specifying the version of the sequence. It also contains a
GI or GenInfo identifier for the sequence which is internally used to identify
each sequence uniquely. Thus, two versions of the same sequence will have
different GI numbers. The version number is tied to the sequence data. When
sequence data changes, the version number is incremented by one and a new
GenInfo identifier is assigned to the sequence. As the GenInfo identifier is
the next available integer, there is no numerical relationship between the GI
identifier of one version to the next.

The KEYWORD line was meant to include words from a controlled vo-
cabulary. Since sequence authors over the years many have used words that
were not a part of this vocabulary, the significance and utility of the keyword
line has diminished to a point where its use is discouraged by NCBI.

The Sequence Origin and Taxonomy Lines

The SOURCE line contains the scientific or common name of the organ-
ism that is the source of the sequenced data. The taxonomy information
following the source lines provides taxonomical lineage information for the
organism. The sequence source information and taxonomy information can
be derived from source feature in the Sequence Feature Table as described
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below. The SOURCE and TAXONOMY information is the hallmark of the
older sequence records in GENBANK. There is an ongoing effort where newer
records incorporate, and older records are being updated to incorporate, the
source feature in the feature table that, in conjunction with the NCBI tax-
onomy database, can be used to generate this information.

Sequence References

Every GENBANK record must have at least one associated reference or cita-
tion. MEDLINE identifiers are included to enable the sequence browsers to
link directly to the National Library of Medicine’s database of publications.
References to unpublished articles is included, as well as scientific credit to
the people responsible for determining the sequence. The credit information
is usually the last piece of information in the REFERENCES section.

Sequence Features Table

The feature table may be the most important piece of biological information
annotated on a sequence record. Features, such as open reading frames or
sequences showing similarity to another sequence can be annotated. This en-
ables the feature table to incorporate contributions from researchers doing
computational analysis of the sequence databases as well as those annotating
sequences by experimental data. The entries in the feature table are an-
notations associated with (i.e. placed on) a specified span of the sequence
whereas the features annotated for the entire sequence are often referred
to as descriptors. Each end point of a feature may be specified as a single
point, an alternate set of possible end points, a base number beyond which
the end point lies, or a region which contains the end point. Feature keys
are arranged hierarchically, allowing complex and compound features to be
expressed. Both location operators and the feature keys show feature rela-
tionships even when the features are not contiguous. The hierarchy of feature
keys allows broad categories of biological functionality to be easily annotated.
Let us next examine some key features placed on a sequence record.

The Source Feature: All GenBank entries must have the source feature
attached with them and the qualifier organism must be associated with each
source feature. Additional qualifiers may be associated with the feature as
shown in the example below where the qualifiers mol type and db xref are
associated with the source feature.

source       1..2704

             /organism="Alouatta belzebul"

             /mol_type="genomic DNA"

             /db_xref="taxon:30590"
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The organism qualifier contains the specific species and genus names and
may sometimes describe the organism at the level of subspecies. Additional in-
formation about the chromosomal localization and tissue source of the sample
may be associated with the source. Complete taxonomical information about
the source organism is provided by the identifier of the NCBI taxonomical
databases. The lineage information for toxon:30590 defined at NCBI taxo-
nomical database is defined as follows:

cellular organisms; Eukaryota; Fungi/Metazoa group; Metazoa;

Eumetazoa; Bilateria; Coelomata; Deuterostomia; Chordata; Craniata;

Vertebrata; Gnathostomata; Teleostomi; Euteleostomi; Sarcopterygii;

Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Euarchontoglires;

Primates; Simiiformes; Platyrrhini; Cebidae; Alouattinae; Alouatta

CDS Feature: The CDS feature provides location information for joining
the sequence data and making the protein sequence from the coordinates
specified on the CDS feature. A series of locations specifying the exons may
be “join”-ed into a full coding sequence. In the example below three segments
of a nucleotide sequence are joined together to yield a protein sequence.

CDS    join(952..1043,1174..1396,2228..2356)

      /codon_start=1

      /product="beta globin"

      /protein_id="AAQ18218.1"

      /db_xref="GI:33415417"

      /translation="MVHLTGDEKAAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFE

      SFGDLSTPDAVMHNPKVKAHGKKVLGAFSDGLAHLDNLKGTFAQLSELHCDKLHVDPE

      NFRLLGNVLVCVLAQHFGKEFTPQVQAAYQKVVAGVANALAHKYH"

This protein sequence is assigned an accession number and deposited into
a protein database to foster the process of making functional inferences and
gene discoveries. The protein sequence accession number follows the “3+5”
format, i.e. three letters followed by five digits, followed by the version num-
ber of the protein sequence, AAQ18218.1. The version number of a protein
sequence changes when the protein sequence itself changes. In the exam-
ple shown the protein sequence is its first version. The translation of the
nucleotide sequence into a protein is associated as a qualifier of the CDS
feature.

Other features such as Gene and RNA features are often associated with
sequence records. A number of ”generic” or miscellaneous feature keys have
been added to permit annotation of features that cannot be adequately de-
scribed by existing feature keys.
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Alternative Splicing

The split gene structure of most eukaryote protein coding genes has a very im-
portant consequence; that by splicing the gene in different ways variant pro-
teins can be produced. Thus, while there seems to be around twenty thousand
(protein coding) genes in the Human Genome, there are many more different
proteins; perhaps somewhere between one hundred thousand and one million
- with the count depending as much on definitional issues as anything else.
The two most basic forms of variation in splicing are shown in Fig. 3.3.

Intron Intron Intron
Constitutive

Isoform

Exon
Isoform

Cassette 
Exon Absent

Fig. 3.3 Alternative splicing of the pre-mRNA molecule enables expression of
multiple mRNA isoforms from the same gene and thus express multiple protein
products through multiple isoforms of individual exons, or using only a subset of
exons

Other aspects of alternative splicing, such as mutually exclusive exons,
combinatorial splicing, regulation, disease, etc. are beyond the scope of this
discussion. Features annotated on GenBank sequences include information
on alternatively spliced genes.

Sequence Data

The actual sequence data is provided for the entries that do not belong to the
CON division. The entries in the CON division are virtual and do not contain
any sequence data per se but are constructed by joining together of other
sequences in the nucleotide database. GenBank, EMBL, and DDBJ have es-
tablished a special-purpose division, Contig (CON), for exchanging assembly
instructions for data in the international DNA sequence databases. Thus,
the sequences in the CON division contain no sequence data, but rather in-
structions for the assembly of sequence data from multiple GenBank records.
It also includes instructions for constructing assemblies of non-contiguous
sequence shown in Entrez as segmented sets.

Now for a bit of historical background on the CON division. In 1995, the In-
ternational Nucleotide Sequence Database Collaborators (GenBank, DDBJ,
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and EMBL) agreed to a 350 kilobases (kb) limit on the size of database se-
quence records in order to maintain compatibility with existing molecular
biology software that was not able to work with large sequences. A new Gen-
Bank division was created at that time and called “CON” for designating
contigs. The records in the CON division contain the instructions for the
assembly of full-length contigs from the sequence data of multiple GenBank
records. Although CON division records contain no sequence data, the as-
sembly information they provide makes it possible for database search and
retrieval systems to show complete genomic sequences by dynamically assem-
bling the data for display.

However, by 1998, GenBank, DDBJ, and EMBL were routinely accepting
submissions from large scale sequencing projects, such as the high-throughput
genomic sequences (HTGS), that were longer than 350 kb. To avoid breaking
a huge amount of draft sequence into 350 kb chunks, the database collabo-
rators agreed to relax the 350 kb limit in these cases. The 350 kb limit was
also relaxed for assemblies of Whole Genome Shotgun (WGS) project data
and for large eukaryotic genes. Finally in 2003, the Database Collaborators
agreed to remove the 350 kb limit for all sequences as of June 2004, since
the increased ability of molecular biology software to analyze long sequences
quickly has rendered the limit on sequence length unnecessary.

URL for large sequence: ftp://ftp.ncbi.gov/genbank/LargeSeqs
An example of the effect of the removal of the 350 KB limit on GenBank

records may be seen in the case of accession U00096 , the Escherichia coli
K-12 MG1655 complete genome sequence. Under the 350 KB limit, this ac-
cession number referred to a contig record giving a list of short sequences that
can be assembled to create the complete genome. With the removal of the 350
KB limit the accession now refers to the complete contiguous sequence for
Escherichia coli K-12. The accessions for all 400 parts appear as secondary
accessions. The CON division continues to remain as a GenBank division for
representing sequences which by their nature are assembles, such as genome
scaffold records.

3.2 Protein Sequence Databases

The fundamental building blocks of life are proteins. Enzymes, which are the
molecular machines responsible for virtually all of the chemical transforma-
tions that cells are capable of, are proteins. In addition, much of the structure
of a cell is made up of proteins. Transcription factors are proteins whose job
it is to determine which regions of DNA in a cell are transcribed into RNA,
and thus which proteins are made in the cell and at what level. That part of
the structure which is not made up of proteins is produced by enzymes which
are proteins.

Proteins are variable length linear, mixed polymers of 20 different amino
acids. Typical proteins contain 200 to 1000 amino acids in each polypeptide
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chain1 and have one to four polypeptide chains. Numerous proteins fall well
outside these ranges, however. A human contains on the order of 100,000
different proteins. It is the properties of and the interactions between these
100,000 proteins that make us what we are.

There are a lot of small peptides found in the cell which are not nor-
mally referred to as proteins. Examples of such include growth factors and
neurotransmitters. Other terms used more or less interchangeably for amino
acid polymers are peptides and polypeptides. Actually, the formal definitions
of peptide, polypeptide, and protein are overlapping but not identical. The
only distinction significant for our purpose is that peptides and polypeptides
consist of single covalently linked amino acid polymers whereas proteins can
contain one or more different polypeptides linked by noncovalent bonds.

The two protein databases, PIR and SWISS-PROT are different from the
nucleotide databases in that they are both curated. This means that the
entries in these databases are prepared by a designated group of curators
in consultation with external experts. These two protein sequence databases
may be considered as secondary sequence databases because they add value
by taking the majority of their sequences from the translation of nucleotide
sequences in GenBank. A small minority of SWISS-PROT sequences are de-
rived from the scanning journal articles for published protein sequences as
well as those that are directly submitted to SWISS-PROT.

3.2.1 Swiss-Prot

Swiss-Prot is an annotated protein sequence database. It was established
in 1986 and maintained collaboratively, since 1987, by the group of Amos
Bairoch first at the Department of Medical Biochemistry of the University of
Geneva and now at the Swiss Institute of Bioinformatics (SIB) and the EMBL
Data Library (now the EMBL Outstation - The European Bioinformatics
Institute (EBI)). The Swiss-Prot Protein Knowledgebase consists of sequence
entries. Sequence entries are composed of different line types, each with their
own format. For standardization purposes, the format of Swiss-Prot follows
as closely as possible that of the EMBL Nucleotide Sequence Database.

In Swiss-Prot, as in many sequence databases, two classes of data can be
distinguished: the core data and the annotation. For each sequence entry the
core data consists of the sequence itself, the citation information and taxo-
nomic data providing the description of the biological source of the protein.
The annotation data consists of the description of function(s) of the protein,
the secondary (e.g. alpha helix, beta sheet) and quaternary structure (e.g.
homodimer, heterotrimer, etc.), any diseases associated with any number of
deficiencies in the protein, and information on its variations and similarities
to other proteins. This information is obtained from the publications that

1 A polypeptide chain comprises of multiple amino acids linked to each other form-
ing the primary protein structure.
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report new sequence data, and from articles that periodically update the
annotations of families, or groups, of proteins. A panel of external experts
are consulted to provide comments and update in a protein group specific
manner.

Some of the key design goals of Swiss-Prot database are:

• Minimal Redundancy: Multiple reports in literature about the same
sequence are merged to minimize redundancy of data. However, if con-
flicts are found among the various reports of the same sequence, these are
indicated within the feature tables of the entry as annotations.

• Integration: It is important to provide the users of biomolecular databases
with a degree of integration between the three types of sequence-related
databases (nucleic acid sequences, protein sequences and protein ter-
tiary structures) as well as with specialized data collections. Swiss-Prot
is currently cross-referenced to more than 50 different databases. Cross-
references are provided in the form of pointers to information related to
Swiss-Prot entries and found in data collections other than Swiss-Prot.
This extensive network of cross-references allows Swiss-Prot to play a ma-
jor role as a focal point of biomolecular database interconnectivity.

• Extensive Documentation: This database is extensively documented
with specialized document sets and provide various indices for fast refer-
ence.

Swiss-Prot Sequence Entry

An annotated image of the parts of a sequence entry is shown in Fig. 3.4.
The Swiss-Prot entry name consists of up to 11 uppercase alphanumeric
characters. Swiss-Prot uses a general purpose naming convention that can be
symbolized as X Y, where X is a mnemonic code of at most 5 alphanumeric
characters representing the protein name. Examples: B2MG is for Beta-2-
microglobulin; HBA is for Hemoglobin alpha chain; and INS is for Insulin.
And Y is a mnemonic species identification code of at most 5 alphanumeric
characters representing the biological source of the protein. This code is gen-
erally made of the first three letters of the genus and the first two letters of the
species. For example, the code ALLMI in the entry name HBB ALLMI denotes
that the source of the Hemoglobin beta chain sequence (HBB) is Alligator
mississippiensis or the American alligator; similarly, the source of dopamine
precursor sequence DOPO BOVIN is Bos taurus or bovine.

Other sections of the sequence entry record are described below:

• Date: The first DT line indicates when the entry first appeared in the
database. The associated comment, integrated into UniProtKB /
database name, indicates in which section of UniProtKB, Swiss-Prot or
TrEMBL, the entry can be found. The second DT line indicates when the
sequence data was last modified. The third DT line indicates when data
other than the sequence was last modified.
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ID   BTEB4_MOUSE    STANDARD;      PRT;   251 AA.
AC   P58334; Q8C8S2;
DT   02-NOV-2001, integrated into UniProtKB/Swiss-Prot.
DT   16-AUG-2004, sequence version 2.
DT   07-FEB-2006, entry version 34.
DE   Transcription factor BTEB4 (Basic transcription element-binding
DE   protein 4) (BTE-binding protein 4) (Krueppel-like factor 16) (Dopamine
DE   receptor-regulating factor).
GN   Name=Klf16; Synonyms=Bteb4, Drrf;
OS   Mus musculus (Mouse).
OC   Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC   Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Sciurognathi;
OC   Muroidea; Muridae; Murinae; Mus.
OX   NCBI_TaxID=10090;
RN   [1]
RP   NUCLEOTIDE SEQUENCE [MRNA].
RC   TISSUE=Neuroblastoma;
RX   MEDLINE=21309923; PubMed=11390978; DOI=10.1073/pnas.121635798;
RA   Hwang C.K., D'Souza U.M., Eisch A.J., Yajima S., Lammers C.-H.,
RA   Yang Y., Lee S.-H., Kim Y.-M., Nestler E.J., Mouradian M.M.;
RT   "Dopamine receptor regulating factor, DRRF: a zinc finger
RT   transcription factor.";
RL   Proc. Natl. Acad. Sci. U.S.A. 98:7558-7563(2001).
RN   [2]
RP   NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
RC   STRAIN=C57BL/6J; TISSUE=Retina;
RX   PubMed=16141072; DOI=10.1126/science.1112014;
RA   Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N.,
....
RA   Hayashizaki Y.;
RT   "The transcriptional landscape of the mammalian genome.";
RL   Science 309:1559-1563(2005).
CC   -!- FUNCTION: Transcription factor that binds GC and GT boxes ...
CC       in the brain by repressing or activating transcription from
CC       several different promoters depending on cellular context.
CC   -!- SUBCELLULAR LOCATION: Nucleus.
CC   -!- TISSUE SPECIFICITY: High expression in brain; olfactory tubercle,
CC ... Low expression in the cerebellum.
CC   -!- DOMAIN: The Ala/Pro-rich domain may contain discrete activation
CC       and repression subdomains and also can mediate protein-protein
CC       interactions.
CC   -!- SIMILARITY: Belongs to the Sp1 C2H2-type zinc-finger protein
CC   -!- SIMILARITY: Contains 3 C2H2-type zinc fingers.
DR   EMBL; AF283891; AAK66968.1; -; mRNA.
DR   EMBL; AK044577; BAC31987.1; -; mRNA.
DR   HSSP; P08047; 1SP2.
DR   TRANSFAC; T05053; -.
DR   Ensembl; ENSMUSG00000035397; Mus musculus.
DR   MGI; MGI:2153049; Klf16.
DR   GO; GO:0003700; F:transcription factor activity; IDA.
DR   GO; GO:0007212; P:dopamine receptor signaling pathway; IDA.
DR   GO; GO:0006357; P:regulation of transcription from RNA polyme...; IDA.
DR   InterPro; IPR007087; Znf_C2H2.
DR   Pfam; PF00096; zf-C2H2; 3.
DR   ProDom; PD000003; Znf_C2H2; 2.
DR   SMART; SM00355; ZnF_C2H2; 3.
DR   PROSITE; PS50157; ZINC_FINGER_C2H2_2; 3.
KW   DNA-binding; Metal-binding; Nuclear protein; Repeat; Transcription;
KW   Transcription regulation; Zinc; Zinc-finger.
FT   CHAIN         1    251       Transcription factor BTEB4.
FT                                /FTId=PRO_0000047159.
FT   ZN_FING     126    150       C2H2-type 1.
FT   COMPBIAS      3    136       Ala/Pro-rich.
SQ   SEQUENCE   251 AA;  25652 MW;  3F0D7739BF7B1FA4 CRC64;
     MSAAVACVDY FAADVLMAIS SGAVVHRGRP GPEGAGPAAG LDVRATRREA TPPGTPGAPP
     ..
     TGEKRFPCPL CTKRFTRSDH LTKHARRHPG FRPELLRRPG ARSVSPSDSL PCSLAGSPTP
     SPVPSPAPAG L

Sequence  Identifier
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Description

Taxonomy 
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Reference(s)

Comments 
and Notes

Database 
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Keywords

Features

Sequence

Fig. 3.4 Swiss-Prot sequence Entry

• Description: The DE (DEscription) lines contain general descriptive in-
formation about the sequence stored. The description always starts with
the proposed official name of the protein. Synonyms are indicated between
brackets.

• Taxonomy Information: The taxonomical and source information is com-
prised of GN, OS, OG, OC and OX lines. The GN (Gene Name) line
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indicates the name(s) of the gene(s) that code for the stored protein se-
quence. The OS (Organism Species) line specifies the organism which was
the source of the stored sequence. The OG (OrGanelle) line indicates if the
gene coding for a protein originates from the mitochondria, the chloroplast,
the cyanelle, the nucleomorph or a plasmid. The OC (Organism Classifi-
cation) lines contain the taxonomic classification of the source organism.
The taxonomic classification used is that maintained at NCB5 which is
also used by the nucleotide sequence databases (EMBL/GenBank/DDBJ).
The OX (Organism taxonomy cross-reference) line is used to indicate the
identifier of a specific organism in a taxonomic database.

• Reference(s): The references section is comprised of RN, RP, RC, RX,
RA, RT and RL lines. The RN (Reference Number) line gives a sequential
number to each reference citation in an entry. The RP (Reference Position)
lines describe the extent of the work relevant to the entry. The RC (Refer-
ence Comment) lines store comments relevant to the reference cited. The
RX (Reference cross-reference) line indicates the identifier assigned to a
specific reference in a bibliographic database. The RA (Reference Author)
lines list the authors of the paper (or other work) cited. The RT (Refer-
ence Title) lines give the title of the paper (or other work) cited. The RL
(Reference Location) lines contain the conventional citation information
for the reference.

• Comments: The CC lines are free text comments on the entry, and are used
to convey any useful information. The comments always appear below the
last reference line and are grouped together in comment blocks; a block is
made up of 1 or more comment lines.

• Database References: The DR (Database cross-Reference) lines are used
as pointers to information related to entries and found in data collections
other than Swiss-Prot.

• Keywords: The KW (KeyWord) lines provide information that can be used
to generate indexes of the sequence entries based on functional, structural,
or other categories. The keywords chosen for each entry serve as a subject
reference for the sequence.

• Feature Table Data: The FT (Feature Table) lines provide a precise but
simple means for the annotation of the sequence data. The table describes
regions or sites of interest in the sequence. In general the feature table
lists post-translational modifications, binding sites, enzyme active sites,
local secondary structure or other characteristics reported in the cited
references. Sequence conflicts between references are also included in the
feature table. The FT lines have a fixed format. The column numbers
allocated to each of the data items within each FT line are shown in the
following table (column numbers not referred to in the table are always
occupied by blanks).

• Sequence: The SQ (SeQuence header) line marks the beginning of the
sequence data and gives a quick summary of its content. The format of
the SQ line is:
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Table 3.1 Feature Table Columns

Columns Information

1–2 FT (Code)

6–13 Key Name (Example: ZN FING). Controlled vocabulary.

15–20 From (end point)

22–27 To (end point)

35–75 Description

SQ SEQUENCE XXXX AA; XXXXX MW; XXXXXXXXXXXXXXXX CRC64;

The sequence data line has 60 amino acids per line, in groups of 10 amino
acids, beginning in position 6 of the line.

3.2.2 PIR

The Protein Information Resource (PIR), located at Georgetown University
Medical Center, USA, was established in 1984 by the National Biomedical
Research Foundation (NBRF) as a resource to assist researchers in the identi-
fication and interpretation of protein sequence information. The NBRF com-
piled the first comprehensive collection of macro-molecular sequences in the
Atlas of Protein Sequence and Structure published from 1965-1978 under the
editorship of Dr. Margaret O. Dayhoff.

Dr. Dayhoff and her research group pioneered in the development of com-
puter methods for the comparison of protein sequences, for the detection
of distantly related sequences and duplications within sequences, and for
the inference of evolutionary histories from alignments of protein sequences.
The protein superfamily concept, introduced in 1975, is used to organize
the database. Since the last four decades the Protein Information Resource
has been a community resource that provides protein databases and analysis
tools to support research on molecular evolution, functional genomics, and
computational biology.

Today, PIR offers a wide variety of resources mainly oriented to assist the
propagation and standardization of protein annotation. Among these are:

• PIRSF: provides curated protein families with rules for functional site and
protein name. The PIRSF protein classification system is a network with
multiple levels of sequence diversity from super-families to subfamilies that
reflects the evolutionary relationship of full-length proteins and domains

• iProLink: supports text mining in the area of literature-based database
curation, named entity recognition, and protein ontology development

• iProClass: contains value-added annotation reports for proteins and
serves as an integrated resource that provides comprehensive family re-
lationships and structural/functional features of proteins
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Additionally, PIR maintains the PIR-International Protein Sequence
Database (PIR-PSD) and PIR Non-Redundant Reference Sequence Database
(PIR-NREF). The PIR-PSD is an international database that is both a com-
prehensive and expertly annotated protein sequence database available in
the public domain. The PIR-NREF is a database that contains all sequences
in PIR-PSD, SwissProt, TrEMBL, RefSeq, GenPept, and PDB. Identical
sequences from the same source organism (species) reported in different
databases are presented as a single NREF entry with protein IDs and names
from each underlying database, in addition to protein sequence, taxonomy,
and composite bibliography.

3.2.3 GenPept

The GenPept, or GenBank Gene Products protein database is provided in a
format similar to the sequences distributed in GenBank. GenPept is main-
tained at NCBI and is accessible via Entrez which is a universal web appli-
cation for accessing all of NCBI’s database collection. GenPept is a protein
database that is comprised of sequences that are derived from automated
translations of coding regions in DNA sequences stored in the nucleotide
database, GenBank. It also includes protein sequences gleaned from jour-
nal scans. As such, GenPept may be thought of as a proteomic version of
GenBank.

3.2.4 UniProt Knowledgebase

Until recently, the EBI/SIB Swiss-Prot, TrEMBL, PIR Protein Sequence
Database (PIR-PSD) coexisted as protein databases with differing protein
sequence coverage and annotation priorities. In 2002, PIR, along with its in-
ternational partners, EBI (European Bioinformatics Institute) and SIB (Swiss
Institute of Bioinformatics), were awarded a grant from the National Institute
of Health, USA, to create UniProt, a single worldwide database of protein se-
quence and function, by unifying the PIR, Swiss-Prot, and TrEMBL database
activities. This led to the creation of the UniProt consortium. The primary
mission of the consortium is to support biological research by maintaining a
high quality database that serves as a stable, comprehensive, fully classified,
richly and accurately annotated protein sequence knowledgebase, with exten-
sive cross-references and querying interfaces freely accessible to the scientific
community.

The UniProt is maintained collaboratively by the Swiss Institute for Bioin-
formatics (SIB) and the European Bioinformatics Institute (EBI) and con-
sists of two sections: Swiss-Prot - a section containing manually-annotated
records with information extracted from literature and curator-evaluated
computational analysis, and TrEMBL - a section with computationally ana-
lyzed records that await full manual annotation. The UniProtKB/Swiss-Prot
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Protein Knowledgebase is a curated protein sequence database that provides
a high level of annotation, a minimal level of redundancy and a high level
of integration with other databases. Together with UniProtKB/TrEMBL,
it constitutes the UniProt Knowledgebase, one component of the Universal
Protein Resource (UniProt), intended to be portal allowing easy access to all
publicly available information about protein sequences – a central database
of protein sequences with accurate, consistent, rich sequence and functional
annotation.

3.3 Biological Patterns Databases

This section provides a brief background of the various databases that store
biological patterns. Most of these databases contain evolving information,
and have thus gone through several revisions since they were first introduced
in mid-1980s. From their earlier emphasis on the specification of motif con-
sensus, their present focus is towards an integration of functional information.
As DNA level patterns play a vital role in the process of differential gene reg-
ulation, versions of the TRANSFAC database described below that contain
certain specialized patterns are available only in the version of the database
that users must subscribe to access.

3.3.1 PROSITE

The PROSITE database and tools are available at http://www.expasy.org/.
The PROSITE database is a compilation of sites and patterns found in pro-
tein sequences that are described as regular expressions or profiles. The in-
formation about the biologically significant patterns and profiles contained in
the database enables one to establish the family of protein (if any) to which
a new sequence belongs, or which known domain(s) it contains. Sequence
patterns stored in PROSITE database are particularly useful when the pair-
wise alignment does not yield a significant match between a pair of protein
sequences. Furthermore, sequence alignment programs fail to make distinc-
tions between an amino acid at an important active site and an amino acid
with no critical role. Thus, in comparison to the alignment based functional
characterization, PROSITE offers some distinct advantages.

The PROSITE uses two kinds of descriptors to characterize patterns,
namely, regular expressions and weight matrices or profiles. A regular ex-
pression entry in PROSITE is shown in Fig. 3.5. A regular expression yields
a boolean result. i.e. the pattern either matches or does not match. The reg-
ular expression does allow the representation of adequate variability in short
patterns such a enzymatic catalytic sites, prosthetic group attachment sites,
metal ion binding sites, or regions involved in molecule binding. The regu-
lar expression based patterns offer intelligibility. For example, a PROSITE
regular expression for a S-100/ICaBP type calcium binding protein signature
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is shown in Fig. 3.5. The S-100 are small dimeric acidic calcium and zinc-
binding proteins abundant in the brain. In most cases the function of these
proteins is not yet known, although it is becoming clear that they are involved
in cell growth and differentiation, cell cycle regulation and metabolic control.
The pattern shown unambiguously pick up proteins belonging to this family
by detecting the EF region of high Calcium affinity.

PROSITE: PDOC00275

-Consensus pattern: [LIVMFYW](2)-x(2)-[LK]-D-x(3)-[DN]-x(3)-

                    [DNSG]-[FY]-x-[ES]-[FYVC]-x(2)-[LIVMFS]-[LIVMF]

Fig. 3.5 A regular expression pattern entry in PROSITE

It may be noted that the PROSITE uses an extended notation for rep-
resenting regular expression, where a term like [LIVMFYW](2) denotes the
occurrence of two residues from the set {L,I,V,M,F,Y,W}. The residue x de-
notes a wild-card, and ”-” serve a connectives in the regular expression. Thus,
a motif LL-LD-K-D-LDL-D-LDL-N-F-D-E-F-DN-L-Lwill match the above reg-
ular expression. Note that the dashes are only shown to enhance clarity, and
do not denote the indel characters as often used in alignment depiction.

As shown in Fig. 3.6, the profile table in PROSITE is a position specific
amino acid weights and gap cost matrix. The initial section of such a weight
matrix is shown. Heme-binding peroxidases carry out a variety of biosyn-
thetic and degradation functions using hydrogen peroxide as the electron
acceptor. Since the entire model has 575 states, only the initial set of states
of the model identified by PROSITE accession PS50292 shown is an animal
heme peroxidase superfamily profile. This profile was generated by creating
a multiple sequence alignment of 192 entries from Swiss-Prot, TrEMBL and
TrEMBL-NEW, which are linked to and directly accessible from this entry
in PROSITE.

The quantitative behavior of a profile allows acceptance of a mismatch at
a highly conserved position if the rest of the sequence exhibits a sufficiently
high level of similarity. Thus, the detection of poorly conserved domains such
as immunoglobulin domains, SH2 or SH3 is possible. Moreover, the profile
based descriptions of the patterns span a much larger region compared to
the regular expressions, and thus are able to quantitatively characterize the
entire protein family.
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ID   PEROXIDASE_3; MATRIX.

AC   PS50292;

DT   NOV-2002 (CREATED); NOV-2002 (DATA UPDATE); NOV-2002 (INFO UPDATE).

DE   Animal heme peroxidase superfamily profile.

MA   /GENERAL_SPEC: ALPHABET='ABCDEFGHIKLMNPQRSTVWYZ'; LENGTH=575;

MA   /DISJOINT: DEFINITION=PROTECT; N1=6; N2=570;

MA   /NORMALIZATION: MODE=1; FUNCTION=LINEAR; R1=2.2956; R2=0.01870166; TEXT='-LogE';

MA   /CUT_OFF: LEVEL=0; SCORE=359; N_SCORE=9.0; MODE=1; TEXT='!';

MA   /CUT_OFF: LEVEL=-1; SCORE=224; N_SCORE=6.5; MODE=1; TEXT='?';

MA   /DEFAULT: M0=-8; D=-50; I=-50; B1=-1000; E1=-1000; MI=-105; MD=-105; IM=-105; DM=-105;

MA   /I: B1=0; BI=-105; BD=-105;

MA   /M: SY='P';M=-2,-10,-24,-12,-8,-14,-10,-15,-9,-9,-12,-7,-7,2,-10,-11,-3,-3,-8,-24,-14,-10;

MA   /M: SY='P';M=-6,-7,-25,-6,-5,-15,-19,-13,-6,-6,-9,-5,-7,2,-8,-8,-6,-4,-6,-26,-12,-8;

MA   /M: SY='T';M=-6,-4,-20,-7,-5,-12,-17,-11,-7,-6,-9,-6,-1,-11,-6,-5,0,4,-4,-28,-11,-7;

MA   /M: SY='C';M=-7,-16,65,-24,-23,-14,-24,-22,-17,-23,-12,-9,-14,-32,-22,-23,-6,-6,-5,-40,-20,-23;

MA   /I: I=-9; MD=-19;

Fig. 3.6 Position specific amino acid weights and gap costs corresponding to a
PROSITE entry

3.3.2 TRANSFAC: Transcription Factors and
Regulation

The development path for the TRANSFAC database has been geared by the
objective of providing a biological context for understanding the function of
regulatory signals found in genomic sequences. The aim of this compilation
of signals was meant to provide all relevant data about regulating proteins
and allow researchers to trace back transcriptional control cascades to their
origin [5, 16]. The TRANSFAC database contains information about regu-
latory DNA sequences and the transcription factors binding to and acting
through them. At the core of this database are its components describing the
transcription factor (FACTOR), its corresponding binding site (SITE) and
the regulation of the corresponding gene (GENE). The GENE table is one
of the central tables in this database. It is linked to several other databases
including S/MARtDB, TransCOMPEL, LocusLink, OMIM, and RefSeq.

Sites are experimentally proven for their inclusion in the database. The
experimental evidence of the transcription factor and the DNA-binding site
is described, and the cell type from which the factor is derived is linked
to the respective entry in the CELL table. A set of weight matrices are
derived from the collection of binding sites. These matrices are recorded in
the MATRIX table. Moreover, as determined by their DNA-binding domain,
the transcription factors are assigned to a certain class, and hence link to the
CLASS table is established.

This databases is accessible from http://www.gene-regulation.com/. As
an example, consider the following somewhat edited entry from the SITES
table in TRANSFAC shown in Fig. 3.7. The entry provides a wide variety
of information about the transcription factor, such as the binding sequence
motif (SQ) and the first (SF) and the last position (ST) of the factor binding
site. The accession number of the binding factor itself is provided (BF) - this is
in fact a key for the FACTOR table in TRANSFAC. The source of the factor
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AC   R00026

TY   D

DE   CA-ACT (cardiac alpha-actin); G000193.

SQ   CCAAATAAGG.

SF   -113

ST   -84

BF   T00765 SRF (504 AA); Quality: 4; Species: mouse, Mus musculus.

OS   human, Homo sapiens

OC   eukaryota; animalia; metazoa; chordata; vertebrata; tetrapoda; mammalia;

OC   eutheria; primates

SO   0003 3T3

SO   0042 C2 myoblasts

SO   0069 F9

MM   gel retardation

DR   EMBL: M13483; HSACTCA (377:386).

DR   EPD: EP16033; HS_ACTC.

RN   [1]

RX   MEDLINE; 89093119.

RA   Boxer L. M., Miwa T., Gustafson T. A., Kedes L.

RT   Identification and Characterization of a Factor That Binds to Two Human

RT   Sarcomeric Actin Promoters

RL   J. Biol. Chem. 264:1284-1292 (1989).

Fig. 3.7 TRANSFAC table for storing sites

is identified (SO). The specific type of cells where the factor was found to
be active are identified, 3T3, C2 myoblasts, and F9 in this case. Additional
information about these cells is accessible under the CELL table with the
accession numbers of 0003, 0042 and 0069 respectively. External database
references and their corresponding accession numbers are provided under the
(DR) field, as well as publication titles (RT) and citation information (RL).

The table MATRIX table shown in Fig. 3.8 within the TRANSFAC rep-
resents the binding site data as a weight matrix or a profile. If a binding
site contributes to the construction of a matrix, is indicated by including a
MX field in the site’s record. Most sites, however, do not have such a refer-
ence, as the matrices are typically built from artificially generated consensus
sequences. For example, let us look at the somewhat edited matrix record
shown in Fig. 3.8. Each of the 14 9-bp binding sites used in the construc-
tion of this matrix are artificially generated sequences, possibly through the
consensus of multiple experiments.

The above database of transcription factor binding sites is utilized; either
directly by running a search of the consensus sequences as a simple text
search, or through the analysis of a matching program that looks for the high
likelihood of occurrence of the pattern specified by the profile weight matrix
characterizing the binding site.
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AC   M00395

NA   HOXA3

DE   HOXA3 (homeobox cluster protein)

BF   T00378 HOXA3; Species: mouse, Mus musculus.

PO      A      C      G      T

01      1      9      3      1      C

02      3      5      5      1      N

03      1      1      1     11      T

04      9      0      2      3      A

05      6      2      2      4      N

06      3      1      3      7      N

07      4      1      4      5      N

08      1      1      7      5      K

09      1      3      5      5      N

BA   14 sites selected from random oligonucleotides

BS   R09080 Start: 4; Length: 9; Gaps:; Orientation: p.

BS   R09081 Start: 3; Length: 9; Gaps:; Orientation: p.

BS   R09082 Start: 7; Length: 9; Gaps:; Orientation: p.

BS   R09083 Start: 3; Length: 9; Gaps:; Orientation: p.

BS   R09084 Start: 4; Length: 9; Gaps:; Orientation: p.

BS   R09085 Start: 8; Length: 9; Gaps:; Orientation: p.

BS   R09086 Start: 5; Length: 9; Gaps:; Orientation: p.

BS   R09087 Start: 3; Length: 9; Gaps:; Orientation: p.

BS   R09088 Start: 4; Length: 9; Gaps:; Orientation: p.

BS   R09089 Start: 5; Length: 9; Gaps:; Orientation: p.

BS   R09090 Start: 3; Length: 9; Gaps:; Orientation: p.

BS   R09091 Start: 4; Length: 9; Gaps:; Orientation: p.

BS   R09092 Start: 3; Length: 9; Gaps:; Orientation: p.

BS   R09093 Start: 5; Length: 9; Gaps:; Orientation: p.

CC   14 bp random sequence, 4 rounds of selection

Fig. 3.8 TRANSFAC matrix table

3.4 Genome Viewer

The University of California Genome Browser which includes genome tracks.
Each track provides a different type of feature including genes, SNP, CpG
islands, etc. This browser is accessible at http://www.ucsc.edu. Fig. 3.9
illustrates the result of searching for globin genes in the human genome.

The National Center for Genome Resources has a genome viewer. This is
accessible at http://www.ncbi.nlm.nih.gov/mapview/. The NCBI genome
browser is a comprehensive collection of genomes. The browser is well con-
nected with the other NCBI resources. The National Center for Biotechnol-
ogy Information maintains information on complete genomes. Genome level
browsers provide information on complete genomes for humans, other eu-
karyotes including plants, as well as prokaryotes. Genome level resources are
accessible at http://ncbi.nlm.nih.gov/genome. This site lists the entire set
of genome level information that is available. In addition to an overall guide,
genome level information is available for each organism under the categories
of mapview, BLAST, and projects.

As an example, select the mapview category for the human genome. Typing
in collagen in the search box produces the following display. As illustrated
in Fig. 3.10, the map of the human chromosomes is annotated with markers
indicates the specific locations where genes related to collagen are encoded on
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Fig. 3.9 UCSC Genome Browser

the genome. Detailed information for each of these genes is also in the lower
panel (not shown in the illustration). The locations of genes on the various
human chromosomes is shown and is hyperlinked to the related resources.

Homo sapiens (human) genome view 
Build 37.2 statistics   Switch to previous build

 

 

Fig. 3.10 Map View for the Human Genome where collagen associated genes are
highlighted
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3.5 Gene Ontology Database

The Gene Ontology database aims to provide a controlled vocabulary for
describing many functions, processes and components. The GO project has
developed three structured controlled vocabularies (ontologies) that describe
gene products in terms of their associated biological processes, cellular com-
ponents and molecular functions in a species-independent manner. The use
of GO terms facilitates uniform queries across collaborating databases. The
ontologies are structured as directed acyclic graphs where a child, or more
specialized term, can have many parent (general) terms. For example, the bi-
ological process term hexose biosynthesis has two parents, hexose metabolism
and monosaccharide biosynthesis. This structure enables queries that involve
general as well as specialized terms. One can thus look for all of the gene
products in the human genome that are involved in hexose metabolism,
which in turn will include genes involved in hexose biosynthesis. Each en-
try in GO has a unique numerical identifier of the form GO:nnnnnnn, and
an associated term such as cell, fibroblast growth factor receptor binding, hex-
ose metabolism, etc. Each term is also assigned to one of the three ontologies,
molecular function, cellular component or biological process. The terms in an
ontology are linked by two relationships, IS-A and PART-OF representing a
simple class-subclass relationship and the part-subpart relationship respec-
tively. The Gene Ontology Consortium makes the GO database available for
download at http://www.geneontology.org/. Feature annotations in Gen-
Bank also contain references to GO terms where additional details on a given
biological term may be found. Due to the growing significance of gene ontol-
ogy in inference of biological functions, it is important to review capabilities
that matlab provides in processing gene ontology related information.

The Gene Ontology project, or GO, provides a controlled vocabulary to
describe gene and gene product attributes in any organism. It can be broadly
split into two parts. The first is the ontology itself–actually three ontolo-
gies, each representing a key concept in Molecular Biology: the molecular
function of gene products; their role in multi-step biological processes; and
their localization to cellular components. The second part is annotation, the
characterization of gene products using terms from the ontology.

3.5.1 Go Terms

Each GO term consists of a unique alphanumerical identifier, a common
name, synonyms (if applicable), and a definition. Terms are classified into
only one of the three ontologies. Each ontology is structured as a directed
acyclic graph (DAG). Sometimes a term may have multiple meaning based on
species; when GO uses a ’sensu’ tag to differentiate among them. The Gene
Ontology project also provides mappings of its terms to other classification
systems covering the same areas of biology.
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GO consortium reviews and may add any new terms suggested by the
members of the research community. Similarly, the consortium may depre-
cated, or marked as ”obsolete” when they loose their significance or have
become misleading. The ontology file is freely available from the GO website;
the terms can be searched and browsed online using the GO browser AmiGO.

3.5.2 Associations

A number of organizations, including model organism databases and large
multi-species protein databases, perform analyses of protein sequences and
issue tables of associations between putative gene products and GO terms.
These are freely available from the GO website and can be downloaded indi-
vidually or viewed online using AmiGO.

In many older genetic sequence databases, annotations bear little or no
indication of their provenance so that a user cannot readily ascertain the na-
ture and strength of the evidence behind them, which leads to what is known
in the field as the ’transitive annotation problem.’ Some gene is characterized
by actual wet lab experiments, and its sequence deposited in a major pub-
lic database with annotation from those experiments. Other sequences that
have not been characterized in the lab are annotated based on their sequence
similarity to this one, and these other sequences in turn form the basis for yet
more annotations, and so forth. Thus a user cannot know how many steps of
sequence similarity stand between the annotation for some genetic sequence
and any actual wet-lab data.

A GO association has metadata indicating:

• Who made the assertion that this GO term applies to the putative product
of this protein sequence,

• When this assertion was made,
• One or more three-letter Evidence code(s) denoting the type of evidence

on which this assertion is based.

Any automatic program output that has not been curated by a human
being gets the evidence code IEA meaning Inferred from Electronic Anno-
tation. The use of a code other than IEA implies that a human curator has
checked this annotation. For instance TAS for Traceable Author Statement
means a curator has read a published scientific paper and the metadata for
that association bears a citation to that paper. On the other hand, ISS for
Inferred from Sequence Similarity means a human curator has reviewed the
output from a sequence similarity search and verified that it is biologically
meaningful. The Gene Ontology project, or GO, provides a controlled vocab-
ulary to describe gene and gene product attributes in any organism. It can
be broadly split into two parts.

The first is the ontology itself–actually three ontologies, each representing
a key concept in Molecular Biology: the molecular function of gene products;
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their role in multi-step biological processes; and their localization to cellular
components.

The second part is annotation, the characterization of gene products using
terms from the ontology. A number of organizations, including model organ-
ism databases and large multi-species protein databases, perform analyses
of protein sequences and issue tables of associations between putative gene
products and GO terms. These are freely available from the GO website and
can be downloaded individually or viewed online using AmiGO.

Associations in GO are supported by evidence. Table 3.2 shows the set
of codes used to annotate the evidentiary support of an association of a gene
product to a GO term.

Table 3.2 Evidence Codes for GO Associations

IC Inferred by curator

TAS Traceable author statement

IDA Inferred from direct assay

IMP Inferred from mutant phenotype

IGI Inferred from genetic interaction

IPI Inferred from physical interaction

ISS Inferred from sequence or structural similarity

IEP Inferred from expression pattern

NAS Non-traceable author statement

RCA Inferred from reviewed computational analysis

IEA Inferred from electronic annotation

NR/ND Not recorded, No biological data available

In many older genetic sequence databases, annotations bear little or no
indication of their provenance so that a user cannot readily ascertain the na-
ture and strength of the evidence behind them, which leads to what is known
in the field as the ’transitive annotation problem.’ Some gene is characterized
by actual wet lab experiments, and its sequence deposited in a major pub-
lic database with annotation from those experiments. Other sequences that
have not been characterized in the lab are annotated based on their sequence
similarity to this one, and these other sequences in turn form the basis for yet
more annotations, and so forth. Thus a user cannot know how many steps of
sequence similarity stand between the annotation for some genetic sequence
and any actual wet-lab data.

A GO association has metadata indicating:

‡ Who made the assertion that this GO term applies to the putative product
of this protein sequence,

‡ When this assertion was made,
‡ One or more three-letter Evidence code(s) denoting the type of evidence

on which this assertion is based.
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Any automatic program output that has not been curated by a human
being gets the evidence code IEA meaning Inferred from Electronic Anno-
tation. The use of a code other than IEA implies that a human curator has
checked this annotation. For instance TAS for Traceable Author Statement
means a curator has read a published scientific paper and the metadata for
that association bears a citation to that paper. On the other hand, ISS for
Inferred from Sequence Similarity means a human curator has reviewed the
output from a sequence similarity search and verified that it is biologically
meaningful.

3.5.3 MATLAB Interface to GO

The latest version of Gene Ontology database, available from
http://www.geneontology.org is downloaded over the Web into MATLAB
using the function geneont when the LIVEparameter is true. The ontology file is
located at http://www.geneontology.org/ontology/gene_ontology.obo
In the sample code below, the gene ontology object is created as a structure
variable GO. Information about this ontology is provided by the MATLAB
function get which displays the number of terms in the database. In the
listing below, the Gene Ontology object contains 41,211 terms.

>> GO = geneont(’LIVE ’, true );

% Display information about the object GO

>> get(GO)

default_namespace : ’gene_ontology ’

format_version : ’1.0’

data_version : ’’

version: ’’

date: ’14:06:2014 00:36’

saved_by: ’jenkins -slave ’

auto_generated_by : ’’

subsetdef : {18x1 cell}

import: ’’

synonymtypedef : ’’

idspace: ’’

default_relationship_id_prefix: ’’

id_mapping : ’’

remark: [1 x129 char]

typeref: ’’

unrecognized_tag : {3x2 cell}

Terms: [41211x1 geneont.term]



3.5 Gene Ontology Database 63

Searching

Ontology objects constructed as describe above may be searched using search
terms which may be specified as regular expressions. For example, the gene
ontology object GO that was created may be searched for the terms that con-
tain the term ’ribosome’. The function regexpi searches for the occurrence
of property name for the occurrence of this regular expression. The result is
a an array comparison which is equal in size to the array Terms and which
contains either an empty set or the location of match in the correspond-
ing cell of the array Terms. The indices of the non-empty cells in the array
comparison is stored in the array indices. The set of terms corresponding
to these indices is next retrieved.

>> comparison = regexpi(get(GO.Terms ,’name ’), ’ribosome ’);

>> indices = find (~ cellfun(’isempty ’, comparison ));

>> terms_with_ribosmome = GO.Term(indices)

33x1 struct array with fields:

id

name

ontology

definition

comment

synonym

is_a

part_of

obsolete

Ancestors, Decedents and Relatives

After a GO object is constructed, one can use the various matlab func-
tions to traverse the ancestors, descendants and relatives of any node. Fur-
ther, the nodes of an ontology object thus traversed may in turn may be
used to construct a sub-ontology. This is illustrated in the following sam-
ple sub-ontologies created created by ancestors, descendants and relatives of
GO:46680.

% Get the ancestors for a Gene Ontology term.

>> ancestors = getancestors(GO , 46680)

ancestors =

8150

9636

10033

14070

17085

42221

46680

50896
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% Create a sub Gene Ontology .

>> subontology = GO(ancestors)

Gene Ontology object with 6 Terms.

% Get the descendants for a GO term. The maximum depth is set to 5.

>> descendants = getdescendants(GO, 46680, ’Depth ’, 3);

% Create a sub Gene Ontology .

subontology = GO(descendants)

Gene Ontology object with 8 Terms.

% Get relatives for a GO term. Includes both ancestors and descendants

relatives = getrelatives(GO, 46680, ’Height ’, 3, ’Depth ’, 2);

subontology = GO(relatives)

Gene Ontology object with 6 Terms.

>> so = get(subontology);

>> firstTerm = so.Terms (1)

id: 9636

name: ’response to toxic substance ’

ontology : ’biological process ’

definition: [1x202 char]

comment : ’’

synonym : {3x2 cell}

is_a: 42221

part_of : [0x1 double]

obsolete : 0

Matrix of Relationships

The matlab function getmatrix converts a gene-ontology object into a matrix
of relationship values between nodes. A value of 0 in this matrix indicates
no relationship, a value of 1 indicates an “is a” relationship, and a value
of 2 indicates a “part of” relationship. The function also returns a column
vector listing the GO identifiers corresponding to the rows and columns of
the matrix returned. In the listing below, an gene ontology object is created
using the terms that contain the regular expression discussed earlier:

>> ribont = GO(terms_with_ribosmome )

>> [MATRIX , ID] = getmatrix (ribont);

The matrix of relationships, MATRIX, and the term identifiers ID, may be
used in conjunction with the biograph object to display this ontology. No-
tice that the GO term identifiers which are are returned as numbers by the
getmatrix are converted into text strings by the function num2goid below.

>> bg = biograph (MATRIX , num2goid(ID));

>> view (bg)
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Annotations

Annotations are uploaded into MATLAB from a file. Gene Ontology Con-
sortium makes several annotation files available on their web site. A list of
current gene annotations is available from:

http://www.geneontology.org/GO.current.annotations.shtml

Download the file containing GO annotations for the gene products of
homo sapiens. Assume that this file is downloaded to gene association.

goa human.gz to your MATLAB Current Directory. The file may be unzipped
and read into structure HumanGenes by the following commands:

% Uncompress the file using the gunzip function .

>> gunzip (’gene_association.goa_human .gz ’)

% Read the file into MATLAB .

>> HumanGenes = goannotread (’ gene_association.goa_human ’);

% Create a structure with GO annotations and get a list of genes.

>> S = struct2cell (HumanGenes );

>> genes = S(3,:)’

3.5.4 Example

Characterizing the Ontology Database: Load in the gene ontology and
develop a histogram of the various categories of terms. I.e. , a plot depicting
the number of terms in each of the three ontologies, molecular function,
biological process, and cellular component.

GO = geneont(’LIVE ’, true );

onto = get(GO.Terms , ’ontology ’);

mole_func = regexpi(onto , ’molecular function ’);

bio_proc = regexpi(onto , ’biological process ’);

cell_comp = regexpi(onto , ’cellular component ’);

index_mol = find (~ cellfun(’isempty ’, mole_func ));

index_bio = find (~ cellfun(’isempty ’, bio_proc ));

index_cell = find (~ cellfun(’isempty ’, cell_comp ));

mole_func_num = length(index_mol );

bio_proc_num = length(index_bio );

cell_comp_num = length(cell_comp );

GeneOnt= [mole_func_num bio_proc_num cell_comp_num ];

bar(GeneOnt );
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Characterizing the Annotations: Associations in GO are supported by
evidence. Table 3.2 shows the set of codes used to annotate the evidentiary
support of an association of a gene product to a GO term.

HumanGenes = goannotread (’ gene_association.goa_human ’);

S = struct2cell (HumanGenes );

evidence = S(7 ,:); %Evidence code is in the 7th cell

evidence = evidence ’; %become column vectors

index_IC = find (~ cellfun (’isempty ’, regexpi (evidence , ’IC ’)));

index_TAS = find(~ cellfun (’isempty ’, regexpi (evidence , ’TAS ’)));

index_IDA = find(~ cellfun (’isempty ’, regexpi (evidence , ’IDA ’)));

index_IMP = find(~ cellfun (’isempty ’, regexpi (evidence , ’IMP ’)));

index_IGI = find(~ cellfun (’isempty ’, regexpi (evidence , ’IGI ’)));

index_IPI = find(~ cellfun (’isempty ’, regexpi (evidence , ’IPI ’)));

index_ISS = find(~ cellfun (’isempty ’, regexpi (evidence , ’ISS ’)));

index_IEP = find(~ cellfun (’isempty ’, regexpi (evidence , ’IEP ’)));

index_NAS = find(~ cellfun (’isempty ’, regexpi (evidence , ’NAS ’)));

index_RCA = find(~ cellfun (’isempty ’, regexpi (evidence , ’RCA ’)));

index_IEA = find(~ cellfun (’isempty ’, regexpi (evidence , ’IEA ’)));

IC = length (index_IC );

TAS = length (index_TAS );

IDA = length (index_IDA );

IMP = length (index_IMP );

IGI = length (index_IGI );

IPI = length (index_IPI );

ISS = length (index_ISS );

IEP = length (index_IEP );

NAS = length (index_NAS );

RCA = length (index_RCA );

IEA = length (index_IEA );

EvidCodes = [IC TAS IDA IMP IGI IPI ISS IEP NAS RCA IEA ];

bar (EvidCodes );

The result of performing the analysis in the example above is shown in
Fig. 3.11. Sometimes it is also desirable to link Annotations with Ontology
Structure. In order to achieve this goal, the list of relatives for a gene of
interest are first determined. Next, these relatives are partitioned based on
ontology. For each ontology (MF, BP or CC) the gene or product names that
are related to gene may be graphically depicted.

3.6 Other Databases

There are more than 1500 different databases related to life sci-
ence research. Generally these are all accessible through the
web (http://www.expasy.org/links.html). These database also vary
in size ranging anywhere from 100 KB to 100 GB and can track primary,
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Fig. 3.11 Gene Ontology database distribution of entries. Bar charts representing
the (a) distribution of the count of the three node types in the database, and (b)
distribution of the count of the various evidence codes in the database.

secondary or functional information. Some databases, particularly the
primary databases are updated daily while others which contain curated
annotations may be updated monthly or even annually.

A comprehensive coverage of biological databases is beyond the scope of
this text. Brief information on Reference Sequence Database, Gene Ontology,
and Protein Structure Databases is presented below. Gene Ontology is an
important step towards developing a unifying framework for analysis, inter-
pretation and interchange of data related to life sciences. The Gene Ontology
database is not a necessarily a secondary database as the tasks related to
developing a hierarchical vocabulary are not necessarily dependent upon the
availability of a primary database. On the other hand, the structure database
provides information on the 3D structure of biomolecules. This necessarily
is a secondary database as the structure information is another facet of the
primary sequence information about the biomolecule.

3.6.1 RefSeq: NCBI Reference Sequences

The history of biological sequences and annotations has been driven by in-
dividual investigators’ laboratories across the world depositing sequencing
and annotation information into public databases which are in turn made
accessible to the community at large. One problem with such world-wide
collaborative approach is that a single biological entity may be represented
by many different entities in the various databases. Sometimes, there isn’t
enough information included with the entries to establish reliability and
consistency between the multiple entries that aren’t in agreement. Further,
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for some entries, the source of database entry – whether it was experimental
or in-silico – is not easy to establish. The NCBI initiated the RefSeq project
to address these issues and to provide a reference sequence for each type of
sequence in the central dogma – nucleotide sequences, mRNA sequences, and
protein sequences.

RefSeq provides a non-redundant representation for each type of biological
entity. Therefore there is a single entry in RefSeq for each biological entity, for
both DNA, RNA and protein sequences. ReqSeq entities undergo an ongoing
curation process and therefore represent a reliable resource on the current
state of knowledge and information about a biological entity. ReqSeq entries
are explicitly linked to one another.

RefSeq entries are distinguished from other entries in GenBank by their
use of characteristic accession numbers following a “2+6” format, with the
first two characters of ReqSeqs being NT, NM or NP designating whether the
reference sequence is a nucleotide, mRNA or protein sequences. For example,
NT_234671 is nucleotide reference sequence. Other distinguishing accession
numbers are the XM and XP accession numbers representing the model mRNA
and model protein sequences respectively that are derived from genome an-
notations.

In RefSeq database, for both protein or nucleotide RefSeq databases, will
return a single entry in response to a query for a given gene or gene product.
However, if there are several products corresponding to a gene corresponding
to alternative splicing, entries in RefSeq will be included for each splice vari-
ant. As an example, there are three RefSeq entries (NM_005368, NM_203377,
and NM_203378) corresponding to the three distinct splice variants of myo-
globin, which is a gene responsible for binding the oxygen molecule in muscles.
Corresponding to the three variants are the three transcripts stored in the
protein RefSeq database. These are respectively identified by the accession
numbers, NP_005359, NP_976311, and NP_976312.

3.6.2 ESTs and UniGene

Included within the various GenBank divisions is dbEST or the database of
Expressed Sequence Tags containing information about the cDNA, or comple-
mentary DNA, sequences from many organisms. The cDNA sequence is de-
rived by taking the RNA expressed in a tissue sample and converting it to
a stable form of complementary DNA which is usually sequenced in a “sin-
gle pass” without requiring the need for sequence assembly and are generally
between 300–800 bp in length. The single pass cDNA is thus tag of the ex-
pressed sequence and is commonly referred to as an EST or Expressed Se-
quence Tag. All cDNA sequences, and thus all ESTs, are derived from a specific
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tissue sample such as human liver ormice brain. A summary of ESTs contained
in the dbEST division of GenBank is provided at
http://www.ncbi.nlm.gov/dbEST/dbEST_summary.html.

The human genome is thought to contain about 22,000 genes. The Uni-
Gene or Unique Gene Project aims at creating gene-oriented clusters that are
obtained by partitioning of Expressed Sequence Tags into non-redundant sets
such that there is a single unique gene cluster assigned to each gene for an
organism. The redundancy of information expressed in UniGene is reflected
in the number of members in that cluster. For example, a gene expressed in
many tissues will have thousands of ESTs in that cluster, whereas a gene that
is rarely expressed will have only a few ESTs in the corresponding UniGene
cluster.

3.6.3 Structure Databases

The Protein Data Bank (PDB) is a web accessible database that con-
tains information about the three-dimensional structures of large biological
molecules. PDB contains structural information about both proteins and nu-
cleic acids. Since structure and function are closely related, the PDB aims
at bridging the gap between the function of large biomolecules and the role
that they universally play in number of organisms including bacteria, yeast,
plants, mice, and in healthy as well as diseased humans. The key to under-
standing the function of a molecule is its shape. The Protein Data Bank is
maintained by the Research Collaboration for Structural Bioinformatics or
RCSB. The RCSB is comprised of Rutgers University, the San Diego Super-
computing Center, the Center for Advanced Research in Biotechnology and
the University of Wisconsin. The database provides software for viewing 3D
structures as well. This resource is accessible at http://www.pdb.org/.

3.7 Summary

The journal Nucleic Acid Research publishes an issue each year in January
which presents a survey of all major databases in molecular biology. The
2014 annual issue listed over 1500 databases [9]. Daily exchanges of data oc-
cur between GenBank , EMBL and DDBJ – the three collaboration databases
collectively known as the International Nucleotide Sequence Database Collec-
tion (INSDC). The EMBL database provides third party annotations as well
as automated procedures for uploading sequences. DDBJ, the DNA Databank
of Japan, has classified all genes in the collaboration and captured Expressed
Sequence Tags (ESTs) from the honeybee. A complete list of resources avail-
able at the NCBI is provided by Wheeler [10].

Barker provides a review of the protein sequence organization and features
of the Protein Information Resource (PIR) [11] and describes the capability of
feature-based or annotation-based retrieval in PIR [12]. Boeckmann describes
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Swiss-Prot in [13] and discusses how protein entries in Swiss-Prot provide an
interdisciplinary overview of relevant information by combining experimen-
tal results and computed features and offers detailed annotation of human
protein sequences. The UniProt Consortium [14], formed in 2002, offers the
ability to store and interconnect all available information on proteins that
have been manually curated in a concerted effort by the European Bioin-
formatics Institute (EBI), the Protein Information Resource (PIR) and the
Swiss Institute of Bioinformatics (SIB). Thus, the UniProt represents a uni-
fication for the protein databases similar to as the consortium of nucleotide
databases does for nucleotide databases.

Hulo [15] provides information on PROSITE and protein signatures (pat-
terns represented as extended regular expressions or as scoring matrices) that
are linked to the protein family, domain or functional site identified by the
signature. Information on the resources offered by the TRANSFAC as well
as the various pieces of biological data that it interrelates is provided by
Matys [16].

A comprehensive review of the Protein Data Bank (PDB) is provided by
Berman [17]. The paper by Kouranov discusses the worldwide initiative in
structural genomics and the online tools offered by RCSB [18]. The ability
to search the PDB using a tool called PAST is discussed by Toubig [19]. A
comprehensive review of the Gene Ontology (GO) project is provided in [20]
and [21]. The hierarchical tree of GO terms may be viewed graphically by a
web tool called WEGO as described by Ye [22].
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3.8 Exercises

1. The International Nucleotide Sequence Database Collection (INSDC)
synchronizes their sequence records on a daily basis. For the GenBank
sequence listed in this chapter, find the corresponding sequence records
in EMBL and DDBJ. Comment on the formats used by the three data-
banks and if all the features in the GenBank entry are integrated into
the other databases.

2. Obtain information provided on BRC2 protein, implicated in suscepti-
bility to breast cancer, from the SWISS-PROT database. How many
different sequences of this protein are provided? Comment on how they
are different.

3. Perform the same analysis on the haemoglobin protein as you did in
the question 2 above. This time use the PIR database. Also, run these
searches on the UniProt. Do you find any significant enhancements in the
information provided by UniProt?

4. Given a sequence entry below from the GENBANK shown in Fig. 3.12,
provide a short description for each of the following:

(a) What is the accession number for this sequence?
(b) What is the length of this sequence?
(c) What is the type of molecule (DNA, RNA, Protein) and its topology

corresponding to this sequence?
(d) Which organism is this sequence derived from? Is this organism a

prokaryote?
(e) Is there a coding region in this sequence? If so, what is its location?
(f) In addition to the coding region, is there another feature annotated on

this sequence. If so, what feature is it, and where on the sequence is it
located?

(g) Is this sequence rich in A+T or is it rich in G+C? Justify.
(h) If a researcher wants to read further about the gene reported in this se-

quence, what would be a good place to start their research? Be
specific.

5. Visit the Entrez home page and search the core nucleotide database for
the accession number M34058. This is a Human beta-globin gene from a
thalassemia patient. Save this sequence in FASTA formats. Comment on
the annotations from the GenBank entry that are retained in the FASTA
version of the sequence record.

6. Use matlab help on getgenbank and use the partial sequence access
feature to retrieve the sequence of the coding segment spanning from lo-
cation 139 through 4287 from the sequence identified by accession number
M10051.

7. Visit the full genome section of Entrez and download the sequences of
HIV-1 and HIV-2. Save these files on your local computer in GenBank
format. Use matlab to read these files in into matlab and create two
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LOCUS AF162693 2088 bp mRNA l i n e a r INV 02−AUG−1999

DEFINITION Caenorhabdi t i s e l egans th ior edox in r eductase homolog mRNA,

complete cds .

ACCESSION AF162693

VERSION AF162693 .1

KEYWORDS .

SOURCE Caenorhabdi t i s e l egans

ORGANISM Caenorhabdi t i s e l egans

Eukaryota ; Metazoa ; Nematoda ; Chromadorea ; Rhabditida ;

Rhabditoidea ; Rhabditidae ; Pe lode r inae ; Caenorhabdi t i s .

REFERENCE 1 ( bases 1 to 2088)

AUTHORS Buettner C. , Harney J .W. , Berry M. J .

TITLE ”The Caenorhabdi t i s e l e gan s homologue o f th io r edox in reduc tase

conta ins a s e l e n oc y s t e i n e i n s e r t i o n sequence (SECIS) element that

d i f f e r s from mammalian SECIS elements but d i r e c t s s e l e n oc y s t e i n e

in co rpo ra t i on ”

JOURNAL J . Bio l . Chem. 274(31):21598 −21602(1999) .

MEDLINE 99348283

PUBMED 10419466

FEATURES Location / Qua l i f i e r s

source 1 . . 2088

/mol type=”mRNA”

/ db xre f=”taxon :6239”

/organism=”Caenorhabdi t i s e l e gans ”

CDS 1 . . 1578

/ db xre f=”GOA: Q17745”

/ db xre f=”HSSP:1H6V”

/ db xre f=”UniProt/Swiss−Prot : Q17745”

/ codon sta r t=1

/ p r o t e i n i d=”AAD46625.1”

/ t r a n s l a t i o n=”MYIKGNAVGGLKELKALKQDYLKEWLRDHTYDLIVIGGGSGGLA

. . .

ICLRNEEEKVVGFHILTPNAGEVTQGFGIALKLAAKKADFDRLIGIHPTVAENFTTLT

LEKKEGDEELQASGCXG”

/product=”th io r edox in reduc ta se homolog”

/ t r an s l e x ce p t =”(pos : 15 70 . . 1 572 , aa :OTHER)”

/note=”s t a r t codon not determined exper imenta l ly ;

s e l e n oc y s t e i n e ”

m is c f e a t u re 1766 . . 1813

/note=”SECIS element”

BASE COUNT 636 a 363 c 468 g 621 t

ORIGIN

1 atg ta tat ca aaggaaatgc tg t tgg t gg t ctcaaagaac t taaagc t c t gaagcaggat

61 tat t tgaaag aatggct t cg tga t cata cc tacgacctga t t g t c a t tgg aggaggatct

. . .

1981 ta t c ca g tg t t taag ta t g t c c t c t c a c t t t t t t t t c a a t t t caa t c c cg t a c t t c t t c c

2041 c t a t t t t t g g gtaaatccaa g c c t t t t t c a c t c t c t c t c t taaatgc

Fig. 3.12 A Sample GenBank Sequence

separate sequence objects. Open these two sequence objects using
seqviewer tool and compare the proteins annotated on each sequence.
Comment on the difference and similarity between these two sequences.

8. Use the function getgenpept to download and save the protein sequence
identified by accession number AAD51968. Save the downloaded sequence
locally in GenBank and EMBL format. What is the accession number of
DNA sequence from which this GenPept entry is derived. Next, review
the saved sequence to familiarize yourself with the two formats. Comment
on the similarity and differences between the two formats.

9. Use matlab to download a PDB data entry identified by 1MBS repre-
senting the structure of extracellular matrix. Open the structure up in
molviewer tool. How many atoms and bonds does this structure
contain. Now review the alpha-helices in the structure by turning on
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rockets, strands, and trace options under the structures selection. Can
you count the number of alpha helices from this view.

10. Use the function getgeodata to download gene expression information
identified by accession number GSE11287. Unlike a single sample, this
data entry contains a number of samples – or a series – from an exper-
iment. How many samples does this series contain? What is the size of
each sample? Provide matlab code to extract out a each of the sample
from the series.

11. You are interested in determining if enzyme tyrosine kinase has a charac-
teristic signature. Describe your plan for solving this problem. Does this
protein in fact has such a signature?

12. List the transcription factor binding sites for the heat shock protein in
humans by searching the TRANSFAC database. Provide any additional
information you find.

13. A GenBank entry provides information about Taxonomy. For the nu-
cleotide sequence listed in this chapter provide a graphical representation
of the taxonomy by running it through the NCBI taxonomy browser.

14. A GenBank record also provides information on the GO terms that are
applicable to the sequence record. Use the weGO tool to view the termi-
nology tree for a GO term.

15. The PDB captures the atom positions for a biomolecule. What are some
of the tools that are provided for viewing this structural information.

16. Answer the following questions for the Ontology graph shown below in
Fig. 3.13. Assume that the arrows represent an “is a” relationship.

(a) What are the descendants for GO:0030684?
(b) What are the ancestors for GO:0009547?
(c) What are the relatives for GO:000313?

GO:0000054

GO:0000313

GO:0003735

GO:0005761

GO:0005840

GO:0009547

GO:0022626

GO:0030684

GO:0030685 GO:0030686

Fig. 3.13 A Sample GO Graph

17. Load in the gene ontology and develop a histogram of the various cate-
gories of terms. That is, a plot depicting the number of terms in each of
the three ontologies, molecular function, biological process, and cellular
component.
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18. Associations in GO are supported by evidence. Table 3.2 shows the set
of codes used to annotate the evidentiary support of an association of a
gene product to a GO term.

19. Find the list of relatives for the interferon beta gene. Partition the
relatives based on ontology. For each ontology (MF, BP or CC) draw
a graph showing the gene or product names that are related to beta
interferon.

20. Develop a program that takes as input two gene names and outputs an
terms that are annotated on both. It should list the terms common in
each of the three ontologies. Are there annotations on interferon beta are
common with the annotations on interferon gamma? Test your program
on at least three other pairs of genes.

21. Use the PubMed to search for articles that describe gene detection algo-
rithms using neural networks. Name some journals that publish articles
in bioinformatics.



Chapter 4

Processing Biological Sequences
with MATLAB

matlab incorporates a number of bioinformatics function packaged together
in its Bioinformatics Toolbox. The Bioinformatics Toolbox provides functions
for creating objects such as biograph, the gene ontology and trees for phy-
logenetic analysis. In addition, this toolbox provides a number of functions
for downloading sequences from DNA, protein and structure databases. Se-
quence analysis functions are provided for performing statistical analysis on
the sequence data as well as for comparing DNA and protein sequences using
the standard alignment methods (Needleman-Wunsch and Smith-Waterman)
for global and local alignments. Capabilities for finding multiple sequence
alignments, physlogenetic analysis, visualization and modeling sequence pro-
files using Hidden Markov methods are included within in the Bioinformatics
Toolbox. The toolbox provides extensive functionality for retrieving, writing
and and analyzing microarray data. The richness of tools included makes it
possible to apply the concepts covered in the subsequent chapters within the
framework of the same application. This provides an overview of the basic
functions that enable reading, writing and display of biological sequence data.

4.1 Sequence Acquisition

The commands for downloading a file from the nucleotide databases GenBank
and EMBL and the protein database GenPept are described below. In each
of the commands below, the parameter supplied is the accession number
of the sequence (DNA or protein) being retrieved. We previously looked at
functions that return a sequence object structure that contains as attributes
information gathered from the sequence record and typically includes to the
raw sequence data as its Sequence member.

dnaSeq = getgenbank(’M10051’);

seqObj = getembl (’X00558’);

pepSeq = getgenpept(’AAA59174’);
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In this chapter we will look into some of the following, and some additional
functions for processing sequences in matlab.

Function Description Example

nt2aa Converts a nucleotide sequence to an amino
acid sequence

aaSeq = nt2aa(dnaSeq)

aa2nt Converts an amino acid sequence to a nu-
cleotide sequence

ntSeq = aa2nt(aaSeq)

dna2rna Converts a DNA to a RNA sequence rnaSeq = dna2rna(dnaSeq)
rna2dna Converts a RNA sequence to DNA se-

quences
dnaSeq = rna2dna(rnaSeq)

seqcomplement Complementary sequence seqC = seqcomplement(seq)
seqrcomplement Reverse-complementary sequence seqRC = seqrcomplement(seq)
seqreverse Sequence orientation reversed seqR = seqreverse(seq)

aacount Counts frequency of amino acids aaCnt = aacount(aaSeq)
basecount Counts frequency of nucleotides ntCnt = basecount(dnaSeq)
dimercount Counts frequency of 2-mers diCnt = dimercount(dnaSeq)
codoncount Counts frequency of 3-mers cdnCnt = codoncount(dnaSeq)
nmercount Counts frequency of n-mers nmerCnt = nmercount(dnaSeq, n)

textttntdensity Nucleotide ensity profile sequence ntdensity(dnaSeq)
codonbias Compute bias in the usage of codons codonbias(dnaSeq)
cpgislands Locate stretches of CG dimers or CpG is-

lands
cpgisland(dnaSeq)

textttseqshowwords Find specific words in sequence seqshowwords(seq)
seqwordcount Counts words in a sequence wCnt = seqwordcount(seq)
seqshoworfs Show location of Open Reading Frames

(ORFs)
seqshoworfs(dnaSeq)

MATLAB stores the sequence information as a structure constructed upon
parsing of the information contained in the sequence file. As an example,
the components of the structures dnaSeq and seqObj are listed below. Note
that the structure of the sequence retrieved from each of these databases is
different:

>>dnaSeq

dnaSeq =

LocusName: ’HUMINSR’

LocusSequenceLength: ’4723’

LocusNumberofStrands: ’’

LocusTopology: ’linear’

LocusMoleculeType: ’mRNA’

LocusGenBankDivision: ’PRI’

LocusModificationDate: ’06-JAN-1995’

Definition: ’Human insulin receptor mRNA, complete cds.’

Accession: ’M10051’

Version: ’M10051.1’

GI: ’186439’

Keywords: ’insulin receptor; tyrosine kinase.’

Source: ’Homo sapiens (human)’

SourceOrganism: [4x65 char]

Reference: {[1x1 struct]}

Comment: [14x67 char]

Features: [51x74 char]

CDS: [1x1 struct]

Sequence: [1x4723 char]
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>> seqObj

seqObj =

Identification: [1x1 struct]

Accession: ’X00558’

SequenceVersion: ’X00558.1’

DateCreated: ’13-JUN-1985 (Rel. 06, Created)’

DateUpdated: ’18-APR-2005 (Rel. 83, Last updated, Version 4)’

Description: ’Rat liver apolipoprotein A-I mRNA (apoA-I)’

Keyword: ’apolipoprotein; lipoprotein; signal peptide.’

OrganismSpecies: ’Rattus norvegicus (Norway rat)’

OrganismClassification: [3x75 char]

Reference: {[1x1 struct]}

Feature: [23x75 char]

BaseCount: [1x1 struct]

Sequence: [1x877 char]

>>

Each of the components of the sequence objects contains detailed informa-
tion accessible by drilling down into the component. The datatype for each
component of the structure is also identified. For example, information in
seqObj indicates that the sequence retrieved is a mRNA sequence of rat liver
apolipoprotein that was originally deposited into the databank in 1995 (in
Release 6 of the databank), and later revised in 2005 (in release 83 of the
databank). As an example of drilling down, the features annotated on this
sequence may be viewed by typing in the name of the component – Feature
in this case – desired to be viewed:

>> seqObj.Feature

ans =

Key Location/Qualifiers

source 1..877

/organism="Rattus norvegicus"

/mol_type="mRNA"

/db_xref="taxon:10116"

sig_peptide 33..86

CDS 33..812

/product="preproapolipoprotein A-I"

/db_xref="GOA:P04639"

/db_xref="HSSP:P02647"

/db_xref="InterPro:IPR000074"

/db_xref="InterPro:IPR013326"

/db_xref="UniProtKB/Swiss-Prot:P04639"

/protein_id="CAA25224.1"

/translation="MKAAVLAVALVFLTGCQAWEFWQQDEPQSQWDRVKDFATVYVDAV

KDSGRDYVSQFESSTLGKQLNLNLLDNWDTLGSTVGRLQEQLGPVTQEFWANLEKETDW

LRNEMNKDLENVKQKMQPHLDEFQEKWNEEVEAYRQKLEPLGTELHKNAKEMQRHLKVV

AEEFRDRMRVNADALRAKFGLYSDQMRENLAQRLTEIRNHPTLIEYHTKAGDHLRTLGE

KAKPALDDLGQGLMPVLEAWKAKIMSMIDEAKKKLNA"

mat_peptide 105..812

/product="apolipoprotein A-I"
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polyA_signal 858..863

polyA_site 877..877

matlab provides the capability to view the sequence component of this
object using the function, seqdisp. Only a portion of the entire display
created by this function is shown.

>> seqdisp (seqObj.Sequence)

ans =

1 AGCTCCGGGG GAGGTCGCCC ACATCCTTCG GGATGAAAGC TGCAGTGTTG GCTGTGGCCC

61 TGGTCTTCCT GACAGGTTGC CAAGCTTGGG AGTTCTGGCA GCAAGATGAG CCCCAGTCCC

.....

781 TCGATGAGGC CAAAAAGAAG CTGAACGCTT AGTGAGGCGC CCGTCACCAC TCCCCACCCC

841 TGAATTGGCT TTCTTACAAT AAACGTTTCC AAAGTGG

>>

4.2 Operations on Nucleotide Sequences

In the following illustration, we begin with a DNA sequence which is used for
initializing a string variable in matlab which is then complemented and also
reverse complemented. The reverse complementation is obtained by reading
the string from 3’ to 5’ (right to left) and proceeding with the complementa-
tion. Protein translations are then performed and the sequence composition
of the protein sequence is displayed. An “*” character designates the occur-
rence of a stop codon, and is shown as the residue “Others” in computing
compositions.

ntSeq = ’ACAGTGCCCCCCTATATGGCCACCAGGTAG ’

ntSeq =

ACAGTGCCCCCCTATATGGCCACCAGGTAG

>> length (ntSeq)

ans =

30

%Find the base frequencies

>> basecount (ntSeq)

ans =

A: 6

C: 6

G: 5

T: 4

%Display the original sequence

>> seqdisp (ntSeq)
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ans =

1 ACAGTGCCCC CCTATATGGC CACCAGGTAG

%Display the complement of this sequence

>> seqdisp ( seqcomplement (ntSeq ))

ans =

1 TGTCACGGGG GGATATACCG GTGGTCCATC

%Display the reverse complement of this sequence

>> seqdisp ( seqrcomplement (ntSeq ))

ans =

1 CTACCTGGTG GCCATATAGG GGGGCACTGT

%Transform this sequence to a amino -acid , i.e. protein sequence

>> aaSeq = nt2aa (ntSeq)

aaSeq =

TVPPYMATR *

%Obtain amino acid counts

>> aacount (aaSeq)

ans =

A: 1

R: 1

N: 0

D: 0

C: 0

Q: 0

E: 0

G: 0

H: 0

I: 0

L: 0

K: 0

M: 1

F: 0

P: 2

S: 0

T: 2

W: 0

Y: 1

V: 1

Others : 1
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The result of applying matlab nucleotide density detector function
ntdensity on a DNA sequence is shown in Fig. 4.1. The result of apply-
ing the detection of CpG islands is shown in Fig. 4.2.

% Download the sequence from GenBank

>> seqObj = getgenbank(’M10051’);

% Plot the nucleotide density profile

>> ntdensity(seqObj.Sequence)

% Plot the CpG profile

>> cpgisland(seqObj.Sequence, ’PLOT’, true)

Fig. 4.1 The display of nucleotide density computed by sliding a window across
the nucleotide sequence. The lower panel displays the G+C content of the DNA
sequence. Generally, G-C rich sequences are rich in gene.



4.3 Joining Exons 83

Fig. 4.2 The result of applying CpG island analysis on a DNA sequence

4.3 Joining Exons

Previous chapter discusses the example of joining exons to create a coding
segment in an eukaryotic gene. In the example shown below, seven exons from
four different GenBank sequences are combined to form a coding segment.
Cell array is used to store the accession number and the segment of sequence
joined to form the coding region, CDS.

% Create a cell array with the accession number and coordinates of the exons

% the form the gene

join ={{’AF018429’,[282:561]}, {’AF018429’,[1034:1172]} ...

{’AF018430’,[560:651]}, ...

{’AF018431’,[1:45]}, ...

{’AF018432’,[658:732]}, {’AF018432’,[884:954]}, {’AF018432’,[1391:1447]}}

% We create an empty cell array named exons with each element is set to cell with

% zero value. So exons looks like {[0] [0] [0]}. This is a way to tell MATLAB to

% treat exons as a cell array
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exons = num2cell(zeros(1,length(join)))

% Next we extract out the individual exons. Note that if the array exons had not been

% initialized to a cell array, the assignment statement offs(i) = { .. } below will

% error out.

for i=1:length(orfs)

seqObj = getgenbank(join{i}{1});

orfs(i) = { seqObj.Sequence(join{i}{2}) }

end

% Finally, all our exons are in the cell array. The command below takes the elements

% of the cell array and converts it into a matrix yielding the CDS

CDS = cell2mat(orfs)

4.4 An Example

In this example sequence identified by accession number EU919427 is down-
loaded from GenBank into a local file. This sequence is read using the MAT-
LAB function genbankread and the sequence data is extract from the sequence
object. matlab functions nt2aa are used to convert the DNA sequence into
an amino acid sequence. Appropriate frame shifts are performed to generate
amino acid translations in the three forward and three reverse frames. The
number of stop codons and the largest distance between the stop codons is
plotted for all three frames.

4.4.1 Download Sequence

Download EU919427 into a genbank formatted file. A keyword search
on nucleotide database accessible over the web from National Center for
Biotechnology Information (NCBI) may be performed. The site
http://www.ncbi.nih.gov provides access to these databases. A keyword
search using the term “beta globin” was performed. After the appropriate
database entry is located, the display of the record should be changed to
the desired format. The display options allow changing format to GenBank,
ASN, XML, FASTA, etc. In this example, we save the file in the GenBank
format, which is the default option selected. The view should be changed to
show the sequence as “Text,” since we do not want to save the sequence data
saved along with any embedded hypertext tags.

As we would like to experiment with the detection of Open Reading
Frames, we look for a DNA sequence. For this purposes of illustration, a
synthetic sequence construct of BMPR2-R899X (Bmpr2) gene located. The
display is changed to text only and the sequence is saved as a file named
EU919427_SynthethicGene.gb.
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4.4.2 Read That Downloaded File

Read that downloaded file into a sequence object using genbankread. The
genbankread function is used to read a local sequence stored in GenBank
format on the local filesystem. Other functions for reading files in EMBL and
FASTA are provided by functions emblread and fastaread. The function
shown reads the saved sequence file into a sequence object seqObj.

>> seqObj = genbankread (’ EU919427_SynthethicGene .gb ’)

seqObj =

LocusName : ’EU919427 ’

LocusSequenceLength : ’4794’

LocusTopology : ’linear ’

LocusMoleculeType : ’DNA ’

LocusGenBankDivision : ’SYN ’

LocusModificationDate : ’26- AUG -2008’

Definition : ’Synthetic construct BMPR2 -R899X (Bmpr2 ) gene ...’

Accession : ’EU919427 ’

Version : ’EU919427 .1’

GI: ’197205403 ’

Source: ’synthetic construct ’

SourceOrganism : [2x38 char ]

Reference : {[1 x1 struct] [1x1 struct ]}

Features : [34 x74 char ]

CDS: [1x1 struct]

Sequence : [1x4794 char ]

4.4.3 Process Sequence

As a first step, the sequence data is extracted from the sequence object and
copied into a string variable seq:

>> seq = seqObj.Sequence

Next the function nt2aa is used to convert the sequence into the amino
acid translations in the three forward and three reverse frame as follows:

>> fwd = seq;

>> rev = seqrcomplement (seq);

% frames 1, 2 ,and 3

>> frm1 = fwd (1: length(fwd));

>> aa1 = nt2aa (frm1 );

>> frm2 = fwd (2: length(fwd));

>> aa2 = nt2aa (frm2 );

>> frm3 = fwd (3: length(fwd));

>> aa3 = nt2aa (frm3 );
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% frames 4, 5 ,and 6

>> frm4 = rev (1: length(rev));

>> aa4 = nt2aa(frm4 );

>> frm5 = rev (2: length(rev));

>> aa5 = nt2aa(frm5 );

>> frm6 = rev (3: length(rev));

>> aa6 = nt2aa(frm6 );

As an alternative approach to creating six frame sequences as character
strings, two cell arrays named frm and aa may be created using the following
commands written up as follows:

for i = 1:3

frm{i} = fwd (i:length(fwd));

aa{i} = nt2aa(frm{i});

end;

for i = 4:6

frm{i} = rev (i-3: length(rev));

aa{i} = nt2aa(frm{i});

end;

4.4.4 Extracting Stop Codons

Next the number of stop codons in the forward strand – i.e. first, second,
third frame – and the reverse strand – i.e. fourth, fifth, sixth frames – is
computed as follows:

% stop codons show up as the ’*" character in amino acid sequence .

stpcnt (1)= length (find (aa1==’*’))

stpcnt (2)= length (find (aa2==’*’))

stpcnt (3) = length (find (aa3==’*’))

stpcnt (4) = length (find (aa4==’*’))

stpcnt (5) = length (find (aa5==’*’))

stpcnt (6) = length (find (aa6==’*’))

The length of the longest uninteruppted strand in first, second, and
third (forward) and the fourth, fifth, and sixth (reverse) frames is found using
the diff function. The difference between the locations of the successive stop
codons is returned by the diff, the max of which is returned the largest span
of uninterrupted stop codons
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maxlen (1) = max(diff(find (aa1==’*’)))

maxlen (2) = max(diff(find (aa2==’*’)))

maxlen (3) = max(diff(find (aa3==’*’)))

maxlen (4) = max(diff(find (aa4==’*’)))

maxlen (5) = max(diff(find (aa5==’*’)))

maxlen (6) = max(diff(find (aa6==’*’)))

Alternatively, the above commands may be performed by the following
loop on the cell arrays frm and aa discussed earlier:

for i = 1:6

stpcnt(i) = length(find(aa{i} == ’*’));

maxlen(i) = max(diff(find(aa{i} == ’*’)));

end;

4.4.5 Charting Results

In this case we will produce two bar graphs. The first series plotted in red
represents the count of stop codons, and the second series plotted in blue
represents the length of longest uninterrupted sequence in that frame. This
data, is stored in arrays stpcnt and maxlen. The matlab bar command plots
a bar graph where the second argument provides the two groups of data as
the columns of the 2× 6 matrix.

bar ([1:6], [stpcnt ’ maxlen ’]);

grid on;

legend (’Stop Count ’, ’Longest Inter -Stop Length ’);

ylabel (’Count & Base Pairs ’, ’fontsize ’, 16);

xlabel (’Frames ’, ’fontsize ’, 16);

As a result of issusing the command above, the bar graph shown in Fig-
ure 4.3 is plotted.

4.5 Restriction Site Detection

Restriction Enzymes are proteins that cut DNA at a specific location. Two
restriction enzymes, Eco-RI and Hind-III are commonly utilized in labo-
ratories. Eco-RI looks for a substring GAATTC and cuts the DNA sequence
at that site; Hind-III cuts at substring AAGCTT. Some of the cuts made by
restriction enzymes leave an overhang, or sticky ends, which biologists often
use in their experiment design for reformation of DNA and for cloning and
sequencing. Some restriction enzymes cut at leaving a blunt end.

As an example, Fig. 4.4 lists the recognition sites for enzymes Eco-RI

and Hind-III. The restriction enzyme Eco-RI recognizes GAATTC and cuts
between G and A, and the restriction enzyme recognizes AAGCTT and cuts
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Fig. 4.3 matlab bar graph depicting the number of stop codons and the length
of the longest uniterrupted sequence length in each of the six frames

between A and A. Both these enzymes recognize the occurrence of a biological
chromosome – where the recognition site read from 5′ → 3′ is the same as
the site read on the reverse complementary strand read from 3′ → 5′.

G   A   A   T   T   C

C   T   T   A   A   G

A   A   G   C   T   T

T   T   C   G   A   A

(a) (b)

Fig. 4.4 The motifs recognized by restriction enzymes (a) EcoRI and (b) HindIII.
Both of these enzymes, like most restriction enzymes, cut a DNA sequence at a
biological palindromic site.

Restriction maps are computed to plan out biological experiments. A re-
striction map provides a visual representation of where a sequence of DNA
may be cut by one of or a subset of more than a thousand of known restriction
enzymes. Splicing out a sequence of gene using a set of restriction enzyme
digestion, and amplification using a Polymerase Chain Reaction (PCR), is
often utilized for further study of genes or sequence of interest. The site
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http://www.neb.com/rebase provides a list of all restriction enzymes in a
number of formats.

Let’s consider the following program. Here a sequence is downloaded from
EMBL. The first 1000 bases of the downloaded sequence is written locally
into a file in FASTA format. The function for writing a sequence into FASTA
format is fastawrite. This function takes the filename to be written, the
one line annotation, and the sequence to be written into the file. FASTA
format is popular for sequence analysis because its primary focus is the DNA
sequence itself. It does not really focus on the annotations such as taxonomy,
references, and features. Therefore, for the purposes of sequence analysis and
speed, FASTA format is preferred.

>> seqEmbl=getembl(’U15422 ’)

seqEmbl =

Identification : [1x1 struct]

Accession : ’U15422 ’

SequenceVersion : ’U15422 .1’

DateCreated : ’18-FEB -1995 (Rel. 42, Created )’

DateUpdated : ’14-NOV -2006 (Rel. 89, Last updated , Version 6)’

Description : [2x75 char ]

Keyword: ’.’

OrganismSpecies : ’Homo sapiens (human )’

OrganismClassification : [3x75 char ]

Organelle : []

Reference : {[1 x1 struct] [1x1 struct] [1x1 struct] [1x1 struct ]}

DatabaseCrossReference : [10 x42 char ]

Comments : []

Feature: [421 x75 char ]

BaseCount : [1x1 struct]

Sequence : [1x40573 char ]

RetrieveURL : ’http :// www.ebi.ac.uk/cgi -bin/dbfetch ?

db=EMBL &id=U15422&style =raw ’

>> fastawrite (’U15422 -Subseq.fasta ’, ’Subsequence U15422 (1:1000) - Fasta format ’, ...

seqEmbl.Sequence (1:1000))

>> fastawrite (’ U15422.fasta ’, ’U15422 - Fasta format ’, seqEmbl .Sequence )

The contents of FASTA sequence file U15422.fasta are shown in Fig. 4.5.
We next utilize matlab function to read in using function fastaread.

The sequence that is read in and searched for the occurrence of Eco-RI

and Hind-III cut sites using the regular expression specified. The matlab
function regexpi finds the index of the location where the regular expression
occurs in the sequence. Then we add 1 to the cut locations because the actual
cut site is offset by 1 from the reported location of the regular expression.

>> seq = fastaread(’U15422.fasta ’)

seq =

Header: ’U15422 - Fasta format ’

Sequence : [1x40573 char]
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>> cutPattern = ’(GAATTC|AAGCTT)’;

>> cutLocations = regexpi (seq.Sequence , cutPattern);

>> cutLocations = cutLocations + 1;

>> xvals = 1:length(seq.Sequence );

>> yvals = zeros(1, length(xvals ));

>> for i = 1:length(cutLocations)

yvals(cutLocations(i)) = 1;

end;

>> subplot (3,1,1), bar (xvals , yvals), ...

title(’Bar Graph ’), set(gca, ’YTick ’, 0:1);

>> subplot (3,1,2), stem (xvals , yvals), ...

title(’Stem Graph ’), set(gca, ’YTick ’, 0:1);

>> subplot (3,1,3), plot(xvals , yvals), ....

title(’Plot Graph ’), set(gca, ’YTick ’, 0:1);

>Subsequence U15422 (1:1000) - Fasta format
gatctctctaattacagggcccacagggccagcagtatagataggtcacccactccacccagctgggtgt
ggggaggagccgccctgtctggaggtgagaggggcccagaggtcccacaggtccttgcagggcccaagca
agtctgggtcaagacactgatcctgtctcatgatccttcccccgactcctcacctgaacacctctggacg
tgtggggtcttttccaggtttgcttattattactattaatttaaaaaggaatagggctggtcatggtggt
ccacgcctataatcccagcactttgggaggctgaggtggaaggattgcttgagcccaggagtttgagacc
agcctgggaaacatggtgagaacccgtttctattttttgttttttaatttttaagaggaaaaaacagaaa
aagtagtagcgtaaatgcaacgtgggattctagattgaaccttgtgtctttaccagccctctaggtgatt
ctggtgcatgctaaaatttgagaactgctagtccactgaatatattccagagaaattctagctacagcag
cactgtttataatggcagaaaattggaaacagcccaagtgtccatcaagagggaatgaaggccaggcatg
gtggctcacatctctaatcccagcacttcaagaagctgatgtgggtggatcacttgaggtcaggagttcg
agaccagcctggccaacatggccaaactccatctctactaaaaacacaaaaattagctgggcgtggtggt
gcatgtctgtagtcccagcaatttaggaggctgaggcatgagaaccacttgagcctgggaggcggaggtt
tcagtgagccgagattgtgccactgcactccagcctgggcaacagagtgagactctgtctcaaaaaaacc
cccacaaaaaacaagaggcaattaagacagttacaaggtaggcacataaggattactatgtaacataata
tgtaacttaccactatgtaa

Fig. 4.5 A sample FASTA created from sequence extracted U15422 and saved to
a file U15422.fasta

Fig. 4.6 The location of restriction cut sites is shown with three possible plot
types
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The remaining commands create an array of x and y values to be plotted.
These sites may be plotted using a bar graph, a stem graph, or a plot graph.
These three graphs are illustrated in Fig. 4.6.

Restriction enzyme sequences are specified using the IUPAC ambiguity
codes.

Further Readings
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4.6 Exercises

1. Perform the following steps.

• Download NM 005368 into a genbank file (from NCBI)
• Read that downloaded file into a sequence object using genbankread.
• Extract out the sequence from this sequence object.
• Use nt2aa to convert the sequence into aa in the three forward and

three reverse frames.
• Find the count stop codons in the first, second, and third (forward) and

the fourth, fifth, and sixth (reverse) frames.
• Produce a plot of the count of stop codons in each of the six frames.
• Find the length of longest uninterrupted span in first, second, and third

(forward) and the fourth, fifth, and sixth (reverse) frames.
• Produce another graph that plots the longest uninterrupted span in

each of the six frames.

2. Develop a matlab pipeline that packages the above steps. The pipleline
function should ask for a set of accession numbers and perform the ORF
detection steps outlined above.

3. Use matlab bioinformatics toolbox function to download the GenBank
sequence with accession number U15422. View the DNA sequence ob-
ject constructed and describe the annotated features. Can you determine
which gene, if any, does this sequence contain?

4. Extract out the raw sequence data from the above sequence object and
perform a display of the nucleotides.

5. Next, compute the basic statistics for the sequence data you obtained in
Question 4. This could include the sequence composition, dinucleotide
and trinucleotide frequency counts. Compare these observed frequencies
with what is expected by pure chance. How close are the sequence statis-
tics to what you expect by pure chance?

6. Consider the forward and reverse complement of the sequence in Ques-
tion 4. Perform a count of open reading frames in each of the six frames
thus obtained. Which frame do you think is the coding frame. Does your
answer correspond to the sequence annotations.

7. Analyze the sequence object and determine if it contains any references
to protein database. Download the referenced protein sequence and study
its ontological references.

8. Compare the protein annotations with the amino acid sequences you
prediction. Comment on the correspondence between the two.

9. For the following DNA sequence, write the matlab code for computing
and plotting

• the single nucleotide frequencies,
• the di-nucleotide frequencies, and
• the tri-nucleotide frequencies
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ATTCG CTACC GTTCA CACGA TTTGA

CTTCG TTATC GTTCA TACGA TTTGA

CCTTA CGCGC GTTCG CTGGA TATCA

Next, use the inbuilt matlab function(s) to compute the mono-, di-, and
tri-nucleotide frequencies. Compare results of using the inbuilt function
to those obtained with your program.

10. Consider the following DNA sequence:

ACCCA TAGGG AGACA TAGTA GATCC ATTAG

(a) Write a matlab program to perform a 6 frame translation of the
sequence in both the forward and reverse complement orientation.

(b) Compute and plot a graph of the length of Open Reading Frames
(ORF) in each of 6 frames.

(c) Based on your analysis, which of the frames within has the highest
likelihood for coding for proteins.



Part II

Information Retrieval from
Biological Databases



96 Part II: Information Retrieval from Biological Databases

Taking advantage of data stored in heterogeneous biological databases can
be a difficult, time consuming task for a multitude of reasons. These reasons
include the vast volume of biological data, the growing number of biological
databases, the rapid rate in the growth of data, the overabundance of data
types and formats, the wide variety of bioinformatics data access techniques,
database heterogeneity, and the interdisciplinary nature of bioinformatics. In
the course of their work, scientists may query a biological database, visually
scan the results of this query, locate the relevant data, and subsequently use
this data in a query submitted to another biological database.

Performing manual multi-database queries in this manner can be a time-
consuming process, especially when large amounts of data are involved, as
is often the case in biological research. Therefore, a need exists for auto-
mated data integration from multiple, heterogeneous databases. Automating
biological database data integration can also speed up the discovery of new
medications and the introduction of these drugs to market, with potentially
wide ranging benefits to mankind.

This retrieval algorithms provide a solution to this problem of automating
and approximating matches to the query and involve the use of a number of
enabling technologies. The ultimate goal is to create a federation database
that allow high level querying of multitude of databases using a user-friendly
client applications.



Chapter 5

Sequence Homology

The rationales behind the comparison of sequences may be manifold. Above
all, the theory of evolution tells us that gene sequences may have derived from
common ancestral sequences. Thus, the comparison of biological sequences
in this context is based on counting the number of mutations, insertions, and
deletions of bases necessary to transform one DNA sequence into another.

One way to visualize the similarity between two protein or nucleic acid
sequences is to use a similarity matrix, known as a dot plot which is a sim-
ple visual representation of the similarity between two sequences. Dot plots
provide a preliminary idea of the similarity of the two sequences based on
the number and length of matching segments between the sequences, with
identical sequences having a diagonal line in the center of the matrix.

Sequence alignment is a formalized method for establishing similarity be-
tween biological sequences and serves as the basis for searching biological
databases. It is a very useful method in itself with many applications. For
example, one might compare a new sequence with a previously established
and characterized sequence with the objective of learning the functional and
structural properties of the new sequence through analogy based on what is
already known about the established sequence.

This chapter begins with a discussion on dot plots and presents the algo-
rithms for alignment of sequences and their applications in comparing biolog-
ical sequences and for retrieving similar sequences from biological databases
is discussed. Also elaborated are variations of the core sequence alignment
techniques using insertion and deletion cost and similarity models, as well as
different types of alignment procedures, such as global, local and semi-global
or fit alignments, as well as their biological significance.

5.1 Information Retrieval from Biological Databases

Databases are used to obtain primary structures, such as the sequence infor-
mation or some information associated with the molecular sequence, through
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the process of annotation, curation and linking within the context of other
biological databases. Fundamentally, there are two basic methods for search-
ing sequence databases: (1) particular keyword label (e.g., “cytochrome c”
or “dopamine precursor”) with the databases allowing usual types of logical
connectives between the keywords and their characteristics to better identify
the target being sought; or (2) search engines can be used to hunt for se-
quences that are similar to one another – homology based searches. Keyword
based searching of biological databases using the Entrez tool is discussed in
this chapter.

5.1.1 Entrez

A search engine is a system for retrieving information from a set of documents
via a direct search of the documents or by searching an index constructed
from the documents. Most search engines operate via a combination of search
algorithms and user-supplied keywords. Keyword searching is a method for
retrieving information for a user based on the weighted values of each keyword
searched for in a set or index of documents. These keywords need to be
identified by the user themselves and should be aimed at uniquely identifying
the items the user wishes the search engine to retrieve. These keywords are
then passed through the search engines algorithms in order to generate the
search results. Multiple keywords can be used and combined with Boolean
operators in order to further refine the results of a search.

The Boolean operators used by most search engines are AND, OR, and
NOT. The AND operator is used to indicate that the two keywords being
combined by the AND operator must both be present in the search results,
OR indicates that either keyword the Boolean operation is performed on may
be present in the search results, and NOT indicates that the 2nd keyword it
is performed on should not exist in the items returned by the search results.
There are other Boolean operators that can be used by a search engine based
on what sort of documents it is expected to search, but these are the most
common operators used by popular search engines such as Google, Yahoo!,
and Lycos.

Search for phrases may be performed by including the phrase in quotation
marks. An example of phrase based retrieval is a search for the term, “Ma-
trix Attachment Region.” This is a special case of the AND query, where the
terms must all occur as for a query, Matrix AND Attachment AND Region.
However, in a phrase query the terms must all occur in that order and
contiguously.

5.1.2 Search Example

An excellent example of keyword and Boolean searching as it applies to Bioin-
formatics can be seen in Entrez, The Life Sciences Search Engine. This search
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PubMed All Databases Human Genome GenBank Map Viewer BLAST

Search across databases Help

6697
PubMed: biomedical literature
citations and abstracts

2616
PubMed Central: free, full text
journal articles

none Site Search: NCBI web and FTP sites

11 Books: online books

none
OMIM: online Mendelian Inheritance in
Man

none
OMIA: Online Mendelian Inheritance in
Animals

none
Nucleotide: sequence database
(includes GenBank)

158 Protein: sequence database

none Genome: whole genome sequences

none
Structure: three-dimensional
macromolecular structures

none Taxonomy: organisms in GenBank

none SNP: single nucleotide polymorphism

1 Gene: gene-centered information

1
HomoloGene: eukaryotic homology
groups

none
PubChem Compound: unique small
molecule chemical structures

none
PubChem Substance: deposited
chemical substance records

15
Genome Project: genome project
information

none dbGaP: genotype and phenotype

none
UniGene: gene-oriented clusters of
transcript sequences

none
CDD: conserved protein domain
database

none
3D Domains: domains from Entrez
Structure

none UniSTS: markers and mapping data

none PopSet: population study data sets

none
GEO Profiles: expression and
molecular abundance profiles

none
GEO DataSets: experimental sets of
GEO data

none
Cancer Chromosomes: cytogenetic
databases

none
PubChem BioAssay: bioactivity
screens of chemical substances

none
GENSAT: gene expression atlas of
mouse central nervous system

none Probe: sequence-specific reagents

none
Protein Clusters: a collection of
related protein sequences

none
Journals: detailed information about

the journals indexed in PubMed and
other Entrez databases

21
NLM Catalog: catalog of books,
journals, and audiovisuals in the NLM
collections

none
MeSH: detailed information about
NLM's controlled vocabulary

Dysentery AND Human NOT Amoebic

Fig. 5.1 Entrez interface allows a cross database querying capability. In this ex-
ample, the search was run to encompass all the databases accessible at NCBI. The
query was specified using logical connectives. The number of hits in each database
is shown on the left.

engine is freely accessible online at http://www.ncbi.nlm.nih.gov/Entrez/.
As illustrated in Fig. 5.1, Entrez simultaneously searches for keywords in nu-
merous biological databases such as nucleotide, protein, and gene databases
as well as databases focusing on published academic work such as PubMed
and OMIM. An example of keyword and Boolean searching in Entrez is a
search for articles pertaining to dysentery. Dysentery may have two
different causes, amoebic dysentery, caused by the amoeba Entamoeba
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Histolytica, and Shigellosis, caused by bacteria of the genus Shigella. A search
for “Dysentery AND Human NOT Amoebic returns results from every
database Entrez searches relating to dysentery and humans while excluding
references to amoebic dysentery. The correct use of Booleans and keywords
can narrow the results of a search from millions of hits to just a handful.
Boolean searches work well in cases where exact matches are necessary, and
can be used to conduct rapid searches of large document bases. For searches
where exact matches will not work, a similarity search based on a method
such as alignment must be used. A good situation for a boolean search is
a keyword search for academic papers on a subject, while a good example
of a similarity search is determining how related biological sequences are by
supplying a biological sequence as a keyword and then applying a similarity
score to the potentially related sequences.

5.1.3 Obtaining Sequences Using Matlab

One of the most useful features available in the Bioinformatics Toolbox is the
ability to obtain nucleotide and protein sequences from GenBank. Using the
getgenbank function allows a user to retrieve sequences from the GenBank
database via the Internet. By providing an accession number, a call to this
function will return data pertaining to the matchin nucleotide or protein
sequence. In the following example, the nucleotide sequence for a protein
associate with Huntington’s Disease and assigning the data to the sequence
variable. By default, this sequence is returned in the GenBank file format.

Listing 5.1

>>n_sequence = getgenbank (’NM_003949 ’)

n_sequence =

LocusName : ’NM_003949 ’

LocusSequenceLength : ’4100’

LocusNumberofStrands : ’’

LocusTopology : ’linear ’

LocusMoleculeType : ’mRNA ’

LocusGenBankDivision : ’PRI ’

LocusModificationDate : ’16-MAR -2008’

Definition : [1x92 char]

Accession : ’NM_003949 ’

Version: ’NM_003949 .3’

GI: ’120431739’

Project: []

Keywords : []

Segment: []

Source: ’Homo sapiens (human)’
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SourceOrganism : [4x65 char]

Reference : {1x10 cell}

Comment: [35x67 char]

Features : [91x74 char]

CDS: [1x1 struct]

Sequence : [1 x4100 char]

SearchURL : [1x70 char]

RetrieveURL : [1 x104 char]

end-listing-5.1
Similarly, protein sequences can be retrieved from GenBank using the

getgenpept function. In the following example, the protein for Huntington’s
diesease is retreived in the FASTA file format.

>>p_sequence = getgenpept (’AAB38240 ’, ’FileFormat ’, ’FASTA ’)

p_sequence =

Header : [1 x68 char]

Sequence : [1 x3144 char]

5.1.4 Benchmarks

Goodness of retrieval is often measured by two parameters: precision and
recall. Precision measures the number of relevant records result set as a
fraction of all the records in the retrieved. Recall measures the number of
relevant records that were retrieved as a fraction of all relevant records that
the database contains irrespective of all the non-relevant records found in
the result set. For example, if there are T records in the database that are
relevant to the user query, and the result set contains S records out of which
R are relevant, the parameters precision and recall may be defined as follows:

Recall =
R

T

Precision =
R

S

As far as boolean keyword based querying of database is concerned, the
goodness of retrieval is essentially determined by the keywords and connectors
chosen. Often it is an iterative process where the initial set of keywords
and connectors are refined. Over-inclusive connected will tend to reduce the
precision while enhancing the recall, while under-inclusive connected will have
the opposite effect of increasing precision at the cost of reduction in recall.
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5.2 Dot Plots

Dot plots are a simple technique for visualizing similarity between two nucleic
acid or protein sequences. This technique utilizes a two-dimensional matrix
which has the sequences being compared laid out along the vertical (row) and
horizontal (column) axes of the matrix. When the residues of both sequences
match at the same location on the plot, a dot is drawn at the corresponding
position – a black dot being placed if the nucleotides or the residues are
identical. Thus, matching sequence segments appear as runs of diagonal lines
across the matrix.

An estimation of similarity of the two sequences is gleaned from the length,
and the count of matching segments shown in the dot-plot matrix. Identical
proteins have a have a diagonal line running across the center of the matrix.
When either sequence is changed through insertions and deletions, disrup-
tions in this diagonal of the dot plot are observed. When sequences share a
local regions of similarity, or share common repetitive sequences, additional
off-diagonal matches are observed in the dot plot matrix.

To enhance selectivity of matches reported by dot-plots, and to reduce the
noise attributed to matching sequence segments arising simply by chance, a
threshold tuple-size is sometimes utilized. For example, a match based on
tuple-size of 3 requires three residues or nucleotides to match between the
sequence along the x-axis and the sequence along the y-axis before a dot is
placed on the matrix. This is effective because the chance matches go down
with a tuple size of 3.

The two sequences can be compared by taking the reverse complement of
DNA sequence to determine if the matching strands are complementary to
each other. The direction of the sequences on the axes will ultimately are
combined to form lines. The closeness of the sequences in similarity will de-
termine how close the line is to the diagonal line – the position of the line
being affected by events such as frame shifts, direct repeats, and inverted
repeats. Frame shifts include insertions, deletions, and mutations. The pres-
ence of one of these features, or the presence of multiple features, will cause
for multiple lines to be plotted.

The following code sample illustrates the use of matlab function
seqdotplot utilized for comparing two sequences seq1 and seq2. The mat-
lab function provides for a window size, or tuple size, as well as the level of
identity required within the window. In the example shown below, we have
used a window size of 6 with at least 5 characters required to be matched
within the window before a dot is placed in the dot plot matrix.

Listing 5.2

>> seq1 = ’ACCTGACTGGGCTTAGACCTTGAACTTGAACACTTGCCTT ’;

>> seq2 = ’TTTTTACCTGACTGGGCTTGGGGGAGACCTTGAACTTGAACACTTGCCTT ’;

>> seqdotplot(seq1 , seq2 , 6, 5)

end-listing-5.2
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It may be observed that the second sequence has the first sequences embed-
ded within it. The second sequence has a string TTTTT preceding the start of
the first sequence, and also embedded is a string GGGGG located 14 bp down-
stream. The resulting dot plot shows that the sequence are matching. This
is above evident in the dot plot produced as shown in Fig. 5.2 shown. Notice
that there are off diagonals dots resulting from random matches though the
line formed by the string of dots dominates around the diagonals.

Fig. 5.2 Dot plot for two DNA sequences

In the example shown next, DNA sequences of two prions identified by
accession numbers AB060288 and AB060290 are compared using the dot
plot technique. The sequences of the GenBank entries are downloaded and
compared. The dot plot illustrates a strong similarity between the two se-
quences. The code sample also illustrates some additional functionality of
the seqdotplot function. This function can return a count of the number of
matches found, as well as a sparse matrix containing the locations of matches.

Listing 5.3

>> seq1 = getgenbank(’AB060288 ’, ’sequence ’, true);

>> seq2 = getgenbank(’AB060290 ’, ’sequence ’, true);

>> seqdotplot(seq1 , seq2 , 11, 7);

>> matchCount = seqdotplot(seq1 , seq2 , 11, 7);

>> [matchCount matchLocations] = seqdotplot(seq1 , seq2 , 11, 7);

end-listing-5.3
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The resulting dot plot in Fig. 5.3 shows that the sequence are similar as
there is a strong diagonal line spanning the dot plot matrix.

Fig. 5.3 Dot plot for DNA sequences of two prion proteins downloaded from
GenBank

5.3 Sequence Alignment

Sequence alignment is probably the most primitive operation in computa-
tional biology; it essentially involves placing one sequence above the other and
comparing the aligned vertical pairs to establish correspondence between the
sequences at each position. Sequence alignment serves as the basis for a wide
variety of more complex manipulations, such as finding parts of sequences
that are alike and those that differ.

The format for representing the alignment between two DNA sequences
is shown below. In this example, an alignment from base index 10–25 in the
upper sequence with the bases 20–35 on the lower sequence is shown. The
numbers at each end of the alignment correspond to the sequence index in
the original sequence. The matching pair in the two sequences is shown as a
(—). The (:) is often used to identify similar but nonidentical pairs. In our
example, the IUPAC ambiguity code N s used which pairs with G, C, T, or
A. A mismatch occurs between the bases G and T at positions 16 and 26 of
the upper and lower sequences respectively.

10 AANCGTGATCGATGC 25

||:||| ||||||||

20 AATCGTTATCGATGC 35
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5.3.1 Edit Distance

The fundamental underpinning of sequence alignment is the concept of edit
distance, a metric designed to measure the difference between two strings. The
edit distance formalization focuses on editing one of the strings and trans-
forming it into the other using a series of character level edit operations. The
permitted set of edit operations is limited to insertion of a character into
the first string, deletion of a character from the first string, or the substi-
tution (replacement) of a character in the first string by a character in the
second string. Naturally there a number of ways to edit the source string
and transform it to the target string. The set of operations required two
such transformations of the string "PASTRY" into the string "FACTORY" may
be listed as follows using the notation D to denote a deletion from the first
string, I to denote an insertion of character into the first string, and R to
denote a replacement of a character in the first string by a character in the
second string. Note that the character M denotes a character match between
the first and the second string that requires no string edits.

Edit Operations: RMRMIMM DIMDIMIMM

First String: PAST RY P AS T RY

Second String: FACTORY FA CTORY

The first set of edit operations shown above is comprised of two replaces
and one insert. Namely, one way to transform the string PASTRY into FACTORY

is by replacing P by F, replacing S by C, and inserting an O after the T. This,
under the unit cost model where every edit operation has a cost of 1, has a cost
of 3. The second set of edit operations shown requires two delete operations
and three insert operations accumulating a total cost of 5. The string edit
distance between two strings is defined to be the minimum number of string
edit operations needed to transform the first string into the second string. It is
left as an exercise to show using the dynamic programming method discussed
in section 5.4 that the string edit distance between PASTRY and FACTORY is 3.

5.4 Dynamic Programming Algorithm

Dynamic programming is an efficient programming technique for solving cer-
tain combinatorial problems. It is particularly important in bioinformatics
as it is the basis of sequence alignment algorithms for comparing protein
and DNA sequences. In the bioinformatics application Dynamic Program-
ming yields enormous efficiency in comparison to a purely recursive algo-
rithm and thus converts what would be an O(2N ) algorithm to an O(N2).
Using dynamic programming it is possible for an algorithm to evaluate all
possible ways of aligning one sequence against another in polynomial time,
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even though the number of possible alignments grows exponentially with the
length of the two sequences.

A dynamic programming based optimization algorithm lets us achieve a
minimization of edit operations without explicitly enumerating all possible
alignments of two sequences. While performing the alignment score optimiza-
tion, one may either define a distance or a similarity measure as the basis for
scoring an alignment. The difference lies more in the interpretation of the val-
ues. A distance function will define the distance between matching characters
as zero, and assign some positive values for mismatches and gaps and then
aim at minimizing this distance. A similarity function on the other hand will
assign a high (positive) value to matches and a low (negative) values for gaps
and mismatches and then maximize the resulting score. The basic process of
comparing sequences is the same in either case. In 1981, Smith and Water-
man showed that for global alignment, i.e. when a score is computed over the
entire length of both sequences, the two concepts are in fact equivalent.

A C T G

G X

T X

C X X

C X X

T

A C T G

G

T

C

C

T

(a) Alignment Grid (b) Row-wise Traversal

Fig. 5.4 (a) The dynamic programming grid that is utilized for computation of
the alignment. The X marks designate the matching characters. The alignment is
path that passes through the Xs and utilizes only vertical, horizontal and diagonal
movements. One possible alignment is shown. (b) An example of row wise traversal
that is commonly utilized for computing the grid cell values.

The alignment algorithm is based on a grid. If the first sequence is placed
horizontally and the second vertically on the grid as shown in Fig. 5.4. An
alignment corresponds to a path through this grid. Each position in the grid
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determines a position in the first and second sequence. For example, imagine
putting an ’X’ in the grid corresponding to each position in the alignment
where an element from the first sequence is aligned against an element from
the second sequence. Next join the these X’s up in order - only horizontal ver-
tical and diagonal steps are allowed. The path through the grid shows which
elements of the first and second sequence were matched up and therefore
determines the alignment.

Using paths in a grid to represent alignments provides a method of com-
puting best alignments. A score can be placed in each cell of the grid, the
score for the best partial alignment ending at that position in the two se-
quences. All the scores for the best alignments ending at (i,0) or ending at
(0,j) are zero. The score at (i,j) can be calculated from the scores at (i-1,j),
(i,j-1) and (i-1, j-1), so by filling in the scores in the grid the score for the
best alignment can be found. Once the best score is found the path that leads
to it and hence the alignment can be traced back through the grid rapidly.
In computing the scores each cell takes constant time to compute and so the
overall algorithm has time complexity O(mn) where m and n are the lengths
of the two sequences.

In the recursive formulation for completing the score in the grid, one writes
a routine that calculates the score at (i,j) recursively while steeping though
all the elements of the grid. and the nature of the traversal is such that the
calls for computing the score values for (i-1,j), (i,j-1) and (i-1, j-1) have been
completed prior to the invocation for cell (i,j). before returning its result.

5.4.1 Distance-Based Alignment

Albeit the score computation formula for distance value Dj,j is defined using
a recurrence relation formulation, its computation proceeds iteratively. The
computation of the distance value for cell (i,j) is computed by reusing the
results stored in the grid for cells (i-1,j), (i,j-1) and (i-1, j-1). This implies
that the score value computation may proceed in a normal left-to-right, top-
to-bottom scan of the score grid.

Let us assume that we are performing an optimization based on minimiza-
tion of distance between the two sequences. As described in section 5.4.2, such
an optimization could be based on the maximization of similarity between the
two sequences as well if a similarity-based scoring matrix is used. However,
for now, let us assume that we are aligning the sequences to minimize their
distance metric. Let us assume the following unit cost model where distance
between matching characters defined to be “0” and the distance between
mismatching characters and distance for an is assumed to be “1.” Also, the
distance associated with the insertion or deletion of a character, designated
as , is assumed to be “1”.
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- A C C G

-

T

C

C

T

G

1 2 3 40

1 2 3 41

5 4 3 25

2 1 2 32

3 2 1 23

4 3 2 24

Alignment

  A   C   C    -   G

T   C   C   T   G

Fig. 5.5 Array values for computing global alignment using distance based unit
cost model. The distance attributed to insertion (deletion) and substitution opera-
tion is equal to “1”. The back-pointers maintained at each cell enable the traversal
of the optimal path through the array values computed using dynamic program-
ming. For the optimal alignment the string-edit distance between the sequences is
computed to be 2.

d(a, b) =

⎧
⎨

⎩

0 : if a = b
1 : if a �= b
1 : if a = or if b =

(5.1)

The formulation for computing the score for cell (i,j) is defined in Eq. 5.2
below:

Di,j = Min

⎧
⎨

⎩

Di−1,j−1 + d(ai, bj)
Di,j−1 + d( , bj)
Di−l,j + d(ai, )

(5.2)

The result of building the grid is shown in Fig. 5.5. This demonstrates the
computation of Global Alignment using Needleman-Wunsch global alignment
algorithm. Each cell shows the possible optimal predecessors that an align-
ment path may take along any of the multiple optimal paths. The process of
constructing the optimal global alignment begins from the lowest-rightmost
corner, i.e. cell (m,n), and traces back to the cell (0,0). The paths corre-
sponding to the optimal alignment are shown. The optimal alignment is not
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unique, even though there is a unique minimum alignment score for a pair
of sequences. In the example shown in Fig. 5.5 however, only the singleton
alignment shown yields the minimum distance of 2.

Example 5.1
In MATLAB, one has the ability to define a custom scoring matrix for a
given alignment algorithm to use. Computing a distance alignment is simply
a matter of using the Needleman-Wunsch implementation, supplied by the
MATLAB Bioinformatics Toolbox. To use MATLAB to determine nwalign

function in MATLAB adds scores in cells Si,i (i.e. adds the score one matches)
and subtracts the scores in cells Si,j , where i �= j (i.e. subtracts scores where
a mismatch occurs). The code to produce a scoring matrix for use in distance-
based alignment of nucleotide sequences is provided below.

Once the scoring matrix has been constructed, aligning the two sequences
is simply a matter of passing two sequences, as either strings or sequence
constructs, along with the scoring matrix and some other parameters to the
function nwalign. The scalar result of this operation is the global distance
score for the two sequences.

Listing 5.4

scoring_matrix = [

0 -1 -1 -1;

-1 0 -1 -1;

-1 -1 0 -1;

-1 -1 -1 0;

];

seq1 = ’acgtacgtacgt ’;

seq2 = ’tcgttcgttttt ’;

nwalign (seqs1 , seqs2 , ’scoringmatrix ’, scoring_matrix ,

’extendgap ’, 1, ’gapopen ’, 1, ’alphabet ’, ’nt ’);

end-listing-5.4

One can take the absolute value of the result to determine the distance
between the sequences. In the above example, the result is −5, meaning the
distance between the sequences is 5 as can be seen from the alignment.

ACGTACGTACGT

||| ||| |

TCGTTCGTTTTT

End of Example
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5.4.2 Similarity-Based Alignment

Similar to the recursive formulation for completing the distance values in the
grid, the computation of the similarity score for cell (i,j) is computed such
that similarity values for cells (i-1,j), (i,j-1) and (i-1, j-1) have been completed
in the prior steps. The example shown in Fig. 5.6 performs an optimization
based on maximization of similarity between the two sequences using the
following unit scoring model.

s(a, b) =

⎧
⎨

⎩

1 : if a = b
−1 : if a �= b
−1 : if a = or if b =

(5.3)

- A C C G

-

T

C

C

T

G

-1 -2 -3 -40

-1 -2 -3 -4-1

-5 -3 -1 1-5

-2 0 -1 -2-2

-3 -1 1 0-3

-4 -2 0 0-4

Alignment 

  A   C   C    -   G

T   C   C   T   G

Fig. 5.6 The computation of the array values in this similarity based global align-
ment is done using a unit scoring model where the scores of insertion (deletion) and
substitution operation is “-1”. Each match operation is assigned a score of “+1”.
Again, back-pointers maintained at each cell to traverse the optimal path through
the array values computed using dynamic programming. For the optimal alignment
the similarity score between the sequences is 3.

Fundamentally, the operations of calculating the similarity scores will re-
main the same as shown in Eq. 5.4 below. Under this formulation, the score
for cell (i,j) denoted as S(i, j) is computed by iteratively computing the array
values in a left to right, top to bottom traversal.
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Si,j = Max

⎧
⎨

⎩

Si−1,j−1 + s(ai, bj)
Si,j−1 + s( , bj)
Si−l,j + s(ai, )

(5.4)

Each cell in Fig. 5.6 again shows the possible predecessors that are its
optimal predecessors in that an alignment path may take any of the multiply
optimal paths. The paths corresponding to the optimal alignment, backtrack-
ing from the cell (m,n) to cell (0,0), is shown. The optimal alignment is the
same as that shown in Fig. 5.5 with the similarity score in this case of 3.

5.5 Longest Common Subsequence

This section presents another important problem as a special case of the
sequence alignment problem that emerges when the scoring matrix is chosen
such that the mismatches have a score of zero while the matches account for
a score of +1 . This problem is referred to as the longest common subsequence
problem . Before describing the algorithm let’s clarify the difference between
a subsequence and a substring.

Given a string S, a subsequence is defined as a subset if the characters of S
arranged in their original ”relative” order. Thus a subsequence may be defined
as using a set of indices i1 < i2 < i3 . . . < ik, for some k ≤ n. The subsequence
is defined by the string S(i1)S(i2)S(i3) . . . S(ik). Thus, whereas the substring
is comprised of contiguous subset of characters from the sequence, there is
no such contiguity requirement for a subsequence. For example, considering
a string “BIOINFORMATICS”, we have one example of a subsequence to be
“FORTS” which is not a substring. A substring, “INFORM”, on the other
hand is a subsequence as well.

The problem of finding the longest common subsequence (LCS) between
two sequences S1 and S2 is defined as problem of finding the longest subse-
quence that occurs in both the strings. Considering the sequence alignment
array, the LCS may be computed by using a scoring matrix that assigns a
score of zero for all mismatches or gaps and a score of +1 for matches.

Example 5.2
Similar to computing distance-based alignments, similarity alignments can
be implemented in MATLAB by using a custom scoring matrix and Bioinfor-
matics Toolbox’s nwalign function. The scoring matrix for similarity-based
alignment, as previously discussed, possesses a score of 1 for each match and
a score of -1 for each mismatch (e.g. the cells along the diagonal consists of
1 with -1 everywhere else). Once this scoring matrix is constructed, simply
pass it and the two sequences to compare to the nwalign function. The scalar
result returned is the similarity value of the two sequences.

In the following listing, two sequences are aligned and their similarity is
stored in the variable similarity.
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0 000

0 0 221

0 0 000

0 0 111

0 0 221

0 0 321

- A C C G

-

T

C

C

T

G

   C   C    -   G

C   C   T   G

Longest Common 
Subsequence = CCG

Alignment

Fig. 5.7 The similarity matrix values with the cost model defined to find longest
common subsequences. Unlike the global alignment unit cost model, the similarity
score for gap indel and substitution is “0” in this case (instead of “-1”). The match
score is still “+1”.

Listing 5.5

scoring_matrix = [

1 -1 -1 -1;

-1 1 -1 -1;

-1 -1 1 -1;

-1 -1 -1 1;

]

seq1 = ’acgtacgtacgt’;

seq2 = ’tcgttcgttttt’;

similarity = nwalign(seqs1, seqs2, ’scoringmatrix’, scoring_matrix,

’extendgap’, 1, ’gapopen’, 1, ’alphabet’, ’nt’)

end-listing-5.5

The previous code sample would produce a similarity score of 2.
matlab toolbox also provides a function swalign, or Smith-Waterman

Alignment, that performs a similarity based alignment of sequences.
End of Example
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5.5.1 Insertion, Deletion and Substitution Operations

The concept of gap costs is motivated by the evolution model where an align-
ment defines an evolutionarydistance between two DNA or protein sequences.
For computing similarity scores generally assigns 0 to a match, some negative
number to a mismatch and a larger negative number to an insertion and dele-
tion, or indel, events. By adding these values along an alignment one obtains
a score for this alignment. Sometimes a distance function for two sequences
can be defined by looking for the alignment which yields the minimum score.

The treatment of gaps deserves special care. One mostly uses a gap penalty
function which charges a gap open penalty for every gap that is introduced
and penalizes the length with a gap extension penalty which is charged for
every inserted or deleted letter in that gap. Clearly, this results in an affine
linear function in the gap length, frequently written as g(k) = α+βk̇, defining
the cost for inserting a gap of length k in the sequence.

Si,j = Max

⎧
⎨

⎩

Si−1,j−1 + s(ai, bj),
Max1≤k≤j{Si,j−k − g(k)},
Max1≤l≤i{Di−l,j − g(l)}

(5.5)

5.6 Alignment Types

As shown in Fig. 5.8, three types of alignments are used in practice. These
are global, local and fit or semiglobal alignments. Global alignment finds
the optimal score of matching the entire span of one sequence to the entire
span of another. This type of alignment is used when the sequences being
compared are approximately equal in length or are known to be spanning the
same domain so that a sequence level homology between them is expected
a-priori. The example alignments in Sections 5.4.1 and 5.4.2 were all global
alignments.

Sequence A

Sequence B

Sequence A

Sequence B

Sequence A

Sequence B

(a) Global (b) Local (c) Fit 

Fig. 5.8 Different types of alignments. (a) In global alignment the comparison of
the entire span of the two sequences, A and B, are compared to compute the align-
ment score; (b) Local alignment aims at finding maximally similar sub-sequences
from the two sequences; (c) Fit alignment, used for pattern detection, is a match
between a sub-sequence of one sequence and an entire span of another.
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As shown in Fig. 5.8 (b), a local alignment between two sequences attempts
to find a subsequences from the two sequences that match. This is by far
the most common type of alignment sought between two sequences. Local
alignment is the basis for sequence retrieval utilized by GenBank retrieval tool
BLAST. Theoretically, a local alignment is identical to the longest common
subsequence problem discussed in Section 5.5.

The fit alignment, also known as semiglobal alignment, shown in
Fig. 5.8 (c) is a hybrid of the global and local alignments as one of the
two sequences is aligned globally where mismatches at its ends result in a
penalty. The sequence that is aligned across its full span is typically a pat-
tern that we seek to approximately match somewhere in the other sequence.
Since the pattern can occur anywhere in the target, mismatches at the ends
do not incur a penalty.

As an example, let’s consider a fit alignment of the Sequence B=CAATA in
a Sequence A = TCCAGGACATAAGGA. Although the CAT-Box sequence does
not exactly occur in the target sequence A, fit alignment allows us to look for
this match approximately. A dynamic programming array is set up as shown
in Fig. 5.9.
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Fit Alignment Score = 3

Seq. A

Seq. B

Fig. 5.9 The similarity matrix values for fitting a pattern into a sequence. A gap
penalty for the pattern sought, which must match fully, is set to “-1” while the end
gaps for the target sequences where the occurrence of the pattern is sought do not
incur any penalty. The alignment is backtracked from the highest similarity value
in the last row and is traced all the way up to the first row.

A unit cost similarity model is used for completing the elements of the
dynamic programming array where the top sequence is the background in
which the target pattern is sought. The pattern sought is "CAATA" and it
is found in the larger sequence at the position shown. The location of the
pattern’s occurrence is backtracked from the highest value accumulated in the
last row of the dynamic programming array. Furthermore, the backtracking
continues until the entire pattern span is covered and first character of the
pattern represented by the first row is reached.
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5.6.1 Needleman-Wunsch in Matlab

The Needleman-Wunsch Algorithm is a global alignment algorithm that uses
dynamic programming to align nucleotide or protein sequences. This algo-
rithm is implemented in the MATLAB Bioinformatics Toolbox by the nwalign
function. This function accepts the same parameters as swalign and returns
results in the same format. The following example globally aligns two protein
sequences.

• Matlab’s nwalign performs global alignments.

[SCORE, ALIGNMENT, STARTAT] = NWALIGN(SQ1, SQ2,

’ALPHABET’, A, ’SCORINGMATRIX’, matrix, ’GAPOPEN’, penalty,

’EXTENDGAP’, penalty, ’SHOWSCORE’, true)

Where

– ALPHABET specifies whether the sequences are amino acids (’AA’) or
nucleotides (’NT’). The default is AA.

– SCORINGMATRIX defines the scoring matrix to be used for the alignment.
The default is BLOSUM50 for AA or NUC44 for NT.

– GAPOPEN defines the penalty for opening a gap in the alignment. The
default gap open penalty is 8.

– EXTENDGAP defines the penalty for extending a gap in the alignment. If
EXTENDGAP is not specified, then extensions to gaps are scored with the
same value as GAPOPEN.

– SHOWSCORE displays the scoring space and the winning path.

• Parameters for local alignment routine, SWALIGN described in the next
section, are essentially the same. Also, with the exception of SQ1 and SQ2,
the two sequences to be aligned, the other parameters are optional.

• The return parameter STARTAT is for consistency between local and global
alignment functions. It provides the starting location for the alignment
in the two sequences. This will always be position 1 in case of global
alignments.

• Several MATLAB functions provide the capability for specifying scoring
matrices. Common scoring matrices are: blosum (N), dayhoff, gonnet,
nuc44 and pam (N).

5.6.2 Smith-Waterman in Matlab

The Smith-Waterman Algorithm is a local alignment algorithm that can be
used to align nucleotide or amino acid sequences. Matlab supports this al-
gorithm by using the swalign function. This function returns a vector in
the format [score, alignment, start], where score is the bitscore, alignment is
a representation of the alignment, and start is a vector representing where
the alignment begins in each sequence. The following example aligns two
nucleotide sequences.
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Listing 5.6

>> [score alignment start ]= swalign (’ATCGATACGGAG ’,’CGATACCGGCG ’,

’Alphabet ’, ’nt ’)

score =

21.3333

alignment =

CGATA -CGGAG

||||| ||| |

CGATACCGGCG

start =

3

1

end-listing-5.6
The function can be used with any popular scoring matrix (defaults to

NUC44 for nucleotide and BLOSUM50 for amino acid), or a custom scoring
matrix. Additionally, one can specify a cost for creating or extending a gap.
This example aligns two amino acid sequences. If the Alphabet parameter is
not passed, the function will attempt to determine what type of sequences
are used. The example below illustrates the use of Smith-Waterman local
alignment function for finding local homologs between two protein sequences.

Listing 5.7

>> [score alignment start ]= swalign (’QHKATPCCM ’, ’DVQTATPECM ’,

’SCORINGMATRIX ’, ’PAM40 ’, ’GAPOPEN ’, 4, ’EXTENDGAP ’, 8)

score =

17.5000

alignment =

QHKATP -CCM

| ||| | |

Q-TATPEC -M

start =

1

3

end-listing-5.7
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5.6.3 BLAST in Matlab

The Basic Local Alignment Search Tools (BLAST) is a tool used to rapidly
perform local alignments of a query sequence (or a set of query sequences)
against a database of sequences. The National Center for Biotechnology In-
formation (NCBI) hosts BLAST and a number of databases against which
to search so that users can search via the Internet. The Bioinformatics Tool-
box further supports a wrapper which allows one to query NCBI’s BLAST
server from within MATLAB via the blastncbi function. This function works
in tandem with the getblast function, which is used to fetch the results of the
query from the server.

When using BLAST one must first determine which program to use. A
BLAST program determines the type of the query sequence and the result se-
quences (i.e. amino acid or nucleotide). For instance, blastn uses a nucleotide
query sequence and searches against nucleotide sequences.

Another useful search parameter is the specification of a database to
search. Each database only supports certain BLAST programs. For instance,
the nr (non-redundant) database can only be searched using a nucleotide
program.

Each of these parameters can be used with the blastncbi function which
initiates a query on NCBI’s BLAST server. This function simply returns a
vector where the first element is the request ID and the second element is the
request time of execution. The request ID is a unique key used to identify
and fetch your results from the server. The request time of execution is the
time, in minutes, anticipated until the completion of the results are available.

The following example initiates a BLAST query for a nucleotide sequence
in the nr database using the blastn program.

Listing 5.8

>> [rid rtoe ] = blastncbi (’GCGCGTCTGTTCTGTGGAACAGGAGGCAGTTGTTTTCCGTCCGGCT ’, ...

’blastn ’, ’Database ’, ’nr ’)

rid =

TVR2WPE501R

rtoe =

2

end-listing-5.8
Once the query has been submitted, you need to retrieve the results from

NCBI. This can be done using the getgenbank function, which returns the
results of the query, if it has finished. In an attempt to assure that the query
has completed, use the WaitTime parameter and set it to the request time of
execution returned from blastncbi. WaitTime specifies the time, in minutes,
to wait for results and defaults to 0.
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Listing 5.9

>> results = getblast(rid , ’WaitTime ’, 16)

results =

RID: ’TVR2WPE501R ’

Algorithm : ’BLASTN 2.2.29+ ’

Query: ’Length=46’

Database : ’Nucleotide collection (nt)’

Hits: [1x50 struct]

Statistics : [1 x959 char]

end-listing-5.9
If more than one result is returned, the user can iterate through a list. mat-

labãlso provides the function blastread to read data from NCBI BLAST
report.

5.7 More Alignment Functions in MATLAB

This example illustrates the use of functions provided in matlab that ex-
tracts portions of the sequence using the features annotated on the sequence.
The extracted sequences are then aligned and gap characters are inserted
into the extracted sequence based on the alignment information generated
by nwalign.

Initially two nucleotide are retrieved sequences from the GenBank database.
The two sequences are for the neuraminidase (NA) protein of two strains of
the Influenza A virus (H5N1) identified by accession numbers AF509094 and
DQ094287 respectively.

Listing 5.10

hsn01 = getgenbank (’AF509094 ’);

hsn02 = getgenbank (’DQ094287 ’);

end-listing-5.10
Next, the CDS feature annotated on the sequence are extracted as the

coding region from the two nucleotide sequences.

Listing 5.11

hsn01_cds = featuresparse(hsn01 ,’feature ’,’CDS ’,’Sequence ’,true);

hsn02_cds = featuresparse(hsn02 ,’feature ’,’CDS ’,’Sequence ’,true);

end-listing-5.11
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These nucleotide sequences are converted into amino acid sequences us-
ing the matlab function nt2aa, and aligned using nwalign. The resulting
alignment is stored in the variable alignment:

Listing 5.12

[sc ,alignment ] = nwalign (nt2aa(hsn01_cds ), ...

nt2aa (hsn02_cds ), ’extendgap ’,1);

end-listing-5.12
A portion of the alignment matrix is shown below. This matrix has three

rows where the first and third row correspond to the sequences and second
row uses a standard notion for marking the alignment. It should be noted the
deletion characters, -, have been inserted into the original sequences where
appropriate.

Listing 5.13

QKQEIKMNPNQKIMTIGSICMVIGMISLVLQIGNMISIWASHSI . . .

|||||||:|||||||| |::||:||:|||||||:||||

------ MNPNQKIITIGSICMVTGIVSLMLQVGNMISIWVSHSI . . .

end-listing-5.13
The function seqinsertgaps is used to copy the gaps from the aligned amino

acid sequences to their corresponding nucleotide sequences. This function
inserts three gap characters in the nucleotide sequence corresponding to a
single gap character in the amino acid sequence. Thus the DNA sequence
alignments are forced to occur at codon boundaries.

Listing 5.14

hsn01_aligned = seqinsertgaps (hsn01_cds ,alignment (1 ,:))

hsn02_aligned = seqinsertgaps (hsn02_cds ,alignment (3 ,:))

end-listing-5.14
By the way of an example, aligned can be used as input to other functions

such as dnds used for calculating synonymous and non-synonymous substi-
tutions rates of the codon-aligned nucleotide sequences. By setting Verbose
to true, codons considered in the computations and their amino acid trans-
lations are displayed.
Listing 5.15

[dn ,ds] = dnds(hsn01_aligned , hsn02_aligned , ’verbose ’, true)

end-listing-5.15



120 5 Sequence Homology

seqpdist: matlab includes a general purpose pair-wise similarity compu-
tation function. As an example, the following code snippet reads all thirty-
two (32) sequences from a FASTA library file pf00002.fa. These sequences
are stored in an array seqs.

Listing 5.16

seqs = fastaread (’pf00002.fa ’);

end-listing-5.16
The function seqpdist next an alignment scoe for every possible pair of

sequences:

Listing 5.17

dist = seqpdist (seqs ,’Method ’,’alignment -score ’,...

’Indels ’,’pairwise -delete ’,...

’ScoringMatrix ’,’pam250 ’);

end-listing-5.17

5.8 Further Readings

Linking of the various tables available in the Entrez web resource is de-
scribed [1]. As whole genome sequences became available, they were also
made available by the NCBI through this resource [2]. Enterez further ex-
panded its score and included Conserved Domain Database (CDD) structure
information [3]. Entrez’s integration with Online Mendelian Inheritance in
Man (OMIM) database utilized in medical genetics [4, 5]. Further enhance-
ments to the gene centered information in Entrez are described in [6].

The first contribution to the field of sequence alignment is considered to
be the method for global alignment proposed by Needleman and Wunsch [7].
This algorithm used a fixed penalty for a gap regardless of the length of
the gap inserted and was later shown to run in cubic time. Quadratic time
algorithms have been proposed and a fairly comprehensive review of dynamic
programming methods is provided by Miller and Pearson in [8].

A classic text on sequence alignment is by Sankoff and Kruskal [9]. The
seminal paper that perhaps revolutionized the field with the proposed method
for local alignment was the paper by Smith and Waterman [10]. This was a
very influential paper and has since then most local alignment methods are
also referred to as “Smith Waterman” methods. The paper does not specify
the implementation details or provide any complexity analysis of the algo-
rithm. Huang provided a quadratic time linear space implementation of this
local alignment algorithm [11]. Yamaguchi provided a hardware implementa-
tion of the algorithm using FPGA arrays [12].
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Various types of alignments are reviewed in the work by Waterman [13] as
well as consensus based methods are provided in [14].
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5.9 Exercises

1. Circle the list of boolean operators that you can use with Entrez:

o AND
o OR
o NOT

2. Which of the following connectors would you use to retrieve DNA se-
quences related to Cystic Fibrosis.

o Cystic AND Fibrosis
o Cystic OR Fibrosis
o Cystic OR NOT Fibrosis
o “Cystic Fibrosis”

3. Explain the difference between two search terms: (a) New AND Mexico
(b) “New Mexico”. Which of the terms (a) or (b) is likely to yield more
results. Explain.

4. The C-reactive protein in humans is associated with an increased risk of
thrombosis and is also associated with fibrosis. Which of the following
search terms should you use to retrieve the most accurate set of results.

o C-reactive protein, thrombosis, fibrosis
o C-reactive protein, human, increased risk of thrombosis, fibrosis
o C-reactive protein, human
o C-reactive protein, human, thrombosis, fibrosis

5. Appropriately combine the query terms in Question 4 and run a search
on the Entrez server. Evaluate your results. Can you comment on the
precision of your result set for each of the query ran.

6. Explain why it is difficult to estimate the information retrieval recall rate
in biological databases.

7. Conduct a search of Entrez on Matrix and Scaffold Attachment Regions
(S/MARs). Write a 1-page summary describing why these regions are
important, how many sequences related to S/MARs are currently avail-
able in the GenBank. What other databases amongst those housed at
NCBI contain information on S/MARs.

8. Which of the following is not an alignment between sequences s = ATTACG

and t = TTAG?

(a) (b) (c) (d)

AT-TACG --ATTACG-- ATACG ATTACG

|| :||| |||: ||| |

TTAG--- TT------AG TTAG- -TTA-G
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9. Assume that the score for a match is a +1. The penalty for a mismatch
is -2 and for every gap is -1. What is the score for each of the following
alignments?

(a) (b) (c) (d)

AT-TACG ATTAC ATACG ATTACG

:| :||| :| || |||: | || |

TTAG--- GT-AC TTAG- ACTA-G

10. Find all optimal global alignments between strings s = AAAGGC and t =
AAGGC assuming a unit cost model.

11. Which of the following represents a local alignment between sequences s
= AATACG and t = TTTACT?

(a) (b) (c) (d)

TAC AATACG AATACG- -TAC-

||| ||| ::||| |||

TAC --TAC- TTTAC-T TTACT

12. Find the optimal local alignment between strings s = AAAGGCATT and t
= ATAGAGCCAGTT assuming a unit cost model.

13. Find the optimal location of occurrence of the substring s = ATTA in the
sequence t = ATGGTATATAAGCCGAT.

14. Given any two sequences and considering a similarity based cost model
what can you say about which score, local similarity or global similarity,
will be higher. Justify.

15. Given that the scoring scheme is S(a,a) = +1, and S(a,-) = S(-, a) =
S(a,b) = -1, find the global alignment between sequences below. Clearly
show the alignment grid and list all the optimal alignments.

ACCCGGGTTGC

ATCCTGGGC

16. What values would you change in the scoring matrix so that indels are
preferred over substitutions in the final alignment.

17. Nucleotide similarity scores under the unit cost model are defined as
s(u, u) = +1, s(u, v) = −1, s(u,−) = −1, and s(−, u) = −1. Compute
the local alignment between U=ATTAGGAATTAA in sequence
V = CCACCATTTAATTT. Use the empty dynamic programming grid pro-
vided in Question 15 above.

18. What values in the scoring matrix will result producing alignments that
are generally gapless and prefer substitutions to insertion and deletion.

19. A human mitochondrion sequence approximately 2,500 bp long having
a GenBank accession number of BD190340 needs to be compared with
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-

-

a mitochondrian sequence of approximately 6400 bp long having a Gen-
Bank accession number of XM_508037. Compare the two sequences using
a dot plot analysis. Identify the regions of homology between the two
sequences in the dot plot and compare your result by alignment with
Smith Waterman function.

20. The following matlab code segment is used for retrieving a partial se-
quence from GenBank. GenBank contains large reference sequences cre-
ated by evaluating a consensus from many smaller sequences. Generally,
the accession number for reference nucleotide and protein sequences use
a prefix of NC_ and NP_ respectively.

>> human = getgenbank (’NC_000011 ’, ...

’partialseq ’, [5225224 , 5227311] , ...

’sequenceonly ’, true);

>> chimp = getgenbank (’NC_006478 ’, ...

’partialseq ’, [4976170 , 4978435] , ...

’sequenceonly ’, true);

The code snippet above extract the DNA sequence of beta globin gene in
human and chimp from their corresponding reference sequences. Compare
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these two sequences using a (a) dot plot, (b) Smith-Waterman, and (c)
Needleman-Wunch methods. Comment on your results.

21. Implement a function for performing semi-global alignment in MATLAB.
You are allowed to use any of the existing functions (i.e. nwalign, swalign)
provided in MATLAB for your implementation. Your function should
include an argument for passing the scoring matrix.
Run your code and the result of finding the following pattern in a DNA
sequence. Try running the search with at least two scoring matrices of
your choice.
Pattern: ’TTAATA’

Sequence to be searched:
GGAGTAGGATGGGATTAGCCATACCACTATTACCCAGAATAA

AACCTATTGGGATTTACCCTATTATTATATTATTTCCGAGAG



Chapter 6

Protein Alignments

Protein sequence data has begun playing a significant role in biology and
biochemistry. In the past, protein sequence determination was usually one of
the last steps in the characterization of a protein. Given the advancements
of the Human Genome Project, one can first sequence all the genes and use
sequence analysis to infer function using sequence alignment methods.

With the development of high performance sequence comparison methods,
researchers have begin making discoveries purely based on sequence com-
parison. For example, in a surprising discovery made using computational
techniques, a tumor suppressor gene in humans was related to yeast and
E. coli DNA repair enzymes. This discovery, albeit the result of a similarity
search, helped researchers better study the nature of mutations in oncogenes.
As whole genomes from a variety of organisms become available, protein se-
quence comparison will become indispensable for understanding biological
function.

The power of protein sequence comparison stems from the fact that a
large portion of protein sequence information is preserved throughout the
evolutionary process. The history of a protein can often be traced back 12
billion years, and may be compared with other homologous proteins that
share a common ancestor. Homologous proteins always share a common three-
dimensional folding structure and often share common active sites or binding
domains, and frequently share common functions.

Principally, there are two reasons for comparing and aligning protein
sequences:

• To obtain an accurate alignment
• To search a database with a newly discovered protein sequence and identify

its functions via analogous known proteins

Underlying principles and techniques for sequence comparison as applied
to proteins are discussed in this chapter.

c© Springer International Publishing Switzerland 2015 127
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6.1 Scoring Matrices

All algorithms to compare protein sequences rely on some scheme to score the
equivalence of of each of the 210 possible pairs of amino acids. (i.e. 190 pairs
of different amino acids + 20 pairs of identical amino acids). Most scoring
schemes represent the 210 pairs of scores as a 20 × 20 matrix of similarities
where identical amino acids and those of similar character (e.g. I, L) give
higher scores compared to those of different character (e.g. I, D). Since the
first protein sequences were obtained, many different types of scoring scheme
have been devised. The most commonly used are those based on observed
substitution and of these, the 1976 Dayhoff matrix for 250 PAMs has until
recently dominated.

6.1.1 Identity Matrix

This is the simplest scoring scheme; amino acid pairs are classified into two
types: identical and non-identical. Non-identical pairs are scored 0 and iden-
tical pairs given a positive score (usually 1). The scoring scheme is generally
considered less effective than schemes that weight non-identical pairs, partic-
ularly for the detection of weak similarities. The normalized sum of identity
scores for an alignment is popularly quoted as “percentage identity”, but this
value can be useful to indicate the overall similarity between two sequences,
there are pitfalls associated with the measure, particularly when percent-
age identity is the statistic used for an reporting the similarity between two
sequences. However, the expected value of percentage identity is strongly de-
pendent upon the length of alignment; for example, an alignment of length
200 showing 30% identity is more significant than an alignment of length 50
with the same identity.

6.1.2 Chemical Similarity Scoring

The aim with chemical similarity scoring schemes is to give greater weight
to the alignment of amino acids with similar physiochemical properties. This
is desirable since major changes in amino acid type could reduce the ability
of the protein to perform its biological role and hence the protein would be
selected against during the course of evolution. Researchers classified amino
acids on the basis of polar or non-polar character, size, shape and charge and
gives a score of 6 to inter-conversions between identical rare amino acids (e.g.
F, F). The score was reduced to 0 for substitutions between amino acids of
quite different character (e.g. F, E).
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6.1.3 Observed Substitutions

Scoring schemes based on observed substitutions are derived by analyzing the
substitution frequencies seen in alignments of sequences. This is something
of a chicken and egg problem, since in order to generate the alignments, one
really needs a scoring scheme but in order to derive the scoring scheme one
needs the alignments! Early schemes based on observed substitutions worked
from closely related sequences that could easily be aligned by inspection.
More recent schemes have had the benefit of the earlier substitution matri-
ces to generate alignments on which to build. Long experience with scoring
schemes based on observed substitutions suggests that they are superior to
simple identity, genetic code, or intuitive physiochemical property schemes.
Two examples of such scoring matrices are PAM and BLOSUM. These are
discussed in more detail below.

6.1.4 PAM Scoring Matrix

The PAM or Accepted Point Mutation scheme for scoring amino acid pairs
was that developed by Dayhoff and coworkers. They presented a method for
estimating the matrix M from the observation of 1572 accepted mutations
between 34 super-families of closely related sequences. The system arose out
of a general model for the evolution of proteins. Dayhoff and coworkers ex-
amined alignments of closely similar sequences where the the likelihood of a
particular mutation (eg. A-D) being the result of a set of successive mutations
(eg. A-x-y-D) was low.

ABCF AACE ACID ABIJ

ABCE
ABID

F -> E A -> B C -> B J -> D

E -> D I -> C

ABCD

1
1

1
11

1
1

11
1

1
1

1
1

1
1

1
1

1

1
1

1
1

A
B
C
D
E
F

I

J

A B C D E F I J

Phylogenic Tree (Given) Inferred Accepted Point Mutations 

Fig. 6.1 The phylogenetic tree is used as a basis for computing the mutation
frequencies thus defines the accepted point mutations. By constructing a phyloge-
netic tree, the PAM matrix construction takes into account the inferred accepted
mutation frequencies through the evolutionary history of related proteins.
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Consider for example the phylogenetic tree and the corresponding accepted
point mutations shown in Figure 6.1. The underlying assumption is that the
likelihood of amino acid X replacing another amino acid Y is the same as that
of Y replacing X. Correspondingly, when a “1” is entered into the cell XY, a
“1” is also entered into the cell YX. In general, when such mutations are being
accumulated, the cell entries will be incremented. Furthermore, the counting
process is continues up the phylogenetic tree and is not simply limited to
the leaves of the tree. This enables the computation of the accepted point
mutations to go back in evolutionary time history and thus produces a sharper
rendition of the which amino acid mutations are relatively more acceptable.
Thus, the replacement of amino acid I with C and the replacement of E with
D is not observed in the leaves of the phylogenetic tree. In order to record
these and other acceptable point mutations that occurred in the past, one has
to construct the phylogenetic tree and use the augmented set of mutations
as the basis recording the frequency counts.

A Ala

R Arg 30

N Asn 109 17

D Asp 154 0 532

C Cys 33 10 0 0

Q Gln 93 120 50 76 0

E Glu 266 0 94 831 0 422

G Gly 579 10 156 162 10 30 112

H His 21 103 226 43 10 243 23 10

I Ile 66 30 36 13 17 8 35 0 3

L Leu 95 17 37 0 0 75 15 17 40 253

K Lys 57 477 322 85 0 147 104 60 23 43 39

M Met 29 17 0 0 0 20 7 7 0 57 207 90

F Phe 20 7 7 0 0 0 0 17 20 90 167 0 17

P Pro 345 67 27 10 10 93 40 49 50 7 43 43 4 7

S Ser 772 137 432 98 117 47 86 450 26 20 32 168 20 40 269

T Thr 590 20 169 57 10 37 31 50 14 129 52 200 28 10 73 696

W Trp 0 27 3 0 0 0 0 0 3 0 13 0 0 10 0 17 0

Y Tyr 20 3 36 0 30 0 10 0 40 13 23 10 0 260 0 22 23 6

V Val 365 20 13 17 33 27 37 97 30 661 303 17 77 10 50 43 186 0 17

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

A R N D C Q E G H I L K M F P S T W Y V

Fig. 6.2 Accepted mutation frequencies (× 10) observed in 34 super-families of
proteins grouped into 71 evolutionary trees. The table represents a total of 1,572
exchanges. Thirty-five (35) exchanges of the total 190 possible are never observed.
Fractional exchanges result from ambiguity in ancestral sequences.

Dayhoff constructed such a frequency matrix of using 34 super-families
grouped into 71 evolutionary trees. In order to minimize the effect of succes-
sive accepted mutations at a given site, the sequences within a tree were less
that 15% different from one another. As shown in Figure 6.2, 35 of the 190
possible exchanges were never observed. The data values in the table have
been multiplied by 10. The total number of mutations observed was 1,572
with 83 being the largest number of mutations observed between any two
amino acids, Asp and Glu in this case.
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Mutability and Occurrence Probability of Amino Acids

A mutation matrix, denoted by M, describes the probabilities of amino acid
mutations for a given period of evolution.

Pr(Amino Acid i → Amino Acid j) = Mij (6.1)

Implicit in this equation is the relative ease with which an amino acid
changes – a parameter that is defined as the probability that a given amino
acid will change in a given small evolutionary interval. This parameter is
called the relative mutability of the amino acid. This parameter is computed
as the ratio of the number of times that the amino acid is replaced and
the number of times it is observed in all the alignments. All the sequences
from the various trees are combined and treated in an aggregate manner for
computing the relative mutability. The number of changes are computed by
considering the pairwise alignments as shown in Figure 6.3.

Aligned Sequences

A    B    C   B
|     :      |     :
A    A    C   D

A B C D

3 2 2 1

1 2 0 1

0.33 1 0 1

Occurrence Frequency

Changes Observed

Relative Mutability

Fig. 6.3 The relative mutability of the various amino acids is computed as the
ratio of the number of changes observed in the amino acid and the number of times
the amino acid occurs and is thus exposed to mutations

The relative abundance of each amino acid observed in the accepted point
mutation is also captured. Dayhoff captured the relative mutability a scale
such that the mutability of Ala was assigned a value of 100. The relative
mutability is converted to a probability value by scaling with a coefficient λ
which is related to the definition of PAM-1. If we denote the relative mu-
tability of an amino acid i as μi, the scaling coefficient is defined such that
(μi × λ) is the probability that the amino acid i will change in the evolu-
tionary period of interest. Furthermore, if we let the normalized frequency of
the amino acid i be fi, the probability that a given amino acid will change
is given by Eq. 6.2.
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σ =
20∑

i

fiμiλ (6.2)

The summation σ is the probability that a change will be observed at any
position in the given sequence. In accordance to the stipulation of PAM-1, this
probability is to equal 0.01 as PAM-1 corresponds to an evolutionary distance
where one change occurs per 100 residues. This enables us to calculate the
value for λ as shown in Figure 6.4 and which equals 0.01

75.2 = 1.329× 10−4.

Mutability 

(μi)

Normalized 

Frequency (fi)
μi x fi

A Ala 100 0.087 8.700

R Arg 065 0.041 2.665

N Asn 134 0.040 5.360

D Asp 106 0.047 4.982

C Cys 020 0.033 0.660

Q Gln 093 0.038 3.534

E Glu 102 0.050 5.100

G Gly 049 0.089 4.361

H His 066 0.034 2.244

I Ile 096 0.037 3.552

L Leu 040 0.085 3.400

K Lys 056 0.081 4.536

M Met 094 0.015 1.410

F Phe 041 0.040 1.640

P Pro 056 0.051 2.856

S Ser 120 0.070 8.400

T Thr 097 0.058 5.626

W Trp 018 0.010 0.180

Y Tyr 041 0.030 1.230

V Val 074 0.065 4.810

Fig. 6.4 The sum of the product of relative mutability (μi) and normalized ob-
served amino acid frequency (fi) is used for computing the coefficient λ that pro-
vides the scaling factor for converting the mutability to the probability that an
amino acid changes during a given evolutionary distance such as PAM-1 where one
(1) point mutation is accepted per 100 amino acids

PAM

The PAM is a mutation probability matrix. Each element of the mutation
probability matrix (Mij) gives the probability of the amino acid in row i
mutating to the amino acid in column j after a particular evolutionary time.
In the PAM model of evolution, amino acids mutate randomly and indepen-
dently from one another but according to some predefined probabilities. A
1-PAM mutation matrix describes an amount of evolution which will change,
on the average, 1% of the amino acids.
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The probability of changing an amino acid a to amino acid b is computed
as a conditional probability that a will change to b given that a will change.
Again, the probability that the amino acid a changes to amino acid b is
the fraction fab

fa
where frequency fab is obtained from Figure 6.2 and fa =

∑
j,j �=a faj . Thus, the element Mab of PAM-1 is computed using Eq. 6.3:

Mab = P (a → b)

= P (a → b|a changed)× P (a changed)

=
fab
fa

× μa × λ (6.3)

The non-diagonal elements of the PAM-1 matrix having been thus com-
puted, the diagonal elements are computed as: Maa = 1 − ∑

b�=a Mab. The
PAM-1 matrix computed in this manner is shown in Figure 6.5.

A Ala 9867 2 9 10 3 8 17 21 2 6 4 2 6 2 22 35 32 0 2 18

R Arg 1 9914 1 0 1 10 0 0 10 3 1 19 4 1 4 6 1 8 0 1

N Asn 4 1 9822 36 0 4 6 6 21 3 1 13 0 1 2 20 9 1 4 1

D Asp 6 0 42 9859 0 6 53 6 4 1 0 3 0 0 1 4 3 0 0 1

C Cys 1 1 0 0 9973 0 0 0 1 1 0 0 0 0 1 5 1 0 3 2

Q Gln 3 9 4 5 0 9876 27 1 23 1 3 6 4 0 6 2 2 0 0 1

E Glu 10 0 7 56 0 35 9864 4 2 3 1 4 2 0 3 4 2 0 1 2

G Gly 21 1 12 11 1 2 7 9935 1 0 1 2 2 1 3 21 3 0 0 5

H His 1 8 18 3 1 20 1 0 9912 0 1 1 0 2 3 1 1 1 4 1

I Ile 2 2 3 1 2 1 2 0 0 9872 9 2 12 7 0 1 7 0 1 32

L Leu 3 1 3 0 0 6 1 1 4 22 9947 2 45 13 3 1 3 4 2 15

K Lys 2 37 25 6 0 12 7 2 2 4 1 9926 19 0 3 8 11 0 1 1

M Met 1 1 0 0 0 2 0 0 0 5 8 4 9875 1 0 1 2 0 0 4

F Phe 1 1 1 0 0 0 0 1 2 8 6 0 4 9946 0 2 1 3 28 0

P Pro 13 5 2 1 1 8 3 2 5 1 2 2 1 1 9926 12 4 0 0 2

S Ser 28 11 34 7 11 4 6 16 2 2 1 7 4 3 17 9841 38 5 2 2

T Thr 22 2 13 4 1 3 2 2 1 11 2 8 6 1 5 32 9871 0 2 9

W Trp 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 9976 1 0

Y Tyr 1 0 3 0 3 0 1 0 4 1 1 0 0 21 0 1 1 2 9946 1

V Val 13 2 1 1 3 2 2 3 3 57 11 1 17 1 3 2 10 0 2 9902

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

A R N D C Q E G H I L K M F P S T W Y V

Fig. 6.5 The mutation probability matrix for the evolutionary distance of 1 PAM.
Elements of the matrix are multiplied by 10,000. The elements of the matrix, Mij

give the probability that the amino acid in row i will replace the amino acid in
column j after the specified evolutionary distance which in this case is one (1)
accepted point mutation per 100 amino acids.

The PAMmodel is an empirical one that scales probabilities of change from
one amino acid to another in terms of a unit which is defined as an expected
1% change between two amino acid sequences. If we have a probability or
frequency vector p capturing the frequency of occurrence of amino acids, the
product M × p gives the probability vector, i.e. the expected frequency of p
after a random evolution equivalent to 1-PAM unit. Similarly, after k units
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of evolution (what is sometimes called k-PAM evolution) a frequency vector
p will be changed into the frequency vector Mkp .

This PAMmodel of evolution is symmetric, and thus we cannot distinguish
the probability of amino acid i evolving to j from the probability of j evolving
to i. This implies a simple relation for the entries in any Mk:

fi(M
k)ji = fj(M

k)ij

PAM matrices for different values of evolutionary time spans are provided
in MATLAB. The default ordering of amino acids is A R N D C Q E G H I

L K M F P S T W Y V B Z X * with * denoting the deletion character. The
PAM-n matrix may be requested by providing a value of 10 ≤ n ≤ 500 as
the parameter to function pam. However, the value of n must be multiple of
10. The order in which the values are reported may be adjusted by defining a
Order property. Note that the scores for deletion character are not included
in the second command listed below.

Listing 6.1
PAM50 = pam(50);

PAM250 = pam(250,’Order’,’CSTPAGNDEQHRKMILVFYW’);

end-listing-6.1

Dayhoff Matrix

A Dayhoff matrix is computed from a 250-PAM mutation matrix. The Day-
hoff matrix is a log-odds scoring matrix that is typically used for the standard
dynamic programming methods of sequence alignment. The Dayhoff matrix
entries are related to M250 matrix by:

Dij = 10 log
(M250)ij

fi

Thus the Dij matrix is a log odds ratio of the observing the amino acid
i after it was mutated from an amino acid j (numerator) and the random
occurrence of the amino acid i (denominator).

Aligning sequences by dynamic programming using Dayhoff matrices is
equivalent to finding the alignment which maximizes the probability that the
two sequences evolved from an ancestral sequence. More precisely, we are
comparing the logarithm of the probabilities of two events, namely the event
a) that the two sequences are independent of each other, and the event (b)
that the two sequences have evolved from some common ancestral sequence
after some amount, t, of evolution. The event (a) has the probability equal
to the product of the individual frequencies of the two amino acids, i.e.

Pr(independent alignment of i and j ) = fifj
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And the probability of the competing event (b) is:

Prob(event (b)) = Pr(i and j have a common ancestor x)

=
∑

x

fxPr(x → i)Pr(x → j)

=
∑

x

fx(M
t)ix (M t)jx

=
∑

x

fj(M
t)ix (M t)xj

= fj(M
2t)ij = fi(M

2t)ji (6.4)

The entries of the Dayhoff matrix are the logarithm of the quotient of
these two probabilities of event (b) and event (a). Since dynamic program-
ming maximizes the sum of the similarity measure, the sum of the logarithms
or the product of these quotients of probabilities is maximized. As a result,
dynamic programming finds the alignment which maximizes the overall prob-
ability the amino acids in the alignment of having evolved from a common
ancestor. In this manner a maximally likely alignment, measured against the
null hypothesis of being independent, is obtained.

The resulting measure of similarity is a sum of Dayhoff entries which is 10
times the logarithm of this probability. For example, the matching described
by with a similarity of 238 means that the probability of both sequences
coming from a common ancestors 1024 times the probability that they are
independent.

MATLAB function dayhoff provides this matrix for use in computation
of protein similarities. The command below returns Dayhoff’s original PAM-
250 substitution matrix into the variable df. The order of amino acids in
the matrix is A R N D C Q E G H I L K M F P S T W Y V B Z X *, with
* designating the deletion character.

Listing 6.2
df = dayhoff;

end-listing-6.2

6.1.5 BLOSUM Matrix

Although Dayhoff’s method was pioneering in the field, nowadays we are able
to estimate M by somewhat more accurate methods. One of these methods is
the one utilized for computing the BLOSUM (BLOcks SUbstitution Matrix)
scoring matrices family. The derivation of BLOSUM matrices is somewhat
simpler than the PAMmatrices. Similar to the construction of PAM matrices,
the BLOSUM matrix also begins with the data set that can be trusted.

This alternative approach has been developed by Henikoff & Henikoff
where the BLOSUM matrices were developed by starting with a set of
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proteins from the public databases that had been grouped into related fam-
ilies. From these they obtained blocks of aligned sequences where a block is
defined as an ungapped alignment of a relatively conserved region of a family
of proteins. Given the alignment shown the similarity matrix computation
proceeds by taking the log odds value of the probability of observing a pair
of amino acids in the alignment to the occurrence of the pair of amino acid
occurring purely by chance. For example, consider the following alignment
block defined over amino acids A, B, C and D.

A B B C A
B B A D C
A B D D D
A A A B C
A B A D C
A B A D C

This sample block comprises of an observation of 30 amino acids, out of which
11 are A, 8 are B, 5 are C, and 6 are D. Thus the observed proportions of
the amino acids A, B, C and D are 11

30 ,
8
30 ,

5
30 , and

6
30 respectively. These

background probabilities are used computing the amino acid pairings by pure
random chance based solely on the relative abundance of the amino acids.

Next, we compute the pairing probabilities from the given alignment block.
Recall that each block is an ungapped alignment and therefore we need not
concern ourselves with the indel character. Each column in the block repre-

sents an observation of

(
6
2

)

= 15 possible alignment pairs. Since we have a

block comprising of 5 columns, there are a total of 75 alignment pairs. Their
distribution is as follows:

Probability or
Amino Acid Pair Observed Proportion

A ↔ A 16
75

A ↔ B 14
75

A ↔ C 4
75

A ↔ D 5
75

B ↔ B 10
75

B ↔ C 1
75

B ↔ D 5
75

C ↔ C 6
75

C ↔ D 8
75

D ↔ D 6
75

The computation of the scoring matrix proceeds by comparing the observed
pairings of the amino acids in the block with the expected pairings that
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would have been observed by chance alone. Letting px,y be the probability
of observing an alignment amino acids x and y within a block, with px and
py being the probabilities of these amino acids’ abundance, the estimated
likelihood of the observation being a significant is

pxy

px·py
. A log-likelihoods

is used in practice. For the block we are using in our example, these log-
likelihoods are as follows:

Amino Acid Observed Expected

Pair Proportion Proportion 2× log2

(
observed proportion
expected proportion

)

A ↔ A 16
75

11
30 .

11
30 1.332

A ↔ B 14
75

11
30 .

8
30 1.866

A ↔ C 4
75

11
30 .

5
30 -0.393

A ↔ D 5
75

11
30 .

6
30 -0.275

B ↔ B 10
75

8
30 .

8
30 1.814

B ↔ C 1
75

8
30 .

5
30 -3.474

B ↔ D 5
75

8
30 .

6
30 0.644

C ↔ C 6
75

5
30 .

5
30 3.052

C ↔ D 8
75

5
30 .

6
30 3.356

D ↔ D 6
75

6
30 .

6
30 2.0

The elements of the BLOSUM matrix are found by calculating twice the
logarithm (to the base 2) of the ratio of the proportion of times each amino
acid combination occurs in any column to the proportion expected under
random allocation. This value, shown in the last column is rounded to the
nearest integer. For the alignment block shown above the substitution matrix,
without the overabundance correction described below, would thus be as
follows:

A B C D

A 1 2 0 0

B 2 2 -3 1

C 0 -3 3 3

D 0 -1 3 2

Since the algorithms that construct the aligned blocks employ substitu-
tion matrices, there is a circularity of computation in the procedure as the
aligned blocks are needed for the computation of substitution matrices. This
circularity is resolved by first using a unitary matrix for bootstrapping the
alignment process, using local multiple alignments of more distantly related
sequences.

BLOSUM is really a family of matrices. Commonly utilized scoring matri-
ces are BLOSUM-50, BLOSUM-62 and BLOSUM-80. In order to understand
the differences between these matrices, a significant shortcoming of the deriva-
tion of the matrix must be considered. The substitution matrix derived using
the procedure above is influenced heavily by the population of sequences in
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the block. Thus, if there are many very closely related proteins in a block, the
contribution of the block will be biased towards closely related proteins. Con-
sidering the two alignment blocks shown in Fig. 6.6, the substitution matrix
derived from block with multiple instances of ABAA will quite different from
the matrix derived form the block where this sequence is only represented
once.

A B A A
A B A A
A B A A
A B C A
D B A A

A B A A
A B C A
D B A A

Fig. 6.6 An over-representation of a sequence in a block (left) will yield substitu-
tion matrix that is significantly different from a block where sequences are uniformly
distributed

Henikoff and Henikoff overcame this problem by treating multiple se-
quences in a block that are sufficiently close to each other as a single sequence.
This allowed them to define the various levels of the BLOSUM matrices by
differentially weighting the degree of similarity between sequences.

A R N D C Q E G H I L K M F P S T W Y V

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

A Ala 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0

R Arg -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3

N Asn -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3

D Asp -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3

C Cys 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1

Q Gln -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2

E Glu -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2

G Gly 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3

H His -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3

I Ile -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3

L Leu -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1

K Lys -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2

M Met -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1

F Phe -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1

P Pro -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2

S Ser 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2

T Thr 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0

W Trp -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3

Y Tyr -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1

V Val 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

Fig. 6.7 The Block Substitution Matrix or BLOSUM matrix. This is BLOSUM 62
of the family of matrices. The index 62 in its name characterizes that sequences
that are more than 62% similar in the protein blocks used in its derivation are given
a cumulative weight of a single sequence. Generally, the smaller the index of the
BLOSUM matrix, the longer the evolutionary time span of its sensitivity. Thus, a
BLOSUM 30 matrix will detect more distant relationships than the BLOSUM 80
matrix.
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For example, a BLOSUM62 matrix is calculated from protein blocks such
that if two sequences are more than 62% identical, then the contribution of
these sequences is weighted to sum to one. In this way the contributions of
multiple entries of closely related sequences is reduced. Similarly, other matri-
ces are obtained by varying the clustering threshold – the BLOSUM-80 matrix
derived using a threshold of 80%identity. A researcher interested in capturing
distant relationships would thus utilize a lower-indexed matrix, BLOSUM-
50 for instance, as its derivation would have assumed that sequences that
50% or more identical are treated as identical, leaving the other more distant
proteins to define the terms of the substitution matrix. The more commonly
used BLOSUM-62 matrix is shown in Fig. 6.7.

6.1.6 Matrices Derived from Structure

The most reliable protein sequence alignments may be obtained when all
the proteins have had their tertiary structures experimentally determined.
Comparison of three dimensional structures also allows much more distantly
related proteins to be aligned accurately. Analysis of such alignments should
therefore give the best substitution matrices. Researchers have derived sub-
stitution frequencies from a number of proteins that have been structurally
aligned after grouping them based on function.

6.1.7 Choosing the Right Scoring Matrix

The general consensus is that matrices derived from observed substitution
data (e.g. the Dayhoff or BLOSUM matrices) are superior to identity, ge-
netic code or physical property matrices. It is recommended that a mutation
data matrix for the distance of 250 PAMs as a result of a study using a dy-
namic programming procedure to compare a variety of proteins known to be
distantly related.

Recently, Altschul has examined Dayhoff style mutation data matrices
from an information theoretical perspective. For alignments that do not in-
clude gaps he concluded that a matrix of 200 PAMs was most appropriate
when the sequences to be compared were thought to be related. However,
when comparing sequences that were not known in advance to be related
such as when searching a database scanning, a 120 PAM matrix is a better
choice. When using a local alignment method, PAM40, PAM120 or PAM250
could be used. The lower PAM matrices will tend to find short alignments of
highly similar sequences, while higher PAM matrices will find longer, weaker
local alignments.

Henikoff and Henikoff have compared the BLOSUM matrices to multiple
PAM matrices by evaluating how effectively the matrices can detect known
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members of a protein family from a database when searching with the un-
gapped local alignment program BLAST. They conclude that overall the
BLOSUM 62 matrix is the most effective. However, all the substitution ma-
trices investigated perform better than BLOSUM 62 for a subset of protein
families. This suggests that no single matrix is the complete answer for all
sequence comparisons. It is probably best to complement the BLOSUM 62
matrix with comparisons using 250 PAM.

6.2 Further Readings

An introductory procedure for constructing Point Acceptance Matrix (PAM)
is presented by Dayhoff in [6] and further details are offered in [7]. Altschul
provides a comprehensive guidelines for deciding which PAM matrix
(PAM 120, PAM 200, etc.) should be chosen under what circumstances [8].
Statistical significance for the basis for the choice of PAM matrices is
discussed in [9]. The procedure for constructing the BLOSUM matrix is
described by Henikoff in [10] and [11].
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6.3 Exercises

1. Consider the row corresponding to amino acid R in a hypothetical scoring
matrix utilized for protein. Assume that the values for the columns corre-
sponding to amino acids A and W are -10 and -1 respectively. Which (check
all that apply) of the following inferences can you draw:

o Over evolutionary time, R is more likely to mutate to A than it is to W.
o Over evolutionary time, R is more likely to mutate to W than it is to A.
o R is functionally similar to W.
o R is functionally similar to A.

2. Assuming that the penalty for a gap is -4, compute the score for the
following alignment using the PAM-1 matrix shown in Fig. 6.5.

(a) (b)

ADAD-RQQ KA-LMAR

|||: :| :| :: :

ADACN-DQ VAKKN-S

3. PAM-1 is a unit of evolutionary time where the amino acids have mutated
such that there is 1% change between the evolved sequence and the orig-
inal sequence. By this analogy would a PAM-100 represent a time span
where the evolved sequence changed from the original by 100%? And, what
percent change do you expect for evolutionary duration corresponding to
PAM-250? Explain your answer.

4. Repeat problem 2 using the BLOSUM-62 matrix shown in Fig. 6.7.
5. Using the scores in BLOSUM-62 matrix, and assuming the score of indel

is -4, provide the score for the following alignments. Which alignment is
relatively better.

HARF-L HARF--L

|:: | | | |

-AFHIL -A-FHIL

Is there a indel score value that would make the two alignment scores
relatively comparable?



Chapter 7

Multiple Sequence Alignment

Multiple Sequence alignment (MSA) is a generalization of Pairwise Sequence
Alignment to multiple sequences. Thus, instead of aligning two sequences, the
objective in MSA is to align k sequences simultaneously such an overall func-
tional is optimized. The motivation behind doing a MSA is that it allows us to
extract consensus evident in a widely diverse set of sequences. The similarities
we observe across a wider range of sequences can help us better understand
the evolutionary history of sequences as well as help infer a functional re-
lationship amongst a group of biological sequences. Particularly for protein
sequences, MSA can provide insight into the secondary/tertiary structure of
proteins and discover critical consensus motifs and common blocks represen-
tative of protein domains or the functional units. Generally however, before
performing the MSA step, typically we already know that the set of sequences
being aligned are related, and our objective is to discover those regions and
strength of relatedness.

7.1 Scoring Multiple Sequence Alignment

In a multiple sequence alignment, homologous residues amongst a set
of sequences are alignment together in a column. Scoring alignments is a
prerequisite for generally comparing alignments and in ultimately finding
an optimal alignment that minimizes the alignment score. Generally, the
computation of the score of a multiple sequence alignment is obtained as a
sum of the scores of the individual columns in the alignment. For an alignment
comprising of N columns, the alignment scores is computed as:

N∑

i=1

S(mi) +Δ

The essential concept of adding the individual scores of the N columns of the
multiple alignment where the score of aligning the ith. column is denoted as
S(mi), Although the score of individual columns takes gaps into consideration,
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there is an overall gap introduction cost included in the term Δ in the above
equation. However, the cost of gaps in the overall multiple alignment was to
be considered to the extent that individual column scores account for it, the
term Δ may be excluded from the MSA scoring equation above.

Given the formalization above, the problem of finding an optimal multiple
sequence alignment is thus reduced to scoring individual columns. The Sum
of Pair or SP measure used to define the score of a column of the alignment.
The column score S(mi) is defined using the pairwise scores:

S(mi) =
∑

k<l

s(mk
i ,m

l
i)

The similarity score is between residuesmk
i and ml

i is based on appropriate
similarity model. For example, a unit cost model may be utilized in the
case of DNA sequences and BLOSUM or PAM matrices in case of protein
sequences. Unlike in alignment of two sequences, the pairwise scores in a
multiple sequence alignment could require the scoring s(−,−). This similarity
score is generally considered zero.

Example 7.1
Assume the we have the following MSA. And, assuming the unit model where
s(a,a) = 1 and s(a,b) = 0.

A A – G –
C – T C T
A – T G –

The pair wise similarity for columns 1, 3 and 4 is 1 each, and other columns
have a pairwise score of zero. The total MSA score is thus 3.

End of Example
Even though the sum of pairs scores is utilized for the computing the

heuristically best alignment, the problem of finding the optimal multiple se-
quence alignment is formulated below.

7.2 Mathematical Formulation for the MSA Problem

AGlobal Multiple Sequence Alignment of k > 2 sequencesX = {x1, x2 . . . xk}
is obtained by inserting gaps (” ”) into the {x1, x2 . . . xk} and thereby trans-
forming them to {x′1, x′2 . . . x′k}. The MSA is then defined by a block k×L
where all the k transformed sequences have been arranged in a matrix and
have a uniform length of L. The restriction in the MSA matrix is that none
of the columns is comprised entirely of gaps.

The evaluation of the MSA is typically done using a Sum of Pair scoring or
SP scoring. A scoring matrix like PAM or BLOSUM may be used for scoring
the alignment between any pair of sequences. These scores are added to yield
the overall MSA scores.
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7.3 MSA-Dynamic Programming

The computation of a MSA can, theory, be a generalization of the dynamic
programming approach used for pairwise alignment discussed in Section 5.4.
In case of three sequences, that have been aligned up to characters xi, yj
and zk, the optimal match score may be written in terms of the previously
computed match scores and the similarity costs defined by a scoring matrix.
In this manner the multiple sequence alignment problem may be posited as
an optimization problem where a three dimensional array is computed using
the following recursive formula in Eq. 7.1.

Mi,j,k = Max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mi−1,j−1,k−1 + S(xi, yj , zk)
Mi,j−1,k−1 + S(′−′, yj , zk)
Mi−1,j,k−1 + S(xi,

′ −′, zk)
Mi−1,j−1,k + S(x1, yj,

′ −′)
Mi,j,k−1 + S(′−′,′ −′, zk)
Mi−1,j,k + S(xi,

′ −′,′ −′)
Mi,j−1,k + S(′−′, yj ,′ −′)

(7.1)

In general the number of terms to be considered in the recursive formu-
lation with n sequences will be 2n − 1. The time complexity for the compu-
tation is there Θ(2n × Ln). Thus, the MSA problem is intrinsically an hard
NP-complete problem and thus a close approximation to the optimal solution
will be acceptable in practice.

7.4 Progressive Alignment Methods

Progressive alignments are a commonly utilized methods for developing mul-
tiple sequence alignments. Essentially the process of developing a progressive
alignment is based on constructing successive pairwise alignments starting
with a standard pairwise alignment of two sequences closest within the group
of sequences to be aligned. Subsequently, the next sequence closest sequence
is chosen from the group and aligned with the first alignment. This process
continues until all sequences have been aligned.

Progressive alignment methods are heuristic algorithms where the opti-
mization process is governed by the objective for minimization of overall
pairwise scores. Most algorithms implementing progressive alignment meth-
ods use a guide tree for establishing an order in which the sequences are
merged into the progressively growing multiple alignment. A guide tree is
formed by taking all the sequences and applying the principles of agglomer-
ative clustering to construct a binary tree whose leaves represent sequences
and internal nodes represent alignments.
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7.4.1 Constructing the Guide Tree

The construction of the guide tree for a set ofN sequences essentially proceeds
as follows:

1. The pairwise similarity (or distance) score matrix is computed.
2. Each of the N sequences is considered to be a singleton group. The inter-

group similarity (or distance) is identical to the pair wise similarity com-
puted in the previous step.

3. Groups are merged such that each successive merge step chooses the most
similar groups and recomputes the new group’s similarity (or distance) to
all of the other groups.

4. The merging process stops when all sequences belong to one large group
containing all N sequences.

5. The order in which the sequence and groups are merged provides the guide
tree.

The following example illustrates the application of the above process.

Example 7.2
Consider the following set of sequences:

S1 = ATTTACGCCT

S2 = TTAAGCCAT

S3 = TTAATTAACC

S4 = ATTTTCCGGA

S5 = AATTTACCGCCT

Assuming a unit gap cost model, the pairwise distance values are computed
as follows:

S1 S2 S3 S4 S5
S1 0 4 6 5 2

S2 0 5 7 6

S3 0 8 7

S4 0 5
S5 0

Based on the distance values, the closest sequences in the set are sequences
S1 and S5 which are merged into a new sequence S6. The distances of this
merged sequence, S6, is next computed by taking the average distance of S1
and S5 to each of the remaining sequences and recoding that into the distance
matrix shown below.

S6 S2 S3 S4
S6 0 5 6.5 5

S2 0 5 7

S3 0 8

S4 0
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The smallest distance between any two sequence pairs in the above array
is now 5. We can choose to merge any of three pairs that have this minimum
distance. Let us choose to merge sequences S6 and S4 into a new group S7.

The distance of S7 will be next computed to the remaining sequences. For
computing the distance between groups, a weighted average with the mem-
bers of the group must be used so that all the individual sequence distance
are acounted for. Thus, since group S6 already contains two sequences, the

distance between S7 and S2 is computed as 2×d(6,2)+1×d(4,2)
2+1 or 6.67. Distance

between S7 and S3 is similarly computed. Upon completion of this step, the
new distance matrix looks as follows:

S7 S2 S3
S7 0 6.67 7

S2 0 5

S3 0

The closest sequence pair to merge next is that of S2 and S3. The merged
group is labeled S8. Since each of these contains a single sequence, their
distance to the S7 may simply be averaged and results in the distance matrix
shown below:

S7 S8

S7 0 6.33

S8 0

The final step is simply a merge of groups S7 and S8 to yield the final
group S9 that comprises of the entire sequence set. The essential purpose of
this process is the construction of the guide tree. Guide tree provides the
order in which the sequences will be merged into the progressively growing
alignment.

� � � � �1 5 4 2 3

�6

�7 �8

�9

End of Example
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7.4.2 Constructing MSA with the Guide Tree

Sequence alignments are performed as dictated by the guide tree. Upon the
alignment of the original seed pairwise alignment, any stage of following the
guide tree will result in requiring one of the two possible alignments to be
performed. Either a sequence might need to be aligned to a group of se-
quences, or a group of sequences might need to be aligned to another group
of sequences.

When a single sequence is required to be aligned to a group of sequences,
dynamic programming algorithm is applies to compute the score (or distance)
of the new sequence and all the sequences in the group. The highest scoring
alignment is used to determine how the new sequence is subsequently aligned
to the group. And when a group of sequence is to be aligned with another
group, the highest pairwise score between each member of the two groups is
used to establish how the two groups align with each other.

As progressive alignments are formed, the gaps introduced in a pairwise
alignment are replaced with a special character, such as an X. This allows
the gaps to progress till the end when all Xs in the alignment constructed are
replaced with the gap character -. Underlying principle in progressive align-
ment may therefore be stated as “once a gap, always a gap.” The dynamic
programming alignment algorithms must also be adjusted to accommodate
the special symbol X such that there is no cost associated with aligning an X

with anything including other X characters.

Example 7.3
Continuing with the previous example, where the guide tree was constructed
using the pairwise distances between sequences, the process of progressively
building the multiple sequence alignment is illustrated in this example.

As the first sequence pair to be merged, S1 and S5, their alignment between
them is changed such that the indel characters are replaced with Xs.

S1: -ATTTA-CGCCT S1: XATTTAXCGCCT

||||| |||||

S5: AATTTACCGCCT S5: AATTTACCGCCT

According to the guide tree, the next sequence to be aligned is S4. The
procedure for aligning this sequence to this group will attempt to align this
sequence with each of the sequences in the group. Effectively, we therefore
attempt an alignment of S4 with S1 and S5 and the alignment that scores
better determines how the sequence is aligned to the group. The each of these
alignments and their distances with the unit cost model are shown below:

S1: XATTTAXCGCCT S5: AATTTACCGCCT

|||| :|| |||| |||

S4: -ATTTTCCG-GA S4: -ATTTTCCG-GA

Distance = 4 Distance = 5
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Recall that in the computation of the distance values, the alignment of the
character X with any other character does not add to the overall alignment
distance measure. Based on the alignments above, the sequence S4 would
therefore be aligned to the S1 for the purposes of including it into the group.
Since this alignment introduces gaps in S1, these gaps are correspondingly
added to each of the other sequences in the group to keep the MSA consistent.
The three sequence MSA at this stage looks as follows:

S1: XATTTAXCGCCT

S5: AATTTACCGCCT

S4: XATTTTCCGXGA

Similar process is used to create a an alignment of sequences S2 and S3
computed as follows with the neutral character X replacing the delete char-
acters.

S2: TTAAGCCA-T S2: TTAAGCCAXT

|||| |

S3: TTAATTAACC S3: TTAATTAACC

The next step in the progressive alignment process involves the merging of
the two sequence groups, {S1, S4, S5} and {S2, S3}. For an alignment of two
groups, all sequence pairs in the two groups are tried and the best scoring
alignment between the groups is used to anchor the alignment of the merged
groups. In our example, one of the six possible pairwise alignments shown in
Fig. 7.1 will be chosen to anchor the entire group’s alignment.

Given that the sequence S1 from the first group is closest to the sequence
S2 from the second group, their alignment is used to anchor the alignment of
the merged group. Since these sequences are previously aligned to the other
members of their respective groups, the new gaps inserted in S1 are also
inserted in S4 and S5. Correspondingly, any new gaps inserted in S2 are also
inserted into S3. These steps and the resulting multiple sequence alignment
is shown in Fig. 7.2. End of Example

7.5 Profiles

For construction of the multiple sequence alignment, it is sometimes advan-
tages to align the new sequence (or groups) with an existing group after
consideration of the overall distribution of the residues used in those groups.
By considering the pairwise alignments of the closest members to seed the
alignment, the accuracy of the alignment is somewhat compromised. The
profile approach, while following the guide tree, builds the multiple sequence
alignment using the alignments between two sequences, or between a sequence
and a profile, or between a profile and a profile.

A sequence profile represents column-wise characteristics of a set of aligned
sequences. In particular, it gives position-dependent weights for all 20 amino
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XATTTAXCGCC--T
   |||: |||  |
---TTAA-GCCAXT

Distance: 4 

-XATTTAXCGCCT
 :| |||:  || 
TTAATTAA--CC-

Distance: 5

S5

--AATTTACCGCCT
  || |||   || 
TTAA-TTA--ACC

Distance: 6

AATTTACCGCC--T
   |||  |||  |
---TTA-AGCCAXT

Distance: 6

XATT-TTCCGXGA
  ||   || :: 
--TTAAGCC-AXT

Distance: 6

--XATTTTCCGXGA
  :|||  ||    
TTAATTAACC----

Distance: 7

S1

S4

S2 S3

Fig. 7.1 Pairwise alignments of each group members. The alignment of S1 and S2
is used to anchor the alignment of the two groups.

S2: XXXTTAAXGCCAXT
S3: XXXTTAAXTTAACC

S1: XATTTAXCGCC--T
       |||: |||  |
S2: ---TTAA-GCCAXT

S1: XATTTAXCGCCT
S5: AATTTACCGCCT
S4: XATTTTCCGXGA

S1: XATTTAXCGCCXXT
S5: AATTTACCGCCXXT
S4: XATTTTCCGXGXXA

S2: TTAAGCCAXT
S3: TTAATTAACC

S1: XATTTAXCGCCXXT
S2: XXXTTAAXGCCAXT
S3: XXXTTAAXTTAACC 
S4: XATTTTCCGXGXXA
S5: AATTTACCGCCXXT

S1: -ATTTA-CGCC--T
S2: ---TTAA-GCCA-T
S3: ---TTAA-TTAACC 
S4: -ATTTTCCG-G--A
S5: AATTTACCGCC--T

(a) (b)

Fig. 7.2 Based on the gaps inserted in the two anchor sequences: (a) Remaining
members of the group are updated to align with the anchor. Upon completion of
the merge, (b) final alignment is generated by replacing the neutral character X

with a-.

acids (or the four bases) and as for insertion and deletion events at any se-
quence position. Multiple alignments of related sequences properly translated
into position-specific score matrices (PSSMs), profiles or hidden Markov mod-
els (HMMs) contain conservation patterns and statistical information about
the alignment groups. The following is an example of profile computed from
an alignment.
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While the pair-wise scoring is quite successful in aligning two related fam-
ilies, profiles are successful in detecting weak similarities between conserved
protein regions.

7.5.1 Constructing MSAs with Aligned Blocks

In the progressive alignment algorithm described above, we performed the
alignment of two groups of sequences by considering the pairwise alignments
between the members of the groups and using the closest pair as an anchor
for aligning the two groups. However, rather than using a pairwise anchor,
by the process described in this section, an alignment of the entire group of
sequences in one aligned group may be performed against the entire group of
aligned group.

The scoring model utilzed in this method associates a linear gap cost set
at s(−, a) = s(a,−) = −g, and s(−,−) = 0. Scores between other non-gap
residues are obtained from the appropriate scoring matrix such as a unit cost
matrix for DNA and PAM or BLOSUM matrices for proteins. If the first
group of sequences are labeled from 1 to n, and the second group labeled
(n+ 1) through N , the score of an alignment between two groups is defined
as follows:

The formulation of the sum of pair scores is thus defined:

∑

i

S(mi) =
∑

i

∑

k<l≤N

s(mk
i ,m

l
i) (7.2)

=
∑

i

∑

k<l≤n

s(mk
i ,m

l
i) +

∑

i

∑

n<k<l≤N

s(mk
i , m

l
i) +

∑

i

∑

k≤n,n<l≤N

s(mk
i ,m

l
i)(7.3)

We can split the terms in those terms that comprise the scores arising
out of individual groups and those that arising out of the comparison of the
two groups. The first two terms in the equation correspond to the the scores
of the two intra-group comparisons, while the third term is the inter-group
comparison term. Since the insertion of a gap within either of the groups
introduces a column of gaps, and s(-,-)=0, the terms that affect the overall
similarity score is essentially the inter-group comparison term.

The process of a compring an alignment group against another alignment
group us based essentially on setting up the dynamic programming array
with the entire columns of sequences along the rows and columns of the grid
and columns are scored against other columns to compute the alignment.

Let the two aligned groups be denoted as Group I comprising of sequences
x1, x2 . . . xN and y1, y2 . . . yM . The similarity score between columns i in
Group I and column j in Group II is calculated recursively by the equation
below. As shown below, similar to the dynamic programming array calcula-
tion, the value used is the maximum of the composite similarity between the
two columns and the score of inserting a column of gaps in the alignment
block of one of the groups.
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Si,j = Max

⎧
⎨

⎩

Si−1,j−1 +
∑

k≤N,l≤M,k≤l s(x
k
i , y

l
j))

Si,j−1 +
∑

k≤N,l≤M,k≤l s( , yj)

Si−l,j +
∑

k≤N,l≤M,k≤l s(xi, )

Example 7.4
Given the following two aligned blocks, S1 and S2, compute their alignment
between these blocks using the method described.

S1: S2:

ATTA ATTA-

CTTG AT-AG

End of Example

Such a method of using a progressive refinement of aligned blocks, rather
than anchoring the alignment of blocks based on pairwise comparison, is
utilized by CLUSTAL tool for multiple sequence alignments.

7.5.2 Modeling MSA as Profiles

Sequence profiles provide a numerical representation of multiple sequence
alignment data. Essentially, the frequency of each nucleotide (or amino acid)
is captured for each column of the multiple sequence alignment. Thus, the
profile representation for a multiple sequence alignment with L columns is
a of 5 × L matrix for DNA sequence alignments and a 21 × L matrix for
protein alignment alignments. The 5th. and the 21st. row corresponds to the
frequency of a gap character.

Example 7.5
Consider the following MSA block:

-ATA-CCCT

ACTACGCCT

-ATTCG-GA

Its frequency profile is computed by determining the normalized frequency
of each of the four nucleotides and the gap character. It workes out to be as
follows:

0.33 0.67 0 0.67 0 0 0 0 0.33

0 0.33 0 0 0.67 0.33 0.67 0.67 0
0 0 0 0 0 0.67 0 0.33 0

0 0 1 0.33 0 0 0 0 0.67

0.67 0 0 0 0.33 0 0.33 0 0
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The first four rows are respectively the normalized frequencies of nu-
cleotides, A, C, G and T, while the fifth row provides the frequency of the
gap character.

End of Example

Alignment between profiles may also be performed in a similar manner as
the alignment between the groups of aligned sequences discussed in Eq. 7.4
above. However, in the case of profile, the number of rows in is dependent on
the the size of the alpabet. The alphabet is denoted as Σ and comprises of
the four nucleotides and the indel character, and the twenty amino acid and
the indel character in case of DNA and protein sequences respectively.

Si,j = Max

⎧
⎨

⎩

Si−1,j−1 +
∑

k≤|Σ|,l≤|Σ|,k≤l(p
k
i ṗ

l
j)s(k, l)

Si,j−1 +
∑

k≤|Σ|,l≤|Σ|,k≤l(p
kṗlj)s( , l)

Si−l,j +
∑

k≤|Σ|,l≤|Σ|,k≤l(p
k
i ṗ

l )s(k, )

(7.4)

7.6 Progressive Alignment in MATLAB

matlab provides the nwalign function for performing global alignment.
matlab uses a default scoring matrix for nucleotide sequences. This is a
15 by 15 scoring matrix that takes into account the IUPAC ambiguity code.
The following code segment is used to compute the pairwise similarity scores
and generate a guide tree.

seq = {’ATTTACGCCT ’, ’TTAAGCCAT ’, ’TTAATTAACC ’,

’ATTTTCCGGA ’, ’AATTTACCGCCT ’};

dist = seqpdist (seq , ’Alphabet ’, ’nt ’);

links = linkage(dist );

dendrogram (links);

The commands above utilize the matlab function seqpdist to compute
the distance between the elements of the sequence array. A linkage analysis is
next performed. Although several options are provided for performing linkage
analysis which essentially is a process of clustering, default parameter are
used. The result of this linkage analysis is visualized using the dendrogram
command. The result is the guide tree shown in Fig. 7.3.

7.6.1 Profiles in MATLAB

The matlab bioinformatics toolbox also provides the function for computing
the sequence profile.

msa = [’-ATA-CCCT’; ’ACTACGCCT’; ’-ATTCG-GA’];

prf = seqprofile (msa, ’Alphabet’, ’nt’, ’Gaps’, ’all’)
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1 5 2 4 3

GUIDE TREE

Fig. 7.3 Guide tree constructed by comparing sequences and performing the link-
age analysis using default parameters in matlab

The value of profile variable prf in the above illustration is computed by
matlab function seqprofile. The arguments to this function specify that the
alignment is defined on the nucleotide alphabet and that all the gaps should
be considered for computing the profile.

7.6.2 MSA in MATLAB

Multiple sequence alignment (MSA), as the name implies, is an alignment
of two or more sequences. The Bioinformatics Toolbox includes progressive
MSA via the functionmultialign. Simply passmultialign an array of sequences
to have them aligned. You can further view this alignment in an interactive,
color-coded display with the multialignviewer function. This function will
open up a viewer in a window that will show you the consensus string for the
alignment as illustrated in Fig. 7.4. Also, you can introduce or remove gaps
by dragging letters.
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Listing 7.1

>> seqs = {’AATTCCCGG ’ ’ATTCCGG ’ ’TTCCGG ’ ’AATTCTGG ’ ’AATTCC ’};

>> ma = multialign (seqs)

ma =

AATTCCCGG

-ATTCC -GG

--TTCC -GG

AATTCT -GG

AATTCC ---

>> multialignviewer(ma)

end-listing-7.1

Fig. 7.4 Multiple alignment viewer
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7.6.3 PILEUP

PILEUP Is another software for generating multiple sequence alignments by
progressively refining pairwise alignments.

Further Readings
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3. Kaya, M., Sarhan, A., Alhajj, R.: Multiple sequence alignment with affine
gap by using multi-objective genetic algorithm. Comput Methods Programs
Biomed 114(1), 38–49 (2014)

4. Modzelewski, M., Dojer, N.: Msarc: Multiple sequence alignment by residue
clustering. Algorithms Mol. Biol. 9(1), 12 (2014)

5. Li, Z., Natarajan, P., Ye, Y., Hrabe, T., Godzik, A.: Posa: a user-driven, in-
teractive multiple protein structure alignment server. Nucleic Acids Res (May
2014)
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7.7 Exercises

1. Consider the following sequence set:

ATG

GTG

ATG

TTG

ATG

ATG

GTG

ATG

2. These sequences respresent the translation start sites obtained as a result
of multiple sequence alignments of a family of genes. Show the profile
matrix resulting from these sites. Also, develop the position scoring weight
matrix.

3. Assume a unit cost and linear gap model and the following sequences:

S1 = CCGGCTTCGCGACG

S2 = CGGTTGCCGAGC

S3 = AATGCGCTCCGGCCC

S4 = TTTCCAATCGGCC

(a) Construct a guide tree for the above four sequences.
(b) Apply the pairwise alignment technique utilizing ’once a gap always

a gap’ and using a X for the gap neutral character. Recall that the
cost for aligning a gap character with anything, including another gap
character, is 0. Compare your results with the multialign function in
matlab.

(c) Research and comment on the algorithm used in multialign. Is it similar
to CLUSTALL or PILEUP. Support your answer.

(d) Compute the SP score for a multiple sequence alignment.

4. Given the set of four sequences being aligned,

S1 = ’ATTGGCACCA’

S2 = ’GGTTCCA’

S3 = ’AAATTGGACC’;

S4 = ’TATTCCACCA’

The similarity scores have been computed, as follows:

S1 S2 S3 S4

S1 -2 2 6

S2 -7 -2
S3 1

S4
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(a) Compute the guide tree. Show the values of the simailarity matrix after
each merge operation.

(b) Assume that the similarity scores between the sequences continue to
be the same as the process of progressive alignment proceeds, can you
come up with what the multiple alignment would look like?

(c) Compute the SP score for your answer in Exercise 4b.

5. Given the set of four sequences being aligned,

S1 = ’ATTGGCACCA’;

S2 = ’ATTTGGACCA’;

S3 = ’TGGTTCCA’;

S4 = ’ATTCCACCAC’;

The distance scores have been computed under the unit model, as follows:

S1 S2 S3 S4

S1 2 4 3
S2 5 4

S3 6

S4

(a) Compute the guide tree. Show the values of the distance matrix after
each merge operation.

(b) Assume that the distance scores between the sequences continue to be
the same as the process of progressive alignment proceeds, determine
what the multiple alignment would look like.

(c) Compute the SP score from your answer in Exercise 5b and compare it
to your answer in Exercise 4b.



Chapter 8

Alignment Tools

Sequence alignment serves as the basis for comparing two sequences. The
score obtained from the comparison of two sequences, the query and the
candidate sequence in the database, is in turn used to retrieve the candidate
sequences that are related to the query as evidenced by the value of their sim-
ilarity score. While performing real time searches the sheer size the database
often precludes the applicability of obvious and direct approaches and ne-
cessitates the development of algorithms that can yield approximate scores
in reasonable amount of turnaround time. Consequently, the practical search
algorithms are not guaranteed to produce the best or the optimal matches,
but rather, offer a high probability that the matches returned will be true
matches of the query and the retrieved database sequence. Often a p-value
is associated with the retrieved sequence that is indicative of the probability
that the match detected by the retrieval procedure could have occurred sim-
ply by chance. Alternatively, an Expect or an E-value may be returned by
such a procedure indicative of the probability with which the reported score
can be expected simply by chance.

This chapter provides an overview of the dot-plot algorithm which forms
the basis for BLAST, the database retrieval tool that is probably utilized
most commonly for searching genomic and protein sequence databases. The
overview of dot-plot is followed by a somewhat detailed discussion of the
BLAST algorithm and score calculation methodology. A overview of FASTA
algorithm that employs a procedure similar to BLAST is described next.

8.1 Dot Plots

Dot plots are perhaps one of the simplest methods for estimating similarity
between two sequences. To compute the dot-plot alignment, the two sequences
are placed along the orthogonal axes of a grid. A certain number of residues
or nucleotides (typically a single character) are compared and a dot is placed
on the grid if the characters in the two sequences are in agreement.

c© Springer International Publishing Switzerland 2015 159
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Fig. 8.1 A dot plot alignment for two DNA segments with the word sizes of (a)
one and (b) two. A dot is placed on the grid where there is a single or two nucleotide
match(es) between the two sequences. A putative local alignment is said to occur
when the score of of dots along a diagonal exceeds a threshold. While the scores for
DNA sequence dot plot matches are relatively easy to extend from single nucleotide
to two nucleotides, the scores for dot plot matches derived from a BLOSUM or PAM
matrix in protein dot-plot alignments will not afford such an extension.

Consider for example Fig. 8.1 depicting the dot plot alignments for two seg-
ments of DNA. In Fig. 8.1 (a) a single nucleotide match in the two sequences
results in placing a dot on the grid. The local alignments are extracted by con-
sidering long matches along the diagonals. The matches along the diagonals
that do not obtain a high enough score are discarded. If the threshold match
score between two nucleotides is assumed to be ≥ 3, the local alignments that
result have been annotated on the dot-plot.

When the sequences being compared are very similar to each other, a match
of a single nucleotide will make the dot plot grid extremely dense and the
string of matches along the diagonals will not be easy to visually discriminate
and extract. As dot plot based alignment is typically utilized as a visual tool,
the method utilized for enhancing the selectivity of the dots is the use of
word size. As illustrated in Fig. 8.1 (b) a word size of two, where a dot is
placed on the cells in the grid where a dinucleotide match exists between the
two sequences results in the elimination of lot of spurious short alignments.

As discussed in the next section, BLAST uses the dot-plot concept in
the seeding phase of the local alignment generation. BLAST further scores
a seed by utilizing the PAM or the BLOSUM matrix for protein sequence
alignments. In this manner a local alignment along the diagonal in a protein
sequence grid may be picked for extension even when the match is not exact
asa long as the alignment score is higher than a preset threshold.



8.2 BLAST 161

8.2 BLAST

BLAST or the Basic Local Alignment and Search Tool is probably the most
commonly utilized program for searching Biological Databases. As shown in
Table 8.1 is really a collection of five programs. These are the BLASTN,
BLASTP, BLASTX, TBLASTN, and TBLASTX. These programs are char-
acterized by the type of query sequence (DNA or Protein) utilized and the
type of database that is searched.

Table 8.1 BLAST programs

Program Query Database Search Description

BLASTN DNA Genomic Straight search for matching nucleotide
strings in a genomic database.

BLASTP Protein Protein Search using a scoring matrix
(such as PAM, BLOSUM) for a protein
query string in a protein database.

BLASTX Protein Genomic Search a protein query sequence against
a translation of genomic database using a
scoring matrix (e.g. PAM, BLOSUM).

TBLASTN DNA Genomic Search a translated DNA query
against a translated genomic database using a
scoring matrix (such as PAM, BLOSUM).

TBLASTX DNA Protein Search a translated DNA query
sequence against a protein database using a
scoring matrix (such as PAM, BLOSUM).

BLAST uses heuristics to enhance the speed of Smith-Waterman local se-
quence alignment. It proceeds in three basic steps, namely, seeding, extension
and evaluation. In the seeding step, a dot plot is used to find areas in the
two sequences where an alignment may be found. These seed word hits are
extended through the process of a random walk where the core are extended
such that the local match score is allowed to drop by a preset maximum to
allow the algorithm to escape out of a local maxima in the hope of finding
a higher maximum score around the seed. Finally, the third step entails an
evaluation of the alignments thus achieved by seeding and extension. The
process of alignment evaluation is statistical in nature and those alignments
which have a very small probability of occurring by chance are reported as
HSPs or High Scoring Pairs and sorted by the bit value corresponding to
their significance.

8.2.1 Seeding

The basic assumption of BLAST algorithm is that sequences that have a
significant alignment share a common word. A word is simply defined as a
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sequence of characters. For example, the DNA sequence ACCTATGA has the
following four-nucleotide words occurring in it: ACCT, CCTA, CTAT, TATG and
ATGA. As a first step towards aligning sequences, BLAST determines the
locations of all the common words. These are called word hits and serve as
the seeds of alignment. BLAST allows the word hits to be approximate as
well in order to increase the sensitivity of the searches. This is important,
particularly in the case of amino acids where the searches often utilize a
scoring matrix, such as BLOSUM-62 or PAM-250, with the identical word
hits in protein sequences restricting the significant alignments to a very small
subset.

8.2.2 Extension

After a seeding of the alignment is achieved through word hits, an extension
of the word hit clusters is next performed by the BLAST algorithm. This
process proceeds as a random walk shown in Fig. 8.2.

a c a t g a t c g t t a

a t c g g t t c g t t t

c

a

+1 -1 -1 -1 +1 -1 +1 +1 +1 +1 +1 -1-1

0 -1 -2 -3 -2 -3 -2 -1 0 +1 +2 +1-1

c t a

t g t

-1 -1 -1

0 -1 -2

t

c

-1

-3

Max

delta

Fig. 8.2 The process of extending word hits. The maximum score is allowed to
drop at most by a preset amount delta before the extension process is terminated.
The alignment is trimmed back to the location with the maximum score.

The concept of gap extension through a random walk using DNA sequences
is explained by the example in Fig. 8.2. The maximum value that the score
is allowed to drop by, delta has been set to 4. The seed extension proceeds
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in both the directions using a process similar to the extension shown in the
illustration. The random walk is characterized by peaks and valleys. The
nucleotide match in the two sequences results in the incrementing the score,
while a mismatch reduces the accumulated score. A plot of the accumulated
score is maintained. As the score reaches a maximum, it is allowed drop at
most by the preset value delta before the extension process ceases. Upon
ceasing the extension process, the alignment extension is trimmed to the
position where the accumulated score peak was reached. The peak value in
the illustration was reached at the value of +2.

If the value of delta was set to 3 instead of 4, the extension process would
have ceased at position 2 with a peak score of 0 because a valley immediately
following this peak would have resulted shown in the threshold drop neces-
sary to terminate the gap extension process. Thus, a low value of delta will
generally yield shorter alignments and may in fact cause the algorithm to run
slower requiring the system to manage a large number of short alignments.
If an excessive large value of delta is used there may be wasted computation.
The alignment would be extended appropriately nonetheless as the exten-
sion will be clipped to retain alignments of the sequences corresponding to
the peak accumulated score reached starting from the beginning of the walk
before reaching the valley that caused the termination of the gap extension
process. A small value of delta could completely miss a neighboring peak and
consequently a larger value is chosen in practice.

8.2.3 Evaluation

The extension of the seeds into both the directions results in the generation
of alignments. The evaluation step focuses on determining if these alignments
are statistically significant. Karlin-Altschul statistics are applied to determine
if the observed alignment is statistically significant and, if so, it is labeled as a
High-Scoring Segment Pair or HSP. The basis for Karlin-Altschul statistic is
Eq. 8.1 which states that the expected number E of alignments is inversely ex-
ponentially related to the normalized score of λS and is directly proportional
to the search space defined as product of the length of the query sequence
(m) and the database (n). The parameter k is a constant in the equation.

E = kmne−λS (8.1)

This statistic has been used to provide a way of calculating how long a se-
quence must be before it can produce an alignment with sufficient expect.
The minimum length, L, is usually referred to as the expected HSP length
and is defined by Eq. 8.2.

L = ln
kmn

H
(8.2)
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The quantity H, the relative entropy of the scoring scheme is defined in
Eq. 8.3 where the summation is over the n residues (example, 20 amino acids,
or 4 nucleotide bases) for protein sequences and the quantity Sij is the log-
likelihood score assigned to the alignment of residue i with j as discussed in
Section 6.1.5.

H =
n∑

i=1

n∑

j=i

qijλSij (8.3)

where Sij = log
qij
pipj

Thus, the expected HSP length is a function of the query length and varies
from search to search. This length L is also taken into consideration for
taking into account the edge effects and computing the effective lengths of
query and database sequences used for determining the search space size.
Specifically, the length of each sequence in the database as well as the query
sequence is reduced by L. The corrected values of query sequence lengthmeff

and database sequences neff as given below are used in the computation in
Eq. 8.1 where the search space size used is meff × neff .

meff = max [(m− L), 1

k
]

neff = n − (|N | × L)
where |N | is the number of sequences in database

and n is the size (length) of the database

Let us begin by rewriting Eq. 8.1 as follows with the corrected values of
the sequence and the database being used in the equation:

E = k ·meff · neff · e−λS

= meff · neff · elnk · e−λS

= meff · neff · e−(λS−ln k) (8.4)

The raw score, S, obtained using the appropriate scoring matrix used for
alignment is converted to a nat score (Snat ) or a bit score (Sbit ) using the
formulation in Eq. 8.5.

Snat = (λS − ln k)

Sbit =
(λS − ln k)

ln 2
(8.5)
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In this manner a normalized bit score for the alignment is created and the
expected value is correspondingly computed using Eq. 8.6.

E = meff · neff · 2−Sbit (8.6)

8.2.4 BLAST Reports - Example

An example of the BLAST report is shown in Fig. 8.3. This example shows
the result of conducting a search on DNA sequence databases. The query
used was a segment of the DNA sequence for the human heat-shock protein.
As illustrated, the classical BLAST report consists of a set of sequences in
the database that have a high similarity to the query sequence. For each of
the sequences, the BLAST report also contains a local alignment of the query
and the database sequence.

The final section of the BLAST report contains information on the statis-
tical parameters used for computing the alignment scores, i.e. the parameters
used for evaluating the significance of the alignment. The application of the
theory in Section 8.2.3 is presented below:

The values for parameters λ, k and H = 1.37, 0.711 and 1.31 respectively.

The actual length of Query and Database m and n = 811 and 5957977502 respectively.

The number of sequences in Database = 46285

The expected HSP Length L =
ln kmn

H
=

ln(0.711 × 811× 5957977502)

1.31
= 22.03

The effective length of Query = meff = 811 − 22 = 789

The effective length of Database = neff = 5957977502 − 22 × 46285

5956959232

The effective size of search space = meff × neff = 789 × 5956959232 = 4700040834048

The raw score of Alignment = S = 291

The bit score of Alignment = Sbit =
(λS − lnk)

ln 2

=
(1.37× 577− ln 0.711)

ln 2
≈ 577

The Expect or E− value of Alignment = E = meff × neff × 2−Sbit

= 4700040834048 × 2−577 ≈ 7× e−162

The value of λ in the report has been rounded to 1.37. The exact value of
λ is 1.3743. If this exact value of λ is utilized, the Expect or E-Value obtained
will be exactly equal to 7× e−162.
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                                                                   Score     E

Sequences producing significant alignments:                       (Bits)  Value

ref|NM_001541.2|  Homo sapiens heat shock 27kDa protein 2 (HSPB2)   700    0.0   

ref|NT_033899.7|Hs11_34054  Homo sapiens chromosome 11 genomic co   577    7e-162

ref|NW_925173.1|HsCraAADB02_444  Homo sapiens chromosome 11 ge...   577    7e-162

ref|NT_011525.7|Hs22_11682  Homo sapiens chromosome 22 genomic co  42.1    0.98  

ref|NT_022517.17|Hs3_22673  Homo sapiens chromosome 3 genomic con  42.1    0.98  

ref|NW_927650.1|HsCraAADB02_667  Homo sapiens chromosome 22 ge...  42.1    0.98  

ref|NW_921651.1|HsCraAADB02_127  Homo sapiens chromosome 3 gen...  42.1    0.98  

ref|NM_207454.1|  Homo sapiens FLJ44815 protein (FLJ44815), mRNA   40.1    3.9   

ref|NT_011903.12|HsY_12060  Homo sapiens chromosome Y genomic con  40.1    3.9   

ref|NT_011109.15|Hs19_11266  Homo sapiens chromosome 19 genomic c  40.1    3.9   

ref|NT_010799.14|Hs17_10956  Homo sapiens chromosome 17 genomic c  40.1    3.9   

ref|NT_010498.15|Hs16_10655  Homo sapiens chromosome 16 genomic c  40.1    3.9   

ref|NT_008583.16|Hs10_8740  Homo sapiens chromosome 10 genomic co  40.1    3.9   

ref|NT_008413.17|Hs9_8570  Homo sapiens chromosome 9 genomic cont  40.1    3.9   

Score =  577 bits (291),  Expect = 7e-162

 Identities = 420/463 (90%), Gaps = 0/463 (0%)

 Strand=Plus/Plus

Query  116       AGGCCTCCTGCCAGAAGAGATCCTGACCCCCACCCTCTATCACGGCTACTATGTTCGGCC  175

                 ||||||||||||||||||||||||||||||||| ||||| || ||||||||||| |||||

Sbjct  15346579  AGGCCTCCTGCCAGAAGAGATCCTGACCCCCACACTCTACCATGGCTACTATGTCCGGCC  15346638

Query  176       TCGGGCCGCCAGAGCTGGCGAGGGCGCCAGGGCAGGGGCCTCAGAGCTCAGGCTCAGTGA  235

                 ||||||||||  |||||| ||||||  ||||||||||||||| ||||| |||||||||||

Sbjct  15346639  TCGGGCCGCCCCAGCTGGGGAGGGCAGCAGGGCAGGGGCCTCCGAGCTTAGGCTCAGTGA  15346698

Query  236       AGGCAAGTTCCAGGCGTTTCTGGATGTGAGCCACTTTACCCCAGATGAGGTGACGGTGAG  295

                  |||||||||||||| ||||||||||||||||||||||||||||| |||||||| |||||

Sbjct  15346699  GGGCAAGTTCCAGGCATTTCTGGATGTGAGCCACTTTACCCCAGACGAGGTGACTGTGAG  15346758

Query  296       GACTGTGGATAACCTGCTGGAGGTGTCTGCCCGACACCCCCAGCGTCTGGATCGCCACGG  355

                 ||||||||||||||||||||||||||||||||| ||||||||||| ||||| ||||||||

Sbjct  15346759  GACTGTGGATAACCTGCTGGAGGTGTCTGCCCGGCACCCCCAGCGCCTGGACCGCCACGG  15346818

Query  356       CTTCGTGTCCCGAGAGTTCTGTCGCACCTATGTCCTGCCTGCAGATGTGGACCCCTGGCG  415

                 ||||||||||||||||||||| |||||||||||||||||||| ||||| |||||||||||

Sbjct  15346819  CTTCGTGTCCCGAGAGTTCTGCCGCACCTATGTCCTGCCTGCTGATGTCGACCCCTGGCG  15346878

Query  416       GGTTCGAGCTGCTCTATCCCATGATGGCATCCTTAACTTGGAGGCGCCGCGGGGTGGCCG  475

                  || ||||||||||| ||||||||||||||| | ||| |||| || || |||||||||||

Sbjct  15346879  AGTCCGAGCTGCTCTCTCCCATGATGGCATCTTAAACCTGGAAGCACCTCGGGGTGGCCG  15346938

Query  476       GCATTTGGACACGGAAGTCAATGAAGTCTACATCTCCCTGCTTCCTGCTCCTCCTGACCC  535

                  ||||||||||| || |||||||| ||||||||||||||||| ||||| |||||||| ||

Sbjct  15346939  ACATTTGGACACAGAGGTCAATGAGGTCTACATCTCCCTGCTCCCTGCGCCTCCTGATCC  15346998

Query  536       CGAGGAAGAGGAAGAGATAGCCAGAGTTGAGCCCTGACTGCCA  578

                  ||||||||||| |||  ||||| ||||||||||||| |||||

Sbjct  15346999  AGAGGAAGAGGAGGAGGCAGCCATAGTTGAGCCCTGATTGCCA  15347041

  Database: human build 36 RNA, alternate and reference assemblies.

    Posted date:  Nov 6, 2006  9:33 AM

  Number of letters in database: 1,663,010,206

  Number of sequences in database:  46,285

Lambda     K      H

    1.37    0.711     1.31 

Gapped

Lambda     K      H

    1.37    0.711     1.31 

Matrix: blastn matrix:1 -3

Gap Penalties: Existence: 5, Extension: 2

Number of Sequences: 46285

Number of Hits to DB: 4164965

Number of extensions: 246350

Number of successful extensions: 324

Number of sequences better than 10: 3

Number of HSP's better than 10 without gapping: 0

Number of HSP's gapped: 324

Number of HSP's successfully gapped: 4

Length of query: 811

Length of database: 5957977502

Length adjustment: 22

Effective length of query: 789

Effective length of database: 5956959232

Effective search space: 4700040834048

Effective search space used: 4700040834048

Alignment 
Summary and Scores

Individual
Alignment 
Details

Database and
Query
Statistics

Fig. 8.3 The BLAST report provides a summary of the alignment score as well as
the details of individual alignments. The footer of the report provides the database
and query statistics used for computing the normalized score (in bits) and the Expect
or E value which is indicative of the probability that match was found purely by
chance.
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8.2.5 P-Value for a Score

In addition to providing an E-value as an estimate of the significance of an
alignment, some BLAST variants also provide a P-value. The relationship
between these two values is given in Eq. 8.7.

P = 1− e−E

E = − ln(1− P ) (8.7)

The significance of these two numbers is somewhat distinct although for
small values of E, the two numbers are almost identical. While the E-value
of a given score is an estimate of the number of chance alignments expected
with that score, the P-value for a score provides an estimate of observing
that score purely by chance.

8.3 FASTA

FASTA is another commonly utilized alignment program for computing local
alignments. FASTA search begins by breaking the search sequence into words.
Genomic sequences for example are broken into words of 4–6 nucleotides while
peptide sequences are broken into words of 1–2 residues. A hash table is next
constructed which notes down the location of each word in the database
sequence. The word positions of the query sequences are offset to obtain the
best possible correlation matches with the word locations in the database.

8.4 Further Readings

The BLAST program is described in Altschul [1].
The extensions of the BLAST program to include gaps is described in [2].

BLAST introduced the idea of using a small window of identity between the
two sequences that can lead to growing an alignment. This was further utilized
by Chao, Zhang, Ostell and Miller [3] for comparison of very large sequences.
Applications of and modifications to the traditional BLAST algorithm are
discussed in [4, 5, 6, 7].

Steps for using the FASTA tool for comparison of sequences is described
in [8, 9, 10]. FASTA Algorithm was described by Lipman and Pearson in
[11]. A comparison of FASTA and pure dynamic programming was done
by Pearson in [12]. FASTA’s applications for searching protein libraries was
described in [13].



168 8 Alignment Tools

Further Readings

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local
alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990), Lm04960/lm/nlm
Lm05110/lm/nlm Journal Article Research Support, U.S. Gov’t, P.H.S. Eng-
land

2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller,
W., Lipman, D.J.: Gapped blast and psi-blast: a new generation of pro-
tein database search programs. Nucleic Acids Res 25(17), 3389–3402 (1997),
Lm05110/lm/nlm Journal Article Research Support, U.S. Gov’t, P.H.S. Re-
view England

3. Chao, K.M., Zhang, J., Ostell, J., Miller, W.: A local alignment tool for
very long dna sequences. Comput. Appl. Biosci. 11(2), 147–153 (1995), R01
lm05110/lm/nlm Journal Article Research Support, U.S. Gov’t, P.H.S. Eng-
land Cabios

4. Cameron, M., Williams, H.E., Cannane, A.: Improved gapped alignment in
blast. IEEE/ACM Trans. Comput. Biol. Bioinform. 1(3), 116–129 (2004)

5. Zhang, H.: Alignment of blast high-scoring segment pairs based on the longest
increasing subsequence algorithm. Bioinformatics 19(11), 1391–1396 (2003)

6. Mount, D.W.: Using the basic local alignment search tool (blast). CSH Protoc
(2007), pdb.top17 (2007)

7. Healy, M.D.: Using blast for performing sequence alignment. Curr. Protoc.
Hum. Genet. Chapter 6:Unit 6.8 (January 2007)

8. Mount, D.W.: Recommended steps for a fasta search. CSH Protoc. (2007),
pdb.ip40 (2007)

9. Mount, D.W.: Using a fasta sequence database similarity search. CSH Protoc
(2007), pdb.top16 (2007)

10. Pearson, W.R.: Blast and fasta similarity searching for multiple sequence align-
ment. Methods Mol. Biol. 1079, 75–101 (2014)

11. Lipman, D.J., Pearson, W.R.: Rapid and sensitive protein similarity searches.
Science 227(4693), 1435–1441 (1985), So7-rr05431/rr/ncrr Journal Article Re-
search Support, U.S. Gov’t, P.H.S. United states

12. Pearson, W.R.: Comparison of methods for searching protein sequence
databases. Protein Sci 4(6), 1145–1160 (1995), Lm04969/lm/nlm Comparative
Study Journal Article Research Support, Non-U.S. Gov’t Research Support,
U.S. Gov’t, P.H.S. United states a publication of the Protein Society

13. Pearson, W.R.: Searching protein sequence libraries: Comparison of the sen-
sitivity and selectivity of the smith-waterman and fasta algorithms. Ge-
nomics 11(3), 635–650 (1991), Lm04969/lm/nlm Comparative Study Journal
Article Research Support, U.S. Gov’t, P.H.S. United states



8.5 Exercises 169

8.5 Exercises

Multiple Choice Questions

1. You want to run a BLAST search with the following query sequence:
ACCTTTTAGGGTTAGAG. Which of the following will programs represent a
valid choice. Circle all that apply.

o BLASTN
o BLASTP
o TBLASTN
o BLASTX
o TBLASTX

2. You want to run a BLAST search with the following query sequence:
NSLNKVIPSPPTHSLG.Which of the following will programs represent a valid
choice. Circle all that apply.

o BLASTN
o BLASTP
o TBLASTN
o BLASTX
o TBLASTX

3. What is the appropriate interpretation of bit score:

o It measures of similar bit sub-strings between the query and a hit.
o It measures the number of bits needed to represent the probability that

the similarity between the query and a hit is purely by chance.
o It measures t the similarity value.
o It measures the number of identical bits between a binary representation

of the query and the hit.

Short Answer Questions
1. The Bit score provided for your sequence Q and a database sequence

DBSeq1 is 30 and with another DBSeq2 is 10. Which of the two matches,
DBSeq1 or DBSeq2, is more significant?

2. Assuming that the effective length of the query Q is 100 and the effective
length of the database is 109, compute the corresponding E-values for
the two hits in Problem 1. Also compute the P-values from the E-values.
Compare the significance of an alignment with respect to the bit score,
the E-value and the P-value.

3. You are searching a query in two different databases, D1 and D2. The
effective lengths of the two databases is 106 and 109 respectively. The bit
score for the highest scoring match from D1 is 30, while the bit score for
the highest scoring match from D2 is 60. Which of these two matches is
more significant. Explain.
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4. Compute the dot plot between the sequences S=CCTTGATAACCATTATA and
sequence T=CATATCCATTAAGGTGG. Assume word size of 2. Extend the
seeds in either direction using a delta value of 3.

5. Given the value of k and λ as 0.7 and 1.4 respectively, convert the raw
alignment score in the above problem to a bit score. What is the expec-
tation that an alignment with this bit score will be observed by chance.

6. Assume that the effective lengths of the sequences being compared are
equal to the their actual lengths. What is the expected value of this align-
ment? Recall that the expected value of an alignment is the probability
that a match score will be observed purely by chance.

7. Develop a dot plot for comparing the sequences S1=ATTGGAAGAGTAAG and
S2=CCTCCGAAGAACGTAACCG. Use a word size of 3.

8. Extend the dot plot in Ex. 7 with a delta value of 2. Recall that the delta
value is the most a similarity score is allowed to drop before the attempt
at extension is aborted.

9. Compare and contrast the types of alignments that are generated by in-
creasing the match word size and reducing delta, and those that generated
by a smaller word size and a larger delta.

10. Given that the values of k and H are 0.7 and 1.3 repectively, and a
qeury of length 500nt is compared against a database of length 10 million
nucleotides, what is the expected length of a HSP? What the expected
HSP length be if the database was 10 billion nuclotides?

11. Using the geometric distribution formulation estimate the significance of
the maximal local alignment block in the following alignment:

ACCCATAGGATTA
| : | | | | | |
AT−CATAGG−−−−



Chapter 9

Biolinguistic Methods

The number of biological sequences in the genomic databases, such as the
GenBank, have exponentially increased during the past decade. Sequence re-
trieval systems are required to quickly and efficiently find sequences, that are
related to a query sequence. Several comparison algorithms that generally
rely upon the existence of local string similarities between the query and the
database sequences have been widely utilized and accepted as the basis for
biosequence retrieval from DNA sequences databases. This chapter describes
a new method for sequence comparison based on k-mer word frequency pro-
files. In this algorithm, the distribution of the k-mer words found on the
two sequences, captured by their frequency profiles, are treated as the signa-
tures of sequences. This representation enables us to perform a comparison
of sequence similarity using Shannon’s entropy based divergence measures.

Due the relative importance of finding database matches, the significance of
sensitive searches from databases has become critical. High speed and efficient
retrieval algorithm have become the main goal of bioinformatics research. It
plays an important role in virtually every branch of molecular biology and
is crucial for explaining the functionality of sequences determined from the
genome project. In the past decade, several sequence comparison or align-
ment techniques, such as dynamic programming-based alignment, BLAST
and FASTA based searching tools described in earlier chapters have been de-
veloped and widely used in genomic databases. From a fundamental stand-
point, these algorithms are based on applying the string edit distance to
genome sequence retrieval. This approach, however, may sometimes cause
biologically significant relationships to be lost amongst a deluge of strong
sub-string matches, which must therefore be evaluated from statistical per-
spective.

Biolinguistic methods aim at overcoming some of these difficulties. In this
approach the k-mer word frequency distribution is considered to carry infor-
mation about the characterization of a sequence. The sequence word-based
profiles are computed as the probabilities of the words occurring in the se-
quence. In this manner, the profile of a sequence is treated as its scale-space
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signature. Sequence comparison performed using the scale-space profile and
is based on matching the global properties of the sequences. Correspondingly,
Shannon’s entropy based divergence measures are applied to compute the dis-
tance between sequence profiles. As this method is not based on string edit
distances, it has been shown to be more sensitive than the existing retrieval
methods.

Statistical comparison of genomes between different bacterial strains also
demonstrates biases observed in the usage of di-, tri- and tetra-nucleotides
within the whole genomes. Viral genomes also have distinctive signatures of
short oligonucleotide abundance that pervades the entire genome and distin-
guishes it from other genomes. Researchers have computed the dinucleotide
biases as the odds ratio ρXY = fXY

fXfY
where fX is the frequency of nucleotide

X , and fXY is the frequency of dinucleotide XY and successfully utilized
it for estimating the distance δ(f, g) between two genomes f and g. This
distance measure is defined as:

δ(f, g) =
1

16

∑

ij

|ρij(f)− ρij(g)| (9.1)

As we discuss later, the metric of relative dinucleotide abundance defined
in Eq. 9.1 is similar to the variational distance between probability density
function defined in section 9.2.2. Experimental results show that the closely
related organisms have more similar profiles (or genome signatures) than do
distantly related organisms.

9.1 Sequence Profiles

Biological sequences are broadly categorized into genomic and proteomic se-
quences. As discussed earlier, the genomic or DNA sequences are text strings
that are comprised of 4 different nucleotides (A,C,G,T). Similarly, protein
sequences are text strings defined on a 20 character alphabet of amino acids,
the building blocks of all proteins. The sequence comparison algorithms, such
as Smith-Waterman, FASTA, BLAST, or those based on Suffix Arrays all uti-
lize the string comparison as the core computational unit for measuring the
distance between sequences. The biological sequences, however, are really a
mosaic of sequence level patterns that come together in a synergistic manner
to coordinate and regulate the synthesis of proteins. The biolinguistic method
described in this chapter utilizes pattern-directed properties of biological se-
quences for comparing sequences for effectuating retrieval of sequences from
biological databases.

In the profile based searching technique, a basis pattern set forms the
set of features using which the sequences may be compared. The biological
sequences being compared are transformed into a pattern-profile which is
representative of the relative frequency with which each pattern in the basis
set occurs in the sequence. Although, the set of patterns to be utilized as
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the feature basis may be provided based on biological criteria relevant to
the sequences being compared, a set comprised of all possible words of a
given size k, can also be considered as a basis set of features. The set of
all possible k-mer words may be utilized as basis feature set. The frequency
profiles obtained by measuring the relative abundance of each word, and
representing it as a probability density function, is referred to as its k-mer
profile.

Thus, the biological sequences to be compared are transformed into k-
mer profiles. The k-mer profile is treated as the signature of the biological
sequence. Subsequently, statistical and information-theoretic approaches are
utilized to evaluate the proximity of the two sequence signatures. It may be
noted that a sequence representation in the transformed k-mer space is no
longer dependent on sequence size, but only dependent on the scale k used
for enumerating the words whose frequencies are captured for representation
of the sequence.

In this manner each sequence is represented by a set of k-mer words,
with the probability of each word being dependent upon the content of the
sequence. For a sequence with length N and k-mer word, the number of words
contained in that sequence is (N − k+1). Fig. 9.1 illustrates the granularity
of information content. As the word size increases, the information starts to
become more specific to the sequence, and the random chance of similarities
in profiles of two sequences drops exponentially (as the number of words
increases exponentially at the rate of 4k). The x− axis in a profile represent
the category assigned to each word. For example, a 3-mer is comprised of
43 = 64 words or categories, etc.

The k-mer profiles for all the sequences in the database are pre-computed
and stored in the database. Only the profile of the query sequence needs
to be computed at search time. The search for the database sequences that
are related to the query sequence then proceeds by finding the distance of
each database sequence profile from the profile of the query sequence. Some
computational techniques for measuring the distance between two sequences
are described below.

9.2 Comparing k-mer Profiles

The comparison of k-mer profiles may be accomplished by statistical as well
as vector space approaches.

9.2.1 Vector Space Comparison

Vector space methods essentially rely on computation of the similarity using
cosine similarity. The two profiles are treated as vectors on a k-mer space.
Their similarity is computed as the cosine of the angle between them as shown
in Eq. 9.2.
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Fig. 9.1 Consider the DNA sequence ACGGCAGGTACGGTAAGGTT. Its 2-mer, 3-mer
and 4-mer word profiles are shown above. The profiles are p.d.f s, where p(xi),
1 ≤ xi ≤ 4k represents the probability of finding the word xi in the sequence. xi is
a category index obtained by hashing the k-mer work.
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cos(pi, pj) =

∑

x∈W

pi(x)pj(x)

√∑

x∈W

p2i

√∑

x∈W

p2j

(9.2)

The vector space model is utilized extensively in information retrieval ap-
plications where the documents are represented on a hyperspace of terms.
The dot product between term frequency vectors are normalized using the
magnitude of term vectors being compared. In this manner the relative fre-
quencies of the individual terms are taken into account for the purpose of
comparison. If the two vectors, regardless of their magnitude, are oriented
along the same direction, the cosine of the included angle will be a unity.
This is precisely what cosine similarity measures.

In a similar manner if a dictionary of all possible n-mer words (example,
the set of all codons, or triplets are 3-mers under this definition) is created and
biological sequences represented thereon, the relative word frequency usage
can similarly serve as a basis for their comparison. Generally, a comparison
based on larger word size will tend to be more selective, or tend to reduce the
false positive rate. While a comparison on a smaller word size will be tend to
be more sensitive, and similarly reduce the false negative rate.

The example below illustrates the use of profiles as a basis for comparing
sequences. It is probably instructive to mention that in practice a 1-mer
profile will never be used to compare sequences. Moreover, for comparing
protein sequences, the set of all possible words will be become intractable. So,
methods for reduction in alphabets, such as a categorization and groupings
of amino acids using charge and hydrophobicity often need to be utilized.

Example 9.1
As a simple example, consider the cosine similarity computations using a one-
mer document frequency vectors computed over the following three sequences:

S1 = ACCTGGTATCCATTGCCA

S2 = CCTTAATTGGGTT

S3 = TTCCGGTAGCGATACAATTAAC

There are a total of four one-mers for DNA sequences. Consequently, the
one-mer profiles for these sequences may be computed by considering the
frequencies of the four nucleotides and using Laplace’s rule to convert those
into probabilities. Recall that Laplace rule eliminates the occurrence of zero
probabilities by adding a one to all the frequencies observed.
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Word f1 f2 f3 p1 p2 p3

A 4 2 7 5
22

3
17

8
26

C 6 2 5 7
22

3
17

6
26

G 3 3 4 4
22

4
17

5
26

T 5 6 6 6
22

7
17

7
26

18 13 22 1.0 1.0 1.0

The dot product computed must be normalized with the magnitude of the
probability density vectors. The magnitude of the three vectors are computed
as follows:

|p1| =
√
(

5

22

)2

+

(
7

22

)2

+

(
4

22

)2

+

(
6

22

)2

= 0.5102 (9.3)

|p2| =
√
(

3

17

)2

+

(
3

17

)2

+

(
4

17

)2

+

(
7

17

)2

= 0.5359

|p3| =
√
(

8

26

)2

+

(
6

26

)2

+

(
5

26

)2

+

(
7

26

)2

= 0.5073

Pairwise cosine similarity between these 1-mer profiles can be computed
as:

cos(p1, p2) =
( 5
22 )(

3
17 ) + ( 7

22 )(
3
17 ) + ( 4

22 )(
4
17 ) + ( 6

22 )(
7
17 )

|p1||p2| = 0.919 (9.4)

cos(p1, p3) =
( 5
22 )(

8
26 ) + ( 7

22 )(
6
26 ) + ( 4

22 )(
5
26 ) + ( 6

22 )(
7
26 )

|p1||p3| = 0.973

cos(p2, p3) =
( 3
17 )(

8
26 ) + ( 3

17 )(
6
26 ) + ( 4

17 )(
5
26 ) + ( 7

17 )(
7
26 )

|p2||p3| = 0.924

Based on the cosine similarity values for the one-mer frequencies, sequences
S1 and S3 are thus the closest neighbors.

End of Example

9.2.2 Divergence Measures

Profile based divergence measure is a distance metric that falls between the
value of 0.0 and 1.0. Several techniques have been proposed for measur-
ing divergence between two probability density functions. These include the
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variational distance V (p1, p2), and the divergence I(p1, p2) and divergence
J(p1, p2), as defined below. Divergence I and J require that the probability
density functions satisfy the condition of absolute continuity. The L(p1, p2)
divergence measure utilized in our research is derived from the relative en-
tropy or the K-divergence, and is symmetric.

V (pi, pj) =
1

2
·
∑

x∈W

|pi(x)− pj(x)| (9.5)

I(pi, pj) =
∑

x∈W

p1(x)ln
pi(x)

pj(x)
(9.6)

J(pi, pj) = I(pi, pj) + I(pj , pi) (9.7)

K(pi, pj) =
∑

x∈W

pi(x)ln
pi(x)

pi(x)+pj(x)
2

(9.8)

L(pi, pj) =
K(pi, pj) +K(pj , pi)

2
(9.9)

where, W represents the different words in a profile.
The variation distance V serves as an upper bound on both K- and L-

divergence measures. The divergence measure may also be used for measuring
the similarity between sequences A and B. If this is desirable, a similarity
measure may be defined as follows:

S(A,B) = ln
1.0

L(A,B)
(9.10)

Example 9.2
Divergence measures may be computed for the data presented in section 9.2.1
for computing cosine similarities.

For example, the variational distance between sequence S1 and S2, repre-
sented by 1-mer profiles p1 and p2 respectively, can be computed using their
profiles as follows:

V (p1, p2) =
1

2

[∣
∣
∣
∣
5

22
− 3

17

∣
∣
∣
∣+

∣
∣
∣
∣
7

22
− 3

17

∣
∣
∣
∣+

∣
∣
∣
∣
4

22
− 4

17

∣
∣
∣
∣+

∣
∣
∣
∣
6

22
− 7

17

∣
∣
∣
∣

]

= 0.193

(9.11)
Other divergence measures are similarly computed. The following table sum-
marizes the results:

Sequence Pair J Divergence L Divergence Variational Distance

(S1, S2) 0.167 0.021 0.193

(S1, S3) 0.053 0.007 0.091

(S2, S3) 0.157 0.019 0.186
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As is observed by the divergence measures as well, the consensus of all the
measures is indicative that sequences S1 and S3 are the closest neighbors.

End of Example

9.3 Processing Profiles in MATLAB

matlab string searching capabilities are utilized in the developing the fol-
lowing program for generating a dictionary of words for processing:

% Function generates a 3 mer dictionary of words and finds

% profile for the sequence passed.

function [prof freq mer3] = profile3mer (seq)

n = [’A’, ’C’,’G’,’T’];

freq = zeros(64 ,1);

for i=1:4

for j=1:4

for k=1:4

b1 = n(i); b2 = n(j); b3 = n(k);

pat = [b1 b2 b3];

ind = (k-1)*4^0 + (j-1)*4^1 + (i-1)*4^2 + 1;

mer3(ind ,:) = pat;

end;

end;

end;

%

% loop through the patterns

%

for i = 1:size(mer3 ,1)

pat = mer3(i,:);

freq(i) = length(findstr (seq , pat ));

end;

% increase freq vector by 1 as per Laplace rule

freq = freq + 1;

sumf = sum(freq );

for i=1: size(mer3 ,1)

prof(i) = (freq(i) / sumf );

end;

The following matlab functions illustrate the computation of cosine sim-
ilarity and divergence measures.
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Cosine Similarity computation are performed by the following function:

function sim = cosine_sim (pi , pj)

mag_pi = norm (pi);

mag_pj = norm (pj);

sim = dot (pi, pj) / (mag_pi * mag_pj);

The function for computing K divergence shown below:

function kdiv = k_divergence (pi, pj)

pavg = (pi + pj)/2;

pi_by_pavg = pi ./ pavg;

kdiv = sum (pi .* log (pi_by_pavg ));

K-divergence is an asymmetric divergence measure. That is, K(p1, p2) �=
K(p2, p1). The L-divergence measure, based on K-divergence is a sym-
metric measure and defined by the following matlab function.

function ldiv = l_divergence (pi, pj)

ldiv = (k_divergence (pi,pj) + k_divergence (pj,pi ))/2;

Finally, the upper bound on the divergence measure the variational dis-
tance.

Variational Distance is defined in the following matlab function:

function v = variational (p1, p2)

v = 0.5 * sum (abs(p1-p2));

9.3.1 MATLAB Program

We can use functions defined above to compute the cosine similarity and L-
divergence and variational distances based on a 3-mer profile using a following
sample program.

S1 = ’ACCTGGTATCCATTGCCA’;
S2 = ’CCTTAATTGGGTT ’;
S3 = ’TTCCGGTAGCGATACAATTAAC’;

S = {S1, S2, S3};

% Compute frequencies

fprintf (’------------3- MER STATISTICS ----------------\n’);
fprintf (’Seq -Pair Cos-Sim Var -Dist L-Div \n’);

% Compute cosine similarity
for i = 1:(length(S)-1)

[prf1 f m ] = profile3mer (S{i});
for j = i+1:length(S)

[prf2 f m ] = profile3mer (S{j});
cos_sim (i,j) = cosine_sim (prf1 , prf2);
var_dist (i,j) = variational (prf1 , prf2);
l_div (i,j) = l_divergence (prf1 , prf2);
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fprintf (’(S%-d and S%-d) = %5.3f \t %5.3f \t %5.3f \n’, ...
i, j, cos_sim (i,j), var_dist (i,j), l_div (i,j));

end;
end;
fprintf (’---------------------------------------------\ n’);

The above program generates the following output:

------------3-MER STATISTICS ----------------

Seq -Pair Cos -Sim Var -Dist L-Div

(S1 and S2) = 0.913 0.129 0.019

(S1 and S3) = 0.875 0.181 0.030

(S2 and S3) = 0.912 0.157 0.021

---------------------------------------------

9.3.2 Mutual Information

Mutual information is a measure of the information in one set of sequences
that may be deduced from another set of sequences. We may think of this
as an increase in our ability to estimate the probability density of sequence
y (sequence at the input of an imaginary communication channel), if we are
given the density function for sequence x (the sequence at the output of the
imaginary communication channel).

I(x, y) = H(x) +H(y)−H(x, y) (9.12)

H(x) = −
∑

i

px(i)log2px(i) (9.13)

H(y) = −
∑

j

py(j)log2py(j) (9.14)

H(x, y) = −
∑

i∈x

∑

j∈y

px,y(i, j)log2px,y(i, j) (9.15)

or,

I(x, y) = −
∑

i∈x

∑

j∈y

px,y(i, j)log2
px,y(i, j)

px(i)py(j)
(9.16)

H(x), H(y) is the entropy of sequence x and y respectively. px,y(i, j) is the
joint probability for i ∈ x and j ∈ y, where i and j are words in these sequences.
If sequences x and y are independent, px,y(i, j) = px(i)py(j), and the mutual
information I(x, y) = 0. When two identical sequences appear at two sides
of the channel separately, the mutual information reaches a maximum value.
Hence, we can use mutual information as the measure of similarity of two
sequences. The normalized similarity for mutual information is:

S(X,Y ) =
2 · I(X,Y )

I(X,X) + I(Y, Y )
(9.17)
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The difficult part here is to determine the joint probability of words occur-
ring in the sequences x and y. This requires the computation of the alignment
between the two sequences.

9.4 Sequence Comparison

The similarity of word frequencies is defined using an information theoret-
ical divergence metric. This similarity measure is an absolute metric and
does not require its significance be evaluated relative to a score population.
As discussed above, the dominant patterns observed among DNA sequences
constitute a useful indicator of their similarity. As a first step towards the
comparison of patterns, the frequency of k-mer words found in a sequence
may serve as its signature, or profile of the patterns occurring within the
sequences. We refer to this frequency profile of words as the scale-space rep-
resentation of a sequence. This is appropriate since the size of the profile
is dependent upon a scale, which in this case corresponds to the word size
chosen as the basis of representation.
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Fig. 9.2 The 4-mer scale-space representations of α-globin and β-globin gene se-
quences. These plots represent the frequencies of each of the 256 possible words
that may be formed using 4-nucleotide from a 4-character DNA alphabet. The x-
axis corresponds to a word and the y-axis specifies the frequency of its occurrence in
the sequence. The graphs for the two globin sequences depict that the 4-letter word
that occurs most frequently in α-globin also occurs most frequently in β-globin.

The sequences being compared are represented by the profile of their k-mer
word frequencies. The k-mer words in case of DNA sequences are formed by k-
nucleotide strings. Example 4-mer profiles for the α– and β–globin sequences
are shown in Fig. 9.2. Since it is possible to construct 256 words using 4-
characters (or nucleotides) of the DNA alphabet comprised of symbols {A,
C, T, G}, the frequency values for each of these words constitutes the 4-mer
profile. One advantage of such a representation is its independence of the
length of the sequence. For example, the sequence lengths are very different
for the 4-mer representations shown in Fig. 9.2. The α-globin gene cluster is
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approximately 250,000 bases or ∼250 kb long, while the β-globin sequence is
only ∼80 kb. In their scale-space representation their similarity is measured
using the distribution of their word populations. This is significant since
the scale-space representation compares the overall properties of the entire
sequence extent. This is in contrast to the search for local similarity that the
existing methods utilize for genomic databases searching.

One significant advantage of the scale-space representation is that the re-
sult of comparing two sequences is a metric that falls between 0 and 1. By
treating the scale-space representation of two sequences as probability den-
sity functions (PDF ), the divergence measures for the comparison of pdf s
is utilized for their comparison. Two such measures are the variation dis-
tance, V (p1, p2) and the L-divergence, L(p1, p2) can be used to compute the
LDSS or L-Divergence based Similarity Scores (LDSS). This is derived from
divergence values for the word size W by: LDSS ≡ 1 .0 −L(pW1 , pW2 ). Such a
measure is utilized in the example shown below.

9.4.1 Biolinguistic Retrieval from GBPRI Database

A sequence database comprising of the GB-PRI subsection of was created
to test the performance of the profile based methods for genome sequence
retrieval. This subset is comprised of ∼114,000 sequences. Sequences shorter
than 1 kb were excluded from the profile based search as probability density
estimations are not reliable for sequences shorter than 1 kb. The strength
of the profile based algorithm is primarily aimed at enhancing the biologi-
cal significance of comparing large sequences, where the chances of a large
number of sub-string matches is high. Fig. 9.3 depicts the background fre-
quency of each 3-mer word in the database. This is the relative frequency of
the trinucleotides in the GB-PRI database. As we describe later, the relative
prevalence of the words in the database may be utilized for assigning a sig-
nificance to each word. In general, the significance of the word is in inverse
proportion to the frequency of that word occurrence in the database. This
helps to correctly bias the profile similarity scores toward agreements on the
rarer words, i.e. words for which a random match of two profiles is not likely.

9.4.2 Retrieval Results

The 3-mer and 4-mer sequence profiles are pre-computed and stored in
database. The sequence retrieval procedure between a query and database
sequences proceeds as follows:

i Compute the query sequence profile with k-mer words.
ii For each k-mer DB sequence profile, compute the distances between query

profile and DB sequence profiles.
iii Sort the divergence values.
iv Retrieve the sequences with the smallest x% distance scores.
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Fig. 9.3 Word Prevalence in DB for 3-mer word. The first word is AAA and last
word is TTT. They both have high probabilities (about 0.035). Some words have low
probabilities (about 0.003). In the weighted profiles based comparison, a match on
the frequency of low probability words is assigned a higher level of significance.

Fig. 9.4 shows scores obtained for the top 1% matches with eight different
randomly selected human DNA query sequences. The length of these sequence
also varied from 100 bp to 100 kb. The score of top 1% matches based on
3-mer and 4-mer profiles are shown in this figure. It is clear from this figure
that the divergence values produced using the 4-mer profiles are roughly one
half an order of magnitude higher than those produced with 3-mer profiles.
This needs to be taken into consideration for comparison of divergence scores
obtained for different values of k.

9.4.3 Retrieval Evaluation

Experiments conducted with profile based retrieval system aimed to demon-
strate that the average score of a query sequence from the sample of primate
sequences (GB-PRI) is in close correspondence with the evolutionary distance
of the organism to which the query belongs, and the primates.

Eight sequences were randomly selected each from humans, bacteria, ara-
bidopsis, and yeast. The lengths of the randomly selected query sequences
were approximately 100 bp, 500 bp, 1000 bp, 5 kb, 10 kb, 20 kb, 50 kb
and 100 kb. The divergence scores for the sequences from the four species
were compared, and generally the closest neighbor to GB-PRI were the hu-
man sequences for all sequence sizes. The results shown in Fig. 9.5 illustrate
the average divergence of query sequence and its top 1% neighbors in the
database. Similar results obtained by considering the top 5% neighbors of a
query sequence are shown in Fig. 9.6.
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Average Scores for Human Sequences ( top 1%  
matches ) 
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Fig. 9.4 The variation of divergence scores with profile word size. The larger the
value of the word size, the higher the divergence scores. The growth in divergence
scores is exponential with the increase in word size. In plot above, the average of the
top 1% scores obtained by comparing GB-PRI and a set of eight randomly selected
human sequences are shown for word sizes of 3 and 4.
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Fig. 9.5 With the increment of sequence length, the divergence scores are going
to be decreased. The average scores for the top 1% matches are shown here. It
may noted that even though the average match scores decrease with the sequence
length, the trends (the relative score of human is the lowest, as humans are the
closest neighbor to primates) continue to persist. Generally, however, the query
sequences are seldom as large as 100 kb.
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Fig. 9.6 The average scores for top 5% neighbors for randomly selected query
sequences belonging to the four species studied

From the above plots, it is evident that the bacterial sequences are gener-
ally the farthest away from the primate section of GenBank. In Fig. 9.7 the
ratio of the average score for bacteria’s top 1% neighbors and human’s top 1%
neighbors are plotted. This clearly shows that the divergence scores for hu-
mans tend to an order of magnitude smaller than those of bacteria. In this
manner, the profile based genome retrieval algorithm clearly demonstrates
the power of this method to discriminate the sequence neighbors.

Ratio of Divergence Scores for Bacteria vs. Human 

0 
2 
4 
6 
8 

10 
12 
14 

100 500 1000 5000 10k 20k 50k 100k 

Sequence Length in bps 

Fig. 9.7 For top 1% matches, the divergence scores between bacteria and human.
This figure shows that the distance of a bacterial sequence from the database can
be an order of magnitude more than distance of the human sequence from the
database.
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The experiments indicate that the sequences with closest overall distance
scores belonged to humans, and the farthest overall distance scores belonged
to bacteria. This demonstrates the biological validity of the profile based
retrieval, as the humans are evolutionary neighbors of primates. The power
of this method stems from the observation that as query sequence size was
increased the separation between the two scores also increased. Thus, the
profile based method is not prone to generating false positive matches as
the chance of random local alignments will tend to increase for larger query
sequences.

9.5 Weighted Profiles

The profile or the distribution of k-mer words in a sequence, tends to become
noisy and cause the divergence measure to be influenced by the frequency
values that are an artifact of the background (random) word distribution.
Fig. 9.3 shows that some words have higher probabilities and are expected
to vary in their frequency distributions thereby causing the divergence to
be skewed toward random fluctuations. The weighted profile approach is de-
signed to alleviate the role of frequently occurring words that are expected
to be subjected to large variations from one sequence to the next in the
database. The weighted profile is computed by considering the database word
frequencies. The frequently occurring words in the database are assigned an
attenuating weight to limit their variations. The detailed definition of the
weights assigned to individual words is as follows:

Let Λ = {λ1, λ2, ..., λn}, be the database frequency profile, where λi is the
probability of word ei ∈ Ω occurring in the DB.

λi =

∑m
j=1(‖Sj‖ − k + 1)× PSj (i)
∑m

j=1(‖Sj‖ − k + 1)
(9.18)

where Sj ∈ DB, PSj(i) is the probability of word ei ∈ Ω occurring sequence
Sj . The vector Λ can also be considered as the expected probability of words
occurring in the entire genome database. The weights of words for the DB
is defined as: W = {wi | i = 1, 2, ..., n} with each wi is the weight for word
ei ∈ Ω defined as:

wi = −log(
m

ni
) (9.19)

where, m is the total number of sequences in the database, the ni is the
number of sequences for which the probability of finding the word ei is greater
than the expected value λi. The weighted word profile for sequence Sj , j =
1, 2, ..., m is defined as:
Φ = {φi | i = 1, 2, .., n}, with each

φi =
wi × PSj (i)∑n
t=1 wt × PSj (t)

(9.20)
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and, PSj(i) is the probability of word ei occurring on sequence Sj , j=1, 2, ...,m
and i=1, 2, ..., n. The L-divergence similarity score(LDSS) σ with weighted
profile between sequence S1 and S2 using weighted profile is defined:

σ =

∑n
i=1 φ1(i)log

φ1(i)
φ1(i)+φ2(i)

2

+
∑n

i=1 φ2(i)log
φ2(i)

φ1(i)+φ2(i)
2

2
(9.21)

9.6 Summary

Biolinguistic methods utilize information theory and the concept of entropy.
Ideas of using entropy in genetic patterns and switches has also been utilized
by researchers and used in the visualization of patterns using Logos..

Researchers have utilized a framework for using cross-entropy as a dissim-
ilarity measure. Divergence methods for comparing two probability density
functions are commonly studied. Some of these concepts are applicable to
applications in searching biological databases as well as for comparing prop-
erties of proteins in establishing their phylogeny.
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9.7 Exercises

Consider the following set of sequences in DNA database:

Seq-1: AGACTGTTACCCAGAAAACTTACAAATTGTAAATGAGAGGTTAGTGAAGAT

Seq-2: GGATCCAGCCTGACCTTGTAAAATAGCCTAACGTGTGTTCCCTAG

Seq-3: CTTAAGACATCAAACAATGTATGTTGAGTTTAACAAGGGAACACAACAAGATG

Seq-4: CTGCTCTAGGAAAAAATGCCTAGATACAAATAAAGACTTT

Seq-5: CTCAGCTTTTGTTTGTCTTGGAAAGTTGTTATTTTTCCCTCATTTCTGAAGGTCA

1. Develop a tri-gram frequency profile for the sequence collection.
2. Reduce the frequency profile to a probability density profile.
3. Using cosine similarity to find the nearest neighbor for the query sequence

below. Compare your results with those obtained with variational distance:

>Query

Query: AAGATAACACATACAGAAAATGTGAGAAAA

4. Comment on the relative advantages of each method.
5. Using variational distance find the nearest neighbor for the query sequence.
6. Repeat problem 5 using divergence measure discussed in this chapter.
7. Compare your results with those obtained with BLAST.
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Special sequences of regulatory importance such as introns, promoters, en-
hancers, Matrix Association Regions (MARs), and repeats are found in
non-coding DNA. Many of these regions contain patterns that represent func-
tional control points for cell specific or differential gene expression, while
others, such as repetitive DNA patterns, serve as a biological clock. These
and numerous other examples indicate that patterns in the eukaryotic DNA
may play a vital role in its viability. Other examples of these patterns include
the A + T or G + C rich regions, telomeric repeats of sequence AGGGTT,
rare occurrence or absence of dinucleotides TA and GC, and tetranucleotide
CTAG, and the GNN periodicity in gene coding regions. There is evidence
that suggests that some deviations from conserved patterns are deleterious
to the viability of an organism. Therefore, the DNA is not a homogeneous
string of characters, but is instead comprised of a mosaic of sequence level
motifs that come together in a synergistic manner to coordinate and regulate
the synthesis of proteins.

Computational models of biological sequences and patterns are of funda-
mental importance in bioinformatics since they serve as basis for detection
of patterns and estimating the significance of their occurrence. Patterns at
the various levels of abstraction drive research in genomics and proteomics.
Patterns detected at a coarse level of granularity, such as splice sites, binding
sites, and functional domains, drive the definition and detection of patterns
at higher levels of abstraction such as introns, exons, repetitive DNA, and
locus control regions. The higher level patterns provide information about
the structure of proteins and their role in the metabolic pathways of cellular
functions.

The modeling of sequences and patterns are two complementary objec-
tives. Sequence models provide a basis for establishing the significance of
patterns observed, while the pattern models help us look for specific motifs
of functional significance. We therefore must consider both of these issues.
For example, the probability of finding a pattern such as TATAAT in a se-
quence that is rich in the bases A and T will be more than finding the same
pattern in a sequence that is rich is bases G and C. It is therefore necessary to
consider models for both sequences and patterns to accurately estimate the
significance of patterns discovered in biological sequences.

A common measure of the significance of a pattern detected in a sequence
is bits, which is computed as log2(p) where p is the probability of finding a
given pattern in the background sequence. In the above example, the signif-
icance of finding an AT–rich pattern in a GC rich sequence would therefore
be higher than finding such a pattern in a sequence that is AT-rich. Thus,
the background phenomenon is important to consider when establishing the
significance of biological patterns detected in a sequence.

The following sections are divided to discuss both of these aspects, i.e.
modeling sequence and modeling patterns.
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Notation: The alphabet from which sequences and patterns are drawn is
denoted as Σ. For example, the DNA alphabet is ΣDNA ={A,C,T,G}. The
cardinality of the alphabet is denoted by |Σ|. The cardinality of a DNA
alphabet is 4, i.e. |ΣDNA| = 4. A string of zero or more characters drawn
from this alphabet is denoted by Σ∗. Σ∗ also used to denote the entire set
of strings that may be generated from the alphabet.



Chapter 10

Sequence Models

The two main sequence models are Independent Identically Distribution (IID)
and Markov Chain (MC). Sequence models are needed to represent the back-
ground stochastic processes in a manner that enables one to analytically jus-
tify the significance of observations. To provide an analogy, the determination
of the sequence model is similar to determining the probability of obtaining
a head (H) while tossing a coin. (For a fair coin, this probability would be 1

2 ).
In general however, we may estimate this probability by studying the strings
of the heads and tail sequences that a given coin has produced in the past.
Similarly, given the DNA sequence(s), we may induce the underlying model
that represents the maximally likely automaton that produced the sequence.

Let us continue our analogy further. After the coin model has been induced,
it would be possible to predict the probability of observing coin tossing pat-
tern such as ”three heads in a row”, etc. Similarly, after inducing a DNA
sequence model, it would be possible to deduce the expected frequency of oc-
currence of a DNA sequence patterns. This is helpful in classifying patterns
in terms of their relative abundance in a sequence specific manner. Thus,
sequence mode M is defined on the sample space Σ∗ and assigned to every
sequence x ∈ Σ∗ a probability that is a function of x and the sequence model
parameters M .

10.1 Independent Identical Distribution (IID)

The simplest of all the sequence models is the Independent Identically Dis-
tribution or the IID model. In this model, each of the four nucleotides is
considered to occur independently of each other. Furthermore, the probabil-
ity of occurrence of a given nucleotide at a given location is identical to the
probability of its occurrence at another location. For example, assume that
the sequence is defined using an IID random variable which can take on the
possible values defined by the DNA alphabet = {A, C, T, G}. In this case,
defining the individual probability values (pA, pC , pT , and pG) specifies the

c© Springer International Publishing Switzerland 2015 193
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complete model for the sequence. The values may in turn be computed simply
by considering the prevalence of each base in the given sequence. In statis-
tical terminology, the Maximally Likely or ML estimator for the probability
of occurrence of a given base X is simply nX

L where nX is the frequency of
occurrence of the base X in a sequence of length L.

In general, the maximal likely estimator for the parameters may be used.
Using the ML estimation, the probability of each base α may be
estimated as:

P (α) =
nα(L)

|L| (10.1)

This simply counts the relative frequency of a nucleotide α in a sequence of
length L. This estimator has the advantage of simplicity, and usually works
well when |L| is large. Given that the Model MIID has been induced from
the sequence data, the probability of an occurrence of a pattern x may be
computed using the following:

P (x|MIID) =
∏

i=1,...,n(x)

P (xi) (10.2)

where P (xi) is the probability of nucleotide xi at position i along the pat-
tern. The model assumes that the parameters (probability of each of the four
nucleotides) are independent of the position along the pattern.

Example 10.1
Consider the following DNA sequence:

SEQ = AACGT CTCTA TCATG CCAGG ATCTG

In this case the IID model derived from the sequence given the alphabet
Σ = {A, C, G, T}, the sequence model parameters are { 6

25 ,
7
25 ,

5
25 ,

7
25},

corresponding to the maximally likely estimation of the occurrence of each
of the four bases. These are thus the IID parameters for the background
sequence. The probability of finding the pattern CAAT on this sequence would
be equal to (pC × pA × pA × pT ) or (

7
25 × 6

25 × 6
25 × 7

25 ) = 0.0045.
End of Example

10.2 Markov Chain Model

In a Markov Chain (MC) model the value taken on by a random variable at
a given location along the sequence is dependent upon the value(s) taken by
the random variable at prior locations. The number of historical locations
(or states, as they are formally called) that influence the value of the random
variable at a given location is specified by the the degree of the Markov
process being used in modeling. In a first-order Markov chain models, the
probability of observing a nucleotide at location i is only dependent upon the
nucleotide located at location (i− 1). Similarly, the probability of occurrence
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of a nucleotide will be dependent upon the identity of nucleotides at locations
(i− 1) and (i − 2) in a second order Markov chain model, etc.

The first-order MC model is characterized by |Σ|+ |Σ|2 parameters, cor-
responding to the individual nucleotide frequencies as well as dinucleotide
frequencies. In addition to the |Σ| parameters capturing the probability of
occurrence of the symbols at position 1, the |Σ|2 parameters capture the con-
ditional probabilities of finding a base β at position (i) given that the base
α was found at position (i-1 ). These values are computed by using Bayes
rule, i.e. by finding the abundance of the dinucleotide αβ as a fraction of the
abundance of the nucleotide α.

This sequence model M is defined on the sample space Σ∗ where every
sequence x of length n(x) on Σ∗ is assigned the probability:

P (x|M) = P1(x1)
∏

i=2,...,n(x)

P2(xi|xi−1) (10.3)

where P1 is a probability function on Σ that models the distribution of α’s
at the first position in the sequence and P2 is the conditional probability
function on Σ x Σ that models the distribution of β’s at position i > 1 on
the alphabet symbol α at position i-1.

The parameter estimation using the Maximally Likely estimator proceeds
in a manner analogous to the IID model estimation. The transition probabil-
ities are however estimated using Bayes theorem:

P2(β|α) = P (α β)

P (α)
(10.4)

It may be pointed out that the sequence model permits the parametrization
of the sequence in a position-invariant manner. This will be extended to a
position dependent Markov Chain model when we describe the modeling of
patterns – where each position in the pattern will have an associated set of
|Σ|2 conditional probability parameters.

Example 10.2
Consider once again the same 25-nucleotide sequence:

SEQ = AACGT CTCTA TCATG CCAGG ATCTG

While considering the first-degree Markov chain models, the 4-parameters
corresponding to individual nucleotide frequencies, and the 42 parameters
corresponding to the dinucleotide frequencies need to be computed. The al-
phabet Σ = {A, C, G, T}, the sequence model parameters are the same as
before: { 6

25 ,
7
25 ,

5
25 ,

7
25}.

In order to compute P2, the Σ × Σ = Σ2 conditional probability values,
the dinucleotide frequencies and probabilities are computed from the sequence
data. The dinucleotide frequencies and the probabilities are shown below in
Table 10.1 with the parenthesized numbers representing the probabilities:
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Table 10.1 Joint Probability

A C G T

A pAA = 1
24

pAC = 1
24

pAG = 1
24

pAT = 3
24

C pCA = 2
24

pCC = 1
24

pCG = 1
24

pCT = 3
24

G pGA = 1
24

pGC = 1
24

pGG = 1
24

pGT = 1
24

T pTA = 1
24

pTC = 4
24

pTG = 2
24

pTT = 0
24

The probabilities for single nucleotides are determined by considering all
nucleotides except the first as the conditional probabilities are computed for
nucleotides 2 through n. The resulting probabilities are pA = 5

24 , pC = 7
24 ,

pG = 5
24 , and pT = 7

24 . The conditional probabilities are next computed using
the Bayes theorem. For example, the probability of finding C at position
(i + 1) given that an A has been found at position i is P (C|A) = pAC

pA
=

1/24
5/24 = 1

5 . The conditional probabilities for the example sequence are shown in

Table 10.2.

Table 10.2 Conditional nucleotide probabilities for the 25-nt example sequence

↓ i | −−−−→(i− 1) A C G T

A 1
5

1
7

1
5

3
7

C 2
5

1
7

1
5

3
7

G 1
5

1
7

1
5

1
7

T 1
5

4
7

2
5

0

Using these model parameters, the probability of finding the pattern CAAT

on this sequence using the first order Markov model of the underlying se-
quence would be equal to P (C).P (A|C).P (A|A).P (T |A) or ( 7

25 ).(
1
7 ).(

1
5 ).(

1
5 )

= 0.002. This is in contrast to the IID sequence model probability of the
pattern being 0.0045.

End of Example

10.3 Matrix Association Regions

Matrix Attachment Regions (MARs) are eukaryotic DNA elements that may
help regulate differential gene expression. The annotation of MAR sequences
on a genetic map can provide insights into regions of locus control; however,
computational MAR detection is made difficult by a lack of conservation
sequences between MARs. One cannot strictly detect MARs based on a given
pattern but must make a prediction based on a series of highly co-occurring
motif sequences. Such subsequences have been previously identified for the
use in the MAR-Wiz computational tool for the detection of MARs.
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Next we look into the significance of these patterns by computing the
patterns’ chi-square value. The chi-square value allows us to determine which
motifs occur more frequently in MARs than would be expected in an arbitrary
nucleotide sequence.

10.3.1 Introduction

Matrix Attachment Regions (MARs), also known as Scaffold Attachment Re-
gions (SARs), are short nucleotide sequences (approximately 100 to 1000bp
in length) which may assist in DNA replication or transcription. These se-
quences exist in eukaryotic DNA and attach the DNA to the nuclear matrix,
between which genes reside on chromatin loops. [1, 2]. While AT-rich, MARs
are believed to lack conservation sequences [3], which results in computational
MAR detection being a difficult task.

Previously, MARs motifs have been computationally identified for the soft-
ware tool MAR-Wiz [4, 5]. These in silico analyses identified 39 motifs, which
are represented as regular expressions. These motifs which were determined
to occur more frequently in MARs than in arbitrary nucleotide sequences.
MAR-Wiz utilizes these motifs to compose rules, which take two forms. The
first is simply an OR-type rule that is matched when any motif that com-
prises that rule is matched. The second type of rule is an AND-type rule that
requires two or more rules to occur in sequence. MAR-Wiz determines the un-
expectedness of these motifs and rules and uses these with a sliding-window
approach to estimate the location of MARs. For each window position, the
unexpectedness of the window is given as the sum of the unexpectedness of
every rule found within the window.

It is important to test the efficacy of these motifs to determine their suit-
ability for detecting MARs. Since MARs are AT-rich, many AT-rich motifs
will be more likely to occur by chance within a MAR than in an arbitrary
nucleotide sequence. This motif, however, may not occur more frequently in
MARs than in another sequence that is, itself, AT-rich. Therefore, motifs
could exist in this set that are apt at detecting AT-rich sequences, but not
necessarily MARs. As illustrated below, chi-square based analysis may be
used to determine the suitability of statistically establishing significance of
motifs.

10.3.2 Selecting Statistically Significant Motifs

In order to determine the effectiveness of current predicted motifs at detecting
MARs, we compared the actual number of occurrences of each motif in each
MAR sequence to the number that would be expected to occur by chance.

MARs, used to study the performance of the set of motifs, were retrieved
from GenBank. A keyword-based search limited to genomic DNA in
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eukaryotes was conducted using Entrez for the term ”Matrix Attachment
Region.” The results were manually inspected to identify sequences in which
a non-putative MAR had been identified as a feature. These 61 subsequences
were added to our library for further analysis.

Computationally predicted motifs, in the form of regular expression, were
identified from literature [4]. The regular expression were translated to be
comprised strictly of A, C, G, and T; as opposed to allowing for IUPAC
ambiguity codes. The probabilities of these motifs occurring randomly were
then calculated as a function of the probability of each of the four bases. We
used an independent and identically-distribution (iid) model for the motifs
(the probability of a nucleotide occurring at a position is independent of
nucleotides at any other position). For example, the probability of a simple
motif occurring, such as motif m1 (ATTTA) is simply the product of the
probability of each base occurring. This can be given by a function:

P (m1) = Pa · Pt · Pt · Pt · Pa (10.5)

Slightly more complicated is the probability of motif m31 (Y R) which is the
sums of the probabilities for the nucleotides included in Y (C or T) and R
(A or G). So, the probability of Y is the same as the sum of the probabilities
of C and T. Similarly, the probability of R is the sum of the probabilities of
A and G. So, overall the probability for motif m31 is shown as:

P (m31) = (Pc + Pt) · (Pa + Pg) (10.6)

For multiple occurrences of a given base or ambiguity code, such as an exam-
ple motif such as A{3} the probability is simply equal to the probability of
the base or ambiguity code, raised to the power of the number or occurrences
(in this case, P 3

a ). Since A{3} is equivalent to AAA it can be shown that the
probability of AAA is equal to P 3

a ).

P (AAA) = Pa · Pa · Pa = P 3
a (10.7)

So, the probability for motif m12 (TAN{3}TGN{3}CA), is the product of
the probabilities of TA, N{3}, TG, N{3}, and CA.

P (m12) = Pt ·Pa · ((Pa+Pc+Pt+Pg)
3) ·Pt ·Pg · ((Pa+Pc+Pt+Pg)

3) ·Pc ·Pa

(10.8)
Clearly, over any arbitrary, large dataset, the probability of each nucleotide

will approach 1/4. This function, however, allows us to determine with what
frequency we should expect a given motif to occur in any given MAR. For
example, the probabilities for A and T are higher in MARs–given the AT-
richness of MARs–and, as such, we’d expect a high number of motifs that
are themselves AT-rich. This probability will allow us to more effectively
determine whether a motif is more likely in a MAR than any arbitrary,
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non-MAR sequence, for which the proportions of each nucleotide are
similar to those in MARs.

Motifs were discarded from our set of statistically verified motifs if they
occurred less times than expected. For motifs that occurred more frequently
than expected, we calculated their chi-square value χ2. Motifs were then listed
in order of increasing chi-square value. These results can be seen in Fig. 10.2.

Fig. 10.1 The algorithm used to determine the predicted and actual occurrences
and chi-square value for each MAR

∑

m∈M

(Xm − μm)2

μm
(10.9)

10.3.3 Removing Motifs and Rules from MAR-Wiz

Since those motifs that occurred less often than expected have been removed
from our set, patterns with high chi-square also those that occur much more
often than anticipated. Our ordered list, therefore, ranks motifs from those
of least significance at detecting motifs to most significant.
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Motif Motif Expected Observed Chi-square

m1 ATTA 1499.41 1073 -
m2 ATTTA 500.616 453 -
m3 ATTTTA 168.645 204 79.5232
m4 TGTTTTG 13.811 32 157.086
m5 TGTTTTTTG 1.47226 1 -
m6 TTTTGGGG 1.38835 7 247.13
m7 AAAAN7AAAN7AAAA 0.83117 15 1452.63
m8 TTTTN7TTTN7TTTT 0.83117 15 1452.63
m9 TTTAAA 168.645 238 171.335
m10 AAA 4531.99 4019 -
m11 AAAA 1499.41 1587 161.154
m12 TAN3TGN3CA 42.7963 42 -
m13 TAN3CAN3TG 42.7963 58 106.791
m14 TGN3TAN3CA 42.7963 50 85.3869
m15 TGN3CAN3TA 42.7963 42 -
m16 CAN3TAN3TG 42.7963 20 -
m17 CAN3TGN3TA 42.7963 58 106.791
m18 RNY NNCNNGY NGKTNY NY 3.91252 4 120.861
m19 GTNWAYATTNATNNR 1.51401 9 810.318
m20 NCNNCY NGKTNY NY 15.6643 25 61.8074
m21 WWWWWWN{8}S{0,4}WWWWWW 766 1686.3 -
m22 AATATTTTT 6.79283 18 310.776
m23 AATAAAYAAA 3.39608 19 536.527
m24 ATATTT 168.645 242 185.817
m25 WTTTAYRTTTW 6.79151 12 145.28
m26 ATTTCASTTGTAAAA 0.00196501 8 639940
m27 WWCAAWG 110.488 109 -
m28 CTTTTAGCWWW 0.648685 1 15.9582
m29 TGTTTATGNTTTCCGAAANNNAAAA 3.19983 ∗ 10−7 0 -
m30 TAATTA 168.645 124 -
m31 Y R 33089 29794 -
m32 AY CY RTRCAY YW 1.33738 0 -
m33 AATAAYAA 28.6543 41 145.895
m34 AWWRTAANNWWGNNNC 3.89067 5 33.6584
m35 WAWTTDDWWWDHWGWHMAWTT 0.310064 1 358.399
m36 WADAWAYAWW 132.913 198 221.735
m37 WWDAWAYAWW 265.827 312 171.351
m38 TWWTDTTWWW 184.447 245 181.134
m39 TTWTWTTWTT 18.9432 72 1022.41

Fig. 10.2 Table of chi-square values for motifs

Firstly, we tested to see if this set—with 13 motifs removed—would ade-
quately detect MARs. We removed these motifs from the set used by MAR-
Wiz and tested the results against results generated by MAR-Wiz using the
original rule set. These tests were run on sequences for which MAR-Wiz suc-
cessfully identified MARs that had been previously located experimentally.
Initially, for some sequences, results produced using the modified rule set
differed from the results produced using the original rule set. We then found
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that adding only motif m21 back into the rule set corrected this issue—
this motif will be discussed later. After re-adding motif m21, for all input
test sequences, the results were manually inspected and found to be nearly
identical to those produced by MAR-Wiz using the original rules.

We then removed motifs one at a time, in order of increasing chi-square
value, starting with the lowest chi-square value. When all the motifs that
composed a rule were discarded, the rule was discarded as well. After each
removal, we again manually inspected the results of MAR-Wiz using the
newest rule set and compared it to the output from the original rule set.
This continued until we could no longer remove the motif with the lowest
chi-square value and retain similar results to the original results. Figs. 10.3
and Fig 10.4 show the similarity between the results using the original and
new rules for a specific sequence.

Fig. 10.3 TOP: A graph indicating the potential for MARs in human beta globin
using the original rules. Bottom: A graph indicating the potential for MARs in the
same sequence, but with the new rules set.

The original set of rules consisted of 39 motifs comprising more than 10
rules. The resulting set contained only 13 motifs comprising 5 rules.

Surprisingly, over all MARs, only 26 of 39 motifs were actually observed
in our MAR library more than expected. Furthermore, the Chi-square value
of each motif was determined for each MAR in which the number of observed
occurrences was greater than the number expected. Of those 26 motifs that
occurred more frequently than expected with 61 degrees of freedom (the
number of MARs in our library), 23 had a P-value of less than 0.05 and
21 had a P-value less then 0.005 (Fig. 10.5). The respective thresholds for
P-values are 80.23, 89.59, and 93.18 for 0.05, 0.01, and 0.005.
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Fig. 10.4 TOP: A graph indicating the potential for MARs in human protamine
using the original rules. Bottom: A graph indicating the potential for MARs in the
same sequence, but with the new rules set.

Specifically of interest is motif 39 (TTWTWTTWTT ) which occurs 72
times, but was expected to occur less than 19 times. Furthermore, motifs
3, 9, 24, 36, 37, and 38 all occur in every MAR and do so with a greater
frequency than would be expected.

In general, it appears that these 13 patterns that did not occur more
frequently than expected are poor as being a positive indicator of a MAR.
Specifically, short and simple patterns such as ATTA seem to not effective
signs of MARs as these sequences ought to occur many times within AT-
rich regions. In actuality, however, most of these patterns do not occur with
a much greater frequency than anticipated and some even occur less often
than expected.

Furthermore, many long motifs, while occurring more frequently than ex-
pected, occurred so few times as to be of little use in predicting MARs. Motifs
that occurred once or twice within the entire MAR library were removed from
the rule set. One would anticipate the removal of these infrequently occurring
motifs as they seem to only indicate specific MARs and would not serve very
well as a general indicator.

Motif 21 seems to be an exception to this rule as it is anticipated to occur
with high frequency, occurs less than expected in reality, and is still significant
as an indicator of MARs. In our experiments, motifm21 comprises aMAR-Wiz
rule all by itself. In literature, this rule was expressed as the separation of two
instances of the samemotif,WWWWWW , separated by eight to twelve other
nucleotides, and was the only such rule to be represented by the disjunction of
conjunctions [5]. In our experiments, we replaced this by simply using onemotif
via the regular expression, WWWWWWN{8}S{0, 4}WWWWWW .

Both the rule from literature and our regular expression are equivalent. Our
regular expression is modified so that it cannot match both a string and some
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Fig. 10.5 This graph shows the chi-square values for each motif. The graph is only
defined for motifs where the occurrences exceeded the expectation. Note: motif m26

has a chi-square value of 639,940 and has been clipped by the graph window.

initial substring for that string, as allowing for such an possibility would result
in an inflated probability for this regular expression. While only occurring 766
times as opposed to the expected 1,686 and only presenting in 41 out of 61
MARs, the removal ofm21 from the rule set drastically changed the output for
certain motifs. Since it only occurs in roughly two-thirds of MARs, we cannot
claim it to be a necessary condition for the existence of a MAR. As such, we
cannot statistically or computationally explain the significance of this motif.

Other than motif m21, the 13 motifs remaining in the rule set are the
most statistically significant motifs acquired from literature. That is, they
are they seem to be good indicators of a MARs presence as they occur more
frequently in MARs than would be expected in other nucleotide sequences of
even similar nucleotide distribution. We believe the resulting set is a core set
of rules that can be used to computationally detect MARs.
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10.4 Exercises

1. What is the probability of finding a pattern ATTACG in a DNA sequence
where all bases are equally likely. How many occurrences of this pattern
do you expect to see in a sequence that is 108 base pairs in length.

2. Assume that Pr(A)=Pr(T)=0.2, and Pr(G)=Pr(C) = 0.3. Using Poisson
probability distribution to calculate the probability of finding two oc-
currences of the pattern ACCTGACC in a sequence window of 500 bp
long?

3. Repeat problem 2 for probability of finding two or more occurrences of
the pattern ACCTGACC in a sequence window of 500 bp long? What is
the significance of this observation?

4. Assume that the background sequence is given as shown below:

CCTTA ATTAC CAAGG CATTA CCGAT

a. Construct an IID model for the sequence and compute the probability
of finding the pattern CAAT.

b. Compute the probability of finding CAAT under a first order Markov
model. You only need to compute the conditional probabilities that you
require for this purpose.

c. Compute the log likelihood ratio:

LLR = log
Pr(CAAT |Markov)

Pr(CAAT |IID)

5. Given the sequence:

ATATTATGCCGTATAACCGGTT

Construct its IID model and a first order Markov chain model. Using
these models, estimate the probability of finding sequence, ATTA in the
sequence. Clearly state the significance of your answers in each case.

6. Compute the probability of finding a pattern ATTA given that you have
no a-priori knowledge of the background sequence data.

7. Assume that the background sequence is given as shown below. Construct
an IID model for the sequence and compute the probability of finding
the pattern ATTA.

ATTTT CTGGG ATATC CGGAG GATAT GGGAC CCTAG

8. Assuming the same background sequence as given in the previous ques-
tion, compute the first order Markov model for the background. What
is the liklihood of finding the pattern ATTA assuming the background
behaves as a first order Markov chain?
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9. Which of the answers of the liklihood value computed above is most
reliable and why? Justify with an new example of your choice.

10. What is the liklihood ratio of finding the pattern ATTA in a sequence
with an IID model characterized by pA = pC = pG = pT = 1

4 and your
answer for Exercise 8. Express this ratio as a log-likelihood. What is the
significance of this value?



Chapter 11

Subsequence Pattern Models

Having described some methodologies for modeling sequences, we now turn
our attention toward describing the statistical modeling procedures for DNA
patterns. There are a growing number of well-established patterns that we
may wish to model and search for in DNA sequences. Often these patterns
of functional significance are discovered after an alignment of sequences be-
longing to a particular family. Such a multiple sequence alignment is often
interspersed with gaps of varying sizes. However, there are sections in the
final alignment that are free of gaps in all of the sequences. These fixed-size
ungapped aligned regions represent the types of patterns that we need to
model to identify patterns in an anonymous segment of DNA. The statistical
technique based on Hidden Markov models may be employed for developing
such a closed form representation of a set of patterns. This section describes
the statistical modeling procedures for DNA patterns. Thus, our attention is
now focused somewhat more on modeling the motifs that are associated with
certain biological functions. In the previous section our goal was to character-
ize the “haystack” of data in which these biological “needles” of information
are hidden. In contrast, our goal in this section is to model the nuggets
themselves. The statistical techniques that may be employed for developing
a closed form representation of a set of patterns are described below.

11.1 Regular Expressions

Regular expressions are utilized in bioinformatics for representation of pat-
terns in a condensed format. One of the most useful features in the Perl
programming language is its powerful string manipulation tools, including
its ability to manipulate regular expressions – the natural representational
style for biological patterns. The Perl programming language is popular with
biologists because of its practical applications to DNA and protein sequences.

For example, a compact regular expression based representation of the
TATA-box could be devised. Consider, for example, that the sequence level
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motifs for TATA-box are TATAAT or TATTAT or TATAA. One could con-
veniently represent and look for these variations using a single regular ex-
pression: TAT (AAT |TAT |AA). Special characters, ’^’ and $+ are used to
denote the start and the end of the sequence being searched. For example,
^MSE denotes the peptide sequence that begins with MSE, and similarly the PDZ
binding sites at the end of a sequence record are denoted by [ST ]X [V IL]$.
Some meta-characters are symbols that represent more than one character.
Within the context of regular expressions, these are “*” and “+” which rep-
resent matching with zero or more, and one of more characters respectively.
Thus, the regular expression AAAAN+AAAA matches two “A” tracks of length
4 that are separated by any number of bases.

11.2 Weight Matrices

A DNA sequence matrix is a set of fixed-length DNA sequence segments
aligned with respect to an experimentally determined biologically significant
function. A DNA sequence motif can be defined as a matrix of depth 4 uti-
lizing a cut-off value. The 4-column/mononucleotide matrix description of a
genetic signal is based on the assumption that the motif is of fixed length,
and that each nucleotide is independently recognized by a trans-acting mech-
anism. If a set of aligned signal sequences of length L correspond to the func-
tional signal under consideration, then F = [fbi], (b ∈ Σ), (j = 1 . . . L) is the
nucleotide frequency matrix, where fbi is the absolute frequency of occur-
rence of the bth. type of the nucleotide out of the set Σ = {A,C,G, T } at the
ith. position along the functional site. A method for converting the frequency
matrix into a weight matrix has been proposed. This method is based on
weights at a given position being proportional to the logarithm of the ob-
served base frequencies. These are increased by a small term that prevents
the logarithm of zero and minimizes sampling errors. The weight matrix is
computed as shown in Eq. 11.1. The term fb,i is the frequency of base b at
position i, and eb represents the expected frequency of base b, ci a column
specific constant, and s, a smoothing percentage.

W (b, i) = log2(
fbi
ebi

+
s

100
) + ci (11.1)

These optimized weight matrices can be used to search for functional signals
in nucleotide sequences. Any nucleotide fragment of length L is analyzed and
tested for assignment to the proper functional signal. A matching score of
ΣL

i=1W (bi, i) is assigned to the nucleotide position being examined along the
sequence. In the search formulation, bi is the base at position i along the
oligonucleotide sequence, and W (bi, i) represents the corresponding weight
matrix entry for base bi occurring along the ith position in the motif. For
example, the weight matrix reported for the functional pattern commonly
known as the TATAA-Box is shown in Table 11.1. Matrices such as PAM and
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Table 11.1 Weight Matrix for TATAA box

T 6 49 1 56 6 22 6 20

C 14 6 0 0 3 0 1 2

A 8 4 58 4 51 38 53 30

G 32 1 1 0 0 0 0 8

BLOSUM matrices are derived in a manner similar to the process described
above. The term Position Specific Scoring Matrix, (PSSM), as these are
called, is often used to define the individual score profile within the various
columns of the pattern. A PSSM can be used to search for a match in a longer
sequence by evaluating a score Sj for each starting point j in the sequence
from position 1 to (N − L+ 1) where L is the length of the PSSM.
Example 11.1
Consider a block of DNA sequences representing an ungapped alignment:

Alignment

A A C T T A
A A T T T C
A T T T A A
C A A A A A
A T A A G A
A T G A A T

The computation of frequency values used in the above score matrices utilize
the Laplace rule, such that all frequency values are incremented by 1 to avoid
occurrences of zero probability. Thus, frequencies of {A, C, G, T} in the first
column are set to {(5+1), (1+1), (0+1), (0+1)}.

Score Matrix

A 6 4 3 4 4 5

C 2 1 2 1 1 2

G 1 1 2 1 2 1

T 1 4 3 4 3 2

Thus, pA = 26
60 = 13

30 , pC = 9
60 = 3

20 , pG = 8
60 = 2

15 , pT = 17
60 .

Next, the weight matrix is constructed by considering the log-odds score
of

fb,i
eb

. For example, assuming that s = 10 and c = 0, the log-odds score

of the nucleotide A at column 1 is log2(
fA,1

eA
+ s

100 = log2(
6/10
13/30 + 0.1) =

0.570. The value thus obtained is multiplied by 100, and the fractional part
is dropped, yielding a weight of 57 for nucleotide A in column 1 of the matrix
shown below. Other values are similarly computed.

Weight Matrix

A 57 3 -34 3 3 33

C 52 -38 52 -38 -38 52

G -23 -23 68 -23 68 -23

T -114 60 21 60 21 -31

End of Example
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11.3 Position Dependent Markov Models

Markov models have been considered as a means to define the background
DNA sequence. Markov models enable us to define the probability of a nu-
cleotide conditioned upon the nucleotides that occur in the preceding posi-
tion. However, the modeled dependency is position-invariant. A position de-
pendent Markov model may be utilized for the representation of a sequence
signal or motif. This model is defined on the sample space Σ∗ and assigns to
every sequence x on Σ∗ a probability given by Eq. 11.2 below:

P (x|M) = P1(x1)
∏

i=2,...,n

Pi(xi|xi−1) (11.2)

This model has |Σ|+ (n − 1) × |Σ|2 parameters. The first Σ parameters in
this equation are first-order probabilities estimated using the occurrences of
the symbol α ∈ Σ at the first position of a pattern. The other (n− 1)× |Σ|2
probability values are for the conditional occurrence (i.e. first order Markov
process) of symbol α at position i given that symbol β occurred at position
(i−1). These |Σ|2 parameters need to be estimated for each of the remaining
(n− 1) positions in the pattern. Thus, the position-specific dependencies on
the previous position are determined by allowing a unique set of transition
probabilities to be associated with each position along the signal. Generally,
this model assumes that an ungapped multiple sequence alignment of the
pattern instances is available, and that the number of sequences is sufficient
training to induce position specific Markov probabilities.

Example 11.2
An ungapped alignment of a set of sequences and the corresponding param-
eters are shown below:

Alignment
A A A T T A
A A T T T A
A T T T A A
A A A A A A
A T A A A A

Frequencies for Position 1

A C T G

6 1 1 1

Convert the frequencies to probability
by multiplying it with (19 ).

Position specific Markov frequencies for positions 2–N
i A A A A C C C C G G G G T T T T
i-1 A C T G A C T G A C T G A C T G

i=2 4 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1

i=3 4 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1

i=4 4 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1

i=5 4 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1

i=6 4 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1



11.3 Position Dependent Markov Models 211

The frequency values listed in the above table may be converted to prob-
ability values by multiplying it with ( 1

21 ).
End of Example

11.3.1 Profiles

Profiles was the earliest representation methodology for capturing variabil-
ity in the sequence data. Profiles, or the profile matrix, are often computed
from the multiple sequence alignment of the patterns that we aim to rep-
resent. Multiple sequence alignments of the various forms the pattern may
take are used to find a profile matrix representing the statistical estimate of
the probability of finding a base at a given location. It is possible to perform
a comparison of a profile matrix against a sequence or series of sequences.
The profile matrix specifies a different score for each letter (column) in each
position in the alignment (row). This differs from scoring matrices, which
assign a single score for a two-letter match independently of the match’s po-
sition in the alignment. Pattern search methodologies are devised to detect
the highest pattern scores using the weight assigned to each column of the
pattern.

Profiles are similarly defined for modeling functional motifs in amino-acid
sequences. A profile is a scoring matrix M(p, a) comprised of 21 columns and
N rows, where N is the length of the motif. The first 20 scores represent the
weight for each individual amino acid, and the 21st column specifies the cost
associated with an insertion or deletion at that position. The value of the
profile for amino acid b defined for position p is given by Eq. 11.3 below:

M(a, p) =

20∑

b=1

W (b, p)× Y (b, a) (11.3)

The term Y (b, a) is Dayhoff’s matrix and W (b, p) is the weight for the
occurrence of amino acid b at position p. The position specific weight is

defined by log f(b,p)
N , or the frequency of occurrence of the amino acid b as

a fraction of the total N sequences utilized for construction of the profile,
with a frequency of 1 being used for any amino acid that does not appear at
position p.

11.3.2 Hidden Markov Models

There are several extensions to the classical Markov chains, and Hidden
Markov Models (HMM) are one such extension. The rationale for building
HMMs comes from noticing that our observations could arise from a model
characterizing a pattern, or from a model characterizing the background. For
example, the DNA sequence HMMs are developed to characterize a pattern
as an island within the sea of DNA. The Markov chain characterizing both
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these types of DNA is embedded within the same model, with the ability
to switch from one type to the other. In this manner, a HMM utilizes a
set of hidden states with an emission of the symbols associated with each
state. From a symbol generation perspective, the state sequence executed by
the model is not observed. An N -state HMM is parameterized using the set
λ = {A,B, π}. Individual elements of this set are defined as follows:

1. A: The N ×N matrix A = {aij} represents the state transition proba-
bilities. aij = Pr [qx+1 = Sj | qx = Si] 1 ≤ i, j ≤ N

2. B: The Q×|Σ| emission probabilities corresponding to the emitting states.
As we discuss below a subset of theN states have emissions associated with
them. The elements of this matrix, E = {ek(b)}, are defined as follows:
ek(b) = Pr [Ox = b | qx = Sk] 1 ≤ k ≤ Q, 1 ≤ b ≤ |Σ|

3. π : The initial state distribution probabilities, π = {πi}. πi = Pr [q1 =
Si] 1 ≤ i ≤ N

Although a general topology of a fully connected HMM allows state transi-
tions from any state to any other, this structure is almost never used. Often,
the over-generalized model produces sub-optimal results due to the lack of
training data. Consequently, more restrictive HMMs that rely on the problem
characteristics to suitably reduce the model’s complexity and the number of
model parameters that are needed are utilized. One such model is defined to
be the profile-HMM, which is induced from a multiple sequence alignment.
The initial transition and observation probabilities are set in a reasonable
manner with all the state transitions and symbol emission probabilities as
being equally likely. The Maximally Likelihood Estimation procedure pro-
posed by Baum-Welch is next utilized for training the HMM.

seq-1 G C C C A
seq-2 A G C
seq-3 A A G C
seq-4 A G A A
seq-5 A A A C
seq-6 A G C

(a)

seq-1 φ φ G C C C A
seq-2 φ A G C φ φ φ
seq-3 A A G C φ φ φ
seq-4 φ A G A A φ φ
seq-5 φ A A A C φ φ
seq-6 φ A G C φ φ φ

* M1 M2 M3 * * *

(b)

Fig. 11.1 The set of sequences in (a) are aligned and shown in (b)

Each of the steps outlined above are described in more detail using an
example. Let us consider a set of six DNA sequences shown in Fig. 11.1(a). A
multiple sequence alignment of these sequences is the first step towards the
process of inducing the Hidden Markov Model.

Model Topology: As a first step towards inducing the model, the topol-
ogy of the HMM is established using the consensus sequence. The aligned
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columns of symbols correspond to either emissions from the same match
state or to emissions from the same insert state. In this formalism therefore,
the columns that correspond to the match state are established to define the
match states of the HMM architecture. As shown in Fig. 11.2 there columns
are marked as M1, M2 and M3.

M 0 M 4 M 2 

D 2 

M 3 

D 3 

M 1 

D 1 

I 1 I 3 I 2 I 0 

Begin End 

(a)

seq-1 M0 D1 M2 M3 I3 I3 I3 M4

seq-2 M0 M1 M2 M3 M4

seq-3 M0 I0 M1 M2 M3 M4

seq-4 M0 M1 M2 M3 M4

seq-5 M0 M1 M2 M3 I3 M4

seq-6 M0 M1 M2 M3 M4

(b)

Fig. 11.2 The consensus columns are used to define the match states M1, M2 and
M3 for the HMM. After having defined the match states, the corresponding insert
and delete states are defined to complete the profile-HMM topology.

Transition Probabilities: The value of each transition probability is
computed using the frequency of the transitions as each sequence is con-
sidered. The model parameters are computed using the state transition se-
quences defined in Fig. 11.2(b). The frequency of each of the transitions and
corresponding probabilities are shown in Fig. 11.3.

Emission Probabilities: Having thus specified the state transition se-
quence, the emission probabilities for each of the symbol, α ∈ |Sigma| is
computed for each match and insert state, k, in the model. The emission
probability is computed using the formula Eq 11.4. Thus an emission proba-
bility is associated with each state, and specifies the probability of emitting
each of the symbols in |Σ| in the state k.

ek(α) =
Freqk(α)

Σν(Freqk(ν))
(11.4)
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State
0 1 2 3

M→M 4 5 6 4
M→D 1 0 0 -
M→I 1 0 0 2

I→M 1 0 0 2
I→D 0 0 0 -
I→I 0 0 0 2

D→M - 1 0 0
D→D - 0 0 -
D→I - 0 0 0

M 0 M 4 M 2 

D 2 

1/3 
1/9 

M 3 

D 3 

1/2 
4/8 

M 1 

D 1 

1/4 
1/8 

I 1 
1/3 

I 3 
3/7 

I 2 
1/3 

1/4 1/3 

2/4 

1/3 

1/3 

6/8 

1/
8 

1/3 

1/3 

1/3 

7/9 

1/
9 

4/8 

4/7 

1/2 

5/9 

I 0 
1/4 

2/9 

1/4 

2/4 

2/
9 

Begin End 

Fig. 11.3 The state transitions inferred from the above topology are used to com-
pute the frequency of transitions for the various states in the model and state
transition sequences in Fig. 11.2. These frequency values are subsequently utilized
to compute the transition probabilities shown on the model above. Laplace rule is
used to avoid zero probabilities.

Using the above formulation, the emission probability for each state is com-
puted as shown in Fig. 11.4.

State
0 1 2 3

Match Emissions

A - 5 1 2
C - 0 0 4
G - 0 5 0
T - 0 0 0

Insert Emissions

A 1 0 0 1
C 0 0 0 2
G 0 0 0 0
T 0 0 0 0

M 0 M 4 M 2 

D 2 

M 3 

D 3 

M 1 

D 1 

I 1 I 3 I 2 I 0 

Begin End 

A 2/5 

C 1/5 

G 1/5 

T 1/5 

A 1/4 

C 1/4 

G 1/4 

T 1/4 

A 1/4 

C 1/4 

G 1/4 

T 1/4 

A 2/7 

C 37 

G 1/7 

T 1/7 

A 5/9 

C 1/9 

G 1/9 

T 1/9 

A 2/10 

C 1/10 

G 6/10 

T 1/10 

A 3/10 

C 5/10 

G 1/10 

T 1/10 

Fig. 11.4 The state specific frequency of observation of a symbol is used for de-
termining the probabilities of emissions. Again, Laplace rule is used to avoid zero
probabilities.

From a standpoint of parameters used to characterize an HMM, all states
have an emission probability vector associated with them. It may be easy to
think of the emission matrix as an (N × (|Σ + 1|)) matrix, corresponding to
the extension of the base alphabet with the symbol φ used for denoting a
deletion. The probability of the emission of the symbol φ is set to 0 for the
insert and the match states. Correspondingly, the probability of emission of
symbol φ is set to 1 for the delete state with all other probabilities being
set to 0.
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Example 11.3
Similar process is followed for inducing the HMM for an aligned set of protein
sequences. Consider the following sequence alignment representing a protein
motif.

HBA_HUMAN ... VGA--HAGEY ...

HBB_HUMAN ... V----NVDEV ...

GLB3_CHITP ... VKG------D ...

LGB2_LUPLU ... FNA--NIPKH ...

GLB1_GLYDI ... IAGADNGAGV ...

Match States *** *****

A HMMwith 8 match states may be constructed based on this alignment. The
residues AD in GLB1 GLYD1 are treated as insertions, with respect to the
consensus. In match state 1, the emission probabilities are (using Laplace’s
rule): eM1(V ) = 4

25 , eM1(F ) = 2
25 , eM1(I) = 2

25 , and eM1(a) = 1
25 for all

other residues.
The transition probabilities from match state 1 are as follows: aM1,M2 = 5

8 ,
aM1,D2 = 2

8 , aM1,I1 = 1
8 , corresponding to the one deletion in HBB HUMAN,

and no insertions. The emission probabilities for the state I1 will be all equal
to (1/20).

End of Example

11.4 Hidden Markov Models with MATLAB

A multiple sequence alignment must be generated as a prerequisite to con-
structing Hidden Markov models. The MSA is then fed into the HMM gen-
eration function which analyzes the alignment in a column wise fashion and
comes up with the requisite number of match, insert, and delete states that
are maximally probable from the observations of the multiple sequence align-
ment. So, the process is begun by generating a MSA as shown below.

11.4.1 Multiple Sequence Alignment

In this example, we will construct an alignment and induce an HMM. As dis-
cussed earlier, the input to a HMM estimation program is multiple sequence
alignment. Let’s first look at the tool that performs MSA.

Relevant functions:

multialign Construct a multiple sequence alignment.

multialignviewer Viewing a multiple sequence alingment
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11.4.2 Multialign

SeqMultiAligned = multialign (seqs, ’ScoringMatrix’, s,

’GapOpen’, g,

’ExtendedGap’, e,

’TerminalGapAdjust’, t

)

All parameters, except for seqs, are optional. The parameter seqs is a vector of
structures with the fields ’Sequence’ for the residues and ’Header’ for labels.
The parameter seqs may alos be a cell array of strings or a character array.

The following example constructs a cell array of three sequences and con-
structs a multiple sequence alignment:

>> s1= {’AAAC’};

>> s2= {’AAAACT’};

>> s3= {’ACACTAC’};

>> seq = [s1; s2; s3]

seq =

’AAAC’

’AAAACT’

’ACACTAC’

>> ma = multialign(seq)

ans =

AAA---C

AAAAC-T

ACACTAC

The multiple sequence alignment thus created may be graphically visual-
ized by issuing the command multialignviewer (ma).

Relevant functions in this set are:

hmmprofstruct Construct an HMM.
hmmprofestimate Induce an HMM from an alignment

showhmmprof Display an HMM

pfamhmmread Reads an HMM from a file

Hidden Markov Models will be constructed using function hmmprofstruct
and the probabilities will be computed with hmmprofestimate:
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>> hmm = hmmprofstruct (6, ’Alphabet’, ’NT’)

hmm =

ModelLength: 6

Alphabet: ’NT’

MatchEmission: [6x4 double]

InsertEmission: [6x4 double]

NullEmission: [0.2500 0.2500 0.2500 0.2500]

BeginX: [7x1 double]

MatchX: [5x4 double]

InsertX: [5x2 double]

DeleteX: [5x2 double]

FlankingInsertX: [2x2 double]

LoopX: [2x2 double]

NullX: [2x1 double]

>> hmmprofestimate(hmm, ma)

>> showhmmprof(hmm)

Try a real example with seven tumor antigen sequences provided with
MatLab.

• Align dataset

p53 = fastaread(’p53samples.txt’)

ma = multialign(p53,’verbose’,true)

showalignment(ma)

• Induce HMM for primate data set. Submit your results.

11.5 Profiles and Model Searches

MATLAB provides a method for aligning a model with HMM: hmmproalign.
Note that HMM treats HMMs as a special case of profiles which is a somewhat
generalized form of PSSM. Please review methods for constructing profiles,
seqprofile, and for aligning a given sequence with a profile, profalign.

11.6 PFAM Database

Pfam or Protein families is a database of know protein domains and patterns.
Pfam is a large collection of multiple sequence alignments and hidden Markov
models covering many common protein domains and families. Individual pat-
terns have been aligned and stored as a database of HMM models. A HMM
downloaded from the PFAM database can be read into MATLAB using the
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Fig. 11.5 Visualization for a Pfam profile

function: pfamhmmread(fileName) where the HMM from Pfam database has
been stored in a file.

Pfam, a comprehensive database of over 13,000 conserved protein families
that have been characterized using Markov models. This allows transfer of
annotation from functionally and sometimes also structurally characterized
proteins to proteins of unknown function. This is used for classifying and an-
notating proteins and for analyzing proteomes and for identifying interesting
new targets for structure determination.

Pfam is composed of two types of families, Pfam-A and Pfam-B. Each
manually curated Pfam-A family has a seed alignment, which contains a set
of representative sequences for that family, from which we generate a profile
hidden Markov model (HMM) with each Pfam-A profile HMM is searched
against a primary sequence database. Pfam-A families are also annotated
with structural and functional information if available and are cross-linked
to other relevant databases. Pfam-B families are derived from sequence seg-
ments are supplemental to the Pfam-As and give an indication of additional
conserved regions. Pfam-B families have an associated alignment but do not
have any annotation or literature references. An HMM is generated for each
Pfam-B to enable searches to be run against them. Unlike Pfam-A align-
ments, Pfam-B alignments have not been manually checked for quality by a
Pfam curator.
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Listing 11.1

>> tree=gethmmtree (’PF00002 ’, ’type ’, ’seed ’);

>> phytreeviewer (tree)

end-listing-11.1
The result of the code listing above are illustrated in Fig. 11.5. The function

gethmmtree downloads the seed sequences used for creating the HMM model
stored in the Pfam database with the accession number of PF00002. The
downloaded HMM aligned sequences are portrayed as a tree.
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11.7 Exercises

1. Consider the following MSA block:

-ATA-CCCT

ACTACGCCT

-ATTCG-GA

Compute its profile. Recall that the first four rows are respectively the
normalized frequencies of nucleotides, A, C, G and T, while the fifth row
provides the frequency of the gap character.

2. Supposing we are given the following sequence fragments:

s1: ATCCGTTGAAGACCCGCCA

s2: ATTATGGACGCCA

s3: TAATTAAATTCGGTGGGGGC

s4: CGGAGGTTATTTACCTT

s5: ATTATCCAAAAAATGGACC

s6: AATAAATGGCCCGC

s7: TAATAAACCTGTCGAGTGCCT

(a) Use MATLAB to compute a multiple sequence alignment and find a
consensus sequence. Note that some sequences may need to be comple-
mented for achieving the best MSA score. MATLAB function discussed
in class does not automatically perform this step.

(b) Using the best MSA obtained in your answer above to induce a hidden
Markov model for the consensus sequence obtained. Evaluate the likeli-
hood the following sequence is generated by the model. Again, you must
complement the query sequence and take the better likelihood score of
the original and complemented sequence.

tacaactcaagaggccct

3. Visit the pfam web site, http://pfam.sanger.ac.uk/, and answer the
following questions:

(a) Discuss the IT framework upon which the PFAM database and services
are based.

(b) What are clans in PFAM and what advantages do they offer in protein
family representation?

(c) What are sequence logos and how do they help in visualization of protein
families?



Chapter 12

Gene Models

Genetics is gaining increasing significance as the discovery of new genes
continues to have considerable impact in the medical sciences. One of the
main scientific projects in genetics is the Human Genome Project, a multi-
disciplinary endeavor that aims to learn the identity of every single base
stored in the human genome. The genome stores the blueprints for the syn-
thesis of a variety of proteins – the macromolecules that enable an organism
to be structurally and functionally viable. The blueprint or the program for
the synthesis of a single protein is called a gene, a unit in the DNA sequence
that is generally between 1 × 103–1 × 106 bp in length based upon the com-
plexity of the protein that it codes for. A higher level eukaryote contains as
many as 30,000-40,000 genes. It has been estimated that gene coding region
only account for 2–5% of the genome. The gene identification problem is to
recognize these regions from an anonymous sequence of DNA.

The earlier phases of genomic research focused on the construction of
physical maps. However, the current emphasis has been shifting continu-
ally towards intensive sequencing. This has enabled us to study the struc-
ture and function of eukaryotic genes that may span tens or hundreds of
kilobases. Only a small percentage of the total gene-span actually codes for
proteins. This renders the detection of eukaryotic genes using the traditional
approaches, i.e. those based on cDNA selection, exon trapping and the ran-
dom cloning of cDNA, to be quite laborious for sequences that are larger
than a few tens of kilobases. Consequently, the Genome Sequencing Centers
routinely use computational approaches for exon prediction in addition to
other means for detecting genes.

These approaches have been proposed by theoretical biology researchers
since the early 1980s. These programs analyzed the DNA sequence and la-
beled a region to be potentially coding based upon its local codon usage,
presence of ancient conserved patterns, or its significant deviations from the
composition of a random sequence. As scientists learn about the genetic basis
in the etiology of many diseases, the quest for discovering new genes using
computational methods continues to be more significant than ever before.

c© Springer International Publishing Switzerland 2015 221
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Modeling and Optimization in Science and Technologies 6, DOI: 10.1007/978-3-319-11403-3_12
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Newer programs that utilize a wide variety of decision theoretic and machine
learning technologies are being developed. This review provides a comprehen-
sive summary of some of these approaches and describes the methods that
are being used today to establish a software’s performance in gene prediction
accuracy.

A compendium of the currently used software systems for the identification
of genes in anonymous segments of DNA follows.

12.1 GRAIL

The GRAIL gene identification systems utilizes a neural network for the
recognition of genes. The neural networks in GRAIL 1, GRAIL 1a, and
GRAIL 2 are trained to combine the results from a number of coding predic-
tors. GRAIL 1 has been in place for more than six years. Using a neural net-
work which recognizes coding potential within a fixed size window of 100 bp,
the coding potential is computed without taking into consideration the in-
formation about additional features such as splice junctions, etc. GRAIL 1a
also uses fixed-length windows to first locate potential coding regions. It
then evaluates a number of discrete candidates of different lengths around
each potential coding region. The information from the two 60-base regions
adjacent to that coding region are analyzed to find the correct boundaries
for a coding region. GRAIL 2 uses variable-length windows for each poten-
tial open reading frame bounded by a pair of start/donor, acceptor/donor
or acceptor/stop sites. Thus, GRAIL 2 uses genomic context information to
score the coding regions and is therefore not appropriate for sequences where
the regions adjacent to an exon are absent [1]. However, these changes have
improved GRAIL 2’s overall performance, particularly for short exons. All
three systems have been trained to recognize coding regions in human DNA
sequences, although they also work well on a number of other organisms,
particularly other mammals.

GRAIL is accessible by several methods, including an e-mail server at
Oak Ridge National Laboratory (ORNL), which processes DNA sequence(s)
contained in e-mail messages. An interactive graphical X-based client-server
system called Xgrail is also available from ORNL. Xgrail supports a wide
range of analysis tools, including tools for gene modeling and database search.

12.2 MZEF

MZEF is an internal coding exon prediction program. It utilizes Quadratic
Discriminant Analysis, or QDA, for the purpose of describing the distribu-
tions of exons and pseudo-exons. This method is an extension of the statistical
pattern recognition ideas earlier presented in Linear Discriminant Analysis,
or LDA, used in HEXON (FGENEH in GeneFinder is an improvement on
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HEXON). In fitting a QDA, the surface that separates the distribution of
exons and pseudo-exons can be more accurately approximated.

An overview of the algorithm is as follows: Each potential exon that
matches the template of AG → ORF → GT is analyzed. The exons that
meet a minimum length criteria are next considered to be putative exons
and must be separated from the pseudo-exons. The putative exons are rep-
resented using a nine value feature vector, comprised of parameters such as,
exon length, branch score, and various differences between the hexamer fre-
quency preferences on the two sides of the donor and acceptor splice sites.
This nine dimensional feature vector x is categorized to be an exon or a
pseudoexon based on the following log-ratio test derived from QDA:

η = log
p1
p2

= log
p01
p02

− δ1 − δ2
2

− 1

2
log

|Σ1|
|Σ2| (12.1)

The parameters used in the above equation are as follows: μi and Σi repre-
sent the group mean and covariance matrices obtained from the training sets
(the training set was comprised of 1879 true exons and 184,217 pseudoex-
ons). The quantities p01 and p02 denote the prior probability for a putative
exon for membership into the group G1 of true exons, or to the group G2 of
the pseudo-exons. The quantity, δi = (x − μi)

TΣ−1
i (x − μi) is the squared

Mahalanobis distance between the observed feature vector x and μi; |Σi| is
the determinant of the covariance matrix Σi.

12.3 GENSCAN

GENSCAN works by building a probabilistic model of the gene structure
of human genomic sequences and applying this model to gene prediction.
The probabilistic model of a gene includes the specific compositional and
functional units of a eukaryotic gene, including exons, introns, splice sites,
promoters, and the polyadenylation signals. The occurrence of a partial set
of these units and the representation of a partial gene is supported by the
implementation of the model search algorithm. Furthermore, the predictions
made by the program are not a mere reflection of the types of genes that are
found in the protein databanks, but instead an independent evaluation that
provides information that complements our existing knowledge.

The modeling of a DNA sequence by GENSCAN is based on a Generalized
Hidden Markov Model (GHMM), that uses a double stranded DNA sequence
and can find the occurrence of multiple genes in a single sequence, on ei-
ther one or both DNA strands. A simplistic representation of such a HMM
is shown in Fig. 12.1, where the arcs represent a set of nucleotides belong-
ing to a class and the nodes represent the DNA transition regions from one
class of nucleotides to another. The program’s ability to model functional sig-
nals and their interrelationships in a natural manner using Maximal Depen-
dence Decomposition is instrumental in providing it the strength needed for a
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Fig. 12.1 A simple Hidden Markov Model for a multiple exon gene. The arcs
represent the DNA sequence belonging to a functional unit of the gene, while the
nodes represent the occurrence of specific signals that transition the functional state
or the sequence class that the model is scanning from 5’→3’. The nodes S and T
represent the start and terminating codons respectively, while the nodes D and A
denote the donor and acceptor sites. The single arc from S to T enables the HMM
to recognize a single exon gene. Such a model can learn the probabilities of the
various state transitions using a set of DNA sequences representing genes.

generalized gene detection task. The text output of the program is a list of
one or more (or possibly zero) predicted genes and peptide sequences, while
the graphical outputs provide a representation of the relative locations of
the predicted exons. Versions of the program that are suitable for vertebrate,
maize and Arabidopsis sequences are currently available1 [2].

12.4 VEIL and GENIE

VEIL (the Viterbi Exon-Intron Locator) is based on the observation that
Hidden Markov Models (HMMs) provide a precise probabilistic method for
modeling sequences of discrete data. Consequently, it uses a custom-designed
HMM to segment uncharacterized genomic DNA sequences into exons, in-
trons, and intergenic regions. The exon-HMM module is designed to capture
the regularities in codon usage and periodicity that appear in exons as well
as to rule out in-frame stop codons. A similar module represents the intron-
HMM. The HMM models for the probabilistic representation of splice sites
resemble a pipeline, since these signals are of a well defined length. For exam-
ple, the donor acceptor site models in VEIL are comprised of 9 and 15 stages
respectively. Other HMMs include those for the start codon, the polyadeny-
lation signal AAATAA, and intergenic regions that are upstream of a start
codon. These simpler models were put together into the overall gene model
with the schematic similar to the one shown in Fig. 12.1. The final HMM
is comprised of 241 states and 1003 edges. The representation of a gene in
GENSCAN and VEIL and Genie are quite similar – with the differences being
manifested in the representation of the individual segments of a gene [3].

1 The vertebrate version works well on Drosophila sequences.



12.5 Morgan 225

After the determination of these regions, the Viterbi algorithm is used for
parsing the query sequence into its component exons and introns. Such an
algorithm is based on dynamic programming techniques where the most likely
set of states that a given sequence is expected to traverse are determined.
In addition, the probability that the model will produce a given sequence is
computed by the Viterbi algorithm. This represents the probability that a
given DNA sequence contains a gene. Glimmer is a corresponding program
designed with a similar idea of an interpolated hidden Markov model and is
applicable for analysis of microbial genomes [4].

A Generalized Hidden Markov Model (GHMM) is general enough to en-
able the generation of subsequences from DNA symbols at each state of a
hidden Markov chain. The model required to produce a subsequence at each
state of an GHMM (as shown in Fig. 12.1) can be quite complex and in turn
be another HMM. In Genie, each component is designed and trained inde-
pendently and combined into a modular system. The length distributions of
introns and exons in the training set are used to learn the average length
(and variance) for a string generated by a state in GHMM. The donor and
acceptor sites are recognized by a neural network that uses a 15 bp window
for donor and a 41 bp window for acceptor sites. Thus, the nodes representing
the Donor and Acceptor sites in Fig. 12.1 have a neural network embedded
in them that returns the posterior probabilities for a given position to be a
donor or acceptor site. After the construction of such a model, it is trained to
learn the probabilities of transitions between states in the GHMM and for the
generation of each nucleotide base given a particular state. Machine learning
techniques are applied to optimize these probabilities using a standardized
gene data set [5].

12.5 Morgan

MORGAN (Multi-frame Optimal Rule-based Gene Analyzer) distinguishes
itself from the other systems for finding genes using a decision tree classifier,
a technique that is derived from the statistics community. Decision trees are
often utilized for a variety of classification tasks, such as cancer diagnosis,
speech understanding, image understanding, and optical character recogni-
tion. Decision trees are often applied to objects represented in terms of their
features. For example, the representation of an object in a d-dimensional fea-
ture space may be denoted as f1, f2 . . . , fd. Subsequently, knowledge about
the classification process is embedded into a tree like structure and by per-
forming a series of tests, generally of the form fk < T , the identity of an
unknown object is established. Thus, each question node in the decision tree
corresponds to a linear discriminant, and helps in partitioning the search
space into a set of compartments or leaves which individually represent an
entity that we are interested in classifying. Thus, there were two partitions
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created by MORGAN in gene classification. These are C for coding and N
for non-coding.

The MORGAN system was build using a 19-feature set. These included
features that measure the longest ORF, the dicodon usage, two hexamer
frequencies, codon usage, position asymmetries for {A,C,T,G} and Fourier
coefficients for periods 2–9. The decision tree was trained on 290,628 exam-
ples, with each example comprising of 54 bps of human DNA sequence. Using
these examples, and knowing their classification a-priori, the MORGAN de-
cision tree was trained. It resulted in 20 leaf and 19 test or intermediate
nodes. For a given DNA sequence that needs to be classified as coding or
non-coding, the 19-features are first computed for their subsequences. The
optimal segmentation is dependent on a separate scoring function that takes
a subsequence and assigns to it a score reflecting the probability that the
sequence is an exon. Each subsequence is scored by a decision tree and the
individual scores are combined to give a probability estimate [6][7].

12.6 GeneFinder (FGENEH)

The GeneFinder is a suite of tools available from Baylor College of Medicine.
The tools that are of interest from a standpoint of gene identification are,
fgeneh for prediction of gene structure, fexh for 5’, internal and 3’ exon pre-
diction, hspl for splice site prediction, and hexon for prediction of internal
exons in human DNA.

The algorithm used in fgeneh begins by predicting all possible potential
internal exons, and potential 5’- and 3’-exons. Each exon is described using
a linear discriminant function that combines the contextual features of these
exons. Next, the dynamic programming method is used to search for the
optimal combination of these exons to produce a gene model. The algorithm
used in hexon is also based on the discriminant analysis of open reading
frames flanked by GT and AG base pairs. Prediction is performed by a linear
discriminant function that combines characteristics of the donor and acceptor
splice sites, 5’- and 3’-intron regions and the properties of the coding region
of the open reading frame. This program can only predict internal exons with
GT and AG conserved base pairs for donor and acceptor splice sites2 [8].

12.7 GeneParser and GeneLang

The GeneParser program looks for gene specific features in the given sequence
and subsequently applies dynamic programming (DP) to form their combina-
tions in order to obtain a configuration that maximizes a likelihood function.
Specifically, the anonymous DNA sequence is scanned for finding the locations
of splice sites as well as the computation of content parameters such as codon

2 However, this usually includes more than 99% of the all authentic splice sites.
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usage, local compositional complexity, 6-tuple frequency, length distribution
and periodic asymmetry. The program scores all subintervals in a sequence
for content statistics indicative of introns, exons, and their boundaries. The
content statistics are fed into a neural network that provides a log-likelihood
estimate that the given subinterval exactly represents an intron, first exon,
internal exon or the last exon (Weights for the feed-forward neural network
are optimized to maximize the number of correct predictions). A dynamic
programming algorithm is then applied to this classification of each subin-
terval so that the overall likelihood of a gene model is maximized. The DP
algorithm operates under the constraints that introns and exons must be ad-
jacent and non-overlapping. The highest scoring combination amongst the
groups of high scoring combinations represents the maximally likely model
of a gene [9].

Similar to GeneParser, GeneLang is a syntactic pattern recognition system,
which uses the tools and techniques of computational linguistics to find genes
and other higher-order features in biological sequence data. For example,
formal language theory uses a set of rules, called grammar, to define the
valid sets of strings over a given alphabet. The motivation for building a
gene grammar is the availability of parsers that can recognize if the input
string satisfies the rules specified by a gene grammar. Thus, in GeneLang,
the patterns over the DNA alphabet are described using a set of rules and
a general purpose parser, implemented in the logic programming language
Prolog [10]. Thus, the system treats components of a gene such as donor and
acceptor sites, introns and exons, start and stop codons, etc. as words that
are formed on the four character DNA alphabet. The gene is next in the level
of this syntactic hierarchy, i.e. the gene is a valid sentence formed by these
words. Genes in a DNA sequence can be recognized in a manner analogous to
the recognition of grammatically correct sentences in the English language.

12.8 AAT: Analysis and Annotation Tool

This tool is used for identifying genes in a DNA sequence by comparing the
sequence against protein and cDNA sequence databases. The analysis and
annotation tool (AAT) includes two pairs of programs, with each pair com-
prised of a database search and an alignment program. The first program pair
is designed to compare the query sequence to the protein database, while the
second pair performs a similar comparison against cDNA databases. Further-
more, the alignment programs construct a consensus of all sequence-database
alignments into a multiple sequence alignment to enhance the prediction of
splice junctions. Finally, sequence alignments that score low are filtered out
from the results and the final Protein and cDNA alignments are combined
and presented to the users.

The first program pair compares a query DNA sequence against a protein
database using two programs called DPS and NAP. The DPS program is
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used for computing high scoring chains of segment pairs between the query
DNA sequence and a protein database. The global alignment program NAP
finds the optimal alignment between a DNA sequence and the corresponding
protein sequence. The alignment model for NAP accommodates introns and
frameshifts within codons, and is thus able to identify the exact locations
of introns using the (GT) and (AG) consensus for splice site identification.
The second program pair, comprised of DDS and GAP, is used for comparing
the query DNA sequence against a cDNA library. The DDS program is an
improvement over the BLASTN program. The GAP program is a global
alignment program that is sufficiently powerful for aligning a DNA sequence
containing introns to a cDNA sequence.

One of the goals of AAT is to aid in an automatic annotation of DNA
sequences. This task has traditionally been done manually, where the align-
ments between the coding regions of a DNA sequence and the existing
proteins is established by BLASTX and linked to the sequence as an annota-
tion in a post-hoc manner. This helps in providing a clue for the functional
significance of a given gene as is evident in the function of the related pro-
tein sequence. The AAT, on the another hand, performs such an alignment
and is able to display it as the basis for predicting genes. Furthermore, the
alignment produced by BLASTX is prone to frameshift errors. This short-
coming is overcome by AAT by the development of a customized program for
DNA-protein sequence alignment.

12.9 Comparison of Gene Finding Algorithms

In order to compare the performance of gene finding systems, performance
comparison metrics were defined and a dataset was created by Burset and
Guigo [11]. This dataset is comprised of sequences from GenBank release 85.0.
The process by which this dataset was constructed is as follows.

First, Burset and Guigo collected vertebrate protein coding sequences from
GenBank. Next, in a series of quality control steps, they removed all entries
with pseudo-genes, with in-frame stop codons, with no introns (essentially
the cDNA sequences), and with non-standard slice junctions (i.e. those that
did not have the GT and AG at the beginning and end of an intron). They
further removed the immunoglobulins and histocompatibility antigens, and
were finally left with 570 complete sequences, each with exactly one gene and
and at least one intron. There are a total of 2649 exons and 2079 introns in
this set.

12.9.1 Performance Parameters

The parameters described below are utilized for the computation of accuracy
statistics at the nucleotide level. Each nucleotide in the sequence being an-
alyzed is classified as predicted positive (PP) if it is in a predicted coding
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region, or predicted negative (PN) otherwise. The nucleotide’s actual positive
(AP) or actual negative (AN) value is also known according to the sequence
annotation. These assignments are then compared to calculate the number
of true positives (TP), false positives (FP), true negatives (TN) and false
negatives (FN). The sensitivity and specificity of the prediction porgram is
given by Eq. 12.2 and 12.3.

Sensitivity : Sn =
TP

AP
(12.2)

Specificity : Sp =
TP

PP
(12.3)

and Approximate Correlation, AC, is defined by Eq. 12.4.

AC =
TP

TP+FN + TP
TP+FP + TN

TN+FP + TN
TN+FN

2
− 1 (12.4)

At the exon level, predicted exons (PE) are compared to annotated exons
(AE). True exons (TE) is the number of predicted exons which are exactly
identical to an annotated exon (i.e. both endpoints correct). The sensitivity
and specificity at the exon level is given by Eq. 12.5 and 12.6 respectively.

Sensitivity : Sn =
TE

AE
(12.5)

Specificity : Sp =
TE

PE
(12.6)

The average of Sn and Sp is typically used as an overall measure of accuracy
at the exon level in lieu of a correlation measure. Two additional accuracy
measures are also calculated at the exon level:

• Missing Exons (ME), the fraction of annotated exons not overlapped by
any predicted exon;

• and Wrong Exons (WE), the fraction of predicted exons not overlapped
by any true exon.

Accuracy measures for a set of sequences are calculated by averaging the
values obtained for each sequence separately, the average being taken over
all sequences for which the measure is defined.

12.9.2 Performance Results

The performance of the various tools discussed in this review on the above
dataset is shown in Table 12.1. The presentation was ordered in the tools
performance as evident in the Sn parameter for the correctly predicted nu-
cleotides. However, it may sometimes be more realistic to compare a tool’s
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performance based on Sn+Sp
2 for the predicted exons. In such a comparison,

MZEF, GENSCAN and AAT are the three clear winners. The prediction of
human protein-coding genes in newly sequenced DNA becomes very impor-
tant in large genome sequencing projects. Many of the systems continue to
be developed in this field with the goal of increasing their reliability when
identifying genes in DNA . Although the systems developed so far are not
completely accurate, the results that they provide are vital to keep pace with
the rapid analysis of sequence data in this age of high throughput genomic
sequencing. Some of the problems that are faced so far stem from the inability
to accurately predict the intron/exon boundaries, which in turn results in an
inability to identify the eukaryotic gene structure and a poor performance on
most short exons. Furthermore, a large number of false splice site predictions
eventually lowers the reliability of predicted exons. Due to the different types
of processing performed by the various gene identification systems, it there-
fore seems plausible to look at their results in a combined manner and look
for a region of coding consensus produced by the various gene identification
systems evaluated in Table 12.1. Furthermore, understanding the methodol-
ogy adopted for a given method will be vital to explain the results produced
by that method.

Table 12.1 Accuracy of the various gene identification systems on the Burset and
Guigo [11] data set comprised of 570 vertebrate sequences

Method Predicted Nucleotides Predicted Exons

Sn Sp AC Sn Sp Sn+Sp
2

AAT 0.94 0.97 0.95 0.74 0.78 0.76

GENSCAN 0.93 0.93 0.91 0.78 0.81 0.80

MZEF 0.88 0.95 0.90 0.84 0.92 0.88

VEIL 0.83 0.72 0.73 0.53 0.49 0.51

MORGAN 0.82 0.80 0.78 0.58 0.54 0.56

Genie 0.78 0.84 0.77 0.61 0.64 0.63

GeneFinder 0.77 0.85 0.78 0.61 0.61 0.61

GeneID 0.63 0.81 0.67 0.44 0.45 0.45

GeneParser2 0.66 0.79 0.66 0.35 0.39 0.37

GeneLang 0.72 0.84 0.75 0.50 0.49 0.50

GRAIL-II 0.72 0.84 0.75 0.36 0.41 0.38

Xpound 0.61 0.82 0.68 0.15 0.17 0.16

12.10 MATLAB Functions for Finding Genes

Although at the time of writing, matlab does not include a gene detection
algorithm per se, the following set of functions in matlab are related to the
general topic of searching for coding regions.
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Function Description
basecount Counts the number of nucleotides in a sequence

codoncount Counts the number of codons in a sequence

ntdensity Displays the nucleotide density - (A+T) & (G+C)

seqshoworfs Displays the open reading frames in three forward frames
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Part IV

Phylogenetics and Systems
Biology



Chapter 13

Introduction to Phylogenetic
Reconstruction

Phylogenetics, the study of evolutionary relationships in organisms, is one
part of the larger field of systematics, which also includes taxonomy. The
term taxonomy connotes the process and methodology for the naming
and classification of organisms. The context of evolutionary biology is
phylogeny, the connections between all groups of organisms as understood by
ancestor/descendant relationships. The molecular mechanisms of organisms
studied strongly suggests that all organisms on earth have a common an-
cestor. Thus, the species are related to each other by the virtue of having
evolved from the same common (now extinct) ancestor. Such a relationship
of species is called phylogeny and it’s graphical representation is called a
phylogenetic tree.

Computational methods infer these relationships from currently thriving
species and reconstruct what their course of evolution might have been. The
phylogenetic tree construction help us go back in time and develop a “hypoth-
esis” of how life evolved from the single common ancestor. This hypothesis
(a phylogenetic tree) is represented as a cladogram, a branching diagram.
Cladograms bear a lot in common with the notion of family trees. In a fam-
ily tree we trace back our ancestry. For example, in the family tree on the
right, the ancestors of all the rest of the family are the initial black dot
and yellow square. These ancestors give rise to three children, one of which
mates and has two children. We can all trace our lineage back to one set of
ancestors.

All species have ancestors too. So, for example, sometime in the past an
ancestral species (father) of Homo sapiens walked the earth. This ances-
tor went extinct (died), but left descendant species (children). In family
trees, we can talk coherently about real ancestors. In biology, the ances-
tors are often gone sometimes without a trace. All we have left are the
children. Also unlike family trees, new species form from the splitting of
old species, and the formation of the two descendant species is called a
splitting event. The ancestor is usually assumed to “die” after the splitting
event.

c© Springer International Publishing Switzerland 2015 235
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13.1 Terminology

The nodes of the tree in a cladogram are marked. The stems of the tree end
with the taxa under consideration. Each node marks a splitting event. The
node therefore represents the end of the ancestral taxon, while the stems
represent the species that split from the ancestor. The two taxa that split
from the node are called sister taxas. They are called sister taxa because they
are like the siblings from the parent or ancestor in a family tree. The sister
taxa must each be more closely related to one another than to any other
group because they share a close common ancestor.
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Fig. 13.1 Implicit in the representation of a phylogenetic tree is the passage of
evolutionary time shown along the vertical axis. Two commonly utilized represen-
tations of the the phylogenetic tree are shown above. In (a) the passage of time
begins with the one common ancestor at the top of the tree and continues down to
the taxons currently in existence, namely, the species human, chimpanzee, gorilla
and baboon. In an equivalent representation shown in (b) the passage of evolution-
ary time is from the bottom to the top. The time axis is seldom labeled on the tree
as it evident from the series of speciation events resulting in the number of species
becoming larger with the passage of time.

Two equivalent representations for phylogenetic trees are shown in Fig-
ure 13.1. The most closely related species in the cladogram are humans and
chimpanzees. Their common ancestor is represented by Node C. At the node,
the ancestor goes extinct but leaves two siblings hypothesized to be humans
and chimpanzees. The humans and chimpanzees are known as sister taxas
and are more closely related to each other than to any other taxa on the tree.
Working through the tree we come to Node B – a node where the ancestor
for human and chimpanzees split from gorillas. The gorilla is a sister taxa to
the human and chimpanzee ancestor. Similarly, the common ancestor of the
now extinct species represented by Node B and the baboon is another extinct
species denoted by Node A.

In practice, one does not label the internal ancestor as the phylogenetic
tree is usually derived from the known taxas which are labeled on the leaf
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nodes. Sometimes, when the common ancestor has been identified through
fossil remains, an ancestral node may also be labeled. An ancestor plus all its
descendants is called a clade. A cladogram thus shows us the hypothesized
clades.

13.1.1 Tree Representation Formats

Trees are often graphically represented and drawn in a two-dimensional space.
For example, such a representation for a 6-taxa tree is shown in Figure 13.2(a).
Individual taxons (a, b, c, d, e, f) are shown as the leaves of the tree and
their distance from their parents are marked on the edges. For example, the
taxon-a has diverged 2 units from its common parent that it shares with
taxon-b which has diverged 2.5 units from the same common parent. The
units of evolutionary distance is years. However, in molecular phylogenetic
tree reconstruction methods, often the divergence of a species is estimated
by the divergence of a gene family. In these instances, which anyway is our
focus, the distance annotated on the edge could be a measure or a metric
produced by a sequence comparison program.

a

b

c

d

e

f

2

2.5

2

4

2.5

3

2

1

2

7

(a)

((((a,b),c),(d,e)),f)

((((a:2,b:2.5):2,c:4):1,(d:2.5,e:3):2):2,f:7)

(b)

(c)

Fig. 13.2 (a) Topology of a tree with edge lengths shown. (b) Textual representa-
tion or symbolic expression of the tree without the edge lengths – only topological
information is encoded. (c) Symbolic expression for the phylogenetic tree including
the encoding of the edge lengths.

As shown in Figure 13.2(b), the tree topology may be represented using a
text representation or a symbolic expression. The level of nesting of the
parenthesis in this representation is equal to the depth of the leaf node. For
example, the taxon-a and taxon-b are at a depth of 4, and they are also at
the fourth level of parenthesis nesting in the symbolic representation.

The symbolic representation of tree may also be extended to include the
edge length, as shown in Figure 13.2(a).
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13.2 Types of Trees

13.2.1 Unrooted and Rooted Trees

Phylogenetic relationships between the genes of organisms are used to form
(a) unrooted, or (b) rooted trees. The branching pattern in either case is called
the topology of the tree for a given number of taxa. A taxa is defined to be
any kind of taxonomic unit such as families, species or DNA sequences. The
true biological phylogeny has a “root” – the ultimate ancestor of all the taxas
and their ancestors. While some algorithms that construct phylogenetic tree
provide information on the what might be the root, others (notably parsimony
and probabilistic methods) do not yield any information pertaining to the
location of the root.

Figure 13.3 presents both a rooted and an unrooted tree corresponding to
a cladogram where ancestors of individual taxas are correspondingly defined.
In the rooted tree, the root is generally drawn at the top and all of the taxa is
drawn as terminal nodes, or leaves, at the base of the tree. The unrooted tree
is a branching structure with no clear top to bottom hierarchy. The internal
nodes in an unrooted tree represent the ancestors of the taxa which terminate
the branches. The complete definition of a tree includes the edge length along
with the topology of the branching patterns.
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Fig. 13.3 (a) An Unrooted and (b) a Rooted tree. Note that the number of nodes
in the unrooted tree is one less than the number of nodes in the rooted tree for the
same number of taxas (five in this example shown). This is because the unrooted
trees do not designate a root node – the node representing the one common ancestor
to all the species in the phylogenetic tree.

13.2.2 Orthologues and Paralogues

Scientists are often interested in studying the phylogenetic tree that repre-
sents the evolutionary history of a group of species or populations. In this
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type of tree, the time of divergence between two species refers to the duration
of time that the two species have been reproductively isolated. However when
the phylogenetic tree is constructed based on one gene from each species, the
tree obtained does not necessarily agree with the species tree. This is observed
because of the presence of polymorphic alleles at a given gene locus, which
results in the expected time of divergence of genes sampled from different
species to be longer than the time for the divergence of species themselves.
Thus we can expect the branching patterns obtained from the phylogenetic
tree constructed from the gene, often referred to as the gene tree, to be
different from the branching pattern in species phylogenetic tree.
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Fig. 13.4 Gene is duplicated in the parent species prior to the speciation. Genes
A1 and A2 are paralogs. As the species evolve and two new species s and t are
formed, the genes A1s and A1t as well as A2s and A2t are orthologs. The pairs
of genes A1s and A2s, or A1t and A2t, or A1s and A2t, or A2s and A1t are also
paralogs.

Another problem occurs when the gene studied belongs to a multigene
family. For example, consider the situation shown in Figure 13.4. Two related
species s and t have evolved from their ancestor where the duplication event
occurred before the divergence of the two species. The result of the gene
duplication produced genes A1 and A2. These are known as the paralogs.
After the speciation event, the genes in the divergent species s and t have
been denoted as (A1s, A2s) and (A1t, A2t). In the species s and t, gene
pairs (A1s, A1t) and (A2s, A2t) are known as the orthologues. The gene
pairs (A1s, A2s), (A1t, A2t), (A1s, A2t) and (A2s, A1t) are known as the
paralogues.
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Fig. 13.5 (a) A phylogenetic tree constructed using paralog genes, and (b) A phy-
logenetic tree construction using ortholog genes. Both these trees are gene trees.
The gene tree in (a) does not correspond to a species tree but represents the history
of duplication events leading to the evolution of the beta-, delta-, epsilon-, gamma-
and theta-chains of the human haemoglobin gene family. In contrast, the gene tree
in (b) is developed with a kilobase fragment of mitochondrial DNA from five pri-
mate species. Here, the diversity of the mitochondrial genes are representative of
the evolutionary history of the primate species themselves.

Scientist take great care to use the appropriate type of genes for the con-
struction of appropriate tree. For example, if one is interested in studying the
evolutionary history of gene duplication events, as shown in Figure 13.5(a),
the paralogues from a single specie(s) will be used in the phylogenetic tree
construction process. On the other hand, if the objective is to develop a evo-
lutionary tree of the species, such as the one shown in Figure 13.5(b), one
must utilize orthologues for the tree construction algorithm. In practice, the
distinction between the orthologous and paralogous genes is not always easy,
particularly when there are many copies of the duplicate genes in the genome.
Therefore, great care must be taken to infer a species tree from a gene tree.

13.3 Counting Phylogenetic Trees

This section utilizes basic combinatorics to develop a formulation for the total
number of possible rooted and unrooted trees that may be constructed given
a number of taxas, n. Basic formulations for the total number of vertices and
edges is used to inductively develop the formulation for the total number
of trees.

Theorem 1. Every rooted phylogenetic tree with n-taxas is an acyclic graph
with (2n-1) vertices and (2n-2) edges.
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Proof : Let us begin by counting the number of vertices in a phylogenetic
tree with n taxas (i.e. leaf nodes). Intuitively, we can begin the construction
of the tree by linking the two closest sister taxas and denoting them as having
been evolved from the same common ancestor. Thus, we add one vertex for
the common ancestor in the process of linking the two taxa leaves (n-2).
The addition of one parent vertex results in reducing the problem size to
the construction of a tree with (n − 2 + 1) = (n − 1) vertices. Continuing
further, the addition of each parent vertex will result in the reduction of the
problem size by 1. Assuming that a rooted phylogeny is being constructed,
the final problem size is 1, corresponding to the one root vertex (the single
common ancestor) that is left when this process is complete. This requires
the addition of (n − 1) parent vertices. Consequently, the total number of
vertices in a rooted phylogenetic tree is (n+ (n− 1)) or (2n− 1).

As for the number of edges in the tree we can reason as follows. Since each
of the (n − 1) steps in the construction process results in the addition of 2

edges, the total number of edges in a rooted tree is 2(̇n − 1) or (2n − 2).
Alternatively, this result may be arrived at by observing that the number
of edges in a tree is one less than the number of vertices. A tree with two
vertices has a single edge. A tree with three vertices can only have two edges
as a tree may not have any cycles. A rooted phylogenetic tree is a therefore
an acyclic graph Gr = (2n− 1, 2n− 2).

Theorem 2. Every unrooted phylogenetic tree with n-taxas is an acyclic graph
with (2n-2) vertices and (2n-3) edges.

Proof : The proof for an unrooted tree is very similar to the proof for a
rooted tree. In an unrooted tree, the construction process is terminated when
there are 2 vertices remaining which are then connected with an edge, yielding
the final tree. Since there are (n− 2) parent nodes added, the total number
of vertices in the final tree, which includes the n taxas is (n + (n − 2)) or
(2n − 2). Correspondingly, there are are (2n − 3) edges that are utilized in
the construction of an unrooted tree. An unrooted tree is therefore an acyclic
graph Gu = (2n− 2, 2n− 3).

With that basic background, the task of counting the total number of pos-
sible topologies given the number of taxas to be n is considerably simplified.
Once again let us first consider the number of possible topologies of rooted
trees. The number of rooted trees possible with n = 2 is 1. This is shown in
Figure 13.6(a). A given two-taxa tree may be extended to a three-taxa tree
by adding the third taxon in one of two ways. Firstly, the third taxon could
be linked to any of the existing edges of the two-taxa tree. Secondly, the
third taxon could directly evolve from the one common ancestor – the root
node. Since the two-taxa tree has two edges, the total number of three-taxa
tree topologies possible is 3, as shown in Figure 13.6(b). The third taxon C
evolves from a common ancestor of A or B, or it evolves from an earlier com-
mon ancestor from which an ancestor of both A and B evolved. Continuing
a similar analysis, for the total number of topologies possible for four-taxas
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                                                   Trees (1) through (5) are derived from the first 3-taxa tree.

A C B A BC

A C B A C BA C B A C B A C BD D DD D

(1) (2) (3) (4) (5)

A B

A B C

3 Taxas: A, B and C

2 Taxas: A and B

4 Taxas: A, B, C and D

Trees (6) through (10) similarly derived from the second 3 taxa tree.

Trees (11) through (15) similarly derived from the third 3 taxa tree.

(a)

(b)

(c)

Fig. 13.6 Given two taxons, A and B, the total number of rooted trees possible
is “1” as shown in (a). The third taxon in (b) may be added from any of the two
branches of the two node tree or may be directly linked to a new root node. This
yields three possible rooted trees with three taxons A, B and C. Each of the three-
taxon trees further yields 5 trees, each resulting in a total of 3 × 5 or 15 possible
trees with four taxons A, B, C and D as shown in (c) . In general the number of
rooted trees possible with n taxons in (2n-3)!!.

we observe from Figure 13.6(c) that each of the three-taxa topologies may be
extended by five different ways, yielding the total count of rooted tree topolo-
gies for four-taxas to be (3 × 5) or 15. The process of counting phylogenetic
trees can be inductively generalized as follows:

Theorem 3. The total number of possible topologies for rooted phylogenetic
tree with n-taxas is (2n− 3)× (2n− 5)× . . .× 1 = (2n-3)!!.

Proof : The correctness of this formula can be shown by induction. Let us
denote the count number of possible trees with i taxas to be Ri.
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Base case: For three taxas i = 3, the number of trees possible is R3 = 3. The
formula 3!! = 3 is correct.
Basis: Assume the formula is correct for a number of taxas = (n-1). There-
fore, the number rooted tree topologies for (n − 1) taxas is 2(n − 1) − 3 ×
2(n− 1)− 5 . . . 1
i.e. the number of tree rooted topologies is Rn−1 = (2n−5)× (2n−7)× . . .1.

Inductive Step: Based on theorem 1, each of the possible (n-1)-taxa tree
has (2(n− 1)− 2) or (2n− 4) edges. The nth taxon can thus branch off from
any of these edges. Alternatively, the nth taxon could be a direct descendant
of a new common ancestor designated as the new root node. This gives us
(2n− 4+1) or (2n− 3) ways of extending each of the (n-1)-taxa trees. Thus,
the total number of n-taxa trees is:
Rn = (2n− 3)×Rn−1

Rn = (2n− 3)× (2n− 5)× . . .× 1 = (2n-3)!!.
This concludes the proof. The formula works for the base case. Assuming the
formula works for the basis case of (n− 1), the formula is shown to work for
n in the inductive step. Therefore the formula is correct for n ≥ 3.

Theorem 4. The total number of possible topologies unrooted phylogenetic
tree with n-taxas is (2n− 5)× (2n− 7)× ...× 1 = (2n-5)!!.

Proof : The proof for this theorem is by inspection. Let us denote the count
number of possible trees with i taxas to be Ui.

According to theorem 2, an unrooted tree with n-taxas has (2n−3) edges.
Each of these edges may be the site where a root of the rooted tree is inserted.
The number of rooted trees is therefore (2n−3) times the number of unrooted
trees. This is illustrated in Figure 13.7. This completes the proof.

13.4 Comparing Phylogenetic Trees

Often reconstructed trees need to be compared to measure the extent of
topological differences between them. The distance between two unrooted
trees is defined using a topological distance. This method is based on the
comparison of partitions in the two trees. A partition is created by removing
an internal edge of an unrooted tree. In general, the method uses the notion
of tree partitioning obtained by removing an internal edge from the two trees
being compared. Figure 13.8 shows the partitions formed by removing the
internal edges of a 6-taxa bifurcating unrooted tree. For a bifurcating tree,
which is different from a multifurcating tree, where more than two edges
may emanate from a vertex, the number of partitions with n sequences as
the leaves is (n − 3). This is evident from the observation that there are
(n− 2) internal nodes in an unrooted tree which in turn must be connected
with (n− 3) edges. Thus for a bifurcating tree with n-taxa, there are (n− 3)
possible partitions.
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Fig. 13.7 Each n-taxa unrooted tree may be transformed to (2n− 3) rooted trees
as a root node may be inserted at any one of its edges. In the example shown above
5 rooted trees can be generated from a given 4-taxa unrooted tree corresponding
to the inserting of a root at any of the 5 edges of the unrooted tree. Note that
since there are three topologies possible for 4-taxa unrooted trees, there are 15
corresponding topologies possible for 4-taxa rooted trees.
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Fig. 13.8 A partition of a tree is defined to the two subsets of taxa (leaves) created
by removing an internal edge. As there are (n− 2) internal vertices of an unrooted
n-taxa tree, it will have (n − 3) distinct partitions. For example, the 6-taxa tree
shown above has 3 partitions.

While comparing two trees, all possible partitions of the two trees are
created. Let there be q1 partitions for the tree T1 and q2 partitions for the tree
T2. Although both the trees are defined on the same set of leaves or taxons,
it is possible that q1 and q2 are not equal as the two trees may not be strictly
bifurcating. Furthermore, let there be p partitions (p ≤ min(q1, q2)) from
the trees T1 and T2 that are identical. The topological distance dT (T1, T2)
between T1 and T2 is defined by Eq. 13.2.
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dT (T1, T2) = 2 · [min(q1, q2)− p] + |q1 − q2| (13.1)

For strictly bifurcating trees, q1 = q2 + q and the above equation reduces
to Eq 13.2. This yields 0 ≤ dT (T1, T2) ≤ 2(n− 3) as the range for topological
distance between two n-taxa bifurcating trees.

dT (T1, T2) = 2 · [q − p] (13.2)

13.5 Evolution

Many groups of organisms are now extinct, and without their fossils we would
not have as clear a picture of how modern organisms are interrelated. We ex-
press the relationships among groups of organisms through diagrams called
cladograms, which are like genealogies of species. Over the last 3.7 billion
years or so, living organisms on the Earth have diversified and adapted to
almost every environment imaginable. The diversity of life is truly amaz-
ing, but all known living organisms do share certain similarities. All living
organisms can replicate, and the replicator molecule is DNA. As well, all liv-
ing organisms contain some means of converting the information stored in
DNA into products used to build cellular machinery from fats, proteins, and
carbohydrates.

13.6 Phylogenetic Tree Object in Matlab

matlab provides the function phytree(B) for creating an ultrametric phylo-
genetic tree object, where B is a numeric array of size [NUMBRANCHES × 2]

where every row represents a branch of the tree and it contains two pointers
to the branches or leaves nodes which are its children.Leaf nodes are num-
bered from 1 to NUMLEAVES and branch nodes are numbered from NUMLEAVES

+ 1 to NUMLEAVES + NUMBRANCHES.
For example, the following array specifies a phylogenetic tree with four

leaves and three branches:

B = [1 2; 3 4; 5 6];

Tree = phytree (B);

phytreeviewer (Tree );

Additionally, a seccond parameter to this function may be used:

TREE = phytree(B,C)

This creates an additive phylogenetic tree object where branch distances
defined by C. C is a numeric array of size [NUMBRANCHES × 1] with the
distances of every branch added to the tree.
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C = [0.5 ; 2.0 ; 4.0];

TreeWithDist = phytree (B, C);

phytreeviewer (TreeWithDist )

Fig. 13.9 illustrates the result of building a phylogenetic object in
matlab.

Fig. 13.9 Result of constructing a phylogenetic tree object in matlab. The tree on
the left is constructed where distances between the nodes have not been specified.
The tree on the right includes a specification of distances. Both trees are ultrameric
trees where the evolutionary distance between all the leaves and the root node is
the same.
matlab also provides functions phytreeread and phytreewrite which are used for
reading and writing a tree to a file respectively.

13.6.1 Phylogenetic Trees in BioPerl

PHYLIP is a computational phylogenetics package containing many pre-
compiled programs that are used to build phylogenetic trees. In order to esti-
mate an evolutionary tree from sequence data, data must be passed through
various PHYLIP programs, the output of which is then used as input for the
next program in line. BioPerl enables a user to automate this pipeline through
wrapper classes that interact with the various programs (these programs are
not included in BioPerl and must be obtained separately). BioPerl takes each
PHYLIP program’s output and either stores it in memory or writes it to a
supported file type such that BioPerl can then feed this output as input into
the next applicable program. The input for such a pipeline consists of some
number of supposedly related biological sequences and the output is a tree
estimating the sequences’ evolution.

An example pipeline can be used to generate a phylogenetic tree is one
consisting of, in order, ClustalW, SeqBoot, ProtPars, Consense, and lastly
DrawGram. The first step in this pipeline is to use BioPerl to generate a
multiple-sequence alignment of the input sequences. This is accomplished by
way of BioPerl’s wrapper class for ClustalW.
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Listing 13.1

use Bio :: Tools :: Run :: Alignment :: Clustalw ;

@params = (’ktuple ’ => 2,

’matrix ’ => ’BLOSUM ’);

$factory = Bio :: Tools ::Run :: Alignment :: Clustalw ->new(@params );

$seq_file = "sequence_file.fasta ";

$aln = $factory ->align($seq_array_ref);

end-listing-13.1
Next, each of the PHYLIP programs is used in turn—piping the out-

put data from the previous program as input data into the next. Each of
these programs possesses it’s own wrapper class in BioPerl of the name
Bio::Tools::Run::Phylo::Phylip::*, where * is the name of the PHYLIP pro-
gram. Each program is in turn initialized and run in the following form, where
$var 0 is the previous output.

Listing 13.2

$factory = ClassName ->new(% params );

$var_1 = $factory ->run($var_0 );

end-listing-13.2
So the first PHYLIP program that is run is SeqBoot, which is a boot-

strapping program. Next, we pass the bootstrapped alignment to ProtPars,
a parsimony program that estimates phylogenies. The results from ProtPars
are then passed to Consense, which computes the consensus trees. Finally,
the Consense output is drawn as a rooted tree by DrawGram.

Listing 13.3

# SeqBoot

my $seqboot_factory =

Bio::Tools ::Run::Phylo::Phylip ::SeqBoot ->new();

my $aln_ref = $seqboot_factory ->run($aln);

# ProtPars

$tree_factory = Bio::Tools::Run::Phylo::Phylip ::ProtPars -> new();

$tree = $tree_factory ->run($aln_ref );

# Consense

my $con_factory = Bio::Tools::Run::Phylo::Phylip ::Consense ->new();

my $tree = $con_factory ->run($tree);

# Drawgram

my $draw_factory = Bio::Tools ::Run::Phylo::Phylip ::DrawTree ->new();

my $image_filename = $draw_factory ->draw_tree($tree );

end-listing-13.3
If this sample is run on the following Fast input file, the produced tree will

look like Figure 13.10.
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Listing 13.4

>sequence_1

ACGTACGTACGT

>sequence_2

ACGTACGTACGTACGT

>sequence_3

ACGTACGTACGTTGCA

>sequence_4

ATCGATCGATCG

>sequence_5

ATCGATCGATCGATCG

end-listing-13.4

Fig. 13.10 The resulting phylogenetic tree produced by the PHYLIP pipeline

13.7 Significance of Trees Constructed

The accuracy and validity of comparative genomic conclusions drawn are
directly related to the accuracy and validity of the phylogenetic tree recon-
structed inferred using a phylogeny reconstruction method. It is therefore
desirable to be able to assign a quantitative “quality” parameter to the tree
as the phylogenetic reconstruction methods are often prone to making errors
resulting from inferring wrong branches, complex biological processes such as
recombinant and horizontal gene transfers which can not be modeled as a sin-
gle tree, as well as due to issues related with inaccuracy and incompleteness of
data. Consequently, various methods have been introduced for quantitatively
estimating confidence in the branch of an reconstructed phylogenetic tree.
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Of the two common ones, namely the bootstrap method and Bayesian infer-
ence techniques, the former is discussed in somewhat greater detail below.

13.7.1 Bootstrapping

The bootstrap method is usually used for trees generated by maximum par-
simony (MP) or maximum likelihood (ML) methods. The confidence in a
brach is computed by estimating many trees over subsamples of the dataset
and using the the percent of trees containing that branch as a measure of its
support.

Original sequence data is sub-sampled to to produce new input data of
the same length. The result of the sampling process may create duplicates
of the original sites (columns in the multiple sequence alignment) or may
completely eliminate certain sites. Notwithstanding, the sub-sampling process
maintains statistical similarity between the new dataset and the original input
data. A phylogenetic tree is subsequently constructed with each new data set
using the particular method of interest.

The support or confidence in a labeled tree is constructed by taking the
majority consensus of the set of trees created during the bootstrapping it-
erations. Essentially then the support for a branch is its likeness to the a
majority rule consensus tree created after the bootstrapping analysis.

The bootstrapping method may be applied for evaluating the significance
of trees generated by distance based methods as well. An extra step is need
to first compute the distance matrix from each of the replicate data sets
produced as a result of sub-sampling the original data set.
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13.8 Exercises

1. Phylogenetics is...

A) The grouping of organisms by their physical characteristics
B) The study of evolutionary relationships in organisms
C) The study of gene expression in organisms
D) The extraction of phylo from genetic sequences

2. What is the difference between a rooted and unrooted tree?

A) Rooted trees are unable to reveal information about evolutionary
relationships

B) Rooted trees are considered more reliable for establishing evolution-
ary relationships

C) Rooted trees attempt to establish the relatedness of organisms to a
common ancestor

D) Rooted trees are significantly easier to construct than unrooted trees

3. What is the term for an individual species in a phylogenetic tree?

A) Leaf
B) Operational Tanonomic Unit (OTU)
C) External Node
D) All of the Above

4. At the Tree of Life website, how are organisms connected?

A) A single species will link directly to all related species
B) Organisms are linked by the root page, will contains direct links to

all species and groupings
C) Each branch connects to related groupings via other branch pages,

terminating in individual species
D) The tree is divided into several root pages that link to a specific

type of living creature, which possess links to sub-groupings that
terminate in individual species

5. What is the difference between using an optimality criterion and a clus-
tering algorithm for reconstructing phylogenetic trees?

A) Optimality criterions function by determining the number of steps
necessary to transform one tree into another, while clustering algo-
rithms function by creating hereditary groupings

B) In the steps necessary to reconstruct a phylogenetic tree, the opti-
mality criterion must be applied first in order to provide valid input
data for the clustering algorithm

C) In the steps necessary to reconstructing a phylogenetic tree, the clus-
tering algorithm must be applied first in order to provide valid input
data for the optimality criterion method
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D) Clustering algorithms function by determining the number of steps
necessary to transform one tree into another, while optimality cri-
terions function by determining the number of steps necessary to
transform one tree into another

6. How does a branch and bound optimization render exhaustive searches
more efficient?

A) It generates all possible trees
B) It discovers and prunes unproductive paths
C) It guarantees the discovery of an optimal tree
D) It makes use of breadth-first search

7. What is the correct order of the steps the ClustalW algorithm uses for
Multiple Sequence Alignment:

1. ClustalW constructs a distance matrix of N(N-1)/2 pairs of sequences
by pairwise alignment of the sequences

2. ClustalW builds a guide tree from the distance matrix using the clus-
tering method (neighbor-joining) by Saitou and Nei

3. ClustalW will convert the similarity scores to evolutionary distances
based on the model by Kimura

Correct order of processing steps:

A) 1,2,3
B) 2,3,1
C) 1,3,2
D) 2,1,3

8. In topological distance, the more related the trees the larger the value
resulting from the partition metric will be. True or False. Justify.

9. Consider the two unrooted phylogenetic trees shown in Fig. 2b. Recall
that the topological distance between two trees, dT is defined as dT =
2× [min(q1, q2)−p]+ |q1−q2| where q1 and q2 is the number of partitions
in each of the two trees and p is the number of common partitions. Find
the topological distance between the following two unrooted trees. Note
that edges a, b and c are internal edges.

10. Consider the following set of sequences. Perform the following analysis
using the functions provided in matlab Bioinformatics toolbox:
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(a) (b)

Fig. 13.11 Comparison of Phylogenetic Trees

>sequence_1

ACGTACGTACGT

>sequence_2

ACGTACGTACGTACGT

>sequence_3

ACGTACGTACGTTGCA

>sequence_4

ATCGATCGATCG

>sequence_5

ATCGATCGATCGATCG

(a) Compute the pairwise distance between each sequence using matlab’s
global alignment function nwalign.

(b) Select the pair of sequences with the smallest distance and construct the
alignment. Construct a sequence structure with closest neighbors and
compute the consensus sequence cons. The following example assumes
that seqA and seqB are to be merged into an internal node. Note down
the score.

[score aln] = nwalign (seqA, seqB, ’Alphabet’, ’NT’);

seqStruct(1).Sequence = aln(1,:);

seqStruct(2).Sequence = aln(3,:);

cons = seqconsensus (seqStruct);
(c) Redo the distance computations with the merged sequences replaced

with their consensus sequence. Continue till all sequences have been
merged into a single node noting down the score at each step.

(d) Use the order in which the sequences were merged and the distances
of the nodes merged to construct a phylogenetic tree using matlab
function phytree.

(e) Display and print the tree.
(f) Save the tree to a disk file, read the saved tree and display it.



Chapter 14

Distance Based Methods

The fundamental prerequisite necessary to deal with all these topics is, of
course, an efficient and biologically plausible way to assess sequence similar-
ity: given an alphabet and initially just two sequences, how are we to measure
in a biologically meaningful way the similarity between s and t? The answer
depends, of course, on what mutational operations one perceives as biologi-
cally relevant can be performed to produce one sequence from another one.
Two sequences s and t are considered to be similar if a few such operations can
change s into t, and dissimilar otherwise. The problem which remains to be
discussed in this context is, of course, how to assess the biological likelihood
of the various operations which can be performed to change one sequence
into another one and how to quantify numerically the (dis)similarity of any
two given sequences.

The most simple operation is, of course, point mutation: at a certain posi-
tion “i” of sequence, base X is replaced by another base Y. This operation does
not change the length m of sequence s; so, given two sequences and length
m and n, respectively, one can change s into t by repeated applications of
this operation if and only if m equals n, in which case the minimal number
of point mutations necessary to change s into t coincides with the Hamming
distance between s and t.

14.1 Sequence Similarity

As discussed in forthcoming chapters on phylogenetic reconstruction using
character based and probabilistic methods, the assumption made when con-
structing phylogenetic trees is that we have an ungapped multiple sequence
alignment of the sequences we intend to use to reconstruct the tree. The pre-
requisite to using the distance based methods is the computation of inter-
sequence distance or similarity. Under our general assumption, Hamming
distance is a primitive but useful estimation of genetic distance.

In distance based methods, the actual sequence data is not required
beyond the computation of the similarity or distance scores between each
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sequence pair. Therefore, with the the availability of string edit distance the
requirement of having an ungapped multiple sequence alignment is consider-
ably relaxed. However, from the standpoint of genetic kinship, the problems
arising from admitting insertions and deletions - or indels for short - is, of
course, whether the new metric introduced is a biologically justifiable. There
are some complications that generally have been observed in distance based
methods.

For example, taking genetic shuffling into account, transforming the se-
quence AAAACCCC into a sequence CCCCAAAA can be accomplished in just one
evolutionary step. Or other events such as reversals, which using complement
property of DNA nucleotides, could in a single evolutionary step transform
the sequence CATCCGCCA into the sequence TGGCGGATG by reading the original
sequence backwards replacing a nucleotide with its complement. Single point
mutations may be assigned different weights depending upon their context
and whether they are in a coding region, if they represent a transitional or
transversional change, or if they are silent.

Notwithstanding these limitations, distance based methods are the sim-
plest to implement. Trees constructed using these methods are often called
phenograms as the original use of these methods was to represent pheno-
typic similarity for a group of species in a numerical taxonomy. They work
well under the assumption that the rate of gene substitution is more or less
constant. As the inter-species distance is represented by a similarity matrix
is the only input for these methods, the gene sequence distances may be aug-
mented by phenotypic markers to develop a composite vector which may be
utilized for developing a hybrid tree drawing upon the benefits of the new
trends in genetic tree construction and traditional approaches for building
species trees.

14.2 Linkage Analysis

Let us assume that a family of taxa, a measure of similarity has been estab-
lished associating for a family of sequences, s1, s2 . . . sn. Furthermore, for any
pair of sequences si and sj in this family of sequences, a real number dij has
been established satisfying the properties:

dij = dji > 0 for i �= j

and
dii = 0

The question we want to address now is how this system of numbers
can be used to create a tree representing the true phylogenetic history of
sequences. Distance based methods assume the existence of one common
ancestral sequence from which all sequences have evolved. If dij is directly
proportional to the time span tij that elapsed since the last common ancestor
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of the sequences si and sj existed, the construction of the family tree by dis-
tance based methods is correct under the additive assumption. Trees are said
to satisfy the “additivity” property if the edge lengths in the tree are additive.
Specifically, a phylogenetic tree is additive if the distance, or alternatively the
time span, between two nodes is equal to the sum of edges connecting them.

The construction of a distance based phylogeny is based upon the avail-
ability of the pairwise distance matrix. Thus, if the phylogeny tree is required
from a set of n sequences, the distances between individual sequence pairs
si and sj is used as the term Dij of the symmetric distance matrix. Fur-
thermore, a phylogeny reconstructed using distance based methods assumes
that the tree satisfies the ultrameric property. An ultrameric tree is defined
to be the one where all the sequences have evolved from the same common
ancestor and the distance of all sequence from the common ancestor is the
same. Consequently, a uniform evolution rate is the underlying presumption
of ultrameric tree which a distance based phylogenetic reconstruction method
yields.

14.3 UPGMA

As discussed above, the distance based methods rely on the reconstructing a
tree based on pairwise inter-sequence distances. Similarity score could possi-
bly be used as an inverse of distance measures. However, the additive property
and ultrameric properties of the trees constructed are defined with respect
to using a true distance measure to capture inter-sequence divergence. The
procedure for distance based phylogeny is essentially san agglomerative clus-
tering procedure which begins by n clusters and when the number of clusters
is reduced to 1. Initially, each of the n clusters is comprised of a single se-
quence, and when the process terminates all of the n sequences are merged
into a single cluster. It is various stages of the merging steps that create the
phylogenetic tree.

Unweighted Pair Group Method using (arithmetic) Averages or UPGMA
is the simplest hierarchical agglomerative clustering method that begins with
n clusters, C1, C2, . . . Cn, that are individually comprised of a single sequence
each. Correspondingly, the inter-cluster distance is initially the same as the
inter-sequence distance. Each stage of the tree building process selects two
closest clusters and merges them into a single cluster. The distances between
the new, i.e. merged, cluster and all the remaining clusters is subsequently
calculated. This iterative process continues till we are left with only a single
cluster.

Assume for example that clusters Ci and Cj are the nearest neighbors at a
specific stage of the tree building process. Let us further denote the number
of sequences in these clusters as |Ci| and |Cj | respectively. After these two
clusters are merged into a single cluster Ck, the number of sequences in Ck

will be |Ci| + |Cj |. The distance Dkl of cluster Ck from a cluster Cl can be
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computed as a weighted average of the distance of cluster Cl from original
clusters Ci and Cj as follows:

Dkl =
|Ci| ·Dil + |Cj | ·Djl

|Ci|+ |Cj | (14.1)

14.4 Phylogenetic Analysis in MATLAB

matlab function seqpdist computes distances between sequences using one
of the computes pairwise distance between sequences. It returns a vector
containing biological distances between each pair of sequences passed. The
pairwise distances may be computed using one of the several methods passed
as a parameter to this function.

Given a pairwise distance matrix, the matlab function seqlinkage per-
forms a linkage analysis to construct the tree. This linkage analysis is func-
tionally equivalent to performing UPGMA as it is the standard procedure for
agglomerative clustering. Parameters to seqlinkage further control the type
of clustering performed.

As an example, matlab default data directory contains a set of FASTA
formatted sequences which are read in. The pairwaise distances between these
sequences is next computed and stored in a distance matrix, dist. This matrix
is contains the pair wise distances of each sequence computed using a method
specified. Next, the function seqlinkage creates a phylogenetic tree which is
saved a tree object treeDist. The resulting tree may be viewed using the
function phytreeviewer.

seqs = fastaread(’pf00002 .fa ’);

dist = seqpdist (seqs ,’method ’,’jukes -cantor ’,’indels ’,’score ’,...

’scoringmatrix ’,@pam250 ,’pairwisealignment’,true);

distTree = seqlinkage(dist);

phytreeviewer(distTree );

14.4.1 Neighbor Joining Algorithm

Neighbor joining is a greedy algorithm for optimizing a tree according to the
“balanced minimum evolution” [1] (BME) criterion which defines the tree
length – sum of all branch weights in the tree – as a weighted sum of the
distances in the distance matrix. The weights are dependent on the topology
with the BME optimal topology being the one that minimizes this tree length.
It is a polynomial time algorithm with each step of the algorithm aimed at
greedily joining a pair of taxa that yields that results in the largest reduction
in the estimated tree length. This procedure is not guaranteed to find the
optimal the BME optimal topology although it produces a close result.
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matlab function seqneighjoin(DIST) computes a phylogenetic tree object
from the pairwise distances DIST between the species or products applying
the neighbor-joining method. Additionally, the command

treeNN = seqneighjoin (DIST, Method)

enables the specifications of parameters for selecting a method for neighbor
joining.

The default method assumes equal variance and independence of evolu-
tionary distance estimates (a = 1/2) [2, 3]. The “firstorder” method as a
parameter assumes a first order model of the variances and covariances of
evolutionary distance estimates [4].

In continuing with the distance matrix computed in the example above,
the neighbor joining method is utilized to compute a phylogenetic tree:

nnTree = seqneighjoin (dist );

phytreeviewer (nnTree);

As illustrated in Fig. 14.1, the tree produced by the UPGMA algorithms is
an ultrameric tree since the initial distances between the nodes is preserved.
Neighbor Joining method on the other hand, produces a typically a phylogeny
with a “star” topology where the resulting tree need not be an ultrameric tree.

Fig. 14.1 Trees produced by the distance based phylogenetic tree construction.
The tree on the left is produced by the UPGMA algorithm, while the tree to the
right is produced by Neighbor Joining algorithm.
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14.5 Exercises

1. Consider the following piece of matlab code:

data = {’German_Neanderthal’ ’AF011222’;

’Russian_Neanderthal’ ’AF254446’;

’European_Human’ ’X90314’ ;

’Mountain_Gorilla_Rwanda’ ’AF089820’;

’Chimp_Troglodytes’ ’AF176766’;

};

for ind = 1:5

seqs(ind).Header = data{ind,1};

seqs(ind).Sequence = getgenbank(data{ind,2},...

’sequenceonly’, true);

end

distances = seqpdist(seqs,’Method’,’Jukes-Cantor’,’Alphabet’,’DNA’);

tree = seqlinkage(distances,’UPGMA’,seqs)

Answer the following questions:

(a) Comment on what is stored in the data array. Also, comment on the
purpose of the array seqs.

(b) Run the program and examine the output. Briefly comment on the
purpose of the program.

(c) What can you say about the phylogenetic relationships between the
species studied in the data.

2. Consider once again the structure seqs that was created earlier in Ques-
tion 1. The function seqpdist, a specialized function corresponding to func-
tion pdist, must be informed that we are working with the DNA alphabet
as by default it treats the sequence data to be comprised of protein se-
quences. The seqlinkage specialization of the function linkage provides us
with the option of choosing the algorithm for clustering (UPGMA in this
case) and allows us to label the nodes with sequence headers.
Answer the following questions:

(a) Depending upon whether the input sequences are protein or nucleotide
sequences, the function seqpdist allows the inter-sequence distances to
be computed by a number of methods. Name the three methods that
are supported for both the nucleotide and protein sequences. Which
of these methods is the default method used for distance computation
by the function seqpdist. (Hint: Type help seqpdist at the MATLAB
command prompt).

(b) Is a different UPGMA tree produced for the five sequences under study
when other two non-default methods for computing inter-sequence dis-
tances is used. Show the commands you issue and resulting tree pro-
duced by each of the other non-default methods.
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(c) MATLAB pre-installs a number of data sets. For example, a set of
32 protein sequences are installed as the pf00002.fa dataset. The
following command will load this dataset into seqs structure

seqs = fastaread(’pf00002.fa’);

Similar to Question 2 above, compare the three trees produced by se-
qpdist for this new protein sequence dataset. Show the commands you
used to generate the trees and resulting trees generated.

(d) It is tedious to use visual inspection to compare large trees such the
one with 32-nodes you just build. matlab bioinformatics toolbox also
contains a function for comparing phylogenetic trees. Research and find
this function. List the command you use to compare the 32-node trees
in part2.

(e) In addition to UPGMA, what other linkage algorithms is supported by
the function seqlinkage. Provide a list with a short description.



Chapter 15

Character Based Methods: Parsimony

Maximum Parsimony (MP) methods were originally developed for compar-
ing morphologies. However, they are increasingly being used on molecular
data for inferring species trees from gene trees. In MP methods, four or more
aligned nucleotide or amino acid sequences are considered. The parsimony
analysis for each site in the aligned sequence is performed for each possible
tree, where the tree that produces the alignment with the minimal number
of transformations is considered to be the one with maximum parsimony.
The theoretical basis for the method is Occam’s razor which states that the
explanation of any phenomenon should make as few assumptions as possible,
eliminating, or “shaving off,” those that make no difference in the observ-
able predictions of the explanatory hypothesis or theory. Thus, the simplest
explanation is the one that is most likely correct.

MP methods offer some advantages over the other tree construction meth-
ods. Firstly, since they are based on counting the number of character trans-
formations, they are free from the amino acid and protein substitution
assumptions required for distance and maximum likelihood methods. Since
it is not clear whether the assumptions made by the other models are robust,
the tree construction from MP methods with no such assumptions may be
more reliable. It has been demonstrated experimentally that when the se-
quences used for tree inference are similar, the rate of nucleotide substitution
is almost constant, and the number of nucleotides examined is large, MP
methods are more reliable for obtaining the topology of a phylogenetic tree.

MP methods are broadly divided into unweighted and weighted MP
methods. The unweighted methods treat all possible substitutions at a given
location as being equally likely. In reality, this is seldom the case. Correspond-
ingly, the weighted methods take the transitional and transversional changes
into account while computing the number of changes for evaluating a given
tree topology.

15.1 Finding the Maximum Parsimony Tree

The process of finding a Maximum Parsimony (MP) tree entails a
search in the space of all tree topologies. Assuming that we are interested
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in reconstructing a MP tree with n sequences, our search space is comprised
of the unrooted phylogenetic trees with n leaves. We then search this space
to find the tree(s) that explains the data set with the minimum number of
changes or substitutions. There may be more than one such tree that ex-
plains the data with maximum parsimony. The tree(s) are then the nodes
in the search space that is reported. Since the pruning of the search space
is often possible using branch and bound methods, these techniques are of-
ten utilized for improving the search times for constructing MP trees. We
next look at the methodology for counting the number of substitutions that
a given tree purports for explaining a sequence data set.

15.1.1 Counting Substitutions for a Tree

The procedure for counting the number of substitutions needed to explain the
data set under a given tree topology begins by starting at the leaves and prop-
agating the intersections set. This process is explained in Figure 15.1 which
illustrates the results of the substitution counting process for a single location
in the multiple sequence alignment of sequences from six species shown. A
candidate tree topology being considered is shown in Figure 15.1 (a).

The process of computing the MP phylogeny involves the consideration of
all possible tree topologies. For a given topology, we begin the calculation
of the substitution count by moving up the tree and labeling the vertices as
we go along and asking whether there is an intersection in the label used
for the children. If the intersection of the children’s label is non-empty, then
the intersection is used as the label for the parent. And if the intersection is
an empty set, the parent’s label is instead the union set of the labels of its
children.

The various panels in Figure 15.1 exemplify the individual steps of the
counting process:

(a) The candidate tree topology with 6-taxa. The nucleotides on the leaf
node are those observed at a particular location in the multiple sequence
alignment of the sequences from the six species being compared. The
number of substitutions needed to begin with is 0.

(b) For the leaves originating from the parent node a, the intersection of the
nucleotides {A} ∩ {A} = {A}. Since the intersection set is non-empty,
the number of substitutions is still 0.

(c) The next set of leaves to be merged are the children of the parent b.
The intersection of nucleotides is {T } ∩ {C} = {}. Thus the number of
substitutions is incremented by 1 and the node is assigned the label of
{T } ∪ {C} = {T,C}.

(d) The node b and the other child of internal node c are merged next. The
intersection of the labels of node c’s children is {T,C}∩{T } = {T }. Since
this non-empty, the label assigned to node c is T , and the substitution
count is held at 1.
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Fig. 15.1 Counting the number of substitutions for each location in the multiple
sequence alignment sequences from six species
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(e) The two children for node d are labeled A and T . The intersection of
these is empty ({A} ∩ {T } = {}). This results in incrementing the sub-
stitution count to 2 and labeling the node d as {A, T }, the union of
{A} ∪ {T }.

(f) Finally, the label for node d and the last terminal node. Since the label
placed on node d and the last terminal node with the label of G have no
labels in common, the label for node e is set as {A, T,G} which is the
union of the label for node d and the last terminal node. Correspondingly,
the substitution count is increased to 3.

15.1.2 Computing Tree Length for an Alignment

The MP tree determination algorithm aims at finding the tree topology with
minimum tree length. The tree length, or LT , for a given tree is defined to
be the total number of substitutions needed for all the sites in the alignment.
The substitution count for a single site in the alignment is obtained by the
method described in the previous section. By considering the tree lengths, we
therefore consider the overall optimality of the tree for the entire length of the
multiple sequence alignment. The algorithm yields the tree with minimum
substitutions over all sites and over all topologies.

The complexity of the algorithm is m · (2n − 5)!!, where m is the length
of alignment and n is the number of taxas. Recall from section 13.3 that
the number of unrooted trees possible for n-taxas is (2n− 5)(2n− 7) . . . 1 or
(2n − 5)!!. This MP algorithm is generally computationally intractable for
large values of n. For reducing the computational inefficiencies for small and
computationally tractable values of n (generally n ≤ 10), some observations
help reduce the computational time attributed to m.

Nucleotide or amino acid sites that are identical in all of the taxa sequences
are called invariable sites. These sites do not contribute to the substitu-
tion counts and thus are eliminated from further consideration. For MP tree
determination, only the variable sites are used. However, not all variable
sites are useful for finding the most parsimonious topology. Any sites that
have singletons can also be explained by the same number of substitutions in
all topologies. They may thus also be removed from the computation of tree
lengths. For a site to be informative there must be at least two different
kinds of nucleotides, each represented at least two times.

For example, consider the 5-nt multiple sequence alignment below. Only
site 4 is an informative site. Columns 2 and 5 are invariable sites while
columns 1 and 3 singletons. Thus, the tree topology with minimum sub-
stitution count for site 4 will also be the tree with minimum LT and the
maximally parsimonious tree.
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COLUMN 1 2 3 4 5

SEQ1 C C C C G

SEQ2 C C T T G

SEQ3 T C G T G

SEQ4 G C A C G

A four sequence taxa has three possible unrooted trees as shown in Fig-
ure 15.2(a). These are the canonical trees with sequence labels shown on the
leaves. There are two internal nodes labeled a and b.
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Fig. 15.2 The canonical unrooted tree with 4-taxas is shown in (a). The first
column in the alignment contains two singletons and correspondingly all the trees
for column 1 have a substitution count of 2 as shown in (b). The only informative
column in the alignment shown is column 4. The substitution counts for the three
topologies for this column shown in (c) are 2, 2 and 1. The third tree topology is
therefore the optimal and maximally parsimonious.

The three trees corresponding to column 1 are shown in Figure 15.2(b).
Each of these trees has a substitution count of 2. In general, any singleton
column can be explained by the number of singleton characters which in this
case is 2. The singleton characters in column 1 are T and G.

The only informative column for this alignment is column 4. The three
trees corresponding to column 4 are shown in Figure 15.2(c). The substitution
counts for the three trees are 2, 2 and 1. The maximally parsimonious tree
topology corresponding to this column is the third tree with the substitution
count of 1. Since other columns are either invariable or singleton, the third
canonical tree topology shown is also the tree with smallest length or the
maximally parsimonious tree.
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15.1.3 Computing Branch Lengths

The common usage of MP methods is the construction of tree topology with-
out the assignment of branch lengths. This is primarily because parsimony
tree construction primarily estimates the configuration of the taxa and parent
nodes that yields the overall topology with the smallest number of character
substitutions. However, methods have been developed that estimate branch
lengths under a set of assumptions. As a general rule, the branch length is
the average number of substitutions made at each branch considering all the
MP trees. Thus, if there are three MP trees possible for a given number of
taxas, and a substitution is necessary along a certain branch in two out of the
three MP topologies, then the branch is assigned a length of 2

3 . The branch
length thus corresponds to the average number of substitutions for a branch
(exterior or interior) where the average is computed over all parsimonious
trees.

15.1.4 Branch and Bound Optimization

When the number of taxa is small, a computer can exhaustively generate
the list of possible trees and compute the tree length for each to yield the
topologies with maximum parsimony (and minimum substitution costs).
The process of generating all possible tree is thus an exhaustive search
of the space of all possible n-taxa trees. With each node we ask if the tree is
optimal and if so, we retain it. As n becomes large, this approach becomes
intractable and we look towards approaches that can effectively prune the
search space so that finding a solution may becomes more feasible.

One such approach for pruning the search space is to utilize the branch-
and-bound approach. In this method, the trees that have a value of LT

longer than the ones previously examined are all ignored, and the MP is
determined by evaluating the tree lengths for a group of trees that potentially
have a shorter length. Thus, the search space is set up as a tree with each node
on the tree expanding out in a manner corresponding to the possibility that
a single taxon may be added at that node. Thus, the path through the tree
corresponds to the various stages of the additions of the taxa. When a node
is encountered that has a higher tree-length than the minimum tree length
seen thus far in a systematic traversal of the search space, all subsequent
expansions for that tree are pruned away. Intuitively, this corresponds to
taking a subset of m taxa, where m < n, and computing the tree length. If
this tree length is larger than the tree length we have seen for any n taxa
configuration, the m taxa tree topology and all its children are removed from
further consideration.
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Heuristic Algorithms

Heuristic approximations to branch and bound methods have been developed.
One method that works well in practice is based on the construction of core
trees. The search for an MP tree begins by constructing an initial core tree of
three taxas. A single unrooted core tree with 3 taxa utilizes those sequences
that yield the largest tree length. Thus, every possible selection of three
sequences is analyzed, and the combination of three sequences that yields the
largest tree length is retained as the core 3 taxa tree. The rationale is that
we want to construct an MP tree and would like the algorithm to converge
to the optimal tree length LT as quickly as possible.

After the three-taxa core tree has been constructed, each remaining taxon
is in turn placed on each of the three branches of the three-taxa tree. For
each taxon we record the tree length such that the minimum number of
substitutions are needed. This is because we are constructing an MP tree
and so must place this taxon at its optimal location. After obtaining the MP
tree lengths for four taxas, we select the taxon which maximizes the tree
length. Again, the rationale is that we want to construct the MP tree and
would like the algorithm to converge to the the optimal tree length LT as
quickly as possible.

This algorithm is therefore often referred to as the min-max algorithm
because we must find the minimum number of substitutions for adding a given
taxon and then select the taxon which maximizes the overall tree length.

15.2 Weighted Parsimony Algorithms

As a general rule, the MP methods are expected to produce reliable trees
when the extent of homoplasy (backward or parallel substitution) is small.
Consequently, the result of computing an MP tree generated from the sites in
an alignment that evolve slowly will be more accurate than the tree generated
from the sites in the alignment that are evolving rapidly. Herein lies the basis
for the weighted parsimony tree construction. If we could assign a higher
weight to the sites that are evolving slowly, our overall MP tree will be more
accurate.

We next look towards the basis for determining when a site is slowly evolv-
ing versus when it is not. It has been well established that the nucleotides at
the first, second and third position in a codon evolve at different rates. The
nucleotide at the third position of a codon evolves at the fastest rate, while
those at the second position are slowest to evolve or change. The estimated
rate of nucleotide changes per 1000 bp for genes in mitochondrial DNA is 15.5
for the fist nucleotide, 8.5 for the second and 36.8 for the third nucleotide.
The rate of change for nucleotides in a codon thus approximately follow the
ratio of {2:1:5}. While counting the number of substitutions, one could as-
sign weights in inverse proportion to the nucleotide’s propensity to change.
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For example, one could assign weights of w1 = 1
2 , w2 = 1, and w3 = 1

5 for
the corresponding substitutions observed at three nucleotide positions in a
codon. These weights could further vary from one gene to another and also
within a given gene.

Table 15.1 Substitution matrices utilized for the computation of weighted parsi-
mony scores. (a) In general, transversional substitutions are given a higher substitu-
tion cost of w in comparison to the transitional substitution cost of 1. (b) illustrates
a typical case where the transversional scores are twice as much as the transitional
scores. Sometimes, as in (c), we may wish to treat the transitional substitutions as
synonymous and not count them towards the substitution cost of the tree.

A C G T

A w 1 w

C w w 1

G 1 w w

T w 1 w

A C G T

A 2 1 2

C 2 2 1

G 1 2 2

T 2 1 2

A C G T

A 0 1 0 1

C 1 0 1 0

G 0 1 0 1

T 1 0 1 0

(a) (b) (c)

If a parsimony tree is generated using nucleotide data, where the relative
codon position is not known, the transitional versus transversional charac-
terization of the nucleotide substitutions may also be used to assign weights.
The transitional substitutions are defined as those where purine substitutes
another purine, or a pyrimidine substitutes another pyrimidine. Transver-
sional substitutions involve the substitution of a purine by a pyrimidine or
vice versa. Recall that two of the bases in nucleic acids, adenine (A) and
guanine (G), are purines. In DNA, these bases form hydrogen bonds with
their complementary pyrimidines thymine (T) and cytosine (C). The relative
weights of the transitional and transversional substitutions are often repre-
sented as a ratio of 1:w, as shown in Table 15.1.

When the parsimony tree utilizes the substitution matrix shown in Ta-
ble 15.1(c), all the transitional substitutions are essentially ignored. Since the
substitution cost is computed only by considering the transversional changes,
the resulting parsimony is called transversional parsimony. Such possi-
bilities demonstrate a collateral drawback of MP methods. For example, it
is often not known a-priori the appropriate weight matrix to utilize for the
computation of a weighted parsimony tree. Therefore, a technique known as
dynamically weighted parsimony is often utilized for the construction of
MP trees. An initial tree is constructed using the substitution matrix that ap-
pears to be most appropriate for the given data set. This tree is then utilized
for computation of a new substitution matrix which is subsequently utilized
for the computation of a new MP tree. This process continues until the tree
topology becomes stable and the substitution cost is minimized.
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15.3 Protein Alignments

Using protein sequences for the inference of phylogenetic trees is often pre-
ferred over the use of DNA sequences because the evolutionary patterns of
DNA are often very complex. The substitution pattern is not the same for
all positions within a codon with the higher propensity for position three to
undergo change. This in turn requires an a-priori knowledge of the coding
regions in order to assign appropriate weighting factors to the nucleotides
to effectively compute the weighted parsimony scores, as discussed in sec-
tion 15.2. Alternative techniques have been developed to directly utilize pro-
tein sequences (where known) to construct MP trees.

A simplistic approach for constructing MP trees may be utilized by treat-
ing each of the 20 amino acids as a unique character and counting the sub-
stitutions, as we did for DNA sequences. However, the genetic code clearly
shows records that some amino acid substitutions may require two or three
nucleotide changes, while others only require changing a single nucleotide.
Thus, some amino acids are biochemically similar to one another. Conse-
quently, their mutual substitutions should not be weighed on par with their
substitutions by those that they do not share significant biochemical similar-
ity with. Maximum Parsimony algorithms for proteins essentially proceed in a
similar manner as the algorithms developed for DNA sequences. The essential
difference is in the manner by which the substitution costs are computed. In-
stead of assigning an equal cost for replacing one character by another, amino
acid costs are computed by counting the number of characters that are differ-
ent in their underlying codon. As the genetic code is degenerate, with more
than one and often two or more codons coding for an amino acid, simplifying
assumptions need to be made. One such assumption utilized in practice is
to take the minimum substitution score between the two codon sets and use
that as the amino acid substitution cost.

15.4 Matlab Functions for Codon Substitution Rates

It is evident from the genetic code that some amino acids have multiple
codons and have higher degeneracy. They are thus better able to handle point
mutations – Argenine (Arg), Leucine (Leu), and Serine (Ser) are all coded by
six different codons, whereas Tryptophan (Trp) is only coded by one. Codons
that code for the same amino acid are called synonymous codons. Contrarily,
if the changes to a codon result in changing the coded amino acid, the change
is considered to be nonsynonymous.

matlab function dnds(SEQ1,SEQ2) estimates the synonymous and non-
synonymous substitutions rates per site between two homologous sequences
by comparing codons and returns the nonsynonymous substitution rate (DN),
the synonymous substitution rate (DS), as well as their respective vari-
ances. In computation of these rates, codon that includes gaps or ambiguous
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nucleotide characters is excluded from calculation. This analysis is performed
considering the number of codons in the shortest sequence and assumes se-
quences do not have frame shifts.

Consider the following matlab code where two sequences are downloaded
from GenBank. The coding regions from the sequences are extracted and
converted into amino acid sequences that are then globally aligned using the
function nwalign:

s01 = getgenbank (’AF509094 ’);

s02 = getgenbank (’DQ094287 ’);

s01_cds = featuresparse(s01 ,’feature ’,’CDS ’,’Sequence ’,true );

s02_cds = featuresparse(s02 ,’feature ’,’CDS ’,’Sequence ’,true);

aa01 = nt2aa(s01_cds );

aa02 = nt2aa(s02_cds );

[score , aln ] = nwalign (aa01 , aa02 );

The alignment information is used to insert gaps into the coding segments.
Function seqinsertgaps (SEQ, GAPPEDSEQUENCE, N) is used for this pur-
pose. This function is called with a first sequence SEQ into which the gaps
need to be inserted and a second gapped sequence GAPPEDSEQ. The parameter
N = 1 is used when both sequences have the same alphabet, and N = 3 when
SEQ contains nucleotides representing codons and GAPPEDSEQ contains amino
acids. Default value for N is 3. After gaps have been inserted into the two
aligned coding sequences, the matlab function dnds is called to computed
the rate of synonymous and nonsynonymous substitution rates.

s01_aln = seqinsertgaps (s01_cds , aln(1,:), 3);

s02_aln = seqinsertgaps (s02_cds , aln(3,:), 3);

[dn, ds] = dnds(s01_aln , s02_aln)

Further Readings
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and effect of gap characters in sequence-based phylogenetic analyses. Syst.
Biol. 50(3), 454–462 (2001)
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15.5 Exercises

1. Answer the following questions considering the 5-nt multiple sequence
alignment below: Only site 4 is an informative site. Columns 2 and 5
are invariable sites while columns 1 and 3 singletons. Thus, the tree topol-
ogy with minimum substitution count for site 4 will also be the tree with
minimum LT and the maximally parsimonious tree.

COLUMN 1 2 3 4 5

SEQ1 C G C A G

SEQ2 C G T T G

SEQ3 C A G T G

SEQ4 C A A C G

(a) Identify the informative site(s).
(b) Identify the invariable site(s).
(c) Identify the singleton site(s).
(d) A tree topology with the minimum number of substitutions for which

site will be the maximally parsimonious tree? Justify.
(e) Picking suitable labels for internal nodes, draw all possible canonical

trees unrooted trees with four sequence taxa.
(f) Identify the most parsimonious site based on the informative site. How

many substitutions are needed for parsimonious tree.

2. Consider the two DNA sequences:
seq1 = ’ATGCCCGACTAG’

seq2 = ’ATTCCCGAGTAA’
Perform the following analysis using matlab:

(a) Convert each sequence to the corresponding amino-acid sequence using
the function nt2aa.

(b) Identify if the two translated sequences have any common amino acids
for each location.

(c) Compute the non-synonymous and synonymous substitution rates using
matlab function dnds :

[dn ds] = dnds (seq1, seq2);

(d) Does the fact both seq1 and seq2 end with a stop codon affect the
synonymous substitution rate?

3. Issue the following commands to download and compare two GenBank
sequences. Comment on the output. Experiment with the other parameters
supported by the dnds command.

sq1 = getgenbank (’L11768’);

sq2 = getgenbank (’L11770’);

[dn dn dnv dsv] = dnds (sq1, sq2, ’verbose’, true);



Chapter 16

Probabilistic Methods: Maximum
Likelihood

Probabilistic methods for phylogeny aim at ranking trees according to the
likelihood of observing the data (i.e. the multiple sequence alignment) given
the topology of the tree. In order to compute the probability, the probabilistic
tree construction methods estimate P (x | T, t). Here the data is the set of n
sequences (taxa), T is the tree and t denotes the specific edge lengths of the
branches of the tree. To quantitatively define this probability, an underlying
model of evolution is assumed.

16.1 Preliminary Example

The procedure for evaluating maximum likelihood is essentially similar to the
one utilized for computing maximum parsimony. In theory, all possible tree
topologies are considered and the overall likelihood for the entire alignment is
computed in a manner similar to the computation of the tree length utilized
in maximum parsimony. The number of possible tree topologies being expo-
nentially large, efficient search procedures are utilized to yield the maximally
likely tree, i.e. the tree that maximizes the probability of P (data | tree). The
probability of each column is computed under a given tree topologies. The
overall probability is simply the product of the column probabilities under
the assumption that the observations of individual columns are independent
of each other.

Consider the simple alignment of four sequences in Fig. 16.1 (a). With n
sequences there are k = (2n − 5)!! trees possible, labeled as {T1, T2 . . . Tk}.
Let us next illustrate the process of computing the likelihood of observing
an alignment shown for one such tree Ti in Fig. 16.1 (b). The likelihoodd
of observing each column of the alignment is next computed as shown in
Fig. 16.1 (c), where the overall probability of data alignment given the tree is
computed as a product of the individual column likelihoods. The likelihood
for each n taxa tree configuration is similarly computed. The tree(s) yielding
the higher likelihood value is chosen to be the maximally likely tree. Let
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  COLUMN   1 2 3 4 5
          
 SEQ1     C C C C G
 SEQ2     C C T T G
 SEQ3     T C G T G
 SEQ4     G C A C G

X6

SEQ1

SEQ2

SEQ3

SEQ4

X5t1

t2 t4

t3

t5

C

C

T

G

X5 X6

C

C

C

C

X5 X6

C

T

G

A

X5 X6

C

T

T

C

X5 X6

G

G

G

G

X5 X6

Column 1 Column 2 Column 3 Column 4 Column 5

Prob (Alignment Data | Ti) = 

          Prob (Column 1 | Ti) x Prob (Column 2 | Ti) x      

          Prob (Column 3 | Ti) x Prob (Column 4 | Ti) x 

          Prob (Column 5 | Ti)  

Alignment Candidate Tree: Ti

(a) (b)

(c)

Fig. 16.1 An illustration of the Maximum Likelihood Method. For a given align-
ment with four sequences, all possible tree topologies will need to be explored to
determine the topology that maximizes the likelihood of observing the data. The
process of computing the likelihood is essentially to compute the probability of ob-
serving each column in the ungapped alignment computing the overall alignment
probability by taking the product of individual likelihoods under the assumption
that the column alignments are independent of each other.

us next look at the procedure for calculating the likelihood of a single column
in the alignment.

16.2 Probabilistic Models of Evolution

A model of evolution helps us define the probability P (x | y, t), that is, the
probability of a sequence x arising from an ancestral sequence y over an edge
of length t. During the course of evolution, residues are inserted and deleted as
well as substituted for one another. In Maximum Likelihood (ML) methods
for phylogenetic reconstruction, we make the simplifying assumptions that
there are no insertions and deletions and that the substitution at a given
site occur independent of the substitution at another site. Our sequences
therefore must form an ungapped alignment with independent evolution at
each site.

If we let P (xi | yi, t) be the probability that a site with residue yi in the
parent sequence is substituted with a residue xi over a branch of length t
units of time, then the probability that the sequence y of length k will be
substituted by a sequence x of the same length over t units of time is:
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P (x | y, t) =
k∏

i=1

P (xi | yi, t) (16.1)

Several matrices for nucleotide substitutions have been proposed. One such
substitution model is proposed by Jukes and Cantor. This matrix provides
the rates of substitution, and assumes that the nucleotide substitution rate
is the same for all nucleotides. In Kimura’s model, the substitution rates for
transitional substitutions are different from transversional substitutions. The
substitution matrices are shown in Table 16.1 below. For example, in the
simplistic Jukes-Cantor model, all nucleotide substitution rates are constant
and set to α. Thus, the rate that a nucleotide is preserved is (−3α). Nu-
cleotide mutation rates and preservation rates under the Kimura model are
determined based on transition and transversion.

Table 16.1 Jukes-Cantor (a) and Kimura (b) nucleotide substitution rate matri-
ces. In Jukes-Cantor model, the rate at which a given nucleotide is substituted by
another is equal irrespective of the nucleotide that the original nucleotide is sub-
stituted with. In Kimura model the rates of transitional substitutions (purine by
purine and pyrimidine by pyrimidine) is different from transversional substitutions
(pyrimidine by purine or vice versa).

A C G T

A -3α α α α

C α -3α α α

G α α -3α α

T α α α -3α

A C G T

A −(2β + α) β α β

C β −(2β + α) β α

G α β −(2β + α) β

T β α α −(2β + α)

(a) (b)

If should be noted that these matrices provide the rates of substitution.
The expected number of changes are computed as (v · t) where v is the rate of
substitution. When t is small, the expected number of changes may be treated
as a probability of change. For example, if we let α = 1 change/million years,
then the probability that a nucleotide will change in one year is 10−6. Thus,
the probability of a nucleotide changing in time Δt is α ·Δt.

Let us next derive the fraction of nucleotides that will be different between
two sequences when they diverge from the same common ancestor. Let rt be
the probability that the nucleotide in sequence X at a given position i does
not change as the sequence evolves to another sequence Y over a period of t
time units. Let us first denote a nucleotide Ak at position i in a sequence X
as X i

Ak
. Thus, rt measures the probability that the nucleotide in the evolved

sequence Y is the same as the parent after t time units of evolutionary change
has occurred. Also, st is the probability that the nucleotide at a given position
has changed from Ak in the parent (sequence X) to another nucleotide Aj
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in the child (sequence Y ) during the t time units elapsed after the speciation
event.

rt = Prob(Y i
Ak

| X i
Ak

, t) (16.2)

st = Prob(Y i
Aj

| X i
Ak

, t) (16.3)

Considering the 4-character DNA alphabet, a nucleotide may be substi-
tuted by any of the other three nucleotides. Under the Jukes-Cantor model
all three of these mutations are equally probable. Thus, the probability that
a given nucleotide will mutate to one of the other is 1

3 of the probability that
a nucleotide will mutate which is (1− rt).

st =
1

3
(1− rt) (16.4)

We next develop the differential equations to compute P (Y i
Ak

| X i
Ak

, t+Δt)
– the probability that the child and the parent nucleotide stay the same
after t + Δt time units have elapsed since the speciation event. There are
two possible chains of mutually exclusive events that must be considered to
compute the overall probability P (Y i

Ak
| X i

Ak
, t+Δt).

(a) In the first chain of events, the nucleotide at position i is the same as
its parent after time t has elapsed – an event that has a probability of
rt; furthermore, the nucleotide does not undergo any subsequent change
from time t to t+Δt – an event that has a probability of (1− 3α ·Δt).
The joint probability of these two events is thus, rt · (1− 3α ·Δt).

(b) In the second chain of events, the nucleotide at position i is different
from its parent at time t – an event that has a probability of 3 · st;
furthermore, the nucleotide undergoes a mutation from t to t+Δt and
becomes the same as the parent’s nucleotide at position i – an event
that has a probability of α ·Δt. The joint probability of these two events
is thus, 3 · st · αΔt as there are three possible ways that the nucleotide
could be different.

Since the two chain of events are independent of each other, the probability
rt+Δt is equal to the sum of the two probability events listed above as shown
in Eq. 16.5.

rt+Δt = rt · (1− 3α ·Δt) + 3 · st · αΔt (16.5)

From this we can derive in Eq. 16.6 the rate of change of rt as follows:

rt+Δt = rt · (1− 3αΔt) + 3stαΔt

= rt − 3αrtΔt+ 3stαΔt

Substituting st =
1

3
(1− rt) we get
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rt+Δt = rt − 3αrtΔt+ 3
(1− rt)

3
αΔt

Thus

rt+Δt − rt = −4αΔt+ αΔt

Δr

Δt
= −4αrt + α

In the limit Δt → 0,

dr

dt
= −4αrt + α (16.6)

The above differential equation has solution of the form

rt = C0e
−4αt + C1

The two boundary conditions are

at t = 0, rt = 1

at t = ∞, rt =
1
4

The rationale for the boundary conditions is as follows. Initially, at time
t = 0 the sequence X has not diverged from the parent and thus each position
has 0 probability of being different from the parent. At time t = ∞, the
probability that a nucleotide is the same as its parent is only 0.25 – what is
expected by chance between any two random sequences.

The solution for rt and st may thus be obtained as:

rt =
1
4 + 3

4e
−4αt =

1

4
(1 + 3e−4αt) (16.7)

st = (1−rt)
3 =

1

4
(1 − e−4αt) (16.8)

It can readily be seen that as t → ∞ the probability that a parent and the
child nucleotide will match is 1

4 .

16.3 Likelihood - Two Sequences

This section considers the case where two sequences have diverged and we are
given their gapless alignment. We can use the MLE method to estimate the
time duration that separates them. Let us for example look at the sequence
in Fig. 16.2 where the two sequences have diverged from the same common
ancestor. Let us further assume that t1 time units have elapsed since the
divergence of seq-1 and t2 time units have elapsed since the divergence of
seq-2. Given the two sequences and their alignment, our objective is to find
the Maximally Likely Estimate (MLE) for the values of t1 and t2. In general,
the computation of the MLE will require the estimation of the tree topology
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as well as the branch lengths. The tree topology being fixed given that there
are only two taxa in this case, the expression for MLE need only be optimized
with respect to branch lengths.

Column: 1 2 3 4 5 6 7 

Seq Y:  A C T C G A T
        | : | | | | :
Seq Z:  A G T C G A C

Y

Z

X

t2t1

Alignment

(a) (b)

Y Z

t1+t2

(c)

Fig. 16.2 The two sequences are aligned as shown in (a). The aligned sequences
have diverged from the same common ancestor, X. The time duration elapsed from
their divergence from the common ancestor X for sequences Y and Z are t1 and t2
respectively.

The MLE estimate for the entire alignment is simply the product of the
MLE for each column in the alignment under our independent column as-
sumption. Given the alignment, there are two cases possible for a column in
the alignment. These are (1) the two nucleotides in the column agree as in
columns 1 and 3 through 6, and (2) the two nucleotides in the column do
not agree as in columns 2 and 7. Under the Jukes-Cantor model, the proba-
bility of observing all events of the type (1) will be the same; as will be the
probability of observing all events of type (2). The likelihood of transitional
mutations under the Kimura model will be higher than transversional mu-
tations. However, under the Jukes-Cantor model these probabilities are the
same as all mutations are equally likely and set equal to α in the rate matrix
shown in Table 16.1.

Case I:The nucleotides in the alignment are identical
Let us consider the probability of observing (i.e. the likelihood) the data
in column 1 of the alignment shown in Fig. 16.2 (a) under the tree shown
in Fig. 16.2 (b). The nucleotide at column 1 in the parent sequence X
could be a {A,C, T,G} with a probability of 1

4 each. The observations in
sequences Y and Z after t1 and t2 are independent events and thus have
a probability given by Eq. 16.9 below.

P (Y 1
A, Z

1
A | T, t1, t2) = 1

4 · P (Y 1
A | X1

A, t1) · P (Z1
A | X1

A, t2) +
1
4 · P (Y 1

A | X1
C , t1) · P (Z1

A | X1
C , t2) +

1
4 · P (Y 1

A | X1
G, t1) · P (Z1

A | X1
G, t2) +

1
4 · P (Y 1

A | X1
G, t1) · P (Z1

A | X1
T , t2) (16.9)
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The first term in the above equation corresponds to the event that col-
umn 1 in the parent sequence X is also the nucleotide A. The remaining
terms correspond to it being nucleotides {C,G, T }. We can rewrite Eq. 16.9
using Eqs. 16.2 and 16.3 defined in the previous section.

P (Y 1
A, Z

1
A | T, t1, t2) = 1

4
(rt1 · rt2 + 3 · st1 · st2) (16.10)

Further substituting the results obtained from the Jukes-Cantor model
shown in Eqs. 16.7 and 16.8 into Eq. 16.10 above we get:

P (Y 1
A, Z

1
A | T, t1, t2) = 1

43
· (1 + 3e−4αt1) · (1 + 3e−4αt2) +

3 · 1

43
· (1 − e−4αt1) · (1 − 3e−4αt2)

=
1

16
(1 + 3e−4α(t1+t2)) (16.11)

Case II: The nucleotides in the alignment are different
For the analysis of this case, let us consider the probability of observing the
data in column 2 of the alignment shown in Fig. 16.2 (a). The nucleotide at
column 2 in the parent sequence X could again be A,C, T, orG, with the
probability of 1

4 each. The observations in sequences Y and Z after t1 and
t2 are independent events and thus have a probability given by Eq. 16.12
below.

P (Y 2
C , Z

2
G | T, t1, t2) = 1

4 · P (Y 2
C | X2

A, t1) · P (Z2
G | X2

A, t2) +
1
4 · P (Y 2

C | X2
C , t1) · P (Z2

G | X2
C , t2) +

1
4 · P (Y 2

C | X2
G, t1) · P (Z2

G | X2
G, t2) +

1
4 · P (Y 2

C | X2
G, t1) · P (Z2

G | X2
T , t2) (16.12)

The four terms in the above equation corresponds to the events that the
column 2 in the parent sequence X is A, C, G, or T respectively. We can
again rewrite Eq. 16.12 using the Eqs. 16.2 and 16.3.

P (Y 2
C , Z

2
G | T, t1, t2) = 1

4
(2 · st1 · st2 + ·rt1 · st2 + st1 · rt2) (16.13)

Further substituting the results obtained for the Jukes-Cantor model shown
in Eqs. 16.7 and 16.8 into the Eq. 16.13 above we get:

P (Y 2
C , Z

2
G | T, t1, t2) = 2

43
· (1− e−4αt1) · (1− e−4αt2) +

1

43
· (1 + 3e−4αt1) · (1− e−4αt2) +
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1

43
· (1− e−4αt1) · (1 + 3e−4αt2)

=
1

16
(1− e−4α(t1+t2)) (16.14)

As the likelihood of consensus alignment is the same irrespective of the ac-
tual nucleotides, and as the likelihood of nucleotide disagreement is the same
irrespective of the nucleotides under the Jukes-Cantor model, the likelihood
of observing an alignment where m nucleotides match and n nucleotide do
not match in a two sequence alignment is given by Eq. 16.17.

P (Y, Z | X, t1, t2) =
1

16m+n
· (1+3e−4α(t1+t2))m · (1− e−4α(t1+t2))n (16.15)

Thus, the likelihood for the sequence shown in Fig. 16.2 under the tree
shown with m = 5 and n = 2 is:

P (Y, Z | X, t1, t2) =
1

167
· (1 + 3e−4α(t1+t2))5 · (1− e−4α(t1+t2))2 (16.16)

Note that the likelihood is independent of the individual time spans t1 and
t2 and is a function only of (t1 + t2). This goes to show that generating a
rooted tree is not possible using the maximization of likelihood method. This
is because we can only maximize the likelihood to yield an optimal value for
(t1+ t2). We can therefore replace our rooted tree shown in Fig. 16.2 (b) with
an unrooted tree shown in Fig. 16.2 (c), with the divergence between taxon
Y and Z set to τ = (t1 + t2). The parent X is therefore some ancestor along
the link joining taxa Y and Z.

16.3.1 Maximizing the Likelihood

By replacing τ =(t1 + t2) in Eq. 16.17, it can be rewritten as follows:

L = P (Y, Z | X, t1, t2) =
1

16m+n
· (1 + 3e−4ατ )m · (1− e−4ατ )n (16.17)

Further, we can take the logarithm of the likelihood function which yields
Eq. 16.18:

logL = k +m log(1 + 3e−4ατ) + n log(1− e−4ατ ) (16.18)

We can next maximize the likelihood by setting ∂L
∂τ = 0 as follows:

∂ logL
∂τ

= −12αm
1+3e−4ατ + 4αn

1−e−4ατ = 0

⇔ 3m
1+3e−4ατ = n

1−e−4ατ

⇔ 3(m+ n)e−4ατ = 3m− n
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τ = − 1
4α ln 3m−n

3(m+n) (16.19)

Thus the divergence between two sequences is obtained by the number of
matching and non-matching nucleotides. Again, for our alignment in Fig. 16.2
with five matching and two mismatching nucleotides, the maximally likely
value of the phylogenetic distance between sequences Y and Z is obtained by
substituting m = 5 and n = 2 in Eq. 16.19:

DistMLE(Y, Z) = − 1

4α
ln

13

21

It is instructive to note here that for this simple two sequence case the max-
imization of likelihood was possible analytically. This will not be the case
in multiple sequence alignments with a larger number of sequences. Numer-
ical methods, such as Newton’s, secant or fixed-point, are often utilized to
solve the partial differential equations used for maximizing the likelihood se-
quence data with respect to branch length. It may also be noted that all
possible topologies for the given number of taxa must be explored. Search
space pruning using branch and bound methods as applied in the maximum
parsimony method is once again utilized in MLE based phylogenetic recon-
struction methods. Thus, one would find the optimal branch lengths for each
topology in the search space and ultimately pick the topology and the branch
lengths that maximize the likelihood of observing the sequence data.

16.4 Likelihood for Ungapped Alignments

The previous section developed the methodology for formulating the likeli-
hood of nucleotides in an alignment of two sequences. That approach is now
extended to develop a maximum likelihood algorithm for n taxa. For example,
one possible phylogenetic tree representation for a set of seven (7) sequences
is shown in Fig. 16.3 (a). Recall that the maximum likelihood will be found
by evaluating the probability of observed sequences calculated as the product
of all column probabilities with the observed nucleotides assigned to leaves
of the tree. For clarity, the leaves of the phylogenetic tree have been shown
as circles and the internal nodes are shown as diamonds.

Fig. 16.3 (b) represents a node Tk and its left and right subtrees. These
subtrees are rooted at nodes Ti and Tj. The branch lengths for the edges
connecting Tk to Ti and Tj are ti and tj respectively. Let P (Tk) be the prob-
ability of entire clade below Tk. Furthermore, let P (Tk | z) be the probability
of the entire subtree rooted at Tk given that the nucleotide at node Tk is z.
Our objective is to represent P (Tk | z) in terms of P (Ti | x) and P (Tj | y).
Two cases need to be considered.

i Tk is a leaf node
If Tk is a leaf node, the probability P (Tk | z) is 1 only when the observed
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T1

T2

T8

T11 T12

T3 T6

T7

T10

T4
T5

T9

T13

t1
t2

t3

t4
t5 t6

t7

t8 t9

t11

t10

t12 Tk

ti tj

z

b

y

Ti Tj

x

(a) (b)

tk

Fig. 16.3 Structure of a phylogenetic tree where the nodes and branches are anno-
tated. (a) The leaf nodes are annotated by a circle and the internal parent nodes are
represented by diamonds. With the exception of the root node, the branch adjacent
to a node Tj is labeled as tj . Each leaf node represents a column in the multiple
sequence alignment of the taxa sequences used to infer the phylogenetic tree. (b)
A generalized representation of a node Tk and its left and right subtrees that are
rooted at nodes Ti and Tj respectively. The probability of finding a nucleotide a at
node Tk can be written in terms of the probability of finding nucleotides b and c at
nodes Ti and Tj respectively.

nucleotide from the sequence mapped to node Tk is identical to z. The
probability P (Tk | z) is zero for all other values of z.

ii Tk is an internal node
If Tk is a non-leaf internal node, the probability P (Tk | z) is computed
by considering the probabilities of P (Ti | x) and P (Tj | y) as shown in
Eq. 16.20 below:

P (Tk | z) =
∑

x,y

P (Ti | x) · P (x | z, ti)P (Tj | y) · P (y | z, tj) (16.20)

The basis for Eq. 16.20 is as follows. The residue z at node Tk could
mutate to a residue x over a branch length of ti with the probability
P (x | z, ti). Similarly, residue z at node Tk could mutate to a residue y over
a branch length of tj with the probability P (y | z, tj). These probabilities
are summed over all the 16 values that nucleotide x and y could take at
nodes Ti and Tj respectively.

In section 16.2 above the conservation and mutation probabilities are de-
fined under the Jukes-Cantor model based on the branch length t as pa-
rameters. The above two cases are thus represented using the conservation
probability rt and mutation probability st in Fig. 16.4. To illustrate the com-
putation process, two situations are depicted in this figure. In Fig. 16.4 (a)
the two left and right subtrees are themselves leaves. For any leaf, the
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Ti
Tj

Tk

ti tj

'C'
'G'

Tk

Ti Tj

ti tj

(a) Terminal Nodes (b) Non-Terminal Nodes

x P(Ti | x)
A 0
C 1
G 0
T 0

y P(Tj | y)
A 0
C 0
G 1
T 0

z P(Tk | z)
A stistj

C rtistj

G stirtj

T stistj

x P(Ti | x)
A P (Ti | A)
C P (Ti | C)
G P (Ti | G)
T P (Ti | T )

y P(Tj | y)
A P (Tj | A)
C P (Tj | C)
G P (Tj | G)
T P (Tj | T )

z P(Tk | z)
A

rti · P (Ti | A) · rtj · P (Tj | A) +
∑

u∈{C,G,T} sti · P (Ti | u) · rtj · P (Tj | A)+
rti · P (Ti | A) · ∑v∈{C,G,T} stj · P (Tj | v) +

∑
u∈{C,G,T}

∑
v∈{C,G,T} sti · P (Ti | u) · stj · P (Tj | v)

C
G . . .
T

Fig. 16.4 The conditional probabilities are defined as P (Tk | z), representing the
conditional probability of the entire subtree under Tk given that the nucleotide at
node Tk is z. The conditional probabilities for the root nodes are defined in (a).
The node probabilities for an internal node such as is shown in (b) is computed by
considering the conditional probability table of its children and the branch lengths
interconnecting the parent to its left and right subtrees.

probability that the node is zero unless the nucleotide matches with the data
associated with that node. Thus, the P (Ti | x) is zero for nucleotides {A,G
and T} as the data associated with the node Ti is a C. Similar probabilities
are associated with the node Tj . These probabilities are utilized for the com-
putation of P (Tk | z). If we let z = A for example, then ’A’ must mutate to
a ’C’ over the branch length ti with a probability of sti and mutate to a ’G’
over the branch length tj with a probability of stj . This yields the probabil-
ity of P (Tk | A) = sti · stj as shown. Other probabilities in Fig. 16.4 (a) are
similarly derived.

We next turn our attention to Fig. 16.4 (b) where the left and right subtrees
are both internal nodes themselves. Thus, none of the subtree probabilities
are zero. In general for DNA sequences there will be 16 terms used to define
P (Tk | z) corresponding to the summation over all the possible nucleotide-
pairs that could exist at nodes Ti and Tj . The values for P (Tk | A) is shown
in Eq. 16.21.

P (Tk | A) =
rti · P (Ti | A) · rtj · P (Tj | A)+∑

u∈{C,G,T} sti · P (Ti | u) · rtj · P (Tj | A)+∑
v∈{C,G,T} rti · P (Ti | A) · stj · P (Tj | v)+∑
u∈{C,G,T}

∑
v∈{C,G,T} sti · P (Ti | u) · stj · P (Tj | v)

(16.21)
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One term out of the sixteen in Eq. 16.21 corresponds to the conservation
of nucleotides in both subtrees. That is, an A is associated with both nodes
Ti and Tj. There are six terms corresponding to the mutation in one branch
and conservation in the other. Finally, there are nine terms corresponding to
the mutation of the nucleotide at Tk over the two branches ti and tj . The
conservation and mutation probabilities over a branch of length ti are rti and
sti respectively.

16.4.1 A Three Sequence Example

T1
T2

T4

t1 t2

'C'

'C'

T3 'T'

T5

x P(T1 | x)
A 0
C 1
G 0
T 0

x P(T2 | x)
A 0
C 1
G 0
T 0

x P(T3 | x)
A 0
C 0
G 0
T 1

x P(T4 | x)
A st1st2

C rt1rt2

G st1st2

T st1st2

x P(T5 | x)
A st1st2rt4st3 + rt1rt2st4st3 + 2st1st2st4st3

C rt1rt2rt4st3 + 3st1st2st4st3

G rt1rt2st4st3 + st1st2rt4st3 + 2st1st2st4st3

T 2st1st2st4rt3 + rt1rt2st4rt3 + st1st2rt4rt3

t3

t4

Fig. 16.5 A sample tree showing the likelihood of the first column of the three
sequence alignment for the example shown

Consider the following alignment of three sequences:

COLUMN 1 2 3 4 5

SEQ1 C C C C G

SEQ2 C C T T G

SEQ3 T C G T G

The probabilities for the various nodes in column 1 of the above alignment
are shown in Fig. 16.5. Similar expressions will be derived for the remaining
four columns. The overall likelihood of observing the alignment under the
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given phylogenetic tree would then be computed as a product of the column
likelihoods assuming the observation in each column is independent of the
others. The likelihood value thus obtained will next be maximized to yield
the values of t1 . . . t4. The probability of the root node P (T5) is given as
follows:

P (T5) = qAP (T5 | A) + qCP (T5 | A) + qGP (T5 | A) + qTP (T5 | A) (16.22)

The above equation uses the a-pirori probabilities for the four nucleotides to
compute the final probability of the tree. Generally, these probabilities are
set equal to the relative frequency of the nucleotides in the aligned sequences.
It should be noted that the likelihood of the tree is a function of the branch
lengths. Therefore this function must be maximized by choosing the optimal
values of branch length. Numerical methods are utilized for this purpose.
Consideration of the logarithm of the likelihood function further reduces the
complexity by converting the overall alignment likelihood function written as
product of column likelihoods into a sum prior to the application of numerical
analysis methods. The value of branch lengths and the optimal likelihood of
the tree are saved. The optimal likelihood and corresponding branch lengths
yield the maximum likelihood amongst all possible topologies. The topol-
ogy yielding the maximum likelihood (and the associated branch lengths) is
chosen as the ML phylogenetic tree.
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4. Xu, B., Yang, Z.: Pamlx: a graphical user interface for paml. Mol. Biol.
Evol. 30(12), 2723–2724 (2013)

5. Yang, Z.: Maximum-likelihood estimation of phylogeny from dna sequences when
substitution rates differ over sites. Mol. Biol. Evol. 10(6), 1396–1401 (1993)

6. Kosiol, C., Bofkin, L., Whelan, S.: Phylogenetics by likelihood: evolutionary
modeling as a tool for understanding the genome. J. Biomed. Inform. 39(1),
51–61 (2006)
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16.5 Exercises

1. Consider the following alignment of three sequences:

COLUMN 1 2 3 4 5

SEQ1 T C A T C

SEQ2 C C T T G

SEQ3 C C C T G

(a) Compute the probabilities for the five columns in the above alignment.
(b) Compute the overall likelihood of observing the alignment under each

possible phylogenetic tree.
(c) Identify the yielding the Maximum Likelihood (ML) and compute the

branch lengths associated with the ML phylogenetic tree.

2. Download and compare two DNA sequences using matlab’s function for
computing synonymous and nonsynonymous substitution rates using max-
imal likelihood estimation.

s1 = getgenbank(’L11768’)

s2 = getgenbank(’L11770’)

[dn ds like] = dndsml(s1, s2)

(a) Compare the substitution rates obtained with this method to those
obtained with the character substitution methods discussed in the pre-
vious chapter.

(b) What is the value of the return parameter like.
(c) Comment on the significance of the return parameter like.



Chapter 17

Microarrays

A DNA Microarray or a Gene Chip comprises of a collection of microscopic
spots where each spot is a DNA sequence probe representing a single gene.
The DNA sequences representing at a specific location are arrayed on a solid
surface and attached to a chemically suitable matrix through covalent bonds.
DNA microarrays are often used for expression profiling and rely on the
strength of DNA-DNA hybridization and DNA-RNA hybridization to detect
and measure gene expression levels.

17.1 Introduction

Microarrays are extensively utilized to study the regulation of gene expression
associated with a wide variety of basic biological functions such as develop-
ment, hormonal signaling, and circadian rhythms. A rapidly growing area of
application is cancer research, in which microarrays have helped researchers
discover new tumor classes, assign patient samples to known tumor classes,
reveal cancer-related alterations in molecular pathways, predict clinical out-
comes, and identify new drug targets. Affymetrix expression arrays are widely
used in biomedical research. The chips consist of sets of DNA probes carefully
chosen to record expression of species specific genes.

Micro-arrays for Arabidopsis, Drosophila, Homo sapiens, Mus musculus,
Pseudomonas, Rattus norvegicus, Saccharomyces cerevisiae are available from
Affymetrix. Fig. 17.1 shows the phylogenetic tree schematic that specifies
the GeneChip expression arrays that are available today from Affymetrix.
However, the analysis of the microarray data continues to be a bottleneck
compared to the microarray data generation rates; and researchers are ex-
ploring the expression of genes in an organism where the microarray probe
set do not yet exist or need to be custom made. The situation is likely to
become more serious in the future as DNA microarray technology becomes
less expensive and projects increase both in number and in size. The funda-
mental question is whether one can assess the transcriptome of an organism
using the microarray build using the transcriptome of another closely related
organism.

c© Springer International Publishing Switzerland 2015 287
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Fig. 17.1 Affymetrix micro-arrays are available for the species shown above. The
numbers to the side of each species indicates the number of chips that are available
for that particular species.

Affymetrix Gene Chips allow changes in gene expression to be measured
for a very large number of genes. As illustrated in Fig. 17.2, each of the genes
on the microarray is represented as a set of 16 probe pairs where each spot
or cell is a 25-mer oligonucleotide and the intensity on each cell or spot is
proportional to the amount of hybridized labeled cDNA that gets bound to it.
The relative expression of a gene is represented with a signal value calculated
using the intensities of the 16 probe pairs. Each probe pair comprises of
a perfect match or PM spot, and a mismatch or MM spot. The PM spot
contains an oligo probe that is 25 nt sequence that perfectly matches a 25 nt
sequence from the gene, and the MM spot is a 25 nt oligo that has mismatch
at the central nucleotide.

17.2 Affymetrix Microarrays

17.2.1 Terminology

Each gene or portion of a gene is represented by 11 to 20 oligonucleotides of
25 base-pairs.
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Probe: an oligonucleotide of 25 base-pairs, i.e., a 25-mer.
Perfect match (PM): A 25-mer complementary to a reference sequence of
interest (e.g., part of a gene).
Mismatch (MM): same as PM but with a single homomeric base change for
the middle (13th) base (transversion purine¡-¿ pyrimidine, G ⇀↽ C,
A ⇀↽ T).
Probe-pair: a (PM,MM) pair.
Probe-pair set: a collection of probe-pairs (11 to 20) related to a common
gene or fraction of a gene.
AffyID: an identifier for a probe-pair set.

The purpose of the MM probe design is to measure non-specific binding
and background noise.

17.2.2 Example Data

A wide rangle of demo data is available from the site:

http://www.affymetrix.com/support/technical/sample data/

demo data.affx

Chip Definition files for Affymetrix chips are avaiable from the following
library site:

http://www.affymetrix.com/support/technical/

libraryfilesmain.affx

You can download and unzip this data and look for the fileXXX.CEL, where
XXX specifies some experimental conditions. This contains the actual cell
intensities for the array. Affymetrix uses a large number of arrays. Each
array comes with its unique definition. This file is named as YYY.CDF,
where CDF is the cell definition of a given array type named YYY. You need
both the cell intensites and the cell definitions to interpret the results of an
experiment.

The expression level for any gene is computed using an average difference
between average intensity bound to the perfectly matched oligonucleotides
to the average intensity of mismatched oligonucleotides. The results of this
difference are displayed as grid where each square represents a particular
gene and the relative level of expression as a color intensity or a gray scale
intensity.

17.3 Gene Data Matrix

matlab utilizes a specialized data structure, DataMatrix, to encapsulate
data and metadata (row and column names) from a microarray experiment.

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/support/technical/libraryfilesmain.affx
http://www.affymetrix.com/support/technical/libraryfilesmain.affx
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GENE
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ATTGGATCCGTACGGGTAATTGTGA
ATTGGATCCGTATGGGTAATTGTGA

PM

MM

Perfect Match

Mismatch

Fig. 17.2 Probes are selected from a set of predefined locations on the gene. Each
probe set comprises of sixteen probes where each probe has two spots one cor-
responding to a perfect match and another to a mismatch. The mismatch probe
contains a single mismatch located in the middle of the 25-base probe sequence,
serving as a control since it is as likely to bind to nonspecific sequences as the per-
fect match probe. Thus, cross hybridization events events and other false signals
are eliminated.

A DataMatrix object stores experimental data in a matrix, with rows typi-
cally corresponding to gene names or probe identifiers, and columns typically
corresponding to sample identifiers, or time values when the expression levels
are measured. A DataMatrix object is created by specifying the expression
data values, gene names or probe identifiers as the row names, and sample
identifiers as the column names.

A sample MAT file filteredyeastdata contains three matrices. The first,
yeastdata is a 614-by-7 matrix of gene expression data, the second is genes
names as a cell array of 614 GenBank accession numbers, and times, a 1-by-7
vector of time values for labeling the columns.

The matlab code snippet below creates variables to contain a subset of the
data, specifically the first five rows and first four columns of the yeastvalues
matrix, the corresponding genes from genes cell array, and the time instants
from times vector when the first four samples were captured. A DataMatrix
object is next created using these matrices.

load filteredyeastdata

expressionVals = yeastvalues (1:5,1:4);

geneNames = genes (1:5 ,:);

sampleTimes = times(1:4);

import bioma.data .*;
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dmo = DataMatrix (expressionVals , geneNames , sampleTimes );

>> dmo

dmo =

0 9.5 11.5 13.5

SS DNA -0.131 1.699 -0.026 0.365

YAL003W 0.305 0.146 -0.129 -0.444

YAL012W 0.157 0.175 0.467 -0.379

YAL026C 0.246 0.796 0.384 0.981

YAL034C -0.235 0.487 -0.184 -0.669

The metadata for a DataMatrix object can be manipulated using a get
and set method provided by the object. As an example, the get method can
display the current properties.

get(dmo)

Name: ’’

RowNames: {5x1 cell}

ColNames: {’ 0’ ’ 9.5’ ’11.5’ ’13.5’}

NRows: 5

NCols: 4

NDims: 2

ElementClass : ’double ’

A set similarly returns a modified object when a command such as the
following is issued to change the Name property of the DataMatrix object:

dmo = set(dmo,’Name’,’YeastSubset’);

It should be noted however that when a subset of a DataMatrix object
is extracted for example by issuing a command belowe, the extracted subset
DataMatrix is also a DataMatrix that includes the corresponding row and
column labels.

>> dmo2 = dmo(3:5 ,1:3)

dmo2 =

0 9.5 11.5

YAL012W 0.157 0.175 0.467

YAL026C 0.246 0.796 0.384

YAL034C -0.235 0.487 -0.184

17.3.1 Microarray Analysis

In a microarray analysis experiment, the rows correspond to genes or probes,
while the columns correspond to the values obtained for specific samples
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where the samples are obtained from different tissues for example, of at dif-
ferent times to investigate the time dependence of gene expression after the
administration of a specific drug for example. The DataMatrix data structure
allows for a useful representation of a microarray experiment by enabling the
storage of the gene or probe names as well as the sample labels. Further-
more, extraction of subsets matrices from the DataMatrix is accompanied by
a transparent extraction of the gene and sample labels.

matlab provides several functions for analysis of microarray data. Many
of these functions directly work with the DataMatrix object. In the examples
below, we construct one data-matrix object containing the entire expression
data, and two smaller data-matrix objects containing a subset of data.

The data set contains gene expressions at seven different time points. The
first data-matrix object, dmoEarly is used for capturing the gene expression
at the first three time points, and the second object dmoLater captures the
gene expression data at the next three time points. The following code snippet
constructs these objects.

Loading the predefined MAT file filteredyeastdata results in populating
the workspace with three matrices: yeastvalues – a 614× 7 matrix of real
numbers representing the gene expression of 614 genes at 7 time points; genes
– a 614 × 1 cell array where each cell array has the name of the 614 genes;
and times – a 1× 7 array with time points where the data was recorded.

load filteredyeastdata

>> dmoFull = DataMatrix (yeastvalues , genes , times );

>> dmoEarly = DataMatrix (yeastvalues (:,1:3), genes , times (1:3));

>> dmoLater = DataMatrix (yeastvalues (:,4:6), genes , times (4:6));

Microarray Box Plot: The purpose of this function is to display the
variances of expression data around its mean in the various samples. As
illustrated in Fig. 17.3, the maximum variance is observed towards the later
timed samples. The following code snippet is used to generate a box-plot.

>> maboxplot (dmoFull);

Microarray Clustergram: Clustergram is probably the most widely uti-
lized data analysis tool in microarray analysis. A clustergram essentially com-
putes a hierarchical clustering of microarray data both along the rows and
along the columns. Thereby two independent trees emerge – both being rep-
resented along the gene axis and along the sample axis.

In order to construct the gene- or probe-level clustergram, the pair-wise
distance between each row in the microarray data is used to construct a
clustering tree. Similarly, the pairwise distances between each column of the
microarray data is used to build a sample-based clustering tree. A color coded
representation is utilized to display the tree as illustrated in Fig. 17.4.

The following code snippet builds a smaller clustergram where the gene
and sample labels are visible. A larger clustergram comprising of the entire
gene expression values may also be built as illustrated.
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Fig. 17.3 A box plot of representing the variation in gene expression values for
the seven samples taken at different times

(a) (b)

Fig. 17.4 Microarray clustergram representing hierarchical clustering along the
gene (row) axis and the sample (column) axis. Smaller clustergram in (a) shows
similarity of expression patterns in ten genes and seven samples. Gene names and
distance measures are annotated. A clustergram for the entire microarray is illus-
trated in (b) which performs an analysis for the all 614 genes.
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dmoSmall = DataMatrix (yeastvalues (1:10 ,:) , genes (1:10) , times );

clustergram (dmoSmall );

clustergram (dmoFull );

Principal Component Analysis: Principal component analysis may
also be performed of the entire microarray experimental data. A represen-
tation of the sample points across the two principal components can help
visualize any co-expression patterns. A principal component analysis of the
entire gene-expression values is performed and illustrated in Fig. 17.5. Genes
selected in one principal component axis are correspondingly labeled in the
other axis so that similarities in clustering across multiple principal com-
ponents becomes evident. Similarly, the gene names of the selected genes is
displayed. The following code snippet is used to display principal component
plot.

>> mapcaplot(dmaFull);

Comparing Expression Profiles: Distributions of expression patterns
may be compared using the t-statistic using matlab function mattest. As
illustrated in the Fig. 17.6 the expression profiles of the two data matrix
objects captured in dmoEarly and dmoLater us compared by the following
code snippet. The resulting plot and histogram determine if the expression
profiles in the first three time samples in dmoEarly is different from the
expression distribution in dmoLater as determined by the t-statistic.

>> mattest(dmoEarly, dmoLater, ’showplot’, true. ’showhist’, true);

17.4 Expression Data Sets

The Human Genome U133 (HG-U133) Set, consisting of two gene-chip arrays,
contains approximately 45,000 probe sets representing more than 39,000 tran-
scripts derived from approximately 33,000 well-substantiated human genes.
The higher number of transcripts compared to the number of genes is repre-
sentative of alternative splicing.

Each probe set is comprised of 16 probes where each probe is a 25-mer
sequence from a human gene. Each 25-mer probe sequence is sampled from
the sequences selected from GenBank, dbEST, and RefSeq (Baxevanis 2003).
The sequence clusters were created from the UniGene database and refined by
analysis and comparison with a number of other publicly available databases
including the Washington University EST trace repository and the University
of California, Santa Cruz Golden Path human genome database. A 25-mer
probe pair is utilized at each location and the difference between the perfect
match and the mismatch is used to determine the signal intensity.

Affymetrix software provides the aggregate intensity obtained from all the
16 probe pairs in a probe set. Analysis utilizes this aggregate intensity value
for each of the probe sets indexed via the left column in Fig. 17.7. There are
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Fig. 17.5 The principal component analysis of a microarray expression matrix can
demonstrate the clustering patterns in gene expression whereby the set of genes that
belong to a cluster along a principal component may be identified
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Fig. 17.6 Computation of t-statistic to determine if the expression distribution for
each row in the first three time samples is significantly different from the expression
distribution for the next three time samples. A t-statistic plot is shown in (a) and
a histogram of p-values and t-values is shown in (b).

ProbeSet H67Signal H94Signal H76Signal Pan1Singal Pan2Signal Ggor1Signal Ggor2 Signal M27Signal M40Signal

211326_x_at 66.9 32.9 79.7 17.9 24.9 15.8 20.5 44.4 100.4

211327_x_at 91.1 60.5 87.8 89 78.6 66.3 82.5 130 95

211328_x_at 111.5 124.6 120.9 123.7 117.8 160.7 117.3 164.3 199.8

211329_x_at 29.6 5.9 6.6 62.9 46.2 63.3 58.7 21.4 68.6

211330_s_at 25.1 25.3 47.3 32.7 20.7 42.1 35.8 33.1 32.8

211331_x_at 27.1 15.5 16.9 22.6 94.8 60.5 73.9 42.8 91.3

211332_x_at 102.9 71.4 123.7 133.2 96 121.7 101.2 269.7 218.7

211333_s_at 97.2 53.7 124.8 69.9 54.7 64.7 66.8 111.3 122.4

211334_at 17.3 15 7.5 25.7 12 35 29.3 23.4 28.7

211336_x_at 56.2 39.6 84.6 118.3 28.4 177.4 102.8 35.4 37.6

211337_s_at 259.7 298.9 397.7 694.8 432.1 123.6 152 557.8 707.1

211338_at 1.1 1 1.6 3.7 3.6 5.1 0.9 6.6 2.1

211339_s_at 94.7 50.5 49.6 76.3 32 57.8 76.2 108 123.1

211340_s_at 296.9 180.9 242.7 176.6 112.9 524.4 545.6 268.4 241.3

211341_at 2.6 0.8 2.8 4.1 3.1 3.9 4.3 3.4 2.4

211342_x_at 218.6 194.6 176.3 217.1 317 320.4 319.3 501.8 399.6

211343_s_at 1.1 19.1 39.7 27.1 47 12.9 54.2 18.2 48.3

211345_x_at 3789.3 3643.8 3396.7 3473.2 3929.8 3904.9 3950.4 3980 3943.9

211347_at 27 51.9 85.8 71.7 39.4 76.8 53.7 20.4 55.2

211348_s_at 95.4 88.1 111.5 3.4 42.1 47.5 79.8 7.1 7.9

211349_at 51.8 31.4 65.6 28.5 46.1 50.5 39.1 62.4 55.2

211350_s_at 79 62 10.9 58.6 40.9 14.5 44.6 108.3 100.4

211351_at 1.1 1.7 1.1 2.1 0.5 1.3 2.1 1.5 5.3

211352_s_at 6.2 33.9 9.2 3.9 5.2 17.4 23.2 14.1 38.1

211353_at 10.4 6.3 4 9.8 3.1 7.6 2.3 11.2 3.5

211354_s_at 72 56 81.9 21.6 33.5 73.6 45.3 56.9 55.1

211355_x_at 67.1 42.7 65.6 89.9 48.4 87.2 77.8 86.4 69.3

211356_x_at 111.6 92 86.6 90.1 60.7 84.4 92.6 115.5 67

211357_s_at 6.7 2.4 8.5 9.6 5.2 5.7 3.9 4.8 5.9

211358_s_at 121.3 135.5 123.8 190.7 148.2 201.2 141 149.2 171.5

211359_s_at 70.3 65 85.5 67 68.6 96.9 67.4 112 126.7

211360_s_at 22.4 22.2 25.1 40.8 57.7 14.6 70.7 80.4 69.7

211361_s_at 9.5 8.7 8.8 17.1 8.2 21.2 11.7 17.7 33.1

211362_s_at 79.7 38.5 68.8 109.9 59.3 82.6 89.5 99.4 138.3

211363_s_at 22.9 4.7 2.3 21.6 21.5 2.5 3.6 7.5 47.6

Fig. 17.7 A snapshot of hybridization results using Human Genome chip HG
U133A. Samples for Humans: H67, H94 and H76; Chimpanzee: Pan1, Pan2; Go-
rilla: Ggor1, Ggor2; and Macaques: M27, and M40. Each of the two chips U133A
and U133B contains roughly 20,000 probe sets annotated in the first column. Each
probe set comprise of 11 probe-pairs per gene, where each probe is a 25-mer oligonu-
cleotide. The intensities shown are an aggregate of all 11-probes in the set. The
actual DNA sequences for each probe in a probe set are available from Affymetrix.
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a total of 44,728 records corresponding to the total number of probe-sets and
the nine (9) columns correspond to the samples shown in Fig.17.7.

17.5 MATLAB Support for Affymetrix Microarrays

17.5.1 Terminology

Each gene or portion of a gene is represented by 11 to 20 oligonucleotides of
25 base-pairs.
Probe: an oligonucleotide of 25 base-pairs, i.e., a 25-mer.
Perfect match (PM): A 25-mer complementary to a reference sequence of
interest (e.g., part of a gene).
Mismatch (MM): same as PM but with a single homomeric base change for
the middle (13th) base (transversion purine¡-¿ pyrimidine, G ⇀↽ C,
A ⇀↽ T).
Probe-pair: a (PM,MM) pair.
Probe-pair set: a collection of probe-pairs (11 to 20) related to a common
gene or fraction of a gene.
AffyID: an identifier for a probe-pair set.

The purpose of the MM probe design is to measure non-specific binding
and background noise.

17.5.2 Example Data

A wide range of demo data is available from the site:
http://www.affymetrix.com/support/technical/sample data/

demo data.affx

You can download and unzip this data and look for the file XXX.CEL,
where XXX specifies some experimental conditions. This contains the actual
cell intensities for the array. Affymetrix uses a large number of arrays. Each
array comes with its unique definition. This file is named as YYY.CDF,
where CDF is the cell definition of a given array type named YYY. Both the
cell intensities and the cell definitions are needed to interpret the results of
an experiment. matlab provides a function for viewing the CEL file image.
The function
maimage(celStruct)
results in displaying the contents of the expression values displayed as an
image as illustrated in Fig. 17.8:

In order to analyze the data in microarrays, the hybridization intensities
need to be tagged with the the identify of the probe located at each grid
point. Therefore, the CEL file and the CDF file should be rationalized. As il-
lustrated in the steps below, after reading the CEL and CDF file, the function
probelibraryinfo accomplishes this task.

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx
http://www.affymetrix.com/support/technical/sample_data/demo_data.affx


298 17 Microarrays

Intensity

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4

Fig. 17.8 Default display of intensity using the maimage function. The func-
tion may be used to display any of eight values stored values in the cell-
structure specifying the corresponding column name. As for example, the command
maimage(celStruct, ’Pixels’) displays the pixel values as an image.

Read Cell Data Files

The first step in the process is to read the contents of a CEL file into a
MATLAB structure. The CEL file is created by extracting the intensity of
hybridization for each probe on the chip. The image data is next analyzed
using an image analysis software after preprocessing and normalization using
intensity of control probes. The intensity information for a given probe is an
average of 16 or more individual sub-probes, or DNA strands located at each
coordinate location. This average value is stored into CEL file.

celStruct = affyread(’Mouse430A.CEL’);

Members of the CEL file are shown below:

>> celStruct

celStruct =

Name : ’Mouse430A .CEL ’

DataPath : ’Z:\singh \Data \Microarrays \M.Musculus ’

LibPath : ’Z:\singh \Data \Microarrays \M.Musculus ’

FullPathName : ’Z:\singh \Data \Microarrays \M.Musculus \Mouse430A .CEL ’

ChipType : ’MOE430A ’

Date : ’10-Mar -2003 09:48:02 ’

FileVersion : 3

Algorithm : ’Percentile ’

AlgParams : ’Percentile :75; CellMargin :2; OutlierHigh :1.500; OutlierLow :1.004’

NumAlgParams : 4

CellMargin : 2

Rows : 712

Cols : 712

NumMasked : 0

NumOutliers : 873

NumProbes : 506944

UpperLeftX : 229

UpperLeftY : 233

UpperRightX : 4502

UpperRightY : 278
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LowerLeftX : 192

LowerLeftY : 4504

LowerRightX : 4465

LowerRightY : 4548

ProbeColumnNames : {8x1 cell }

Probes: [506944 x8 single]

Note that the last element of this structure provides the probe data. There
are 506,944 measured probe intensities in this array. As is evident from the
cell array structure, this cell array belongs to a chip type of MOE430A and
there are eight values captured for each of the 506, 944 probes. As for the
specific values captured for each probe, the column names are stored in the
member ProbeColumnNames as shown below. The hybridization strength is
measured by the Intensity value captured in the third column.

>> celStruct .ProbeColumnNames

ans =

’PosX ’

’PosY ’

’Intensity ’

’StdDev ’

’Pixels ’

’Outlier ’

’Masked ’

’ProbeType ’

>> celStruct .Probes (1,:)

ans =

Columns 1 through 8

0 0 183.300 24.1000 16.0000 0 0 1.0000

This demonstrates that the first probe came from location (0,0) on the cell
array. Its intensity was 183.3±24.1 averaged over 16 intensities corresponding
to strengths of hybridization with 16 DNA strands affixed at coordinate (0, 0)
on the raw image.

Read Chip Definition File

The next step is to the contents of a corresponding Chip Definition, or a CDF
file, into a MATLAB structure.

cdfStruct = affyread(’MOE430A.CDF’);

The affyread function also allows for the second argument to point to the
folder where the definition file is stored if it is not stored in the current
directory. Members of the CDF structure are shown below:
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>> cdfStruct

cdfStruct =

Name: ’MOE430A .CDF ’

ChipType : ’MOE430A ’

LibPath : ’z:\ singh\Data\Microarrays \M.Musculus ’

FullPathName: [1 x67 char]

Date: ’29-Sep -2005 08:56:12 ’

Rows: 712

Cols: 712

NumProbeSets: 22690

NumQCProbeSets: 10

ProbeSetColumnNames: {6x1 cell}

ProbeSets : [22700 x1 struct ]

The definition file provides the information for the a chip with the same
number of rows and columns and the chip type which matches with the cor-
responding information in the CEL structure. Most of the information in the
file is about the probe sets. It should be noted that for this particular mi-
croarray,Mouse 430A, the number of probe sets (generally, there are multiple
probes for each gene) is 22, 690. That is, the entire set of 506, 944 intensity
measurements in the CEL file are hybridization strengths for 22, 690 real probe
pairs and 10 quality control probe pairs, or a total of 22, 700 probe pairs. As
an illustration, the contents of the 100th probe-set is shown below:

>> cdfStruct .ProbeSets (100)

ans =

Name: ’1460646 _at ’

ProbeSetType : ’Expression ’

CompDataExists : 0

NumPairs: 11

NumQCProbes : 0

QCType: 0

GroupNames : { ’1460646 _at ’}

ProbePairs : [11 x6 int32]

This indicates that there are 11 probe-pairs with distinct pairs of locations
on the CEL array where the probes corresponding to the probe with the name
of 1460646_at are gridded. The exact coordinates of these probes are found
in the member ProbePairs. This is a matrix with one row for each probe
pair and six columns. The information in the columns corresponds to the
ProbeSetColumnNames of the CDF structure. There are a total of 11 probe
pairs corresponding to the probe-set 1460646_at – locations for each of the
match and mismatch probe for each is shown below:

>> cdfStruct .ProbeSetColumnNames

ans =

’GroupNumber ’
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’Direction ’

’PMPosX ’

’PMPosY ’

’MMPosX ’

’MMPosY ’

>> cdfStruct .ProbeSets (100). ProbePairs (:,:)

ans =

1 2 393 221 393 222

1 2 567 217 567 218

1 2 644 565 644 566

1 2 443 219 443 220

1 2 504 323 504 324

1 2 326 1 326 2

1 2 104 487 104 488

1 2 542 449 542 450

1 2 570 201 570 202

1 2 579 161 579 162

1 2 20 579 20 580

The third and fourth columns give the X and Y coordinates of the PM or
Perfect Match probe, and the fifth and sixth column provide the coordinates
of the MM or Mismatch probe on the chip for each of the probe-pairs (a probe
pair is the pair of match and mismatch probes). These probe coordinates may
be used to look up the values for a probe from the celStruct – the CEL
array structure we read with the intensity values.

The code segment shown below looks up the index of the match and
mismatch probes corresponding to the first probe-pair in the CDF file for
probe-set 100.

>> PMX = cdfStruct .ProbeSets (100). ProbePairs (1 ,3);

>> PMY = cdfStruct .ProbeSets (100). ProbePairs (1 ,4);

>> matchProbe = find (( celStruct .Probes(:,1) == PMX) & ...

(celStruct .Probes (:,2) == PMY))

>> MMX = cdfStruct .ProbeSets (100). ProbePairs (1 ,5);

>> MMY = cdfStruct .ProbeSets (100). ProbePairs (1 ,6);

>> mismatchProbe = find (( celStruct .Probes (:,1) == MMX) & ...

(celStruct .Probes (:,2) == MMY))

matchProbe =

157746

mismatchProbe =

158458

Next, all the information about these two probes, the match probe located
at index 157746, and the mismatch probe located at index 158458 is looked
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up from the CEL structure follows. Note that the coodinate locations match
with the information provided in the CDF file.

>> celStruct .Probes(matchProbe ,:)

ans =

393.0000 221.0000 364.3000 36.1000 16.0000 0

0 1.0000

>> celStruct .Probes(mismatchProbe ,:)

ans =

393.0000 222.0000 163.3000 21.3000 16.0000 0

0 1.0000

This demostrates that for the match probe intentsity is 364.3±36.1 and the
mismatch probe intensity is 163.3± 21.3. Correspondingly, as far as the first
probe in this probe set indicates strength of hybridization with the match
probe is over 2× more than the mismatch probe strongly suggesting the
presence of the corresponding probe set, and possibly the gene, in the sample.

Correlate Probe Information from Two Files

The process of reconcilation information contained in these two structures, as
illustrated in the example above, must be accomplished for the entire array.
The command probelibraryinfo accomplishes this task. It creates a table of
information linking the probe data from CELStruct, a structure created from
reading an Affymetrix CEL file, with probe set information from CDFStruct,
a structure created from reading an Affymetrix CDF file.

plinfo = probelibraryinfo(celStruct, cdfStruct);
This command returns a three values for each of the probe locations. The

first value is the index of the probe set to which the probe belongs. The
second value contains the probe pair number since there are more than one
instance of each probe pair scattered all throughout the microarray, and the
third value indicates whether the probe is a perfect match (1) or mismatch
(-1) probe.

For the example discussed above, the probelibraryinfo function will gener-
ate a 506, 944× 3 vector where each row corresponds to a specific probe on
the CEL file. The first column of this matrix lists the identifier corresponding
to the probe-pair for refering to the CDF file where details of that probe-pair,
and the gene it represents, are stored. Thus, for example the 10, 000th reading
of the CEL array corresponds to the probe pair

>> cdfStruct .ProbeSets (plinfo (10000 ,1)). Name

ans =

1450595 _at
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We can also verify that the match and mismatch probes form our earlier
example refer to the same probe:

>> cdfStruct .ProbeSets (plinfo(matchProbe )). Name

ans =

1460646 _at

>> cdfStruct .ProbeSets (plinfo(mismatchProbe )). Name

ans =

1460646 _at

You can search through the structure for a particular probe set. Alterna-
tively, you can use the function probesetlookup to find out information the
gene name for a probe set. The member GININdex refers to the index of the
gene from the GIN file discussed next.

>> info = probesetlookup(cdfStruct, ’1460646_at’)

info =

Identifier: ’gb:NM_009974.1 ’

ProbeSetName: ’1460646_at’

CDFIndex: 100

GINIndex: 22591

Description: [1x282 char]

Source: ’’

SourceURL: ’’

>> info.Description

ans =

gb:NM_009974.1 /DB_XREF=gi:6753539 /GEN=Csnk2a2 /FEA=FLmRNA /CNT=104 /TID=Mm.28881.1

/TIER=FL+Stack /STK=60 /UG=Mm.28881 /LL=13000 /DEF=Mus musculus casein kinase II,

alpha 2, polypeptide (Csnk2a2), mRNA. /PROD=casein kinase II, alpha 2, polypeptide

/FL=gb:NM_009974.1 gb:AF012251.1

The function probesetvalues does the reverse of this lookup and creates a
matrix of information from the CEL and CDF structures containing all the in-
formation about a given probe set. This matrix has 18 columns corresponding
to ProbeSetNumber, ProbePairNumber, UseProbePair, Background, PM-
PosX, PMPosY, PMIntensity, PMStdDev, PMPixels, PMOutlier, PMMasked,
MMPosX, MMPosY, MMIntensity, MMStdDev, MMPixels, MMOutlier, and
MMMasked. Try this command:

psvals = probesetvalues(celStruct,cdfStruct,’1460646_at’)

Gene Names and Probe Set IDs

The Affymetrix probe set IDs are not particularly descriptive. The mapping
between the IDs and the gene names is stored in the GIN file. This is a text
file so you can open it in an editor and browse through the file, or you can
use affyread to read the information into a structure.
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>> ginStruct = affyread (’MOE430A.GIN’)

ginStruct =

Name: ’MOE430A’

Version: 2

ProbeSetName: {22690x1 cell}

ID: {22690x1 cell}

Description: {22690x1 cell}

SourceNames: ’’

SourceURL: ’’

SourceID: 0

Though it does not have to be the same, the GINIndex is also 100 in this
case. Whatever is the GINIndex, we can look up the information on the gene
from the structure. For the example above, the information for the probeset
for 1460646_at indicates that GINIndex to be 22591. This can be used to
lookup the information on the identified gene:

>> ginStruct.ProbeSetName{22591}

ans =

’1460646_at’

>>ginStruct.Description{22591}

ans =

gb:NM_009974.1 /DB_XREF=gi:6753539 /GEN=Csnk2a2 /FEA=FLmRNA /CNT=104 /TID=Mm.28881.1

/TIER=FL+Stack /STK=60 /UG=Mm.28881 /LL=13000 /DEF=Mus musculus casein kinase II,

alpha 2, polypeptide (Csnk2a2), mRNA. /PROD=casein kinase II, alpha 2, polypeptide

/FL=gb:NM_009974.1 gb:AF012251.1

17.5.3 Utility Functions

• PSStruct = probesetlookup(AffyStruct, ID): returns a structure
containing information for a probe set specified by ID. Example:
probesetlookup(cdfStruct,’1460646_at’)

• PSValues = probesetvalues(CELStruct, CDFStruct, PS) creates
a table of intensity values for PS, a probe set, from the probe-level data in
CELStruct, a structure created by the affyread function from an Affymetrix
CEL file. Example:
probesetvalues (celStruct, cdfStruct,’1460646_at’)

• probesetplot(CELStruct, CDFStruct, PS): plots the PM (perfect
match) and MM (mismatch) intensity values for a specified probe set. Ex-
ample:

{probesetplot(celStruct, cdfStruct, ’1460646_at’,’showstats’, true)

The result of this command is shown in Fig. 17.9 where the intensity plot
depicts the observed intensity for each of the 11 probe pairs associated
with the probe set 1460646_at.
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Fig. 17.9 Illustrates the hybridization strengths for each of the instances of the
probe pairs gridded on the microarray

• probesetlink(AffyStruct, PS) opens a Web Browser window displaying
information on the NetAffx Web site about a probe set specified by PS,
a probe set index or the probe set ID/name, and AffyStruct, a structure
created from an Affymetrix CHP file or Affymetrix CDF library file.
The following example assumes that the MOE430A.CHP file is stored on
the MATLAB search path or in the current directory. It also assumes
that the associated CDF library file, MOE430A.CDF, is stored at
D:\Affymetrix\LibFiles\Mouse.
Read the contents of a CHP file into a MATLAB structure.
chpStruct = affyread(’MOE430A.CHP’, ’D:\Affymetrix\LibFiles\Mouse’);

Display information from the NetAffx Web site for the 1460646_at

probe set.
probesetlink(chpStruct,’1460646_at’)

17.6 Gene Expression Omnibus (GEO)

Gene Expression Omnibus (GEO), accessible at the NCBI at http://www.

ncbi.nlm.nih.gov/geo/ is an international public repository of high
throughput microarray data containing, at the time of writing, over a million
samples from over a hundred organisms. GEO organizes gene chip data into

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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Table 17.1 MATLAB Affymetrix Parameters and their Explanations

1 ProbeSetNumber Number identifying the probe set to which the probe pair belongs

2 ProbePairNumber Index of the probe pair within the probe set

3 UseProbePair This field is for backward compatibility only and is not currently used

4 Background Background-adjusted probe intensity values of the probe pair

5 PMPosX x-coordinate of the perfect match probe

6 PMPosY y-coordinate of the perfect match probe

7 PMIntensity Intensity value of the perfect match probe

8 PMStdDev Standard deviation of intensity value of the perfect match probe

9 PMPixels Number of pixels in the cell containing the perfect match probe

10 PMOutlier True/false flag indicating if the perfect match probe was marked as an outlier

11 PMMasked True/false flag indicating if the perfect match probe was masked

12 MMPosX x-coordinate of the mismatch probe

13 MMPosY y-coordinate of the mismatch probe

14 MMIntensity Intensity value of the mismatch probe

15 MMStdDev Standard deviation of intensity value of the mismatch probe

16 MMPixels Number of pixels in the cell containing the mismatch probe

17 MMOutlier True/false flag indicating if the mismatch probe was marked as an outlier

18 MMMasked True/false flag indicating if the mismatch probe was masked

19 GroupNumber Number identifying the group to which the probe pair belongs

20 Direction Number identifying the direction of the probe pair

Platforms, Samples, and Series. A Platform contains information about
microarray chip, such as an Affymetrix chip, that was used for a specific func-
tional genomic study. The GEO data may contain many Samples belonging
to a particular Platform. A Sample is the fundamental data point for an
experiment. It’s where individual hydridization values are recorded. From an
experimental standpoint, each Sample in turn will be typically be part of
many samples collected for an experiment. Collectively, all related samples
belong to a Series of samples collected for a functional genomic study. A
Sample may be a part of multiple studies. Thus, As illustrated in the schema
in Fig. 17.10, there is a One-Many or 1:N relationship between with Platform

and Samples, and a Many-Many or M:N relationship between Samples and
Series.

Fig. 17.10 Organization of microarray data in the Gene Expression Om-
nibus (GEO). A Platform contains information about the microarray, Sample con-
tains experimental data, and Series about the collective group of samples produced
by a specific functional genomic experiment.
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17.6.1 Platform

A Platform record contains summary description of the array or sequencer.
The record also stores a data table defining the array template is stored for an
array-based Platform. Each Platform record is assigned a unique and stable
GEO accession number. All platform records have an accession number be-
ginning with the three letter code of GPL and have the format of (GPLxxx),
where xxx represents a number. A Platform could reference many Samples.
Each sample could have been been submitted by different submitter.

matlab provides functions for downloading a sample, series and plat-
form data using the function getgeodata with a corresponding accession
number. As illustrated, the type of data is implicit in the accession num-
ber and therefore the same function is used to access the different type of
data-sets.

>> geoPlatform = getgeodata (’GPL74 ’)

geoPlatform =

Scope: ’PLATFORM ’

Accession : ’GPL74 ’

Header: [1x1 struct]

ColumnDescriptions : {16x1 cell}

ColumnNames : {16x1 cell}

Data: {2059x16 cell}

17.6.2 Samples

A Sample contains information about the actual experiment including the
conditions under which an individual Sample was handled, the different types
of processing and manipulations that were applied to it, and the set of mea-
surements of the abundance of each biological product observed during the
experiment. Each Sample record is assigned a unique and stable GEO acces-
sion number. All sample records have an accession number beginning with
the three letter code of GSM and have the format of (GSMxxx), where xxx
represents a number. While a Sample can be included in multiples Series, it
must reference only one Platform.

Again matlab function getgeodata can retrieve Sample data from the GEO
database.

>> geoSample = getgeodata (’GSM1768 ’)

geoSample =

Scope: ’SAMPLE ’

Accession : ’GSM1768 ’

Header: [1x1 struct]

ColumnDescriptions : {3x1 cell}

ColumnNames : {3x1 cell}

Data: {1656x3 cell}
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17.6.3 Series

A Series record links together a group of related Samples. A Series then is
the thread that runs through an entire group of samples providing a basis
for evaluating and understanding the significance of a specific biomarker. It
serves as a focal point of the whole functional genomic study. Series records
may also contain tables describing extracted data, summary conclusions, or
analyses. All Series records have an accession number beginning with the
three letter code of GSE and have the format of (GSExxx), where xxx rep-
resents a number.

As illustrated below, matlab function getgeodata retrieve Series data from
the GEO database.

>> geoSeries = getgeodata (’GSE1441 ’)

geoSeries =

Header: [1x1 struct]

Data: [9128x35 bioma.data.DataMatrix ]

GEO Data-Sets

GEO also contains some curated series focused on specific studies of biological
interest. The curated data is encapsulated as a DataSet object. A DataSet

contains collection of biologically and statistically comparable GEO Samples.
Information related to the experimental factors is also included within GEO
DataSet. GEO web interface allows users to search for DataSets studies
relevant to their interests.

A DataSet is used by GEO’s suite of data display and analysis tools.
GEO DataSets records have an accession number of the form (GDSxxx).
Samples within a DataSet refer to the same Platform. The advantage of using
a DataSet object is that the value measurements for each Sample within a
DataSet are assumed to be calculated in an equivalent manner. That is, they
are normalized using considerations such as background processing to make
the values consistent across the DataSet.

GEO DataSets form the basis of GEO’s advanced data display and anal-
ysis tools. Some of the advanced analyses applicable on DataSets includes
gene expression profile charts and clustering. Illustrated below is an exam-
ple of retrieving GEO DataSets using matlab function getgeodata. In this
example, the data-set is saved to a text file.

>> geoDataSet = getgeodata (’GDS2602 ’,’tofile ’,’gds2602 .txt ’)

geoDataSet =

Scope: ’DATASET ’

Accession : ’GDS2602 ’

Header : [1x1 struct ]

ColumnDescriptions: {30 x1 cell}
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ColumnNames : {30 x1 cell}

IDRef: {16896 x1 cell}

Identifier : {16896 x1 cell}

Data: [16896 x30 double ]

Profiles

Researchers are often interested in longitudinal studies where the expression
of an individual gene across a samples is sought. Since a DataSet contains
information on a series of related samples, a the Profile object provides ex-
pression measurements for an individual gene across all samples in a DataSet.
GEO web interface allows searching for Profiles. Some of the tools available
for profiles include the ability to find profile neighbors and homologs based
on profiles.
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17.7 Exercises

1. Collect and write information about the U133. With mRNA probes coming
only from the humans, do you think the expression levels obtained for our
close cousins will be accurate? Justify.

2. The site http://www.affymetrix.com/products_services/arrays/pro-
vides additional information on Affymetrix microarrays. Conduct research
on this and other sites and complete the following table with regards to
the current level of integration of probes in microarrays:

Table 17.2 Current level of Array Integration

Array Format

Feature Size

Total Number of Distinct Probes

Oligonucleotide Probe Length

Gene-level Probe Sets with Ensembl
Support

Gene-level Probe Sets with Puta-
tive Full-length Transcript Support
(GenBank and RefSeq)

As an example, there were 28,000 gene level probes integrated into a mi-
croarray.

3. A cladogram depicts individual genes along its rows and some property
of these genes along its column. In this particular case, the property de-
picted is the expression level of a gene at a certain time after an event. An
example of such an event would be the time when a therapeutic, such as
a medication, is administered. The rows in a cladogram are arranged to
cluster genes whose time dependent expression profiles are in agreement.
Now, answer the following questions:

(a) What is the significance of the first column (labeled 0-hour) being col-
ored black. That is, what does it tell you about the relative level of
expressions of the genes being studied?

(b) With respect the gene expression a few hours after the administration
of the therapeutic, are the genes colored in red expressed more or less
than the genes colored in green. What is the approximate ratio of their
expression level.

(c) Looking at the smaller cladogram where the genes have been labeled,
name the genes, if any, that whose expression profiles are similar.

4. You are provided Affymetrix gene-chip data on on A. Thalinia and H.
Sapiens. Using the functions provided in Matlab, complete the following
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table. For this exercise you need to only use the information U133A gene
chip, and ignore U133B chip data. (Note that for completing the last row
of the table, you will need to conduct some research to determine the
number of genes in each of the two organisms)

A. Thalinia H. Sapiens
Size of Arrays (rows × columns)

Number of Functional Probes

Number of Control Probes

Number of Functional Probe Sets
Number of Control Probe Sets

Number of genes probed by the chip

Total number of genes (estimated)

5. The following genes have been implicated in breast cancer:
BRCA1, BRCA2, P53, CHEK2, PALB2, FGFR2, TNRC9, MAP3K1, LSP1,

TOX3, AKAP9, ATM, STK11, CDH1, PALB2, BR1P1

Using the information of the genes annotation file for U133A, determine
which of the genes listed above are present on the U133A gene chip.

6. (Research Question) You are given a CEL definition file for U133B gene
chip. Try and locate the CDF and GIN files for this chip. Using these
files, determine the number of genes probed using U133B. Are there any
genes that are probed by both the U133A and U133B gene chips. What
significance, if any, is associated with U133B chip.



Appendix A

Matlab

matlab or “Matrix Laboratory” is an interpreted environment that allows
mathematical calculations and graphics. matlab program are written in the
M programming language. The availability of a number of toolboxes, such as
the Bioinformatics toolbox, makes matlab a really powerful environment.
We will begin by looking at the core datatypes, inbuilt functions and graphing
capabilities in this chapter. Bioinformatics specific features are presented in
subsequent chapters to accompany the presentation of underlying theoretical
foundations.

When you start matlab you are greeted with a window that looks similar
to Fig. A.1. You can then type commands at the prompt (>>) within the
command window. To get started, type one of these commands: helpwin,
helpdesk, or demo. The demo command offers you the ability to watch movies
that can will help you come up to speed quickly.

To see how it can be used on the simplest level, define variable x to be 3,
variable y to be 4, and variable z to be the sum of x and y. The result will
look something like this:

>> x = 10

x =

10

>> y = 15

y =

15

>> z = x + y

z =

25
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Fig. A.1 MATLAB startup screens comprising of command window, the history
window and file browser

You might notice that matlab prints out the value of each variable au-
tomatically when you type each line. You can prevent it from printing this
value if you place a semicolon after the line:

>> z = x + y; Does not print the value of z

matlab supports a number of mathematical functions in addition to the
normally used symbols for arithmetic such as + (add), - (subtract), * (mul-
tiply), and / (divide). A few examples of common inbuilt functions include,
sin, cos, tan, asin, acos, atan, log, log10, exp, power, sqrt, etc. More informa-
tion on these and other matlab functions is available by typing the function
name in the search window in helpdesk.

Example 1.1

Let’s perform the following set of computations using matlab. Simply
type the commands as shown below. The set of commands shown determine
if the three numbers satisfy the triangular inequality, i.e. z2 ≤ x2 + y2. The
first three statements assign the values of x, y and z.

>> x = 3;

>> y = 9;

>> z = 10;
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>> a = x * x;

>> b = y ^ 2;

>> c = power (z, 2);

>> result = (c <= (a + b))

result =

0

>>

The above example shows three different ways in which a number can be
squared. The variable result is a boolean variable which takes on the value
of true (1) or false (0).

End of Example
M-Files: As mentioned above, the programming matlab programs are

written in the M-programming language. The examples shown above demon-
strate the use of matlab in its calculator mode. One can store the M-program
on an M-files and run files instead. The M-files are ASCII text files that con-
tain sequences of matlab commands and stored on your disk as a file with
a .m file extension.

There are many types of M-files. These are the script files, which auto-
mate long sequences of commands; or function files that extend matlab by
developing new commands. You can create M-files using the inbuilt matlab
editor which starts when you type edit at the command prompt. As M-files
are really text files, they also be created using any text editor.

The matlab Path is the list of directories searched when you type a
function name or a script name on the command prompt. If you type path
at the command prompt, matlab lists the current set of directories it will
search. Let us say that you are developing all your M-files in your home
folder and would like matlab to find these when you type in the function
or script name in the command prompt. You can add this directory to the
matlab path with the help of pathtool which will let you browse and add
your directory to the path as well as allow you to change the order in which
the directories are searched. If you know the path to the directory, you can
quickly add or remove it using the command addpath and rmpath respec-
tively. A path added by the addpath command is always at the top of the
search list.

A.1 MATLAB Data Types and Operators

The default numeric data-type in matlab is a double precision floating point
number. You can create single precision data types, as well as long, integers,
and unsigned short, and byte data. The latter data types are particularly
useful for storing grayscale image and text data.
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A.1.1 Boolean Operators

Boolean operators return a value of TRUE (1) or FALSE (0) based on whether
the condition tested has a logic value of truth or falsity. matlab provides the
following operators:

Table A.1 Boolean Operators

Operator Meaning

== equal to

~ not

~= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

& and

| or

isfinite() returns true if finite

any() returns true if any element is nonzero

all() returns true if all elements are nonzero

isinf() returns true if infinite

isnan() returns true if NaN (not a number)

Run the following code snippet to understand the usage of boolean
operators.

>> a = 6;

>> a > 3

>> a ~= 8

>> b = [ -4 8 Inf 500 NaN 0]

>> b < 3

>> isfinite (b)

>> all(b)

>> isnan(b)

A.1.2 Element by Element Operations

These operations are carried out on each of the elements of an array or a ma-
trix. Addition and subtraction are by definition already element by element
operations since when two arrays are added or subtracted, the operation
is executed with the elements that are in the same position in the arrays.
Element-by-element operations must be done with arrays of the same size.
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Element-by-ement multiplication, division and exponentiation operations
of two vectors or matrices are entered in matlab by typing a period in front of
the arithmetic operator. If two vectors a and b are defined as a = [a1a2 . . . an]
and b = [b1b2 . . . bn], the results of their element-by-element multiplication
and division are respectively:

a. ∗ b = [a1b1 a2b2 . . . anbn], and

a./b = [a1/b1 a2/b2 . . . an/bn].
The power of element-by-element operations is realized by calculating the

value of a function at many values of its argument. This is done by first
defining a vector independent values and then defining function values for
each of the elements through element by element operations. Furthermore,
element-by-element operations are defined for each of the inbuilt functions.
As an example, the computation result of the sin(a), with a defined as the
vector above is:

sin(a) = [sin(a1) sin(a2) . . . sin(an)]

A.2 Matrices

Created using square brackets. A comma or space indicates a separate entry
in the same row and a semicolon indicates the end of a row. Further, you can
use colons to define numeric sequences which are linearly space monotonically
increasing or decreasing numbers. Numerical sequences are defined using the
syntax:

sequence = min:step:max, or
sequence = min:max

The latter definition assuming a step of 1. Parentheses are used to reference
individual elements. Complete indexing within a matrix comprises of (row,
column). Let’s look at the following example.

>> x=[1 5; 10 15]

x =

1 5

10 15

>> y = [ 4,5,6; 7,8,9]

y =

4 5 6

7 8 9

>> z= [ .4 cos(pi/3) 6/7^2]
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z =

0.400 0.500 0.1224

>> z(2,3) =.9

z =

0.400 0.500 0.1224

0 0 0.9000

Let’s next look at a code sample that uses sequencing.

>> t= 0:2:10

t =

0 2 4 6 8 10

>>v =20:25

v =

20 21 22 23 24 25

matlab can create multidimensional arrays or arrays with more than
two subscripts. Let’s look at the following code sample where we are 3D
physical data as a sequence of matrices; or samples of a time-dependent 2D
or 3D data.

>> a = [2 4 6; 7 8 9; 1 2 3]

>> a(:,:,2)= [10 11 12; 0 1 2; 4 5 6]

When you add elements and expand the size of the multidimensional array,
the requisite number of interleaved elements are are set to zero. For example,
consider the following command:

>> a(:,:,4) = [ 1 1 1; 2 2 2; 3 3 3]

The command above will set the values for the fourth plane, where each
plane is a 3 by 3 matrix. The values in the first three planes will be set
to zero.

A.2.1 String Arrays

String arrays are created using single quotes. Internally, a string is stored as
row vectors and takes 2 bytes per character. Strings are concatenated using
[,] operator. The operator [;] is used to vertically concatenate strings, which
must be of equal length. matlab function strvcat is can vertically concatenate
strings arrays of non-equal lengths. Consider the following examples:

str1=’Hi there. ’

str2=’How are you?’
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str3= ’Bye ’

c1= [str1 ,’ ’,str2] % join two strings

c2 = [str1;str2] % vertical concatenation -same length strings

c3=strvcat (str1 ,str2 ,str3) % vertically concatenate (matrix )

A.2.2 Cell Arrays

A cell array is a general purpose matrix where each of its elements can contain
data of a different type, size and dimension. Storage for cell arrays is allocated
dynamically. Cell arrays are created using the cell command or by using curly
braces:

>> cell_name {row ,col} = data;

In the following example, the function cellplot creates a graphical depiction
of a cell array.

Example 1.2

>>

A= {rand (2,2,2), ’ February ’, 10.28}

A =

[2x2x2 double] ’February ’, [10.2800]

B{1 ,1}=1:8;

B{1,2}= strvcat(’Monday ’,’Tuesday ’,’Wednesday ’,’Thursday ’);

B{2,2}=A;

B{1,1}

A{1,1}(2,:,1)

cellplot(B)

End of Example

A.2.3 Structures

Structures are multidimensional arrays where the elements of a structure are
accessed by named fields. Fields can contain any type of data and as in the
case of cell arrays, storage needed for a structure is allocated dynamically.
Syntax for setting fields of a structure is shown below. record#̃ defaults to 1.

>> struct_name (record #). field_name =data

The code segment below demonstrates the multiple ways of manipulating
structures.
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students .name = ’Sally ’;

students .grades= [97 93 ];

students (2). name = ’John ’;

students (2). grades= [94 96 ];

or

students = struct(’name ’,{’Sally ’,’John ’},’grades ’,{[97 93], [94 96]});

students (1). name

students .grades

A.3 Programming Constructs

matlab programs are written using the standard constructs for conditional
statements and looping. Logic Control Constructs Iterative Loops for while

A.3.1 Logic Control

Conditional statements are written using the if/then or if/then/else or if/
then/elseif/else construct based on the application need. Here is an example
illustrating the use of conditional statements:

x=34;

y=26;

if x>y

z=1

elseif x==y

z=0

else

z=-1

end

It is often easier to write a case statement when a given variable takes on
a multitude of values as illustrated in the following example:

month =’april ’;

switch month

case{ ’january ’ ’march ’ ’may’ ’july ’ ’august ’ ’october ’ ’december ’}

days=31

case { ’april ’ ’june ’ ’september ’ ’november ’ }

days =30

case {’february ’ }

days=28

otherwise

days=-1

end
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A.3.2 Loops

matlab provides both the for loops that are are executed a specific number
of time and while loops, the execution of which depends upon the truth or
falsity of a sentinel condition. Again, the semantics of loops in matlab is
quite similar to other programming languages.

An example of the for loop which repeats the statements enclosed within
the loop construct a number of times based on index value is shown below.

a=100

for i=1:a

for j=1:a

x(i,j)=i^2+3*j +1;

end

end

Shown below is an example of a while loop that repeats the statements with
the loop construct until logical condition returns false. Although single loop
constructs are shown in these examples, these loop constructs can be nested.

done=false;

max =1300;

i=1;

while(~ done)

y(i)= i^3*2+1

if y(i) >max

done=true;

end

i=i+1

end

A.3.3 Vectorization Looping

matlab provides element by element operators defined above in section A.1.2.
These operators provide the ability to perform implicit looping over the el-
ements of an array or a vector. Moreover, if loops are written using such
a looping construct, the resulting code will be simpler and will run faster.
Let’s take an example where the two vectors m and v contain the mass and
volume data. The first example shown computes the corresponding density
value using the traditional looping operators as shown below.

Example 1.3

m=rand (5 ,1000);

v=rand (5 ,1000);
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[rows ,cols] =size(m);

for i= 1:rows

for j=1:cols

density(i,j)=m(i,j) / v(i,j);

end

end

Vectorization offers performance Increase since matlab is designed to work
with matrices. The above computation can be performed using code segment
utilizing implicit vectorization.

m=rand (5 ,1000);

v=rand (5 ,1000);

density=m ./ v;

End of Example

A.4 File Operations

matlab provides load and save commands for storing the entire workspace
or values of specific variables in your workspace. The data is stores in a in a
platform-independent binary format, and the default filename is matlab.mat.
All files are saved with the extension of .mat and stored in the current direc-
tory. Unless specified otherwise in the load or save command, the read/write
binary data files by default. Here are the examples of two mirrored load and
save commands. In the last save command shown, the data will be saved in
ascii format.

save

save filename

save filename x y z

save filename -ascii

The following load commands mirror the load commands above.

load

load filename

load filename x y z

load filename

Try the following code snippet to get familiarized with these commands:

>>clear

a= rand (3,2);

b=ones (3,2);

c = a.^2+b;
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save mydata

clear

load mydata

save -ascii mydata_ascii

clear

load mydata_ascii

A.4.1 Importing Data Into Matlab

The matlab command importdata command uses file extension if possible to
determine file type, and uses file type determines data type. If no recognizable
file extension, it assumes delimited data. Further, uiimport command is a GUI
interface to import data. The command textscan imports to cell arrays.

To get help with use for non-standard data formats and large files, try the
following commands:

help iofun

help fileformats

uiimport

mydata=importdata (’Sample_Data_File .txt ’)

Here is an example of a code segment illustrating the use of textscan. The
function fopen opens a file and returns a file handle. And as you might have
guessed, the statements beginning with s % sign are comments.

Example 1.4

% textscan_example .m - example of using textscan command

% to import data

fid=fopen(’Sample_Data_File .txt ’);

numCols =10;

numHeaders =1;

format1=repmat(’%s ’,1, numCols);

format2=repmat(’%d ’,1,numCols -1);

format2 =[’%s ’ format2 ];

myHeader=textscan(fid ,format1 ,1);

myData=textscan (fid ,format2 );

fclose(fid);

disp(’here are the first 5 elements from column 1)’;

myData {1 ,1}(1:5)

disp(’here are the 10 elements from column 9’);

myData {1 ,9}(1:10)

disp(’here are the first 8 columns in the header row ’);

myHeader {1 ,1:8}

End of Example
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A.5 Functions

matlab has a large repository of core built-in functions. You should al-
ways perform a search with appropriate set of keywords and look for in-built
functions provided. These include, the sin, abs, exp, ..., etc. Additionally,
several of the functions available in matlab have been written in the M-
programming language. Some examples of these functions include, mean, std,
erf, ...

Similarly, a user a create M-file functions, and as long as the proper syntax
is followed and the path to the function directory is included in the path
variable, the function will be similarly usable by any subsequent function or
script you develop. Consider an example of a function:

function y = mymean(x)

%MYMEAN Average or mean value.

% For vectors , MYMEAN(X) is the mean value of X. For

% matrices , MYMEAN(X)is a row vector with mean value of

% each column. For N-D arrays , MYMEAN(X) is the means

% elements along the first non -singleton dimension of X.

[m,n]=size(x);

if m==1

m=n;

end

y=sum(x)/m;

Here are some requirements for developing a function. It has to have the
required keyword of function. The name of the function must be the same as
the file name where the function is saved. So, the above function will have
to be saved in a file named mymean.m. The results generated by the function
must be stored in variable(s) with the same name as the output arguments
specified in the function statement, which is y in the example shown above.

Optionally, input and output arguments may be specified which define the
internal variable names. Further, online help- comment lines following the
function definition line may be specified. matlab’s lookfor command uses
the first comment line in its search. You can execute the function above

>> a=rand (5);

>> b=mymean(a)

Note that multiple inputs and outputs for a function may be specified as
in the example below:

function [avg ,stdev ,r] = ourstats(x,tol)

%OURSTATS finds the average , std. dev. and rank of a matrix

[m,n]=size(x)
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if m==1;

m=n;

avg=sum(x)/mean;

stdev=sqrt(sum(x.^2)/m - avg .^2);

s=svd(x);

r=sum(s > tol);

Here is an example of a function that takes in three lengths for its inputs
and outputs a string that says if a triangle can or cannot be formed from the
lengths provided.

Example 1.5

function str_tri_test = istriangle(a,b,c)

% istriangle determine if a,b,c form a triangle

v =[ a b c];

vsort=sort(v);

if vsort (1) + vsort (2) > vsort (3)

s1=[’The sides ’,num2str (v),’ form a triangle .’];

% start extra credit

if (a==b) & (b==c) % all sides equal

s2=’ The triangle is an equialateral triangle .’;

elseif (a==b) |(b==c) |(a==c)

s2= ’ The triangle is an isosceles triangle .’;

else

s2= ’ The triangle is a scalene triangle .’;

end

%end extra credit

str_tri_test=strcat(s1,s2);

else

str_tri_test= [’The sides ’,num2str (v),’ do not form a triangle .’];

end

try:

>> istriangle(3,4,5)

End of Example

A.6 2-D Plotting

matlab provides graphing capabilities, for plotting both 2D and 3D plots.
The basic plot command and some of its options is shown below:
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Table A.2 Plotting Command and Options

Command Functionality

plot make 2-D plots

grid on/off turn grid on and off

hold on/off holds the current plots

title adds a title to the plot

xlabel adds an x axis label

ylabel adds a y axis label

legend add a legend to the plot

text add text to a specified position on the plot

gtext interactively place text on the plot

ginput pick off coordinates from a plot

The following code segment illustrates the use of graphing commands in
matlab.

Example 1.6

echo on

x = 0:0.1:2* pi;

y=sin(x);

plot(x,y)

grid on

hold on

plot(x,exp(-x),’r:*’);

axis ([ 0 2*pi 0 1])

title(’2-D Plots ’);

xlabel(’Time ’);

ylabel(’Sin(t)’);

text(pi/3,sin(pi/3),’<-- sin(\pi/3)’)

legend(’Sine Wave ’,’Decaying Exponential ’);

echo off

End of Example

A.6.1 Graphics Objects

matlab provides a variety of commands for working with its graphics objects.
The following example illustrates the use of graphics objects.

x=0:.1:10;

y=sin(x);

plot(x,y);

axes_props =get(gca);

set(gca ,’TickLength ’ ,[.04 .04]);

a=get(gca ,’YLim ’);



A.7 Matlab Bioinformatics Toolbox 327

Table A.3 Working With Graphics Objects

Command Functionality

gca return the handle of the current axes

gcf return the handle of the current figure

gco return the handle of the current object

get query the values of an object’s properties

set set the values of an object’s properties

findall find all graphics objects

findobj find the handles of objects having specified property values

set (gca ,’YLim ’, [-1 2]);

b=findobj(gcf ,’Color ’,’blue ’);

get(b(1))

A.7 Matlab Bioinformatics Toolbox

The Matlab Bioinformatics Toolbox makes use of the wide range of Matlab’s
extensive collection of statistics and graphing functions. Matlab Bioinfor-
matics Toolbox uses software libraries that enable it to make use of various
bioinformatics file types, databases, programs, and algorithms. Using these li-
braries, one can efficiently make use of biological data without being required
to know how it is stored or how each transformative or comparative process
works; instead, one can simply know what the data represents or what the
process does with the given data.

For example, using either BioPerl or the Matlab Bioinformatics Toolbox
one can

• Read in a variety of genomic, proteomic, and gene expression data files
• Access biological databases over the Internet
• Perform pairwise and multiple sequence alignments
• Analyze sequences for composition and occurrence of patterns
• Construct and analyze phylogenetic trees
• Perform Gene Ontology analysis
• Process and visualize microarray data analysis
• Process and analyze mass spectrometry data
• Develop algorithms using statistical learning functionality

In this manner, the Bioinformatics Toolbox extends MATLAB to pro-
vide an integrated software environment for genome and proteome analysis.
One can use the basic bioinformatic functions provided with this toolbox to
create more complex algorithms and applications in drug discovery, genetic
engineering, and biological research. Examples of the matlab toolbox are
included with the relevant sections of the text.
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A.8 Exercises

1. Show the value of the variable seqs upon executing the following matlab
commands:

>> seq1 = ’ATTA’ ;
>> seq2 = ’ATTTA’ ;
>> seq3 = ’ATTTAA’ ;
>> s eq s = char ( seq1 , seq2 , seq3 ) ;

2. Consider the following matlab cell array initialization for the variable
cellseq. What command(s) would you issue to extract and assign the
value of the second cell (i.e. string ’TTTGGG’) to a character string variable
named seq2?

>> cellseq = {’TTGGTT’, ’TTTGGG’, ’TGGTTGGT’, ’GGGTTT’};

3. What is the output of the following commands:

>> s . id = 1 ;
>> s . name = ’ John ’ ;
>> t . id = 2 ;
>> t . name = ’ J i l l ’ ;
>> sa (1) = s ;
>> sa (2) = t ;
>> sa (2)

4. What output is generated upon the execution of following matlab code:

>> seq = ’ATTATT’ ;
>> fwd = seq
>> rev = seqrcomplement ( seq )

5. What is the output of excuting the following matlab code:

>> c e l l s e q = { ’TTGGTT’ , ’TTTGGG’ , ’TGGTTGGT’ , ’GGGTTT’ } ;
>> comp = regexp i ( c e l l s e q , ’TTT’ ) ;
>> ind = f i nd (˜ c e l l f u n ( ’ isempty ’ , comp ) ) ;
>> c e l l s e q ( ind )

6. Consider the following DNA sequence:

ACCCA TAGGG AGACA TAGTA GATCC ATTAG

(a) Perform a 6 frame translation of a given DNA strand.
(b) Compute the length of Open Reading Frames (ORF) in each of 6

frames. Based on your analysis, which strand and which frame within
that strand has the highest likelihood for coding.
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BioPerl

BioPerl is a perl library build using the Perl programming languages. BioPerl
is an open source library which is quite mature and free. As an extension of
the Perl programming language, BioPerl makes good use of Perl’s powerful
string processing functions such as regular expressions. BioPerl is specifically
designed to process strings. As considerable portion of bioinformatics data
comprises of strings, knowledge of a language that supports rapid middleware
development for processing data for information exchange between native ap-
plications and matlab is a useful tool to have in your repertoire. Middleware
or “enabling technology” is a category of technology that facilitates interac-
tion between various software technologies across one or more systems. For
example, a database management system (DBMS) can be viewed as middle-
ware for a web application as the DBMS resides between the file system and
the web application and allows for a black-box approach to retrieving data.

Therefore, a working knowledge of Perl in general, and BioPerl in par-
ticular, will be very useful in quickly processing and reformatting biological
data so that it is easily exchangeable between the various platforms, websites,
application, and matlab.

B.1 BioPerl

Since BioPerl is a perl library, it requires Perl interpreter be installed before
the middleware functions provided by BioPerl are invoked. If using a Linux,
Unix, or Mac OS X system; Perl very well may have come pre-installed. On a
Microsoft Windows system, Perl it will probably be necessary to install Perl
if it hasn’t been done already – it can be obtained freely via the Internet
(www.perl.org). If using Windows, the easiest way to install Perl is to use
ActivePerl from ActiveState. This distribution is free and uses the standard
Windows installer.

If using a variant of Linux, Unix, or Mac OS X it may be unnecessary to
install Perl. Type “perl -v” at the command line to determine whether Perl
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is installed and, if it is, what version. If the system does not have Perl or
the Perl installation is old (BioPerl currently requires Perl 5.6 or greater),
the easies way might be to obtain the source (www.cpan.org), uncompress it,
and use the command-line tool make to install Perl. An ActivePerl installer
also exists for Mac OS X.

The next step is to install BioPerl itself. On Windows, the simplest way
to install BioPerl is to use the Perl Package Manager GUI, which can be
run from the start menu. Go to Edit¿¿Preferences and after clicking on the
Repositories tab, add the following repositories depending on which version
of Perl is on your system. If using Perl 5.8, add:

• BioPerl-Regular Releases—http://bioperl.org/DIST
• Kobes—http://theoryx5.uwinnipeg.ca/ppms
• Bribes—http://www.Bribes.org/perl/ppm

If using Perl 5.10, add:

• BioPerl-Regular Releases—http://bioperl.org/DIST
• Kobes—http://cpan.uwinnipeg.ca/PPMPackages/10xx
• Bribes—http://www.Bribes.org/perl/ppm

If problems occur, please see www.bioperl.org/wiki/Installing Bioperl on
Windows for further instructions.

On other platforms, the easiest way to install Perl might be to obtain the
appropriate compressed source distribution from http://bioperl.org/DIST/.
Once downloaded, using the command line navigate the terminal to the
download directory then issue the commands:

>gunzip bioperl -1.5.2 _102.tar.gz

>tar xvf bioperl -1.5.2 _102.tar

>cd bioperl -1.5.2 _102

>perl Build.PL

>./Build test

This will run a testing suite to determine how adequately your system can
handle BioPerl. If a few tests fail, you can probably still use BioPerl normally.
The last step may require administrator privileges, simply run:

>./Bui ld i n s t a l l

B.2 Using Perl

Perl is a non-compiled scripting language that is similar to C and bash
scripting. As of Perl 5, Perl supports object-oriented programming. Other ad-
vantages of Perl include many built-in string subroutines including natively
handling of regular expressions.
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Syntactically, Perl code looks like C code. As in C, line endings in Perl are de-
noted by the semi-colon (;) and all white space is ignored. Opening and closing
braces ( and ) are required for use around control structures such as if, while,
and for statements. Functions, called subroutines in Perl, from another class or
library are invoked in the form ClassName-¿SubroutineName(). Perl also sup-
portsmany built-in subroutines that can be called simply by typing the subrou-
tine’s name. In Perl, parameters passed as an array are not type-checked and
any number can be passed to any subroutine. As a result, parameter checking
must be implemented by each subroutine and it is common practice for sub-
routines to accept parameters as associative arrays. Everything following the
pound sign (#) in a line is considered to be a comment.

There are 5 data types in Perl. In most cases, one can determine the type
of a variable by its name. Perl possesses a naming convention that requires
variables of specific types to be named in a specific manner. The first data
type is a scalar, which may store a number, a string, or a reference. Perl
does not distinguish between integers and other types of numbers. A scalar
is indicated by a variable name that begins with the dollar sign ($). The next
data type is the array, which is single dimensional in Perl, with each element
storing a scalar. Variable names for arrays begin with the ampersand (@).
Associative arrays, or hashes, provide for a matching of keys in the form of
strings to scalar values. A hashes variable name begins with the percent sign
(%). When referring to element stored by an array or hash, a dollar sign
is used.

# The pound symbol denotes comments.

# Assign the number 24 to the variable $scalar.

$scalar = 24;

# Assign the string "test" to the same variable $scalar.

$scalar = "test ";

# Set the first three elements of array @array.

@array = (1, "two", $scalar );

# This can also be accomplished by

$array[0] = 1;

$array[1] = "two";

$array[2] = $scalar;

# Assign three key/value pairs to the hash %hash.

%hash = {"key1 "=>1, 2 => "value 2", "key3" = $scalar };

# This can also be accomplished by

$hash{" key1 "} = 1;

$hash{2} = "value 2";

$hash{" key3 "} = $scalar ;
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Subroutines, as discussed, are another data type which requires no specific
naming convention. Lastly, file handles are implemented in Perl and allow
reading from or writing to files and are denoted by a variable name consisting
of all capital letters.

As mentioned, regular expressions are a powerful native capability of Perl.
Using the = operator, Perl can process a regular expression and either simply
find a given pattern or find the pattern and replace it with another string. The
string to the left of the = operator is the target string, which is searched. The
pattern for which is search is on the right-hand side of the operator within
forward slashes (e.g. /’test’/). For example, code looks to match the string
“opqrs” within the alphabet and prints an appropriate message if found.

$alphabet = "abcdefghijklmnopqrstuvwxyz ";

if ($alphabet =~ m/’opqrs ’/) {

print "The alphabet contains ’opqrs ’\n";

}

# Omitting the m before the pattern produces the same result

if ($alphabet =~ /’opqrs ’/) {

print "The alphabet still contains ’opqrs ’\n";

}

The above code will output:

The alphabet contains ’opqrs ’

The alphabet still contains ’opqrs ’

The following script populates an array with strings and for each element
replaces the term “policeman”, if one exists, with the term “police officer”.
All the elements of the array are then printed.

@array = (’The policeman wore a blue uniform ’,

’What did one policeman say to the other policeman ?’,

’The term is not in this string ’,

foreach $string (@array) {

$string =~ s/’police man ’/’police officer ’/g;

print $string . "\n";

}

This code will output:

The police officer wore a blue uniform

What did one police officer say to the other police officer ?
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B.3 Entrez Sample in BioPerl

BioPerl can be used to easily handle automated queries of the Entrez database
online. Using the class Bio::DB::Query::GenBank one can create a query
using the same parameters present in the web form. For example, the query
string “Human[ORGN] AND 200:1000[SLEN] and Smith[Author]” will return
both protein and nucleotide sequences that are from humans, are between
200 and 1000 compounds in length, and were authored by someone named
Smith. Once such a query object has created, passing it to the an instance of
the Bio::DB::GenBank class will actually send the query via the Internet to
the Entrez servers at NCBI, which will then return the results that BioPerl
interprets as an array of sequence objects of the class Bio::Seq.

The following code, queries GenBank for human protein sequences that are
between 200 and 1000 compounds in length and were authored by someone
named Smith. The ID, species, and length of each sequence is then printed
to the console.

Listing 2.1

use Bio::DB:: Genbank;

use Bio::DB::Query::GenBank;

#define the query

$query = "Human[ORGN] AND 200:1000[ SLEN] AND Smith[AUTHOR ]";

# Create wrapper object for Entrez.

#This object will search the protein database.

$query_obj = Bio::DB::Query:: GenBank

->new(-db => protein , -query => $query );

# Create a handle to the GenBank database

$gb = Bio::DB:: GenBank;

# Get a stream of results from GenBank

$stream_obj = $gb ->get_Stream_by_query ($query_obj );

# Step through the results - Print sequence data

while ($seq_obj = $stream_obj ->next_seq ) {

print $seq_obj -> display_id .

$seq_obj ->species -> common_name .

$seq_obj ->length , "\n";

}

end-listing-2.1
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B.4 Exercises

1. Consider the following DNA sequence:

ACCCA TAGGG AGACA TAGTA GATCC ATTAG

(a) Write a bioperl program to compute the reverse complement of the
sequence.

(b) Write a bioperl program to perform a 6 frame translation of a given
DNA strand.

(c) Compute the length of Open Reading Frames (ORF) in each of 6
frames. Based on your analysis, which strand and which frame within
that strand has the highest likelihood for coding.
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