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Foreword
When asked to write the foreword for this book in the early phases of planning, we
wondered how much of the planned scope and depth would be possible to achieve.
León and Markel had selected a broad range of possible topics, which became “must
use” tools and technologies in the early drug-development process. In addition, they
included topics about emerging technologies that have not made it to a broader
audience and user community today, but have the potential to become essential in
the next few years. They had compiled a list of world-renowned experts from the
industrial sector as well as from research organizations and universities, asked them
to provide a chapter, and then ably shepherded the process to completion.

León and Markel are both well-known experts in the eld of life science infor-
matics and both have collected in-depth knowledge and expert insight while af liated
with academic institutions and commercial entities. They have an outstanding knowl-
edge about tools and technologies used and applied in the life science informatics area.
In industry, they both played a major role in the architectural direction and the scienti c
design and content of major software solutions. In addition, they are involved in
teaching bioinformatics and in the establishment and further development of standards.

After having the result in hand, we must say that it is a remarkable collection of
in-depth chapters covering almost all major in silico techniques used today in the early
drug development process. Each chapter is a valuable information source for the reader,
whether an expert in the eld, a user of the technology, or simply a researcher interested
in understanding some of the technologies lying outside of his or her direct expertise.

Over the last 20 years, and especially in the last years of the 20th century, we
saw some hype and “dot-com” behavior in the eld of computational biology. This
has certainly “cleared” by now, and much of the hype and promises have been taken
down to more solid ground. We saw a remarkable expansion in the use of compu-
tational methods, and completely new applications areas have emerged. We can
foresee that this will be the case for future decades. Undoubtedly, computational
methods and technologies are core prerequisites in today’s drug-development pro-
cess, and ef cient and innovative use of these technologies will be a key success
factor for the development of drugs in the future. The application areas include the
basic information technology challenges (e.g., data acquisition, storage, and
retrieval), more advanced topics (e.g., analysis pipelines), and emerging technologies
(e.g., text mining and pathway analysis). 

This book will prepare the reader perfectly for the different “-omics” data oods,
which we will face in the coming years. We hope you will have the same pleasure
with the book as we have had.

Dr. Reinhard Schneider
Dr. Hartmut Voss

Heidelberg, Germany
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Preface

In 2004, Merck voluntarily withdrew the arthritis medication Vioxx® (Rofecoxib)
from the worldwide market because patients taking it were observed to have an
increased risk for heart attack and stroke. In the months that followed, additional
COX-2 selective drugs were agged as having serious side effects. These concerns
about prescription drugs have made the pharmaceutical industry more focused on
designing highly selective medications. In the current drug discovery process, select-
ing the appropriate drug target can be as important as optimizing the chemical entity
that binds to that target. 

Today, identifying and validating a potential drug target involves not only numer-
ous well-designed experiments, but also the incorporation of several in silico
approaches. These in silico analyses are often predictive, offering cheaper and faster
alternatives to in vitro or in vivo procedures. This book addresses the in silico tech-
nologies used in target identi cation and validation by describing how the available
computational tools and databases are used within each step.

The book is divided into four main sections. The rst section addresses target
identi cation and covers the areas of pattern matching, functional annotation, poly-
morphisms, and mining gene expression data. The second section covers target
validation, which includes text mining, pathways, molecular interactions, subcellular
localization, and protein structures. The third section focuses on recent trends such
as comparative genomics, pharmacogenomics, and systems biology. The nal section
discusses computational infrastructure resources needed to support target identi ca-
tion and validation, including database management, bioIT hardware and architec-
ture, data pipelining, and ontologies.

We hope that many people from various scienti c and computational back-
grounds will nd this book useful.

 © 2006 by Taylor and Francis Group, LLC



Editors

Darryl León, Ph.D., is currently director of bioinformatics marketing at SciTegic
in San Diego, California, where he provides the vision and software requirements
for bioinformatics-related products. He is also on the Bioinformatics Advisory Com-
mittee for the University of California San Diego Extension. Previously, he was
director of life sciences at LION Bioscience, and was a bioinformatics scientist at
NetGenics, DoubleTwist, and Genset. He was a faculty member at California Poly-
technic State University, San Luis Obispo, and has authored several papers. He is a
co-author, with Scott Markel, of Sequence Analysis in a Nutshell: A Guide to
Common Tools and Databases. He has also taught at the University of California
Santa Cruz Extension and at other colleges in northern California. Dr. Leon received
his Ph.D. in biochemistry from the University of California–San Diego, and he did
his postdoctoral research at the University of California–Santa Cruz.

Scott Markel, Ph.D., is the principal bioinformatics architect at SciTegic, a division
of Accelrys. In this role he is responsible for the design and implementation of
SciTegic’s bioinformatics products. He is a member of the Board of Directors of the
International Society for Computational Biology. He was most recently a research
fellow and principal software architect at LION Bioscience, where he was responsible
for providing architectural direction in the development of software for the life
sciences, including the use and development of standards. He was a member of the
Board of Directors of the Object Management Group and co-chair of the Life Sciences
Research Domain Task Force. Prior to working at LION, Scott worked at NetGenics,
Johnson & Johnson Pharmaceutical Research & Development, and Sarnoff Corpora-
tion. He has a Ph.D. in mathematics from the University of Wisconsin–Madison. He
is a co-author, with Darryl León, of Sequence Analysis in a Nutshell: A Guide to
Common Tools and Databases.

 © 2006 by Taylor and Francis Group, LLC



Acknowledgments

We would like to recognize several people for their contributions to this book. First,
our biggest thanks go to all of the contributors who took time out of their busy
schedules to write such insightful chapters. Their combined experience at biotech-
nology and pharmaceutical companies, research institutes, and universities has pro-
duced an outstanding collection of chapters.

A special thank you goes to Reinhard Schneider and Hartmut Voss for writing
the foreword.

We also thank our Acquisitions Editor, Anita Lekhwani, for her patience and
commitment to this project, and Patricia Roberson, our Project Coordinator, who
kept us organized and on track. 

We want to express our gratitude to Matt Hahn, David Rogers, J. R. Tozer, and
Michael Peeler for the opportunity to work and learn at a leading-edge scienti c
software company.

From Darryl: First, I would like to thank my co-editor, Scott Markel, for joining
me in this stimulating project. His contributions and dedication made this book a
reality. Next, I want to thank my family for their continued encouragement. And,
most importantly, I would like to thank my loving wife, Alison, who always supports
my various writing and teaching endeavors. 

From Scott: Thanks to Darryl León for inviting me to join this adventure. It’s
always a pleasure to work with him, either at work (NetGenics, LION, and now
SciTegic) or on books. My children (Klaudia, Nathan, and Victor) keep me grounded,
reminding me that there are books to be read as well as written. Finally, to Danette,
the love of my life, thanks and appreciation for her never-ending support and
encouragement (Proverbs 9:10; Philippians 4:13).

 © 2006 by Taylor and Francis Group, LLC



Contributors

Alex L. Bangs
Entelos, Inc.
Foster City, California

Michael R. Barnes
GlaxoSmithKline
Harlow, Essex, United Kingdom

Alvis Brazma
European Bioinformatics Institute
Cambridge, United Kingdom

Jaume M. Canaves
University of California
San Diego, California

Aedin Culhane
Dana-Farber Cancer Institute
Boston, Massachusetts

David de Juan
Centro Nacional de Biotecnología
Madrid, Spain

Michael Dickson
RLX Technologies
The Woodlands, Texas

Bruce Gomes
AstraZeneca Pharmaceuticals
Waltham, Massachusetts

William Hayes
Biogen-Idec
Cambridge, Massachusetts

Tad Hurst
ChemNavigator, Inc.
San Diego, California

Arek Kasprzyk
European Bioinformatics Institute
Hinxton, Cambridge, United Kingdom

Bahram Ghaffarzadeh Kermani
Illumina, Inc.
San Diego, California

Darryl León
SciTegic, Inc.
San Diego, California

Scott Markel
SciTegic, Inc.
San Diego, California

Robin A. McEntire
GlaxoSmithKline
King of Prussia, Pennsylvania

Seth Michelson
Entelos, Inc.
Foster City, California

Philip Miller
University of California
San Diego, California

Eric Minch
Merck Research Laboratories
West Point, Pennsylvania

Rajesh Nair
Columbia University
New York, New York

Seán I. O’Donoghue
Mandala IT
Heidelberg, Germany

 © 2006 by Taylor and Francis Group, LLC



Bruce Pascal
BioSift, Inc.
Watertown, Massachusetts

Michael Peeler
SciTegic, Inc.
San Diego, California

Raf M. Podowski
Oracle
Burlington, Massachusetts

Vinodh N. Rajapakse
Biomics, LLC
Boston, Massachusetts

Ana Rojas
Centro Nacional de Biotecnología
Madrid, Spain

Burkhard Rost
Columbia University
New York, New York

Robert B. Russell
European Molecular Biology Laboratory
Heidelberg, Germany

Andrea Schafferhans
Lion Bioscience AG
Heidelberg, Germany

Didier Scherrer
Entelos, Inc.
Foster City, California

Reinhard Schneider
European Molecular Biology Laboratory
Heidelberg, Germany

Christopher Sears
BioSift, Inc.
Watertown, Massachusetts

Viviane Siino
BioSift, Inc.
Watertown, Massachusetts

Damian Smedley
European Bioinformatics Institute
Hinxton, Cambridge, United Kingdom

Robert Stevens
The University of Manchester
Manchester, United Kingdom

Alfonso Valencia
Centro Nacional de Biotecnología
Madrid, Spain

Ivayla Vatcheva
German Cancer Research Center
Heidelberg, Germany

Hartmut Voss
Dievini Gmbh
Heidelberg, Germany

 © 2006 by Taylor and Francis Group, LLC



Contents

Chapter 1
Introduction................................................................................................................ 1
Darryl León

PART I Target Identification

Chapter 2
Pattern Matching...................................................................................................... 13
Scott Markel and Vinodh N. Rajapakse

Chapter 3
Tools for Computational Protein Annotation and Function Assignment ............... 41
Jaume M. Canaves

Chapter 4
The Impact of Genetic Variation on Drug Discovery and Development ............... 89
Michael R. Barnes

Chapter 5
Mining of Gene-Expression Data.......................................................................... 123
Aedin Culhane and Alvis Brazma

PART II Target Validation

Chapter 6
Text Mining ........................................................................................................... 153
Bruce Gomes, William Hayes, and Raf M. Podowski

Chapter 7
Pathways and Networks ........................................................................................ 195
Eric Minch and Ivayla Vatcheva

Chapter 8
Molecular Interactions: Learning from Protein Complexes ................................. 225
Ana Rojas, David de Juan, and Alfonso Valencia

 © 2006 by Taylor and Francis Group, LLC



Chapter 9
In Silico siRNA Design ......................................................................................... 245
Darryl León

Chapter 10
Predicting Protein Subcellular Localization Using Intelligent Systems .............. 261
Rajesh Nair and Burkhard Rost

Chapter 11
Three-Dimensional Structures in Target Discovery and Validation ..................... 285
Seán I. O’Donoghue, Robert B. Russell, and Andrea Schafferhans

PART III Recent Trends

Chapter 12
Comparative Genomics.......................................................................................... 309
Viviane Siino, Bruce Pascal, and Christopher Sears

Chapter 13
Pharmacogenomics ................................................................................................ 323
Bahram Ghaffarzadeh Kermani

Chapter 14
Target Identi cation and Validation Using Human Simulation Models .............. 345
Seth Michelson, Didier Scherrer, and Alex L. Bangs

Chapter 15
Using Protein Targets for In Silico Structure-Based Drug Discovery ................. 377
Tad Hurst

PART IV Computational Infrastructure

Chapter 16
Database Management........................................................................................... 389
Arek Kasprzyk and Damian Smedley

Chapter 17
BioIT Hardware Con guration ............................................................................. 403
Philip Miller

 © 2006 by Taylor and Francis Group, LLC



Chapter 18
BioIT Architecture: Software Architecture for Bioinformatics Research ............ 411
Michael Dickson

Chapter 19
Work ows and Data Pipelines .............................................................................. 425
Michael Peeler

Chapter 20
Ontologies .............................................................................................................. 451
Robin A. McEntire and Robert Stevens

 © 2006 by Taylor and Francis Group, LLC



1

1 Introduction

Darryl León
SciTegic, Inc.
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1.5 Recent Trends................................................................................................... 7
1.6 Computational Infrastructure ........................................................................... 7
1.7 The Future of In Silico Technology ................................................................ 8
References.................................................................................................................. 9

1.1 THE DRUG-DEVELOPMENT LANDSCAPE

The pharmaceutical and biotechnology industries have encountered increasing
research and development costs while facing a decreasing number of new molecular
entities [1]. Even though the explosion of genomics-based drug discovery approaches
has led to a large collection of potential drug targets, culling the “druggable” targets
from the potential ones is the real challenge. Although the drug-discovery process
is different for each company, several common steps are used within the industry.
These steps include target identi cation and validation; lead identi cation and val-
idation; and preclinical studies, with the ultimate goal of successful clinical studies

biotechnology industries are complex processes that include laboratory techniques,
outsourcing approaches, and informatics methodologies. However, some basic issues
are addressed before a target is even selected for screening. These issues include
such topics as how a target’s RNA expression correlates with protein expression and
a disease hypothesis, how a target is involved in a metabolic pathway or molecular
interaction network, whether a target is druggable, and how a target’s genomic locus
can be correlated with a genetic marker. Of course, the challenges of target identi-

cation and validation can be accelerated using in silico technologies.

1.2 HISTORICAL PERSPECTIVE

In silico technology for target identi cation and validation has been used for several
decades, although it was not always referred to as an in silico approach. In the 1970s,

 © 2006 by Taylor and Francis Group, LLC
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the Brookhaven Protein Data Bank was formed to store information about crystal
structures of proteins [2]. As more protein sequences were being determined, scien-
tists needed a way to compare sequences from two different samples. The Needle-
man–Wunsch algorithm for sequence comparison was developed, and it was used
to help the study of evolution. In computer science, the concept of the Internet was
born, a development which contributed to the spread of bioinformatics tools at the
end of the 20th century.

In the 1980s, laboratory techniques in molecular biology allowed for the rst
complete gene sequence of an organism. Another major milestone in the 1980s was
the published physical map of E. coli [2]. Having this rst genomic sequence of an
organism was the start of a revolution in the eld of genomics, which required the
need for further computational tools in biology. The creation of the Swiss-Prot
database allowed for the availability of hand-annotated protein sequences and later
became a key database for target identi cation. To help molecular biologists compare
sequences faster than using a global algorithm, the Smith–Waterman and FASTP
algorithms were developed. These algorithms focused on local alignments between
two sequences and have been used successfully for target identi cation.

The U.S. government also saw the importance of biological information and
computational biology. Congress enacted legislation creating the National Center
for Biological Information (NCBI) at the National Library of Medicine, and later
supported the Human Genome Project (HGP) to sequence the entire human genome.
At this same time, several other biologists with a talent for computer programming
began writing simple programs to help the search and alignment of DNA and protein
sequences. One signi cant program was called the Basic Local Alignment Search
Tool (BLAST). It was designed to search sequence databases quickly by performing
a local alignment of a query sequence against each sequence in a database. This
program has become a mainstay in any in silico target identi cation pipeline. In the
mid-1980s, a few people began selling their analysis programs and curated databases
to discovery departments at drug and biotechnology companies. For example, the
Genetics Computer Group became well known for their sequence analysis suite of
tools called the Wisconsin Package (now called Accelrys GCG).

In the early 1990s, Incyte Pharmaceuticals began selling various databases of
DNA sequence fragments known as expressed sequence tags (ESTs) to help research
identify splice variants, which were believed to be associated with disease states.
Scientists in the 1990s also began using tools from the computer science world and
started using Perl (Practical Extraction Report Language) to help parse the various
DNA and protein databases that were stored in a at le format. During this time,
the eld of computational biology expanded into the eld of bioinformatics, and
there was considerable buzz surrounding this new eld in the world of genomics.
Computer scientists began learning more about biology, and more lab scientists were
learning how to program.

The explosion of the World Wide Web in the late 1990s paralleled the continued
breakthroughs in high-throughput genomic sequencing and the new algorithms being
developed for sequence analysis. The need for in silico analysis of DNA and protein
sequences was so large in the pharmaceutical and biotechnology industries, many
bioinformatics start-up companies began appearing to meet the demand. Some of

 © 2006 by Taylor and Francis Group, LLC



4 In Silico Technologies in Drug Target Identification and Validation

these start-ups rode the entrepreneurial wave of the Internet becoming dot-com com-
panies to position themselves as the future for in silico drug discovery. DoubleTwist
was one of rst companies to fully annotate a draft version of the human genome,
but the daily dump of sequence data into NCBI’s GenBank made it nearly impossible
for them to keep their annotated version of the human genome up-to-date.

Sequence data were not the only information being stored, searched, and ana-
lyzed in the 1990s. The advent of the microarray plate (also known as the gene chip)
contributed to another burst in biological information that needed help from in silico
tools. Because the genome only contained the blueprint of life, scientists began using
microarrays to understand how the genes are coexpressed and coregulated under
various conditions. By the beginning of 2000, there were hundreds of public data-
bases and several commercial ones as well. There were also so many open-source
bioinformatics programs available to meet this need, and freely available on the
Internet that it was dif cult for companies selling in silico tools to generate revenue
for their businesses. However, when Celera and the HGP announced the rst com-
plete draft sequence of the human genome, the excitement was palpable. When the
human genome sequence was nearly complete, it was made available via the World
Wide Web, and several public and commercial in silico tools were used to annotate
it, visualize it, and navigate within it. With this international announcement, the
identi cation of potential drug targets became the main focus of many drug com-
panies. The technology used for in silico target identi cation and validation became
ever more important and continues to be a major contributor to drug discovery.

1.3 TARGET IDENTIFICATION

As the number of sequenced genomes increases with each passing month, the
pharmaceutical and biotechnology industries have access to more potential targets
than they ever thought possible. Although many targets derived from sequenced
genomes have been identi ed, there is a desire to understand which in silico meth-
odologies are available for identifying other new, potential targets. These method-
ologies include gene selection, gene and protein annotation, and prioritization.

Gene selection can be broken down into three main areas: computational
approach, database searching, and data mining. The computational approach includes
such analyses as similarity searching, gene nding, EST identi cation, and splice
variant construction. Database searching relies heavily on the quality and amount
of data available. The data may come from commercial, public, or internal databases.
Mining of this data by domain experts is also very important. In the data-mining
approach, expert scientists may include disease studies, differential gene expression
data, differential protein expression data, literature searches, and single nucleotide
polymorphism studies when identifying a potential target. After selecting a gene
target, the next step may include annotating the encoded protein. The annotation
step may include protein structure prediction, functional predictions, public annota-
tions, pattern matching, and homology searches.

The last step in target identi cation typically involves some type of assessment
or prioritization. The decision makers may use a combination of computational and
laboratory results in addition to a biologist’s intuition when examining issues of
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novelty, disease association, and drugability. After organizing the target list based
on particular criteria, the decision maker may begin looking at known compounds
or inhibitors that bind, tissue distribution, known catalytic activity, and potential
disease correlations to create a nal prioritized target list.

The rst section of this book covers the various aspects of target identi cation,
and each chapter focuses on important in silico technologies used in the early stages
of target identi cation.

is essential for any basic nucleotide sequence analysis and protein function
determination. Markel and Rajapakse review the key motif, domain, and
pattern databases and tools commonly used in drug target identi cation
projects.

Assignment: Functional annotation or assignment can be determined exper-
imentally in the laboratory or computationally, but there is strong feedback
between these two areas of research. Canaves discusses how computational

ndings can help laboratory biologists and chemists with experimental
design, and how in turn their ndings can suggest new directions for
computational biologists. He also points out in detail the variety of tools
and databases available for functional annotation and assignment. 

opment: Barnes describes the various types of genetic variants (e.g., poly-
morphisms) and explains how these play a key role in target identi cation
and validation. He also covers the tools and databases available to research-
ers studying genetic variants.

beginning to utilize complex data normalization, statistics, and other math-
ematical methods to understand how genes are regulated under various
conditions. Brazma and Culhane begin by reviewing the advantages and
disadvantages of microarrays, and they detail the methodologies and soft-
ware tools available to analyze complex microarray data.

1.4 TARGET VALIDATION

Currently, in the drug-discovery process, the major bottleneck is target validation. If
this process can be accelerated with computational tools, the target validation step
will speed up signi cantly. The target-validation process includes determining if the
modulation of a target’s function will yield a desired clinical outcome, speci cally
the improvement or elimination or a phenotype. In silico characterization can be
carried by using approaches such as genetic-network mapping, protein-pathway map-
ping, protein–protein interactions, disease-locus mapping, and subcellular localiza-
tion predictions. Initial selection of a target may be based on the preliminary results
found between cellular location and disease/health condition, protein expression,
potential binding sites, cross-organism con rmation, or pathways involved in a
disease/health condition.

 © 2006 by Taylor and Francis Group, LLC
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Most important to the target validation step is the application of in vitro and in
vivo pro ling approaches. During this step, scientists attempt to con rm gene regula-
tion or protein regulation; to understand mechanism, activity, or cellular location; to
con rm activity in a model organism; and to be able to nd a direct association of a
target with a disease or health condition. Of course, these approaches can be supported
with data collection, storage, reduction, analysis, and visualization; the nal desired
outcome is a short list of target candidates to begin screening with small molecules.
The second section of this book covers several aspects of target validation, and each
chapter focuses on important in silico technologies used during target validation.

mental concepts of text mining and discuss the various types of approaches
of extracting information from life science literature. They also examine
the challenges of text mining and give examples of how it can be used for
drug-target discovery.

ent types of pathway data, and they detail the various techniques of pathway
analysis. They also include a useful summary of common public and com-
mercial pathway tools and databases.

spectrum of interactions is critical to comprehending the dynamics of a
living system, and understanding it can help to develop methodology for
future studies in other systems. Rojas, de Juan, and Valencia review the
current state of experimental and computational methods for the study of
protein interactions, including prospects for future developments.

siRNA design and discusses how siRNA methodologies are being used in
research and as therapeutic tools. He also gives a brief overview of the
public and commercial databases and programs available and includes
useful destinations on the Web where you can nd related information.

Systems: In their chapter, Nair and Rost point out that, despite the chal-
lenges in correctly assessing the accuracy of subcellular localization pre-
diction methods, there have been many improvements made in this area.
Future improvements are likely to include the use of integrated prediction
methods that combine the output from several programs to provide a com-
prehensive prediction of subcellular localization.

tion: The chapter by O’Donoghue, Russell, and Schafferhans begins with
a short review of how the structure of a protein target is determined
experimentally or theoretically. Next, the authors describe the importance
of secondary structures in a drug target and review some of the key
databases and visualization tools relevant to protein structure. They also
discuss how nding a binding site on a protein is important for the drug-
discovery process.
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Chapter 6—Text Mining: Gomes, Hayes, and Podowski review the funda-

Chapter 7—Pathways and Networks: Minch and Vatcheva discuss the differ-

Chapter 8—Molecular Interactions: Learning from Protein Complexes: The

Chapter 9—In Silico siRNA Design: León reviews the basic concepts of

Chapter 10—Predicting Protein Subcellular Localization Using Intelligent

Chapter 11—Three-Dimensional Structures in Target Discovery and Valida-
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1.5 RECENT TRENDS

A target can be analyzed further using computational techniques such as three-
dimensional (3D) comparative genomics, in silico chemical genomics, and systems
modeling. Another area of interest to drug-discovery companies and the Food and
Drug Administration (FDA) is pharmacogenomics. The third section of this book
covers several aspects of these recent trends, and each chapter focuses on important
in silico technologies used in target identi cation and validation. 

become rather commonplace, and these projects have resulted in new
genomes being published almost monthly. Siino, Pascal, and Sears examine
how comparative genomes can facilitate the nding of potential drug targets
by detecting genomic correlations among several organisms. 

putational challenges of pharmacogenomics and how personalized medicine
has several sociological obstacles to overcome before it becomes a mainstay
diagnostic for medical therapies. 

Models: Michelson, Scherrer, and Bangs describe how the physiologic
implications of a potential target’s function t in the context of the disease
and its progression. They discuss the complexity of systems biology and
describe the issues facing predictive approaches. 

covery: Validating the importance of a drug target can include its af nity
for druglike compounds. Hurst brie y reviews the common approaches used
in in silico drug screening and how virtual screening can be used with
protein structures to identify potential druglike molecules.

1.6 COMPUTATIONAL INFRASTRUCTURE

Data integration has been a focus for many people involved with computational
biology, bioinformatics, and in silico technologies over the last decade. Using the
concept of genomics, scientists began attaching “-omics” to many other areas of
research, including proteomics, metabolomics, and transcriptomics. The current chal-
lenge for in silico technologies in target validation is data integration. Because most
of these databases are created from unrelated sources such as unstructured data,
structured data, and tabular data, making use of this disparate information has been
and still is a major task for bioinformaticists. The hardware giant, IBM, became
interested in the life sciences, and they announced the Blue Gene project, which is
designed to calculate the predicted 3D structure of a protein from only its amino
acid sequence. The fourth section of this book covers several aspects of the infor-
matics infrastructure needed to support in silico technologies and target identi cation
and validation.
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Chapter 12—Comparative Genomics: Genome-sequencing efforts have

Chapter 13—Pharmacogenomics: Kermani discusses the scienti c and com-

Chapter 14—Target Identi cation and Validation Using Human Simulation

Chapter 15—Using Protein Targets for In Silico Structure-Based Drug Dis-
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put technologies have signi cantly increased the amount of data being
stored, managed, and retrieved for target identi cation and validation.
Kasprzyk and Smedley examine how database management systems are
necessary to control data quality, and they review the numerous database

structure will continue to be essential in drug-target discovery. Miller
explores the various components of BioIT and how these support in silico
research efforts.

Research: Dickson explains the variety of requirements that the research
process imposes on any BioIT architecture used in target identi cation and
validation. He focuses on the types of components (e.g., architecture, envi-
ronment, and services) that are necessary to support the target discovery
process.

biology and bioinformatics have become more mature, there has been
increasing agreement about how biological data should be processed. These
accepted methodologies have allowed for the automation of many types of
work ows and pipelines. Peeler compares and contrasts the technologies

in the drug-target discovery process. They give a good review of the numer-
ous tools, initiatives, projects, and standards being pursued in the world of
ontologies, and they discuss how the concept of the semantic web will
enhance the life sciences.

1.7 THE FUTURE OF IN SILICO TECHNOLOGY

Drug discovery will continue to rely heavily on computational methods to help
accelerate the identi cation and validation of potential drug targets. However, the
industry will see a shift from “classical” bioinformatics (e.g., genomic and protein
annotations) to more complex computational problems. Data integration and high-
throughput computing will still be necessary, but there will be a call for improved
statistical tools for gene expression and proteomics. Scientists who study model
organisms and use them in target validation will get a boost from comparative
genomics, because the ever-growing sequence information generated daily from the
public sector can be used to nd common gene regulators in similar organisms. The
development of more informative metabolic pathways will also result from the
numerous model organisms being sequenced. Predictive protein–protein interactions
will need more databases and more reliable association algorithms to support target
identi cation and validation. It will be important to integrate this information from
text mining and experimental results. Text mining in the life sciences will be critical;
however, better natural language processing algorithms and browsing tools will be

 © 2006 by Taylor and Francis Group, LLC

Chapter 16—Database Management: Recent developments in high-through-

management systems available for biological information.
Chapter 17—BioIT Hardware Con guration: Computing power and infra-

Chapter 18—BioIT Architecture: Software Architecture for Bioinformatics

Chapter 19—Work ows and Data Pipelines: As the elds of computational

and approaches that address the areas of data pipelining and work ows.

lenges of creating and implementing ontologies and how ontologies assist
Chapter 20—Ontologies: McEntire and Stevens provide a review of the chal-
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needed to support target validation efforts. It will be essential to integrate this
information with protein–protein interactions and patent searches. Although struc-
tural biology (i.e., structural genomics) is making steady progress, it will continue
to be essential for drug discovery. The industry will see more representative structures
being solved for all of the major protein families. The promise of pharmacogenomics
is very exciting, and this area of research is becoming more interesting to the FDA.
This is the beginning of personalized medicine (or targeted medicine), but it is too
early to determine how personalized medicine might be used in the physician’s of ce,
for the direct and immediate bene t of the patient. Nonetheless, statistical software
and visualization applications will be needed to assist health care workers in under-
standing the results from genetic tests. Finally, the most intriguing new approach in
supporting target identi cation and validation is systems biology. Once all the data
are gathered from a model organism and the predicted parameters and simulated
environments have been computed, we should be able to predict the behavior of a
complex biological system under various conditions. This predictive approach will
open the door to the creation of virtual in silico patients and may someday reduce
the number of years for clinical trials.
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2.1 INTRODUCTION

Many of our colleagues and customers work in pharmaceutical or academic research
departments that include a focus on drug-target identi cation and validation. If you
were to walk down the hallways of these organizations and look inside the of ces
and conference rooms at the whiteboards, you would likely see drawings representing
nucleotide or protein sequences and their associated subsequences of interest. Many
of the subsequences are represented by patterns. Nucleotide sequences are typically
drawn as straight lines, with the patterns drawn as boxes, ovals, or underlines. See

Protein sequences are often shown as two-dimensional objects based on their known
or conjectured secondary structure.

In this chapter we cover pattern databases, tools you can use to discover novel
patterns, and software you can use to create your own tools.

2.2 HISTORICAL BACKGROUND

Patterns are of interest in many domains and are both observed and inferred. When-
ever something of interest is seen to occur more than once, we attempt to describe
it. Architects use patterns to describe buildings. Software developers use patterns to
describe useful bits of functionality. Patterns are not typically an end unto themselves.
They are merely a way for fellow practitioners to note something of interest that
may be useful to others. The patterns also become a way of communicating this
information, a kind of shorthand [1,2].

Patterns are ubiquitous in science. Weather, seasons, and planetary and celestial
motion were all observed by ancient civilizations. The golden ratio (golden mean,

 © 2006 by Taylor and Francis Group, LLC
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golden section), approximately equal to 1.618, is a pattern frequently found in
nature—for example, in shell growth.

Within molecular biology there are other patterns. Three nucleotides, also called
a codon, are translated into a single amino acid. Early examples of sequencelike
patterns involving locations were common in classical genetics. As DNA, RNA, and
protein sequences were actually sequenced, giving us the character strings we are
so familiar with today, the computational tools from computer science could be
brought to bear on research problems in target identi cation and validation. Biolog-
ical sequence data’s textual representation made regular expressions (described in
the next section) a natural choice for representing concise, precisely de ned recurring
sequence elements. Although incredibly useful, regular expressions have proved
inadequate for more expansive or variant structures, such as protein motifs or sec-
ondary structure patterns. The challenge of representing these expressions drove the
development of more expressive pattern representation approaches uniquely tailored
to the nuances of biological (sequence) data.

2.3 PATTERN REPRESENTATION

In computer science, textual patterns are often represented by regular expressions.

• A regular expression (sometimes abbreviated regex) is a way for a com-
puter user or programmer to express how a computer program should look
for a speci ed pattern in text and then what the program is to do when

• A regular expression (abbreviated as regexp, regex, or regxp) is a string that
describes or matches a set of strings, according to certain syntax rules.
Regular expressions are used by many text editors and utilities to search and

The seeds of regular expressions were planted in the early 1940s by two neuro-
physiologists who developed neuron-level models of the nervous system. These
models were formally described by Stephen Kleene in an algebra he called regular
sets. He devised a simple notation called regular expressions. This was followed by
a rich theoretical math study in the 1950s and 1960s. The rst documented use of
regular expressions in computer science was by Ken Thompson, whose 1968 article
“Regular Expression Search Algorithm” describes a regular expression compiler that
produced IBM 7094 object code. This led to Thompson’s work on qed, an editor
that formed the basis for the Unix editor ed. ed had a command to display le lines
that matched a regular expression: “g/Regular Expression/p”, read as Global Regular
Expression Print, became its own utility as grep, then egrep (extended grep) [3].

As computer science and molecular biology merge in the new eld of bioinfor-
matics, the use of pattern expression syntax like regular expressions has been intro-
duced to the life scientists. They see it in databases like PROSITE. They also see it
in the Internet search engines like Google.

 © 2006 by Taylor and Francis Group, LLC

each pattern match is found (www.whatis.com).

manipulate bodies of text based on certain patterns (www.wikipedia.org).
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2.4 DATABASES

In many cases pattern databases will be suf cient for your needs. This is true if the
problem you are studying either has been studied before or is closely related to one
that has. We have divided the pattern databases into protein and nucleotide.

2.4.1 PROTEIN PATTERNS

Protein-pattern databases cover both motifs or functional domains and secondary
structure. We have included the entire InterPro family of databases, as well as
BLOCKS, CDD, and a description of patterns found in Swiss-Prot sequences. DSSP,
ISSD, PSSD, and CATH are covered in the secondary-structure section.

2.4.1.1 Motif/Domain

Functionally related proteins typically share sequence features essential to the structural
elements underlying their shared biological role. These structures, and their critical
sequence features, can be relatively compact, as in the case of a posttranslational mod-
i cation site. The latter might consist of a target residue embedded within set of contig-
uous residues “recognized” by a modifying enzyme. Alternatively, functional structures
may be quite elaborate, as in the case of an independently folding ligand-binding domain.
The latter might be formed from several noncontiguous sequence segments, each con-
taining residues essential to the structural association. Conserved sequence features thus
exhibit a range of complexity paralleling that of the structural and functional elements
they specify. In turn, a range of pattern description approaches have been developed to
capture these diverse “signatures” of functionally related protein groups [4].

2.4.1.1.1 InterPro
Considering the diversity of conserved sequence features, it is apparent that a single
ideal pattern representation approach does not exist. Particular techniques each have
strengths and weaknesses. To provide a uni ed interface to a range of often com-
plementary pattern databases (and associated representation approaches), the Inter-
Pro resource [5,6] was developed. Signatures describing a particular protein family
or domain are grouped into unique InterPro entries. From the latter, one can access
speci c signature representations found in member databases, together with infor-
mation on protein sequences known to match the signatures.

2.4.1.1.2 UniProt
According to Bairoch et al. [7],

UniProt is a central repository of protein sequence and function created by joining
the information contained in Swiss-Prot, TrEMBL, and PIR. UniProt is comprised of
three components, each optimized for different uses. The UniProt Knowledgebase
(UniProt) is the central access point for extensive curated protein information, includ-
ing function, classi cation, and cross-reference. The UniProt Non-redundant Refer-
ence (UniRef) databases combine closely related sequences into a single record to
speed searches. The UniProt Archive (UniParc) is a comprehensive repository, re ect-
ing the history of all protein sequences.

 © 2006 by Taylor and Francis Group, LLC
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Each InterPro entry includes a “match table” listing UniProt protein sequences
matching the entry’s signature(s).

2.4.1.2 Single Motif Patterns

The representation of a single motif pattern is similar to a regular expression—simple
and precise. The weaknesses are that these patterns are rigid and prone to missing
diverged pattern exemplars, as might be found, for example, in highly diverged
members of a protein family. In addition, very compact patterns might be highly
nonspeci c, that is, prone to random matches. PROSITE is the best example of a
pattern database that contains single motif patterns.

2.4.1.2.1 PROSITE
PROSITE [8,9] is database of sequence patterns representing biologically signi cant
sites in proteins; patterns are largely represented using a regular expression-based
language, with more complex patterns additionally described using sequence pro-

les. A few (four) PROSITE signature entries (three posttranslational modi cation
sites and a nuclear targeting sequence) are described as free-text rules.

2.4.1.3 Multiple Motif Patterns

One good example of a multiple motif pattern is a ngerprint, a de ned sequence
of patterns or identi able features. Using multiple, nonoverlapping, conserved motifs
to collectively describe a signature is more exible than using a single motif pattern.
In addition, multiple motif patterns are capable of describing highly diverged exem-
plars that are missed by single motif descriptors, that is, regular expressions. PRINTS
is a good example of a multiple motif pattern database.

2.4.1.3.1 PRINTS
“PRINTS [10] is a compendium of protein ngerprints. A ngerprint is a group of
conserved motifs used to characterize a protein family. … Usually the motifs do not
overlap, but are separated along a sequence, though they may be contiguous in 3D-
space. Fingerprints can encode protein folds and functionalities more exibly and
powerfully than can single motifs: the database thus provides a useful adjunct to

2.4.1.4 Profile (HMM) Patterns

A pro le hidden Markov model (HMM) is a statistical model of a multiple alignment
of sequences drawn from a putative protein family. It captures position-speci c informa-
tion about the relative degree of conservation of different columns in an alignment and
the relative likelihood of particular residues occurring in speci c positions. The strengths
of pro le patterns include their rich statistical description of information in nonconserved
regions (gaps in a multiple sequence alignment) as well as information in highly con-
served segments (aligned blocks in a multiple sequence alignment). The reader should
be aware that one weakness of this approach is that the quality of the model (pattern
representation) is tied substantially to the quality and functional understanding of the

 © 2006 by Taylor and Francis Group, LLC

PROSITE” (www.ebi.ac.uk/interpro/user_manual.html, appendix D).
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sequences used to derive it. Pfam, SMART, TIGRFAMS, PIR SuperFamily, and SUPER-
FAMILY are examples of pro le or HMM databases. Table 2.1 summarizes the protein
motif/domain databases discussed in this section.

2.4.1.4.1 Pfam
Pfam [11] is a manually curated database of protein families. Each family in Pfam
is represented by both multiple alignments and a pro le HMM. In particular, a seed
alignment is constructed using representative members of the family. The latter is
used to construct a pro le HMM using the HMMER2 software package. Finally,
the HMM is used to detect additional family members, which are then aligned to
obtain a full family alignment. With release 10.0, Pfam families cover 75% of the
protein sequences in Swiss-Prot and TrEMBL. For protein sequences that do not
match any Pfam family, Pfam-B families are generated using ProDom (detailed next).

2.4.1.4.2 SMART
According to the SMART Web site, 

SMART (Simple Modular Architecture Research Tool) [12–14] is a Web-based resource
used for the annotation of protein domains and the analysis of domain architectures, with
particular emphasis on mobile eukaryotic domains. Extensive annotation for each domain
family is available, providing information relating to function, subcellular localization,
phyletic distribution and tertiary structure. The January 2002 release has added more than
200 hand-curated domain models. This brings the total to over 600 domain families that
are widely represented among nuclear, signalling and extracellular proteins. Annotation
now includes links to the Online Mendelian Inheritance in Man (OMIM) database in
cases where a human disease is associated with one or more mutations in a particular

TABLE 2.1
Protein Motif/Domain Databases

InterPro http://www.ebi.ac.uk/interpro/
UniProt http://www.ebi.ac.uk/uniprot/
PROSITE http://www.expasy.org/prosite/
PRINTS http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/
Pfam http://www.sanger.ac.uk/Software/Pfam/
SMART http://smart.embl-heidelberg.de/
TIGRFAMS http://www.tigr.org/TIGRFAMs/
PIR SuperFamily http://pir.georgetown.edu/iproclass/
SUPERFAMILY http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/
ProDom http://protein.toulouse.inra.fr/prodom/current/html/home.php
BLOCKS http://blocks.fhcrc.org/
CDD http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml

http://www.ncbi.nlm.nih.gov/COG/
http://www.ncbi.nlm.nih.gov/Web/Newsltr/FallWinter03/kogs.html.

Swiss-Prot features http://www.expasy.org/sprot/userman.html#FT_line
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Pattern Matching 19

2.4.1.4.3 TIGRFAMS
TIGRFAMS [15] is an annotated collection of protein families, each described using
curated multiple sequence alignments and HMMs.

2.4.1.4.4 PIR SuperFamily (PIRSF)
According to the InterPro User Manual,

PIR SuperFamily (PIRSF) [16–18] is a classi cation system based on evolutionary
relationship of whole proteins. Members of a superfamily are monophyletic (evolved
from a common evolutionary ancestor) and homeomorphic (homologous over the full-
length sequence and sharing a common domain architecture). A protein may be assigned
to one and only one superfamily. Curated superfamilies contain functional information,
domain information, bibliography, and cross-references to other databases, as well as
full-length and domain HMMs, multiple sequence alignments, and phylogenetic tree
of seed members. PIR SuperFamily can be used for functional annotation of protein

2.4.1.4.5 SUPERFAMILY
SUPERFAMILY [19] is a collection of pro le HMMs aiming to represent all proteins
of known structure. Each model corresponds to a domain described in the SCOP
structural classi cation database and aims to describe the entire SCOP superfamily
associated with the domain.

2.4.1.5 Other

2.4.1.5.1 ProDom
ProDom [20,21] is a collection of protein domain families automatically derived
from the Swiss-Prot and TrEMBL databases using a novel approach based on
recursive PSI-BLAST searches.

2.4.1.6 Non-Interpro Pattern Repositories

2.4.1.6.1 BLOCKS
BLOCKS [22,23] is an automatically generated protein family database closely
related to PRINTS; like the latter, it represents patterns characterizing family mem-
bership as sets of multiply aligned, ungapped sequence segments (BLOCKS).

2.4.1.6.2 CDD
CDD [24,25] is a database of conserved protein domains associated with particular
biological functions, together with tools for identifying such domains in query
sequences. This now includes COGs and KOG. According to the National Center
for Biotechnology Information (NCBI),

Clusters of Orthologous Groups of proteins (COGs) were delineated by comparing
protein sequences encoded in complete genomes, representing major phylogenetic
lineages. Each COG consists of individual proteins or groups of paralogs from at least
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20 In Silico Technologies in Drug Target Identification and Validation

2.4.1.6.3 Swiss-Prot features
The feature table (FT) lines of a Swiss-Prot [26,27] entry provide a precise means
for annotating sites of interest along a protein sequence. In many instances, these
are examples of elements described by sequence patterns (e.g., structural/functional
domains, posttranslational modi cation sites, etc.). For example, the following line
describes the extent of a zinc- nger domain in a particular protein sequence, with
the numbers representing start and end amino acid residue positions [28].

FT   ZN_FING     319    343        GATA-type.

2.4.1.7 Protein Secondary Structure

Reliable secondary structures can enhance the prediction of higher order protein
structure, and to a limited extent, secondary-structure motifs can even suggest spe-
ci c fold structures. Sometimes these secondary structures provide insight into
function. De nition of Secondary Structure of Proteins (DSSP), Integrated
Sequence-Structure Database (ISSD), Protein Secondary Structure Database (PSSD),

2.4.1.7.1 DSSP
“The DSSP database is a database of secondary structure assignments (and much
more) for all protein entries in the Protein Data Bank (PDB)” [29]. “The DSSP
program de nes secondary structure, geometrical features and solvent exposure of
proteins, given atomic coordinates in Protein Data Bank format. The program does
not predict protein structure” [29].

2.4.1.7.2 ISSD
“The ISSD consists of records, each one containing a coding sequence of gene
(sequence of codons) aligned with the amino acid sequence and structural data for
polypeptide chain(s) of the corresponding protein” [30]. This organization was
originally developed to facilitate analyses of the relation of synonymous codon usage
to protein secondary structure. Although the database might seem relatively small,
it should be noted that “only non-redundant, non-homologous proteins with high-
resolution structures available are included. Also, mutant proteins are avoided and

TABLE 2.2
Protein Secondary Structure Databases

DSSP http://www.cmbi.kun.nl/gv/dssp/
http://www.cmbi.kun.nl/gv/dssp/descrip.html

ISSD http://www.protein.bio.msu.su/issd/
PSSD http://ibc.ut.ac.ir/pssd/about.html
CATH http://www.cathdb.info/
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and CATH are covered in this section (see Table 2.2).

three lineages and thus corresponds to an ancient conserved domain. (www.ncbi.nlm
.nih.gov/COG/)
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an attempt is made to match the source organism, tissue, and/or cell type as precisely
as possible for both gene and protein structure data, thus increasing the biological
meaning of the database information content” [30].

2.4.1.7.3 PSSD 
PSSD is a database that incorporates sequences of secondary-structure elements for
all proteins with three-dimensional structures de ned by experimental methods (such
as NMR-Spectroscopy or X-Ray Crystallography) and for which structural data exist
in the Brookhaven protein databank.

2.4.1.7.4 CATH
“The CATH database is a hierarchical domain classi cation of protein structures in
the Brookhaven protein databank.” Proteins are clustered at four major levels: Class,
Architecture, Topology, and Homologous Superfamily. Class is assigned automati-
cally for the vast majority of protein structures, based on their secondary-structure
content. The architecture level captures the overall shape of the domain structure,
based on the orientation of secondary-structure elements. “The topology level clusters
structures according to their topological connections and numbers of secondary struc-
tures. The homologous superfamilies cluster proteins with highly similar structures
and functions. The assignments of structures to topology families and homologous
superfamilies are made by sequence and structure comparisons” [31–33].

2.4.2 NUCLEOTIDE PATTERNS

The DNA Data Bank of Japan (DDBJ)/European Molecular Biology Laboratory
(EMBL)/GenBank database triumvirate contains millions of annotated nucleotide
sequences. Many of the annotations (features) are described by patterns. Restriction
enzyme cleavage sites (REBASE), repetitive DNA sequences (RepBase Update),
and transcription factors and their associated binding sites (TRANSFAC) are also
described by patterns. Databases that did not make our short list include the Short
Tandem Repeat Database; UTRdb and UTRSite (untranslated regions); databases
for Short Interspersed Repetitive Elements and Long Interspersed Repetitive Ele-
ments; and JASPAR, a collection of transcription factor DNA-binding preferences.

2.4.2.1 DDBJ/EMBL/GenBank Feature Table (FT)

GenBank, EMBL, and DDBJ form the International Nucleotide Sequence Database
Collaboration. The partnership databases are the richest source of publicly available
annotated nucleotide sequences. The FT describes the features and syntax [28].
Although not all features involve patterns, many do. Examples include

• polyA_signal—“recognition region necessary for endonuclease cleavage
of an RNA transcript that is followed by polyadenylation;consensus=
AATAAA” [34]

• repeat_region—“region of genome containing repeating units”

 © 2006 by Taylor and Francis Group, LLC

Table 2.3 summarizes the nucleotide pattern databases discussed in this section.
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• TATA_signal—“TATA box; Goldberg-Hogness box; a conserved AT-rich
septamer found about 25 bp before the start point of each eukaryotic RNA
polymerase II transcript unit which may be involved in positioning the
enzyme for correct initiation; consensus=TATA(A or T)A(A or T)” [35,36]

The syntax used for locations is described in section 3.5 of the FT. The most
frequently used location types are

• A single base (e.g., 467)
• A site between two indicated bases (e.g., 123^124 or 145^177)
• A single base chosen from within a speci ed range of bases (e.g.,

[102.110])
• A continuous range of bases (e.g., 340..565)

The three databases are freely available.

2.4.2.2 REBASE

Restriction enzymes are used to cleave both DNA strands at speci c sites, described
by patterns. For example, BamHI matches “GGATCC” and cleaves after the rst G.
MslI’s pattern “CAYNNNNRTG” contains the unknown N (any nucleotide) and the
ambiguous R (A or G) and Y (C or T). The Restriction Enzyme database (REBASE)
contains information about restriction enzymes and related proteins. It includes
“recognition and cleavage sites, isoschizomers, commercial availability, methylation
sensitivity, crystal and sequence data, DNA methyltransferases, homing endonu-
cleases, nicking enzymes, speci city subunits and control proteins” [37]. Recent
additions are the analytic predictions of DNA methyltransferases and restriction
enzymes from genomic sequences. Entry references, both published and unpub-
lished, are included. REBASE les are freely available by FTP.

TABLE 2.3
Nucleotide Pattern Databases

DDBJ http://www.ddbj.nig.ac.jp/
EMBL http://www.ebi.ac.uk/embl/
GenBank http://www.ncbi.nlm.nih.gov/Genbank/GenbankOverview.html
DDBJ/EMBL/
GenBank Feature Table

http://www.ebi.ac.uk/embl/Documentation/FT_de nitions/feature
_table.html

REBASE http://rebase.neb.com/rebase/rebase.html
http://rebase.neb.com/rebase/rebhelp.html
ftp://ftp.neb.com/

Repbase Update http://www.girinst.org/Repbase_Update.html
TRANSFAC http://www.gene-regulation.com/pub/databases.html#transfac

http://www.gene-regulation.com/pub/databases/transfac/doc/toc.html
ftp://transfac.gbf.de/

Transcription Factor
Classi cation

http://www.gene-regulation.com/pub/databases/transfac/cl.html
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2.4.2.3 Repbase Update

This database contains sequence exemplars of repetitive DNA from different eukary-
otic species. Most entries are consensus sequences of large families and subfamilies
of repeats, with smaller families represented by sequence examples. The entries
include annotations and references and are released in EMBL format. Repbase
Update [38–40] is used by both CENSOR and RepeatMasker, which masks out these
common repeats to speed up other analyses. Repbase Update is free to academic
users. Commercial users need a license.

2.4.2.4 TRANSFAC

Transcription factors help regulate the transcription of protein-encoding genes by
RNA polymerase. TRANSFAC [41] is a database of transcription factors and their
associated binding sites, with special emphasis on pathologically relevant sequence
mutations. An example entry HS$ALBU_05, taken from the European Molecular
Biology Open Software Suite (EMBOSS) documentation for tfextract, has the pattern
TCTAGTTAATAATCTACAAT. TRANSFAC is free to academic users. Commercial
users need a license.

2.5 STANDARDS

Within the computer science community, regular expressions may be considered
a standard [3]. The Open Group has an online standard on this topic (table 2.4).
They are working to unify various approaches, including Unix and Perl 5 regular
expressions. On the life sciences side, the controlled vocabularies provided by
DDBJ/EMBL/GenBank and Swiss-Prot features are de facto standards.

2.6 TOOLS

If the pattern databases do not contain what you need, you can turn to many ne
software tools that will attempt to discover novel patterns. In the following sections
we cover gene nding, protein, and nucleotide patterns, including secondary-struc-
ture prediction. We also describe MEME/MAST and HMMER, as well as the pattern
matching capabilities of EMBOSS and GCG. Finally, we include some suggestions
for those interested in writing their own pattern- nding programs.

2.6.1 GENE FINDING

With the advent of sequenced genomes, identifying the genes encoded in the genome
has become a major research effort. The programs described next are currently the

TABLE 2.4
Standards in Pattern Representation

The Open Group http://www.opengroup.org/onlinepubs/007908799/xbd/re.html
Perl regular expressions http://perldoc.perl.org/perlre.html
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most popular. Many researchers employ more than one program, investigating the
differences between the results to better understand their genes of interest. Table 2.5
summarizes the gene nding tools discussed in this section.

Baxevanis and Ouellette [42] describe three major categories of gene- nding
strategies: content based (using bulk properties like codon usage, repeats, and
sequence composition), site based (using absence or presence of features like donor
and acceptor splice sites, transcription factor binding sites, start and stop/termination
codons), and comparative (homology based).

Gene nding is dif cult and, as may be expected, not all approaches give the
desired results. This has given rise to papers describing methods that do not work.
The NCRNASCAN paper by Rivas and Eddy [43] is a good example. Contrary to
the authors’ expectations, real RNAs do not generally have any more secondary-
structure content than random sequence [43].

2.6.1.1 GeneWise

GeneWise [44] allows a nucleic acid sequence to be aligned with a sequence or
sequence pro le (HMM) associated with a potentially homologous protein or protein
family. The protein/protein family information is used to infer a putative intron–exon
structure in the nucleic acid sequence. The core of the model is a state model of
matches, insertions, and deletions, similar to those used in HMMER and Smith–Water-
man algorithms. Two key additions are made to the core. The rst addresses frame-
shifts. The second is a ve-region model for introns. The ve regions are

• Fixed length, 5' splice site consensus region
• Central part of the intron that constitutes the major part of the intron 
• A region of C/T bias upstream of the 3' splice site (polypyrimidine tract)
• An optional region joining the polypyrimidine tract and the 3' splice site
• Fixed length, 3' splice site consensus region

TABLE 2.5
Gene-Finding Tools

NCRNASCAN http://www.genetics.wustl.edu/eddy/software/#ncrnascan
GeneWise http://www.ebi.ac.uk/Wise2/

http://www.ebi.ac.uk/Wise2/doc_wise2.html
GFScan http://rulai.cshl.edu/
Genscan http://genes.mit.edu/GENSCAN.html

http://genes.mit.edu/Limitations.html
GeneComber http://bioinformatics.ubc.ca/genecomber/index.php
GeneMark http://opal.biology.gatech.edu/GeneMark/

http://opal.biology.gatech.edu/GeneMark/eukhmm.cgi
FGENES, FGENESH http://www.softberry.com/berry.phtml?topic=fgenes&group=programs

&subgroup=g nd
HMMGene http://www.cbs.dtu.dk/services/HMMgene/
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Special care is taken with the overlaps of the splice site consensuses and the coding
sequence region. See the Concepts and Conventions section of the online documenta-
tion for details of the models and algorithms involved. GeneWise is available online.

2.6.1.2 GFScan

GFScan [45] is a tool for associating genomic DNA sequences with gene families. The
family-speci c sequence motifs used for matching query sequences are derived from
protein motifs in PROSITE and the genomic structure of known members of the family.

2.6.1.3 Genscan

Genscan [46–48] uses an organism-speci c probabilistic model of gene structure
and composition to predict a “most likely” gene structure (intron, exon, regulatory
element, etc.) for a given analyzed sequence. The program was designed primarily
for vertebrate genomic sequences using a test set biased toward “short genes with

available as part of GeneComber.

2.6.1.4 GeneMark

GeneMark [49,50] is a gene-prediction program that operates by generating a “protein
coding potential” distribution over the length of an analyzed genomic DNA sequence;
the latter is derived by assessing a “sliding sequence window” with probabilistic
(Markov) models of coding and noncoding regions. Genes are de ned mainly as open
reading frames. The 5' boundary has a range of uncertainty approximately the size of
the sliding window, about 100 nucleotides. GeneMark is available online. The Web
site also discusses and provides the companion program GeneMark.hmm, an HMM
approach that leverages gene structure and uses GeneMark internally. GeneMark.hmm
was designed to improve GeneMark’s ability to nd exact gene boundaries.

2.6.1.5 FGENES, FGENESH

FGENES [51–53] is a gene-prediction program that combines individual gene ele-
ment (e.g., intron, exon, regulatory element) prediction methods with a dynamic
programming approach for nding the optimal combination of these elements along
an analyzed sequence. Where FGENES is pattern based, FGENESH uses an HMM
approach. Both FGENES and FGENESH are available online. There are several
related programs from the same authors:

• FGENES-M: Pattern-based human multiple variants of gene-structure
prediction

• FGENESH_GC: HMM-based human gene prediction that allows donor
splice site GC donor splice site structure
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relatively simple exon/intron structure.” See the Limitations Web page (http://genes

RepeatMasker or CENSOR. Genscan is available online. A BioPerl-based parser is
.mit.edu/Limitations.html) for details. The authors suggest masking repeats rst with
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• BESTORF: Finding potential coding fragment EST/mRNA
• FEX: Finding potential 5' internal and 3' coding exons
• SPL: Search for potential splice sites
• SPLM: Search for human potential splice sites using weight matrices
• RNASPL: Search for exon–exon junction positions in cDNA

2.6.1.6 HMMGene

HMMGene [54] uses a probabilistic (HMM) model of gene structure to predict genes
in anonymous DNA. Whole genes are predicted, ensuring that predicted exons are
correctly spliced. The program can be used to predict splice sites and start and stop
codons. Known features can be used as constraints (e.g., an EST can be “locked”
as a noncoding region). HMMGene will then nd the best gene structure given the
constraints. Because the program uses a probabilistic model of the gene structure,
all predictions are accompanied by probabilities, indicating prediction con dence.
Suboptimal predictions can also be reported. HMMGene is available online. A
BioPerl-based parser is available as part of GeneComber.

2.6.2 PROTEIN PATTERNS

The tools covered in this section can be used to predict structural or functional motifs
and secondary structure. Predicting target structure is critical in advancing candidate
compounds (new chemical entities) in the drug-development pipeline.

2.6.2.1 Structural/Functional Motif Prediction

Motifs describing structure and function can be predicted using a variety of tech-
niques. Tools in this section cover the spectrum from using rigid body motion to
fold matching to iterative BLAST alignments. We include DomainFinder, ProFunc,
EMOTIF, PSI-BLAST, and Maude in this section. Maude is a little out of the
mainstream, using a symbolic language to enable simulations, but we think it is
worth a look. Table 2.6 summarizes the structural and functional motif prediction
tools discussed in this section.

TABLE 2.6
Structural/Functional Motif Prediction Tools

DomainFinder http://dirac.cnrs-orleans.fr/DomainFinder/
ProFunc http://www.ebi.ac.uk/thornton-srv/databases/ProFunc/

http://www.ebi.ac.uk/thornton-srv/databases/profunc/index.html
EMOTIF http://dlb4.stanford.edu/emotif/

http://dlb4.stanford.edu/emotif/emotif-maker.html
http://dlb4.stanford.edu/emotif/emotif-scan.html
http://dlb4.stanford.edu/emotif/emotif-search.html

PSI-BLAST http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/psi1.html
Maude http://maude.cs.uiuc.edu/
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2.6.2.1.1 DomainFinder (Dynamical Domains in Proteins)
DomainFinder [55,56] is a program for determining and characterizing “dynamical
domains” in proteins. The latter are regions that essentially can move like a rigid
body with respect to the broader protein structure. Because the dynamical behavior
is implicated in protein function, identi cation of dynamical domains can facilitate
functional inference. DomainFinder is written in Python.

2.6.2.1.2 ProFunc
According to the Web site,

The aim of the ProFunc [57,58] server is to help identify the likely biochemical function
of a protein from its three-dimensional structure. It uses a series of methods, including
fold matching, residue conservation, surface cleft analysis, and functional 3D templates,
to identify both the protein’s likely active site and possible homologues in the PDB.

ProFunc is available online.

2.6.2.1.3 EMOTIF
The EMOTIF [59,60] database is a collection of highly sensitive and speci c protein
sequence motifs associated with conserved biochemical properties and biological
functions. These motifs were derived from protein sequence alignments in the
BLOCKS+ and PRINTS databases using the EMOTIF-MAKER program. The
EMOTIF-SEARCH program allows the user to identify motifs from the database in
a protein query sequence. The EMOTIF-SCAN program retrieves protein sequences
containing an EMOTIF speci ed by a regular expression syntax.

2.6.2.1.4 PSI-BLAST
PSI-BLAST [61,62] iteratively constructs a sequence pro le from the highest scoring
hits in a series of BLAST searches; the progressively re ned pro le captures a
sequence pattern that can potentially enhance the sensitivity of BLAST similarity
searches.

2.6.2.1.5 MEME/MAST/META-MEME
MEME, MAST, and META-MEME are important enough to be covered separately
in a later section.

2.6.2.1.6 Maude
Maude [63] is a symbolic language that has been applied to developing qualitative
models of signaling pathways and other protein interaction networks. Individual
proteins are abstracted as sets of functional domains that speci cally participate in
protein–protein interactions. Maude can represent both serial and parallel interactions
in terms of mediating domains, allowing simulation of biological signaling networks
at a manageable yet precise and rigorous level of abstraction. Such simulations can
be used to assess and generate hypotheses that can be tested in the laboratory.

 © 2006 by Taylor and Francis Group, LLC
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2.6.2.2 Secondary-Structure Prediction

Secondary-structure prediction methods have improved substantially in recent
years. State-of-the-art approaches utilizing evolutionary constraints derived from
high-quality multiple alignments can correctly predict over 70% of residues into
one of three states—helix, strand, and other [64]. More specialized methods (e.g.,
for predicting membrane spanning helices and their topology in integral membrane
proteins) can do even better. These results are especially promising, as reliable
secondary-structure prediction can enhance the prediction of higher-order protein
structure. Indeed, several 3D structure prediction methods use secondary-structure
predictions as a starting point. To a limited extent, secondary-structure motifs can
even suggest speci c fold structures. In addition, secondary-structure predictions
can sometimes provide insight into function. For example, active sites of enzymes
are typically formed from amino acids positioned in loops. Thus, “identically
conserved residues at multiple alignment sites predicted to be in loop regions (i.e.,
not predicted as helix or strand) could be functional and together elucidate the
function of the protein or protein family under scrutiny” [65]. Table 2.7 summarizes
the secondary structure prediction tools discussed in this section.

2.6.2.2.1 JPRED
JPRED [66,67] is a neural network-based program for predicting protein secondary
structure; sequence residues are assigned to one of three secondary-structure ele-
ments (alpha helix, beta sheet, or random coil).

2.6.2.2.2 PSI-PRED
PSI-PRED [68,69] is a neural network-based program for predicting protein sec-
ondary structure; query sequences are used as input to the PSI-BLAST program,
whose (sequence pro le) output forms the actual input to PSI-PRED.

2.6.2.2.3 MEMSAT
MEMSAT [70] is a program for predicting the secondary structure and topology
(helical orientation) of integral membrane proteins.

2.6.2.2.4 TMHMM
TMHMM [71,72] is an HMM-based program for predicting the secondary structure
and topology of membrane-spanning proteins.

TABLE 2.7
Secondary-Structure Prediction Tools

JPRED http://www.compbio.dundee.ac.uk/~www-jpred/
PSI-PRED http://bioinf.cs.ucl.ac.uk/psipred/
MEMSAT http://saier-144-37.ucsd.edu/memsat.html
TMHMM http://www.cbs.dtu.dk/services/TMHMM/
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2.6.3 NUCLEOTIDE PATTERNS

The tools covered in this section are used for detecting common repeats, predicting
splice sites, and calculating primers for use in polymerase chain reactions (PCR).
Table 2.8 summarizes the repeat masking tools discussed in this section.

2.6.3.1 RepeatMasker

RepeatMasker [73–75] is a program for identifying and “masking” frequently occur-
ring nucleic acid sequence elements (tandem repeats, low complexity DNA
sequences, etc.). These regions can confound analyses involving similarity search
programs. Masked regions can be represented by Ns or by lowercase letters. BLAST
programs can use the “-U” option to ignore lowercase bases. RepeatMasker uses
Repbase Update as the source for many repeats. A commercial version of Repeat-
Masker is available from Geospiza (see also CENSOR, by the same group that
curates Repbase Update). CENSOR is available online.

2.6.3.2 Splice-Site Prediction

Most eukaryotic genes consist of short coding sequences (exons) and relatively long
noncoding sequences (introns). RNA splicing is the process that excises the introns.
This process must be precise, as a single nucleotide shift would change the reading
frame and result in a different amino acid sequence. Stryer [76] has a cogent
description of splice sites. Almost all eukaryotic splice sites, or junctions, have a
common pattern: introns begin with GU and end with AG. The 5' consensus sequence
in vertebrates is AGGUAAGU and the 3' consensus sequence is ten pyramidines (U
or C), followed by any base, and then the AG as just mentioned. Introns also have
a branch site 20 to 50 bases upstream of the 3' splice site. The yeast branch site
sequence is UACUAAC. The branch site sequence varies in mammals.

• GeneSplicer [78] detects splice sites in the genomic DNA of Plasmodium
falciparum (malaria), Arabidopsis thaliana, human, Drosophila, and rice.

• NetGene2 [79,80] is a neural network predictor of splice sites in human,
C. elegans and A. thaliana DNA.

• SpliceView [81] uses a “classi cation approach (a set of consensuses).”

TABLE 2.8
Repeat Masking Tools

RepeatMasker http://www.repeatmasker.org/
http://www.repeatmasker.org/faq.html
http://www.geospiza.com/tools/repeatmasker.htm

Censor http://www.girinst.org/Censor_Server.html
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• SplicePredictor [82–84] implements Bayesian models.
• SPL [51–53] is a search for potential splice sites.
• SPLM [51–53] is a search for human potential splice sites using weight

matrices.
• RNASPL [51–53] is a search for exon–exon junction positions in cDNA.

2.6.3.3 Primer Design

Mullis’s PCR [76,85–87] allows speci ed subsequences of DNA to be ampli ed.
This technique has become essential in laboratories since its invention in the mid
1980s. Software programs assist by enabling researchers to design the primers that
identify, by hybridization, the desired subsequences. These programs (table 2.10)
take into account the three steps in a PCR cycle: strand separation, hybridization of
primers, and DNA synthesis. In addition to modeling these steps by using temper-
ature, salt concentration, and durations, primer design programs can lter out poor
primers. Typical problems include primers that are insuf ciently speci c and primers
that hybridize to themselves or to their companion primers.

2.6.3.3.1 Primer3
Primer3 [88] is the most popular primer design program. It picks primers for PCR
reactions, according to user-speci ed conditions that are important when attempting
to choose the optimal pair of primers for a reaction. These primers include primer
size, PCR product size, GC content, oligonucleotide melting temperature, concentra-
tions of various solutions in PCR reactions, primer bending and folding, primer-dimer
possibilities, and positional constraints within the source sequence. The program can
check existing primers and can design hybridization probes. Primer3 is available
online. In addition, EMBOSS’s eprimer3 is an interface to Primer3.

TABLE 2.9
Splice-Site Prediction Tools

GeneSplicer http://www.tigr.org/tdb/GeneSplicer/index.shtml
NetGene2 http://www.cbs.dtu.dk/services/NetGene2/
SpliceView http://l25.itba.mi.cnr.it/~webgene/wwwspliceview.html
SplicePredictor http://bioinformatics.iastate.edu/cgi-bin/sp.cgi
SPL, SPLM, RNASPL http://www.softberry.com/berry.phtml?topic=index&group=programs

&subgroup=g nd

TABLE 2.10
Primer Design Tools

Primer3 http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
http://frodo.wi.mit.edu/primer3/README.primer3_0_9_test

GeneFisher http://bibiserv.techfak.uni-bielefeld.de/gene sher/
http://bibiserv.techfak.uni-bielefeld.de/gene sher/help/wwwgfdoc.html
http://bibiserv.techfak.uni-bielefeld.de/reputer/
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2.6.3.3.2 GeneFisher
GeneFisher [89] automates the design of PCR primers used to identify putative
homologs of a known gene in DNA derived from closely related organisms. It comes
with a built-in alignment tool, allowing GeneFisher to process aligned or unaligned
sequences. Alignments can be visually inspected, enabling the user to reject the
alignment or accept it and continue to the primer-design step. This step identi es
two palindromic positions in the input sequence that are suitable priming sites for
one primer, meaning that a single oligonucleotide acts as forward and reverse primer.
Possible primer candidates are calculated using REPuter. REPuter identi es exact
or approximate (using a Hamming distance model) palindromic repetitive regions
on the input sequence and reports suitable PCR priming site positions. GeneFisher
is available online.

2.6.4 EMBOSS

EMBOSS [28,90] is an Open Source software package developed to address largely
sequence analysis needs. Release 2.9.0 has more than 180 programs. Many deal with
patterns. The following programs are examples:

• cpgreport reports CpG rich regions.
• dreg/preg provides a regular expression search of a nucleotide/protein

sequence.
• einverted nds DNA inverted repeats.
• eprimer3 picks PCR primers and hybridization oligonucleotides.
• etandem looks for tandem repeats in a nucleotide sequence.
• fuzznuc/fuzzpro provides a nucleic acid/protein pattern search.
• garnier predicts protein secondary structure.
• getorf nds and extracts open reading frames.
• palindrome looks for inverted repeats in a nucleotide sequence.
• restrict nds restriction enzyme cleavage sites.
• sigcleave predicts signal peptide cleavage sites.
• tfextract extracts data from TRANSFAC.

2.6.5 GCG WISCONSIN PACKAGE

GCG originated in John Devereux’s laboratory at the University of Wisconsin–Mad-
ison. After having several commercial homes, GCG is now sold by Accelrys. Version
10.3 contains approximately 150 programs. Examples of those programs that deal
with patterns include the following:

• FindPatterns identi es sequences that contain short patterns like GAATTC
or YRYRYRYR; ambiguities and mismatches are allowed.

• Frames shows open reading frames for the six translation frames of a
DNA sequence.

• HmmerPfam compares one or more sequences to a database of pro le
HMMs, such as the Pfam library.
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• HmmerSearch uses a pro le HMM as a query to search a sequence database.
• Map maps a DNA sequence, displaying restriction enzyme cut points and

protein translations.
• MFold predicts secondary structures for a nucleotide sequence.
• MotifSearch uses a set of pro les (representing similarities within a family

of sequences) to search a sequence database.
• Prime selects oligonucleotide primers for a template DNA sequence.
• PrimePair evaluates individual primers to determine their compatibility

for use as PCR primer pairs.
• Pro leSearch uses a pro le (representing a group of aligned sequences)

to search a sequence database.
• SPScan scans protein sequences for the presence of secretory signal peptides.
• StemLoop nds stems (inverted repeats) within a sequence.
• Terminator searches for prokaryotic factor-independent RNA polymerase

terminators.

2.6.6 MEME/MAST/META-MEME

The suite of tools described in this section enables the discovery of motifs in groups
of related protein or DNA sequences (MEME), the use of these motifs to search a
sequence database (MAST), and the integration of these motifs into an HMM
(META-MEME).

2.6.6.1 MEME

MEME [91] uses statistical modeling (expectation maximization) techniques to
construct conserved sequence motifs from a collection of, presumably, related protein
or nucleic acid sequences. According to the Web site,

MEME represents motifs as position-dependent letter-probability matrices which
describe the probability of each possible letter at each position in the pattern. Individual
MEME motifs do not contain gaps. Patterns with variable-length gaps are split by
MEME into two or more separate motifs. MEME takes as input a group of DNA or
protein sequences (the training set) and outputs as many motifs as requested. MEME
uses statistical modeling techniques to automatically choose the best width, number of

2.6.6.2 MAST

MAST [92] uses a motif description (e.g., one generated by MEME) to search a
sequence database for sequences matching the motif.

2.6.6.3 META-MEME

META-MEME [93–95] can be used to integrate motifs discovered by MEME, as
well as information derived from sets of related sequences, into a single motif-based
HMM. The latter can be used to search sequence databases for homologs.
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2.6.7 HMMER

HMMER [96] is a freely distributable collection of software for protein-sequence analysis
using pro le HMMs. A pro le HMM [97] is a statistical model of a multiple alignment
of sequences drawn from a putative protein family. It captures position-speci c informa-
tion about the relative degree of conservation of different columns in an alignment and
the relative likelihood of particular residues occurring in speci c positions. Pro le HMMs
can thus capture the essential features of a structural or functional domain.

They have the following applications:

• Deriving a (pro le HMM) model from a sound multiple alignment of
known protein family members for use in more effectively searching
databases for other, more distantly related family members.

• Enabling the automated annotation of protein domain structure: databases
like PFAM and SMART contain HMMER models and curated alignments
of known domains. These models can be used to specify a putative domain
structure for novel protein query sequences.

• Automated construction and maintenance of large, multiple alignment
databases: HMMER can be used derive a model from a well-curated seed
alignment. The latter can be used to search databases for more distantly
related members of the relevant protein family. These members can then
be used to produce a full alignment by aligning all detectable homologues
against the seed alignment. This process can be used to automatically
organize large numbers of sequences into groups with a probable evolu-
tionary relationship.

Table 2.11 summarizes the program suites discussed in this section.

2.6.8 WRITE YOUR OWN

Writing software programs that perform pattern matching can be relatively straight-

and Python [100] include regular expression matching. In addition, the BioPerl,
BioJava, and BioPython packages include some basic pattern matching speci c to
bioinformatics. These packages can also be used to execute external programs. For
example, EMBOSS programs can be run using BioPerl.

TABLE 2.11
Program Suites Containing Pattern-Matching Tools

EMBOSS http://emboss.sourceforge.net/
GCG Wisconsin Package http://www.accelrys.com/products/gcg_wisconsin_package/index.html
MEME http://meme.sdsc.edu/meme/website/meme.html
MAST http://meme.sdsc.edu/meme/website/mast.html
META-MEME http://metameme.sdsc.edu/
HMMER http://hmmer.wustl.edu/

 © 2006 by Taylor and Francis Group, LLC

forward for computer programmers. Languages (table 2.12) like Perl [98], Java [99],
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The following example shows how BioPerl can be used to read protein sequences
from a FASTA le and nd signal peptide cleavage sites. The le format is inferred
from the le extension .fa.

use strict;
use warnings;

use Bio::SeqIO;
use Bio::Tools::Sigcleave;

my $seqIterator = Bio::SeqIO->new("-file" => 
"<proteins.fa");

while (my $sequence = $seqIterator->next_seq())
{

my $sigCleave = Bio::Tools::Sigcleave->new(
-seq      => $sequence,
-threshold => 3.5,
-matrix    => "eucaryotic");

my $formattedOutput = $sigCleave->pretty_print();
print("$formattedOutput\n");

}

2.7 FUTURE DIRECTIONS

We hope that this chapter has offered a structured overview of existing pattern-based
analysis tools and data repositories. Patterns incisively capture the elements most
fundamental to biological function. In doing so, they help to manage the considerable
extent and complexity of biological sequence data. Pattern-driven approaches are
already focusing and enriching discovery efforts. Their further development will
undoubtedly present new and exciting applications across the ambitious scope of
life sciences research. Consideration of these emerging areas could easily span
another chapter. To offer an illustrative glimpse, we present two examples.

TABLE 2.12
Programming Languages and Libraries

Java http://java.sun.com/
BioJava http://www.biojava.org/
Perl http://www.perl.org/

http://www.perl.com/
BioPerl http://www.bioperl.org/
Python http://www.python.org/
BioPython http://www.biopython.org/
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2.7.1 FUNCTION PREDICTION IN BIOPATENTS

Research and development efforts in the pharmaceutical and biotech industries
depend critically on patent protection for commercially valuable biological mole-
cules. In this context, patent laws broadly require clear disclosure of molecular
function. Deriving this essential functional information is far from trivial [101].
Basic sequence homology studies are already a rst step in these critical research
efforts. Pattern-based approaches focusing on fundamental structural and functional
motifs can valuably focus expensive and lengthy laboratory efforts. The power of
these approaches will invariably increase with expansion and improvement of data
repositories and associated analysis tools. The U.S. Patent and Trademark Of ce
already welcomes these sorts of in silico studies as valuable adjunct evidence in
support of a molecule’s functional speci cation.

2.7.2 CELL PENETRATING PEPTIDES

Cell-penetrating peptides (CPPs) [102] are a broad class of molecules that share a
capacity to translocate cell membranes and gain access to the cell interior. CPPs
show great promise as highly ef cient, nontoxic delivery vehicles for various mol-
ecules including peptides, oligonucleotides, and proteins. As such, they could enable
precise experimental modi cation of gene and protein activity in living cells, afford-
ing novel and incisive avenues for probing biological processes. With further devel-
opment, CPPs could even facilitate the currently limited therapeutic use of larger
molecules such as proteins and oligonucleotides. The fundamental membrane trans-
location mechanisms associated with CPPs are thought to be diverse and are gener-
ally not well understood. Pattern-based approaches may prove valuable in identifying
classes of translocation-speci c features and motifs. These approaches could focus
further studies and facilitate the design of more effective CPPs.
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3.1 INTRODUCTION TO FUNCTIONAL 
ANNOTATION

Comprehensive protein annotation and function assignment are the rst steps in
target selection and validation for drug discovery. Current advances in genome
sequencing and high-throughput structural genomics have resulted in an explosive
growth in the number of protein sequences and structures without an assigned
function. Approximately one-third of protein-coding genes in newly sequenced
prokaryotic genomes, and even larger numbers in eukaryotic genomes, lack func-
tional assignment. There are extreme cases like the genome of Plasmodium falci-
parum, where the function of approximately 60% of predicted proteins is unknown
[1]. This situation is not limited to protein sequences but recently has expanded to
include protein structures: Up to 60% of protein structures deposited in the Protein
Data Bank (PDB) [2] by some structural genomics centers do not have any function
assignment. That vast and constantly growing repository of sequences and structures
is a rich potential source for the identi cation of new drug-discovery targets. Protein
function has multiple de nitions. To a cell biologist, function might refer to the
network of interactions in which the protein participates or to the location to a certain
cellular compartment. To a biochemist, function refers to the metabolic process in
which a protein is involved or to the reaction catalyzed by an enzyme. Developmental
biologists or physiologists might include temporal patterns of expression or tissue
speci city in their de nition of protein function. From a drug-discovery point of
view, function assignment means elucidation of biochemical function, although
additional levels of annotation can be used as quali ers to evaluate the prospective
usefulness of a potential drug-discovery target. This level of function assignment is
usually called the molecular function. Biochemical and/or molecular function can
be deduced in many cases from any combination of sequence, structure, and con-
textual information. In some cases, further levels of protein function such as cellular
location, interacting partners, participation in regulatory networks or metabolic path-
ways, and so forth, are possible. Function assignment can be achieved experimentally
in the laboratory or computationally, and generally there is a strong feedback between
the experimental and in silico research components in drug-discovery efforts. Com-
putational ndings can assist laboratory biologists and chemists to direct experimen-
tal design, and subsequent experimental ndings can suggest new courses of action
for computational biologists. For the computational biologist, the terms function
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annotation and function assignment are somewhat interchangeable and blurred.
Preferably, the use of the term function assignment should be limited to designate
the attribution of an enzymatic function or gene ontology. For the individual pieces
of evidence that point to a certain biological function, it is more appropriate to use
the term function annotation. Frequently, the complexity of function assignment is
beyond a single sentence. For instance, tubulin, a component of microtubules and a
target for anticancer drugs like Taxol or Vinca alkaloids [3], is not only a structural
protein but also a GTP-hydrolizing enzyme. Its structural role is not limited to being
part of the cytoskeleton but includes roles in intracellular protein and organelle traf c,
protein and organelle scaffolding, formation of the mitotic spindle during cell divi-
sion, or as a component of motile systems. Primary sequence determines protein
structure, and in turn protein structure determines protein function. Function is the
only element of this rst paradigm, central to protein function assignment that cannot
be addressed computationally. Therefore, the inference of molecular function from
sequence or structure is one of the ultimate goals for postgenomic bioinformatics.
The second paradigm in the eld of protein function assignment is that similar
sequences or similar structures have similar function, hence function assignment can
be performed by transferring the annotation of a protein experimentally characterized
to the protein being annotated ( g. 3.1). The second paradigm is not an absolute
truth. Enzyme Commission numbers classify structurally similar enzymes as func-
tionally dissimilar and vice versa, and very divergent functions are possible in
proteins with high levels of sequence conservation. Structural databases such as
SCOP [4] or CATH [5] group functionally dissimilar proteins into structurally similar
groups. Thus, one should carefully evaluate transference of function based on

FIGURE 3.1 The paradigm of sequence similarity-based functional assignment is the transfer
of annotation between similar proteins.
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sequence or structural similarity, always taking into account that the computational
results are simply models that require experimental con rmation. Target protein
annotation is not limited to de novo function assignment. There is a sizeable degree
of contamination in public databases due to function assignments being erroneously
transferred to newly annotated proteins. For mission critical tasks, every annotation
should be deemed suspect. Consequently, correction of assigned function, known as
reannotation, plays a supplementary yet crucial role in computational function anno-
tation and assignment. In addition, protein annotation can be used to add value to
existing assignments. Proteins with known functions can be re-examined to discover
new functions that could lead to novel approaches to modulate an already validated
drugable target. For instance, through in silico methods it might be possible to
identify new ligand-binding or protein–protein interaction sites in a target protein
for which pharmacological value is already established. The challenges of high-
throughput automated function assignment in genome annotation projects and the
challenges faced by annotators in target validation projects are different. The main
goal of genome-scale annotation is to provide function assignments for all proteins
in a genome in an acceptable timescale. There is a trade-off between the depth and
quality of the annotations and the time devoted to that process. Conversely, annotators
evaluating the possible value of a target for drug discovery have accuracy as their

rst priority. Accuracy demands human curation and examination of the problem
from many possible angles to minimize the chances of erroneous assignment.
Genome-scale annotation has a certain built-in margin of error, which means that,
from a drug discovery point of view, every public annotation is technically ques-
tionable. Often, the con rmation of the function assignment is a fairly routine
process, but in other cases that con rmation requires considerable effort. Despite
the need of manual curation for mission critical targets, high-throughput automated
protein annotation methods are still extremely useful for target drug discovery as
target preprocessing and prioritization tools. In that role, high-throughput automatic
methods can reduce the number of potential targets from thousands or tens of
thousands to a manageable number that can in turn be re-evaluated and validated by
expert human curators.

3.2 SEQUENCE-BASED FUNCTION ASSIGNMENT

A usual starting point for a function assignment project is a large-scale survey in
search of suitable targets potentially susceptible to pharmacological intervention. In
other scenarios, the protein identi ed as a possible target might be the result of
biochemical or yeast two-hybrid experiments, proteomics analysis, microarray data
(DNA, RNA, protein, chemical, or antibody), and so on. In every case, the starting
point of the annotation project is the primary sequence of a potential target protein.
The annotator normally faces two possible scenarios: either the protein lacks any
function assignment (proteins usually designated as “hypothetical proteins”) or the
protein has an assigned but experimentally uncon rmed function assignment. In
either case, if there is no compelling and irrefutable evidence supporting a certain
function, annotators need to verify the correctness of the function assignment before
committing to bench studies. Even if the annotation originates from a manually
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curated database, the existing annotation should be veri ed prior to using the target
protein for critical uses.

3.2.1 ASSIGNING FUNCTION BY DIRECT SEQUENCE SIMILARITY

The basic approach to function assignment is to search for functionally annotated
sequences similar to the query protein and then transfer their function to the query
protein. Sequence similarity between two proteins is assessed through the alignment
of their primary sequences. Similarity should not be confused with homology.
Homology implies sequence divergence from a common ancestor, whereas analogy
indicates the acquisition of common features from evolutionarily unrelated ancestors
through convergent evolution [6]. Both homology and analogy can result in sequence
similarity. The primary goal in annotation is to detect sequence homologies, because
homologous proteins share a common ancestor and a common structural fold, often
resulting in a common function. If two proteins are very similar, although not
necessarily homologous, it can be expected that their three-dimensional (3D) struc-
tures will also be alike, and therefore their functions will also be related. Accordingly,
annotation transfer according to similarity can be performed from homologous and
analogous sequences, although these concepts are not interchangeable. Homology
search methods are based on statistical principles. Therefore, if the similarities
observed are very unlikely to occur by chance, it is generally assumed that both
proteins are related through evolution. 

Pairwise sequence alignment using one of the multiple avors of Basic Local
Alignment Search Tool (BLAST) [7] or FastA [8] is the most common method used
for similarity searches. BLAST and FastA are both simpli cations of the Smith–Water-
man algorithm. BLAST is faster than FastA or the original Smith–Waterman, but it is
less sensitive. For some time, FastA was the most widely used search method, but it
has now been superseded by improved variants of BLAST. BLAST similarity searches
are generally performed against comprehensive databases like the National Center for
Biotechnology Information (NCBI) RefSeq database [9], Swiss-Prot and TrEMBL
[10], Protein Information Resource (PIR) [11], the sequences in PDB [2], or organism-
speci c databases (e.g. human, mouse, or Drosophila genomes). Although the actual
biological meaning of a match between two proteins is not guaranteed, the statistical
signi cance of the observed match can be evaluated, speci cally determining the
likelihood of nding an alignment between two protein sequences given the size and
composition of the searched database. The most frequently used parameter to evaluate
the signi cance of an alignment is the expectation value, or E-value, which is the
number of distinct alignments with scores equivalent to or better than the raw alignment
score that are expected to occur in a database search by chance. Thus, E-values depend
on database size. A lower E-value indicates a more signi cant alignment.

If signi cant similarities between uncharacterized and annotated sequences are
found, the transfer of annotation is straightforward at high identity levels (> 40%).
Below that sequence-identity level, the establishment of rm sequence-function
relationships can start to present some problems. The signal starts to become blurred
at 20 to 30% identity, the so-called Twilight Zone [12,13]. If identity levels are even
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lower, the region is called the Midnight Zone ( g. 3.2). For identity levels over 30%,
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enzyme class can be predicted with at least 90% accuracy using sequence-similarity
methods, both in single and multidomain proteins. On the other hand, when identity
levels are below 30%, functional variation is signi cant, and structural or other
additional data are often necessary to con rm function assignments based exclusively
on sequence similarity [14]. Regular BLAST can be used to detect distant homologs
close to the Twilight Zone with the appropriate choice of substitution matrix. The
default matrix used by NCBI-BLAST 2.0 is BLOSUM62 [15], derived from
sequences sharing 62% sequence identity. The BLOSUM45 matrix, derived from
more distant sequences (45% identity), will detect more distant sequences in long
and weak alignments. Matrix selection depends not only on the degree of divergence
of the sequences that we want to detect but also on the length of the query sequence.
BLOSUM62 is adequate for lengths over 85 residues, but for shorter lengths other
matrices are recommended (e.g., BLOSUM80 for query lengths between 50 and 85
residues, PAM70 for lengths between 35 and 50 residues, and the PAM30 matrix
for lengths below 35 residues [16]). 

3.2.2 DETECTION OF DISTANT SIMILARITIES WITH PROFILE 
METHODS

In a best-case scenario, if a match is almost identical to the query sequence, the
functional annotation can be transferred directly from the matching sequence to the

FIGURE 3.2 Techniques used for sequence- and structure-based function assignment and
their relationship to percentage of sequence identity between the query protein and observed
matches.
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query sequence with a high con dence level. If no close homolog can be identi ed,
the next stage in function annotation is to search for more distant homologs with
the hope of detecting signi cant similarities to a protein with a de ned function. A
number of matching sequences might be detected by BLAST, but if they fall in the
Twilight Zone, the appropriate approach to evaluate the signi cance of those matches
is to use methods that have been speci cally designed to detect distant sequence
homologies. Even if this effort is not successful in detecting a functionally charac-
terized protein for annotation transfer, the use of these methods might increase the
number of similar proteins available. Those sequences could be then used for sub-
sequent computational analyses aimed at ascertaining the role of the query protein.

One of the limitations of pairwise sequence alignments is that the amount of
information contained in only two sequences is very limited. A way to address this
problem is to collect a larger number of sequences and compare a model built from
those sequences against the target database in order to detect distant homologies.
Those models, called pro les, are scoring tables derived from multiple sequence
alignments that de ne the conservation for each position, the residues present in any
given position, and which positions are susceptible to contain insertions. It has been
shown that methods using multiple sequences (known as pro le methods) are vastly
superior to methods that rely on single query sequences [17], and the ef ciency of
these methods is surpassed by approaches that use pro les for both the query and
target sequences (known as pro le–pro le methods) [18,19]. Position-Speci c-Iter-
ative BLAST (PSI-BLAST) [20] is by far the most used and fastest of the pro le
methods. PSI-BLAST is an iterative algorithm that uses a position-speci c scoring
matrix (PSSM) re ecting the distribution of amino acids along the query sequence.
In each successive PSI-BLAST iteration, an improved PSSM is produced and used
for a new search against the target database. Using this iterative procedure, PSI-
BLAST is a very effective tool, capable of uncovering many distant protein rela-
tionships that would be missed by regular BLAST. The accuracy of PSI-BLAST can
be increased by jumpstarting it with a high-quality multiple sequence alignment
computed outside PSI-BLAST. The increase in sensitivity with respect to BLAST
comes at a cost, as PSI-BLAST requires a higher level of user expertise both in
operation and data interpretation. For instance, the user must select sequences to be
included in the next PSSM during the search of very distant homologies. The
evaluation of the matches returned by PSI-BLAST also might be laborious, because
many of them might have identity levels to the query sequence that situate them
well into the Twilight Zone.

HMMER [21] and SAM [22,23] are two popular pro le tools based on Hidden
Markov Models (HMMs). The most important factor affecting the performance of
these methods is the quality of the multiple sequence alignments used as input. It
has been observed that, when used with default parameters, SAM consistently
produces better models than HMMER. On the other hand, HMMER is much faster
than SAM when searching large databases (at least 2,000 sequences) [24]. Summa-
rizing, in general, SAM (the current version is SAM-T02) is better than HMMER
at detecting distant homologies, and HMMER is better than PSI-BLAST. On the
other hand, PSI-BLAST is faster than HMMER, and HMMER is in turn faster than
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SAM ( g. 3.3). Accordingly, a good strategy to detecting distant homologies using
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pro le methods is to use PSI-BLAST rst; if PSI-BLAST is not successful, then
apply HMMER and/or SAM. All the tools mentioned (BLAST, PSI-BLAST, FastA,
HMMER, and SAM) can be accessed through public servers or downloaded and
installed locally.

To increase detection sensitivity beyond the limits of pro le methods, it is also
possible to encode the sequences of the searched database into pro les. These
procedures are known as pro le–pro le methods, and at low-identity levels they

The recognition sensitivity and alignment accuracy obtained through the application
of pro le–pro le methods can be as much as 30% higher than pro le methods [26].
For distantly related proteins, structure is more conserved than the underlying
sequences. Therefore, relationships between those sequences are only apparent at
the structural level. Such relationships can be detected using sensitive pro le–pro le
methods that compare pro les generated from the query sequence against pro les
generated from PDB [2] or structural domain databases such as SCOP [4]. FFAS03
[27,28] and ORFeus [29] are two examples of pro le–pro le methods. FFAS03
compares sequence pro les with each other, although the pro les are generated using
a method different than that utilized by PSI-BLAST. The databases searched by
FFAS03 are PDB, SCOP, Pfam-A, and COG. In ORFeus, the sequence pro les are
generated as in FFAS, but secondary-structure prediction information produced by
PSIPRED [30] is added to the scoring function. Both FFAS03 and ORFeus are
available to the public through the Structure Prediction Meta Server, but no local
executables are available. COMPASS [31,32] is another pro le–pro le method based
on PSI-BLAST that shares important similarities with FFAS. In this case, no Web
version is available, but the program can be downloaded for local installation. 

Recently, important advances have been made in the application of HMMs to
pro le–pro le methods. The pro le–pro le approach used by the program COACH
[33] involves the alignment of two multiple sequence alignments by constructing an
HMM from the rst alignment and aligning the second multiple sequence alignment
to the HMM. There is no Web server version of COACH, but Linux and Windows

FIGURE 3.3 Comparison of the speeds and accuracies of PSI-BLAST, HMMER, and SAM,
three popular pro le methods used in the identi cation of distant sequence homologies.
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clearly outperform direct pairwise comparison and pro le methods [25] ( g. 3.2).
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versions of the program are available for download. Benchmarking of COACH
indicates that the program compares favorably to COMPASS. HHpred [34] is the
most recent addition to the ever-growing collection of tools for remote homology
detection. HHpred is a pro le–pro le method that compares two pro le HMMs and
utilizes a user-supplied sequence or a multiple sequence alignment as input. The
program can be accessed through the Web server or installed locally. When bench-
marked against COMPASS, HHpred outperformed it in both accuracy and speed.

The searches through most of Web-based pro le–pro le methods are limited to
pro les corresponding to public databases like Pfam. Both the homology search
programs and the databases construct their respective pro les using alignments
generated by methods that can be far from optimal. These limitations can be avoided
by using pro le-sequence methods or pro le–pro le methods as a means to collect
target leads, sometimes even too remote to be statistically signi cant. Then optimized
multiple sequence alignments for the query sequence and target lead can be produced
using the latest methods. Finally, locally installed state of the art pro le–pro le
methods like COMPASS, COACH, or HHMpred can be used to compare pro les
generated from the optimized alignments and assess the signi cance of the leads
previously gathered.

3.2.3 MULTIPLE SEQUENCE ALIGNMENT

The alignment of multiple sequences plays a fundamental role in function assignment
and annotation. Accurate alignments that include as many con dent sequence
homologs as possible are crucial to maximize the quality of the pro les used in
pro le-sequence or pro le–pro le sequences [35], which in turn augment the sen-
sitivity of these methods. Multiple sequence alignments can validate the similarities
observed in pairwise alignments and reveal conserved features such as domain
organization, catalytic residues, or residues important for protein–protein interac-
tions. Thus, multiple sequence alignments provide valuable insights into protein
function. Multiple sequence alignments are also used for secondary- and tertiary-
structure prediction, homology modeling, characterization of single nucleotide poly-
morphisms and alternatively spliced variants, or for phylogenetic analysis.

Multiple sequence alignment methods attempt to produce results that are math-
ematically and statistically optimal. Still, there are numerous factors that can intro-
duce bias and skew the nal results. Redundant data sets, where multiple instances
of a protein or very close homologs are overrepresented, are one major cause of
bias. Some multiple sequence alignment programs can weigh those overrepresented
sequences favorably compared to more divergent ones, resulting in the misalignment
of the latter. An extreme example would be if there were 30 identical sequences and
a shorter sequence sharing a low level of identity with the others. In this case, the
mathematical cost of opening gaps and extending gaps in 30 sequences could be
smaller than the cost of completely misaligning a single sequence. Clustering pro-
grams can be used to reduce dataset redundancy. These programs group similar
proteins in clusters, and then a single representative for each cluster can be selected
for alignment. The program CD-HIT [36] is very effective in fast-clustering large-
sequence datasets. The program processes a database containing a large number of
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protein sequences at a user-selected identity level and returns a nonredundant
sequence database containing a single representative per cluster plus a le describing
the content of each cluster. Other programs that can be used to reduce redundancy
through clustering are blastclust (included in the NCBI-BLAST package) [7], DIV-
CLUS [37], GeneRAGE [38], or TribeMCL [39]. DIVCLUS and GeneRAGE are
especially useful when clustering multidomain proteins. The Decrease Redundancy
tool at Expasy offers a convenient alternative to stand-alone programs as long the
number of sequences to cluster is not too high.

3.2.3.1 Multiple Sequence Alignment Methods

The most commonly used multiple sequence alignment methods are based on the
progressive-alignment approach [40,41]. ClustalW [42] is a widely used implemen-
tation of this strategy and currently one of the most popular automated multiple
sequence alignment tools. ClustalW is a three-step algorithm. First, the program
generates pairwise alignments of all pairs of sequences to determine sequence sim-
ilarity. Second, it de nes an order to incorporate sequences to the multiple sequence
alignment based on an approximate phylogenetic tree built using the scores from
the rst step. Finally, the multiple sequence alignment is built progressively based
on the order determined in the second step. An alternative to the progressive-
alignment approach is the simultaneous alignment of all the sequences, implemented
in DCA [43]. Both DCA and ClustalW rely on global alignments, but when proteins
share similarity restricted to a domain or motif, it is best to consider methods that
rely on local alignments, such as DIALIGN 2. DIALIGN 2 [44] is a segment-based
method that builds the multiple alignments by assembling a collection of high-
scoring segments through a progressive sequence-independent approach. In general,
DIALIGN 2 is slower than the other programs mentioned, but this problem has been
partially addressed through the release of a parallelized version [45]. This program
often performs very well when there is a clear block of ungapped alignment shared
by multiple sequences in different locations. A possible example would be the
alignment of several proteins sharing a common domain located at the carboxy
terminus in a few sequences, at the amino terminus in some others, and in some
cases in the middle of the sequence. POA [46] is a progressive algorithm that
compares favorably to ClustalW. POA employs partially ordered graphs instead of
generalized pro les to represent aligned sequences. For small alignments (up to 50
sequences) POA is generally as fast, or faster, than ClustalW, and for larger numbers
of sequences POA is signi cantly faster than ClustalW. 

T-Coffee [47] is one of the most accurate among current multiple sequence
alignment methods and represents a signi cant improvement over ClustalW. T-
Coffee is a progressive method in which the pairwise alignments are preprocessed
and used to build a library of information that is subsequently used to guide the
progressive alignment. One of the most interesting features of T-Coffee is its ability
to integrate information from heterogeneous sources (e.g., alignments produced by
other programs or protein structure data) to generate the nal alignment. On the
other hand, T-Coffee is even slower than ClustalW. Katoh et al. [48] indicated that
T-Coffee is unable to align more than 100 sequences of typical length on an average
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desktop computer. In contrast, ClustalW can align several hundred sequences under
the same conditions, but the practical limit for ClustalW would be approximately
1,000 sequences.

New and innovative multiple sequence alignment methods have recently been
developed. MAFFT [48] implements two novel techniques. First, it identi es homol-
ogous regions rapidly using the fast Fourier transform (FFT), and second, it uses a
simpli ed scoring system that reduces computation time while increasing the accu-
racy of the alignments. There are several alignment strategies implemented within
MAFFT, both progressive and iterative. Using the BAliBASE benchmark [49], the
MAFFT-NS2 progressive method is more accurate than ClustalW and 8 to 10 times
faster. Using the same benchmark, the MAFFT-NS-i iterative method is more accu-
rate than DIALIGN 2 and as accurate as T-Coffee but 12 times faster than the rst
and 8 times faster than the second. For sequence numbers over 60, MAFFT is over
100 times faster than T-Coffee. MUSCLE [50] is a new progressive method that
uses kmer counting for fast speed distance estimation and a new pro le function to
perform the alignment, followed by re nement using tree-dependent restricted par-
titioning. MUSCLE can achieve accuracies higher than T-Coffee, ClustalW, or even
MAFFT at speeds that compare very favorably against these other methods. In fact,
MUSCLE is currently the fastest algorithm available: it can align 5,000 sequences,
each 350 residues long, in seven minutes in an average desktop computer, a task
that would require about a year for ClustalW to complete. 

Here we have provided a collection of methods that vary in their speeds, accu-
racies, and overall performances, but this should not be interpreted as an endorsement
of the fastest or most accurate method while the rest are discarded. Each method
has its strengths and weaknesses that can make them more or less suitable to approach
a given biocomputational problem. Although some methods are faster or more
accurate than others on average, there are no general rules that can predict if a
program will succeed or fail while trying to perform a complex alignment, and this
is especially true for alignments in the Twilight Zone or alignments with multidomain
proteins. In those cases, the best possible approach is to use several methods and
then evaluate the results globally or integrate additional information (e.g., experi-
mental structural data, biochemical data, or secondary-structure predictions) into the
alignment to validate it. 

3.2.3.2 Integration of Multiple Sequence Alignments
and Structural Data

The accuracy of multiple sequence alignments can be greatly improved by the
inclusion of experimental or computational structural data or by the integration of
several multiple sequence alignments obtained via different methodological
approaches. T-Coffee is remarkably well suited for this task, because it allows the
combination of multiple, pairwise, global, or local alignments from different tools
into a single model. In addition, it estimates the consistency level of each position
in the new integrated alignment with respect to the original alignments. AltAVisT
[51] is another possible solution to integrating several multiple sequence alignments.
Whereas T-Coffee integrates multiple alignments in a single model, AltAVisT can
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compare two multiple sequence alignments, highlighting the local agreement
between them and identifying those regions that can be considered to be most
reliable. Recently, a novel method based on T-Coffee called 3DCoffee [52,53] has
been made available to the scienti c community. 3DCoffee allows the integration
of conformational information from one or more proteins structures with sequence
data to generate an improved multiple sequence alignment. The structure–structure
pairs are aligned with the program SAP [54], whereas the sequence-structure pairs
are aligned with the threading program Fugue [55]. The resulting collection of
pairwise alignments is then combined in a multiple sequence alignment using the
T-Coffee algorithm.

3.2.3.3 Analysis of Multiple Sequence Alignment Data 

The usefulness of multiple sequence alignments is not restricted to their use as
starting points for pro le generation in pro le-methods (both PSSMs and HMMs)
and other computational techniques. Multiple sequence alignments can be analyzed
and functional information obtained from them either from the alignment per se
(e.g., domain organization or local conservation) or by combination with data from
other sources (e.g., contextual, 3D structure, secondary-structure prediction, etc.).
The analysis of covariations in the amino acids at different alignment positions can
provide information about the structural and functional role of those residues. The
basic assumption in this analysis is that substitutions in functionally interacting
residues are constrained, so when a residue is mutated, the interacting residue will
undergo a compensatory mutation to preserve the interaction. The phenomenon
would manifest in multiple alignments as correlations between substitutions at pairs
of aligned positions. The Web-based CRASP program [56] and the stand-alone
PCOAT [57] are two examples of tools capable of detecting and analyzing the
occurrence of those coordinated substitutions in multiple sequence alignments and
provide valuable structural insights in the absence of an experimental 3D protein
structure. The simultaneous exploration of multiple sequence alignments in conjunc-
tion with protein structure in a phylogenetic context can be performed via the
Evolutionary Trace method. This approach uses phylogenetic information deduced
from a multiple sequence alignment to rank the residues according to their conser-
vation and then maps those residues onto a representative 3D structure. Clusters of
residues can identify functional sites in catalytic active sites, protein–protein inter-
action surfaces, and so on [58,59]. Several implementations of the Evolutionary
Trace method are available through servers such as TraceSuite II and ConSurf [60],
in addition to the stand-alone JEvTrace program [61]. 

Another important aspect in the analysis of multiple sequence alignments is
quality assessment and error correction. The integration of alignments generated using
multiple methods or integration with structural information can prevent some of these
errors, but even the best programs can reach only about 86% accuracy in alignment
tests using the BAliBASE benchmark. Some of these errors can be addressed by
postprocessing the alignments with a dedicated program like RASCAL [62].
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3.2.3.4 Visualization and Edition of Multiple Sequence 
Alignments 

Multiple sequence alignments contain a very high density of information. The extrac-
tion of that information in an understandable, concise, and visually appealing format
can be achieved through a variety of methods, which can be divided into two distinct
categories. Some methods use the sequence alignment as a scaffold to represent
features such as residue conservation or conservation of physicochemical properties,
whereas other methods process the information contained in a large multiple
sequence alignment and display it in a concise manner (domain/motif organization,
entropy plots, sequence logos, or phylogenetic trees).

Multiple sequence alignment viewers and editors provide convenient means to
manipulate and visualize the information contained in the alignment. Each position
in a multiple sequence alignment represents a conserved functional position, that
is, different amino acids located in the same position in the alignment are located
in the same position in the protein structure and share a common function. It is
possible to distinguish patterns in conservation in multiple sequence alignments
using coloring or shading based on strict identity or relative conservation. Alterna-
tively, amino acid grouping and coloring can correspond to various physicochemical
properties such as volume, charge, aromaticity, hydrophobicity, exibility, or ten-
dency to adopt a certain conformation. These tasks can be simpli ed considerably
with the use of one of a number of viewers and alignment editors that are available
as Web services or as stand-alone programs for different computational platforms.
Although automated methods simplify the task of aligning a large number of
sequences, they are by no means perfect. In some cases there might be obvious
errors in the alignments and they might require manual curation with the help of
an editor program. Some of the available choices of editors and viewers are BioEdit,
GeneDoc [63], SeaView [64], Cinema [65], Belvu, DCSE [66], AMAS [67], Pfaat
[68], POAVIZ [69], Jalview [70], or WAVis [71]. Multiple sequence alignments can
be visualized simultaneously with 3D structure data, and the structures can then
guide the curation of the alignments using programs such as STRAP [72], ViTO
[73], or ModView [74]. 

Sequence logos [75] are graphical representations that greatly simplify the dis-
play of information contained in multiple sequence alignments, particularly when
the number of sequences is substantial. In a logo, each position in the alignment is
represented by a stack of letters where the height of each stack is proportional to
the residue conservation, and the height of each single-letter amino acid code within

WebLogo [76] is a recent and very comprehensive Web-based implementation of
the sequence logo method capable of generating highly customized logos suitable
for publication. The conservation information contained in multiple sequence align-
ments can also be visualized through column graphics showing the variability in
each position along the alignment. This type of representation can be generated by
programs like Entropy Calculator [77] and WebVar [78].
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the stack indicates the relative frequency of the residue in that position ( g. 3.4).



54 In Silico Technologies in Drug Target Identification and Validation

FIGURE 3.4 Integration of sequence and structure
information. Two large multiple sequence alignments including residues catalytically important
for two protein families have been condensed into two sequence logos. The logos describe the
quinolinic acid phosphoribosyltransferase (QAPRTase) and nicotinic acid phosphoribodyltrans-
ferase (NAPRTase) families. Critical residue conservation has been mapped between the logos,
and those residues have been subsequently mapped from the logos to the three-dimensional
structure of yeast NAPRTase.
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3.2.4 FUNCTIONAL DOMAIN IDENTIFICATION

Proteins are modular entities in which each module or domain can have a distinct
functional role. There are many de nitions of protein domain, although in general
a protein domain can be described as a region within a protein that exhibits a well-
de ned set of characteristics (regarding sequence, structure, or function) and con-
stitutes an independent folding unit. Single-domain organization is prevalent in
prokaryotic and archaeal proteins. In contrast, eukaryotic proteins tend to contain
several domains, and this modularity can be confusing to many sequence similarity
methods because of possible domain rearrangements. Previously, I discussed the
process of function assignment by annotation transfer between a pair of homologous
proteins. Annotation transfer can also be achieved by matching the query protein to
a cluster of proteins sharing a common domain structure (protein family). Family
and domain databases identify conserved sequence blocks from multiple sequence
alignments and encode the information content into pro les. Searches against family
and domain databases are more ef cient than searches against sequence databases
because of the reduction in redundancy resulting from the inclusion of a number of
protein sequences into every single pro le.

Because domains can be considered independent structural and functional units,
each domain can be analyzed independently once it has been determined that the
query protein contains more than one domain. The identi cation of functional
domains can be performed directly by matching the entire query sequence or a
portion of it to a pro le from a domain database. Alternatively, the existence of
functional domains can be evaluated through indirect inference. For instance, if the
query protein contains a well-characterized domain that matches a database pro le
and the rest of the sequence is not covered by any known domain, that uncovered
region (provided it has a reasonable length) can be assumed to contain an additional
domain. For cases in which there are no matches to domains or protein families in
databases, the existence of multiple domains in the protein of interest can still be
inferred through other methods. For example, the connectors between domains tend
to be disordered or exible linkers. Accordingly, predictions of disorder or compo-
sition bias, linker predictions, or secondary-structure predictions can be used to infer
the spatial location of uncharacterized domains. 

3.2.4.1 Direct Domain Assignment through Search
in Domain/Family Databases

A comprehensive description of the databases and methods for domain, family, and

sion of the application of family and domain information to function assignment
will be limited to Pfam, the virtual standard in protein domain/family classi cation,
and to InterPro and CDD, two resources that integrate multiple domain databases.
In addition, I discuss tools that can be used to scan those databases, namely HMMER,
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pattern identi cation is available in chapter 2. Therefore, in this chapter, the discus-
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IprScan, and RPS-BLAST, and how they can be optimized to maximize the detection
of distant homologies. 

Pfam [79], an abbreviation for Protein Families, is a library of pro les corre-
sponding to protein families and conserved functional domains. Pfam can be

access and a list of mirrors) via the Pfam::Alyzer Java interface or installed locally.
Pfam is composed of two parts: Pfam-A is a manually curated database of protein
domains and families, whereas Pfam-B is a database of domains generated by
automatic clustering of the Swiss-Prot sequences not covered by Pfam-A using the
program Domainer [80]. For each protein family in Pfam-A, a curated multiple
sequence alignment has been built and an HMM has been generated from this seed
alignment. Pfam domains and families contain curated annotations describing their
function, the variability of function within a certain family, and structure links when
available. Therefore, those annotations are a valuable asset in deciding to which
degree it is possible to transfer the annotation between matching domain(s) and the
query sequence.

Pfam searches are performed using HMMER to scan a query protein for the
occurrence of Pfam domains. HMMER can search for either complete domains or
fragments. The fragment mode is less sensitive in general, but it is useful to detect
distant domain similarities especially when there are insertions. The cutoffs used by
HMMER can be of two types: gathering thresholds or E-values. Gathering thresholds
are the default, and they are very reliable limits set manually by the curators of the
Pfam database to avoid false positives. Accordingly, they are useful for automated
annotation. For functional discovery in the Twilight Zone, E-values are preferred.
More distant homologies can be detected using this cutoff method but at the cost of
requiring manual evaluation of the results due to the higher chance of occurrence
of false positives, overlapping domains, and so on. The Pfam Web servers allow
users to select their cutoff method of choice and specify threshold E-values. There-
fore, the Pfam Web servers can be used to explore very distant homologies and
nonstatistically signi cant matches.

The access to Pfam through most of the Web sites is limited to searching one
sequence at a time. Until recently the only option for large searches against Pfam
was using a local installation or the batch search service of the Pfam server at the
Sanger Institute. A recent option for batch searches is the SledgeHMMER server
[81], which as an added bonus utilizes an optimized version of the hmmsearch
algorithm that is several times faster than the hmmpfam program included in the
HMMER 2.3.2 package used by the of cial Pfam mirrors. SledgeHMMER can be
downloaded and installed locally.

The search of a sequence against a library of pro les can be also accomplished
using the program RPS-BLAST (Reverse PSI-BLAST), part of the NCBI-BLAST
package [7]. Whereas PSI-BLAST searches a pro le against a database of sequences,
RPS-BLAST searches a query sequence against a database of pro le family models,
hence the name Reverse PSI-BLAST. PSSMs generated by PSI-BLAST can be
converted to the models used by RPS-BLAST using the programs makemat and
copymat, also part of the NCBI-BLAST package. The NCBI Conserved Domain
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Database (CDD) [82], which consists of a collection of PSSMs derived from the
Pfam, SMART [83], and COG [84] databases, uses RPS-BLAST as its search tool.

Pfam and SMART have been integrated with PROSITE [85], ProDom [86],
PRINTS [87], UniProt [88], TIGRFAMs [89], PIR-SuperFamily [90], and SUPER-
FAMILY [91] to form InterPro [92], which has become a de facto one-stop shop for
domain- and protein family-related analysis. InterPro can be searched with InterProS-
can [93], a tool that combines the different recognition methods used by each speci c
database into a single integrated resource (FingerPRINTScan for PRINT; ScanRegExp
and Pro leScan for PROSITE; BlastProDom for ProDom; HMMSearch for Super-
Family; and HMMPfam for Pfam, SMART, TIGRFAMs, and PIRSuperFamily). The
cutoffs used by each individual search method included in InterProScan are very
conservative (e.g., gathering thresholds for HMMPfam), so exploration of very distant
homologies is not possible using the InterPro Web server. On the other hand, the
InterPro database and InterProScan can be downloaded and installed locally. The
cutoffs are de ned in con guration les for each database and application used, and
they can be edited by the user, transforming InterPro into a powerful tool capable of
exploring remote homologies across multiple domain databases.

The functional assignment of a query protein can also be accomplished by using
tools speci cally designed to assign a protein to a certain functional group (e.g.,
enzymes). The SVM-ProtEnzyme [94,95] and ArchaeaFun [96] enzyme predictors
are good examples of this speci c class of function annotation tools. 

3.2.4.2 Domain Assignment through Indirect Evidence

The location of functional domains can be also inferred indirectly through a variety
of computational approaches. Domain boundaries can be predicted from primary
sequence using a number of available tools like DOMAINATION [97], DGS [98],
SnapDRAGON [99], CHOPnet [100], DOMpro, DomPred and DomSSEA [101],

Some of these domain-prediction programs use secondary-structure predictions to
identify possible interdomain linkers. In general, any protein secondary-structure
prediction method (e.g., PSIPRED [105]) can be used as a crude tool to predict the
location of interdomain regions, as in many cases those linkers are extended random-
coil segments. The algorithms used to predict domain boundaries are extremely
diverse, ranging from the amazingly simple DGS, which uses sequence length as its
only input and relies on statistical domain distributions, to elaborated methods such
as SnapDRAGON, which uses ab initio structural modeling. 

The likelihood of multiple domains in a protein can also be estimated from the
distribution of compositionally biased or predicted disordered regions, which tend
to function as interdomain linkers. This type of subsequences can be identi ed using
tools such as SEG [106], CAST [107], DisEMBL [108], PONDR [109], Disopred
2 [110], GlobPlot [111], DISPro, CARD [112], and NORsp [113]. Armadillo, DLP2
[114], or DomCut can also be used to predict the linker regions of multidomain
proteins from their primary sequence.

In addition, domain organization can be inferred from the presence of trans-
membrane helices. Transmembrane helices are compositionally biased sequences,
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so in the case of proteins with a single transmembrane helix, the helix functions
as a low-complexity region separating domains located in opposite sides of a bio-
logical membrane. In the case of proteins with multiple transmembrane helices, such
as receptors, channels, and transporters, the pore-forming transmembrane helices
constitute a domain, whereas the extramembrane segments might contain other
functional domains (e.g., oligomerization domains, gating particles, ligand binding
domains, etc.). TMHMM [115] has been considered the best-performing transmem-
brane prediction program [116] for some time, although the recently released Phobius
[117] appears to be even more accurate than TMHMM.

Domain linkers are also likely to be regions with high sequence exibility. The
relative exibility of each position in a protein sequence can be estimated using the
ProtScale tool at Expasy with an average exibility index amino acid scale. Multiple
sequence alignments are an extra tool that can be used to predict the location of
interdomain linkers, because those regions are usually less mutationally constrained
than functional domains, resulting in regions of the alignments that show poor region
conservation and a high level of entropy. 

3.2.5 FUNCTION ASSIGNMENTS BASED ON CONTEXTUAL 
INFORMATION

Context-based methods in function annotation are recent additions to the collection
of methods that the computational biologist can use to assign function to uncharac-
terized proteins. These methods, complementary to homology-based function pre-
dictions, generally yield less information than similarity-based approaches. Still,
they are appealing because some of them take full advantage of genomic information
(e.g., conservation of genomic context, phylogenetic pro les, etc.), becoming true
genomic methods. Whereas homology-based function assignment relies on annota-
tion transfer, the basic principle or paradigm underlying contextual methods is guilt
by association [118]. Under this principle, proteins that colocalize chromosomally
through protein–protein interactions, clustered expression pro les, or phylogeneti-
cally are considered to be functionally linked. One of the caveats of the use of
contextual information is that whereas similarity-based methods usually yield bio-
chemical functions, contextual methods tend to provide broader biological predic-
tions (e.g., metabolic pathway; subcellular location; or interacting proteins, ligands,
or cellular components). Studies performed on the Saccharomyces cerevesiae
genome estimated that up to 30% of the contextual function predictions were false.
Conversely, when predictions were based on consensus built from two or three of
the contextual methods used, the rate of false positives decreased to 15% [119],
suggesting that in some cases these techniques might compete successfully with
annotation approaches based on homology. 

3.2.5.1 Gene Fusions: The Rosetta Stone Method

The principle underlying the use of gene fusions to predict protein function is that
if two proteins A and B are present in one organism, they are likely to interact if
their homologs are expressed as a single AB protein in another organism [119,120].
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These fused proteins are called Rosetta Stones. The practical application of Rosetta
Stones to the assignment of function to hypothetical proteins is as follows: if a query
hypothetical protein is homologous to an uncharacterized domain fused to a char-
acterized domain, the function of the characterized domain can be used to infer the
function of the unknown domain ( g. 3.5). The identi cation of a protein as a Rosetta
Stone provides functional information and evidence of its essentiality. The compar-
ison of Drosophila with other organisms shows in an overwhelming majority of
cases the Rosetta components participate in the core metabolism (i.e., intermediary
and basic information transfer metabolism) [121]. In some respects, the gene fusion
analysis is similar to the use of gene clusters for inferring functional links from
genomic context.

Among other resources, gene fusion data can be retrieved from The Search
Tool for Recurring Instances of Neighboring Genes (STRING) [122], Allfuse [123],
Phydbac [124], Prolinks [125], FusionDB [126], or InterWeaver [127]. Allfuse
contains exclusively gene fusion data and does not allow homology searches using
a query sequence. On the other hand, Allfuse allows search by query ORF name
or by annotation and performs other types of searches. Searches with a query
sequence can be performed in STRING, FusionDB, or InterWeaver. The advanced
search interface in FusionDB has extended functionalities that include the same
types of searches that can be performed by Allfuse. If there is a positive result,
FusionDB returns sequence alignments between the query protein and Rosetta
Stones, phylogenetic trees for the component moieties of the fused protein, and
structural links if available.

STRING is a comprehensive contextual annotation system not restricted to gene
fusion data. STRING also includes conserved gene neighborhood analysis, phylo-
genetic pro les, coexpression, experimental data evidence, information retrieved
from other databases, and text mining. Results are displayed in (a) a summarized
view, (b) detailed views for each method used to infer function annotation, and (c)
a graphical network view showing the predicted functional associations. InterWeaver

FIGURE 3.5 The use of gene fusions (Rosetta Stones) for contextual annotation of hypo-
thetical proteins. The example shows that if an unknown protein and a thymidylate synthase
(ThyA) are present in a number of organisms, it is very likely that the unknown protein is a
dihydrofolate reductase (DHFR), if its length, sequence, or other physicochemical character-
istics are compatible with those expected in a DHFR.
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shares some of the capabilities of STRING, namely the integration of gene fusion,
protein–protein interaction, and biomedical literature text mining.

3.2.5.2 Domain Co-occurrence

In many cases, the detection of a domain in a query protein using homology methods
can suggest a range of functions too diverse to be of practical use for function
assignment. In contrast, the contextual information provided by the presence of
additional domains, known as domain architecture, can present additional constraints
that can re ne a protein’s predicted functional role. For example, the presence of a
cAMP-binding domain or a DNA-binding domain are not enough to assign a de ned
functional role to a protein, but the presence of both domains in the same protein
point toward a function as a transcription regulator. As previously shown, Pfam,
InterPro, or other domain/family assignment tools can be tailored to allow the
detection of distant homologies. If several predicted domains are detected in the
query sequence but the matches have low con dence levels, the relevance of these
results can be supported if the matches are concordant with domain architectures
previously observed in other proteins.

Domain information can be used to perform searches using the domain archi-
tecture query tools featured by Pfam and SMART. For instance, a search for
“cNMP_binding and CRP” would identify all the proteins containing a cyclic-
nucleotide binding domain and a catabolite regulator protein (CRP) domain. CDD
does not include a domain architecture query capability, but it does contain CDART
[128], a similarity search tool and architecture viewer. CDART can display the
domain organization of the query protein as well as the domain architectures of other
proteins containing those domains. InterPro also lacks the architecture search capa-
bilities of Pfam and SMART, but InterPro entries contain a very useful “Architec-
tures” view. In addition, InterPro features a Domain Architecture (IDA) concise view
that facilitates domain composition analysis of proteins and contains links to alter-

3.2.5.3 Genomic Context: Gene Neighborhoods, Gene 
Clusters, and Operons

Gene context analysis is an effective tool for function assignment, and its power is
continuously increasing with the growth in the number of sequenced genomes. In
correlated gene context analysis, a functional link may be inferred between two
proteins if their respective genes are found to be neighbors in several genomes. The
presence of a gene as part of an operon (i.e., a group of genes arranged as a single
transcriptional unit) provides functional information, because proteins originating
from the same operon are usually part of the same metabolic pathway or they are
involved in coordinated cellular activities in response to a common stimulus. Nor-
mally, these groups of genes are contiguous, and they are transcribed in the same
direction. Although conservation of operon architecture tends to be poor [129], genes
linked through an operon in an organism have been observed in close proximity in
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other organisms, indicating the existence of a stabilizing selective pressure that tends
to keep genes functionally linked nearby and prevents the disruption of those gene
clusters. Multiple lines of evidence suggest that the vast majority of gene clusters
that are conserved in bacterial and archaeal genomes are operons [130].

For practical uses, if the gene encoding the potential target is part of a gene
cluster conserved across multiple species, it can be assumed that the proteins encoded
by the genes in the cluster are functionally linked. If some members of the cluster
are functionally annotated, this annotation might be used to propose a role for the
target protein. In some cases, a gene cluster might contain only hypothetical proteins,
in which case each of those would be subject to the same annotation efforts devoted
to the initial target.

Even if a protein of interest is not in a conserved gene cluster in its parent
organism, genomic context analysis can still be applied. If homologs in other organ-
isms are part of conserved gene clusters and the members of the cluster have
homologous proteins in the source organism of the target protein, a context-based
function assignment is still feasible. Gene context-based functional prediction is
considerably more dif cult in eukaryotes than in prokaryotes because of the apparent
lack of clustering of functionally linked genes. Yet there are exceptions to this rule.
Several operons have been identi ed in C. elegans [131], and there are even cases
in which functional gene context has been preserved in archaea, bacteria, and mul-
tiple eukaryotes, including humans [132]. Gene neighborhoods and gene order can
be assessed using tools such as ERGO [133], STRING [122], or SNAPper [134].
ERGO is capable of performing two types of genomic context analysis. The rst
method, based on the computation of “pairs of close bidirectional best hits” [135],
predicts operons that have been preserved between pairs of genomes. The discrim-
inating criteria to consider that two genes are part of an operon is that they are not
more than 300 base pairs apart and that they are situated on the same DNA strand
in each of the analyzed genomes. In the second analysis method, orthologs within
a 2 to 20 kb segment area common between genomes, independently from their
chromosomal orientation, are mapped through the Pinned Regions tool. This tool
highlights the proteins that tend to cluster together within a certain genomic region,
although the nature of that clustering is less precise than the functional linkage
observed in operons. Thus, the annotations from co-occurrence of clustered genes
in pinned regions are less con dent than annotations derived from genomic context
in conserved operons.

STRING is not limited to genomic context analysis. Instead, it combines several
contextual annotation methods, and their outputs can be displayed individually or
combined in a concise and visually appealing network representation. STRING
allows the exploration of distant functional relationships by two different methods.
First, the user can select the level of con dence of the predictions, from low con -
dence (15%) to highest con dence (90%). Second, the user can select the depth of
the interaction network explored by STRING. The default is a single level network.
If higher depths are selected (up to 5), after the best neighbors of the query gene
have been identi ed, STRING searches in turn for their respective neighbors and
then it continues iterating until the user-selected limit is reached or the search has
converged (i.e., when an iteration detects no new neighbors). 
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SNAPper is similar to STRING, but it does not require that related genes form
conserved gene strings. Instead, they only need to be in the vicinity of each other,
which is comparable to the pinned region analysis performed by ERGO. Pinned
analysis (as well as analysis of gene fusions, metabolic reconstruction, etc.) can also
be performed by SEED. Other available online resources to access genome context
information are the “Exhaustive Search for Gene Clusters in Two Genomes” option
in KEGG [136], the Swiss-Prot Genome Proximity Viewer option for each Swiss-

Human, or Ensembl-Mouse), the Gene Neighbors database and tool collection [137],
the NCBI Map Viewer, the “Search Genes and Operons” tool in PRODORIC [138],
GeConT [139], or Prolinks [125].

3.2.5.4 Phylogenomic Profiles

Phylogenomic pro ling relies on the correlated evolution between interacting pro-
teins. The evolution of a protein pair is correlated when the proteins share a common
pattern of protein presences and absences over a set of complete genomes. Interacting
proteins tend to share similar evolutionary histories because the preservation of
interactions and biochemical functions requires the coordination of evolutionary
changes. Therefore, proteins that share a similar phylogenomic pro le are expected
to be functionally linked [140,141] and can be clustered based on the similarity of
their respective phylogenomic pro les. If an uncharacterized protein is included in
a cluster that contains one or more functionally de ned proteins, a functional linkage
can be established.

Functional links can be inferred from similar matching phylogenomic pro les
and from complementary phylogenomic pro les. Complementary phylogenomic
analysis looks for protein pairs in which one of the proteins is present in a genome
and absent in the other, and vice versa. These protein pairs often correspond to
proteins that perform the same function. The case of the Thymidylate Synthase
Complementing Proteins (TSCPs), a family of alternative thymidylate synthases, is
remarkable and shows the power of this method. Thymidylate synthase is an essential
enzyme; therefore, when its absence was documented in a number of prokaryotic
genomes, it was a perplexing anomaly. The functional role of TSCPs was predicted
based on (a) a phylogenomic pro le that, with few exceptions, complemented that
of thymidylate synthases [142] and (b) literature data indicating that a TSCP could
promote the growth of a thymidine auxotrophic strain of Dictyostelium in the absence
of thymidine [143]. Subsequently, it was experimentally con rmed that TSCPs
function as thymidylate synthases [144] and are structurally unrelated to typical
thymidylate synthases [145,146]. 

The use of phylogenomic pro les showing the patterns of gene distribution
among particular lineages of organisms with completed genomes is still limited due
to the high noise levels. Phylogenomic pro les still can be very useful to support
weak predictions generated by other methods or in combination with experimental
data. The power of this method is increasing rapidly in conjunction with the growing
number of sequenced genomes.
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Phylogenomic pro le analysis can be carried out using tools such as STRING
[122], Phydbac [147], ADVICE [148], PLEX, MATRIX [149], or Prolinks [125].
Both STRING and Phydbac can be queried using a single sequence as input, making
their use straightforward when these methods are applied to a hypothetical protein.
ADVICE and MATRIX require a pair of sequences to compare their phylogenomic
pro les, making them more useful to validate functional linkage hypothesis generated
from other contextual data sources. PLEX can use as input either a sequence or a
phylogenomic pro le, whereas Prolinks uses exclusively a protein identi er as input.

3.2.5.5 Metabolic Reconstruction

The process of predicting the entire set of metabolic reactions in an organism is
known as metabolic reconstruction. Metabolic reconstructions are performed by
deducting the core metabolic functionality for an organism through the integration
of primary sequence with biochemical, pathway, physiological, or gene organization
data. The reconstruction of the metabolic networks normally results in “gaps” in the
pathways that can be lled with hypothetical proteins, forming the basis for function
assignment [150]. The assignment of functionally uncharacterized genes to functions
in a metabolic network can be accomplished by similarity, contextual methods, or
both. Once a protein with unknown function has been placed into a speci c metabolic
pathway or network, it is possible to infer a functional role. The information that
can be gleaned from metabolic networks is not limited to enzymatic activities. In
some cases, it is possible to propose a regulatory role, propose a subcellular location,
or even predict expression patterns. 

Resources such as KEGG and MetaCyc [151] provide basic background infor-
mation about biochemical pathways. Metabolic pathway analysis and metabolic
reconstruction can be performed using PathBLAST [152], SEED, PUMA2, ERGO,
metaSHARK, PathFinder, PRIAM [153], or BioSilico [154]. Visualization of path-
way information can be performed by a number of commercial products as well as
the open source Cytoscape [155].

3.2.5.6 Protein–Protein Interactions

The study of protein–protein interactions is a powerful approach to gain insight into
protein function, because proteins rarely function alone in cells. Instead, they tend
to interact with other proteins and often are part of complexes or networks that are
constitutive elements of signal transduction pathways. Experimental protein–protein
interaction data from genome wide yeast two-hybrid screens, coimmunoprecipitation
followed by mass spectrometry, GFP labeling plus uorescence resonance energy
transfer, or protein arrays is increasingly available through public databases.

Unfortunately, analyses of multiple independent protein–protein interaction data
sets corresponding to the same organism have reported high rates of false-positive
interactions. Therefore, protein–protein interaction data should be used with caution
and only as corroborating evidence to support other sources of functional evidence.
This is especially true when interactions are predicted by extrapolations based on
sequence similarity between query proteins and experimentally described interact-
ing pairs.
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The majority of protein–protein interaction analysis tools rely on information
obtained from repositories such as BIND [156], DIP [157], MINT [158], and GRID
[159]. Interaction data from public databases can be accessed directly to retrieve
experimental information. Alternatively, protein-interaction data can be accessed via
predictive tools such as STRING and InterWeaver. Identifying protein–protein inter-
actions can provide clues beyond a functional role or subcellular location. It is
possible to predict a protein’s metabolic importance based on the density of edges
connecting nodes, because it has been shown that nodes with a high density of
connections are more likely to contain essential genes [160].

3.2.5.7 Microarray Expression Profiles

The emergence of public databases containing expression data derived from DNA
microarrays allows alternative approaches to explore protein function. Microarray-
based functional annotation relies on the clustering of proteins according to their
expression behavior under a certain range of experimental conditions (developmental
stage, mutations, exposure to different environmental agents, effect of drugs, etc.).
Subsequently, function is assigned via guilt by association based on the premise that
clustered genes must be involved in similar biological functions [161,162,163].
Therefore, if a search of an uncharacterized protein against a microarray database
reveals a match to a speci c functional cluster, one can assume that either the function
of the query protein is the same as the proteins in the annotated cluster or it is
functionally related to them.

Although more prone to error, indirect approaches can be used. For instance, if
there is no microarray expression data for the organism or target of interest, it is
still possible to apply sequence similarity methods to search for homologous proteins
in a microarray database. When sequence similarity does not return any matches in
the microarray databases, other hybrid transitive strategies can be applied. For
example, a protein functionally linked to the target of interest could be identi ed
through a Rosetta Stone approach, and subsequently that new protein could be used
to search microarray data. However, the lack of consistency among microarray

about this issue). Currently, microarray data cannot be used reliably as a stand-alone
tool for function annotation in the absence of corroborating experimental or com-
putational evidence, yet it is expected that improvements in the replicability of this
technology will strengthen and validate its usefulness for function assignment.

Several public databases serve microarray data and include tools for microarray
analysis, including the Stanford Microarray Database [165], the RIKEN Expression
Array Database [166], and ArrayExpress at the European Bioinformatics Institute [167].

3.2.5.8 Other Sources of Contextual Information for Protein 
Annotation

Literally hundreds of bioinformatics tools can be applied to obtain additional sup-
porting data for functional inference. Among others, those tools can be used to predict
posttranslational modi cations (e.g., phosphorylation, myristoylation, sulfation,
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sumoylation, or glycosylation), intracellular sorting and subcellular location (e.g.,
mitochondrial, plastidial, peroxisomal, nuclear, or periplasmic), structural features
(e.g., secondary structure, transmembrane alpha-helices, transmembrane beta-bar-
rels, coiled-coils, disordered regions, or amphipatic helices) or primary structure
characteristics (e.g., molecular weight, isoelectric point, or global descriptors based
on amino acid scales such as average hydrophobicity, polarity, or exibility).

The CMS Molecular Biology Resource [168] at the San Diego Supercomputer
Center contains an excellent compendium of Web-accessible bioinformatics tools.
The ExPASy (Expert Protein Analysis System] proteomics server of the Swiss
Institute of Bioinformatics [169] and the EBI Toolbox are two other popular tool
collections. Another useful resource is Herbert Mayer’s Bioinformatics World Web
site, which contains a comprehensive collection of bioinformatics tools and software,
including evaluations, comments, and tutorials. 

The fast pace of the development of technical advances in this eld of research
requires frequent evaluation and acquisition of new computational tools and data-
bases. To put the current state of bioinformatic tools and database development into
perspective, the 2004 update of the Molecular Biology Database Collection, pub-
lished every year in the journal Nucleic Acids Research, contains background infor-
mation and links for 548 databases [170]. In addition, each year Nucleic Acids
Research has a special issue dedicated to Web-based tools. The 2004 issue contained
articles about 137 Web-accessible tools, which is a small fraction of the tools
available considering that in the journal Bioinformatics 30 to 40 new bioinformatics
tools and databases are reported in each issue. Other literature sources for compu-
tational tools applicable to functional annotation are BMC Bioinformatics, Genome
Research, Journal of Bioinformatics and Computational Biology, BioTechniques,
Journal of Computational Biology, Protein Science, and Genome Biology.

3.3 FROM SEQUENCE TO STRUCTURE: HOMOLOGY 
AND AB INITIO STRUCTURE MODELS

When no function information can be obtained from primary sequence and no 3D
structure is available to attempt structure-based function annotation, a valid alterna-
tive strategy is the construction of a structural model followed by the application of
structural analysis methods. Depending on the quality of the structural templates,
gauged by the degree of identity between query protein and template structure,
homology modeling, fold recognition/threading, or ab initio structure prediction

Homology modeling techniques generally can build a structural model for a
target protein if the sequence identity to a high-resolution structural template is
greater than 30%. In this case, the key to success and the limiting factor in the
accuracy of the model is the correct structural alignment of the query sequence to
the template. The process of building a homology model is conceptually simple.
First, an alignment is performed between the sequence of the target protein and that
of the structural template (a protein structure that has been determined by experi-
mental methods). Next, the residues in the template structure are replaced with the
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residues from the target protein. Finally, the conformation of the side chains in the
model needs to be optimized. In some cases, complete chains must be built in the
case of insertions (loops). 

Some common choices of software for homology modeling are Modeller [171],
WhatIf [172], or Jackal. Modeller is available as a stand-alone program, as a Web-
accessible tool (ModWeb), or integrated in the commercial product Accelrys Dis-
covery Studio Modeling. Homology modeling can also be performed through a
number of automated servers, including Swiss-Model [173], LOOPP [174], 3D-
Jigsaw [175], HOMER, or CPHmodels [176].

If identity levels between the target protein and the sequences of structures in
PDB fall into the Twilight Zone, suitable templates can still be identi ed and
aligned to our target by using threading or fold recognition algorithms. These
approaches are equivalent to the distant detection pro le–pro le methods for the
search on distant homologies previously discussed in section 3.2. In many cases
the same tools used for distant homology searches are used for fold recognition
simply by switching from searching a sequence database like Pfam to a structural
database such as CATH, SCOP, or PDB. When these methods are used, the target
protein fold is predicted by “threading” the target sequence through a library of
3D folds to try to nd a match. This is accomplished by using a scoring function
that assesses the t of the target sequence to a certain fold. Multiple threading
methods exist; some of those tools can be accessed through individual servers (e.g.,
FFAS03, SAMT-02, or 3D-PSSM) or multiple threading methods can be accessed
simultaneously through metaservers such as Bioinfo.PL [177] or Genesilico [178].
Ab initio protein structure prediction methods use physical principles and do not
rely on homology modeling, threading, or secondary structure predictions. The
methods are appropriate when no signi cant structural templates can be detected,
as the only required input is the primary sequence of the protein of interest.
Essentially, ab initio prediction algorithms take the polypeptide chain and calculate
a folded 3D structure with minimal potential energy. Several different methods for
ab initio protein structure prediction exist, and they have improved dramatically
in recent years. The best results have been obtained with Rosetta [179]. Rosetta is
fully capable of modeling protein 3D structures in the absence of detectable
sequence similarity to a previously determined structure, using exclusively the
primary sequence of a target protein as initial input [180]. The predictions from
Rosetta are limited by the size of the protein, up to approximately 150 residues.
Despite this limitation, ab initio structure prediction can be a valuable method,
because a signi cant fraction of hypothetical proteins are within the acceptable
sequence length range.

Once protein structures have been predicted, they can be compared against the
PDB to detect structural similarities and infer possible functions. Subsequently, these
predictions might be integrated with contextual sources of functional associations
to improve the reliability of the predicted function assignments [181,182]. The
Rosetta program is Web accessible through the Robetta [183] and HMMSTR/Rosetta
servers [184], or it can be installed locally.
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3.4 STRUCTURE-BASED FUNCTIONAL ANNOTATION

Structure-based functional annotation often succeeds when sequence-based meth-
ods fail, because in many cases evolution retains the folding pattern long after
sequence homology becomes undetectable. Accordingly, structural comparisons can
reveal functional similarities that would be impossible to detect from sequence
alone. The starting point of a structure-based function assignment project can be a
3D structure built using comparative modeling, a model derived from fold recog-
nition and threading, an ab initio model, or the protein structure of a protein lacking
function assignment.

This last case was indeed very rare until recently. The advent of structural
genomics projects has resulted in an unprecedented number of protein structures
deposited in the PDB identi ed as hypothetical proteins. The number of structures
labeled as hypothetical protein or “unknown function” ranges from 30 to 60% of
the total number of depositions depending on the structural genomics center, and
this number is increasing exponentially. Currently, the number of structures of
hypothetical proteins deposited in the PDB doubles every six months.

The structures of these hypothetical proteins have been deposited in the PDB
without any function assignment due to the lack of sequence similarity to functionally
characterized proteins at the moment when they were initially annotated, thus making
them targets for annotation. This task is facilitated by the explosive growth in both
sequence and structure data, which provides a continuous ow of information that
can be used for function assignment. As in the case of sequence-based annotation,
the assignment of function when 3D similarities have been detected between two
structures is derived from annotation transfer.

The large number of structures from genomics centers might become an ideal
initial target pool from which to identify target proteins suitable for drug discovery.
The computational effort required to assign function to structures or protein
sequences is comparable. As a bonus, once the potential pharmacological value of
the target structure has been established, the structure can be used immediately for
virtual ligand screening and other bioinformatics or cheminformatics methods. The
basic procedures involved in annotation of protein structures as well as common
tools used for the task are outlined next.

3.4.1 STRUCTURAL DATABASE SEARCHES

Typically, the rst step in structural annotation is to search the query structure against
other structures deposited in the PDB using tools such as DALI [185], VAST, SSM
[186], CE [187], DEJAVU [188], or MATRAS [189]. If the structure contains
multiple structural domains, it is advisable to split the structure into separate coor-
dinate les and submit each domain separately for structural comparison. Structural
domains can be identi ed using tools that rely on geometric criteria and protein
dynamics, such as Protein Domain Parser [190], DomainParser [191], or Domain-
Finder [192]. Alternatively, domain composition can be evaluated by comparison to
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databases of structural domains such as CATH [5] or SCOP [4]. The GRATH server
[193] can search a query structure against CATH, and SSM or MATRAS can be
used to query a structure against SCOP. The geometry-based partitioning methods
are especially useful to analyze the domain organization of novel protein structures
that contain new folds or fold variants not present in CATH or SCOP.

3.4.2 STRUCTURAL ALIGNMENTS

When possible structural matches have been identi ed through searches, the next
step is to con rm their signi cance by structural alignment. Superimposed structures
allow comparing functionally relevant features, conserved residues required for
catalysis, residues critical for ligand binding or protein–protein interactions, and so
forth. Three different approaches to structural alignment exist: rigid, exible, and
nontopological alignments. In the rst and most common case, when similarities
reported by database searches are high, both structures can be simply superimposed
as rigid entities. Rigid structural alignments can be generated with CE, MATRAS,
SSAP [194], SuperPose [195], C-alpha Match [196], or ProFit. In some cases, the
database searches return hits with low con dence levels, which can be due in part
to structural rearrangements. Consequently, partitioning the structure into domains
and realigning them separately with the structure hit using a rigid approach can
reveal a better structural match. Alternatively, the structure superimposition can be
improved by using exible alignment. For instance, when trying to compare two
kinases, one in a closed conformation and the other in an open conformation, rigid
alignment tools will align a domain very well and misalign the other. Aligning each
domain separately would result in a better alignment for each domain, and a exible
alignment would align well both domains by introducing a hinge between the large
and small domains of one of the aligned kinase structures. Flexible structural align-
ments can be built using FATCAT [197] or FlexProt [198]. Finally, it is possible that
two proteins share a similar fold, but the connections between secondary structure
elements are different. In this scenario the use of nontopological alignment methods,
such as SARF2 [199] or MASS [200], can reveal interesting and unexpected struc-
tural similarities. As with protein sequences, the structural alignments can be pair-
wise or include multiple entities. Structural multiple sequence alignments can be
produced by programs such as CE-ME [201], MASS, ProFit, or MATRAS. 

3.4.3 USE OF STRUCTURAL DESCRIPTORS 

When structural alignments do not reveal structural similarities that allow annotation
transfer, other approaches can be used to obtain information about the function of
the target protein. The analysis of the conservation of 3D patterns of functionally
relevant residues and evolutionary trace analysis (described in section 2.3.3) are
examples of these methodologies. Structural patterns consist of coordinate les in
PDB format containing the spatial positions of functionally important residues without
considering their positions on the primary or secondary structure. In fact, these
patterns can correspond to functional sites present in proteins with completely dif-
ferent folds. The program PINTS (Patterns In Non-homologous Tertiary Structures)
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[202] can compare a protein structure against a database of patterns or a structural
pattern extracted from the query structure against a database of protein structures.
This last type of search can also be performed using the program SPASM [203].
PASS [204], a fast cavity-detection program for the identi cation and visualization
of possible protein-binding sites, is one of the tools that can be used to extract
structural motifs that can be used subsequently by PINTS or SPASM.

Surface features are not strictly dependent on sequence or fold conservation.
Experimentally determined surface features from a certain structure can be used to
search and detect matching sites on the surfaces of unrelated proteins without
function assignment. This can be accomplished using methods such as SiteEngine
[205]. Other tools that can be used for the analysis of protein surfaces are Surface,
GRASS [206], and SURFNET [207].

3.5 FINAL REMARKS AND FUTURE DIRECTIONS 

With thousands of genomes completed or in progress (table 3.1) and almost 39
million entries in GenBank (Release 144, October 2004), functional annotation and
function assignment are increasingly urgent and demanding tasks. Among the new
protein sequences, proteins that lack function annotation (described as hypothetical,
uncharacterized, or unknown) are particularly challenging. Currently, the Entrez
protein database contains over 1 million hypothetical proteins.

Functions have been experimentally determined for a small number of all the
proteins for which sequences are known. These sequences play a crucial role, because
they are the basis for all computational function assignments. Therefore, increases in
high-quality computational functional annotation are inevitably dependent on
increases in the volume of empirical data gathered using experimental methods,
fundamentally from biochemistry, biophysics, and cell biology. The sheer size of the
task of annotating all the hypothetical protein sequences will possibly require a
focused effort reminiscent of the structural genomics initiatives as well as constant
feedback between experimental and annotation efforts. Hypothetical proteins targeted

TABLE 3.1
Current Status of Genomic Projects

Genome Source Completed Ongoing
Eukaryal 31 451
Bacterial 178 496
Archaeal 20 27
Viruses 1680 n.a.
Organelles 679 n.a.
Phages 237 n.a.
Viroids 36 n.a.

Source: From Genomes On-line Database
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for experimental characterization will need to be selected according to prioritization
schemas that will maximize the functional space that can be covered with limited
experimental resources.

Structural genomics projects were expected to provide clear evidence regarding
the functions of hypothetical proteins and allow their functional annotation with
minimal or no experimental poststructural analysis. It has been observed that the
functions of hypothetical proteins can seldom be inferred exclusively from their
structures. In fact, in a majority of cases structures provide only corroborating
evidence for inconclusive annotations derived from sequence similarity searches.
These observations argue for the need for increased efforts to characterize hypothet-
ical proteins biochemically. 

The shortage of proteins with experimentally determined function prompts the
need for methods capable of performing similarity searches deep into the Twilight
Zone, which is one of the reasons for the subsequent increase in dubious or incorrect
function assignments, particularly in automatically annotated databases. When new
sequences are annotated based on homology to those incorrectly annotated entries,
the errors propagate, leading to database contamination. Database contamination can
be avoided or at least minimized by comparing the sequences being annotated to
the subset of experimentally characterized proteins (i.e., using primary instead of
derived data) or using conservative cutoffs (e.g., gathering thresholds in Pfam). The
author hopes that the spread of database contamination will be contained by a
combination of improved computational techniques and increased availability of
reliable experimental data. Until that goal is achieved, for mission critical uses,
tainted annotations due to database contamination can be avoided through the imple-
mentation of in-house functional annotation projects. In-house functional annotation
is also favored because many public annotations are obsolete; they were generated
when an organism’s genome was sequenced and deposited and never updated. Even
if a function cannot be assigned to a protein today, the exponential grow of exper-
imental and computational data, and the development of new bioinformatics tools,
can reverse that situation rapidly. Accordingly, the computational assignment of
protein function is an open-ended task. 

Even in cases when there is a signi cant match between the sequence or structure
of interest and a similar protein or structure, it still might be unclear how much
information can be transferred from the match to the query protein. One possibility
is that sequences with signi cant sequence similarities can have different functions,
or even proteins with similar structures can have substantially different functions.
Multiple studies have noted problems when function assignments are performed by
the incorrect application of similarity-based annotation transfer [208–210]. Further-
more, the databases do not usually explain the origin of the annotations, the con -
dence of the assignment, or even if the annotations are experimental or predicted.
Despite these problems, the majority of functional annotations in public databases
are the result of homology transfer. 

The proliferation of online bioinformatics tools facilitates the computation and
retrieval of data, which sometimes can be incorrect. The default parameters used to
execute some programs either locally or through Web servers can be inappropriate,
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numerical calculations can be mathematically correct but biologically meaningless,
databases can be contaminated, and so on. The only way to limit these problems is
to possess a good understanding of the algorithms underlying the tools used and
knowledge of the capabilities and limitations of those tools. 

When using online tools, it is important to be able to verify how recent the
databases used for the searches are to avoid using obsolete tools. Commercial products
for target annotation and high-throughput automated annotation systems tend to inte-
grate well-known algorithms, which in many cases are far from being state of the art.
In most cases the data ows and parameters used by the integrated tools are hidden
from the nal user, limiting the usability of these black boxes for nonroutine annotation
projects. Bioinformatics work ows such as Incogen’s VIBE, Taverna, Pegasys, or
SciTegic’s Pipeline Pilot provide viable alternatives with the best of both worlds: A
visually appealing graphical user interface, pipeline automation, and control of the
parameters fed to the tools integrated in the work ow ( g. 3.6).

Highly sophisticated computational methods are invaluable assets in the search for
the biological function of uncharacterized proteins. For many proteins computational
sequence analysis can suggest at best a general biochemical function. Still, this infor-
mation can be used to design experimentally testable hypotheses aimed at identifying

FIGURE 3.6 Graphical user interface of Taverna Workbench, a tool for
the composition and execution of bioinformatics work ows. The work ows are written in a
new language called Scu  (Simple conceptual uni ed ow language). 
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the exact function of a given gene. As the list of the hypothetical proteins continues
growing exponentially, interdisciplinary studies combining experimental and com-
putational approaches will help to identify the functional roles of these fascinating
proteins. In turn, this identi cation will provide valuable new insights into protein
function and will facilitate the identi cation of novel pharmacological targets.
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3.2.1 Assigning Function by Direct Sequence Similarity

3.2.2 Detection of Distant Similarities with Pro le Methods
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NCBI-BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) 

PSI-BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) 

(http://hmmer.wustl.edu/)
SAM (http://www.cse.ucsc.edu/research/compbio/HMM-apps/T02-query.html)
FFAS03 (http://ffas.ljcrf.edu)
Structure Prediction Meta Server (http://bioinfo.pl/meta)

FASTA (http://fasta.bioch.virginia.edu/) (ftp://ftp.virginia.edu/pub/fasta)

HMMER (http://bio.ifom- rc.it/HMMSEARCH/)



Tools for Computational Protein Annotation and Function Assignment 83

3.2.3 Multiple Sequence Alignment
Clustering Programs

3.2.3.1 Multiple Sequence Alignment Methods
Multiple Sequence Alignment Programs

3.2.3.2 Integration of Multiple Sequence Alignments and Structural Data

3.2.3.3 Analysis of Multiple Sequence Alignment Data

3.2.3.4 Visualization and Edition of Multiple Sequence Alignments
Sequence Alignment Editors/Viewers
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COMPASS (ftp://iole.swmed.edu/pub/compass/)
COACH (http://www.drive5.com/lobster/)
HHpred (http://protevo.eb.tuebingen.mpg.de/toolkit/index.php?view=hhpred)

CD-HIT (http://bioinformatics.ljcrf.edu/cd-hi/)
Blastclust (http://www.ncbi.nlm.nih.gov/BLAST/)
DIVCLUS (http://www.mrc-lmb.cam.ac.uk/genomes/divclus_home.html)
GeneRAGE (http://www.ebi.ac.uk/research/cgg/services/rage/)
TribeMCL (http://www.ebi.ac.uk/research/cgg/tribe/)
Decrease Redundancy Tool (http://au.expasy.org/tools/redundancy/)

ClustalW (http://www.ebi.ac.uk/clustalw/)
DCA (http://bibiserv.techfak.uni-bielefeld.de/dca/)
DIALIGN2 (http://bibiserv.techfak.uni-bielefeld.de/dialign/) 
POA (http://www.bioinformatics.ucla.edu/poa/)
T-Coffee (http://www.ch.embnet.org/software/TCoffee.html)
MAFFT (http://www.biophys.kyoto-u.ac.jp/~katoh/programs/align/mafft/)
WebMAFFT (http://www.biophys.kyoto-u.ac.jp/webmafft/)
MUSCLE (http://www.drive5.com/muscle)

T-Coffee (http://www.ch.embnet.org/software/TCoffee.html)
AltAVisT (http://bibiserv.techfak.uni-bielefeld.de/altavist/)
3D-Coffee (http://igs-server.cnrs-mrs.fr/Tcoffee)

CRASP (http://wwwmgs2.bionet.nsc.ru/mgs/programs/crasp/)
PCOAT (ftp://iole.swmed.edu/pub/PCOAT/)
TraceSuite II (http://www-cryst.bioc.cam.ac.uk/~jiye/evoltrace/evoltrace.html)
Consurf (http://consurf.tau.ac.il/)
JEVTrace (http://www.cmpharm.ucsf.edu/~marcinj/JEvTrace/)
RASCAL (ftp://ftp-igbmc.u-strasbg.fr/pub/RASCAL)

Amas (http://barton.ebi.ac.uk/barton/servers/amas_server.html)
BioEdit (http://www.mbio.ncsu.edu/BioEdit/bioedit.html) 
Genedoc (http://www.psc.edu/biomed/genedoc/) 
SeaView (http://pbil.univ-lyon1.fr/software/seaview.html) 
Cinema 5 (http://aig.cs.man.ac.uk/research/utopia/cinema/cinema.php) 
Belvu (http://www.cgb.ki.se/cgb/groups/sonnhammer/Belvu.html) 
Jalview (http://www.jalview.org/) 
Pfaat (http://www.p zerdtc.com) 
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Sequence Alignment Editors/Viewers + Structure

Processing and Visualization

3.2.4 Functional Domain Identi cation
n/a

3.2.4.1 Direct Domain Assignment through Search in Domain/Family Databases
Databases

Batch Searches

Search Tools

Enzyme Classi cation

3.2.4.2 Domain Assignment through Indirect Evidence
Domain Predictors
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POAVIZ (http://www.bioinformatics.ucla.edu/poa/POA_Online/
Visualize.cgi) 

WAVis (http://wavis.img.cas.cz/)

STRAP (http://www.charite.de/bioinf/strap/)
ViTO (http://bioserv.cbs.cnrs.fr/VITO/DOC/index.html)
ModView (http://mozart.bio.neu.edu/%7Eilyin/mv-neu/modview-neu.html)

WebLogo (http://weblogo.berkeley.edu/) 
Entropy Calculator (http://www.uni .it/uni /scibio/bioinfo/ent_man.html)
WebVar (http://www.pesolelab.it/Tools/WebVar.html)

Pfam @ WUSTL (http://pfam.wustl.edu)
Pfam @ Sanger (http://www.sanger.ac.uk)
NCBI-CDD (http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml)
SMART (http://smart.embl-heidelberg.de/)
COG (http://www.ncbi.nlm.nih.gov/COG/)

ProDom (http://protein.toulouse.inra.fr/prodom.html) 
PROSITE (http://au.expasy.org/prosite/) 

PRINTS (http://bioinf.man.ac.uk/dbbrowser/PRINTS/)
UniProt (http://www.uniprot.org/)
TIGRFAMs (http://www.tigr.org/TIGRFAMs)
PIR-Superfamily (http://pir.georgetown.edu/pirsf/)
SUPERFAMILY (http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/)
InterPro (http://www.ebi.ac.uk/interpro/)

Pfam Batch Searches @ Sanger (http://www.sanger.ac.uk/Software/

SledgeHMMER (http://SledgeHmmer.sdsc.edu)
Pfam/search.shtml)

InterProScan (ftp://ftp.ebi.ac.uk/pub/databases/interpro/iprscan/)
RPS-BLAST (ftp://ftp.ncbi.nlm.nih.gov/blast/)
Pfam::Alyzer (http://pfam.cgb.ki.se/pfamalyzer/)

SVM-ProtEnzyme (http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi)
ArchaeaFun (http://www.cbs.dtu.dk/services/ArchaeaFun/)

DGS (http://www.ncbi.nlm.nih.gov/Structure/dgs/DGSWeb.cgi)
DOMpro (http://www.ics.uci.edu/~baldig/dompro.html)

DCSE (http://rrna.uia.ac.be/dcse/index.html#whatisDCSE)
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Secondary-Structure Prediction

Disorder Predictors

Linker Predictors

Transmembrane Helix Predictors

Other

3.2.5 Function Assignments Based on Contextual Information
n/a

3.2.5.1 Gene Fusions: The Rosetta Stone Method

3.2.5.2 Domain Co-occurrence

3.2.5.3 Genomic Context: Gene Neighborhoods, Gene Clusters, and Operons
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DomPred—DomSSEA (http://bioinf.cs.ucl.ac.uk/dompred/)
PASS (http://www.bio.gsc.riken.go.jp/PASS/pass_query.htm)
ScoobyDo (http://ibivu.cs.vu.nl/programs/scoobywww/)

DomCut (http://www.bork.embl-heidelberg.de/~suyama/domcut/)

PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/)

CAST (http://maine.ebi.ac.uk:8000/services/cast/)
DisEMBL (http://dis.embl.de/)
PONDR (http://www.pondr.com)
Disopred 2 (http://bioinf.cs.ucl.ac.uk/disopred/)
GlobPlot (http://globplot.embl.de/)
DISPro (http://www.ics.uci.edu/~baldig/dispro.html)

NORsp (http://cubic.bioc.columbia.edu/services/NORSp)

Armadillo (http://armadillo.blueprint.org/)
DLP2 (http://www.bio.gsc.riken.go.jp/cgi-bin/DLP/dlp2.cgi)
DomCut (http://www.bork.embl-heidelberg.de/~suyama/domcut/)

TMHMM (http://www.cbs.dtu.dk/services/TMHMM/)
Phobius (http://phobius.cgb.ki.se/)

ProtScale (http://www.expasy.org/tools/protscale.html)

STRING (http://string.embl.de/)
Allfuse (http://maine.ebi.ac.uk:8000/services/allfuse/)
FusionDB (http://igs-server.cnrs-mrs.fr/FusionDB/)
InterWeaver (http://interweaver.i2r.a-star.edu.sg/)
Phydbac (http://igs-server.cnrs-mrs.fr/phydbac/)

Pfam Domain Query Tool (http://www.sanger.ac.uk/cgi-bin/Pfam/dql.pl)
SMART Domain Query Tool (http://smart.embl-heidelberg.de/)
CDART (http://www.ncbi.nlm.nih.gov/Structure/lexington/lexington.cgi?

cmd=rps)

ERGO (http://ergo.integratedgenomics.com/ERGO)
STRING (http://string.embl.de/)
SNAPper (http://pedant.gsf.de/snapper)
SEED (http://theseed.uchicago.edu/FIG/)

SEG (http://fasta.bioch.virginia.edu/fasta_www/pseg.htm)

CARD (http://bioinfo.knu.ac.kr/research/CARD/)

Domain Predictor @ Biozon.org (http://biozon.org/tools/domains/)
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3.2.5.4 Phylogenomic Pro les

3.2.5.5 Metabolic Reconstruction

3.2.5.6 Protein–Protein Interactions

3.2.5.7 Microarray Expression Pro les

3.2.5.8 Other Sources of Contextual Information for Protein Annotation
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KEGG Gene Cluster Search (http://www.genome.jp/kegg-bin/mk_genome
_cmp_html) 

Gene Neighbors Database (http://bioinformatics.icmb.utexas.edu/operons/
index.html)

NCBI Map Viewer (http://www.ncbi.nlm.nih.gov/mapview/static/MVstart
.html)

PRODORIC (http://prodoric.tu-bs.de)
GeConT (http://www.ibt.unam.mx/biocomputo/gecont.html)
Prolinks (http://dip.doe-mbi.ucla.edu/pronav)

STRING (http://string.embl.de/)
Prolinks (http://dip.doe-mbi.ucla.edu/pronav)
Phydbac (http://igs-server.cnrs-mrs.fr/phydbac/)
ADVICE (http://advice.i2r.a-star.edu.sg/)
PLEX (http://bioinformatics.icmb.utexas.edu/plex/plex.html)
MATRIX (http://orion.icmb.utexas.edu/matrix/)

KEGG (http://www.genome.jp/kegg/)
MetaCyc (http://metacyc.org/)
PathBLAST (http://www.pathblast.org/bioc/pathblast/blastpathway.jsp)
SEED (http://theseed.uchicago.edu/FIG/)
PUMA2 (http://compbio.mcs.anl.gov/puma2/cgi-bin/index.cgi)
ERGO (http://ergo.integratedgenomics.com/ERGO/)
metaSHARK (http://bioinformatics.leeds.ac.uk/shark/)
PathFinder (http://bibiserv.techfak.uni-bielefeld.de/path nder/)
PRIAM (http://bioinfo.genopole-toulouse.prd.fr/priam/)
BioSilico (http://biosilico.kaist.ac.kr)
Cytoscape (http://www.cytoscape.org)

BIND (http://bind.ca/)
DIP (http://dip.doe-mbi.ucla.edu/)
MINT (http://160.80.34.4/mint/)
GRID (http://biodata.mshri.on.ca/grid/servlet/Index)
STRING (http://string.embl.de/)
InterWeaver (http://interweaver.i2r.a-star.edu.sg/)

Stanford Microarray Database (http://genome-www5.stanford.edu/)
RIKEN Expression Array Database (http://read.gsc.riken.go.jp/)
EBI ArrayExpress (http://www.ebi.ac.uk/arrayexpress/)

CMS Molecular Biology Resource (http://restools.sdsc.edu/)
ExPASy Proteomics Server (http://www.expasy.org/tools/)
EBI Toolbox (http://www.ebi.ac.uk/Tools/)
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3.3 From Sequence to Structure: Homology and Ab Initio Structure Models
Homology Modeling

Fold Recognition Metaservers

Ab Initio Modeling

3.4 Structure-Based Functional Annotation
n/a

3.4.1 Structural Database Searches
Database Searches

Domain Partitioning

Structural Domain Databases and Tools
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Herbert Mayer’s Bioinformatics World (http://homepage.univie.ac.at/herbert
.mayer/)

NAR 2004 Molecular Biology Database Collection (http://nar.oupjournals
.org/cgi/content/full/32/suppl_1/D3/DC1)

NAR 2004 Tools Issue (http://nar.oupjournals.org/content/vol32/suppl_2/
index.dtl)

Modeller (http://salilab.org/modeller/)
WhatIf (http://www.cmbi.kun.nl/whatif/)
Jackal (http://trantor.bioc.columbia.edu/programs/jackal/index.html)
ModWeb (http://alto.compbio.ucsf.edu/modweb-cgi/main.cgi)
Swiss-Model (http://swissmodel.expasy.org//SWISS-MODEL.html)
LOOP (http://ser-loopp.tc.cornell.edu/cbsu/loopp.htm)
3D-Jigsaw (http://www.bmm.icnet.uk/servers/3djigsaw/)
HOMER (http://protein.cribi.unipd.it/ssea/)
CPHmodels (http://www.cbs.dtu.dk/services/CPHmodels/)

Bioinfo.PL (http://bioinfo.pl/meta/)
Genesilico (http://genesilico.pl/meta/)

Rosetta (http://depts.washington.edu/ventures/UW_Technology/Express
_Licenses/Rosetta/)

Robetta (http://robetta.bakerlab.org/)
HMMSTR/Rosetta (http://www.bioinfo.rpi.edu/~bystrc/hmmstr/server.php)

DALI (http://www.ebi.ac.uk/dali/)
VAST (http://www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml)
SSM (http://www.ebi.ac.uk/msd-srv/ssm/)
CE (http://cl.sdsc.edu/ce.html)
DEJAVU (http://portray.bmc.uu.se/cgi-bin/dejavu/scripts/dejavu.pl)
MATRAS (http://biunit.aist-nara.ac.jp/matras/)

PDP (http://123d.ncifcrf.gov/pdps.html)
DomainParser (http://compbio.ornl.gov/structure/domainparser/)
DomainFinder (http://dirac.cnrs-orleans.fr/DomainFinder/)

CATH (http://www.biochem.ucl.ac.uk/bsm/cath/)
SCOP (http://scop.mrc-lmb.cam.ac.uk/scop/)
GRATH (http://www.biochem.ucl.ac.uk/cgi-bin/cath/Grath.pl)
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3.4.2 Structural Alignments
Rigid

Flexible

Nontopological

Multiple Structural Alignment

3.4.3 Use of Structural Descriptors

3.5 Final Remarks and Future Directions

Bioinformatics Work ows
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CE (http://cl.sdsc.edu/ce.html)
MATRAS (http://biunit.aist-nara.ac.jp/matras/)
SSAP (http://www.biochem.ucl.ac.uk/cgi-bin/cath/GetSsapRasmol.pl)
SuperPose (http://wishart.biology.ualberta.ca/SuperPose/)
C-alpha Match (http://bioinfo3d.cs.tau.ac.il/c_alpha_match/)
ProFit (http://www.bioinf.org.uk/software/pro t)

FATCAT (http://fatcat.burnham.org)
FlexProt (http://bioinfo3d.cs.tau.ac.il/FlexProt/)

SARF2 (http://123d.ncifcrf.gov/sarf2.html)
MASS (http://bioinfo3d.cs.tau.ac.il/MASS/server.html)

CE-ME (http://cemc.sdsc.edu/)
MASS (http://bioinfo3d.cs.tau.ac.il/MASS/server.html)
ProFit (http://www.bioinf.org.uk/software/pro t)
MATRAS (http://biunit.aist-nara.ac.jp/matras/)

PINTS (http://www.russell.embl.de/pints/)
SPASM (http://portray.bmc.uu.se/cgi-bin/spasm/scripts/spasm.pl)
PASS (http://www.ccl.net/cca/software/UNIX/pass/overview.shtml)
SiteEngine (http://bioinfo3d.cs.tau.ac.il/SiteEngine/)
Surface (http://cbm.bio.uniroma2.it/surface/)
GRASS (http://honiglab.cpmc.columbia.edu/)
SURFNET (http://www.biochem.ucl.ac.uk/~roman/surfnet/surfnet.html)

Entrez Protein Database (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
db=Protein)

Genomes On-line Database (GOLD) (http://www.genomesonline.org/)
Entrez Genome Database (http://www.ncbi.nlm.nih.gov//entrez/query.fcgi?

db=Genome)

VIBE (http://www.incogen.com/VIBE)
Taverna (http://taverna.sourceforge.net/)
Pegasys (http://www.bioinformatics.ubc.ca/pegasys/)
SciTegic Pipeline Pilot (http://www.scitegic.com/products_services/pipeline

_pilot.htm)
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4.1 SECTION 1

4.1.1 INTRODUCTION

Genomic technologies have become increasingly more integrated within the phar-
maceutical research and development process to accelerate identi cation of disease-
validated targets and consequently novel chemical entities (NCEs), which act on
these targets. Historically, more than 90% of NCEs entering development have not
reached the clinic [1]. Failure of these compounds can be multifaceted; they may
show insuf cient ef cacy, often as a result of inadequate target validation, or they
may have unacceptable toxicity pro les in animal studies or initial testing in humans.
Even after clinical trials involving hundreds of patients, there is still a risk of the
emergence of unexpected toxicity in a subset of the population due to rare or
population-speci c adverse events. Genetic variation can be an underlying factor in
all these issues of failure in the drug-discovery process; pharmaceutical companies
are now beginning to recognize this and invest their efforts accordingly. 
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These multiple sources of failure in the drug-discovery process can be minimized
by integrating genetics into this process. This integration is already yielding new
disease-validated targets for the drug-discovery process. Pharmacogenetics (PGx) is
another practical application of this integration and involves the study of the impact

subject in some detail, so for the purposes of this chapter, I only allude to practical
applications of PGx; the reader is directed to some reviews of the impact of genetics
in this eld, including those by Lindpaintner [2] and Roses [3]. 

In the context of the discovery of new targets and the development of new drugs,
knowledge of genetic variation can inform on many of the functional parameters
and critical regions of a gene, protein, or regulatory region. Study genetic variation,
and a picture of the driving force of gene evolution emerges. For example, Majewski
and Ott [4] surveyed single nucleotide polymorphism (SNP) frequency across exons
and introns in the human genome. They found that SNP density declined steadily
in the region of exon–intron boundaries and not simply at splice sites. This obser-
vation provides compelling evidence that gene-splicing control elements (SCEs),
which control gene regulation and splicing, may occur more frequently near
intron–exon boundaries. Speci cally the evidence suggests that SCE elements are
likely to extend (with decreasing frequency) as far as 125 bp into the exon and up
to 20 bp into intron sequences.

This example provides an insight into a speci c function of a gene that might
not have been easily determined by direct study methods. The same principle applies
to the use of genetics in target identi cation and validation, helping to elucidate the
function of genes and pathways by studying their function and dysfunction in normal
and diseased states. In this chapter I examine the data and some of the underlying
technologies that are enabling the integration of genetics into the drug-discovery
process. The chapter reviews some of the principle forms of genetic variation and
the key databases from which it can be accessed and manipulated. Finally, some of
the methods for analysis of the functional impact of genetic variation are reviewed.

4.1.2 HUMAN GENETIC VARIATION IN A DRUG-DISCOVERY 
CONTEXT

development process. The gure shows some of the common activities that are being
incorporated into the standard discovery and development pipeline for new drugs.
This includes, among other things, an input at the start of the pipeline from targets
that have been identi ed by means of their variation in human disease, screening
patient populations for genetic variants in targets that might alter drug ef cacy or
safety, and the integration of pharmacogenetic studies into the clinical trial process
during drug development. The latter activity appears more like a possible future
regulatory requirement, as the Food and Drug Administration (FDA) becomes
increasingly PGx focused.

The FDA conducted a survey of recent Investigational New Drug and New Drug
Applications to identify the extent to which PGx was used in clinical studies [5].
The survey found more than 15 applications in which PGx tests were reported, with

 © 2006 by Taylor and Francis Group, LLC

Figure 4.1 illustrates how genetic variation can impact the drug-discovery and

of genetic variation on differential response to drugs. Chapter 13 deals with this
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FIGURE 4.1 The impact of genetic variation on the drug-discovery and development process.

Target
Identification

Hit and
Lead ID

Lead
Optimization
to Candidate

Phase I Phase II

Phase III & Market
Large comparative
study (compound
versus placebo) in
patients to establish
clinical benefit and
safety. Drug Launch
and subsequent safety
surveillance.

Rare adverse events
may occur. PGx
studies may identify
rare geneticvariants
or rare interactions
between common
variants.

Phase II
Determination of dose
and initial evaluation
of efficacy, conducted
in a small number of
patients.

Sample collection
from clinical trial to
evaluate efficacy or
adverse event PGx.

New indications
possible with
identification of target
pathway in other
diseases.

Phase I 
Evaluation of clinical
pharmacology in
volunteers.

Common adverse
events may occur.
PGx studies may
identify common
genetic variants
underlying these
events.

Lead to Candidate
Evaluation of clinical
pharmacology in
animal models.

Leads may be re-
configured to act
upon different
variants. Animal
models maybe
used to check all
variants for efficacy
and potential
adverse events.

Target ID
Identification of
potential drug targets
based on biological
rationale and known
tractability.

Targets may be
identified by study of
variation in human
diseases and model
organisms (directed
mutagenesis
experiments in yeast
and mouse models).
Existing targets may
be validated by
disease association.

Hit and Lead ID
Configuration and
running of high
throughput screens
to identify small
molecule hits.

Screens may be
configured to run on
the commonest
variants. Hits may
be re-sceened in
vitro against less
common variants to
check for efficacy.

Screening for
common target
variants in patient
population

In vitro efficacy PGx
in known variants

In vivo efficacy PGx
for known variants

Monogenic &
complex disease
gene ID to find
new targets

Integration of PGx
within clinical trials Population-based

PGx studies

Complex disease
gene ID to find
new indications

Phase III &
Post-Market
Surveillance



The Impact of Genetic Variation on Drug Discovery and Development 93

all but one test related to pharmacogenetic variability in Cytochrome P450 (CYP)
enzymes. The reported use of this information was (a) to de ne patient subgroups
in early-phase pharmacokinetic (PK) studies and/or late-phase ef cacy trials using
sparse sample analysis and population PK methodologies to assess the signi cance
of geno-/phenotype as a covariate, (b) to provide a post hoc explanation for the
variability in drug exposure (and response) in some subjects and/or patients (e.g.,
outliers where plasma levels were too high or low) as a basis to exclude such subjects
from an analysis, (c) to measure the impact of CYP enzyme polymorphism on plasma
drug clearance in subject subgroups de ned by PGx, and (d) to use the results of
PGx as an entrance or exclusion criteria for subjects in drug interaction studies.
Despite the interest of the FDA, pharmaceutical companies are still moving forward
cautiously in integrating PGx in their drug-development programs. In the case of
the 15 applications just mentioned, differences thought to be related to PGx sub-
groups were not used as a basis for any speci c dosing recommendations in the
product labels.

4.1.3 FORMS AND MECHANISMS OF GENETIC VARIATION

Most genetic variation in humans arises from two types of mutational events. The
simplest type of variant results from a single nucleotide mutation that substitutes
one base for another. This mutation event accounts for the most common variant in
the genome, the SNP. Most other forms of human variation result from the insertion
or deletion of a section of DNA. Insertion/deletion (INDEL) events also occur
frequently throughout the genome. INDELs are particularly prone to occur in repet-
itive DNA sequences, where repeated nucleotide patterns, so-called variable number
tandem repeat polymorphisms (VNTRs), expand or contract as a result of INDEL
events. VNTRs are subdivided on the basis of the size of the repeating unit; mini-
satellites are composed of repeat units ranging from ten to several hundred base
pairs. Simple tandem repeats (STRs or microsatellites) are composed of 2 to 6 bp
repeat units. All of these variation forms occur in genes and gene regions and account
for most of the genetic heterogeneity that underlies human phenotypic variation. Of
course, this genetic heterogeneity argues for a dynamic appraisal of the impact of
variation in the human genome, moving beyond a monolithic focus on the SNP (the
current approach) to encompass the full array of variations, which may have an
impact on disease and drug response. 

4.1.4 HOW MUCH VARIATION?

The quantity of genetic variation in the human genome is something that until
recently has been the realm of many con icting estimates. Empirical studies quickly
identi ed that, on average, comparison of chromosomes between any two individuals
will generally reveal common SNPs (> 20% minor allele frequency) at 0.3 to 1 kb
average intervals, which scales up to 5 to 10 million SNPs across the genome [6].
The availability of a complete human genome has allowed increasingly accurate
estimates of the number of potentially polymorphic mini- and microsatellites, as
VNTRs over a certain number of repeats can be reliably predicted to be polymorphic.
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Breen et al. [7] completed an in silico survey of potentially polymorphic STRs in
the human genome and identi ed over 100,000 potentially polymorphic microsat-
ellites. Other forms of variation such as small insertion deletions are more dif cult
to quantify, although they are likely to fall somewhere between the numbers of SNPs
and VNTRs.

4.1.5 SINGLE NUCLEOTIDE VARIATION: SNPS AND MUTATIONS

Terminology for variation at a single nucleotide position is de ned by allele fre-
quency. In the strictest sense, a single base change, occurring in a population at a
frequency of less than 1%, is termed an SNP. When a single base change occurs at
less than 1%, it is considered to be a mutation. However, this de nition is often
disregarded; instead, single nucleotide “mutations” occurring at less than 1% in
general populations might more appropriately be termed low-frequency SNPs. The
term mutation is often used to describe a variant identi ed in diseased individuals
or arising somatically in tissues, with a demonstrated role in the disease phenotype.
Mutation databases and polymorphism databases have generally been delineated by
this de nition. The high level of interest in SNP data has led to the development of
an excellent centralized SNP database, dbSNP [8], which is reviewed next. Mende-
lian mutation databases are still lagging behind SNPs in terms of data integration
and visualization on the human genome, but these data should not be overlooked,
as they can obviously provide a great deal of information about the biology of a gene.

4.1.6 FUNCTIONAL IMPACT OF SNPS AND MUTATIONS

The potential functional impact of an SNP is de ned by its location in the genome.
SNPs may alter gene function by changing recognition sequences in gene regulatory
elements, they may alter gene transcript secondary structure and stability, and most
obviously they may alter the coding sequence of a gene. Such SNPs within the
coding sequence of a gene are termed synonymous, where the amino acid codon
remains unchanged by the SNP substitution; nonsynonymous, where the amino acid
codon is altered to code for an alternative amino acid; or nonsense, where an amino
acid codon is altered to a stop codon.

4.1.7 CANDIDATE SNPS: WHEN IS AN SNP NOT AN SNP?

There is one overwhelming caveat that needs to be considered when dealing with
SNP data: most of the SNPs in public databases are “candidate” SNPs of unknown
frequency that have been seen at least once in at least one individual. The simple
fact is that many SNPs do not exist at a detectable frequency in general populations.
More than 60% of the SNPs in dbSNP were detected by statistical methods for
identi cation of candidate SNPs by comparison of DNA sequence traces from
different individuals. Marth et al. [9] investigated the reliability of these candidate
SNPs in some depth, completing two pilot studies to determine how well candidate
SNPs would progress to working assays in three common populations. In both
studies, they found that between 52 and 54% of the characterized SNPs turn out to
be common SNPs (> 10%) for each population. Signi cantly, between 30 and 34%
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of the characterized SNPs were not detected in each population. These results suggest
that if a candidate SNP is selected for study in a common population, there is a 66
to 70% chance that the SNPs will have detectable minor allele frequency (1%–5%)
and a 50% chance that the SNPs are common in that population (> 10%). Put another
way, approximately 17% of candidate SNPs will have no detectable variation in
common populations. These “monomorphic” SNP candidates are likely to represent
“private” SNPs, which exist in the individual screened but not appreciably in pop-
ulations. This nding probably re ects the massive increase in population size and
admixture over the past 500 years [10]. Beyond validation of the SNP, the last hurdle
is assay design. Many SNPs are located in repetitive or AT-rich regions, which makes
assay design dif cult; this can account for a further 10 to 30% fallout, depending
on the assay technology. 

Any SNP-based study needs to take these levels of attrition between SNP and
working assay into account. There is only one solution to this problem: to determine
the frequency of the 10 million or so public SNPs in common ethnic groups. This
is now widely recognized in the SNP research community, and there have been
several large-scale SNP frequency determination projects that have provided fre-
quencies for a little less than 10% of these SNPs.

There is one other signi cant source of SNP validation—the simple observation
of an SNP on independent occasions from different individuals. The massive scale
of SNP discovery naturally has resulted in the repeated identi cation of SNPs across
different individuals and populations. This determination usually indicates that an
SNP is likely to be widely spread in populations and often of higher frequency.
These so-called 2-hit SNPs have been identi ed in dbSNP and provide preliminary
validation for approximately 45% of the SNPs in the database. This allows the user
to specify 2-hit validation as a minimal requirement in a query of the database. As
an aside, the problem of SNP validation is particularly pertinent to the study of
nonsynonymous SNPs, as many nonsynonymous SNPs, particularly those that are
nonconservative in nature, tend to be “single-hit” SNPs with no validation informa-
tion. Attempts to validate these SNPs tend to be prone to failure. 

4.1.8 VNTR POLYMORPHISMS

VNTRs also have potential to impact the function of genes and regulatory regions.
The polymorphic nature of a VNTR is thought to depend on a range of factors: the
number of repeats, their sequence content, their chromosomal location, the mismatch
repair capability of the cell, the developmental stage of the cell (mitotic or meiotic),
and/or the sex of the transmitting parent [11]. Much evidence exists to demonstrate
that tandem repeats exert a functional effect on genes; thus, VNTRs in themselves
can be candidates for disease or pharmacogenetic susceptibility alleles. The best
characterized of these are the triplet repeat expansion diseases. Insertion of triplet
repeats is strongly favored over deletion of repeats, so pathological triplet repeat
expansions manifest through successive generations with worsening symptoms
known as anticipation. Most triplet repeat expansions have been identi ed in mono-
genic diseases and may occur in almost any genic region. Over ve triplet repeat
classes have been described so far, causing a range of diseases including Fragile X,
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Myotonic Dystrophy, Friedreich’s ataxia, several Spinocerebellar ataxias, and Hun-
tington’s disease [12]. Spinocerebellar ataxia 10 (SCA10) is notably caused by the
largest tandem repeat seen in the human genome [13]. In general populations the
SCA10 locus is a 10-22mer ATTCT repeat in intron 9 of the SCA10 gene; in SCA10
patients, the repeat expands to more than 4,500 repeat units, which makes the disease
allele up to 22.5 kb larger than the normal allele. 

Tandem repeats have also been associated with complex diseases; for example,
different alleles of a 14mer VNTR in the insulin gene promoter region have been
associated with different levels of insulin secretion. Different alleles of this VNTR
have been robustly linked with type I diabetes [14], and in obese individuals they
have been associated with the development of type II diabetes [15]. There are also
examples of associations with differences in drug response. For example, a tandem
repeated GGGCGG polymorphism within the promoter of the 5-Lipoxygenase gene
(ALOX5), the rst enzyme in the leukotriene biosynthetic pathway, has been shown
to play an important role in response to leukotriene modi er therapy [16]. Most
individuals carry ve repeats of the GGGCGG motif; however, 5 to 35% of Caucasian
individuals carry at least one allele with three or two repeats at this locus. Reduction
in copies of this repeat removes the consensus binding motif for the transcription
factor, SP1, which is also GGGCGG. An alteration in the number of repeats has
been shown to decrease the ef ciency of ALOX5 transcription. As asthma patients
harboring reduced copies of this repeat have diminished ALOX5 gene transcription,
their asthma is less dependent on leukotriene formation, and as a result they are less
sensitive to the antiasthmatic effects of leukotriene inhibitors, which are one of the
mainstays of asthma treatment. 

Potentially polymorphic novel VNTRs can be identi ed directly from genomic
sequence using tools such as Tandem repeat nder (TRF) or Tandyman [17]

microsatellites in the human genome sequence using both TRF and Tandyman has
been presented in the UCSC human genome browser in the “simple repeats” and
“microsatellites” tracks [7].

4.1.9 INSERTION/DELETION POLYMORPHISMS

Although tandem repeat polymorphisms are a major form of variation in genomes,
they may also mediate other forms of variation by predisposing DNA to localized
rearrangements between homologous repeats. Such rearrangements give rise to INDEL
polymorphisms ranging in size from several base pairs to a megabase or more; these
appear to be quite common in most genomes studied so far, probably re ecting their
association with common VNTRs. INDELs of all sizes have been associated with an
increasing range of genetic diseases. For example, Cambien et al. [18] found associ-
ation between coronary heart disease and a 287 bp INDEL polymorphism situated in
intron 16 of the Angiotensin converting enzyme (ACE). This INDEL, known as the
ACE/ID polymorphism, accounts for 50% of the interindividual variability of plasma
ACE concentration. Although INDEL polymorphisms are likely to be widely distrib-
uted throughout the genome, relatively few have been characterized, and there is no
central database collating this form of polymorphism. The Marsh eld Clinic
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sive source of short insertion deletion polymorphisms (SIDPs). Over 200,000 are
maintained in a form that can be searched by chromosome location. Other databases
such as dbSNP and HGVBASE also capture SIDPs to some extent. Larger INDELs
are generally overlooked in databases unless associated with a speci c gene or study,
in which case they appear in OMIM and other similar sources. 

4.1.10 GENETICS AND THE SEARCH FOR DISEASE ALLELES

The search for genetic alleles that predispose to speci c disease or pharmacogenetic
response phenotypes calls for study of genetic variation at increasing levels of detail. In
the rst instance, markers need to be identi ed at a suf cient density to build marker
maps, which can detect disease alleles by linkage or association with marker alleles that
are assayed across the genome. This approach relies on the premise that common genetic
markers will be in linkage disequilibrium (LD) with rarer disease alleles (see Borecki

association is detected, a denser framework of markers is needed to re ne the signal to
a smaller region. In the case of association of marker and disease alleles, marker density
needs to be increased to a level at which most genetic diversity in a population is captured.
This action may call for the construction of very dense marker maps down to a resolution
of 5 to 10 kb. Ultimately, once LD is established between a marker and a phenotype, it
may be necessary to identify all genetic variation across the re ned locus, which also
shows some LD with the associated marker, prospectively allowing the identi cation of
the disease allele. Each stage of linkage or association analysis involves a progression
of bioinformatics tools, each with their own caveats in use as the requirements for detail
of biological interpretation increase [20]. However, the availability of a complete human
genome has simpli ed this process considerably as genetic data are now fully integrated
on the genome sequence framework. This makes some powerful tools available for
detecting, organizing, and analyzing genome scan data.

4.1.11 THE GENOME AS A FRAMEWORK FOR DATA INTEGRATION 
OF GENETIC VARIATION DATA

In terms of understanding of the biology of variants and the genes that they impact,
exact base pair localization of each variant in the genome allows comprehensive
comparison across multiple data domains in relation to genes and regulatory regions.
The possibilities for data integration are immense, making it possible to make
complex queries of SNP data, using databases like dbSNP—for example, to identify
all nonsynonymous SNPs within a speci c ethnic group or above a certain allele
frequency. By incorporating data from genome viewers such as Ensembl, it is
possible to add layers of information. For example, it is possible to identify all SNPs
that fall within Human/Mouse conserved regions (outside of exons), which is indic-
ative of evolutionarily conserved function. With the availability of the HapMap,
which describes the genetic structure of the genome in several major populations
(see the next section), it is even possible to identify SNPs that show coinheritance,
which could allow for analysis of correlated mutations within genes and possibly
between genes.
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and Suarez [19] for a review of linkage and association methods). Once this linkage or

(http://research.marsh eldclinic.org/genetics/indels/) maintains the most comprehen-
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4.2 SECTION 2

4.2.1 HUMAN GENETIC VARIATION DATABASES AND WEB 
RESOURCES

The vast range of human genetic variation cannot currently be derived from a single
database (although it can mostly be viewed in a genome browser). At best, to gain
a comprehensive view of variation in a speci c gene or locus, data need to be gathered
from several databases, or worse still the data may not be readily available in a
database at all, in which case other bioinformatic analysis approaches may be
necessary to identify potential variants directly in the genome sequence (e.g.,

the key databases for mining and visualizing this information. This list is by no
means comprehensive; however, it does provide the most comprehensive resources
in this eld. The reader is encouraged to search the Web using a general search
engine (e.g., Google), as many other specialist resources are available.

4.2.2 MUTATION DATABASES: AN AVENUE INTO HUMAN 
PHENOTYPE

The polymorphism data stored in dbSNP are valuable biological information that
help to de ne the natural range of variation in genes and the genome, however, most
of the polymorphisms can be assumed to be functionally neutral. By contrast,
mutation data are usually functionally and phenotypically well de ned and have
obvious implications for the understanding of gene and pathways underlying disease.
Mutant data can be derived from in vitro and in vivo experimental sources, such as
site-directed mutagenesis and knockouts in model organisms (some example data-
bases are listed in table 4.1), or it can be derived from natural sources in human
populations. The study of naturally occurring mutations in humans has been very
important in understanding human disease pathology, particularly the relationships
between genotype and phenotype and between DNA and protein structure and
function. These types of studies can obviously support the drug discovery and
development process. A large number of Mendelian disease mutations have been
identi ed over the past 20 years. These discoveries have helped to de ne many key
biological mechanisms, including gene regulatory motifs and protein–protein inter-
actions. Many highly specialized locus speci c databases (LSDBs) have been estab-
lished to exhaustively collate mutation data around a single gene; this information
in itself can be highly informative about the functional parameters of a gene. These
LSDBs are comprehensively indexed at the Human Genome Variation Society
(HGVS) Mutation Waystation site (table 4.1). In this chapter I could not hope to
cover all these databases; instead I focus on Online Mendelian Inheritance in Man
(OMIM), the most accessible and widely used Mendelian mutation database.

4.2.3 OMIM

OMIM is an online catalog of human genes and their associated mutations, based
on the long-running catalog Mendelian Inheritance in Man (MIM), started in 1967
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VNTRs). Having described the main forms of human variation, table 4.1 introduces
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by Victor McKusick at Johns Hopkins [21]. OMIM is an excellent resource for a
quick background biology on genes and diseases; it includes information on the
most common and clinically signi cant mutations and polymorphisms in genes.
Despite the name, OMIM also covers complex diseases to varying degrees of detail.
In January 2002, the database contained over 13,285 entries (including entries on
9,837 gene loci and 982 phenotypes). OMIM is curated by a highly dedicated but
small group of curators, but the limits of a manual curation process mean that entries
may not be current and are not always comprehensive. With this caveat aside, OMIM
is a very valuable database, which usually presents an accurate digest of the literature
(it would be dif cult to do this automatically). A major bonus of OMIM is that it
is very well integrated with the NCBI database family, which makes movement from
a disease to a gene to a locus and vice versa fairly effortless. OMIM is now integrated
as a Distributed Annotation System track in the Ensembl human genome viewer,

TABLE 4.1
Genetic Variation Focused Databases and Tools on the Web

Mutation Databases
OMIM http://www.ncbi.nlm.nih.gov/Omim/
HGMD http://www.hgmd.org
HGVS Mutation Waystation http://www.centralmutations.org/
Central Databases (SNPs and mutations)
HGVbase http://hgvbase.cgb.ki.se/
dbSNP http://www.ncbi.nlm.nih.gov/SNP/
Site-Directed Mutagenesis and Model Organism Databases
GPCRDB snakelike plots http://www.gpcr.org/7tm/seq/snakes.html
Protein Mutation Database http://pmd.ddbj.nig.ac.jp/
TBASE (Mouse KOs and Mutations) http://tbase.jax.org/
Model organism mutation dbs http://www.humgen.nl/orgspecdatabases.html
Gene-Orientated SNP and Mutation Visualization
SNPper http://snpper.chip.org/
GeneSNPs http://www.genome.utah.edu/genesnps/
CGAP-GAI SNP database htpp://lpgws.nci.nih.gov/
SNP500 http://snp500cancer.nci.nih.gov/
Entrez Gene http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene
Genome-Orientated for SNP and Mutation Visualization
Ensembl http://www.ensembl.org
UCSC Human Genome Browser http://genome.ucsc.edu/index.html
NCBI Map Viewer http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi/
SNP Data Consortiums and Data Standards
The SNP consortium (TSC) http://snp.cshl.org/
JSNP http://snp.ims.u-tokyo.ac.jp/
HapMap http://www.hapmap.org/
OMG SNP RFP http://lsr.omg.org/home.html
XML interface to SNPper
for SNP-related data

http://www.bioconductor.org/repository/devel/package/html/
RSNPper.html

Note: SNP = single nucleotide polymorphism.
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which makes OMIM an even more highly recommended resource for mutation-
related data.

4.2.4 SNP DATABASES

The deluge of SNP data generated over the past few years can be traced primarily
to two major overlapping sources: the SNP consortium (TSC) [6] and members of
the human genome sequencing consortium, particularly the Sanger Institute and
Washington University. The predominance of SNP data from this small number of
closely related sources has facilitated the development of a central SNP database—
dbSNP at the National Center for Biotechnology Information (NCBI) [8]. Other
valuable databases have developed using dbSNP data as a reference; these tools and
databases bring focus to speci c subsets of SNP data (e.g., gene-oriented SNPs)
while enabling further data integration around dbSNP.

4.2.4.1 The dbSNP Database 

The NCBI established the dbSNP database in September 1998 as a central repository
for both SNPs and short INDEL polymorphisms. In June 2004 (Build 121) dbSNP
contained 19.9 million SNPs. These SNPs collapse into a nonredundant set of 9.9
million SNPs, known as Reference SNPs (RefSNPs). Further information exists on
a subset of the 9.9 million RefSNPs: 4.5 million are validated, at least in as much
as they have been observed more than once, which is a fairly reliable indicator that
the SNPs are likely to be real and of relatively high frequency. There are 840,038
that have a know frequency in at least one population. These quantities of SNPs give
a very high level of coverage across the genome, with most known exons now within
1 to 2 kb of at least one SNP in the dbSNP database.

4.2.4.2 The RefSNP Dataset

The dbSNP nonredundant RefSNP dataset is produced by clustering SNPs at iden-
tical genomic positions and creating a single representative SNP (designated by an
“rs” ID). The sequence used in the RefSNP record is derived from the SNP cluster
member with the longest anking sequence. The RefSNP record collates all infor-
mation from each member of the cluster (e.g., frequency and subject information).
The availability of the RefSNP dataset considerably streamlines the process of
integrating SNPs with other data sources. External resources almost exclusively use
the RefSNP dataset. This makes the RefSNP ID the universal SNP ID in the SNP
research community. RefSNPs have also become an integral part of the NCBI data
infrastructure, so that the user can effortlessly browse to dbSNP from diverse NCBI
resources, including Entrez Gene, Mapview, OMIM, PubMed, and Genbank.

4.2.4.3 Searching dbSNP

There is a bewildering range of approaches for searching dbSNP. The database can
be searched directly by SNP accession number, submitter, detection method, popu-
lation studied, publication, or a sequence-based BLAST search. The Entrez SNP
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interface to dbSNP has a complex search form that allows the user to formulate

SNPs that meet multiple criteria; for example, it is possible to search for all validated
nonsynonymous SNPs in gene-coding regions on chromosome 1 that have known
allele frequencies in European populations ( g. 4.2). This is a very powerful inter-
face, but it can be somewhat confounding to use. In tests I found that it is necessary

FIGURE 4.2 The Entrez SNP search interface to dbSNP.
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exible freeform queries of the dbSNP database (http://www.ncbi.nlm.nih.gov/
entrez/query.fcgi?db=Snp&cmd=Limits). This exibility allows the user to select
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to enter a very broad search term in the search box before selecting limits on the
search. So, for example, enter (“human”[ORGN]) in the search box and then specify
the limits on the query. Using this query facility is easy, and it is possible to build
up a view of the quantities of SNPs in genes and gene regions (table 4.2).

There are many other tools that use the dbSNP dataset, for example, Entrez

can offer powerful alternative interfaces for searching dbSNP, but be aware that
third-party (non-NCBI) tools and software may not use the latest version of dbSNP
(this is a common problem) so it is important to check which build of the database
is being used. Different tools may also use ltering or repeat masking protocols,
which can lead to the exclusion of SNPs with poor-quality or short- anking
sequence, or SNPs in repeat regions. If it is important to identify all SNPs in a given
gene or region, then it is worth consulting several different tools and comparing the
results. Some of the best tools for visualizing SNPs across gene and genomic regions
are discussed later in this chapter.

4.2.4.4 Human Genome Variation Database 

The Human Genome Variation database (HGVbase), previously known as HGBASE

all intragenic (promoter to end of transcription) sequence polymorphism. In Novem-
ber 2001, the HGBASE project adopted the new name HGVbase [23]. This modi-

cation re ected a change in the scope of the database as it took on a HUGO-
endorsed role as a central repository for mutation collection efforts undertaken in
collaboration with the HGVS. In 2004 a decision was made to develop HGVbase
into a Phenotype/Genotype database. Data exchange with other databases such as
dbSNP is maintained, although further submissions are not being accepted while
fund-raising and database redesign are ongoing.

There is no doubt that dbSNP has assumed the de facto position of the primary
central SNP database. To accommodate this, HGVbase has repeatedly sought to

TABLE 4.2
Breakdown of Single Nucleotide Polymorphisms by Functional 
Category in dbSNP (Build 121)

Functional Category Total Number
Total

Validated
Total with

Frequency Data
Intronic 2,648,392 1,334,942 197,438
UTR 550,057 267,511 45,980
Promoter region 379,176 181,686 27,031
Coding, nonsynonymous 45,896 17,750 6,975
Coding, synonymous 35,782 18,086 7,956
Splice site 738 134 37

Note: UTR = untranslated region.
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Gene, GeneSNPs, SNPper, and the human genome browsers (table 4.1). These tools

([20]; http://hgvbase.cgb.ki.se/), was initially created in 1998, with a remit to capture
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assume a complementary position, with a broader remit covering all single nucleotide
variation—both SNPs and Mutations. HGVbase has taken a distinct approach to
dbSNP by seeking to summarize all known SNPs as a semivalidated, nonredundant
set of records. HGVbase is seeking to address some of the problems associated with
candidate SNPs and so, in contrast to the automated approach of dbSNP, HGVbase
is highly curated. The curators are aiming to provide a more extensively validated
SNP dataset by ltering out SNPs in repeat and low-complexity regions and by
identifying SNPs for which a genotyping assay can successfully be designed. The
HGVbase curators have also identi ed SNPs and mutation data from the literature,
particularly from older publications before database submission was the norm. HGV-
base currently contains 2.85 million nonredundant human polymorphisms and muta-
tions (Release 15.0, July 23, 2003). This currently represents a little over 25% of
the data available in dbSNP, so obviously one should not rely on HGVbase as a
comprehensive source of SNP data. It remains to be seen how the database will
develop in the next year as its focus shifts toward Phenotype and Genotype data.

4.2.4.5 Evolution of SNP-Based Research and Technologies

The perceived value of SNP data to pharmaceutical companies and government
research agencies has been demonstrated very early on in the “genomic revolution”
that has accompanied the sequencing of the human genome. Indeed the two efforts
of genome sequencing and polymorphism discovery have progressed hand in hand,
being largely complementary. Sequencing of the genome has involved sequencing
a pool of individuals, so naturally polymorphism data, generated from comparisons
of these individual sequences, have been a useful byproduct of the sequencing
process. However, as the genomic technologies that have allowed such high-through-
put sequencing have developed, so the same research groups and funding agencies
have become involved in speci c polymorphism discovery projects. The earliest and
largest of these projects was the SNP Consortium (TSC), closely followed by an
equivalent Japanese-funded project (Japanese Single Nucleotide Polymorphisms, or
JSNP); most recently, many members of both JSNP and TSC came together to form
the HapMap consortium, which sought to investigate the genetic structure of these
polymorphisms in common populations.

4.2.4.6 The SNP Consortium (TSC)

The SNP Consortium (TSC) was established in 1999 as a Wellcome Trust–driven
collaborative venture funded by more than 10 pharmaceutical companies to produce
a public resource of human SNPs. The initial goal, to discover 300,000 SNPs in two
years, was impressively exceeded by the TSC, as more than 1.4 million SNPs were
released into the public domain by the end of 2001 [24]. Data generated by the TSC
were submitted to dbSNP and can also be viewed on the consortium’s Web site

effort. At this stage, SNP data were relatively scarce, and so to enable effective
genetic-mapping approaches the TSC adopted a shotgun sequencing approach to
randomly identify SNPs across the entire genome rather than gene-speci c regions.
The TSC Web site contains no additional SNPs beyond those submitted to dbSNP.
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(http://snp.cshl.org). The SNP consortium was the rst major public SNP discovery



104 In Silico Technologies in Drug Target Identification and Validation

Generally its focus is now applied to serve the genetics research community by
providing population and genetic map centric information. 

4.2.4.7 JSNP—A Database of Japanese Single Nucleotide
Polymorphisms

The JSNP project was started in April 2000 as a two-year collaboration between
several Japanese government and academic groups [25]. Its mission was to identify
up to 150,000 SNPs in Japanese populations, which were not well represented in
the TSC dataset. In contrast to TSC, which took a random shotgun approach across
the genome, JSNP focused on gene regions for SNP discovery. This gene focus was
very deliberate to try to identify relationships between polymorphisms and common
diseases or drug adverse reactions, making this a pharmaceutically relevant dataset.
By the end of the project in 2002, 190,562 genetic variations had been discovered
and entered into dbSNP. The data are also available, along with details of the project,

4.2.5 THE HAPMAP

Following the success of the TSC, JSNP, and of course the human genome consor-
tium, the HapMap emerged as the next logical step in the understanding of these
data, effectively bridging the human genome and SNP datasets. The HapMap was
born out of some of the technical limitations that hinder the hunt for common disease
genes. Despite improvements in technology, initial efforts at genome wide mapping
of complex diseases using SNPs have fallen foul of the sheer volume of SNPs
required to detect association. Put simply, the human genome contains about 10
million common SNPs (a frequency of > 1%), so nding how these patterns of SNPs
differ between diseased individuals and healthy controls is impractical in terms of
both cost and DNA resources. The goal of the International HapMap Project is to
develop a haplotype map of the human genome, the HapMap, which captures the
common patterns of human SNP variation so that a subset of SNPs can be genotyped
to capture genomic variation as a whole. To explain the principle behind the HapMap,
SNPs that are close together tend to be inherited together. In this context haplotype
is the term used to describe a set of physically associated SNP alleles in a region
of a chromosome. Most chromosome regions are thought to have a limited range of
common haplotypes (with a frequency of at least 5%); this accounts for most of the
intraindividual variation in a population. Study of haplotype patterns has revealed
that a chromosome region may contain many SNPs, but just a few SNPs, known as
Tags, can provide most of the information on the pattern of genetic variation in the
region. Take the following haplotype example.

      SNP     1  2  3  4  5  6
Haplotype 1 ..T..g..a..G..c..t..
Haplotype 2 ..T..g..t..C..a..t..
Haplotype 3 ..G..c..t..C..c..a..

Three common haplotypes are shown. The two uppercase, underlined SNPs (SNP
1 and 4) are suf cient to identify or tag each of the three haplotypes. For example,
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at the JSNP Web site (http://snp.ims.u-tokyo.ac.jp/). 
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if a chromosome has alleles T and G at these two tag SNPs, then haplotype 1 is
likely to be observed. At the simplest level, this allows two SNPs to be genotyped
to capture information about six SNPs. On a genome-wide scale, this adds up to
considerable economies in genotyping and analysis. In association studies, observa-
tion of a haplotype that cosegregates with a disease can reduce an associated region
down to 10 to 20 kb (the average size of a haplotype block in European populations).
Such a small region usually equates to one or two genes, which makes for a much
simpler process of elimination.

The HapMap project aims to describe common haplotypes in three human
populations [26]: 90 Utah residents of northern European origin, 90 Yorubans from
Nigeria, and 90 Asians (45 Japanese and 45 Chinese). The HapMap will include
only relatively common SNPs, found with a frequency of at least 5% in all three
populations. The HapMap originally aimed to build the map using 600,000 SNPs,
spaced roughly evenly at 5 kb intervals. However, this target is likely to increase,
as recent studies by members of the consortium [27] suggest that 600,000 SNPs
might not be suf cient. Several studies have now con rmed that Yoruban haplotypes
are shorter than those of Europeans and Asians because, like many African popula-
tions, Yorubans have evolved over a longer period of time and are more genetically
diverse. Evidence so far suggests that the average length of Yoruban haplotypes
might be as little as 2 kb to 5 kb. This means that many more SNPs will be needed
to effectively analyze African populations. 

In terms of drug discovery and development, this also has a direct implication
on the way drugs are used across different ethnic groups. There are already many
observed differences in drug response between different ethnic groups [28]. These

ndings suggest that it may not always be possible to extrapolate genetic ndings—
for example, PGx response alleles, to some key populations with considerable unmet
medical needs, such as the African American population. In many cases these
populations will need to be studied separately to nd population-speci c alleles. The
HapMap consortium’s solution to these problems is to increase the SNP density of
the HapMap, and work to accomplish this is ongoing. 

4.2.6 DEFINING STANDARDS FOR SNP DATA

The unprecedented volume of SNP and genotype data that has been generated by
the TSC, JSNP, the HapMap, and the human genome sequencing project in general
has led to some concerns about the data standards that are applied to this information.
The Object Management Group (OMG), a little like the TSC, is another not-for-
pro t consortium that produces and maintains computer industry speci cations to
ensure complete interoperability between enterprise applications. The Life Sciences
Research group members within the OMG, which represents pharmaceutical com-
panies, academics, and technology vendors, are working together to improve com-
munication and interoperability between SNP databases by setting agreed standards
for SNP data storage and exchange. Details of these standards are available at the

integrated within the fabric of genomic research, these standards are likely to play
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OMG Web site (http://lsr.omg.org/home.html). As SNP data become increasingly
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a critical role in maintaining ef cient communication between life sciences software
and databases.

4.3 SECTION 3

4.3.1 TOOLS FOR VISUALIZATION OF GENETIC VARIATION:
THE GENOMIC CONTEXT

The human genome is the ultimate framework for organization of genetic-variation
data, and so genome viewers are also one of the best tools for searching and
visualizing polymorphisms. The three main human genome viewers—EnsEMBL,

although none currently consistently annotate mutation data. Most of the information
in these viewers overlap, but each contains some different information and interpre-
tation, and so it usually pays to consult at least two viewers, if only for a second
opinion. Consultation between viewers is easy as all three now use the same whole
genome contig—known as “the golden path”—and so they link directly between
viewers to the same golden path coordinates. 

User-de ned queries with these tools can be based on many variables, DNA
accessions, gene symbols, cytobands, or golden path coordinates. This places SNPs
and other variants into their full genomic context, giving detailed information on
nearby genes, transcripts, and promoters. Ensembl and UCSC both show conserva-
tion between human and mouse genomes; UCSC also includes a nice graph of
genome sequence conservation between human, chimp, mouse, rat, and chicken ( g.
4.3). This illustration may be particularly useful for identi cation of SNPs in poten-
tially functional regions, as genome conservation is generally restricted to genes
(including undetected genes) and regulatory regions [29]. A major strength of both

FIGURE 4.3 SNP-to-gene visualization in the UCSC human genome browser. A detailed
view of the PPARA gene allows the user to assess the functional context and genomic
conservation of the region surrounding each SNP. 
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the UCSC Human Genome Browser (UCSC), and the NCBI MapViewer (table
4.1)—all maintain consistently high-quality SNP annotation on the human genome,
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the UCSC and Ensembl viewers is their ability to export a range of data across a
user-de ned locus or a gene, making both viewers among the most exible interfaces
to genetic data. Ensembl is providing perhaps the most exible tool, EnsMart [30].
EnsMart is a very comprehensive data-mining tool to extract data from the Ensembl
database. It provides approximately the same set of data as dbSNP but allows
integration with any other genome-mapped feature.

4.3.2 TOOLS FOR VISUALIZATION OF GENETIC VARIATION:
THE GENE CENTRIC CONTEXT

For the purposes of drug-target discovery, validation, and PGx, SNP information is
generally of most interest when located in genes or gene regions, where implicitly
each SNP can be evaluated for potential impact on gene function or regulation. Many
tools are available to identify and analyze such SNPs and most are based on the
dbSNP dataset (but it is important to check the version of the data), but most have

Choice of tool may be a matter of personal preference, so it is worth taking a look
at a few. Some of these tools are maintained by small groups, so sometimes the tools
may not be using comprehensive or current datasets, which is a drawback. New tools
are constantly appearing in this area, so it is worth running a Web search to look
for novel tools; for example, one can enter “SNP AND gene AND database” as
search terms to retrieve most new tools in this eld.

4.3.3 ENTREZ GENE AND DBSNP GENEVIEW

The NCBI Entrez Gene database is a reliable tool for gene-orientated searching of
dbSNP. It can be queried by gene name or symbol; query results show a graphic
view of the gene. A click on this graphic will display a report detailing all RefSNP
records mapped across the gene in the context of the mRNA and translated sequence.
Almost all NCBI tools integrate directly with dbSNP, which also has a “geneview”
report. The dbSNP geneview summary details all SNPs across the entire gene locus,
including upstream regions, exons, introns, and downstream regions. Nonsynony-
mous SNPs are identi ed, and the amino acid change is recorded; analysis also
accommodates splice variants. NCBI tools have the advantage of a robust support
infrastructure, so they are probably one of the most comprehensive and reliable data
sources for gene-orientated SNP information.

Although Entrez Gene and dbSNP bene t from the reliability bestowed by the
infrastructure and resources available at the NCBI, several other tools present gene-
focused SNP data with much more user-friendly interfaces. There are many tools
that t into this category, some of which are listed in table 4.1, but for the purposes
of this chapter a handful of the more outstanding tools are reviewed.

4.3.4 SNPPER

SNPper is a Web-based tool developed by the Children’s Hospital Informatics Pro-
gram, Boston [31]. The SNPper tool maps dbSNP refSNPs to known genes, allowing
SNP searching by name (e.g., using the dbSNP rs name) or by the golden path
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different approaches to the presentation of data (see table 4.1 for a list of these tools).
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position on the chromosome. Alternatively, you can rst nd one or more genes you
are interested in and nd all the SNPs that map across the gene locus, including

anking regions, exons, and introns. SNPper produces an effective gene report that
displays SNP positions, alleles, and the genomic sequence surrounding the SNP. It
also presents useful text reports that mark up SNPs across the entire genomic
sequence of the gene and another report that marks up all the amino-acid-altering
SNPs on the protein. The program also has a nice tool for comparing the properties
of amino acids, which is valuable for evaluating the possible impact of amino acid
substitutions. One of the great strengths of SNPper lies in its data export and

At the SNP report level, SNPs can be sent directly to automatic primer design through
a Primer3 interface. At a whole-gene level or even at a locus level, SNP sets can be
de ned and re ned and e-mailed to the user in an Excel spreadsheet. SNPper currently
contains information on around 5.8 million unambiguously mapped refSNPs (dbSNP
build 118). At the time this chapter was written, dbSNP build 122 was available,
which contained 9.8 million refSNPs, so the comprehensiveness of the results
returned by SNPper may be an issue. 

4.3.5 GENESNP

sequence, and SNP data into a carefully annotated subset of human genes of high
interest to researchers participating in the Environmental Genome Project. It provides
extensive visualization and data export features, including a way of displaying SNPs
within the genomic sequence of the gene to which they belong, similar to the one
available in SNPper. Its main limitation is that it only contains a relatively small
number of genes (584 genes in August 2004), although most of these genes are
relevant to drug discovery and development and particularly drug metabolism. Each
gene is viewable in a graphical SNPCard, which contains information on the anno-
tated gene model, representative RNA and DNA sequences, and SNPs. Where avail-
able, the sequence extends 10 kb, both 5 and 3, of the expressed region of the gene.
The location and potential functional impact of each SNP is classi ed based on the
location (coding nonsynonymous, untranslated region [UTR], etc.). SNP allele fre-
quency is clearly indicated on a graph below the gene, making it easy to identify
high-frequency SNPs across the gene. 

4.3.6 CANCER GENOME ANNOTATION PROJECT:
GENETIC ANNOTATION INITIATIVE 

The Cancer Genome Annotation Project (CGAP) genetic annotation initiative (GAI)

SNPs by in silico prediction from alignments of expressed sequence tags (ESTs)
[32]. The database was established speci cally to mine SNPs from ESTs generated
by CGAP’s Tumor Gene Index project [33], which is generating more than 10,000
ESTs per week from over 200 tumor cDNA libraries. Candidate SNPs in ESTs can
easily be viewed with the CGAP–GAI Web interface in a graphical Java assembly.
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manipulation features (an XML export/query tool is even available; see table 4.1).

The GeneSNPs Web site (http://www.genome.utah.edu/genesnps/) integrates gene,

database (htpp://lpgws.nci.nih.gov/) is a valuable resource that identi es candidate
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SNPs in ESTs are identi ed by an automated SNP calling algorithm, mining EST
data with greater than 10 reads from the same transcribed region yielded predicted
SNPs with an 82% con rmation rate [32]. All SNPs that meet the stringent calling
criteria are submitted to dbSNP. It is also worthwhile searching CGAP directly if
you are interested in a speci c gene. The threshold for automated SNP detection
is set very high, so many potential SNPs are deliberately excluded by the highly
conservative automatic detection process, but these candidate SNPs can be identi ed
quite easily by eye, simply by looking for single base con icts where sequence is
otherwise high quality. The JAVA view of trace data helps to support the base call
of a potential SNP in an EST, although laboratory investigation is the only com-
pletely reliable SNP con rmation. Intriguingly this resource could potentially con-
tain some somatic mutations from tumor ESTs; these would probably be discarded
by the automatic detection algorithm that requires some degree of redundancy to
call the SNP.

4.3.7 SNP500CANCER

CGAP resource that is speci cally designed as a resource for applying genetic
approaches to understanding the etiology of different cancers as well as related
phenotypes. The SNP500Cancer project has resequenced 102 reference samples from
four ethnically diverse groups from the Coriell Biorepository (Camden, NJ) in an
effort to validate known SNPs of potential importance to molecular epidemiology
of cancer. Selection of SNPs for validation was based on review of the literature and
input from investigators in the eld. SNPs within or closely situated to candidate
genes, implicated in one or more cancers, have been targeted. Hence, there is a heavy
weighting toward nonsynonymous SNPs. The SNP500 group welcome suggestions
for new SNPs to be included in the project, particularly SNPs with known or
suspected functional impact. 

4.3.8 COMPARISON OF CONSISTENCY ACROSS SNP TOOLS

AND DATABASES

Consistency across SNP tools and databases is a real issue that needs to be consid-
ered. Savas et al. [34] completed a comparison of most of the tools reviewed
previously in this chapter. They searched 88 DNA repair genes for SNPs using
dbSNP, HGVbase, CGAP-GAI, SNP500, and GeneSNP. They noticed several prob-
lems concerning the speci city and accuracy of SNP positional and functional
annotations. They managed to compile 1,000 SNP entries from the 88 genes using
the ve Web-based SNP resources. Of interest, they found 150 nonsynonymous SNPs
(nsSNPs) throughout these genes, four of which were unique to the CGAP–GAI
database. Most of the nsSNPs were found in dbSNP (n = 128, 85.3%), GeneSNP
(n = 105, 70.0%), and HGVbase (n = 89, 59.3%). Total numbers of nsSNPs retrieved
from CGAP–GAI and SNP500 were obviously lower; however, neither tool claims
to contain a comprehensive SNP dataset. This clearly illustrates the problem with
reliance on a single tool, if a comprehensive view of variation is required.
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The SNP500Cancer database (http://snp500cancer.nci.nih.gov/home.cfm) is another
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4.4 SECTION 4

4.4.1 DETERMINING THE IMPACT OF A POLYMORPHISM ON GENE 
AND TARGET FUNCTION

Genetic variation can impact almost any biological process, hence the scope of
analysis required to evaluate the impact of variation is immense. Much of the
precedent in the area of functional analysis of variation has focused on the most
obvious variation—nonsynonymous changes in genes. Alterations in amino acid
sequences have been identi ed in a great number of diseases, particularly those that
show Mendelian inheritance. These identi ed alterations may re ect the severity of
many Mendelian phenotypes, but in the case of complex disease and drug response
this is probably not due to an increased likelihood that coding variation changes
function but rather a bias in analysis that focuses in functional terms on the “low-
hanging fruit”—coding variation. Coding variants may impact protein folding, active
sites, protein–protein interactions, protein solubility, or stability. But the effects of
DNA polymorphism are by no means restricted to coding regions. Variants in reg-
ulatory regions may alter the consensus of transcription factor binding sites or
promoter elements; variants in the UTR of mRNA may alter mRNA stability; variants
in the introns and silent variants in exons may alter splicing ef ciency. Many of
these noncoding changes may have an almost imperceivable impact on phenotype,
but this may well re ect the nature of complex disease and drug response, where
subtle alterations can nonetheless lead to serious phenotypic effects in combination
with other factors, such as lifestyle, environment, or simply the passage of time.

Approaches for evaluating the potential functional effects of genetic variation
are almost limitless, but there are only a few tools designed speci cally for this task.
Instead almost any bioinformatics tool that makes a prediction based on a DNA,
RNA, or protein sequence can be commandeered to analyze polymorphisms, simply
by analyzing both alleles of a variant and looking for an alteration in predicted

also be evaluated at a more fundamental level by looking at physical considerations
of the properties of genes and proteins, or they can be evaluated in the context of a
variant within a family of homologous or orthologous genes or proteins.

4.4.2 PRINCIPLES OF PREDICTIVE FUNCTIONAL ANALYSIS

OF POLYMORPHISMS

The complex arrangements that regulate gene transcription, translation, and protein
function are all potential mechanisms through which disease could act, and so

analysis of polymorphisms and mutations. The tools and approaches for the analysis
of variation are completely dependent on the location of the variant within a gene
or regulatory region. Many of these questions can be answered quickly using
genomic viewers such as Ensembl or the UCSC human genome browser. Placing a
polymorphism in full genomic context is useful for evaluating variants in terms of
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outcome by the tool (many such tools are listed in table 4.3). Polymorphisms can

analysis of potential disease alleles needs to evaluate almost every eventuality. Figure
4.4 illustrates the logical decision-making process that needs to be applied to the
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location within or near genes (exonic, coding, UTR, intronic, promoter region) and
other functionally signi cant features, such as CpG islands, repeat regions, or recom-
bination hotspots. Once approximate localization is achieved, speci c questions need
to be asked to place the polymorphism in a speci c genic or intergenic region. This

TABLE 4.3
Tools for Functional Analysis of Variation in Genes and Proteins

Transcriptional Start Site and Promoter Prediction
Promoser http://biowulf.bu.edu/zlab/PromoSer/
First Exon Finder http://rulai.cshl.org/tools/FirstEF/
Promoter 2.0 http://www.cbs.dtu.dk/services/Promoter/
Transcription Factor Binding Site Prediction
ConSite http://mordor.cgb.ki.se/cgi-bin/CONSITE/consite
TFSEARCH http://www.cbrc.jp/research/db/TFSEARCH.html
Other DNA and mRNA Regulatory Elements
UTRdb http://bighost.area.ba.cnr.it/BIG/UTRHome/
ESE nder http://exon.cshl.org/ESE/
Rescue ESE http://genes.mit.edu/burgelab/rescue-ese/
Detection of Novel Regulatory Elements and Comparative Genome Analysis
PipMaker http://bio.cse.psu.edu/pipmaker/
TRES http://bioportal.bic.nus.edu.sg/tres/
Regulatory Vista http://gsd.lbl.gov/vista/rvista/submit.shtml
Integrated Platforms for Gene, Promoter, and Splice Site Prediction
Webgene http://www.itba.mi.cnr.it/webgene/
NNPP, SPLICE, Genie http://www.fruit y.org/seq_tools/
Protein Secondary-Structure Prediction
TMPRED http://www.ch.embnet.org/software/TMPRED_form.html
TMHMM http://www.cbs.dtu.dk/services/TMHMM/
PREDICTPROTEIN http://www.embl-heidelberg.de/predictprotein/
GPCRdb 7TM snake plots http://www.gpcr.org/7tm/seq/snakes.html
Protein 3D Structure Analysis
DeepView/Swiss PDB viewer http://www.expasy.org/spdbv/
Cn3D http://www.ncbi.nih.gov/Structure/CN3D/cn3d.shtml
Identification of Protein Functional Motifs
INTERPRO http://www.ebi.ac.uk/interpro/scan.html
PROSITE http://www.ebi.ac.uk/searches/prosite.html
SIGNALP, NetPhos, NetOGlyc & NetNGlyc
(Signal peptide, phosphorylation and 
glycosylation site analysis)

http://www.cbs.dtu.dk/services/

Swiss-Prot (Functional annotation) http://www.expasy.ch/cgi-bin/sprot-search-ful
Amino Acid Properties
Properties of amino acids http://www.russell.embl-heidelberg.de/aas/
SIFT http://blocks.fhcrc.org/sift/SIFT.html
Specific Tools for SNP Functional Analysis
pupaSNP http://pupasnp.bioinfo.cnio.es
FastSNP http://fastsnp.ibms.sinica.edu.tw/fastSNP/index.htm
PolyPhen http://www.bork.embl-heidelberg.de/PolyPhen/
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questioning will help to narrow down the potential range of functional effects
attributable to a variant, which in turn will  help identify the appropriate lab follow-
up approach to evaluate function.

4.4.3 A DECISION TREE FOR POLYMORPHISM ANALYSIS

The rst step in the decision tree for polymorphism analysis ( g. 4.4) is a simple
question: is the polymorphism located in an exon? Answering this accurately may

FIGURE 4.4 A decision tree for polymorphism analysis.
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not always be simple or even possible with exclusively in silico resources. Delinea-
tion of genes is the key step in all subsequent analyses; once the exact location of
a gene is known, all other functional elements fall into place based on their location
in and around genes. The art of delineating genes to identify the true boundaries of
exons may seem super uous in the “postgenome” era, but we still know very little
about the full diversity of genes, and the vast majority of rst exons in particular
are still incompletely characterized. Gene prediction and gene cloning generally has
focused on the open reading frame—the protein coding sequence (ORF/CDS) of
genes. For the most part UTR sequences have been neglected in the rush to nd an
open reading frame (ORF) and a protein. In the case of polymorphism analysis,
these sequences should not be overlooked as the extreme 5' and 3' limits of UTR
sequence delineate the true boundaries of genes. This delineation of gene boundaries

the known regulatory elements in genes are localized to speci c regions based on
the location of the exons. So, for example, the promoter region is generally located
in a 1 to 2 kb region immediately upstream of the 5' UTR and splice regulatory
elements ank intron–exon boundaries. Many of these regulatory regions were rst
identi ed in Mendelian disorders, and now some are also being identi ed in complex
disease phenotypes.

4.4.4 THE ANATOMY OF PROMOTER REGIONS AND REGULATORY 
ELEMENTS

Prediction of eukaryotic promoters from genomic sequence remains one of the most
challenging tasks for bioinformatics. The biggest problem is over prediction. Current
methods on average will predict promoter elements at 1 kb intervals across a given
genomic sequence, in stark contrast to the estimated average 40 to 50 kb distance
of functional promoters in the human genome [35]. Although it is possible that some
of these predicted promoters may be expressed cryptically, the vast majority of
predictions are likely to be false positives. To avoid these false predictions it is
essential to provide promoter prediction tools with the appropriate sequence region,
that is the region immediately upstream of the gene transcriptional start site (TSS).
It is important to de ne the TSS accurately. It is insuf cient to simply take the
sequence upstream from the start codon as 5' UTR can often span additional 5' exons
in higher eukaryotes [35]. Uwe Ohler [36], a member of the Drosophila genome
project, put this succinctly: “Without a clear idea of the TSS location we may well
be looking for a needle in the wrong haystack” (p. 539). If the TSS is identi ed,
then the majority of RNA polymerase promoter elements are likely to be located
within 150 bp of this site. However, this is not always the case. Some may be more
distant, so it may be important to analyze 2 kb or more upstream, particularly when

number of partial and full-length mRNA and EST sequences to genomic DNA, with
provision for alternative promoters.

Once a potential TSS has been identi ed, there are many tools that can be applied
to identify promoter elements and transcription factor binding sites. The UCSC and
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the TSS is not well de ned. Promoser is a good tool for identifying TSS sites (Table
4.3, [37]); these are identi ed computationally by considering alignments of a large

is illustrated in a canonical gene model in gure 4.5. As the model shows, most of
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FIGURE 4.5 The anatomy of a gene. This gure illustrates some of the key regulatory regions that control the transcription, splicing, and posttranscrip-
tional processing of genes and transcripts. Polymorphisms in these regions should be investigated for functional effects.
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Ensembl genome browsers are the single most valuable resources for the analysis
of promoters and regulatory elements. Speci cally, Ensembl annotates putative pro-
moter regions using the Eponine tool. The UCSC browser annotates transcription

This is a valuable con rmation of potential functional conservation; a binding site
is considered to be conserved across the alignment if its score meets the threshold
score for that binding site in all three species. These tools are very useful for rapid
evaluation of the location of variants in relation to these features, although these
data need to be used with caution, as whole-genome analyses may overpredict or
overlook evidence for alternative gene models. Characterization of gene promoters
and regulatory regions is not only valuable for functional analysis of polymorphisms
but can also provide important information about the regulatory cues that govern
the expression of a gene, which may be valuable for pathway expansion to assist in
the elucidation of the function of disease associated genes and, in the case of drug
discovery, expanding a pathway to nd a tractable target.

4.4.5 GENE SPLICING

Alternative splicing is also an important mechanism for regulation of gene expres-
sion, which can expand the coding capacity of a single gene to allow production of
different protein isoforms with different functions. Analysis of the human genome
gives an interesting insight into this form of gene regulation. Despite initial estimates
of a human gene complement of more than 100,000 genes, direct analysis of the
sequence suggests that humans may only have 25,000 to 30,000 genes, which is
only a two- or threefold gene increase over invertebrates [38]. Indeed, extrapolation
of results from an analysis of alternatively spliced transcripts from chromosomes 22
and 19 have led to estimates that at least 59% of human genes are alternatively
spliced [39]. This highlights the signi cance of splicing as an alternative means to
express the full phenotypic complexity of vertebrates without the burden of a very
large number of genes. 

4.4.6 SPLICING MECHANISMS, HUMAN DISEASE, AND FUNCTIONAL 
ANALYSIS

Regulation of splicing is mediated by the spliceosome, a complex network of small
nuclear ribonucleoprotein (snRNP) complexes and members of the serine/arginine-
rich (SR) protein family. In a nutshell, splicing of pre-mRNA involves precise
removal of introns to form mature mRNA with an intact ORF. Correct splicing
requires exon recognition with accurate cleavage and rejoining at the exon boundaries
designated by the invariant intronic GT and AG dinucleotides, respectively known

motifs have been identi ed in adjacent locations to the donor and acceptor sites,
including a weak exonic “CACCAG” consensus anking the splice donor site, an
intronic polypyrimidine (Y: C or T) rich tract anking the splice acceptor site, and
a weakly conserved intronic “YNYURAY” consensus 18 to 40 bp from the acceptor
site, which acts as a branch site for lariat formation ( g. 4.5). Other regulatory motifs
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factor binding sites that fall within human/mouse/rat conserved regions (see g. 4.3).

as the splice donor and splice acceptor sites ( g. 4.5). Other more variable consensus
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are known to be involved in splicing, including exonic splicing enhancers (ESE)
and intronic splicing enhancers (ISE), which both promote exon recognition and
exonic and intronic splicing silencers (ESS and ISS, respectively), which have an
opposite action, inhibiting the recognition of exons. DNA recognition motifs for
splicing enhancers and silencers are generally quite degenerate. The degeneracy of
these consensus recognition motifs points to fairly promiscuous binding by SR
proteins. These interactions can also explain the use of alternative and inef cient
splice sites, which may be in uenced by competitive binding of SR proteins and
hnRNP determined by the relative ratio of hnRNP to SR proteins in the nucleus.
A natural stimulus that in uences the ratio of these proteins is genotoxic stress,
which can lead to the often observed phenomenon of differential splicing in tumors
and other disease states [40].

4.4.7 FUNCTIONAL ANALYSIS OF POLYMORPHISMS IN PUTATIVE 
SPLICING ELEMENTS

If taken individually, there are many sequences within the human genome that match
the consensus motifs for splice sites, but most of them are not used. To function,
splice sites need appropriately arranged positive (ESEs and ISEs) and negative (ESSs
and ISSs) cis-acting sequence elements. These arrangements of regulatory elements
can be both activated and deactivated by genetic variants. Polymorphism at the
invariant splice acceptor (AG) and donor (GT) sites are generally associated with
severe diseases and so are likely to be correspondingly rare (e.g., there are only 134

recognition motifs for some of the elements that make up the larger splice site
consensus sequence are variable, so splice site prediction from unde ned genomic
sequence is still imprecise at the best of times. Bioinformatics tools can fare better
when applied to known genes with known intron/exon boundaries; this information
can be used to carry out reasonably accurate evaluations of the impact of polymor-
phisms in putative splice regions. There are several tools that will predict the location
of splice sites in genomic sequence, and all match and score the query sequence

can be used to evaluate the effect of splice region polymorphisms on the strength
of splice site prediction by alternatively running wild-type and mutant alleles. As
with any other bioinformatics prediction tool, it is always worth running predictions
on other available tools to look for a consensus between different prediction methods. 

Splice site prediction tools will generally predict the functional impact of a
polymorphism within close vicinity of a splice donor or acceptor site, although they
will not predict the functional effect of polymorphisms in other elements, such as

it possible to assess the potential functional impact of polymorphisms in these gene
regions by simply inspecting the location of a polymorphism in relation to the
consensus motif. As with all functional predictions, laboratory investigation is
required to con rm the hypothesis.

Other cis-regulatory elements, such as ESE, ESS, ISE, and ISS sites, are still
relatively poorly de ned and may be found in almost any location within exons and
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validated SNPs in splice sites in dbSNP; see table 4.2). But as described earlier,

against a probability matrix built from known splice sites (see table 4.3). These tools

lariat branch sites. De nition of consensus motifs for these elements ( g. 4.5) makes
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introns (hence, overprediction is a problem). There are currently two tools available
to predict the locations of these regulatory elements—ESE nder and Rescue ESE

use comparative genome data to look for evolutionarily conserved regions, particu-
larly between distant species (e.g., comparison of human/Fugu ( sh) genomes).
Although there may be some value in these approaches, con rmation of cis-regula-
tory elements needs to be achieved by laboratory methods. (See D’Souza and Schel-

4.4.8 FUNCTIONAL ANALYSIS ON NONSYNONYMOUS CODING 
POLYMORPHISMS

of an amino acid substitution are rst and foremost de ned by the environment in
which the amino acid exists. Different cellular locations can have very different
chemical environments, which all have different effects on the properties of amino
acids. The cellular location of proteins can be divided at the simplest level between
intracellular, extracellular, and transmembrane environments. The latter location is
the most complex, as amino acids in transmembrane proteins can be exposed to all
three cellular environments, depending on the topology of the protein and the location
of the particular amino acid. Environments will also differ in extracellular and
intracellular proteins, depending on the location of the residue within the protein.
Amino acid residues may be buried in a protein core or exposed on the protein
surface. Once the environment of an amino acid has been de ned, different matrices
are available to evaluate and score amino acid changes. A Web site on the properties
of amino acids (table 4.3) provides four amino acid substitution matrices based on
the environmental context of an amino acid. These matrices can be used to evaluate
amino acid changes in extracellular, intracellular, and transmembrane proteins; where
the location of the protein is unknown, a matrix for “all proteins” is also available.
Preferred (conservative) substitutions have positive scores, neutral substitutions have
a zero score, and unpreferred (nonconservative) substitutions are scored negatively.
These matrices are an application of “inverse genetics,” constructed by observing
the propensity for exchange of one amino acid for another based on comparison of
large sets of related proteins. De ning the environment of an amino acid by looking
at existing protein annotation, or better still a known tertiary structure, may be
relatively straightforward if the protein is known. Beyond the cellular environment
of a variant there are many other important characteristics of an amino acid that
need to be evaluated. These include the context of an amino acid within known
protein features and the conservation of the amino acid position in an alignment of
related proteins. Alignment of mutated amino acid sequences with vertebrate and
invertebrate orthologues and homologues in a protein family will indicate whether
the residue is highly conserved throughout the gene family. Beyond evolutionary
clues, there are many different sources of protein annotation and tools to evaluate
the impact of substitutions in known and predicted protein features; some of the best
are listed in table 4.3. The overriding principle of such an analysis approach is to
get to know a protein: rst seek known annotation, then seek to annotate where

 © 2006 by Taylor and Francis Group, LLC

(table 4.3). Another possible approach for in silico analysis of such elements is to

Returning to the decision tree for polymorphism analysis ( g. 4.4), the consequences

lenberg [41] for a description of such methods.)
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annotation does not exist, and nally look at the impact of the variant in relation to
all that you now know. 

4.4.9 INTEGRATED TOOLS FOR FUNCTIONAL ANALYSIS OF GENETIC 
VARIATION 

4.4.9.1 PupaSNP and FastSNP

Two tools have recently been developed that offer to make the process of polymor-
phism analysis a little easier. PupaSNP and FastSNP are both integrated platform
applications that will analyze all known (in the case of PupaSNP, also user submitted)
polymorphisms in a given gene or list of genes. This feature obviously offers great
bene ts to the user in terms of speed and convenience, and as a rst-pass analysis
these tools both do a ne job; however, it is worth taking some time to fully explore
all avenues of analysis to add to the output of these tools.

phenotypic effect. The tool takes a list of genes as an input and retrieves SNPs from
evolutionarily conserved regions that could impact gene regulation and protein
function. PupaSNP is quite comprehensive and uses a range of tools to investigate
the impact of SNPs on splice boundaries, exonic splicing enhancers, transcription
factor binding sites (TFBS), and changes in amino acids. It also provides additional
functional information from gene ontology (a descriptive hierarchy of gene function),
OMIM, and model organisms. Fast SNP is also worth a mention (table 4.3). It
provides a complete platform for SNP analysis, although the number of analyses
performed are slightly reduced, focusing on TFBS and ESE prediction and amino
acid substitution analysis.

4.5 CONCLUSIONS

The last few years have revolutionized our knowledge of polymorphism and mutation
in the human genome. SNP discovery efforts and processing of genome-sequencing
data have yielded several million base positions and several hundred thousand
VNTRs that are likely to be polymorphic in the genome. This information is com-
plemented by a more select collection of mutation data painstakingly accumulated
over many years of disease gene hunting and mutation analysis. The sheer scale of
these data offers tremendous opportunities for drug discovery. We are now entering
a new phase in drug discovery and development where experiments are being
designed to capture the full genetic diversity of populations. This era may herald a
revolution in drug discovery, allowing rapid progression from disease gene to ef -
cacious drug. Alternatively it may simply identify further downstream bottlenecks
in the progression to validated drug targets. An understanding of mutation and
polymorphism may be an important aid in this process—with mutations representing
the extreme boundaries beyond which genes seriously dysfunction and polymor-
phisms perhaps representing the functional range within which genes can operate.
Our knowledge of the breadth and variety of human genetic variation can only
increase our understanding of the mechanisms of disease, and more important, it
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PupaSNP [42] (table 4.3) is for high-throughput analysis of SNPs with potential
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may help us to de ne better targets for intervention and ultimately safer and more
effective medicines.
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5.1 INTRODUCTION

Since microarrays were rst described over 10 years ago [1], they have evolved into
a standard, though still relatively expensive, experimental technology that has had
a profound impact in molecular biology. Microarrays exploit preferential binding of
DNA or RNA to their complementary single-stranded sequences. A microarray chip
consists of thousands of single-stranded DNA molecules attached in xed locations
onto a solid surface. The microarray chip is incubated with a biological extract
(mRNA or cDNA) that is labeled with a uorescent dye. Thus a single microarray
experiment produces thousands of data points, each of which is a measure of the
quantity of uorescent label bound at a feature on the microarray chip. These

uorescent intensities are indirect estimates from which the concentrations of mRNA
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molecules are inferred. Tens of thousands of features can be xed to a single
microarray chip, thus providing an opportunity to quantify thousands of gene tran-
scripts, indeed the entire human transcriptome in a single experiment. Knowing the
presence or absence of transcripts for all the genes in the genome at a particular
moment, and their changes relative to some reference state, is extremely valuable
information, and these detailed transcriptomic portraits provide hitherto unimagin-
able insights into the regulation of biological processes in the cell.

The number of applications of microarrays has increased dramatically. In addition
to assessing mRNA abundance, microarrays have also been applied to the quanti ca-
tion of DNA copy number, DNA sequence variations, and protein-binding sites in a
genome. Technological advancement means that higher numbers of features can be
spotted on microarrays. This has lead to the development of genomic tiling arrays,
SNP arrays, microRNA arrays, and all-exon arrays for whole-genome analysis [2,3].
This means that one now has the power to examine protein-coding RNA, alternative
splice variants, and nonprotein-coding RNA. The impact of these technologies has
been considerable, and a major part of this is due to the efforts of the Microarray Gene
Expression Data Society, which had the foresight rst to propose and develop standards
for microarray data [4] and second to encourage publication of raw data in public data
repositories [5]. These repositories, ArrayExpress [6], Gene Expression Omnibus [7],
and Stanford Microarray Database [8], now contain thousands of experiments, and the
availability of these data is rapidly accelerating the pace of scienti c discovery. These
repositories contain an impressive and rapidly expanding collection of gene expression
data of numerous cell types, in numerous experimental conditions in several species

design, and the assessment of drug toxicity. Although there is increasing interest in
the application of proteomic, metabolomic, and other new technologies to drug-target

Microarrays produce an indirect measure of expression, and processing of these data
into biologically meaningful units is a nontrivial task. Complex processing normaliza-
tion and analysis are required to obtain even the most basic information from these
data. Numerous bioinformatics, statistical, and machine learning methods have been
applied to microarray data. We describe some of these, highlighting the most popular
approaches, and describe a typical analyses work ow.

5.2 PREPROCESSING OF MICROARRAY DATA

The goal of microarray data preprocessing is to transform uorescent signal values
into biologically meaningful measurements. Unfortunately, the relationship between
the uorescence intensity and the abundance of a given RNA molecule is not
straightforward. Therefore, to correctly estimate the true gene expression level, we
need rst to assess experimental noise or variance due to random and systematic
error [9]. Random errors are statistical uctuations in the measured data due to
precision limitations. These cannot be avoided, but taking the mean of replicates can
reduce the effect of these. By contrast, systematic errors are reproducible inaccura-
cies that are consistently in the same direction (e.g., dye bias between different Cy3
and Cy5 uorescent dyes, or scanner sensitivity). Systematic errors are often due to

 © 2006 by Taylor and Francis Group, LLC

( g. 5.1), which form an excellent resource for in silico drug-target discovery, drug

identi cation, gene expression microarrays remain a powerful technology (box 5.1).
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a problem, which persists throughout the entire experiment. Removing systematic
noise is particularly critical in the case of microarray data, when one realizes that
there are frequently many thousands of variables (genes) and only a few tens of
samples. Therefore it is essential that microarray data are preprocessed appropriately
to increase the signal-to-noise ratio, prior to data mining of microarray data.

Normalization refers to methods of removing systematic error within a dataset.
Several methods have been proposed, and these have been reviewed extensively
[9–13]. We provide a brief overview of the most commonly used approaches. The
most simple and earliest normalization methods made the assumption that the number
of genes up and down regulated would be roughly constant in all samples. These
studies simply scaled all arrays so the total sum of intensities was equal on all arrays.
Although more re ned methods are now used, the assumption that the sum of total
gene intensities on arrays is constant remains a central feature of most methods. Most

FIGURE 5.1 The organisms represented in 588 microarray experiments (Pie Chart A) or
~17,000 hybridizations (Pie Chart B) in ArrayExpress are shown (H. Parkinson, ArrayExpress
Curator, personal communication, April 11, 2005). “Other mammals” includes cat and several
primates, and “Other” includes Methanococcus jannaschii, Plasmodium falciparum, Schisto-
soma mansoni, Trypanosoma cruzi. For further information about ArrayExpress, see the
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database statistics that are available online at http://www.ebi.ac.uk/arrayexpress/Help/stats.
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BOX 5.1
Advantages of Microarrays

Rapid Coverage
Genome-wide association studies of complex genetic diseases can be per-

formed using microarrays. The technology can accommodate high densities of
features per slide, making it is possible to study the whole genome in one quick
study. Whole genome chips are now widely available from many companies
including Affymetrix (Human Genome U133 Plus 2.0 array). By comparison,
only a few thousand proteins can be analysed on one 2D gel.

High Resolution
Because the whole genome is on the chip, technically there should be no

false negatives. By contrast with proteomics and metabolomics, the number of
false negatives is unknown.

Informative
The quantity and quality of genome annotation is improving continuously.

The gene and protein sequence, gene structure, genome locus, and often func-
tional, biological action and pathway information is available for each feature
(probe set) on a microarray.

Ef cient
Comparative genomics is easily accessible. The complete genome of several

organisms (human, mouse, and rat) are available on microarray chips; thus, the
progression from model organism to clinic is facilitated.

Reproducible
The reliability of the technology has improved enormously in the past two

years. Some labs have reported a correlation coef cient of .9 or greater between
technical replicates of commercial arrays.

Scalable
Although microarrays are still expensive, the cost of microarrays is no longer

prohibitive even for small laboratories. High-throughput microarray screens are
nancially and technically possible—for example, the study of the gene expres-

sion of whole populations or large numbers of people with and without a disease
to nd potential drug targets.

Standardized Data
Data standards are now in force, and data repositories for microarray data exist.

Computational Tools
Microarrays have a computational head start. Statisticians and computational

scientists have developed, applied, and tested numerous methods for microarray
analysis. More important, recent publications and meetings such as the Critical
Assessment of Microarray Data Analysis [75] have begun to benchmark, criti-
cally compare, and assess methods. As a result, methods for microarray analysis
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are evolving, and consensuses on the “best” methods for the preprocessing,

a list of software.

Disadvantages of Microarrays

High Noise Levels
The signal-to-noise ratio is obviously much lower than in DNA sequencing

and in molecular structure predictions. There are also few established error models.

Dye Effects
There are direct measures of gene expression, but these tend to be limited

by expense. They include TaqMan assays, which can measure the expression
of several hundred genes directly, massively parallel signature sequencing
(MPSS), expressed sequence tag (EST) counts, and serial analysis of gene
expression (SAGE). Microarrays measure gene expression indirectly, and dye
effects such as the dye bias of Cy3/Cy5 require lowess correction. 

Sensitive to Good Reporter (Probe) Design
Intensities are sensitive to the GC content and the DNA sequence of the

reporter. Although the whole genome is known, it is still possible probes may
cross-hybridise to homologous or unrelated genes.

“Guilt by Association” Theory
The focus of a gene chip experiment is frequently to identity gene expression

correlated with a covariant. However, it is dif cult to determine if differential
expression is a causative. Statistical signi cance may not equate with biological
signi cance and frequently results in the identi cation of bystander genes. For
example, detection of increased expression of metabolism genes in a rapidly
dividing cell may not explain cancer-induction, hence thorough experimental
design is crucial.

Increased transcript production as measured by gene chips does not always
correlate with production of protein. The complexity of posttranslation modi -
cation and regulations of protein pathways are not detected using microarray
technology.

Inference of Biological Pathways
It is frequently dif cult to infer which biological pathways are activated given

a list of differentially expressed genes. The biological outcome of a differentially
expressed gene is dependent on the simultaneous activation of many more
gene products. But our knowledge of these dependences and interconnections
between biological pathways is incomplete.

Cross-Platform Meta Analysis
There is a need for more-re ned integration methods for gene-expression

data across platforms and for integrations of gene-expression data with other
data sources such as protein expression and chemoinformatics data to enable
the parallel datamining of “omic” data.

 © 2006 by Taylor and Francis Group, LLC

normalization, and analysis of microarray data are emerging. See table 5.1 for
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normalization methods also assume that relatively few transcripts (less than 50% of
genes on a chip) are being regulated [13–16], though it is believed that these assump-
tions are generally reasonable. In studies where transcription is heavily in uenced,
such as in methylation or transcription factor knock-out experiments, these assump-
tions cannot hold. These assumptions may warrant further consideration, because
global changes in gene expression have been reported even in yeast stationary phase
[17]. In these cases, normalization to a rank invariant gene set [18] or using external
spike in controls is recommended [17].

Different microarray technological platforms produce data in different formats
[19]; each have platform-speci c errors, which must be processed in slightly dif-
ferent manners. It is beyond the scope of this review to explain these in detail, but
we brie y describe the processing of the most commonly used microarray plat-
forms: two-channel microarrays and commercial Affymetrix single-channel oligo-
nucleotide arrays.

The rst microarrays were pioneered by Pat Brown and colleagues at Stanford
University [1]. These microarrays were generated by robotically spotting PCR or
cDNA fragments onto glass slides, and differential expression was measured by
means of two-color uorescent hybridization. This means that slides were incubated
with two biological samples, each labeled with a different uorescent dye, and the
ratios between these dyes were measured. Two channel microarrays are popular, are
produced both commercially and by laboratories in-house, and make up two-thirds
of the published microarray data in ArrayExpress [H. Parkinson, ArrayExpress
Curator, personal communication, April 11, 2005]. When normalizing two-channel
arrays, a dye basis from the red (Cy5) and green (Cy3) channel needs to be corrected,
which is usually achieved using a local weighted linear regression (loess or lowess)
curve. Furthermore, correction for within and between print tip effects is normally
required [9,13]. These methods are available in many software packages, including
the Bioconductor package Limma [20] and the desktop software TM4 [21].

In contrast to dual-channel microarray data, which produce ratios data, single-
channel microarray produces measure expression in one sample only. Affymetrix is
probably the most popular single-channel oligonucleotide microarray platform. Cur-
rently Affymetrix data make up approximately 41% of data in GEO [T. Barrett, GEO
Curator, personal communication, March 25, 2005] and just under one-third of the
data in ArrayExpress [6]. On Affymetrix microarrays, each gene is measured using
several pairs of short oligonucleotide probes [19,22]. In each pair, one probe binds
to the target gene, while the second probe contains a single-point mutation (mismatch
probe). In theory, this second probe will not bind the target gene and should measure
background noise. Therefore, processing of Affymetrix data involves the conversion
of these probe data to a single gene expression value, and this is normally achieved
using a three-step procedure consisting of (a) background correction, (b) normaliza-
tion, and (c) summarization of probe set values into one expression measure [23]. In
some cases a probe-speci c background correction (subtracting mismatch value) is
included before Step 3. Several methods are commonly used, of which robust mul-
tichip average (RMA) or a variant of RMA called gcRMA that accounts for percentage
of GC content in the mismatch probes have outperformed other approaches in com-
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petitive tests [15,23]. These methods are available within the Bioconductor package

Microarray measurements usually are log transformed. There are at least two
reasons why log transformations are advantageous. First, log transformations make
ratios of gene expression increase and decrease symmetrically (e.g., a twofold
increase or a decrease by one-half are equal to base 2 logarithms of +1 or –1,
respectively). The second reason is that increases in gene expression are generally
perceived to be exponential rather than linear. A linear change is one that increases
by a xed increment in each period, whereas an exponential increase is a xed
percentage of the previous total. We use the base 2 log transformation, as biologists
generally express gene expression as a fold increase. However, the use of a log
transformation analysis is limited [25]. Moreover, studies show that microarray data
variance is linear (additive) at low levels of expression but is multiplicative at high
levels of expression. Thus, other transformations, such as arsinh as implemented
in variance stabilizing normalization (vsn), may be more appropriate [14]. Visual
plots such as histograms or boxplots are useful in data quality assessment [9]. Other
useful plots are MvA or RvI plots. These show intensity-dependent effects in two
microarray samples. These could be data from two dye channels (Cy3, Cy5) of
dual-channel data or a pair of replicates in the case of single-channel data. The plot
shows the ranked intensity (I) or average ratio (A) on the horizontal axis and the
fold difference (M) or ratio (R) of these on the vertical axis. In addition, self–self
plots have proved to be useful in the assessment of the success normalization
methods to remove systematic variance. In an ideal self–self plot, the slope of the
line should be 1 and there should be minimum deviation from this line.

5.3 STATISTICAL ANALYSIS OF MICROARRAY DATA 

A whole spectrum of statistical techniques have been applied to the analysis of DNA
microarray data [26–28]. These include clustering analysis (hierarchical, K-means,
self-organizing maps), dimension reduction (singular value decomposition, principal
component analysis, multidimensional scaling, or correspondence analysis), and
supervised classi cation (support vector machines, arti cial neural networks, dis-
criminant methods, or between-group analysis) methods. More recently, a number
of Bayesian and other probabilistic approaches have been employed in the analysis
of DNA microarray data [11]. Generally, the rst phase of microarray data analysis
is exploratory data analysis.

5.4 EXPLORATORY ANALYSIS

Exploratory methods are used not to test hypotheses but rather to get an overview
of data. Various clustering methods and ordination are excellent tools for exploratory
analysis of microarray data. These unsupervised methods do not require external
class or group information. Clusters are generated purely based on the intrinsic
similarity of the gene or sample expression pro les. No null hypothesis can be
rejected, and p values are not generated to test statistical signi cance. Methods that
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[24] and other microarray analysis packages (see table 5.1).
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TABLE 5.1
A Selection of Free or Open Source Software Packages

Package Description URL

RMAExpress Desktop program to compute gene-expression values for Affymetrix data using 
Robust Multichip Average (RMA) method 

http://stat-www.berkeley.edu/users/bolstad/RMAExpress/
RMAExpress.html

dChip Win program. Computes Li and Wong [18] model based gene values and 
normalized Affymetrix data using invariant gene set

http://www.dchip.org/

TM4 Extensive suite of desktop packages. Consists of four applications: MADAM
(a data manager), SpotFinder (image analysis), MIDAS, and MeV (data 
analysis) [21]

http://www.tm4.org/

Expression Pro ler An online-based microarray data analysis tool provided by the European 
Bioinformatics Institute [35]

www.ebi.ac.uk/expressionpro ler

Bioconductor Statistical package written in R (see Bioconductors Packages section) http://www.biocondutcor.org

Cluster, TREEView Popular hierarchical clustering analysis programs [30] http://rana.lbl.gov/
A Java version of cluster is available at
http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster

GeneCluster,
GenePattern

Clustering using K-Nearest Neighbours, SOM, and more http://www.broad.mit.edu/cancer/software/software.html

SAM Gene ranking using signi cance analysis of microarray http://www-stat.stanford.edu/~tibs/SAM/

ade4 Multivariate analysis in R http://pbil.univ-lyon1.fr/ADE-4/

GoMiner, MatchMiner Gene Ontology tools from the genomics and bioinformatics groups at the 
National Cancer Institute 

http://discover.nci.nih.gov/tools.jsp

SOURCE Extract gene information, particularly useful for analysis of IMAGE ID clones http://source.stanford.edu

GenMAPP Useful for pathway analysis http://www.genmapp.org/

NetAffx Online tools at Affymetrix Web site http://www.affymetrix.com/analysis/

BASE A MIAME-compliant microarray database http://base.thep.lu.se/
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Bioconductor Packagesa

ArrayMagic Input and Processing of dual-channel cDNA arrays

Affy Processing of Affymetrix data. Affy can call expression values using MAS5.0, RMA, gcRMA, or Li and Wong methods. It contains an 
extensive number of normalization procedures, including vsn

limma Input and normalization of dual-channel data. Extensive number of functions. Performs linear models, gene selection of both Affymetrix and 
cDNA arrays

vsn Normalization of both Affymetrix and cDNA arrays

made4 Made4 calls ade4 for multivariate analysis of microarray data

Selected Commercial Software Packages

GeneChip Operating 
Software 

GCOS is Affymetrix’s new software program for basic analysis http://www.affymetrix.com/products/software/

GeneSpring Popular microarray analysis suite from Silicon Genetics http://www.silicongenetics.com

GenePix Image analysis of spotted arrays http://www.axon.com

J-Express Desktop package for microarray analysis [Dysvik and Jonassen 2001] http://www.molmine.com/index.asp

Useful Web Resources Links

A beginner’s guide to microarray from the National Center for Biotechnology Information http://www.ncbi.nlm.nih.gov/About/primer/microarrays.html

Microarray Gene Expression Data Society (MGED) http://www.mged.org/

ArrayExpress http://www.ebi.ac.uk/arrayexpress/

Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo/

Stanford Microarray Database http://genome-www.stanford.edu/microarray/

Emmanuel Paradis’s R for Beginners: Useful to those unfamiliar with R http://cran.r-project.org/doc/contrib/rdebuts_en.pdf

Resource in basic statistics http://www.stats-consult.com/tutorials.html

Mark Reimers’ guide to microarray analysis http://discover.nci.nih.gov/microarrayAnalysis/Microarray
.Home.jsp

a R and Bioconductor contain hundreds of useful statistical and machine learning packages this is only a selection of those. A list of Bioconductor packages is available
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at http://www.bioconductor.org.
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can be used to test a hypothesis are discussed in section 5.5. Unsupervised methods
provide a useful view of groups or trends in the data, and it can be useful to check
if samples group in clusters associated with a covariant of interest. Of course,
unexpected or unknown associations in the data may be discovered. This may be
biologically interesting; however, samples frequently cluster by experiment date,
labeling kit, technician, or quality of RNA, suggesting that additional normalization
and/or samples replicates are required prior to further analysis.

Clustering is a well-established eld, and various clustering algorithms have been
applied to microarray data. Clustering may impose a hierarchical or at structure on
the data, which may be built using divisive (top-down) or agglomerative (bottom-up)
approaches. For instance, hierarchical agglomerative clustering is based on iteratively
grouping together the objects that are most similar, in a process that starts with all
objects in individual clusters, and successively fusing these. K-means clustering [29]
is the most common method of at-partition-based clustering. In K-means clustering,
the number of expected clusters (K) is set a priori either randomly or by the user.
For each a priori chosen cluster, the algorithm calculates the distance between each
object to its gravity center. It excludes all elements that are closer to the gravity center
of some other cluster (and includes them in the respective cluster). For each new
cluster the new gravity centers are found. The algorithim is iterated until either all
elements in all clusters are closer to their respective gravity centers than any other
one, or after some prede ned number of iteration (e.g., after 10,000 iterations). It is
important to remember that the results obtained from a clustering method are depen-
dent on the measure of distance or similarity used. Thus, the understanding of a basic
distance or similarity measure is important.

5.4.1 DISTANCE MEASURES

A fundamental concept in clustering is the understanding of the importance of the
metric, which de nes the similarity (or distance) between samples. There are numer-
ous metrics, and depending on the metric selected, results of analyses may vary
dramatically. The choice of metric normally depends on the question that is being
asked of the data.

The most commonly used distance metric is Euclidean distance. The Euclidean
distance between two points is the everyday distance we measure with a ruler or
measuring tape. It can be calculated easily using Pythagoras’s theorem and is the
square root of the sum of the square distances between the points in each dimension. 

Frequently one seeks genes that are coregulated. In this case the timing of change
is more important than the magnitude of change. For example, you seek two genes
with the same cycle, or genes that change expression at the one time. In this case a
correlation measure, such as a Pearson correlation coef cient or a Spearman rank
correlation, may be more appropriate. Alternatively, different metrics may be used
if you seek genes that have a phase shift between them, such as genes that are
switched on or off by a promoter. The choice of metric is discussed in detail by
Causton et al. [28].

 © 2006 by Taylor and Francis Group, LLC
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5.4.2 INTERPRETATION OF HIERARCHICAL CLUSTERING 
DENDROGRAMS AND EISEN HEATMAPS

Hierarchical clustering is a concept that is familiar to most biologists because it has
been used extensively to develop taxonomies. It was one of the rst clustering
methods applied to microarray gene expression data [30,31] and remains a popular
approach. Several similar or distance metrics, together with several linkage methods,
can be applied to hierarchical clustering, and each will produce quite different results.
In microarray analysis, a correlation coef cient metric with average linkage is most
commonly used. We refer the reader to several excellent reviews and tutorials on

we provide a few tips on the interpretation of the results from these analyses.
The results of hierarchical clustering analysis are usually visualized using a

dendrogram, the treelike diagram. A node joins two objects, and the line length
between two nodes is proportional to the similarity or dissimilarity between these
objects, depending on the distance metric and linkage method used. Thus, given a
scale ( g. 5.2), one can read the distance between two nodes. Although one may be
tempted, note that in most analyses, the order of samples is not important. A
dendrogram can be compared to a baby’s mobile hanging from the ceiling. The
relationships between the parts of the mobile do not change even if the parts are
rotated. Similarly, in a dendrogram, each node can be rotated freely around each
internal branch on the tree without affecting the topology of the tree. For instance,
even though the branch order is reordered, Tree A is equivalent to Tree B in gure
5.2, and the distance between the objects of the tree remains constant.

Eisen et al. [30] presented the results of clustering (dendrogram), together with
a heatmap of gene expression values. A heatmap is a representation of normalized
gene expression values, where the number of rows in the heatmap are equal the
number of genes and the number of columns are equal to the number of samples.

FIGURE 5.2 Trees A and B show the results of a hierarchical cluster analysis of the same
data. Tree B has been reordered. Dendrogram A is equivalent to Dendrogram B. Rotating an
internal branch does not affect the topology of a tree. If Tree A or Tree B were cut at the
position of the dashed line (a height of 1.0), each tree would produce three equivalent clusters.
That is, the members in each of these three branches are the same.
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hierarchical clustering that discuss these in more detail [28,32,33]. In this review,
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Each “pixel” in the heatmap is colored, where a color gradient scale is used to
represent gene expression intensity. Typically green to red, or more recently blue to
yellow, is used to represent increasing gene expression. These plots are effective
visualizations and have been widely used in microarray literature. These plots are
often referred to as Eisen plots.

To interpret the dendrogram, one must decide how many branches are robust.
Generally only the upper branches of a tree are robust. The deep, short branches of
a tree are often weak, and sample membership of deep branches may be quite
random. The decision of where to cut a tree is critical. For example, if one cuts the

deeper, there are more clusters. In phylogenetic analysis, bootstrap permutation is
frequently used to estimate the robustness of branches; however, this has not been
adopted widely within the microarray community. Typically dendrograms from
hierarchical clustering of microarray data are cut to give clusters that appear tight
or that include genes with similar functional annotation. It is easy to see that the
interpretation of a dendrogram is subjective.

5.4.2.1 Assumptions and Limitations of Clustering

The limitations and assumptions inherent in hierarchical clustering need to be con-
sidered when interpreting a tree. The use of a different metric, linkage, or data
normalization method will produce a different tree, and almost always a plausible
biological hypothesis can always be forced on it. Thus, when performing hierarchical
cluster analysis, it is worth remembering the rst tree is not the “one and only” tree.
For example, numerous different animal taxonomies have been produced in phylo-
genetic analyses, but we still await a consensus on the correct model. Second,
hierarchical clustering forces a hierarchical topology on data, which may not be
appropriate. Biologically a gene (e.g., a kinase) could belong to numerous clusters,
but in a dendrogram a gene can belong to one cluster. Equally partitioning experi-
mental samples into discrete hierarchal groups has the disadvantage that it may force
arbitrary arti cial divisions in a dataset even if it is naturally a continuous gradient
(e.g., dose response).

The use of different clustering algorithms or different parameters often produces
rather different results on the same data. Biological interpretation of clustering results
requires understanding how different clusters relate to each other. It is particularly
nontrivial to compare the results of a hierarchical and a at (e.g., K-means) cluster-
ing. To this end, a method for comparing and visualizing relationships between
different clustering results, which can be either at versus at or at versus hierar-
chical, has been recently described [34]. When comparing a at to a hierarchical
clustering, the algorithm cuts different branches in the dendrogram at different levels
to optimize the correspondence between the obtained clusters based on graph layout
aesthetics or on mutual information. The clusters are displayed using a bipartite
graph where the edges are weighted proportionally to the number of common
elements in the two clusters and the number of weighted crossings is minimized.
The algorithm is available online in the gene expression data analysis tool, Expres-
sion Pro ler [35].

 © 2006 by Taylor and Francis Group, LLC

Tree A in gure 5.2 at a distance of 1.0, there are three clusters; if one cuts the tree
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It is also worthwhile using additional exploratory analysis methods. An ordina-
tion method such as principal component analysis (PCA) is a complement to hier-
archical clustering.

5.4.3 ORDINATION: VISUALIZATION IN A REDUCED DIMENSION

Ordination is a different but complementary approach to clustering, because ordi-
nation considers the variability of the whole data matrix, bringing out general
gradients or trends in the data, whereas clustering investigates pairwise distances
among objects, looking for ne relationships [33]. Factor analysis, PCA, correspon-
dence analysis (COA), and nonmetric multidimensional scaling (MDS) are ordina-
tion methods. PCA and COA have been applied to microarray data analysis [36–38].
PCA and COA can be computed using singular value decomposition (SVD), [39],
and thus all of these methods are closed related.

explains the principal of dimension reduction to those unfamiliar with the approach.
This example is taken from the extensive literature available with the ADE4 package
for multivariate analysis of ecological data [40]. In this example, the morphological
measures (length, height, maximum width) and sex (male/female) of 48 painted
turtles were recorded [41]. It is clear that there is a linear corelationship between
these, and one can see quite easily that they could be represented on one axis (turtle
size = x.length + y.height + z.width, where xyz are the weights or loadings that
explain importance of each variable in the equation). This is exactly the role of
dimension reduction: collinear or correlated variables are represented by a new axis.
It can be viewed as a rotation of the existing axes to new positions in the space. In
this new rotation, there will be no correlation between axes, the new axes are
orthogonal. These new axes are called principal components or eigenvectors and
explain the principal trends in the data. One can easily imagine that within a
microarray experiment, many genes are coregulated, and these could be represented
by a few principal components that would explain the main patterns of gene expres-
sion. For example, in a simple study of control versus treated, one or two principal
components might signi cantly represent the major trends (expressed in control
versus expressed in treated). However, if the experiment was a complicated time
course, or diagnosis of multiple cancer types, more principal components would be
require to explain the main trends in the data.

Each principal component has an associated eigenvalue, which scores the amount
of variance or information represented by that component. In PCA and COA, the
eigenvalues are ranked from highest to lowest. As a result, the rst eigenvalue is the
largest, and the rst principal component will always describe the strongest trend in
these data. The second eigenvalue will be the next largest, and so on. For example, in
the turtle data ( g. 5.3), the rst principal components represents 97% and thus explains
most of the variance in the dataset ( g. 5.3E). One must determine how many eigen-
values or principal components are biologically meaningful. This number will deter-
mine the dimensionality of the reduced space. Luckily the problem of choosing the
number component to use is simpli ed by the use of a scree plot ( g. 5.3E). The term
scree comes from geology, as the plot resembles a mountainside with loose rocks at

 © 2006 by Taylor and Francis Group, LLC

The idea behind PCA and ordination is quite intuitive. Figure 5.3 graphically
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FIGURE 5.3 The concept of dimension reduction, Principal Component Analysis. The length
(mm), height (mm), maximum width (mm), and sex (male/female) of 48 painted turtles were
recorded [41]. The data were ranked by the product of the length, height, and width. Turtle
length, height, and width are shown in Graphs A and B; it is clear that the tree variables could
be represented on one axis (turtle size = x.length + y.height + z.width). This is exactly the role
of dimension reduction: collinear variables are regressed onto a new axis. PCA produces new
axes that represent trends in the data. Graph C shows the rst two axes (PC1, PC2) of a PCA.
D shows a scree plot of the eigenvalues, which describes the amount of variance (information)
represented by each axes. It is clear that the rst axis (PC1) is the most important. PC1 accounts
for 97% of the variance in the data. E shows the loadings on PC1. There is a clear split between
male (blue) and female (magenta) turtles. In fact, further analysis of the second axis (PC2)
shows that females tend to be higher and narrower than males of the same length.
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the base. One guide to selecting a cutoff is to select the number of eigenvalues before
the plot levels off, or reaches the base of the cliff on the scree plot.

Of course, each trend or principal component can be expressed in terms of genes
or microarrays. For example, given gene-expression pro les of different tissues such
as the gene-expression atlas [42], one might see a principal component showing that
immune cells are characterized by high levels of expression of cytokine genes.
Equally, one could view the same component from the viewpoint of the genes. Thus,
this component would weight cells of immune origin highly but possibly give low
weights to liver, kidney, and testis. Therefore PCA analysis results in two plots, one
that shows the weighting of genes in array space and a second that shows the
weighting of microarrays in gene space. In the microarray community, sometimes
these principal components are called eigengenes and eigenarrays, respectively [39].

It is easy to see that PCA is a useful tool in microarray analysis. These methods
date back to Karl Pearson’s elegant paper in 1901, in which he posed the problem
of nding lines and planes of closest t to a cloud of points in multidimensional
Euclidean space [43]. Given this long history, the terminology may be a challenge
to persons new to the eld. PCA has been mathematically described several times
and can be computed in several ways [33,44], including using eigenanalysis and
singular value decomposition. As a result principal components can be known as
eigenvectors or singular vectors. But also principal components are also sometimes
referred to as principal factors, principal axes, or latent variables. A latent variable
could be described as a variable that cannot be measured directly but underlies the
observed variables. Moreover, as just described, the terms eigenarrays and eigen-
genes or metagenes are used in microarray analysis [39,45].

To help in understanding the relationships between different ordination methods,
it is useful to learn a little about the mathematics behind them. Although we could
provide a lengthy computation, we use a nice matrix computation called SVD, which

new matrices are the singular values (S) and the left (U) and right (V) singular
vectors. The singular values are the eigenvalues. The left eigenvectors produce the
new loadings and coordinates of variables (genes). The right eigenvectors produce
the new loadings and coordinates of cases (microarray samples). Thus each principal
component has an eigenvalue, a vector of gene coordinates, and a vector of array
coordinates. It is easy to see that the total number of principal components must
equal the number of rows or columns in the matrix (which is less). Because the rst
few components will explain the majority of the variance in the data, the original
dimension of the data is transformed into just a few principal components. This is
referred to as a dimension reduction.

COA, PCA, and many other ordinations can be viewed as matrix decomposition
(SVD) following transformation of the data matrix ( g. 5.4). Transformations can
include centering with respect to variable means, normalization of variables, square
root, and logarithmic transforms. In each case, the transformation modi es the view
of the data, and thus different questions are posed. PCA is typically a decomposition
of a column mean centered (covariance matrix). That is, the mean of each column
(array) is subtracted from each individual gene-expression value before SVD. For
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when performed on a matrix results in three new matrices ( g. 5.4). These three

more information, see Wall [46], where the mathematical relation between PCA and
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SVD is explained relatively simply. It is worth noting that some preprocessing, such
as centering of the data prior to analysis, will impact on results. For example, the

rst component of a PCA on the yeast sporulation data was uninteresting [37],
however structure was revealed when SVD was applied to data that were centered
and normalized [47]. A size effect is easily removed by row-centering microarray
data prior to PCA. Alternatively a dual scaling approach such as used by COA is
effective when analyzing microarray data [36].

5.4.3.1 Interpretation of Plots from PCA or COA

Results of ordination analysis are visualized using two-dimensional plots of the new
axes. Although sometimes each axis can be viewed independently, or three axes can
be viewed on a three-dimensional plot, typically a two-dimensional scatter plot is
most informative. Interpretation of ordination scatter plots is quite intuitive, but we
provide a few guidelines. Each PCA and COA principal component (PC) is decor-
related (orthogonal), and thus each axis represents an independent or different trend

FIGURE 5.4 Data matrix transformations in advance
of SVD. A gene expression matrix N will be transformed to obtain a transform matrix X,
which is the one that will be actually displayed in a reduced dimension, achieved using SVD.
In this gure, Uk and Vk are eigenvectors and Sk is an eigenvalue. Uk is an eigenassay (or
eigenarray) and Vk is an eigengene.
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in the data. In most ordination techniques (but not MDS or independent component
analysis), the axes are ranked, thus PC1 accounts for more variability than PC2.
Typically the rst component (PC1) is represented on the horizontal axis, and the
second (PC2) is on the vertical axis. The further a variable or sample (case) is
projected from the origin, the greater its importance (or loading). However, the
direction of the axes (e.g., positive or negative end) is arbitrary, and the gradient
along the axis is more important.

In PCA, components are associated with maximal variance directions. A funda-
mental assumption of PCA is that the variables are linearly related and variables are
measured on the same scale. In the case where variables are measured on different
scales, normalized PCA, where values are column mean centered and also divided
by the column standard deviation prior to decomposition, must be used. Although
most software packages only provide these two PCA options (same scale: centered
PCA; different scales: normalized), there are in fact several other options with PCA,
and confusion can frequently arise from the use for the same terminology (PCA)
for each option. PCA has problems with data with many zeros in them. Interpretation
of PCA of microarray data is sometimes dif cult, because much of the variance may
not be associated with covariates or sample classes of interest. Thus, from a biological
point of view, it is worth examining the variance associated with each axis carefully

COA has been successfully applied to microarray data [36,48]. Traditionally
COA is a technique for analysis of two-way contingency tables of whole-number
positive integers and has been widely used in the analysis of species data in ecological
statistics. COA can accommodate species abundance data that are unimodally not
linearly distributed, and contain high number of zeros. Up to 50% of species data
can be zeros. In COA the data are scaled so that rows and columns are treated
equivalently by transforming the data into chi-square values. The sum of the eigen-
values equals the sum of the chi-square value for the data set; each of the axes
represent a proportion of the total chi-square for the matrix. The chi-square distance
measures the square differences between the observed data points divided by an
expected or average value. The expected value is the product of the average row and
column weight for that data point. This metric tends to equalize the contributions
of rare and frequent groups. Thus COA is powerful in analysis of microarray data
as it measures the correspondence or strength of association between a variable and
a case. As a result, coordinates of genes and samples from a COA are often plotted
on the one plot (or a biplot) on which associations between cases and variables are
easy to visualize. Samples and genes, which are strongly associated, will lie in a
similar direction from the origin.

A biologist’s insight, experience, and knowledge of the literature are the most
important tools for interpreting these exploratory ordination analyses. Figure 5.5
shows an example of results from a PCA and COA analysis of the same data. As
shown, both methods produce different results and ask different questions of the data.
Although initial exploration of the data using clustering and ordination approaches
is essential, it is worth remembering that exploratory methods do not test any statis-
tical hypothesis. Thus, statistical methods to rank genes are necessary to detect the
genes most associated with a covariant of interest, and more sophisticated supervised
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( g. 5.5).
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FIGURE 5.5 PCA and COA analysis of gene expression data (12,625
probesets) from broblasts isolated from human, gorilla, and bonobo. These gures demon-
strate the difference between a PCA and COA, which ask different questions of data. PCA
presents the trends in the data with the most variance. A and B show a scatter plot of the rst
two principal components (PC1, PC2) of a PCA and a COA, respectively. C shows a heatmap
of the scores’ rst ve principal components, where red to green is positive-to-negative ends
of the axis from the PCA. It is clear that the rst component, which represents the 90% of
variance in the data, is not associated with samples groupings. In B, the strongest correspon-
dences between genes and samples are analyzed. PC1 represent 19% and PC2 represents 12%
of the total chi-square association between samples and gene expression pro les. In COA
high chi-squares will be associated with increased gene expression in samples. Thus, if a
gene is increased in expression in a many samples, there will be a high chi-square value
showing this association. On the scatter plot the positive end of PC1 represents genes that
are up-regulated in gorilla and down-regulated in human.
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analysis methods are required if we wish to build gene classi ers that predict the
class of samples.

5.5 SUPERVISED CLASSIFICATION AND CLASS 
PREDICTION

Supervised analysis methods use our knowledge about genes or experimental condi-
tions in the analysis. We specify groups in advance. These groups may be sample
(patient) information or may be derived from clusters observed in exploratory data
analysis. Supervised methods use this prior class information and attempt to construct
classi ers based on these prede ned classes and corresponding gene-expression pro-

les. These classi ers form the best discriminators of the groups and can be used to
predict the class of future unknown samples. Supervised analysis methods include
linear regression or linear discriminant analysis, support vector machines, arti cial
neural networks, nearest neighborhood analysis, and decision trees [49,50].

Although almost any supervised or machine learning approach could be applied,
in practice supervised analysis is limited by the numbers of samples available. To
perform supervised analysis, suf cient samples are required to form both training and
test datasets. A classi er is produced using a training dataset. This classi er must be
rigorously tested using cross-validation. There are two commonly used cross-valida-
tion approaches. The rst is a leave-one-out or jackknife approach. To perform this,
a sample is removed from the training dataset. The classi er is trained, and the
classi cation of the excluded sample is predicted. This process is repeated until all
samples in the dataset have been tested and the percentage of samples that were
accurately predicted can be calculated. Generally, leave-one-out approaches overes-
timate the accuracy of a classi er. Thus, a second approach of cross-validation using
a new independent dataset is recommended, particularly in light of the high levels of
noise inherent in microarray data, where it would be easy to over t a classi er to
data. There are many reports of insuf cient cross-validation, and this has been the
subject of much criticism [49]. Other reports have criticized bias in selection of
samples in test datasets [51]. Ein-Dor [51] analyzed the van’t Veer et al. [52] breast
cancer dataset and concluded that the gene signature selected was not unique but was
strongly in uenced by the subset of patients used for the gene selection.

A second consideration when performing supervised analysis of microarray data
is that the number of objects that we want to classify (samples) typically is much
smaller than the number of parameters that can be used in classi cation (genes).
This is known as the “curse of dimensionality” and is driving the development of
new data analysis methods. This problem is most commonly resolved by selecting
subsets of genes in advance or iteratively during training. For example, many meth-
ods preselect genes or use PCA to reduce the dimensions of the data prior to
supervised analysis. Such gene selection may be cumbersome to produce, possibly
involving arbitrary selection criterion, or may miss highly informative combinations
of genes. To this end, Culhane et al. [48] described a powerful yet simple supervised
method called between-group analysis (BGA), a multiple discriminant approach that
could be safely used when the number of genes exceeds the number of samples [53].
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The basis of BGA is to ordinate the group means rather than the individual samples.
For N groups (or classes of samples) we nd N-1 eigenvectors or axes that arrange
the groups so as to maximize the between-group variances. The individual samples
are then plotted along them. Each eigenvector can be used as a discriminator to
separate one of the groups from the rest. New samples are then placed on the same
axes and can be classi ed on an axis-by-axis basis or by proximity to the group
centroids. BGA was shown to be a fast and simple approach to use yet produced
accurate discrimination as judged by the performance on gene-expression test data
or by a jackknife leave-one-out cross-validation analysis [48].

Many studies have insuf cient sample numbers to perform the supervised
approach just described. In this case one may simply rank the genes that are most
differentially expressed between classes and subsequently employ experimental
approaches to validate these genes.

5.6 TARGET IDENTIFICATION: GENE FEATURE 
SELECTION

Feature (or gene) selection is complex due to the high dimensionality of the data,
and thus the risk of detection of false-positive genes is high. We brie y describe
some methods that have and are used in gene ranking and refer the reader to an

In early microarray studies, most studies simply used fold-change or the maxi-
mum difference between the sample groups means to rank genes. This approach is
not recommended, as gene variance is not considered, and generally a high number
of false-positive genes are expected with this approach. More recent studies
employed a Student’s t-test, or other statistics that incorporated a measure of the
difference in the means relative to the standard deviation.1 To perform a t-test on
two groups, one rst calculates the t-statistic, which is the difference between the
means of two groups, relative to the standard error of the difference of the means.
The t-test p value measures the chance or probability of obtaining the observed t-
statistic or something more extreme given the null hypothesis, which assumes that
there is no difference in the two population means. Generally p < .05 is interpreted
as signi cant. However, due to the number of variables, this analysis is still prone
to false positives. For example, in a dataset of 20,000 genes, a 5% type I (false
positive) error rate would equate 1,000 false-positive genes. This is the problem of
multiple testing large numbers of genes [54]. The classical solution is to use a
Bonferroni’s correction, which sets a more stringent p value. This is calculated by
simply dividing the signi cance level by the number of tests (20,000). In this case
the correction would be 0.05/20,000, and p < .0000025 would be required for a gene
to be signi cantly differentially expressed. As you can see, this correction is con-
servative, and many genes would be excluded unnecessarily.

1 Incidentally the Student t-test was rst described by W. S. Gossett (England, 1876–1936) when working
in Guinness’s brewery in Dublin. However, because Guinness has restrictions on publication, he published
under the pseudonym “Student.” So when you next drink a Guinness, you may think of the Student’s t-test!
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Therefore, various approaches for computing adjusted p values have been
applied. These include permutation-adjusted p values, such as MaxT [55], which
uses a two-sample Welch t-statistic (unequal variances) with step-down resampling
procedures. Typically these adjusted p values are computed with an order of 10,000
permutations, which is computationally intensive. Although these methods are effec-
tive with large numbers of replicates, unfortunately this approach is not effective
when datasets have small numbers of samples per group [56].

Classical approaches are complicated by the level of noise in the data, the low
number of experimental replicates, and the high number of genes. These character-
istics have led to the development of new methods that use a moderated t-statistic,
of which, signi cance analysis of microarrays (SAM) [57] and limma [20] are
popular. In these approaches, the standard error is calculated using a pool of variances
of genes; thus, these methods “borrow” information across genes. SAM ranks genes
using a moderated t-statistic, and the statistical signi cance of this score is deter-
mined by permutation of the samples, and signi cance of the score is measured in
terms of a false-positive rate (FDR). The lowest FDR at which a gene is called
signi cant is the q value. Typically when we use SAM, we compare each cluster to
the remaining set (one class response, unpaired data, 1,000 permutations), and use
a q value cut off of 1% or 5% signi cance. Limma ts a linear model to the data
but moderates the gene standard error using an empirical Bayes model to obtain a
moderated t-statistic. It also produces p values that are adjusted for multiple testing.

5.7 APPRAISAL OF CANDIDATE GENES

The most dif cult part of any microarray analysis is appraising genes from a ranked
list and deciding which if any (or if all) should be targeted for experimental follow-
up. Often the genes of most biological interest are not those that are most highly
differential expressed. In fact, biological important phenomena are often the result
of many small changes in expression of many genes. In contrast, statistical analysis
is optimized to detect large expression changes in a minimum number of genes.

To this end, many groups have produced software to identify groups of function-
ally or biologically related genes in these gene lists. For example, FatiGO, an online
software program, extracts Gene Ontology (GO) terms that are signi cantly over- or
underrepresented in sets of genes [58]. The GO [59] is a large collaborative project
that aims to produce consistent descriptions of all gene products. The top three levels
in GO are biological function, cellular location, and biological process. A gene could
have one or more molecular functions (e.g., catalytic or binding activity) and will be
used in one or more biological processes (e.g., signal transduction or cell growth) and
may be associated with one or more cellular components (e.g., nucleus or ribosome).
Other gene information, such as Kyoto Encyclopedia of Genes and Genomes, liter-
ature resources such as PubGene, and databases on cellular pathways such as Bio-
Carta, may also be useful in interpreting gene lists. In the case of identi cation of
drug targets, one may wish to reduce a gene list to those 3,000 or so genes that are
potentially amenable to pharmacological intervention, or “druggable” [60].
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5.8 META-ANALYSIS

Microarray experiments are relatively expensive, but meta-analysis of expression
datasets, particularly when combined with other relevant datasets, may bring new
insights that go beyond the scope of the original studies. For example, although many
studies have reported gene signatures of metastatic potential of cancer, the overlap
between these gene sets is almost zero, even though these gene sets successfully pre-
dicted survival of patients in each case. Methods that combine gene-expression pro les
from many studies are likely to provide more robust gene signatures [61,62]. Simple
methods, such as co-inertia analysis, can be used to compare the global correlation
between gene-expression pro les of the same tissues or cell lines obtained in different
studies, even if these studies have used arrays with different catalogs and numbers of
genes [63]. Comparison of the expression pro les of homologous genes across a range
of organisms can help in predicting orthologous genes [64]. More recently, meta-
analyses of cancer gene expression datasets have begun to provide a more robust
estimate of genes that can be implicated in cancer prognosis and progression [61,65,66].
It is likely that combination of microarray data with proteomics and other information
will provide great advances in our understanding of cellular processes.

One of the most interesting resources for meta-analysis is gene-expression and
drug-response data on a panel of cell lines at National Cancer Institute (NCI). Since
1989, the NCI has screened more than 100,000 compounds against this series of
60 cell lines. These cell lines represent leukaemia and melanoma as well as lung,
colon, central nervous system, ovarian, renal, breast, and prostate cancer. Several
studies have examined the gene-expression pro les of these cell lines using Affyme-
trix oligonucleotide-based [67,68] and spotted cDNA arrays [69]. In each case,
microarray studies were performed on untreated cells and reported that gene-
expression pro les clustered by cellular phenotype [69]. Given these data, a number
of studies have attempted to correlate the gene-expression and drug sensitivities
pro les of these cells. Scherf et al. [70] calculated Pearson correlation coef cients
to relate expression pro les of 1,415 genes with 118 drugs with know mechanisms
of action or with 1,400 compounds that at least four replicates [70]. A number of
known gene–drug interactions were observed. For example, there was a highly
signi cant negative correlation between 5' uorouracil potency and dihydropyrim-
idine dehydrogenase gene expression, a gene that is rate limiting in uracil and
thymidine catabolism. A subsequent study correlated these two datasets with a
database of the compound substructural and chemical characteristics [71]. It found
subclasses of quinones correlated well with genes expressed in melanomas or
leukemias [71]. Of interest, they reported a subclass of benzodithiophenedione
containing compounds with electron-donating substituents displayed strong positive
correlation with Rab7, a gene highly expressed in melanoma. Indolonaphtho-
quinone-containing compounds were highly correlated with haematopoietic speci c
genes [71]. In another analysis, Butte et al. [68] and Staunton et al. [67] compared
relationships between Affymetrix gene-expression data and compounds from the
same drug-response database. The majority of resulting clusters consisted of
gene–gene or drug–drug families; however, one signi cant gene–drug association
between the gene LCP1 and a thiazolidine carboxylic acid derivative (NSC 624044)
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was identi ed. Staunton et al. [67] used an algorithm derived from the weighted
voting approach proposed by Golub et al. [72] to identify a 120-gene classi er,
which was enriched in extracellular matrix or cytoskeleton genes, that predicted
chemosensitivity to cytochalasin D in 20 cell lines with an accuracy of 80%. Other
studies have used the multivariate statistical procedure partial least squares to
correlate this gene and drug database [73,74].

Thus, although these cell lines have been the subject of much pharmacogenetic
analysis, consensus between these reports is yet to be reached. Analyses of large-
scale databases such as these, where the number of variables far exceeds the number
of cases, are dif cult to model statistically and are prone to false-positive results. It
is likely that further bioinformatic and statistic tools will be developed for this
emerging eld. Whether these ndings from cell culture apply to real tumors remains
to be seen, as it is likely other factors such as drug absorption, metabolism, and
access to the tumor site contribute to determining drug response in vivo. However,
with growing amounts of microarray, other high-throughput data, and parallel
advances in analysis and meta-analysis methods, it is likely that these will open new
avenues for drug-target identi cation and design.
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6.1 INTRODUCTION

An increasingly prominent topic at conferences concerns text mining and extracting
the full value of the literature for drug discovery. There have been a few false starts
and misunderstandings about what text mining is and what it can do. As with many
new technologies, some of the claims are perhaps excessive, yet we predict that text
mining will join many others in drug discovery as a key enabling technology. Figure
6.1 shows the aspects of drug discovery where text mining is highly applicable.

What is text mining? At a basic level, text mining is the process of highlighting
a small volume of relevant information from a very large set of possibly interesting
documents. There is nothing magical about the process. Text-mining software’s
“understanding” of the literature is still rather rudimentary. However, although it
may make mistakes where a human will see the interpretation as incorrect, it is often
right. Unlike tired humans, its actions are consistent. The greatest bene t of software,
in analyzing the literature, is that it can grind through amounts of text that no human
could ever hope to manage.

FIGURE 6.1 Drug-discovery process. The pharmaceutical industry usually divides the drug-
discovery process into phases that are based on milestones (key indicators of progression).

areas of broad utility that extend across the entirety of the process. The horizontal bars at the
top of the gure indicate these broad utility areas.
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One cannot expect text mining to produce accurate, nal knowledge with no
need for human review. However, the current state of the art can reduce the work
of the human reader tremendously. The need is indisputable; the number of patents
and articles has doubled in the last 10 years, but our methods for dealing with the

ood remain unchanged.
Fortunately, text mining is beginning to mature. 

• Electronic content is available for mining and is becoming more available
as journal publishers recognize text mining for the value it provides in
“advertising” their content.

• Computer hardware has progressed to the point where maintaining mil-
lions of dynamically indexed documents is relatively inexpensive.

• Specialized biomedical “ontologies” are now available through public and
commercial sources and are complete enough to be useful.

• Practical natural language processing (NLP) tools are now available.

Recall and precision are two of the main measures of accuracy applied to text-
mining results. Recall is the number of correct results found from all possible correct
results. Precision is the number of correct results found from the total number of
returned results (correct and incorrect). For various applications and corpora (in text-
mining terms, a corpus is a set of documents), recall and precision usually range
between 30 and 80%. One generally has to balance the recall versus the precision,
but there are ways to enhance both at the same time. NLP applications provide better
precision and recall by adding additional heuristics for extracting information from
the text. Statistical text-mining applications can disambiguate (e.g., distinguish the
gene symbol CAT as catalase OR chloramphenical transferase) gene names prior to
performing gene/disease co-occurrence analyses. Practical accuracy values give a
more realistic representation than the theoretical accuracy numbers from controlled
studies. Most important facts in the literature are mentioned more than once. If a
text-mining application nds only one of three instances of the relationship “Raf
phosporylates Mek,” the standard measure of recall on the three instances is only
33%, but the fact has been found, and that is the practical success criteria. To take
an even more pragmatic approach, one might say the bottom line recall value that
matters is the number of facts that one can reasonably extract given the man-hours
available for a project. If one has 40,589 MEDLINE abstracts (as of July 20, 2004)
to review for Alzheimer’s disease (AD)-related protein interactions, this will not be
possible to curate manually. Even 30% recall on 40,589 abstracts is going to be
much better than 100% recall on the few that one could read manually. The bottom
line is that text mining is certainly mature enough to use, but, because precision is
still well below 100%, the results currently require human review.

• Collect sources (abstracts, MEDLINE, full-text journal articles, patents)
• Develop landscape map of important concepts using statistical text mining
• Use NLP to extract facts
• Use semantically typed databases for the resulting knowledge management

 © 2006 by Taylor and Francis Group, LLC
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Text-mining tools can be used in many ways; to focus the process, it is important
to start with a clearly stated question. One must indicate what types of concepts and
relationships between concepts are essential in order to answer a question before
starting to extract them from the literature. Various applications t together in the
text-mining application portfolio to go from broad to focused results. As an example,
starting with the pathological process of steatosis, one may rst develop a knowledge
map of the pathways, proteins, compounds, and so on, associated with steatosis and
how they relate to each other using a network graph and associated tables. Given
that map of knowledge, one then determines that the speci c chemical com-
pound/protein interactions associated with the steatosis literature should be extracted
and incorporated into a knowledge base for subsequent data-mining exercises.

6.2 TECHNICAL ASPECTS OF TEXT MINING

A review of text-mining technologies is presented next. The various types of analyses
with background and references to more information are discussed to enhance the
reader’s understanding of the underlying technology and strengths and weaknesses
of each approach.

6.2.1 KEYWORD SEARCHING AND MANUAL METHODS

6.2.1.1 Text Search

Text searching represents the rst level of text mining. It is more formally known
as information retrieval (IR). The resulting output is usually presented as ordered
document lists. Documents are sorted by a keyword-based scoring function. Because
documents are treated merely as “bags of words,” all context and semantic variation
is ignored. Therefore, keyword searches tend to return a high volume of hits with
little ability to discriminate nuance, complex connections, or even the relevance of
the concepts communicated in the document in which the keyword resides. On the
other hand, keyword-based text search is the most popular form of text mining
because it is the most familiar. One runs a search and then analyzes the results
manually. One can also run multiple searches looking for intersections between
literature sets [1].

FIGURE 6.2 Text-mining work ow. Typical text-mining work ow involves identi cation
and subsequent collection of document sources, biological/biochemical/medical entity extrac-
tion, statistical content analysis, and natural language processing utilizing relevant ontologies,
with a nal goal of a relevant knowledge repository.
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To improve the relevance of keyword searches, some search engines allow the
following: 

• Wildcard characters and truncation (e.g., IGF? = IGF, IGF1 or IGF2 while
*ase = phosphorylase, kinase, convertase, etc.)

• Boolean operators (OR, AND, or NOT)
• Mechanisms for searching for phrases, usually quoted phrases (e.g., “mul-

tiword phrase”) or bracketed phrases (e.g., [multi-word phrase])
• Proximity limiters (e.g., (coronary AND disease)/5 nds documents that

contain both words within ve words of each other)
• Term weighting, fuzzy matches to words, and stemming words are other

ways to improve the relevant ordering of the resulting documents

The rst major drawback of keyword searching is that the task of sorting the
search engine output falls on the investigator, which exploits neither the computer’s
nor the human’s strengths. In addition, keyword searches suffer from polysemy (the
same word having different meaning in different contexts), which requires the reader
to examine documents for relevance, where a large number may be completely
incorrect, and synonymy (multiple words referring to the same concept), which
requires the investigator to know (and employ) all possible alternative synonyms to
ensure a complete search. Synonymy is a particularly dif cult problem in the biology
literature, where proteins routinely have many names and abbreviations often shared
with common English words.

6.2.1.2 Large-Scale Commercial Curation Efforts

A number of companies have developed massive, manually curated databases. Some
of these companies are

• BioBase [2]
• GVK Bio [3]
• Molecular Connections [4]
• Jubilant Biosystems [5]
• Ingenuity [6]

Each of these companies uses large groups of curators to read and manually
extract relevant facts from abstracts or journal articles. Databases of extracted data
that can be manipulated to discover literature-based, nontrivial relationships about
protein–protein interactions, gene-to-disease associations, small molecule to enzyme
target information, and so on, are provided to the customer. Some of the curation
companies attempt to read every abstract on every named gene, whereas others read
a selected number of full-length reviews on particular signaling pathways. Others
provide custom packages that provide great depth with a narrow focus or overviews
of broad areas. All of these approaches have value depending on the type of infor-
mation required. One perceived weakness of manual curation methods is that the
user does not control the quality and coverage of the derived information. Curation
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companies try to counter these concerns by having well-trained staff (often master’s
and doctoral-level scientists), a multitier fact-checking system, and data entry pro-
tocols. A second limitation of this method is that the companies are somewhat
in exible. There is little opportunity to steer the text-mining process if the needs of
the user change after the databases are completed.

6.2.2 LITERATURE RESOURCES FOR TEXT MINING

Access to the literature is critical for any text-mining effort. The literature sources
are scattered across many different databases and Web sites with a variety of access
mechanisms and licensing controls. Finding the literature sources required for a task
can be a monumental project in itself. It is nearly impossible to be certain that one
has identi ed all applicable repositories or documents. One also needs to download
a local copy of the complete text of any literature source or search results (for a
specialized corpus) to analyze it effectively.

An extremely important task in the collection of literature for text mining is
making sure that the license agreements for use of the literature are appropriate for
the use and that copyright law is not being violated. This task is actually quite tricky,
and the copyright laws of each country can differ substantially. Copyright clearance
centers are available to assist with copyright licensing [7].

6.2.2.1 Abstract Collections

There are a variety of text sources for biomedical text mining (see table 6.1). Abstract
collections are the text sources, or corpora, that are easiest to access. One can also
collect full-text patent collections from the various resellers or from the Patent
Authorities directly (U.S. Patent Of ce, European Patent Of ce, World Intellectual
Property Of ce, etc.). Other sources include full-text journal articles, Web docu-
ments, and news articles.

The premier source, which has catalyzed this entire area of research, is MED-
LINE. Without MEDLINE, the authors posit that very little progress in biomedical

TABLE 6.1
Document Corpora Sources for Biomedical Text Mining

Corpus (as of August 2004)
Records
(Million)

Size
(Gigabytes)

Medline 14 48
Biosis 7.7 28 (est.)
EMBASE 16 59 (est.)
U.S. patents 5 (est.) 500 (est.)
Biomedical journals 20 (est.) 11,200 (est.)

Note: The sizes of the more common life-science-oriented corpora are listed.
The patent corpus includes only pharmaceutically relevant patents, not the
entire electronically available patent collection. 
est. = estimated sizes.

 © 2006 by Taylor and Francis Group, LLC



Text Mining 159

text mining would have been made to date. MEDLINE includes approximately 14
million abstracts collected from several thousand journals on a daily basis. The
processing of the database also includes manually assigned keywords for both the
MeSH taxonomy and a substance listing.

Other abstract sources include various conference abstracts available on the
Internet, such as the American Association of Cancer Research [8], the premier
Biosis [9], and EMBASE [10] abstract collections. There is signi cant overlap
between the MEDLINE, EMBASE, and Biosis abstract collections. MEDLINE is
focused more on medical journals, including biology journals that support medical
research. EMBASE is also focused on medical research but includes more conference
abstracts and European journals. Biosis is more focused on basic life sciences. 

6.2.2.2 Patents

The patent corpora worldwide can also be a valuable resource. Some scienti c
information that is not published elsewhere can be found in the introduction and
background presentations of patent applications. It can be dif cult to mine patent
applications effectively due to the obfuscated manner in which many are written.
So far, patents have been found to be most useful for competitive intelligence
purposes. Care should be taken to achieve full value from patent collections. It might
be more ef cacious to divide the Abstracts/Claims section from the remainder of
the full text. Micropatents [11], Delphion [12], or other commercial entities are able
to provide a single-source access to the major patent collections of the world.

6.2.2.3 Full-Text Journal Access

There are three ways to access full-text journal articles:

• License full-text content from each publisher, which covers downloading,
storing, analyzing, and delivering the results to the text-mining customer.

• Download the available open source journal articles.
• Utilize existing standard license agreements with publishers to download

full-text journal articles speci c to a search request, for personal use.

At this point, there are many different biomedical literature publishers and
various resellers of literature content that provide access to their published literature.
Few recognize the importance of text mining to increasing the value of their literature
holdings. Therefore, it may be quite dif cult to negotiate full-text literature access.
Because Open Access journals have only recently become available, their scope is
limited and cannot be relied on exclusively.

small corpora from the licensed content available to the text-mining researcher.
Quosa allows the searching of full-text and abstract collection indices and subsequent
downloading of full-text journals associated with the search results. Other tools may
also be available for this task. The variety of PDF formats and locations of the full-
text content on each publisher’s Web site make collection of the content rather
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dif cult. The authors do not recommend any use of a technology such as this without
suf cient legal guidance concerning the licensing and copyright issues surrounding
use of the literature.

6.2.3 ONTOLOGY

An ontology is a machine-readable description of physical and nonphysical things
and the relationships that exist between them. Ontology, as a discipline, is a science
providing a framework for communication and context. The great value of ontologies
is fully realized for text mining in their potential for query generation and result

ontologies and their uses.
An ontology structures concepts (e.g., a gene, a physiological process, physical

interaction vs. indirect interactions between proteins) in a cyclical graph or network
structure. A concept can be related to another concept via a relationship ontology.
The “is-a” relation is used to indicate “is-a-child,” “is-a-parent,” and “is-a-synonym.”
The “part-of” can relate tissues and organs in the body. Cardiac tissue is part-of the

FIGURE 6.3 Document corpora generation. A view of a user interface of the program Quosa,
used for searching and downloading licensed, full-text journal documents. Search result with
a search/literature folder management window on the left side of the screen, and a title
selection window on the upper right with the full-text document viewer in the window on the
lower right.
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heart. The ontology can also incorporate relations from a larger relationship ontology
where the relations could be, for example, protein–protein interactions (e.g., “inter-
acts-with”  “physically interacts”  “adheres-to”  “binds-to”). Lists, thesauri,
controlled vocabularies, and taxonomies are degenerate representations of ontolo-
gies. They are often quite useful; for example, a protein ontology that incorporates
the “is-a-synonym” relation can be converted to a thesauri form for performing
expanded queries for a protein name in a variety of text search and text-mining
applications. One can enter “ApoE” into a search form or run a text-mining analysis
and have the query or analysis expand to use “ApoE,” “apoE,” or “apolipoprotein
E.” If the ontology incorporates the is-a-child or part-of relationship, one can generate
a hierarchically structured thesaurus. Then one can run text-mining analyses or text
search queries encompassing all protein-tyrosine kinases or nuclear hormone recep-
tors. A great deal of the domain knowledge for a particular area of research can be
captured as an ontology (which functions as a knowledge schema). The resulting
ontology can provide the domain knowledge required for text-mining applications.
For example, proteins, protein interaction modalities, biological effects and pro-
cesses, pathological processes, pathway names, and so on, can all be incorporated
into ontologies for use in biomedical text mining.

An additional use of ontologies, related to text mining, is for information cap-
tured in a semantically normalized fashion. Ontologies also provide contextualization
of information. For instance, they can directly represent the fact that Raf is a protein-
tyrosine kinase AND is an enzyme found in humans. They can also be used as the
foundation for semantically normalized multirelational databases that can act as
knowledge stores.

Unfortunately, the authors have not found the open-source ontologies for text
mining to be useful at this time. The Gene Ontology (GO) [14] does not incorporate
the is-a-synonym that is necessary for effective use in text mining or text search.
GO is a gene attribute ontology and performs well as a controlled vocabulary. UMLS
[15] has proven to be an excellent source for specialized thesauri development, but
it has a limited hierarchical structure.

6.2.4 TEXT CATEGORIZATION AND CLUSTERING

6.2.4.1 Text Categorization

Automatic text categorization for text mining is usually employed to lter documents
into speci ed subsets. Text categorization is a supervised machine-learning technique—
meaning that it requires training data to generate the category models. It can be used
to generate large taxonomic structures of documents similar to Yahoo’s [16] classi-

cation of Web pages. On the whole, the authors believe that most text-mining-
oriented text categorization needs to be highly focused and customized to the end
user rather than global/company-wide text classi cations.

A caveat concerning automatic text categorization is that it is often dif cult to
know what features of the training documents are being used to categorize the
literature. One may attempt to develop a cancer versus noncancer document lter
(text-categorization-based lter) and nd the lter is actually using the publisher
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name as the major discriminating feature because all the cancer training documents
contained a reference to the publisher. Text categorization, more than any other area
of text mining, requires very careful thought and design.

Another dif culty is the updating of category training data. As one’s interest in
a particular lter changes in time, one may corrupt the initial intent of the training
data or expand it beyond its purpose. For example, one starts with a neurodegener-
ation literature lter that has 10 neurodegeneration documents versus 1,000 non-
neurodegeneration documents. Later, if one adds 5 neuronal development articles to
the neurodegeneration set, one can end up with a lter that returns practically any
document about neuronal cells.

The null model (such as the non-neurodegeneration documents) in the previous
example is critical to the success of the lter. If the null model is neither appropriately
balanced in content nor balanced in number of nulls versus positive results, then the
results of the lter will not be correct. Training the lter on WHAT IS and IS NOT
a match is critical. The lter must be informed about how many matches are expected
in the test documents. If only 1 in 1,000 documents being tested is about neurode-
generation, then the training set bias of the positive and null training sets needs to
be similar. Often it is dif cult to curate a large enough training dataset to set the
bias based on correct ratios of training documents. Many of the text-categorization
algorithms have a weighting factor that can be set such that one can correct for the
expected ratio of documents. 

The null model is often more dif cult to create in a balanced manner than the
target category. If the entirety of MEDLINE is used to lter documents concerning
neurodegeneration, then it is necessary to randomly sample from MEDLINE at least
10,000 documents (assuming a ratio of 1/1000 neurodegeneration documents, which
can be estimated by collecting counts from simple keyword searches) to be able to
include 10 documents for neurodegeneration. It is also necessary to ensure that the
null model training data contain documents about aspects of neuronal research other
than neurodegeneration. For better discrimination, one might weight the null model
with a higher-than-expected ratio of non-neurodegenerative neural research articles.
Testing of the lter is required to understand the behavior of the categorization model.

Several algorithms exist for text categorization. The major ones are Naïve Bayes
[17], Support Vector Machine (SVM), and decision trees [18]. SVMs [19–21] are
generally considered the most accurate categorization algorithm at this time, but
they are dif cult to scale to large datasets and multiclass problems. Furthermore,
accuracy assessment is much more time consuming than using a Naïve Bayes
classi er. Decision trees can be built automatically. Decision trees are somewhat
unusual for these machine-learning techniques in that they are fairly transparent for
human comprehension. They may need to be manually pruned to enhance their
effectiveness. Naïve Bayes–based classi ers are very fast and easy to set up for
multiclass categories. Naïve Bayes classi ers also perform rapid accuracy assess-
ment using leave-one-out analysis. They have been found to be less accurate than
SVM classi ers, however. SVMs also handle imbalanced training sets better than
Naïve Bayes classi ers. In general, the decision on which algorithm to use is based
on analysis speed and computing power versus accuracy.
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There are many classi cation tools available for use. Some examples are Oracle
Text, ReelTwo’s CS, and SVMLight. Oracle has several built into their Oracle10g
database. SVMLight is available for SVM-based text classi cation [20]. ReelTwo
[22] has a classi er with a user interface to ease development of categorization
models. Most of the authors’ text-categorization experience is based on Oracle or
ReelTwo. A variety of other classi cation applications are available. Selection of a
speci c application is dependent on classi cation goals, user interface, application
features, and scalability requirements.

The authors caution that end users will need to be directly involved in developing
text-classi cation lters, but the end users will need signi cant assistance from
experts in text classi cation.

6.2.4.2 Clustering

Categorization and clustering are both machine-learning methods. They are used in
different ways, however. Text categorization is a content classi cation method,
requiring some manual preparation or user curation of a model and therefore some
idea of what one is looking for. Document clustering is used for knowledge discovery
and provides a hint of the diversity of themes within an otherwise uncharacterized
document collection. In particular, clustering is used when exploratory searches
result in hundreds or thousands of documents.

A simple keyword-based IR approach greatly limits the exploitation of the
knowledge structure contained in returned documents. Clustering provides a major
improvement in the grouping and prioritization of a set of documents. Clustering
arose from a need to improve IR systems [23,24], identify similar documents [25],
and better organize and browse a group of documents [26,27].

Document clustering is a form of unsupervised machine learning [28]. At its
simplest and purest level, document clustering requires no prior knowledge or expec-
tations about the contents and provides concept extraction [29] and knowledge
navigation. Furthermore, concept extraction can seed an automatic derivation of
classi cations and serve as a method of “ontology induction” [30].

Traditional clustering methods rely less on semantic analysis and instead utilize
multivariate statistical techniques to form clusters of similar objects in a multidi-
mensional space [31]. In every case, the process involves generation of characteristic
document vectors. Most frequently, these vectors are based on individual word
frequencies in the document. To reduce the signi cance of frequently occurring
words found in a majority of the documents, such as common English words, a
number of normalization or weight schemes can be applied: inverse document
frequency, probabilistic weights, stoplists (a list of speci c words that will be
excluded from the analysis), or domain-speci c weighted theme lists. At this stage,
a method may diverge from purely automatic clustering toward semisupervised,
partially categorization-based cluster identi cation (see the following examples).

Document vectors are used for calculating a similarity (or distance) metric
between two documents or a document and a cluster centroid (a vector representing
the center of a cluster of documents). Similarly, centroid vectors can be used to
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obtain a similarity metric between two clusters. The cosine measure is most fre-
quently used to compute these values.

The main two approaches to clustering are hierarchical or partitional [32].
Hierarchical techniques produce a treelike structure of nested document groups. At
the root of the hierarchy is a single cluster representing the complete document
corpus. The leaves of the tree represent individual documents. There are two basic
approaches to generating a hierarchical clustering: agglomerative and divisive.
Agglomerative algorithms start with the documents as individual clusters and, at
each step, merge the most similar or closest pair of clusters. Merging clusters requires
de ning and applying a cluster similarity or distance metric. Divisive algorithms
start with all documents in one cluster and proceed by splitting existing clusters until
only individual documents remain in each leaf cluster. At each step of the algorithm,
a decision has to be made as to which cluster to split and how to perform the split.
The hierarchical-clustering approach has a number of drawbacks when applied to
text documents. In general, it is computationally taxing due to a quadratic time
complexity O(n2). Additionally, the very nature of text leads to a frequent nding
that, based on a single similarity metric, the topics of neighboring documents can
vary signi cantly [32].

Partitional clustering techniques such as K-means assign documents to a spec-
i ed number of unnested clusters with no apparent hierarchy. Partitional clustering
tries to optimize the distribution of cluster centroids within the multidimensional
document space. Assignment of documents to a cluster can be based on a cluster
quality measure or relative cluster sizes. Partitional clustering methods do not pro-
duce hierarchies of documents, which in general results in linear run times, O(n).

These methods use a quality measure to assess cluster “goodness.” An internal
quality measure compares sets of clusters without reliance on preexisting knowledge,
such as user validation or classi cation models. A number of external quality mea-
sures exist and are often used to rate the quality of a cluster or the performance of
a clustering method. Entropy [33] and F-measure are two examples of cluster quality
measures.

A hybrid method, bisecting K-means, combines the divisive hierarchical and K-
means methods to produce a controlled number of hierarchical document clusters.
It has been shown to perform as good as or better than hierarchical methods while
retaining the performance of the K-means approach [32]. The process of this method
involves bisecting a selected cluster of documents (biggest or poorest quality) into
two smaller clusters but optimizing the centroids to obtain new clusters with the best
possible quality. An example of an implementation of this type of method is the
Oracle Text hierarchical K-means algorithm.

Recently, two new methods have been utilized in improving the document
attribute vectors from the traditional term occurrence methods. These techniques
attempt to better describe the semantics of the document contents. Clusters can then
be generated based on one of the standard methods just described.

One method is Non-Negative Matrix Factorization (NMF), which learns to
recognize semantic features of the text [34]. A corpus of documents can be summa-
rized by a matrix of words versus documents. This matrix is sparse, with many zero
values. The algorithm extracts a set of semantic features, combinations of which can
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be used to characterize any single document in the collection. Weighted representa-
tion by semantic features implies that each document is associated with a subset of
a larger number of topics contained within the complete document corpus. These
topics are more informative than individual word occurrences. Each semantic feature
then consists of semantically related words. In practice, every document is repre-
sented as a combination of several semantic features. As an added bonus, semantic
features are able to differentiate between multiple meanings of the same word. The
utility of NMF in clustering documents can be implemented with the Oracle Data
Mining package. The Oracle MEDLINE Text Mining demo contains an implemen-
tation of this methodology [35].

Another method is Latent Semantic Analysis. This method creates a statistical
word-usage model that permits comparisons of semantic similarity between pieces
of textual information [36,37]. An improved version is Probabilistic Latent Semantic
Analysis (PLSA) [38]. This method explicitly models document topics. The Expec-
tation Maximization [39] algorithm is then used to t the model given a set of
documents. Each document is de ned in terms of a combination of topics based on
the model- tted conditional probabilities of word occurrences in each topic class. 

NMF and PLSA methods are computationally heavy. A model is often generated
based on a subset of the complete corpus (random or representative document
sampling). Similarly to categorizations methods, the models in turn can be applied
to other documents to generate a characteristic vector. A particular vector will
characterize a new document within the themes identi ed by the pregenerated model,
but the presence of any additional themes or topics will be missed.

A number of clustering methods utilize domain-speci c knowledge bases, con-
cept ontologies, or supplemental structured data to improve clustering and emulate
automatic classi cation. This information replaces human category creation and
training document assignment. There are obvious reasons for such approaches, such
as accumulation and improvement of a domain-speci c knowledge area or custom-
ization of results toward a speci c user pro le. The danger is that new or emerging
themes will be down-weighed, diluted among more common themes, or completely
missed. Continuous effort has to be exerted in updating existing and identifying
new themes.

Recommind’s Mindserver system utilizes PLSA to automatically categorize (as
opposed to cluster) documents [40]. Vivismo’s Clustering Engine performs document
clustering with a heuristic algorithm aimed at identi cation of well-described clusters
[41]. Megaputer’s TextAnalyst uses linguistic and neural network technologies to
create a treelike, semantic knowledge representation of a set of documents, which
in turn can be used for document clustering [42].

6.2.5 ENTITY EXTRACTION

Entity extraction is the process of tagging “things’” in the text as speci c items such
as genes, cell lines, people, chemical compounds, and so on. Two speci c require-
ments for entity extraction are unique and critical to biomedical applications of text
mining. Gene name disambiguation and chemical compound name tagging require
different approaches.
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6.2.5.1 Gene Name Disambiguation

Automated disambiguation of gene and protein names can play a signi cant role in
accelerating disease research and drug development. Researchers are hindered by a lack
of standard naming conventions for genes and proteins. Near-frivolous choices of gene
synonyms result in gene names like IT, midget, or ER, which means researchers must
endure long, and sometimes fruitless, searches for literature about genes or proteins.

The absence of an automated approach for resolving ambiguity between gene
synonyms is a key problem [43,44]. Further, text analytics in the biomedical domain
are dependent on good gene name tagging and disambiguation. NLP in particular
is dependent on term disambiguation, which has been called the “great open prob-
lem” of natural language lexical analysis [45]. In the biomedical domain, gene and
protein name disambiguation is essential for providing quality protein–protein inter-
actions, disease associations, and other complex biomedical analysis. This problem
can also have a substantial impact on the ef ciency of IR methods, such as biomedical
thesauri [46] or molecular pathway identi cation [47]. 

Disambiguation tasks fall into two basic categories: determining if a term refers
to a gene or gene product (does CAT refer to “catalase” or “the feline” or “computed
axial tomography”) and identifying the true meaning of a synonymous gene name
or abbreviation (does CAT refer to “catalase” or “chloramphenicol transferase”).
Both of these problems occur often with keyword-based searches.

Natural language researchers began focusing on automated approaches to term
disambiguation in the late 1980s and early 1990s. Yarowsky [48] used statistical models
built from entries in Roget’s thesaurus to assign sense to ambiguous words in text, using
a Bayesian model to weight the importance of words related to the targeted ambiguous
term. Gale, Church, and Yarowsky [49] outlined an approach that used the 50 words
preceding and following the target term to de ne a context for that term’s sense. In
developing a method for general word sense disambiguation using unsupervised learn-
ing, Yarowsky [50] took a document classi cation approach to solving the problem of
general term disambiguation. He also showed in this study that generic English language
terms often have only one sense per colocation with neighboring words.

Around the year 2000, computational linguists and computational biologists
began to look at term disambiguation in the biomedical domain. A number of
researchers [46,51] have proposed solutions that involve manually crafted rules to
help natural language processing and IR systems correctly process ambiguous syn-
onyms. These rules are often combined with supervised learning methods (in which
systems are provided with human-curated training data) and in some cases unsuper-
vised learning methods (also often referred to as “clustering’). Recent work by Yu
and Agichtein [52] compared four different approaches to solving the disambiguation
problem: manual rules, fully supervised learning, partially supervised learning, and
unsupervised. The manual method is then combined with several of the machine-
learning approaches to yield a system capable of extracting synonymous genes and
proteins from biomedical literature. Liu et al. [44] also explored a partially supervised
learning approach based on disambiguation rules de ned in the Uni ed Medical
Language System. In the case of both papers, results are promising, but the systems
require a pre-existing set of handcrafted corpora, raising questions about scaling up
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to a level where a signi cant portion of human genes and proteins can be covered.
Hatzivassiloglou et al. [47] applied machine learning to the problem of gene, protein,
and RNA in text, showing that accuracy levels, as de ned by F-measure, of nearly
85% can be attained for classifying terms as belonging to the class of gene or protein.
Note, however, that the problem they have tackled is simpler than the one reported
here, which seeks to identify a speci c gene. SureGene [53] is a recent development
in large-scale human gene and protein name disambiguation for MEDLINE abstracts.
For genes that have 10 or more associated MEDLINE abstracts, the accuracy of the
Suregene models were 80% or higher.

6.2.5.2 Chemical Compound Entity Extraction

Chemical compound entity extraction is a different type of entity extraction. One
cannot refer to a complete dictionary or thesaurus of chemical compound names, as
there is practically an in nite number of compound names. Systematic names, such
as the International Union of Pure and Applied Chemistry (IUPAC) nomenclature
system [54], are created from a set of rules that determine the name of a chemical
compound based on the chemical structure. As an example we show aspirin, which
has the common chemical name acetyl salicylic acid and the IUPAC name 2-
acetyloxybenzoic acid. The common names, including aspirin, can be found using
a thesaurus-based approach with low levels of ambiguity. The IUPAC name is a
systematically determined name that must be tagged in the text using a heuristics-
based approach (rules based). In many cases, one will have only the IUPAC name,
not a known common name, for a compound.

To effectively mine the literature for gene versus active chemical compounds
(inhibitors or activators), one must tag all of the chemical compound references in
the literature and disambiguate all the gene names. After this is done, both NLP
and statistical text-mining applications will be much more accurate in both precision
and recall.There are currently three commercial efforts to provide chemical com-
pound entity extraction: IBM [55], MAI Chem in conjunction with CambridgeSoft
[56], and ReelTwo’s SureChem [57]. At this time, MDL probably has the best
system for extracting not only chemical entities but also reactions; however, at this
time, it is not known whether the system will be available commercially (personal
communication, Helmut Grotz, MDL, 2004).

6.2.6  STATISTICAL TEXT ANALYSES

A wide variety of methods have been developed to analyze the literature using
statistical methods that go beyond text categorization or text clustering. The simplest
of these methods is co-occurrence analysis. The main limitation of these methods
is that they do not perform syntactic/semantic parsing to extract relations between
entities. A bene t to the statistical analysis approach is that it is not constrained to
relations presented in a sentence or an anaphoric reference1 from a sentence. As an

1 Reference to an antecedent, for example: “The catalase gene…It has the…”—“It” is an anaphor of
“The catalase gene.”
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example, one may impute a relationship between the gene ApoE and AD due to the
signi cant number of times the two co-occur in the same abstract.

The rst reference known to the authors of this technique being applied to
biology is the work by Stapley and Benoit [58]. The gene–gene co-occurrence
network presented by Stapley and Benoit was also visualized using a network Java
applet. This was quickly followed by PubGene [59], which focused on gene inter-
actions expanded to MeSH keyword, disease names, and GO terms found co-
occurring with the gene names. The focus of PubGene was analysis of the literature
associated with gene-expression gene clusters. 

Gene-expression research was the rst high-throughput technology driving text
mining to support analysis efforts [59–62]. The original method of studying one
gene at a time made it much easier to become an expert through manual analysis of
the literature and generally keep up to date with additional publications. Gene
expression requires learning about sets of genes (gene clusters) on a continuing basis.
Various mining technologies, including text mining, are employed to understand the
biology behind a gene cluster. Statistical text mining is the most useful technology
for the literature analysis of sets of genes. The entire set of literature associated with
a gene cluster can be analyzed for links between entity classes such as genes,
diseases, biological processes, pathological processes, and so on. One can potentially
use gene co-occurring terms in the gene-expression clustering algorithm itself to
assist in the determination of gene clusters [63]. 

Statistical text mining can be used simply to show the frequency of a gene name
in the comparison of two subsets of literature, such as AD-related literature versus
Parkinson’s. It can also take the form of tri-occurrences [64], extracting all sentences
that contain protein1, protein2, and an interaction verb/noun.

One of the most important uses of statistical text mining is in developing a
broad and shallow understanding of a focused subset of the literature. For example,
when initially undertaking the study of a new gene, the rst thing of interest is an
overview of the gene and its function. This can usually be found in some review
article or in the minimal information provided in the gene or protein description
provided by Entrez Gene [65] or SwissProt [66]. The next step is to understand
what biological processes, pathological processes, interacting proteins, other inter-
ested labs/researchers, pathways, and active compounds associated with it. The best
way to determine this is to use statistical text mining to generate an association
map (somewhat noisy, i.e., high number of false positives but effective) to show all
of this related information in a set of tables and network graph representations. This
then gives a “map” of information associated with a target. An example of this type

to give just this type of overview: BioVista—BEA, IT Omics—LSGraph, InPharmix,
IBM—MedTAKMI, Alma Bioinformatica—Alma TextMiner, and others.

6.2.7  WORKFLOW TECHNOLOGIES

Work ow technologies for text mining can make it easier for nonprogrammers to build
custom text-mining results. Sophisticated text-mining analyses in support of target
validation require signi cant interaction between the text-mining specialist and the
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domain specialist for reasons indicated in the Introduction. This interaction incurs the
cost of an Information System developer to write custom code to generate a text-
mining application and results in decreased ef ciency of the interaction between the
customer and the text-mining specialist. The ideal interaction is for both the text-mining
specialist and the domain specialist to work together, interactively analyzing the liter-
ature until a result is generated. The result can then undergo nal curation by the
customer (domain specialist). With work ow technology, such as is available from the
Inforsense KDE TextSense product [67] or SciTegic Pipeline Pilot’s text analytic
work ow module [68], any text-mining specialist can quickly generate custom work-

ows to provide targeted analyses for customers. Another source of statistical text

6.2.8 NLP

NLP is the most sophisticated text-mining technology. NLP has a history of being
just a couple of years from being ready, and has been for the last 15 years or so. After
a long and unhappy realization that text mining could not be fully automated (and
destroying the authors’ dreams of lazing on the beach while we burned up racks of
computers doing text mining), we realized that NLP technology is ready to use in
drug discovery. The fact is these idiot savant programs can work wonders at focusing
one’s attention on the facts and documents most relevant to a literature study.

FIGURE 6.4 Network diagram of gene-associated concepts. Landscape map of the gene
PLA2 and associated biological processes. Biological processes shared by bipolar disorder
(BD) and rheumatoid arthritis (RA) are presented. Protein kinase C activation appears to be
integral to the effect of PLA2 on BD and RA. Courtesy of BioVista.
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170 In Silico Technologies in Drug Target Identification and Validation

NLP technology works by parsing sentences into part-of-speech segments (e.g.,
noun, verb, preposition, adjective) and then building the part-of-speech segments
into noun phrases, verb phrases, prepositional phrases, and so forth. A semantic layer
is then added by associating, for example, gene or protein names with the noun

FIGURE 6.5 Metabonomics work ow. The use of text mining to relate two separate data-
mining analyses. One part of data mining was microarray analysis of the insulin series of
experiments. The other part was a metabonomics analysis using NMR spectroscopy of urine.
No database relates metabolic products with gene expression so text mining was used to nd
co-occurrences of genes and metabolic products as a rst step in a follow-up analysis. Courtesy
of InforSense.

FIGURE 6.6 Toxicology work ow. An analysis of steatosis (a pathological process) is per-
formed by searching for compounds and proteins involved in steatosis-related literature. The
compounds identi ed are subsequently analyzed for common substructures to evaluate any
links between steatosis and speci c chemical substructures. A parallel work ow identi es
proteins and their associated pathways through statistical overrepresentation in association
with steatosis. Courtesy of InforSense.
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phrases. After this is done, queries can be carried out for noun phrase patterns in
every sentence of multiple documents where the noun phrases are semantically typed
as protein names. In an analogous way, verb phrases or prepositional phrases can
be mapped to biologically relevant concepts such as “interacts with” or “is phos-
phorylated by.” By providing a variety of patterns one can greatly increase recall
and precision by making speci c patterns with low recall and combining the results.
One may nd a variety of binding patterns in the text such as seen in table 6.2.

The key difference between agile NLP and standard NLP applications is the
work ow. Standard NLP builds many patterns for extracting a focused result set
from the literature, such as “collect all protein–protein interactions” or “collect all
gene-disease relations.” The collected relations go into a database that is queried for
results. Agile NLP preparses all of the literature and allows interactive extraction
patterns to be built, as seen in next section. Standard NLP can provide both better
recall and precision at the cost of a great deal of preparatory work. Extraction
templates are built over days, weeks, or months, depending on the level of sophis-
tication. Analysis and evaluations of results are then executed as needed.

The current accuracy of NLP technologies is hard to gauge, but it ranges from
10% recall and 90% precision to 90% recall and 10% precision. The balance most
often found in NLP applications is on the order of 25 to 50% for both recall and
precision. But this is not the whole picture. NLP technology works by analyzing
each sentence syntactically and semantically to extract information (see table 6.3).

TABLE 6.2
Natural Language Processing Extraction Patterns for Protein–Protein 
Relationship

Sentences

Raf phosphorylates Mek.
There is a phosphorylation interaction between Raf and Mek.
Mek is phosphorylated by Raf.

Note: This table presents three ways that the “Raf phosphorylates Mek” relationship can
be expressed in the literature. Of course, there are many other ways that this relationship
can be presented in the text, and extraction patterns aimed at matching as many instances
as possible have to be developed for a successful natural language processing application.

TABLE 6.3
Natural Language Processing

We report here that Cdc2 interacts with Orp2, a protein similar to…
Syntactic Layer Noun Verb Noun

Semantic layer Protein Protein–protein relation Protein
Result Cdc2 Interacts Orp2

Note: Natural language processing can be thought of as syntactic/semantic querying.
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The recall results are generally shown for each instance of a sentence where a
potential relationship can be extracted, such as “Cdc2 interacts with Orp2.” However,
one is generally interested in whether a fact (as represented by a relationship) exists,
not in every instance of the fact being presented in the literature. Redundancy of
facts or relations in the text can often greatly increase recall. Often an NLP appli-
cation will be combined with network visualization as implemented by the
GeneWays system [70] or the PathwayAssist application [71]. An example of a NLP
result for prostate cancer literature can be seen in gure 6.7. The network interaction
presentation of the extracted protein interactions and other associated interactions,
such as small molecules, provide much needed context around a given interaction.
Another signi cant bene t is the highlighting of indirect relations between proteins.
Indirect relationships are relations where there may exist one or two intermediaries
between proteins. A simple table presentation of protein interactions makes it very
dif cult to determine the networks of interactions that exist between proteins.

6.2.9 AGILE NLP: ONTOLOGY-BASED INTERACTIVE INFORMATION 
EXTRACTION 

Ontology-Based Interactive Information Extraction (OBIIE) is a new NLP technol-
ogy. The interactive portion of the name implies that the user controls information

FIGURE 6.7 PathwayAssist. An example of protein versus [protein|cellular process|small
molecule] networks generated from full-text journal literature concerning prostate cancer,
collected by Quosa. Nodes representing different proteins, small molecules, and cellular
processes are represented by different shapes and colors, not clearly identi able in a grayscale
image of a color screenshot.
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extraction “on the y.” Simple keyword searches are often used in early stages of
the inquiry. As the user becomes more informed from these queries, the process
employs increasingly re ned tools and techniques (e.g., NLP and ontologies) to
produce the most relevant results focusing in on speci c relations to extract.

Ontologies and their structures have been covered in previous sections. But to
demonstrate how they are used in OBIIE, an example is used. Imagine a user wants to
understand the literature dealing with treatment options for Parkinson’s disease. If the
user had an ontology of disease phenotypes, the user might extend the search, based
on treatment or prophylaxis for movement disorders (the Parkinson’s disease pheno-
type). If the user then found that levadopa (a common treatment for Parkinson’s disease)
belongs to the class of DOPA analogs, he or she might employ a therapeutic compound
ontology to explore the relative merits of other DOPA analogs. One could then use a
disease ontology to broaden the search to the more general class of neurodegenerative
diseases. Conversely, the user might narrow the inquiries, using a protein-naming ontol-
ogy to learn about speci c enzymes and receptors affected by the disease. Whatever
path the user takes, the ontologies contain the information about the processes, com-
pounds, and symptoms. Therefore, less in-depth knowledge of the domain is required
of the user. The incorporated domain knowledge in an agile NLP application can have
a tremendous, practical impact on the usefulness and ease of the search process.

Currently, there is only one example of this agile NLP approach, created by a
collaboration between the interactive NLP framework provided by the Linguamatics
I2E product and the ontologies of Biowisdom [72]. Ontologies for protein–protein
relationships (phosphorylates, forms a complex with, is a substrate of, is proteolyzed
by, etc.), protein-naming ontologies, disease, pathological condition, biological process,
therapeutic compound ontologies, and others are tightly integrated into the NLP-
processing environment. This program uses three major components:

• Linguistic analysis
• Part of speech information (noun, verb)
• Morphology (interacts, interacted, … is, was, be …)
• Syntax (“signaling pathways” “have also been discovered”)

• Use of knowledge sources
• Identify entities: people, places, dates, proteins, and so on
• Ontologies

• Positional information
• Searches restricted to words, concepts, and so forth, within the same

document, sentence, or phrase

One must provide the corpora for analysis (MEDLINE abstracts, OMIM, pro-
prietary document collections, etc.). The documents are preindexed to provide run-
time speed.

An example demonstrates some of the power and scope of this tool for biological
literature analysis. Imagine a researcher is studying the apoptotic cysteine protease,
caspase 3. To understand how this protease regulates programmed cell death, the
researcher might want to explore which serine/threonine kinases are substrates for
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might set up this query using OBIIE. Because caspase 3 has many names in the
literature, a thorough search requires expansion of the name to include all known
synonyms (cpp32, apopain, YAMA, etc.). These synonyms can all be found with a
few keystrokes. Next, an ontology of verb phrases associated with protein–protein
interaction can be used to narrow the search to proteolytic interactions. An ontology
of protein classes (which also contains the names and synonyms for known proteins)
is then used to restrict the search to protein kinases that phosphorylate proteins on
serine and/or threonine residues. Finally, the user can con ne the search to sentences
that contain all three associations (e.g., Caspase 3 cleaves PARP). This query is then
run against any corpora that the user has available (in the gure this query is run
against the ~13 million abstracts in MEDLINE). Because of the ontologies that are
used in this search, all documents are searched for the following pattern: every
synonym for caspase 3, any verb phrase that means “is proteolyzed by,” and the
names (and synonyms) of all the known serine/threonine kinases. This would be a
nearly impossible search to run using keyword search due to the massive combina-
torial list of possible protein names and verbs. Although the search time is dependent
on the computer platform, one can usually expect this search to take only a minute
or two. A table showing the database-ready semantically normalized extracted facts
and corresponding sentences that match these criteria is returned. In addition, a link
to the original document is included to allow the user to understand the context of
the sentence. If the search was too narrow, it would only take a few keystrokes to

FIGURE 6.8 Interactive natural language processing. An example of the use of OBIIE. A
general query is augmented by protein name expansions and protein–protein interaction
ontology. The output allows for “drill down” to the speci c sentence that meets the search
criteria, and the context of the sentence is explored in the original document.

 © 2006 by Taylor and Francis Group, LLC



Text Mining 175

broaden the search to all protein kinases (serine/threonine kinases and tyrosine
kinases), or if the search was too broad it would be simple to add a lter to include
only documents that meet the criteria and mention apoptosis (or a disease process)
in the same text.

The goal of OBIIE is to produce references and entity relations with the highest
relevance to the questions asked. Although ontologies decrease the amount of domain
knowledge that the user must have, there is no doubt that a knowledgeable user will
be able to ask the best questions. Uninformed users will spend more time educating
themselves by means of the query process before they arrive at the same goals. 

6.2.10 VISUALIZATION

Several different visualization techniques have been applied to the results of text
mining. An excellent review of what is currently available for text visualization and
the algorithms for data dimensionality reduction is Visualizing Knowledge Domains
[73]. Network diagrams are invaluable for presenting indirect relationships and
contextual information. Tables are a core technology for presenting facts extracted
from the literature. Trees are used for the presentation of thesauri, categorization
results, and clustering results. Two-dimensional scatter plots are often used to present
text-clustering results in a lower dimensional space. Trend diagrams, such as the
number of mentions of a gene against a timeline, are another visualization technique. 

Network diagrams are particularly challenging due to the great dif culty in
managing the large number of nodes and high connectivity (often greater than 10

The network graph presented contains the relations between the protein, cell pro-
cesses, and small molecule found in the full text of a set of prostate cancer literature.
The power of the network interaction graph is the highlighting of indirect relation-
ships. Of course, it naturally follows that the same representation that is the standard
for viewing pathways would be the natural choice for viewing extracted protein
network information from the literature.

Several different clustering visualization techniques are available for represent-
ing knowledge or textual analysis [73]. The same techniques used to map the domain
structure of the literature can also be used for text clustering. Various types of data
such as author co-citation, citation links, and themes can be mapped into two or
three dimensions to present clusters visually.

documents and the similarity between the themes and document clusters. The heatmap

of using heatmaps for more than gene expression. Tying multiple visualizations

6.3 EXAMPLES OF TEXT MINING

Some examples of how to use text mining effectively in target validation are dis-
cussed next. We do not endorse the speci c applications used in these cases as the
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edges per node). An example of a protein-interaction map is shown in gure 6.7.

An example of the use of document cluster visualization is the theme map, gure
6.9, that can aid in understanding the concepts or themes associated with a set of

presentation of terms versus document clusters in gure 6.10 shows the effectiveness

together can greatly increase the ability to detect trends, as can be seen in gure 6.11.
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best text-mining applications for the particular purpose indicated. The tools used are
the ones available to the authors at the time of the publication and used to generate
real results for the purposes of introducing the reader to actual applications of text

for further research using the World Wide Web.

6.3.1 DRUG-TARGET SAFETY ASSESSMENT 

Acceptance of text mining in the pharmaceutical industry is dependent on its cost
effectiveness. Therefore, one of the most compelling areas for the application of text
mining is in predictive toxicology. The elucidation of the human genome sequence
has lead to plentiful targets, but safety assessment is now the bottleneck. It is
estimated that 20% of the cost of all drugs is the result of the cost of failures due
to discovery of unacceptable toxicology [74]. Because the cost of development of a
new drug is now approximately $800 million [75], even modest improvement of the
failure rate by employing text mining to explore and predict potential adverse effects
can lead to huge savings to the pharmaceutical industry and to the cost of drugs
delivered to the public.

FIGURE 6.9 Cluster theme visualization with a
theme map. OmniViz ThemeMap™ for 5,885 patents in the eld of electronics and surface
chemistry from 1999. The major themes or concepts are denoted by mountains, which provide
a rapid means for seeing the represented concepts. The ThemeMap view also allows the user
to build the map according to speci c themes to help understand the content in particular
subject areas. Courtesy of OmniViz.
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mining. Please review table 6.4 for a list of resources that serve as a starting point

(See color insert following page 306)
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FIGURE 6.10 Cluster theme visualization with a heatmap. The OmniViz CoMet™ visualization provides a quick means to view how attributes are
distributed across the dataset. In this example from the biomedical literature on yeast cell cycle regulation, CoMet™ has been con gured to show how
the major topics (columns) are distributed among the different clusters of documents (rows). The clusters represent over and under representation of co-
occurrances between the major topics and documents. Note, the conversion to grayscale from color resulted in lost information in the gure as presented.
Courtesy of OmniViz.
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Molecular toxicologists are faced with two problems. The rst arises in the target
selection process. At this point, the toxicologist is asked to predict if modulation of
the function of the protein (receptor, enzyme, ion channel, etc.) will lead to an
unacceptable side effect pro le. The second type of application of toxicology occurs
when the screening process has discovered a compound or compound series. Here,

FIGURE 6.11 OmniViz Treescape™. In this composite, a TreeScape™ visualization of gene-
expression analysis was linked to an analysis of the relevant literature. Selecting genes
(highlight) in the dendrogram causes the relevant documents to also highlight. In this case,
the selected genes are referenced in a set of documents that clustered together. This analysis
was augmented by the use of a dynamic date query tool, so that trends over time could be
uncovered. Courtesy of OmniViz.

TABLE 6.4
Text-Mining Web Resources

Resource Name URL

BLIMP—Biomedical Literature Mining 
Publications

http://blimp.cs.queensu.ca/

BioNLP.org Web site and mailing list http://www.ccs.neu.edu/home/futrelle/bionlp/index.html
BNLPB: Bibliography of Natural Processing 
in Biomedicine

http://textomy.iit.nrc.ca/cgi-bin/BNLPB_ix.cgi

TextMining.org http://www.textmining.org
Directory of Open Access Journals http://www.doaj.org

Note: The table presents Web resources that can encourage further learning in regards to text mining.
Please be advised that the list will be out of date by the time you read this.
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the molecular toxicologist is asked if the chemical structure or substructure might
lead to drug toxicity. 

Text mining can aid the safety evaluation in both cases. For the rst problem,
function and mechanism based toxicity along several lines of inquiry need to be
pursued. The user needs to map a toxicology-controlled vocabulary to the target
protein name. More practically speaking, the corpora need to be searched for a list
of toxicology terms associated with the speci c protein name (and synonyms).
Second, the protein may be a member of a family (or multiple families) of related
proteins. Therefore, the search should be broadened to include toxicological asso-

available on the membership of the protein in a signaling cascade or metabolic
pathway. The search might also be extended to explore the toxicological association
to the pathway name or to all the members of the pathway. 

The corpora analyzed are very important. Detailed toxicology information is
rarely present in abstracted literature (MEDLINE, Embase, Biosis, etc.). Full-text
journal literature will be required for toxicological literature analyses. The authors
have had success in using an application, Quosa, [13], to search and retrieve full-
text journal articles for additional text-mining analyses. These extended searches
will generate a great deal of literature. Therefore, there will be a need to do some
form of qualitative meta-analysis of the accumulated sources. This analysis might
employ co-occurrence or clustering techniques to show trends and common themes
in the compiled literature. It should also be noted that this type of searching could
not be done in a fully automated fashion. The searches must be directed by someone
with a deep domain understanding to be able to apply supervision. Not all branches
of the search are equally likely to achieve results, and as yet, fully automated systems
cannot mimic the understanding achieved by trained toxicologists. However, text-
mining technologies can grant nearly comprehensive analyses of the literature to a
toxicologist and provide signi cant decision-support capability for their analyses.

The second problem, compound-based toxicity, requires a different set of tools.
Although there are many programs for chemical substructure searching, it is dif cult
to know the meaningful substructural moiety with regards to potential toxicity.
Therefore, it is probably most ef cacious to be directed at the early stages by
chemistry experts. Once the relevant substructure classes are determined, text mining
can be initiated. From this point, the analyst searches the literature for linkage
between compounds or compound classes and a thesaurus of toxicological terms. If
the compounds belong to known pharmaceutical agent families, the search is broad-
ened to explore known adverse side effects of the drug class. If the biochemical
mechanism of the undesirable effects is known, the work ow applied to mechanism-
based toxicity can be followed (see the aforementioned). There are databases of
compound-toxicology associations as well as bibliographic collections in this area,
such as the National Library of Medicine MEDLINE/TOXNET [76]. 

6.3.2 LANDSCAPE MAP: DISEASE-TO-GENE LINKAGES

Statistical text analyses can generate the information required to build a “landscape”
of related concepts for a text-mining study. Looking at the document or paragraph
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ciations to all the members of the family (see g. 6.6). There may also be information
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level of associated concepts can show indirect or loose relationships between bioen-
tities or concepts. As an example, the associations between bipolar disorder and
genes can be presented as shown in gure 6.12. One gene, PLA2, has an association
with a second concept, rheumatoid arthritis. At closer magni cation, the thickness
of the lines between nodes in the network graph indicates the strength of the
association, based on the number of co-occurrences in the literature.

One can also analyze what other diseases or biological process are associated

which shows the biological processes common to PLA2, bipolar disorder, and rheu-
matoid arthritis. One can easily navigate the conceptual landscape of the literature
through statistical text mining with the appropriate visualization. Of course, many
of the suggested relationships are not correct. However, this type of text mining is
the fastest way to get an overview on an area of research and is a highly signi cant
source for hypothesis generation.

6.3.3 APPLICATIONS OF TEXT MINING IN THE DRUG-DISCOVERY 
AND DEVELOPMENT PROCESS

discovery. Due to complex naming systems, the chemical literature is much more

FIGURE 6.12 Landscape of disease-to-gene associations. Associations between bipolar dis-
order and genes. One gene, Phospholipase A2 (PLA2), has an association with a second
concept, rheumatoid arthritis. Courtesy of BioVista.
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indirectly with bipolar disorder through gene/protein linkages as seen in gure 6.4,

A schematic representation of the idealized drug-discovery process is shown in gure
6.1. At present, text mining has been applied mostly to the biological aspects of drug
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dif cult to explore. However, compound and drug ontologies and entity extraction
tools are becoming available [55–57,77,78].

There are some areas of the research and development process that have a more
or less constant need of text mining throughout drug discovery. Intellectual property
and competitive intelligence are constantly monitored to avoid costly legal chal-
lenges after a drug has been designed and validated. The patent literature is often
searched to understand the intellectual property issues surrounding prior lings for
potential targets.

Biomarker selection is another area with broad text-mining applicability. Biom-
arkers are quite useful in both preclinical and clinical trials to quickly determine
ef cacy and develop dosing regimens. Biomarkers can be used as surrogate endpoints
that can be used to access the ef cacy of the test drug in the clinical setting. Text
mining can be used to determine gene-to-pathway associations from the literature,
which can lead one to potential biomarkers such as excreted proteins downstream
in an activated pathway. Text mining can also be used to look for papers with disease-
dependent gene expression as another approach for discovering biomarkers. The
third area of the drug-discovery process that has broad applicability is safety assess-
ment. (See the Use Case Safety Assessment section earlier.) In the target identi ca-
tion phase, protein function-based toxicities must be considered. After hits have been
found, compound-based toxicities become the predominate problem. In the preclin-
ical drug-development stage during animal safety assessment, text mining is needed
to determine if any undesirable effects will also be found in humans. In the clinical
trial phase, candidate drugs sometimes display adverse effects that were not found
in preclinical testing. Text mining is again required to understand the mechanism of
the manifested toxicological aberrations.

In the Target Identi cation phase, the literature is examined for disease to target
connections. Use of OBIIE-like (reference Interactive NLP section) systems to deter-
mine gene-to-disease, pathway-to-disease, and gene-to-pathway associations have
been used to nd targets for unmet medical needs [79]. A pharmaceutical company
might have years of experience and an extensive compound collection in the area of
protease inhibitors and a desire to make obesity control drugs. To leverage this
expertise, a text-mining expert might direct efforts to nd protease genes related to
obesity. The results of this search might nd metalloproteases that regulate a process
that controls leptins. This search might then be directed toward chemical classes of
compounds with good Ki values (Ki is the inhibition constant for the inhibited enzyme)
for metalloproteases. This information would then aid the chemists in their synthetic
explorations. The time and resource savings of text mining versus launching a com-
plete high-throughput screening campaign are clear. When putative protein targets
are identi ed, text mining can aid in choosing or designing the assays systems and
protocols for use in high-throughput screening, secondary screens, and animal models.

Studies to determine absorption, solubility, stability, and bioavailability are typ-
ically started after hits have been found. Text mining can be used here to determine
appropriate test regimens and if pharmacodynamics and pharmacokinetics informa-
tion is available for similar structure or on similar targets.

After launch of drugs, literature alerting systems are often used to monitor the
acceptance, market position, and competitor status of the drug. WebFountain [80]
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is being used to analyze marketing campaigns in the consumer marketplace. One
might expect the same technology to be effectively used to monitor drug-marketing
results as well.

6.3.4 SYSTEMS BIOLOGY/PATHWAY SIMULATION

Systems biology is an area that academics and pharmaceutical companies are rapidly
embracing. Systems biology seeks to understand the complex relationships between
signaling cascades, transcriptional control, and disease-relevant phenotypes at the
cellular and organism levels. Usually these interrelationships are presented as a
computational model. For example, a model might be built of the insulin-signaling
pathway as a means to better treat diabetes.

This area, pathway simulation, requires extensive literature validation. The
kinetic constants for every reaction in the pathway (usually in the hundreds) and the
concentrations of every protein (usually less than one hundred) in the scheme must
be informed from the literature. It has been our experience that this kind of detailed
information is not available from abstracts. In the past, individuals read papers for
the required information to develop these models. Because no one can read literature
in its entirety, the readers would stop either when they found the rst instance of
the necessary fact or after reaching their attention/frustration limit. The manual
approach at best does not explore the complete range of values available from
different sources and at worst leaves many of the values blank. 

 The direction that was taken for projects such as the AstraZeneca Epidermal
Growth Factor pathway model [79] was to make a list of every protein and other
reactants in the pathway (and their synonyms) and search MEDLINE for any abstract
that contains one of these names. Kinetic information is rarely in the abstract, but
the name of the enzyme for which the kinetic information was derived is almost
always found there. The authors then used the semi-automated downloading appli-
cation, Quosa, to create a local library of all the full-text versions of the papers on
the proteins in the pathway. For a moderate-sized pathway, this can entail 50K to
150K full-length articles. These can then be re-searched for the appearance of kinetic
terms (e.g., Vmax, Km, association rate, etc.). This search usually reduces the 50K to
150K full-length articles to about 100 papers that need to be read, veri ed, and
tabulated by an expert in the eld. In addition, the software used in the secondary
searches can highlight the sections containing the relevant sentences, so the burden
of reading is further reduced. It has been our experience that only about 1 in 50
kinetic constants are available without having access to full-length article sorting.
With this work ow, missed data can be mostly eliminated and the coverage of the
literature is limited only by how much of the journal articles are available in elec-
tronic form. It is dif cult to compute comparative time savings for this text-mining
approach, as the manual methods are never taken to completion. To complete a
project of this size it would take about 1 or 2 weeks for someone with some biological
knowledge and reasonable text-mining pro ciency.

Another area of pathway analysis that bene ts from text mining is in de novo
pathway generation. This means building a pathway when the cascade is unknown.
For example, genetic linkage analysis often nds a gene associated with a disease
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but no known signaling cascade associated with the gene. In these cases, text mining
can be used to build up a protein: protein association network with the discovered
gene. This is followed by associating the protein interactors with known pathways.
By inspecting or graphically visualizing the network, it is possible to elucidate likely
pathway connections for the new gene.

6.3.5 TEXT CATEGORIZATION

Hakenberg et al. [81] presented one example of using a text-classi cation engine
for ltering text in the paper. The paper describes the use of an SVM classi er based
on SVMLight [20]. Finding papers describing kinetic parameters is dif cult. It is
further complicated by the need to collect full-text journal articles to lter, as most
of the information required for the text categorization is only found in the full-text
article and not in the abstract. For example, the authors randomly downloaded 4,582
documents from several journals published between the years 1993 and 2003. An
expert manually reviewed a random sample of 200 papers to determine the frequency
of papers containing kinetic parameters. Twelve percent were found to contain kinetic
parameters with a 95% con dence interval of 8 to 17.5%. To generate the positive
training set, a search was run using keywords such as Km, Vmax, kinetic parameter
with a resulting set of 791 papers, of which 155 were found through manual curation
to be true positives. The accuracy of the system was evaluated using a vefold cross-
validation resulting in 60% precision with 49% recall. The user selects the recall/pre-
cision balance; the indicated precision/recall balance was deemed most useful for
this particular text-classi cation lter.

6.3.6 CLUSTERING: LITERATURE DISCOVERY

The following document-clustering examples utilize Oracle Text k-Means clustering,
document gist, and theme extraction. Searching MEDLINE with two distinct queries
in the article titles and selecting the top 300 documents for each query provided the
600 documents for this clustering example. The queries were “lymphoma” and
“Alzheimer’s disease.”

k-Means clustering was performed on the title and abstract text of each docu-
ment, using the Oracle Text hierarchical k-Means method. To evaluate the most basic
performance of clustering, the total number of desired clusters was speci ed as 2.
The expectation is that each resulting cluster will contain the 300 documents for
each distinct topic. 

of signi cance to the cluster. The size of each cluster agrees with the sizes of the two
topic-based document groups, and quality of each cluster is high (82%–85%). Exam-
ination of the cluster descriptive terms provides hints but fails to clearly indicate a
biological signi cance of the clusters. To more clearly elucidate such signi cance,
table 6.5B presents the top themes and sentence-based text “gist” based on the complete
corpus of each cluster. Themes represent concepts from a knowledge base represented
by numerous hierarchically organized thesauri. Biomedical themes are clearly predom-
inant, with a clear lymphoma versus AD grouping. The reported gist consists of three
sentences from all the abstracts in each cluster that best re ect the themes identi ed.

 © 2006 by Taylor and Francis Group, LLC

Table 6.5A details each cluster’s quality score, size, and de ning terms in order
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This simple example can be expanded by requesting 10 clusters from the k-
Means algorithm. Because the algorithm is hierarchical in nature, the initial split of
the root cluster is identical to the 2-cluster example. Further splitting steps are
performed until 10 clusters are obtained while maximizing the relative cluster cen-

TABLE 6.5
Document Clustering: Two-Cluster Example

A
Cluster Quality Size Cluster Tokens

1 0.85 300 CONFERS, 70.9, WMH, TEMPERATURE, RESTORATIONS, 
PRECURSORS, ADD, CONFIRMATORY, SUBSCALES, 
PRESYMPTOMATICALLY, THA, ANOMIA, EASE, SOUGHT, 
APPROVAL, DYSCALCULIA, CIRCUMFERENTIAL, 
INTERACTING, 2.74, CVD, METHYLATION, MORTEM, 
DIABETES, PRESERVE, 8OHDG, PHOSPHOGLYCERATE, 
DOLICHOLS, SUPERVISORY, BLOT, APOE4, EFFECTIVENESS, 
223, CWPS, COS, HOMEMAKER, APP717, INFLUENCES, 
INCURRED, COMMANDS, RELIANT, AL, OUTCOMES, 
NONMEMORY, DYADS, PREPARATIONS, SUBSERVE, INSULIN, 
0.9, 802, PEDIGREE, DENTATE, WORKGROUP, LIMB…

2 0.82 300 UNDERSTOOD, CYTOFLUOROMETRY, SIALOSYL, 
COCULTIVATED, 3A, WEIGHT, HISTIOCYTOSIS, 1981, ALLO, 
FLOWER, PERIODIC, VARIABLY, AOTUS, MIDFACIAL, 
NORMALLY, KANSAS, HISTOPATHOGENESIS, SCHIFF, CIS, 
CH31, SPACING, IDENTIFIES, TRISOMIES, LOCATIONS, 
REMARKS, BECOMES, CSI, BENCE, TDT, 51.7, DLBCLS, FAULTS, 
PROMPTED, M6, CODED, ACTVP, DPDL, GLYCOLIPID, RFS, 
FUSION, CONTINUING, TRISOMIC, SWOG, ALKALINE, 
DUPLICATION, EROSIONS, THIE, LPS, PARATHORMONE, 8, 572, 
SUFFERED, CYTOGENETICALLY, THYROID, SNC, PRIESS, 
SECRETORY, COMPUTED…

B
Cluster Themes Gist

1 Alzheimer’s disease (35)
studies (20)
signi cance (17)
dementias (15)
groups (5), 
learning (4)
consideration (1)
analysis (1)
relation (1)
control (1) 

As part of an effort by the NIA-Alzheimer’s Disease Cooperative 
Study to evaluate new measures of ef cacy for their utility in 
treatment studies, the Severe Impairment Battery (SIB) was 
examined in a 1-year evaluation of change across a wide range 
of AD severity.

In studies comparing neuropathology protocols for AD, several 
groups have found that the CERAD diagnosis most closely 
correlates with measures of dementia severity, such as the Mini-
Mental State Examination (MMSE).

We compared the performance of two subgroups of mild 
Alzheimer’s disease patients (e.g., EAD and typical Alzheimer’s 
disease; TAD) on neuropsychological and associated measures.
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troid distances and intercluster quality. Figure 6.13 shows the hierarchy of the nal
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TABLE 6.5
Document Clustering: Two-Cluster Example (continued)

Cluster Themes Gist

2 lymphomata (44) 
cells (27)
lymphomas (16) 
lymphocytes (15) 
difference (15) 
viruses (4)
groups (4)
relation (1)
anatomy (1)
immune systems (1) 

European phase II study of rituximab (chimeric anti-CD20 
monoclonal antibody) for patients with newly diagnosed 
mantle-cell lymphoma and previously treated mantle-cell 
lymphoma, immunocytoma, and small B-cell lymphocytic 
lymphoma.

PURPOSE: Mantle-cell lymphoma (MCL), immunocytoma 
(IMC), and small B-cell lymphocytic lymphoma (SLL) are B-
cell malignancies that express CD20 and are incurable with 
standard therapy.

Peripheral T-cell non-Hodgkin’s lymphomas of low malignancy: 
prospective study of 25 patients with pleomorphic small cell 
lymphoma, lymphoepitheloid cell (Lennert’s) lymphoma and 
T-zone lymphoma.

Note: A. Cluster attributes for a two-cluster example. Cluster Quality is the average percent similarity
of a document in the cluster from the cluster centroid. Cluster tokens are the individual words/terms that
statistically distinguish each cluster. The most signi cant terms are listed rst. A non-expert cannot easily
de ne a more general theme of each cluster. B. Cluster themes and gist better de nes the biological
content of the clustered documents. It becomes clear that cluster 1 is related to Alzheimer’s disease while
cluster 2 contains Lymphoma documents.
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FIGURE 6.13 Clustering example—cluster hierarchy. Document cluster hierarchy separating
documents about lymphoma from those about Alzheimer’s disease. The cluster node names
signify the most signi cant term for all documents within that cluster.
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clusters. The lymphoma cluster from the basic example was further split into 3 child
clusters, whereas the AD cluster split into 7. This indicated that the variety of topics
in the AD documents is greater. Table 6.6 presents the sizes and top themes for each
cluster (re ecting the vertical ordering of the clusters in the gure). The distinctions
between themes of various clusters are more readily apparent when viewed in a

ing topics: biology of B-cell lymphomas, treatment of malignant lymphoma, and
lymphoma clinical studies. The AD documents indicate the following topics: clinical
studies, psychiatric studies, pathology, and biology.

It is clear that clustering works well for separating clearly distinct topics. Clarity
begins to decrease as the representative topics within a group of documents begin
to share attributes.

6.4 FINANCIAL VALUE OF TEXT MINING

Several factors that yield objective numbers on the nancial bene t of using text-mining
approaches have been identi ed. Surveys by Outsell [82] have shown that researchers

TABLE 6.6
Document Clustering: Ten-Cluster Example

Cluster Size Themes

18 77 Alzheimer’s disease (39), studies (21), evaluation (21), dementias (19), control (17), 
learning (4), consideration (2), analysis (1), groups (1), relation (1)

19 66 Alzheimer’s disease (46), genes (21), proteins (18), studies (18), increase (17), 
change (16), signi cance (16), relation (8), control (2), groups (1)

14 23 Alzheimer’s disease (96), pathology (11), United Kingdom (9), disease (8), 
APOLIPOPROTEIN (8), vascularity (7), studies (7), dementias (5), genetics (5), 
groups (2)

16 16 Alzheimer’s disease (90), studies (18), disease (12), evaluation (12), bene t (10), 
psychiatric (8), proteins (7), dementias (7), methods (7), relation (1)

17 19 Alzheimer’s disease (87), genetics (18), disease (13), biologicals (11), 
implication (11), discussion (11), cholinergics (10), therapeutics (9), risk factors (8), 
groups (1)

8 48 Alzheimer’s disease (73), dementias (13), disease (13), groups (5), relation (4), 
conclusion (1), consideration (1), analysis (1), quality (1), control (1) 

9 51 Alzheimer’s disease (50), signi cance (19), proteins (17), change (16), activity (16), 
studies (16), groups (5), consideration (1), analysis (1), relation (1)

10 138 lymphomata (60), cells (31), leukemia (16), lymphocytes (15), difference (15), B-
cells (15), lymphomas (14), viruses (5), biology (1), relation (1)

12 76 lymphomata (93), malignancy (20), Burkitt’s lymphoma (14), progression (10), 
HODGKIN (8), authors (7), intestines (4), disease (4), viruses (4), TRANSL (3)

13 86 lymphomata (80), grading (15), lymphomas (11), evaluation (9), ranks (2), 
analysis (2), immune systems (2), positions (1), groups (1), relation (1)

Note: Continued grouping of the documents from the two-cluster example identi es a range of subtopics
within each disease document set.
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heatmap ( g. 6.14). Roughly, lymphoma documents can be grouped into the follow-



Text Mining 187

across several industries including biotech spend about nine hours a week accessing
and analyzing the literature. The authors’ text-mining evaluations have shown better
than a factor of 10 time savings compared to manual search and curation. Nine hours
is roughly 20% of one’s work week. If we assume that half that time is in search of

FIGURE 6.14 Clustering example—cluster theme heatmap. The top themes/concepts for
each cluster are displayed in a heatmap. Biological themes distinguishing the two main topics
are clearly distinct. The few shared themes between clusters of the two unrelated diseases,
lymphoma (L) and Alzheimer’s disease (AD), are analysis, disease, evaluation, groups, and
relation.
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particular facts and overviews that text mining can help locate, then nearly 10% of a
researcher’s time overall can be saved and reinvested in other productive work. For
1,000 researchers, the total effort that can be reinvested is 100 man-years per year or
at least $10 million/year based on an accounting of $100,000 per researcher per year.

In addition to savings from making each researcher more ef cient, text mining
may very well lead to savings in more ef cient pipeline management, based on better
information. Consider, for example, another current topic of great interest: the “front
loading” of safety concerns. Industry surveys [75] have indicated about 50% of all
potentially therapeutic compounds undergo attrition due to safety concerns. About
50% of the compounds exhibiting toxicity had some indication in the literature that
was not noticed until after experimental evidence arose (personal communication,
Scott Boyer, AstraZeneca, 1994). So for every four drug projects moving from
compound hit to candidate drug, we have one that can potentially end sooner. One
should not propose killing a drug project based on the literature but rather reorganize
or prioritize toxicology studies based on the literature indications to speed up attri-
tion. This could free up a substantial portion of the expensive lead optimization
budget for other projects. It is still an open question whether this potential can be
realized, but it is certainly worth pursuing.

It has been suggested (personal communication, Aris Persidis, BioVista, 1994)
that better experimental design through the use of text mining can save a lab up to
33% in both time and reagent costs. These numbers come from an informal survey
of several academic labs. Many labs developing assays for targets do not realize
which cell lines and reagents are most effective. This is due, in large part, to the
literature search databases only providing abstracts, and the pertinent information
to their experiment design is only found in the full-text journal article.

6.5 DISCUSSION

Text mining is not a task to be undertaken lightly. It requires a signi cant commitment
to manage the documents and applications required to deliver the technology in a
useful manner. Even the basic document management is not easy. Managing hun-
dreds of gigabytes to terabytes of text, PDF, Word, PowerPoint, and other document
types is a challenging task that has to be appropriately engineered.

There is also a signi cant cultural challenge to text mining. The corporate library
makes a natural partner along with Information Technology (IT) and Informatics in
delivering the technology of text mining to the drug-discovery scientist, but it is a
signi cantly different technology and type of result to what has been deployed
previously by these groups. There are two challenges for the corporate library: (a)
librarians have a great deal of experience with document retrieval but much less
with automated information extraction, and (2) they are used to working with outside
vendors for tools, not with in-house IT/Informatics personnel. The IT Department
tends to have relatively little experience working with text except to store it. The
Informatics Department is not used to working with unstructured data. There are
challenges for all of the involved parties and a very signi cant requirement for tight
partnerships in delivering text mining.

 © 2006 by Taylor and Francis Group, LLC
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The interaction required between the text-mining expert and the drug-discovery
scientist is much closer than is required of text search. The subtleties of the questions
being posed are often so speci c to a drug project that even a senior drug-discovery
scientist turned text-mining specialist has dif culty narrowing the results to the correct
set without the drug scientist customer directly involved. There are many more
variables to manage in performing text mining than there are in text search queries.

The authors going into text mining were surprised that text search technology
is still dif cult to deploy. Text search is a supporting technology for text-mining
efforts. Given the extensive development of text search in conjunction with the
Internet, we had incorrectly assumed that search technology would be easy to deploy
and scale well. As with any computing system, the correct technology has to be
selected for the task and has to be appropriately engineered for the application.

Knowledge management is an area that will get more focus in the future. The
tidal wave of semantically typed knowledge that is being developed through text
mining is going to have to be managed. The multirelational ontology ( g. 6.15) as a
database appears to be one method for solving this knowledge management crisis.
As with any new high-throughput technology such as gene expression or high-
throughput imaging, the chokepoint in the process moves on. As one problem is
solved, a new one arises. The idea of mapping extracted knowledge into an ontology

ogies. Mapping columns in a database, which may not be semantically normalized,
to a column of data in another database can result in a signi cant source of errors.

FIGURE 6.15 Multirelational ontology. Representation of multiple, semantically distinct ontol-
ogies and the relationships that are mapped between them. Courtesy of Biowisdom, Ltd.
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structure ( g. 6.16) may avoid some of the pitfalls found in data integration technol-
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All of the information or knowledge can be integrated as individual entities with rules
as to what metadata or relations can be used for mapping classes of entities together.

There is too much literature to review or stay current with manually. The knowl-
edge wrapped up in the literature can provide a signi cant competitive advantage
for the companies that are utilizing text mining. Estimates in the industry suggest
90% of drug targets are derived from the literature. Realistically, most of the research
for drug discovery is actually produced external to an individual company and is
publicly available through published articles and abstracts or patent application
background data. Who can afford not to employ methods that allow more ef cient
and comprehensive surveys of the vast scienti c, commercial, and patent literature?
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7.1 INTRODUCTION

7.1.1 WHAT IS A PATHWAY?

For purposes of this chapter, we de ne a pathway as a description of the mechanism
of the typical process by which a cellular or organismic function is realized. This
de nition makes two points. First, a pathway is not a mechanism, but a description
of mechanisms, that is, it exists as a model subject to our investigative needs and
not as an entity itself. Second, a pathway must have functional interpretations, that
is, it must correspond to a goal or need we can identify in the cell or organism. Thus
this de nition does not provide a purely objective criterion but tosses the problem
into the laps of people who want to de ne “function” at the cellular or organismic
level. It also removes from consideration any sequence of biochemical interactions
that do not have such an interpretation.

Although the discovery and characterization of pathways begin with biochemical
investigations yielding data about interactions among molecules and their relation
to cellular types and locations, it does not end there. In this chapter, we include
some description of the lower level of representation (e.g., yeast two-hybrid results,
2D gels, GC-MS, etc.), but the main focus is on processes at the middle level (e.g.,
metabolite pro les and ux rates) and higher levels (e.g., reaction sets, transport
processes, signaling and regulatory effects), that is, levels involving functional inter-
pretations.

7.1.2 WHAT ARE THE RELATIONSHIPS AMONG DIFFERENT SORTS OF 
PATHWAYS?

There are three commonly recognized families of pathways: metabolic, signaling,
and regulatory pathways. Metabolic pathways, historically the rst to be recognized,
are those involving the synthesis (anabolism) and breakdown (catabolism) of com-
pounds (sugars, starches, amino acids, lipids, etc.). They are typically categorized
according to their function: producing energy, transferring energy, synthesizing
proteins, making toxins harmless, providing transportable forms of substances, pro-
viding storable forms of substances, and so on. Signaling pathways involve modi -
cations to successions of proteins, beginning with detection of a condition internal
or external to the cell and propagating to an effect on metabolic or regulatory
pathways. Regulatory pathways involve interactions between DNA segments, either
relatively direct (promoter, enhancer, operon, or short RNA segment) or relatively
indirect (in which one or more genes change transcription activity of one or more
other genes through effects on signaling or metabolic pathways).

Both signaling and regulatory pathways can be regarded as control mechanisms
that modify metabolic activities according to current conditions recognized by the
cell. Although these three families are commonly treated separately, in the cell there
is extensive interaction among them. Signaling pathways are typically initiated by
changes in the concentration of metabolites or other small compounds, and they
usually result in either metabolic changes (via activation or inhibition of enzymes)
or regulatory changes (via transcription factor binding). Regulatory pathways, in
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turn, result in changes in the production of proteins that participate in either metabolic
or signaling pathways, and metabolic pathways, in addition to their acknowledged
anabolic and catabolic function, are continually exercising upward control on sig-
naling and regulatory pathways via the monitoring of metabolite concentrations. All
types of pathways are thus parts of a whole system; treating any type in isolation
from the others will lose a part of the whole story.

7.1.3 WHAT IS THE SIGNIFICANCE OF PATHWAYS TO DRUG 
DISCOVERY AND DEVELOPMENT?

One use of pathway identi cation and analysis is in answering target validation
questions, both in disease modeling and in toxicological assessment. If the putative
target is a receptor upstream in a signaling pathway, will blocking of the receptor
disrupt other vital cell functions? Analysis of this problem involves nding all
pathways in which the protein is involved and assessing its role there to predict off-
target effects. If the target is suppressed, and thus the targeted pathway is inactivated,
are there alternative pathways that can accomplish the function of the disabled
pathway? Finding alternative pathways involves determining other trajectories that
converge to the same phenotypic attractor. Does the cell possess compensating
mechanisms that make a putative target unattractive? Changes in concentration of a
protein resulting from drug administration may be neutralized by a feedback control
loop. Such a compensation mechanism could be overcome by a high drug dosage,
but this could produce undesirable side effects. Analysis of the positive and negative
effects of changes is required to address this problem.

Target validation involves more than analysis of signaling and regulatory inter-
actions: metabolomic pro les can be used as markers in toxicological assessment
or disease diagnosis. If a particular pattern of concentration changes in a metabolite
set is found to be reliably related to a disease condition or to toxicity, this can be
followed up by identifying the pathway(s) whose disruption is most likely to be
causing the pattern and hence the condition.

Finally, an often overlooked use of pathway analysis is in drug production. Many
drugs can be synthesized by genetic engineering (e.g., insulin) or metabolic engi-
neering (e.g., penicillin) of microorganisms or plants [Stephanopoulos, Aristidou,
and Nielsen 1998]. The optimization of yield quantity and purity involves many of
the same tools as are employed in understanding disease mechanisms.

7.2 PATHWAY DATA

7.2.1 DATA ACQUISITION TECHNIQUES

To talk about the use of pathways, we must rst describe the experimental methods
that are used to infer these pathways, for without the constraint of data, metabolic
and control pathways could be hypothesized to mediate any conceivable function.
In this section we mention methods for monitoring the activity of genes, proteins,
and metabolites. Other clues (phenotype, fMRI, electrochemical, etc.), however, have
also been used.
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7.2.1.1 Transcriptomics

Various methods are available for detecting and quantifying gene-expression levels,
including northern blots, differential display, polymerase chain reaction after reverse
transcription of RNA, and serial analysis of gene expression. These techniques are
used primarily to measure the expression levels of speci c genes or to screen for
signi cant differences in mRNA abundance.

High-throughput expression studies have matured in the form of array-based (or
chip) technologies that have mainly been developed along two lines. In cDNA array
experiments, many gene-speci c polynucleotides are individually arrayed on a single
matrix. The matrix is then simultaneously probed with uorescently tagged cDNA
representations of total RNA pools from test and reference cells, allowing one to
determine the relative amount of transcript present in the pool by the type of the

uorescent signal generated [Duggan et al. 1999]. In oligonucleotide arrays the basic
principle is the same, but the spots on the chip contain short oligos instead of cDNA
clones from known genes. The oligos are exposed to a solution containing many
copies of the target DNA. If the oligos are tagged, with either uorescent dye or
radioactive label, hybridization between oligos and matching DNA can be detected.

Array technologies require a work ow of activities, including the production of
the probes, labeling and hybridization of the target, data extraction from uorescent
images, and subsequent storage and mining of the collected data. 

7.2.1.2 Proteomics

Messenger RNA levels contain valuable information about the cell state and the
activity of genes. Nevertheless, messenger RNA is only an intermediate on the way
to the production of functional protein products. Methods for monitoring protein
levels therefore have advanced signi cantly in the past years.

Western blotting (immunoblotting) is a technique that allows one to measure the
amount of a protein in a sample by using antibody speci c to that protein. The
method is suitable for comparing relative amounts of a protein in different samples.
Absolute quantities require suitable calibration and are dif cult to obtain. Western
blot experiments have supported the development of mathematical models of signal
transduction that predict how a cell reacts to external stimuli (e.g., Bentele et al.
2004). Nevertheless, the technique yields average numbers over a cell population
and can miss events happening on the level of individual cells. This and other
limitations of Western blotting are addressed by various quantitative microscopy
techniques.

Western blots and other antibody-based approaches, including enzyme-linked
immunosorbent assay and immunoprecipitation, traditionally have been used to study
signaling pathways. Although these methods are sensitive and speci c, the reliance
on high-quality antibodies limits the applicability of these approaches to large-scale
studies. To address this de ciency, high-throughput quantitative proteomics technol-
ogies are now advancing [Tao and Aebersold 2003]. 

The most mature approach for quantitative protein pro ling is two-dimensional
gel electrophoresis (2DE). In 2DE, the sample under investigation is fractioned and
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subsequently the complex protein components separated. The 2DE gels may then
be stained to reveal the resolved protein spots and imaged to identify protein expres-
sion changes between samples. 2DE gel analysis is combined with mass spectrometry
(MS) to identify the proteins in the individual spots.

Another approach that has proven promising in a range of proteomics studies is
the generation of quantitative protein pro le using the isotope-coded af nity tag
(ICAT) reagent method [Gygi et al. 1999]. The use of ICAT reagents allows for the
relative quantitation of two samples. The samples are isotopically labeled (one heavy,
one light) through a reactive group that speci cally binds to cysteine residues. The
reactive group also contains an af nity tag (biotin), which can be used to selectively
isolate the labeled components and is then removed before MS analysis.

The ICAT technique supports the detection and quanti cation of differences in
the protein pro les in cells or tissues in different states or organisms. The method
holds signi cant promise for the discovery of diagnostic protein markers, the detec-
tion of new targets, and as a tool for further understanding biological mechanisms
and processes [Tao and Aebersold 2003].

To gain more understanding in the information-processing ow of signaling
networks, one needs to measure the spatial and temporal distribution of proteins
involved. Such data support the development of ne-grained spatial and dynamical
models that can be analyzed to obtain detailed spatiotemporal predictions on cellular
behavior. Experimentally, such data are obtained by using uorescent activity report-
ers (biosensors) that can track local signaling events over time inside individual
living cells [Meyer and Teruel 2003].

A common strategy to obtain localization data of a protein is to tag it with green
uorescence protein (GFP) or other uorescent tags and to monitor the time-course

of its translocation in response to signal stimulation. Monitoring is accomplished by
taking sequential uorescence-microscopy images during and after cell stimulation.
In addition, uorescence-recovery after photobleaching (FRAP) can be used to
measure the mobility of signaling proteins. In FRAP, a uorescently tagged protein
is photobleached in a small region of the cell. Subsequently, uorescently tagged
molecules surrounding the bleached region diffuse and recover the uorescence in
this region. Important parameters that can be measured with this technique include
diffusion constants and the proportion of tightly bound (or immobile) protein.

In a next step, the spatial dynamics of molecular activation and interaction
mechanisms can be studied with uorescence resonance energy transfer (FRET)
[Miyawaki 2003]. FRET is the nonradiative transfer of excited-state energy from an
initially excited donor uorophore to an acceptor uorophore. The donor and accep-
tor uorophores are usually tagged to a pair of proteins, the interaction of which is
studied. The widely used donor and acceptor uorophores are from the class of
auto uorescent proteins like GFP. FRET is an accurate technique for measuring
molecule proximity (< 10 nm) and to monitor the localization and dynamics of
protein–protein interactions and conformational changes in living cells. FRET has
been used mostly in conjunction with microscopy imaging to visualize signaling
events in time and space [Sekar and Periasamy 2003]. There are also a number of
ways to quantify the FRET ef ciency [Miyawaki 2003]. Quantitative data in terms
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of spatiotemporal distribution of the concentration of interacting proteins can thus
be obtained. 

Single-cell experiments allow key parameters that de ne the dynamic properties
of cellular signaling networks that are not available from cell population experiments
to be extracted (e.g., Western blotting). Such parameters include delay time constants
between signaling steps or bistability in the activation process. 

Better understanding of the connectivity and dynamics of cellular networks
requires that quantitative readout of cellular behavior is obtained for a range of
physiologically relevant conditions. Ideally, we would like to activate or inhibit all
intermediate steps in a network while monitoring the activity pro les (or concentra-
tion) pro les of all molecules involved using, for example, FRET. Currently such
perturbations are possible using only a limited set of known small-molecule inhib-
itors and activators. Another promising perturbation strategy is RNA interference
[Hannon 2002].

7.2.1.3 Metabolomics

Metabolomics (or metabonomics) refers to the identi cation of low-weight mole-
cules (metabolites) from samples in a particular physiological or developmental state
and quanti cation of their abundance; helpful reviews are given in [Fiehn 2003,
Lindon 2004]. Analysis by hyphenated techniques such as gas chromatography mass
spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), or cap-
illary electrophoresis-mass spectrometry (CE-MS) provides a detailed chromato-
graphic pro le of the sample including both identi cation and measurements of the
relative or absolute amounts of the components. Direct spectroscopic techniques
such as nuclear magnetic resonance (NMR) and direct mass spectrometry techniques
such as quadrupole-time of ight (QToF), Fourier transform-ion cyclotron resonance
(FT-ICR), and matrix assisted laser desorption/ionization (MALDI) can be used to
classify and determine differences between samples by highlighting the changes
occurring in a given biological context, but without prior speci cation of metabolites
to be identi ed are less useful for pathway analysis.

7.2.2 DATABASES

Most data acquired by the aforementioned and by more classical methods are
maintained in proprietary databases and not made generally accessible. Many aca-
demic or government groups, however, and quite a few private efforts willing to
share data under license, have made their results available. In this section we list
some of the databases that provide pathway descriptions.

7.2.2.1 Primarily Metabolic Databases

PUMA/EMP/WIT [Selkov et al. 1998] include a series of projects for representation
of metabolic pathways underway since the early 1990s under the direction of Evgeni
Selkov, of Argonne National Laboratories and Integrated Genomics. They provide
metabolic databases, search facilities, and visualization capabilities. EcoCyc, Meta-
Cyc, and BioCyc [Karp 2000] include a series of databases and associated ontologies,
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based rst on annotated sequences and curated functional data from E.coli and later
on similar data and literature from about 150 species. It was developed under the
direction of Peter Karp, of SRI, starting in the early 1990s, and includes facilities
for metabolic database search, pathway visualization, and causal inferencing.

KEGG [Kanehisa et al. 2002] is a similar effort underway since the late 1990s
under the direction of Minoru Kanehisa at Kyoto University. It also provides meta-
bolic databases, search facilities, and visualization capabilities.

Center for Genome Resources. It focused originally on plant metabolism (Arabi-
dopsis thaliana) but is not in principle restricted to plants, and has recently begun
including yeast (Saccharomyces cerevisiae). It includes a relatively large database
of compounds, proteins, reactions, and pathways, plus visualization and search/nav-
igation tools.

Metabolic Pathways of Biochemistry (table 7.1) has been maintained since 1998
by Karl Miller [1998] of The George Washington University’s Biochemistry Depart-
ment. It contains over 20 pathway diagrams with details on the structure and other
characteristics of the molecules.

The University of Minnesota has been adding to the Biocatalysis/Biodegradation
Database [Ellis et al. 2003] since the early 1990s. It includes 144 pathways of
microbial metabolism, mostly for xenobiotic degradation.

7.2.2.2 Signaling, Regulatory, and General Databases

The Biomolecular Interaction Network Database (BIND) [Bader 2001; Bader, Betel,
and Hogue 2003] was begun in 2000 by Chris Hogue, of Toronto’s Samuel Lunenfeld
Research Institute at Mt. Sinai Hospital, and Francis Ouellette, of Vancouver’s Center
for Molecular Medicine and Therapeutics at the University of British Columbia.
Although originally intended to handle protein–protein interactions and complexes,
its data model was extended until it became capable of handling quite general objects
and processes in cellular metabolism. Its continued development is under the auspices
of Blueprint, a collaboration between IBM and MDS Proteomics. BIND archives
biomolecular interaction, complex and pathway information accompanied by a
graphical analysis tool to view the domain composition of proteins in interaction
and complex records.

The Munich Information Center for Protein Sequences [Mewes et al. 2004] is
a group established within the Max Planck Institute for Biochemistry that has been
developing methods for proteomic and metabolic analysis of gene expression data
since the early 1990s.

Signaling PAthway Database (SPAD) (table 7.1) was developed at Kyushu Uni-
versity and includes clickable maps for 16 signal transduction pathways. It is still
maintained but has not increased coverage since 1998.

TRANSPATH [Choi et al. 2004], originally developed at the German Research
Center for Biotechnology and based on Cell Signaling Network Database [Takai-
Igarashi, Nadaoka, and Kaminuma 1998], is currently a commercial offering. It
includes signaling and gene-regulation pathway data extracted mostly from primary
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PathDB (table 7.1) has been under development since before 2000 at the National
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TABLE 7.1
Web Resources for Pathway Databases, Standards, and Software Referred
to in Text

Name Citation/Organization URL

AfCS Nature http://www.signaling-gateway.org/
aMAZE van Helden et al. [2000] http://www.ebi.ac.uk/research/pfmp/
BBD Ellis et al. [2003] http://umbbd.ahc.umn.edu/
BBID Becker et al. [2000] http://bbid.grc.nia.nih.gov/
BIND Bader et al. [2001] http://www.bind.ca/
BioD Cook, Farley,

and Tapscott [2001]
http://www.rainbio.com/BioD_home.html

BioPathways http://www.biopathways.org/
BioPAX http://www.biopax.org/
BioUML http://www.biouml.org/
CellML Lloyd, Halstead,

and Nielsen [2004]
http://www.cellml.org

Cytoscape Shannon et al. [2003] http://www.cytoscape.org/
DDLab Wuensche [2003] http://www.ddlab.com/
DIP Salwinski et al. [2004] http://dip.doe-mbi.ucla.edu/
Discoverer Bayesware http://www.bayesware.com/products/discoverer/

discoverer.html
EMP Selkov et al. [1998] http://emp.mcs.anl.gov/
Kegg Kanehisa et al. [2002] http://www.genome.ad.jp/kegg/
Metacore GeneGo http://www.genego.com/about/products.shtml#metacore
MIM Kohn [1999] http://discover.nci.nih.gov/kohnk/interaction_maps.html
MIPS Mewes et al. [2004] http://www.mips.biochem.mpg.de/
MPB http://www.gwu.edu/~mpb/
PANTHER Applied Biosystems https://panther.appliedbiosystems.com/pathway/
PathBLAST Kelley et al. [2004] http://www.pathblast.org/
PathDB NCGR http://www.ncgr.org/pathdb/
Pathway Articulator Jubilant http://jubilantbiosys.com/pd.htm
Pathway Assist Iobion http://www.stratagene.com/products/displayProduct

.aspx?pid=559
Pathway Enterprise Omniviz http://www.omniviz.com/applications/pathways.htm
PathwayLab Innetics http://innetics.com/
Pathways Analysis Ingenuity http://www.ingenuity.com/products/pathways

_analysis.html
Pathways Data
System

Ozsoyoglu, Nadeau,
and Ozsoyoglu, 2003

http://nashua.cwru.edu/pathways/

PATIKA Demir et al. [2002] http://www.patika.org/
Reactome Joshi-Tope et al. [2005] http://www.reactome.org
SPAD http://www.grt.kyushu-u.ac.jp/spad/
STKE Science http://stke.sciencemag.org/
TAMBIS Baker et al. [1999] http://cagpc.cs.man.ac.uk/tambis/manual/
WIT Selkov et al. [1998] http://wit.mcs.anl.gov/WIT2/
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literature, plus facilities for network visualization and tools for analyzing gene-
expression data.

The Database of Interacting Proteins (DIP) [Salwinski et al. 2004] encompasses
protein–protein interaction data. DIP started life as an academic project, but since
2001 has been generally available under commercial license. 

The Biological Biochemical Image Database [Becker et al. 2000] is an interesting
collection of keyword-searchable signaling and regulatory maps from multiple
sources (conference presentations, journal articles, books, hand-drawn, etc.). It is
supported by the National Institute on Aging, with coverage of over 700 genes.

Reactome [Joshi-Tope 2005] is a publicly accessible effort covering metabolic
and signaling pathways in humans and model organisms. The reactions are curated
directly by domain expert biologists rather than extracted from the literature. It
includes pathway search and visualization capabilities.

which includes over 60 mostly signaling pathways, including keyword search, visu-
alization, and highlighting of gene sets from expression analysis.

The Signal Transduction Knowledge Environment (table 7.1) is another expert-
curated database, focusing exclusively on signaling pathways. It currently contains
about 40 detailed and annotated pathway descriptions, including citations and graph-
ical “connection maps.” Originally a collaboration between Stanford University and
the journal Science, it is now available by subscription. 

The Alliance for Cellular Signaling (AfCS) (table 7.1), sponsored by the journal
Nature, also has a signaling database. It has assembled a smaller number of pathways,
as its focus to date has been on the signaling molecules, for which it has compiled
a set of about 4,000 detailed summaries.

7.2.3 STANDARDS

The standards issue is somewhat contentious in this eld for several reasons. First,
only in the last few years has it been recognized that standards for pathway repre-
sentation are important, and becoming more so with each passing year. Second,
several established databases with incompatible representations have served as de
facto standards for a number of years. Third, the entry of commercial vendors into
the eld has upped the ante, making market competition a factor.

Every database schema, every class hierarchy, every ontology embodies an
implicit candidate for standards. Here we list only the entities concentrating on
developing standard representations explicitly for pathway data.

The Systems Biology Markup Language [Hucka et al. 2003] started in 2000 as
part of the ERATO Kitano Systems Biology Project. Its primary purpose is to serve
as a representation language for the storage and communication of biochemical
models. It is an XML-based medium with structures representing compartments,
species, reactions, unit de nitions, parameters, and kinetic rate expressions. Its
de nition has undergone continual re nement by its contributing teams from the
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Applied Biosystems has recently made PANTHER Pathway (table 7.1) available,
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Kitano group, the Caltech group, and the several simulation groups involved in its
development.

The Cell Markup Language [Lloyd, Halstead, and Nielsen 2004] has been under
development since 1999 by scientists from the University of Aukland and formerly
also Physiome Sciences. It is an open XML-based exchange format for the general
description of the structure, mathematics, and state of cellular models.

Neumann and Vincent Schaechter. Its memberships include participants from indus-
try, academia, government, and other research institutes, and its goals include devel-
oping and consolidating technologies for representation and communication of infor-
mation concerning pathways and biochemical interactions. The BioPathways
Consortium collaborates with the BioPAX Project.

The BioPAX Project (table 7.1) was begun by Chris Hogue, Peter Karp, and Chris
Sander in 2002, with the goal of developing a standard exchange format for pathway
data. The Level 1 speci cation included metabolic pathway information. Level 2,
currently under development, will also include more generic molecular interactions.

The TAMBIS Project (Transparent Access to Multiple Bioinformatics Information
Sources) [Baker et al. 1991] started in the late 1990s at the University of Manchester
and has developed a powerful data model together with a knowledge base affording
near-natural language queries to federated distributed biological databases.

The Protein Function and Biochemical Pathways project, and its aMAZE data-
base [van Helden 2000] are an ongoing effort since 1998 under the leadership of
Shoshana Wodak of the European Bioinformatics Institute and the Free University
of Brussels. It includes an encompassing object-oriented data model and has begun
development of pathway visualization and analysis tools.

A number of other proposals include innovative ideas but have not yet achieved
broad support (BioUML [table 7.1]; BioD [Cook, Farley, and Tapscott 2001]; Molec-
ular Interaction Maps [Kohn 1999; Kitano 2003]; Diagrammatic Cell Language
[Maimon and Browning 2001]).

7.3 PATHWAY ANALYSIS

7.3.1 DATA ANALYSIS TECHNIQUES

7.3.1.1 Topological Analysis

The most intuitive representations of biochemical networks are graphs [Deville et
al. 2003; Newman 2003]. A graph is de ned by a set of nodes representing the
entities of the network (genes, proteins, or metabolites) connected via a set of edges
representing chemical, physical, or functional interactions among the entities. Graphs
can be directed, in which case the edges (or arcs) express casual or temporal
relationships between the biochemical species (e.g., A activates B, or A is trans-
formed into B). Hypergraphs can be used in cases where two or more compounds
react to form a product, or multiple proteins cooperatively regulate the expression
of a gene. In bipartite graphs, reactions are also modeled as nodes, and edges signify
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The BioPathways Consortium (table 7.1) is a group founded in 2000 by Eric

that a biochemical species is an input or an output of a reaction (see g. 7.1).
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Various analyses can be applied on graphs to select new targets or prune a set
of already identi ed targets. Given only the interactions among a set of biomolecules
(and often this is all there is, because establishing kinetic parameters is so dif cult),
it is possible to construct networks allowing comparison of pathways from different
organisms, tissues, or different developmental stages, to highlight common features
or differences, and to predict missing elements [Bernauer et al. 2004]. Most pathway
maps take the form of such static topological representations, and for many explan-
atory purposes these are adequate. For instance, one can determine the set of genes
whose expression is in uenced by a target protein directly or indirectly. An undesired

FIGURE 7.1 A bipartite graph in which circles represent interactions and rectangles represent
biomolecules. This example is a modi ed Petri net modeling the phage  lysis-lysogeny
circuit [Matsuno et al. 2000].
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in uence may reduce the con dence in a target. By computing all paths between
two species one may identify new potential downstream targets. Further, cycles and
feedback loops in the graph can be identi ed. Negative feedback increases the
stability of the system and thus makes it robust to perturbations, whereas positive
feedback decreases stability [Kitano 2004]. Consequently, targets involved in feed-
back loops can be accordingly evaluated. 

Graphs also allow global connectivity characteristics of networks to be studied.
Some exciting graph theoretic work [Fell and Wagner 2000; Jeong et al. 2000; Jeong
et al. 2001] has been done in the last ve years or so on biochemical (and other)
networks, indicating that their robustness or attack tolerance can be predicted from
statistics on their connectivity. In particular, it has been shown that cellular networks
follow a power-law distribution: there is a small number of molecules with many
connections. Removal of highly connected nodes is likely to be very disruptive for
the function of the system. Conversely, networks are robust to removal of nodes with
a low number of connections. For instance, Jeong et al. [2001] have shown that the
connectivity of a protein in yeast is correlated with the likelihood that its removal
be lethal to the cell. 

Further hints as to the architecture of metabolic and regulatory networks have
been found by examining them for common subgraph patterns [Lee et al. 2002; Milo
et al. 2002]. Although these lines of research are promising, they have as yet found
no application in drug discovery. Moreover, the predictions drawn from graphs are
quite restricted. For instance, one cannot infer the quantitative effect of the concen-
tration change of one molecule to another. Static topological analysis of graphs does
not allow questions related to the dynamics of the network to be answered, and as
it is increasingly believed now, biological function is determined more by dynamics
than by structure alone [Kitano 2002b]. It is a simple exercise, for example, to devise
networks that have the same topology but because of differing dynamics have

7.3.1.2 Flux Balance Analysis

Whereas detailed dynamic models can precisely answer questions on cellular behav-
ior, the widespread application of such approaches has been hampered by the lack
of kinetic information. In the absence of kinetic information, a method known as

ux balance analysis (FBA) has been developed to analyze the metabolic capabilities
of a cellular system based on mass balance constraints [Varma and Palsson 1994;
Edwards et al. 1999; Edwards and Palsson 2000].

Based on mass balances, a reaction network can be described in terms of linear
equations, with parameters representing the stoichiometric coef cients and variables,
the metabolic uxes. The result is a system of ordinary differential equations,

, (7.1)

where X is an m dimensional vector de ning the quantity of the metabolites within
a cell, v is the vector of n metabolic uxes, S is the m × n stoichiometric matrix,
and b is the vector of metabolic exchange uxes. The time constants of metabolic

= +dX dt Sv b/
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opposite function (e.g., activation vs. inhibition; see g. 7.2).
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transients are usually much smaller compared to the time constants of cell regulatory
dynamics and growth. Hence, the transient mass balances can be simpli ed to only
consider the steady-state behavior, analogous to the system of equations,

, (7.2)

where I is the identity matrix. Further rearrangement yields the linear system
S' v' = 0, with S' an m × n' stoichiometric matrix where n' is the total number of

uxes, including ctitious uxes that transport material across the system boundary.
All vectors v', that satisfy equation 7.2 (also called the nullspace of S') are steady-
state metabolic ux distributions that do not violate the mass balance constraints.

FIGURE 7.2 An isomerization reaction with two parallel paths; a direct path D (a  b), and
a mediated path M1 (a + c  ac), M2 (ac  b + c). In the rst diagram (A), the rate of M1 >>
D and M2 >> D, thus path M bypasses the direct path D, and c accelerates a through the system,
acting as a catalyst (reaction rates indicated by arrow thickness). In the second diagram (B), the
rate of M1 >> D, but in this case D >> M2, thus c locks up a in complex ac, acting as a
competitive inhibitor.
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This linear system usually has an in nite number of solutions. Its solution space is
determined by a set of basis vectors. All solutions of the system can be expressed
as linear combination of the basis vectors. The dimension of the nullspace (the
number of basis vectors) is given by n' – rank(S'), where rank(S') is the number of
linearly independent rows in S'.

Because many vectors within the nullspace are not physiologically feasible,
additional constraints can be placed on the metabolic network to restrict the number
of possible solutions [Bonarius, Schmid, and Tramper 1997]. Common constraints
are based on capacity and thermodynamic considerations and are realized by impos-
ing a lower and/or an upper limit for each ux ( j  vj  j, j = 1 … n'). 

Enforcing stoichiometric, capacity, and thermodynamic constraints simulta-
neously leads to the de nition of a solution space that contains all feasible steady-
state ux vectors. Within this set, one can nd a particular steady-state metabolic

ux vector that optimizes the network behavior toward achieving one or more goals
(e.g., maximize or minimize the production of certain metabolites). Mathematically
speaking, an objective function has to be de ned that needs to be minimized or
maximized subject to the imposed constraints. Such optimization problems are
typically solved via linear programming techniques.

Somewhat related to FBA is an approach for the determination of so-called
elementary ux modes [Schuster, Dandekar, and Fell 1999; Schuster, Fell, and
Dandekar 2000]. Generally speaking, an elementary ux mode is a minimal set of
enzymes that can operate at steady state. In contrast to FBA, which produces a set
of vectors spanning the possible steady-state uxes, the elementary mode vectors
are uniquely determined (up to a multiplication by a positive real number). Any
steady-state ux distribution can be then represented as a linear combination of these
modes with nonnegative coef cients.

Target identi cation and validation can pro t from FBA and elementary ux modes
in a number of ways. If the activity of a putative enzyme target is blocked, a plethora
of counterreactions may be evoked to achieve homoeostasis. The new metabolic routes
after blocking can be calculated by elementary-mode analysis. That way, the effect of
deactivating the target can be estimated. Elementary modes also may contribute to the
identi cation of new targets by determining the most vulnerable parts in a metabolic
network where no side paths compensating the effect of a drug exist.

7.3.1.3 Metabolic Control Analysis

The methods of FBA and elementary ux modes study interactions between dif-
ferent routes in a metabolic network and the quanti cation of ux distributions but
do not evaluate how uxes are controlled. In Metabolic Control Analysis (MCA),
the control exerted by the rate of a reaction over a substrate ux or any other system
parameter (e.g., metabolite concentration or cell proliferation) can be described
quantitatively as a control coef cient. The control coef cient is a relative measure
of how much a perturbation affects a system variable and is de ned as the fractional
change in the system property over the fractional change in the reaction rate [e.g.,
Burns et al. 1985],
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, (7.3)

where A is the variable, i is the step (enzyme), and vi is the rate of the step perturbed.
Because the rate of reaction cannot be perturbed directly, control coef cients are
determined by perturbations in parameters that affect the rate linearly, such as
enzyme concentration. That is, in equation 7.3, vi is replaced by the corresponding
enzyme concentration [Ei].

It has been demonstrated that for a given ux the sum of its ux-control coef-
cients of all steps in the metabolic network obeys the theorem [Heinrich and

Rapoport 1974; Giersch 1988; Reder 1988]:

, (7.4)

where the summations are over all the steps of the system. Hence, increases in some
of the ux-control coef cients imply decreases in others so that the total remains
unity. Consequently, one can conclude that control is a global property of the system,
dependent on all reaction steps.

Similarly to the control coef cients, elasticity coef cients have been de ned to
quantify the effect of perturbations of a reaction parameter on a reaction rate [e.g.,
Heinrich and Rapoport 1974; Burns et al. 1985]. The elasticity coef cients are
de ned as the ratio of relative change in local rate to the relative change in the
parameter (usually the concentration of an effector),

, (7.5)

where vi is the reaction rate and p is the perturbation parameter. An elasticity
coef cient can be de ned for each parameter that affects the reaction rate, such as
the concentration of the reaction substrates, products, and effectors.

Unlike control coef cients, elasticity coef cients are local properties because
they measure how isolated enzymes are sensitive to changes in parameters. Both the
control and elasticity coef cients are not constants but depend on the value of the
relevant parameter.

The connectivity theorems are another important feature of MCA. Through these
theorems, one can relate the control coef cients to the elasticity coef cients. The
connectivity theorem for ux-control coef cients states that, for a common metab-
olite S, the sum of the products of the ux-control coef cient of all (i) steps affected
by S and its elasticity coef cients toward S, is zero [Kacser, Burns, and Davies 1973],

. (7.6)

The connectivity theorems describe how perturbations on metabolites of a
pathway propagate through the chain of enzymes. The summation theorems,
together with the connectivity relations and enzyme elasticities, and possibly some
additional relations in the case of branched pathways [e.g., Fell and Sauro 1985],
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can be used to derive the control coef cients of a metabolic network. For this
purpose, several computational frameworks have been developed [e.g., Fell and
Sauro 1985; Westerhoff and Kell 1987].

The classical MCA has been extended in a number of directions. For instance,
Reder [1988] introduced a general methodology to calculate control coef cients
from elasticities that takes into account moiety-conservation. Several papers have
addressed enzyme–enzyme interactions in the context of MCA [e.g., Kacser, Sauro,
and Acerenza 1990; Sauro and Kacser 1990].

MCA is often used to correlate individual genes and phenotypic characteristics
in metabolic diseases and to identify candidate enzymatic targets for drug develop-
ment or gene therapy. For instance, enzymes that exert strong control on a system
property such as tumor cell proliferation are suitable targets for cancer therapy. It
is speculated that MCA will have an increasing impact on the choice of targets for
intervention and drug discovery [Cascante et al. 2002]. MCA also holds promise in
the identi cation of combined drug therapies for metabolic disorders. Although the
presence of every enzyme in a sequence is essential to a metabolic process, the
overall stimulatory or inhibitory effect of a drug is likely achieved with lower
concentrations of those enzymes with high ux-control coef cients than for enzymes
with low coef cients.

7.3.2 MODELING

By modeling, we mean here the application of mathematical and computational
techniques, including but not restricted to those just described, to elucidate the
structure and function and to explain the behavior of entire systems as opposed to
component subsystems. This includes methods for both simulation (or analytical
modeling) and reconstruction (or synthetic modeling).

7.3.2.1 Simulation

The vast array of molecular processes occurring simultaneously in the cell cannot
be comprehended by using experimental techniques alone. In addition to experimen-
tal tools, formal methods for the modeling and simulation of biochemical processes
are indispensable. Models incorporate the immense amount of experimentally gen-
erated data in a systematic fashion and can be used to understand observed phenom-
ena, to simulate in silico therapeutic intervention experiments on drug target function,
or to predict undesired side effects [Somogyi and Greller 2001].

Generally speaking, a model is an abstract representation that allows inferences
about the real network to be made. Different modeling formalisms exist, and the
choice of a particular methodology depends on the questions one is trying to answer
as well as the type of experimental data available [D’haeseleer, Liang, and Somogyi
2000]. The different algorithms have different strengths; they are focused on the
representation of different physical or chemical processes and are often suited to
different spatial and temporal scales.
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A number of review articles on modeling and simulations of biochemical net-
works have recently been published. In particular, the comparison of different mod-
eling formalisms [Somogyi and Greller 2001; de Jong 2002; Wiechert 2002], their
applications [Endy and Brent 2001; Hasty et al. 2001], and the role of modeling in
understanding cellular behavior and its control [Endy and Brent 2001; Kitano 2002a;
Sharom, Bellows, and Tyers 2004] have been discussed. In this section we discuss
modeling formalisms for the representations of biochemical networks and their
impact on the target identi cation and validation process, and in the next section we
elaborate on the problem of how to obtain models depicted in these formalisms.
This discussion is not intended to be exhaustive, though. Rather, an emphasis is
given to well-established formalisms that have been proven useful in a series of
applications. Examples of modeling approaches that have not been included here
are Petri Nets [Pinney, Westhead, and McConkey 2003], pi-calculus [Curti et al.
2004], and neural networks [Vohradsky 2001].

The most elementary formal model for pathways is a graph of biochemical
interactions, which can be used for the sort of topological analysis just discussed.
In the next level of detail, gene regulatory networks can be modeled by Boolean
networks [Kauffman 1969; de Jong 2002]. In this case, each gene is treated as having
two states: active (on) or inactive (off). Interactions between genes are represented
as Boolean functions (AND, OR, XOR, etc.), which infer the state of a gene from
the activity of the other genes in the network. Given the values of the nodes at time
t, the Boolean functions are used to update the values of the nodes at time t + 1 ( g.
7.3). Hence, Boolean networks assume synchronous transitions between states—the
activities of all genes are updated simultaneously.

Because the number of states of a Boolean network is nite, so is the number
of possible trajectories (the sequences of states starting from a given initial state)
the system can exhibit. Because of its nite dimension, the space of trajectories can

FIGURE 7.3 An example of a Boolean network representing a 3-gene regulatory network.
The Boolean functions de ne how the expression of the corresponding genes changes based
on the current expression values. The transition table on the right speci es all possible
expression patterns at time point t + 1 derived from the expression patterns of the genes at
time point t and the Boolean functions. At each time point a gene is either expressed (1) or
repressed (0).
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be systematically investigated and the steady states and state cycles determined. In
this way, one may predict the consequences of knock-out experiments or determine
the set of trajectories converging to the same phenotypic attractor.

An appealing property of Boolean networks is that they are inherently simple
but emphasize generic network behavior. Nevertheless, the coarse abstraction to two
possible activity values of genes and the synchronous state update are strong assump-
tions that may not always be justi ed. Various extensions of Boolean networks have
been proposed to cope with these limitations. The formalism of generalized logical
networks [Thomas and d’Ari 1990] allows variables to have more than two values
and transitions between states to occur asynchronously, whereas probabilistic Bool-
ean networks allow uncertainty in the data and permit interactions between genes
to be quanti ed [Shmulevich et al. 2002].

Genetic regulatory networks have also been extensively modeled by Bayesian
networks [Friedman et al. 2000]. Bayesian networks are directed acyclic graphs with
vertices representing the concentration (or activity) Xi of the molecules. For each
Xi, the conditional distributions p (Xi | parents (Xi)) is de ned, where parents (Xi)
refers to the direct regulators of molecule i ( g. 7.4). The joint probability of the
entire set of variables can then be calculated as the product of all conditional
distributions. The probability distributions in a Bayesian net allows one to answer
such questions as “What is the probability that the concentration (activity) Xi of the
molecule i equals x given the observation on the molecular concentrations of other
entities in the network?” By addressing this type of question, one can assess the
consequences of modulating the activity of a putative target protein on other mole-
cules in the network. 

Bayesian networks offer an attractive modeling formalism because they allow
measurement noise and stochastic effects in gene regulation and signal transduction
to be incorporated. A major disadvantage, however, is that dynamical aspects of the
network are not represented.

Traditionally, dynamical systems are modeled by differential equations. In the
case of biochemical networks, Ordinary Differential Equations (ODEs) model the
concentration (or activity) of proteins, RNA species, or metabolites by time-dependent

FIGURE 7.4 An example of a Bayesian network representing a 4-gene network. Genes a
and b activate gene c, and gene c represses the expression of gene d. This information is
coded in the conditional probability tables on the right-hand side. The expression values of
a gene are restricted in this example to “on” (1) and “off” (0).
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functions. More formally, the rate change of the concentration of a molecule is
expressed as a function of the concentration of other molecules,

(7.7)

where ci is the concentration of the ith element in the network, and fi is usually a
nonlinear function.

Because of the nonlinearity of the functions fi, analytical solutions of the ODEs
just mentioned are seldom available. Instead, one can use numerical simulation to
approximate the solution. The result of the numerical simulation is a series of
concentration values for each molecule at a sequence of time points. ODEs allow
the complete behavior of the system to be simulated over time and to track changes
of the behavior due to perturbations. Minor changes in the concentration of a target
protein following drug administration might be neutralized by feedback control. On
the other hand, high dosages of the drug can cause serious side effects [Kitano
2002a]. Thus, ODE models can help to identify not only target proteins whose
inhibition gives rise to desired therapeutic effects but also the appropriate dosage of
the inhibiting drug. Moreover, differential equation models allow the search for
perturbations on multiple proteins that produce a desired combined effect while
reducing the side effects [Endy and Brent 2001]. In a more futuristic view, differential
equations can be used not only to identify and validate targets but also to establish
the way of drug administration, such as order of usage, timing, and dosage of drugs
that would drive a system into a desired state [Kitano 2004].

ODEs have been used extensively to model signal transduction [Kholodenko et
al. 1999; Schoeberl et al. 2002; Bentele et al. 2004], gene regulation [Tyson and
Novak 2002; Leloup and Goldbeter 2003], and metabolic pathways [Leaf and Srienc
1998; Jamshidi et al. 2001].

Dynamical modeling requires detailed kinetic information on the mechanisms
involved that is often not available. To cope with this problem, the formalism of
piecewise-linear differential equations abstracts from the biochemical details of the
regulatory mechanisms and exploits the switchlike nature of gene expression [de
Jong 2002].

A disadvantage of ODE models is that they assume spatially homogeneous
systems, an assumption that sometimes may lead to wrong predictions. Although in
many cases spatial effects can be incorporated in the function fi , there are situations
where one may need to take into account diffusion and transport of proteins from
one compartment to another. For the purpose, reaction-diffusion equations (RDEs)
of the form

(7.8)

can be used, where the term fi is the reaction term, and Di
2ci the diffusion term,

with Di being a diffusion constant and 2 denoting the Laplacian operator (in
Cartesian coordinates, 2ci is the sum of the three second partial derivatives of ci). 

dc
dt

f c c ci
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If initial molecule concentrations are speci ed together with the concentrations
at the compartment boundaries, RDEs can be solved numerically using nite-differ-
ence or nite-element discretizations of the compartment volume. The solution
consists of molecular concentrations across the discretized compartment volume in
a series of time points. RDEs and variants thereof have been used in a range of
applications, including studies of pattern formation [Meinhardt and Gierer 2000;
Myasnikova et al. 2001] and calcium transport [Smith, Pearson, and Keizer 2002].

Although RDEs model biochemical networks more realistically, they are subject
to many unknown parameters that prevent their wide usage. In particular, predictions
derived from RDEs are quite sensitive to initial and boundary molecular concentra-
tions that are seldom accessible. Quantitative proteomics approaches based on u-
orescent microscopy hold a promise in providing the data necessary for the devel-
opment of such models.

Differential equations allow biochemical networks to be described on the level
of individual reaction steps like enzymatic catalysis, or transcription site binding.
Differential equations, however, rely on the assumption that molecular concentra-
tions vary continuously and deterministically. These assumptions may not always
hold, especially in cases where some types of molecules participate with low number
[Arkin, Ross, and McAdams 1998]. As a consequence, the same system with almost
identical initial conditions and environmental inputs can exhibit different behavior. 

Stochastic models relax these assumptions by taking a nondeterministic
approach. Basically, stochastic approaches model the probability the system to be
in a certain state at a speci c time point by incorporating the probability distribution
of the molecular concentrations in the past, the probability that a reaction will occur
in a given time frame, and the probability that this reaction will bring the system
from one state to another. Stochastic models can be simulated via stochastic simu-
lation, pioneered by Gillespie [1977, 2000]. The computational load of the original
algorithm has further motivated various improvements of the method [Gibson and
Bruck 2000].

Stochastic modeling and simulation better approximates the biochemical reality,
but its usage may not always be bene cial. It requires very detailed knowledge on
the underlying reaction mechanisms. Even when such knowledge is available, the
computational costs involved may become prohibitive for larger systems. 

7.3.2.2 Network Reconstruction

Whereas in the previous section we reviewed various model formalisms and the
questions they can answer, in this section we concentrate on the more dif cult and
challenging problem of how such models can be obtained. Model construction is
usually intercepted as a tedious manual task accomplished by experienced profes-
sionals. In some cases, however, this task can be automated, and a model can be
computationally inferred directly from experimental data, a problem usually referred
to as reverse engineering.

The modeling formalism and approach that one chooses for reverse engineering
depends on various factors [D’haeseleer, Liang, and Somogyi 2000; Bolouri and
Davidson 2002; Greller and Somogyi 2002]. To a large extent, the choice is dictated
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by the characteristics of the network being studied and the type of questions one
would wish to address through modeling. Furthermore, the quality and quantity of
data available for model reconstruction should be evaluated: one should assure that
the data are suf cient to support the complexity of the model. For instance, Boolean
networks allow the analysis of very large systems but do not yield detailed predic-
tions, whereas stochastic models approximate the reality better but are restricted to
smaller systems because of their complexity.

A number of reviews of reverse-engineering approaches can be found in the
literature [D’haeseleer, Liang, and Somogyi 2000; Bolouri and Davidson 2002; Hasty
et al. 2001]. Here, we discuss well-established techniques for inferring models as
those discussed in the previous section.

Typically, nodes in the network (genes, proteins, etc.) are assumed to be linked if
there is some correlation between their behaviors. Such structure can often be deduced
using clustering or correlation-based techniques. To discover coregulated genes,
expression pro les obtained in different perturbation experiments across a series of
time points can be grouped according to various metrics, including Euclidean distance,
Pearson correlation, and mutual information [D’haeseleer, Liang, and Somogyi 2000].
Different metrics can be employed by different algorithms that group genes according
to the similarity of their expression pro les. Examples of such algorithms include
hierarchical clustering, K-means, and self-organizing maps [Brazma and Vilo 2000].
Given the multitude of distance metrics and clustering algorithms, it may be very
dif cult to choose the appropriate algorithm for a given set of data [D’haeseleer, Liang,
and Somogyi 2000]. Clustering algorithms can be further complemented by motif
discovery algorithms. Coexpressed genes sharing the same motifs (or cis-regulatory

[2003] for a recent review of identifying cis-regulatory elements.
New information can be included in network models to specify the nature and

the strength of the relationships using logical or probabilistic formalisms. Boolean
networks are among the rst formalisms for which automated model reconstruction
algorithms have been developed. The REVEAL algorithm [Liang, Fuhran, and Som-
ogyi 1998] pioneered this work by exploiting time series of gene expression and a
mutual information measure for network performance. Basically, the method is able
to infer the sets of input elements controlling each element in the network and the
corresponding Boolean function. Ideker, Thorsson, and Karp [2000] proposed an
alternative approach based on the branch-and-bound technique.

Research has been also conducted for learning Bayesian networks from data
[Friedman 2004]. The learning process amounts to a search in the space of feasible
network structures that are constrained by the independence relationships suggested
by the data. Each network is evaluated according to an objective (scoring function)—
the posterior network probability given the data [Cooper and Herskovits 1992].
Additional heuristics can be employed to reduce the search space and speed up the
learning process [Heckerman, Geiger, and Chickering 1995]. In many cases, the
amount of data (gene expression data) is small relative to all variables (genes).
Consequently, it is likely that there are many networks that explain the data equally
well. To deal with this problem, one can either use model selection techniques to
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identify the best network or, for every feature, take the average over all feasible
networks (Bayesian averaging):

(7.9)

This equation simply says that the probability that a feature F has value f (e.g.,
that a gene has an expression level f), given some data D is a weighted sum of the
probabilities that F equals f provided G is the true Bayesian network explaining the
data. The weights here are the posterior probabilities P(G | D), the scoring functions
obtained in the learning process. Various extensions dealing with the problem of
multiple network models have been proposed [e.g., Friedman 2003].

Work has been done to infer differential equation models of cellular networks
from time-series data. As we explained in the previous section, the general form of
the differential equation model is dci /dt = fi(c1, c2, ..., cN) , where fi describes how
each element of the network affects the concentration rate of the ith network element.
If the functions fi are known, that is, the individual reaction and interaction mecha-
nisms in the network are available, a wealth of techniques can be used to t the
model to experimental data and estimate the unknown parameters [Mendes 2002].
In many cases, however, the functions fi are unknown, nonlinear functions. A com-
mon approach for reverse engineering ordinary differential equations is to linearize
the functions fi around the equilibrium [Stark, Callard, and Hubank 2003] and obtain

(7.10)

where aij = fi / xj. The estimation of the parameters aij can be accomplished either
by a direct approximation of the partial derivatives or by using time-series expression
or concentration data and minimizing the prediction error of the model [Holter et
al. 2001; Xiong, Li, and Fang 2004].

Dynamical modeling poses more serious requirements on the experiments per-
formed to gather the data fed into the model. Various studies have investigated the
kind and number of experiments necessary to estimate the parameters in a linearized
model or even to minimize the number of necessary experiments [Kholodenko et
al. 2002; Tegner et al. 2003].

7.4 INTEGRATED APPLICATIONS

The line between pathway databases and pathway analysis software packages is
becoming increasingly hard to draw. Most databases include some sort of analysis
capability (even if only search, ltering, visualization, etc.), and no analysis software
is useful without some access to data. In this section we include capsule summaries
of software packages the main focus of which addresses the need for pathway
analysis rather than pathway data.

Cytoscape [Shannon et al. 2003] is an open-source project with the purpose of
developing a platform for visualizing biochemical networks, with support for additional

= =P F f D P G D P F f GG( | ) ( | ) ( | ).=

dc
dt

a a c a c a ci
i i i i NN= + + + … +0 11 21 2 ,
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functionality such as correlation with gene expression or other state data, topological
analysis, annotation, database connectivity, and so on. It is written in Java, thus
portable, and its plug-in architecture promotes extensibility.

PathBLAST [Kelley et al. 2004] is a network alignment and search tool for
comparing protein interaction networks across species to identify protein pathways
and complexes that have been conserved by evolution.

DDLab [Wuensche 2002] is an interactive graphics package for researching
discrete dynamical networks (Boolean networks and cellular automata), such as those
generated by reconstruction of regulatory networks from gene expression data.

data into a Bayesian network by searching for the most probable model responsible
for the data. 

The Case Western Reserve University’s Pathways Database System [Ozsoyoglu,
Nadeau, and Ozsoyoglu 2003] comes with a sample set of metabolic and signaling
pathways, most drawn from Michal’s Biochemical Pathways [Michal 1999]. It con-
sists of a suite of tools, including query interfaces, viewers, and a pathway editor.

PATIKA [Demir et al. 2002] is an academic project with powerful editing and
visualization capabilities. Although it has no advanced analyses (a few involving
correlation with expression data), it has a fully functional database query interface,
though the data included are rather sparse.

PathwayLab (table 7.1) is a pathway editing package with database links. Com-
pounds and proteins, reactions and interactions, can be added and edited, and some
simulation and analysis capability is included.

Pathway Assist (table 7.1) allows navigation and analysis of biological pathways,
gene regulation and protein interaction maps. The software enables you to launch
remote Entrez searches directly, import search results, assemble results into pathway
diagrams, and nd connections between disparate data. 

Pathway Enterprise (table 7.1) is a package for managing, designing, and visu-
alizing pathways, including annotations, quantitative information, and citation links.
It can import data from public and proprietary databases and export pathways
globally or selectively.

Pathway Articulator or PathArt (table 7.1) is built around a database of signaling
and metabolic pathways derived from manual curation of the literature. Database
elements are annotated with links to several vocabularies (GO, Locuslink, CAS,
etc.), and displayed in an editable pathway visualizer.

Metacore (table 7.1) is a suite of software oriented toward understanding the
function of gene sets discovered by expression analysis. It includes a database of
annotated metabolic, signaling, and regulatory pathways and a graphical pathway
display/editor.

Pathways Analysis (table 7.1) contains a large set of manually curated gene and
protein interactions, together with multiple viewers to display various aspects of the
interactions. Both canonical pathways (i.e., generally accepted functional units) and
arbitrary interaction networks can be displayed, and links to annotation data and to
literature citations are accessible from the viewers.
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Discoverer (table 7.1) is an automated modeling tool able to transform a set of
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7.5 FUTURE DIRECTIONS

The current approach to target validation is still heavily dependent on laboratory-
based work. This contrasts with other industrial areas, where computer simulations
have largely replaced the physical evaluation of prototypes. Mathematical and com-
putational tools applicable to in silico validation have been developed in other elds,
but their use still requires much more data, at signi cant cost, than their results so
far have justi ed. As further technological advances yield higher-throughput methods
and greater sensitivity and accuracy of detection, the necessary data will become
available. Some simple subsystems will then be ripe for modeling and simulation
with the required degree of accuracy, but the greater goal of systems biology is to
model at the level of the cell, the tissue, or even the organism, based on simulation
of events at the molecular level. Because of the vast range of scales—in space and
time—this will require development of more powerful methods for hybrid and
multiscale modeling.
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8.1 MOLECULAR INTERACTIONS: LEARNING
FROM PROTEIN COMPLEXES

8.1.1 MOLECULAR INTERACTIONS ARE ESSENTIAL

TO UNDERSTANDING BIOLOGY

Biological science now has access to several sequenced genomes, spanning almost
all live lineages from prokaryotic to human [1]. Whole-genome analyses have
attracted considerable attention in terms of computational resources [2,3] and the
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databases devoted to the subject [4]. The increasing amount of available data has
led to a constant battle to comprehend the rapid input of information.

All this genomic information is traditionally classi ed and analyzed in “gene-
centric” catalogs, which provide a gene-by-gene view of the genomes. Most of the
scienti c questions are concerned with complex interactions between genes and
proteins [5] as seen in recent developments [6] where studies of biological processes
focus on function as the point of reference. Therefore, the challenge ahead is to
move from the gene-centric view to other more integrated approaches, in which the
isolated gene is no longer the functional unit.

The easiest way of addressing molecular interactions is by monitoring the
protein interaction space, although we should keep in mind that molecular interac-
tions include nucleic acids, membranes, and small molecules. This additional spec-
trum of interaction is crucial to comprehending the dynamics of a living system as
well to understanding how the interactions between cellular components are orga-
nized. These are features that are critical to the explanation of almost all biological
functions, such as signal transduction, metabolism, cellular architecture, and infor-
mation transfer. Therefore, protein interactions are an essential but small part of
the whole repertoire of molecular interactions available in biological systems,
whereby the understanding of them can help to develop methodology for future
studies in other systems.

Here we review the current state of experimental and computational methods
for the study of protein interactions, including prospects for future developments.

8.2 CURRENT STATUS OF EXPERIMENTAL 
PROCEDURES

8.2.1 REACHING THE PROTEOME: FROM STANDARD TO LARGE-
SCALE DETECTION OF PROTEIN INTERACTIONS

Novel proteomic technologies have produced a remarkable amount of data on protein
complexes. These days, the current priority from a bioinformatics perspective is to
develop ef cient systems to create a knowledge space where the incoming data can
be organized from a biological perspective.

One of the lessons we have learned from the genomics projects indicates that the
“complexity” in terms of gene composition is smaller than anticipated, and genetic
features alone do not seem suf cient to explain many of the speci c organisms’
properties. An example is represented by the remarkably small Fugu genome (about
350,000,000 bp), that is about one-tenth of its human counterpart (3,400,000,000 bp)
but still accounts for a similar number of genes (probably less than 25,000) in both
organisms. Thus it is possible that a considerable part of biological diversity and
complexity is encoded in the repertoire of potential interactions, including the com-
plex arrangement of domains typical of higher eukaryotes that increase the potential
number of interactions and their potential regulation.

During the last six years several high-throughput proteomics approaches have
been published, in what is certainly only the rst wave of applications. The current
panoply of experimental procedures is discussed in several reviews [7–9]. Traditional
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techniques such as chemical cross-linking [10], af nity puri cation [11], and size-
exclusion chromatography [12] are devoted to detect physical interactions and are
often used in combination with immunological methods and mass spectrometry.

Gavin et al. [13] made use of a combination of Tandem-Af nity puri cation
(TAP) and mass spectrometry to characterize multiprotein complexes in S. cerevisiae.
Ho et al. [14] identi ed protein complexes covering about 25% of the yeast proteome
using a similar procedure, with a different puri cation step.

Yeast two-hybrid approaches [15,16] are based on the modular properties of
systems such as the Gal4 protein of S. cerevisiae. Five other large collections of data
have been produced with variants of this methodology [17–19]. Additional variations
on this technique have also been applied to membrane proteins [20], and alternative
methods such as directed mutagenesis [21] and phage display [22] are used to detect
and identify protein complexes. Yeast protein chips have also been used to screen
protein–protein interactions and protein–drug interactions [23]. Several of these
experimental systems are capable of producing information on the speci c interac-
tion regions using protein fragments.

This rst generation of experimental methods has several technical limitations,
including bias in interaction preferences (more obvious in the approaches based on
the yeast two-hybrid system), overrepresentation of small proteins in complex puri-

cation procedures (typical of TAP approaches), unnatural interactions of nonnative
proteins, indirect associations, and others [24].

8.2.2 STRUCTURAL APPROACHES

Structural approaches including X-ray crystallography, nuclear magnetic resonance
(NMR), and the latest electron microscopy have yielded direct detailed structural
information on protein complexes. Unfortunately, none of these procedures is able
to produce structures rapidly. Attempts to circumvent this problem are launched by
Structural Genomics consortiums. For example, the Joint Core for Structural Genom-
ics has released several X-ray structures from organisms such as Thermatoga mar-
itima [25] on a large scale. The ef ciency of these X-ray structures depends rst on
the targeted organism (to a great extent) and second on experimental phases of
protein puri cation and crystallization that are heavily dependent on human input.
Although there is an increase in the amount of available structures with about 20,000

datasets are highly redundant, which reduces the amount of useful information
available. To circumvent this problem, an effort has been made to create nonredun-
dant sets that can be used for benchmarking. This issue is complicated by the different
possible de nitions of redundancy [26–28] that make the composition of the non-
redundant datasets vary from 226 in Fariselli et al. [26], to Zhou and Shan [29], to
329 in Keskin et al. [27], to 115 in Yan and Honavar [28]. Recently Bradford and
Westhead [30] created a dataset of 180 protein complexes divided manually into
transient and obligate interactions.

An additional complication is related to the analysis of transient complexes
including exible protein regions and low-stability interactions. Examples of this type
of interactions are homodimerization of the LicT [31] protein and the ribonuclease
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Inhibitor-Angiogenin complex [32]. Flexibility and low stability make crystallization
experiments dif cult to conduct, making NMR the ideal technology to characterize
domain interfaces and to detect disordered regions and the disorder–order transition
on ligand binding [33].

A promising structure-based approach relies on the combination of electron
microscopy and atomic structural information. High-resolution electron microscopy
images can be used to build low-resolution models, typically in the 10Å resolution
range, that are suf cient to establish the “shape” or envelope of protein and protein
complexes. Electron microscopy has several advantages; because minimal amounts
of samples are needed, the puri cation need not be of high quality, and it can be
applied to disperse complexes [34] and to complexes that can be obtained in the
form of two-dimensional crystals (2D electron microscopy) [35]. The envelopes
obtained by electron microscopy can then be used directly to t individual protein
structures (or models) including additional experimental information [36], or it may
be possible to use the experimental spatial envelope as a constraint to select correct
docking models [8]. Recent examples of electron microscopy are the models of the
yeast exosome [37] and the 80S ribosome [38], and actin binding to its chaperon
molecule [39].

An illustrative example of combining protein modeling and electron microscopy
data is the case of the apoptosome, an Apaf-1 cytochrome c complex that activates
procaspase-9 [40]. The data obtained in this work helped to decipher the exact
mechanism of a very important apoptosis triggering mechanism. Another interesting
example is the use of computational and biochemical methods to conduct structural
analyses of the seven proteins that compose the core building block of the nuclear
pore complex [41].

As can be deduced from all these examples, solving protein complexes is far
from being routine work, much less so if additional features are to be considered,
such as the modulation of the interactions in different cellular states, posttranslational
modi cations, and other dynamic properties of the complexes.

8.3 THE RANGE OF COMPUTATIONAL METHODS

Computational approaches designed to experimentally address dif cult biological
cases tend to raise high expectations. However, in general, computational approaches
and simulations require the existence of extensive sets of examples, good knowledge
of the physical basis of the problem, and long periods of development. The prediction
of the structure of protein complexes is no exception to these rules, and progress is
complicated by the lack of comprehensive benchmark sets. In the case of protein
modeling, homology comparative modeling is perhaps the subdiscipline in structural
bioinformatics where prediction methods have been most successful, because protein
structure modeling of high-quality 3D structures is useful for making high-resolution
models (~2.5Å RMS) and has been proven to be ef cient based on suitable templates.
Generally speaking, although experimental approaches provide more information
than predictive methods, in the particular case of protein interactions, computational
approaches are at least as accurate as current experimental approaches.
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8.3.1 GENOMES, SEQUENCES, AND DOMAIN COMPOSITION

The information obtained about the distribution and organization of bacterial
genomes has facilitated the development of various methods for the prediction of
interaction partners [42]. These methods include the phylogenetic pro ling method,
which attempts to identify genes that share the same pattern of presence or absence
in a collection of genomes [43,44]. The rationale is that a group of genes sharing
the same pro le will encode proteins that are necessary for a common process, a
relation that does not necessarily imply a physical interaction. The main drawback
is that complete genomes are required to establish overall distribution of proteins
[45,46]. A second method is the conservation of gene neighborhood, which relies
on conservation of the operon structure [47,48]. As observed in prokaryotes, there
is a tendency for a gene to have its neighbors conserved through the different
lineages. The obvious caveat of this approach is to what extent it can be extended
beyond the prokaryotic domain [49].

Third, the “gene-fusion” approach relies on the observation of protein pairs
encoded by separate genes that are encoded by a single gene in other species, where
they could have been originated by a gene-fusion event. These cases reveal a close
relationship indicating an underlying functional relation between the corresponding
proteins, which in some cases could correspond to a direct physical interaction
[50,51]. Gene-fusion events are considered to be critical for the evolution of the
species, as seen in the rerooting of the eukaryotic tree based on a derived gene-
fusion tree analysis [52].

As an alternative to these three approaches, two other sequence-based methods
have been developed to predict interaction events. The “mirror tree” method is
based on extracting information from the possible coevolution of interacting pro-
teins. Consequently the phylogenetic trees of coevolving proteins are expected to
have a signi cant similarity, as detected in examples such as insulin and its receptors
[53], and dockerins and cohexins [54]. Current methods are based on the direct
comparison of the distance matrices of pairs of protein families [55] and its exten-
sion to large data sets [56]. Improvements have been described to predict interaction
speci city [57].

Finally, the in silico two-hybrid system implies that traces of the coevolution of
interacting proteins can be detected in the form of patterns of possible compensatory
mutations in the interface of the two proteins. The so-called correlated mutations
have been useful for predicting the tendency of interacting residue pairs to be located
in the proximity of protein interfaces [58]. As in the case of mirror tree, this method
has also been applied to large datasets [59].

Along with this type of approach, based on genome organization, a different
approach is related to combinatorial domains of interacting proteins, analyzing the
statistical tendency of proteins sharing related domains to associate. The rationale
behind this concept is that proteins sharing a common domain will have a functional
relation created by this domain [60–62]. This is expected to happen in lineages
having a high degree of either domain shuf ing and/or accretion during evolutionary
time. For instance, eukaryotic proteins connected with immunological processes
have been acquired in this way [63].
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Considering the large number of multidomain proteins in eukaryotes, the asso-
ciation of domains is expected to generate a dense and complex network of inter-
actions. Studies conducted on yeast MIPS, MYGD, and DIP protein-interacting
databases extracted the domains de ned in InterPro [64] that are involved in these
interactions to infer conclusions. Another method considers proteins as collections
of domains in which each domain is responsible for a speci c interaction with another
domain. This methodology is done in order to estimate the probabilities of interaction
between the corresponding proteins [60,65].

8.3.2 STRUCTURE: WHAT IS KNOWN ABOUT INTERACTING 
SURFACES?

Understanding interaction properties is essential for developing reliable tools. Start-
ing in the 1970s the physico-chemical features of protein complex interfaces have
been analyzed, including statistical characteristics such as solvent exposure, type of
amino acids involved, evolutionary conservation, and geometry of the sites [66]. For
example, the amino acids for which the exposed surface area decreases by more
than a given threshold (~1 Å2) upon interaction are usually considered to be part of
the interaction region [67]. These rst studies were limited by the small number of
available structures [66]. With the increase of information on protein complexes, it
has been possible to establish better divisions of the interaction types, even if the
number of known complexes is still very small compared to the potential number
of interactions, which could be around 10,000 nonredundant domain interactions
considering a space of approximately 1,000 folds [68].

Vadja and Camacho [69] concluded that in rigid-body docking the best docking
results were obtained for complexes with a standard interface area of
1400 Å2 < I SÅ < 2000 Å2 (where SAÅ indicates changes in solvent accessible
surface after separation of the complex). 

Important facts for the classi cation of protein interactions include intrinsic and
transient complexes, homo- and heterocomplexes, enzyme-inhibitor complexes, and
protein–antibody complexes [67,69,70].

An obvious complication regarding the statistics on interaction sites is the exist-
ence of a potentially large number of protein interaction sites, which make the results
obtained for the set of known sites less reliable. To circumvent this problem various
methods calculate statistics by sampling surface-exposed patches of neighbor resi-
dues to represent the statistical properties of protein surfaces [67,71]. Similar strat-
egies have been used for protein-DNA complexes [72,73], protein-RNA complexes
[74], and carbohydrate binding sites [75]. In these cases the properties of the binding
sites have shown little statistical signi cance, which complicates their use for the
prediction of interacting surfaces [76]. However, there are a few rough, general rules
that characterize interaction sites. For example heterodimmer surfaces are relatively

at, with an average surface of 600 to 3000 Å2, and they do not show any special
amino acid preferences, whereas in homodimmers the interfaces are slightly less
planar and have an average surface of 400 to 4800 Å2, showing a preference for
nonpolar groups.
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8.3.3 PREDICTING STRUCTURE FROM PROTEIN COMPLEXES:
THE DOCKING PROBLEM

Docking algorithms are designed to simulate the physical interaction of two mole-
cules of known structure, including the prediction of corresponding molecular struc-
ture [77–82]. The most common methods consider the proteins as rigid bodies,
disregarding the conformational changes required for the adaptation of proteins upon
binding. Of course, this is an oversimpli cation, because, rst, exibility is a driving
force in the assembly of large complexes and, second, structurally disordered regions
frequently contribute to the interacting regions, where they gain structure and con-
tribute to the binding energy [83–85]. This relation between conformational changes
and binding corresponds to what is known in biochemistry as allosteric signal
transmission and induced t movements [86].

Other criteria include the classi cation of protein complexes based on docking
dif culty as described by Vajda and Camacho [69]. According to these authors there
are ve types of complexes that are de ned according to surface type. Type I
complexes include small (rigid interface) conformational changes such as trypsin
and trypsin inhibitors; type II complexes also include small changes but have a
surface size of over 2000 Å2, as, for example, the Ras protein and its activating
domain RasGAP. Type III complexes include moderate conformational changes but
have larger surfaces than type I, like the Hyhel-5Fab with lysozyme. Type IV is
restricted to side-chains and is represented by the CheY and Che-Y-binding protein
CheA; type V involves substantial backbone changes, as in the case of cyclin A and
cyclin dependent kinase 2. 

It is not surprising that the most dif cult cases are the transient complexes that
undergo severe conformational changes, whereas the easiest one is the docking of
enzymes and inhibitors. 

A small number of approaches are addressing these problems by simulating
exibility and conformational changes during the interaction reaction. These algo-

rithms are expected to perform better in those cases in which conformational exi-
bility is important, whereas the various rigid docking approaches might be suf cient
for docking proteins in cases in which the binding does not involve big conforma-
tional changes [87].

The typical protocol for a docking experiment rst involves the generation of a
large set of putative complexes covering as many conformations as possible at a
given resolution level (e.g., de ned by the minimal angle for the orientation of the
two structures). This collection of potential solutions is then analyzed in terms of
their energies and a simple evaluation of the electrostatic complementarity.

Variations of this procedure include the application of statistical scoring poten-
tials derived from known complexes, similar to those developed for threading meth-
ods. For instance, Kortemme, Morozov, and Baker [88] developed an orientation-
dependent hydrogen bonding potential deduced from known crystal structures to
discriminate the correct relative orientation of protein in protein complexes. Other
methods use residue pair potentials previously extracted from interacting surfaces
of known complexes, extending their predictions to homologs of known structure
[89,90].
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The evaluation of docking methods is a major concern, and over the last few
years a signi cant community-wide evaluation has been organized (Critical Assess-

Although there is a general tendency to improve docking methods and the systems
for evaluating their results, they are still a long way from providing satisfactory
solutions [76]. The general experience of the CAPRI community indicates that the
application of docking methods to cases of biological signi cance requires consid-
erable human expertise to evaluate the available experimental information, such as
point mutations or low-resolution NMR data. For instance, additional information
was crucial to establish the structural model of the N-terminal region of the prokary-
otic enhancer-binding protein XylR [92]. Lu, Lu, and Skolnick [90,93] extended
their protein-structure prediction method (Multiprospector) to the prediction of pro-
tein complexes by trying all combinations of protein sequences in the structure of
known complexes, searching for compatibility, assuming that proteins in the frame-
work of the right complex will be more stable if isolated.

8.3.4 HYBRID METHODS BASED ON SEQUENCE AND STRUCTURE

A widely used approach for building interaction networks is to extrapolate the
experimental information from model systems (i.e., S. cerevisiae, C. elegans, D.
melanogaster, and H. pylori), assuming that orthologous sequences will participate
in similar interactions. For instance, an E. coli network was inferred from H. pylori
data using sequence similarity and further clustering strategies [94]. Mathews et al.’s
[95] method searches for interologs (potentially conserved interactions) in C. elegans
using experimentally veri ed S. cerevisiae interacting partners. Although these stud-
ies are very interesting, this extrapolation involves a substantial risk, rst because
the conservation of interactions over a long evolutionary time has not yet been
proven, and second because domain shuf ing, characteristic of eukaryotes, increases
interaction complexity. Aloy et al. [96] calculated the degree of conservation of
interacting regions and concluded that similar interaction sites can be assigned to
proteins if the sequence similarity is better than 30 to 40.

An alternative to lter docking solutions is to include external information
derived from the analysis of evolutionary properties of protein families. The analyses
of interaction interfaces have shown that the degree of conservation for these areas

Even if conserved residues can be part of interaction surfaces, other residues
conserved in subfamilies, the so-called tree-determinants, can also be important for
tracing functional interfaces. These tree-determinants point to positively selected
changes in a protein family that potentially indicate the presence of functional-
speci c sites. In this position it is possible to nd protein–protein interaction related
sites [94,98]. The ability of these methods to predict sites that are speci c [99] and
the state-of-the-art in current methods for predicting functional sites [100] has been
described in recent publications, including experiments demonstrating the capacity
of those methods to predict residues that once swapped can produce a exchange of
functional speci city between two protein subfamilies [65,101,102].
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The “correlated mutations” method incorporates evolutionary information allow-
ing the prediction of the overall trends of change in residues located in close
proximity [58,103].

Our group has used a combination of evolutionary information with standard
docking in the context of the CAPRI competition (section 8.3.3). Our methods were
able to correctly predict 55% of laminin and 70% of nidogen interface residues in
the laminin–nidogen complex ( g. 8.1). A typical problem in this type of approach
is the dif culty of correctly establishing the structure of the complex even after
determining with suf cient precision the regions of interaction. A good example of
this problem was the prediction of the Rcc1-Ran complex [104], where the best
scoring prediction showed the right regions in interaction but in the wrong relative

Zhou and Shan [29] and Fariselli et al. [26] employed neural networks to combine
sequence and structural information for the prediction of whether a residue is located
in an interaction site of a protein with a known structure. Bradford et al. [30] used
a Support Vector Machine approach to identify interface residues using sequence
neighbors. In both cases, the interaction surfaces are represented as surface patches
of neighboring residues with their associated sequence pro les (derived from mul-
tiple alignments). The accuracy of these methods is 70% for interaction-surface
prediction.

FIGURE 8.1 Laminin–nidogen complex. The X-ray structure of the complex is available
(pdb code 1NPE). Laminin is represented in dark gray and nidogen is represented in light
gray. The contact residues are indicated in the space ll-in. For the best model, 55% and 70%
of the interface residues were correctly predicted by our group using solely sequence-based
methods, in laminin and nidogen, respectively.
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8.4 MERGING EXPERIMENTAL
AND COMPUTATIONAL METHODS

Genomic sequencing, proteome characterization, and structural genomics projects
are providing a wealth of information about genomes, genes, and proteins. The recent
advances in proteomics offer novel possibilities for understanding protein networks.
Experimental and computational approaches developed in the last ve years have
provided useful information to address questions about properties, organization,
evolution, and complexity of protein–protein interactions.

The promise for the future is that the integration of the information provided by
network connectivity will be useful for overcoming some dif culties in the assign-
ment of the protein function [106]. Gavin and collaborators [13] conducted the rst
survey of the functional organization of the yeast proteome by computationally
analyzing 589 puri ed protein assemblies. Later on, Aloy et al. [107] used a large
set of puri ed yeast protein complexes and obtained electron microscopy envelopes
for 102 of them, for which they were able to build 45 three-dimensional models,
using computational methods and all available experimental information.

Lappe and Holm [108] used a computational strategy (“pay-as-you-go”) to
exploit the scale-free property of networks representing biological systems to esti-
mate that about 10,000 TAP-MS experiments would be enough to cover the full
interactome. A rational design of these experiments by following known interactions
was estimated to require four times fewer experiments than a pure random selection
of the proteins used for the pull-down experiments.

FIGURE 8.2 Prediction of the rcc1-ran complex. The left panel is the real structure (pdb
code: 1I2M), whereas the right panel shows the model [104]. The gure shows the difference
in orientation between the real structure and the model. Light gray indicates ran and dark
gray indicates the Rcc1. Residues involved in the interface are indicated as space ll models.
The critical His 334 (critical for binding and catalysis) is close to the GTP and other catalytic
residues in the model (right), whereas in the real structure this His 334 is located far away
from the GTP and other catalytic residues. Therefore, the most feasible explanation is better
described by the model. This gure illustrates the caveats of predicting a given interaction
when the biology is complex.
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Finally, Russell et al. [109] compared the available experimental and computa-
tional approaches, and proposed that, given their small overlap, only hybrid
approaches would be able to provide a suf cient coverage of the interactome.

Hoffmann and Valencia [110] proposed a different view of the scope of compu-
tational and experimental methods by comparing the structure of the corresponding
networks. They showed that methods with similar experimental or computational
logic tended to nd similar proteins to be the main interactors, even if the details of
the interactions were different. 

These and other studies point to the need to merge different experimental and
computational techniques, because they represent largely orthogonal views of the
interaction space.

8.5 WHERE IS THE INFORMATION?

With the emergence of high-throughput projects, the importance of data management
is increasing rapidly, and a number of resources on protein interactions and protein
complexes have been recently organized (table 8.1).

The Human Proteome Organization has initiated an effort to establish standards
for the interchange of information between the various interaction databases. The

TABLE 8.1
Main Databases on Protein–Protein Interactions

Database Site and Description

DIP
[118]

http://dip.doe-mbi.ucla.edu/
Stores experimentally determined interactions between proteins. Currently, it 
includes 18,488 interactions for 7,134 proteins in 104 organisms. 

MINT
[120]

http://cbm.bio.uniroma2.it/mint/
Designed to store functional interactions between biological molecules 
(proteins, RNA, DNA). It is now focusing on experimentally veri ed direct 
and indirect protein–protein interactions. 

BIND
[121]

http://www.bind.ca/
Contains full descriptions of interactions, molecular complexes, and pathways.

MIPS
[122]

http://www.mips.biochem.mpg.de/
Large collection of various types of interactions. Used commonly as equivalent 
to “hand-curated” set of interactions.

PathCalling Yeast
Interaction Database

[17]

http://portal.curagen.com/extpc/com.curagen.portal.servlet.Yeast
Identi es protein–protein interactions on a genome-wide scale for functional 
assignment and drug-target discovery. 

TheGRID http://biodata.mshri.on.ca/grid/servlet/Index
A database of genetic and physical interactions that contains interaction data 
from several sources, including MIPS and BIND. 

IntAct
[123]

http//www.ebi.ac.uk/intact
The project aims to de ne a standard for the representation and annotation of 

protein–protein interactions and to develop a public database of 
experimentally identi ed and predicted interactions. 

 © 2006 by Taylor and Francis Group, LLC



236 In Silico Technologies in Drug Target Identification and Validation

consortium behind these initiatives has chosen the basic XML layer for the exchange
and has prepared a vocabulary for the description of experimental and computational
techniques.

In addition to the data standardization issue, the distribution of information is
also an important problem, particularly regarding the need for sharing data with the
different groups involved, which are often at various locations and multidisciplinary
in nature [111]. An example of this type of technological initiative is the PLANET

able through a single interface using BioMOBY technology [112].
The building and maintenance of the protein interaction databases is a major

effort, which offers the possibility of overcoming some of the limitations of the
traditional sequence databases. In particular, most current protein interaction data-
bases are linked to text-mining projects with the aim of not only facilitating the
annotation process but also (and perhaps more important) maintaining the links
between the interactions stored in the database and the basic experiments described
in the literature. During the last few years the technology in the text-mining eld has

identi cation of protein and gene names are still a challenge. For example, in 2001
it was only possible to link 30% of the DIP database entries to the available literature
[118], and 20% of the missing links were explained by inaccuracies in the text-mining
system. Surprisingly, the remaining 80% occurred because the protein names used
were not found in any of the available Medline entries or there was a lack of
information about particular interactions in the literature.

The new generation of text-mining tools has overcome many of these problems,

8.6 PERSPECTIVES

Genomic sequencing, proteome characterization, and structural genomics projects
are providing a remarkable amount of information about the mechanics of living
cells. A remarkable set of seven high-throughput proteomics experiments now offers
the rst overall view of the organization of individual proteins in interactions and
complexes. Parallel to the experimental approaches, a number of computational
approaches have addressed the problems of identi cation of protein–protein inter-
action partners and the detailed description of the protein interaction sites. Given
the potentially large size of the interaction space and its complexity (in terms of
space, time, and modi cations), current trends indicate that a well-designed combi-
nation of experimental and theoretical data will be necessary for deciphering the
biological characteristics of the interaction networks. 

For all this work in protein interaction networks to be useful to modern molecular
biology, not only should the information be provided not only in general terms
(network properties), but it should also include molecular details of the interactions
(i.e., reproducing the structure of protein complexes using docking methods, includ-
ing protein exibility and conformational changes).

 © 2006 by Taylor and Francis Group, LLC

improved considerably [113–117] (see chapter 6), even if key problems such as the

project (http://eu-plant-genome.net), which makes different data repositories avail-

hence leading to more ef cient navigation of the literature [119] (http://pdg.cnb

database, creating direct links between the database and the literature.
.uam.es/UniPub/iHOP/). The iHOP system is now being integrated with the INTACT
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Finally, it is important to keep in mind that the characterization of protein
interaction networks is only the rst step toward an understanding of cellular systems
that includes localization and timing of the interactions, as well as the in uence of
the various posttranslational modi cations and gene control steps. 
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9.1 INTRODUCTION

9.1.1 RNAI BIOLOGY

Sequencing the human genome was one of the most important scienti c milestones
in the last century. This feat has inspired others to take the next steps in under-
standing how a complex set of genes affects speci c phenotypes. Many pharma-
ceutical and biotechnology companies now use a variety of mRNA expression
technologies to help them with understanding how a target gene is associated with
a disease. During this target validation step, scientists would like to con rm gene
regulation and be able to nd a direct association of a target expression with a
disease or health condition.

RNA interference (RNAi) is a relatively new tool researchers can use for targeting
mRNA expression levels. RNAi can be applied to target validation, protein knock-
down studies, gene function, pathway elucidation, and therapeutic development [1].
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Because this technique is relatively inexpensive to perform, many academics have
introduced this new and simple tool into their own research labs. This exciting
technology has not only intrigued target validation scientists in academic and biop-
harmaceutical laboratories but also caught the attention of many entrepreneurs who
believe this technology has speci c therapeutic application for key diseases. Several
companies have been formed that specialize in looking for ways to silence target
genes related to speci c diseases, or they supply unique reagents and delivery
methods for RNAi protocols. In silico small interferring RNA (siRNA) design can
contribute to an RNAi experiment, but before exploring this topic, it is important to
understand how siRNA is used to silence a target gene.

The cellular response to RNAi is an intrinsic reaction that is implicated in
modulating mRNA expression and preventing viral infection. Essentially, RNAi is
mediated by small interfering RNAs that are derived from long double-stranded
RNAs (dsRNAs) [2] ( g. 9.1). The long dsRNAs are cleaved with an enzyme
complex called Dicer (DCR-1) [3]. An siRNA is created, and it appears to arbitrate
the degradation of the corresponding single-stranded mRNA using the RNA-induced
silencing complex (RISC) [4]. The result is a cleaved mRNA molecule, and this
degradation leads to the down-regulation of a target gene [5]. One of the rst RNA
interference studies was done by injecting double-stranded RNA into a cell from
Caenorhabditis elegans [6]. Later, it was shown that a set of 21-nucleotide small
interfering RNA duplexes could speci cally suppress expression of genes in several
mammalian cell lines [7].

The introduction of synthesized siRNA molecules or the expression of short
hairpin RNA (shRNA) precursor structures is important in mammalian RNAi exper-
iments. However, the introduction of dsRNA longer than 30 nucleotides (in mam-
malian cells) causes an apoptotic response. This interferon response is initiated by

FIGURE 9.1 Target mRNA silencing. A simple schematic showing how siRNA molecules
are involved in the RNA interference process [9].
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the dsRNA-dependent kinase (PKR) [8]. There are several techniques used to induce
RNA interference in mammalian cells with siRNA [9]:

• Chemical synthesis of siRNA
• In vitro transcription of siRNA
• Preparation of a population of siRNAs by digestion of long dsRNA with

RNase II or Dicer
• In vivo expression of a hairpin siRNA from an expression vector
• In vivo expression of a hairpin siRNA from a PCR-derived expression

cassette

Ultimately, no matter which approach is used, the potency and ef ciency of the
siRNA molecule is one of the main elements of a successful silencing experiment.
Another key step in creating a highly effective RNAi experiment is to avoid the off-
target effects that occur when siRNA molecules bind to sequences similar to the
target gene in a genome. Microarray experiments have demonstrated that siRNA can
produce nonspeci c off-target effects. Other approaches have shown induction of
nonspeci c interferon response, being most obvious by shRNAs. This is where in
silico approaches can be used to help to decrease the chances of accidentally silencing
the wrong gene. Computational methods for avoiding this problem are discussed
later in this chapter.

9.1.2 SIRNA TECHNOLOGY

Several groups have performed various experiments to determine the preferred char-
acteristics when designing siRNA molecules and the important considerations when
selecting a target sequence. For example, designing a speci c and potent siRNA is
very important for any RNA interference study. The bene ts of generating potent
siRNAs may include the following [1]:

• A lower amount of siRNA material is required to trigger the RNAi response.
• The lower amount of siRNA helps minimize the number of off-target effects.
• The lower amount of siRNA can minimize the interferon activation pathway.
• One can avoid toxic concentrations with a lower amount of siRNA material.

Scientists have also measured the extent of RNA knockdown in several genes, and
their analysis showed the following parameters affect knockdown effectiveness [10].

• Duplexes that targeted the middle of a coding sequence were less ef cient
at silencing target genes.

• Duplexes that targeted the 3'UTR and coding sequence were comparable.
• Pooling of duplexes was signi cantly ef cient in gene expression knock-

down.
• Duplexes that achieved over a 70% knockdown of the mRNA showed

nucleotide preferences at positions 11(G or C) and 19 (T), respectively. 
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Because the physical attributes of siRNA molecules are important for a successful
RNAi experiment, one should use siRNA molecules at their lowest effective amount
[11]. As the reader will learn in the next several sections, the suggested guidelines for
designing a speci c and potent siRNA have been exploited and automated using a
variety of in silico methods. It should also be noted that these are simply guidelines,
and they may still lead to off-target effects or other undesired experimental results.

9.2 siRNA DESIGN

9.2.1 DESIGNING AN OPTIMIZED SIRNA

Many design rules from various groups have been created to optimize the speci city

technology has become more prevalent in mRNA expression studies. How an siRNA
duplex sequence is related to its target mRNA sequence can be illustrated with an
example target region from Lamin A/C [7]. 

Lamin A/C Target
Targeted region (cDNA): 5'-AACTGGACTTCCAGAAGAACATC-3'

mRNA region             5'-AACUGGACUUCCAGAAGAACAUC-3'

siRNA
Sense siRNA:             5'-CUGGACUUCCAGAAGAACAdTdT-3'
Antisense siRNA:     3'-dTdTGACCUGAAGGUCUUCUUGU-5'

Interaction
antisense siRNA:     3'-dTdT GACCUGAAGGUCUUCUUGU-5'
mRNA region           5'-AA  CUGGACUUCCAGAAGAACAUC-3'

Because the antisense siRNA strand interacts with the mRNA of the target gene,
one should nd a region on the target sequence that interacts well with the antisense
siRNA strand, and one must also use suitable design rules for creating a speci c
and stable siRNA molecule for a successful RNAi experiment. 

The rst set of rules for designing potent siRNA molecules was established by

current siRNA designers and software programs use these rules to help scientists
generate potent siRNA molecules. The rules are simple to understand and have been
well summarized by Ding and Lawrence [13].

1. siRNA duplexes should be composed of 21-nt sense and 21-nt antisense
strands, paired so that each has a 2-nt 3' dTdT overhang.

2. The targeted region is selected from a given cDNA sequence beginning
50 to 100 nt downstream of the start codon (3' untranslated regions [UTRs]
also have been successfully targeted).

3. The target motif is selected in the following order of preferences:
a. NAR(N17)YNN, where N is any nucleotide, R is purine (A or G), and

Y is pyrimidine (C or U)

 © 2006 by Taylor and Francis Group, LLC
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Tuschl’s group (http://www.rockefeller.edu/labheads/tuschl/sirna.html [12]). Many
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b. AA(N19)TT
c. NA(N21)

4. Nucleotides 1 to 19 of the sense siRNA strand correspond to positions 3
to 21 of the 23-nt target motif.

5. The target sequence is selected to have approximately 50% GC content.
6. Selected siRNA sequences should be aligned against Expressed Sequence

Tag (EST) libraries to ensure that only one gene will be targeted.

More recently, a few academic research labs and companies have examined the
properties of effective siRNA molecules and created algorithms to help them extend
some of the simple rules rst established by Tuschl’s group. Ding and Lawrence [13]
expanded these rules to include secondary structure and accessibility prediction in
their program called SiRNA. Their basic siRNA design steps include the following:

1. Selection of accessible sites based on the probability pro le of the target
RNA structure. 

2. For such selected accessible sites, siRNAs are chosen based on the require-
ments of the empirical rules and the favorable (low) binding energy
between the antisense siRNA strand and its target sequence. 

To try to improve and automate the prediction of effective siRNAs, another group
created a database of siRNAs of known ef cacy [14]. They used this database to create
a scoring scheme (based on energy parameters), which allowed them to evaluate siRNAs.

Not only is the academic community creating better rules and algorithms to
design ef cient siRNA molecules to be used in RNA interference experiments, but
commercial organizations are also using their own internal research studies to
develop criteria to help improve potent siRNA selection. For example, one company
expanded the basic rules of siRNA design to include avoidance of 5' and 3' UTRs
of a target sequence [15]. The siRNA supply company, Dharmacon, Inc., performed
a systematic analysis of 180 siRNAs that targeted two mRNAs, and they identi ed
25 properties associated with siRNA functionality [16]. Eight of these characteristics
associated with siRNA functionality can be summarized as follows [17]: 

1. Highly functional siRNAs have G/C content between 30 and 52%
2. At least 3 A/U bases at positions 15 to 19
3. Absence of internal repeats
4. The presence of an A base at position 19 of the sense strand
5. The presence of an A base at position 3 of the sense strand
6. The presence of a U base at position 10 of the sense strand
7. A base other than G or C at position 19 of the sense strand
8. A base other than G at position 13 of the sense strand

Each factor contributes to a nal score, and the siRNAs with higher scores are
predicted to be better than lower-scoring siRNAs. The determination of these char-
acteristics suggested the usefulness of rational design of potent siRNAs for RNA
interference experiments.
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1   2   3   4   5   6   7   8   9   10   11   12   13   14   15  16   17   18   19  20  21

i) T   T
ii)R Y    T   T 

A                           U              g A    N   N
g/c

G/C T    N   N

G/C N   N

C

siR sense strand position

No internal repeats

36% – 52% GC content

3 (A/U) bps

5’ 3’

No long GC stretch
D AU rich region

30% – 70% GC content
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Another commercial group (GenScript) has created a suite of tools for designing
vector-based siRNAs and siRNA cassettes [18]. The siRNA target nder tool is used
to locate candidate siRNA target sites in mRNA sequences. The design steps can be
summarized as follows:

1. A free energy ( G1) is calculated to determine the internal stability of
the siRNA duplex.

2. BLAST is used to determine the speci city of the siRNA target sequence.
To minimize the nonspeci c effect, candidates are further analyzed with
an additional free energy value ( G2) calculation. The nal ranking is
based on a sum ( E) of internal stability ( G1) and siRNA speci city
( G2). This can be represented with the equation E = G1 + G2.

3. siRNA target sites with minimum free energy lower than –5 kcal/mol are
ltered.

4. Poly (A) and poly (T) (> 3mers) are removed to avoid premature termi-
nation of transcription. Poly (G) and poly (C) (> 2mers) and poly (G, C)
(> 6mer) are removed to decrease the RNA duplex internal stability.

5. A check for documented single nucleotide polymorphisms sites is per-
formed.

6. Other adjustable parameters are included in the siRNA determination:
a. A default of a 21mer target sequence
b. A default of 35 to 60% GC content
c. A default open reading frame for the target region 
d. cDNA sequence
e. Organism type

Although designing a potent siRNA molecule is important for many RNAi experi-
ments, it may also be important to consider the attributes of the target gene sequence. 

9.2.2 SELECTING SIRNA TARGETS

Everyone agrees that the design of a potent and speci c siRNA molecule is very
important for a successful silencing experiment; however, there is disagreement
about the importance of how the physical aspects of a site on a target mRNA affect
siRNA binding. For example, Reynolds et al. [17] reported that functionality is
governed not by the local mRNA target but by the speci c properties of the siRNA
molecule. Conversely, other researchers seem to believe the target mRNA is impor-
tant and have suggested guidelines for selecting a target site [2]:

• Consider a site 100 nucleotides downstream from the translation start site.
• Avoid regions where secondary structure could develop.
• Avoid regions where mRNA-binding proteins may interfere with siRNA

binding.

It is also possible to scan an entire genome for RNAi elements and to determine
the presence of cellular genes that are degraded by RNAi elements. Horesh et al.

 © 2006 by Taylor and Francis Group, LLC



252 In Silico Technologies in Drug Target Identification and Validation

[3] examined two methods for determining RNAi control using a suf x tree algo-
rithm. They looked at ESTs for evidence that RNAi control elements are expressed,
and they used synteny between C. elegans and C. briggsae to search for similar
genes that may be under RNAi control in both organisms. The authors concluded
that about 70 genes were under RNAi control.

9.2.3 SIRNA AND SEQUENCE SIMILARITY SEARCHING

Although creating a stable and potent siRNA molecule is important for a successful
RNAi experiment, it is also important to avoid the effects of off-target gene silencing.
To identify potential off-target sites, many siRNA design programs incorporate some
type of sequence similarity search algorithm in their siRNA selection work ow. For
example, a sequence similarity search tool such as Basic Local Alignment Search
Tool (BLAST) is incorporated in the siRNA design work ow to nd these off-target
sequences. This crucial step in siRNA design is typically performed after several
siRNA sequences have been identi ed based on the target sequence. Of course, it
is ideal to be able to search the entire genomic sequence of an organism with the
candidate target sequence; one can also search against known cDNAs or clustered
ESTs and nd potential off-target sites. 

When using BLAST for siRNA design, the typical default parameters of BLAST
(for nucleotides) will not nd off-target sequences; therefore, one needs to use special
settings for short nucleotide sequences.

However, even if one uses these BLAST parameters for short sequences, BLAST
many times overlooks deleterious off-target sequence alignments. For instance, a
single mismatch between the siRNA and the target RNA can lead to the wrong gene
being silenced. Hence, it is imperative that an siRNA sequence is speci c to the
target mRNA sequence and does not show signi cant similarity to any other mRNA
sequence. Other search applications may be better suited for short oligonucleotides.
For example, a tool called AOsearch searches for matches and close matches to

select the number of acceptable mismatches and the desired database (human or
mouse) to search. One can also try programs based on the Smith–Waterman algo-
rithm, but they could be slow to generate results. Even though silencing a few off-
target sites is inevitable, one can minimize the possibility by using some type of
sequence similarity search program. 

9.3 DATABASES IN siRNA

There are numerous collection databases that have been derived from primary sequence
databases such as GenBank and Swiss-Prot. These special collection databases include

Parameter Normal Default Suggested Settings
Filter query sequence (-F) T F
e-value (-e) 10 1000
word size (-W) 11 7
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such information as structure motifs, promoter regions, and mutation variants. As
more information about siRNA sequences and RNAi experiments becomes available,
we will see an increasing number of databases tracking and storing data related to
speci c siRNA sequences and their corresponding effects on genes (table 9.1). In
2004, there were two searchable worm RNAi databases available on the Internet. One
Web site is available at WormBase (table 9.1). The Web interface allows you to select
a phenotype and search for associated RNAi experiments performed on C. elegans.
The search returns information such as the gene identi er, the RNAi experiment, and
resulting phenotype(s). The other worm database is the RNAi Database. It was
designed to archive and distribute phenotypic data from large-scale RNAi analyses,
and it provides information about experimental methods and phenotypic results [19].
The RNAi Database Web site allows you search the database with query terms such
as gene name, gene identi er, and phenotype. A small but potentially useful database
is the siRNA Database by McManus (table 9.1). This site is a single Web page table,
but it contains helpful information such as the gene name, gene identi er (if available),
siRNA strand, and reference of selected RNAi experiments. Another small database
is available at the Tronolab siRNA Database. It contains a table of information (gene
name, species, target sequence, and reference) for selected siRNA experiments.
Finally, a group at the Whitehead Institute has created a public database called sirBank
that records sequences known to suppress gene activity [20].

9.4 siRNA SOFTWARE

9.4.1 PUBLIC TOOLS

Once the rules of siRNA design and target selection became more accepted, in
silico siRNA prediction came to the fore. Bioinformaticists now use empirical and
theoretical design rules to generate siRNA molecules as described earlier. However,
because these design approaches use different algorithms, their siRNA design

TABLE 9.1
List of siRNA Databases

Database Name Organization URL

RNAi Database New York University http://nematoda.bio.nyu.edu/
RNAi Phenotype
Search

Wormbase http://www.wormbase.org/db/searches/rnai_search

siRNA Database MIT http://web.mit.edu/mmcmanus/www/siRNADB.html
siRNA Database Protein Lounge http://www.proteinlounge.com/sirna_home.asp
siRNA DataBase
Thermodynamic
and Composition
Information

Joint Center for
Computional Biology
and Bioinformatics

http://www.jcbi.ru/EN/sirna/index.shtml

sirBank Whitehead http://jura.wi.mit.edu/siRNAext/
Tronolab siRNA
Database

Université de Genève http://www.tronolab.com/sirna_database.php
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programs may return varying siRNA results. For example, one design approach predicts
the ef cacy of oligonucleotides used in siRNA experiments by using a genetic pro-
gramming-based machine learning system [21]. Other approaches may exploit pub-
lished RNAi experiments and collect successful siRNAs in a database and then make
use of this information to facilitate the design of effective siRNA molecules.

There are many Web sites and downloadable programs that are freely available
to the public (table 9.2). An early Web-based tool, RNAit, was an application created
for the selection of RNAi targets in Trypanosoma brucei [22]. Chalk, Wahlestedt,
and Sonhammer [14] developed a software tool that incorporates a set of “Stock-
holm” rules for siRNA design. The tool is called siSearch and allows the user to
select from the following list of design rules for selecting siRNAs:

1. %GC content of the siRNA
2. Stockholm rules score
3. Regression tree classi cation (trained on the Khvorova et al. dataset) [23]
4. Reynolds et al. rules score (without the oligo 6.0 Tm calculation) [17]
5. Ui-tei et al. rules score [24]
6. Amarzguioui and Prydz rules score [25]
7. Special motifs (AA(N19), AA(N19)TT, NAR(N17)YNN, and custom

motifs)

TABLE 9.2
List of Academic siRNA Design Tools

Tool Name Organization URL

OptiRNAi University of Delaware http://bioit.dbi.udel.edu/rnai/
RNAit TrypanoFAN http://www.trypanofan.org
SIDE Centro Nacional de

Investigaciones Oncológicas
http://side.bioinfo.cnio.es/

siDirect University of Tokyo http://design.RNAi.jp/
SiRNA CPAN http://search.cpan.org/dist/bioperl/Bio/Tools/

SiRNA.pm
siRNA Center for Computational

Research University of Buffalo
http://bioinformatics.ccr.buffalo.edu/cgi-
bin/biotool/EMBOSS/emboss.pl?_action=
input& _app=sirna&_section=Nucleic

SiRNA Wadsworth Bioinformatics Center http://www.bioinfo.rpi.edu/applications/sfold/
sirna.pl

siRNA Elite Feng and Zhenbiao http://www.sirnadesign.com/
siRNA Selection
Program

Whitehead Institute for
Biomedical Research

http://www.protocol-online.org/prot/Research 
_Tools/Online_Tools/SiRNA_Design/

siRNA Selector Wistar Institute http://hydra1.wistar.upenn.edu/Projects/siRNA/
siRNAindex.htm

siSearch-siRNA 
Design

Center for Genomics and
Bioinformatics

Karolinska Institutet

http://sonnhammer.cgb.ki.se/siSearch/siSearch
_1.5.html

TROD Université de Genevé http://websoft2.unige.ch/sciences/biologie/
bicel/RNAi.html
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8. Disallow certain motifs (AAAA/TTTT, CCC/GGG, and long stretches of
consecutive GC)

9. Schwarz et al. energy difference sense and antisense ends [26]

In 2004, there was an explosion of siRNA design tools. DEQOR is a program
available via the Internet that uses a scoring system based on siRNA design param-
eters. It predicts gene regions that show high silencing capacity and siRNAs with
high silencing potential for chemical synthesis [27]. Another siRNA design software
tool called siDirect computes siRNA sequences with target-speci city for mamma-
lian RNAi (28). The software avoids off-target gene silencing to reduce potential
cross-hybridization sequences. Cui et al. [29] developed a program called OptiRNAi
that uses the Elbashir et al. criteria to predict target sequences for siRNA design. A
Web tool that screens siRNAs for gene speci city is called siRNA Selector [30].
This software tool uses rules from several siRNA groups and allows the user to
adjust siRNA length, GC content, and so forth. Other tools have been created to
help design DNA oligonucleotides with an attached T7 promoter sequence. The T7
RNAi Oligo Designer (TROD) aids in the design of oligodeoxynucleotide sequences
for the in vitro production of siRNA duplexes with T7 RNA polymerase [31].

9.4.2 COMMERCIAL EFFORTS

Although there are a number of public siRNA design tools available on the Internet,
many siRNA supply companies offer “free” siRNA design tools for their customers.
These companies hope customers visit their Web sites, use their design tools, and
generate siRNA molecules that can be ordered directly from their Web site. This Web
site approach has been adopted by several companies such as Ambion, Dharmacon,
and Invitrogen (see table 9.3). Because commercial Web sites may use different siRNA

TABLE 9.3
List of Commercial siRNA Design Tools

Tool Name Company URL

BLOCK-iT RNAi
Designer

Invitrogen https://rnaidesigner.invitrogen.com/sirna/

Complete RNAi Oligoengine http://www.oligoengine.com/Tools_Temp/Tools
_Main.html

Deqor Scionics Computer
Innovation

http://cluster-1.mpi-cbg.de/Deqor/deqor.html

iRNAwiz Ocimum
Biosolutions

http://www.ocimumbio.com/web/Bioinformatics/prod
_details.asp?prod_id=31&prodtype=1

RNAi Design IDT http://biotools.idtdna.com/rnai/
siRNA Designer IRIS Genetics http://www.irisgenetics.com/Navigation.html
sirna Designer Program Imgenex http://www.imgenex.com/sirna_resources.php
siRNA Search Ambion http://www.ambion.com/catalog/sirna_search.php
siRNA Target Designer Promega http://www.promega.com/siRNADesigner/program/
siRNA Target Finder GenScript https://www.genscript.com/ssl-bin/app/rnai
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design rules and off-target veri cation approaches, it may be helpful to visit the sites
and determine if they give similar siRNA results.

One bioinformatics company that offers specialized siRNA software tools is
called Ocimum Biosolutions. Their software, iRNAwiz, provides an environment for
the design of successful siRNA molecules and is composed of several components.
These components include a siRNA Search tool, a BLAST tool, a Motif Search tool,
a Stemloop search, and a Statistical Analysis tool [32]. They claim the combination
of these tools will result in the design of siRNA molecules with high ef ciency.

9.5 PRACTICAL APPLICATIONS OF siRNA

9.5.1 DRUG-TARGET VALIDATION

Early on, RNAi tools were created to study gene function in mammalian cells. For
example, a vector system was created that directs the synthesis of siRNAs, and it
was shown that the expression of these siRNAs caused ef cient and speci c down-
regulation of a gene target [33]. It was reported in 2004 that several major pharma-
ceutical companies (e.g., Merck and P zer) had started to use RNAi technology for
their target-validation studies [20]. RNAi is not only employed for in vitro target
identi cation and validation, but there is an increasing use of in vivo RNAi meth-
odologies for nding potential novel drug targets. One study reported the establish-
ment of an in vivo siRNA delivery process that identi ed, validated, and con rmed
potential drug targets [34]. A summary of several siRNA knockdown approaches is

or short hairpin RNAs (shRNAs) expressed in a cell. One common delivery method
is to infect cells with viruses encoding shRNAs. Unfortunately, this approach may
not achieve suf cient shRNA expression for the gene silencing to be effective.
Although RNAi methods have been very useful for drug-target validation, they have
their own experimental challenges. For instance, one survey reported that the top
reasons RNAi experiments generate unsatisfactory results include insigni cant
knockdown, off-target effects, and poorly designed oligonucleotides [36].

9.5.2 FUNCTIONAL GENOMICS

Functional genomics has bene ted signi cantly from the introduction of siRNA
techniques and related RNAi approaches. Researchers are able to selectively silence
a single gene of interest and determine its function in a cell, or they can examine
an entire genome to elucidate how the silencing of selected genes can affect global
gene-expression pro les. Several good reviews have been written that summarize
how RNAi has been applied as tools for genome-wide screening [37–39]. Genome-
wide or multigene RNAi experiments have been performed on several nonmamma-
lian and mammalian organisms, and the silencing technique has been used to screen
thousands of genes in a genome. For example, one group used an RNAi-based
phenotypic screening approach to identify known and previously uncharacterized
genes that affect the apoptosis pathway [40]. Another team was able to apply genome-
wide screening of a siRNA expression cassette library that targeted over 8,000 genes
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[41]. The screening of this library uncovered a set of distinct genes involved in the
NF- B signaling pathway. Not only has genome-wide high-throughput screening
with siRNAs been exploited in the last couple of years, but there is also an increase
in experimental design and performance. For instance, to support the use of RNAi
in mammals, Paddison et al. [42] constructed a large-scale library of RNAi-inducing
shRNA expression vectors that targeted human and mouse genes. A total of almost
40,000 shRNAs were designed to target nearly 10,000 human and 6,000 mouse
genes. They tested almost 7,000 shRNA expression vectors, and nearly half of these
affected proteosomal proteins. As more genome sequences become available, more
laboratories will report how they are using RNAi methodologies and genome-wide
screening to elucidate the functional role of key genes in many types of organisms.

9.5.3 CLINICAL THERAPEUTICS

The application of RNAi beyond the laboratory is probably the most exciting aspect
of this relatively new technology. Using RNAi methods for nding therapeutics will

TABLE 9.4
Summary of Various Methods of siRNA Knockdown [35]

siRNA Approach Delivery Method Main Advantages Main Disadvantages

Synthetic siRNA 
duplex reagents

Lipids or 
electroporation

Delivery of high 
siRNA 
concentrations. 
Delivery can be 
monitored. Reagent 
con guration control 
and base 
modi cations.

Delivery may be 
dif cult in some 
primary cells. May 
need to manage 
dsRNA responses.

siRNA duplex reagents 
generated by in vitro 
transcription or 
DICER

Lipids or 
electroporation

Delivery of high 
concentrations. 
Inexpensive.

As above. May be 
dif cult to control 
reagent quality.

Transient shRNA 
expression from pol II 
promoter constructs

Transient transfection 
of plasmid vectors or 
PCR fragments

Rapid generatation of 
vectors.

Inexpensive.

May not achieve 
enough expression.

shRNA expressed from 
integrated pol III 
promoter constructs

Stable transfection of 
cells with selectable 
vectors

Selectable permanent 
integration and 
expression.

Selection and 
compensation effects. 
Clonal variation.

shRNA expressed from 
pol III promoters in 
viral vectors

Infection with viral 
vectors (e.g., 
adenovirus, lentivirus, 
retrovirus)

Virus tropism enhances 
delivery options. Can 
be stable or transient 
expression.

May not achieve 
enough expression. 
Viral effects.

shRNA expressed from 
inducible pol III 
promoter constructs

Stable transfection or 
infection with 
lentiviral or retroviral 
vectors

siRNA levels can be 
regulated.

May not achieve 
enough expression.
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increase the number of “druggable” genes. Speci cally, synthesized siRNAs and
siRNA expression systems will help accelerate the use of RNAi techniques in new
therapeutic areas. Some examples of human disease targets for RNA interferences
include leukemia, carcinomas, malaria, HIV, hepatitis, and in uenza [43]. A variety
of start-up companies are beginning to focus their attention on using RNAi therapies
(e.g., siRNA or shRNA) for such conditions as age-related macular degeneration,
Huntington’s disease, Alzheimer’s disease, obesity, diabetes, Lou Gehrig’s disease,
and cytomegalovirus [44].

Even though life science entrepreneurs are enthusiastic about the success of this
technology for therapeutic applications, there are many important obstacles that need
to be overcome before RNAi becomes a realistic tool in a clinical setting. The main
limitations of siRNAs as therapeutic agents are related not to RNAi mechanisms but
to how to deliver the molecules to the appropriate tissues. Others have noted that
the delivery of rationally designed siRNAs must overcome half-life, uptake, longev-
ity, and off-target effects [45]. In addition, understanding how much siRNA thera-
peutic solution should be delivered into target cells and how to control and maximize
the sequence speci city for target genes will need to be addressed [46]. Nonetheless,
companies have already started to bring siRNA therapeutics into human clinical
trials. For example, in November 2004, a company called Acuity Pharmaceuticals
announced that it is the rst company to bring siRNA therapeutics into human Phase
I clinical trials. They claimed siRNA therapeutics will be used to treat age-related
macular degeneration. 

9.6 CONCLUSION

The discovery that siRNAs can be used effectively as gene-silencing tools has been
a boon for researchers doing target-validation experiments. The use of siRNAs is
new relative to other approaches in molecular biology, but we are already seeing the
bene ts and promises of this simple technique in functional genomics, drug-target
identi cation, and medically relevant therapeutics. The design of siRNAs is key to
a successful RNAi experiment, and this is de nitively supported by in silico tools.
Speci cally, bioinformatics has stepped in to supply the computational tools to help
researchers quickly use the results of the human genome sequence to create potent
and speci c siRNA molecules and to help them avoid off-target sequences.
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10.1 INTRODUCTION

10.1.1 DECODING PROTEIN FUNCTION: A MAJOR CHALLENGE

FOR MODERN BIOLOGY

The genetic information for life is stored in the nucleic acids, while proteins are the
workhorses that are responsible for transforming this information into physical
reality. Proteins are the macromolecules that perform most important tasks in organ-
isms, such as the catalysis of biochemical reactions, transport of nutrients, and
recognition and transmission of signals. The plethora of aspects of the role of any
particular protein is referred to as its function. The genome (DNA) sequences of
over 180 organisms, including a draft sequence of the human genome [1,2], has now
been completed. For over 105 of these, these data are publicly available and con-
tribute about 413,000 protein sequences, that is, about one-fourth of all currently
known protein sequences [3–5]. The number of entirely sequenced genomes is
expected to continue growing exponentially for at least the next few years. With the
availability of genome sequences of entire organisms, we are for the rst time in a
position to understand the expression, function, and regulation of the entire set of
proteins encoded by an organism. This information will be invaluable for under-
standing how complex biological processes occur at a molecular level, how they
differ in various cell types, and how they are altered in disease states [6]. Identifying
protein function is a big step toward understanding diseases and identifying novel
drug targets [7]. However, experimentally determining protein function continues to
be a laborious task requiring enormous resources. For example, more than a decade
after its discovery, we still do not know the precise and entire functional role of the
prion protein [8]. The rate at which expert annotators add experimental information
into more or less controlled vocabularies of databases snails along at an even slower
pace. This has left a huge and rapidly widening gap between the amount of sequences
deposited in databases and the experimental characterization of the corresponding
proteins [9,10]. Bioinformatics plays a central role in bridging this sequence-function
gap through the development of tools for faster and more effective prediction of
protein function [11–13].

10.1.1.1 Protein Function Has Myriad Meanings

The function of a protein is hard to de ne. Proteins can perform molecular functions
like catalyzing metabolic reactions and transmitting signals to other proteins or to
DNA. At the same time they can also be responsible for performing physiological
functions as a set of cooperating proteins, such as the regulation of gene expression,
metabolic pathways, and signaling cascades [11]. What makes matters worse,
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although many biologists may assume that they “know it when they see it,” in fact,
their conclusion is likely to be biased by the department with which they are af liated;
for example, geneticists attach a different meaning to the word function than do
chemists; pharmacologists; or medical, structural, or cell biologists. This Babylonian
confusion comes about since function is a complex phenomenon that is associated
with many mutually overlapping levels: chemical, biochemical, cellular, organism
mediated, developmental, and physiological [14]. These levels are related in complex
ways; for example, protein kinases can be related to different cellular functions (such
as cell cycle) and to a chemical function (transferase) plus a complex control mech-
anism by interaction with other proteins. The same kinase may also be the culprit
that leads to misfunction, or disease. The variety of functional roles of a protein often
results in confusing database annotations, which makes it dif cult to develop tools
for predicting protein function [15]. Computer-readable hierarchical descriptions of
function are needed for reliable automatic predictions [11,16,17]. But de ning an
ontology for protein function has proved to be an extremely dif cult task.

10.1.1.2 What Makes Subcellular Localization Ideal
for Function Prediction Experiments?

Since biological cells are subdivided into membrane-bound compartments, the sub-
cellular localization of a protein is much more easily identi able than its other roles
in a cell. In contrast with other functional features, the protein-traf cking mechanism
is relatively well understood, and computer-readable subcellular localization data
are available for large numbers of proteins. Proteins must be localized in the same
subcellular compartment to cooperate toward a common physiological function.
Though some proteins can localize in multiple compartments, the majority of pro-
teins are localized within a single compartment for the largest part of their lifetime.
Knowledge of the subcellular localization of a protein can signi cantly improve
target identi cation during the drug-discovery process [18,19]. For example, secreted
proteins and plasma membrane proteins are easily accessible by drug molecules
because of their localization in the extracellular space or on the cell surface. A
puri ed secreted protein or a receptor extracellular domain can be utilized directly
as a therapeutic (e.g., growth hormone) or may be targeted by speci c antibodies or
small molecules. Important therapeutics have been created that target proteins present
on the cell surface in a speci c cell type or disease state [20]. Rituxan is an antibody
therapeutic targeting the B lymphocyte-speci c CD20 protein and is an effective
therapeutic in the treatment of non-Hodgkin’s lymphoma. Aberrant subcellular local-
ization of proteins has been observed in the cells of several diseases, such as cancer
and Alzheimer’s disease. Therefore, unraveling the native compartment of a protein
is an important step on the long way to determining its role [11,21]. Using experi-
mental high-throughput methods for epitope and green fusion protein tagging, two
groups have recently reported localization data for most proteins in Saccharomyces
cerevisiae (baker’s yeast) [22,23]. So far, the majority of large-scale experiments
suggesting localization have been restricted to yeast, or to particular compartments,
such as a recent analysis of chloroplast proteins in Arabidopsis thaliana (grass) [24].
As of now, these large-scale experiments cannot be repeated for mammalian or other
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higher eukaryotic proteomes. One signi cant obstacle is that large-scale production
of a collection of cell lines each with a de ned gene chromosomally tagged at the
3'-end is not yet possible [25]. In contrast, computational tools can provide fast and
accurate localization predictions for any organism [9,26]. As a result, subcellular
localization prediction is becoming one of the central challenges in bioinformatics
[27–29].

10.1.1.3 Protein Trafficking Proceeds via Sorting Signals

Bacterial cells generally consist of a single intracellular compartment surrounded
by a plasma membrane. In contrast, eukaryotic cells are elaborately subdivided into
functionally distinct, membrane-bounded compartments. The major constituents of
eukaryotic cells are extracellular space, cytoplasm, nucleus, mitochondria, Golgi
apparatus, endoplasmic reticulum (ER), peroxisome, vacuoles, cytoskeleton, nucle-
oplasm, nucleolus, nuclear matrix, and ribosomes [30]. Most eukaryotic proteins are
encoded in the nuclear genome and synthesized in the cytosol, and many need to

of a protein is largely determined by a traf cking system that is reasonably well
understood for some organelles [28,31–34]. The system has two main branches [35].
On one, proteins are synthesized on cytoplasmic ribosomes and from there can go
to the nucleus, mitochondria, or peroxisomes. The second branch leads from the
ER-ribosomes to the Golgi apparatus and from there to lysosomes, or secretory
vesicles, and on to the extracellular space. At each branch point, a “decision” must
be made for each protein—either retain the protein in the current compartment or
transport it to the next. These decisions are made by membrane transport complexes,
which respond to targeting signals on the proteins themselves. In most cases, these
targeting signals are short stretches of amino acid residues. The best understood
branch point is the second one leading to secretion. Many proteins destined for this
branch have an N-terminal signal peptide, which is cleaved off proteolytically either
during or after protein translocation through the membrane. Proteins lacking this
signal are retained in the cytoplasm. The targeting signals used at the other branch
points are not always so clear for two reasons. First, the signals are presented by
folded proteins and hence are not always contiguous in sequence. Second, even
where the signals are contiguous in sequence, not all signal peptides have been
documented. In the absence of a clear understanding of the principles governing
protein translocation, computational methods for predicting subcellular localization
have pursued a number of conceptually distinct approaches.

10.2 IN SILICO APPROACHES TO PREDICTING 
SUBCELLULAR LOCALIZATION

10.2.1 NO STRAIGHTFORWARD STRATEGY FOR PREDICTING 
LOCALIZATION

Methods for predicting the subcellular localization of proteins have primarily explored
four avenues: (a) annotation transfer from homologous sequences, (b) predicting the
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sorting signals that the cell uses as “address labels,” (c) mining the functional
information deposited in databases and scienti c literature, and (d) using the obser-
vation that the subcellular localization depends in subtle ways on the amino acid

outputs from a number of primary methods in an optimal way to enhance accuracy
and coverage. Sequence similarity is perhaps the most frequently used method to
annotate function for unknown proteins and accounts for the majority of annotations
about function in public databases [26,36,37]. A major limitation of sequence-
homology-based methods is that they are only applicable when another sequence-
similar protein with experimentally known function is available. Hence, only a small
fraction of known sequences can be annotated using this approach [27]. Since protein
traf cking relies on the presence of sorting signals, ideally we would like to predict
the signals responsible for targeting. However, our current knowledge of sorting
signals is far from perfect, and recent cell biological studies seem to indicate that
the protein-sorting mechanism is far more complex than previously thought. This
makes it extremely dif cult to accurately identify sorting signals [38]. In spite of

FIGURE 10.1 A simpli ed “roadmap” of protein traf c. Proteins can move from one com-
partment to another by gated transport (white), transmembrane transport (dark gray), or
vesicular transport (light gray). The signals that direct a given protein’s movement through
the system, and thereby determine its eventual location in the cell, are contained in each
protein’s amino acid sequence. The journey begins with the synthesis of a protein on a
ribosome in the cytosol and terminates when the nal destination is reached. At each inter-
mediate station (boxes), a decision is made as to whether the protein is to be retained in that
compartment or transported further. In principle, a signal could be required for either retention
in or exit from a compartment. Proteins are synthesized in the cytosol from where they are
sorted to their respective localizations. (From Alberts et al. [126]; used with permission.)
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their limited applicability, methods that predict sorting signals provide the most
useful predictions, since by pinpointing the “targeting signal,” they shed light on the
molecular mechanisms of protein translocation. Traditionally, expert human anno-
tators have been responsible for interpreting experimental data in the scienti c
literature and annotating protein function in public databases [39,40]. However,
recent advances in data-mining techniques have made it possible to deploy automatic
methods to complement the role of “expert annotators” and extract functional infor-
mation directly from biological databases, MEDLINE abstracts [41], and even full
scienti c papers. Due to the exponential growth in the size of biological databases,
a number of methods have recently been developed that infer subcellular localization
using automatic text analysis. Many recent advances in predicting subcellular local-
ization have been the result of using the amino acid composition and other sequence-
derived features. These ab initio methods utilize only the amino acid composition
and features predicted from the primary sequence, hence they have the advantage
of being applicable to all protein sequences. A method for accurately predicting
subcellular localization from the amino acid sequence alone would be invaluable in

TABLE 10.1
Services for Subcellular Localization Prediction

Method URL

Sequence Homology-Based Localization Annotations
LOChom [50] cubic.bioc.columbia.edu/db/LOChom/

Methods Based on N-Terminal Sorting Signals
SignalP [127] www.cbs.dtu.dk/services/SignalP/
ChloroP [73] www.cbs.dtu.dk/services/ChloroP/
TargetP [68]  www.cbs.dtu.dk/services/TargetP/
iPSORT [125] biocaml.org/ipsort/iPSORT/
MitoProt [128] www.mips.biochem.mpg.de/cgibin/proj/medgen/mito lter/
Predotar [129] www.inra.fr/Internet/Produits/Predotar/

Prediction and Analysis of Nuclear Localization Signals
PredictNLS [62] cubic.bioc.columbia.edu/predictNLS/

Inferring Localization Using Text Analysis
LOCkey [92] cubic.bioc.columbia.edu/services/LOCkey/
Proteome Analyst www.cs.ualberta.ca/~bioinfo/PA/
GeneQuiz [44] jura.ebi.ac.uk:8765/ext-genequiz/
Meta_A [94] mendel.imp.univie.ac.at/CELL_LOC/

Methods Based on Amino Acid Composition
LOCnet [116] cubic.bioc.columbia.edu/services/LOCnet/
SubLoc [109] www.bioinfo.tsinghua.edu.cn/SubLoc/
PLOC [111] www.genome.jp/SIT/ploc.html
ProtComp www.softberry.ru/berry.phtml?topic=index&group=programs&subgroup=proloc

General Methods
PSORT II [61] psort.nibb.ac.jp/
PSORT-B [54] www.psort.org/psortb/
LOCtarget [119] cubic.bioc.columbia.edu/services/LOCtarget/
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interpreting the wealth of data provided by large-scale sequencing projects. Further-
more, predictions of localization can assist high-throughput techniques to determine
localization from cDNAs [42]. However, prediction accuracy for ab initio methods
still lags behind other approaches.

Next, we review the different approaches for predicting subcellular localization
and describe the state-of-the-art methods for predicting localization.

10.3 INFERRING LOCALIZATION THROUGH 
SEQUENCE HOMOLOGY

10.3.1 MOST ANNOTATIONS OF FUNCTION THROUGH HOMOLOGY 
TRANSFER

Traditionally, the rst approach for annotating function of an unknown protein relies
on sequence similarity to proteins of known function [43,44]. The method works by

rst identifying a database protein of experimentally known function with signi cant
sequence similarity to a query protein, U, and then transferring the experimental
annotations of function from the homologue to the unknown query U. Understanding
the relation between function and sequence is of fundamental importance, since it
provides insights into the underlying mechanisms of evolving new functions through
changes in sequence and structure [45]. Several studies have explored the relationship
of sequence and structure similarity to conservation of various aspects of protein
function [46–49]. One major observation is the existence of sharp “conservation
thresholds” for sequence similarity: above the threshold, sequence-similar pairs of
proteins share the same function, and below it, they have dissimilar functions. In
practice, ad hoc thresholds of 50 to 60% sequence identity are often used for
transferring functional annotations. Recent studies indicate that these levels of
sequence similarity may not be suf cient to accurately infer function [48,50]. Several
pitfalls in transferring annotations of function have been reported, for example,
inadequate knowledge of thresholds for “signi cant sequence similarity,” using only
the best database hit, or ignoring the domain organization of proteins [9,36,51,52].
In spite of this, homology-based approaches continue to be among the most reliable
for annotating subcellular localization [50,53,54]. 

10.3.2 LOCHOM: DATABASE OF HOMOLOGY-BASED 
ANNOTATIONS

By performing a large-scale analysis of the relationship between sequence similarity
and subcellular localization, Nair and Rost [50] were able to establish sequence-
similarity thresholds for the conservation of subcellular localization. They observed a
sharp transition separating the regions of conserved and nonconserved localization,
although this transition was less well de ned than those previously observed for the
conservation of protein structure and enzymatic activity [48]. To their surprise, they
found that pairwise sequence identities of over 80% were needed to safely infer
localization based on homology. A simple measure for sequence similarity accounting
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for pairwise sequence identity and alignment length, the HSSP-distance [55,56], was
found to accurately distinguish between protein pairs of identical and different
localizations. In fact, BLAST expectation values [57,58] outperformed the HSSP-
distance only for sequence alignments in the subtwilight zone, which is the region
of sequence similarity where structure and function can no longer be safely inferred
from sequence similarity alone. LOChom [50] is a comprehensive database contain-
ing homology-based subcellular localization annotations for nearly a quarter of all
proteins in the Swiss-Prot database [59] and around 20% of sequences from ve
entirely sequenced eukaryotic genomes [50]. 

10.4 PREDICTING SEQUENCE MOTIFS INVOLVED
IN PROTEIN TARGETING

10.4.1 Prediction Possible for Some Cellular Classes

A number of methods have tried to predict localization by identifying local sequence
motifs, such as signal peptides [60,61] or nuclear localization signals (NLS)[28,62]
that are responsible for protein targeting. The prediction of N-terminal sorting
signals has a long history originating from the early work on secretory signal
peptides of von Heijne [63,64]. N-terminal signal peptides are responsible for the
transport of proteins between the ER and the Golgi apparatus and also for targeting
proteins to the mitochondria [65] and to chloroplasts [66]. Early methods for
predicting signal peptides were essentially based on consensus signals, using linear
discriminant functions with weight matrices. Modern machine-learning techniques
can predict whether a protein contains an N-terminal targeting peptide by automat-
ically extracting correlations from the sequence data without any prior knowledge
of targeting signals, which makes it impossible to gain any idea about the protein-
sorting mechanism by looking at the output from these predictors. The introduction
of machine-learning techniques like neural networks (NNs) and hidden Markov
models (HMMs) [67,68] has resulted in spectacular improvements in prediction
accuracy. Machine-learning methods like NNs and HMMs learn to discriminate
automatically from the data, using only a set of experimentally veri ed examples as
input. It is now possible to predict secretory signal peptides (SPs) [69,70], mito-
chondrial targeting peptides (mTPs) [71,72], and chloroplast targeting peptides
(cTPs) [73] quite reliably using machine-learning techniques. A particular problem
for methods detecting N-terminal signals is that start codons are predicted with less
than 70% accuracy by genome projects [2,74,75]. For additional details, the reader
can consult a number of excellent reviews on N-terminal sorting signal prediction
[67,76,77]. Sorting signals also mediate the import of proteins into the nucleus. A
protein is imported into the nucleus if it contains an NLS, which is a short stretch
of amino acids. Extensive experimental research on nucleo-cytoplasmic transport
[31] indicates that NLSs can occur anywhere in the amino acid sequence and in
general have an abundance of positively charged residues [78,79]. Efforts at NLS
prediction started with the work of Cokol, Nair, and Rost [62], who successfully
applied “in silico mutagenesis” to discover new NLSs. Since the entire protein
sequence must be searched for NLSs, application of machine-learning techniques
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has proved dif cult. Overall, known and predicted sequence motifs enable annotating
about 30% of the proteins in six eukaryotic proteomes [3,80]. Here, we review
TargetP and PredictNLS, which are the most accurate tools for predicting signal
peptides and nuclear localization signals.

10.4.2 TARGETP: PREDICTING N-TERMINAL SIGNAL PEPTIDES

TargetP is a neural-network-based tool for predicting N-terminal sorting signals. The
neural network can discriminate between proteins destined for the secretory pathway,
mitochondria, chloroplast, and other localizations with an accuracy of 85% (plant)
or 90% (nonplant). The N-terminal signal peptide is proteolytically cleaved either
during or after protein translocation. TargetP predicts the cleavage site, though
cleavage site prediction accuracy is lower, with 40% to 50% sites correctly predicted
for chloroplastic and mitochondrial presequences and above 70% for secretory signal
peptides. The neural network architecture consists of two layers. The rst layer
contains one dedicated network for each type of presequence (SP, mTP, cTP, Other),
while the second is a “decision neural network” that makes the nal choice between
the different compartments ( g. 10.2). The signal peptide problem was posed to the
neural networks in two ways: (a) recognition of the cleavage sites against the
background of all other sequence positions, and (b) classi cation of amino acids as

FIGURE 10.2 TargetP localization predictor architecture. TargetP is built from two layers of
feed-forward neural networks and, on top, a decision-making unit, taking into account cutoff
restrictions (if opted for) and outputting a prediction and a reliability class, RC, which is an
indication of prediction certainty (see the text). The nonplant version lacks the cTP network
unit in the rst layer and does not have cTP as a prediction possibility.
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belonging to the signal peptide or not. Sequence data were presented to the neural
networks using a sliding-window technique: a window of residues is presented to
the neural network, and the network is trained to predict the state of the central
residue. The sliding-window approach is remarkably successful at capturing
sequence features correlated over long stretches of residues [81]. The window is
then moved along the amino acid sequence, and predictions are made in turn for
each successive residue. Window sizes ranged from 27 residues for the SP networks
to 56 residues for the cTP networks. A dataset consisting of 269 SP, 368 mTP, and
141 cTP sequences (for the plant version of TargetP), and 715 SP and 371 mTP
sequences (for the nonplant version) was used to train pairwise feed-forward neural
networks to accurately identify each type of targeting presequence. The scores for
the 100 N-terminal residues were then fed to the second layer integrating network,
which determines the type of N-terminal targeting peptide. From a TargetP analysis
of Arabidopsis Thaliana and Homo Sapiens, 10% of all plant proteins were estimated
to be mitochondrial and 14% chloroplastic, and the abundance of secretory proteins
in both Arabidopsis and Homo was estimated to be 10%.

10.4.3 PREDICTNLS: PREDICTING NUCLEAR LOCALIZATION 
SIGNALS

Over the last few years a large number of distinct NLSs have been experimentally
implicated in nuclear transport [31,78]. NLSdb [82] is the largest publicly available
database of experimental NLSs. However, known experimental NLSs can account
for fewer than 10% of known nuclear proteins. To remedy this, PredictNLS [62]
uses a procedure of in silico mutagenesis to discover new NLSs. Brie y, this pro-
cedure works as follows:

1. Change or remove some residues from the experimentally characterized
NLS motifs and monitor the resulting true (nuclear) and false (nonnuclear)
matches. Obviously, allowing alternative residues at particular positions
increased the number of nuclear proteins found. However, often this also
increased the number of matching nonnuclear proteins.

2. Discard any potential NLSs that are found in known nonnuclear proteins
(false matches).

3. Require that potential NLSs be found in at least two distinct nuclear
protein families. The 194 potential NLSs discovered using this procedure
increased the coverage of known nuclear proteins to 43%. All proteins in
the PDB [83] and Swiss-Prot databases were annotated using the full list
of experimental and potential NLSs. NLSdb contains over 6,000 predicted
nuclear proteins and their targeting signals from the PDB and Swiss-Prot
databases. The database also contains over 12,500 predicted nuclear pro-
teins from six entirely sequenced eukaryotic proteomes (Homo sapiens,
Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabi-
dopsis thaliana, and Saccharomyces cerevisiae). Approximately 20% of
the NLS motifs were observed to co-localize with experimentally deter-
mined DNA-binding region of proteins [62,84]. This observation was also
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used to annotate over 1,500 DNA-binding proteins. We also annotated all
sequences in the yeast, worm, fruit y, and human proteomes.

10.5 AUTOMATIC LEXICAL ANALYSIS
OF CONTROLLED VOCABULARIES

10.5.1 MINING DATABASES TO ANNOTATE LOCALIZATION

Automatic text analysis methods can be classi ed into two broad categories: extract-
ing information directly from scienti c literature and inferring function from con-
trolled vocabularies in protein databases. New experimental discoveries are rst
published in scienti c journals. Mining scienti c literature to automatically retrieve
information is an appealing goal, and a number of groups have worked on different
aspects of this problem: machine selection of articles of interest [85], automated
extraction of information using statistical methods [86,87], and natural language
processing techniques for extracting pathway information [88,89]. However, useful-
ness of this class of methods for annotating protein function is hampered by a crucial
bottleneck: the mapping of gene/protein names [37,90]. To date no attempts have
been made to directly annotate subcellular localization from scienti c publications.
The second class of methods has proved more successful for annotating function.
Functional annotations in protein databases are written mostly in plain text using a
rich biological vocabulary that often varies in different areas of research, which
makes it dif cult to parse using computer programs. In addition, databases like
Swiss-Prot usually contain functional annotations at a very detailed level of bio-
chemical function, for example, a given sequence is annotated as a cdc2 kinase but
not as being involved in intracellular communication [91]. A number of text-analysis
tools have been implemented that infer various aspects of cellular function from
database annotations of molecular function. Many methods explore the functional
annotations in SWISS-PROT, especially the keyword annotations [12,44,92–94].
Swiss-Prot currently contains over 800 keyword functional descriptors. Semantic
analysis of the keywords is used to categorize proteins into classes of cellular function
[95,96]. Both fully automated and semiautomated methods have been applied to
predicting subcellular localization. The fully automatic methods extract rules from
keywords by using statistical learning methods like, probabilistic Bayesian models
[97], symbolic rule learning [98], and M-ary (multiple category) classi ers like the
k-Nearest Neighbour [99]. Some of the major methods in this category are LOCkey
[92], Proteome Analyst [93], Spearmint [100,101], and the SVM-based approach of
Stapley et al. [102]. The semiautomated methods are based on building dictionaries
of rules. Keywords characteristic of each of the functional classes are rst extracted
from a set of classi ed example proteins. Using these keywords, a library of rules
is created associating a certain pattern of occurrence of keywords to a functional
class. The major methods in this category are EUCLID [44], Meta_A [94], and
RuleBase [12]. Function annotations from RuleBase and Spearmint have been inte-
grated into UniProt [50], which is the world’s most comprehensive catalog of infor-
mation on proteins. Next we review the LOCkey algorithm for predicting subcellular
localization.
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10.5.2 LOCKEY: INFORMATION–THEORY-BASED CLASSIFIER

The LOCkey system [92] is a novel M-ary classi er that predicts the subcellular
localization of a protein based on Swiss-Prot keywords. The LOCkey algorithm can
be divided into two steps ( g. 10.3): building datasets of trusted vectors for known
proteins and classifying unknown proteins. First, a list of keywords is extracted from
Swiss-Prot for all proteins with known subcellular localization. On average most
proteins have between two and ve keywords. A dataset of binary vectors [103] is
generated for each protein by representing the presence of a certain keyword in the
protein by 1 and its absence by 0. Second, to infer subcellular localization of an
unknown protein U, all keywords for U are read from SWISS-PROT. These keywords
are translated into a binary keyword vector. From this original keyword vector,
LOCkey generates a set of all possible combinations of alternative vectors by ipping
vector components of value 1 (presence of keyword) to 0 in all possible combina-
tions. For example, for a protein with three keywords, there are 23 – 1 = 7 possible
subvectors: 111, 110, 101, 011, 100, 010, and 001. These subvectors constitute all
possible keyword combinations for protein U. The keyword combination (i.e., sub-
vector) that yields the best classi cation of U into one of 10 classes of subcellular

FIGURE 10.3 The LOCkey algorithm. A sequence unique data set of localization annotated
SWISS-PROT proteins was rst compiled. Keywords were extracted for these proteins and
merged with any keywords found in homologues. The keywords were represented as binary
vectors in the Trusted Vector Set. An unknown query was rst annotated with keywords
through identi cation of SWISS-PROT homologues. Keywords for the query were represented
as binary vectors. All possible keyword combinations were constructed (the SUB vectors).
The best matching vector was found based on entropy criteria (see Methods). This vector was
used to infer localization for the query.
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localizations is then found. This is done by retrieving all exact matches of each of
the subvectors to any of the proteins in the trusted set, that is, by nding all proteins
in the trusted set that contain all the keywords present in the subvector. By construc-
tion, the proteins retrieved in this way may also contain keywords not found in U.

The next task is to estimate the “surprise value” of the given assignment. Toward
this end, LOCkey simply compiles the number of proteins belonging to each type
of subcellular localization. This procedure is repeated in turn for each of the sub-
vectors, and localization is nally assigned to a protein by minimizing an entropy-
based objective function. The system accurately solves the classi cation problem
when the number of data points (proteins) and dimensionality of the feature space
(number of keywords) are not too large. LOCkey reached a level of more than 82%
accuracy in a full cross-validation test. However, due to a lack of functional anno-
tations, the coverage was low and the system failed to infer localization for more
than half of all proteins in the test set. For ve entirely sequenced proteomes, namely
yeast, worm, y, plant (Arabidopsis thaliana), and a subset of all human proteins,
the LOCkey system automatically found about 8,000 new annotations about sucel-
lular localization. LOCkey has been optimized to provide fast annotations. Anotating
the entire worm proteome took less than four hours on a PIII 900 MHz machine.
The algorithm is limited to problems with relatively few data points (proteins) in
the vector set (n < 1,000,000) and with few keywords (n < 10,000).

10.6 AB INITIO PREDICTION FROM SEQUENCE

10.6.1 Ab Initio Methods Predict Localization for All 
Proteins at Lower Accuracy

The breakthrough for ab initio prediction came from the pioneering works of Nish-
ikawa and colleagues (Nishikawa and Ooi [104]; Nakashima and Nishikawa [105]).
They observed that the total amino acid composition of a protein is correlated with
its subcellular localization. An explanation for this observation was provided by
Andrade, O’Donoghue, and Rost [106], who observed that the signal for subcellular
localization was almost entirely due to the surface residues. Throughout evolution
each subcellular compartment has maintained its characteristic physico-chemical
environment, so it is not surprising that protein surfaces have evolved to adapt to
these conditions. A wide array of methods has been developed to exploit this cor-
relation of subcellular localization with sequence composition. The rst tool to use
amino acid composition was the PSORT expert system from Nakai and Kanehisa
[107], which used standard statistical methods. However, it is only with the recent
applications of machine-learning techniques that composition-based methods have
started approaching the prediction accuracy of other methods. One of the earliest
methods to use a machine-learning approach was the NNPSL predictor [108], which
used feed-forward NNs trained on the amino acid composition. The network clas-
si ed proteins from eukaryotic organisms into one of four possible subcellular
compartments with an accuracy of 66% and prokaryotic proteins into one of three
compartments with an accuracy of 81%. They also showed that the neural network
predictions were fairly insensitive to sequencing errors near the N-terminal, adding
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weight to the importance of the predictions. Hua and Sun [109] showed that support
vector machines (SVMs) are even better at predicting localization from the amino
acid composition. This is so since SVMs in general are better at extracting correla-
tions when the dataset is relatively small and noisy [110]. By training SVMs on the
dataset of Reinhardt and Hubbard [108], their SubLoc system was able to improve
prediction accuracy by over 13%. Park and Kanehisa [111] have shown that adding
residue pair compositions to the amino acid composition can improve prediction
accuracy by over 5%. Their PLOC system classi es proteins into one of nine
subcellular compartments with an accuracy of over 79%. Cai and colleagues
[112–114] have tried to incorporate higher-order correlations among the amino acid
residues (residues i and (i + n), n = 2,3,4) by using pseudo-amino acid composition.
The pseudo-amino acid composition accounts for sequence-order effects by de ning
a correlation factor based on various biochemical properties, for every residue and
its sequence neighbors. However, these methods are not publicly available, and their
prediction accuracy is hard to assess. With the availability of large numbers of
completely sequenced genomes, phylogenetic pro les have been employed to iden-
tify sucellular localization [115]. So far, this approach has been much less accurate
in predicting localization than methods based solely on composition. By incorpo-
rating predicted secondary structure, solvent accessibility, and amino acid compo-
sition with evolutionary information into a multilevel neural network architecture,
Nair and Rost [116] were able to signi cantly improve prediction accuracy over
existing methods. Their LOCnet system is one of the most accurate ab initio methods
for predicting localization from sequence.

10.6.2 LOCNET: IMPROVING PREDICTIONS USING EVOLUTION

The LOCnet [116] system consists of three layers of neural networks and sorts

dedicated neural networks that use particular features from protein sequences,
alignments, and structure to presort proteins into L/not-L (where L = cytoplasmic,
nuclear, extracellular, mitochondrial). Output from the rst-layer networks, which
are trained on different sequence features, is combined using a second layer of
networks. The third layer uses a simple jury decision [117] to assign one of four
localization-states to each protein. Major sources of improvement over publicly
available methods originated from using predicted secondary structure (from PROF-
sec [118]), improved predictions of solvent accessibility (from PROFacc [118]),
and evolutionary information from sequence pro les. LOCnet has a module that
implicitly predicts generic signal peptides (but not the cleavage sites) and target
peptides [119]. Although LOCnet performs better for extracellular proteins with
signal peptides, it can identify proteins that are secreted using alternative pathways,
such as broblast growth factors and the interleukin family of cytokines. In com-
bination with other methods, it can distinguish between proteins with signal peptides
that are retained in the Endoplasmic reticulum or Golgi apparatus and those that
are actually secreted [53]. LOCnet was found to be over 7% more accurate than
the best publicly available system [119] on an independent test set of newly anno-
tated proteins in the Swiss-Prot database. The LOCnet system has been applied to
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annotate subcellular localization for all proteins in the PDB [120] and in TargetDB
[119]. TargetDB [121] is a database of structural genomics targets and provides
registration and tracking information for the National Institutes of Health structural
genomics centers.

10.7 INTEGRATED METHODS FOR PREDICTING 
LOCALIZATION

10.7.1 IMPROVING ACCURACY THROUGH COMBINATIONS

The different strategies for predicting localization have their own strengths and
weaknesses. High-accuracy methods like those based on sequence motifs and homol-
ogy are plagued by the problem of low coverage and can provide annotations for
less than one-third of known sequences. In this era of whole-genome sequencing,
high-quality annotations for all proteins in an organism are needed. Currently the
best solution available is to combine low-coverage methods with state-of-the-art
high-coverage methods, like those based on composition. This approach was pio-
neered by Nakai and colleagues [61,122,123] with their PSORT system. PSORT II
is an expert system that combines a comprehensive database of sorting signals with
predictions based on composition. The LOCtarget [119] system combines predictions
based on sequence motifs, homology, text analysis, and neural networks, and it can

FIGURE 10.4 Neural network architecture of LOCnet. The rst level of pairwise neural
networks use an architecture of 20 to 60 input units and 2 output units with a hidden layer
consisting of 3 to 9 units. The output from the different rst-level pairwise neural networks
are used as input to the second-level integrating neural network. The second-level pairwise
networks consist of 6 input units and 2 output units with a hidden layer consisting of 3 units.
The nal localization prediction is based on a jury decision of the outputs from the different
pairwise integrating networks.
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distinguish between nine localization classes. In its current implementation the only
sequence motifs used by LOCtarget are those responsible for sorting to the nucleus.
Drawid and Gerstein [124] proposed a system that uses Bayesian statistics for
integrating multiple kinds of information. (It integrates 30 different features, which
include everything from SignalP predictions to microarray expression pro les.) They
applied their method to predicting localization of the full Saccharomyces cerevisiae
proteome and provided estimates of the fraction of all yeast proteins found in
different compartments. Next we review PSORT II, which is one of the most widely
used methods for predicting localization.

10.7.2 PSORT II: EXPERT SYSTEM FOR PREDICTING LOCALIZATION

The PSORT system [61] predicts the localization of proteins from gram-negative
bacteria, gram-positive bacteria, yeasts, animals, and plants. For a query sequence
the program calculates the values of feature variables that re ect various character-
istics of the sequence (table 10.2). Next, it uses the k-nearest-neighbor algorithm to
interpret the set of values obtained and estimates the likelihood of the protein being
sorted to each candidate site. Finally, it displays some of the most probable sites.

TABLE 10.2
Features Detected by PSORT II

Feature Criteria

N-terminal signal peptide Modi ed McGeoch’s method and the cleavage-site consensus
Mitochondrial-targeting signal Amino acid composition of the N-terminal 20 residues and some 

weak cleavage site consensus
Nuclear-localization signals Combined score for various empirical rules
ER-lumen-retention signal The KDEL-like motif at the C-terminus
ER-membrane-retention signal Motifs: XXRR-like (N-terminal) or KKXX-like (C-terminal)
Peroxisomal-targeting signal PTS1 motif at the C-terminus and the PTS2 motif
Vacuolar-targeting signal [TIK]LP[NKI] motif
Golgi-transport signal The YQRL motif (preferentially at the cytoplasmic tail)
Tyrosine-containing motif Number of tyrosine residues in the cytoplasmic tail
Dileucine motif At the cytoplasmic tail
Membrane span(s)/topology Maximum hydrophobicity and the number of predicted spans; 

charge difference across the most N-terminal transmembrane 
segment

RNA-binding motif RNP-1 motif
Actinin-type actin-binding motifs From PROSITE
DNA-binding motifs 63 motifs from PROSITE
Ribosomal-protein motifs 71 motifs from PROSITE
Prokaryotic DNA-binding motifs 33 motifs from PROSITE
N-myristoylation motif At the N-terminus
Amino acid composition Neural network score that discriminates between cytoplasmic and 

nuclear proteins
Coiled coil structure length Number of residues in the predicted coile-coil state
Length Length of sequence
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The program achieved an overall prediction accuracy of 57% and can distinguish
11 subcellular classes. One reason for the lower accuracy of PSORT is our current
incomplete knowledge of sorting signals. Extensions to PSORT II have been pro-
posed: iPSORT [125] for extensive feature detection of N-terminal sorting signals
and PSORT–B [54] for predicting localization of gram-negative bacteria. 

10.8 CONCLUSION

10.8.1 SEVERAL PITFALLS IN ASSESSING QUALITY OF ANNOTATIONS

To draw reliable inferences from a prediction, it is essential that the accuracy of the
method be properly established. To obtain accurate estimates of performance, the
testing procedure should mimic a blindfold prediction exercise as far as possible.
One way of ensuring this is to choose the training data such that the test sequences
have no sequence similarity to proteins in the training set. However this is often not
the case, and many methods test their performance only on a small sample of selected
proteins, resulting in overestimates of prediction accuracy. Another problem that
affects prediction accuracy is the number of redundant sequences in public databases.
Adequate care must be taken during development to avoid biased predictions toward
large families of redundant protein sequences by using sequence unique test sets.
Otherwise, estimated accuracy is likely to be much higher than the true prediction
accuracy. Benchmarking prediction methods proves to be a dif cult task, since the
methods have been developed at different times and database annotations of function
are constantly growing. In addition, there are no standard procedures for reporting
prediction accuracy, with some methods only reporting the overall prediction accu-
racy, which can be quite uninformative because of the large differences in the sizes
of the datasets for the different subcellular classes. Functional annotations in standard
databases usually contain large numbers of incorrect annotations, which makes
development of prediction tools all the more dif cult. Another problem without any
obvious solution is choosing an appropriate trade-off: sensitivity or speci city.
Depending on the application, either high speci city or sensitivity might be desirable.
Hence, caution should be exercised when using predictions from automatic servers,
especially in cases where little is known about the function of the protein and the
sequence signals that are involved in sorting. It is sometimes instructive to compare
predictions from multiple servers that use different prediction strategies. Similar
predictions from the servers might indicate some propensity of the protein for the
predicted localization, while con icting predictions might call for further research.

10.8.2 PREDICTION ACCURACY CONTINUES TO GROW

In spite of the dif culties in correctly assessing the accuracy of prediction methods,
during the last few years signi cant strides have been made in tackling the problem
of subcellular localization prediction. One reason for the progression is the applica-
tion of advanced machine-learning techniques, which can recognize subtle correla-
tions among different kinds of sequence features. A second reason is the steady
growth in the amount of functional information deposited in databases. Already
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prediction tools are proving useful for automatic annotations of sequence databases
and for screening potentially interesting genes from genome data. In the near future
it might be possible to predict the subcellular location of almost any given protein
with high con dence. Future improvements are likely to result through the use of
integrated prediction methods that cleverly combine the output from programs that
predict different functional features to provide a comprehensive prediction of sub-
cellular localization. Integrated prediction methods better capture biological reality,
since events affecting the fate of proteins are interrelated. For example, it is evident
that a modi cation enzyme will not modify its potential substrates when the mem-
brane separates them. Moreover, combination methods can be designed to naturally
fall into an ontological scheme, which would help us achieve the goal of a uni ed
framework for protein function prediction.
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11.1 INTRODUCTION

For nearly half of all known protein sequences, some information can be inferred
about their three-dimensional (3D) structure. In spite of the wealth of structural data
and tools available, many scientists still fail to bene t from this information, because
it can be somewhat dif cult to access and use. 

In the rst section of this chapter we present a practical approach to accessing
and using structural data in target identi cation and validation, and we have chosen
to concentrate on only the most practical and easy-to-apply methods. In the second
section, we discuss some specialized methods such as multiple-structure comparison,
binding site comparisons, and docking. In the nal section, we discuss some emerg-
ing methods that treat the problem of using structural information in a more “sys-
temic” way. These emerging methods are not so easy to use, but we believe they
will become more important and easier to use in the future.

As with other areas in the biosciences, such as sequencing, the methodology of
structure determination has been increasingly automated and accelerated. However,
since structure determination is intrinsically so much more complex than sequencing,
it will always be much more expensive and slower. Determining a single protein
structure can often take 1

2 man-year and may cost $100,000. However, both in
industry and in the academic community structure determination continues primarily
due to the wealth of insightful and precise information that can be obtained.

Because of the complexity of structure determination, the gap between the
number of known structures and known sequences is huge. In September 2005 there
were 60 million nucleotide sequences in the complete EMBL [1] and 2.3 million
proteins sequences in UniProt [2]. But the Protein Databank (PDB) [3]—containing
almost all experimentally determined 3D structures of proteins and nucleic acids—
contained only 33,000 entries.

Thus, less than 1% of protein sequences in UniProt are directly linked to a known
3D structure. However, the situation is much improved because of our ability to infer
structural similarity based on sequence homology. Many protein sequences are
similar in sequence to a known 3D structure, thus some structural information can
be inferred by homology for about half of all UniProt sequences [4]. Much of this
information about structure is easy to access and can help in many stages of the
drug-discovery process. One of our goals in this chapter is to outline the easiest
methods available to encourage scientists who are not experts in structure to take
advantage of structural information.

As just mentioned, knowing the 3D structure of a protein gives immediate and
valuable insight into function. A dramatic illustration of this value is the increasingly
common practice of determining 3D structures as a way to understand function for
newly discovered proteins, where little or no other information is known about function.
Whereas 10 years ago structure determination was done only when a protein’s function
was already well understood, today it has become increasingly routine.

Thus, during many drug-discovery projects, it is quite likely that new, related
structures will appear. We encourage scientists to mine these structures for as much
information as can be easily and automatically determined, in much the same way
as when a new potential target sequence appears.
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To date, the greatest impact of any structure determined is the structure of DNA
[5]. The insight gained from this structure spawned modern molecular biology.
However, DNA replication is just one process among millions of other biological
processes. When the rst protein structure was solved 7 years later [6], it became
clear that proteins are much more irregular and complex than DNA. As each new
protein structure was solved, a multitude of different structural systems was discov-
ered, often requiring considerably more effort to understand than the comparatively
simple DNA replication mechanism. In the last 10 years, the multitude is beginning
to become easier to understand and classify, with the emergence of domains and
binding site motifs.

There remains the tantalizing possibility that some key protein structure deter-
mined in the future may have even wider implications than unlocking the mechanism
behind DNA replication.

11.2 FROM SEQUENCE TO STRUCTURES

At the early stage of a target identi cation and validation process, when a new target
sequence has been identi ed as a potential drug target, it is often useful to nd out
as much information about the target sequence as possible, including any structural
information that may be available. In the rst section of this chapter, we focus on
online resources that can be used to provide immediate information about the struc-
ture properties of a target sequence.

11.2.1 HOW TO FIND RELATED STRUCTURES

A good place to begin is to nd all 3D structures with signi cant sequence similarity
to the target sequence and then select the most relevant. What is the best way to do
this? There are many options. Here we discuss only a selection of methods that share
the following characteristics: are accessible via the Web, can deliver all related
structures in a few seconds or minutes, and are easy to use even for those who are
not expert in protein structure.

The National Center for Biotechnology Information (NCBI) Web site allows
users to easily enter a protein sequence and run a BLAST [7] sequence search against

tein–protein BLAST, then select “pdb” from “Choose database”). This method is
easy and quick, and the results are presented in an intuitive graphical display, clearly
showing all matching structures aligned onto the target sequence, ranked in order

to allow users to easily and quickly search PDB sequences for a matches. Currently,
however, the matches are presented only in a table, so it is not easy to see where
the structures match the target sequence. An advantage of Swiss-Model is that it
allows the user to then select a structure to be used as a template and automatically
generates a homology model. Of course, this process can take some time.

However, BLAST is not the most accurate method for nding similarities and
will miss some matching structures that other methods can detect.
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of similarity ( g. 11.1A).

all sequences in PDB (e.g., navigate to http://ncbi.nlm.nih.gov/BLAST, choose pro-

Another site, Swiss-Model [8] (http://swissmodel.expasy.org/), also uses BLAST
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Some examples of more sensitive similarity detection methods using domain

either a sequence or an accession number of a target sequence, useful only if the
sequence is stored in one of the main public databases. The site then shows domains
that are found in your sequence. For each domain, you can navigate to nd a list of
all structures that are available for each domain. Using these pro le methods will
usually nd more matching 3D structures than simple sequence searching, since
very remote similarity can be picked up only by transitivity (i.e., if A is homologous
to B, B is homologous to C, and C is homologous to known structure X, then one

FIGURE 11.1 All matching structures for the target
sequence B-lymphocyte kinase (UniProt P51451) found by NCBI/BLAST75 (2a) and EBI/SRS
3D13 (2b). In both cases the target sequence is represented by the bar numbered 1–500. BLAST

nds 339 matching structures, of which the top-ranking matches are shown here ranked by
alignment score. SRS 3D, like other pro le methods, nds more matches than BLAST; in
this case it nds 461 matching structures, of which the top ranking matches are shown here
ranked by sequence identity. Views like this make it easy to see where in the target sequence
a structure matches.

 © 2006 by Taylor and Francis Group, LLC

(See color insert following page 306)

pro les are Pfam [9] (http://www.sanger.ac.uk/Pfam), SMART [10] (http://smart
.embl-heidelberg.de), InterPro [11] (http://www.ebi.ac.uk/interpro/), and CDD [12]
(http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml). At these sites you can enter
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can infer that A is homologous to X). In addition, pro le methods give a higher-
quality alignment than using BLAST. Of these sites, we prefer CDD, as it allows
users to easily launch a 3D viewer program, where one can see the target sequence
aligned onto a chosen structure. However, these sites were not designed speci cally
to allow easy access to related structures. In particular, the graphical display showing
all matching structures aligned onto the target sequence, ranked in order of similarity,
is lacking. It is not easy, for example, to see all matching structures ranked in order
of their sequence similarity to the target sequence.

make it easy to nd all related structures for a given sequence. For all sequences in
UniProt, SRS 3D precalculates all related structures using sequence pro le methods.
For each UniProt entry with related 3D structures, a link is added to an entry in the
Protein Sequence-to-Structure Homologies (PSSH) database. Opening the PSSH
entry for a UniProt sequence shows all matching structures aligned onto the target
sequence, ranked in order of similarity, giving a concise summary of all known

views is via the URL template: 

changing P51451 to the UniProt accession number of your target sequence (similarly,
you can change PSSH:P51451 to PDB:5AIY to display a PDB structure in SRS 3D).
However, for sequences not in UniProt, the user must paste the sequence into the
user-de ned database, then run a BLAST search against the PDBSEQ database, with
View set to SeqSimple3D. Since this uses BLAST and not a pro le search, these
cases will have lower-quality alignments and may miss some hits. SRS 3D also
allows the user to easily view any matching 3D structure together with the sequence-
to-structure alignment, colored by similarity to the target sequence.

which is a large database of homology models, precalculated and of high quality,
covering essentially all of UniProt. This database’s advantage is that it allows users
fast access to homology models. A drawback is that each sequence has an average of
only three homology models. This means that the user cannot see all structures related
to his sequence, and homology models are available only for a small number of
matching structures that have been chosen automatically by the method, not the user.

One more site that can easily generate homology models is 3D-Jigsaw [15]

interactively to obtain a list of structures.
Finally, if no matching structures can be found for your target sequence using

these methods (sequence or pro le search), there is another group of methods,
namely fold recognition methods, such as threading.

Even though a target structure may not match any known sequence pattern, it
is still possible—even likely—that the target protein adopts a 3D fold very similar
to a known structure. In fact most pairs of sequences that have the same fold have
no detectable sequence similarity [16]. The aim of fold recognition methods is to
detect cases when a protein has a known fold even though its sequence has no

 © 2006 by Taylor and Francis Group, LLC

structural information for that sequence ( g. 11.1B). A quick way to access these

The SRS 3D site [13] (http://srs3d.ebi.ac.uk) has been speci cally designed to

http://srs3d.ebi.ac.uk/srsbin/cgi-bin/wgetz?-id+-e+-e+[PSSH:'P51451']

Another site of interest is ModBase [14] (http://ModBase.compbio.ucsf.edu/),

(http://www.bmm.icnet.uk/~3djigsaw/). Unfortunately it cannot presently be used
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detectable similarity to known sequences. Fold recognition is an extremely dif cult
problem; however, signi cant progress has been made in these methods [17]. Several
of these methods are available via the Web, and a good place to start is the Structure

overview of several prediction methods as well as the best guess as to the right
answer. Several other “metaservers” also offer similar functionality [19,20], and
blind trials have shown these consensus prediction methods to be better than any
single method [21,22].

11.2.2 WHICH STRUCTURES TO CHOOSE

Assuming you have found several structures with signi cant homology to your target
sequence, which of these structures should you choose for further analysis? Some
of the methods for nding structure can be used in a mode that automatically selects
the “best” structures (e.g., ModBase and SwissModel). However, we strongly rec-
ommend always choosing your own template structure, as this choice greatly affects
the relevance of the information you can get out of structures. Our reasons for this
are outlined next, where we list some of the major issues to consider in deciding
which of the several structures are the most relevant, based on the questions you
would like to address.

11.2.2.1 Identical Sequences Are Not Always Equal

If you are fortunate, you will nd several structures that have been solved for your
target sequence. In this case, it pays to look in more detail at the exact region(s) of
match between the structure and the target sequence. Typically, a structure will not
span the full length of the sequence; it will have at least a part of the sequence
deleted or span only one of the several domains in a protein.

Among the matching structures, there can also be subtle differences in sequence.
Sometimes conservative point mutations are introduced to help solve the structure
or speci cally to study the effect of natural variations. 

Often, several residues or entire loop regions may have been deleted from the
sequence, or may be present in the sequence, but not present in the structure due to
lack of experimental data. This happens especially for highly mobile parts of crystal
structures with poor resolution. 

We are not suggesting that the aforementioned considerations are always critical.
Generally, the structure and function of a domain are not altered by conservative
point mutations or even by removing parts of the sequence not involved in the
domain. However, there is always the chance that even a conservative change in the
sequence can have a dramatic impact. Thus, the more the structure differs from the
full-length target sequence, the less certain the conclusions that you can draw from it.

If you are faced with a choice of deciding which structure(s) to work with, one
consideration should be whether the mutations or missing residues are in areas that
are relevant to the question to be solved using the structure. A mutation in the binding
site, for example, would certainly affect any information to be gained about ligands
binding at that site.
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Prediction Meta Server [18] (http://BioInfo.PL/meta/). The site gives the user an
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11.2.2.2 Sequence Similarity Is Best Guide—Usually!

For most target sequences there will be no structures found with a 100% sequence
match. However, in about half of all cases there will be several protein structures
that are signi cantly similar in sequence, so some structural information can be
inferred about the target sequence [4]. Usually, this means that the overall fold of
one or more domains can be inferred, together with the location of binding site
residues and other special sites.

Assuming that the target sequence has several related structures with signi cantly
similar homology, which structures should you choose? Which are the most relevant?

As previously discussed, the rst criterion is to evaluate where the structure
matches your target sequence. In a typical case, your target protein has several
domains, and these are matched by different structures, but no matching structure

The next criterion is the level of sequence similarity between the target sequence
and each structure. This level determines the degree of con dence you can have that
the target sequence is likely to adopt a structure similar to the structure found. A
generally used but arbitrary rule is that sequence identity in the range of 60 to 100%
is considered to be high, that is, sequences with this similarity are highly likely to
have the same fold. Sequence identity in the range of 30 to 59% is considered
medium, and below 30% is low or not detectable [23]. However, these ranges are
an oversimpli cation. For very short alignments (say 16 residues), 60% is usually
not signi cant, and for long alignments (say more than 100 residues), the threshold
for high similarity is only 40% [24].

11.2.2.3 Complexes and Oligomers

Most protein structures contain at least one small molecule forming a complex with
the protein. Often these small molecules are natural ligands, or synthetic analogs
that are very similar to the natural ligand. However, this is not always the case.
Especially when viewing X-ray crystal structures, it is important to realize that crystal
structures often include heavy metal ions that were needed to allow the 3D structure
to be determined but that otherwise do not have biological signi cance and never
occur with the protein in vivo. It is always possible that these metal ions may distort
the structure or interfere with binding to other molecules. 

Many structures contain not just one protein but several different protein mole-
cules combined in a complex. To understand the relevance of a given complex
structure to the questions you would like to address, it is usually important to nd
out the speci c reasons the particular complex was solved. This can be done by
referring to at least the abstract of the publication describing the structure.

Often, structures in the PDB are symmetric oligomers; however, not all of these
oligomer states occur in vivo. Some are a consequence of crystal packing or solution
conditions, or they may even arise due to mutations or small molecules. The PDB
entry sometimes contains a statement indicating if the oligomer state is biologically
relevant. In other cases, the oligomer state in the structure may occur in vivo, but it
may be only one of several states that occur. However, it is highly recommended to

 © 2006 by Taylor and Francis Group, LLC

contains all domains in the target sequence ( g. 11.1).
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refer to the publication describing the structure and not simply assume that the
oligomer state in the structure is biologically relevant or that it is the only state that
can occur.

11.2.2.4 Differences Because of Experimental Method

In addition to the factors already discussed, the experimental methods used to derive
a structure can also be signi cant. A basic introduction to the experimental methods

choosing structures.
Over 80% of available protein structures are derived from X-ray crystallography.

However, not all are of equal quality. X-ray crystal structures have a resolution,
which is a widely accepted indicator of quality. The lower the numeric value is for
resolution the better. For example, a resolution of 5.0 Å indicates a very low-quality
structure, 2.5 Å is about average, and 1.2 Å is very high quality [25]. All other
factors being equal, it is preferable to choose structures with good resolution. In
some cases, it may be preferable to choose a high-resolution structure with medium
sequence similarity to the target sequence over a structure with high sequence
similarity but very poor resolution.

About 16% of structures are derived from NMR spectroscopy. NMR structure
entries usually contain a small ensemble of 10 to 50 structures. Looking at the ensemble
gives an impression of the range of motions in the protein [26]; however, you do not
always want this additional level of information in the rst instance. In some cases,
the authors deposit an “average” structure as well, often as a separate PDB entry. In
these cases, it is often suf cient just to use the average structure. If no average structure
is available, a single structure is often chosen arbitrarily from the ensemble, typically
the rst structure. Unlike the case with X-ray crystallography, there is not yet any
consensus measurement that is used to assess quality of NMR structures.

Currently, there is no agreed-upon way to compare the quality of crystal and
solution structures. Crystal structures are generally more precise; however, since
most NMR structures are solved in solution state, they may be closer to the native
state than crystal structures.

11.2.3 HOW TO VIEW 3D STRUCTURES

In many cases, the structures you have selected were derived from proteins similar
but not identical to the target protein. One approach would be to use these as
template structures to build homology models and to examine the homology models
only, without rst looking at the template structures. However, we believe it is
faster, simpler, and more accurate to look rst at the template structures using a
molecular graphics program that can show the structure together with an integrated
representation of the sequence-to-structure alignment. Cn3D and SRS 3D are two
useful programs.

grated into the BLAST and CDD servers at the NCBI site, making it easy to access
and use. Cn3D is also easy to install, intuitive to use, and provides an integrated
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used in structure determination is given at http://www.rcsb.org/pdb/
experimental_methods.html. Here we summarize a few points to keep in mind when

Cn3D [27] (http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml) is inte-
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view of structure together with sequence information, helping the user to navigate

sequence, Cn3D lets you choose any matching structure and immediately see how
the target sequence aligns onto the 3D structure, with a coloring scheme that high-
lights where the target sequences differ from the chosen structure.

The SRS 3D Viewer [28] is part of the SRS 3D server at the European Bioin-

intuitive and easy to use. It enables the user to easily nd all related structures, select
one, and immediately see where the target sequence aligns onto the 3D structure
( g. 11.2B). Key differences between Cn3D and SRS 3D are that SRS 3D shows
sequence features from the UniProt, InterPro, and PDB entries of the target sequence
and enables users to easy map these features onto the structures ( g. 11.2C). SRS
3D also has a richer set of mouse and keyboard commands to help navigate and
select parts of the sequence and structure. However, a drawback of the SRS 3D
Viewer is that it can be dif cult to install on some computers. SRS 3D is a commercial
product but can be used freely via the Web to view any 3D structures in the PDB.

their ability to present sequence and structure in such an integrated way.
In cases where no available structure has exactly the same sequence as the target

protein, it will eventually be useful to calculate one or more homology models,

viewer, and a rich command set. However, it has a steep learning curve and has
problems installing on some computers.

11.3 FROM STRUCTURE TO FUNCTION

So, having found all structures related to your target sequence and having selected
the most appropriate ones, how can you use this information in practical ways to
help to identify or validate a target sequence? 

Before we can answer this question, it is worth reiterating the need for healthy
caution in using 3D structural information. When you look at a static, concrete, and
colorful model in a molecular graphics program, it is all too easy to forget that you
are looking not at the molecule you are interested in but only at a model of the molecule.

If you are using homology models, you need to be especially cautious in the
conclusions you draw. The accuracy and usefulness of homology models will depend
partly on how closely the template structure you are using matches to the target
sequence [32]. Clearly the larger the difference in sequence, the more caution you
need in using your model. Even single-point mutations can cause dramatic changes
to the protein structure.
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between sequence and structure ( g. 11.2A). After running BLAST on a target

formatics Institute (EBI) site (http://srs3d.ebi.ac.uk). Similar to Cn3D, SRS 3D is

models, two useful programs are DeepView [30] (http://www.expasy.org/spdbv/) for

ModBase models. Chimera has a sophisticated multiple-sequence alignment (MSA)

especially when you are interested in looking at binding sites. For viewing homology

and SRS 3D are our rst choice for gaining an initial view of structures because of

There are many other molecular graphics programs available; two of the most

models from Swiss-Model and Chimera [31] (http://www.cgl.ucsf.edu/chimera/) for

popular are Chime (http://www.mdli.com/products/framework/chime/index.jsp) and
RasMol [29] (http://www.umass.edu/microbio/rasmol/index2.htm); however, Cn3D
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FIGURE 11.2 Different views of a target sequence (UniProt P51451)
aligned onto a structure (PDB 2SRC, 63% sequence identity). By default, the Cn3D program
(11.2A) colors residues by sequence identity. In contrast, default coloring used by SRS 3D
(11.2B) is a scale of sequence similarity. SRS 3D also shows UniProt or InterPro features of
the target sequence. In 11.2C, the UniProt features for binding site have been used to highlight
the binding site. In 11.2D, another view of the binding site is shown by highlighting any residue
that has at least one atom within 4 Å of any ligand atom. In SRS 3D, this view can be created
in one step by selecting the “Binding Site” style. In 11.2E, a solvent-accessible surface has been
calculated and clearly showing the binding cavity. Bindings site residues are often highly
conserved, as in this case where the overall sequence identity between target sequence and
structure is 63% compared to 94% identity in the binding site (only 1 of the 16 residues that
de ne the binding differs).
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(See color insert)
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However, even if you are using structures with the same sequence as the target
sequence, you need to remember that these structures are also just models. In reality
proteins are dynamic and exible, and some parts of a protein are much more
dynamic and exible than others. These regions may be hinges, which allow sec-
ondary structure elements or entire domains to move relative to each other, or they
may be loops that extend into the solution and can ip. Often, some of these
movements are relevant to the function of the protein (e.g., the protein may have
quite different structural states with or without a ligand).

11.3.1 USING STRUCTURES IN THE LAB

Keeping in mind that protein structures are models, how can these models help? First,
simply having a model can greatly help to organize your data and ideas about a target
protein. You have a frame of reference, a place where you can put these data, grouping
together, for example, data about a given domain or binding site. Seeing where
domains, binding sites, conserved sequence motifs, intron boundaries, single nucle-
otide polymorphisms (SNPs), and posttranslational modi cations occur in the 3D
structure can help to clarify and organize information about a target sequence. 

Not only does the model help to organize your data, but it also helps to propose
new hypotheses about how a target protein may be affected by such things as point
mutations or by the presence of an analog to the natural ligand.

For example, many scientists involved in designing primers and making con-
structs nd it useful to check a structure occasionally to see which regions correspond
to the constructs they make. Does the construct begin or end in the middle of a
secondary structure element? Does it include residues involved in the binding site?

Scientists examining polymorphisms nd it useful to map these onto structures.
If an SNP results in mutation in a loop region well away from the binding site, it is
less likely to have an effect than a mutation to a binding-site residue. Similarly, for
scientists interested in understanding splice variants, it is useful to see which parts
of the structure are affected in a given variant.

For these uses, it is crucial to be able to see an integrated view of sequence and
structure as in Cn3D, SRS 3D, DeepView, and Chimera. It is also very useful to
easily access sequence features, as in SRS 3D.

11.3.2 FINDING BINDING SITES

A key to gaining insight into function is to identify the binding sites, that is, the
dedicated 3D sites in the protein where other molecules bind. Typically, as part of
its biological role, a protein will bind to several other proteins via comparatively
large but at binding surfaces and will bind to several small molecules (e.g., receptor
agonists or antagonists) via pronounced cavities that provide enough physicochem-
ical interactions to suf ciently stabilize the complex. In proteins that function as
enzymes, the active site is usually a cavity or cleft, since the enzymatic activity is
achieved by stabilizing the transition state of the reaction. This stabilization requires
a precise geometric orientation of the reaction partners while shutting out external
interferences and, thus, again requires enough geometry-de ning interaction sites to
be provided by the protein.

 © 2006 by Taylor and Francis Group, LLC
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Speci cally, given a structure, what methods are available to identify its binding
sites and the molecules that bind there?

11.3.2.1 Using Existing Annotations

For most proteins known to be pharmaceutically relevant targets, the residues
involved in and important for interactions with other (bio-)molecules have already
been elucidated, either from a known 3D structure of the protein in complex with
its interaction partner or a more stable analogue, by sequence homology to a known
structure, or via experimental methods such as mutation studies. Increasingly, this
information is available not just in the literature but also in databases as sequence
annotations (e.g., the BINDING, METAL, SITE or ACT_SITE records in UniProt
entries or SITE records in PDB entries). Several molecular graphics programs are
able to display PDB SITE. However, SRS 3D is currently unique in its ability to
easily map sequence features from UniProt, InterPro, and PDB onto 3D structures.
Especially useful is the ability to transfer these sequence features from a target
sequence and map them onto any matching structure, greatly extending the range
of features that can be accessed.

ING sequence features in the UniProt entry. There is no structure determined for this
sequence yet; these features were derived by similarity to other known structures with
the same fold. In gure 11.2C we used these features to highlight the binding site.

11.3.2.2 Using Structures Directly

Independent of whether binding site annotations are available for the target sequence
or matching structures, it is often informative to directly inspect any matching
structures to see where binding sites may be. Several different methods can be used.

Probably the quickest and simplest method is illustrated in gure 11.2D. Here,
we identify a binding site residue as one in which at least one atom is near (e.g.,
within 4 Å) any ligand atom. 

To gain more insight into what might bind to a binding site, a next step could
be to calculate and display the solvent-accessible surface and color it by various
properties such as charge and hydrophobicity. This step can help to obtain a quick
overview of the structure and to locate cavities where small molecules may bind
(see gure 11.2E). There are different methods for calculating solvent-accessible
surfaces; most molecular graphics programs use basic methods designed to give
users a quick insight into how the surface might look (e.g., SRS 3D [13], DeepView

probably the best known.

11.3.2.3 Using Sequence Profiles

A useful approach to searching for possible binding sites is to look at sequence
pro le information from MSAs and to map this information onto 3D structures.The
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For example, the target sequence used in gure 11.2 has ACT_SITE and BIND-

[30], Chimera [31], and Chime [32] [http://www.mdli.com/products/framework/chime/
index.jsp]). However, more accurate calculation methods and options are available
from dedicated programs; Grasp [33] (http://trantor.bioc.columbia.edu/ grasp/) is
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basis behind this group of methods is the observation that binding site residues are
normally more strongly conserved than other residue positions.

These methods are particularly useful when not much is known about the protein
or for structures that have novel folds. However, the methods can also be applied
even if the protein is well characterized, as it may nd potential binding sites that
have not yet been noticed.

Several methods are available for mapping conservation values onto 3D struc-
tures and viewing the results. STING Millenium [34] is perhaps the best known.
This approach can be informative; however, it is dif cult to decide what level of
conservation is signi cant just by looking at these pro les.

Fortunately, in the past 10 years this approach has been developed to yield a
number of automatic methods for predicting functional sites. The pioneer Evolu-

information about functional regions. Many similar approaches have since been
devised and applied in various contexts [36,37], and several are available over the

Related approaches also probe more deeply into function, suggesting residues
involved in speci city by highlighting those that are conserved only in part of a

11.3.2.4 Using Structure Patterns

Another possibility is to search for constellations of amino acids that can con rm a
similar function even when the proteins containing them adopt completely different
folds. Probably the best known example of this type of similarity is the serine
protease catalytic triad (Ser, His, Asp), which occurs in at least 10 different folds.
Several approaches have been developed to search for these, including PINTS [42]

ilarities can be very illuminating as to function by either nding a convergently
evolved site on a new fold [45] or con rming a prediction of function based on a
weak similarity to a known fold [46,47].

11.3.3 FINDING FUNCTION AND IMPROVING MSA

Using structural alignment methods, it is sometimes possible to nd relationships
between proteins that cannot be determined from sequence alone. In such cases,
structural alignments can improve MSAs of the family of related sequences and reveal
functional roles of the target protein that are not apparent from the sequence alone.

It is generally known that many proteins with similar structure have no similarity
of sequence. However, the extent to which this is true is not yet so widely realized:
most pairs of proteins that share a common fold have no detectable sequence
similarity [24]. The consequence is that structural alignments can very often nd
similarities between proteins that are not detectable from sequence alone.
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See Campbell et al. [39] for a timely review.
Internet (e.g., JEvTrace [38], http://www.cmpharm.ucsf.edu/~marcinj/JEvTrace/).

tionary Trace method [35] (http://www-cryst.bioc.cam.ac.uk/~jiye/evoltrace/evol-
trace.html) maps phylogenetic information onto structures and often reveals accurate

(http://pints.embl.de), the Catalytic Site Atlas [43] (http://www.ebi.ac.uk/thornton-
srv/databases/CSA), and Spasm/Rigor [44]. For some protein structures these sim-

.genebee.msu.ru/~psn/).
sequence family (e.g., PINTS [40], http://pints.embl.de and SDPpred [41], http://math
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If the structure you are considering is already in the PDB, then these similarities

if the structure is not yet in the PDB, you will need to perform your own structure
search to compare your structure to all other known structures. In a broad sense,
structure searching is similar to sequence searches; however, the methods used are
very different and quite a bit slower. Some standard methods are Dali [51]

If the new structure matches previously known structures, it can then be useful
to examine the family of structures that share this fold to see what range of functions
this fold can have and if the similarities can shed light on the possible function of
the new structure.

Many folds are promiscuous “superfolds” that perform many different functions
[54], whereas other folds appear to perform only one function. Complicating matters
slightly, even some superfolds still show some similarity in binding site location [55].

These additional structures can then be used to greatly increase the information
contained in the MSA of the family of related sequences. The MSA can be a critical
piece of information about a sequence, as it contains a wealth of data. In addition,
several programs such as T-COFFEE [56] can directly use structural alignment
information to further improve MSAs.

The improved MSAs can then help in deciding the function of the target
sequence. High similarity in sequences usually implies similar function; however,
this is not always the case. There are important exceptions when, for example, the
target sequence may lack some key functional residues. The MSA can help to detect
these cases. At present, there are no general rules to assessing when structural
similarity implies a similarity in function, but certain key insights (e.g., conservation
of active site residues or unusual structural features unlikely to arise by chance) can
provide support [57,58].

11.3.4 ASSESSING DRUGGABILITY

Another use of structures is in assessing a group of candidate target proteins to
determine which is most likely to be “druggable.” By druggable, we mean that a
molecule can be found that can be taken orally, will reach the target protein, and
will have the desired effect with no side effects. While this question can only be
decided de nitively by experiment, examining structures to choose which experi-
ments are most likely to succeed may save considerable time and expense.

So far, proteins that interact only with other proteins or DNA/RNA have been
found to be generally very poor drug targets, even if other aspects (such as a pivotal
role in a pathway that the drug should control) would suggest them as suitable targets.
Conversely, the binding sites of proteins that have a small natural ligand (e.g.,
hormone receptors), as well as the active sites of enzymes, are usually good candi-
dates for small drug molecules that can pass the various barriers from gut to cell.

 © 2006 by Taylor and Francis Group, LLC

can be found in a number of databases including SCOP [48] (http://scop.mrc-lmb
.cam.ac.uk/scop/index.html), CATH [49] (http://www.biochem.ucl.ac.uk/bsm/cath/
cath.html), and FSSP/Dali [50] (http://ekhidna.biocenter.helsinki. /dali/). However,

(http://ekhidna.biocenter.helsinki. /dali/), VAST [52] (http://www.ncbi.nlm.nih.gov/
Structure/VAST/vastsearch.html), and SSM [53] (http://www.ebi.ac.uk/msd/Services
.html).
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Thus, one criterion for good drug targets is having a pronounced cavity that can t
small molecules. 

In addition to requiring that a target protein simply have a cavity, we can go one
step further and examine this cavity in detail to determine if it is likely to accept a
drug molecule. Such an approach is based on the concept originally known as
Lipinski’s Rule of Five [59], a commonly applied rst rule of thumb for assessing
whether a compound has the potential to become a drug. The binding site can be
seen as an imprint of the compounds it binds; its size and the number and location
of lipophilic, charged, and H-bond interaction partners it provides determine what
a ligand should look like. Therefore, to determine the likelihood of a protein-binding
site to bind a druglike compound, you can apply the “inverse rule of ve.” This rule
is similar to Lipinski’s, but it applies the size, lipophilicity, and H-bond donors and
acceptors of the binding site.

11.3.5 DOCKING

Having identi ed a potential target protein, the ultimate proof that the target is valid
is that a viable drug is found against it. Structures often play a key role in the drug-
discovery process, so much so that several companies, such as StructuralGenomiX

accelerate drug discovery. It is outside the scope of this book to discuss screening
in detail, however, we brie y mention the role of structures in the screening process.

At the beginning of the screening process, an analysis of the protein-binding
site and natural ligands can help to determine properties of a potential ligand and
thus to preselect a set of compounds for initial screening. If a compound is known
to bind to the desired drug-binding site, then its overall physiochemical properties
as well as its interactions can be taken as exemplary for the searched arti cial ligand.
The interaction geometry may best be analyzed if a structure of the protein-ligand
complex has been solved. In absence of an experimental structure, one will resort
to models as may be generated by docking methods [60–62]. If more than one ligand
is known, a comparison of the different compounds and their respective binding
constants (e.g., using QSAR [63–66]) helps to highlight features that are positive or
detrimental for ligand binding. In the case of receptors that have agonists as well as
antagonists, care has to be taken to also elucidate the difference in their interaction
patterns to be able to design the desired type of actor.

In the absence of a known natural ligand of the target protein, one can resort to
applying the aforementioned analysis to known ligands for homologous proteins. In
this case, the ligand analysis needs to be complemented by a comparison of the
homologous binding sites to infer how the ligands of the target protein will differ
from those of the homologous proteins. Not only must differences to homologous
proteins be taken into consideration to ensure suf cient strength in binding, but such
differences must be exploited to avoid side effects.

The methods currently used for docking studies are not applicable to homology
models. However, recent methods have been developed to combine information from
homology modeling with QSAR ligand data to dock ligands into homology protein
models (e.g., DragHome [67]).

 © 2006 by Taylor and Francis Group, LLC

(http://www.stromix.com), have based their business model on using structures to
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11.3.6 COMPARING STRUCTURES AND BINDING SITES

A crystal structure is frozen into one state, but, in favorable cases, several different
structures are available for the target protein. For example, one structure may be a
complex with the native ligand bound, another structure may have no ligand, and
yet another may have a synthetic analog of the native ligand. In such cases, it can
be interesting to superimpose and compare the different structures to study the
changes that occur in these different states, especially changes in the binding site.

Another interesting analysis of multiple structures is to compare the binding site
structure of the target protein with all other similar binding sites. Such a comparison
should mainly rely on physicochemical properties of the binding sites (charges, H-
bond interaction partners, etc.), since these are the determining factors for the
strength of binding. A tool that is specialized in such property-based comparisons

offer insights that may help the screening process. However, potentially even more
interesting is the possibility that such analysis can help screen not only for speci city
but also for selectivity.

Both speci city and selectivity are important features of a drug, since they ensure
that the drug will have only the desired effect and will avoid side effects. Although
these terms are often used synonymously, they refer to two distinct features: selec-
tivity is concerned with site of action (e.g., a de ned cell type or protein); speci city
is concerned with the kinds of action at a site (e.g., agonistic or antagonistic). A
good drug target should allow the design of a speci c and selective drug; the binding
site has to provide distinct features, signi cantly differing from other similar binding
sites, which can be exploited to ensure preferential binding to the drug target.
Furthermore, if the drug target may elicit different kinds of action, the agonistic and
antagonistic reactions must be triggered by signi cantly different interactions.

11.4 DISCUSSION

The experimental method of structure determination is continuing to improve, thus
increasing the number of structures appearing per year. Whereas sequencing went
through a major milestone in the year 2000 with the human genome completion, no
equivalent milestone has yet been reached with structures. The closest milestone on
the horizon is set by some structural genomics initiatives, to have at least one
structure for each fold domain in human. This milestone is clearly a long way off;
some estimate that today we may have covered half of all folds. Unfortunately, some
folds are much harder than others to solve, and some are perhaps impossible (mem-
brane proteins, very large exible proteins), so this goal will probably never be
achieved.

Each structure contains a wealth of information, and the more than 30,000
structures that we have now in the PDB has created a new problem: how to deal
with all these data effectively. The eld of structural bioinformatics is more dynamic
than ever; new methods are tried and developed all the time. In this chapter we
presented a selection of the currently available methods, mostly those we know are
already well-developed enough to be accessible, not just by experts but by the wider

 © 2006 by Taylor and Francis Group, LLC

of cavities is CavBase/Relibase+ [68,69] (http://www.ccdc.cam.ac.uk). This tool can
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audience of biochemists and molecular biologists. It is our belief that many of these
scientists could bene t substantially in their research if they knew how to take
advantage of some of these tools.

The wealth of structure data means it is now possible to ask questions that we
could not hope to answer previously. Earlier, we had so few data that we were
practically forced to ask only “reductionist” questions focusing on one structure,
one protein at a time. With the wealth of data now available we can dare to ask
systemic questions and hope to nd answers. Given that we have multiple structures
for one protein bound to different ligands, how can we use all this information to
improve screening for more speci c drugs? Given that we have many structures for
groups of similar proteins, how can we use all this information to nd more selective
drugs? If we know the structures for most enzymes in a pathway, can we use this
information to decide which enzyme in the pathway is the best to target? How can
we combine data on multiple structures with screening data to improve selectivity
and speci city?

Preliminary studies along these lines have begun to appear in the literature,
particularly for some of the pharmaceutically relevant target classes [70–74]. We
expect more.

In summary, while it is clear that structure can sometimes give critical insight
into understanding the function of a target, it is far from decided how best to do this.
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FIGURE 3.4 Integration of sequence and structure information. Two large multiple sequence
alignments including residues catalytically important for two protein families have been con-
densed into two sequence logos. The logos describe the quinolinic acid phosphoribosyltrans-
ferase (QAPRTase) and nicotinic acid phosphoribodyltransferase (NAPRTase) families. Critical
residue conservation has been mapped between the logos, and those residues have been
subsequently mapped from the logos to the three-dimensional structure of yeast NAPRTase.

FIGURE 3.6 Graphical user interface of Taverna Workbench, a tool for the composition and
execution of bioinformatics work ows. The work ows are written in a new language called
Scu  (Simple conceptual uni ed ow language). 
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FIGURE 5.4 Data matrix transformations
in advance of SVD. A gene expression
matrix N will be transformed to obtain a
transform matrix X, which is the one that
will be actually displayed in a reduced
dimension, achieved using SVD. In this g-
ure, Uk and Vk are eigenvectors and Sk is an
eigenvalue. Uk is an eigenassay (or eigenar-
ray) and Vk is an eigengene.

FIGURE 5.5 PCA and COA analysis of gene expression data (12,625 probesets) from bro-
blasts isolated from human, gorilla, and bonobo. These gures demonstrate the difference
between a PCA and COA, which ask different questions of data. PCA presents the trends in
the data with the most variance. A and B show a scatter plot of the rst two principal
components (PC1, PC2) of a PCA and a COA, respectively. C shows a heatmap of the scores’

rst ve principal components, where red to green is positive-to-negative ends of the axis
from the PCA. It is clear that the rst component, which represents the 90% of variance in
the data, is not associated with samples groupings. In B, the strongest correspondences
between genes and samples are analyzed. PC1 represent 19% and PC2 represents 12% of the
total chi-square association between samples and gene expression pro les. In COA high chi-
squares will be associated with increased gene expression in samples. Thus, if a gene is
increased in expression in a many samples, there will be a high chi-square value showing
this association. On the scatter plot the positive end of PC1 represents genes that are up-
regulated in gorilla and down-regulated in human.
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FIGURE 6.9 Cluster theme visual-
ization with a theme map. OmniViz
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for seeing the represented concepts.
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FIGURE 11.1 Shows all matching structures for the target sequence B-lymphocyte kinase
(UniProt P51451) found by NCBI/BLAST75 (2A) and EBI/SRS 3D13 (2B). In both cases the
target sequence is represented by the bar numbered 1-500. BLAST nds a total 339 matching
structures, of which the top ranking matches are shown here, colored and ranked by alignment
score (red = >200, magenta = 80–200, green = 50–80, blue = 40–50, black = <40). SRS 3D,
like other pro le methods, nds more matches than BLAST, in this case it nds 461 matching
structures, of which the top ranking matches are shown here colored and ranked by sequence
identity (green >60%, orange = 30–60%). Views like this make it very easy to see where in
the target sequence a structure matches.
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FIGURE 11.2 Shows different views of a target sequence (UniProt P51451) aligned onto a
structure (PDB 2SRC, 63% sequence identity). By default, the Cn3D program (11.2A) colors
residues by sequence identity (red = identical, blue = different). In contrast, default coloring
used by SRS 3D (11.2B) is a scale of sequence similarity (green = identical, yellow to
red = similar to non-conserved). SRS 3D also shows UniProt or InterPro features of the target
sequence. In 11.2C, the UniProt features for binding site have been used to color the structure
and highlight the binding site. In 11.2D, another view of the binding site is shown by
highlighting any residue that has at least one atom within 4 Å of any ligand atom. In SRS
3D, this view can be created in one step by selecting the “Binding Site” style. In 11.2E, a
solvent-accessible surface has been calculated and colored by atom type, clearly showing the
binding cavity. Bindings site residues are often highly conserved, as in this case where the
overall sequence identity between target sequence and structure is 63% compared to 94%
identity in the binding site (only one of the 16 residues that de ne the binding is differs).
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12.1 INTRODUCTION

Genetic diversity and novel function are achieved in nature through incremental
modi cations. The contribution of comparative genomics to understanding the fun-
damental principles underlying the processes and consequences of evolutionary
changes is considerable and steadfastly growing. The availability of multiple genome
sequence databases and computational methods for analyzing the information has
proven essential to our well-being. From fostering our understanding of infectious
diseases, thus helping scientists create better drugs, vaccines, and effective methods
for controlling pathogens, to identifying genes linked to speci c human disorders,
which has led to the identi cation and development of better diagnostic tools and
drug therapies, comparative genomics’ contribution to human health is indispensable.
From a purely basic science perspective, comparative genomics has furthered our
understanding of regulatory and metabolic pathways and has resulted in inferences
about function. Moreover, with an ever-increasing worldwide human population,
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agricultural genomics offers the promise of feeding the hungry through improved
crops’ resistance to pestilence or animal disease. Although still in its infancy, com-
parative genomics has already had an inestimable impact on the advancement of
science and the betterment of life.

12.2 INFECTIOUS DISEASE

Comparative genomics technologies are helping to unravel the molecular basis of
pathogenesis, host range, epidemiology, evolution, and phenotypic differences of
infectious agents. One aim is to elucidate the differences between pathogenic and
nonpathogenic infectious agents as well as between pathogen and host. Such research
will identify molecular targets for future investigation: genes that code for pathoge-
nicity factors or genes essential for survival in the host. The most attractive targets
include those that are nonfunctional or redundant in the host as well as genes absent
from the host but essential in the pathogen [1]. The genetic basis for pathogenicity
can also be studied by using microarray-based comparative genomics to characterize
and quantify the extent of genetic variability within natural populations at the gene
level of resolution [2].

This pathogenic-speci c approach has been applied to tuberculosis, a major
cause of transmissible morbidity and mortality. The research has led to the identi -
cation of essential genes within the infectious organism (Mycobacterium tuberculo-
sis), and it has furthered tuberculosis vaccine development by pinpointing potentially
antigenic proteins as well as providing better diagnostic tools to detect infection [3].
In one instance, genomic analyses have suggested that loss of genes is part of the
ongoing evolution of the slow-growing mycobacterial pathogens and could explain
how the tuberculosis vaccine strain Bacillus Calmatte Guerin (BCG; perhaps the
most widely used live vaccine in the world) became attenuated [4]. On comparison
of the complete genomes of M. tuberculosis H37Rv and the vaccine strain, two major
rearrangements were identi ed in the genome of the vaccine strain BCG. Knowledge
of their existence will facilitate quality control of BCG vaccine lots [5].

Research for infectious diseases also seeks to identify the critical steps of host
defense to infection. One recent approach has been to isolate and characterize a
mouse gene, Bcg (Nramp1), which controls natural susceptibility to infection with
Mycobacteria, as well as Salmonella and Leishmania and test the alleles of the
human homologue for linkage with tuberculosis and leprosy [6]. Understanding the
mechanism of action will enable scientists to design better drugs to mimic the action
of the resistant allele.

Tropical pathogens of medical and veterinary importance, many of which are
responsible for causing widespread morbidity and mortality in peoples of developing
countries, are also of pressing concern. Uncovering the complete gene complement
of these organisms is proving to be of immense value in the development of novel
methods of parasite control, such as insecticides, antiparasitic drugs, and vaccines,
as well as the development of new diagnostic tools [7]. Resistance to insecticides
among mosquitoes that act as vectors for malaria (Anopheles gambiae) and West
Nile virus (Culex pipiens) is frequently due to a loss of sensitivity of the insect’s
acetylcholinesterase enzyme to organophosphate and carbamate compounds, which
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compose the majority of insectides. Recent work has shown that this insensitivity
results from a single amino-acid substitution in the enzyme, which were found in
10 highly resistant strains of C. pipiens from tropical (Africa and Caribbean) and
temperate (Europe) areas, as well as in one resistant African strain of A. gambiae.
Identi cation of such mutations may pave the way for designing new insecticides [8].

12.3 HUMAN DISORDERS

One function of comparative genomics is to facilitate gene discovery for polygenic
disorders such as psychiatric disorders, heart disease, diabetes, and some cancers.
Comparative mapping can be used to select target regions in the human genome for
large-scale association studies and linkage disequilibrium testing in clinical popula-
tions [9]. Current data from the use of these methods are found for a number of
human disorders. Linkage and association studies have suggested a number of
candidate loci on the short and long arms of chromosome 18 for the psychiatric
disorders schizophrenia, affective disorder, and autism [10].

Diabetes research is an ideal candidate eld for genomics research. The aim of
an insulin-resistance disease program is to identify targets for therapeutic interven-
tion within pathways that control glucose homeostasis. Resistance to the normal
action of insulin contributes to the pathogenesis of a number of common human
disorders, including type 1 (insulin-dependent) and type 2 (non-insulin-dependent)
diabetes mellitus, hypertension, and the Metabolic Syndrome X. Genes regulating
lipolysis are prime candidates for susceptibility toward the metabolic syndrome.
Lake, Krook, and Zierath [11] surveyed the analysis of insulin-signaling pathways
through comparative genomics. They described the genomics approaches that have
led to de nition of the critical sterol response element binding protein pathway,
furthering our knowledge of the development and maintenance of insulin resistance,
obesity, and diabetes. Odom et al. [13] recently used a high-throughput genomic
technology to identify complex regulatory circuits by a series of transcription factors
operating in the pancreas and liver. Their results demonstrate the process by which
misregulation of HNF-  (Hepatocyte Nuclear Factor) expression, a key transcrip-
tional regulatory protein found in the liver and pancreatic islets, can lead to type 2
diabetes. 

Cancer research will bene t from comparative genomic analysis. It is believed
that disease states are epigenetically determined and, thus, each tumor type and stage
will be characterized by a gene-expression ngerprint. Genes that are differentially
expressed in early tumor stages can be diagnostic of neoplastic transformation and
in later stages of transition from in situ to invasive cancers. Such approaches have
been used in breast cancer and melanoma research [13,14]. Model organisms will
serve as systems for exploring the prognosis and treatment of tumors. Yeung et al.
[15] showed that a rat gene Mot1 can act as a modi er of renal tumor size.

Mammalian model organisms are key systems for disease and disorder research,
but the contribution of comparative analysis with nonmammalian organisms can be
equally critical. The common fruit y has orthologs to 177 human disease genes and
provides the foundation for rapid analysis of some of the basic processes involved in
human disease [16]. Conserved chromosomal regions associated with complex human
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phenotypes are now known in model organisms. For example, genes that encode
related immunoglobulin superfamily molecules have been coordinately mapped to
human chromosome 15 and to the syntenic region on mouse chromosome 9. These
genes presumably are derived from gene duplications and are similar to the disease-
associated genes for Deleted in Colorectal Cancer. This interval overlaps a genetic
locus for Bardet–Biedl syndrome (BBS4) in humans, a syndrome characterized by
poly/syn/brachydactyly, retinal degeneration, hypogonadism, mental retardation, obe-
sity, diabetes, and kidney abnormalities. A detailed map of this locus in several
organisms will help identify candidate genes for this disorder, and we hope it will
provide a model organism for investigation of the mechanism [17]. The combination
of such a comparative analysis with a visualization tool holds the potential for
accelerating the process of discovery. For example, in a search for genes associated
with in ammatory bowel disease (IBD), a mapping of logarithmic odds score, as
illustrated in gure 12.1, which indicate the likelihood of association with the disease,

FIGURE 12.1 Mapping of logarithmic odds scores for in ammatory bowel disease against
the human genome. The colored bands indicate the likelihood of association with the disease.
Regions for which LOD scores are suggestive of an association with IBD are painted blue,
whereas regions that are signi cantly associated with the disease are painted red. (Copyright
© 2001 by Biosift, Inc. All rights reserved)
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could accelerate the process of identifying new targets for therapeutics. In the case
of IBD, improved therapeutics would impact the quality of life of an estimated 1
million individuals in the United States, which would also result in tremendous
economical bene ts.

12.4 EVOLUTION

Novel methods of evolutionary analysis are now possible through the availability of
organisms’ genomic blueprints, including detection of domain shuf ing and lateral
gene transfer, reconstruction of the evolutionary diversi cation of gene families,
tracing of evolutionary change in protein function at the amino acid level, and
prediction of structure–function relationships [18]. With the available high-quality
draft genomes of model organisms, we are able to obtain a picture of the conse-
quences of evolution over timescales ranging from approximately 1 billion years
(human and invertebrate), 75 million years (human and mouse), and 12 to 24 million
years (mouse and rat).

cerevisiae and H. sapiens genomes can be obtained at a glance. This multigenome view
allows for the visual quanti cation of positive and negative selection in these genomes.

One aim of evolutionary research is the identi cation of a minimal set of genes
that is necessary and suf cient for sustaining a functional cell. The smallest known
genomes belong to Mycoplasma organisms that are adapted to a parasitic lifestyle
and thus subvert the host organism’s genome to complement their own. Attempts
have been made to identify the minimal set of genes that is required for independent
life using computational approaches or studies of deletion mutants [19]. For most
essential cellular functions, multiple unrelated or distantly related proteins have
evolved; only about 60 proteins, primarily those involved in translation, are common
to all cellular life [20]. Approximately one-half of protein domains involved in RNA
metabolism are present in most, if not all, species from all three primary kingdoms
and are traceable to the last universal common ancestor [21]. An interesting hypoth-
esis deriving from the observed complex phylogenetic patterns and for the irregular
distribution of metabolic pathways is that the last common ancestor of Bacteria and
Archaea contained several members of every gene family as a consequence of
previous gene or genome duplications, while different patterns of gene loss occurred
during the evolution of every gene family [22].

Features of the universal tree of life, such as the division of the cellular living
world into three domains, have been con rmed by genome-sequencing efforts [23].
Comparative genomics has revealed that gene transfers have been frequent in genome
evolution. The role of viruses in gene transfers is the subject of considerable inves-
tigation. Recent work suggests that DNA and DNA-replication mechanisms appeared

rst in the virus world before being transferred into cellular organisms [24]. 
The rat genome was published in early 2004, providing a powerful three-way

comparison of mammalian genomes with human as the outlier (and mouse complet-
ing the trio). It is found that genes are not distributed randomly along the chromo-
somes and that there are clusters of high gene density in species with large genomes
(from humans to rodents to plants) [25]. Furthermore genomic repeat elements are
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observed to coincide with regions of greater or lesser gene density. Poor protein-
encoding regions in humans coincide with low G+C content, low short interspersed
elements coverage, and high long interspersed elements coverage. By contrast to the
protein coding genes, noncoding RNA genes are evenly distributed throughout the
genome [26,27], but it is clear that repetitive elements within the eukaryotic genome
appear to be one important engine of evolution. Researchers are working to determine
whether repeat elements are attracted to particular genomic regions or whether they
are preferentially preserved. Their presence today is a fossil record of the mechanism
of evolution, and understanding their distribution will contribute to our understanding
of population genetics and a number of genetic diseases. 

In reviewing the three available mammalian genomes, no compelling evidence
was found of genes arising from noncoding sequences, but numerous examples of
gene duplication leading to species-speci c functionality are observed [28]. These
species-speci c gene expansions are found to be due to genomic duplications, often
in pericentromeric regions—pointing to another signi cant process in genome
evolution.

Alternative splicing in the human, mouse, and rat genomes has been associated
with increased evolutionary change [29]. Whereas most exons in the mouse, rat, and

FIGURE 12.2 Genome-level homology between H. sapiens and S. cerevisiae. (Copyright ©
2001 by Biosift, Inc. All rights reserved)
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human genomes are strongly conserved, exons that are included only in alternative
splice forms (as opposed to the constitutive or major transcript form) are mostly not
conserved and thus are the product of recent exon creation or loss events. While species-
speci c splicing events can lead to different and specialized protein products, a recent
report demonstrates a striking example of convergent evolution in three different ion-
channel gene families between humans and Drosophila melanogaster [30].

Genomic analysis is casting new light onto the mechanism by which highly
specialized structures such as the human brain and nervous system evolve from
precursor components. Examination of expressed sequence tag (EST) clones from
the complete genome sequences of the human, fruit y, and nematode showed that
over 100 nervous-system-related genes, including genes involved in brain or neural
morphogenesis, were commonly shared among these organisms, thus providing
evidence at the molecular level for the existence of a common ancestral central
nervous system. Approximately 30% of planarian nervous-system-related genes had
homologous sequences in Arabidopsis and yeast, which do not possess a nervous
system. This implies that the origin of nervous-system-related genes greatly predated
the emergence of the nervous system and that these genes might have been recruited
toward the nervous system [31]. Based on samples of three kinds of tissue—brain
cortex, liver, and blood from humans, chimps, and rhesus macaques—researchers
have identi ed 165 genes that showed signi cant differences between at least two
of the three species and in at least one type of tissue. The brain contained the greatest
percentage of such genes, about 1.3%. Gene expression in liver and blood tissue is
very similar in chimps and humans and markedly different from that in rhesus
macaques. The analysis shows that the human brain has undergone three to four
times the amount of change in genes and expression levels than the chimpanzee
brain since the two split off from a common ancestor [32].

12.5 REGULATION AND PATHWAYS

By several estimates, the fraction of the mammalian genome that is under some level
of purifying selection is between 4 and 7% [28,33,34]. However, only a minority of
that fraction comprises protein-coding sequence: the majority are noncoding;
human–mouse–rat data support the presence of a large number of potentially func-
tional nongenic sequences, probably regulatory and structural [35]. Their prevalence
underscores the importance of such elements in genomic architecture.

Comparative genomics have provided computational approaches for understand-
ing the transcriptional regulatory network, including promoter prediction, transcrip-
tion factor binding site identi cation, combinatorial regulatory elements prediction,
and transcription factor target gene identi cation [36]. Differential gene transcription
is a fundamental regulatory mechanism of biological systems during development,
body homeostasis, and disease. Comparative analysis is proving to be a rapid means
for the identi cation of regulatory sequences in genomes [37]. Identifying the com-
plete transcriptional regulatory network for an organism involves understanding
every gene that is affected by each regulatory protein. Because regulatory systems
tend to be conserved through evolution, researchers can use comparisons between
species to increase the reliability of binding site predictions by combining the
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prediction of transcription units having orthologous genes with the prediction of
transcription factor binding sites based on probabilistic models [38]. The rst step
in this process is the localization of regulatory sequences in large anonymous DNA
sequences. Once those regions are located, the second step is the identi cation of
individual transcriptional control elements and correlation of a subset of such ele-
ments with transcriptional functions. Leung et al. [39] employed this approach to
examine the TNF-  (tumor necrosis factor) promoters in primate lineages. A striking
conservation was observed in a 69 base pair region corresponding to the well-
characterized transcriptionally active nucleoprotein-DNA complex, whereas little
conservation was found in regions not believed to have a role in regulation of the
gene [39]. A similar methodology demonstrated conservation of repressor regions
for the -like globin locus control region in an evolutionary panel covering 370
million years [40]. Because this approach relies on evolutionary conservation of the
regulatory sites, it should be noted that highly specialized structures that may be
determinants of species differentiation will not likely be found. 

Large-scale regulatory network reconstructions can be converted to in silico
models that allow systematic analysis of network behavior in response to changes
in environmental conditions. These models can be combined further with genome-
scale metabolic models to build integrated models of cellular function including both
metabolism and its regulation [41].

12.6 AGRICULTURAL GENOMICS

The use of comparative genomics techniques stands to make signi cant economical
contributions to the agricultural industry. Agricultural genomics could lead to new
strategies for industrial strain improvements in crops and dairy products.

A better understanding of the physiological processes and regulatory networks
associated with dairy bacteria is of considerable commercial importance. Bacterioph-
ages of lactic acid bacteria are a threat to industrial milk fermentation. Owing to
their economical importance, dairy phages therefore have become the most thor-
oughly sequenced phage group in the database [42]. This information will lead
researchers to better inhibitors.

Comparative genomics reveals that cereal genomes are composed of similar
genomic building blocks (linkage blocks). By stacking these blocks in a unique
order, it is possible to construct a single ancestral “chromosome,” which can be
cleaved to give the basic structure of the 56 different chromosomes found in wheat,
rice, maize, sorghum, millet, and sugarcane [43]. A comparative analysis of the
functions of rice and orthologous genes in other species involved in these processes
revealed that orthologous genes can also display divergent functions [44].

The discovery of novel genes and the corollary expression patterns in response
to stress can lead to improved plant tolerance to nature’s temperamental nature and
help them survive events such as droughts and low temperatures [45]. Preharvest
sprouting results in signi cant economic loss for the grain industry around the world.
Lack of adequate seed dormancy is the major reason for preharvest sprouting in the

eld under wet weather conditions. Although this trait is governed by multiple genes,
it is also highly heritable. A major quantitative trait loci controlling both preharvest
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sprouting and seed dormancy has been identi ed on the long arm of barley chro-
mosome 5H, and it explains over 70% of the phenotypic variation [46].

12.7 COMPUTATIONS AND DATABASES

The availability of multiple genome sequence databases, combined with growing
computational availability, has enabled signi cant advances in the identi cation of
new structural and functional properties of DNA sequences, from changes in protein
functions to the identi cation of repeats, conserved sequence regions, and noncoding
RNA sequences. The growing size and complexity of these data calls for novel
visualization methods as well as the development of powerful and cost-effective
computing. These methods have unraveled data, something that simply would not
be possible with a single genome analysis. 

Recent developments in the identi cation of repetitive DNA sequences hope to
shed new light in understanding the basis of genomic instability and a variety of
regulatory functions. One such method, a program called the Spectral Repeat Finder
program, signi cantly improves the repeats identi cation process by overcoming a
number of major technical hurdles through computational techniques. The dif culty
in identi cation of repeats resulting from variability in perfection, length, and dis-
persion was overcome by using a discrete Fourier Transformation to identify signif-
icant sequence periodicities [47]. The identi cation of these repeat regions extends
our understanding of chromosome structure and dynamics and offers new insights
into the evolutionary processes that have led to genomic divergence.

Database searches using sequence comparison programs have been successful
in the identi cation of regions of sequence conservation. Because there are important
sequence areas with an absence of protein homologs, new computational approaches
in comparative genomics need to step outside conventional sequence comparison
techniques. Analysis of phylogenetic pro les of protein families, domain fusions,
gene adjacency in genomes, and expression patterns have been able to predict
functional interactions between proteins and help deduce speci c functions for many
proteins [48] even in the absence of strong sequence conservation. 

Another promising technique in comparative genomics involves the combination
of computational and experimental methods to identify novel areas of interest in the
sequences of multiple genomes. Fulton et al. [49] identi ed a large set of genes that
were single or low copy in both the tomato and Arabidopsis genomes, which dis-
played a high probability for ortology. This was accomplished by screening a large
tomato EST database and the Arabidopsis genomic sequence. These genes were
annotated, and a large portion of them were assigned to putative functional categories
with basic metabolic processes. Further computational screens against other genomes
revealed that these markers were conserved in genomes of other plant families [49].
This work will further phylogenic studies in plants and provide the groundwork for
more robust studies in comparative genomics, and is also applicable to the under-
standing of nonplant genomes.

A further example of the potential for discovery from combining multiple com-
parative genomics methods involves the principle of phylogenetic shadowing, a
lineage-speci c gene- nding technique, and feature-based annotation methods to
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detect conserved sequence regions from multiple closely related organisms. This
model is applicable where the principle of evolutionary constraint infers regional
functions. The system has been successfully used to identify shared gene sequences
between multiple primate sequences [50]. The results of these primate studies have
obvious implications to humans, and these principles can likely be adapted to provide
insight into other closely related genomes. Additional techniques, such as phyloge-
netic pro ling, chromosomal proximity, and domain fusion methods, have been used
in combination to provide functional linkage data. The merging of these data has
uncovered a large number of conserved pathways and identi ed clusters of genes
that are functionally related [51]. Many comparative genome analyses are designed
to reveal important sequences that cannot be detected in a single genome analysis.
One method used computational comparative genomic screens to reveal novel non-
coding RNA sequences by taking advantage of mutational patterns in pairwise
sequence alignments. A whole genome screen of E. coli revealed 275 candidate
structural RNA loci out of more than 23K conserved interspecies pairwise align-
ments. Forty-nine were assayed experimentally, and more than 11 expressed small
noncoding RNA transcripts of unknown function [52]. This methodology would
have not been possible prior to the elucidation of RNA sequences in multiple species.

The increasing volume and complexity of multiple genome data have necessitated
the development of visualization techniques to represent these data. Several tools have
been developed to provide visual means of navigating multiple genomes simulta-
neously by retrieving annotated sequences from multiple genomes and generating an
interactive display [53]. Some tools take advantage of the newly available data by
visualizing annotations and conserved sequence regions in multiple genomes using
multiple dimensional representations and provide a compact display of cross-sequence
comparisons [54]. Other visualization systems integrate all of the publicly available
annotations from multiple genomes and display them in a browsable fashion. In some
systems the data can be navigated using a top-down approach, that is, the user displays
the entire genome at once and then progressively increases the resolution to navigate
down to the nucleotide sequence. At each of these levels of resolution, annotations
from several genomes can be displayed simultaneously. These are just a few examples
that address the need to represent large-scale comparative analyses in a visual manner.
The tremendous increase in data will only be as valuable as the ability for researchers
to extract meaningful information, which these tools are making possible. 

The increase in genomic sequence database data has also necessitated the devel-
opment of ef cient computational tools running on parallel cluster computers in a
cost-effective manner. A recent study ported and optimized the analyses programs
of FASTA and Smith Waterman on PARAM 1000, a parallel cluster of workstations,
to show signi cant performance increase over single-processor con gurations [55].
The ever-increasing need for high-performance computing and the high cost of
supercomputers render such solutions both relevant and essential.

12.8 CONCLUSION

In the last few years comparative genomics has experienced an explosive growth. The
vast amount of multigenomic data coupled with the development of new technologies

 © 2006 by Taylor and Francis Group, LLC



Comparative Genomics 319

has enabled a proliferation of discoveries in a diversity of domains from agricultural
genomics, to evolutionary principles, to metabolic and functional pathways. But its
most striking achievements have been associated with our understanding of human
diseases, which has led to novel drugs, vaccines, and diagnostic tools and holds the
promise of many more such discoveries.
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Along with the emergence of genomics in the past two decades, pharmacogenomics
has attracted much attention. The goal is often referred to as “personalized medicine,”
that is, to provide the right drug, at the right dosage, to the right patient. Personalized
medicine is propelled by the observation that genetics make a real contribution to
drug response. Since its inception, pharmacogenomics has been viewed as the future
of medicine and at the same time has become the topic of much controversy in the
scienti c community. While its enthusiasts await the promised revolution of phar-
macogenomics [1], neither drug companies nor drug approval agencies have, as yet,
made any giant leaps in replacing traditional toxicological studies with toxicoge-
nomic approaches, as genomic approaches have not been rigorously validated [2].
Nevertheless, as is discussed in this chapter, there is evidence that there might be a
realizable, albeit limited, scope in which pharmacogenomics could prevail.

13.1 INTRODUCTION

Pharmacogenomics is the art of analyzing various genomic information (e.g., poly-
morphisms, gene expression, copy number, methylation, protein pro les) in assessing
differential response to drugs. The objective of such analyses is to detect evidence of
variation in response to drug action and factors in uencing the absorption, distribution,
metabolism, and excretion of these chemical agents [3]. Pharmacogenomics can be
viewed from two perspectives: pharmacokinetics and pharmacodynamics [4]. Pharma-
cokinetics deals with drug metabolism, which in turn determines the optimal drug dose
to maximize effectiveness and minimize toxicity. Pharmacodynamics, on the other
hand, describes the drug mechanism of action on a target. This latter branch of
pharmacogenomics is the main focus of drug discovery. Both pharmacokinetics and
pharmacodynamics work in tandem to describe the drug effect in the patient. 

The goal associated with pharmacogenomics is described as “personalized med-
icine.” The belief that there is a one-size- ts-all approach ignores the fact that humans
show signi cant genetic diversity [5]. “Personalized” medicine should not be misin-
terpreted as describing an ultimate goal of providing a unique drug for each individual
for a given disease. Since genetic variations between individual humans are large, to
the extent that individuals are unique, providing completely personalized medicine
to each individual is unrealistic; such an approach would require multiplying the
current number of medicines by the world population. Such a constraint is unrealizable
from multiple aspects, including the cost of development, the development cycle, the
method of distribution, and so forth. What is truly meant by the term personalized
medicine is to stratify individuals into a few classes and to design a unique drug for
each class. In this context, the current state-of-the-art in the pharmaceutical industry
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is the equivalent of having one class. The number of classes is not required to be the
same for each disease. The binning of individuals into different classes is guided by
considering statistical information about a population, as viewed by a certain disease,
and applying it to individuals [4]. With this objective in mind, pharmacogenomically
focused drugs could achieve a higher penetration in a selected population, and those
individuals could be given a more effective dose of the drug [5].

In parallel to strati cation of individuals, one could also consider the strati cation
of diseases. What is today known to us as a certain illness may indeed be a class of
several diseases that result in similar macroscopic (and not necessarily microscopic)
symptoms and phenotypes. One exemplary basis for such an argument is the fact that
a biological pathway has different constituents or blocks. If any of these blocks
malfunctions, the outcome would be disruption of the overall function of the pathway,
resulting in a similar phenotype. While the idea of dividing illnesses into smaller
subcategories is inspired by the divide-and-conquer method of solving complex prob-
lems, it suffers from the linear growth in the amount of validation that is needed.
Indeed, most researchers believe that pharmacogenomics could result in subdividing
some complex diseases into a large number of classes [6]. The problem is that for
each disease subcategory, different (albeit simpler) clinical trials must be performed,
which results in increased complexity and cost in a drug-approval process.

Another promise of pharmacogenomics is the reduction of adverse drug reactions
(ADR). ADR is one of the prominent causes of illness and fatality. It has been
reported that in a certain year, more than 2 million North Americans have been
hospitalized for experiencing serious adverse drug reactions, resulting in more than
100,000 fatalities [7,8]. This number has placed ADR as the fth leading cause of
death [7]. Many ADRs arise from genetic differences in drug metabolism, transport-
ers, ion channels, receptors, and other drug targets [7]. Thus, there are reasons to
believe that pharmacogenomics could play a major role in reducing ADRs. One such
role would be reduction of ADR through accurate labeling of contraindications [6].

Perhaps the largest motivation of pharmacogenomics for drug companies is its
promise for reducing the cost of drug development. Drug development is a time-
consuming and costly process, taking 1 to 2 decades and costing several hundreds
of million dollars, with a success rate of approximately 1 in 10, only a fraction of
which are observed to be blockbusters [11]. Despite the complicated development
machinery, many drugs are ineffective, as a result of underdosing, overdosing, or
missed dosing. Such conditions have been associated with the cost of more than 100
billion dollars a year [5]. Therefore, there is much room for improving the effec-
tiveness of drugs, their development, and the testing process. Pharmacogenomics is
a view from different angles, albeit shared by one name, which promises enhance-
ments in drug ef cacy and safety. The analysts predict that by using pharmacoge-
nomically enhanced diagnostics and drugs, the pharmaceutical companies could
bene t from extra revenue on the order of 200 to 500 million dollars for each drug [9].

An alternative perspective from which to view the cost of the drugs is the overall
cost of medicine for the patients. Many patients end up trying several drugs (and
withstanding their side effects) before nding the one that works best for them, if
any. The promise of pharmacogenomics is identifying the effective drug the rst
time, which would result in a signi cant cost reduction and reduced risk. Moreover,
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with some diseases, the window of treatment is so limited that there is no room for
trial and error. In other words, if the correct drug is not the rst drug prescribed, the
disease might have progressed to an untreatable state; various cancers and Alzhe-
imer’s disease, which has a rather narrow window of treatment (18 months), are
examples of this scenario [3].

Among the other potentials for the role of pharmacogenomics in the future of
medicine, one could list customized therapy, screening for disease predisposition,
customized preventative care, and improved extrapolation of drugs from adults to
children. Pharmacogenomics could also be applied to nonhuman organisms, for
example, to bacteria for identifying the correct antibiotic development [11].

13.2 CASE STUDIES

Numerous examples show how pharmacogenomics can be applied in current medi-
cine. A few selected examples are presented next. This list is far from comprehensive.

13.2.1 P450 FAMILY OF ENZYMES

Cytochrome P450 (CYP) enzymes represent a family of xenobiotic metabolizing
proteins and are found in endoplasmic reticulum of cells in a variety of human
tissues, predominantly in liver and intestine. These enzymes are thought to be
responsible for the metabolism of approximately 75% of currently available drugs.
The subfamily CYP3A by itself is responsible for nearly half of this activity [12].
For most drugs, activation of CYP enzymes determines how long and how much of
a drug remains in the body [4]. Poor metabolizers would be more likely to experience
toxicity from drugs metabolized by the affected enzymes. The percentage of people
classi ed as poor metabolizers varies by enzyme and population group. As an
example, approximately 7% of Caucasians and only about 1% of Asians appear to
be CYP2D6 poor metabolizers [12]. Pharmacogenomics tests such as those for the
CYP2D6 family of enzymes are currently being used in clinical research [9].

13.2.2 HEART ARRHYTHMIA

An example of a gene with variations that can result in heart problems is SCN5A.
Certain mutations in this gene have been associated with congenital long QT syn-
dromes, a rare hereditary heart arrhythmia [13]. When appropriately stimulated,
normal SCN5A protein forms a sodium channel that opens to allow the ow of
sodium ions into heart muscle cells, thus triggering the cells to undergo contraction.
It has been reported that variants of SCN5A could result in generation of sodium
channels that reopen during the time that they should be closed, a change that could
result in developing an arrhythmia [14].

13.2.3 BREAST CANCER

One of the rst treatments based on pharmacogenomics is the drug Herceptin—a
monoclonal antibody that targets the protein product of the HER2 oncogene [6].
Breast cancer patients can be divided into two groups—HER2-positive and HER2-
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negative. Herceptin is a candidate treatment drug for HER2-positive patients. This
drug can bind to HER2 products, slowing tumor growth [3].

In the context of breast cancer, the genes BRCA1 and BRCA2 are also of
particular interest. These genes are believed to be tumor suppressors, and their
functional variation is believed to depend on their sequence variation. Women carriers
of germline BRCA1 and BRCA2 mutations have more than an 80% lifetime risk of
developing breast cancer. Approximately 0.5% of women carry one of these muta-
tions, although this percentage may be higher in certain ethnic groups [12].

13.2.4 THIOPURINE METHYLTRANSFERASE

The inactivation of mercaptopurine requires metabolism by the enzyme thiopurine meth-
yltransferase (TPMT). TPMT polymorphisms have been reported to be considerably
overrepresented in patients with ADRs to mercaptopurine [15]. A de ciency in TPMT
is inherited as an autosomal recessive trait [12]. Patients with two copies of one of the
polymorphisms of this gene that decreases activity are at risk for serious and potentially
life-threatening dose-related side effects (e.g., bone marrow suppression). Even the het-
erozygotic patients are at risk for severe side effects [3]. Approximately 10% of people
are heterozygous in this gene (i.e., carry one bad copy), which makes them poor metab-
olizers of mercaptopurine and necessitates a reduction in dose. A considerably smaller
percentage of people carry two bad copies of the gene, which renders them extremely
sensitive to the drug and requires up to a 95% reduction in the dosage [3].

13.2.5 ALZHEIMER’S DISEASE

Tacrine is used to treat Alzheimer’s disease and is in a class of drugs known as
acetylcholinesterase inhibitors. Unfortunately, only one quarter of patients bene t
from Tacrine and roughly the same fraction suffer severe side effects such as liver
toxicity. This is believed to be linked with a polymorphism in APOE gene (apoli-
poprotein E) [5]. APOE has three common alleles—APOE2, APOE3, and APOE4—
resulting from nonsynonymous coding single nucleotide polymorphisms (SNPs).
APOE is involved in modulation of cholesterol and transport of lipids in plasma and
within the brain. APOE and its associated receptors are highly expressed in the brain.
The APOE4 allele is associated with sporadic and late-onset familial Alzheimer’s
disease. It has been shown that APOE4 correlates with the risk of developing
Alzheimer’s disease, more speci cally the age of onset, accumulations of plaques,
and reduction of choline acetyltransferase activity in the hippocampus [12]. APOE4
allele copy number has an inverse relationship with residual brain choline acetyl-
transferase activity and nicotinic receptor binding sites in both the hippocampal
formations and the temporal cortex of patients with Alzheimer’s disease [12].

13.3 RELATED TECHNOLOGIES AND THEIR ISSUES

13.3.1 SNP GENOTYPING

The general idea of pharmacogenomics hinges on the belief that genetics is a main
component of the drug ef cacy. This belief provides motivation for deconstructing
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the genetic blueprint. The Human Genome project provides the common (99.9%
similarity) DNA template among individuals. What remains is the 0.1% that is
different among individuals. These differences are mostly manifested in the form of
SNPs. On average, one SNP is expected to exist for every 1 Kb. Therefore, given
the 3.1 billion base pairs of the genome, one would expect to have approximately
3.1 million SNPs.

Although sequencing the genome is a great effort, it has been done once for a
small number of individuals and is considered valid for the whole human population.
The SNP pro le, however, is expected to be different for every individual. After all,
it is this 0.1% that makes each of us different from one another. Therefore, although
it may seem a small proportion (0.1%), SNP genotyping is a great effort, as it needs
to be done for all the individuals that participate in a particular study (e.g., a clinical
trial study). The large number of SNPs and the huge potential for their use have
been the driving forces for a plethora of methods for multiplexed SNP discovery,
and ultimately the whole genome SNP microarrays.

Once the SNPs are identi ed for a population of individuals, they can be studied
to understand phenotype/genotype correlations. This study is done in two modes. In
the rst mode, the assumption is that the SNP is causal, that is, it directly causes
the phenotype. For this to happen, the hypothesis is that the SNP should (a) be in
the coding region or (b) cause a nonsynonymous amino-acid change, and (c) the
change should result in a signi cant modi cation of the expressed protein. Alterna-
tively, the SNP could be in a regulatory region and cause a notable expression change
in the observed phenotype. In another mode, the SNPs are used purely as landmarks
for susceptibility genes. This use is empowered by the belief that there has been a
limited amount of shuf ing in the DNA, which results in coinheritance of disease-
causing genes and nearby SNPs. This coinheritance is discussed later in the context
of linkage disequilibrium (LD) analysis. The SNPs that can be used as informative
markers are the ones in a high LD with the susceptibility genes.

Despite their popularity, there are a few challenges in using SNPs as genetic
markers. The main factor has been the cost of SNP genotyping. The other factor is
the quality of purported SNPs. Many areas of genome are dif cult to sequence (e.g.,
the centromeres), and thus there are not many SNPs identi ed in those regions. Even
for the areas that do contain valid SNPs, given the state of most SNP discovery
assays, it may be dif cult to obtain a con dent identi cation of polymorphism
because of the existence of genome repeats and other low-complexity regions in the
vicinity of the SNP. Nevertheless, such problems are not unique to SNPs. Indeed
many such concerns are also shared by other types of markers.

13.3.2 HAPLOTYPING

There is an ongoing debate about the number of SNPs that is necessary for genome-
wide association studies. The objective of haplotype mapping is to nd a subset of
SNPs that contain the information within the complete set. The idea underlying this
concept is the fact that in certain areas of the genome, SNPs on a small region of
one chromosome are correlated. This correlation is due to the fact that these areas
have not undergone drastic genomic shuf ing via recombination through evolution.
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In other words, it is believed that a set of haplotype blocks exist, where SNPs within
such block boundaries change together, that is, knowing one would reveal the identity
of the others. The existence of such boundaries has been the subject of much debate.
The haplotype blocks in older populations (e.g., Africans) range from less than 1
Kb to 100 Kb, and in younger populations (e.g., Finns) from more than 50 Kb to
more than 1 Mb [7]. The International Haplotype Map project (HapMap) was funded
a few years ago and is moving quickly toward completion. The hope is that with
the aid of haplotype blocks, one may be able to scale down from analysis of 3 million
SNPs to approximately 300,000 SNPs.

With respect to pharmacogenomics, whether this hypothetical 10:1 reduction of
number of SNPs makes a difference or not is open for debate. Assuming the HapMap
delivers 300,000 SNPs that well represent the complete SNP set, the added cost of
three million dollars for a clinical trial of 1,000 individuals still remains. This added
cost must be balanced against the cost savings that is expected to occur as a result
of starting with a prescreened set of patients for whom the drug would have a greater
potential to be effective.

13.3.3 LINKAGE DISEQUILIBRIUM

Association studies are expected to nd areas of the genome that may harbor
susceptibility genes, without any prior assumption about the position or composition
of such genes [16]. LD is the cornerstone of association studies. (A list of LD-related

controversial methodology [4]. In fact, theoretical estimates of the average extent of
LD in the human genome range from less than 100 Kb to less than 3 Kb [16]. This
value is a function of many parameters, including population admixture, population
bottlenecks, heterogeneous recombination, genetic drift, mutation, and natural selec-
tion [7]. The concerns about the extent of the LD, along with the other concerns
such as required population sample sizes, the number of SNPs needed in a map, the
cost of genotyping, and the interpretation of results, are some of the challenges that
surround this technique [16]. Sample size is of particular interest for pharmacoge-
nomics applications, as it is linearly correlated with the cost of the clinical trial. The
weaker the LD between the marker and the susceptibility genes, the more dif cult
the association is to detect, unless the sample size is increased proportionately. The
required sample size is also affected by the match between the marker allele fre-
quency and the susceptibility allele frequency. If marker allele frequencies are
substantially different from susceptibility allele frequencies, the sample size, the
number of markers, or both, will need to be dramatically increased [16]. Neverthe-
less, LD is still considered as a method worth pursuing, because the traditional
alternatives (e.g., linkage analysis) remain costly and laborious.

13.3.4 GENE EXPRESSION

In the last decade, with the advent of microarrays, the interest for high-throughput
gene expression has escalated signi cantly. Since protein generation is derived from
the mRNA, and since assays for mRNA pro ling are simpler than for protein pro ling
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TABLE 13.1
Examples of LD-Related Software

Software Name Software Description URL

MERLIN (Multipoint Engine for Rapid Likelihood 
Inference)

General tool for estimation of haplotypes using maximum 
likelihood method

http://www.sph.umich.edu/csg/abecasis/Merlin/

QTDT (Quantitative Trait Transmission 
Disequilibrium Test)

Tool for tting linkage and association models to pedigrees http://www.sph.umich.edu/csg/abecasis/QTDT/

GOLD (Graphical Display of Linkage 
Disequilibrium)

Calculation of LD-related parameters (e.g., D’, r^2, and 
color coding of LD-coef cient matrices)

http://www.well.ox.ac.uk/asthma/GOLD/

SNPtagger Tool for selection of tag SNPs http://www.well.ox.ac.uk/~xiayi/haplotype/index.html

PHASE Estimating multimarker haplotypes in unrelated individuals http://www.stats.ox.ac.uk/mathgen/software.html

SNPhap Tool for EM-based haplotype frequency estimation in 
unrelated individuals

http://www-gene.cimr.cam.ac.uk/clayton/software/

BLADE (Bayesian Linkage Disequilibrium 
Analysis Mapping)

Robust tool for estimation of LD using Markov Chain Monte 
Carlo algorithm

http://www.people.fas.harvard.edu/~junliu/index1.html

DHSMAP (Decay of Haplotype Sharing Mapping) Tool for ne-mapping of qualitative traits by LD, by 
estimating the location of the trait-associated variant by 
maximum likelihood

http://galton.uchicago.edu/~mcpeek/software/dhsmap/

DMLE (Disease Mapping using Linkage 
Disequilibrium)

Tool for high-resolution mapping of the position of a disease 
mutation relative to a set of genetic markers using 
population LD

http://www.dmle.org/

EMLD (EM estimation for LD) Tool for EM estimation of haplotype frequencies and LD 
calculation

http://request.mdacc.tmc.edu/~qhuang/Software/pub.htm

FBAT (Family Based Association Test) Tool for testing association and linkage between disease 
phenotypes and haplotypes using family-based controls

http://www.biostat.harvard.edu/~fbat/fbat.htm

NOTE: LD = linkage disequilibrium.
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(mRNA-based), gene expression has been in vogue as a reasonable proxy for protein
expression. However, the technical dif culties of gene-expression microarrays are
numerous, among which one can enumerate the following:

1. Gene expression is in vitro and does not necessarily re ect the in vivo
state of the genes of interest, although in certain circumstances, with
proper handling of samples (e.g., immediate freezing following the biopsy
from a live tissue), one could have a higher assurance in retaining the in
vivo state of the genes.

2. Most of the microarray data are not quantitative (e.g., as compared to
quantitative-PCR). Part of this anomaly is due to the fact that most
microarray technologies are hybridization-based, and the hybridization
signal is not a linear function of the molecular concentration.

3. The gene expression probes often interrogate a small portion of the mRNA
molecule. Since mRNA can undergo fractionation, whereas the probe only
views one of the fractions, the translation from the microarray numbers
to the mRNA molecules is not simple. Most manufacturers of microarrays
try to minimize this anomaly by biasing the probes towards the 3' end
(i.e., the poly-A tail of the mRNA molecule).

4. The fold-change in mRNA does not exactly translate to the fold-change
in the nal protein.

5. The signi cance of the scale of expression for different genes is variable
and depends on the role of the gene in its associated pathway. For some
genes, small changes in expression level could result in signi cant phys-
iological changes, while for other genes, large changes in expression level
may indicate an insigni cant physiological change.

6. Most genes in complex diseases play a susceptibility role, and thus result
in a probabilistic nature for regulation. This is a major hurdle in integrating
the pieces of information collected from a series of genes and making
claims about the underlying phenotypes of interest.

With respect to pharmacogenomics, in addition to the aforementioned points,
there are certain particular concerns that limit the applicability of gene-expression
analysis for such application. First, gene expression requires tissue samples. It would
be hard to justify the need for a biopsy as a precursor to prescribing the effective
medicine. Second, gene-expression information is dynamic, so if a patient is to be
tested over time, the original test is not applicable for the follow-up visits.

13.3.5 METHYLATION

Epigenetics is the study of heritable changes in gene function that occur without a
change in the DNA sequence. Methylation patterns are epigenetic changes that can
modify the extent of gene expression by affecting the regulatory regions of genes.
Methylation sites are best known as epigenetic signals residing in genomic DNA [17].
A testimony to the importance of the methylation is the destiny of cloned lambs, which
died soon after birth due to a lack of imprinting, which resulted in overexpression of
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genes due to biallelic expression [18]. It is also believed that a methylation footprint
on chromatin pertains to genome stability and overall chromatin packaging [17].
The challenge in methylation is that such patterns are dynamic and may undergo
somatic mutations in different tissues. Therefore, for early detection or monitoring
of a disease such as cancer, methylation patterns are of paramount importance. These
dynamic patterns make the landscape more dif cult for pharmacogenomics, in the
sense that it increases the space of search in genetic variations. Even if we had the
complete genome sequence of a certain individual, we might still not have the clear
picture of the genomic landscape of that individual because methylation changes are
not detected using ordinary sequencing and SNP genotyping assays.

13.3.6 PROTEOMICS

Since, ultimately, proteins are responsible for performing bodily functions, there is a
great interest in monitoring them directly. However, there are several challenges that
have prevented this eld from reaching its potential. One of the main reasons is the
dif culty in making the detection molecules for proteins. This is in contrast to nucleic
acids, where a complementary DNA molecule can be easily synthesized for detection
of mRNA. The second challenge is speci city, that is, making detection molecules
that attach uniquely to a protein motif. The third challenge is a byproduct of the second.
Since it is nearly impossible to put the whole proteome on a chip, people resort to
making a small subset of the complete proteome on chips (e.g., on the order of 100
or less). In this case, the challenge is the selection of the content; the success of such
chips for pharmacogenomics applications depends highly on this content selection.

13.4 EXPECTATIONS AND FUTURE POSSIBILITIES

13.4.1 RESURRECTING PREVIOUSLY FAILED DRUGS

It has been reported that 10% of drugs are withdrawn in the years following FDA
approval [6]. This statistic provides a great deal of motivation for resurrecting such
drugs using pharmacogenomic knowledge. This view is the essence of the Lazarou’s
program, which focuses on resurrecting previously failed drugs [11]. Most of these
drugs are expected to be the ones that failed during clinical trials due to toxicity or
lack of ef cacy. It is known that the level of toxicity is a critical value for most
drugs, that is, beyond a certain point, many drugs could have toxic effects. Since
the level of toxicity of a drug is confounded by the level of drug metabolism, there
is a chance that by matching the drug dose to the genetic information, one can control
the bounds on the toxicity and thus use such drugs for genetically selected respond-
ers. Therefore, for drugs that failed during clinical trial or at the discovery stage
because of ADRs, pharmacogenomics provides hope for gaining a balance between
the generality of a drug and its ef cacy. In other words, one could obtain an effective
drug (i.e., less prone to causing ADR) by narrowing the scope of a drug to certain
genetic groups [6].

One point of caution in setting expectation for Lazarou’s program is the dilemma
of intellectual property. Many patents for abandoned drugs either have expired or
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are near expiration, thus removing the competitive advantage granted to the patent
owners. Many of the intermediate compounds or technologies associated with such
drugs lose their patentability because of time limits that are built into the patenting
process. Thus, such unpursued drugs or compounds may not have lucrative returns
for the associated pharmaceutical company [6].

13.4.2 BALANCING EFFICACY AND TOXICITY OF DRUGS

For a drug to be effective, it must be exposed to the tissue of interest at a critical
concentration for a given period of time. Below this critical concentration, the drug
is not expected to be effective. Above this critical concentration, there is a margin
above which the drug could be toxic. This critical concentration and the associated
margin (for effectiveness vs. toxicity) are functions of the drug dose and drug metab-
olism. Drug metabolism has been linked to genetic variation (e.g., the polymorphic
cytochrome P450 enzyme). People with certain CYP2D6 polymorphisms have been
correlated with having fast drug metabolism [6]. For such individuals, given a typical
dosage, the drug concentration in the tissue of interest drops too rapidly to be clinically
effective. Thus, to counteract this effect, one could increase the dosage of the drug
for such individuals. A clearer example is the drug Omeprazole. In some Asian
populations, 15 to 23% are reported to be poor metabolizers of this gastrointestinal
drug, because of polymorphism in CYP2C19. This gure is in contrast with 2.5 to
6% in Caucasians [19]. Pharmacogenomics could use such information on such
polymorphisms to predict the correct dose for effectiveness of a drug.

The role of pharmacogenomics in drug action (pharmacokinetics) is seen as the
lowest-hanging fruit for pharmaceutical companies in an attempt to achieve com-
mercially meaningful results within the constraints of a clinical trial, in contrast with
the impact of this eld on the genes involved in the pathogenesis of disease [20].
In fact, many of the large companies are already considering pharmacokinetic vari-
ations [5] with the particular interest of drug effectiveness and toxicity [23].

In summary, there is great interest in ne-tuning the effective drug concentration
to obtain a maximal effect and minimal toxicity. Cancer is considered to be an ideal
condition for which to apply this approach, as subtle differences could account for
notable differences between a particular dose of chemotherapy being toxic or effec-
tive [24]. The margins of toxicity and effectiveness vary widely between drugs and
individuals. To further complicate the issue, one cannot expect to always nd drugs
that are effective and not toxic at a given dosage. This combination depends on the
way in which the toxicity curve (vs. drug dose) and the effectiveness curve (vs. drug
dose) are shaped. An illustration of a hypothetical case for drug effectiveness and

expected to vary for different individuals. One aim of pharmacogenomics is to
characterize such curves for different individuals.

Normally, one would x the level of tolerable toxicity and maximize the effec-
tiveness under that constraint. However, setting the tolerable level of toxicity is
related to the individual’s current state of health. Under certain conditions, setting
such thresholds could be exceptionally challenging for the health practitioners.
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13.4.3 IMPROVED GENERALIZATION 

Japanese pharmaceutical authorities require clinical trials on the Japanese popula-
tion [19]. This bias toward a certain population could create a gap in the applicability
of such products for other populations. Such biases are not always evident and
overtly stated. For instance, similar biases do exist in drug development in the
United States, where a majority of the drugs are tested on the Caucasian population.
Such biases provide the basis for inef cacy of the drugs on other populations (e.g.,
the untested groups).

Pharmacogenomics can provide guidance to those drugs being of use to other
populations in two ways. The most obvious way would be to design drugs for
different ethnic groups based on their genetic composition. However, this method
has serious aws, some of which are discussed next. The more elegant way would
be to bypass the dependency of the drug to population composition by screening for
compounds that bind to all expressed variants of a target (if possible), thus elimi-
nating the need for such a genetic test [19].

13.5 TECHNICAL CHALLENGES AND CONCERNS

13.5.1 STATIONARY AND GLOBAL GENETIC INFORMATION

So far, the foundation of pharmacogenomics has been the dependency of drugs to
genetic variations, while the genetic variations have been considered to be stationary
and global. This stationary condition implies that the genetic information is constant
across time. In other words, one does not expect the genetic constituents of an
individual, as derived from the parents’ germ lines, to change over time. Likewise,

FIGURE 13.1 Hypothetical curves for drug ef cacy and drug toxicity as a function of dosage.
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the global condition implies that the genetic information in all cells is similar. In
the context of diseases, the existence of both these conditions can be challenged if
the genetic change is caused by a somatic mutation. For instance, consider a cancer
caused by a somatic mutation in liver. Such a change invalidates both of the afore-
mentioned conditions, that is, it happens at a certain point in time and it is localized
to a certain organ.

Now consider the implications of the invalidation of these stationary and global
conditions. Pharmacogenomics adds at least one signi cant layer to the current
diagnostic process—a genetic test. Ideally, such a genetic test is comprehensive, that
is, it includes information on SNPs, methylation, gene expression, proteomics, and
so on. Currently we cannot encompass all such tests in an affordable manner. We
could perform this rather expensive test for each patient, once the genetic composi-
tion of every human being could be extracted and stored in a databank. If such
information were to be useful for detection of liver cancer in a patient at some point,
then the genetic information must be conserved across both time and tissue. In other
words, the genetic composition of the blood (taken for the genetic test) and liver
(tissue of interest) must be the same, and the composition of liver at the time the
test was performed must be the same after the onset of the disease. If the cancer is
caused by a sudden somatic mutation in liver at some point after taking the blood
sample for genetic test, both of the aforementioned conditions will be violated. In
other words, the data that are stored in the databank might not be useful for the
detection of such a cancer.

Ordering a new test after the onset of the disease is then required. This solution,
even if affordable (multiple genetic tests), has the underlying limitation that the
physician must know what organ is the suspect in the disease, which implies a
knowledge of the affected tissue or a bias toward the affected tissue. One must know
that something is wrong with the liver before discovering that something is wrong
with the liver! This does not completely invalidate pharmacogenomics and its
required genetic tests, it simply places limits on how far expectations should grow
before becoming unreasonable. For example, the following scenario may be typical.
A patient complains of certain symptoms. The treating physician suspects liver
cancer. The patient’s liver is subjected to genetic test. The test reveals a chromosomal
deletion and hyperexpression of certain cancer-related genes. The doctor diagnoses
the disease as a certain type of liver cancer and recommends a certain treatment for
the disease. If the treatment is to be guided by pharmacogenomics, a further and
separate genetic test may be necessary.

13.5.2 DISEASE COMPLEXITY AND MENDELIAN ASSUMPTION

Phenotype refers to any physiological, morphological, or biochemical characteristic
of an organism [7]. Phenotypes may or may not have genotypic causes, and even
when they do, they could be the result of interplay between multiple genetic and/or
environmental factors. In fact, the taxonomy of a disease is often de ned by multiple
factors, including somatic mutations, epigenetic modi cations, gene expression,
protein expression, and protein modi cation [25]. Despite the fact that many phe-
notypes have genotypic origin, the connection between the two in drug metabolism
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and disease manifestation remains vague and complex [9]. Very few common dis-
eases have Mendelian genetic sources, that is, are caused by mutations in a single
gene. In fact, it has been claimed that there are virtually no examples where a single
DNA variant has always been associated with a particular phenotype in all subjects
of human population [7].

Unfortunately, most diseases of economical and societal interest (e.g., heart
disease, cancer, diabetes and asthma) are considered to be such complex diseases,
that is, they cannot be attributed to single genes. In this context, the related genes
are referred to as susceptibility genes. Such genes may or may not be related
functionally; they may be unrelated but belong to intrinsic biochemical pathways [8].

13.5.3 NATURE VERSUS NURTURE

It is not yet known how much of human variation is caused by genetic makeup
versus other factors such as environment, age, diet, lifestyle, and state of health.
Based on the studies performed on identical twins, it is claimed that 8% of their
differences are from the result of their environment and the remaining differences
are associated with their genetic makeup. However, if the identical twins are not
separated at birth, such estimations could be highly biased, since they would grow
in similar environments and have similar lifestyles, because of a common family.
Therefore, knowing the exact extent of the nature versus nurture in uence remains
a challenging problem. However, it is evident that a considerable proportion of our
differences are due to genetic variations. Such variations are the motivation for
pharmacogenomics.

13.5.4 THE COST OF MEDICINE

The cost of medicine is governed by the cost of drug discovery and the cost of drug
development and evaluation through clinical trials. For drug discovery, the effect of
pharmacogenomics, on one hand, is a linear increase in the type of drug targets, as
compared to the classical model of “one drug ts all.” On the other hand, the
identi cation of drugs for each disease may be simpli ed, as each class addresses
a simpli ed, more direct group of diseases. In essence, pharmacogenomics provides
a classic type of divide-and-conquer model for problem solving, in which a complex
problem (i.e., a disease in population) is tackled by solving a multiplicity of simpler
problems (i.e., the disease in subpopulations). One may argue that the problem has
retained the original complexity, because each subproblem is simpler to solve, but
the number of problems has increased. The reason behind the ef cacy of divide-
and-conquer algorithms is the fact that the complexity often grows linearly (by
having a multiplicity of subproblems), but each subproblem is simpler than the
original problem in a stronger-than-linear fashion (e.g., exponentially). Therefore,
such an approach is expected to improve the solution.

So far, we discussed the ef cacy of the divide-and-conquer method in the abstract
sense. With regards to pharmacogenomics, such ef cacy may manifest itself in the
form of better quality, faster convergence to a solution, or better cost. Whether it
actually accomplishes one or more of the aforementioned objectives depends on the
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type of the problem and the implementation of the solution. In general, in the absence
of the speci c problem parameters and constraints, one cannot predict any of these
conjectures. Similar arguments hold for clinical trials, that is, the true improvements,
if any, are a function of the speci c drug and its genetic link. The market size for a
certain drug is one factor among others that determines the overall cost of drugs [6].
If the market is small prior to strati cation via pharmacogenomics, it may not be
economical to deviate from the classical drug-development approach. Such market
evaluations may also be subject to ethical issues, if one considers the buying power
of the individuals within each ethnically divided subclass.

13.5.5 CLINICAL TRIALS

Drug discovery and development are laborious processes, taking an average of 15
years from the identi cation of targets to marketing of the product. Between iden-
ti cation and marketing there are preclinical and three phases of clinical trials. In
the preclinical stage, the genomic predictors of human toxicity are studied. Phase I
trials are usually performed on healthy volunteers and are designed to identify the
early tolerability of the drug, thus forming the base of knowledge on how the
medicine should be dosed. Phase II trials are usually conducted with several hundred
to a thousand individuals with the disease to be treated. Phase III involves focused
trials for ef cacy and submission of safety markers [3].

It has been reported that 80% of drugs currently fail in clinical trials [5], such that
the clinical trial process has a yield of 20%. Given the lucrative pro t margins upon
the approval of drugs, such a yield is not necessarily low. However, the 80% gap is a
great impetus for seeking improvements. Here is where pharmacogenomics may have
value. The idea is (if we only consider pharmacokinetics) that prominent reasons for
drug failure are toxicity issues. If such toxicities are linked to genetic variations, one
must be able to stratify the population, based on their genetic makeup, and devise a
different dose for each subgroup. The caveat is that by such division, we will have to
increase the size of overall clinical trial, as each subgroup would still require a con-
siderable population size for clinical trial to come up with statistically and clinically
signi cant results. It is true that each subpopulation does not require as many individ-
uals as would the classical clinical trial. However, the sum of individuals in subpop-
ulations for clinical trial is expected to be larger than the original sum. This is partic-
ularly true for traits that appear with low frequencies in certain populations. The other
caveat is the fact that by dividing the population into subpopulations, the problem
changes to a multiple comparison. While statistical corrections, Bonferroni, and so on,
can be used to address such issues [20], such methods result in a necessity for having
a larger number of individuals, which in turn results in increased time and cost for trials.

For the United States, the role of the Food and Drug Administration (FDA) in
pharmacogenomics is worthy of note. In November 2003, the FDA issued a draft
guidance that encourages drug developers to conduct pharmacogenomic tests during
their development process. In this guideline, submission of pharmacogenomics-related
data is deemed voluntary and welcome. The FDA claims not to use such information
for regulatory decision making for new or investigational drug applications, as it
considers the pharmacogenomics data to be of exploratory/research nature. Such
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submissions are meant to prepare and train FDA scientists for appropriately evalu-
ating the anticipated future submissions.

Whether the voluntary submission of pharmacogenomics data will be adopted
by pharmaceutical companies is subject to debate. If the bottom-line pro t of these
companies is jeopardized by pharmacogenomics, it would be hard to imagine that
these institutions would provide such data (even if applicable and available) to the
FDA. If they do, they may be creating incentives for undesired future regulations
based on pharmacogenomics. Such companies may collect this information, inter-
nally, so as to be prepared, just in case pharmacogenomics becomes a requirement
by FDA in the future. On the other hand, if pharmacogenomics opens up opportu-
nities for new markets, then one would expect the pharmaceutical companies to
welcome regulations in this area, as it would impede their competition.

13.6 INFORMATICS CHALLENGES

It has become a common practice in biology (e.g., in highly parallel gene-expression
studies) to generate a massive amount of data (often of low quality and repeatability)
and leave the rest to a general claim that bioinformatics, often referred to in the
context of postgenomic era, would be developed to cope with that glut of information.
There are two inherent assumptions in such a hypothesis. The rst assumption is
that the complex genomic problem of interest does have a solution. The second
assumption is that such a solution can be obtained using ordinary or complex
(possibly futuristic) techniques. Both of these assumptions could be challenged when
it comes to the complex drug–body interactions. In fact, it is not obvious that the
current mathematical tools are even suitable for such studies. The larger hindering
factor is the many-to-one mapping nature of drug–body and body–disease interac-
tions, which results in rank de cient sets of equations (linear or nonlinear), that is,
nonexistence of a unique solution to the problem. 

Next, some popular methods that are used for pharmacogenomics are listed.

13.6.1 GENOTYPE/PHENOTYPE CORRELATION

Discovering the hidden relationships between genotypes and phenotypes is one of
the main enabling steps for pharmacogenomics. If such relationships are found, one
would be able to make an inference system, by which the response of a patient to
a speci c drug (or its dosage) could be predicted. Discovery of such relationships,
however, is a complex task and requires sophisticated pattern recognition systems.
The following methods are some of the popular methods that could be used for this
purpose: arti cial neural networks, support vector machines, projection pursuit,
genetic algorithms, fuzzy logic, Bayesian methods. Often, a hybrid of these systems
is the method of choice.

13.6.2 DIFFERENTIAL GENE EXPRESSION

The methods used for this type of analysis include fold-change, statistical tests of
hypothesis, and Bayesian methods. In all these methods, two populations are
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interrogated—the population of the case-speci c samples and the population of the
control samples. For pharmacogenomics applications, the case and control popula-
tions correspond to the individuals who received the drug or the placebo, respectively.
Alternatively, it could correspond to different individuals who received the drug at
two different doses. The objective of differential gene expression is to discover
whether there is a signi cant difference between the case and control samples, as
viewed by the drug response.

The fold-change uses the minimal information (i.e., the mean values) for two
populations and sets a ag if the ratio of the mean of the measurements for the two
populations exceeds a certain threshold (e.g., 2). Obviously, this method is weak as
it only uses the sample mean and does not take the higher-order statistical measures
into account. An improvement to the fold-change method is a statistical test that
employs the standard deviation information besides the mean. T-test is the most
popular test for differential expression. It assumes Gaussian distributions with dif-
ferent means and the same standard deviations for case and control populations. T-
test is stronger than fold-change but suffers from the assumption it makes that the
standard deviations are invariant. In other words, two gene populations that have
similar intensities but widely different variances will end up being undetected by a
T-test. The other problem with the T-test is its reliance on the estimate of the standard
deviations. This estimate is known to have wide con dence bounds if the number
of samples is low. Bayesian methods are improvements to T-test, particularly in the
case of small sample size, as they have built-in regularization machinery.

13.6.3 DIFFERENTIAL QUANTITATIVE GENOTYPING

Similar to gene expression, differential quantitative genotyping has a great value for
pharmacogenomics. Here, the signal is the minor-allele frequency (MAF). The
objective is to detect a signi cant difference between the MAF of the case and
control populations. All the methods that were previously mentioned are applicable
to differential quantitative genotyping. In addition, since MAF is limited to the range
of [0, 0.5], the performance of the aforementioned methods can be boosted by
tailoring the algorithms to use such prior information.

13.6.4 HAPLOTYPE MAP

It was mentioned that representative SNPs of haplotype blocks could play a major
role in pharmacogenomics by allowing researchers to use a smaller set of SNPs in
association and linkage studies. The three popular ways by which haplotype bound-
aries can be detected are Con dence Intervals [21], Four Gamete Rule [22], and
Solid Spine of LD.

In an attempt to systematically identify the haplotype blocks and assign their
corresponding tag SNPs, the International Haplotype Map (HapMap) Project was
established in October 2002. This project is a collaboration of scientists from the

shows the breakdown of the chromosomes and percent coverage on genome for
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13.7 DISCUSSION: ETHICAL ISSUES AND 
ALTERNATIVE RESEARCH

13.7.1 BIASES FOR RACIAL AND ETHNIC GROUPS

Race is a vaguely de ned concept. Often, ethnicity is used instead to describe
changes developed by segregation during the evolutionary process. There are reasons
to believe that pharmacogenomics may result in development of different drugs for
large subpopulations (e.g., Caucasians, Africans, and Asians). Such reasons include
the difference in allele-frequencies as well as lifestyle and societal aspects. The
ethical issues that would arise for such strati cation include the selection of candi-
dates for clinical trials and the nancial impetus for the development efforts, as the
main thrust of the pharmaceutical companies is the bottom-line pro t, and not all
subpopulations have the same level of nancial power. The other concern is the issue
of other ethnic groups that are either excluded from the above or the overlap of
some. The latter is particularly of interest in recent years, where cross-cultural
marriages have increased.

13.7.2 INSURANCE

The issue with insurance companies is worth investigating from two perspectives.
First, patients with genotypes that reduce the probability of the appropriate therapy
could be at risk of being denied coverage [6] or losing an existing coverage as well
as becoming targets of stigmatization [9]. Second, the pharmacogenomics drugs and
pharmacogenomics-based treatments may be more expensive than the corresponding
conventional ones [3]. In such cases, the insurance companies might be more inclined
to approve the conventional drugs, even if the bene ts of the pharmacogenomics
counterparts are higher.

13.7.3 GENDER DIFFERENCES

Differentiating drugs based on gender is not a new development prompted by phar-
macogenomics. Some drugs are already presented in different packages, although
essentially with similar active ingredients, for men and women (e.g., Rogaine). Since

TABLE 13.2
Breakdown of the Chromosomes and Genome Coverage 
for the HapMap

Country Genome Coverage Chromosomes

United States 32.4% 4q, 7, 8q, 9, 12, 18, 22, X, Y
Canada 10.1% 2, 4p
China 9.6% 3, 8p, 21
Japan 24.3% 5, 11, 14, 15, 16, 17, 19
United Kingdom 23.7% 1, 6, 10, 13, 20
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the cornerstone of pharmacogenomics is genetic differences, and since by de nition,
there are large genetic differences between men and women (via the X/Y and
methylation patterns on X/X), there are reasons to believe that drug development
for males and females could result in concerns similar to what was stated for different
racial groups.

13.7.4 SECURITY OF GENOME DATA BANKS

Genetic tests demand data banks for storage and coordination. The security of these
data banks is of paramount importance. In the wrong hands, genetic information can
be used to obtain immoral advantages (on a population or individual basis). Since no
security system is “hackerproof,” data bank security is a serious concern that arises
with pharmacogenomics, as it relies heavily on data obtained from genomic tests.

13.7.5 BIOPSY FROM HEALTHY TISSUES

Case-control studies are among the most popular ways of associating phenotypes
with genetic causes. For example, in a case-control gene-expression study, expression
levels of many genes are interrogated identify genes that best correlate, as viewed
by their differential expression level in malignant versus benign tissues. Thus, such
studies depend strongly on the existence of biopsy samples from benign tissues.
Such tissues do exist in historic repositories, (e.g., paraf n-embedded samples), and
their availability makes these samples unique and highly useful for performing
biological case-control studies. The only complication while dealing with paraf n-
embedded samples is the need for a sensitive assay [10], as the RNA molecules in
the mentioned samples are subject to large degradations. Healthy tissue samples can
also be acquired if, at the time of surgery (if such procedure is inevitable), a sample
of healthy tissue is taken along with the diseased sample. Aside from cases such as
these, taking biopsy samples from known benign tissues, just for the sake of making
a predictive model, would be unreasonable and unethical [7].

13.7.6 DIVERTING ATTENTION FROM ALTERNATIVE RESEARCH

The overexcitement factor could be dangerous for pharmacogenomics. This factor
can be criticized from two different angles: insuf cient grounds and impeding alter-
natives. With respect to insuf cient grounds, the problem is setting high expectations
and not being able to deliver. Such expectations may result in raising suspicions of
the eld and create negative public opinion about the appropriateness of such tech-
niques. This is analogous to what happened to neural networks in the 1960s and
gene therapy in the 1990s. In the case of neural networks, it did return with more
limited expectations and a more established backbone after the passage of nearly
two decades. However, in the case of gene therapy, no signs of a return are yet
evident. With regard to the second problem (i.e., impeding alternatives), the argument
is that given a xed industrial or governmental budget by diverting a large portion
of the funds to what sounds promising (although its support is merely based on a
vision and not much data), for example, a panacea version of pharmacogenomics,
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the funding for alternative technologies in medicine may be more limited and thus
delay or prevent the evolution of such methods.

13.8 CONCLUSION

There are numerous controversies concerning the utility of pharmacogenomics. While
at a small scale and for a limited number of drugs, it may be possible to use genomic
information to provide drugs that are more potent and have fewer side effects for
certain individuals, generalizing this idea to the whole genre of medicine and treating
pharmacogenomics as a panacea is the subject of much speculation and debate. Aside
from the technical and ethical arguments, large pharmaceutical companies have eco-
nomic disincentives to adopt pharmacogenomics if that approach proves to be less
pro table for them than conventional drugs, unless they undergo a major paradigm
shift. These economic disincentives suggest that the initial attempts to launch phar-
macogenomics could be limited to small or new enterprises. Nonetheless, the amount
of data for and efforts toward pharmacogenomics is growing. All of this will aid in
establishing realistic boundaries on the expectations from this eld.
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14.1 INTRODUCTION

The principles of systems biology, as recently described by Dr. Leroy Hood of the
Institute of Systems Biology, de ne a process of research that requires us to rethink
our now obsolete de nition of systems biology: systems biology is more than the
mere application of informatic technologies to biological research. According to Dr.
Hood, the process that de nes systems biology must be hypothesis driven, quanti-
tative, integrative, dynamic, and global (in the sense that it employs all relevant data
in a uni ed and coherent theoretical structure). One discipline that has emerged as
a primary contributor to these efforts is the mathematical modeling of dynamic
biological systems, especially in the context of human disease. As with any new and
novel research strategy, the ultimate utility of systems biology will be measured by
its ability to solve real-world problems in medical research. One such problem is
the identi cation and validation of drug targets in pharmaceutical research.

Identifying potential drug targets is a primary goal for the pharmaceutical
researcher. In the age of high-throughput technologies, one success marker of this
quest has been the number of data points one can collect and store. Hampered by a
lack of pathophysiological context in which to interpret one’s results, searching those
databases and deriving from them adequate information regarding a potential target’s
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role in a given disease is a daunting task. Thus, validating a target with any degree
of predictive con dence remains a major bottleneck for the industry. To understand,
at the most fundamental level, the physiologic implications of a potential target’s
function, one must know what is known about that target in the context of the disease
and its progression. However, and more importantly, one must also know what is
not known about it. Returning to Dr. Hood’s de nition of systems biology, one must
be able to integrate, into an intellectually coherent and rigorous structure (i.e., a
model), all the relevant pieces of information regarding a presumptive target’s role
in a disease and identify from that theoretical structure what is still to be understood
about that molecule and its activity in the disease state. Based on a systematic
analysis of that infrastructure, one can decide what pieces of information are most
vital to the validation process and pursue them directly. For this process to work
optimally, the scope and breadth of a model must be determined by the decisions it
is intended to support and should, at the very least, be able to represent disease
progression as a dynamic evolution of pathology. Ideally, this will take place in a
system that represents human physiology and can replicate human clinical outcomes,
giving a unique window into how manipulating a target would behave in the clinic
well before a drug reaches that stage.

14.1.1 MODELING: A METHODOLOGY FOR IDEALIZING A SYSTEM

To understand how mathematical modeling supports the processes de ned by Dr.
Hood’s systems biology, one must rst understand what mathematical modeling is. First
and foremost, mathematical modeling is a means to an end. It explicitly idealizes and
characterizes a system in suf cient detail so that the research scientist can directly apply
it to his or her research question. For example, every biochemistry laboratory in every
pharmaceutical company has, hanging on its wall, a poster showing the interaction of
biomolecular entities in a given cell under a given condition. These posters are models
and as such are idealizations of a complex dynamic that underlies a biological process.
Based on this type of theoretical infrastructure, one can identify the key players and
interactions driving a biological dynamic and from that, as a mental exercise, project
the hypothetical behavior of the system under a given condition. The problem with the
poster model is that it is, by its very nature, a snapshot of one particular state of the
system and thus not dynamic. It is also not particularly quantitative, thus violating two
of Dr. Hood’s key criteria for inclusion in the systems biology process.

Taking the poster-modeling paradigm to the next level, some investigators are
using statistical modeling to identify potential correlations in datasets of interest,
thus establishing potential relationships between biomolecular entities in a given
system. Others are using sophisticated pattern-recognition techniques to infer path-
way dependencies from these same data [1–3]. Being able to identify the dynamics
of the system and their subsequent quanti cation is wholly dependent on the con-
ditions under which these data are acquired—the conditions of the cell culture/tissue
samples and the assays designed to sample them.

Alternatively, one can construct a mathematical model of a given system by rigor-
ously characterizing the underlying biological structure and its related dynamics into a
set of well-de ned equations. By representing the underlying biological processes as a
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collection of time-dependent mathematical structures, the resulting system of equa-
tions also idealizes the disease biology and its pathophysiological evolution.

A number of organizations, mainly academic, are presently taking a rst principles
or bottom-up/data-driven approach to developing a mathematical infrastructure for
complex biological systems (an abbreviated sampling of the modeling space is pro-
vided in table 14.1). These groups model the components of a system one by one and
then try to integrate them into a coherent biological whole. The major directive of this
effort is to understand and uncover all the component parts of a system, model each
one discretely, and then build the system’s control circuitry to link them. Using this
approach, a detailed representation of each component and its function is created.

TABLE 14.1
A Sample of Organizations Using Bottom-Up Mathematical Modeling
and Biosimulation-Based Approaches to Address Problems
in Pharmaceutical Research

Data Driven Mission
Model Systems or 
Application Areas

Alliance for Cellular Signaling
(http://cellularsignaling.org)

Identify and integrate proteins 
contributing to cellular signaling

B lymphocytes; cardiac 
myocytes

Cell Systems Initiative
(http://csi.washington.edu)

Establish a comprehensive theory of 
the cell; create predictive models

Dendritic cells; T cells

Caltech ERATO Kitano
(http://www.cds.caltech.edu/erato/)

Provide software infrastructure 
that enables model and resource 
sharing

Software platform: 
System Biology 
Workbench and System 
Biology Mark-Up 
Language (SBML)

E-Cell Project
(http://www.e-cell.org/)

Provide framework and software 
to simulate cellular behaviors

E. coli; erythrocytes; 
neurons

Institute for Systems Biology
(http://www.systemsbiology.org/)

Study genes and proteins 
simultaneously by perturbing 
model organisms

Microbes; immune, 
cancer, and stem cells

Molecular Sciences Institute
(http://www.molsci.org/)

Focus on predictive biology; create 
tools for the analysis, design, and 
engineering of biological systems

E. coli; yeast

Gene Network Sciences
(http://www.gnsbiotech.com/)

Build models of cell function and 
human biology to support 
pharmaceutical research and 
development

Human cancer cell; canine 
ventricle

Genomatica
(http://www.genomatica.com/)

Provide software and models of 
cell metabolism to enhance 
bioproduction and antimicrobial 
discovery

Metabolic network 
models for a variety of 
microbes

Virtual Cell Project
(http://www.nrcam.uchc.edu/)

Provide modeling and simulation 
framework and software

Intracellular processes 
such as calcium 
dynamics and nuclear 
envelope breakdown
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Two organizations, however, have taken a top-down/hypothesis-driven approach
to modeling these kinds of complex biological systems and their dynamics (table
14.2). This approach starts by de ning a general set of behaviors indicative of the
disease state. Then, within these constraints, one de nes the set of nested subsystems
whose control and context are required to reproduce those particular behaviors. Each
subsystem is then deconstructed in greater detail from the top down, going from
whole-body dynamics to the molecular level. The depth of the modeling (i.e., its
detail) is determined either by the limits of our knowledge or by the depth necessary
to replicate a given biological behavior.

Once a model has been developed, one can analyze it in a number of ways. If
it is mathematically tractable, that is, small enough and describing a system of linear
dynamics, one can apply the well-developed practices of theoretical mathematics to
derive a closed form solution of the system. If that is possible, the product of the
analysis will be a set of fully parameterized equations, which can, for any given
parameter vector and with the aid of a simple calculator, establish the dynamic state
of the system at any time, t. However, even if deriving a closed-form solution for
the entire system is impractical, one can analyze the basic dynamics of the system
by assuming steady-state conditions, and deriving expressions for xed-point behav-

dynamics on the parameter vector will give the modeler an insight into the forces
driving the system and its behavior.

Complex biological behavior is controlled by a network of interacting compo-
nents (e.g., tissue systems, cells, cytokines, receptors, transcription factors, etc.).
Their physiologies and dynamics determine the makeup of the mathematical model.
If one ignores the issues of dynamics and time dependency in the model, thus
violating one of Dr. Hood’s criteria for the new systems biology, one can still analyze
the basic structure of the network using graph theory [5–8]. For example, Anderson
and Hunt [8] analyzed the degree of connectedness and closeness (in a graph theoretic
measure of distance) of a complex mathematical model of human metabolism and
obesity (the Entelos® Obesity PhysioLab® Platform). Their stated aim was to use

TABLE 14.2
A Sample of Organizations Using Top-Down Mathematical Modeling and 
Biosimulation-Based Approaches to Address Problems in Pharmaceutical 
Research

Hypothesis Driven Mission
Model Systems or 
Application Areas

Entelos, Inc.
(http://www.entelos.com/)

Develop effective new disease 
treatments and reduce the time 
and cost needed to develop them

Adipocytes; asthma; 
diabetes; obesity; 
rheumatoid arthritis

Kenna Technologies, Inc.
(http://www.kennatechnologies.com/)

Improve decision-making based 
on complex biological and 
medical data 

Osteoporosis; otitis 
media; oxidative stress; 
periodontal disease

 © 2006 by Taylor and Francis Group, LLC

iors (e.g., see [4]) around the steady state. Identifying the dependence of those



350 In Silico Technologies in Drug Target Identification and Validation

this methodology to determine the “pressure points” in the system that are most
likely to lend themselves to manipulation and thus yield potential drug targets. They
found that while the degree of connectedness of the individual elements could be
quite misleading due to nonspeci c activities of highly integrated control structures,
there do exist “gatekeepers” in the system that oversee access to the dynamic links
that control each subsystem’s behavior. These gatekeepers actually provide pressure
points for manipulating the system and do suggest that a viable target may reside
in their midst.

14.1.2 BIOSIMULATION: A MEANS OF CHARACTERIZING THE 
SOLUTION SET OF THE MODEL

Typically, for human disease, the systems one encounters are much too large and
far too complex for the modeler to derive simple closed-form solutions and/or to
perform simple steady-state analyses. As just noted, these systems usually include
signi cant nonlinear dynamics, feedback controller systems, and time dependencies
that are not easily modeled with pencil and paper. However, one can, by applying
numerical differential equation solvers, still attack the problem by numerically esti-
mating, under a variety of conditions, a set of systemwide solutions. Numerically
solving the equations that make up a model of human disease and projecting these
solutions forward in time is termed predictive biosimulation [9,10].

By being hypothesis driven, quantitative, dynamic, and inherently integrative—
and depending on the scope of the model—global, predictive biosimulation is able
to ful ll all of Dr. Hood’s criteria for the new systems biology paradigm. In addition,
when taking advantage of all the recent advances in computer systems development,
especially processor speed and cluster computing, it is fast.

More formally, predictive biosimulation is a process that solves, by numerical
approximation (e.g., Runge-Kutta numerical integration algorithms), the complex
equations that describe a system’s behavior. Since it is so fast and allows for
maximum exibility in specifying the hypothetical conditions under which a system
will evolve, predictive biosimulation allows researchers to rapidly develop and plumb
What if scenarios surrounding the potential in uences of a presumptive target on
disease progression. In addition, the researcher can easily identify any inconsisten-
cies in the applicable data and, more importantly, any misconceptions derived there-
from that could lead to awed decision making. Once these gaps and inconsistencies
are uncovered, hypothetical exploration in silico allows the researcher the luxury of
predetermining the impact of a particular physiological hypothesis on the ultimate
course of the disease. Thus, data collection efforts can be better focused, assays can
be better designed, and the resultant data can be more ef ciently interpreted. By
iteratively focusing modeling and data collection efforts on subsystems with the
greatest impact on the key aspects of a disease’s phenotypes, predictive biosimulation
can help to clarify a system’s complexity and, through that effort, distinguish causal
factors from mere correlates in underlying pathophysiology.

By providing an environment that not only manages data and information but
also helps characterize and manage the inherent unknowns associated with such a
complex knowledge space, modeling and biosimulation provide a systematic
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approach to research that facilitates a hypothesis-driven strategy to experimental
design and exploration. Managing these hypotheses under the aegis of the systems
biology approach thus ful lls the rst of Dr. Hood’s criteria.

14.2 THE CHALLENGE OF IDENTIFYING
AND VALIDATING A DRUG TARGET

While the resources required to successfully bring a new drug to market are
enormous, averaging 14 years and 802 million dollars, these costs continue to rise
[11–13]. A signi cant contributor to this cost comes from the large number of drugs
that fail in the clinic (e.g., ~53% of compounds fail during Phase 2). Of these
failures, a signi cant proportion are due to unanticipated systemwide effects. Bio-
logical redundancies, unexpected control mechanisms, and multiple physiological
timescales (e.g., a mismatch between the timescale of a drug’s effects and the
timescales that characterize disease pathophysiology) can contribute to these unex-
pected clinical effects.

In the process of drug discovery, target selection consists of two main steps:
target identi cation and target validation; the ultimate success of a new drug relies
almost entirely on the quality of the target that it modulates. Thus the key to
successful target selection becomes the predictability of ultimate clinical outcome.

In today’s drug-discovery environment, researchers have access to an enormous
amount of data, most of it coming from genomic, proteomic, in vitro, and in vivo
animal experiments. The challenge for the pharmaceutical researcher is how to most
ef ciently use all these data to close “the predictability gap” (i.e., how does one
translate in vitro and in vivo data into a clinically predictive context?). The key to
meeting this challenge falls on how one goes about curating these data and extracting
from them the bits of biological insight that will ultimately help to identify a novel,
clinically relevant target, that is, a molecular entity that both plays an important role
in a particular disease’s pathophysiology and is accessible to exogenous modulation
(i.e., is druggable). Using traditional approaches, targets are identi ed and evaluated
using in vitro systems such as cell lines or primary cell culture. These in vitro systems
suffer because they remove relevant cells from potentially important regulatory
controls. In other cases, in vivo systems, such as animal models (e.g., knockouts
and/or transgenics), are often used for this exploratory research. In vivo animal
models present signi cant limitations as well. Typically they represent an arti cially
induced state meant to mimic the disease they intend to represent. Furthermore, even
if some of the pathways involved in the disease process are conserved between
species, their regulation and equilibria are most likely not [9].

In trying to understand the underlying biology of human disease, the pharma-
ceutical research community has come to increasingly depend on technologies that
characterize the genome and proteome, that is, they are taking a bottom-up approach
to disease. These automated and high-throughput technologies have produced a
deluge of sometimes incoherent biological datasets. While these data, depending on
the context of the sampling procedures (i.e., which tissues or cells, taken from which
samples, under which conditions?), can potentially correlate changes in gene and
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protein expression with a particular disease state, they are typically incapable of
independently and directly identifying causal relationships. In other words, these
data cannot distinguish between changes caused by the disease and those that cause
the disease. The data are also not able to predict how these changes, which are
usually observed in isolated tissue samples or cells, may affect, or be affected by,
the system as a whole. The second of Dr. Hood’s criteria is missing: these approaches
are not integrative. To integrate these data into the proper perspective, one must rst
embed them in a coherent human biological context—one that includes a dynamic
description of all the relevant regulatory mechanisms surrounding the disease, its
onset, and its progression. Only within this larger, human context can researchers
ef ciently interpret the massive amounts of data at hand and gain the in-depth
knowledge needed to successfully develop a drug.

For example, consider the modeling efforts surrounding IL-5 inhibition as a
treatment strategy for chronic asthma. The original assumption underlying these
clinical efforts was that by reducing IL-5 levels, one can reduce airway eosinophilia,
which in turn should yield an ef cacious effect in asthma. Modeling studies predicted
instead that although this therapeutic strategy would indeed reduce eosinophilia, it
would produce little improvement in lung function during an acute asthma attack
because of other redundant in ammatory pathways [14,15]. The lung function result
was later born out by clinical data [16].

14.2.1 IDENTIFYING THE KEY BIOMOLECULAR ENTITIES INVOLVED 
IN A DISEASE’S PATHOPHYSIOLOGY

By way of example, consider a cell that is inappropriately activated by an endogenous
signal, and, in response, upregulates and secretes a particular cytokine. Suppose
further that this cytokine stimulates a second cell that then upregulates the expression
of another cytokine and its autocrine receptor. And suppose further that this second-
ary cytokine signals another cell in the disease cascade, which goes on to alter its
physiology in a deleterious way. While a genomic snapshot of this process may yield
a set of differentially expressed genes that correlate strongly with the disease state,
do these genes necessarily contain the optimal therapeutic target, or is it possible
that the most in uential target actually lies upstream (e.g., the receptor on the cell
receiving the initial signal) or downstream of the cascade (e.g., the cytokine receptor
on the third cell)? Without this larger, more integrated physiologic context, one may
believe that he or she has identi ed many novel candidate “targets” but has little
guidance as to which ones will be the most effective in treating a given disease.
Consequently, pharmaceutical researchers must sift through thousands of potential
failures before achieving likely clinical success. The earlier one can drop ineffective
targets, the greater the savings in time and money will be.

14.2.2 THE CONTEXT OF THE BIOLOGY—THE PATHWAY

While it is vital that the evaluation of a new target determines how modulating that
target may impact clinical outcome, it is equally important to understand which
pathways are driving this effect. Predictive biosimulation provides researchers with
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a unique environment for studying both of these questions. For example, consider
the scenario previously outlined. How much does this particular pathway contribute
to the conglomerate physiology of the disease? Is there a feedback mechanism in
place that ampli es or damps this signal? Are there redundant or backup pathways
that will mitigate inhibition of this particular cascade? By systematically modulating
a presumptive target’s in silico activity within the integrated context of whole-body
human biology, the impact of each pathway on clinical outcome can be more
completely assessed.

14.2.3 THE LOGIC OF THE BIOLOGY—THE DYNAMIC CONTROL 
CIRCUITRY

Once a target has been selected, the focus of the discovery process shifts to chemistry.
The role of the chemist is to develop a molecule that interacts with that target in the
most appropriate manner. But what criteria should one use to optimize candidate
selection? In other words, what does “appropriate” mean in this context? Currently,
the objective criteria for advancing compounds into the early drug-development
process (e.g., pharmacokinetics, safety studies, animal studies, etc.) are incomplete
and poorly re ect the compound’s clinical effect. We know this because only 1 of
5,000 potential drug candidates is likely to be approved for therapeutic use [17,18].
To overcome this hurdle, the pharmaceutical researcher must be able to establish,
quantitatively, the nature of the presumptive target in the context of the disease and
its dynamic regulation. Only then can he or she determine its impact on disease
progression and pathophysiology. In addition, to understand the impact of a potential
therapy on clinical outcome, one must also determine the ultimate effects of a target’s
dynamic modulation on disease evolution and reversal. Using in silico modeling and
predictive biosimulation, one can, a priori, develop, mathematically express, and
explicitly test hypotheses regarding a target’s activity in the context of a clinical
response. However, since these ndings typically are based on the assumptions of
the hypotheses at hand, these in silico results must be considered as conditional
answers such as, “If it is true that Molecule X in Pathway Y alters the physiology
of Cell Z in thus and such a way, then Molecule X is a potentially valuable target
to pursue.” These conditional solutions thus establish the necessary conditions for
the target validation assays in the lab.

14.2.4 THE PRESSURE POINTS OF THE SYSTEM—REGULATION OF 
THE CONTROL CIRCUITRY

While building a model, and during any post hoc analysis, one can explicitly identify
and explore gaps in the extant data for potential new target opportunities. For the
purposes of this chapter, we term these gaps knowledge gaps. By clearly and com-
pletely mapping the contextual knowledge space surrounding disease pathophysiol-
ogy, mathematical modeling can help the research scientist focus on and resolve the
most important of these, that is, those that yield the greatest impact on the clinical
outcome. By focusing wet-lab experimentation on these key pathways, that is, those
most likely to drive disease pathogenesis and progression, and by ensuring that the
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right experiment is performed in the right context, modeling and biosimulation help
to make the target validation process more predictive. In addition, because a model
tells the pharmaceutical researcher not only what is happening but why it is happen-
ing, these types of multidisciplinary efforts (in silico studies linked to experimental
research) cannot help but aid in the understanding and interpretation of key exper-
imental results.

14.2.5 PATIENT VARIABILITY AND TARGET VALIDATION

If a molecule is on the cause–effect pathway of the disease, it may be considered a
presumptive target. However to be a commercially viable target, it must be both
druggable and expressed in a reasonably large proportion of the patient population.
When dealing with the effects of a biochemically active compound, it is not suf cient
that the molecule merely modulate the activity of the target, but it must exhibit all
the characteristics of a medicine, that is, that it is safe, effective, and able to gain
access to the target site in suf cient quantity that it is able to exert its therapeutic
effects. Mathematically speaking, this is a multivariate optimization problem. The
problem is that patient variability can creep into any of these aspects of medicinal
character and must be accounted for when selecting a target and its modulating
medicine.

How does one account for this patient variability in the drug-discovery process?
The obvious answer is through the execution of predictive bioassays. However, one
unfortunate consequence of modern drug discovery is that the bulk of the research
and development is not performed in human individuals but rather in cellular systems
and test animals. The point of clinical trials is to prove that what we see in test
animals and in in vitro cellular preparations is, in fact, generalizable to an outbred
and variable population called humans. Since lab rats are typically derived from
inbred strains, we can control in our animal studies, to some extent, the effects of
genetic variation. From a scienti c point of view this is a good thing to do, as it
controls experimental variance and helps to separate the signal from the noise.
However, our ability to generalize these scienti c ndings to humans and their
inherent variability is severely hampered. In addition, we control the environmental
variability each test animal experiences by keeping it in a controlled laboratory
animal care facility. Again, from a scienti c point of view this is a good thing to
do. However, this is surely not the case one observes with the human population.

The fact that the human population is not composed of genetically controlled,
environmentally sequestered subjects but is an outbred, highly variable composite
of distinctly unique individuals is a constant dif culty for the clinical research
scientist. To better understand the sources and theoretical constructs of this variabil-
ity, one must capture, in explicit, quanti able hypotheses, the effects of genetic and
environmental variations on the underlying physiology and account for them in
disease expression and progression. Mathematically, this combinatoric set of inter-
dependent hypotheses can be represented as speci c parameter vectors in any under-
lying mathematical model. How one can use predictive biosimulation to both rep-
resent and explore the impact of this variability on target selection and validation is
presented in greater detail in the case studies next.
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14.3 THE ROLE OF PREDICTIVE BIOSIMULATION IN 
TARGET IDENTIFICATION AND VALIDATION 

Once a model has been speci ed, built, and validated, one can use biosimulation as
a means of solving the model equations in the context of a directed research effort.
Given the focus of this book, we center our discussion on the application of biosim-
ulation to the identi cation and validation of disease targets and their dynamic control.
As previously noted, the results generated by such an in silico study are necessarily
conditioned upon the underlying hypotheses being tested and are, in and of them-
selves, necessary but insuf cient to the decision-making processes surrounding target
identi cation, validation, and prioritization. To adhere even more rmly to Dr. Hood’s
de nition of the processes de ning systems biology, it is incumbent on the researcher
who is using this particular hypothesis-driven approach to explicitly test his or her
assumptions in the appropriate physiological context. Correct use of biosimulation
can provide suf cient guidance and scienti c explanation to the researcher to ensure
that he or she can test these hypotheses directly in the lab. By explicitly de ning the
biology of interest in the context of the disease, the biosimulation produces a set of
recommendations for focused laboratory experiments that are suf ciently predictive
to validate the role of a speci c target in the pathology of the disease.

14.3.1 CAPTURING PATIENT VARIABILITY IN THE BIOSIMULATION 
MILIEU—THE VIRTUAL PATIENT

To identify and validate a target, as in all medical research, it is essential that one be
able to explicitly formulate, represent, and test multiple hypotheses that underlie the
variability observed in a particular patient population. For example, variations in the
expression levels of cell-surface receptors; metabolism rates of drugs; patient-speci c
absorption, distribution, metabolization, and excretion; pharmacodynamic variations
in dose–response relationships; and different phenotypic behaviors can all affect the
ef cacy of a therapeutic intervention. The question then arises as to how one explicitly
de nes the underlying hypotheses one makes concerning the pathophysiology of the
disease. Given the existence of a mathematical model, one can characterize each
hypothetical alternative as a vector of explicit model parameter values. In human
system models, these vector constructs are termed “virtual patients.” However, before
one can explore the impact of these hypotheses on the viability of a putative target, it
is necessary that each virtual patient represent a valid piece of biology. To be considered
a valid virtual patient, the underlying biological attributes of the virtual patient must

rst fall within known biological ranges and its simulated behaviors must match known
human, in vitro, and in vivo behaviors. For example, the response to an oral glucose
tolerance test in a virtual diabetic must both correspond to observed responses in the
human population and exhibit biologically reasonable dynamics in the underlying
physiologies of the liver, adipose, gut, and pancreas.

These constructs can then be used to investigate different hypotheses regarding
the impact of a proposed physiologic modulator (e.g., 100% inhibition of a presumptive
target in a particular cell under a particular condition) in patients of different character
(e.g., a virtual diabetic who has accelerated gluconeogenic pathways vs. one who has
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normal glucose production but has impaired insulin production). By using multiple
virtual patients to represent speci c realizations from among all possible biological
variations, researchers can begin to understand the types of variability that they may
encounter in the clinic. Given the transparency of the mathematical model, researchers
can also begin to understand how to distinguish patient types that respond differently
to proposed therapeutics (e.g., well vs. marginal vs. not at all).

To adequately represent the highly variable nature of the human patient popu-
lation, one must, in addition to representing variations on an individual basis, extend
his or her theoretical methodologies to capture and characterize population variability
across an entire set of virtual patients. These sets of virtual patients are termed virtual
patient cohorts, and it is here that the gap between possibility and probability must
be bridged. To meet this challenge, Entelos has developed a series of methodologies
for bridging the gap between the existence of a phenotype (i.e., the virtual patient)
and its prevalence in an epidemiological pro le of the clinical population.

An alternative approach would be to generate a large number of virtual patients
to create a population that is epidemiologically comparable to the real population
of patients in size and characteristics [19]. This approach, however, is more compu-
tationally intensive and does not give any real advantages over a prevalence weighted
population scheme.

14.3.2 APPLYING PREDICTIVE BIOSIMULATION TO TARGET 
IDENTIFICATION

Applying in silico–based research to assess a target’s relevance in a particular disease

Detailed case studies of these processes as implemented on the Entelos PhysioLab
platforms are given next.

14.3.2.1 Step 1: Define Target Functions and Assess Their 
Potential Clinical Impact

To evaluate a speci c target, the pharmaceutical researcher must rst conduct a system-
atic analysis of any and all relevant data regarding the presumptive target’s activities,
that is, where it operates, under what conditions it operates, how it is controlled, and
how it alters the physiology of the cells in question. If the target is truly novel and not
fully characterized, then, based on any indirect evidence regarding it and its activity, a
set of hypotheses can be generated and mathematically characterized. Once character-
ized, one must quantify the impact of modulating the target on each function or hypoth-
esis individually. The outcome of this initial analysis is an inventory of detailed descrip-
tions for each target function, including the scienti c rationale describing the underlying
assumptions, observations, and ndings regarding those characterizations.

14.3.2.2 Step 2: Modify the Model and Simulate Target Modulation

Once a target has been fully speci ed, one must modify the mathematics in the model
to explicitly represent the physiological impact of those relevant target functions. If
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the dynamics are not explicitly represented in the model, then appropriate surrogates
must be identi ed and modi ed appropriately. In conjunction with adding target-
speci c characterizations to the model, one simultaneously develops a family of in
silico experimental protocols that characterize target modulation in the context and
condition of the disease for each hypothesized virtual patient. The impact of target
modulation, on each pathway individually and in combination, can then be assessed
and, based on these results, its clinical impact predicted.

The outcome of this effort is a structured collection of in silico experiments that
explicitly characterize target modulation in the context of individualized disease. At
Entelos, the results of each simulated protocol for each virtual patient are stored in
a database, which allows the research scientist to recall and analyze every model
variable at any point in the simulated experiment. This transparency of information
forms the basis of a subsequent pathway analysis.

14.3.2.3 Step 3: Analyze and Evaluate Biosimulation Results

14.3.2.3.1 Identify the Target’s Mechanism of Action
The goal of analyzing the simulation results is to identify causal linkages between
a target and relevant clinical endpoints. By identifying the pathways driving the
target’s effect on the clinical outcome, this analysis also provides the required
information needed for de ning minimal thresholds for achieving a desired clinical

FIGURE 14.1 Flowchart of data/information requirements driving target identi cation and
validation in silico.
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result. As a rst step, one can use the biosimulation results to analyze and then
prioritize the hypothetical contribution of each individual pathway on the ultimate
clinical outcome. To take full advantage of these results in the validation of the
target, one can exploit the transparency of the system to characterize its detailed
mechanism of action in each cell type in each pathway. 

14.3.2.3.2 Determine Pathway Thresholds/Criteria
Once the pathways through which the target affects the clinical outcome are iden-
ti ed, one can directly address the question of how much that target must be
modulated to make it a worthwhile candidate for further development. This process
provides the research scientist with an objective measure of a target’s druggability.
These mathematical expressions explicitly de ne minimum thresholds or constraints
for a set of pertinent variables in the model. These thresholds allow instant assess-
ment of predicted clinical ef cacy for a given target modulation experiment. Once
established for all the pathways in tandem, one can analyze the relative contribution
of each pathway separately. Given the complexity of the biological interdependencies
at hand, it is highly likely that individual threshold values may vary from pathway
to pathway. By dissecting these dynamics in silico, one can de ne the different
combinations of pathway thresholds required to achieve clinical ef cacy.

FIGURE 14.2 Flowchart highlighting the hypothesis generation and explicit characterization
for target identi cation and validation in silico.
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These are the criteria and constraints that de ne the context for the making
quantitative recommendations for in vitro or in vivo target validation efforts. 

14.3.2.3.3 Analyze Any Uncertainties Surrounding Target 
Activity 

While evaluating a novel target, it is very likely that one cannot, with a high degree
of con dence, quantify its behavior in a particular pathway under a particular con-
dition. When this occurs, it is incumbent on the researcher to explicitly identify this
knowledge gap and test the robustness of the assumptions he or she has made to ll
it. For example, if no data are available to quantify a target’s involvement on a
speci c pathway yet there is compelling evidence that the target has a role in that
pathway, the researcher can use the power of the biosimulation platform to evaluate
an appropriate range of values representing the suspected biomolecular dynamics of
the target. 

Once explicitly de ned and characterized, one can explore the impact of these
assumptions on the eventual decision as to whether a target is worth pursuing. The
decision itself, however, may not be as clear cut as a simple “yes” or “no” and may
lead to the development of additional experiments to help resolve all the pertinent
knowledge gaps. The transparency of the model is fundamental to the ef cient
development of these highly focused assays. An example of how this process has
been applied at Entelos is outlined in the following case studies.

14.4 CASE STUDIES

The case studies presented next are illustrative examples of how mathematical
modeling and predictive biosimulation can be used to identify and help validate
particular targets. These studies were carried out at Entelos on the Entelos PhysioLab
platforms. The PhysioLab platform provides a framework for building a mathemat-
ical model of disease composed of large sets (> 1,000) of ordinary nonlinear differ-
ential equations. The platform also includes a differential-equation-solving engine
and user interface that allows for the solution of multiple experiments over multiple
conditions simultaneously. The key to the applicability of the PhysioLab platform
is that it is a functional representation of human pathophysiology. The underlying
mathematical model is developed based on the most current understanding of human
physiology, and the quanti cation of the model is based on the latest genomic,
proteomic, in vitro, in vivo, and ex vivo data. The mathematical models developed
by Entelos are designed and built using a top-down, disease-speci c, systems biology
approach that relates clinical outcomes to human biology and physiology. That is,
scientists identify and focus on those components considered most relevant to a
disease and its progression, typically starting with the major organ systems involved
in its expression (e.g., circulatory, immune, metabolic) and then modeling “down-
ward” to the most relevant pathways, that is, those that drive the behaviors of those
organs deemed most responsible for the disease state, detailing, in turn, the dynamic
interrelationships between relevant tissues, cells, proteins, and genes. In this manner,
feedback, redundancy, and other compensatory mechanisms are incorporated into
the system. The result is a functional representation of human health and disease as
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represented in a deterministic model system. Once calibrated and validated, the
PhysioLab model is capable of predicting human clinical response to therapeutic
intervention. Solving the underlying equations numerically creates a predictive bio-
simulation platform of human pathophysiology. 

14.4.1 EVALUATING NOVEL GENES

In this example, we describe the in silico target validation of a novel gene as a
potential drug target for the treatment of asthma. The information supplied by
Entelos’s collaboration partner, Bayer, included the gene’s cDNA sequence and
limited mRNA expression data. The methodology Entelos employed in pursuit of

1. Create virtual patients who represent a fairly representative sampling of
the disease population.

2. Generate and prioritize hypotheses of gene functions.
3. Represent those functions in each virtual patient.
4. Test the hypotheses through the simulation of the human response.
5. Compare and prioritize the data and results of the simulated clinical

outcomes for a hypothetical therapeutic intervention.
6. Validate the underlying hypothetical assumptions through directed

research (in vitro and/or in vivo experiments).

14.4.1.1 Creating Virtual Patients

As just described, virtual patients are explicit representations of the underlying
hypotheses developed to characterize patient pathophysiology. At Entelos, the virtual
patients are represented within the PhysioLab platform as explicit mathematical
vectors of model parameters. To account for the underlying patient variability just
described, scientists create as many virtual patients as are required to understand
potential patient variability, especially as it relates to the novel target. The in silico
scientist creates a virtual patient based on known or hypothesized factors (genetic,
lifestyle, and/or environmental) that give rise to a speci c disease phenotype. In this
case, three virtual patients were created representing mild, moderate, and severe
asthmatics. In other words, certain pathways within the single PhysioLab model of
human asthma were modulated to represent three levels of disease severity. The
patients were then tested by simulated antigen challenge, and each was validated
against measures of known forced expiratory volume in one second (FEV1), the
responses used in the clinic to classify an asthmatic.

14.4.1.2 Hypothesis Generation and Prioritization of Gene 
Function

Once the virtual patients were created and validated, the research team needed to
develop speci c hypotheses regarding the speci c functional role of the gene in the
relevant pathways underlying the asthmatic response to antigen insult. Through the
use of expression and homology data, multiple functional roles for the gene were

 © 2006 by Taylor and Francis Group, LLC

this potential target consisted of six steps (see g. 14.2):



Target Identification and Validation Using Human Simulation Models 361

identi ed and represented in each virtual patient. A battery of prede ned in silico
experiments was applied to the virtual patients to ensure that the behavior of each
virtual patient remained consistent with multiple clinical data sets. Each virtual
patient (mild, moderate, and severe) was required to reproduce not 1 but 60 separate
clinical responses simultaneously as demonstrated previously in humans. 

To understand the role this novel gene may play in asthma and derive the
hypotheses for its function, its cDNA sequence was scanned against the GenBank
database to see if it had any relationship to any known genes. If signi cant homology
was uncovered, it was hypothesized that the gene would function similarly. This
analysis revealed that the novel gene exhibited a fairly high degree of homology
with the serine proteases (e.g., tryptase). As most serine protease functions in the
airways are well de ned, hypotheses involving the novel gene’s activity were gen-
erated based on these known functions; the mRNA expression data provided to
Entelos by Bayer were then used to de ne the cell types in which each potential
function might be active. For each hypothesis, the potential involvement of the new
gene in pathways or biological phenomena was quanti ed using available data.

The possible roles this hypothetical serine protease might play in asthma were
then prioritized based on their potential impact on predicted clinical outcomes and
a con dence in the data used to generate them.

14.4.1.3 Representation of Gene Function in Each Virtual 
Patient

Since the Asthma PhysioLab platform reproduces observed physiological behaviors
in the airway, the contribution of every gene to the disease state is already implicitly
represented. The goal of this step was to explicitly represent the hypothesized func-
tions of the new gene in the appropriate cells and pathways underlying the asthmatic
response. To do this, each hypothesized function in each pathway was added to the
Asthma PhysioLab platform. The effects were quanti ed as ranges of activity, and
the robustness of these assumptions were tested (see the following section) over the
entire range of hypothetical effect.

14.4.1.4 Hypothesis Testing through Simulation of Human 
Response

At this point, the research team created an in silico experiment to measure the effects
of regulating the target gene on the overall clinical response. Typically, these exper-
iments are designed to look at the incremental up or down regulation of the target
over time. The incremental regulation of the target can be represented as a percentage
of activity from 0 to 100 and over a period ranging from minutes to years. In addition,
the experiment can be designed to simulate the additive or multiplicative effects of
genes that regulate a variety of pathways. Once designed, the experiment is simulated
in the PhysioLab platform.

The experiment set was applied to each virtual patient individually to identify
potential phenotypic variability in these patients’ responses to pathway modulation.
The goals of these biosimulations were to predict the clinical impact of modulating
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the gene’s functions and then to identify the main biological mechanisms/hypotheses
driving this effect.

14.4.1.5 Compare and Prioritize Data and Results

The clinical outcomes for each hypothesis in each virtual patient were analyzed to
determine if the novel gene had a causative or correlative role in the disease process.
The objective of this analysis is to identify those hypotheses, which might lead to
an effective therapeutic intervention. Evaluation criteria are developed to assist in
this analysis. The minimal clinical effect was set so that the patient’s FEV1 improved
by at least 10% over baseline. Likewise, limits were put on the incremental regulation
of the target gene, in that it was assumed that the gene did not that require more
than a 25% change in pathway activity to elicit the minimal clinical effect. The
results of these biosimulation studies provided a prioritized list of hypotheses con-
sistent with our understanding of (a) the pathophysiology of the disease, (b) the
phenotypic patient(s) at whom a therapy would be directed, (c) the functional role
of the target, and (d) the predicted clinical results of a therapy directed at that target.

For the novel serine protease, the biosimulation results showed that modulating
the new gene’s activity on speci c hypothesized functions improved clinical out-
come, and thus, this gene might be a good target for asthma. The outcome of the

function and revealed synergistic effects on other functions.

• Reducing the target’s basement membrane degrading activity, which
restricted the transendothelial migration (TEM) of in ammatory cells into
the airways, produced the greatest clinical improvement. 

• Certain combinations of hypotheses may produce clinically relevant syn-
ergies in improvement of the FEV1 (for examples, see table 14.3, “sensory
nerves” and “BK production”).

14.4.1.6 Hypothesis Validation through Directed
In Vitro/In Vivo Experiments

In silico analysis, while necessary, is not suf cient to validate a presumptive target.
It is necessary that one nalize this process by examining, in vitro and/or in vivo,
the assumptions underlying the hypotheses captured in the biosimulation runs. The
obvious experiments were recommended based on the in silico predictions captured
in table 14.3. Since the PhysioLab platform is transparent and can illustrate the
physiological effects and conditions underlying these hypothetical functions, a
research plan was speci cally designed that described, in detail, the laboratory
experiments required to con rm the hypotheses developed above.

The particular assay recommendations provided by Entelos to Bayer included a
suite of experiments and a detailed work ow necessary to fully validate the target
and con rm the in silico predictions. Typically, these recommendations include the
detailed rationale required to perform validation and screening assays necessary for
advancing this particular target to high-throughput screening. In this case, biologists
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using standard in vitro (e.g., recombinant protease) and cell-based assay systems,
performed laboratory experiments revealing

• Overexpression of the novel serine protease increases polymorphonucle-
ocyte cell polarization and adhesion.

• Cells overexpressing the protease show a pronounced up-regulation of
proin ammatory cytokine and chemokine mRNA, suggesting various
mechanisms that might account for the synergies predicted by the biosim-
ulation results.

As a result of these studies, Bayer decided to pursue this target and validate its
role in TEM. 

14.4.2 EVALUATING PDE4 AS A TARGET FOR ASTHMA

Cyclic AMP (cAMP) is an important intracellular mediator regulating the activation
of in ammatory cells. Particularly important with respect to asthma, cAMP also
plays a role in regulating airway and vascular smooth muscle contractibility, in am-
matory cell proliferation, and pulmonary neuronal responsiveness. Cyclic phosphod-
iesterases (PDEs) comprise a protein superfamily, whose function is to inactivate
cyclic AMP and cyclic GMP. The fact that certain PDE inhibitors suppress immune
cell functions in vitro and pulmonary in ammation in vivo may represent an oppor-
tunity for the development of novel anti-in ammatory drugs.

Currently, eight PDE gene families have been identi ed, each exhibiting a unique
tissue and cellular distribution pattern, substrate af nity, and speci city. Within the
airways, PDE4 appears to be playing an important role in regulating airway smooth
muscle and in ammatory cells responses. In addition, expression studies suggest that
PDE4 is exerting this effect on numerous biological pathways, and many studies have
focused on PDE4 as a potential anti-in ammatory drug target due to its expression

TABLE 14.3
Effect of 60% New Gene Inhibition Late Phase FEV1 Response

ESP-1 on…

FEV1 (Late Phase Minima, Day 6)

(–) TEM (+) TEM

Improvement Over 
Control

(–) TEM (+) TEM

RANTES 0.420 0.489 –4.5 3.4
EOS degranulation 0.437 0.517 –0.7 9.3
ASM contraction 0.449 0.520 2.0 9.9
Sensory nerves 0.467 0.556 6.1 17.5
BK production 0.466 0.554 5.9 17.1
All non TEM effects together 0.477 0.604 8.4 27.7

Note: Highlighted area shows synergies. EOS = eosiniphil; ASM = airway smooth muscle;
BK = bradykinin; TEM = transendothlial migration.
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in in ammation-associated cell types. While it was widely thought that selective
PDE4 inhibitors would enable targeted suppression of in ammation, clinical trial
results have been disappointing. Thus, de ning PDE4’s mechanism of action and
the potential clinical impact of its inhibition is critical for the successful validation
of this particular target. A major dif culty in this process has been accounting for
the complexities underlying asthma. 

The goal of this case study was, using an in silico approach with the Entelos
Asthma PhysioLab Platform, to evaluate the potential of PDE4 as a drug target for
moderate asthma, by evaluating the clinical impact of PDE4 inhibition in moderate
asthmatic patients.

14.4.2.1 Characterization of PDE4 Roles in the Airways

Even though PDE4 has been known for many years, its activities and functions are
still not fully characterized. By analyzing the public literature, the known effects of
PDE4 in the human pathophysiology of asthma were identi ed. In addition, a set of
hypothetical functions were generated pertaining to any potential roles for PDE4 in
the airways. This family of hypotheticals was derived based on any nondirect evi-
dence for PDE4 activity in the airway (e.g., evidence of PDE4 expression combined
with cAMP elevation in a particular cell type in a particular control environment).
Each hypothetical function was then quanti ed to de ne the speci c contribution of
PDE4 to the speci c biology involved. At the end of this process, more than 50
potential functions for PDE4 in the airways were identi ed.

14.4.2.2 Virtual Patients

An important factor to consider when evaluating a target is the diversity of the
patient population for which the therapeutic is being developed. Are there subpop-
ulations of patients more or less likely to respond to its modulation than not? The
variability of the population can lie in its phenotypic presentation of the disease
(i.e, mild vs. moderate asthmatics) as well as in the underlying pathophysiology
that gives rise to the speci c phenotype. For instance, two moderate asthmatic
patients may have an equivalent clinical presentation but very different underlying
pathophysiologies.

To explore this scenario, ve virtual patients were developed to explore the
uncertainty surrounding the pathophysiology of moderate asthma, that is, the sim-
ulations were designed to plumb the space of how one became a moderate asthmatic
in the rst place. While the array of in ammatory mediators underlying the patho-
physiology of asthma have been identi ed, for the most part, and are fairly well
understood, the contribution of each to the disease process is not yet known in
detail. Though all ve virtual patients have similar clinical behaviors consistent
with moderate asthma (i.e., a forced expiratory volume in one second [FEV1]
between 65 and 80%), each virtual patient was created to explore a different
combination of these mediators.
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14.4.2.3 Evaluating the Impact of PDE4 Inhibition on Clinical 
Outcome and Delineating Its Mechanism of Action

A key aspect of target validation is not only the impact of target modulation on the
clinical outcome of a therapeutic intervention but also the identi cation of the
laboratory experiments most relevant to validating the assumptions underlying the
hypotheses of a target’s mechanism of action.

PDE4 inhibition was simulated for a period of 28 days, during which time the
baseline FEV1 was monitored. Within the PhysioLab platform, we were able to
modulate each of the individual pathways, either singly or in combination. In so doing,
we were able to identify those pathways that were driving the impact of PDE4 inhi-
bition on the clinical outcome. This analysis determined that not only could PDE4
inhibition signi cantly improve FEV1, but while PDE4 is involved in numerous path-
ways (50+) in the airways, only four yielded a critical impact on the eventual ef cacy
of a potential therapeutic. Identifying these pathways led to the recommendation of a
small set of laboratory experiments suf cient to fully validate the target in vitro. In
addition, all ve virtual patients demonstrated very similar responses to simulated
PDE4 inhibition, suggesting that the PDE4 inhibition was relatively insensitive to the
pattern of the mediators underlying the pathophysiology of moderate asthma.

14.4.3 IDENTIFYING NOVEL TARGETS IN RHEUMATOID ARTHRITIS

How one uses a mathematical model to maximum advantage depends entirely on
the questions one wants to answer. Once a calibrated and validated model is in place,
one may choose to solve the equation systems in a variety of ways: deriving closed
form solutions, analyzing the steady state behaviors of the system based on the
equation structure, analyzing the topology of the system (e.g., the graph theoretic
strategy described by Anderson and Hunt [8]), or solving the systems equations
numerically using computational differential equation integrators (i.e., via biosimu-
lation). While these approaches are not mutually exclusive, we at Entelos have used
biosimulation studies to identify and quantify the relative and absolute contributions
of individual pathways to disease state and pathophysiology. Studying each pathway
and its components individually and in combination is termed a sensitivity analysis.
Assuming a particular pathway has been identi ed as a major contributor to the
clinical expression of the disease, one can then exploit the top-down structure of the
model to tease apart the individual cellular physiologies that contribute most to the
pathway’s activities. Once these physiologies have been identi ed in the context of
the top-down superstructure, the control circuitry that manages them can be quan-
ti ed and the key molecular pressure points of the system determined. Those bio-
molecular entities that exert the greatest control over these pressure points are then
identi ed as presumptive in silico targets, and the effects of their modulation are
directly evaluated by simulation. From this point forward, the in silico validation
process is very similar to that carried out for the gene screen previously described.
First, virtual patients that fairly represent the clinical population are created. Then,
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the activities of the presumptive molecular targets are quantitatively represented in
each virtual patient. Then, each hypothetical is simulated and quanti ed as to its
contribution to the effect on the clinical outcome. Then, the simulated results are
tested as to the robustness of any underlying parameter estimates. Finally, the results
are validated through directed research (in vitro and/or in vivo experiments).

14.4.3.1 Sensitivity Analysis, Target Identification, and 
Quantification

In this case study, we used the Rheumatoid Arthritis (RA) PhysioLab Platform to
identify a set of novel targets in the pathophysiology and progression of RA. The
results of an initial sensitivity analysis suggested that four main physiologies were
responsible for driving the bulk of the disease condition. The results for the quan-
ti cation of one molecule in particular are presented in table 14.4.

Based on these results, the team began a detailed search of the literature to
identify those molecules most responsible for controlling these functions. The search
was not restricted to RA but was expanded to include all in ammatory processes,
including those surrounding tumor growth and progression in cancer. From these
studies, ve potentially novel targets were identi ed for RA.

For each of the functional pathways identi ed above, the team estimated the
physiologic effect of inhibiting the target molecule with 100% ef ciency. To derive
these estimates, a “best case/worst case/most likely case” strategy was employed.
The data themselves were derived from the literature and are documented in the
online reference architecture of the Physiolab Platform. By way of example, consider
Pathway 2 in table 14.4. In this case, an experiment was reported in the literature,
showing that when all other signaling molecules had been neutralized in vitro,
inhibiting this particular molecule alone could block that pathway by 88% (the best-
case scenario). Other in vitro data were observed wherein the impact of the other
(redundant) physiologic controls was explicitly measured, suggesting that in the
worst-case scenario (i.e., in the case where signi cant overlap and redundancy were
active in vivo), the best one could hope for was a 20% inhibition. Based on all the
observed data, the most likely case scenario was estimated to yield 40% inhibition
when this particular molecule was blocked.

TABLE 14.4
Summary of Effects Quantified for Simulation
of Clinical Effects from Molecular Blockade

PhysioLab Function

% Inhibition
in Most Likely

Scenario

Range of % Inhibitions
from Best-Case to

Worst-Case Scenarios

Pathway 1 88 88 to 67
Pathway 2 40 88 to 20
Pathway 3 0 84 to 0
Pathway 4 0 40 to 0
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Tissue-level expression patterns for the target molecule were then identi ed (see
table 14.5), and based on the level of expression, individual model components were

patient was modi ed appropriately.

14.4.3.2 Simulation Results

Blockade of the presumptive target in silico was simulated in two virtual patients:
the RA PhysioLab platform’s reference patient and a Methotrexate-reduced
responder (MTX-RR) patient. Presently, Methotrexate is considered one of the “gold
standard” therapies for RA, and methotrexate resistance occurs in approximately
30% of the patient population. The reference virtual patient represents an average
RA patient with progressive disease that responds appropriately to the common RA
therapies. The MTX-RR patient was developed to represent the subpopulation of
patients who do not respond to MTX. In simulations, this patient’s response to MTX
is less than half that of the reference patient. The therapeutic responses of these
patients were assessed by measuring relative changes in synovial cell density, the
rate of cartilage degradation, and the levels of synovial IL-6. All three of these

TABLE 14.5
Cellular Expression Profile or Presumptive In Silico 
Molecular Target

Relative Expression
Leukocytes: thymus, blood, and lymph nodes 

Monocytes +++
Mature T cell (CD4 and CD8): +++
CD4 Naïve (CD45RA+RO-, CD69-) ++
CD4 Memory (CD45RA-RO+, CD69+) +++
Thymocytes ++++
Mature B cell ++
Naïve (IgM+, IgD+) +
Memory (IgG+) ++

Other cell types
Endothelial cells ++
Langerhans cells ++
Fibroblasts ND
Pancreatic islet cells ND
Granulosa cells of the ovary ND
Sertoli cells of the testis ND

Cancer cells
Ewing sarcoma cells, peripheral primitive
neuroectodermal tumors 

++++

Breast cancer +++
Hodgkin’s disease  (down regulation)

Note: ND = not determined.
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parameters were measured in the two virtual patients after six months of simulated
treatment. This simulated length of time allowed the virtual patients to stabilize in
response to the treatment.

14.4.3.3 Reference Patient

14.4.3.3.1 Synovial Cell Density Response
To determine the level of molecular blockade needed to obtain signi cant clinical
improvement, we rst measured the decrease in synovial cell density over a spectrum
of increasing levels of blockade. Figure 14.3 shows the simulated effects on synovial
cell density after six months of molecular blockade. A decrease in synovial cell
density greater than 33%, the typical response observed in a MTX gold standard,
was determined to be the desired threshold for clinical ef cacy. This level of inhi-
bition was achieved in all three hypothetical scenarios. These results suggest that if
one can achieve 80% blockade of this particular molecule, the clinical outcome of
this therapy, at least in terms of synovial cell density, should in any case be better
than the standard MTX therapy.

To assess the length of time needed to achieve a clinically relevant therapeutic
effect, the decrease in synovial cell density was measured at various points across

density is near maximal at 28 days and plateaus after 90 days. This result suggests
that the effect of molecular blockade on synovial cell density should give clinically
measurable responses after one month of treatment.

FIGURE 14.3 Impact of molecular antagonism on synovial cell density in the reference
patient.
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the six-month treatment regime. Figure 14.4 shows that the effect on synovial cell

CD99 blockade (% max efficacy)

S
yn

o
vi

al
 C

el
l D

en
si

ty
(%

 c
h

an
g

e 
fr

o
m

 u
n

tr
ea

te
d

)

0

–10

–20

–30

–40

–50

–60

–70

–80

Upper max

ML max

Lower max

MTX: RP

0 10 20 30 40 50 60 70 80 90 100



Target Identification and Validation Using Human Simulation Models 369

14.4.3.3.2 Cartilage Degradation Rate Response
Next, the effect of molecular blockade needed to signi cantly decrease the rate of

simulated effects on cartilage degradation after six months of simulated therapy. A
decrease in cartilage degradation greater than that achieved in the clinic by MTX (17%)

effect of molecular blockade on cartilage degradation rate is also near maximal at 28
days and again plateaus after 90 days. This again suggests that the effect of molecular
blockade should give clinically measurable responses relatively rapidly.

14.4.3.3.3 IL-6 Response
Finally, the impact of molecular blockade on the levels of synovial IL-6 (an indirect
indicator of the effect of proin ammatory cytokines levels in the patient’s joint) was

months of simulated molecular blockade. When 50% blockade is achieved, the levels
in synovial IL-6 decrease signi cantly in all three hypothetical scenarios. Very
similar results were found for the MTX-RR patient as well, suggesting that a
therapeutic aimed at this target may provide a reasonable alternative to methotrexate
in the resistant population.

FIGURE 14.4 Impact of molecular antagonism on synovial cell density at different times
during treatment.

 © 2006 by Taylor and Francis Group, LLC

cartilage degradation in the reference patient was assessed. Figure 14.5 shows the

was again achieved in all three hypothesized scenarios. Figure 14.6 shows that the

measured. Figure 14.7 shows the simulated effects on synovial IL-6 levels after six
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FIGURE 14.5 Impact of molecular antagonism on cartilage degradation rate in the reference
patient.

FIGURE 14.6 Impact of molecular antagonism on cartilage degradation at different times
during treatment.
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14.4.3.4 Mechanism of Action

To identify the critical laboratory experiments necessary for validating this molecule
as a drug target for RA, we identi ed the main pathways driving the impact of
molecular blockade on the clinical outcome of RA. To de ne the likely mechanism
of action, the most likely scenario and the best-case scenario were analyzed in the
reference patient on a pathway by pathway basis.

14.4.3.4.1 Most Likely Case Scenario
To identify the main pathway(s) driving the impact of molecular blockade on the
clinical outcome, the consequences of activating each hypothesis in turn (assuming

scenario, Pathway 1 is the primary pathway driving the impact of molecular blockade
on the clinical outcome in the reference patient. Conversely, by accepting as realistic
all hypothetical effects simultaneously and then turning each effect off individually,
one can begin to assess potential synergies across the different minor on clinical

than Pathway 1 were observed.

14.4.3.4.2 Best-Case Scenario 
When using the best-case scenario quanti cations, three different pathways appear

shows clearly the functional redundancy of the combination of effects that allow

FIGURE 14.7 Impact of molecular antagonism on synovial IL-6 concentration in the refer-
ence patient.
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100% ef cacy) were examined. Figure 14.8 shows that, in the most likely case

outcome ( g. 14.9). For this scenario, no synergistic effects of any pathways other

to be contributing to the global effects of this particular target ( g. 14.10). Pathway
1 is the major driver, followed closely by Pathway 4 and Pathway 2. Figure 14.11
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compensation for turning off one effect at a time. By systematically delineating the
mechanism of action for this particular target, we identi ed Pathway 1 as one of the
main pathways driving the impact of molecular blockade on the clinical outcome.

FIGURE 14.8 Effects of turning on each hypothetical effect individually in the most likely
case scenario.

FIGURE 14.9 Effects of turning off each effect individually, assuming all other effects remain
on for the most likely maximum effects on the reference patient.
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However, a detailed analysis of the best-case-scenario quanti cations suggested that
there maybe other, compensating, mechanisms present. Any target validation plan
should thus focus on developing assays to reconcile these underlying assumptions.

FIGURE 14.10 Effects of turning on each effect individually for the upper maximum effects
on the reference patient.

FIGURE 14.11 Effects of turning off each effect individually, assuming all other effects
remain on for the upper maximum effects in the reference patient.
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14.5 CONCLUSIONS

Mathematical modeling and predictive biosimulation play a vital role in the process
of target identi cation and validation. Using a formalized structure of mathematical
rigor and applying to it the power of high-speed computing, the pharmaceutical
researcher can rapidly identify sensitive pathways underlying disease, characterize
the molecular entities within those pathways that are most druggable, and assess the
effects of manipulating those molecules within the context of whole-body physiol-
ogy. However, most putative targets molecules are likely to impact numerous path-
ways or underlie multiple biological phenomena in the physiological context of a
disease. Therefore, it is vital that these in silico results be linked to an active and
directed wet lab validation effort.

To truly validate a target, one must be able to understand, at its most fundamental
level, the biology controlling the disease and its dynamic. By explicitly identifying
the control circuits that govern the behaviors of those pathways underlying disease
pathophysiology, one can explicitly de ne the biological context of the disease and,
based on these insights, develop the most predictive assays possible for validating
a putative target.

Furthermore, mathematical modeling and in silico predictive biosimulation can
help us survey the knowledge landscape by demanding an explicit characterization
of what we know and an inventory of what we do not. Systematically exploring
what we do not know allows us to evaluate the impact of these knowledge gaps on
the eventual ef cacy of a candidate therapy, leading to a set of prioritized experi-
mental recommendations aimed at resolving the most important. These experiments,
in all likelihood, will provide signi cant insight into a target’s mechanism of action.
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15.1 INTRODUCTION

Drug discovery traditionally has been understood in two steps: (a) target identi ca-
tion and screen development and (b) drug lead identi cation and optimization. The

rst step involves understanding the biological basis for a disease, including the
natural pathways and biochemical reactions, along with the deviations that cause the
disease. A target protein or receptor is often identi ed, and a screening method is
devised to determine when the activity of that target is modulated by the presence
of a potential drug molecule. The elds of genomics and proteomics have contributed
greatly to this process over the last several years, allowing a much greater under-
standing of the biological entities involved in many healthy and diseased pathways.

Once a screening method has been developed and veri ed, the process of drug
lead discovery can be followed much as it has over the last several decades. In the
traditional process, a large number of small molecules are tested with the screening
method to determine their ef cacies as potential drugs or drug lead compounds.

 © 2006 by Taylor and Francis Group, LLC
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Once one or more lead compounds have been identi ed and their activity has
been veri ed, the process of medical chemistry or lead optimization follows. In this
process, synthetic changes are made to the compound, and the change in the activity
is determined. If the compound is more active than the original lead compound, then
subsequent changes are made to its structure. This iterative process continues until
the desired activity pro le is obtained. An activity pro le may include, in addition
to the direct biological activity of the compound, the selectivity it has for the desired
result over competing undesirable effects.

After the desired activity pro le has been obtained, the new drug candidate is
subjected to tests for toxicity, then clinical trials to demonstrate its overall ef cacy
against the disease of interest. These latter processes are not discussed here.

The processes as just described do not require any information coordination
between the genomics and proteomics work and the subsequent lead discovery and
optimization. In the last decade, there has been a growing effort to transition the
information from the proteomics step into a computer-aided drug discovery pro-
cess—to use the information about the protein itself to help choose appropriate
compounds to screen for the desired ef cacy. The use of computers to assist in drug
discovery neither is new nor was always tied to the use of protein structures. The
recent developments in proteomics have focused the work on protein structure-based
computer-aided drug design.

15.2 TWO-DIMENSIONAL COMPUTER-AIDED DRUG 
DISCOVERY

Early methods of rational lead optimization sought to nd a set of potential leads
from a database of small molecules chemically similar to a known lead. The earliest
of these techniques was performed by the synthetic chemist in the process of pro-
ducing the next substance to test and was performed without the aid of a computer.
The chemist would make a set of small changes to the structure and determine if
those changes had a bene cial or detrimental effect on the ef cacy. This process,
called analog synthesis, is quite effective. Analog synthesis is the basis for medicinal
chemistry and remains an important part of drug discovery today.

Early attempts at using computers to make the lead optimization process more
ef cient involved determining chemical similarity between a potential lead and a
known lead using graph-theoretical treatments. Methods of this type include search-
ing a database of compounds for those that contain the same core structure as the
lead compound—called substructure searching or two-dimensional (2D) searching—
and searching for compounds that are generally similar based on the presence of a
large number of common fragments between the potential lead expansion compound
and the lead compound—called 2D similarity searching. Examples of programs that
perform these 2D searching techniques include ISIS, UNITY, Merlin, and many

compounds that are obviously similar to the lead, thus affording the medicinal
chemist few new insights for directing the synthesis project.
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TABLE 15.1
Some Prominent Drug-Discovery Programs and Their Uses
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URL

ISIS MDL X X http://www.mdli.com
Merlin Daylight Chemical Information Systems X http://www.daylight.com
Unity Tripos, Inc X X http://www.tripos.com
CoMFA Tripos, Inc X http://www.tripos.com
C2·QSAR+ Accelrys X http://www.accelrys.com
CONCORD Tripos, Inc X http://www.tripos.com
Corina Molecular Networks X http://www.mol-net.de
DISCO Tripos, Inc X http://www.tripos.com
GASP Tripos, Inc X http://www.tripos.com
Hypogen Accelrys X http://www.accelrys.com
Catalyst Accelrys X X http://www.accelrys.com
AutoDock Scripps Institute X http://www.scripps.edu/mb/olson/
Dock Univ. of California, San Francisco X http://dock.compbio.ucsf.edu/
Gold Cambridge Crystallographic Data Centre X http://www.ccdc.cam.ac.uk/
FlexX BioSolveIT X http://www.biosolveit.de/
SiteId Trpios  X http://www.tripos.com
3DPL ChemNavigator    X   X X http://chemnavigator.com
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15.3 QUANTITATIVE STRUCTURE ACTIVITY 
RELATIONSHIPS

Another eld for assisting in the selection of potential lead compounds or optimized
leads is called Quantitative Structure Activity Relationships (QSARs). These meth-
ods determine correlations between certain descriptors of the molecular structures
and the measured biological activity to produce a predictive model. That model can
then be used to predict the activity of other structures prior to actually testing.

The descriptors of the molecular structures that are used in QSAR include
physical and electronic properties, fragment compositions, as well as calculated
properties of the three-dimensional (3D) structures of the compounds. The 3D
properties include scalar parameters like solvent-accessible surface area, or hydro-
phobic surface area. They also include eld-type reductions of the structure that
represent steric interactions, electrostatic potentials, hydrogen-bonding potential,
hydrophobic interactions, and so on.

The early use of 2D parameters and scalar values was described by Leo, Hansch,
and Elkins [1] and has been predominately replaced with more rigorous fragment-
based techniques and 3D-QSAR techniques. The fragment-based techniques are
exempli ed by HQSAR [2] while the most successful of the 3D-QSAR techniques
is Comparative Molecular Field Analysis (CoMFA) [3].

Many predictive, validated models have been developed using these QSAR
techniques and have often assisted in the selection of structures for lead optimization.
Often the QSAR results are not available until after the process of lead optimization
has already progressed, and these models represent retrospective analysis of the lead
optimization process rather than a direct in uence on the design of the lead optimi-
zation compounds.

15.4 3D SEARCHING TECHNIQUES

Other techniques of computer-aided drug discovery use knowledge of how the
potential drug molecules bind to a protein target (e.g., a receptor). There are two
general classes of such techniques: those techniques for which the 3D structure of
the target is known, and those techniques that do not require direct knowledge of
the target 3D structure. Theses two classes of techniques are called structure-based
[4] and ligand-based methods, respectively. (It should noted that the word structure
is overloaded and can cause confusion. In bioinformatics and genomics, this word
is used to refer to the 3D structure of the protein or receptor, in contrast to the linear
sequence of the receptor. In medicinal chemistry, the word structure refers to the
connectivity pattern of the atoms of a small molecule and not to the 3D coordinates
of the atoms of that compound.)

Ligand-based techniques often characterize the groups in the known ligands that
are responsible for much of the stabilization energy of the protein–ligand complex.
These important groups are called pharmacophore groups, and the spatial relation-
ship between the pharmacophore groups that is required for activity is called the
pharmacophore model.
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The pharmacophore models are often predicted by pharmacophore-perception
software programs such as DISCO [4] and GASP [5]. These programs analyze the
various pharmacophore-group arrangements for each of the active ligands and detect
the geometric arrangements that are common among them. These common arrange-
ments are presumed to include one that represents the geometry required by the
unknown receptor for binding.

The pharmacophore models produced are then used as the query for 3D searching
techniques, which try to nd from a large database of potential lead compounds
those that meet the geometrical requirements of the model. Compounds that are
found to contain the correct arrangement are called hits and are candidates for
screening. These hits differ from the substructure or 2D similarity hits in that the
backbone of the structure may be quite different from that of the original lead
compound and often represents an important new area of chemistry to be explored.

The simplest of the 3D searching techniques compares the position and arrange-
ment of the pharmacophore groups of the candidate structures, as they are stored in
the database. This is referred to as static 3D searching. Static 3D searching is limited,
because it does not explore the multitude of conformations that are available to most
druglike compounds. Most compounds have a large number of accessible confor-
mations formed by rotating the molecular framework of a molecule about its rotatable
bonds. Small molecules in pharmaceutical databases typically contain an average of
six to eight rotatable bonds per molecule.

This can easily afford a set of accessible conformations that number in the
millions. Searching just one static conformation from among millions of possible
conformations for the correct arrangement of groups will cause many compounds
(that could be good leads) to be missed.

To consider energetically accessible conformations, some systems populate the
small molecule databases with a small subset of the accessible conformations of
each small molecule. These are called multiconformational searching techniques.
These techniques are still limited by the conformations stored. It is impractical to
store the millions of accessible conformations for each molecule that are required
for rigorous investigation of conformational space.

A more advanced approach in 3D search technology involves investigation of
the accessible conformational space of the potential hits as part of the searching
process. These techniques, called conformationally exible 3D searching techniques,
adjust the conformation of the potential hit according to the requirements of the 3D
pharmacophore query. One such technique that has been found to be effective uses
a method called Directed Tweak [6]. This method is very effective for nding
molecules of interest when the geometry of the binding site of the large molecule
is not known. Directed Tweak adjusts the conformation of the small molecule by
changing the angle values of the rotatable bonds, which includes essentially all of
the accessible conformational exibility of a small molecule.

15.5 PROTEIN-DOCKING TECHNIQUES

Today there are a growing number of proteins for which the 3D structures are either
known or estimated. The 3D structures of proteins are usually the result of either
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experimental determination, such as X-ray crystallography or nuclear magnetic
resonance studies, or modeling systems like de novo folding programs or homology
modeling systems. When the 3D structure of the protein target is known, computers
may be used to nd potential leads by “docking” small molecules into the protein.
The potential for a small molecule to bind to the protein is evaluated according to
a set of rules and equations that model the physical interactions between the receptor
and potential ligand. Many systems adjust the location and orientation of the small
molecule with respect to the receptor, and many also investigate different confor-
mations of the molecules. As in 3D searching, there are systems that store or generate
a small number of accessible conformations, while other systems deal with the
molecular exibility of the structures “on-the- y” as the search progresses.

15.5.1 DOCKING SYSTEMS

There are a number of well-known docking systems, and these vary in the method
of evaluating and optimizing the predicted binding af nity. Many docking systems
use molecular mechanics force eld methodologies to estimate the binding af nity.
These methodologies attempt to model the short-range and long-range forces
between a target and a small molecule using eld representations. The types of
interactions often considered in docking systems include electrostatic contributions,
steric interactions, hydrogen-bonding stabilization, and hydrophobic effects. Other
important considerations for docking include the effect of solvation and the exibility
of the protein itself.

One commonly used system is AutoDock [7]. This program uses a grid-based
technique in which the interaction energies for the atoms in the small molecule are
precalculated on the points of a grid. This process simpli es the calculation of the
energy estimate of the small molecule in a particular position. The grids are deter-
mined by standard molecular mechanics force- eld methods. The position and con-
formations of the small molecules are adjusted using a hybrid genetic algorithm to
sample over the feasible conformations and positions of the ligand relative to the
protein. It takes about one minute for AutoDock to dock a structure when the

exibility of the ligand is considered.
Another well-known docking tool is DOCK [8]. This program reduces the

information from the 3D receptor to produce a negative image of the binding site.
This image consists of spheres that ll the binding site of the protein. During the
search, subsets of ligand atoms are matched to spheres, based on the distances
between ligand atoms. Once the molecule is placed, the full estimation of the binding
af nity is computed using standard molecular mechanics techniques. DOCK can
take several minutes to dock a ligand structure.

Another docking program, FlexX [9–12], uses a fragmentation approach. The
ligand is fragmented and incrementally reconstructed in the binding site and matched
to template points in the receptor. Bond torsional exibility is adjusted, and a
tree-search algorithm is used to keep the most promising partially constructed ligand
conformations during the search. FlexX typically takes a minute or more to dock a
ligand structure.
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Hammerhead [13] uses up to 300 hydrogen-bond donor and acceptor and steric
points to de ne a template, and the ligand is incrementally reconstructed, as in FlexX.
A fragment is docked based on matching ligand atoms and template points with
compatible internal distances. If a new fragment is positioned closely enough to the
partially constructed ligand, the two parts are merged and the most promising
placements kept.

Another successful docking program, GOLD [14], uses a genetic algorithm to
sample over possible matches of conformationally exible ligands to the template.
GOLD uses a template based on hydrogen-bond donors and acceptors of the protein
and applies a genetic algorithm to sample over all possible combinations of inter-
molecular hydrogen bonds and ligand conformations. A drawback of genetic algo-
rithm approaches is the high computation time, especially in comparison to frag-
ment-based docking approaches.

The UNITY 3D Searching System (Tripos Inc., St. Louis, MO) has been
extended to provide what is essentially a docking tool. In this approach, six param-
eters corresponding to the six rotational/translational degrees of freedom are added
to the rotatable bond list, and these parameters are adjusted to place pharmacophoric
groups at the positions giving favorable interactions with the receptor. This method
produces acceptable accuracy but is time-consuming because the derivatives needed
for the minimization must be calculated numerically.

There are many other docking systems available [15–19]. For the most part, they
follow the precepts outlined in the methods speci cally discussed above.

15.5.2 ACCURACY

The effectiveness of these systems is measured in different ways. Often docking
systems are graded on how well they reproduce the conformation and position of
a cocrystallized ligand-receptor structure. There are many standard test sets and
much information on how well various docking systems do at placing a ligand that
is known to bind into the known binding con guration. The accuracy is normally
reported as the root-mean-square (RMS) of the atomic positions as docked com-
pared to the positions from the cocrystallized X-ray structure. The best placements
have RMS values of 1.0 or slightly less. The ability of a docking system to correctly
place a known ligand is an important factor in its use in drug discovery, but it is
not suf cient.

Another common measure of accuracy for docking systems is the comparison
of the predicted binding energy to the measured binding energy. This is not as widely
used as the RMS score and is not a suf cient indication of a docking system’s
applicability for drug discovery.

Most docking systems are designed to dock known ligands accurately but not to
discriminate between good and bad potential ligands. A good measure of the appli-
cability of docking systems to their use in drug discovery is the enhancement ratio.
This value is the ratio of the number of active molecules found, as determined by
actual screening of the compounds, to the number of active molecules expected from
random screening. The most common docking systems achieve an enhancement ratio
of between 1.0 and 25.0. An enhancement ratio of 25 indicates that 25 times more
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active compounds are found when the results of the docking run are tested than would
be found if the same number of randomly selected compounds was screened.

15.5.3 SPEED OF DOCKING

Among commercially available chemical suppliers, more than 13 million different
structures are available. When screening databases of this size, the computational
ef ciency of the search process becomes a signi cant concern. If it takes one minute
on average to dock a structure, a database of 11 million structures will take 21 years
if done on a single computer.

Most researchers who wish to use docking systems to enhance their ability to
discover new drugs have applied one more approache to overcoming the speed issue
of standard docking programs. The most common technique is to reduce the size of
the structure database to be investigated. This technique is typically done by applying
druglike lters and further reducing the structures to be docked to those that are
similar to known lead compounds. This approach, of course, eliminates the possi-
bility of nding new types of active compounds.

A widely used technique for improving the docking ef ciency is to parallelize
the computation. Many research facilities have constructed large arrays of computers,
often numbering in the hundreds, to dock the large databases. It can still take a week
or more to process the structures from a large database.

A recent innovative approach involves a marriage of docking and 3D searching.
This technique, called TweakDock [20], is the basis for the 3DPL Database Searching
System (ChemNavigator, San Diego, CA). This technique precalculates the energy
and the derivatives of energy on a grid and uses a 3D searching method to adjust
the position and con guration of the ligand molecules relative to the protein structure

tional docking systems. It often docks molecules at a rate of 15 structures/second
on a single CPU. When run on eight CPUs, 11 million compound structures can be
docked in less than three days, and enhancement ratios of 15 to 25 are often observed.
This speed allows rapid turnaround of tests that can directly in uence the compounds
that are purchased or synthesized, making in silico drug discovery based on the
growing number of protein structures easily feasible.

15.5.4 BINDING SITE DETERMINATION

Most of the docking programs require speci cation of the speci c portion of the
protein where binding occurs. Protein targets are generally too big for exhaustive
examination of the surfaces and internal cavities for possible binding. Often, the site
of a cocrystallized ligand is used to de ne the active site for the protein target.
Docking at this site is guaranteed to be important, but the results will not include
possible interactions at other important sites. If there is no crystal structure with a
cocrystallized ligand, then the binding site must be determined through other means.

Several programs are available to identify potential binding sites of a protein. SiteID
from Tripos helps the researcher identify the potential binding sites by producing an
image that encodes depth, hydrogen-bonding ability, and other factors on the surface of
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the protein. The Binding Site Analysis function from Accelrys (San Diego, CA). analyzes
the variation in related proteins to estimate the binding site of a protein. It also can
identify crevices that are big enough for binding a ligand. Locus Discovery [21] has
software that predicts the active binding sites by lling potential locations with fragments.
The actual binding site is identi ed as the sites with higher af nity. The ChemNavigator
[22] 3DPL software identi es all possible binding sites on a protein. The 3DPL software
can perform the docking fast enough to investigate all possible binding sites.

15.6 CONCLUSION

The recent advances in genomics and proteomics are leading to a great increase in
the knowledge of disease and in the generation of effective biological screens to
help nd important new drug therapies for those diseases. Computer-based
approaches, especially docking and 3D database searching, are evolving to make
direct use of the more abundant 3D structures of the protein and enzymes associated
with disease and are increasingly improving the ef ciency of new drug discovery.
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16.1 INTRODUCTION

Certain distinct features make biological data management a challenging undertak-
ing. Biological sciences, as a domain, are described using complex and fuzzy con-
cepts. Consequently, biological databases require complex representations and ongo-
ing alterations of the existing models. Recent advances in high-throughput
technologies such as genome sequencing and microarrays have signi cantly
increased the amount of data being stored, thus creating scalability issues. Reposi-
tories of biological data contain different subsets of biological knowledge. They are
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maintained independently in different locations and made available on different
release schedules.

At the same time, the true bene t of interacting with different datasets can only
be attained if the data are integrated, allowing the user to use criteria from one
dataset to query another. Consequently, biological research requires tailor-made
datasets, which are compiled from unique combinations of individual databases and
creates a need for technologies that provide such functionality. However, it must be
stressed that even the most sophisticated technology on its own will not produce
truly integrated data. The failure to adhere to common data standards and the lack
of common semantics of stored data hinder data integration approaches. Therefore,
the constant control of data quality; the use of globally unique identi ers, which
facilitate data aggregation; and the use of common controlled vocabularies, in par-
ticular ontologies, greatly facilitates integration efforts.

In addition to the requirements for data storage and integration, there are also
varying requirements for interfaces to the data to support the community. Bench
scientists generally require intuitive Web interfaces or click-and-install graphical
user interfaces. Application developers within the bioinformatics sector require stable
application programming interfaces (APIs) in their preferred language (e.g., Java,
Perl, C, C++, or Python).

Along with technologies to store and access data, there is a requirement for data
manipulation in analysis and format conversion tasks. There is a variety of packages,
free and commercial, that provide uniformed means of carrying out much of this
analysis. Data resources and data manipulation software available on the Web can
also be linked using Web services or work ow technologies.

16.2 BIOLOGICAL DATABASES

Biological databases are a heterogeneous collection of datasets, which exist in a
variety of formats. Historically, they have originated as formatted text les, each
representing a single, atomic database entry. This particular solution was well tted
with old sequence-oriented databases, and there are still some, such as UniProt [1],
that are predominantly stored in this format. Modern biological databases have taken
full advantage of relational technology, allowing for much more exible data mod-
eling and data structures as well as constraints on data integrity. Databases such as
ArrayExpress [2] and dbSNP [3] use complex relational representations to fully
express the complexity of data.

Biological databases also differ in their focus. They can represent the horizontal
view of a particular domain involving a collection of organisms (e.g., Ensembl [4]
or UCSC [5] Genome Browser). They can also be focused on a particular organism,
offering a vertical view over a variety of datasets, which is typical for databases
grouped in the GMOD [6] project such as Rat Genome Database [7], FlyBase [8],
and WormBase [9]. A number of biological databases simply model a particular
abstraction, such as ontologies (GO) [10] or complex biological processes (Reac-
tome) [11]. Consequently, designing a particular data-management strategy requires
careful planning involving both the data content and the technology used for data
access and storage.
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16.3 DATA INTEGRATION

Although there is a plethora of existing solutions for data integration, they usually
fall into one of two basic categories: centralized or federated. The immediate result
of using one or the other can sometimes be very similar. However, there are some
important implications of the chosen architecture that are critical for long-term
management and maintenance of the system.

Centralized architectures are based on a single data model and by de nition
require that all the data are stored locally, typically in a tailor-made data warehouse.
In this approach, the integration effort is data-model driven. Both the data model
and the middleware are designed for a particular knowledge domain and operate on
a xed set of data. The quality and granularity of the internal representation of the
data depends on the domain expertise of the system designer. Such solutions tend
not to be easily extensible and normally require a considerable programmatic effort
to bring in new types of data. However, they do provide a good t in the situation
where all the data needed for a given task can be easily acquired and brought in-
house. The usage pattern is well de ned and unlikely to evolve in the future, and
there are enough resources for maintenance of the data traf c involved.

In contrast, federated architectures tend to be more exible and are more gen-
erally applicable. Typically they either leave data in its native format or require that
data be put in a format common to all the datasets. They do not rely on any domain-
speci c abstractions but instead model the generic features of data and employ some
kind of query-based logic for their API abstractions. These solutions tend to be much
more extensible and require con guration rather than a programmatic effort when
bringing new data types into the system. These federated architectures can be either
local or distributed.

The distributed type of the federated architecture bene ts from the local domain
expertise of scientists who maintain the data. It tends to be more practical, obviating
the necessity to move large datasets around and immune to the synchronization
problems affecting local solutions. The drawback of this solution is the dependency
on the network quality, bandwidth, and uncontrolled network congestion. It is there-
fore critical that distributed systems are designed with particular care with respect
to their scalability for large datasets. An additional bene t of the distributed system
is its deployment exibility. It can be con gured to be used in either a distributed
or local fashion, or in any combination of the two.

It is important to note that existing technologies such as Web services can turn
a local system into a distributed one by making it either a consumer or producer of
a particular avor of Web services. However, these constitute extensions to the
existing architecture (rather than a part of the original design), are dependent on
third-party interface de nitions, and are unable to evolve on their own. Therefore,
they are discussed separately for the purpose of this chapter.

Finally, it is worth noting that systems will differ in the availability of different
types of user interfaces, APIs, and their support for third-party applications and/or
programming protocols. Although this may not be a critical issue from the system
architecture perspective, it can be an important factor when deciding on the nal
choice of a system when there is a heavy dependence on the existing user base
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and/or systems already in place. In addition, the amount of effort needed for the
maintenance, initial deployment effort, and the projected exibility mustbe taken
into account.

In the review of the existing integration solutions presented in this chapter, I do
not aspire to be comprehensive, because this would be a rather hopeless task, given
the speed with which this area of bioinformatics evolves. Instead, I try to exemplify
the differences and similarities between the systems and trends in their design.

16.3.1 CENTRALIZED ARCHITECTURE

Centralized systems are typically based on data-warehousing ideas [12]. In this
approach, all data are gathered in one physical location, and a single data model
encompassing the data properties is used. Typically these systems come with xed
datasets available as a part of the distribution, and the API abstractions include the
representation of the modeled data (e.g., genes, proteins, pathways). The centralized
system architecture is not easily extensible to other types of data; therefore, these
systems frequently use technologies such as Web services to federate other types of
data. However, it needs to be noted that the data federated in such a way rarely share
the same functionality and scalability as the core system. These solutions are typi-
cally designed for a particular environment and make a good t for users, assuming
a well-de ned and similar usage pattern.

16.3.1.1 Grand Unified Schema

at the University of Pennsylvania is one of the pioneers of using the data-warehousing
ideas to deal with the wealth of biological data. The GUS system is based on an
extensive strongly typed relational schema. The system includes the GUS Application
Framework, which assists in the development of data acquisition and analysis pro-
grams, and the GUS Web Development Kit, which assists in query-based Web site
development. The GUS platform integrates the genome, transcriptome, and proteome
of one or more organisms; gene regulation and networks; ontologies and controlled
vocabularies; gene expression; and interorganism comparisons.

GUS uses the central dogma of biology as its organizational principle. Sequence
centric entries from the external databases are mirrored within GUS and transformed
into gene-centric entities. Thus, GUS tables hold the conceptual entities that the
sequences and their annotation ultimately represent (i.e., genes), the RNA derived
from those genes, and the proteins derived from those RNAs. The GUS database is
quite large, containing over 400 tables and views that are divided into ve schemas:
Database of Transcribed Sequences, RNA Abundance Database, Transcription Ele-
ment Search System, Shared Resources, and Nonbiological Tracking.

The GUS application framework consists of a Perl and Java object layer com-
plemented by a pipeline, GUI applications, and a Web development kit. The object
layer includes one-to-one mappings between object and tables/views.
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16.3.1.2 SeqHound

formatics database warehouse made available to the public through a rudimentary
Web interface but mainly using a remote API. SeqHound is available from the
“public good” Blueprint Initiative research program of the Samuel Lunenfeld
Research Institute at Mount Sinai Hospital, af liated with the University of Toronto.
The project arose out of a requirement to integrate information from a variety of
sequence, structure, and annotation databases for the production of the Biomolecular
Interaction Network Database (BIND) as well as to support Blueprint’s systems-
biology-oriented research program.

The data are collected daily from a number of sources, including the National
Center for Biotechnology Information (NCBI) and Gene Ontology (GO) Consortium.
The warehouse includes sequences, structures, and complete genomes from Gen-
Bank as well as annotation links such as NCBI taxon database terms, redundant
sequences, sequence neighbors, conserved domains, Online Mendelian Inheritance
in Man identi ers, GO terms, LocusLink identi ers, and PubMed links.

The API is available for Perl, Java, C, and C++. A BioPerl API, which can be
used in conjuction with BioPerl, is planned that SeqHound calls will eventually
become part of the main BioPerl source code tree. The API is well documented with
an extensive manual as well as tutorials and help guides available from the main
Web site.

SeqHound is the basis for many of Blueprint’s applications. The BIND Interac-
tion Viewer 3.0 queries SeqHound to recover sequence annotation and interaction
information. SeqHound has been used as a back end to replace all previous calls to
the NCBI for retrieval of data such as GenBank records, taxonomy traversal, DNA
and protein sequence by taxonomy ID or organism, 3D neighbors, and GO traversal.
Recently the SeqHound API has been incorporated into Taverna [15], which allows
biologists to assemble Web services into a pipeline. The current Web interface allows
access only to the sequence aspects of the database, as the primary aim of SeqHound
was to be a resource for programmers. However, a more fully featured interface is
under development, which will make most of the API’s functionality available to
nonprogrammers.

16.3.1.3 Cancer Bioinformatics Infrastructure Objects

Cancer Institute (NCI). It is based on a data warehouse that is used to integrate
several of the NCI data sources. The content of the caBIO data warehouse is refreshed
approximately biweekly and consists of variety of National Institutes of Health
datasets, including genomic, expression, pathway, and clinical trials data.

Four APIs to caBIO are available, each suitable for different client-program-
ming environments: Java, Perl, SOAP, and HTTP-XML. Domain objects represent
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The Cancer Bioinformatics Infrastructure Objects (caBIO) [16] (http://ncicb.nci.nih
.gov/core/caBIO) is the primary architecture for data integration at the National
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biological, laboratory, and clinical entities. The presentation layer is built on a Web
server infrastructure that includes Apache HTTP Server, Tomcat, Zope, and Apache
SOAP. Java servlets and server pages deliver content to client applications. All caBIO
objects can be transformed into serialized XML representations.

The caCORE component forms the foundation for a number of scienti c and
clinical applications. One application is CMAP, a work in progress that can be
regarded as a prototypical caCORE-powered application. The availability of the
caCORE-enabled CMAP is to be prototyped in a relatively short time. Cancer data
and data relationships are presented in CMAP with rich graphics, and the application
leverages caBIO APIs to provide a straightforward interface to quite complex under-
lying queries.

16.3.1.4 Atlas

oped at the UBC Bioinformatics Centre, University of British Columbia, that locally
stores and integrates biological sequences, molecular interactions, homology infor-
mation, functional annotations of genes, and biological ontologies. Atlas has ve
main parts: the source data, the relational data models, the ontology system, the
APIs, and the applications. Data sources fall into four main groups: sequence,
molecular interactions, gene function, and ontology.

There are two classes of APIs in Atlas: loader and retrieval. The loader APIs are
used to build the loading applications and populate instances of the relational models
in the Atlas databases. The retrieval APIs are required for developing custom user-
retrieval applications such as the Atlas toolbox applications. The loader API for
Biological Sequences has been implemented in C++ as it relies heavily on the NCBI
C++ Toolkit to parse the ASN.1 data. The Biological Sequence retrieval API, on the
other hand, is provided in three languages: C++, Java, and Perl. Finally, the loader
and retrieval APIs for Molecular Interactions are provided in Java.

A publicly available Web interface to the Atlas databases is available. This
interface provides basic access to GenBank, RefSeq, NCBI Taxonomy, Atlas Ontol-
ogies, BIND, HPRD, MINT, and DIP. Web interfaces to the Atlas toolbox applica-
tions ac2gi, ac2seq, ac2tax, feat2seq, gi2ac, gi2feat, gi2seq, gi2tax, tax2seq,
techtax2seq, and tech2seq are available. In addition, interacting partners for proteins
identi ed by accession numbers or GI numbers can be retrieved from any of the

16.3.2 FEDERATED ARCHITECTURE

Database middleware systems employed by federated systems offer users the ability
to combine data from multiple sources in a single query without creating a physical
warehouse. Federated systems take advantage of the availability of shared identi ers.
These identi ers allow for the given database to be related to another without the
requirement that both datasets need to be part of the same data model. Although the
actual implementations range from systems based on at- le indexing (e.g.,
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informatics.ubc.ca/atlas/webtools/.

Atlas [17] (http://bioinformatics.ubc.ca/atlas/) is a biological data warehouse, devel-
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Sequence Retrieval System [SRS]) through simple systems creating query optimized
views on existing data sources (e.g., BioMart) to complex systems using a full
database engine to drive a virtual database (e.g., K2, DiscoveryLink), the basic idea
remains the same. Data sources are presented in a uni ed format to the query-building
middleware. The typical feature of those solutions is that they tend to be viewed as
data-handling tools rather than the data repository. They usually offer some sort of
generalized query language (e.g., ODD, OQL, SQL, or MQL) in addition to standard
graphical user interface (GUI) applications.

16.3.2.1 SRS

SRS [18] is an indexing system for at- le libraries such as EMBL or UniProt.
Originally developed at EMBL, SRS was later acquired by LION Bioscience AG
and released as a licensed product. It remains freely available for academics.

SRS supports the data structure of individual databases in at- le format by
providing special indexes for implementing list of subentities such as feature tables.
SRS has the ability to de ne indexed links between databases. Once indexed, the
links become bidirectional and operate in multistep fashion. They operate on sets
of entries and can be weighted and combined with logical operators (AND, OR,
and NOT).

SRS uses metadata to de ne a class for a database entry object and uses rules
for text-parsing methods, which are coupled with database entry attributes. For object
de nitions and recursive text-parsing rules, SRS uses its own scripting language
called Icarus. For library speci cation and organization and for the representation
of individual data elds within a system, SRS uses a Object Design and De nition
(ODD) language.

Recently, two improvements have been made to bring SRS closer to the relational
world. First, the SRS Relational module permits the user to extend the SRS query
capabilities to include relational databases; second, SRS Gateway for Oracle permits
querying of Oracle databases from within SRS. In addition, SRS supports various
sequence analysis tools such as FASTA, CLUSTALW, and selected programs from
EMBOSS.

16.3.2.2 K2

K2 [13] is a distributed query system that has been developed at the University of
Pennsylvania. K2 relies on a set of data drivers, each of which handles the low-level
details of communicating with a single class of underlying data sources (e.g.,
Sybase** relational databases, Perl/shell scripts, the BLAST family of similarity
search programs, etc.). A data driver accepts queries expressed in the query language
of its underlying data source. It transmits each such query to the source for evaluation
and then converts the query result into K2’s internal complex value representation.
Data drivers are also responsible for providing K2 with data source metadata (i.e.,
types and schemas), which are used to type check queries.

K2 decomposes the user’s OQL query into subqueries that can be answered by
the underlying data sources. Furthermore, it must rewrite the OQL query fragments,
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where necessary, into queries that the data sources can understand. Both tasks are
handled by the system’s query optimization module, which is an extensible rule-
based optimizer.

K2 is implemented as a multithreaded server that can handle multiple client
connections. Clients communicate with the server using either Remote Method
Invocation, Internet Inter-Orb Protocol, or an ad hoc socket protocol. In addition to
a set of client libraries that simplify accessing K2 from any Web application that
uses Java servlets, a client that provides interactive command line access to the
system has been implemented.

16.3.2.3 DiscoveryLink

IBM’s DiscoveryLink uses database middleware technology to provide integrated
access to biological data sources. DiscoveryLink provides users with a virtual data-
base to which they can pose arbitrarily complex queries in the high-level, nonproc-
edural query language SQL.

DiscoveryLink employs DB2’s query optimizer and a complete query-execution
engine The main features of its architecture are the so-called wrappers, software
modules that act as intermediaries between data sources and the DiscoveryLink
server. The DiscoveryLink server uses information supplied by wrappers to develop
execution plans for application queries.

 The overall architecture of DiscoveryLink is common to many heterogeneous
database systems. Applications connect to the DiscoveryLink server using a variety
of standard database client interfaces, such as Open Database Connectivity or Java
Database Connectivity, and submit queries to DiscoveryLink in standard SQL. The
information required to answer the query comes from one or more data sources,
which have been identi ed to DiscoveryLink through a process called registration.

Data sources of interest to the life sciences range from simple data les to
complex domain-speci c systems that not only store data but also incorporate spe-
cialized algorithms for searching or manipulating data.

16.3.2.4 BioMart

BioMart is a system focused on a large-scale aspect of distributed data integration.
This technology was originally developed for Ensembl database [19] and subse-
quently extended to support a federated data-mart architecture. To achieve scalability
it uses relational, query-optimized views on existing data sources rather than data
sources themselves. The federated marts are based on a common data model and
can be automatically con gured using dataset con guration software, making it
possible to build a sophisticated interface capturing the semantics of the data content
and incorporating the “links” to other datasets. In addition, the con guration software
automatically detects new tables added to the system and supports updates of the
data content. Once the data marts have been created, they can be accessed by a set
of stand-alone and Web-based query interfaces. BioMart presents a lightweight
solution for organizing in-house data and integrating it with publicly available data
sources.
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The BioMart data model is a simple modular schema composed of a central
table, linked to its satellite tables by primary/foreign key relations. The schema can
be normalized but typically includes denormalizations to achieve maximum query
response optimizations. All the BioMart metadata is stored in XML con guration

les on the database servers. The metadata les can be readily created and modi ed
using MartEditor, a Java-based con guration editor.

The BioMart software suite consists of two APIs, one written in Perl and the
other written in Java. There are three applications: MartView, a Web site query wizard
available as a stand-alone Web site installation; MartExplorer, a stand-alone GUI;
and MartShell, a command line interface. MartShell uses a Mart Query Language
(MQL)—a simple structured query language. BioMart API has been incorporated
into the Taverna work ow system [15]. The “biomaRt” annotation package, which
enables direct access to BioMart databases, has become part of BioConductor—an
open source and open development software project that provides a wide range of
powerful statistical and graphical tools. 

16.4 DATA MANIPULATION SOFTWARE

Data manipulation software is an important component of data management systems.
As well as a vital component of the build process of integrated data resources, they
are used in their APIs and user interfaces. In addition, Web services and the work ow
software provide a means of linking applications with data resources to create
complex work ows. These work ows may be used by biologists as stand-alone
analysis packages. Again, we present here a review of the most currently used
packages rather than a comprehensive list.

16.4.1 THE BIO* FAMILY

The BioPerl, BioJava, BioPython, BioRuby, BioCorba, and BioPipe [20] family of
packages are facilitated by the Open Bioinformatics Foundation to provide open
source modules and scripts for life science research in the major programming
languages of bioinformatics.

BioPerl [21] has been running of cially for nearly 10 years now and forms a
stable package of useful data-manipulation tools. Applications include sequence le
manipulation, parsing of data les, retrieving annotation from major databases, and
pipeline automation. The modules are object oriented and, hence, have some depen-
dencies on each other. BioPerl is divided into repositories: bioperl-live contains the
core functionality of BioPerl. Auxiliary repositories of modules are available and
are capable of generating GUIs (bioperl-gui); persisting storage of objects using
databases (bioperl-db); and running and parsing of results from hundreds of bioin-
formatics applications such as BLAST, ClustalW, EMBOSS, Genscan, and HMMER
(bioperl-run), and other modules to automate analyses (bioperl-pipeline). For per-
formance reasons, BioPerl also contains extensions for several C programs for
sequence alignment and local BLAST searching. BioPerl is useful for both everyday
Perl scripting tasks as well as a component of larger bioinformatics applications
such as the Ensembl project.
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BioJava is a newer project but has been stable for some time now. The Java
framework provides extensive support for sequence manipulation, le parsing, DAS
clients and servers, access to Ensembl and BioSQL databases, and analysis and
statistical routines, including a dynamic programming toolkit.

BioPython provides similar support for bioinformaticians using the popular
Python language. Files in formats such as BLAST, FASTA, and GenBank can be
parsed into Python-utilizable data structures. Access to well-known bioinformatics
destinations such as NCBI BLAST, Entrez, and PubMed services are supported.
Interfaces to BLAST, the ClustalW alignment program, and tools for the usual
sequence manipulation tasks of translation and transcription are provided. Finally
code to simplify parallelization of tasks and GUI-based programs for basic sequence
manipulation tasks are packaged with BioPython. Integration with other languages,
including the aforementioned BioPerl and BioJava projects, is possible using the
BioCorba interface standard (biopython-corba).

BioRuby performs the usual bioinformatic tasks in a similar manner to the
previous Bio* packages but uses the Ruby language. BioPipe is a recent attempt to
release some generic code for automation of bioinformatics work ows on large
compute-farms and has arisen from the Ensembl project’s pipeline code. All the
Bio* projects contain extensive documentation, tutorials, and useful mailing lists on
their Web sites and are under active development.

16.4.2 GCG

The GCG Wisconsin Package [22] is an integrated package of nucleotide and protein
manipulation and analysis tools. The Wisconsin package arose from the Genetics
Computer Group (GCG) at the Department of Genetics, University of Wisconsin.
Eventually GCG was commercialized and is now available from Accelrys

in the Wisconsin package can be grouped into the following main categories: 

• Pairwise and multiple sequence comparisons: creation, editing, display,
and analysis; searching of nucleic acid and protein sequence databases
for similar sequences to an input sequence or pattern using BLAST and
FASTA in their various forms

• DNA/RNA secondary-structure prediction and display
• Editing and display of sequences for publication
• Phylogenetic tree generation and display
• Assembly of nucleotide sequence fragments
• Gene nding and pattern recognition in sequences (protein coding regions,

terminators, repeats, etc.)
• Hidden Markov model (HMM) generation from a set of related sequences

and use of this model to search databases, align sequences, and generate
new sequences (HMMER suite)

• Restriction digest and RNA ngerprinting prediction and display
• Prediction of optimal polymerase chain reaction primers
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• Protein sequence motif identi cation
• Translate nucleic acid sequence into protein and vice versa

The Wisconsin package provides three interface options. SeqWeb is the Web
interface to a core set of the programs. SeqLab provides access to all the packages
via an X Windows GUI. Finally, the programs can be used via the command line
with the option to do batched procedures via scriptable command lines.

16.4.3 EMBOSS

EMBOSS, the European Molecular Biology Open Software Suite [23], was largely
initiated in response to the commercialization of GCG (see the previous section).
Originally the source code of the GCG libraries was available, allowing new pro-
grams to be developed and distributed freely. However, when the source code was
made unavailable, such development was no longer possible, and distribution of
source code of programs using the GCG libraries was also not possible.

EMBOSS handles all sequence and many alignment and structure formats. The
extensive libraries support the development of further open-source software for the
community. In addition, EMBOSS integrates existing packages and tools to provide
a single suite for sequence analysis. EMBOSS is maintained and developed at the
Rosalind Franklin Centre for Genomic Research, Wellcome Trust Genome Campus,

EMBOSS contains about 100 applications, covering areas such as

• Sequence alignment
• Searching databases with a sequence pattern
• Protein motif identi cation
• Nucleotide sequence pattern analysis 
• Codon usage analysis
• Identi cation of sequence patterns in large sequence sets
• Presentation tools for publication

The EMBOSS applications are under general public license (GPL), although the
libraries are under the Lesser GPL. Third-party programs with a Lesser-GPL-com-
patible license (e.g., PHYLIP) are packaged with EMBOSS under the EMBASSY
grouping, allowing linking to the rest of the libraries and to the user, looking exactly
like any other EMBOSS application.

A variety of graphical and script modules have been developed. Jemboss, a Java-
based graphical interface, is the main supported interface and forms part of the
EMBOSS distribution. Applications can be run interactively or in batch mode mon-
itored by a job manager with sensible presentation of applications and defaults
generated on the y. The Jemboss Alignment Editor can be accessed to view and
edit any sequence alignments produced.

At many sites shell, Perl or Python scripts are used to run EMBOSS applications.
BioPerl and BioPython both provide support for accessing EMBOSS programs,
while the Bio::Emboss module provides speci c access for Perl programmers.

 © 2006 by Taylor and Francis Group, LLC

Cambridge, United Kingdom (http://www.rfcgr.mrc.ac.uk/Software/EMBOSS).



400 In Silico Technologies in Drug Target Identification and Validation

Finally, various speci c Web interfaces to EMBOSS exist, such as wEMBOSS

SRS interface via generation of external-application de nitions in SRS’s Icarus
language.
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17.1 INTRODUCTION

The application of BioIT computational hardware is an interdisciplinary eld grow-
ing out of molecular genetics, mathematics, and computer science. This area is a
result of the explosive growth of sequence databases and computational and digital
communication capacity. Early sequencing projects generated demand for storage,
retrieval, and comparison of newly generated sequence, while computational require-
ments focused on homology matching, sequence assembly, and taxonomy. The
foundation for these analyses lay in information theory, statistical models, and pattern
recognition algorithms. Methods of statistical testing, distributions, and models were
required for an objective matching and quality assessment scoring. Performance
issues arose from large-scale whole-genome sequencing and systems analysis, and
database development became necessary for project development.

The postgenomics scenario is shifting emphasis in the eld. In the past, much of
bioinformatics revolved around BLAST and associated sequence and data manage-
ment. The problem was to test the hypothesis that a query sequence would not occur
by chance within the database (e.g., GenBank). Now it is more unusual to nd novel
sequences, and the emphasis is shifting to categorizing and collating functional and
structural information. In this chapter, I cover the impact of continuing explosive data
growth, followed by the hardware con gurations to support heterogeneous computing,
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and I conclude with issues related to distributed forms of laboratory information
management.

17.2 COMPUTER HARDWARE SYSTEMS

17.2.1 BIOIT SYSTEMS DESIGN

Computer systems and communications networks compose the bioinformatics infra-
structure. I discuss the planning and design of the infrastructure to meet the needs
of bioinformatics and BioIT. There are three components of the systems: computa-
tional resources, storage facilities, and communications networks. BioIT systems
can best be understood by developing a schematic design. A typical schematic is
shown in gure 17.1.

Figure 17.1 shows the elements of the system and the connectivity of the
elements using standard iconography. The computational resources are a central
server and desktop analytic workstations. The disk storage and backup systems are
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FIGURE 17.1 BioIT schematic.
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indicated. Additional desktop systems are denoted for of ce and mail facilities. A
network backbone interconnects the components and routes messages to the Internet
portal. Finally, a security system is shown for Internet security functions. Charac-
teristic of bioinformatics systems are an emphasis on large-disk storage and com-
putational capacity in desktop workstations. In the following sections, these aspects
of performance and capacity in the architecture of BioIT systems are emphasized.

GenBank doubled in less than one year; this rate exceeds the growth rate in
computing capacity, which has been roughly modeled by Moore’s law as a doubling
rate of one and a half years. The cumulative effect has been a large increase in the
cost of computing for the main computational loads, such as homology searching
or assembly. Figure 17.2 shows the relative rates of increase over the past decade.

Sizing of the systems is based on capacity planning. To estimate the computa-
tional load and the performance of database searching and retrieval, samples spec-
i cations can be developed. Trial runs and a priori calculations are two common
methods. BLAST, for example, is a standard homology searching algorithm. Hard-
ware sizing for BLAST operations is a function of processing speed, memory size,
disk retrieval, and software optimization.

In sizing the computational hardware for a large human-genome-sequencing lab,
the following combined approach was used. The requirement was 4,500 base pair
queries in four hours. Based on the performance analysis conducted in the year 2000,
a SUN 4500 server was unable to meet this requirement, even in a 16-processor
con guration. In addition to hardware con guration planning, the option of gaining
performance through software optimization was explored. Pro ling of the National
Center for Biotechnology Information BLAST program identi ed four lines of C-
code on which 75% of the computing time was spent. These lines carried out data-
fetching operations. Software optimization [1] was done by rewriting the code in
lower-level assembly language and resulted in a 100% speedup of performance,

of software optimization, comparing pre- and postoptimization performance for
BLAST. Optimizing software is often cost-effective when designing systems for
sequence searching with BLAST, BLAT, or any other search algorithm.

FIGURE 17.2 Comparison of relative growth of GenBank, computing performance, and the
cost of executing a search.
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In hardware sizing and capacity planning, two sources of data are used. The rst
is the server capacity, often given as a SPEC mark, or the time in which a standard
set of procedures is executed. A less-accurate measure of computing capacity is
processor speed in cycles per second. Memory size may play a role in some calcu-
lations. BLAST queries, for example, are limited by the fetches from the disk; the
rule is, the more memory the better. Optimally, the entire nonredundant GenBank
database can be stored in memory rather than on disk. The second component of
the capacity analysis is the computation load, modeled as a typical workload factors.

Sizing of hardware is a cost–bene t problem. The results of benchmarks can be
applied to various complements of hardware, and the best con guration can then be
selected. More complex analyses are appropriate for communications loading prob-
lems. In these cases, the analysis can become nonlinear.

17.2.2 CLUSTER COMPUTING

Alternative server architectures are considered in this section on cluster computing.
Cluster computing, or arrays, is a trend in computing for bioinformatics because
of superior price/performance characteristics. Many search algorithms can be easily
implemented simultaneously by dividing the data into smaller sets and then recom-
bining the computed results. Based on comparative studies [2], LINUX clusters
using low-cost, standard PCs may offer as much as a 5:1 price–performance advan-
tage over mainframe servers.

Systems con guration of clusters may involve unique considerations. The nature
of clusters of computers necessarily requires additional factors involved in the systems
management. To demonstrate one of these issues, I present a brief case study. A 100-
node LINUX cluster was con gured with standard PCs and provided heterogeneous
information services and search and retrieval functions for a large external user base.
The organization used the cluster to deliver general, informational content from mul-
tiple databases. In managing this cluster, an unusual failure syndrome was observed.

LINUX cluster. This graph shows the number of transactions per second on the

FIGURE 17.3 BLAST performance, time in seconds to process a 500 base pair query against
the NR database, and pre- and postsoftware optimization.

 © 2006 by Taylor and Francis Group, LLC

Figure 17.4 shows the daily log of one node of the system from the 100-node

Number of Processors

Ti
m

e 
(s

ec
o

n
d

s)

1 122

35

30

25

20

15

10

5

0
84 10 14

pre-optimization

post-optimization



BioIT Hardware Configuration 407

vertical axis and time as a 24-hour cycle, in minutes, on the horizontal. The system
showed oscillating failure, beginning at approximately 12.00 with damping after
about 1 hour.

The LINUX cluster had been managed under continually increasing load for a
period of months. Systems administrators had responded by incremental addition of
PCs, but the performance had shown continued decline. The system was loaded near
capacity, which is often far below theoretical, 70% of maximum being a common
benchmark. Another feature of the system, which is especially relevant to clusters, was
the impact of component failure. For computers, this is likely the disk drive. Drives
have a mean time between failure of one to two years and follow a “bathtub” curve
of burn-in failure, followed by reliable performance and then high failure near the end
of the lifecycle. Cluster design must take into account the need for graceful degradation.

The cause of the failure was localized to load balancing. The process of allocating
load to the PCs resided in a device called a web switch. The effect of the load
balancer under high load conditions and impacted by sudden disk failure was
unplanned. When a disk failed, the load balancer was programmed to shift all current
sessions from that PC to its neighbor. As a result, under high load conditions, failures
cascaded throughout the system, demonstrating the ringing shown in gure 17.4.
The problem was xed by reprogramming the web switch to distribute the load of
a single node failure to all of the systems. This scenario illustrates some of the
system management implications of cluster computing in bioinformatics. In fact,
because cluster computing has become so important in BioIT systems, many of the
major computer manufacturers such as SUN, IBM, and HP now offer cluster solu-
tions. There are also specialized providers, and a public domain system software—
Beowulf—is available. The major systems management implications of clusters are
for the optimization and maintenance of highly redundant systems. Load balancing,
fall-back systems, and traf c management are important areas to consider.

FIGURE 17.4 LINUX cluster performance for 24 hours. The log of transactions per minute
for single element of 100-node cluster.
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17.2.3 COMMUNICATIONS NETWORK AND SECURITY

A well-designed communication network is the backbone of the BioIT system. It
makes possible the interconnection of diverse systems, ties together geographically
separated workgroups, and is especially important to the long and complex process
of drug development. The network consists of internal and external communications
systems. The internal network consists of (a) the physical wiring and the interfaces
and (b) the switching and routing hardware. The layout of the wiring is done in
the planning stages of the facility or by incrementally adding additional wiring as
needed. Alternatively, wireless systems can be used without the need for extensive
installation.

Communications systems performance is often nonlinear. Queuing theory [3,4]
provides the best view of this behavior. Simple rules of thumb can be used to re ect
the nonlinearity of communications systems. For example, the loading capability of
communications channels is often 60 to 70% of the theoretical maximum capacity,
because overhead becomes proportionately greater in the total communications as
the load increases. A direct analogy to highway systems is apt and a close analogy.
Highway traf c behavior will slow to a crawl in a traf c jam but then will suddenly
come to a halt. Likewise, digital communications systems at near capacity can often
crash precipitously. For this reason, appropriate nonlinear models should be used
for planning the capacity of the communications channel and hardware.

External communications to the Internet are designed based on the requisite
communications load. Typical transmission rates and load packages can be used to
estimate the size of the communications channel. The junction of the external
communications channel is also the position of the Internet rewall. Security require-
ments for external communications are implemented in the rewall policy. The policy
determines which communications may be received and transmitted from the facility.

In general, security risks consist of external and internal security threats. Pro-
tection of proprietary information and recent government legislation, such as HIPPA
and CFR 11 [5] has heightened the importance of security in biotech. The scale of
risk, types of threats, and potential economic impact of security breaches should be
considered in devising a security policy. Internal security for the company is often
neglected. Technical solutions for ensuring a high level of internal security, appro-
priate to biotechnology, should be considered. For example, a system implementation
of trusted operating system will provide a higher level of control over access to
documents, les, and output devices such as printers and disk drives. The various
roles and levels of security appropriate to a biotechnology company should also be
incorporated into a well-designed security policy.

17.3 LIMS, MATERIAL TRACKING, AND RFID

LIMS, or laboratory information management system, involves all of the technolo-
gies in the acquisition, transmission, and storage of laboratory measurements. LIMSs
typically consist of measurement instruments, network, and data storage hardware
and software.
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LIMS is also involved with material tracking. Material transfer tagging is of
utmost importance in genomic research because of the long and complex screening
process. In brief, these processes include eld collection, molecular characterization,
genetic cloning, chemical screening, and analytic chemistry. Completely reliable
registration is required for this lengthy procedure. Completion time may be many
years and require material transfer between several laboratory sites. Thousands of
compounds can be derived from these assays.

One new technology that is well suited to material tracking is radio frequency
identi cation devices (RFID). RFIDs are passive components that store and transmit
a digital bar code [6]. The tag is interrogated wirelessly by the reader, usually at
power densities far less than cellular phones. Line of sight reading, as in visual bar
codes, is not necessary. The current generation of RFID tags also provides storage
of up to 2KB of data on the chip. The chip is typically the size of a postage stamp
and the thickness of the mylar or other tape on which it is layered.

To illustrate the application of RFID in LIMS, consider the following example.
This system was designed for an agricultural genomics research laboratory. There
were three major hardware components:

1. An RFID system consisting of transceiver, personal digital assistant (PDA)
platform, and RFID tags at 13.54 MHz. (The PDA was eld portable and
used in the collection of eld samples and in the laboratory.)

2. A global positioning system for acquiring position in the eld.
3. A relational database to store and retrieve RFID information stored in the

PDA.

An RFID tag could be af xed to a microtiter plate ( gure 17.5) or to standard
laboratory tubes. The storage capacity of the tag was used to record geographical

 © 2006 by Taylor and Francis Group, LLC

FIGURE 17.5 RFID tag and microtiter plate.
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position information, processing steps, and a permanent label code. These data were
stored at the time of capture in the eld on the tag. This RFID system was bene cial
because the information travels with the material. With RFID, the plate or tube
becomes a distributed data source. In the highly diverse and lengthy process of
pharmaceutical development, RFID offers a more reliable and ef cient method for
material handling and tracking.

17.4 CONCLUSIONS

Hardware design is a function of sizing, component selection, and system integration.
A knowledge of the software applications and the research process is also essential.
Systems for BioIT are composed of server, storage, communication, security, LIMS,
and material handling. Cluster computing is an important trend for meeting future
computational demands. New directions in material handling are appearing in the
RFID technology. Mandated RFID systems for large corporations and government
are pushing this technology toward speedy implementation. The integration of other
wireless technologies such as PDAs and WiFi is an important direction, providing
increased exibility and mobility. These technologies are also of interest given a
heightened awareness of the need for tracking and security in biotechnology.
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18.1 A DEFINITION OF BIOIT ARCHITECTURE

Software architecture used in discovery informatics is characterized by its diversity.
It is rare to nd an environment used in target identi cation and validation that
consists solely of commercial off-the-shelf software. In most cases the research
environment consists of a variety of commercial, open-source, and locally developed
software packages. HTML and Web technologies are often used as a mechanism to
integrate these disparate environments. One aspect of research IT is its datacentric
nature, often involving a wide variety and types of data in unstructured and semis-
tructured textual forms and in structured forms as relational and object-oriented
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databases. This heterogeneous collection of software and data often seen in drug-
discovery informatics can pose some signi cant challenges to administer and man-
age. The research process itself is one of experimentation, iteration, and hypothesis
testing. In this environment the analysis tools utilized can be changed or augmented
frequently. This process requires that the applied software architecture be exible
enough to accommodate rapid and frequent changes. Ultimately the requirements
for the integration of informatics software and data are driven by the research process.

18.2 REQUIREMENTS THAT DRIVE BIOIT 
ARCHITECTURE

The research process imposes a variety of requirements on any software architecture
used in target identi cation and validation.

18.2.1 INTEGRATION OF PUBLIC VERSUS PROPRIETARY DATA

The informatics process requires the integration and analysis of datasets in the public
domain as well as from proprietary data sources that represent the intellectual
property of the research organization. Public at- le biology data are often curated
and delivered from a number of public ftp sites. This information is released peri-
odically, and any private storage of this information must be kept up to date with
the public data as they are released. In addition, these data may be available in a
variety of physical formats, such as at le, Extensible Markup Language (XML),
and relational. Software systems must support the ability to keep proprietary infor-
mation physically separate to facilitate both the periodic update of public data and
the integrity and security of private intellectual property.

18.2.2 COMPUTE-INTENSIVE ANALYTICAL ALGORITHMS

Many of the computational algorithms used in target identi cation and validation
are compute intensive and can bene t from a high-performance cluster (HPC) or
high-availability grid-computing environment. Scheduling a computation on a cluster
and coordinating the ow of information between steps in the computation can
complicate the execution of analyses. The computations used in informatics analyses
can also consume and produce signi cant datasets. The computational infrastucture
must therefore maximize access and bandwidth to the data. The research software
systems must be able to discover, monitor, and manage resources within the system;
schedule jobs on the cluster; and manage the ow of information between services
within the cluster. All these tasks require monitoring and provisioning of systems
to balance the utilization of the cluster across the variety of workloads being sched-
uled at any given time.

18.2.3 ANNOTATION OF KNOWLEDGE ONTO EXISTING DATA

Software systems must provide for regular update of public data sources while
ensuring the security for proprietary intellectual property. Knowledge gained while
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analyzing experimental results from the research process must also be captured and
related to the public and private data. The relationships between public, proprietary,
and analytical datasets can be captured in a “gene index,” which provides a focal
point for linking information across the various information sources. The gene index
serves as a map of the genome, with entries on the map that record relationships
within the genome and to data stored separately. The ability to store relationships
between data elements allows the gene index to serve as a navigation point for this
genomic data without the need to build an integrated dataset that combines propri-
etary data with the public data sets. Ideally this index is a separate optimized database
that uses stable identi ers to refer to the linked data. The gene index and “knowledge”
stored within it represent a critical information source to document research progress
and to provide decision support capabilities as the research program progresses.

18.2.4 INFORMATION SHARING ACROSS PROJECT AND 
GEOGRAPHIC BOUNDARIES

Research is often performed by groups distributed across multiple projects, organi-
zations, and geographical boundaries. The research system must support these inter-
actions while ensuring the security and integrity of research information. Controlled
access to information through secure channels must be supported by the research
system. This access may need to be provided across multiple tiers in the system:
access to presentation components may be different than the access provided by
services within the system.

18.2.5 ABILITY TO QUICKLY ADOPT NEW RESEARCH METHODS

During the course of the research process, new methods will be applied to analyze
and collect information in support of this process. Software systems used in this
research must be exible enough to incorporate new methods into the data and
processing models built into the system. The system must support ef cient repur-
posing of compute hardware and exible description and discovery of computational
and data resources within the system.

18.2.6 MANAGEABILITY BUILT INTO THE INFRASTRUCTURE

The construction and management of complex compute IT infrastructures, often
utilized when constructing a bioinformatics research system, introduce some impor-
tant site management issues that must be addressed suf ciently to successfully
control the complexity and cost to adminster such an environment. Complex compute
clusters introduce power and cooling considerations that must be carefully planned
for. Resource allocation of compute nodes, allocation, and mapping of storage
connections and administration of network connectivity and bandwidth must be
addressed throughout the lifetime of the compute infrastructure. In extreme cases,
failure to manage the infrastructure can impact the ability to realize the expected
return on investment from the installation of computational resources. The infra-
structure must provide tools to con gure and tune the deployment of services to
fully realize the bene ts of the architecture.
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18.3 AN ARCHITECTURE THAT REALIZES THE 
REQUIREMENTS

18.3.1 HIGH-PERFORMANCE COMPUTING AND COMPUTING ON 
DEMAND

Because the process of scienti c inquiry involves hypothesis testing and a variety
of compute-intensive analytical methods, a exible compute architecture must be
able to be redeployed and repurposed quickly to support the needs of the various
research activities and research efforts. While it might seem attractive to build
dedicated compute facilities to support the various programs, this is often not prac-
tical because of the cost of the software and hardware assets and the associated
maintenance cost. In the past, a large multiprocessor “supercomputer” would be
deployed to meet the computational and data-handling demands. Unfortunately such
a resource was scally very expensive, and recon guring to handle new types of
workloads would result in costly downtime and further restrict the ability to share
it. For the past few years, a more common con guration is to utilize commodity-
priced hardware and gigabit (or faster) network connections to construct compute
clusters that can be scaled and recon gured to meet the changing demands. High-
speed network connectivity can also be utilized to support network-attached storage,
which can often be exibly mapped to the appropriate compute nodes to support
the repurposing of the homogenous compute hardware.

Development of a shared, managed compute infrastructure is often the most
practical approach when supporting recon guration of the compute infrastructure to
address changing analytical needs. This approach to computing is being utilized in
both high-performance clusters and more loosely coupled computational grids. While
the single supercomputer can be in exible to use, it is often easier to manage because
the design of the system is realized in a static hardware con guration. HPC com-
puters or loosely coupled grids require more management to con gure them for the
workloads run on the cluster. This management cost is a small price to pay, however,
for the return on investment realized from the ability to exibly use the cluster for
a variety of computational tasks.

The software architecture used to deploy and manage these infrastructures must
support the identi cation and location of services dynamically and support the

exibility to quickly repurpose compute nodes and map data resources to these nodes
to meet application-processing requirements. It should be relatively easy to reallocate
resources or add new compute nodes or data sources to the cluster. The capabilities
used to manage and monitor such an environment represent an active and developing
segment of the software market; for example, a variety of solutions exist commer-
cially and within the open source community. One project that is bringing together
some of the best-of-breed elements utilized in clusters is the SourceForge OpenSSI
project.1 There are also a number of commercial hardware and software technologies

1 

ronment representing a Single System Image out of homogenous clustered nodes of Linux systems. There
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The OpenSSI project at http://www.openssii.org is attempting to build a “supercomputer”-style envi-

is more information about SSI-style clusters and other clustered systems at http://www.linuxhpc.org.
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available that can help to manage a clustered compute environment. Choices in this
area can have a signi cant impact on the cost to maintain and operate the computing
infrastructure, and they can affect the subsequent return on the investment the
compute platform represents.

18.3.2 SERVICE-ORIENTED ARCHITECTURE

Service-oriented architecture (SOA) is an architecture that de nes a loosely coupled
multitier platform organized into logical layers that separate the delivery of data and
software into components organized and presented as services. This architecture
allows evolution and replacement of components in a scalable, stable environment.
A services approach also avoids the drawbacks of more traditional “software silo”
approaches (which are characterized by tightly coupled, specialized, single-purpose
software elements) by supporting evolution of the environment through the incor-
poration of new types and instances of services. An SOA can support multiple user
presentations, including batch access, Web clients, and desktop clients. One can
organize the research informatics system into sets of cooperating services by group-
ing common functional elements and de ning service interfaces that export func-
tionality to cooperating service tiers. In this approach one can replace any individual
component with another that implements a service interface. One can also duplicate
and distribute or replicate services across compute nodes to scale the capabilities of
the system to support distributed or greater numbers of clients. Figure 18.1 shows
groupings of services that collectively can be utilized to construct a research infor-
matics system. A discussion of each service grouping with examples for life sciences
applications is presented next.

The physical/logical hosting environment represents the physical compute infra-
structure used to make up the research system. This infrastructure includes compute

FIGURE 18.1 Service-Oriented Architecture
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nodes, network connectivity, direct or network-attached external storage, and systems
software con gurations. Ideally the physical hardware infrastructure should consist
of homogenous, often commodity priced, compute nodes. Each node should be
con gured with high-speed network interconnects such as 2 gigabit (or better)
Ethernet interfaces, FibreChannel or In niband, or similar technologies. Local stor-
age for booting is convenient, although network booting is also possible and may
simplify con guration of the compute cluster. In data-intensive applications such as
those in informatics, access to a storage area network (SAN) for data access is also
desirable. A SAN is a high-speed subnetwork of shared hard-disk devices. In con-
junction with a clustered le system, a SAN can be used to provide shared high-
speed access to large datasets.

There is a growing trend toward hosting applications and services in an envi-
ronment where compute capacity can be quickly allocated and reallocated to solve
problems. In a traditional system, a large n-way multiprocessor machine might have
been constructed to meet the specialized computational demands of a speci c appli-
cation. This machine would likely have directly attached storage to meet the perfor-
mance needs of such a server. With the advent of network-attached storage (NAS)
and high-speed interconnects like FibreChannel and In niband to provide switched
connectivity to the SAN disk farms, it is possible to construct a compute engine
made up of commodity-priced processors that will support such an application and
allow for the addition of compute nodes as needed.

By utilizing homogenous compute nodes, it is relatively easy to add capacity or
to reallocate capacity to applications on the cluster as needed. The “blade server”
marketplace is an example of a hardware con guration speci cally suited to the
construction of “utility” compute infrastructures. In most such environments, many
aspects of the cluster can be managed without the need to ever physically enter a
data center to touch the hardware. Blade servers provide cost-effective high-perfor-
mance computing with lower maintenance and management costs. For example, the
Sanger Institute has deployed a high-performance cluster made of clustered blade
servers, resulting in increased compute capacity while lowering the overall cost to
manage and maintain the cluster.2

The resource management layer provides services to manage the compute infra-
structure and map resources to compute tasks. Within this layer, access control
policies that describe permitted/disallowed access to compute nodes, disk and mem-
ory resources, and applications are applied by services that accept jobs from the

2 RLX provides server management software for rack dense and blade server environments. RLX has years
of experience in developing and managing scale-out environments. Originally the inventor of the blade
server form factor, RLX is now focused on the software that manages and automates these environments.
The RLX ControlTower™ management application provides tools to provision an operating environment
on the blades. Cluster Manager, a value-added ControlTower component, supports the de nition and
monitoring of compute clusters and the con guration, including the addition or removal of compute
resources to the managed cluster environment. More information about the RLX product line can be found
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aforementioned application layer. A common approach to this problem is to deploy
a distributed resource manager3 to accept jobs into queues that are con gured to
provide various levels of service. Jobs are then scheduled to nodes on the cluster
based on attributes attached to the queue and the job. Job scheduling in such a
resource-managed environment can be con gured to react to dependencies between
tasks, the time a job is queued, how compute or data intensive a job is, or other
related factors.

In addition to scheduling against compute nodes, the Resource Management
layer should provide tools to locate and advertise services. The service location
protocol4 (or SLP) provides a capability to dynamically locate services that meet
desired criteria. Since a computational environment involves not only scheduling
across compute nodes but also potentially the need to dynamically connect to data
providers and other service elements, the SLP protocol provides an important inter-
face to exibly locate and connect to distributed network services, limiting explicit
coupling within the system.

Management and allocation of storage devices is also often a requirement. In
particular, mapping NAS volumes to compute nodes is important in fully utilizing
a cluster. Unfortunately, storage management services traditionally have been pro-
vided by storage vendors themselves, and the solutions they provide tend to be
proprietary. The Storage Network Industry Association5 (SNIA) is attempting to
change this and has published a standard based on the Device Management Task
Force (DMTF) Common Information Model (CIM). The DMTF CIM model provides
a mechanism to model and describe management information services in a class and
objects approach. Information about the model is stored in a CIM Object Manager
and accessed via Web-based network protocols. Adoption of SNIA’s CIM-based
storage management model has been slow but progressing. When designing a
research system where logical mapping of storage is required, working closely with
vendors to produce an optimal and interoperable solution is still required.

The information services layer provides general-purpose infrastructure services
such as authentication and authorization services, access to user preferences, meta-
data information, and data management and integration. The information services
layer can also aggregate lower-level services across loosely coupled compute “grids.”
For example, resource management across a grid-compute environment may require
negotiating with differing job-scheduling resource managers within tightly coupled
compute clusters. These common services are accessible to the Presentation tier and

3 There are a variety of available commercial and open-source resource managers available. A few common

ments, the Globus Toolkit DRM provides resource scheduling capabilities that can leverage the affore-

4 The SLP is de ned by the Internet Engineering Task Force. For the protocol speci cation see

5 The SNIA is a standards body that produces speci cations targeted at increasing the interoperability
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ones are Platform Computing LSF (http://www.platform.com), The Sun Grid Engine (http://gridengine
.sunsource.net), and OpenPBS (http://www.openpbs.org). When scheduling across distributed environ-

mentioned tools (http://www.globus.org).

http://www.ietf.org/html.charters/svrloc-charter.html. An implementation of the SLP speci cation is
available via OpenSLP (http://www.openslp.org).

across storage vendors and storage management products. More information can be found at http://
www.snia.org.
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are usable by the domain components that are hosted inside the Application/Domain
Integration tier. 

The Globus Project6 is an alliance of commercial software vendors and research
organizations producing software that addresses many of the service requirements
for information services. The project is a collaborative effort across organizations
from the United States, Europe, and the Asia/Paci c. The project is basing their
current work around Web-services standards including extensions, such as the
WS–Resource Framework that extends Web services to support stateful interactions.
The Globus toolkit contains software elements to handle security, data management,
grid resource scheduling, monitoring, and management, and a development toolkit
for extending and building applications using the supported services. Given the
datacentric nature of research informatics, the data-management elements of the
Globus toolkit provide some interesting tools to manage and query metadata and to
manage and replicate datasets across the grid infrastructure.

Another noteworthy project with similar goals is the GridLab. GridLab is a
research project focused primarily within Europe but with effective collaborations
throughout the world. With similar goals to the Globus project, the GridLab project
will produce a grid-enabled toolkit for producing grid–computing-aware applica-
tions, grid services, and a grid portal layer that can be used to implement the
presentation services layer discussed next. The project’s stated goal was to produce
a completed production grid computing capability by December 2004. To date the
GridLab project has released components for all of the major work areas addressed
by the project. Updates to components continue and a number of major commercial
and academic partners have adopted the infrastructure.

The GridLab project provides a number of important information services that
support a layered services structure. The security services provide identi cation- and
role-based authorization services. The data management infrastructure includes sup-
port for replica management, data movement, metadata management, and data struc-
turing and organization. Services for resource management provide capabilities to
schedule workload across grid-service elements and monitoring tools to manage
quality of service across the grid. There are also services for event management that
provide a monitoring infrastructure and a mechanism for services to source and
synchronize events. The GridLab adaptive services components provide metrics for
other service elements to use to make decisions about how to modify behavior based
on changes to the grid-computing environment. Two other unique areas being
addressed by the project are utilization of mobile devices to interact with the grid
and tools for data visualization.

The domain services layer provides life-sciences-speci c services, such as bio-
informatics and cheminformatics applications and data, and tools that can be utilized
to build and maintain the life sciences data and analytical models. There are a number
of notable projects that can be utilized to provide components to build out an

6  The Globus Project has produced a grid-computing toolkit largely based on proprietary protocols. The
project’s current development efforts are focused on grid services using Web-services standards to deliver
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informatics capability. A group of projects developed under the auspices of the Open
Bioinformatics Foundation (OBF) are particularly noteworthy. The most well known
of these projects are the BioPerl and BioJava efforts, each of which provides lan-
guage-centric classes and object de nitions for the access and manipulation of
biological data. In addition to the biological toolkits, there are projects that provide
tools to access and query a biological model. The Distributed Annotation Service7

(DAS) provides a capability to browse and query a reference server for genomic
data. One or more “tracks” providing genome annotation information can be layered
on top of this reference data. DAS provides a simple but powerful model for the
presentation of genomic information and both public and proprietary annotation data.
Similarly, the OBF MOBY8 project is attempting to provide a more generally useful
integration layer through the de nition of Web services (MOBY–S) and the use of
XML-based semantic Web technologies (S–MOBY) like RDF and OWL.

Another project af liated loosely with the OBF is the European Molecular
Biology Open Software Suite (EMBOSS)9. EMBOSS is a software toolkit and
collection of applications speci cally focused on molecular biology. There are hun-
dreds of applications covering areas such as sequence alignment, database searching
including pattern searching, protein motif and domain analysis, DNA sequence
pattern analysis, sequence characterization tools, identi cation of sequence patterns
in large sets of sequences, and tools to format biological data for publication. All
the EMBOSS programs are built upon a library-based toolkit that may be used to
support the development of new types of analyses.

The Interoperable Informatics Infrastructure Consortium (I3C) has sponsored
the de nition of a speci cation for an identi er that can be used to reference and
locate biological objects. The Life Sciences Identi ers De nition10 de nes the syntax
of a stable identi er and a mechanism to locate an authoritative server and resolve
the identi er to a biological object. There are a number of reference implementations
of this speci cation, and it has generated some interest in the bioinformatics com-
munity. It has yet to achieve widespread adoption but deserves a look if a research
system requires the ability to specify stable identi ers for biological objects.

Combining domain services that de ne the object and service models for the
biological content and analyses with other application services (like data-integration
services, information searching, etc.) produces a model system for the de nition and
execution of bioinformatics research. By layering the application and domain model
on top of a exible service-oriented architecture, one can scale the infrastructure to

7 The Open Bioinformatics Foundation efforts focused on the distributed annotation service are described

8 The MOBY project is focused on provided data integration through the use of services and metadata.

9 The EMBOSS project provides a toolkit and analysis tools for bioinformatics research. In addition to
providing analyses to characterize DNA and protein sequences, EMBOSS also supports simple searching

10 The I3C has speci cied a Uniform Resource Name syntax and semantics for a life-sciences identi er.
Submissions of proposed implementations of these technologies were also made to the Life Sciences
Research Domain Task Force at the OMG. More information on the I3C speci cation can be found at
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at http://biodas.org.

More information can be found at http://www.biomoby.org. 

and retrieval of sequence information. For more info see http://emboss.sourceforge.net.

http://www.i3c.org/wgr/ta/resources/lsid/docs/index.asp.
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handle large, compute-intensive problems. The architecture also supports the ability
to exibly reprovision the compute environment for new problems or to handle
simultaneous computational activities. An example in bioinformatics might include
access to an index of genes. A DAS reference server could provide the application
service interface for access to genomic content by genetic locus. A DAS annotation
server would then be accessed to retrieve annotations from the public information
sources as well as locally created, proprietary annotations. A distributed resource
manager could be used to coordinate the execution of analyses that generate anno-
tations into the gene index that the DAS tools are serving. A cheminformatics
example might include the ability to build a collection of compounds and apply a
set of descriptor calculations implemented in the domain services layer to perform
compound prioritization calculations on the collection. Again, the scheduling of these
calculations can leverage clustered computational resources through the grid-aware
resource-management services.

The Taverna Project11 is an example of a domain-aware work ow toolkit that
helps to de ne and perform these biological analyses and transformations. Taverna
can handle both proprietary and XML-based data formats and uses XML itself to
describe the work ows and data format transformations. Taverna also supports Web
Service De nition Language (WSDL) and Web Services integration to exploit a
services-oriented architecture when executing work ows, like the one described here.
The “services” orientation that Taverna is built around works well with the services-
based architecture presented here. Because Taverna interfaces with services (both
informatics services and grid services like resource managers and security services),
it is well suited for construction of the kinds of complex research pipelines common
in bioinformatics research.

The presentation services layer provides an appropriate visualization mechanism
to the end user. Because the architecture is organized as layered services, the platform
can support a desktop client presentation as well as Web-based information retrieval
presentation. A Web-based presentation is common choice to facilitate the often-
distributed nature of the research process. Presentation services utilize the services
provided by the layers below them for security and authentication, computational
analysis, data management and information searching, and so on. There are a number
of interesting presentation approaches that could be utilized at this level. Information
“portals” and content management systems provide useful tools to organize and
present research informatics data. A portal provides common elements such as menu
structure and navigational tools, content transformation, and formatting capabilities,
and it supports development and presentation of customized application content
within the portal framework. This can also be a convenient mechanism to integrate
third-party applications content that is not directly controlled by the research infor-
matics staff.

11 The Taverna project is hosted at SourceForge and provides Web-services-based computational elements;
a description language for work ow de nition; and a workbench GUI to visualize, de ne, and control

 © 2006 by Taylor and Francis Group, LLC

work ows. For more information, see http://taverna.sourceforge.net.



BioIT Architecture 421

In addition to the portal or content management system itself, the actual presen-
tation that makes up the content of the research system will be de ned and delivered
using the presentation services. Selection of a exible presentation infrastructure
will allow separation of navigation and content from the actual screen layout and
formatting. Improvements to the interactive nature of the Web-based presentation
environment have continued to make browser-based HTML presentations for ser-
vices and content the preferred mechanism for building and delivering informatics
systems. Web-based portals provide an effective publishing framework for scienti c
content while managing many details of the presentation.

Macromedia Flash12 has also emerged as a tool for developing rich presentation
interfaces. Macromedia Flex is an example of a presentation services framework
and application delivery framework that provides traditional application widgets not
unlike those found in a desktop application while supporting their use in a browser-
based environment. Development of applications in Flex is enhanced using tools to
visually construct the user interface rapidly through prototyping. Utilizing technol-
ogies like Macromedia Flex enables the development of highly interactive user
interfaces while using the Web to deliver applications and content in a way familiar
to the research scientist. Macromedia Flash is also widely available on most operating
platforms so deployment of applications without concern for the operating environ-
ment (Microsoft Windows, Apple OSX, and Linux) is possible. A project similar to
Macromedia Flex has also recently been open-sourced. Lazlo and OpenLazlo also
use Macromedia Flash for rendering and provide a presentation server and XML-
based description format for construction of user interfaces. The resulting presenta-
tion provides a rich interactive client interface and connectivity into data and appli-
cation services for business logic and content.

18.4 MODELING THE RESEARCH DOMAIN

Over the last few years, a number of attempts have been made to build distributed
computing reference models for biological and chemical data. These efforts were
designed to de ne a model for de nition and interaction with biological data that
could be extended across the network. These reference models would provide seman-
tic integration through normalization of various back-end implementation and stor-
age approaches through a behavioral model that standardizes the access to the
implementations through methods on the objects. While many of these efforts con-
tributed to a better understanding of how to model and access such systems, they
did not produce the “standards” that would serve to de ne a reference model for
research informatics.

12 Macromedia Flex consists of a language de nition, compilers, and interactive interface-building tools
to quickly construct rich client presentations using the Web and Macromedia Flash for rendering. More

description language and uses Macromedia Flash as its rendering engine. Lazlo has recently been open
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sourced under the Common Public License; see http://www.openlazlo.org.
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Many of the previous modeling efforts operated from an implementation lan-
guage approach. That is, the end goal was the description of a speci c physical
implementation technology. An alternative to starting with a physical implementation
model is to utilize a model-driven approach that provides an implementation-neutral
model of the domain and multiple models for the implementation tiers derived from
the implementation-neutral model through rules describing the transformation. This
model-driven approach is being employed in the Object Management Group (OMG)
as the Model Driven Architecture13 and has been used in life sciences to produce
the Microarray and Gene Expression (MAGE)14 speci cation for gene-expression
analysis. MAGE-OM is a conceptual model for data exchange of data from expres-
sion experiments. MAGE-XML is derived from the MAGE-OM model and describes
an XML-based interchange format. A related toolkit, MAGEstk, provides implemen-
tations of the conceptual model in various languages and code to import and export
MAGE-ML formatted XML streams. Ideally a tool that automates the process would
produce these mappings. Currently there are a few vendors delivering early versions
of such tools, but current common practice is to derive these models manually. For
example, Uni ed Markup Language (UML) and the XML-based XMI, a portable
interchange format for UML, can be used to describe and de ne an abstract model.
From that model, a variety of concrete repesentations could be de ned. A physical
storage representation via database table de nitions, XML schema de nitions to
support interchange, and WSDL de nitions describing a service layer that mediates
access to the model are examples.

XML is becoming increasingly more important as a mechanism to exchange
data between applications15. Because many types of bioinformatics analyses require
iterative application of tools in a pipeline, a mechanism to transfer information
between stages of a pipeline is required. In the past these were often proprietary
formats, and it was necessary to write specialized tools to transform the output of
one tool into the input of the next. XML and the use of style sheets to drive
transformations promises to at least make the parsing and transformation of data
metadata driven as opposed to customized for each new application pipeline.

While the adoption of XML is a positive step toward simplifying the interachange
and processing of data in informatics pipelines, there is still a tendancy to invent a
new XML-based format for each new solution to a problem. Utilizing an XML
Document Type De nition (DTD) or schema-based approach is an improvement on

at les because of the variety of pre-existing tools to parse XML and the ability
to apply a DTD or schema to drive the parsing. There is still much room for
improvement if efforts to standardize XML-based interachange formats can be more
broadly adopted. With the possible exception of the MAGE-ML gene-expression
interchange effort, which succesfully exploited a standards body to produce a data

13 Infomation about the OMG and Model Driven Architecture is available at the OMG Web site

14 MAGE is an OMG standardized interchange format de ned by the Microarray Gene Expression Data

15 The XML speci cation is maintained by the World Wide Web Consortium and is described at
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model; XML interchange format; and language-speci c processing models that have
seen wide adoption, the development of “standard” formats for the manipulation of
bioinformatics data has been limited. This is not for lack of trying. I and numerous
others have participated in standards bodies to try to drive the adoption of such
standards. Perhaps the iterative and more speculative nature of the research process
tends to work against such efforts.

18.5 SUMMARY

Bioinformatics software architecture is unique in both its evolving nature and fast-
paced development. BioIT must track the changing and advancing scienti c research
process while facilitating access to large amounts of data and new types of inquiries.
In this chapter, I presented an architecture that addresses some of these fast-paced,
changeable requirements through modularity and layered services. The foundation
is a exible physical architecture that emphasizes “compute on demand” through
the ability to exibly manage and reallocate compute resources. Management tools
that facilitate this utility computing approach are mandatory to realize the bene ts
of a exible, scalable computational capability.

On top of this exible, managed computation environment, layered subsystems
and services have been organized that allow one to replicate and scale services to
meet the changing computational demands. This process can be achieved through
the use of resource-management tools and clusters within a local environment and
a grid-computing model when scaling and distributing across physical sites and
potentially logical research organizations. The compute architecture should ideally
extend and build on established capabilities and standards so the research scientist
can focus on extension in areas where real value is added: within the bioinformatics
arena directly. Thankfully, there are myriad excellent choices for bioinformatics
research software (including value-added locally created and maintained software
elements) that will work within the SOA that was described earlier.

There is a rich and expanding universe of available software and hardware tools
to implement a research IT environment such as the one described here. If there is
any critical take-away message, it would be to be willing to adopt and leverage the
excellent existing capabilities within the research landscape. If one must build, build
where you add the most value, and, in all other areas, walk in the excellent shoes
of those who have explored this landscape before you. Well-researched and carefully
selected service components will pay back in the future in the form of a exible
architecture that can be retooled and redeployed with maximal reuse to address the
changing needs of research informatics.
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19.1 INTRODUCTION

Many practices in computational research environments are iterative in nature. A
researcher might apply a series of operations to a dataset and then repeat this series
a number of times, making slight modi cations to the process on each occasion until
some desired result is achieved. At a later date, the researcher might have new data
for which the initial process has to be repeated. Automation of the whole process
offers the signi cant advantage of reducing inconsistencies and errors, and the time
savings are obvious. It is for this type of use that researchers increasingly prefer
using work ow or data-pipelining tools over traditional software applications.
Although these latter applications allow for automation in some cases (e.g., through
a scripting engine), this process is less exible and requires special expertise.

19.1.1 WORKFLOWS

The term work ow is applied loosely to various automated procedures and to ow-
charts of human activities. However, for the purposes of this chapter, we use the
following de nition:

A work ow is a network of well-described computational tasks that together accom-
plish a speci c goal. The network de nes the sequence of tasks in addition to decision
points and resultant alternatives. Each task is described in terms of its input, output,
and software dependencies.

Therefore, a work ow process has an explicit speci cation. This differentiates it
from collaborative tools that allow people to communicate and share information
but with no formal structure—in this case, the overall process is not well de ned.

Most processes related to drug-target screening, identi cation, and validation do
not consist of a single step but progress through a sequence of tasks directed toward
the ultimate goal of the process. Indeed, this is true for most computational and
business activities today, with the exception of some single-shot desktop activities
such as writing a document or sending an e-mail. As a result, there has been much
interest in this area over recent years, focused on software tools and on the interop-
erability between these tools.

A computational work ow is an attempt to capture a process that experience
tells us is a “best-practice” approach, or a standard operating procedure. Once
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captured, the automation of the work ow can provide both high throughput and
consistency in the way an organization runs the procedure. The consistency factor
can be vital in the drug research and development eld to ensure repeatability and
to provide an electronic paper trail to meet corporate and governmental standards.

Work ow engines are software systems that (a) provide a framework for de ning
the set of tasks that constitutes a work ow and the links between the tasks, and (b)
run a prede ned work ow. Interest and investment in this area has grown as orga-
nizations have recognized the advantages in making consistent and optimized use
of the software tools they have at their disposal.

A typical scienti c work ow takes one or more source datasets as input and
passes them through a sequence of branching tasks, each of which operates on one
or more input datasets to generate one or more output datasets, until nally the result
data are output from the system (see g. 19.1).

Some authors [WF1] have drawn a contrast between data-centric “scienti c”
work ows (or data ows) and task-oriented “business” work ows. In a scienti c
work ow, the ow of control is tied to the ow of data. In a business work ow,
control ows between tasks that operate upon work ow objects, but the ow of
control is independent of the data ow. Consider the difference between a work ow
designed to extract novel compounds from a candidate data set and one designed to
help a customer order a concert ticket.

In this chapter, we are primarily discussing the data-centric, scienti c work ows.

19.1.2 DATA PIPELINES

A data pipeline has similar goals to a computational work ow. However, whereas
a traditional work ow describes tasks that operate on an entire dataset, a data pipeline
focuses on the management of data records. Each task in a pipeline is involved with
the processing of a single, independent data record and passing it down the pipeline
as early and rapidly as possible, with a primary goal of minimizing the memory
footprint and maximizing data-throughput rates.

In an ideal data-pipelining case, the rst data record of a dataset has passed entirely
through the branching network of tasks in a data pipeline even before the reading of

FIGURE 19.1 An example work ow, beginning with a data source, leading to a set of
branching tasks and result datasets.
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the second data record. Contrast this with a work ow implementation, where the rst
task processes the entire dataset before the invocation of the second task.

Data pipelines introduce a work ow paradigm at a more ne-grained level of
analysis, without descending to the complexity of visual programming. In a tradi-
tional work ow system, each task is a black box that operates on the input dataset.
In a data pipeline, the operational speci cation is at the data record level and therefore
facilitates customization on a per-record basis. As an example, you can lter or edit
individual records within the work ow itself (see g. 19.2).

Data pipelines can introduce higher throughput for a number of reasons:

• The processing of individual data records minimizes memory overhead
and therefore requires less data caching to disk between tasks or because
of RAM limitations.

• The reduced memory overhead allows a greater number of work ows or
work ow threads to execute simultaneously.

• Each task can get started as soon as a data record is available, without
waiting for the entire input dataset to be complete. This exibility makes
for a more nimble system that can maximize the use of available compute
resources.

• Optimized methods can focus on the real-time analysis of individual data
records to achieve high throughput of entire data collections.

• Components can treat a data record owing in a pipeline in the same manner
regardless of its source location or format. Data from disparate sources
(databases, at les, or the Web) are handled in an identical manner, avoid-
ing cumbersome data migration or data integration operations.

In reality, the work ow and data pipeline approaches are two ends of a spectrum,
and in practice, most software systems adopt some elements of both.

• Some work ow systems can break a dataset up into smaller chunks for
parallel processing or for other advantages of exibility derived from the
pipeline model. 

FIGURE 19.2 An example data pipeline, beginning with a data source, leading to a set of
branching tasks, with data records owing to ll the result datasets.
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• A data-pipeline system cannot always follow the ideal pipelining paradigm
that treats each data record as independent from the others. For example,
a component that has the task of reordering data records must cache all
the data and treat them as an integral dataset.

• Integration with a legacy system imposes its own individual constraints,
since each software program requires data input of a certain batch size
for functional or performance reasons. A work ow management system
has to be adaptable to pass data to a legacy system in whatever volume
or format that it expects.

19.1.3 WORKFLOW MANAGEMENT CHALLENGES

Whether a work ow or data-pipeline strategy is used to orchestrate tasks in a process,
all work ow engines face three broad management issues: 

1. Application management. The tasks employed by a work ow must be
invoked appropriately, taking into account the details of data input and
result data retrieval. The applications may be run locally or on some other
location on the network.

2. Data management. Data are what “ ow” in a work ow. A work ow is
generally initiated by reading data from a data source, and the nal result
of the work ow is often data that are written to a data destination. Different
applications require data in different formats and employ different object
models to represent similar data objects. The nal formatting of the data
may be performed to make that data readable by a human. The work ow
engine needs the capability to manage this sort of complexity and exi-
bility when owing data.

3. Resource management. This covers the computational and network real-
ities that the work ow must deal with. Data reside in databases and on

le servers with their individual networking and security considerations.
Similarly, the invocation of an application that is needed to complete a
work ow may have speci c network requirements. To be useful in a
typical organizational network environment, the work ow engine has to
maintain information about network locations and network users, plus
have the ability to utilize these data in the way that is expected by users
and administrators.

19.2 BACKGROUND

The concept of a work ow is not new. A useful procedure generally attains its goals
through the completion of a number of individual tasks organized in some appropriate
manner. With respect to life sciences, the individual tasks are typically computational
applications related to the management or analysis of structural or experimental data.
The applications may be run sequentially or may be organized into a complex
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network including decision points, iterative operations, parallel tasks, and synchro-
nization, according to the needs of the problem to be solved. The term work ow
relates to the concept of activity (or perhaps, more speci cally, data) owing in a

exible, liquid fashion between applications, represented as nodes in the network.

19.2.1 MANUAL WORKFLOWS

From a historical perspective, most work ow procedures required human mediation.
Indeed, that is still true today in many instances, where the computational tasks in
a work ow represent islands of automation surrounded by procedures that are essen-
tially manual. A work ow can be represented graphically as a set of application
nodes with lines between them representing the directed ow of activity. However,
if we are to see these lines as “pipes” that channel the ow of data between
applications, the graphical representation is often a distortion of the manual drudgery
involved in making the “ ow” a reality.

The tasks that constitute a work ow are often very heterogeneous and may include
importing and exporting data in disparate formats, running individual programs on
different hardware and system platforms that exist in mutually remote locations. Unless
proximate tasks in a work ow happen to be sourced from a common vendor, chances
are they have no way to communicate directly with each other. In discovery, research
groups frequently use different databases from different vendors (e.g., one for biology
and one for chemistry). Hence, database-centric solutions do not generally provide the

exibility to access data from another vendor’s data schema.
Microsoft Excel is often the tool of choice for researchers to process and manage

their data. However, as those datasets grow, Excel’s scalability limitations become
apparent, since it cannot work with datasets above a certain length or width and the
automation of Excel is nontrivial to implement or support.

For these sorts of reasons, a human is necessarily involved in lling the gaps
between the various tasks. Typically, the overseer of a work ow is responsible for
the reformatting of data between tasks; the transfer of data over a network; and the
parameterization, launch, and monitoring of software programs to work on the data.

19.2.2 SIMPLE AUTOMATION OF STATIC WORKFLOWS

One solution to the problem of access to heterogeneous data sources is the Extract,
Transform and Load (ETL) approach. ETL is a system designed to move data from
multiple sources, to clean it up for consistency and uniqueness, and then to store it in a
central data warehouse for application access. The ETL process involves multiple custom
steps and needs to be scalable to deal with large datasets and execute on a regular basis.

Such scenarios are obvious candidates for automation, and scripts or other
custom-written software frequently supplement or supplant the purely manual pro-
cedures. Automation helps to overcome problems of human error, lack of consistency,
lack of repeatability, and plain tediousness. In addition, a work ow that can run with
minimal human intervention typically completes earlier, since it does not wait for
anyone to type in the next command or to come back from lunch (or to be freed up
from monitoring another work ow).
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A programmer might compose a script to automate a static work ow, which can
be useful in some predictable business applications that make use of equally unchang-
ing back-end data infrastructure, such as payroll or order ful llment. However, static
work ow systems do not adapt well to the discovery process where the back-end
infrastructure is diverse, the work ow itself needs to be exible, and the outcomes
are unpredictable.

19.2.3 AUTOMATED WORKFLOW ENGINES

The lack of exibility in static work ow orchestrations drives the need for more
adaptable systems. However, the software challenge is signi cant to enhance and
grow a customized, speci c work ow system to one that supports requirements,
such as the following:

• The system is extensible to different work ows.
• It supports elemental task de nitions that are parameterized, modular, and

reusable without dependencies on other tasks.
• The system is extensible to support the integration of new software tools

and scripts.
• It is portable to different hardware, operating systems, and network locations.
• The system is upgradeable with bug xes or new application capabilities.
• It facilitates the deployment of work ow execution to multiple users at

different locations with little knowledge about the work ow itself.
• Standard error handling informs the user of problems in a consistent

manner regardless of the underlying software tools in use.
• Administrative tools facilitate global con gurations such as logging,

access security, prioritization, and load balancing.

Expensive software-engineering skills are required to evolve a custom solution
into a system of more general utility, which is also costly to maintain and adapt.

For these reasons and others, a market has developed for off-the-shelf work ow
engines that orchestrate abstract tasks unknown to the developers of the work ow
engine itself. This allows domain experts to focus on the development of such tasks
and on the construction of work ows appropriate to the problems at hand.

19.2.4 PARALLEL WORKFLOWS

Increasing data volumes in the eld of genomics and target discovery drive the
demand for ever-increasing performance characteristics from software solutions. In
addition to the continual improvements in raw processor speed, the principal histor-
ical solution has been to parallelize an individual software application, so that certain
elements of its functionality can be run simultaneously with different data on multiple
processors. This is a costly and nonuniversal solution, and the work ow context can
provide an alternative perspective. Parallelization within a work ow can afford the
end user a signi cant advantage in data throughput, without the need to nd and
purchase specialized parallel application software. Data-pipelining concepts have

 © 2006 by Taylor and Francis Group, LLC



432 In Silico Technologies in Drug Target Identification and Validation

the potential to take this a step further with the management of parallelization at the
data-record level. 

As a result, the demand for greater data throughput is driving an increase in the
use of dedicated hardware clusters and grid-computing architectures that require
scalable middleware and distributed management tools. The dif culty in adapting
ad hoc script-based solutions to such technologies only helps to accentuate the
requirement for robust work ow solutions that can leverage the hardware and sys-
tems investment in modern network architectures.

19.2.5 WORKFLOW THEORY

A background discussion of work ow systems would not be complete without a
reference to some of the concepts that have supported the development of work ow
management systems as a way to provide an organizational framework for tasks.

19.2.5.1 Petri Nets

Those interested in the analysis and modeling of work ow processes have often
turned to a process-modeling technique known as the Petri net. This is a popular
choice since much work exists that formalizes and enhances the technique introduced
by Carl Petri in the 1960s [PN1]. A Petri net is a directed graph that describes the
relationship between transitions and the conditions that trigger those transitions to
take place. The net executes as transitions consume enabling tokens and produce
new tokens that in turn enable other transitions.

In this chapter I do not detail the formal constructs that surround Petri nets (see

ments that have been required to re ect real-world work ows.

1. Data values. A transition not only moves tokens through the net but also
may change its value, because in many modeled processes, the content of
the data is what is important. The suitability of a work ow system for a
given purpose depends on its ability to represent the complexity of the
data that must ow though the system in addition to providing access to
the operations that need to work on that data.

2. Time. Temporal issues are often an important element in useful work ows.
The system should be able to represent delays, time limits, and time-based
milestones.

3. Hierachical encapsulation. Real-world work ows can become very com-
plex. It is useful to represent sub ows of the work ow as a single simple
entity, which can reveal its full detail only when required. This encapsulating
behavior also encourages the clean reuse of these sub ows and avoids tedious
repetition of the same set of tasks in multiple locations in the work ow.

19.2.5.2 Workflow Patterns

In general, one can categorize work ow tasks as one of a number of common patterns.
These work ow patterns can be useful in providing an abstract description of the sorts
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of behavior that a work ow engine might support. An analysis of work ow patterns
helps to provide a common vocabulary for these behaviors; it also facilitates a direct
comparison between work ow products and languages. In choosing a work ow engine,
there are many factors to consider, such as usability, extensibility, domain coverage,
platform support, and price. It is also important to consider whether you will be able
to describe and store the complexity of the work ows that are important to you.

The simplest work ow pattern is the sequence. (Start with Task A; then when A
is nished, do B; and when B is nished, do C.) The customary visual representation
of a sequence is a series of task blocks with a single link between successive tasks
(see g. 19.3A).

You will often see work ows in which the simple sequence pattern runs into a
task that has multiple lines downstream. This is an example where a clear under-
standing of work ow patterns is useful. This visual description might represent a
parallel split, in which data clone themselves and pass to two or more parallel or
independent sets of processes ( g. 19.3B). Alternatively, it might represent an
exclusive choice, in which the data pass to just one of a number of downstream
options ( g. 19.3C). Clearly, these are very different behaviors, and indeed, they
are described by different patterns.

Patterns exist for work ow elements such as merging, synchronization points,
loops, and cancellation. At the more complex end of the spectrum, there are patterns
that deal with multiple instances of a task, either speci ed at design time or generated
on demand at run time.

FIGURE 19.3A A simple sequence work ow pattern.

FIGURE 19.3B A parallel split work ow pattern.

FIGURE 19.3C An exclusive choice work ow pattern.
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Space does not permit a comprehensive description of possible work ow patterns
in this chapter. A good place for more focused information is (unsurprisingly)

the behavior of the 20 different work ow patterns that it catalogs [WP2]. The site
also provides an analysis of the expressiveness of some work ow representation
standards described in the Standards section of this chapter.

19.3 TOOLS

19.3.1 TOOLS OVERVIEW

This section contains descriptions of a cross-section of the work ow-based tools
designed to manage computations in the discovery arena. This is not an exhaustive
list of such products, or even of just those with a life science focus. In addition,
although there are interesting work ow tools focused on modeling and statistical
analysis, they are beyond the scope of this chapter (e.g., the Clementine workbench
from SPSS [DM1] and Insightful Miner from Insightful Corp. [DM2]).

The section divides along commercial and noncommercial lines. Each tool
description includes

• A descriptive overview
• A description of the product line and its application in life sciences
• A summary of speci c or remarkable features

19.3.2 COMMERCIAL WORKFLOW TOOLS

Information about the tools listed is limited to publicly available sources of data.
Since work ow is an area of active interest and software development, there are
frequent new releases of products; the best advice is to check the relevant Web site
for up-to-date information on product speci cs.

Although there are open-source initiatives related to work ow engines (see the
next section), commercial organizations are typically able to provide higher-quality
product support. They focus on the needs of larger life sciences organizations that
are prepared to pay for high-performance, cross-platform, and scalable deployments,
with supporting professional services if required.

Some vendor companies have Independent Software Vendor (ISV) or partner
programs to encourage third parties to develop components for their platform. Since
customers all have their preferred tools for a certain task, ISV relationships allow
vendors to offer the required exibility to their customers.

The listing is alphabetical by vendor name.

Company Product Headquarters URL

Incogen VIBE Williamsburg, VA www.incogen.com
InforSense KDE London, UK www.inforsense.com
SciTegic Pipeline Pilot San Diego, CA www.scitegic.com
TurboWorx TurboWorx Shelton, CT www.turboworx.com
White Carbon Pathways Melbourn, Herts., UK www.white-carbon.com
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19.3.2.1 Incogen

19.3.2.1.1 Overview
Incogen is a life sciences software and services company. The Visual Integrated Bio-
informatics Environment (VIBE), a visual programming and work ow platform, is
one of their software offerings. The user can create work ows to import data from a
number of sources and pass the data through common bioinformatics algorithms.

19.3.2.1.2 Product Line
VIBE is Incogen’s bioinformatics work ow product. It is deployable in a client/
server mode for workgroup access or stand-alone on a desktop machine.

1. The client software user interface (UI) features a canvas where the user
creates and edits pipelines of modules, where each module represents a
task in the work ow. Each module can have a set of parameter values that
the user can edit. A module de nes the types of data that it can accept as
input and the types of data that it outputs. This information governs which
modules can be connected.

Pipelines start with an input module that sources an initial dataset. The
remainder of the pipeline consists of analysis, transformation, or condi-
tional lter modules. The designer can insert visualization modules to
view and lter the data content at any point. The dataset passes to suc-
cessive modules in the work ow and may be cloned to multiple outputs
or conditionally branched as it passes through the work ow. 

2. VIBE modules are divided into the following categories:
a. Input modules that can read in source data as input to a pipeline. Data

types supported are DNA and protein sequences, HMM data, and Trace
chromatograms.

b. Search modules that encapsulate common search algorithms for DNA
and protein databases, such as BLAST, Smith–Waterman, and HMMER.

c. Seals modules supporting some of the NCBI SEALS utilities for
sequence analysis.

d. Visualization modules for viewing the types of data supported by the
software.

e. Utility modules for various other tasks such as conditional ltering and
sequence alignment.

3. The VIBE Software Development Kit (SDK) provides a way for users to
add their own or third-party tools and data types to their VIBE installation.
A combination of XML and application program interface (API) compli-
ant Java classes can be used to add new modules and, if necessary, de ne
new data types. An installation can then be hand-edited to include the
custom extensions.

19.3.2.1.3 Product Summary
• VIBE focuses on bioinformatics work ows with support for industry-

standard formats and tools.
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• Data typing validation controls the work ow design.
• Extensibility for a local installation requires Java coding and XML les.

19.3.2.2 InforSense

19.3.2.2.1 Overview
Founded in 1999, InforSense markets a work ow engine known as Open Discovery
Work ow, originating from Imperial College in London. The company’s agship
software product is the Knowledge Discovery Environment (KDE) that supports a
number of horizontal and vertical applications for life sciences discovery in addition
to a graphical tool for the design and analysis of work ows.

19.3.2.2.2 Product Line
1. The KDE work ow engine is implemented on a J2EE server, which also

provides centralized project management and data storage.
2. The user employs a graphical work ow builder to compose an analytic

work ow built from a core database of statistical tasks or from the domain-
speci c modules.

3. The BioScience Module targets the needs of a user who perform data
analyses across a number of life science application areas. It supports the
data formats and content required for sequence analysis, gene expression
analysis, SNP analysis, and proteomics.

The module includes analysis tools for clustering and classi cation
and statistical operations. It also integrates standard tools such as
BLAST, ClustalW, and EMBOSS utilities. Interactive visualization soft-
ware is available for viewing data structures relevant to the bioinformat-
ics domain.

An end user can extend the BioScience module by creating components
to encapsulate the command lines of bioinformatics tools.

4. InforSense’s ChemScience module targets cheminformatics solutions with
a set of chemistry-speci c components that a user can employ to construct
a work ow for experimentation, data analysis, and visualization. Compo-
nent capabilities include data import and export; structure-, descriptor-,
and ngerprint-based processing; and library enumeration.

Interactive tools are provided for structure rendering and other domain-
speci c visualizations. The ChemScience module incorporates chemistry

5. TextSense is InforSense’s module for free text searching and analysis.
These tools can generate raw results that may then act as input to the
generic statistical and data-analysis tools.

6. The Oracle Edition module includes components that employ the native
Oracle 10g data mining capabilities for data stored in that database. These
components perform data analysis on the data without moving it out of
the database.
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7. The Discovery Portal product supports the publishing of a work ow as a
Web application that can be accessed as a custom application via a browser
or programmatically as a Web service.

8. Support for extensibility comes in the form of an SDK environment known
as the Developer Pack. The Developer Pack allows a developer to use the
published Java API to write a new local component that is deployable
within an InforSense installation. In this way, select third-party or in-house
functionality can be integrated into the work ows built by end users.

19.3.2.2.3 Product Summary
• The core Knowledge Discovery Environment is a work ow platform

targeted at the needs of analysts handling large data volumes from dis-
parate sources.

• Domain-speci c modules for biology, chemistry, and text analysis sup-
plement the core work ow technology.

• The platform supports a Web-services model for Web browser or appli-
cation access to a validated work ow by a broader set of users.

• An SDK is available to support the creation of new components to inte-
grate third-party or in-house tools.

19.3.2.3 SciTegic

19.3.2.3.1 Overview
SciTegic’s software product is named Pipeline Pilot. It orchestrates tasks in a work-

ow using the concept of data pipelining as outlined earlier in this chapter. Individual
data records ow through a pipeline of components to minimize memory footprint
and disk access, with the overall goal of high throughput. SciTegic has supplied
components for cheminformatics data analysis and modeling for some years and
more recently has added bioinformatics capabilities.

19.3.2.3.2 Product Line
1. Pipeline Pilot is deployed as a client/server system, with desktop PCs

connecting to a central service-oriented architecture deployed on an
Apache Web server. The server maintains a repository of components and
protocols, in addition to its role as a computational engine. Jobs are
spawned to run protocols and provide feedback to the client. These facil-
ities are exposed as standard Web services.

2. SciTegic provides a graphical client program that allows a user to build
and edit new protocols and components. A protocol consists of any number
of components organized into one or more separate pipelines. Pipelines
can branch and merge. Filtering components in the pipeline can route data
based on a de ned condition. The user can also run protocols from this
interface, monitor progress, and view data result with a number of viewer
components.

3. A nested set of components can be captured in a subprotocol, which
facilitates reuse of useful pipeline networks, helps to simplify work ow
designs, and can be used to support iterative operations.
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4. A Pipeline Pilot deployment includes a set of standard components for
reading, writing, ltering, processing, and viewing generic data. There are
horizontal and vertical domain component collections for chemistry,
sequence analysis, text analysis, reporting, statistics, and data modeling.

5. Protocols stored in the central repository are also executable through a
standard Web browser interface, providing network-wide access to the
stored protocols without installing any client software.

6. Pipeline Pilot supports extensibility in two ways. 
a. Due to its Web service architecture, customers can write custom client

programs, scripts, or Web applications to run protocols and process
results. Software libraries are provided to assist with this task.

b. The second approach is the user’s ability to create new components.
A Pipeline Pilot deployment includes a number of integration compo-
nents that provide facilities to create a new component to capture a
simple command line, or by coding up new functionality in Perl or
Python scripts or in Java code, using a component API. To utilize
network resources, the user can also con gure telnet, ftp, or SOAP
components. SOAP components can execute in a multithreaded fashion
to parallelize the use of remote servers.

The user can publish any custom components and protocols for
broader use by all users of the server, either from a Web browser or
from the standard design and execution client.

7. An administrator uses a browser-based Web portal to perform con gura-
tion and monitoring tasks on the Pipeline Pilot server from any network
location.

19.3.2.3.3 Product Summary
• Data pipelining is designed to support high throughput of large volumes

of data from disparate sources.
• The product is deployable with a selection of domain-speci c component

packages for chemistry and biology in addition to generic statistical and
reporting capabilities.

• The Web-services architecture supports the publication of protocols that
are then accessible to a variety of clients, including Web browser access
for organization-wide deployment.

• Various integration techniques allow the user to create new components
to incorporate third-party or in-house scripts and programs.

19.3.2.4 TurboWorx

19.3.2.4.1 Overview
TurboWorx sells work ow software into several vertical markets including life
sciences. Their product line targets the bottleneck that arises when an organization
has large volumes of distributed information that it cannot process as ef ciently and
effectively as it would like. The proposed solution to such a situation is a work ow
system that facilitates the de nition of a sequence of computational applications that
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operate on high volumes of data and captures this sequence as a reusable procedure.
The software can provide hooks into the necessary computational tools and invoke
processing across distributed computational resources.

19.3.2.4.2 Product Line
1. The heart of the TurboWorx software is its TurboWorx Hub (aka Smart-

Grid) technology. This includes
• A Component Library that stores information about application pro-

grams and work ows in the system. Each reusable program is stored
as a component. The program might be a compute-intensive calculation
or a data-retrieval operation, for example. Each component includes
information on the inputs and outputs of the program, and instructions
on running the program.

• A Data Repository that stores data or references to data. The repository
provides input to work ows and manages result data.

• A Master program that orchestrates the execution of a work ow. Com-
putational components are invoked when their data inputs are ready.
The Master can invoke each program on a heterogeneous set of net-
worked Worker computers, allowing for a degree of parallelism to aid
work ow performance. Maximal data throughput is achievable when
there is a Worker available for each program so that multiple datasets
may be processed at the same time, each at a different component in
the work ow.

Components that split the data can leverage this parallelism by break-
ing the data into smaller data sets that are processed independently.

To ease bottlenecks created by longer-running components, the Hub
can create replications of components for increased parallelism at key
points in the work ow.

2. The TurboWorx Builder is the graphical environment where a user can
create new components that wrap existing commercial, open-source, or
proprietary software tools. A user can create a work ow from new or pre-
existing components and execute it on the TurboWorx Enterprise runtime
environment (see next), monitor progress, and view results.

The TurboWorx Builder software provides prepackaged components
for data access, visualization, and algorithms for its target vertical markets
including industry-standard sequence analysis utilities for searching,
alignment, and HMM algorithms.

Extensibility comes in the form of graphical wizards that help the user
to create command line, Java, or Jython components. The wizards generate
the necessary wrappers to integrate the new components into a TurboWorx
work ow.

3. TurboWorx Enterprise is the execution engine for work ows and can be
enabled to utilize distributed computational and data resources. During
the orchestration of a work ow, the work ow engine uploads component
programs to Worker machines, as outlined in the previous Hub description.
This approach also provides for a degree of fault tolerance, where failed
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component executions can try again with a different Worker. TurboWorx
Enterprise provides a Web portal as a lightweight client for the execution
of published work ows.

4. The TurboWorx Cluster Manager is a tool to manage and monitor com-
putational resources and data resources within a cluster, with the goal of
tuning application con gurations and resource allocations to provide opti-
mal throughput.

19.3.2.4.3 Product Summary
• The software includes a generic work ow management system for the

distributed execution of tasks across networked computational resources.
Various forms of parallelization can be employed to maximize data
throughput. These forms include the simultaneous operation of compo-
nents within the work ow, the distribution of Worker computational
machines, the splitting of data sets for independent processing, and the
replication of bottleneck components.

• Life-science-speci c components can be installed, with wizards to help
create custom components.

• A centralized data repository is included for data input to work ows and
result storage.

• A shared component and work ow repository stores collaborative work.

19.3.2.5 White Carbon

19.3.2.5.1 Overview
White Carbon offers a software platform named Pathways that targets the develop-
ment of work ows for discovery procedures in the laboratory (not to be confused
with the more recent application of the term to biochemical pathways in the systems
biology sense). A user of the software develops and re nes a model that captures a
best practice and may then deploy that model for the bene t of a wider discovery
community. The software also provides a basis for the use of lab equipment to
automate appropriate tasks within the work ow. The procedures that the software
models generally relate to laboratory activities, but may also include interaction with
other software tools or data repositories.

19.3.2.5.2 Product Line
White Carbon characterizes the Pathways software platform as two separate suites: 

1. Pathways Laboratory Automation focuses on the development of a work-
ow to capture and automate best practices for laboratory procedures. To

achieve this, the product consists of four distinct tools.
a. The Workshop Con guration Editor is used to de ne and organize the

procedures that the laboratory supports. This model of lab capabilities
details a set of unit processes with inputs and outputs in terms of
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physical materials and data content. These unit processes act as the
raw material for subsequent steps of work ow creation. 

b. The Workbench tool is an environment that allows the user to describe
an experiment in functional terms by creating a work ow from the
de ned unit processes.

c. The Agent Tier is a number of applications, each of which is speci c
to a particular task. It allows the user to map the logical design of the
experiment to actual processes that achieve each logical task. This
process may require a human to work with a task-speci c UI that the
software helps to develop. Alternatively, an agent may operate in a
more automated fashion to control laboratory equipment or to perform
data-processing operations. The idea is that as the work ow evolves
and is validated, some of the manual steps will become automated to
run a script or drive equipment. This may involve a different set of
skills from the logical design of the work ow itself.

d. The Operations Manager tool actually runs a work ow, by controlling
the sequence of operations and by invoking the appropriate agent for
each task.

2. The Pathways Services product is used to deploy a validated work ow
beyond its initial development environment to a wider set of users and to
integrate it into broader processes within an organization. This publication
model allows new users to utilize the work ow with custom parameters,
without altering the logic or processes of the work ow. The goal is to
support projects that span multiple labs in different locations by sharing
and orchestrating common methodologies in an organized fashion.

The Pathways Services software uses a Web-services model for work ow
publication, providing exibility for incorporation into other applications.
White Carbon offers a set of baseline Pathways Services applications to
meet some common requirements, with a professional services model for
tailoring to the speci c requirements of an end-user organization.

19.3.2.5.3 Product Summary
• The Pathways user designs a work ow model to capture best practice and

standardize data recording in the laboratory environment.
• The software encourages an iterative approach to work ow design to re ne

a model and increase the proportion of automated tasks.
• It supports a Web-services model for Web browser or application access

to a validated work ow by a broader set of users.

19.3.3 OPEN SOURCE WORKFLOW TOOLS

The use of open source tools is one way to investigate how you might use a work ow
system without having to make any cash investment. They can provide a workable
system for an individual researcher or a small group, if you are able to supply the
software development and IT skill set (with the necessary time) to con gure and
extend the system and to handle low-level administration.
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This section references the following tools:

19.3.3.1 Taverna

19.3.3.1.1 Overview
Taverna is a design environment and work ow engine offered as an element of the
publicly funded myGrid project in the United Kingdom. Its emphasis on work ow
solutions for bioinformaticians performing in silico experiments has also attracted
collaboration from the European Bioinformatics Institute and other UK-based
research centers. The program emphasizes the use and orchestration of Web resources
and services, allowing users to leverage the signi cant data sources and computa-
tional capabilities that are available to them on the Web without a great investment
in in-house facilities [OS1].

19.3.3.1.2 Software Details
1. Scu  (also termed XScu ) is an acronym for the “Simple conceptual

uni ed ow language” and is a nondomain-speci c XML representation
for a work ow in the Taverna system. A work ow consists of a set of
components with links between them. Within a work ow, a link de nes
the transfer of data between components or de nes a control relationship
that sets conditions for component execution.

2. The Taverna workbench is a graphical toolset that runs on a client machine
to allow the user to construct and edit work ows and submit the resulting
Scu  representation as a work ow for execution by an enactment engine.
The workbench also provides browsing facilities for data results associated
with a work ow instance.

3. The Free uo enactment engine runs in process with the client for out-of-
the-box convenience, but the software is also designed to act as a central-
ized enactor service if necessary. The enactment engine holds information
about speci c components that can be invoked by a given installation of
that engine. 

4. Components can execute tasks on the local machine or on a remote
computational resource (known as “services”). Components encode the
logic to ful ll their prescribed function, including the details of commu-
nications with remote services, if needed. In this way, the work ow
description does not need to include information on the mechanics of each
task. A software developer may create new components for the system
using published Java object models.

5. Taverna comes prepackaged with components to access a number of
relevant Web services, such as SoapLab (exposing EMBOSS tools from

Product URL

Taverna taverna.sourceforge.net
Biopipe biopipe.org
Enhydra Shark shark.objectweb.org
Perl Work ow www.cpan.org
Apache Agila incubator.apache.org/projects/agila
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EBI), Moby (an international registry of bioinformatics services), and
KEGG (Kyoto Encyclopedia of Genes and Genomes).

6. Because of its focus on remote services, Taverna has evolved a fault
tolerance subsystem that allows the user to ne-tune the required behavior
when a particular service fails for some reason. The user can con gure
the number of retries, delays, and alternate servers. Multiple threads may
be used to make a number of parallel requests to remote service where,
for example, the service is supported on a cluster architecture.

19.3.3.1.3 Summary
• Taverna supports the creation of work ows that utilize the large number

of databases and computational tools that are publicly available to bioin-
formatics users on the Internet.

• Java programmers can script new components for custom tasks not avail-
able in the prepackaged set of services.

19.3.3.2 Biopipe

19.3.3.2.1 Overview
Biopipe [OS2] is a framework for running bioinformatics work ows and is deploy-
able as an extension to the Bioperl project library [OS4]. It borrows heavily from
the Ensembl pipeline project [OS7]. Potential users of the system should be com-
fortable coding Perl scripts and actually recon guring a Perl installation to add the
necessary prerequisites. The user also needs to deal with coding raw XML to
compose and con gure a work ow and setting up the mySQL database that is
required for the system to function.

19.3.3.2.2 Software Details
1. A Biopipe protocol represents a series of analyses. Each unit of analysis

consists of speci cations for input, analysis, and output. The input layer
consists of a number of adaptors for various common database formats or
for remote fetching from Web sources like GenBank. The role of the input
layer is to retrieve data into a common format for a subsequent analysis.
The complementary output layer contains adaptors to push the analysis
result out to the desired database or format. The analysis layer functions
through the action of wrapper Biopipe Perl modules that make standard
Bioperl runnable binaries accessible to the Biopipe system. An explicit
design goal of Biopipe is to reuse the encapsulations of binary tools, import-
ers, and exporters that Bioperl already includes, with thin wrappers that
specify the inputs that the input layer must provide in a work ow context.

2. The XML for a Biopipe protocol supports the speci cation of simple rules
that dictate the sequence of analyses and the data dependencies between them.
For example, a rule can specify that all data must be processed by analysis
A before starting B. This implies a work ow rather than a pipeline strategy.

3. Each combination of an analysis and a set of input data is managed as a job
by the Biopipe job management system. It stores state information for all jobs
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in the mySQL database. Its goal is to facilitate the restart of a work ow even
after system failure in a compute-intensive environment by tracking the
progress of all jobs at all times. The job management system can run jobs
sequentially on the local machine or else utilize modules to delegate jobs to
a third-party load-balancing system for asynchronous execution. Modules are
available for Load Sharing Facility from Platform Computing and Portable
Batch System (PBS), which has a free version known as Open PBS.

19.3.3.2.3 Summary
• Biopipe offers a way to add work ow concepts and scalability to scripts

that employ Bioperl tools.
• Protocol authoring and system extensibility comes in the form of Perl

coding and handcrafting XML.

19.3.3.3 Other Open Source Workflow Tools

The following tools are not speci c to the life sciences community but might facilitate
the development of a custom work ow solution for a single user or a small group.
A simple work ow system offers more exibility than a basic scripting approach,
dependant on the availability of the software and IT skills required to con gure and
maintain the system.

19.3.3.3.1 Enhydra Shark
One interesting aspect of this software is its adoption of work ow standards from
the Work ow Management Coalition (WfMC), namely, XPDL to represent a work-

ow and a WfMC tool agent API for work ow extensions. The next section of this
chapter provides an overview these standards. Enhydra JaWE is a graphical editor
for the XPDL work ows. The software is deployable in a J2EE container, as a
CORBA object service, or as a Web service.

19.3.3.3.2 Perl Workflow Module
This relatively new addition to the vast Perl module repository might be of interest
to a pro cient Perl software developer [OS3]. It supports XML de nitions for the
following work ow elements:

• A work ow de nes a set of states. Each state de nes actions that can be
executed against it.

• An action invokes a custom Perl object; it de nes input data and result
data in a state transition.

• A condition provides execution control.
• A validator invokes a custom Perl object for data validation.

19.3.3.3.3 Agila 
This is still an Apache incubation project. It is an open source work ow engine for
embedding in Java environments. It de nes an XML document format for work ow
speci cation, basic administration, user management, task lists, and noti cation
services. Agila will become an element of the Apache Jakarta product suite.
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19.4 STANDARDS

Standards related to work ows tend to focus on one of the following aspects:

1. A common work ow de nition facilitates the reuse of an individual
work ow with different engines. A work ow constructed on one work-

ow software platform could then execute on a platform from another
vendor.

2. Component services included in the work ow could expose a common
application speci cation. Integration of arbitrary application tools is an
important characteristic of work ow engines. If all application tools
could publish the con guration information required by any work ow
engine, then a work ow plug-and-play technology would result. This
con guration information needs to cover the variability concerned with
the invocation of a task on a local or networked system, providing it with
parameters and input data, retrieving results, and detecting and handling
error situations.

3. Standards related to interoperability between work ow subsystems hope
to enable the plug and play of new subsystems into a work ow system,
such as a new graphical design program or an administration interface.
This would only be possible where all components communicate with a
common language and compatible technology.

Because there are different aspects to interoperability standards and because
there has been standardization interest in this area for over a decade, the result is a
plethora of APIs, data formats, and standards bodies targeted at a number of tech-
nologies, including C, Java, CORBA, XML, and SOAP. The more recent interest in
modeling and standardizing business-to-business processes has made the situation
even more confusing, with considerable debate around the overlap between work ow
and business processes and whether the pre-existing work ow standards are even
appropriate for peer-to-peer business processes [WS6].

19.4.1 ORGANIZATIONS

This section references the following organizations:

19.4.1.1 Workflow Management Coalition 

The venerable institution for work ow standards, the WfMC, has been around since
1993, founded by work ow vendors and users to increase awareness of work ow

Name AKA URL

Work ow Management Coalition WfMC www.wfmc.org

Object Management Group OMG www.omg.org
Organization for the Advancement of Structured
Information Standards

OASIS www.oasis-open.org
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systems and to promote standards for interoperability. The basis of this organization’s
output is the Work ow Reference Model, which de nes ve discrete interfaces for
which interoperability standards appear to be useful [WS4].

19.4.1.2 Business Process Management Initiative

The BPMI organization was founded in 2000 to promote common XML-based
standards for Business Process Management.

19.4.1.3 Object Management Group

The OMG developed a work ow management speci cation in the late 1990s that
de ned a set of CORBA services [WS7]. Some vendors have extended this for their
own use, making a Java version of the CORBA speci cation, for example.

19.4.1.4 Organization for the Advancement of Structured 
Information Standards

The OASIS consortium is an umbrella organization for the generation and promotion
of many electronic business standards across a number of market sectors.

19.4.2 A SAMPLING OF WORKFLOW-RELATED STANDARDS

1. XML Process De nition Language (XPDL). This XML speci cation from
the WfMC speci es an interchange format for a work ow process. This
allows a work ow de ned with one product to execute on the management
system of another vendor. It is a graph-structured language where the nodes
represent activities within a process, with transitions as the directed links
between the activities. It has some block-structured and scoping represen-
tation, although it does not handle nested process de nitions [WS1].

2. Business Process Modeling Language (BPML). The BPML standard
[WS8] is considered by some to be somewhat competitive with XPDL.
The WfMC and BPMI have at times sought a convergence of standards
(they see the terms work ow and Business Process Management as inter-
changeable), but that is still an ongoing effort [WS5].

3. Web Services Business Process Execution Language (WSBPEL). In 2002,
Microsoft and IBM combined their respective XLANG and Web Services
Flow Language as BPEL4WS (or BPEL for short, and more recently WSB-
PEL) [WS9]. Processes in WSBPEL export and import functionality by using
Web service interfaces exclusively. It is now under the auspices of OASIS.

4. Wf-XML. Unlike the XML work ow speci cations listed previously, this
is a Web services API that de nes process automation across heteroge-
neous implementation environments [WS2]. It has application to a work-

ow client (such as a design tool or another work ow engine) to
communicate with a work ow engine about what protocols are available
and to upload and download process de nitions. It extends the Asynchro-
nous Service Access Protocol API from OASIS [WS3].

 © 2006 by Taylor and Francis Group, LLC



Workflows and Data Pipelines 447

19.5 FUTURE TRENDS AND CHALLENGES

Some observers see an analogy between the work ow software sector today and the
early days of database management systems (DBMS) and UI tools. If the DBMS
and UI analogies are correct, then standards emerging from consortia or from market
leaders will promote large-scale adoption. In turn, business opportunities will emerge
from the ability to provide a common work ow platform to application writers and
tool vendors. However, despite efforts to develop work ow standards, the picture is
still too unclear for commercial vendors in life sciences to feel pressure to fall into
line, or to bene t from doing so. In addition, life science vendors and users will not
necessarily follow the crowd if they feel they can get better solutions from non-
standard-compliant products (in the past, molecular biology has provided an enclave
of Macintosh usage in a world of Windows PCs).

Drug-research groups need to process ef ciently the large volumes of data
available to them. The cost of hardware to run computational facilities is not generally
a limiting factor compared to the cost of administration and the cost of software
licenses and maintenance. Therefore, a successful work ow system will be able to
maximize the return on the investment made in computational systems, by distrib-
uting workloads appropriately across available resources, and to achieve this with a
minimal IT burden by providing powerful administrative tools and intelligent load
balancing between jobs and between parallel tasks within jobs.

Large numbers of cheap processors arranged in grids can be an effective way
to achieve massive parallelism and high throughput, provided the work ow system
is able to orchestrate tasks appropriately between these processors.

Sophisticated distribution of tasks can also provide higher throughput in another
way. In large research organizations, data sources often exist in multiple locations
and are stored in multiple formats. An optimal work ow system would invoke agents
to perform rst-level ltering or analysis tasks in close proximity to the data rather
than pulling all data to a central location.

A successful product cannot afford to overlook the usability factor in the desire
to achieve these levels of work ow sophistication. In the cost–bene t equation,
complexity for end users or administrators adds greatly to the expenses of owning
and running a software system, whatever its technical merits.

History shows us that open systems are a key to success as a software platform.
In the case of work ow management systems, this means that end users should be
able to extend the system to incorporate their favored programs and scripts. In
addition, third-party vendors should have facilities to build products on the platform
to extend its capabilities and increase its deployment, making it an even more
desirable target for other vendors.

19.6 CONCLUSION

When you are considering a work ow management system for your own needs,
consider the range of software that you will need to automate, including in-house
scripts and utilities. Analyze your data sources and consider how you will success-
fully plug together applications that have different data-format requirements. The
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right solution for you is suf ciently extensible to include your current resources in
addition to those that you might deploy in the future.

Scalability should also be a factor in the assessment. Judge how easy it will be
to deploy the chosen solution to a larger number of users, some of whom will
construct new work ows and others who will only be executing work ows. Web-
browser-based solutions may be essential for providing execution access on a cross-
site or global basis.

In a fast-changing discipline such as the life sciences, we can anticipate con-
tinuing diversity in the application software tools and data sources that researchers
use to build software solutions. In addition to competition between larger vendors,
new innovative software for researchers will continue to emerge to ll new niches
from both commercial and noncommercial sources. Some tools and data will exist
on the local machine, while others may be located on the local network or on the
Web. The diversity of software that must work together to achieve a larger research
goal will drive the growth in usage of work ow solutions, and the necessary exi-
bility will dictate the requirements for any successful automated work ow system.
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20.1 INTRODUCTION

This chapter gives an overview of the application of ontologies within the bioinfor-
matics domain, speci cally for drug-target identi cation and validation. We provide
a background of the ontology eld and its technical underpinnings as well as the
current state of the art within the eld. We then link the way that biological research,
assisted by bioinformatics tools, can be carried out. This underscores the need for
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ontologies. Having done this, we provide some case studies pertinent to bioinfor-
matics in general, and target identi cation in particular.

Molecular biology currently lacks the mathematical support prevalent in disci-
plines such as physics and chemistry. Biology has Darwin as a scienti c grounding,
and Darwin described principles with descriptive evidence. In physics, however, we
have laws based in mathematics that allow us to predict planetary orbits, behavior
of waves and particles, and so on, from rst principles. We cannot yet take a protein
sequence and use the amino acid residues present to calculate the structure, molecular
function, biological role, or location of that protein. This is exempli ed at the core
of bioinformatics: sequence is related to molecular function and structure. Taking
this “law,” a biologist can compare the protein sequence to others that are already
well characterized. If the uncharacterized sequence is suf ciently similar to a char-
acterized sequence, then it is inferred that the characteristics of one can be transferred
to the uncharacterized protein—hence the sequence similarity search. The charac-
terization of single sequences lies at the heart of most bioinformatics, even the new
high-throughput techniques that investigate the modes of action of thousands of
proteins per experiment and the bioinformatics of drug-target identi cation.

When performing a sequence similarity search, it is not simply the similarity
statistics that determine biological insight into the uncharacterized protein. The
bioinformatician uses the knowledge about the proteins already characterized in
order to arrive at any insights. Thus it has been said that biology is a knowledge-
based discipline [1].

Much of a community’s knowledge is contained within its data resources. In a
database such as UniProt/Swiss-Prot, the protein sequence data are a relatively small
part of the entry. Most of the entry is taken up by “annotation,” which can be
considered the knowledge component of the database. The knowledge is usually
captured as stylized natural language. The same biological knowledge can be rep-
resented in many different ways, which leads to the same concept having different
terms in each resource and different concepts having the same terms [2,3]. This
semantic heterogeneity is a perennial problem in integrating bioinformatics
resources. Although this style of representation is suitable for human readers, the
current representation of the knowledge component is dif cult to process by machine.

As well as the knowledge component within resources, biological data are
characterized in the following ways:

1. Large quantity of data: The genome sequencing projects now mean that
data are being produced at increasingly fast rates; a new sequence is
deposited in the public genome database EMBL every 10 seconds.1

Microarray experiments measuring gene expression and other high-
throughput techniques now mean that other data are also being produced
in vast quantity, at petabytes per year [4].

2. Complexity of data: It is dif cult to represent most biological data directly
in numeric form. The basic data representation and the many relationships

1  http://ebi.ac.uk/
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held by each entity are characteristics of biology’s data. For instance, any
one protein has a sequence, a function, a process in which it acts; a
location, a structure, physical interactions it makes; diseases in which it
may be implicated; and many more relationships. Bioinformatics
resources need the ability to represent this complex knowledge in a com-
putationally processable form.

3. Volatility of data: Once gathered, biological data are not static. As knowl-
edge about biological entities changes and increases, so the knowledge
annotations within data resources change.

4. Heterogeneity of data: Much biological data are both syntactically and
semantically heterogeneous [2,3]. Individual concepts, such as that of a
gene, have many different but equally valid interpretations. There is a
widespread and deep issue of synonymy and homonymy in the labels used
for concepts within biology as well as those used for the names of indi-
viduals.

5. Distribution of data: Bioinformatics uses over 500 data resources and
analysis tools found all over the Internet [5]. They often have Web inter-
faces through which biologists enter data for analysis, cut and paste results
to new Web resources, or explore results through rich annotations with
cross-links [2].

This scene leaves both the curators of bioinformatics resources and their users
with considerable dif culties. A typical user, as well as a bioinformatics tool builder,
is left trying to deal with the following knowledge-based problems to attempt the
following tasks:

• Knowing which resources to use 
• Discovering instances of those resources 
• Knowing how to use each of those resources and how to link their content 
• Understanding the content of the resources and interpreting results
• Recording all that occurred during the in silico experiment

Taking these steps requires knowledge on the part of the biologists. It is no
longer tenable for an individual biologist to acquire and retain this range and com-
plexity of knowledge. This means that bioinformatics practice needs computational
support for storing, exploring, representing, and exploiting this knowledge.

20.1.1 WHAT IS AN ONTOLOGY?

An ontology attempts to capture a community’s understanding of a domain as a
structured collection of vocabulary terms and de nitions [6]. An ontology describes
what a community understands about its domain of interest—in this case molecular
biology, the interaction of drugs and targets, signal transduction, and bioinformat-
ics. It describes, in a conceptual form, the things that exist in the domain, both
concrete and abstract, such as DNA, nucleic acids, signaling, protein, enzyme,
alpha-helix, species, function, process, location, disease, and so on. It also describes
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the relationships between these concepts. For example, an ontology can describe
knowledge such as the fact that all messenger RNAs comprise nucleic acids, and
that Uracil is a part of RNA. Figure 20.1 shows a simple ontology of some of the
basic components of molecular biology.

The discipline of ontology has its origins with Aristotle and in the philosophical
domain is the art of describing things that exist in the world. Computer science has
taken this term and altered it. In computer science, an ontology is a conceptualization
of a domain of interest rather than a description of reality.2 Concepts are units of
thought that refer to things in the world—protein, gene, drug, target [7]. Words are
symbols that we use to communicate about things in the world, and, in an ontology,
terms are used to label concepts. It is these terms that are used by a community to
talk about the domain of interest. If the conceptual model of the world (ontology)
and the terms for those concepts (lexicon) can be agreed upon by the community,
then ambiguity in communication can be avoided. This shared or common under-
standing of a domain is one of the primary aims of an ontology. A goal of computer
science research into ontologies is to make these conceptualizations of human knowl-
edge processable by computers in a manner that enables inferences to be made about
knowledge stored in a computational form.

So, the main components of an ontology are

• The concepts representing entities that exist in the domain. A concept can
be either a class that represents a set of instances or a particular instance
itself.

• The terms or symbols that label those concepts and allow humans to
communicate about those concept or entities in the world.

FIGURE 20.1 A naïve ontology of important macromolecules. Ovals represent concepts,
which are classes of instances; the arrows represent is-a relationships, such that all members
of a child class are also members of a parent class.

2  In philosophy, an ontology is a description of reality; a description of a conceptualization of reality is
a description of a description of reality.
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• The relationships between those concepts. The principle among these is
the is-a relationship that describes a parent–child relationship, or class
subclass, where the child concept is also a kind of the parent concept. The
second major relationship is the part-of relationship that describes parts
and their wholes [8], such as parts of proteins (active site, alpha-helix,
amino acid residue) and their relationship to the whole protein. Other
associative relationships are used: causative, nominative, and so on.

• Other statements about the concepts and relationships. In logic systems,
for example, it is possible to say that sibling concepts are disjoint; it is
not possible for an individual to be a member of both classes. Other
statements might include equivalence between classes or that a set of child
concepts is a complete covering of the domain.

An ontology may also be de ned as a “speci cation of a conceptualization,” a
de nition from Tom Gruber [9], one of the early pioneers in the ontology eld. This
de nition takes a little unpacking but leads neatly onto a key aspect of ontologies.
A conceptualization is how a community thinks about its domain of interest. This
forms a conceptual model in terms of the components just given—the speci cation
is how this conceptual model is encoded so that it can be used by humans, but
especially by a computer. This is the role of knowledge representation languages

Although biologists may not have used the term ontology, the use of classi cation
and description as a technique for collecting, representing, and using biological
knowledge has a long history in the eld. For example, the Linnaean classi cation
of species is ubiquitous,3 and the Enzyme Commission has a classi cation of
enzymes by the reaction that they catalyze [10]. Families of proteins are also clas-
si ed along axes such as function and structural architecture [11]. Over the years
there has been a surge of interest in using ontologies to describe and share biological
data re ecting the surge in size, range, and diversity of data and the need to assemble
it from a broad constituency of sources.

20.1.2 ONTOLOGIES FROM KNOWLEDGE REPRESENTATION

The ontologies eld is a direct descendant of the Knowledge Representation and
Reasoning work done within the Arti cial Intelligence community over the last
several decades. There is not suf cient space in this chapter to provide a complete
history of knowledge representation; however, some key points will give context to
the current state of ontologies.

Early work in the eld of knowledge representation explored a range of repre-
sentational formalisms, which included graphical representations such as semantic
networks (of various styles), conceptual graphs [32], predicate logics (First Order
Logic [FOL]), frame-based systems (KL-ONE, CLASSIC, NIKL), and description
logics. Each of these knowledge representation formalisms has differing degrees and

3  http://www.ncbi.nlm.nih.gov/Taxonomy
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types of expressivity, computability, and satis ability, and each has applicability
within a particular problem space. For example, FOL is highly expressive in its
ability to describe the world; however, there is no guarantee that the language is
computable in real time. Of these formalisms, frame-based formalisms description
logics have particular relevance to the current work in the ontology eld, so we
provide a brief description.

Frame-based systems are most like object-oriented systems and provide a high
degree of structure. They are centered on the idea of a frame, or a class, where each
frame represents a set of instances of that frame or class. Each frame has associated
slots that represent attributes of the frame. Slots are lled by speci c values or by
other frames. Slots may be of various kinds. So, for example, frames may have an
associated is-a slot, mentioned earlier, which is used to create a taxonomy within
the frame system. The part-of slot, another highly important slot or relationship,
may also be represented in a frame-based system. The frame-based representation
system is the most widely used of the KR formalisms and has been used extensively
within the life sciences community, for example, in EcoCyc, using SRI’s Ocelot
frame system.

Description logics (DLs) are built in a very different way from frame-based
systems. So, rather than building a taxonomy explicitly, a DL provides reasoning
capabilities in the form of a classi er that will build the ontology from smaller
conceptual units. These smaller conceptual units provide suf cient description, a
concept with one or more associated relationships, so that the DL reasoner can
classify the new concept in the proper place within the ontology. DLs have been of
signi cant interest in the last several years and provide the underlying representation
for the Web Ontology Language, which we discuss in more detail later.

In the late 1990s the Bio-Ontology Consortium delivered a recommendation for
a language for the exchange of bioinformatics information [33]. This recommenda-
tion resulted in the development of the XML-based Ontology-Exchange Language
(XOL)4 at SRI. XOL provided a frame-based representational system in an XML-
based syntax. This language broke ground with respect to developing XML-based
representation languages; however, XOL was quickly overtaken by OIL (Ontology
Inference Language) from University of Manchester. 

Over the next several years a DARPA-sponsored project, the DARPA Agent
Markup Language (DAML), incorporated OIL in its efforts. The DAML effort fos-
tered a signi cant collaboration among many of the top researchers in the ontology

eld, which resulted in the creation of a new description logic language, DAML+OIL,
closely, though not completely, modeled after the OIL language. DAML+OIL has
since become the framework for the W3C’s effort to create a language for the semantic
Web. This culminated in February 2004 with W3C approval of the Web Ontology
Language (OWL). OWL5 is a knowledge representation and transfer language for
building ontologies that delivers vocabularies with a formal semantics. OWL has three
increasingly expressive sublanguages: OWL Lite, OWL DL, and OWL Full. It also

4  http://www.ai.sri.com/pkarp/xol/
5  http://www.w3.org/TR/2003/PR-owl-features-20031215/
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has a rules language under development for capturing knowledge that cannot be
contained in an ontology [23]. The OWL sublanguages are described here:

• OWL Lite provides the capability to describe simple taxonomic classi -
cations and lacks the expressivity to make rich descriptions of classes of
instances. It provides a migration path for thesauri and simple taxonomies,
such as those commonly seen in bio-ontologies such as GO.

• OWL DL is an expressive language that is a fragment of FOL. This means
that it is amenable to machine reasoning. Ontologies described in OWL
DL can be checked for logical consistency and subsumption hierarchies
(the lattice of is-a links) inferred from the descriptions of classes formed
from the links made between classes [20,24,25]. This form of OWL is
the focus of this section.

• OWL Full is more expressive than OWL DL but is not amenable to
machine reasoning.

In OWL, classes describe sets of instances or individuals that belong together
because they have properties in common (Gene is the class of all genes—TripA,
ADH, Bra1, etc.). Classes may be arranged into subsumption hierarchies using the
subclass relationship. By stating that Gene is a subclass of Nucleic Acid Sequence
Region, we are stating that all instances of Gene are also instances of Nucleic Acid
Sequence Region. Properties can be used to state relationships between classes and
individuals or from individuals to data values. For example, we can say that instances
of the class Gene express instances of the class Protein. In OWL DL, we can place
restrictions on how properties form relationships that make what that relationship
means explicit. We can use existential quanti cation (has some values from) and
say that all genes express some protein (but might express something else), or we
can use universal quanti cation (has only values from) and say that all instances of
the class Protein express only Protein (but might not do so). We can form more
complex expressions by saying that all instances of the class Gene express some
(Protein or RNA) and express only (Protein or RNA).

OWL DL is much more expressive than this fragment indicates. For instance,
we can describe properties of properties such as transitivity, range, and domain
constraints and form hierarchies of properties. It is also possible to say that the
instances of two siblings do not overlap by using a disjointness axiom—the classes
Protein and NucleicAcid are both kinds of macromolecule, but being disjoint it is
not possible for an individual protein to also be a nucleic acid. 

We can also describe a class as being partial or complete. When the properties
of a class are partial, those properties are a necessary condition of class membership.
That is, an instance must have those properties. Describing a class’s properties as
complete means that an instance having those properties is suf cient to recognize it
as a member of a class. So, labeling our class Gene as complete would mean that
any instance that expresses both Protein and RNA would have to be a Gene. 

selection of classes from the Gene Ontology (GO) biological process ontology. The
formal semantics of OWL, partially described earlier, mean that it is possible for a
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machine to process this representation. The precise descriptions also reduce the
ambiguity when read by humans: we know exactly what the statements mean.

20.1.3 THE VALUE OF ONTOLOGIES

Ontologies provide a clear framework for representing classes of objects and
attributes of objects in a domain of interest. This representational structure can be
used in a number of ways to provide solutions to very pragmatic issues and problems
in the area of drug-target identi cation and validation. Ontologies are used in a wide
range of biology application scenarios [12,13]:

• As a mechanism for de ning database schema or knowledge bases. Exam-
ples include RiboWeb [14,15], EcoCyc [15], and PharmGKB [16]. In this
case, the ontology provides a structure for recording data, and the expres-
sivity of the language used (often Frames, but now also OWL) offers a
description that has high delity to the domain of interest.

FIGURE 20.2 A portion of the Biological Process section of the Gene Ontology with asso-
ciated OWL abstract syntax.
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• As a common vocabulary for describing, sharing, linking, classifying,
querying, and indexing database annotation. This is currently the most
popular use of ontologies in bioinformatics, and among many examples
we can count are the GO [4], Microarray Gene Expression Data (MGED)
[17], and those vocabularies that originate from the medical community,
such as UMLS.6

• As a means of interoperating between multiple resources. A number of
forms appear, for example, indexing across databases by shared vocabu-
laries of their content (domain maps in BIRN [18], interdatabase naviga-
tion in Amigo using the GO7); a global ontology as a virtual schema over
a federation of databases and applications (TAMBIS [19]); and a descrip-
tion of bioinformatics services inputs, outputs, and purposes used to clas-
sify and nd appropriate resources, such as bioinformatics Web Services,
and to control the work ows linking them together (myGrid [20]). As a
scaffold for intelligent search over databases (e.g., TAMBIS [19]) or
classifying results. For example, when searching databases for “mitochon-
drial double stranded DNA binding proteins,” all and only those proteins,
as well as those kind of proteins, will be found, as the exact terms for
searching can be used. Queries can be re ned by following relationships
within the ontologies, in particular the taxonomic relationships. Similarly,
Fridman Noy and Hafner [21] used an ontology of experimental design
in molecular biology to describe and generate forms to query a repository
of papers containing experimental methods. The extensions to a typical
frame-based representation allow them to accurately describe the trans-
formations that take place and the complexes that form within an exper-
iment, and then make queries about those features.

• As a method for understanding database annotation and technical litera-
ture. The ontologies are designed to support natural language processing
that link domain knowledge and linguistic structures.

• As a community reference, where the ontology is neutrally authored in a
single language and converted into different forms for use in multiple
target systems. Generally, ontologies have been developed to serve one
of the previous categories of use and then adopted by others for new uses.
For example, the GO was developed solely for database annotation but is
now used for all the purposes just outlined. 

20.2 THE CURRENT ENVIRONMENT
FOR ONTOLOGIES

Signi cant work has been performed over the last ve to six years in developing
ontologies for the life sciences. In this section we describe some of the major work

6 http://www.nlm.nih.gov/research/umls/
7 http://www.godatabase.org
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that has been done, the ontologies that have been developed, and the organizations
that support and perform the work in the eld.

20.2.1 CURRENT LIFE SCIENCES ONTOLOGIES

Foremost among the ontologies in the life sciences are the GO and MGED. However,
there are a number of efforts underway that have varying degrees of support. The
GO initiative has grown to include the Open Biological Ontologies (OBO)8 effort,
which develops ontologies in many additional biological domains. There is also work
on the development of ontologies for tissues, anatomy, pathways, and other subdo-
mains of the eld. The GO [4] is the central bio-ontology effort. It grew from a
recognition that in the postgenomic era biologists would increasingly wish to make
cross-species comparisons and queries. As already mentioned, the species-centric
terminologies used by each community are a barrier to such investigations. By
describing a common understanding of the principle attributes of gene products, the
GO is attempting a de facto integration of genomic databases. GO has three orthog-
onal attributes describing molecular function, biological processes, and cellular
components. A fragment of the molecular function ontology is shown in gure 20.3.

8  http://obo.sourceforge.net

FIGURE 20.3 The Gene Ontology DAG for protein kinase C (GO:0004697) taken from the
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The three GO ontologies now contain some 18,000 terms. They are represented
as a directed acyclic graph or DAG. The nodes of this graph represent the biological
concepts and the labels of these nodes provide the terminology. The arcs of this
graph represent therelationships is-a and part-of between the biological concepts.

As discussed earlier, the primary use of GO is for the annotation of gene products
within databases. Each of the 16 species databases use the same terms to represent
the same attributes within their respective databases. As well as the species databases,
community-wide resources such as UniProt/Swiss-Prot and INTERPRO also anno-
tate their entries with GO terms. Retrieval tools such as AmiGo9 and SRS can then
use the ontology itself or the terms it provides to query gene products with increased
recall and precision. As the use of such resources lies at the center of the bioinfor-
matics of drug-target identi cation, improved querying through the use of ontologies
can be seen to be a bene t to the eld.

The use of the GO has now moved well beyond its original purpose of retrieval.
It is widely used in analyzing microarray data by placing clusters of up or down
regulated genes into categories according to GO terms. It is easy to see that if a
collection of genes in a disease condition are all related to a particular metabolic
process this process lies at the heart of the disease itself. This kind of ontological
analysis has obvious consequences in the hunt for drug targets. 

There is much use of ontologies in the domain of microarray analysis itself. As
the technology developed, those holding repositories of microarray data were deter-
mined to avoid some of the problems found in the natural language representation
of knowledge in older resources. Both expressive schema and the vocabularies for
populating them have been developed to aid querying and analysis of microarray
data. The MGED Society (see next) have played a guiding role in developing
standards for storing and describing these data. The MGED ontology describes [17]
the biological samples, treatments, and experimental conditions in microarray exper-
iments. The MGED ontology is formulated so that it is easy to refer to other
ontologies that provide vocabulary necessary for descriptions—anatomies, species,
disease, and so forth. An example of such complementary work is eVoke™,10 which
offers an Expression Ontology Toolkit that links experimental data with standardized
terms that provide insight into phenotype. The Evoke ontologies provide vocabularies
for describing biological samples and are now a part of the Minimal Information
for the Annotation of Microarray Experiments.

The growth of ontologies within bioinformatics has been rapid over the past few
years. It is futile within a book chapter such as this to attempt a comprehensive
coverage of bio-ontologies. The references and URLs within the chapter are a good
start in providing coverage of those ontologies, and use organization Web sites (see
next) give access to further ontology efforts.

9 http://www.godatabase.org/cgi-bin/amigo/go.cgi
10 http://www.egenetics.com/evoke.html
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20.2.2 ONTOLOGY TOOLS

There are now a number of commercial and open source tools for the development,
maintenance, merging, and visualization of ontologies. A comprehensive survey of
ontology tools was conducted in July 2004 by XML.com.11 We do not attempt to
reproduce that survey here, but it is worth mentioning some tools and organizations
that are notable within the ontology eld.

Undoubtedly, the best-known ontology authoring tool is Protégé, from the Stan-
ford Medical Informatics group at Stanford University. This tool has been in use for
more than 10 years, and one could argue that it has been around longer, since it is
an outgrowth of the Knowledge Representation initiatives at Stanford University,
which have been in existence since the 1970s.12 Protégé has a large and active user
community with a number of commercial and academic projects and is open source,
so it can be downloaded at no cost and is easily installed. There are several mailing
lists to which developers and new users may subscribe, and the tool comes with
example ontologies to help new users get started on a project. Protégé has a core
engine, which is extended with plug-ins. There are a number of plug-ins, and the
user community is actively involved with creating new ones. One of the most recent
plug-ins is for OWL. Although the plug-in does not yet allow the user to code all
of OWL’s features using just the Protégé tool, it does provide support for the basics,
including classes, slots, facets, and instances.

Another widely used tool in the life sciences community is DAG-Edit. DAG-
Edit was developed at the Berkeley Drosophila Genome Project to be used as a part
of the knowledge acquisition effort of the Gene Ontology Consortium. DAG-Edit is
limited in its representational capabilities and is primarily used to represent simple
is-a and part-of relations; however, it is simple to use and has been a very effective
tool in the development of the very successful GO effort and others. The success of
DAG-Edit is in its ability to rapidly assimilate new content for the GO. There are a
number of other efforts that have leveraged the GO content and have been successful
in transcribing, semiautomatically, the GO content into a more formal ontology, such
as DAML-OIL [20].

In addition to these two tools, there are well over 50 other ontology authoring
tools, of varying degrees of sophistication and ease of use, from universities and
research organizations around the world. A large number of commercial organizations
offer commercial ontology authoring tools. Some of the more prominent of these
commercial tools are LinkFactory Workbench (Language and Computing), Integrated
Ontology Development Environment (Ontology Works), OntoEdit (Ontoprise GmbH),
OpenCyc Knowledge Server (Cycorp, Inc.), and Construct (Network Inference).
Although none of these tools, commercial or academic, yet has complete support for
all of the representational capabilities of ontology languages such as OWL or
DAML+OIL, or the reasoning capabilities of description logics, there are a number
of sophisticated tools and a lively marketplace for developing the next breed of tools.

11 http://www.xml.com/pub/a/2004/07/14/onto.html?page=1
12 Stanford Knowledge Systems Laboratory, http://www-ksl.stanford.edu/ 
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20.2.3 ORGANIZATIONS PROMOTING ONTOLOGY DEVELOPMENT

In this section we discuss the organizations that are promoting the development and
the adoption of ontologies in the life sciences eld. GO and MGED are the most
prominent examples, but other groups are active in the eld as well, including the
Bio-Ontologies Consortium, the Bio-Pathways Consortium, and others.

As mentioned earlier, the Gene Ontology Consortium brings together 16 model
organism databases (at the time of this writing) to develop the GO. As each new
organization joins, they commit to using the GO terms to describe the functionality
of gene products in their databases. As a consequence, each new group drives the
development of the GO to make available terms needed for that species.

The Sequence Ontology13 is also part of the Gene Ontology Consortium. It is a
grouping of genome annotation centers, including WormBase, the Berkeley Droso-
phila Genome Project, FlyBase, the Mouse Genome Informatics group, and the
Sanger Institute. The aim is to provide a shared vocabulary for the features described
on nucleotide and protein sequences. It is intended to range from the basic features
seen on a sequence, through interpretations such as “pseudogene” to mutations.

The Open Bio-Ontologies effort acts as an umbrella under which bio-ontologies
may be developed and disseminated. OBO has a set of principles that govern
inclusion:

• Submitted ontologies must be open but cannot be altered and redistributed
under the same name.

• Use cannot be restricted—ontologies are for sharing.
• A common representation should be used, either the form accepted by

DAG-Edit or the OWL.
• Ontologies should be nonoverlapping.
• Namespace identi ers should be used so that the source of any entity

within an ontology can be identi ed.
• All terms should have a textual de nition to prevent ambiguity in inter-

pretation by human readers.

OBO offers access to a wide range of ontologies. Several ontologies of anatomy
for various species are prominent. These speci c ontologies are of particular interest
to the community, as they can be used to identify the biological source of material
in experiments (e.g.,this microarray experiment used mouse lung, etc.). In addition
to anatomies, there are several ontologies of development within species. Finally,
there are a growing number of phenotype ontologies available, including traits,
disease, and behavior.

BioPAX14 is a consortium of pathway databases that aims to develop an exchange
language for biological pathways (BioPAX). Pathways include the metabolic, regula-
tory, and signal pathways. The BioPAX initiative aims to overcome the heterogeneity

13 http://song.sourceforge.net/so.shtml
14 http://www.biopax.org
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of formats and conceptualizations in the many pathway databases. Initially, BioPAX
has used an ontology, written in OWL, to develop a schema for describing the entities
and their attributes to be exchanged. Further levels of BioPAX will be developed to
provide ontologies for vocabularies to facilitate descriptions of pathway data.

The MGED Society,15 which we discussed earlier, has a similar goal to that of
BioPAX in that it aims to develop both schema and the vocabularies that ll attributes
of that schema for the description of microarray experiments. The MGED has been
in existence longer than BioPAX and has a developed ontology for providing vocab-
ularies for the description of biological samples, their treatments, and the experi-
mental conditions pertaining during hybridizations [17]. This ontology is now mov-
ing away from the world of model organisms to include toxicology and
environmental genomics experiments. As proteomics experimentation develops,
there are efforts being made to share descriptions of experiments across broader
communities.

While GO and MGED are the most prominent and mature life sciences ontolo-
gies, they are not the only efforts within the life sciences community to develop
open source ontologies. There are also active efforts to develop ontologies in a
number of other areas, including the following:

• Foundational Model of Anatomy [13,14] is an ontology of human anatomy.
• Tissue Ontology [18] offers a controlled vocabulary for describing tissues

across a range of contributing databases.
• Chemical Entities of Biological Interest16 is a dictionary of small molec-

ular entities that are either products of nature or synthetic products used
to intervene in the processes of living organisms.

These organizations have common goals. There is a recognition that this is a
community effort and that inclusion will make an ontology work [22]. Ontologies
are meant for sharing and for capturing a community’s knowledge of a domain, so
community inclusion is crucial. A multiplicity of ontologies will not solve the
inherent problems of bioinformatics resources described earlier.

20.3 LEVERAGING ONTOLOGIES FOR DRUG-TARGET 
IDENTIFICATION AND VALIDATION

The target identi cation and validation process in the pharmaceutical industry is
characterized by a set of steps, or processes, with key decision points to determine
whether a target should be moved forward in the drug-discovery process. Each step
of the overall target identi cation and validation process is characterized by a set of
experiments, data, and information gathering and execution of best practice that
enlists the expertise of a number of scienti c teams. Each team brings expertise in
a particular scienti c domain, and the results from each of the teams must be brought

15 http://www.mged.org
16 http://www.ebi.ac.uk/chebi/
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together to ensure that a complete picture of the molecule being examined is pro-
duced. Identi cation and validation of targets relies heavily on the accumulated
evidence, both scienti c and business related, that has been generated inside the
pharmaceutical company and/or the biotech as well as the information available from
databases, external information stores, and documents (both internal, such as
monthly reports, and external, such as full-text patents).

Over the last 10 years, there has been a huge leap in the ability of research
organizations to generate new data and information, and the rate of accumulating
new data and information is accelerating. High-throughput screening (HTS), com-
binatorial chemistry, genomics, transcriptomics, proteomics, and metabolomics offer
opportunities for more ef cient and effective identi cation of targets and therefore
assist in the overall process of developing new drugs. These new technologies and
knowledge domains have become a standard part of the early-discovery process.
Systems biology is also of great interest, as it offers the promise of bringing together
an aggregated picture of all the science relevant to identi cation and validation.
Furthermore, just as we have seen these new domains of knowledge (e.g., the X-
omics) nd a place in the early drug-discovery process, the expectation is that the
target identi cation and validation process will change as other areas of scienti c
exploration and new tools become available. Therefore, it is important that the early-
discovery process be exible to ef ciently and effectively integrate new information
and knowledge into the current knowledge base of the organization as well as existing
processes.

As has been pointed out, scientists are not able to absorb all of the information
that results from high-throughput testing and the resulting volume of information.
We explore the way in which ontologies can provide critical assistance to the current
challenges in the early-discovery process. Speci cally, we show that ontologies can
provide bene t in the following areas:

• Consistent representation of scienti c data and information
• Organization and integration of information
• Visualization of data and information in context to provide meaningful

abstractions
• Identi cation and extraction of key information in text
• Work ow and best practice, or knowledge management

Next, we explore each of these areas in more detail and look at the role that
ontologies play.

20.3.1 REPRESENTING THE SCIENTIFIC DATA AND INFORMATION

As stated earlier, well-de ned ontologies provide the community with a set of common,
shared understandings of the data and information elements that are used by scientists
and also offer, in those cases where a more formal ontology language is used to
represent the ontology content, a structured and computable resource for managing
the data and information. Immediate bene ts of shared, common understandings of
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terms in the eld are that this enhances communication among scientists and provides
clarity to a general understanding of the eld.

It is clear that a great deal of laboratory work is performed during the target
identi cation and validation process. Sophisticated technology supports the use of
HTS and microarray assays, which results in volumes of data. The scientist’s
favorite, and most ubiquitous, tool for viewing and analyzing experimental results
is the spreadsheet, typically Excel. While an Excel spreadsheet is a very able tool,
with much to recommend it, it has serious shortcomings when used to view large
volumes of data. It is not hard to imagine that scientists’ eyes grow weary after
long periods of examining their results in spreadsheets. The more serious problem
is that it is all too easy to miss information, sometimes key information, when it
is buried in such a form.

It is no longer feasible for scientists to use only Excel spreadsheets to analyze
their results. Results must be captured and aggregated in a systematic manner to
allow scientists to get a broad view of the information and knowledge that derives
from their experiments. The large quantities of data can be used as support for the
higher-level view of the information, and the scientist should be allowed to drill
down into this supporting data from the high-level view. This will be an iterative
process of viewing information, reviewing and manipulating the supporting data,
and analyzing the results. The interim and nal analyses created by the scientists
are also key pieces of information. These annotations provide a layer of knowledge
above the raw data and information, and these annotations are very valuable to the
organization, which should capture and maintain them. However, this analysis is
typically captured in unstructured, free-text les in various le formats, using various
document styles and kept on local hard drives or embedded within different document
systems or e-mail. Clearly this is an informatics problem, and, as with most problems
in informatics, it has many solutions. Frequently, informaticians (Bio-, Chem-, and
others) approach this problem by coding one-off solutions to these problems, using
such valuable, and available, tools as Perl, Python, Oracle DB, and others. However,
these tools do not address the problem of data/information heterogeneity. For exam-
ple, to reproduce and interpret DNA microarray assay results and to effectively
predict protein sequence and structure from DNA sequence, it is necessary to know
the semantics of the underlying data elements. If the semantics are captured in
procedural code, then the semantics are a single-point solution that provide little or
no help to solutions developed subsequently.

It quickly becomes clear that the most ef cient method for de ning the semantics
and leveraging these semantics for later work is to de ne the semantics in a separate
layer, an ontology that provides a commonly held, shared understanding of the data
and information. With the advent of XML and XML-based technologies it becomes
simple and easy to develop a Document Type De nition, a Resource Description
Framework (RDF), or an RDF Schema (RFDS) representation of the data. Bioin-
formaticians have found that this is a quick and relatively painless solution to their
problem. However, the ease with which these representations can be built can present
another problem, namely, the propogation of many heterogeneous representations
of data, which are perhaps well suited to an individual experiment or set of exper-
iments by a small team but do not provide a structure that can be leveraged for other
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work. “Quick and dirty” representations, even when done by skilled bioinformati-
cians, can often result in representations that are awed or incomplete. The work of
creating well-structured representations of the data generated by a pharmaceutical
company or a biotech is therefore a nontrivial undertaking. It requires expertise; a
broad understanding of the forms in which the information may be expressed (as
opposed to an understanding of the immediate needs of one or a small number of
scienti c teams); and, perhaps most important of all, signi cant resources, in that
people must dedicate their time to completing the task. The life sciences industry is
highly competitive, and most work performed in an organization is done under
considerable time pressure. Critical deliverables and near-term milestones are not
conducive to dedicating project team resources to produce a computable layer of
abstraction above the data elements being used in a project. Any resources dedicated
to building this kind of abstraction introduce the risk of slipping deadlines. It is a
dif cult task to convince management that one of their projects should provide
additional resources to develop these abstractions. However, as we have seen, the
bene t to the business as a whole is signi cant. Overall, the business will be able
to reduce the time and resources spent in coding access to and aggregation of datasets,
and it will reduce the time it takes to produce meaningful results to the leadership
of project teams and to key decision makers within the business.

It is clear that there is a business case in the life sciences industry for the use
of ontologies for datasets produced in the organization; however, it is not clear that
a pharmaceutical company or biotech has the goal, or the proper skill set, to do all
of this work by itself. The better approach is to build bio-ontologies in a consortial
fashion that allows the life sciences industry and academic organizations to drive
the requirements for ontology design but to share the burden of the work in creating
these ontologies. The MGED Society17 and the Gene Ontology Consortium that we
mentioned previously are good examples of the value of consortial work.

The research process for target identi cation and validation generates a signi cant
number of results for expression experiments. Another bene t that ontologies can
provide is the ability to view experimental data, such as expression results, in context.
Providing experimental data in context gives the scientist an immediate understanding
of the meaning of this data and, one can argue, is the appropriate way for scientists
to view their data and information, from a general context with the ability to drill
down into the supporting data. Ontologies, and the GO in particular, provide such a
context. HTS results, which use Affymetric Identi ers (AffyIDs), can be mapped into
one or more of the three GO taxonomies in a straightforward manner because of the
mapping from AffyIDs to GO Identi ers (GOIDs), and is a good example of the
uptake of GO within the life sciences.18 This mapping allows experimental results to
be mapped to each of the three GO ontologies, which, with the proper visualization
of the GO, allows scientists to immediately see their signi cant results mapped into

17 

18 GOIDs are also referenced in a number of other bioinformatics databases, such as Reactome Biological
Process, PFAM, TIGR, and Enzyme Classi cation numbers. A full list of the associations and their
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a biological context. More hits in a particular area of each of the ontologies provide
evidence about the underlying biological processes that are affected.

Each of these ontologies offers the same opportunity to provide bene t to the
life sciences industry. It is easily seen that even this small, unrepresentative set of
ontologies covers many major areas of interest in target discovery: anatomy, tissue,
pathways, proteins, and chemicals. Bioinformatics resources are at the point where
much of the knowledge they hold might be open to computational processes across
organizations.

20.3.2 INTEGRATING INFORMATION

In addition to visualizing experimental results in a biological context, it is increas-
ingly important to be able to see the same results in multiple contexts. For example,
the scientist is interested in seeing results in the context of a metabolic pathway to
gain an understanding of the pathway, or pathways, that a particular target will affect.
However, the scientist will also need to understand these results in the context of
biological process, cellular component, and molecular function. In addition, it is
valuable to understand which tissues are involved. The task of mapping results into
each of these contexts is often slow and requires a signi cant amount of resource
within the organization. This delays analysis work and ties up people in the organi-
zation who could be dedicated to other tasks. Clearly, there is an incentive to reduce
the time and resources it takes to connect from one context to another. Once again,
ontologies can provide assistance with this problem. The organization will leverage
a number of ontologies, where each provides a valuable context. The key is to allow
the scientist to bridge from one context, or ontology, to another in a seamless manner.
The GO is again a leading example of how ontologies are being built to handle this
problem. The GO, speci cally its identi ers (GOIDs), are cross-linked to many other
ontologies and vocabularies, which facilitates bridging from one ontology to another.
GOIDs are now included in such bioinformatics databases and identi ers as Uni-
Prot/SWISS-PROT, LocusLink, Affymetrix Identi ers, Enzyme Classi cation num-
bers, and others.

A simple mapping from one identi er to another is quite powerful and can go
a long way toward integrating ontologies and contexts so that research scientists can
see their experimental results in one context and then move to another. However,
this simple method also has its pitfalls. Mapping from one system’s identi er to
another is not always a straight one-to-one mapping. The mapping is often many-
to-one, and perhaps one-to-many. In addition, mappings do not always exist from
one ontology’s set of identi ers to another’s. It is often the case that mappings from
Ontology A to Ontology B must be made through one or two intermediate ontologies.
Finally, these mappings are not always complete or correct. Although still highly
useful, it is easy to see that this method of integration relies on mappings at a
relatively super cial level and that any errors in the mappings are compounded when
additional, intermediate ontology mappings are used. There are many efforts within
the ontology community to bridge across, or merge, ontologies. In addition, there
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are a number of efforts that are speci cally geared toward bridging the gaps between
life science ontologies [18] or providing focused entry points to multiple ontologies
representing the same domain.19

In addition to the work conducted in the ontology community, there is also related
work being performed in commercial IT organizations, such as IBM, GeneticXchange,
and BioWisdom, in the eld of intelligent information integration. These companies
have developed integration products that allow federated querying of multiple life
sciences databases, both structured and unstructured. Each organization uses varied
techniques in their current generation of products; however, many of the organizations
show interest in leveraging the work being conducted by the ontology community.

20.3.3 WORKFLOW AND SHARING INFORMATION WITHIN A 
VIRTUAL ORGANIZATION

Typically, project teams are formed in each phase of the drug-development process.
The team is usually led by a champion, usually someone from the biological research
community, who believes in the potential of the compound to become a drug. This
champion acts as project lead and forms a team to conduct research necessary to move
the molecule forward in the drug-discovery process, or, in this case, the target identi-

cation and validation process. In a typical industry organization, this project team is
a matrix of several expert members. In other words, in the organizational structure,
there are scienti c teams focused on a particular area of scienti c expertise (e.g.,
chemistry, toxicology, genetics, biology). However, the researchers in these scienti c
teams serve as team members of multiple projects that focus on the identi cation and
validation of a speci c substance to determine whether it acts as a drug. The scientist
who leads the target identi cation and validation team often creates her or his team
from members of a number of the scienti cally focused teams. Over and above the
science, then, there are issues that must be resolved to allow this matrix of team
members to operate effectively and to respond quickly to results and information as
they become available. Teams must be focused around both team and project bound-
aries, and there is a signi cant effort needed to coordinate the many teams that compose
a project. Each team member will need to balance the obligations to the team in which
he or she is a direct report with the responsibilities to the (possibly multiple) teams
for which that member provides scienti c expertise. This problem is particularly
dif cult for the leader of the team that owns the substance under investigation, as this
person must organize and coordinate the efforts of many people over whom this lead
has no direct control. A typical team might be composed of

• A biologist subteam to investigate the potency and selectivity of the
substance

• A subteam to perform screening of potentials

19 

 © 2006 by Taylor and Francis Group, LLC

SOFG Anatomy Entry List (SAEL), at http://www.sofg.org/sael/ 



470 In Silico Technologies in Drug Target Identification and Validation

• A chemist subteam to analyze structure activity relationships and tracta-
bility

• A pharmacokinetics group
• Information analysts to review the competitive landscape and to provide

the team with relevant scienti c documents and information from other
groups within the organization that may have a bearing on the project
team’s effort

• Patent experts to judge the current landscape and leverage any patentable
outcomes from the team

• Subteams in transcriptomics, proteomics, and other scienti c disciplines
(other X-omics)

The team lead is usually a scientist, well versed in her or his area of expertise
but not necessarily knowledgeable or experienced with the formal process for bring-
ing the drug through the drug-discovery process. This process often involves well-
de ned decision points that must be supported by formal or semiformal proposals
and presentations to committees, all of which can or should be guided by best practice
for scienti c investigation.

Clearly, information integration work, supported by ontologies, will be a key
criterion for success in this area, but even with substantial scienti c evidence, a team
will not succeed if there is not suf cient coordination of team members and of the
information that they nd and/or produce. The problem here is to abstract and
formalize the work ow, including decision points and timelines for deliverables for
each member of the matrix, as well as coordination and dissemination of the infor-
mation produced by each member of the team. This complex task is usually left to
the team leader to solve; however, it is an area in which ontologies can provide a
level of abstraction and coordination that will help bind the team together. Work in
this area is focused primarily in the Semantic Web or Semantic Grid space, which
we discuss separately in this chapter.

The ability to manage and leverage the combined knowledge of a team or
organization is typically referred to as Knowledge Management. Therefore, Knowl-
edge Management is closely aligned with work ow and information sharing. Cap-
turing knowledge and best practices, and subsequently nding that knowledge so
that it may be leveraged in appropriate situations, is a key objective for any knowl-
edge-based industry. This is a critical problem in the pharmaceutical and biotech
industries, and it will become increasingly so as project teams become larger and
more complex as they work to assemble the information needed to move targets
through the drug-discovery pipeline. Management of these “virtual” teams is a
complex problem in itself.

Though there are a number of groups that are working in this area, one of the
most prominent research efforts is the myGrid project.20 myGrid is a UK e-Science
project funded by the EPSRC involving ve UK universities, the European Bioin-
formatics Institute, and many industrial collaborators [19]. This collaborative effort

20 
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has been at the center of many other life science initiatives and has built an infra-
structure currently being leveraged by a number of other funded research projects.
Although the infrastructure is not a commercial product, several commercial orga-
nizations, large and small, have been involved in the project. myGrid uses work ows
to create in silico experiments in bioinformatics. In composing services to form these
work ows, ontological descriptions can be used to facilitate discovery, overcoming
problems of inadequate keyword-based searches or reliance on community knowl-
edge. When myGrid work ows run, large amounts of provenance data are generated
that provide a context of use. These can include a knowledge-level provenance,
provided by ontology terms, which describes results, as entities; relationships
between those entities; and, for instance, the topics under investigation. myGrid
provides a good example of using ontologies to facilitate interoperation of data and
its subsequent exploitation.

20.3.4 TEXT MINING AND ONTOLOGIES

A key source for scienti c and competitive information is free-text documents.
Structured information, such as that found in relational databases, is highly important
to the target identi cation and validation process; however, most information sup-
porting this endeavor is locked inside scienti c journal articles, Medline abstracts,
patents, competitive pipeline reports, news articles, organizations’ internal docu-
ments, and many other sources. Scienti c journal articles are read by discovery
scientists themselves; however, typically scientists will read a subset of all relevant
articles, choosing articles from the journals they consider to be of highest quality
or to which the organization subscribes. Scientists are limited by the time they can
devote to this process, and often a signi cant portion of their time is spent searching
for articles of interest. Other full-text sources, as previously mentioned, are usually
reviewed and/or read by a small group of students hired for this purpose or are done
by professionals, either internal departments dedicated to mining the competitive
landscape or by external organizations that are paid a substantial fee to perform an
analysis. Again, money and resources are precious, so only a subset of all the
documents that may be of interest can be reviewed. Text mining offers a huge bene t
to organizations in that it may reduce the time taken to search for documents of
interest. It can also be leveraged to extract from documents the information directly
relevant to the current interests of the scientists and the organization.

mining in two distinct ways: through the use of vocabularies that may be used in
text-mining systems and as a formal structure that can be combined with text mining.

In the rst case, as chapter 6 points out, ontologies can be an important source
of vocabularies, or terminologies, for text mining. Ontologies, speci cally in the
form of a thesaurus, are able to supply terminology that has been organized into a
formal system. Simple word lists can be useful to text mining; however, they are
typically ad hoc, so are often incomplete, are sometimes incorrect, and rarely include
synonymous terms. An ontology provides the following:
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• Synonymous terms so that the text-mining system can identify a more
complete set of terms that represent entities of interest, such as genes,
proteins, and chemical names. This is a signi cant bene t, as there is
substantial variation in the names given to entities and concepts in the life
sciences domain. 

• A set of terms that is the result of a community effort, as described earlier
in this chapter. The advantage that ontologies provide to a community in
providing a common language to which everyone in that community may
refer is directly translated as a bene t to text-mining systems and enhances
the completeness of its results.

• Relationships in addition to the basic is-a and part-of relationships. These
relationships are described in a formal manner in the ontology and provide
guidance to text-mining systems (either through manual creation of those
relationships in the text-mining system or through an automatic or semi-
automatic method) for identifying those same relationships in full-text
documents.

As the text-mining chapter points out, ontologies are not always useful for
providing vocabulary for text-mining systems. For example, the GO, which we
described as one of the most successful of the ontologies in the life sciences, is not
useful for the terminology needs of a text-mining system for two reasons, namely,
GO is high level so the terminology is general and not useful for identifying speci c
entities in text such as gene or protein names, and the GO is not a complete thesaurus.
So, even though GO provides some synonymous and homonymous terms, the pur-
pose of GO is not to be a complete thesaurus. Other ontologies have similar limi-
tations, though some ontologies, such as UMLS, can be useful. Ontologies can also
be made more useful through formal incorporation of appropriate word lists.

Ontologies can also bene t text mining by providing a formal structure to be

structure of an ontology can provide text mining with the following:

• Formal organization into categories so that words are well de ned with
respect to the concepts they represent. A thesaurus will categorize terms
within an appropriate taxonomic structure. For example, a thesaurus will
de ne terms that are kinases and others that are proteases, all of which
are de ned within the category of enzymes, which is again categorized
within the concept proteins. This separation allows text-mining systems
to be very targeted in regard to the terminologies included in the system.

• Taxonomies into which documents may be categorized or classi ed. Chap-
ter 6 discusses the methods used by text-mining systems to perform this
task; it is clear that there are signi cant bene ts to the scientist in having
a large set of documents categorized into a well-de ned taxonomic struc-
ture. It is easy to see that the amount of time scientists spend searching
for documents of interest can be signi cantly reduced if the documents
have been organized into meaningful subsets.
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• A browsable structure of concepts and relationships into which informa-
tion extraction results may be deposited. Since a thesaurus can provide
terminology associated with concepts within an ontology, the results of
text-mining information extraction can be systematically used to enhance
an ontology with facts. Ontology browsers and visualization tools that sit
on top of ontologies can be used to allow the scientist or information
analyst to browse a large corpus of documents in a highly structured
fashion. The obvious bene t is that this can surface speci c information
locked in full-text documents, allowing scientists to spend less time gath-
ering needed information and enabling them to nd information that they
would not otherwise access, due to resource constraints.

In this case, the GO is highly useful as it supplies an organization of biological
function, molecular process, and cellular location as a context for the results of the
text-mining process.

20.4 FUTURE WORK

20.4.1 ONTOLOGIES AND TEXT MINING

There is signi cant overlap between the work being done in the elds of ontologies
and text mining. We have discussed what ontologies currently bring to the text-
mining eld. As we look out another ve years, there is reason to believe that these
two disciplines will become much more integrated.

The text-mining eld takes a very rich, but highly unstructured, representation
of information and knowledge (i.e., natural language) and attempts to impose a
structure over it. This structure can take a number of different forms, as the text-
mining chapter points out. Text mining can cluster documents with respect to their
similarity of content, categorize documents into a prede ned taxonomic structure,
and extract entities and relationships from documents and place them into a separate,
persistent, structured form. The ontology eld approaches the problem from the
other side, in that ontologists build models to represent concepts and relationships
in the real world (e.g., which proteins are expressed for a particular gene) and attempt
to populate those concepts and relations with facts. The representational capabilities
of ontologies are poor compared to the richness and subtlety that natural language
allows, and clearly reasoning systems are far from the capabilities of human beings.
However, there is work being done in the ontologies eld to give ontologies richer
expressiveness. As discussed earlier, ontologies typically use is-a and part-of as their
primary relationships. However, these relationships do not represent the detail that
we nd in the real world, and they set limits on the utility of ontologies in their
ability to integrate with other ontologies and to support sophisticated reasoning.
There is currently signi cant work in the ontologies eld that attempts to provide a
richer representation for relationships. This work will provide ontologies that can
distinguish between, for example, part-of relationships in which an entity is a part
of another entity but distinct by itself (the kidney is a part of the human body) and
a part-of relationship in which the part is the same as the whole (where a part of an
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apple pie is still apple pie). There is also work that allows ontologies to distinguish
between various layers of entities, to see the levels of granularity in objects. For
example, human anatomy is one level of granularity, tissues another, and pro-
teins/enzymes yet another. As reasoning systems become more ubiquitous and a
more intrinsic part of ontologies, these granularity distinctions will become critical.

As the representational structure within ontologies becomes richer, we can expect
this richness to inform text-mining techniques. One can imagine a highly sophisti-
cated knowledge base containing a thesaurus within it, which can be used to produce
matching criteria for natural language expressions. If the ontology, or knowledge
base, contains a large lexicon, including synonyms, homonyms, and the like, and
includes ne-grained expressions of relationships, this material comes closer to
approximating some of the structure of language itself.

As ontologies move toward the richness of natural language, we can envision
systems that interface with these knowledge bases in a language that is very close
to natural language but perhaps a bit less natural and more stylized.

20.4.2 ONTOLOGY STANDARDS

As ontologies become incorporated into commercial systems, there will be a strong
push to provide standards for ontology representation. The standards will come in
the form of efforts to agree on a language for the communication of (and sometimes
representation of) ontologies and efforts to agree on content. We see that the W3C
has produced the major effort in the former case in the development of the OWL
language(s). As to content, we next describe some of the organizations involved in
ontology development and cite many ontology efforts throughout this chapter.

20.4.3 ONTOLOGIES AND REASONING SYSTEMS

Where does all this expressivity bring us? Obviously, we have precise descriptions
of our domain of interest. The formality also brings support for machine reasoning.
Some of the most advanced work in the ontologies eld uses Description Logics as
the formal representational scheme for the ontologies. Description Logics provide
reasoning capabilities, classi cation, and subsumption speci cally, which can be
leveraged to validate the information (terms, taxonomic relationships, and other
relationships) within a taxonomy; it can also be used to arrange new information
into appropriate areas within an ontology.

to a reasoner such as FaCT [34] or Racer [35]. The OWL is mapped down to its
underlying logical form, and the reasoner attempts to infer whether all the statements
in the ontology are satis able. As a consequence, logical inconsistencies can be
found. One of the most powerful effects of this is the possibility of inferring the
subsumption relationships implied by the descriptions. Taking the descriptions in

gure 20.3, we can see by inspection of the descriptions that X and Y are children
of Z and that the description of P implies that it is a child of both X and Y. This
power has been used in migrating the GO from its DAG representation, which is
built by hand and consequently prone to structural errors [26,27]. Patterns in the
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lexical phrases representing the terms in GO [20,28] can be used to map GO terms
to a property-based representation in OWL. After submission to a reasoner, the OWL
descriptions imply that changes should be made to the lattice. In an early experiment
on the metabolism region of the GO, some 250 classes were processed in this way,
and 22 changes were made. Seventeen of these were directly accepted by the GO
editors, but the remaining suggestions prompted more signi cant changes in mod-
eling than the reasoner’s change itself [27]. Further unpublished experiments have
revealed a similar pattern.

The power of a representation such as OWL comes from its formal semantics.
The formal semantics allow it to be used to make precise, explicit descriptions of
the domain of interest. This provides unambiguous representations for humans but
also permits machine processing. In addition, one of the real attributes of the OWL
style is that simple, handcrafted ontologies can be described in OWL Lite and
migrated to the more powerful, expressive OWL DL for machine processing. We
examine the wider implications of this machine processing in the next section.

20.4.4 SEMANTIC WEB

As we have observed, biologists are major users of the Web for accessing tools and
acquiring information. We have also observed that bioinformatics and biology are
knowledge-based disciplines. Yet the Web, with its reliance on query by navigation
and human understandable natural language in an unstructured form, is not really
amenable to computational analysis. The growing amounts of biological information
are only manageable at all using search tools such as Google. Any user of a Bioin-
formatics database, however, knows the unreliability of the keyword search in terms
of recall and precision, and this is generalizable to the whole Web. In addition, such
searches are sensitive to lexical variants—a well-known problem of semantic heter-
ogeneity in Bioinformatics resources. These are the problems that have driven the
use of ontologies within Bioinformatics, and there have been parallel developments
within the Web community.

The Semantic Web is envisioned as the next generation for the Web [29]. At
present, the Web is a human-understandable collection of data and services. In his
vision for the Web, Tim Berners-Lee sees ontologies being used to mark up the
semantic content on the Web so that machines or agents can work more autonomously
upon those data and services. The consequence will be that instead of “searching
the Web,” users or their agents will be able to query the Web using semantic
descriptions provided by ontologies that are actually attached to parts of pages rather
than to the whole page. This process will enable pages to be processed to optimize
presentation. In addition, inference over semantic descriptions will provide exibility
in querying, such as specialization or generalization that is not available in keyword
searches.

We have seen that markup of resources with terms from ontologies can improve
recall and precision; this could also apply to the Web in general. We have also
discussed how we can use machine reasoning to make inferences over data using
such markup. OWL is envisioned to be the semantic driving force of the Semantic
Web. OWL, however, is only one of a range of technologies supported by the W3C
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that will support this Semantic Web. These technologies provide a series of layers,
moving from syntactic descriptions of document structure using XML to rich seman-
tic description of content using OWL ontologies.

• XML provides a syntax for document structure but offers no semantic
description of content.

• XML Schema is a language for restricting the structure of XML documents.
• RDF21 is a data model for describing facts about resources and their

relationships.
• RDFS is a vocabulary for describing classes and relationships in an onto-

logically compatible manner.
• OWL (see earlier) is a more expressive ontology language than RDFS

and can be used for building terminologies that can then be represented
in RDFS.

These layers of technology form the building blocks for well-structured, seman-
tically described resources on the Web and other application contexts. XML and XML
Schema are themselves used to form the syntax for the languages in higher layers.
RDF provides a simple, graph-based model for describing resources. A statement in
RDF is a triple, comprising a subject, a predicate or verb, and an object. The subjects
and objects form the nodes of a graph, and the properties/predicates/verbs form the
arcs. So a triple forming the RDF statement “Gene expresses Gene Product” has the
subject Gene, the object Gene Product, and the predicate expresses.

RDF itself can be used to create vocabularies, and the most prominent of these
is RDFS. RDFS allows descriptions of classes, subclasses, and arbitrary relationships
between classes. This means that ontologies described using OWL can also be
represented in RDFS and that tools built to support OWL will also support RDFS.

Each element of an RDF triple is a resource with a Universal Resource Identi er
(URI) that can point to a resource item itself, a string, or a term from a vocabulary.
So an RDF triple could point to a protein sequence with a URI and name that protein
via a “has Name” predicate, with an object resource as another URI that points to
a name. The same protein resource might also have a predicate pointing to a resource
holding a GO term or a database entry describing a particular feature of that protein.
Obviously, a URI can also point to another RDF triple. In this way, a large, complex
graph of facts or assertions can be created. In addition, the URI mechanism means
that more than one autonomously created RDF graph can be linked by predicates.
When this happens, graphs become aggregated to form collections of descriptions
of distributed resources. It is thus possible to capture increasingly large amounts of
semantically described data that are machine processable. The semantics of the RDF
language mean that inferences can be made over RDF statements, and the use of
controlled terminologies, developed from ontologies, means that rich, expressive
queries can be used.

21 
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There is already much activity in producing Semantic Web technology and
applications built on those technologies.22 These include RDF stores, RDF query
languages and tools, RDF editors, RDF annotation plug-ins for browsers, and RDF
visualization tools. These technologies can be brought together to form Semantic
Web-style applications [30].

Biology, with its large Web presence and growing use of ontologies, is already
well placed to create a Semantic Web for life sciences. These Semantic Web tech-
nologies are already being used within bioinformatics to provide computational
access to the knowledge content of bioinformatics resources and data analyses.
October 2004 saw the rst meeting of the Semantic Web for Life Sciences23 hosted
by the W3C.

20.5 SUMMARY

Signi cant progress has been made in the last six years in the creation and adoption
of ontologies in the life sciences. There now exist two very prominent efforts in the

eld: the Gene Ontology Consortium and the MGED Society. These two organiza-
tions have successfully de ned a number of key ontologies in the life sciences and
are extending their reach to ontologies in other subdomains within the life sciences.
There is strong evidence of the adoption of these ontologies within the community:
we have seen GOIDs used by a number of prominent bioinformatics databases, and
many of the key conferences in the bioinformatics domain are including tracks on
life science ontologies.

In addition to the adoption of ontologies within the life sciences community,
there is also signi cant work going on in the computer science eld to develop richer
and more sophisticated ontologies. The use of an ontology language for the semantic
web, OWL, by the W3C is a signi cant step in making ontology languages a key
building block of IT infrastructure components. We have seen that there is also work
being done to identify the limits of current ontology languages and representational
schemes and to address those limitations.

While progress has been substantial, there are still challenges for the broad
adoption of biological ontologies in the life sciences community. There are some
primary obstacles that remain:

1. Adoption of a common language for the representation and exchange of
life sciences ontologies

2. Creation of standard ontologies that represent the various key domains of
knowledge within the bioinformatics eld

3. Adoption of life sciences ontologies by commercial organizations such as
the pharmaceutical industry, biotechs, and IT companies producing com-
mercial software systems in support of bioinformatics and life sciences

22 

23 
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With the recent adoption by the W3C of the OWL languages, the eld is well
on its way to adopting a common, standard language for representing and exchanging
life science ontologies. As a W3C recommendation, OWL has strong support from
the Semantic Web community. OWL also has good prospects for continued devel-
opment, as the working group that supports it is very active and comprises some of
the top researchers in the eld. In addition, as discussed earlier, OWL is a language
that will form the basis of much of the Semantic Web community and so will likely
be used actively.

With respect to standards for ontologies, it is unrealistic to expect that there will
be a single standard ontology for every domain within the life sciences. However,
even convergence on a small number of ontologies within each community is a
positive step forward and shows great progress in the eld. The expectation is that
leading ontologies such as GO, MGED, and others will dominate their eld and will
be adopted by the user community as a useful tool.

The adoption of ontologies by the commercial community is not guaranteed;
however, we have already seen that the GO has been successfully incorporated into
a number of the key bioinformatics databases and has been adopted by tool vendors,
including Spot re. In addition, most of the key pharmaceutical companies are now
leveraging ontologies in their internal bioinformatics efforts. Perhaps the strongest
indicator of the incorporation of ontologies into the mainstream of Information
Technology and life sciences is the report by the market research rm Gartner, which
identi ed ontologies and taxonomies as one of the leading IT technologies, putting
ontologies as third in its list of the top 10 technologies in 2005.

It is heartening to note that bio-ontologies are having an impact within the life
sciences community. Serious work is being performed, with good results. Active
research underway in the computer science eld is planting seeds for the next
generation. We can expect bio-ontologies to grow signi cantly in the years to come.
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