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Preface

The ecology of populations is the study of the patterns of distribution and

abundance of organisms. It also goes beyond mere description and seeks

the evolutionary forces that might produce such patterns, and their

ecological constraints. This book is on the ecology of populations but it

is not a population ecology textbook. Therefore, there will be much

standard textbook material left out. This book does not attempt to

establish a new field, or summarize or synthesize an old one. Neither

does it provide the student of population biology with all the necessary

tools for further exploration, nor does it review the entire discipline, or

parts of it. So what does this book do? As with most books, it presents an

idiosyncratic world-view. We hope that some well-known problems and

phenomena are getting a fresh and novel approach. We also hope that

applying basically the same analytical tool to a number of seemingly

disparate problems in population biology will be convincing enough to

make others do likewise. By using rather simple models of population

change to a large number of problems, we hope that conceptual unifica-

tion will be promoted. Science becomes more and more specialized with

the risk of losing track of the bigger picture. Although no bigger picture is

presented here in a coherent way, the approach we have taken to address

problems in population ecology aims at getting to that more synthetic

understanding. We start by investigating simple and well-known models

of population change and the extent to which they are reasonable repre-

sentations of the population phenomena we can observe in natural or

laboratory systems. By doing so, we also emphasize the link between

evolutionary change, ultimately altering the life history of organisms, and

changes in population size in time and space. The spatial dimension in

population ecology is such a fundamental one that we have cast many of

the problems in one spatial setting or another. In fact, simple assumptions

about local births and deaths coupled by the movement of individuals

across space (i.e., immigration and emigration) make so much sense, and

has indeed the power of explaining a wide range of problems from life



history evolution to the management of harvested populations. Including

more than one species (or life history strategy), i.e., to move into the field

of community ecology, is not a particularly big step. Approaching this

wide range of problems with these methods, we believe, is a fruitful way

of doing population biology.

Although we have tried to show that the theoretical constructs dealt

with here also have a lot to do with actual phenomena in nature, we have

not emphasized examples and empirical evidence. Rather, this is more a

book on how to approach scientific problems in (evolutionary) popula-

tion ecology. It does not say anything on how to test models, or how to

build models. It emphasizes that it is possible to use rather simple building

blocks, the per capita rates of births, deaths, immigration, and emigration,

to model and therefore hopefully better understand population processes

from an ecological and evolutionary point of view.

Doing theoretical ecology is a hazardous cruise between the formal and

rigorous mathematical SCYLLA, and the overwhelmingly rich empirical

CARYBDIS. Too many equations and too few examples make an empiricist

suspicious, uneasy, and sometimes even hostile. Too little rigor and a

good deal of careless talking of things we do not really understand make

the mathematician bored and a disbeliever as well. So, the best pedagogic

trick would then be, of course, to show how beautifully the models and

theories match the data ecology so painfully has collected over so many

years. But our purpose here is not to show that theory works according to

some suitable standard. We want to show that if some of the very basic

and easily accessible concepts in ecology are taken seriously, and adding

some spatial structure, much of what we can observe of the distribution

and abundance of organisms can be explained and understood. If we also

leave the deterministic world-view and let the processes of concern be the

stochastic variables they inevitably are, then even more is gained.

This book should thus be read as a starting point for further explor-

ations rather than a summary of the field. We have probably erred when

omitting much of the classic and rather far-reaching knowledge in many

of the areas covered here. This is both a consciously biased selection and a

flaw in our knowledge and thinking. Hopefully the novelty and in some

parts state of the art material compensate for that.

The self-evident, yet joyful fact that science is a collective process does

not stop us from acknowledging the contributions from a number of

people and organizations to this and other projects of ours. The whole

idea of writing this book emerged at a meeting in Møls, Denmark, at a

workshop funded by the Nordic Academy for Graduate Teaching
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(NorFA) in 1996. We organized a number of workshops and symposia

after that, and all the students and colleagues contributing to those meetings

have also contributed to this book in various ways. That tradition con-

tinued as we launched a network of researchers and graduate students

funded by the Finnish Academy (the MaDaMe program). The financial

support from NorFA and the Finnish Academy (ER, VK), the Spatial

Ecology Program (Ecology and Evolutionary Biology, University of

Helsinki), Center of Excellence in Evolutionary Ecology (Department

of Biological and Environmental Science, University of Jyväskylä (VK)),

the Swedish Research Council (PL), and the Swedish FORMAS Research

Council (PL) has been crucial for our joint efforts. Parts of this work

were conducted while PL was a Sabbatical Fellow at the National Center

for Ecological Analysis and Synthesis, a Center funded by NSF (Grant

#DEB-0072909), the University of California, and the Santa Barbara

campus. We owe all students and colleagues that have participated in

those activities a heartfelt thank-you. People in our immediate neigh-

borhoods have been wonderful friends, colleagues, inspirers and teachers,

and hence important throughout the production of this book. Others

have influenced our scientific journey more subtly. Many thanks to Sami

Aikio, Susanna Alaja, Joel Brown, Katja Enberg, Torbjörn Fagerström,

Anna Gårdmark, Mikko Heino, Bob Holt, Peter Hudson, Jouni Laakso,

Harto Lindén, Niclas Jonzén, Jörgen Ripa, Nils Christian Stenseth,

Stuart Pimm and Peter Turchin. Finnish Game and Fisheries Research

Institute has allowed us to use their long-term records of game animals.

The Nordic Centre of Excellence Programme by the ‘‘Nordiska

Ministerrådet’’ supported the final phase of the manuscript preparation.

The entire manuscript of the book was read and commented upon by

Tim Benton and Hannu Pietiäinen. Jordi Bascompte, Mikko Heino,

Stuart Humphries, Niclas Jonzén, Hanna Kokko, Jouni Laakso, Elina

Lehtinen, Kate Lessells, Jan Lindström, Jari Niemilä, Jörgen Ripa,

Graeme Ruxton, Richard Solé, Bill Sutherland, and Erik Svensson

have read one or several chapters. We are very grateful to all these people

for insightful comments and suggested corrections. We have probably

taken their advice too lightly and – of course – all errors or omissions are

ours alone.

Finally, we are indebted to our close friends and families for letting us

do what we are doing, at times even supporting it!
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1 . Introduction

. . . there is nothing so practical as good theory.

Richard Feynman

The scope of this book is almost as wide as it gets. It touches upon a range of

topics in ecology and evolution found in many modern textbooks. Instead

of going into considerable depth in any one topic, we have chosen to cover

quite a few in order to show that the same basic (and well-known) tools are

applicable to a wide variety of ecological and evolutionary problems in

population biology. However, this is also a narrow-minded book in the

sense that it is very ‘‘theoretical,’’ i.e., full of mathematical expressions and

computer simulation results. We believe ecology becomes a healthier

science if it appreciates and acknowledges its strong quantitative and

more rigorous nature. It is also narrow-minded in the sense that it reflects

our own interests in population ecology without attempting to cover all

aspects of the ecology of populations. Yet, the scope remains wide and

possibly shallow.We believe that ecology and evolutionary biology have to

become far more integrated than the fragmented and disparate impression

they give today. We think that this can be done by going back to very

simple first principles of births and deaths, immigration, and emigration.

From those ‘‘simple’’ entities, we can derive virtually everything that plants

and animals do in nature. To do so, however, requires a common thread of

theory, the seeds of which at least we believe exist. Extensions of that

theory will also be dealt with in this book. The second reason for a wide

scope is to show how theory and data can be closely integrated, at least in

some (rather important) areas of ecology, and that this integration often is

useful for the application of the science of ecology. Although the scope is

deliberately wide, there are obvious restrictions and biases involved in our

endeavor. For example, plants play a smaller role than animals. In particular,

large mammals and birds dominate the case stories and examples. The only

excuse for this bias is that we are especially used to those organisms and

the literature that covers their biology. We nevertheless think that there



is a great deal of generality to be found in our approach. However, one

can easily imagine a number of scientific problems with a rather limited

selection of organisms as examples and templates for more theoretical

considerations. Microorganisms and many plants are, of course, very dif-

ferent from most animals on a number of grounds (e.g., modular structure

versus well-defined individuality, reproductive modes and life cycles, and

mobility). Even so, and of course depending on exactly in which unit we

choose tomeasure the presence of the organism, the basic and almost trivial

relationship is

Nðt þ 1Þ ¼ NðtÞð1þ bþ i� d � eÞ; (1:1)

whereN is the abundance of a population at time t, b and d are per capita

births and deaths, respectively, while i and e are per capita immigration

and emigration rates during one time interval. Our task as ecologists and

evolutionary biologists is to figure out what determines b, i, d, and e, and

the dynamical and evolutionary consequences of them.

Our point of departure is hence the simple renewal function above that

maps the state of the population at one point in time to another. That is,

we will – almost without exception – assume that it is possible to read off

the state of the population at one point in time and do it again at some

other point. The time interval between the observations is in principle

arbitrary, but usually matches some natural biological interval, e.g., the

sequence of reproductive events. By ‘‘state’’ of the population, we usually

understand population size or density. This is of course a very restrictive

definition that will be relaxed depending on circumstances. For example,

in Chapters 6 and 12, age structure and sex are introduced making ‘‘state’’

more interesting and sophisticated.

Another reason why we have chosen a discrete time approach is that

much of the available population and community data come in this

form: population size, dispersal, or gene frequencies are measured in discrete

time intervals. This does not mean that the time intervals in data are always

biologically adequate; for example, many populations are measured once a

year for practical rather than biological reasons. This potential mismatch

between observation interval and biologically moremeaningful sequences is

an interesting empirical and applied problem in itself, probably deserving

more attention than it usually gets. The format data come in also has

implications for the (statistical) analysis of them. Most theory of stochastic

processes (e.g., time series analysis, something we will make frequent use of

throughout) is based on discrete (random) events. The correspondence

between theory and data will consequently be both obvious and close.
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Generally, spatial processes will also be viewed as discrete processes. This

usually comes less naturally. Although it is almost invariably true that the

environment that natural organisms inhabit is heterogeneous, at least at

some appropriate scale, the different parts of it are less obviously discrete

entities. Much spatial ecology theory nevertheless ignores the fact that

landscape or habitat elements really have poorly defined identities and

borders. It turns out, however, that this is rarely a problem, both for practical

and theoretical purposes. As shall be seen in later chapters (e.g., Chapters 3

and 4), the distinct patches or habitats assumed in the theoretical constructs

and models are indeed fair representations of real landscapes when it comes

to understanding population and community processes. Partly, this is

because many spatial processes are in fact scale invariant in the spatial

dimension (see, e.g., Chapter 5).

The way we most often express the renewal functions is hence in

discrete time (difference) equations. In Chapter 2 we analyze the discrete

time population processes in more detail. As a preamble, consider Box 1.1

for the general discrete time mapping. We also refer to more general

textbooks, e.g., Edelstein-Keshet 1988, Roughgarden 1998 and Caswell

2001, for thorough treatments of such processes. Our intention is, how-

ever, that most of the material in this book is self-contained. We do not

expect the reader to be especially dependent on additional information

from other, more technical sources. For obvious reasons, however, many

of the topics covered cannot be dealt with in great detail and depth.

Therefore, we expect the reader to be familiar with the advanced under-

graduate or graduate level of population and community ecology and the

associated theoretical and mathematical (and statistical) tools. This does

not mean that the somewhat less initiated reader should be left hanging in

the air. We have tried to accommodate that by avoiding overly technical

jargon, by letting some of the technical problems appear in boxes outside

the main text, and by ample references to the literature where more

in-depth treatments of technical matters are found (see also the

Suggested reading list at the end of this chapter).

Fitness

The question often arises whether there is really any strong connection

between classic population and community dynamics and evolutionary

processes. The two branches of evolutionary ecology are often seen as

separate which is very unfortunate and misleading. Of course they aren’t.

Consider the simple renewal processes

Fitness . 3



Box 1.1 . Discrete time mapping

We are interested in finding out how the number of individuals (or

some other adequate entity) is changing from one arbitrary point in

time, t, to another, tþ 1. Note that the indexing is also arbitrary.

Instead of mapping from time t to tþ 1, we can do it from t� 1 to t

(as long as we only deal with one (forward) time step at a time). Let the

population size at time t be denoted by N(t) and we then have

Nðt þ 1Þ ¼ f NðtÞ½ �;

where f is some yet unspecified function. Hence we assume that the

population size at future times is dependent on the population size at

previous times. Suppose the function f now takes the form

f NðtÞ½ � ¼ lNðtÞ
1þ bNðtÞ :

This is a monotonically increasing function of N determined by two

parameters, l and b. This is the renewal function for the population

process (Box 2.1). Suppose now that there is a situation such that

N(tþ 1)¼N(t). Denote that population density N �, and we have

N� ¼ lN�

1þ bN � :

We can now solve this equation for N� and, after some algebra, we

have

N� ¼ l� 1

b
:

This is the equilibrium population size, i.e., the size at which there is

no change from one time to another. That value ofN can be illustrated

by plotting the function f in theN(t)�N(tþ 1) plane, and is the point

where f is intersecting a straight line with slope 1 in the plane. The

slope of f in that point is important because it determines the stability

of the equilibrium (see, e.g., Edelstein-Keshet 1988, for a more rigor-

ous and detailed treatment of both general discrete time mapping and

its application in population biology).
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Nðt þ 1Þ ¼ RNðtÞ; (1:2)

where N is some relevant ecological quantity, e.g., population density,

and R is some (positive) constant. The rate by which the population

density (or size) changes is thus determined by R (cf. eq. 1.1). The exact

nature ofR is of instrumental importance in population ecology: why isR

sometimes large, sometimes small for a given population, why does it vary

among populations, and how are, for example, spatial structure and other

species in the environment affecting its magnitude and variation?

Expressed in this traditional population dynamics ways, R is rather

unambiguous – it is (when log-transformed and given the symbol r ) the

finite rate of increase of the population. This is precisely why it appears as

a measure of fitness (with identical meaning) in the Euler–Lotka equation

(here in the discrete time version)

1 ¼
X

lxmxe
�r x; (1:3)

where l and m are age-specific (at age x) fecundity and survival, respec-

tively. This is indeed the key equation in all evolutionary ecology.

Murray (2001) argues rightly that it has the status of a ‘‘law’’ because it

encompasses both evolutionary and ecological change. Evolutionary

change in that a trait or strategy (see e.g., Cohen et al. 1999 for strategy

definitions) that maximizes r in eq. 1.3 is the strategy that will be the

evolutionarily most successful one, i.e., by definition having the highest

fitness. Should r orR take on values such that eq. 1.3 is no longer satisfied,

ceteris paribus, then that indicates a population increase or decline. Should

we for some reason ignore age (or stage) structure or the entire strategy

space (individual variation within the population), then all that is left

is population change and we have recovered population dynamics.

In the following, we will occasionally slide between the ecological

and evolutionary domain, always trying to keep the Euler–Lotka theory

in mind.

The heir of Euler–Lotka theory is what is sometimes referred to as

adaptive dynamics (Dieckmann and Law 1996; Dieckmann 1997;

Abrams 2001). It is a an even more explicit way of incorporating both

ecological and evolutionary dynamics within the same theoretical frame-

work. It is a means of characterizing the entire (or at least most of the

relevant components) ‘‘feedback environment’’ of an organism (e.g.,

Heino et al. 1998). By doing so, both ecological change (change in
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abundance and distribution) and evolutionary change (the changes of

traits or strategies in time and space) are explicit parts of the analysis.

We have refrained from expanding our treatise to include this theoretical

approach simply because the focus here is indeed on abundance and

distribution, although we will break that rule in later chapters (e.g., in

Chapter 11 and 12).

Ecology of populations

At the very beginning, we stated that this book has a very wide scope, but

are now down to a much more narrow and limited one – classic ‘‘popula-

tion dynamics.’’ This is not as restricted as it may seem. It is in fact the

study of populations – their distribution and abundance (Andrewartha and

Birch 1954) – that is necessarily the core of ecology and evolutionary

biology. It is of course true that the individual (or some appropriate

similar concept), or even the gene, is the actual scale at which evolution

seemingly operates such that those units are the ones that are selected. For

both theoretical and practical purposes, however, it is the population level

that is the relevant one for our study of the manifestation of evolutionary

change; it is at this level that the manifestation of life itself takes place,

namely the births and deaths of more than one individual (or gene). This

collection of individuals is the population, however we choose to define

it more precisely (Berryman 2002). Hence the interesting, measurable,

and practical, e.g., in the application of ecology for management or

conservation purposes, processes are apparent at this level. Conversely,

this approach does not of course preclude the study of biology at all other

levels of organization. Anything from molecular biology to ecosystem

research will reveal and generate useful biological knowledge. The most

obvious and relevant arena for all life is, however, the population – the

scale at which molecular processes and vast ecosystems coalesce. Hence

the approach taken in this book.

Theory and data in ecology

Ecology is an empirical science and is therefore ultimately data driven.

But it is so only to the extent that we want to explain what is observable

rather than there being an unambiguous truth in data. Data, or more

correctly, any set of observations of pattern and processes in nature, only

get their meaning when interpreted. Theory is what provides conceptual

and analytical tools to do that. Strangely, this is rarely an attitude delivered
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in most undergraduate (or even graduate) teaching in ecology. We

strongly advocate the fundamental role of theory not only in the loose

and perhaps trivial sense, but as it is formulated in mathematical terms.

This is becausemathematics provides us with themost powerful analytical

tools when things start becoming complicated (as in ecology!) and our

intuitive capacity no longer keeps up with that complexity. Also, and

perhaps most importantly, a strong theoretical and mathematical founda-

tion of our activities makes them useful when we are asked to solve,

e.g., conservation or management problems. Qualitative statements or

suggestions may be a good start, but can neither replace nor be as

operational as quantitative ones, albeit with perhaps disturbingly large

confidence limits.

In the following, we are going to transgress the data–theory border as

much as possible. That means we are going to be inspired by intriguing

patterns we can observe, and by data that have not been satisfactorily

explained. Likewise, it means that we are going to analyze old data in new

ways, as well as hopefully inspire others to collect the data that theory may

indicate are important or interesting. However, this is not a book on

applied mathematics or statistics – that is not our intention or within

reach of our competence. Instead, we will refer as much as possible to the

literature that does a better technical or more rigorous mathematical or

statistical job. Much of the data we use, or produce by simulations, are

time series of population abundance, density, or some index of it. Such

data do, of course, have obvious limitations; they are very ‘‘shallow’’ and are

often uninformative. The time series approach is therefore both simplistic

and also challenging. Much of the information about population change

does indeed come in the form of time series so we do need the tools to

analyze them. Time series data are also very inspiring for anyone inter-

ested in the demography–environment interaction, i.e., how environ-

mental fluctuations, however generated, affect the mean and the variance

of the population or community in question. They also force us to ask

what a reasonable population model should look like and to what extent

the ‘‘environment’’ should be included in the model or kept aside as

‘‘noise.’’ Finally, time series data, and the problems emerging from them,

are not confined only to the classic long-term data we recognize from the

textbooks (e.g., the Canada lynx – snowshoe hare system in North

America). In fact, most ecological research is done over time and what-

ever phenomenon one is interested in, be it the breeding biology of birds,

host plant selection in insects or life history of fish, there is always a

statistical problem of model selection and the handling of ‘‘noise,’’ or
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‘‘error’’ as it is called in the statistical literature. This takes our approach

beyond the classic time series domain into all ecology where there is

variation across time and space.

The interplay between theory and data becomes perhaps best illustrated

in the process of model selection (Hilborn and Mangel 1997; Burnham

and Andersson 1998). This goes beyond the standard practice of evaluat-

ing null and alternative hypotheses, often from a purely statistical rather

than biological point of view. Instead, we may (and should) formulate

biologically meaningful models (note the plural) and confront them with

the data. This procedure challenges us to keep one foot in each camp at all

times, and to think carefully about the biological problem at hand by

forcing us to formulate hypotheses as biological models. This approach

also becomes particularly intriguing when we are dealing with stochastic

processes and when we have to decide what should be regarded as ‘‘noise’’

and what should be included in the biological process. The next chapter

takes a closer look at that problem.

Suggested reading

This is a short list of suggested textbooks and general treatments of

theoretical population and community ecology, mathematics, and statis-

tics. Since we are covering neither all relevant theory nor all the analytical

tools frequently used at sufficient depth, we refer to the more extensive

treatments below. They can be used either as a preamble to the rest of this

book, or as references whenever needed.

Burnham, K. P. and Anderson, D.R. 1998. Model Selection and Inference: A Practical

Information-Theoretic Approach. New York: Springer-Verlag.

Caswell, H. 2001. Matrix Population Models, 2nd edn. Sunderland, Mass.: Sinauer.

Chatfield, C. 1999. The Analysis of Time Series: An Introduction, 5th edn. Boca Raton,

Fla.: Chapman & Hall.

Chiang, A. 1984. Fundamental Methods of Mathematical Economics. Singapore:

McGraw-Hill.

Edelstein-Keshet, L. 1988.MathematicalModels in Biology. NewYork: RandomHouse.

Hilborn, R. andMangel, M. 1997.The Ecological Detective. Princeton, N.J.: Princeton

University Press.

Roughgarden, J. 1998. Primer of Theoretical Ecology. New York: Pentice Hall.

Royama, T. 1992. Analytical Population Dynamics. New York: Chapman and Hall.
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2 . Population renewal

Population renewal is about how births and deaths of individuals are

translated into population level dynamics. Here, we are reviewing some

basic concepts and models of population renewal, disregarding both

spatial processes (immigration and emigration) as well as interactions

with other populations. Those extensions will be addressed in subsequent

chapters. We are also briefly reviewing some statistical building blocks

necessary for understanding population dynamics as a stochastic process

and not only a deterministic route to persistence or extinction. This

includes primarily the time series approach to population dynamics. We

conclude this chapter by highlighting some very important and disturbing

problems when confronting models with data (and the reverse), especially

when trying to disentangle the demographic skeleton from ‘‘noise.’’

There is really nothing more to population ecology than births and

deaths. If the number of individuals born exceeds the number that dies,

the population size increases; should deaths exceed births, the population

size decreases. If that simple, how is it so difficult to predict the population

size in the future, and to determine what limits – or even regulates – the

distribution and abundance of organisms in natural systems? We could

argue that it is because the models we inevitably need to perform the

above exercises are not good enough. One could also say that the task is

difficult because it is not so easy to measure things accurately in nature. It

is even problematic to determine what a population really is. One

common argument is also that there are so many factors influencing the

number of births and deaths, i.e., the problem is so complex, that it will be

impossible to solve.

All of the above is probably true, one way or another. In this chapter,

we are going to have a closer look at the problem of understanding

population renewal. We certainly agree that one of the challenges is to

reduce measurement error of, for example, population size estimates.

This is true for both the actual counting of individuals (or biomass, or

some other relevant measure of population size), and the determination of



what constitutes the population in question. The latter involves both

relevant time scales over which the population process is measured, and

the spatial delimitation. This issue is discussed in an intriguing and

important note by Berryman (2002). Our concern in this chapter will,

however, primarily be the model formulation problem. If we understand

the problem, then we are able to formulate a useful model. This is, of

course, not to say that this solves it all, but it would give us considerable

mileage. Towards the end of this chapter, we are going to address an

important theoretical problem that relates to this issue. How to move

from the understanding of individual behaviors and performances to their

manifestation at the population level, and how (if ever) we can under-

stand the reverse process. That is, whether we can infer from population

level data, e.g., a time series of abundance, what is happening beneath the

surface in terms of births and deaths. Before doing that, we are going to

prepare ourselves with the basic building blocks and tools for making

models of the population renewal process.

Population growth rate

To begin with, we shall review some of the fundamental population

growth processes. There is a rich literature that treats this issue in detail

and at depth (e.g., May 1975; Emlen 1984; Edelstein-Keshet 1988;

Yodzis 1989; Gotelli 1995; Hastings 1997; Roughgarden 1998). Two

very useful accounts are Royama (1992) and Caswell (2001), dealing

much with models and data, and structured populations, respectively.

What is said in the following sections here is dealt with excellently by

those two sources.

r, R and l
Recall the basic renewal process outline in Chapter 1 (eq. 1.1)

Nðt þ 1Þ ¼ NðtÞð1þ bþ i� d � eÞ; (2:1)

where b and d are per capita birth and death rates, respectively, and i and e

the per capita immigration and emigration rates, respectively. For illus-

trative purposes, let us omit immigration and emigration from the popu-

lation process. We then have

Nðt þ 1Þ ¼ NðtÞð1þ b� dÞ: (2:2)

10 . Population renewal



If b� d is equal to 0, i.e., births, b, equals deaths, d, then N(tþ 1)¼N(t).

That is, the population size does not change. The bracketed term in

eq. 2.2 is often referred to as the net growth rate of the population, R.

A simple reasoning hence says that if R< 1, the population declines; if

R¼ 1, the population remains the same (is stable); and if R> 1 the

population grows (Yodzis 1989; Royama 1992; Begon et al. 1996;

Gurney and Nisbet 1998). We prefer R to be the per capita growth rate

for the untransformed densities, and let R ” exp(r) in keeping with the

standard notation (e.g., the Ricker equation for population growth;

Begon et al. 1996; Hastings 1997). In time series analysis, R is often

used instead of r (p. 71).

Note that R is the growth rate per capita, i.e., the average individual

contribution to the population growth. If all individuals in the population

are identical, thenR is unambiguously related to fitness (it is in fact a direct

measure of fitness). If there is individual variation in the population, then

some individuals contribute with more births and fewer deaths, others do

the reverse. At an individual level, there are different net contributions to

next generations; hence, there are individual differences in fitness. Yet,

the population as a whole may increase (R> 1), decrease (R< 1), or stay

the same (R¼ 1). Even in a decreasing population, some individuals are

(possibly) going to do just fine. This is important to remember in the

discussion about source-sink dynamics (Chapters 8 and 10). Lucid

accounts of the fitness-population growth problem are found in Yodzis

(1989) and Roff (1992). In a temporally variable environment, fitness is

the long-term average growth rate (the geometric mean of the growth

rate). This means that, e.g., a population (strategy) that grows faster than

another population from one time step to the next does not necessarily

beat a temporarily slower growing one.

Structured populations

The population growth rate definitions given in the preceding section

implicitly assume that all individuals in the population can be viewed as

one big ensemble of identical individuals. That is, of course, rarely the

case. TheN(tþ 1)¼RN(t) process is, however, often a useful proxy for

what is actually happening, and is often the starting point when analyz-

ing, e.g., time series data with poor or no resolution of population

composition. Leslie (1945, 1948) pioneered the theory development

for populations with individuals that differ with respect to fecundity and

Population growth rate . 11



survival depending on their age. This is the case in most mammals, while

in animals with indeterminate growth, such as fish, snakes, and lizards,

the fecundity tends to be related to the size of the females (Roff 1992).

The corresponding problem with more general stage-structured popu-

lations was later dealt with by, e.g., Lefkovitch (1965) and others (see

Caswell 2001). An example of a stage-structured population model is

given for the flour beetle Tribolium in Box 6.2 (p. 145). As a prepara-

tion for more detailed extensions of those classic models (Chapter 6),

and to complete the understanding of population growth rate, we shall

here very briefly recall the simple age-structured model. Caswell (2001)

is otherwise an excellent source for a full and clear treatment of the

problem.

Assuming that a population can be divided into x age classes, each with

their specific net fecundity (mx) and survival (lx, fraction in age class x

surviving to age class xþ 1), and letting the number of individuals in each

age class, nx, be a column vector, then we have

n1ðt þ 1Þ
n2ðt þ 1Þ

..

.

nxðt þ 1Þ

2
6664

3
7775 ¼

m1 m2 . . . mx

l1 0 . . . 0

0 l2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . 0

2
666664

3
777775

n1ðtÞ
n2ðtÞ
..
.

nxðtÞ

2
6664

3
7775: (2:3)

This is the projection of the number of individuals in each age class at time t

to time tþ 1. The x by x matrix with all the age-specific fecundities and

survival rates is the transition matrix, L, for the population. Whether the

population is going to increase, decrease or remain the same will hence be

determined by the properties of L (i.e., the values of lx and mx). Particular

properties of L are its eigenvalues, i.e., to what extent L causes elements in

the vector [n1(t), n2(t), . . . , nx(t)] to change. That is, whether the popula-

tion is going to increase or decrease (and whether the age structure is going

to change). An x by xmatrix has x eigenvalues, but here it is the dominant

eigenvalue, ldom, we are interested in. Should the magnitude of the

eigenvalue, ldom, be greater than 1, then the population grows. Should

|ldom| be less than 1, then the population decreases. If the transitionmatrix

is iterated, the population growth will eventually stabilize (to the expo-

nential increase or decrease). l is then the slope of the line of the log

population density plotted against time. Hence, precisely like R, l tells us

the fate of the population. It is therefore sometimes customary to useR and

l interchangeably.
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Density dependence or not?

There is clearly only one possibility for a population to persist under the

above scenarios, and that is whenR is strictly equal to 1. ShouldR deviate

from unity, then the population either eventually explodes to infinity or

becomes extinct. Themechanism traditionally invoked to account for the

fact that populations tend to growwhen small, but decrease when large, is

called negative density-dependent feedback. Should such a mechanism

operate, then, by definition, the population would be regulated. At den-

sities above some critical level, R< 1, but below it R> 1. Also in a

stochastic world (see below), we would then have a population with a

tendency to return to some steady state. This problem was intensively

debated in the 1950s and 1960s. The debate has had a recent revival (den

Boer and Reddingius 1996; Murray 1999; Turchin 1999; White 2001).

As is often the case in animated debates, the reason for much of the

disagreement lies in the very definition of some key concepts. We shall

not scrutinize every detail of that debate here, but we will underscore a

few elementary components.

Per capita versus population growth rate

As we saw in the preceding sections, population growth, RN(t), will

necessarily be density-dependent if R is. Let us reformulate eq. 2.2 by

making births and deaths explicit functions of population density,N. The

birth rate is

b ¼ bmax � �N ; (2:4a)

the death rate is

d ¼ dmin þ �N ; (2:4b)

where bmax is maximum per capita birth rate, � is the rate by which per

capita births are decreasing with increasing density, dmin is the minimum

per capita death rate, and � is the rate by which per capita death rate

increases with increasing population density. When combined, we have

(Emlen 1984)

Nðt þ 1Þ ¼ NðtÞ 1þ bmax � �NðtÞ½ � � dmin þ �NðtÞ½ �f g: (2:5)

At closer inspection, we note that the growth function (2.5) is a second-

degree polynomial in N. (This is rather easily seen by re-arranging the

right-hand side of eq. 2.5; (1þ bmax� �min)N(t)� (�þ � )N(t)2.) That is,
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eq. 2.5 is a humped function (fig. 2.1A), whereas the births and deaths are

linearly decreasing and increasing functions of N, respectively (fig. 2.1B).

One can of course imagine any shape of the per capita birth and death rate

functions. In fact, both can increase (or decrease) with density. For exam-

ple, if they both increase, and bmax> dmin, but births do that more slowly

than deaths, then there will be a density that provides an equilibrium

population size, and we still have the ‘‘regulation’’ scenario (figs. 2.1C,D).
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Fig. 2.1. (A) Population growth, N(tþ 1)¼RN(t), as a function of population

density, N(t). The solid curve shows population growth for a perfectly ‘‘symmetric’’

population, i.e., when the maximum of the population size is reached at half of the

equilibrium population density. The equilibrium population size (carrying capacity)

is determined by the intersection of the growth curve and the lineN(tþ 1)¼N(t), at

equilibrium R¼ 1. The steepness of the tangent line a, eq. 2.7, defines the stability of

the equilibrium. The steeper the negative slope at the equilibrium, the less stable is

the population. (B) Per capita birth rate and per capita death rate as a function of

population density. The population is at equilibrium when the two lines intersect

(bmax¼ 3, dmin¼ 1, �¼ �¼ 1.5)(C), (D) Increasing responses of per capita birth and

death rates to density. (C) Population growth, N(tþ 1)¼RN(t), as a function of

population density, N(t). (D) Per capita birth and death rates (bmax¼ 2, dmin¼ 1,

�¼�2, �¼ 4).
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One can easily experiment with various shapes and forms of the responses

of per capita births and deaths to changes in population size. It will soon

be discovered that many of the standard solutions of equilibrium popula-

tion density (‘‘carrying capacity’’) and population densities at which

population growth is at maximumwill all vary depending on the assump-

tions made about those relationships. For example, solving eq. 2.5 for the

equilibrium population density N �, i.e., when N(tþ 1)¼N(t), results in

N� ¼ bmax � dmin

� þ �
: (2:6)

This leads us to a useful concept in single-population dynamics, namely

the renewal function. Sometimes it goes under the name of the ‘‘recruit-

ment’’ function, a concept borrowed from fisheries biology (Ricker

1954; Beverton and Holt 1957; Hilborn andWalters 1992). The renewal

function, F(N), is simply a plot of eq. 2.5, or some other appropriate

function for population growth. If there is no density dependence, i.e.,

R is a constant, then we would have a straight line through the origin in

the N(t þ 1) versus N(t) plot. The straight line with slope ¼ 1 in this plot

is the equilibrium line, R ¼ 1 (fig. 2.1A,C). Wherever the renewal func-

tion intersects that line, there is an equilibrium [N(t þ 1)¼N(t)¼N�].
Typically, the renewal function only intersects at one point, i.e., there is

only one equilibrium of the system.

The slope of the renewal function at that intersection determines the

stability properties of the equilibrium (Edelstein-Keshet 1988; Yodzis

1989). In more technical terms, the derivative of the renewal function, F,

with regard to the population size, N, at the equilibrium population size

a ¼ @FðNÞ
@N

����
N ¼ N�

(2:7)

is the slope evaluated at equilibrium (the intersection point). If the slope,

a, is negative (positive) the dynamics are said to be overcompensatory

(undercompensatory). If it is zero, we have perfect compensation

(fig. 2.1A,C).

The density-dependent feedback described above is strictly speaking a

lagged effect (Moran 1950a). It is the density at time t that affects the

population density in time tþ 1. This is the inevitable formulation in

discrete time models when we want to represent direct density depen-

dence. However, if we recall the formulation in eq. 2.5, it actually

describes the effect of current density on the per capita births and deaths.
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It is not unusual that density effects may have even longer lags. For

example, several authors (Stenseth et al. 1998a; Stenseth 1999; Turchin

et al. 1999; Bjørnstad and Bascompte 2001; Turchin and Batzli 2001) have

shown nicely how population interactions, e.g., resource–consumer

interactions, introduce longer time lags into the resource population

dynamics. This means that population density at time tþ 1 now becomes

a function of the density at time t and time steps further back in time

(t� k; k� 1). A similar effect is also potentially the result in an age-

structured population. For example, the total reproductive output in

one year will be contingent on the reproduction and survival of the

different age classes many time steps back in time. This is not to say that

it is necessarily easy to correctly identify such time lags from data on

population density. Both environmental and demographic stochasticity

(p. 214) and the demography of the particular population may mask the

actual time lags in the system. In Chapter 6, we are going to have a closer

look at the dynamics of structured populations.

Population dynamics: the first step

Themapping of the population density (or size) from one time to another

is determined by the renewal function. Hence, we have

Nðt þ 1Þ¼NðtÞ f NðtÞ½ �: (2:8)

As indicated in the previous section, the function f may take various

nonlinear forms. Some often used examples of such functions are given in

Box. 2.1.Wewill here exemplify the dynamics predicted by one of them,

the Ricker model (Ricker 1954)

f NðtÞ½ � ¼ exp r 1�NðtÞ=K½ �f g: (2:9)

Two parameters determine the dynamics: r and K (fig. 2.2); r is respon-

sible for the dynamical properties of population fluctuations, while K is a

scaling parameter. We recognize r from preceding sections as the per

capita population growth rate [recall: R ” exp(r)]. This growth rate is

discounted, as the population density increases, by the term 1�N(t)/K,

the strength of the density dependence being inversely related to the

parameter K. It is easy to see that the function f is equal to 1 when N(t) is

equal to K. That is, the value of K determines when there is no change in

population density from time t to tþ 1. The parameter K often goes

under the name ‘‘carrying capacity.’’ This implies that the environment
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has a certain capacity (related to K ) to hold an equilibrium density of

individuals of the population, which is independent of the growth rate.

Despite the formal correctness of that interpretation, it may be mislead-

ing. For example, looking at the equilibrium of the population renewal

process, we see that, in this model, carrying capacity is not independent of

Box 2.1 . Eight nonlinear population models

The following discrete time population models are frequently used in

the literature (Cohen 1995; Kaitala and Ranta 1996). Their dynamics

are slightly different, e.g., to what extent they can produce over-

compensatory dynamics, but all share the common property of produc-

ing logistic growth.

Nðt þ 1Þ ¼ NðtÞ exp r 1�NðtÞ½ �f g (a)

Nðt þ 1Þ ¼ NðtÞ 1þ r 1�NðtÞ½ �f g (b)

Nðt þ 1Þ ¼ rNðtÞ
1þ exp �a 1�NðtÞ½ �f g (c)

Nðt þ 1Þ ¼ rNðtÞ
1þ aNðtÞ½ �b

(d)

Nðt þ 1Þ ¼ rNðtÞ
1þ aNðtÞb

(e)

Nðt þ 1Þ ¼ rNðtÞ if NðtÞ � C;
rNðtÞ1�b

�
(f )

(where C is a constant or threshold)

Nðt þ 1Þ ¼ rNðtÞð1þ r 1� exp �sNðtÞ½ �f g K �NðtÞ½ �Þ (g)

Nðt þ 1Þ ¼ rNðtÞ K þ L log NðtÞ½ � �NðtÞf g (h)

(a) Ricker, (b) Verhulst, (c) Pennycuick, (d) Hassell, (e) Maynard Smith–

Slatkin, (f ) Varley, (g) Austin-Brewer and (h) Malthus–Condocet–Mill.

Note that the parameters a, b, r, etc. may have slightly different interpreta-

tions in the different models.
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(maximum) per capita population growth rate.K is not a static property of

the environment, but a combination of innate fecundity (bmax), density-

independent mortality (dmin), and how sensitive births and deaths are to

changes in density (� and �).
Assume now that the population is at the equilibrium, defined by

N(tþ 1)¼N(t). Then, if we perturb the population away from that

point, several things can happen (May 1974, 1975, 1976). Following

eq. 2.9, the fate of the perturbation will depend on the value of r. If r is small

enough, the population will return to the equilibrium. If it is somewhat

larger, thepopulationwill start oscillating, andwhen r is big enough, erratic

fluctuations will be the result (fig. 2.2). In the former case, the equilibrium

point of the dynamics is (asymptotically) stable, whereas in the latter two

cases it is unstable. The stability property of a dynamics can be verified

analytically by linearizing the renewal function f at the equilibrium point
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Fig. 2.2. (A) Population equilibrium is stable. After a deviation from the equilibrium

level the population size returns back to the equilibrium level (r¼ 1.2, dotted line;

1.9, K¼ 1). In an unstable case, the population level may approach (B) a two-point

cycle (r¼ 2.1), (C) a four-point cycle (r¼ 2.6), and ultimately (D) a chaotic behavior

(r¼ 3.5). Chaos is characterized by the sensitivity to small deviations in the initial

population level. The two dynamics in (D) correspond to the N(1)¼ 0.1 (solid line)

and N(1)¼ 0.11 (dotted line).
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(Box 2.2) and recovering eq. 2.7. A way of illustrating the changes in

dynamics (local stability) as we change a dynamic parameter is by plotting

the population density against that parameter. Thus, we simply simulate,

e.g., eq. 2.9 for different values of r, allow for a large number of transient

Box 2.2 . Linearization and local stability

Nonlinear functions can be approximated by linearization. Consider,

e.g., the following population model with renewal function F

Nðt þ 1Þ ¼ F NðtÞ½ �:
The function f may be, for example, the Ricker model: F(N )¼
N exp[r(1�N/K )]. We are interested in the behavior of the model

near equilibrium, which will be the point around which the function is

linearized. Call this equilibrium N�. We then have (e.g., Edelstein-

Keshet 1988)

Nðt þ 1Þ � N� þ @FðN�Þ
@N

NðtÞ �N�½ � þ h:o:t:;

where ‘‘h.o.t.’’ means higher order terms (second and higher order

derivatives). Defining X(t)¼N(t)�N� we have, cf. eq. 2.6

Xðt þ 1Þ ¼ @FðN�Þ
@N

XðtÞ:

If the equilibrium is to be stable, the perturbation away from it should

diminish, i.e., X becomes smaller. This happens if the absolute value of

the above partial derivative is less than 1. This partial derivative is the

slope of the renewal function at the equilibrium point.

Consider next the Ricker equation, eq. 2.9 as an example.

Differentiating eq. 2.9with respect toN, and lettingN¼K¼ N�, we have

@FðN�Þ
@N

¼ 1� r;

where hence 1� r is the growth rate of the perturbation. The

only parameter affecting the dynamics (bifurcation parameter) in

the Ricker model is r. We conclude that the population dynamics is

stable when r< 2, since for these values jr� 1j< 1. We see also that,

when r¼ 1, then the slope¼ 0 and we have perfect compensation.

If r> 1, the dynamics are overcompensatory, when r< 1 they are

undercompensatory.
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time steps, and read off the population density. A figure thus produced is

called a bifurcation diagram, and the parameter responsible for the change

in dynamics a bifurcation parameter (Box 2.3). The densities where the

population ends up after perturbations are called attractors. An attractor

may be represented by one point, or it may be a set of points (e.g., two

points in a period-two cycle). When the system is chaotic, the attractor is

‘‘strange’’ (Yodzis 1989). Chaos is a complicated form of dynamics and has

gained a lot of interest among ecologists. One of its promising attractions

has probably been its potential to explain the erratic and irregular dynamics

oftenobserved in natural systems.Theproblem is, of course, that no system

in nature is deterministic, but stochastic, and purely deterministic tools

therefore have obvious limitations.

Box 2.3 . Bifurcation diagram

A bifurcation diagram can be used to summarize a large amount of

information about the dynamics of a single-population model in a very

compact form. The bifurcation parameter(s) varies among models. As

seen in Box 2.2, r is such a parameter in the Ricker model. For each

value of the bifurcation parameter, the dynamics of the model are

simulated for a few hundred generations to remove the initial transient

in order to get a grasp of the final attractor that characterizes the

dynamic behavior of the model for this particular value of the bifurca-

tion parameter. Then, a sufficiently large number (usually 50–100, or

even more) of the points in the attractor are plotted against the

bifurcation parameter. The simulations can be initiated from random

or fixed initial values, depending on the purpose of the analysis.

We shall illustrate the bifurcation diagram by using the Ricker

model. Equation (2.9) is simulated for a wide range of r values (1.5,

1.51, 1.52, . . . , 4.49, 4.5). We used the version of the Ricker model

presented in Box. 2.1, i.e., normalized with K¼ 1). The bifurcation

diagram confirms the well-known facts that for r< 2 the dynamics are

represented by one value, N¼ 1. At r¼ 2 a bifurcation occurs, at

which the attractor of one point will turn into an attractor of two

points. In the range 2< r< 2.56, the dynamics are periodic such that

the population sizes jump between two points that vary with r. Then,

new bifurcations occur, and the attractors become four-point, eight-

point, etc. cycles. This is called period doubling cascade. Finally, at

r> 2.692, the population dynamics become chaotic. Note that the

chaotic area includes periodic windows (fig. B1).
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Population dynamics with delayed density dependence

The preceding section dealt with basically very simple processes – the

mapping of N(t) to N(t+1). Such models have obvious limitations. All

individuals of the population are lumped into one state variable, and the

process has no memory. That is, the manifestation at time tþ 1 is assumed

to be unaffected by events and processes at time t� 1 or further back. A

number of factors can, however, have a lagged effect on the current

population density, including age structure, biotic interactions, and tem-

porally structured environmental variation (Beckerman et al. 2001; Turchin

and Batzli 2001; see also below). Thus, instead of the simple population

models introduced earlier we may want to use models of the form

Nðt þ 1Þ ¼ NðtÞf NðtÞ;Nðt � 1Þ½ �; (2:10)

where the per capita population growth rate is determined not only by

the current population density N(t), but also by the population density
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Fig. B1. Bifurcation diagram of the Ricker model, eq. (2.8). The points

corresponding each value of the growth rate, r, represents the attractors

of the resulting dynamics.

Bifurcation diagrams can be useful when analyzing simple determi-

nistic models, but useless for stochastic models where different attrac-

tors are virtually indistinguishable.
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one time step or more steps earlier (Box 2.4). Obviously, the relative

weights of these two (or more) densities need to be determined. An

example of such a model is

f NðtÞ;Nðt � 1Þ½ � ¼ exp r 1þ a1NðtÞ þ a2Nðt � 1Þ½ �f g; (2:11)

Box 2.4 . Local stability of a population model with delayed density

dependence

Consider the following population renewal model with delayed den-

sity dependence

Nðt þ 1Þ ¼ NðtÞf NðtÞ;Nðt � 1Þ½ �:

Adopting the notation M(t)¼N(t� 1), the model can be rewritten as

Nðt þ 1Þ ¼ NðtÞf NðtÞ;MðtÞ½ �
Mðt þ 1Þ ¼ NðtÞ;

with the time index shifted in the last equation. This is a system of two

linear equations. The equilibrium condition of the system is

f ðN�;M�Þ ¼ 1

M� ¼ N�:

Perturbations away from the equilibrium will increase or decrease

depending on the joint change of the two equations around equili-

brium. This will be determined by the partial derivatives of the two

equations with respect to N and M (evaluated at equilibrium), for-

mulated as the Jacobian matrix (e.g., Edelstein-Keshet 1988)

J ¼
1þN� @f ðN�; M�Þ

@N N� @f ðN�; M�Þ
@M

1 0

2
4

3
5:

If the eigenvalues of matrix J are both less than 1, then the equilibrium

is stable. When the one or both eigenvalues exceed 1, then the system

will not return to equilibrium, but instead have cyclic dynamics. The

length of the cycle depends on where the largest eigenvalue (which can

be a complex number) crosses the unit circle in the complex plane.

The length of the cycle is determined by the parameters of the model

(Box 2.5).
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where a1 and a2 are the weights for the direct and delayed density

dependence, respectively. Putting a2¼ 0 and defining a1 ¼�1/K, we

have recovered the Ricker model (eq. 2.9). We shall make frequent use

of this model and will refer to eq. 2.11 as the delayed Ricker equation.

There are certain advantages when using models with delayed density

dependence. Whereas the Ricker model, and other simple models in

Box 2.1, yield stable solutions and period-doubling cascades with 2n -point

cycles, n¼ 1, 2, 3, . . . , and finally chaotic solutions (May 1974, 1975,

1976), the models with delayed density dependence can provide us

with periodic solutions with a continuum of period lengths (Box 2.5).

Thus, as we will see, it will be more comfortable to address population

dynamics with fluctuation of 3, 6, and 10 years. These period lengths

correspond roughly to the population dynamics of small rodents,

game birds, and Canada lynx and snowshoe hares, respectively (e.g.,

Chapters 4, 6, 8).

Box 2.5 . Periodic solutions under density dependence

Consider the population dynamics model and its linear approximation

presented in Box 2.4. Assume that the eigenvalues are complex as

follows

l1;2 ¼ k� li;

where k and l are the real and imaginary parts of the eigenvalues.When

the magnitude of the eigenvalues is approximately 1, that is |l1,2|� 1,

the cycles in the dynamics are determined by the period length, given

as

2p=�;

where

� ¼ arctanðl=kÞ for k; l > 0 and

� ¼ pþ arctanðl=kÞ for k5 0; l > 0:

There are two different types of practical uses of this approach in

population modeling. Assume that |l1,2|< 1, but close to the unit

circle. Then the population dynamics are stable, however, such that

the approach to the equilibrium is by damped oscillations. The period

length of the dampened oscillations is determined as presented above.

Second, assume that |l1,2|> 1, but close to the unit circle in the
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complex plane. Now, the population dynamics are unstable, fluctuat-

ing with oscillations characterized above.

Consider next the delayed Ricker model, eq. 2.11, with delayed

density dependence, defined as follows

Nðt þ 1Þ ¼ NðtÞ exp r 1þ a1NðtÞ þ a2Nðt � 1Þ½ �f g;
which can be written in the form

Nðt þ 1Þ ¼ NðtÞ exp r 1þ a1NðtÞ þ a2MðtÞ½ �f g;
Mðt þ 1Þ ¼ NðtÞ:

At a nontrivial (positive) equilibrium, we have

exp½rð1þ a1N
� þ a2M

�Þ� ¼ 1

N� ¼ M� ¼ � 1

a1 þ a2
:

Thus, we have the following condition for a positive equilibrium

a1 þ a25 0:

The Jacobian of the linearized equation becomes

J ¼ 1� ra1
a1þa2

� ra
2

a1þa
2

1 0

� �
;

from which we get the eigenvalue equation

lI� J ¼ l� ð1� ra1
a1þa2

Þ ra2
a1þa2

�1 l

� �
¼ 0;

where I is the identity matrix, and

l2 � l 1� ra1

a1 þ a2

� �
þ ra2

a1 þ a2
¼ 0:

Thus, we have two eigenvalues, l1 and l2. We know that

l1l2 ¼
ra2

a1 þ a2
; and l1 þ l2 ¼ 1� ra1

a1 þ a2

� �
:

Recalling the notation l1,2¼ k� li, we get

k ¼ 1� ra1

a1 þ a2

� ��
2:
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Population size versus density

The ‘‘state’’ of a population is often expressed as its density or its size. We

often use those two measures interchangeably although we really should

not. The sometimes confused debate about density dependence arises

from the lack of distinction between the two. By its very definition,

density dependence is about the number of individuals per unit area (or

volume). Area is used here as a proxy for resources available to the

organism in question. If we fix the area and the amount of resources

contained within it, then, as we increase the number of individuals in that
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Fig. B2.The length of the cycle period of the delayed Ricker model, eq. 2.11, as a

function of r and a1, assuming that |l1,2|¼ 1.01; a2¼�0.2.

Fixing the magnitude |l1,2|, we can solve l from equation

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lj j2�k2

q
:

Assume that we aim at study dynamics characterized by |l1,2|¼ 1

and a cycle length of 8 years. Now, we have a condition 8¼ 2p/�,
yielding �¼ p/4. Here we have k ¼ l ¼ 1

ffiffiffi
2

p
. Recalling that k and l

depend on three parameters, we note that the parameter choice is

nonunique. The dependence of the length of the cycle period on

parameter r and a1 is given in fig. B2. Here, magnitudes of the

eigenvalue and parameter a2 are fixed first (|l1,2|¼ 1.01; a2¼�0.2).

Then, a1 and the period length will be calculated for different values of

the growth rate.
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area, every one gets a smaller and smaller share of the resources (assuming

scramble competition). As a result, we assume that per capita births

decrease and/or per capita deaths increase because of resource depriva-

tion. As a theoretical construct, this is often just fine. Sometimes, how-

ever, one has to be careful. Let N be the number of individuals within an

area A, containing the amount of resources R. The (biologically mean-

ingful) density (D) of that population would then be D¼N/R/A¼
N/(RA). Hence, if we decrease the area, keeping the amount of resources

and the number of individuals constant, then the density would increase.

This distinction between the number of individuals (population size), the

amount of resources available, and the area inhabited by the population

becomes critical when, for example, habitat loss (Chapter 8) or small

populations in conservation biology (Chapter 9) is a concern.

Failure to recognize this potential problem and the distinction between

per capita and population rates will continue to inject confusion in the

‘‘population regulation’’ debate. A third, more statistical, problem will be

dealt with in the time series section (p. 31) in this chapter.

Stochasticity

The chapter has so far dealt entirely with deterministic processes. They

are the backbone of all ecological and evolutionary theory. The degree

to which chance events – stochastic processes – influence the dynamics

varies from system to system and from component to component of the

population and community processes. The way stochasticity is handled

in ecological modeling also varies considerably. For example, one

can attempt to make every key process an explicit stochastic variable,

e.g., the births and deaths in most models of demographic stochasticity

(e.g., Gabriel and Bürger 1992; Burgman et al. 1993; Lande 1993), or by

combining demographic and environmental stochasticity as in Ripa and

Lundberg (2000). No matter how it is modeled, there is more to it

than just making a deterministic signal fuzzier or making parameters,

variables or equilibria averages of a statistical distribution. Moreover,

we cannot understand data unless we understand something about

stochastic processes. Covering all relevant theory of stochastic processes

is, however, out of the scope of this book and we refer the reader to

excellent reviews and textbooks (e.g., Royama 1992; Hilborn and

Mangel 1997; Jordan and Smith 1997). Therefore, the remainder of

this section only deals with a limited set of problems particularly relevant

to the chapters to come.
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Environmental stochasticity

The environment in which a population lives is never constant. The

physical and biotic environment varies from one time to another and

from one place to another one. Here, we shall deal with temporal

variability and will leave spatial variability to later parts of the book.

Traditionally, environmental variability has been treated as ‘‘noise,’’ i.e.,

a disturbance of some kind that masks or disrupts the ‘‘signal’’ we are

actually after. The signal-noise terminology reveals the engineering roots

of themethods used to analyze the problems. Environmental variability is,

however, more than just noise (although we are frequently using that

term for convenience).

The variability a population experiences occurs at many temporal

scales, from very short-term (e.g., day-to-day) variation to changes over

decades or more. It has been argued that in fact all time scales ought to be

equally important for the long-term dynamics of a population (Halley

1995). A stochastic variable with such properties is said to have a 1/f

spectrum. Notation f here refers to the frequency of a periodic function.

Box 2.6 explains the spectrum inmore detail and fig. 2.3 illustrates spectra

of some example time series. Of those, one (fig. 2.3(E)) is of special

character, because this dynamics also closely corresponds to the 1/f

process. In more general terms, we let power be a function of 1/f �,

where the exponent � in a ln(power) versus ln(frequency) graph is the

slope of the function.

It is often assumed, and sometimes shown, that environmental varia-

bility is dominated by low-frequency variation (Steel 1985; Pimm and

Redfearn 1988; Halley 1995). Surely there is day-to-day and year-to-year

variation in relevant environmental variables (e.g., temperature), but the

dominating fluctuations, and also presumably the biologically most

important ones occur at longer time scales. It is often practical to let the

environmental noise have a temporal structure of its own (Kaitala et al.

1997a, b; Ripa et al. 1998). One simple, yet incomplete way of imple-

menting such variability is to let the environmental variable bemodeled as

(Ripa and Lundberg 1996; Ripa and Heino 1999)

!ðt þ 1Þ ¼ �!ðtÞ þ c "ðtÞ ; (2:12)

where ! is the stochastic variable in question, � is the autocorrelation

coefficient and " is a series of normal random deviates with zero mean and

unit variance, e.g., normally distributed white noise. Equation 2.12 is

a first-order autoregressive process, i.e., the value of the variable ! at
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a given time is linearly related to the value of ! in the previous time step.

The parameter � determines how successive values of ! are related, i.e.,

sets the ‘‘color’’ of the ! process. If �> 0 then the series is positively

autocorrelated (red), if �< 0, then it is negatively autocorrelated (blue),

and if �¼ 0, then there is no autocorrelation and the ! process has

Box 2.6 . Spectral analysis

Spectral analysis of a time series is the decomposition of the series into

its frequency components. The analogy with visible light makes an

intuitive comparison (remembering also that wavelength and frequency

are inversely related). White light is a mixture of all colors, each color

representing a particular wavelength. Blue, for example, has a rela-

tively short wavelength (high frequency), whereas red has a long

wavelength (low frequency). The environmental variability or a time

series from natural populations is usually a mixture of many frequen-

cies. If low frequencies dominate the process, it is said to be ‘‘red’’ and

if it is dominated by short wavelengths, it is ‘‘blue.’’ If there is a strong

cyclic component in the time series, a certain wavelength, correspond-

ing to the cycle period, is dominating.

A discrete time series x(t), t¼ 0, 1, 2, . . . , n� 1 (n is the length of

the series), has the periodogram Px, which serves as an estimate of

the power spectrum (wavelength composition) of the underlying

stochastic process

Pxð f Þ ¼
1

n
Xð f Þj j2;

where f is frequency, X( f ) is the discrete Fourier transform of the time

series, and j . . . j2 indicates the squared modulus of the transform. The

periodogram, or power spectrum, indicates howmuch each frequency

contributes to the variance of the time series. Note that a periodogram

is calculated from a sample time series and a power spectrum is a

statistical property of a stochastic process. The power spectrum

describes the expected periodogram, but any single periodogram

usually deviates substantially from the power spectrum, irrespective

of the length of the time series. The noisiness of periodograms is the

reason why they are often smoothed in some way to give a better

estimate of the underlying power spectrum. In the ecological litera-

ture, the terms power spectrum and periodogram are oftenmixed. See,

e.g., Priestly (1981) and Chatfield (1999) for further details.
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collapsed back to uncorrelated white noise (fig. 2.3(C)–(E), (c)–(e)). The

parameter c ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
determines the amplitude of the ! process in

such a way that the variance of it is independent of the values of �. If �¼ 0

(i.e., c¼ s) then s is the standard deviation of the white noise process. That

the color of the noise has profound consequences on noise-influenced

population renewal has been discussed, e.g., by Kaitala et al. (1997a,b),

Ripa et al. (1998), Heino et al. (2000), and will be taken up in various

parts of this book.

How to implement stochasticity

One of the steps in building stochastic population models is, as we have

seen, to decide on the properties of the stochastic process. Another is to let

the stochastic process be a part of the population system in question. The

problem at hand is to define exactly how this is done. Here, a few

examples are given. One way of incorporating environmental stochasti-

city is to assume that a critical demographic parameter in a particular

population model is a random deviate. For example, in the Ricker

equation, we can let the equilibrium population density K be such a

deviate

Nðt þ 1Þ ¼ NðtÞexp r 1�NðtÞ=KðtÞ½ �f g; (2:13)

with N and r as defined earlier. The parameter K(t) is a time-dependent

stochastic variable. Using the Ricker equation again, we can also let

stochasticity enter as additive noise

Nðt þ 1Þ ¼ NðtÞ exp r 1�NðtÞ=K½ �f g þ �"ðt þ 1Þð Þ; (2:14)

where " is a random deviate with zero mean and variance �.
There are numerous ways of implementing stochasticity into popula-

tion dynamics (e.g., Gabriel and Bürger 1992; Ludwig 1996; Halley and

Iwasa 1998; Ripa and Lundberg 2000). Often the problem at hand, and

the model used, will determine how that is done. Throughout this book

we are mostly using the following general form

Xðt þ 1Þ ¼ F XðtÞ;Xðt � 1Þ;Xðt � 2Þ; . . .½ ��ðtÞ : (2:15)

Here F is the population renewal function, as discussed earlier in this

chapter, possibly including one or more lagged terms of density depen-

dence. For the stochastic processes influencing the renewal we have the

external noise, �(t), which can be white or colored noise within known
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Fig. 2.3. Periodograms (power spectra; calculated for time series of length 210) of

some example stochastic processes. To the left of each spectrum is the actual time

series (only 50 time steps displayed). (A)–(a) Period-four cycle created by the Ricker

model, eq. 2.9, r ¼ 2.6, K ¼ 1. (B)–(b) Period-ten dynamics created by the

delayed Ricker model eq. 2.11. r¼ 0.4, a1¼ 0.12, a2¼�0.2 (Box 2.5).
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boundaries (often so that it is drawn from the interval [1�w, 1þw],

where 0<w< 1). The impact of stochastic processes, like eq. 2.15, on

dynamics of populations will be discussed further in Chapter 4.

Time series

After having discussed deterministic and stochastic models, we now

briefly turn our attention to a more data-driven analysis of population

renewal. A lot of data on population dynamics come in the form of time

series of counts or derived indices of population abundance. The resolu-

tion of those data, the precision and accuracy of the data, and the extent to

which the data are accompanied by additional information about the

biology of the organism in question naturally vary considerably. Here,

we are not going to dwell on all the practical problems of gathering

population data. Instead, this and the following section are devoted to

the ubiquitous and important problem of relating pattern to processes

(and the reverse). The aim of much time series analysis in ecology is not

only to describe patterns of population dynamics, but also to understand

which, primarily biological, processes are responsible for the observed

patterns. Apart from that, a mere description of data might be relevant for

generating hypotheses about processes. One classic example is the regular

changes in abundance detected in the fur trade data from the Hudson Bay

Company in Canada (Elton 1924). The very existence of apparent reg-

ularity often causes ecologists to be on red alert: regular fluctuations

(cycles!) must require very special explanations; or do they?

The time series we have to hand in ecology are inevitably stochastic

due to the influence of stochastic environmental factors and to measure-

ment error. Disentangling those two sources of variation is not a trivial

task (e.g., Quinn and Deriso 1999). Here, we will just acknowledge the

fact that they both exist and that the problem itself is of great importance

Caption for fig. 2.3. (cont.)

An autoregressive process, eq. 2.12, was used to produce the white time series in

(C)–(c), �¼ 0; blue time series (D)–(d), �¼�0.8; and red time series (E)–(e),

�¼ 0.8. A white time series has an entirely flat spectrum whereas a red-shifted one is

left-skewed (towards low frequencies) and a blue-shifted is right-skewed (towards

high frequencies). A cyclic series has a peak indicating the dominating frequency of

the cycle (a), (b). A series can also have several peaks, albeit weak, as illustrated by the

time series of the North Atlantic Oscillation (NAO) index, a proxy for primarily

winter weather in Northern Europe (F)–(f ). In (F) only 1901–1950 is displayed, but

(f ) is calculated for the period 1866–1999.
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for understanding the underlying processes. There is a very rich literature

on time series analysis that is also relevant to ecology and evolutionary

biology (e.g., Box et al. 1994; Powell and Steele 1995; Burnham and

Anderson 1998; Chatfield 1999). We strongly encourage the reader to

consult that literature for full derivations and details. What follows here is

hopefully a more self-contained account for the remainder of this book.

Characterizing time series

We are by and large going to make use of three basic descriptions of

ecological time series. The first is spectral analysis mentioned earlier

(Box 2.6). Spectral analysis is done in the frequency domain (Priestly 1981;

Chatfield 1999), i.e., the focus is on the wavelength composition of the time

series. In the following, focus will be on inference from the autocorrelation

and partial autocorrelation functions, i.e., analysis in the time domain.

The data to be analyzed may come in many different forms. The time

interval between measurements may or may not match the relevant time

scale of the organism or the problem at hand. The data may also have

missing observations. The presence of a trend in time series (Box 4.2,

p. 71) is another classic worry and to date there is no foolproof way of

handling trends, especially not in the often short time series that ecology

offers. Trends are part of a more general problem, referred to as stationarity.

Virtually all time series techniques (at least the ones usually applicable to

ecological time series) hinge on the fact that the series is stationary. That is,

the mean and the variance of the series do not change over time [and a

couple more details, see Chatfield (1999) for an accessible and detailed

account on this]. The stationarity of a series is also influenced by the time

interval of sampling relative to the process in question. No matter what the

data may look like, they should always be graphed. A plot of the time series

data always helps when deciding how to proceed. As a next step, it is often

advisable to transform the series, e.g., by using log-transformed data.

Transforming stabilizes the variance and tends to make the data normally

distributed. A special type of filtering (but far from the only one) is differenc-

ing as a means of removing trends. The original series {x1, x2, . . . , xk} is

transformed to {y1, y2, . . . , yk� 1} by yt ¼ xtþ 1� xt. A common way of

detrending data series is to fit linear or nonlinear functions to data and use

the residuals as the data. We do caution, however, against a too liberal use

of arbitrary function fitting and use of residuals. The problem is that we can

rarely be sure that the putative trend is not, in fact, a component of the

dynamics we would actually like to retain (cf. fig. 9.1).
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Fig. 2.4.The autocorrelation function (ACF, left column) and partial autocorrelation

functions (PACF, right column) for sample time series presented in fig. 2.5.
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Autocorrelation and partial autocorrelation

The autocorrelation of a times series is related to the ordinary correlation

between n pairs of two variables, x and y. The autocorrelation measures the

correlation between successive observations with time lag k of the series

{x1, x2, . . . , xn} such that n� k pairs of observations are formed, (x1, x2),

(x2, x3), . . . , (xn � k, xk), and regarding the first observation in each pair as

one variable, and the second pair as the other one. This can now be done for

pairs k steps apart. For each such lag the correlation coefficient is calculated.

Now, a correlogram (autocorrelation function, ACF) can be constructed by

plotting those correlation coefficients for each lag k (fig. 2.4).

The autocorrelation function thus gives us a hint of the lag structure

of the series, e.g., if it is strongly positively (or negatively) autocorrelated,

or if there is a cyclic component in the time series (fig. 2.4). A more

detailed picture of the lag structure of the time series is achieved by the

partial autocorrelation function (PACF). Strictly speaking, the PACF is

a way of estimating the order of an autoregressive process (Box 2.7),

i.e., a model estimation procedure. The details of such procedures are

beyond the scope of this book, but we note that estimating the partial

autocorrelation is basically as follows. When fitting an autoregressive

process of order p, AR(p) (Box 2.7), the last coefficient, �p, measures

the correlation at lag p which is not accounted for by a model with p� 1

coefficients. Partial autocorrelation functions for some example time

series are shown in fig. 2.4. Chatfield (1999) is an excellent source for

further information on partial autocorrelation functions.

The visibility problem

The preceding sections have dealt with deterministic models for popula-

tion renewal, and they have also provided a first look at the interpretation

of time series data. They are in a sense very different approaches, yet

necessarily intertwined if we want to take both theory and data seriously –

which we have to. Data are meaningless unless we have a model, and

models are useless if they cannot tell us anything about our observations.

The ‘‘visibility problem’’ refers to the challenge of understanding the

underlying process from observed patterns (Ranta et al. 2000a). The

patterns we will refer to here are primarily the patterns emerging from

time series data of population abundance. Note, however, that the

problem is entirely general and that there is no inherent restriction to

time series data, it is just that they are particularly illustrative.
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Box 2.7 . Autoregressive processes

A process (in practice a time series) {X(t)} is an autoregressive process

of order p if

XðtÞ ¼ �1Xðt � 1Þ þ �2Xðt � 2Þ þ � � � þ �pXðt � pÞ þ "ðtÞ;

where "(t) is an independent random process with zero mean and

variance �2. Hence, X is regressed on itself p time steps back in time.

An autoregressive process of order p is denoted AR( p). An AR(1)

process is therefore

XðtÞ ¼ �Xðt � 1Þ þ "ðtÞ:
An AR(1) process is an example of a Markov process. An AR( p)

process is a linear model of a time series {X(t)}. It is generally (but

not always!) assumed that an ecological time series can be approxi-

mated by a linear model, at least near the stationary value (the mean) of

the series. One can therefore use the linear approximations above to

estimate the values of �p, which then give a hint of the lag structure of

the time series (the population in focus). This is akin to determining

the density-dependence structure of the population, although there

are several pitfalls involved in this (Berryman and Turchin 2001).

Here we also show a simple example of how the AR-modeling

approach can be applied. A commonly used nonlinear population

model is

Nðt þ 1Þ ¼ NðtÞexp b0 þ b1xðtÞ þ b2xðt � 1Þ þ "ðtÞ½ �;
where N(t) is the population density at time t, x(t) is the natural

logarithm of N(t), and "(t) is a noise term. This is a generalization of

the Ricker model given by eq. 2.9. The parameters b1 and b2 are of

interest because theymeasure the strength of direct and delayed density

dependence, respectively, and their values determine the behavior of

the deterministic skeleton. b0, however, has no dynamic effect and is

only a location parameter often close to zero due to detrending

procedures (Stenseth 1999). Rearranging and taking the natural loga-

rithm of both sides, we get

xðt þ 1Þ ¼ b0 þ ð1þ b1ÞxðtÞ þ b2xðt � 1Þ þ "ðtÞ:
This is a log-linear AR(2)-model, having well-studied properties (Box

et al. 1994; Chatfield 1999; Royama 1992).
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The visibility problem comes in two different flavors. The first problem

deals with the wish to read off some environmental variation (temperature

or habitat change, say) from the dynamics of a population. That is, is the

environmental variability visible in the time series of some population

abundance? This is a correlation problem. Ranta et al. (2000a) and Laakso

et al. (2001) have addressed the problem by letting a deterministic popula-

tion model be affected by environmental noise of various kinds and they

have sought the correlation between that pure noise process and how it is

manifested in the population time series. Such a correlation is not always to

be expected, however (Ranta et al. 2000a). Depending on the intrinsic

dynamics (if the deterministic model is stable or not) and on the exact

nature of the noise signal (e.g., its color), the putative correlations are often

masked. Hence, the time series of population change does not in itself carry

any information about the environmental variability affecting the popula-

tion, unless complemented by additional data about the environment. The

visibility problem has since been extended to age-structured populations

(Kaitala and Ranta 2001) and to a Ricker dynamics with births and deaths

modeled separately (Lundberg et al. 2001). Throughout, the basic message

is that the fingerprint of the external signal is very difficult to recognize in

the noise-modulated dynamics of the focal population, but see Scott and

Grant (2004).

The studies by Laakso et al. (2001) and Greenman and Benton (2001)

illustrate an additional problem, namely that the situation gets even worse

if the quite plausible assumption about nonlinear responses to environ-

mental change is made. An environmental variable, temperature say,

rarely affects the population renewal in a linear manner. Rather, the effect

is often dome-shaped or perhaps sigmoid (or perhaps also a discrete all-or-

none response). Should that be the case, the expected correlation

between the environmental variable and the population dynamics we

may want to use as a probe becomes even more compromised.

The related, and perhaps even more challenging, problem is illustrated

by the study by Jonzén et al. (2002a). They modeled the population

dynamics as a linear process with two lags, i.e., a simple AR(2) process,

modified by noise of different color and amplitude. The task was then to

recover the underlying model structure given the data thus generated.

The question is whether we can learn anything about the demographic

(density-dependent) and environmental processes by estimating model

parameters from a noisy time series. The answer was that only occasion-

ally could one recollect the skeleton dynamics (fig. 2.5). This illustrates

the ‘‘inverse’’ problem (Wood 1997), which means that it may be
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impossible to infer from pattern (the time series) the underlying process

(the interaction between a revealed demography and a correctly identi-

fied environmental variability). Given a time series without prior knowl-

edge about the exact mechanisms behind it, all we can do is some sensible

model estimation. The question is what should be in the model and what
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Fig. 2.5.AR(2) parameters, (A), (B), (C), and the process order, (a), (b), (c), estimated

from time series with AR(2) skeleton modulated by noise. The gradation of the

parameter space (a2þ a1< 1, a2� a1< 1, and �1< a2< 1) as shown in (a)�(c) is

used to generate time series data in three environments (�¼�0.9, �¼ 0, and

�¼ 0.9), where � is the autocorrelation parameter of the colored noise, eq. 2.12.

Panels (A)�(C) indicate the values obtained by fitting an AR(2) model to the

noise-modulated data. The order estimates [numbers inserted in panels (a)�(c)] were

achieved by using the partial autocorrelation technique (Chatfield 1999). Modified

after Jonzén et al. (2002a).
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should be regarded as noise. The purely statistical approach is to devise a

model such that, after having fitted it to the data, the residuals are as small

as possible, are normally distributed, and are not correlated (and they are

stationary). Such a model would generally be regarded as the best model.

It is far from clear, however, what we have learned from that exercise. For

example, Royama (1981) showed that an AR(1) population process

modulated by AR(1) noise, eq. 2.12, will be indistinguishable from an

AR(2) process with white noise. Not only in statistical terms, but they are

identical processes! A third example is an AR(1) process with perfect

compensation (corresponding to the Ricker model with r¼ 1) in an

AR(2) environment. This highlights the irreducible uncertainty about

the demography–environment interaction. Therefore, we badly need

both solid a priori stochastic models of population renewal and at least

well-informed guesses about the nature of the environmental variability

affecting the demography of the population in question.

Summary

We introduce the basic tools for understanding and analyzing simple but

dynamic population processes. The basic population processes, on which

the whole ecological theory will be built, are births and deaths. As we have

emphasized, these processes are the core of population fluctuations. Of

course, although focusing on the births and deaths helps us also to focus on

the ecological problem we are studying, this alone is not enough to under-

stand population processes fully. When furthering and deepening the

insight, one needs to specify the ecological problems and framework

under consideration. Are we dealing with small populations, where demo-

graphic stochasticity will become important, or with larger populations

where intrinsic population regulation mechanisms (density dependence),

population structures, trophic interactions, or interactions with the envir-

onmentmay become crucial factors?We do not always knowwhich factors

are important. Nevertheless, equipped with the basic tools, such as popula-

tion renewal models, and tools for data analysis, we are ready to proceed to

take into account not only births and deaths but also movement between

locations, immigration and emigration.
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3 . Population dynamics in
space – the first step

The population renewal processes discussed in the previous chapter

assumed spatially homogenous environments. For natural systems this

mostly fails to be true. Here, we extend the population renewal in space

and will hence come back to the problem of including emigration and

immigration in population dynamics. We will do so by arbitrarily delim-

iting the landscape into well-defined habitat patches connected by

redistribution of individuals. This simplified representation of spatial

structure and population dynamics allows us to analyze and interpret a

wide range of single-species phenomena. Spatial structure can alter the

population dynamics significantly and produce emergent phenomena

such as synchrony and complex dynamics. This chapter sets the theore-

tical and conceptual stage for such problems dealt with in more detail in

the coming chapters.

In the previous chapter, we deliberately overlooked the important and

natural aspect of the import and export of individuals to and from a

given focal population. For some populations, ignoring dispersal may be

a fair approximation. Most extreme examples of this might be experi-

mental populations of fruitflies in a single container or small aquatic

microcosms of protozoans. In such cases, it would be natural to assume

that a complete mixing occurs in the whole population. Most popula-

tions, however, are spatially structured and the exchange of individuals

between landscape elements is an integral part of the dynamics (Hastings

1990; Kareiva 1990; Bascompte and Solé 1997; Tilman and Kareiva

1997). The redistribution of individuals among habitat patches, however

defined, is affected at least by two factors: the distance between the local

units and local population size. The longer the distance between the

localities, the less likely it is that they exchange individuals via dispersal.

The larger a population, the better chance it has to send dispersing

individuals, while only a few individuals can emigrate from small popu-

lations. The reception of dispersing individuals may also be affected by

local population size.



Setting the stage

In Chapter 2, we studied the effects of births and deaths. Here we shall

push the pure demographic processes to the background and concentrate

on the effects of dispersal on the temporal dynamics of a single, or an

isolated population. We simply ask how dispersal may affect population

dynamics. Net dispersal is a result of the departure of individuals from

their natal patch, and of the arrival of individuals from surrounding

subunits to the focal unit. Thus, one is tempted to think that only net

dispersal is important. It is convenient, however, to decompose the net

dispersal into two components, immigration and emigration.

It will be shown that, as compared with single patch dynamics, new

phenomena will emerge when the spatial dimension of the population

dynamics is included when addressing the density-dependent feedback.

Emigration and immigration may alter the qualitative properties of local

population dynamics even in a systemwith only two habitable patches. In

some cases, the effect of the spatial interaction is so crucial that it may be

difficult, if not impossible, to predict the dynamics of a single population

if the interactions with other populations are neglected. In combining the

temporal dynamics with the spatial dimension, we begin to understand,

aside from population dynamics aspects, that spatial population dynamics

provide a new and extremely interesting approach for structuring and

analyzing population patterns. The population sizes may become organ-

ized both in time and space and we will attempt here to find out how this

comes about.

Classical population ecology assumes that immigration and emigration

are negligible compared to the births and deaths. In contrast, meta-

population ecology (Levins 1969; Gilpin and Hanski 1991; Hanski

1999a) focuses entirely on the immigration and extinction processes by

ignoring births and deaths and reducing local populations to being either

present or absent in well-defined habitat patches. Proper understanding of

the ecology of populations requires that all four terms in the process

mapping current population size to the future need to be addressed.

Immigration and emigration and single-population dynamics

There is no more simple setting for studying the consequences of spatial

linkages in population dynamics than a one-patch model with net immigra-

tion or emigration. Thus, we may reconsider the unstructured single-patch

model and modify it by adding constant immigration (I ) as follows:
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Nðt þ 1Þ ¼ RNðtÞ þ I : (3:1)

This simple change of the renewal equation may have greater than

expected consequences. Using the normalized Ricker model, we have

RðtÞ ¼ exp r 1�NðtÞ½ �f g: (3:2)

We now combine eqs. 3.1 and 3.2, and use the bifurcation diagram as a

diagnostic under a slight amount of constant immigration. A careful study

of the bifurcation diagrams shows that constant immigration may have

drastic effects on the population dynamics (fig. 3.1; McCallum 1992). A

comparison of the bifurcation diagrams shows that complex chaotic popu-

lation behavior, observed under no immigration (I¼ 0, fig. 3.1(A)), may

become simpler under a slight amount of immigration (I¼ 0.001, fig. 3.1(B)).

Periodic windows become larger around r¼ 3.2 and 3.6, and for a large

area of chaotic dynamics (r> 4) the population dynamics are maintained as

period-four or period-two cycles. This indicates that (constant) immigra-

tion tends to stabilize the dynamics. However, the opposite may be true as

well. This can be seen by increasing the immigration to I¼ 0.01. In this

case, we see that the periodic window around r¼ 3.2, observed under no

immigration (I¼ 0, fig. 3.1(A)), is turned to chaotic dynamics (I¼ 0.01,

fig. 3.1(C)). That is, constant immigration may also destabilize the popula-

tion dynamics. The effect may be contradictory, as at the same time as

immigration destabilizes population dynamics for r� 3.2, it will stabilize

the chaotic range between r¼ 3.3 and r¼ 4.05 into a periodic window.

Constant emigration is a little bit more complicated to study.We know

that for the Ricker model, increasing the growth rate r decreases mini-

mum population size (Box 2.1). Thus, we modify our study such that the

population is doomed to become extinct if the population size becomes

sufficiently small. Letting individuals emigrate from the population makes

it easier to pass that threshold. In fig. 3.1(D), we have assumed that

E¼ 0.01. The visible periodic window around r¼ 3.2 is now moved

close to r¼ 3.1. Moreover, the periodic window around r¼ 3.2 has

become an area of chaotic dynamics. Thus, no unique answer can be

given about the stabilizing effect of constant emigration. More thorough

investigations of the effect of constant immigration or emigration on

single-patch dynamics are presented elsewhere (Holt 1983a,b, 2002;

McCallum 1992; Ruxton 1994, 1995a; Doebeli 1995; Rohani and

Miramontes 1995a; Sinha and Parthasarathy 1996; Paradis 1997;

Gonzalez-Andujar 1998; Ruxton andRohani 1998; Stone andHart 1999).
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A two-patch system

The one-patch model with immigration or emigration leaves many

questions unanswered. Occasionally, immigration and emigration are

constant rates but are varying over time andwith local population density.

Studying that requires that we explicitly include more than the focal

habitat patch in the analysis. By doing so, we also move one level up

and have to pay attention to both local and global (including all habitat

patches) dynamics.
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Fig. 3.1. (A)–(C) Bifurcation diagrams illustrating the effects of constant immigration

on population dynamics after the Ricker equation. (A) I¼ 0; (B) I¼ 0.001;

(C) I¼ 0.01. (D) Bifurcation diagram illustrating the effect of constant emigration.

When the emigration rate exceeds the lowest population value, the population is

doomed to become extinct. E¼ 0.01. For each r value calculated, the simulations

were run for 250 generations, and the last 50 points in each time series were used in

the bifurcation diagram.
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A two-patch population system is the simplest landscape for the pur-

poses of showing that spatial structures may matter when studying qua-

litative properties of population dynamics (Hastings 1993; Lloyd 1995;

Kendall and Fox 1998; Solé and Gamarra 1998; Jansen 2001). Interaction

between two or more subpopulations will usually maintain the basic

patterns observed in the single-patch population dynamics. However,

the spatial extension may also result in qualitative changes. LetN1 andN2

denote the population sizes of patches 1 and 2, respectively. The

dynamics of this spatially linked system are given as

N1ðt þ 1Þ ¼ N1ðtÞg1 N1ðtÞ;N2ðtÞ½ �
N2ðt þ 1Þ ¼ N2ðtÞg2 N1ðtÞ;N2ðtÞ½ �;

(3:3)

where g1 and g2 are functions specifying the effect of both populations on

local population growth rate. In each time step, both renewal and dis-

persal are taking place and the temporal order of those events becomes

important. We will assume here that population renewal occurs before

individuals move between patches (fig. 3.2). After reproduction, the

population size in habitat i is Ni(t) fi[Ni(t)]. Now, eq. 3.3 becomes

N1ðt þ 1Þ ¼ N1ðtÞf1 N1ðtÞ½ � � E1 þ I1

N2ðt þ 1Þ ¼ N2ðtÞf2 N2ðtÞ½ � � E2 þ I2;
(3:4)

where E1, E2, I1 and I2 are the net emigration from and net immigration

to patches 1 and 2, respectively. In a closed system without mortality

while in transit, we may assume that I1¼E2, and I2¼E1 yielding

N1ðt þ 1Þ ¼ N1ðtÞf1 N1ðtÞ½ � � E1 þ E2

N2ðt þ 1Þ ¼ N2ðtÞf2 N2ðtÞ½ � � E2 þ E1:
(3:5)

–E12(t )
+I12(t )

–E21(t )+I21(t )

N1(t + 1) =
N1(t )f1[N1(t )]

N2(t + 1) =
N2(t )f2[N2(t )]

Fig. 3.2. Schematic illustration of the two-patch system. The subpopulations

reproduce seasonally. After reproduction a fraction of the occupants leaves their natal

patch to reproduce in the other one.
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Assume next that a fixed and equal fraction m of each subpopulation

leaves the natal population and disperses to the neighboring population.

Thus, Ei (t)¼mNi(t) fi [Ni(t)]. It follows that a total of (1�m)Ni(t) fi [Ni(t)]

stays in the natal patch i to the next reproductive season, and a total of Ei(t)

arrives in the neighboring patch to reproduce there. Put together, the full

description of the system becomes (Hastings 1993)

N1ðt þ 1Þ ¼ ð1� mÞN1ðtÞ f1 N1ðtÞ½ � þ mN2ðtÞ f2 N2ðtÞ½ �
N2ðt þ 1Þ ¼ ð1� mÞN2ðtÞ f2 N2ðtÞ½ � þ mN1ðtÞ f1 N1ðtÞ½ �:

(3:6)

Following Hastings (1993), we let the per capita population growth rate be

fi NiðtÞ½ � ¼ r 1�NiðtÞ½ �: (3:7)

With equal growth rates, r, and with equal fractions (mi¼ 0.1) of indivi-

duals dispersing, the bifurcation diagram is identical to the one-patch case if

the system is initiated with identical population sizes. This is due to the fact

that in this case the immigration is balanced by the emigration, resulting in

zero net dispersal. Hence, under these assumptions spatial structure does

notmake any difference to the local dynamics. However, assuming random

initial population sizes, we observe that the dynamics may behave differ-

ently depending on the initial values. Examples of bifurcation diagrams for

sample simulations are given in fig. 3.3. In the first example (fig. 3.3(A)),

initiating from a random set of initial conditions, the bifurcation diagram of

the total population size,N1þN2, is composed of period-doubling cascade

from r¼ 2.0 up to r� 2.85,where the dynamics turn into two-point cycles,

then stable equilibrium, and again to two-point cycles. For r< 2.85, the

bifurcation diagram matches the bifurcation diagram of single-patch

dynamics since populations in each patch are of exactly the same size at

each time point, and no net dispersal occurs. For r< 2.85, the two patches

fluctuate hand in hand while this is the case only occasionally for r> 2.85

(fig. 3.3(B)). The stable equilibrium for 3.1< r< 4.3 appears to be a

combination of two two-point cycles, one in each patch, fluctuating in

opposite phases (figs. 3.3(B),(C), 3.4(A). And the two-point cycles of the

t o ta l p op ul at io n s iz e ( r � 2.85 and r > 4. 3) tu rn ou t to be a c ombin atio n of

two four-point cycles (figs. 3. 3) (B ),( C)).

Taking another set of random initial conditions, we may get another

picture of the combined dynamics. Interestingly enough, at r> 2.5 a

unique equilibrium point replaces the period-doubling cascade, and

part of the chaotic range by a single equilibrium point (2.5< r< 2.8;

fig. 3.3(D)). This is due to the fact that the period-doubling cascade has
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Nonuniqueness in two-patch population system

(A) N1 + N2 (D) N1 + N2
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Fig. 3.3. Population dynamics in a two-patch system. (A) The bifurcation diagram

obtained using random initial population values forN1(0) andN2(0), which are the

same for each r value. On the unstable area (r> 2.8), the dynamics of the total

population size are two-point cycles or a stable point equilibrium. (B) For r< 2.8,

the local population dynamics are coherent, whereas for r> 2.8 the populations

fluctuate out of step. (C) The bifurcation diagram of the local population size differs

from that of the total population size depending on whether the local populations

are in step or out of step. (D) An alternative bifurcation diagram obtained using

another random pair of initial population sizes, N1(0) and N2(0). A part of the

period-doubling cascade is now replaced by a point equilibrium. (E) In addition to

the nonuniqueness of the attractors, the coherence may also depend on the initial

values of the local populations. (F) The local population dynamics may also be

nonunique.
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also been replaced locally by two-point cycles which are now in opposite

phase, yielding a point equilibrium for the total population size. Also,

exactly the same period-two fluctuation can be obtained by combining

two point-four cycles (to r� 4.4, fig. 3.3(A),(B),(C)) and two point-two

cycles (fig. 3.3(D),(E),(F)).

In summary, we have observed the following. The dynamics in a two-

patch system may become nonunique in the sense that different initial

conditions may lead to different attractors. Several different attractors may

coexist, the classification of which depends on whether the population is

viewed at the global or local level. For example, a stable equilibrium may

be an alternative for the whole range of period-doubling cascade to chaos

and even for chaotic solutions. Further, the alternative attractors seem to
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need not be identical. The amplitudes of the dynamics may be different or even

fluctuate (r¼ 2.86). (C) Basins of attraction for equilibrium dynamics (black) and

period-four dynamics (white; r¼ 2.6). (D) Basins of attraction for two-point cycle

(black) and stable equilibrium (white) dynamics (r¼ 3.2).
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be connected to the coherence of the local patch dynamics. The same

type of local dynamics yields different global attractors when they are

coherent and when they are not. When the population dynamics become

more complex, the population dynamics may be coherent, yet such that

the amplitudes differ (fig. 3.4(B)). Thus, dispersal seems to have a sig-

nificant role in modifying the global and local population dynamics.

Generally, chaotic dynamics tend to change to periodic, indicating that

dispersal may have in some cases a stabilizing effect on population

dynamics. Also, there is an emergent pattern of synchrony and asyn-

chrony of the dynamics across patches. This is an issue dealt with in more

detail in the next chapter.

Extensive simulation studies in a two-patch system for logistic

dynamics (Hastings 1993) and for the Ricker dynamics in a ten-patch

system (Ruxton 1994) have revealed that when identical populations are

coupled by redistributing individuals, two-point cyclic dynamics may

continue to operate in any patch either in or out of phase, and the result

will depend on initial conditions. This nonuniqueness and its ecological

consequences have received rather limited attention. It is worth noting

also that nonlinear interactions between age groups in age-structured

populations may generate such complexities in their dynamic behavior

(Caswell 2001).

Tracking the initial values leading to one or another attractor can be

illustrated as basins of attractions (Hastings 1993). The prediction of the

attractor based on the basin of attraction seems to work fine for, say,

r¼ 2.6, where the alternative attractors are stable equilibrium and a

period-four cycle (fig. 3.4(C)). The basins of attraction for both attrac-

tors are large sets that can be easily separated from each other. However,

occasionally this prediction may fail completely. Hastings (1993) pointed

out that the dependence of the attractor on the initial conditions may

be extremely complicated. It appears that the points leading to the

alternative attractors may form very complicated patterns with fractal

sets and fractal boundaries (fig. 3.4(D)). Here, the basins of attraction are

not well defined. In fact, they may be fractal sets without any well-

defined boundaries (Grebogi et al. 1987; Hastings 1993; Kaitala and

Heino 1996).

Bifurcation diagrams are convenient tools for studying the deterministic

behavior of the model. One problem is, however, that the transient phase

before the final attractor is reached may be extremely long (Hastings and

Higgins 1994; Ruxton andDoebeli 1996; Kaitala et al. 2000). For example,

for r¼ 2.8, the two alternative attractors are single-point equilibria and a
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two-point cycle. However, the initial, chaotic-looking transient may take

thousands or tens of thousands of time steps. Thus, bifurcation diagrams,

when using short time intervals, may give biased information, as is pre-

sented for r¼ 3.2 (fig. 3.4(D)), where the bifurcation diagram represents

the initial transient rather than the final attractor.

Finally, we recall the close connection of the alternative attractors to

the degree of coherence between the populations. Thus, we may state

that the basins of attraction also represent the points from which the

dynamics become synchronized or desynchronized. Nonuniqueness in

two-dimensional maps has also been observed in a single-species age-

structured model (Wilbur 1996; Caswell 2001) and two-species host–

parasite and host–parasitoid models as examples (Kaitala and Heino

1996). Kaitala et al. (1999, 2000) and (Ives et al. 2000) give richer

accounts on both host–parasitoid and predator–prey systems.

Population dynamics in space

The simple two-patch models presented above are of course very crude

representations of most biological systems. Habitat structure ranges from

an entirely homogenous world (fig. 3.5) to distinct patches. Dispersal may

be either local (emigrants only reaching neighboring populations), or

global such that every corner of the landscape is reachable. Such different

dispersal patterns may have profound effects on both local and global

dynamics (e.g., Fryxell and Lundberg 1993). In the extreme case of global

dispersal, distance among landscape units does not matter, which in effect

means that space is only implicit. Spatially implicitly structured models

have, despite the simplification, been an important first step for under-

standing spatial dynamics (Allen et al. 1993; Ruxton 1994; Bascompte and

Solé 1997). A third possibility is to assume that both distance among the

subpopulations and their size affect the rate and success of dispersal. That

is the version to which we will primarily adhere.

Spatially implicit models

The classical meta-population model (Levins 1969) and the extinction

model by Allen et al. (1993) are examples of spatially implicit models. In

spatially implicit models, the patches are distributed in a discrete space but

their location does not affect the dispersal process. Consider n local

populations in an implicit space (e.g., Allen et al. 1993), each renewing

seasonally as follows
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Niðt þ 1Þ ¼ NiðtÞfi NiðtÞ½ � � Ei þ Ii; (3:8)

where i¼ 1, 2, . . . , n and Ni(t) is the population size in the ith subunit.

One simple assumption for emigration (E) is that a constant fraction of the

local population leaves in each time step (see, e.g., Ruxton 1996a;

Palmqvist et al. 2000; Ylikarjula et al. 2000; Poethke and Hovestadt

2002 for models with density-dependent dispersal). Assuming that dis-

persal occurs after renewal, the number of emigrants can then be written

Ei ¼ mNiðtÞfi NiðtÞ½ �: (3:9)

Fig. 3.5. Spatial population structures can be modeled in several alternative ways.

Habitat structures may be assumed to be (A) homogenous environments, (B)

heterogeneous fragmented environments and (C) patchy subpopulations. In the

spatial models, dispersal may be local with only nearest neighbors linked, as in (D) the

cellular automaton. In regular or irregular grids, the dispersal may be independent

of the spatial setting, or the dispersal may depend on the location of the patches.

When dispersal depends on the locations and inter-patch distances we refer to the

models as spatially explicit population dynamics (E), otherwise spatially implicit

models.
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Since the location of the patches does not matter, the simplest we can do is

to assume that each patch receives an equal amount of immigrants, i.e.,

the average number of immigrants

I ¼ Ii ¼
X

i

Ei=n ¼
m
P
i

NiðtÞfi NiðtÞ½ �

n
: (3:10)

Thus, the local population dynamics becomes

Niðt þ 1Þ ¼ ð1� mÞNiðtÞfi NiðtÞ½ � þ I : (3:11)

In an implicit space, there are no central or edge populations. We shall

now address the effects of the implicit spatial dimension of the population

dynamics, where the global population is split into three local units. As

above, we observe the outcome as a function of increasing population

growth rate. Our first observation is that, as in a two-patch system, the

point of first bifurcation remains unchanged at r¼ 2.0 (fig. 3.6(A)).

Things may change radically, however, with increasing r (fig. 3.6(A))

such that chaotic areas are displaced by periodic windows of various

characters. Focusing on the difference between patches (fig. 3.6(D)–(F))

we see that for r< 2.6 all three populations obey coherent dynamics,

whereas for larger values of r only two out of the three populations

maintain synchronous fluctuations. With different initial conditions,

due to nonuniqueness, a different picture emerges (fig. 3.6(B) and 3.6(E)).

Now, the major difference is that the complex part of the bifurcation

diagram (2.6< r< 2.9) is replaced by period-two dynamics in the total

population size.

We next reduce the value of the dispersal to m¼ 0.04. Again, the

bifurcation diagrams of the total population sizes, as well as those of single

populations, differ crucially from the single-patch ones (fig. 3.7(A),(C)).

The local populations remain periodic until r� 3, after which the

dynamics are chaotic, to return again to being periodic at r� 3.3. This

appears to depend on whether the subpopulations are in synchrony or

not (figs. 3.7(D)–(F)). Nonuniqueness of the attractors occurs for a wide

range of parameter values. Another random set of initial conditions may

yield a different bifurcation diagram (fig. 3.7(B)). For example, there may

be different two-period attractors in the total population system, as is the

case for r¼ 2.5 (fig. 3.7(A),(B)). In addition, chaotic dynamics may be an

alternative for different periodic attractors. Again, nonuniqueness seems

to be in close connection with the degree of synchronicity (Box 3.1)

among the local populations.
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Coupled map lattices

The ‘‘map’’ in coupled map latticemodeling is a mathematical expression to

illustrate the evolution of local population size from one year to the next;

‘‘coupling’’ refers to the interaction of local populations via redistributing

individuals, and ‘‘lattice’’ refers to the spatial distribution of the local

populations. Note that lattice often refers to a regular grid-like structure

of cells (like a square-ruled notebook page). However, for us a lattice can

be either regular or irregular (population subunits are random coordinate

points).

Consider now a fixed number of subpopulations distributed in an explicit

space, in a regular or irregular manner. The population renewal is modeled
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Fig. 3.6. Population dynamics of a three-patch system in an implicit space with the

dispersal fraction m¼ 0.1. (A) Bifurcation diagram of the total population size

obtained using random initial population sizes,N1(0),N2(0), andN3(0). As compared

to the one- and two-patch models, the point of first bifurcation stays put, indicating

that introducing one more patch to a two-patch system does not destabilize the

population dynamics or the stable area of population dynamics. (B) An alternative

bifurcation diagram, initiated from another set of initial population sizes, indicates

nonuniqueness of the attractors. (C) A bifurcation diagram of a single patch. (D)–(F)

Bifurcation diagrams of the differences between the local population dynamics. All

the dynamics may be coherent or only two of them. The simulations were run for

1000 generations, and the last 50 values were used for the diagrams.
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as in previous sections.We also assume that a constant fractionm (0<m< 1)

of the population disperses. Then, the population dynamics are given as

(Ranta et al. 1995a)

Niðt þ 1Þ ¼ ð1� mÞFi NiðtÞ;Niðt � 1Þ½ � þ
X

s;s 6¼i

MsiðtÞ; (3:12)

where Ni(t) is the population size in subunit i at time t. The last term of

eq. 3.12 is the subunit-specific arrival of the redistributing individuals.

Different versions of the dispersal kernel (the last term of the eq. 3.12) are

given in Box 3.2.

To illustrate the effects of space on the qualitative properties of

dynamics of local populations, we shall use a spatial structure with
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Fig. 3.7. Population dynamics of a three-patch system in an implicit space with the

dispersal fraction m¼ 0.04. (A), (B) Two different bifurcation diagrams of the total

population size obtained using different initial population sizes. As compared to the

one-patch model, the chaotic area with high growth rates has almost completely

disappeared. This indicates that a moderate dispersal may stabilize spatial population

dynamics in an implicit space. (C) Bifurcation diagram of a single patch. (D)–(F)

Bifurcation diagrams of the differences between the local population dynamics. All

the local dynamics may be coherent, or only two of them, or none of them. The

simulations were run for 1000 generations, and the last 50 values were used for the

diagrams.
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Box 3.1 . Synchronicity in population dynamics

Population dynamics are considered synchronous when population

fluctuations are matching in time in two or more populations. The

cross-correlation function, with various time lags, allows one to assess

the degree of temporal synchrony of fluctuations in size between any

two populations of matching time span. High positive values of the

correlation coefficient, with time lag = 0, indicate that the pair of

populations fluctuates largely in step. Values close to zero indicate no

temporal match in population highs and lows, and large negative

values indicate that the two populations are in the opposite phase.

For more details, see Chapter 4 and Box 4.1.

Box 3.2 . Dispersal kernels

Consider a population of a single species distributed in n locations.

Before dispersal, the local renewal is described as follows

Ni
0ðtÞ ¼ F NiðtÞ½ �; i ¼ 1; : : :; n:

whereNi
0(t) is the reproducing population size in patch i at time t, and

Ni(t) is the population size before dispersal. Assume now that a fraction

m of individuals leaves any local patch annually. After dispersal, the

local population sizes are given as follows

Niðt þ 1Þ ¼ ð1� mÞN 0
i ðtÞ þMsiðtÞ;

whereMsi is the dispersing population size arriving at patch i from patch s.

Spatially implicit dispersal

In an implicit space, all the individuals are added to the joint distribu-

tion pool, and all patches receive an equal amount of dispersers

MðtÞ ¼
X

i

ð1� miÞN 0
i ðtÞ=n:

Kernel I

Spatially explicit dispersal with exponentially distributed

dispersal distances

Here we assume that the distribution of the distances determines the

exchange of individuals between the patches as follows (e.g., Ranta

et al. 1997a)
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n¼ 25 population subunits in explicit coordinate space. Here we

use dispersal kernel I in Box 3.2. We also assume that function F in

eq. 3.12 is the Ricker model with one added delay (Ricker 1954;

Turchin 1990)

F NiðtÞ;Niðt � 1Þ½ � ¼ NiðtÞexpfri 1þ a1NiðtÞ þ a2Niðt � 1Þ½ �g; (3:13)

where ri is the maximum per capita rate of increase, and a1, a2 are para-

meters of the direct and delayed the density dependence, respectively. For

the spatial setting, we shall use both a regular and an irregular grid.

Not much happens if the subpopulation spacing is regular (fig. 3.8

(A)–(C)). The populations tend to fluctuate cyclically as specified by the

deterministic renewal process, eq. 3.13. The only visible effect of dispersal

IðtÞ ¼
X

s;s 6¼i

MsiðtÞ;

where the net amount of immigrants arriving to patch i from patch s is

given as

MsiðtÞ ¼ mNs
0ðtÞ expð�cdsiÞP

j; j 6¼s

expð�cdsjÞ
;

where c is a constant parameter, and dsi is the distance from patch s to

patch i.

Kernel II

Spatially explicit dispersal with maximum dispersal distance

An alternative dispersal kernel for the spatially explicit kernel is as

follows. Assume that the probability Sij that a dispersing individual

survives distance dij between the natal patch i and the target patch j is

Sij ¼ 1� dij

dmax

; if dij � dmax

Sij ¼ 0 otherwise;

where dmax is the maximum feasible dispersal distance. Thus

MsiðtÞ ¼ SsimXs
0ðtÞ=ðn� 1Þ:
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(A)

(C) (F)

(E)(B)

(D)

Regular spacing Random spacing

Fig. 3.8. Long-term dynamics of 25 local populations coupled with 10% dispersal

(kernel I, p. 53). The left- and right-hand panels represent the regular and irregular

spaces, respectively. (A), (D) Local dynamics (after initial transient period) for the

final 1500 generations (for each panel, y-axis range is from 0 to 25 with 5 as subscale).

(B), (E) The local population dynamics in phase space (Ni(tþ 1) plotted againstNi(t),

both axes from 0 to 25 with 5 as axis division). (C), (F) The frequency distributions of

population sizes for the final 1500 generations of the simulation (x-axis range from

0 to 25). The area of the histogram is normalized to 1 in each case.
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is that the corner populations have the lowest overall population sizes;

next come the bordering populations, and the highest densities are

observed in the most central population (fig. 3.8(A),(B)). This is under-

standable, as the corner units have the least number of neighbors from

which to receive immigrants, but they keep sending emigrants, the same

10% as all other populations every year. The central populations, on the

other hand, receive immigrants from all populations but send fewer of

them to the most remote (corner) subunits. Thus, the space creates

inequality among the subunits. Common to all subpopulations is that

the population size frequency distributions are bimodal (fig. 3.8(C)). This

is yet another indication of the clockwork-kind ticking of the cyclic

dynamics in a regular space, despite the disturbance cause by dispersal.

Contrary to the regular spacing, random spacing produces a variety

of long-term dynamics of the local subunits (fig. 3.8(D)–(F)).

Displacing the regular locations creates unequal inflow of immigrants

into the local populations. In the example coordinate configuration in

fig. 3.8, the lowest and leftmost population is relatively isolated from

the others. Annually, it keeps sending 10% of its occupants as dispersers

to the surrounding populations. They are, however, so distant that

most of their dispersers harbor into the nearby populations. This

makes the subpopulation at the lowest left corner have the smallest

population density. The coordinate position dependency in the aver-

age population size is visible also in other populations (fig. 3.8(D)).

This configuration also distorts the local intrinsic cyclic dynamics

(fig. 3.8(D),(E)). The spatial location also influences the amplitude

distribution. Sometimes population fluctuations in a given local popu-

lation display high amplitude; at other times the amplitude is rather

narrow, to return later on to a wide amplitude (fig. 3.8(D),(E)). This

all makes the population size frequency distributions display a much

greater range of shapes as compared to the regular setting

(fig. 3.8(C),(F)). We have taken a closer look at the long-term dynamics

of the second population in the second row (fig. 3.8(D)–(F)). Recall that

the only element of stochasticity in the deterministic renewal process

of the local populations is in the displacement of their coordinates.

The basic pattern is that it shows the regularity of the intrinsic ten-

year cyclic dynamics. Of much greater interest is that the dynamics,

now and then, lose their cyclic characteristics just to reappear some-

what later on (fig. 3.9). The disappearance and return of the cycle

seems to take place at rather irregular intervals. In addition, there is no

obvious regularity in the changes in amplitude (fig. 3.9).
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Asymmetrical dispersal

The dynamics under the above assumptions often result in asymmetries in

migration rates between patches; some patches gain more individuals (on

average) than they export. An interesting way to analyze the consequences
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Fig. 3.9. Temporal fluctuations in a single population (2nd row and 2nd column in

Fig. 3.8 (D)–(F) over a time span of 5000 generations (after the initial transient

period). In each subpanel, the y-axis scale ranges from 5 to 20. The dotted line

represents the long-term average population size.
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of unbalanced emigration and immigration is to consider the relative import-

ance of local (births and deaths, B and D) and regional (immigration and

emigration, I andE) processes (Thomas andKunin 1999). The approach also

allows for the extremes of such asymmetries, namely source–sink dynamics

(Pulliam 1988). The dynamics of the dispersal-coupled set of populations can

now be understood in terms of population growth rate (births – deaths:

B�D) and net migration (immigration – emigration: I�E). The balance

between the two rates is described by four quadrants (fig. 3.10), defined by

the inequality for the local demographic process, B�D 6¼ 0, and for the

QUADRANT 1
positive growth, B > D 

net receiver, I > E 

QUADRANT 4
positive growth, B > D 

net loser, I < E

QUADRANT 2
negative growth, B < D
net receiver, I > E

QUADRANT 3
negative growth, B < D

net loser I < E 

Immigration – Emigration 

B
ir

th
s 

– 
D

ea
th

s 

Fig. 3.10. The demography space presented in terms of the four quadrants of

�¼B�D and I�E. On the right-hand side of the y-axis, births (B), exceed deaths

(D); and above the horizontal line, immigration (I) exceeds emigration (E). The

broken line across quadrants 2 and 4 indicates the combinations of I and E, and B and

D giving the net rate of population change equal to zero. The dynamics of dispersal-

coupled spatially structured populations make population trajectories cross the

borders frequently. In the course of time, a single population may be a net producer

(quadrant 1), a net loser (quadrant 3) or their combination (quadrants 2 and 4).

Modified after Thomas and Kunin (1999).
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regional process, I�E 6¼ 0. The dotted line, the ‘‘compensation axis’’

(Thomas and Kunin 1999) in fig. 3.10, indicates the combinations of I, E, B,

and D giving the net rate of population change equal to zero. Thus, the

compensation axis provides us with a way to visualize whether the popula-

tion is increasing or decreasing, that is, whether (Bþ I )� (DþE) 6¼ 0.

We will now apply the Thomas–Kunin approach to two spatial models.

Three-patch model

Assume three patches that are linked through dispersal. Each year, after

the density-dependent renewal process, a fraction of every subpopulation

leaves the natal patch to reproduce somewhere else. The entire landscape

is also affected by some random external disturbing factor. We assume the

patches are subject to global noise, �(t). Each population is also separately
influenced by a local disturbance ui(t). When the distance between the

three patches is equal, the dispersal term in eq. 3.12 is

MsiðtÞ ¼ 0:5mNsðtÞ; (3:14)

where

NsðtÞ ¼ F NsðtÞ;Nsðt � 1Þ; �ðtÞ; usðtÞ½ �; (3:15)

with i¼ 1,2,3. Thus, the emigrants from each patch are distributed

equally between the neighboring patches. Note also that when the

inter-patch distances are equal this is technically the same as implicit

space. We will show here that there are often differences in the dynamics

in implicit and explicit space.

We also change the spatial location of one of the patches (patch 3) keeping

the others fixed. We model this by introducing a distance parameter �.
When �¼ 0.5 all patches are equally distant from each other. When

0<�� 0.5, patch 3 is more distant from the two others. The smaller the

value of � the more difficult it is to reach 3 from 1 and 2 (or vice versa). We

assume that the annually dispersing fraction m is not affected. When the

distance to patch 3 increases, fewer individuals will reach that patch. We use

the following scenario, where the dispersal is defined as follows

M31ðtÞ ¼ M32ðtÞ ¼ 0:5mN3ðtÞ
M12ðtÞ ¼ ð1� �ÞmN1ðtÞ; M13ðtÞ ¼ �mN1ðtÞ
M21ðtÞ ¼ ð1� �ÞmN2ðtÞ; M23ðtÞ ¼ �mN2ðtÞ:

(3:16)
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However, the increasing distance has no effect on the dispersal success of

individuals emigrating from patch 3.

The population size after renewal is

Ni ¼ �ðtÞ uiðtÞNiðtÞexp r 1�NiðtÞ½ �f g; (3:17)

where ui is the local noise and � is the global noise. Population-specific local

noise is annually drawn from uniform random distribution (0.99, 1.01),

and the global noise is drawn from a uniform random distribution on

(0.95, 1.05). Emigration, Ei(t), can be easily calculated from m and

Ni(t), and from eq. 3.16 we get Ii(t). Note that, on the local scale, we have

not specified the values for births and deaths, Bi(t) and Di(t). Instead, we

calculate the difference

�iðtÞ ¼ Niðt þ 1Þ �NiðtÞ (3:18)

as the net change, where Ni(t) is evaluated before the immigrants arrive

and emigrants depart. We then calculate the net immigration rate as

Ii(t)�Ei (t).

When there is no difference in distance between the patches the

dynamics in patches 1 and 2 are symmetrical (fig. 3.11). The variance in

�, however, is much larger than that of the net immigration, meaning

that, in fact, the points are scattered around the x axis. It is much more

revealing, however, to look at the asymmetric case, where one of the

patches is located at a distance from the others. Now, the net immigration

to patches 1 and 2 is clearly positive, remaining at a nearly constant level

(Ii�Ei� 0.02), whereas the net immigration to patch 3 is negative, and

independent of� (Ii�Ei�� 0.04). The compensation line crosses both

sets of points, indicating that each patch acts at times as a net importer and

exporter. The relative difference in the location of the net immigration

level indicates, however, that the ‘‘isolated’’ population 3 acts more often

as a net exporter than importer compared to the two others.

A large grid

We now extend the analysis to larger landscapes, where we let n¼ 25

populations to be randomly located on a grid. Following the above

recipe, global (G) noise is generated by drawing �(t) from a uniform

distribution between 1�G and 1þG. Local (L) noise ui(k) is generated

from a uniform distribution between 1�L and 1þ L. In the following,

we will also use dispersal kernel I (p. 53).
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Here we consider a specific example where we have selected r¼ 0.53,

a1¼ 0.05, a2¼�0.1. With these parameters, the model produces cyclic

dynamics with a period of about 9–10 years (Ranta et al. 1997a). Although

such population cycles are found in natural time series, one should be a little

(A) (B)

(C) (D)

∆
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– 0.0005 – 0.05
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– 0.3 0.3 – 0.3

Fig. 3.11. The location of the three populations in the two-dimensional space of

population growth rate. PopulationN1 is indicatedwith�, andN2with*, andN3with�.

In the panels x-axis:�; y-axis: I�E. The axes (thin lines) cross at the origin. Axis minima

and maxima are indicated. Note that often the (I�E) axis is very short compared to the

� axis. This means that the thick compensation line indicating the combinations of I, E

and B and D giving the net rate of population change equal to zero often follows the

(I�E) axis very closely. [The compensation line can barely be distinguished from the

(I�E) axis in (A) and (C).] The dynamics in the local populations obey the Ricker

model, with r¼ 1.0 (left-hand panels) or r¼ 1.2 (right-hand panels), both yielding stable

dynamics. The populations are affected by global noise (w¼ 0.05) and by local noise (see

text). (A), (B) five per cent (m¼ 0.05) of local population residents disperse from the natal

patch. (C), (D) The dispersal rate is 25% (m¼ 0.25). In panels (A) and (C) the three

populations are equidistant (�¼ 0.5), while in (B) and (D) reaching to (and reaching

from) N3 is much more difficult (�¼ 0.05; for more details see text).
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Fig. 3.12. Dynamics of 25 randomly located populations in a 20� 20 co-ordinate

space. The population fluctuations are presented in a space composed of growth rate,

�i, and the difference between immigration and emigration rates, Ii�Ei. The

dispersal parameters, c and m, are indicated in each panel. (A), (B) Deterministic

simulations. (C), (D), (E) The dynamics are disturbed with weak local (L¼ 0.01)

and strong global (G¼ 0.2) noise. (F) L¼ 0.05 and G¼ 0.1. The top four panels,
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wary of using cyclic dynamics to generate general insights into population

dynamics. Thus, in addition to cyclic dynamics we also choose r¼ 0.15,

a1¼�0.0035, and a2¼�0.0074, i.e., stable dynamics, for our second

example (see Kaitala et al. 1996a for technical details). In the simulations,

all populations were randomly initiated. The populations were then

allowed to renew for 10 000 time steps and the last 100 steps were used as

data in our analyses. Following the above analysis, the dynamics of the

populations were followed in the � (¼B�D) versus (I�E) plane.

The populations rarely cluster in that plane (fig. 3.12). The emerging

patterns are disrupted by increasing environmental variability. With

increasing dispersal rate, the paths of net immigration versus net change

(�) in each local population become more clearly visible, although

considerable overlap remains (fig. 3.12(A),(B)). This can be understood

in the light of the observation that increasing dispersal makes regional

(nonlocal) effects more important for the local dynamics. However, when

the effect of dispersal distance is decreased (parameter c of kernel I gets

smaller) the outcome will become less clear (fig. 3.12(C),(D)).

The same pattern can be observed for damped dynamics (fig. 3.12(E),(F)).

The population trajectories now tend to scatter in flattened horizontal

clusters, however, aligned with the � axis. Increasing the proportion m of

dispersing individuals would increase the extent of the (I�E) axis, as

expected.

A common outcome in the two simulation experiments is that the

population trajectories rarely associate along the axis indicating the com-

binations of I�E and�. On the compensation axis (Thomas and Kunin

1999), positive net immigration compensates for net decline in the

population size due to demographic reasons, or population growth com-

pensates for net emigration; of course this is quadrant dependent (fig. 3.10).

In our simulation example, the local population trajectories hardly settle

down on this axis. Rather, the dynamics are in a continuous stage of

redistribution of individuals such that the sign of the net dispersal may

Caption for fig. 3.12. (cont.)

(A)–(D), are for cyclic dynamics with ten-year period length. The two bottom-row

panes, (E) and (F), are for damped dynamics. The thick line across the panels indicates

the combinations of I�E and � giving the net rate of population change equal to

zero. The line is located differently in each panel since axis scaling varies across the six

panels. In each panel, a single population is marked with o to enhance inspection

(note that the x and y co-ordinates of the 25 populations are randomly drawn in each

simulation).
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change in a more or less regular manner. Thus, no single population can be

positioned on a temporal scale along the compensation axis (fig. 3.12).

Instead, the populations tend to wander among the four quadrants defining

the inequalities between births and deaths and immigration and emigration.

The dynamics of the populations in the demography space (fig. 3.12)

illustrate the very nature of the dynamics of space-structured populations

coupled by dispersing individuals. At times, a few populations may be

located above the origin, although on average they lie below the origin.

They may also be located on the left side of the� versus I�E space, just

waiting for the time to jump into the right-hand side later on. What we

have stated above does not abandon the fact that there are populations that

are continuously either above or below the origin (fig. 3.12). However,

occasionally, a population remains permanently on the left- or right-hand

side of the origin.

We may also attempt to characterize the sink-source dynamics based

on average measures of the births–deaths immigration–emigration pro-

cess. Concentrating on the long-term averages of the population trajec-

tories would remove the scatter in the demographic space and would

neatly align the subpopulations along the compensation axis. This result is

also indicated in our simulation studies, especially for damped dynamics

(fig. 3.12(E),(F)). Here, especially in figure 3.12(E), the averaging would

place populations along the� axis. In fact, the heavy line in all the panels

in fig. 3.12 goes through the population-specific long-term averages in

the coordinate space.

Averaging population sizes over time certainly solves the apparent

paradox of temporal imbalance in net growth and net emigration. We

may question, however, the validity of averaging the population sizes.

Consider, for example, the populationmarked with o in fig. 3.12(B). This

population would have its long-term average on the compensation axis.

However, during the 100-generation period it hits this axis only twice.

Taking the average would be an extraordinarily good example of the

fallacy of averages (Templeton and Lawlor 1981). Another example is

illustrated with the similarly labeled population in fig. 3.12(A), where

again the average is neatly on the compensation axis, and, in fact, precisely

at the origin. This population, which is not the only one in this simula-

tion, has an overall negative slope in the demography space. This contra-

dicts the predictions based on the compensation axis and its suggested

usage in classification of populations (Thomas and Kunin 1999).

We conclude that the usage of demography space, especially the

compensation axis, in classifying spatially structured populations with
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dispersal linkage needs to be carefully interpreted in the light of temporal

dynamics. One has to realize that populations do not stay put in the

births–deaths, immigration–emigration space. The dynamics of dispersal

and especially the dispersal–space interaction (Ranta et al. 1997a,b,c;

Lundberg et al. 2000a) creates a complex outcome (fig. 3.12) that does

not render to simple classification. Rather, the relevance of the demo-

graphy space (fig. 3.12) is in rendering complex dynamics for a simple, but

effective analysis.

Summary

In this chapter we study the consequences of the population renewal

processes dealt with in Chapter 2. We are especially focusing on the

dynamics when the environment is spatially structured. We assume, as a

first (and very useful) approximation, that the landscape a population

inhabits is heterogeneous and that the ‘‘patches’’ the population can

occupy are unambiguously delimited. We also consider various examples

of landscape structures and dispersal assumption. However, the basic

scenario is that, in each such patch, there is independent population

growth, except for the fact that the patches are connected by dispersing

individuals. The emigration rate may be density dependent or not, and

the success of the dispersing individuals is dependent on the distance

between patches. Models of spatial population dynamics produce a

wide range of dynamic behaviors, from stable to very complex dynamics,

often very dissimilar to single-patch dynamics. Also, spatial dynamics give

rise to emergent properties including temporal synchrony between sub-

population, and dynamics that are time variant (e.g., cycles that come and

go with time). In this chapter, we also derive the different ‘‘dispersal

kernels’’ used throughout the rest of the book.
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4 . Synchronicity

Charles Elton (1924) was very well aware of the fact that many popula-

tions of a given species display large-scale temporal match in their popu-

lation fluctuations. Hewas also among the first to propose that this, almost

ubiquitous phenomenon, is due to environmental forcing, redistribution

of individuals between breeding seasons, or biotic interactions of some

kind. In this chapter, we shall first describe, with a set of examples familiar

to us, patterns of synchronicity in various taxa. In these data, one new

feature emerges that Elton did not mention: often the degree of coherent

temporal population fluctuations is high among nearby populations but

levels off with increasing distance. In the second part we shall address the

question of how to analyze synchrony patterns. Finally we will turn to the

different major explanations provided to understand large-scale synchro-

nous fluctuations in population features of animals and plants.

Natural populations live in patchy environments. The distribution area

of any given species should not be viewed as a continuous uniformly

spread population, evenly painted over the landscape. Rather, the envir-

onment is composed of a network of habitable areas differing in profit-

ability and of areas less suitable for population renewal. Even in pristine

habitats, individuals are not distributed evenly all over the range. Our

dogma is that natural populations are composed of local populations of

varying size and quality. The independence of these units may vary: some

of them can be entirely isolated while most population subunits are linked

to other similar units via dispersing individuals. This view of the world

suggests that neighboring individuals and individuals in proximate areas

have a potential to interact more with each other than with individuals

living in more distant units. It also suggests that population units nearby

may share more in common than far-away units.

The independence of local populations is greatly affected by the

intensity of immigration and emigration, the redistribution of individuals

among the subunits in the network (Chapter 3). The two extremes are

total isolation, and themixing of individuals to such a degree that isolation



plays no significance. In the two extreme situations, a single-population

model is a sufficient description of the population renewal process

(Chapter 2). However, most individuals live in a spatially structured

world, where dispersal plays an important role. The local renewal process

is, to a varying degree, due to the residents of that subunit. Thus, one has

to acknowledge that dispersal linkage is significant in local dynamics.

Redistribution of individuals ties local units into a regional population.

If there is no redistribution, population subunits – though isolated – may

share, at least to some extent, a common environment via regional climate.

Here we shall focus on the temporal match in population fluctuations in

systems where local populations are coupled to a network via individuals

redistributing between successive population renewal occasions.

Synchronous dynamics

Exploring temporal changes in population size in a spatially structured

population network calls for population estimates replicated in space.

This was first realized by Elton (1924), who brought to ecologists’ atten-

tion the fact that Norwegian lemmings, Canada lynx and snowshoe hare

each display synchronous population fluctuations over large geographical

ranges (Lindström et al. 2001). Slightly more modern data on regional

fluctuations of Finnish black grouse and mountain hare are displayed

in fig. 4.1 and 4.3, respectively. The black grouse clearly had cyclic

dynamics in Finland during 1964–1984 (Lindén 1989; Lindström et al.

1995), the period covered by the data (see also p. 72). Thus, it is rather

easy to see that populations in different regions tend to fluctuate in step.

For example in 1976–1977 there was a population low over almost all of

Finland, and, likewise, most provinces had experienced a population-

high phase 2–3 years before the big crash.

Visual inspection is an effective method for discovering a match of

temporal phase in the dynamics of two or more populations. However,

quantitative tools are also available from time series analysis techniques (Box

et al. 1994; Chatfield 1999). The cross correlation function (Box 4.1) is a

particularly useful method for assessing the degree of temporal coherence

between any pair of population time seriesX,Y. The series is composed of n

pairs of values, and when the cross correlation is calculated with lag zero, r0,

it corresponds to the Pearson correlation, rXY, between the two time series.

Thus, large positive values of cross correlation indicate that the two popula-

tions fluctuate in synchrony. In contrast, values around zero indicate that the

two time series have very little in common in their temporal fluctuations,
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Fig. 4.1. Temporal (1963–1984) fluctuations in black grouse (Tetrao tetrix) population
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68 . Synchronicity



while large negative values of the correlation coefficient indicate that the

populations fluctuate in synchrony, but that they are in opposite phase.

Prior to the synchrony analyses, the time series to be examined have to

be de-trended (Box 4.2).Otherwise, the trend dominates the dynamics and

affects the synchrony measure especially with longer lags. Prior elimination

of the trend does not mean that the presence of a trend in the original data

should be forgotten. De-trending is one technique in the decomposing

process of the time series. Decomposing gives an understanding of the

various components (trend, periodicity) of which the time series is built

(Box et al. 1994; Chatfield 1999). Calculating cross power spectra (Box et al.

1994) is another tool for comparing the match in temporal structure

between pairs of time series. With ecological time series, this method is

seldom used, as the technique requires rather long periods of data.

The Finnish grouse data (fig. 4.1) were de-trended using linear regres-

sion against time and taking the residuals and standardizing them to zero
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Box 4.1 . Cross correlation function: a measure of synchrony

We assume a pair of population time series X 0 and Y 0 of matching

length (n¼ nX¼ nY). Often X 0 and Y 0 are logarithms of the original

population sizes in time (Royama 1992). It is of crucial importance

that prior to the synchrony analysis the seriesX 0 and Y 0 are de-trended
to X and Y. There are various time series methods of de-trending, and

some of these are discussed in Box 4.2. The de-trended data have n

pairs of observations (x1, y1; x2, y2; . . . ; xn, yn) for both populations,

for these data the estimate of the cross covariance coefficient at lag k is

COVXY ðkÞ ¼
1
n

Pn�k

t¼1

½xðtÞ � �x�½yðt þ kÞ � �y�; k ¼ 0; 1; 2; . . .

1
n

Pn�k

t¼1

½yðtÞ � �y�½xðt þ kÞ � �x�; k ¼ 0;�1;�2; . . .

8>><
>>:

here �x and �y are the sample means of the two series. The first row of the

expression calculates positive lags between X and Y, and the negative lags

are calculatedon thenext line.The cross correlation coefficient is achieved

by first calculating sX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
COVXXð0Þ

p
and sY ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
COVYY ð0Þ

p
, and

then writing rXY(k)¼COVXY(k)/sXsY, with k¼ 0,�1,�2, . . . . Box
et al. (1994) give equations to calculate standard errors of cross correlation

estimates. We shall refer to cross correlation with lag k as rk and when the

cross correlation is calculated over a series of lags it is referred to as CCF.

Most statistics packages available today include routines to calculate CCF

with corresponding 95% confidence limits (fig. B3).
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Fig. B3. Cross correlation functions, CCF (lags –8 to 8) for black grouse data

(Fig. 4.1) and mountain hare data (Fig. 4.4) in provinces Häme and Mikkeli. The

broken lines give 95% confidence limits.
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Box 4.2 . De-trending of time series

The twomost often used de-trendingmethods with ecological data are

elimination of linear trend and differentiation (for other methods, see,

e.g., Chatfield 1999). Linear trend can be removed simply by fitting a

first-order polynomial (linear regression) between time and the time

series values and by taking residuals as the new values for the time

series: X¼X 0 � (aXþ bXX
0). Here a is a constant and b is the slope

of the linear equation capturing the linear trend (if b� 0, a is the long-

term average of the population size). For curved trends second-order

or higher-order polynomials can be used but one has to use caution

here so as not to introduce arbitrary dynamics into the residuals

by fitting too complex a polynomial model into the original data.

Differencing, often done for log(X 0) transformed time series, is,

as the name implies, the difference between two subsequent observa-

tions. In ecological literature, log-transformed differentiation is

referred to as R(t), population growth rate. Differentiation is a simple

and powerful tool to get rid of any trend. However, one has to keep in

mind that in population data differentiation also changes the topic of

interest from population size fluctuations into fluctuations of popula-

tion growth rate.

De-trending, principally a straightforward process, can become a tricky

business. A few examples are shown in fig. B4. The trend elimination for

the black grouse in the province Keski-Suomi (fig. 4.1) is done both by

taking residuals of a linear regression of population size against time

(fig. B4(A)), and by differentiating (fig. B4(B)). As can be seen, the

cyclic character of the grouse dynamics is retained in both techniques.

We emphasize that fig. B4(A) displays periodic population fluctuations

while fig. B4(B) displays cyclic fluctuations in R(t).

The data in fig. B4(C) are generated using an AR(1) process with

�1¼ 0.5 and �¼ 12. Both time series are superimposedwith a trend, the

slope being either increasing, X 0
P , (slope bP¼ 0.2 units per time step) or

decreasing, X 0
N , (bN¼�0.2). Both series are subjected to local noise

(b being multiplied by random numbers between 0.5 and 1.5 having an

expectation of 1). Calculating CCF for the nontreated time series gives

negative rk values with all lags, while the CCFs of the series where linear

trend is removed and residuals are standardized to zero mean and unit

variance, and where the de-trending technique is differentiation of the

log-transformed original series give the highest synchrony measures at

lag zero, as expected (fig. B4(F)).
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Fig. B4. (A) Black grouse data from the province Keski-Suomi (Fig. 4.1) after

linear trend is eliminated and the series are standardized into zero mean and unit

variance. (B) The same data after using differentiation (of the log-transformed

data). (C) Two time series, one with increasing trend, X 0
P , and the other one with

decreasing trend, X 0
N . The time series X 0

P and X 0
N after the trend is eliminated

with a linear regression technique (D) and after using differentiation of log-

transformed data (E). The cross correlation functions CCF (lags �9 to 9) for the

original X 0
P and X 0

N data, and after the de-trending with the two methods (F). The

broken lines give 95%confidence limits. The legendbelowpanels (E) and (F) is for (F).

The nontreated (r0¼�0.63) and de-trended (linear trend removed

r0¼ 0.62, differentiated log-transformed series r0¼ 0.47) time series

differ greatly in terms of CFF and synchrony at lag 0. One may suspect

thatX 0
P increases, e.g., because of increasing carrying capacity, whileX

0
N

decreases due to deterioration. However, the long-term trend is not

the focus of the study, rather, the interest is in the residuals
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mean and unit variance (fig. 4.2(A)). With black grouse, displaying cyclic

dynamics with a period of 6–7 years (Lindén 1989; Lindström et al. 1995),

a casual look at fig. 4.1 reveals that populations of this species tend to

fluctuate in temporal match over most of Finland. De-trending and

standardization enhance this impression (fig. 4.2(A)), and when the

level of synchrony is assessed by calculating the cross correlation coefficient

with lag zero, r0, the impression becomes quantified (fig. 4.2(B),(C)). There

are data for 11 provinces; therefore, one can calculate 55 cross correlation

coefficients in pairs, i.e., [(n� 1)n]/2.

A few comments are worth noting here with respect to the black

grouse data. First, the marginal distribution of the r0 has a weight on

positive values (r0> 0 in 73% of all cases). Second, when the synchrony

values are graphed against the distances among the geographical mid-

points of the Finnish provinces, one finds the relationship to be negative,

the correlation being rD¼�0.46. Third, assessing statistical significance

for the overall synchrony level in black grouse population fluctuations in

Finland, or how the degree of synchrony levels off against distance

(fig. 4.2) is a tricky task. This is because in all possible comparisons in

pairs the resulting synchrony measures are not entirely independent of

each other. Re-sampling techniques in statistical analysis (Efron and

Tbshirani 1983) come to the rescue (Ranta et al. 1995b; Koenig and

Knops 1998; Buonaccorsi et al. 2001). For example, the re-sampled

fluctuations, which may be caused by factors such as climate fluctuation.

Thus de-trending is the transformation called for, and we have learned

that over a longtime X 0
P increases and X 0

N decreases, while XP and XN

fluctuate in rather high synchrony.

The first step in time series analysis is always to graph the data

(Chatfield 1999). Visualization effectively reveals characters of the

time series (trend, possible periodicity, discontinuities, etc.). For

example, black grouse populations display a clear decreasing trend in

1964–1984 in most provinces in Finland. Of course, time series are

children of their time: they are just samples in time of the temporal

behavior of the target population. For example, the two series with

opposing trend in fig. B4(C), may both possess slow sine-wave-like

dynamics in opposite phase, but the 50 year sample does not reveal it.

Thus, the time series data are to be taken as they are. One has to bear in

mind that de-trending, easy as it is to do, may be a cause of introducing

artifacts into the data.
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average synchrony (with 95% confidence limits) was 0.27 (0.18–0.35) for

the 1964–1984 black grouse, and the re-sampled value for the rD¼�0.40

(Lindström et al. 1996).

When correlations are calculated, the question is always raised about

the statistical significance of the estimate. Such is also the case with the rk.

Calculating the standard error for the cross correlation estimate with lag k

is a straightforward process (e.g., Box et al. 1994). However, when more

than one synchrony measure is calculated between a number of time

series in pairs, the number of resulting correlation coefficients increases

rapidly, hence test statistics based on the synchrony estimates and their

error terms will be devalued by the multiple-testing effect. Specially

tailored statistical tests are called for when one needs to assess the statistical

significance of the relationship between synchrony and it leveling off with

distance. For this purpose, Koenig and Knops (1998) provide a novel

spatial autocorrelation method. This method, and the others used in

assessing statistical significance of the synchrony measures, are reviewed

by Buonaccorsi et al. (2001). In the pattern seeking, it often suffices to

score onwhich side of zero the weight of the synchronymeasures lies, and

the sign of the rD. However, when specific hypotheses about the causes

and consequences of population synchrony are to be tested, proper

statistical tools are of great value.

There is also a caveat in calculating average synchrony over a number of

population time series. This can be best illustrated by an example. Assume

two sets of population time series A and B, both consisting of long-term

observations of a number of local populations. All populations in set A are

in high synchrony with each other, also in B all populations fluctuate more

or less in step. However, the sets A and B are fluctuating in opposite phase.

Now, when the synchrony measures are calculated in pairs between all

populations, the emerging frequency distribution of the r0 values is bimo-

dal. One mode peaks with high positive r0 values (populations A against

each other and populations B against each other), the other one with high

negative synchrony values (populations in A against populations in B).

Averaging over a bimodal frequency distribution like this would yield an

overall synchrony measure close to zero (depending on the numbers of

populations in the groups A and B). Thus, it is advisable to have a look at

the marginal distribution of the r0 values (as displayed in figs. 4.2 and 4.4).

The 1964–1984 black grouse population fluctuations in Finland are

cyclic without doubt (Lindström et al. 1995, 1999). Elton’s (1924)

examples were also on species with pronounced periodic fluctuations.

However, cyclic dynamics are by no means a necessity for synchrony to
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emerge in regional population dynamics (Ranta et al. 1995a, 1998,

1999a). Our second example of regional data, also courtesy of Finnish

Game and Fisheries Research Institute (FGFRI), is the 1948–1983 fluc-

tuations of Finnish mountain hare (fig. 4.3). There is no good evidence

for cyclic fluctuations in mountain hare (Ranta et al. 1997d). This is well

exemplified by calculating the cross correlation function with lags from

–8 to 8 for both black grouse and mountain hare data in provinces Häme

versus Mikkeli (fig. B3 in Box 4.1). The sine-function-like cross correla-

tion function clearly reveals the periodicity of the black grouse fluctua-

tions, while no such pattern emerges for the mountain hare populations in

these neighboring provinces (for better means to find periodicity in time

series see p. 32 and Lindström  et al . 1997a). Yet, for both species the

synchrony measure is at its highest with zero lag. When the mountain

hare data are analyzed in the same way as the black grouse data, similar

features in the synchronicity pattern emerge: at the national level there are

evidently synchronous dynamics in hare population fluctuations, and the

level of synchrony decreases with increasing distance between the
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Fig. 4.4. Data on synchronous fluctuations in (A) mountain hare (Lepus timidus),

(B) red fox (Vulpes vulpes), (C) pine marten (Martes martes), (D) red squirrel (Sciurus

vulgaris), (E) stoat (Mustella erminea) and (F) least weasel (Mustella nivalis) populations

in 11 provinces in Finland. For each species the scatter plot diagram gives the level of

synchrony, r0, against the distance between the pair of provinces compared, and the

histogram gives the marginal distribution of the r0 values. Linear trend is eliminated

from the series and the data are standardized to zero mean and unit variance ((A)–(F):

data after FGFRI; Lindén 1988).
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provinces (fig. 4.4). In fact, the FGFRI data on other small game animals

also display a matching pattern (fig. 4.4). However, when comparing

large enough geographical areas, like that of the population fluctuations of

snowshoe hare in Canada (fig. 4.5; Ranta et al. 1997d), one might also

find that the degree of synchronous fluctuation first levels off with

distance, to increase again when distance, among the areas compared

becomes long enough (fig. 4.5). Similar observations are also found for

the Canada lynx, the major predator of the snowshoe hare (Ranta et al.

1997a,b; Krebs et al. 2001).

Periodic masting, or mass fruiting, by temperate trees (Kelly 1994;

Koenig and Knops 1998, 2000a,b) is an example of almost continent-

wide synchrony of sessile organisms. A matching example is synchronous

tree-ring growth in various tree genera in North America and Europe

(Fritts 1976; Koenig and Knops 2000a). Also here the level of temporal
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Fig. 4.5. Spatial synchrony for snowshoe hare in Canada (1931–1948; Smith 1983).

In the map (A), four spatial clusters with matching dynamics averaged over the study

period are indicated with matching shading of the grid units (each covering about

900 square miles). (B) Synchrony against distance in grid units of the map (redrawn

from Ranta et al. 1997d).
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synchrony fades away with increasing distance. However, synchrony

levels tend to be rather high, up to ranges of several hundred kilometers

(Koenig and Knops 2000a).

After this short exploration of synchrony in population fluctuations,

questions arise about the within-species synchrony. First, how common is

the finding that populations of various species fluctuate in step over large

geographical ranges? Second, if one finds large-scale synchronicity, does

the degree of synchrony level off with increasing distance as the data in

fig. 4.4 are suggesting?

Explanations of synchrony

Moran’s theorem

The question of why two or more populations of a given species fluctuate

in temporal match was first addressed in quantitative terms by an

Australian statistician, P. A. P. Moran (1953a,b). He proposed that if

two populations X and Y, sharing a common structure in the density-

dependent feedback of the renewal process, are disturbed by external

forces " and � that are correlated �(", �), populations X and Y will also

start to fluctuate in synchrony, r0(X, Y ). For his argument, Moran used

the second-order linear autoregressive model, AR(2), where the com-

mon structure is via matching coefficients a1 and a2

Xðt þ 1Þ ¼ a1XðtÞ þ a2Xðt � 1Þ þ "ðtÞ
Yðt þ 1Þ ¼ a1YðtÞ þ a2Yðt � 1Þ þ �ðtÞ:

(4:1)

In fact, Moran (1953b) said that with eq. 4.1 the correlation should be

r0(X,Y )¼ �(",�). The explanation was later coined with the name

‘‘Moran’s theorem’’ (Royama 1992). It is a widely spread phenomenon

that populations of a given species tend to fluctuate in step over large

geographical ranges (Elton 1924; Elton and Nicholson 1942; Butler

1953; Smith 1983; Marcström et al. 1990; Steen et al. 1990; Pollard 1991;

Thomas 1991;Hanski andWoiwod 1993;Ranta et al. 1995a,b; Sutcliffe et al.

1996; Myers et al. 1997a; Ranta et al. 1997a,b,d,e; Myers 1998; Bjørnstad

et al. 1999a,b; Ranta et al. 1999a; Rusak et al. 1999; Paradis et al. 2000;

Williams and Liebhold 2000; to list just a few), so it is surprising that

Moran’s theorem was left almost unnoticed until relatively recently

(Royama 1992). In this respect, Leslie (1959) is a clear outlier of his time

as he soon took further Moran’s idea, and proposed a matrix-modeling

approach to the Moran effect (Leslie 1959). Leslie assumed two
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unconnected populations (both with four age groups) living in limited

environments. These populations were expected to be proximate enough

to share the effect of some external random and density-independent

factor. Under these conditions, Leslie wrote the population renewal

process to be

Niðt þ 1Þ ¼ LR�1ðtÞNiðtÞ; (4:2)

whereNi(t) is the column vector indicating the number of individuals in

each age group of the ith population, L is the Leslie matrix (p. 12), while

R is a diagonal matrix containing the density-dependent components

influenced by the Moran noise (Leslie 1959). Leslie showed that, in this

system, populations initially fluctuating out of phase would soon become

synchronized in their oscillations (Lindström et al. 2001).

The Moran effect

Moran’s theorem is now perhaps better known bymore liberal names, such

the ‘‘Moran effect,’’ ‘‘Moran disturbance,’’ and ‘‘Moran noise.’’ Other

synonyms are ‘‘external disturbance,’’ ‘‘environmental noise,’’ or just ‘‘dis-

turbance’’ and ‘‘noise,’’ or even ‘‘stochasticity.’’ Themost notable difference

between the liberal versions and the original theorem is that the modern

varieties do not assume a strict linear (or linearizable) structure in the

population dynamics, or in the way the external disturbance is implemen-

ted to influence the renewal process. To make this distinction clear, and to

avoid further confusion, we shall suggest the name Moran’s theorem to be

used only for systems strictly confirming to the original description given by

Moran (1953b), otherwise is better to use more liberal epithets for the noise

that modulates the dynamics of populations. Moreover, departing from the

structure of the original model is likely to lead to situations where the

Moran theorem, i.e., r0(X,Y )¼ �(",�), no longer holds.

To study in more detail the synchronizing potential of the external

modulator we shall now rephrase eq. 4.1 in a general form

Xðt þ 1Þ ¼ F ½XðtÞ;Xðt � 1Þ; . . .��XðtÞ
Yðt þ 1Þ ¼ F ½YðtÞ;Yðt � 1Þ; . . .��Y ðtÞ

: (4:3)

Here F is a general population renewal process as a function of past

population sizes with various lag terms. Note that – in contrast to

Moran (1953b) – the function F is not necessarily assumed to be a linear

one, or a function that can be linearized. The disturbance, theMoran effect �,
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is taken here as a multiplicative effect from a uniform distribution of

random numbers between 1�w and 1¼w, where 0<w< 1 (Ranta et al.

1995a). The term w is the strength of the external impact.

Consider now a two-population system where the renewal function f

obeys the Ricker dynamics with 1� r� 3.5. To generate the Moran

effect we shall let the impact strength have two differing values, w¼ 0.05

and w¼ 0.5. The population renewal process (initiated with random

numbers between 0 and 1) was left running for 1100 generations. The

synchrony between X and Y was calculated from the final 100 time steps.

Unlike the AR process in eq. 4.1, the Ricker dynamics will not become

synchronized very well in the periodic and chaotic region (r> 2), and if

the strength of the impact w is weak for 2< r< 2.76 the two populations

are either in perfect synchrony or entirely out of phase in 50% of the trials

(fig. 4.6). It appears that the Moran effect is not completely capable of

synchronizing complex nonlinear dynamics (Ranta et al. 1997e,f ).

In eqs. 4.1–4.3 the Moran effect forcing the two populations is global,

i.e., the noise influencing X and Y is perfectly correlated. This is not

always the case. The different populations may share a common environ-

ment, i.e., they are all disturbed by a global noise, but they may be

differently influenced by local noise. To explore this we selected a system

of n¼ 10 unconnected populations variously affected by local and global

disturbances (wLOCAL and wGLOBAL ranges being from 0.01 to 0.25). In the
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Fig. 4.6. Synchrony levels between two populations both obeying Ricker dynamics

(withK¼ 1). The color of the external disturbance is white, but in (A) (w¼ 0.05) it is

much weaker than in (B) (w¼ 0.5). In the region of stable dynamics (r< 2), the two

populations will become synchronized, but not always in the region of periodic

dynamics (2< r< 2.76) and very seldom in the region of chaotic dynamics (r> 2.76).

For a bifurcation diagram of the Ricker dynamics see, fig. B1 in Box 2.2 (p. 19).
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exercise, local disturbance is by definition population specific, while the

global noise affects all n populations likewise. The populations were set

to obey the delayed Ricker dynamics with a ten-year cycle (p. 23; the

simulations were left running for 1100 generations of which the final 100

were used to score the average level of synchrony �r0 among the popula-

tions). Not unexpectedly (fig. 4.7), the level of synchrony achieved under

such a situation depends on the relative strength of the global and local

effects (Ranta et al. 1997f ). The global perturbations have to dominate the

local ones in order to achieve reasonable levels of synchrony without any

other effects called into action. This observation underlines the relative

impact of local and global processes in affecting the dynamics of local

population subunits. The delayedRicker nonlinear second-order dynamics

do not render so easily to perfect synchrony (fig. 4.7), exceptwhen exposed

to relatively high global disturbing forces. This is in contrast to the linear

AR models of the Moran theorem that will be synchronized once the

global effect takes over the local one.

A recent debate (Blasius and Stone 2000; Grenfell et al. 2000) con-

cerns synchronicity in the fluctuations of numbers of two feral sheep

populations (Grenfell et al. 1998). The populations on two islands in the
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obeying delayed Ricker dynamics with parameters selected (r¼ 0.53, a1¼ 0.05,

a2¼�0.1) so that the emerging dynamics display cyclic dynamics with

approximately ten-year periodicity. The populations are disturbed with global and

local perturbations (equal range in both). The results are averaged over 50 replications

of all parameter combinations.
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St. Kilda archipelago are surrounded by rough sea, effectively cutting off

dispersal; thus, making up a Moran’s dream system. The discussion con-

cerns the fact that the environments shared between the two islands

correlate more strongly than the dynamics of the two sheep populations,

r0(X, Z)<�(", �). The conclusion (Blasius and Stone 2000) is that the

Moran theorem seems not to hold. The argument goes that the nonlinear-

ity observed in the sheep dynamics (Grenfell et al. 1998, 2000) is responsible

for this mismatch (but see Ripa 2000). Overall, observing such apparent

inconsistency between data and theory does not nullify Moran’s achieve-

ment. What is badly needed is a general picture of the population synchro-

nies when the circumstances do not match exactly the assumptions in

Moran’s theorem. Possible deviations from Moran’s assumptions include

nonlinearities (Grenfell et al. 1998), temporally autocorrelated noise, and

different local endogenous dynamics. Thus, despite efforts over the past

50 years, the population level consequences of the Moran effect are far

from being completely understood.

Seed masting and tree-ring growth both show large-scale synchrony;

in addition they demonstrate that synchrony levels off with increasing

distance (Koenig and Knops 1998, 2000a). Here the synchrony scale is

several hundreds of kilometers. Climate events (rainfall, temperature) are

the most likely candidates for the external agent synchronizing masting

and tree-ring growth (Koenig and Knops 2000a). With trees, dispersal is

thought to be of no relevance (but for pollen flow, dispersal is an agent of

synchrony, see Satake and Iwasa 2000) in synchronizing the life history

events. Surprisingly enough, the spatial pattern in masting or growth and

in various climate indices is different (Koenig and Knops 2000b). Hence,

in this case climatic events cannot be unambiguously advocated as the

Moran effect making the life history events take place in synchrony.

However, elsewhere (Post and Stenseth 1999; Post et al. 2001) it has

been shown that climate effects influence plant life histories over large

geographical ranges.

We shall close this section by pointing out that when the external noise

modulates the dynamics of the focal populations, it might turn out that

the underlying dynamics become unrecognizable. This has been shown

to be the case with both Ricker and delayed Ricker dynamics when the

disturbance is frequent and strong enough (Ranta et al. 1998). Thus, the

Moran effect has a dual face: it may generate synchronicity in population

fluctuations over large ranges, but it may also mutilate the underlying

skeleton of the dynamics to the extent that it becomes unidentifiable. This

is the ‘‘visibility’’ problem (Ranta et al. 1997f, 2000a; Kaitala and Ranta
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2001; Laakso et al. 2001; Lundberg et al. 2001; Jonzén et al. 2002a)

discussed in Chapter 2.

Dispersal

Elton (1924) first proposed that redistribution of individuals between

breeding seasons might synchronize dynamics of populations. However,

to substantiate this suggestion took half a century. Maynard Smith (1974)

demonstrated – using theoretical machinery – that dispersal, indeed, syn-

chronizes fluctuations of populations. Since then, many authors have

suggested dispersal as one of the key agents responsible for synchronicity

(e.g., Elton 1924; Butler 1953; Smith 1983; Steen et al. 1990; Hanski and

Woiwod 1993; Ranta et al. 1995a; Bjørnstad et al. 1999a; Cattadori et al.

2000). To illustrate the synchronizing power of redistributing individuals

let us first return to the two-population Ricker dynamics (p. 44, fig. 4.6),

which the Moran effect could not synchronize. We shall now remove the

external perturbation but will let 10% of the residents in X take leave to Y

and the other way round. It turns out that with periodic Ricker dynamics

dispersal is capable of synchronizing fluctuations in the two populations

(fig. 4.8) but notwhen the dynamics are complex (Ranta andKaitala 2000).

It is worth noting, however, that dispersal modulates the originally com-

plex dynamics into a two-point periodicity.

Ranta et al. (1995a, 1997c) did a detailed analysis of the significance of

the Moran effect and dispersal on synchrony level among local popula-

tions. Here we shall revisit part of the analysis (Box. 4.3) with a 22-

factorial treatment: Moran effect (yes, no) and dispersal (yes, no) as

factors. The four differing combinations also give differing results as to

the degree of temporal match in coherence of fluctuations among the n

populations. Obviously, if there is no external disturbance and no

dispersal, the populations, if initiated out of phase, will also keep on

fluctuating out of phase (fig. 4.9(A)). The Moran effect alone is capable

of raising the level of synchrony r0� 0.5 (fig. 4.9(B)). The distance-

dependent dispersal enhances the level of synchrony between closely

located populations but less so for more distantly related populations

(fig. 4.9(C)). It is worth noting that negatively distance-dependent

dispersal can alone yield synchrony patterns matching those observed

with real population systems (figs. 4.2, 4.4). When both the Moran

effect and dispersal are in action one gets enhanced synchrony values that

also level off with distance (fig. 4.9(D)). In fact, as already pointed out by

Ranta et al. (1995a), with real data the two cases, distance-dependent
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Fig. 4.8. Population trajectories of a two-population system (thick and thin line)

obeying periodic (r¼ 2.2) and chaotic (r¼ 3.0) Ricker dynamics (K¼ 1). Panels (A)

and (B) indicate the initial dynamics, while the corresponding dispersal-modulated

dynamics are given in (C) and (D). Dispersal (10% of individuals moving between the

two populations) is capable of synchronizing Ricker dynamics in the periodic region

but not in the chaotic region of r. In the chaotic regionwith dispersal, the fluctuations

in population size will be modulated into two-point cycle. Modified after Ranta and

Kaitala (2000).
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dispersal alone or distance-dependent dispersal acting in concert with the

Moran effect, are hard to tell apart.

We shall now briefly return to the system of n unconnected populations

that are variously affected by local and global disturbances (wLOCAL and

Box 4.3 . Moran effect and dispersal

Assume a set of populations n located in co-ordinate space, each obeying

a matching density dependence in the renewal process. Each generation

a constant fractionm, 0�m� 1, of each population redistributes among

the n units. For the dispersal-coupled dynamics we have

Xiðt þ 1Þ ¼ ð1� mÞF XiðtÞ;Xiðt � 1Þ; �ðtÞ½ � þ
X
s;s 6¼i

MsiðtÞ;

where Xi(t) is the population size in unit i at time t, �(t) is the Moran

effect and Msi(t) is the number of immigrants arriving at patch i from

patch s because of dispersal. The Moran effect is taken to be white noise

from uniformly distributed random numbers between 1�w and 1þw

[herew¼ 0.1 (theMoran effect is in action), or w¼ 0 (there is noMoran

effect)]. The number of offspring alive after reproduction is given as

F ¼ XiðtÞ�ðtÞuiðtÞ f ½XiðtÞ;Xiðt � 1Þ�;
where the arguments of F have been omitted. Function f defines the

delayed density-dependent per capita reproductive rate. The term ui(t)

is local noise (drawn from uniform random numbers between 0.95 and

1.05). For the Ricker dynamics with delayed density dependence we

write

f XiðtÞ;Xiðt � 1Þ½ � ¼ exp r 1þ a1XiðtÞ þ a2Xiðt � 1Þ½ �f g;
where r is maximum per capita rate of increase, and a1 and a2 are

parameters determining density dependence. The parameters were

selected such that they yield cyclic (r¼ 0.53, a1¼ –0.05, a2¼ 0.1)

dynamics with approximately ten-year periodicity. The term Msi(t)

in the first equation refers to the number of immigrants arriving at the

subpopulation i from the population s as a consequence of dispersal.

The dispersal here obeys kernel I (c¼ 2; p. 53), and m¼ 0.05 (yes

dispersal) or m¼ 0 (no dispersal). The populations were initiated

with i.i.d. random numbers (between 1 and 10) and the process was

left running for 1100 generations. The final 100 were used to score

synchrony r0 among the populations in pairs (fig. 4.9).
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wGLOBAL). In this example the populations follow the delayed Ricker

dynamics, (Box 2.5), with ten-year cycle period length, and, precisely as

previously, the simulations were left running for 1100 generations of which

the final 100 were used to calculate in a pairwise manner the average level

of synchrony in n populations. The only deviation to the analysis reported

in fig. 4.7 is that we allowed 10% (m¼ 0.1) of the resident individuals to

disperse among the population subunits. If dispersal distance plays no role

(c¼ 0 in the kernel I (p. 53), dispersal becomes independent of distance

among the subunits (i.e., one has spatially implicit population structure)) in

the redistribution of individuals, the synchrony levels achieved become

dependent only on the intensity of the local disturbance. With more

localized dispersal (c¼ 0.75) the synchrony level isoclines bend from hori-

zontal ones (fig. 4.10(A)) towards 458 (fig. 4.10(B)). Comparison with

fig. 4.7, however, shows that even a modest dispersal over short distances

enhances the overall level of synchrony in population fluctuations.

Spatially autocorrelated Moran effect

The outcome of the experimentation with the Moran effect and dispersal

as synchronizing agents (fig. 4.9) is not too sensitive to the underlying

population renewal process. In their original analysis Ranta et al. (1995a)
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Fig. 4.10. Average synchrony isoclines (r0) between ten dispersal-linked populations

(spatially implicit structure) obeying delayedRicker dynamics with parameters selected

(r¼ 0.53, a1¼ 0.05, a2¼�0.1) so that the emerging dynamics display cyclic dynamics

approximately with ten-year periodicity. The populations are disturbed by global and

local perturbations (equal range in both). The results are averaged over 50 replications

of all parameter combinations (see also fig. 4.7).
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used also Ricker dynamics and age-structured population dynamics. Later

on this pattern was confirmed with damped and complex delayed Ricker

dynamics and with AR(1) and AR(2) dynamics (Ranta et al. 1999a). The

essential point with many population series from nature that show syn-

chronicity is that often there is not only a high level of temporal coher-

ence among the populations compared but also that the level of

synchrony goes down with increasing distance (fig. 4.2, 4.4; Ranta et al.

1999a). Unfortunately, a few explanations may account for why syn-

chrony levels off against increasing distance among the populations com-

pared. We have already discussed the impact of distance-dependent

dispersal alone and acting together with the global Moran effect. An

additional explanation is that the Moran effect is spatially autocorrelated

(Lande et al. 1999; Ranta et al. 1999a). That is, areas close to the epicenter

of the disturbance receive a higher level of perturbation than areas far

away from the center point of the disturbance.

One way of implementing spatial autocorrelation in theMoran effect is

(Ranta et al. 1999a)

Xiðt þ 1Þ ¼ ð1� mÞF XiðtÞ;Xiðt � 1Þ; �ðdi; tÞ½ � þ
X
s;s 6¼i

MsiðtÞ; (4:4)

with a slight modification of the first equation in Box 4.3. The last term of

eq. 4.4 is for the dispersal kernel I. Here the �(di) is theMoran effect, now

characterized by its intensity, �i, for each subpopulation as a function of

the distance di of each subpopulation i from the place of the hit, e.g.,

�iðdi; tÞ ¼ 1� expð�cMORANdiÞ: (4:5)

If �i(di)< 0.2 we set �i(di)¼ 0.2 (that is, a maximum of 80% of a sub-

population located precisely at the place of the effect’s hit is wiped off, or

if the Moran effect is global, 80% of individuals in the various populations

will be eliminated). The parameter cMORAN takes care of the spatial extent

of theMoran effect: cMORAN¼ 0 equals global disturbance, while the spatial

coverage of the Moran effect goes down with increasing value of cMORAN.

This way of implementing the spatially autocorrelated Moran effect

implies that the location of the strongest effect may vary from year to

year (Ranta et al. 1999a).

To demonstrate the impact of spatially autocorrelated Moran effect

on synchrony we shall take a reduced subset of the analysis done by

Ranta et al. (1999a). Following them, we shall assume delayed Ricker

dynamics with ten-year cycles. A set of n¼ 25 population subunits is
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randomly placed into a 20� 20 co-ordinate space, and each population

initiated in random phase with random numbers from uniform distribu-

tion between 1 and 10. Here, any dispersal follows kernel I (p. 53),

while the spatially autocorrelated Moran effect, when in action, obeys

eqs. 4.4 and 4.5.

As anticipated, the relationship between synchrony and distance is

much the same regardless of whether we have only the spatially auto-

correlated Moran effect in action (fig. 4.11(A)), or dispersal alone that is

negatively distance-dependent (fig. 4.11(B)), or both of them operating

simultaneously (fig. 4.11(C)). As the landscape in our system is arbitrary,

one should perhaps not pay too much diagnostic attention to the subtle

differences in the shape in which the data points are patterned in the

synchrony versus distance space in fig. 4.11. However, what is relevant

here is that, even with the ten-year cyclic dynamics, there is a substantial

parameter space (cDISPERSAL, cMORAN) that will produce matching patterns in

overall synchrony and how the synchrony relates to distance among the

populations compared (fig. 4.12). Localized disturbance and dispersal

(i.e., large values of cMORAN and cDISPERSAL; because they are coefficients of

a negative exponential function) tend not to synchronize the dynamics of

populations well. The outcome is in details that are dependent on the

kind of underlying dynamics, as shown byRanta et al. (1999a) in their more

extensive analysis. This warns against making conclusions too hastily based

on a simulation of a single kind of population renewal process alone.

However, the issue is far from being completely understood, partly because
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Fig. 4.11. Synchrony levels against distance among pairs of populations (n¼ 10) with

(A) spatially autocorrelated Moran in action (cMORAN¼ 1.0; kernel I, p. 53), with

(B) distance-dependent dispersal in action (m¼ 0.1, cDISP¼ 0.75), and when (C) both

are operating in concert. The dynamics are ten-year cycle length after the delayed

Ricker equation. The synchrony levels, r0, are assessed for 100 time units after elapse

of an initial phase of 1000 generations.
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of a lack of proper data on the spatial extent of the disturbance effect, but

also due to a lack of theoretical research.

Predation

External disturbance and dispersal are not the sole agents proposed to be

responsible for the observed large-scale synchronicity in population fluc-

tuations. Trophic interactions, most notably predator–prey interactions,

have frequently been raised as a candidate cause of synchrony (Elton 1924;

Butler 1953; Watt 1968; Maynard Smith 1974). In more recent years the

significance of predation as a synchronizing agent for their prey species has

been raised by Ydenberg (1987), Ims and Steen (1990), Korpimäki and

Norrdahl (1991), Small et al. (1993). The hypothesis calls for specialist

predators that can cover large regions in a short time. Recently Ims and

Andreassen (2000) collected the first experimental field evidence to prove

that predators indeed synchronize the dynamics of several vole species.

Using predation-excluded cages the authors were able to demonstrate that

migrating owls (Asio otus, A. flammeus) and raptors (Falco tinnunculus, Buteo

lagopus) were capable of reducing experimental vole populations down to

the level observed simultaneously in nature. That predators have a syn-

chronizing impact indicates a tight enough predator–prey interaction, to

the extent that predators are the ones that control prey numbers.
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Synchrony across species

Toour knowledge there are a few data sets displaying a relatively high degree

of synchronicity in population fluctuations across species. The oldest one

comes from Butler (1953) who showed, with the Hudson Bay Company’s

fur records, that Canadian mammal species such as Canada lynx, red fox and

fisher, or mink and muskrat as an other set of species (fig. 4.13) tend to have

their population peaks across Canada in closely matching years. It is inter-

esting to note that different grouse species tend to fluctuate in step in Finland

(Lindén 1988; Ranta et al. 1995b), Scotland (Mackenzie 1952; Hudson

1992) and the Italian Alps (Cattadori and Hudson 1999; Cattadori et al.

2000). The same goes for Scandinavian vole species (Henttonen 1985;

Korpimäki and Norrdahl 1998; Stenseth 1999), and to some extent also

for British aphids and moths (Hanski and Woiwod 1993).

To exemplify synchrony across species we shall use the 1967–1983

records of the dynamics of voles and six small game species and four

grouse species in 11 provinces in Finland (Lindén 1988). To assess the

overall level of synchronicity in dynamics of the 11 taxa in Finland, we

made a principal component analysis with the species as variables and

province-specific de-trended data as observations. Their results suggest

that the tightest coupling seems to be among the grouse species, caper-

caillie, black grouse and hazel grouse (fig. 4.14), which (using different

census data; p. 68) are known to fluctuate in rather tight temporal match

(Lindén 1988; Ranta et al. 1995b). The two other groups of species (stoat

versus least weasel, mountain hare versus red squirrel) are more hetero-

geneous in terms of population renewal, yet they display a relatively high

level of synchrony in large areas in Finland.

It is not entirely clear to us why some of the taiga forest fauna in

Canada and in Finland, or the grouse in Scotland and Italian Alps, or

moths and aphids in England display synchronous dynamics across spe-

cies. Thus, we shall begin with a parsimonious explanation: synchrony

across species is due to theMoran effect. At this stage the only factor that is

assumed is that the focal pair of species X and Y share a common

environment. For the population renewal functions, we have selected

here the Ricker dynamics and Maynard Smith–Slatkin dynamics in pure

and mixed combinations. The external disturbance (white noise; Box 4.3)

is assumed to affect simultaneously populations of the two species, say

X and Y, with a similar force �(t).
With both the Ricker and Maynard Smith–Slatkin dynamics (Box 2.1),

we found that the Moran effect is capable of synchronizing the dynamics
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across species in the area of stable dynamics (4.15(A),(B)), and also in

scattered areas with periodic dynamics, but not when the dynamics are

complex (except when X and Y have matching growth rates). To some

extent, the hybrid renewal process pairing (Ricker versus Maynard

Smith–Slatkin) echoes (fig. 4.15(C)) what was found when the popula-

tions were renewed according to identical models.

Our findings show that theMoran effect is a possible synchronizing agent

also for across-species dynamics despite their different density-dependence

structures. Note that we did not assume any interaction between the

two species, just that they shared a common environment with its external

noise. This finding is intriguing, because the simulations also show that

growth rates or autocorrelation structures must not differ toomuch in order

to produce synchronous dynamics across differing population renewal
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Explanations of synchrony . 91



processes. When the types of density dependence are mixed, the synchro-

nizing capacity of theMoran effect becomes less obvious. However, as long

as the deterministic dynamics are stable, synchronous dynamics via the

Moran effect are possible even with different demography of the two

species.

An alternative explanation for the synchrony pattern found in the two

data sets (fig. 4.13 and 4.14) is that trophic interactions (predators and

disease) are important (Ydenberg 1987; Ims and Steen 1990; Korpimäki

and Norrdahl 1991). For example, many members of the prey community

in Finnish forests are often positively correlated among themselves, as are

many of the dominating predators. Among predators and prey, however,

there are rather strong negative correlations with lag zero (Lindén 1988).

To address the extent to which trophic interactions among species are

capable of synchronizing population fluctuations of an interacting pair of

species, we shall use a model on dynamics between resource and consumer

species (Leslie and Gower 1960; Box 4.4). First, in a one-resource–one-

consumer species system we shall explore synchrony across species when

the dynamics of the two species are affected by external disturbance in

varying degrees. The Moran effect is superimposed, in turn, on only the

resource population, the consumer population, or on both of them (fully

Box 4.4 . Discrete-time resource–consumer dynamics

The Leslie andGower (1960) model of resource (R) and consumer (C )

interactions is

Rðt þ 1Þ ¼ lRRðtÞ
1þ �RRðtÞ þ �

P
CiðtÞ

� �
�ðtÞ;

Ciðt þ 1Þ ¼ lC;iCiðtÞ
1þ �C;i

CiðtÞ
RðtÞ

�ðtÞ:

Here l is maximum per capita growth rate, � is the strength of intra-

specific density dependence and � is the per capita influence of con-

sumers on the growth of the resources. The populations were initiated

by uniform random numbers (for R between 15 and 20, forCi between

2 and 7), and were let to renew after the equation above for 600

generations; the final 100 were used to calculate the level of synchrony

in dynamics betweenC1 andC2 and betweenR andCi. The process was

repeated for 1000 times and the averages are reported in fig. 4.16.
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correlated noise). Second, we extend our system to include two consumer

species that interact only via their common resource. In this system, the

noise influences only the dynamics of the resource.

The Leslie–Gower dynamics, a ratio-dependent predator–prey inter-

action, yield stable dynamics if the system is left running without any

stochastic influence (Leslie and Gower 1960). When the one-resource–

one-consumer Leslie–Gower system is disturbed with external noise, the

achieved synchrony level across trophic levels now depends on which

component of the interacting species is influenced by the external noise

(fig. 4.16(A)). The synchrony between the resource and consumer species is

rather high (r0> 0.5) when the noise is only affecting the resource species,

or when the resource and consumer species both receive perfectly corre-

lated noise. However, when the modulating noise acts only upon the
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Fig. 4.16. Synchrony across species in Leslie–Gower resource–consumer dynamics.

(A) Synchrony across trophic levels with one resourceR and one consumerC species

with the Moran disturbance variably affecting R, C or both. (B) Synchrony across

species with one resource (influenced by external noise) and two consumer species.

We used the original parameter values by Leslie and Gower (1960): lR¼ 1.255 74,

lC¼ 1.189 2, �R¼ 0.000 514 8, �C¼ 0.283 8, �¼ 0.001 801 8. In the system with

two consumer species C1 and C2, the Moran effect influenced only the resource

dynamics (the parameter values for resource species were as above, while the values

for lC1 and lC2 were drawn from uniform random distribution between 1 and 3, and

�C,1 and �C,2 from uniform random distribution between 0.1 and 0.3).
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dynamics of the consumer the two populations start to fluctuate out of phase

(r0<�0.5; fig. 4.16(A)). The next question is the degree to which the

resource–consumer interaction can synchronize the dynamics of two con-

sumer species interacting via a shared resource species. The answer is

straightforward: the level of synchrony in dynamics between the two

consumer species depending on one resource is very high (r0> 0.7) and

appears to be independent of the level of disturbance modulating the

dynamics of the resource (fig. 4.16(B)). Thus, synchrony across trophic

levels is achievable in a resource–consumer interaction.

Where are we?

Half a century has elapsed since Moran outlined his ingenious idea about

how environmental perturbation is capable of synchronizing the dynamics

of populations sharing a common environment (Moran 1953b). His idea

was a direct response to interactions with Elton, who initiated the research

on large-scale phenomena in population dynamics (Elton 1924; Lindström

et al. 2001). Now, we can attempt to answer the following question: what

havewe learned about population synchronicity during the past five decades

(Moran 1953b), or rather, during the last three-quarters of a century (Elton

1924)? This question has been the subject of a few reviews (Ranta et al.

1997c; Hudson and Cattadori 1999; Bjørnstad et al. 1999a, Liebholt et al.

2004), and one can conclude that by now we have much more data on the

taxonomic and geographic extent of synchronicity both within and across

species (references in the previous sections of this chapter). We have an

enriched palette with a number of agents that have the potential to force

populations, regulated by density-dependent feedback, to fluctuate in step:

the Moran effect, redistribution of individuals between breeding seasons

and predation/disease. These may act in solo, but more likely in concert.

Accepting the Moran effect and dispersal in action, Kendall et al. (2000)

and Ripa (2000) both used linear models for the population renewal

process (and worked independently of each other). Kendall et al. (2000)

addressed the joint effect of the spatial correlation in the environment and

dispersal. They come to the following conclusion: there is always interac-

tion between the two. The interaction is naturally small when one or both

effects are small. Most interestingly, their analysis indicates that the inter-

action between the external disturbance and dispersal is opposite in sign to

the environmental correlation. It is generally assumed that � (", �)> 0 (the

populations share a common environment). Kendall et al. (2000) concluded

that population synchrony will be lower than predicted by simply adding
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the effects of dispersal and environmental correlation. Hence, the effects of

dispersal and environmental correlation are subadditive. Ripa, also using a

theoretical approach with linear models, argued that external disturbance

(after Moran 1953b) sets a baseline for synchrony level among populations,

and that dispersal can only enhance the level of synchrony. For Ripa,

dispersal is only an effective synchronizing mechanism when the popula-

tion renewal process is close to unstable. Both Kendall et al. (2000) and

Ripa (2000) agree that our interpretation of population synchrony can vary

depending on the timing of the population census. Simultaneously with the

research described, a third team, Lande et al. (1999), was working on the

same issue. They used stochastic nonlinear modeling to address synchrony

with the Moran effect and dispersal. The major conclusion is simply that,

relative to �(",�), the contribution of dispersal to the spatial scale of

synchrony is ‘‘. . . magnified by the ratio of dispersal rate to the strength

of density regulation. Thus even if the scale of dispersal is smaller than that

of environmental correlation, dispersal can substantially increase the scale of

population synchrony for weakly regulated populations’’ (Lande et al. 1999,

p. 271). Thus, Lande and his associates appear to agree with Ripa. This is

also in harmony with the simulations shown on the preceding pages.

Nonetheless, the three teams agree, as do our simulation results in this

chapter, that the strength of density-dependent feedback plays a significant

role in the synchronizing process.

Greenman and Benton (2001) used unstructured nonlinear renewal

processes. They return to the roots by being interested in how two

independent populations, influenced by the Moran effect, will become

synchronized. This matches the feral sheep setting (Grenfell et al. 1998)

on two oceanic islands with no dispersal whatsoever. In this case, the

environments shared between the two islands correlate more strongly

than the dynamics of the two sheep populations. Greenman and Benton

(2001) showed that for a great variety of nonlinear models there is almost

always r0(X,Z)<�(",�). Thus, their results agree with Grenfell et al.

(1998, 2000). Greenman and Benton (2001) also emphasized a general

point often forgotten in synchrony research. Even though a rich variety of

environmental noise structures can generate synchrony, it is hard – if not

impossible – to identify correctly the noise that synchronized given

population data. We cannot agree more (Ranta et al. 1995a, 1998,

1999a). Any set of populations obeying a given renewal process can be

synchronized in a rich variety of ways. Thus, finding out who is the

Moran in the Moran effect becomes a futile task. This is the reverse of the

‘‘visibility’’ problem (p. 34, Ranta et al. 2000a; Laakso et al. 2001).
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Spatial scales for investigating synchrony range from meters to kilo-

meters (Thomas 1991; Sutcliffe et al. 1996) to hundreds of kilometers

(Hanski and Woiwod 1993; Ranta et al. 1995b; Koenig and Knops

2000a), and even up to thousands of kilometers (Ranta et al. 1997a,b,d;

Hawkins and Holyoak 1998; Paradis et al. 2000). The relative importance

of dispersal and the external perturbation as synchronizing agents is often

argued to depend on the scale: dispersal at a local scale and the Moran

effect at larger ranges. This is not so. It is a relatively easy task to show that

local dispersal yields global synchrony given a long enough time. For

example, we took a set of 10 000 populations, arranged in a string, and let

10% of the annual population size disperse to the neighboring cell on the

right and left (at the ends only to the right, or to the left). The populations

obeyed delayed Ricker dynamics with ten-year period length, and they

were initiated in random phase. Checking the match of population

fluctuations, after 5000 generations elapsed, showed that the system was

in perfect synchrony all over. Experimentation with various other

renewal processes gives matching results.

With synchronicity, we often find that the level of synchronous fluc-

tuations goes down as the distance increases between the areas from

where the data are derived. This pattern can be generated in different

ways: dispersal that is negatively distance-dependent, dispersal and global

Moran effect acting together, and with a spatially autocorrelated Moran

effect (Ranta et al. 1999a; Lande et al. 1999). Many of the climate para-

meters (rainfall, temperature) are spatially autocorrelated (Burroughs 1992),

e.g., in Finland the radius of reasonably strong spatial autocorrelation for

temperature is 200 km (Heino 1994). Finding spatial autocorrelation in

population time series tempts one to start looking for the match between

climate variables and population data. However, matching spatial auto-

correlation profiles might not necessarily reveal that one of them (popula-

tion fluctuations) is due to the other one (spatial fluctuations in

precipitation or temperature). Our argument is that the identity of the

Moran effect might be hard to find out. It also might be that the external

disturbance comes from different sources in different years (Ranta et al.

1995a; Lindström et al. 2001). One year it may be a cold spell in a critical

phase of life history of the focal species; another time it might be excep-

tional rainfall or a dry spell. The issue is that natural populations live with

redistribution of individuals and are impacted by a number of various

stochastic processes. To pinpoint one cause of synchronicity might be

too far off the mark. However, one has to agree with Paradis et al. (2000,

p. 2123), who say that ‘‘synchrony in natural populations seems to be
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determined by complex interactions between abundance, population

variability, species characteristics, and demographic mechanisms.’’ Despite

the progress made since Moran (1953b), there still seems to be a great

deal of research to do in order to fully understand the causes and con-

sequences of synchronous population fluctuations. There are reasons to be

worried: species with synchronous populations are likely to face greater

risks of extinction because density crashes can occur simultaneously in all

populations (Heino et al. 1997a). A covering review of various topics in

population synchronicity is provided by Liebhold et al. (2004).

Summary

In this chapter, we showed that, in a great many species, populations tend

to fluctuate in a rather good temporal match across large geographical

ranges. Large-scale synchrony is also observed in plant life history events

(seed set, growth). External disturbance, the Moran effect, is the first

mechanism raised to explain this pattern. In many cases, we also see that

the level of synchronicity goes down when the distance between the

populations compared is increased (rD< 0). The second explanation for

synchronous fluctuations, dispersal of individuals, can account for this

pattern. Predation/diseases are the third mechanism suggested to account

for synchrony. That rD< 0 can also be achieved by theMoran effect being

spatially autocorrelated. It is most likely, however, that the various

synchronizing agents work in concert. Many different noise signals can

synchronize the dynamics of populations obeying common density-

dependent feedback. As to the external disturbing agent, it may very

well be that, in different years or at different places, it is a different cause

that generates population synchrony. It may also be that in structured

populations different life stages may be differently vulnerable to the

external modulator(s). This makes it difficult to identify the exact nature

of the external disturbance. Much more experimental and theoretical

research is needed before the stochastic processes influencing the

dynamics of populations are properly understood. This is especially true

for nonlinear population renewal processes. Furthermore, there is sub-

stantial evidence of synchronous population fluctuations across species.

Yet, a theory of synchronicity across species with various interactions is

almost nonexistent. Despite a substantial amount of extant data, we still

lack information from which various aspects of geographical scale and

synchronicity could be properly assessed.
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5 . Order–disorder in space and time

In this chapter, we shall continue exploring how large-scale ecological

processes may be fundamentally important for our understanding of

emergent phenomena in various population systems. The modern eco-

logical literature on spatial population dynamics has drawn our attention

to various captivating configurations, such as traveling waves, suggesting

that spatially structured populations may become self-organized.

Spatial interactions in population dynamics can create a variety of

spatial-temporal patterns. Spatial self-organization was first demonstrated

in dispersal-coupled predator–prey and host–parasitoid models and

we will discuss them first. We then proceed to expand the self-

organization on a large scale of redistribution-coupled population proces-

ses. We shall finish by discussing data that support some of the theoretical

findings.

Spatial interactions in population dynamics can generate a rich

ensemble of spatial patterns. One example is traveling waves

(Shigesada et al. 1986; Kot 1992; Ranta and Kaitala 1997; Shikesada and

Kawasaki 1997; Kaitala and Ranta 1998) and they may appear in the form

of wave fronts, periodic waves, spirals, and rings. Other eye-catching

patterns are represented by crystal lattices, patches, and spatial chaos

(Hassell et al. 1991, 1994; Solé and Valls 1991; Comins et al. 1992; Solé

et al. 1992a,b; Solé and Bascompte 1993; Hassell 2000; Bjørnstad and

Bascompte 2001). There are no strict definitions for the different spatial

configurations emerging due to spatially coupled population renewal,

although some attempts to derive more formal approaches to identify

the patterns have been presented (Bjørnstad and Bascompte 2001;

Bjørnstad et al 2002a; Kaitala 2002). These classifications refer to aggre-

gated population highs and lows, whichmay take the form of a wave front

and whichmay or may not move to a certain direction in space (Bjørnstad

et al. 2002b).



Invasion of a species to new distribution ranges may cause a moving

wave front (Shikesada and Kawasaki 1997; Sherratt 2001). Another form of

a traveling wave is repeated traveling waves that, according to definition,

will reoccur at more or less regular intervals. This phenomenon is compar-

able to the Mexican wave, often observed in football arenas, where hand

raising by people in the audience generates waves circling around the

stadium (Sherratt 2001). Traveling waves due to ecological interactions

are the particular feature that we shall address with the few extant examples.

In crystal lattices, yet another spatial pattern, the aggregations of local

population sizes stay put in space, but locally population abundances may

differ. In spatial chaos, local populations show chaotic dynamics and the

population highs may, but need not, be aggregated (locally in synchrony).

In recent years, various spatial patterns have also been reported from

natural populations, especially regarding traveling waves (Bulmer 1974;

Ranta and Kaitala 1997; Kaitala and Ranta 1998; Lambin et al.

1998; Savill and Hogeweg 1999; Moss et al. 2000; Mackinnon et al.

2001; Sherratt 2001; Bjørnstad et al. 2002b; Sherratt et al. 2002), and

from epidemics (Grenfell et al. 2001, 2002; Bjørnstad et al. 2002a).We are

thus right at the beginning of a stronger matching between empirical and

experimental data, and abstract theory. However, the theory and data

have to be further developed before the role of self-organization in

natural systems can be better established. Spatial self-structuring is not

only the fancy of theoreticians; it has potentially important bearings on

population management, conservation biology as well as on improving

the understanding of evolutionary processes.

Self-organized structures have often only been assessed by visual

inspection of the snapshot patterns emerging in simulations. This is a

sign of how young the research on spatial self-structuring is: if an inter-

action generates, e.g., symmetrical spatial properties or wave patterns in a

lattice, identifiable to human eye, these patterns are likely to be a product

of self-structuring processes occurring in the population. Obviously,

visual inspection is not enough. Further insight is needed, preferably in

terms of statistical indices that can be objectively assessed. Another pro-

blem is that data are often not collected for the purpose of testing this

theoretical work.

Since the spatial and temporal dynamics are two sides of the same

coin, spatial self-organization should also be reflected as temporal self-

organization; for example, in the frequency structure of population

dynamics (p. 31). It becomes evident that spatial order should be treated

together with temporal order. This is what we are after.
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Spatial host–parasitoid dynamics

The template

Self-organization of population dynamics in space can be easily illustrated

in a system where n dispersal-coupled population subunits are arranged

into a regular grid of cells (lattice). Pattern formation on a lattice was

first studied by Solé and Valls (1991) for predator–prey models, and by

Hassell et al. (1991, 1994) for host–parasitoid models. Solé and Valls

(1991) showed that order may arise in a configuration starting from

random initial population sizes. They were able to show that various

spatial patterns, such as spiral-like waves, patches, and rings, will emerge

when local population subunits are coupled by dispersing individuals.

Moreover, they observed that such patterns might exist under complex

and even under chaotic population dynamics.

To exemplify the self-emergence of spatially organized patterns we

shall re-work in some detail the host–parasitoid model used byHassell and

others (Hassell et al. 1991, 1994; Hassell 2000). For these purposes,

consider first a single-population (or isolated-population) version of the

model, where the dynamics are given as

Nðt þ 1Þ ¼ lNðtÞf NðtÞ; PðtÞ½ �
Pðt þ 1Þ ¼ qNðtÞ 1� f NðtÞ; PðtÞ½ �f g:

(5:1)

The host population size at time t is N(t) while P(t) is the corresponding

size for the parasite population, l and q are parameters, and f represents the

functional response of parasitoids against the number of its host.

Following Hassell et al. (1991), we assume that the functional response

is given as f (N,P)¼ exp(�aP), where a is a parameter. This is the classical

Nicholson–Bailey host–parasitoid model (Nicholson and Bailey 1935),

where the underlying assumption is that parasitoids search and attack their

hosts randomly. For the single-patch model, the dynamics become

Nðt þ 1Þ ¼ NðtÞexp r � aPðtÞ½ �
Pðt þ 1Þ ¼ qNðtÞ 1� exp �aPðtÞ½ �f g;

(5:2)

where r¼ ln(l), i.e., the population growth rate of the host, and a is a

constant. The equilibrium population sizes for the host and parasitoid are

now given as
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N� ¼ r

aq 1� expð�rÞ½ �
P� ¼ r

a
;

(5:3)

respectively. The equilibrium of the Nicholson–Bailey model is unstable

for all parameter values (Hassell and May 1973), hence persistent popula-

tions cannot be generated with eq. 5.2.

Assuming nonglobal dispersal both in the host and in the parasitoid, we

can extend our explorations of the host–parasitoid dynamics in a lattice.

The population dynamics proceed in two steps as follows. First, both

species reproduce at the same time. This is described by the local two-

species interaction on cell i

N 0
i ðtÞ ¼ lNiðtÞexp 1� aPiðtÞ½ �

P0
i ðtÞ ¼ qNiðtÞ 1� exp �aPiðtÞ½ �f g:

(5:4)

A fraction mN and mP of the renewed host N 0 and parasitoid P 0 popula-
tion disperses resulting in the new population sizes in each cell in the next

time step as follows

Niðt þ 1Þ ¼ ð1� mN ÞN 0
i ðtÞ þ

X
j2Ni

mNN
0
j ðtÞ

Piðt þ 1Þ ¼ ð1� mPÞP0
i ðtÞ þ

X
j2�i

mPP
0
j ðtÞ;

(5:5)

where the latter term in each equation gives the immigration of both

species to grid i from its neighborhoods Ni and �i. Here we assume that

for both species dispersal is local and that the neighborhood is defined as the

eight neighboring cells. Note that dispersal may be species-specific and it

can be density-dependent, such that the predator or parasitoid dispersal is

determined by the host density (Rohani and Miramontes 1995b).

Hassell et al. (1991) showed that the spatial patterns tend to form

different configurations depending on the parameter values, especially

on the dispersal parameters mN and mP (see also Wood and Thomas 1996;

Bolker and Pacala 1999; Bjørnstad and Bascompte 2001). Roughly, three

different classes of spatial patterns are identifiable in the simulations:

crystal lattices, spiral waves, and spatial chaos. Crystal lattices are spatially

standstill patterns where the population sizes may still go up and down. In

the two other patterns, spiral waves and spatial chaos, the patch-like

population aggregations move around the space and they may be formed
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and lost repeatedly. Such a spatial pattern formation can be easily recog-

nized by eye (fig. 5.1). A major challenge for population ecology is,

however, to proceed further with describing the population processes

by more objective tools than aesthetic evaluation of what we see.
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(B) Parasitoid

Fig. 5.1. An example of the self-organization behavior of the dispersal-coupled

Nicholson–Bailey host–parasitoid model (a 50� 50 lattice, l¼ 2, q¼ 0.5, mN¼ 0.2,

mP¼ 0.8, a¼ 0.09). The system was initiated with uniform random numbers

(between 1 and 40) for both the host and the parasitoid subpopulations. The snapshot

situation is given at t¼ 500. Note that both populations are spatially aggregated, and,

to some extent, the spatial configuration of the parasitoid population follows that of

the host (spatial correlation between host and parasitoid numbers r¼ 0.425).
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The play

We shall now deviate from the approach presented by Hassell et al.

(1991). In particular, we pay attention to the temporal patterns in the

connection of spatial pattern formation. Hassell et al. (1991) showed that

crystal lattices will be obtained for relative small areas of the dispersal

parameters mN and mP. For example, when l¼ 2, this will occur when

mN is small and mP is close to 1. On the other hand, it is much easier to

find parameter areas producing the two other patterns, spiral waves and

spatial chaos. Let us concentrate on an example of spiral waves (fig. 5.2).

Spiral waves should be understood as a general expression for different

wave patterns arising and proceeding in varying directions. On a large

lattice, many waves may be seen at a time. A single wave can occasionally

be split into twowave fronts, eachmoving in a different direction. As Solé

and Valls (1991) comment, spiral waves on a lattice, produced by

(A) Host

(B) Parasitoid

t = 200 t = 202 t = 204

Fig. 5.2. Examples of spiral waves in host (A) and parasitoid (B) dynamics in a 50� 50

lattice (l¼ 2, q¼ 0.5, mN¼ 0.4, mP¼ 0.4, a¼ 0.09). The dot size indicates local

population size; both (A) and (B) are drawn to the same scale. The three snapshots are

at t¼ 200, t¼ 202 and t¼ 204.
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ecological models, may not be spirals in the tight sense. Rather, they are

more or less spiral-like, moving population density formations.

Spiral waves will be observed, e.g., for l¼ 2, mN¼mP¼ 0.4 (on a

50� 50 lattice, dynamics run for 1000 time steps). The aggregated

population size over all cells in the lattice as well as local population size

of a randomly chosen cell fluctuate in a regular manner, as expected from

the Nicholson–Bailey dynamics (figs. 5.3, 5.4). The power spectrum

indicates that the local host and parasitoid dynamics are periodical with

the period length being about ten time steps. However, this is not the case

with the global (aggregated over all the lattice cells) dynamics: global

temporal fluctuations in the host and in the parasitoid fit better to a 1/f

power law (Halley 1995). We also observe that, in the spatial scale, both

the host and parasitoid populations exhibit spiral-looking fronts (fig. 5.2).
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Fig. 5.3. Dynamics of the host (A) and the parasitoid (C) in one randomly selected

cell in a 50� 50 lattice (fig. 5.2). The panels (B) and (D) give the corresponding

power spectra. Note that approximately 10-year cycles heavily dominate population

fluctuations in both the host and parasitoid.
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A further inspection shows that the fronts of the parasitoid populations

follow behind the fronts of the host. This observation becomes under-

standable by noting that the local populations of parasitoid lag behind the

local populations of the host in a very clear-cut way (fig. 5.5), the lag

being two to three generations, while at the global scale the lag is shorter,

and soon fades away with increasing time. Looking at the spatial patterns

(figs. 5.1, 5.2) indicates that the synchrony levels both of host and para-

sitoid populations go down with increasing distance between cells. This

was verified by randomly selecting 20 cells and sampling host and para-

sitoid dynamics for the final 100 time steps (fig. 5.6). For the same cells,

we also calculated synchrony in pairs by using a sliding time-window

technique (Ranta et al. 1997a, 1999b; Kaitala et al. 2001a). A window of

20 years was passed though the final 700 time units of the data with
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Fig. 5.4. Global dynamics of the host (A) and the parasitoid (C) in a 50� 50 lattice

(fig. 5.2). The panels (B) and (D) give the corresponding power spectra. Note that the

locally periodic (approximately 10-year cycle length) has been forced, due to spatial

coupling via redistributing individuals, into red power law dynamics (slopes inserted).
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using a sliding time-window technique. There are pairs of local host and parasitoid

populations, respectively, fluctuating in synchrony at times, drifting out of synchrony

to fluctuate in opposite phase, and then returning back to fluctuate in step.
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nonoverlapping sections. The results indicate that there are pairs of

populations, both in the host and in the parasitoid, that fluctuate in

synchrony for a while, drift out of synchrony to fluctuate in opposite

phase, and then return back to fluctuate in step (fig. 5.6). A similar finding

of time-variant synchrony is documented for the Canada lynx (p. 128;

Ranta et al. 1997a; Kaitala et al. 2001a).

We next turn to explore spatial chaos in the Nicholson–Bailey host–

parasitoid dynamics. Spatial chaos can be generated by using eqs. 5.4 and

5.5 with, e.g., l¼ 2,mN¼mP¼ 0.1 (fig. 5.7). Again, the local dynamics of

the host and the parasitoid are cyclic with approximately 10-year period

length. However, at the global level spatial coupling breaks down the

regular cycle. The power spectra show that long-term dynamics of the

host and the parasitoid appear to be a 1/f power law process (p. 104) (fig.

5.8). In addition, in this casewe find a rather high level of synchrony among

the host and among the parasitoid populations. Again, the level of syn-

chrony goes down against distance, and the synchrony is time-variant.

However, these results are not displayed, as they would merely repeat

(A) Host

(B) Parasitoid

t = 200 t = 202 t = 204

Fig. 5.7. Examples of spatial chaos in host (A) and parasitoid (B) dynamics in a

50� 50 lattice (mN¼mP¼ 0.1). The dot size indicates local population size; both (A)

and (B) are drawn to the same scale. The three snapshots are at t¼ 200, t¼ 202 and

t¼ 204. The local dynamics of the host and the parasitoid are cyclic with

approximately 10-year period length.
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those in fig. 5.6. We encourage research along these lines using different

models on interspecific interactions.

Traveling waves

We shall now move on to show that self-organization may also be

observed in single-species population dynamics in a spatial setting. It

will be shown that semi-independent population subunits, coupled via

redistributing individuals, are capable of supporting the evolution of

order in their dynamics (Kaitala and Ranta 1998). In this system, all the

patches are of matching quality. They differ only in their spatial co-

ordinates. Herewe shall maintain the regularity of the spatial grid. In addition

to characterizing self-organization visually, we also analyze the emerging

patterns quantitatively through the synchronicity of local dynamics. We

shall concentrate on the temporal and spatial patterns of synchrony.
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Fig. 5.8. Global dynamics of the host (A) and the parasitoid (C) and the corresponding

power spectra (B, D) in a 50� 50 lattice (fig. 5.7). The long-term dynamics of the host

and the parasitoid appear to obey the 1/f power law (slopes inserted).
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Consider a set of populations using the Ricker model with delayed

density dependence (Box 2.5). Each time step a constant fraction

m (0<m< 1) of each subpopulation will emigrate from the natal patch.

All the dispersing individuals are assumed to survive [we are using

dispersal kernel I (p. 53)]. In a single-population system, or in the

absence of dispersal (m¼ 0), the population dynamics are stable for r< 2

when a1¼ a2. At r¼ 2.0, a bifurcation occurs such that for r> 2 the

dynamics will be a 4-year cycle. Simulations, power spectral analyses,

and dominant Lyapunov exponents (for their calculation, see von

Bremen et al. 1997) for a1¼ a2¼ 0.05 indicate that a further increase in

the growth rate r ultimately leads, through a period-doubling range, to

chaotic population dynamics with periodic windows (r> 2.7).

The coupled map lattice structure will be constructed by locating 25

populations regularly on a 20� 20 grid such that the neighboring popula-

tions are four grid units apart. As in Kaitala and Ranta (1998), we used the

parameter values for the delayed Ricker dynamics that will yield 4-year

cycles [as in Scandinavian vole dynamics (Hansson and Henttonen 1985)].

We used r¼ 2.5 and r¼ 3.5 and the simulations were initiatedwith random

population densities for the first 2 years (i.i.d. random numbers from

uniform distribution between 0 and 50). To remove the effects of the

initial transients the simulations were run 1500 generations before analyses.

Self-organization in this system (fig. 5.9) is observed in the repeated

pattern that arises from random initial conditions. In the first sampling

year (fig. 5.9(A)), the population levels are low in all 25 patches, while in

the next time step (fig. 5.9(B)), six adjacent patches reach peak densities in

the north-west corner of the space. The following year, the peak densities

have moved south. Now the populations show a band of peak densities

spanning from southwest to northeast (fig. 5.9(C)). Finally, the peak

densities reach the southeast corner (fig. 5.9(D)). This 4-year dynamic

pattern, a traveling wave, will repeat itself over and over. The wave

patterns emerging from spatial interactions appear to be nonunique,

since several different moving patterns may be generated, depending on

the initial values of the simulations. Different initial conditions in the

spatial model may provide different traveling wave patterns in that the

direction of themovement may change. However, all these patterns show

the same qualitative properties: the 4-year periodicity always remains. In

the homogeneous environment, the traveling waves may start from one

corner and end up in another corner, or they may be born in the middle

of the edge and finish at the opposite edge or the corners. Each set of

initial values tested produces a traveling wave.
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Fig. 5.9. Four-year cycle is common in spatial population dynamics of subpopulations

interconnected by dispersal kernel I (p. 53). The relative size of the local populations is

indicated by the size of the circles. The spatial population dynamics show a clear pattern

of a traveling wave. (A) In the first sampling year, the local population levels are low in

all patches. (B) At the next time step, six adjacent patches reach peak densities in the

north-west corner of the space; (C) at the following time step, the peak densities have

moved to south. (D) The peak densities reach the south-east corner. Spatial

correlograms (E)–(H) indicate the presence of spatial self-organization such that the

close-by patches tend to be more similar than those from remote areas (dots: spatial

correlations from the data; confidence intervals, solid lines: 95%; dotted lines 99%,

r¼ 2.5, a1¼ a2¼ 0.05, m¼ 0.1, and c¼ 0.5). Modified after Kaitala and Ranta (1998).
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Fig. 5.10. A comparison of the synchrony among the local population

dynamics indicates that the close-by populations tend to be in better synchrony

than the remote patches. Thus, the degree of synchrony between the dynamics in

local populations decreases with increasing distance. The cross correlation

coefficients measure the degree (sign and magnitude) of the synchrony and range

from þ1 (fluctuations in step) to �1 (fluctuations in opposite phase). (A) Ricker

dynamics with delayed density dependence, r¼ 2.5; (B) r¼ 3.5, the correlation

coefficients between synchrony level and distance, rD are inserted. (C),(D) The

corresponding frequency distributions of the synchrony measures. The time

window used in the calculations was 200 generations. Modified after Kaitala

and Ranta (1998).

At least two statistical measures are connected to the spatial-temporal

self-organization. First, looking at the synchronicity patterns we may

observe that the local dynamics among patches tend to be synchronized.

The synchrony may not be perfect. Often, the synchrony levels among

populations tend to fade away with increasing distance (Chapter 4;

fig. 5.10). Second, the spatial snapshot patterns should show spatial auto-

correlation (fig. 5.9(E)–(H)). Positive spatial autocorrelation indicates

that, at a given moment, nearby subpopulations tend to be similar

(Legendre and Fortin 1989). There are many different ways to compute

spatial autocorrelation. Their usage depends on the type of data (Sokal
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and Oden 1978). Here the natural choice is to analyze interval (contin-

uous) population data, which are regularly spaced.

For the simulated data (fig. 5.9), we compute an annual correlogram

including five distance classes from 4.1 to 9.1 units with an interval of 1

unit (Kaitala and Ranta 1998). A correlogram is composed of the annual

autocorrelation coefficients (Moran’s I, Moran 1950b; Sokal and Oden

1978) for each distance class. For each spatial pattern we assumed binary

joins. Here, two grid points (subpopulations) are connected only if their

mutual distance is less than the distance class under consideration (Sokal

and Oden 1978). The statistical significance can be tested for each

individual spatial autocorrelation coefficient or for each correlogram at

a time (Legendre and Fortin 1989). A correlogram as a whole is significant

in statistical terms if at least one spatial autocorrelation coefficient is

significant at � 0 ¼�/w, where �¼ 0.05, and w is the number of the

points in the correlogram. Because we have only 25 population subunits

we need to use the small sample correction for interval data in the

statistical significance tests (Sokal and Oden 1978). Such a correction

is advised for the sample size 10< n< 50. In figure 5.9(E)–(H), each

correlogram is statistically significant. In other words, we can observe a

positive autocorrelation at each time moment, each showing different

spatial snapshot configurations. This suggests that the population sizes of

the close-by areas are more similar than the population sizes of more

remote areas.

In addition to spatial autocorrelation, wemay also consider the patterns

of synchrony. When population dynamics are spatially autocorrelated

then the close-by populations tend to be similar in size to each other.

Thus, if we look at the synchrony patterns as a function of distance we

should see that close-by populations are more synchronous than remote

patches. Indeed, the cross correlation coefficient indicates that the popu-

lations fluctuate in synchrony but that the degree of the synchrony

declines, as expected, with increasing distance between subpopulations

(fig. 5.10(A),(B)).

As in the single-population dynamics, increasing the growth rate

complicates the spatially coupled dynamics. In the spatial population

system the chaotic range of dynamics appears to emerge when r> 2.7.

However, this value should be considered as an approximation since in

the multidimensional patch configuration with nonunique dynamics, and

with possibly different attractors co-existing, it is a painstaking task to

identify an exact boundary for the chaotic range, if there is any. The

general pattern is, however, that with increasing r in the delayed Ricker
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equation the population densities tend to become more irregular, which

can be seen in the peak densities in the first place, less in the period length.

The 4-year period pattern is less sensitive to increasing values of the

growth rate than the peak densities in the dynamics of single populations.

In fig. 5.11(A)–(D) we illustrate a traveling wave with more complex

dynamics for r¼ 3.5. We observe significant spatial autocorrelations

(fig. 5.11(E),(G)). Interestingly, the spatial autocorrelation seems not to

be present all the time. Instead, when it has appeared once, it will

gradually weaken such that it cannot be detected, to reappear later on.

The traveling wave pattern is visible also with r¼ 3.5, and it is also

associated with a distance-dependent synchrony pattern (fig. 5.10(B)).

In the present example, the complex dynamics with a clear four-year

periodic component in the dynamics yield the similar patterns of traveling

waves as in the more regular case with r¼ 2.5. Spatial autocorrelations

and distance-dependent synchrony remain indications of the order.

Kaitala and Ranta (1998) suggest that spatial order may be associated

with spatial waves showing a certain degree of periodicity (Rohani and

Miramontes 1995b; Bascompte et al. 1997).

Evidence from Finland

We next take an opportunity to contrast and illustrate our theoretical

developments with possible empirical evidence on traveling waves in vole

dynamics (Ranta and Kaitala 1997). Several vole species annually cause

severe damage in young sapling stands of pine, spruce, and birch. These

are economically important forest trees in Finland. For this reason, the

damage caused by voles has been recorded annually (fig 5.12(A)). These

records, obtained from the different management districts in Finland,

suggest an interannual fluctuating pattern in the geographical distribution

of peak damage areas (Ranta and Kaitala 1997). The damage is locally

characterized by 3- to 4-year cycles. The geographical area of the peak

damage changes between years. Thus, the temporal change of the location

of the peak damage creates a dynamic pattern, in which a certain degree of

asynchrony among the observations from different areas can be observed.

Locally, high peaks are usually preceded by a 2- or 3-year period of

population increase, which then ends with a sudden decline of the local

population to almost nonexistence (Hansson and Henttonen 1985).

The intensity of vole damage and geographical distance between the 19

forest management districts is negatively correlated (fig. 5.12(B),(C)).

That is, nearby areas tend to have matching damage levels, but the
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Fig. 5.11.Traveling wave (A)–(D) with complex population dynamics is obtained by

increasing the growth rate (r¼ 3.5). Despite the increase in the growth rate the period

length is not affected that much while the amplitude becomes irregular (c.f., fig. 5.9).

This configuration also creates a significant spatial autocorrelation pattern. (E)–(H)

Spatial correlograms indicate the presence and possible absence of spatial

self-organization (confidence intervals, solid lines: 95%; dotted lines 99%, r¼ 3.5,

a1¼ a2¼ 0.05, m¼ 0.1, and c¼ 0.5.). Modified after Kaitala and Ranta (1998).
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Fig. 5.12. (A) The vole damage in young plantations varies prominently over large areas

between years (redrawn from Kaitala and Ranta 1998 using the original data). The data

represent the number of seedlings destroyed, an indication of the annual local abundance

of voles. The damage caused by voles to the tree stands is characterized by the three- to

four-year periodicity, clustering of the damage, and the annual movement of the peak

damage from one area to another creating a pattern of spatial asynchrony. (B) Synchrony

at the level of annual vole damage graphed against the distance of the data sampling points

(correlation coefficient inserted) and (C) the marginal distribution of the synchrony

measures (cf., fig. 5.10). (D) Spatial autocorrelation with 2-km radius through time (95%

confidence intervals are indicated). Modified after Kaitala and Ranta (1998).
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match decreases with increasing distance. These properties can also be

observed in the spatial structures in the vole damage data (fig 5.12(A)). As

in our simulation example above, we calculated spatial autocorrelation for

the vole damage data. In this case we need a technique developed for

irregularly spaced interval data (Sokal andOden 1978). Here we compute

annual autocorrelation coefficients (Moran’s I, Sokal and Oden 1978) for

the distance class 200 km (fig. 5.12(D); we assumed binary joins. The

autocorrelations tend to vary between years because the spatial structure

changes between subsequent years. Statistical significance can be tested

for each annual spatial autocorrelation coefficient. Significant positive

spatial autocorrelations occur in 6 years. We interpret this such that the

data include a nonrandom spatial structure. As a whole, we propose that

the cyclic vole population dynamics are an essential component of the

self-structuring mechanism.

The above results indicate that simulated traveling waves show differ-

ent degrees of spatial autocorrelations at different time points. It often

occurs that some of the annual autocorrelations are not statistically sig-

nificant, as in our second example with more complex dynamics above.

Nevertheless, we can expect that at least one correlogram in the 4-year

cycle is significant. Often, two to three correlograms are significant.

A straightforward interpretation would be that the spatial order appears

and disappears repeatedly. However, we rather feel that the organization is

due to global (redistribution of individuals) and local (density-dependent

births and deaths) processes being in action all the time. With our tools,

we are sometimes able to pinpoint features of self-organization, while at

other times it is harder to detect in statistical terms. Yet, the process is

there. This clearly calls for further research until the tools are fully

developed and better understanding of the self-organization is gained.

Evidence from Northumberland and the Alps

The most elaborated example of periodic traveling waves in animal

population dynamics comes in cyclic populations of field voles, Microtus

agrestis, in Northumberland, England (Lambin et al. 1998; Bjørnstad et al.

1999a; MacKinnon et al. 2001). Lambin and his associates have been

studying vole population fluctuations since 1984 in the Kielder Forest and

other surrounding forested areas in Northumberland. The Kielder forest

data (1984–1998, 14 sampling sites) gave good evidence (Lambin et al.

1998) that in the small scale (approx. 10� 15 km) field voles display a

periodic traveling wave moving at the speed of 19 km annually from west
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to east. These estimates are based on very elaborate techniques (Sherratt

et al. 2000; Sherratt 2001). Spatially more extensive, but temporally shorter

data (fig. 5.13) confirmed these observations (MacKinnon et al. 2001). The

new speed estimate was 14 km year�1 traveling in a direction of 668 from
north. Lambin and his associates are, at the time of writing this, somewhat

uncertain of the causes of the vole traveling wave. However, they are

suggesting (MacKinnon et al. 2001, p. 109) that nomadic predators and

climatic factors are not responsible. Recently, an interest in spatial hetero-

geneity in local population size has arisen as a possible driving force behind

such population fluctuations (Sherratt et al. 2002).

It is also worth noting another example from northern parts of the

British Isles, the long-term data on cyclic red grouse (Lagopus lagopus

scoticus) in the Scottish Highlands, Kerloch moor (Moss et al. 2000). Using

18-year data from a 14-km2 study area and similar analysis techniques as

used with the Northumberland vole data above, Moss et al. (2000) came to

Fig. 5.13. Spatial and temporal sequence of vole densities (size of the circle is in

proportion to population density) for five sampling sessions in Kershope, Kielder,Wark,

and Redesdale forests, Northumberland (redrawn from MacKinnon et al. 2001). The

scale (lower left and upper right corners is 10 km, the lower left intersection is at 570

North, 344 East of the coordinates of Ordnance Survey British National Square NY).
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the conclusion that the speed of the wave is 2–3 km year�1 and that it

travels from the center of the study area to the margin. For the presence of

the wave, Moss et al. (2000) attribute demographic processes. It is inter-

esting that the best documented examples of population traveling waves

(Smith 1983; Kaitala and Ranta 1998; Lambin et al. 1998; Moss et al.

2000) originate from cyclic populations. Presently there is an ensemble of

alternative views on causes of cyclic dynamics (Hudson et al. 1998;

Stenseth 1999; Lindström et al. 2001). It remains to be seen whether

cyclic dynamics, be they for any reason, generate traveling waves more

easily than dynamics of any other kind.

Larvae of the larch budmoth (Zeiraphera diniana) are larch forest pests in

the European Alps. With periodic outbreaks at 8- to 10-year intervals

they cause wide-ranging defoliation in larch forests. Forest managers have

kept a close eye on, and detailed records of, such outbreaks. Using those

data Bjørnstad et al. (2002b) were able to demonstrate that this moth

exhibits profound and characteristic periodic temporal oscillations mov-

ing like a wave through the European Alps towards NE-E at a speed of

about 200 km year�1.

Evidence from measles in England and Wales

Further insight into repeated periodic waves, and alternative ways to

understand them, has been gained in the studies of childhood micropara-

sitic infections, in particular measles in England and Wales (Grenfell et al.

2001). An exhaustive analysis of exceptionally detailed spatial-temporal

data of measles infections and host data reveals that traveling waves may

hold and hide even more complicated structures than anticipated so far,

based on data on animal populations. Grenfell and his colleagues (Grenfell

and Harwood 1997; Grenfell and Bolker 1998; Earn et al. 2000) have

studied childhood infections in order to uncover the characteristics of the

dynamics of the epidemics and to predict the effects and efficiency of

vaccination programs.

Grenfell et al. (2001) analyzed the measles dynamics in 354 adminis-

trative areas of England and Wales, ranging from large cities to small

towns. The exceptionally long spatial weekly data cover the years

1944–1994. Wavelet power spectrum analysis (e.g., Nason and von

Sachs 1999) allows us to detect and analyze the frequency structures of

the time series even when they are nonstationary. Grenfell et al. (2001)

found that the dynamics of measles epidemics show commonly seasonal

cycles topped off with major long-term multi-annual cycles. The cycles
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are not regular, such that the relative strengths of the short- and long-term

changes in incidence may vary considerably. Overall, the epidemics were

characterized by biennial periods in the pre-vaccination era, which lasted

until the late 1960s. During the vaccination era, the epidemics display

longer temporal fluctuations. The dynamics of the epidemics in different

areas are in synchrony such that the measure of the synchrony decreases

with increasing distance between the locations.

The spatial-temporal patterns were investigated by calculating the

phase difference between the measles epidemics at different data points.

The analysis suggests that, in the pre-vaccination era, waves of infection

moved from large cities to small, peripheral towns. Due to the fact that

several large population centers act as sources for these waves the regional

dynamics obtain a hierarchical structure. Vaccination caused a decreasing

trend in the number of individual infections and changed the typical

period length, but did not remove the traveling waves from the dynamics.

Grenfell et al. (2001) noted also that the analysis on spatial-temporal

patterns in microparasitic infections may be jeopardized by the presence

of nonstationary temporal variations in the dynamics. This means that the

mean and variance of the time series may change with time. More

interestingly, even the periods of oscillation may change, showing

trends and sudden jumps, which makes the application of conven-

tional frequency-domain analyses dubious as they assume stationarity.

Obviously, we can expect that measles dynamics, and their kinds, con-

tinue to be important in developing our understanding of the spatial

structures of populations, be it animal populations or microparasitic

infections.

Another view on self-organization

Features indicating self-organization in population data become increas-

ingly important when we work on irregular grid structures. When the

population network is irregular (as is the case with most natural systems),

many of the visual patterns easily disappear and justification of the pattern

loses its basis. For this reason, the need to develop new analytical and

statistical approaches to distinguish spatial order from randomness has

long been recognized. We shall now proceed to show that we can find

signs of self-organization even when our visual guidance cannot observe

any. In particular, we will now use spectral properties of the time series, in

particular those of synchrony measures, as our aid. In the previous sec-

tions, we have become familiar with the fact that synchrony patterns vary
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with time. Here we will pay more attention to this problem. We will see

that the dynamics in our system become self-organized such that the

synchrony measures between population fluctuations in the subunits and

their dependence on the inter-unit distance show a power law structure.

This simply means that in irregular population networks the self-

organization become quantitatively tractable by looking at the temporal

synchronicity in the subunit dynamics. The synchrony is measured using

a time windowing technique (Ranta et al. 1997a). We are able to show

that such time-windowed synchrony measures show temporally scale-

free, self-similar dynamics in time.

Consider again a system where the space is composed of dispersal-

coupled population subunits, and each subunit hosts a local population

renewal process. Let the spatial structure consist of n randomly distributed

units in a co-ordinate space. The dispersal follows kernel I (p. 53), where

the distribution of the patches receiving dispersers depends on inter-patch

distance. At each time step, a constant fraction m¼ 0.1 of individuals

leaves their natal patch to reproduce elsewhere. To retain generality, we

shall compare here several different models for local processes (Box 5.1):

a Ricker model with delayed density dependence (Turchin 1990;

Royama 1992) and linear autoregressive models (Box et al. 1994) of the

order 1, AR(1), and 2, AR(2). The Ricker model with delayed density

dependence (Turchin 1990; Ranta et al. 1997a, 1999b) allows us to

generate cyclic population dynamics with 4-, 6-, and 10-year period

lengths when the parameters are selected properly (Box 2.5). The tem-

poral dynamics in each population subunit are affected by local noise and

global Moran noise (Moran 1953b; Ranta et al. 1999a; Kaitala et al.

2001a). We are simply interested in how synchrony patterns may change

in time (Ranta et al. 1997a, 1999b; Kaitala et al. 2001a). There are some

indications that local populations may be in tight synchrony at times but

not necessarily all the time (Ranta et al. 1997a). Thus, we may ask

whether such a fluctuation in synchrony may be an outcome of chance,

or whether there may be some other forces behind this phenomenon.

In the simulations, n¼ 25 local populations are randomly distributed

on a 20� 20 grid and initiated in random phase. The simulations are then

run for 210 time steps and the data for the next 213 time steps are used in

our analyses. We explore the simulated time-span with a moving time

window technique (Ranta et al. 1997a). This is done in order to score

temporal changes in the overall degree of synchronicity. Using this

technique we also score the temporal changes between synchrony and

its leveling off with distance, rD (Ranta et al. 1995a, 1999a). The temporal
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Box 5.1 . Population renewal, dispersal and spatial self-organization

A total of 25 population subunits are located randomly on a 20� 20

grid. The local dynamics of the populations are affected by dispersal

and local and global noise; assuming that a fraction m of the population

disperses annually we have

Xiðt þ 1Þ ¼ ð1� mÞF XiðtÞ;Xiðt � 1Þ; �ðtÞ½ � þ
X
s;s 6¼i

MsiðtÞ;

where Xi(t) is the population size in patch i at time t, �(t) is the Moran

effect and Msi(t) is the number of dispersing individuals arriving at

patch i from patch s. The Moran effect is characterized by its annual

probability of occurrence, p(t), and its intensity, �, as follows

�ðtÞ ¼ � if �p � pðtÞ � 1

1 otherwise

�
;

where 0 � �p � 1 (here p¼ 1/5). Intensity � is drawn from uniform

random numbers between 0.5 and 1.5. We define the number of

offspring alive after reproduction as follows

F ¼ XiðtÞ�ðtÞuiðtÞ f ½XiðtÞ;Xiðt � 1Þ�;
where local noise ui(t) is a random number drawn from a uniform

distribution between 0.95 and 1.05. For the delayed Ricker dynamics

we write

f XiðtÞ;Xiðt � 1Þ½ � ¼ expfr 1þ a1XiðtÞ þ a2Xiðt � 1Þ½ �g;
where r is the maximum per capita rate of increase, and a1 and a2 are

parameters of density dependence. For the autoregressive model, we

use the following

Xiðt þ 1Þ ¼ �1XiðtÞ þ �2Xiðt � 1Þ þ � þ "ðtÞ;
where �1 and �2 are the autoregressive parameters, � is a constant and "
is normal random deviate (with mean 0 and variance 0.2). We choose

to use �¼ 2. When we choose the parameter values such that

�1<�1< 1 and �2¼ 0 we have the AR(1) process, and for AR(2)

the following inequalities should be satisfied simultaneously (Royama

1992): �2þ�1< 1, �2��1< 1 and �1<�2< 1. In this system the

dispersal obeys kernel I (p. 53) with parameters m¼ 0.05 and c¼ 0.75.

For more details, see Kaitala et al. (2001a).
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match in synchrony in pairs between the n¼ 25 (altogether 300 values)

population subunits will be scored by using lag zero cross correlation, r0
(Box et al. 1994). In order to analyze changing synchrony patterns we

decided to build new time series using the synchrony patterns. In parti-

cular, we calculate here the difference between the upper and lower

quartiles,Q3,k�Q1,k, in the kth time window for all pairwise correlation

coefficients (Kaitala et al. 2001a). The upper and lower quartiles are

indicated by the boundaries of the 25% highest and lowest scores of

synchrony. For each time window we also measured the correlation rD
between the level of synchrony and the distance among the populations

compared. For the time window, we used 27 time steps.

We analyzed the temporal behavior of the difference between the

upper and lower quartiles, Q3,k�Q1,k, and the correlation between the

level of synchrony and distance among the populations compared, rD,k,

where k denotes the kth time window. Note that the narrower the

quartile difference is, the higher the overall level of synchrony, which

also makes the rD,k values close to zero. When the quartile differences are

large there are some populations in tight synchrony, while there are also

pairs of population subunits fluctuating out of phase or even randomly. In

this way, rD,k may assume high negative values.

We first note that the fluctuations are periodic. Nevertheless, the temporal

structure of the difference between the quartile boundaries of the synchrony

measures shows noncyclic irregular variations over time (fig. 5.14(A)–(C)).

This applies also to the correlation between the pairwise subunit synchrony

against the distance between the units. However, when analyzed as time

series using the power spectra ofQ3,k�Q1,k, and rD,k there is a pattern in the

frequency domain. The linear form of the power spectra of the time series

analyzed (fig. 5.14(D)–(F)) suggests that the temporal dynamics of a spatially

structured population are organized at the level of synchrony among popula-

tion subunits. Such a form in the power spectra is a sign of the presence of

power law in the spatial and temporal dynamics. Recall from Chapter 2 that

the power law is of the 1/f � type, where f is the frequency and� is a constant

defining the slope of the power (on a log–log scale) and also the autocorrela-

tion structure of the time series. The negative slope of the power spectra

(positive �, fig. 5.14(D)–(F)) indicates that long-term fluctuations dominate,

giving the time series positive autocorrelation. More importantly, the linear

structure of the power spectra is an indication of the presence of temporal

self-similarity in the time series Q3,k�Q1,k, and rD,k.

These results suggest that spatially structured populations contain a

component of self-organization in their dynamics: the order is visible
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Fig. 5.14. The spatially structured population (n¼ 25) dynamics may become

organized on the level of population synchrony. The population synchrony was

measured using the upper and lower quartiles, Q1,k and Q3,k, of the synchrony

measures in pairs. When evaluated using time window techniques, we observe that

the synchrony measures vary in time with local populations obeying (A) 4-year,

(B) 6-year, and (C) 10-year period length in cyclic dynamics. Corresponding dynamics

are also observed for correlation coefficients rD,k describing the relationship between

the level of synchrony and the distance among the population subunits compared.

(D)–(F) The power spectra of the time series Q3,k�Q1,k, and rD,k. The linearity

observed in the power spectra is a sign of the presence of power law in the spatial and

temporal dynamics (the values of � are inserted). Modified after Kaitala et al. (2001a).
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when looking at the dynamic behavior of synchrony patterns. In the

simulated population time series, the long-term average of synchrony is

positive, indicating that the populations tend to become synchronized,

even when initiated from random conditions. However, the populations

do not maintain the synchrony constellation forever. Instead, they may

repeatedly become desynchronized, or, rather, a given synchrony con-

stellation turns into another one, and in the shifting phase the overall level

of synchrony breaks down for a while. The time windowing technique

can be used to uncover that the degree of synchrony,Q3,k�Q1,k, and its

relationship against distance, rD,k, varies over time. Time windowing

allows one to show that the length of synchronous periods varies in a

temporal scale-free manner (Kaitala et al. 2001a). However, the variations

of these time series are not random temporal fluctuations. Rather, the

power of the different frequencies seems to be of the form 1/f �.

The above results are verified when we used AR(1) and AR(2) pro-

cesses (fig. 5.15). Synchrony patterns vary producing time series with

power law structure. Spatially structured AR(1) and AR(2) processes

both generate self-organized dynamics in Q3,k�Q1,k, and rD,k, as does

the delayed Ricker model. Apart from this, we observed that spatial

structure may change the autocorrelation structure (color) of the time

series. The reddest dynamics, judged by the power spectra (the highest

values of �), are produced by the AR(1) processes with parameter values

that, in the absence of spatial population structure, produce blue (nega-

tively autocorrelated) population dynamics. Moreover, the autocorrela-

tion structure of the local population dynamics does not determine the

way in which the synchronicity among several populations varies tempo-

rally (fig. 5.15).

Positive autocorrelation structures in the time series analyzed,

Q3,k�Q1,k, and rD,k, can also be illustrated using the IFS scores (Jeffrey

1992). The closer the power spectra follow the form of 1/f �, the closer

the IFS scores are located around the diagonals in the IFS graph (fig. 5.16).

When the time series, Q3�Q1, is represented by white noise, and the

local patches are independent (m¼ 0), the IFS score fails to show any

pattern (fig. 5.16(A)). When interactions among patches are added

(m> 0) local dynamics are organized into spatial dynamics with self-

organized structure. Several different kinds of local dynamics become

organized due to global (redistribution of individuals) and local (density-

dependent births and deaths) interactions. In the IFS graphs, points will

aggregate around the diagonals which is observable for AR(1) and AR(2)

processes (fig. 5.16(B)–(D)). Most distinct aggregations will be observed

124 . Order–disorder in space and time



r D,k

1

1.25

1.5

1.75

2

– 1 – 0.5 0 0.5 1

AR(1) dynamics

a1

a1

a2

a1

a2

– 1

– 0.5

0

0.5

1

– 2 – 1.5 – 1 – 0.5 0 0.5 1 1.5 2

1.25

1.25

1.5

1.5
1.75

1.25

1.25

1.25

(B) α contours Q 3,k – Q 1,k 

– 1

– 0.5

0

0.5

1

– 2 – 1.5 – 1 – 0.5 0 0.5 1 2

1.5

1.75

1.5

1.5

1.25

(C) α contours r D,k

(A)
α

AR(2) dynamics

Q 3,k – Q 1,k

1.5
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in the cyclic population dynamics with different period lengths

(fig. 5.16(F)–(H)). The cyclic fluctuations seem to be strongly self-

organized, but only when dispersal is present (fig. 5.16(E)). It is the density-

dependent feedback together with dispersal that ‘‘organizes’’ the dynamics.

Evidence from Canada

The long-term time series from the whole of Canada, representing the

comprehensive bookkeeping records of fur returns of the Canada lynx

from Hudson Bay Company’s trading posts (Elton and Nicholson

1942), are exceptionally rich in temporal and spatial patterns (e.g.,

Smith 1983; Ranta et al. 1997a,b; Stenseth et al. 1999). The data, which

cover 96 years from eight provinces (Royama 1992), provide a good

source for testing different population patterns. The first population

ecologist to seriously analyze the large-scale temporal and spatial patterns

of Canada lynx was Charles Elton who, in a joint effort with Mary

Nicholson, compiled the data set. They pointed out that the population

fluctuations are periodic which cover ‘‘the whole northern forest zone of

Canada, from Labrador to British Columbia to Yukon.’’ More recent

studies have confirmed that the population dynamics of Canada lynx

are highly variable (Stenseth et al. 1999), and that the dynamics show a

pronounced 10-year cycle.Moreover, Elton andNicholson (1942) expli-

citly stated that the fluctuations occur in synchrony such that ‘‘the most

extraordinary feature of this cycle is that it operates sufficiently in line

over several million square miles of country not to get seriously out of

phase in any part of it’’ (fig. 5.17(A),(B)). Later on, Smith (1983) suggested

that the population highs build up in the central parts of Canada, and then

develop (‘‘move’’) towards both the east and west. This is in agreement

with the analyses by Ranta et al. (1997a,b).

Here, we set out to analyze the time consistency of the synchronicity

patterns in the Canada lynx data (Ranta et al. 1997a). Using the sliding

time window technique shown above, we see that the populations on

average fluctuate in synchrony (fig. 5.17(C)). However, the degree of the

synchrony varies through time (fig. 5.17(D)). A pair of populations may

fluctuate in step for some time, then the synchronicity may disappear, to

come back later. The power spectrum of the time series indicates that the

results obtained for the Canada lynx are in good agreement with the

theoretical results presented in the previous section (fig. 5.1(E),(F)). As in

the simulations, the form of the power spectra suggests that the temporally

varying degree of synchronicity is organized as a power law of 1/f � type
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(Kaitala et al. 2001a). In fact, the analyses by Ranta et al. (1997a) support

the idea that the Canada lynx dynamics is a traveling wave in space. This

was first suggested by Smith (1983) and hinted by the graphs in Butler

(1953). It remains to be seen whether the power law nature of the
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Fig. 5.17.The varying degrees of synchrony can be observed in the long-term dynamics

of Canada lynx. ((A), (B)) The 1919–1985 data are annual lynx pelt harvest aggregated at

the province level. (C) Also in the lynx data the level of synchrony (over the whole

sampling period) levels off against distance of the province centers. (D)When a 15-year

sliding time window is put through the data in (A) and (B) one finds that the level of

synchrony in lynx population fluctuations between any two provinces is not

time-invariant. (E) Both the lower Q1,k and upper Q3,k quartiles of the synchrony

measures in pairs among the eight Canadian provinces, panel (D), and the correlation

between synchrony level and distance among the provinces compared, rD,k, fluctuate in

an erratic manner over time. (F) Power spectra forQ3,k�Q1,k (�) and rD,k (*). The data
are from (D). Combined from Ranta et al. (1997a) and Kaitala et al. (2001a).
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synchrony in dynamics, as discussed in this chapter, is a general sign of

traveling waves in nature.WhenRanta et al. (1997a, 1999b) simulated the

Canada lynx dynamics in dispersal-coupled space, they observed that pairs

of populations, initially in step in temporal fluctuations, might drift out of

phase and then return to synchrony some time later on. A striking

observation in this connection was that the deterministic local cycle

often disappeared, to reappear later (fig. 5.18). The fluctuating synchrony

and temporal loss of deterministic cycle are the results of the interplay

between local (births and deaths) and global (immigration and emigra-

tion) processes jointly in action all the time in such systems. The differing

processes are the factors organizing the spatial dynamics of populations.

Summary

Introducing spatial structure may profoundly change the emerging

dynamics, as we first saw in Chapter 3. In a trivial sense, spatial structure

makes the dynamics more ‘‘complex.’’ This is also true in the formal sense,

i.e., that the emerging dynamics indeed are complex from a mathematical

point of view. We here review a set of commonly used models that

generate intriguing spatial dynamics, e.g., spiral chaos and traveling waves.

Spatially complex behavior also shows that some emergent phenomena are

in fact scale independent, i.e., self-organized at all levels of spatial

resolution. This does not mean that the dynamics are time invariant – on
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Fig. 5.18. Fluctuations in size of two randomly selected populations (n¼ 25), located

in a 20� 20 co-ordinate space. All populations obey locally 10-year periodic

fluctuations; they are interconnected (kernel I, p. 53) by redistributing individuals

(annually m¼ 0.1; more details in Ranta et al. 1997a). It turns out that global

(dispersal) and local (density-dependent population) renewal will organize the spatial

dynamics (fig. 5.17; Kaitala et al. 2001a). From the process, it also follows that the

deterministic population cycle may wane, to reappear later on.
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the contrary. We show both theoretically and by some empirical examples

that the dynamics observed over certain periods may be fundamentally

different from the dynamics at other times. This has important implications

for the interpretation of, e.g., time series data.We also show that sometimes

the spatial dynamics, e.g., the patterns of synchrony, are changing over time

in the form of traveling waves. Data from Finnish and Northumberland

vole populations confirm that conjecture. The fact that spatial population

dynamics have the capability of self-organization is one of the emergent

‘‘laws’’ in population ecology.
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6 . Structured populations

Populations are not collections of identical individuals, albeit such approxi-

mations are often useful. In many cases, however, a higher resolution is

needed to understand population and community processes. In this chap-

ter, we introduce some more details by letting the population be divided

into age or stage classes, all of them possibly with their specific vital rates.

This can be achieved by rather small modifications of the simple models,

yet qualitatively and quantitatively new phenomena will emerge.

The state of a population is usually thought of as its size or density. As

we have seen, it is in fact the density-dependent feedback that is assumed

to be important at the population level. The implicit assumption behind

this is that all individuals are more or less identical when it comes to their

demographic effects: their contributions to births and deaths (and immi-

gration and emigration). This is, of course, not the case in most natural

populations. Young individuals are often more susceptible to death than

adults, and they often contribute less to reproduction. Individuals at some

intermediate adult stage face less risk of dying and are the ones that

reproduce successfully. Such differences are not necessarily only attri-

buted to age, but also body size (often co-varying with age). For example,

in most species with indeterminate growth, as in fish and reptiles, fecund-

ity and survival are strongly dependent on size, rather than on age per se

(Roff 1992; Stearns 1992).

The more general stage-structure problem has received considerable

attention in the ecological and evolutionary literature. After some seminal

contributions (e.g., Metz and Diekmann 1986; DeAngelis and Gross

1992; de Roos et al. 1992; Tuljapurkar and Caswell 1997; Caswell

2001), the field has become rich in ecological and evolutionary studies

of structured populations. Quite clearly, the feedback environment of an

individual organism, i.e., the target for natural selection, is in reality much

more subtle than the simple one assumed in standard single-population

models. As outlined in Chapter 1, the demography of a population is

really the key to a more detailed and deeper understanding of population



processes. Towards the end of this chapter, we are going to discuss some

of the pros and cons of using simple and more detailed (consequently

more complicated) models. This becomes an issue especially in some

applied areas.

Many individual differences remain, however, even after having cor-

rected for age and size. For example, in many birds and mammals, there is

a strong reproductive skew such that only a small fraction of all the

individuals in a population are the ones that get the opportunity to

reproduce each breeding season (Clutton-Brock 1991; Sutherland 1996).

In this chapter, we are going to have a closer look at populations that are

structured one way or another. The focus will be on age-structured

populations, but the approach taken here is relatively easily extended to

other ways in which a population may be divided into functional groups.

The projection matrix

The projection matrix, i.e., the mathematical device that changes a vector

of population densities at one point in time into another, was briefly dealt

with in Chapters 1 and 2. Let us recall eq. 2.3

n1ðt þ 1Þ
n2ðt þ 1Þ
n3ðt þ 1Þ
..
.

nxðt þ 1Þ

2
666664

3
777775
¼

m1 m2 . . . mx

l
1

0 . . . 0

0 l2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . 0

2
666664

3
777775

n1ðtÞ
n2ðtÞ
n3ðtÞ
..
.

nxðtÞ

2
666664

3
777775
; (6:1)

where the two vectors n(t) and n(tþ 1) indicate the population densities

of age classes 1 to x at time t and tþ 1, respectively. The Leslie matrix L has

as its elements the age-specific (net) fecundities, mx, and survival rates, lx.

Caswell (2001) is a brilliant introduction to the details and extensions of

this model. There are two important things to remember from this

relatively simple equation. First, it is the dominant eigenvalue, ldom, of
L that determines the growth rate of the population; second, that it is the

(left) eigenvector (Caswell 2001) associated with this eigenvalue that

informs us about the stable age distribution of the population. If the

population is deterministically growing or shrinking, the age distribution

remains the same (after some time of transients).

Here, we are going to highlight a couple of aspects of a structured

population that have caught quite some attention in the ecological

literature, although they have not been analyzed in much formal detail.
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We will also undertake an analysis of a simplified version of this model

with only two classes of individuals, as well as study the properties of

structured populations in stochastic environments.

Cohort and maternal effects

The environment experienced by individuals at an early age may have

important effects on subsequent life history (Box 6.1; Lindström 1999;

Metcalfe and Monaghan 2001), and cohorts of individuals may therefore

differ considerably (e.g., Rose and Bradley 1998). Likewise, the environ-

ments experienced by parents can affect their allocation decisions. For

example, propagule size variation may give rise to individuals of different

Box 6.1 . Early development and dynamics

In many organisms, such as birds and mammals, the nutritional and

other physiological and environmental factors experienced by indivi-

duals during early development, or any other key period of develop-

ment may have a clear effect on survival and reproductive success later

on during the life cycle. This means that the demography (the elements

of the population transition matrix) is not constant but subject to year-

to-year variability. Extreme years may then, e.g., change the future

fecundity of a given cohort, but only temporarily. Such external factors

may include maternal or parental (weaning) condition and behavior.

As a consequence, this can have an important role in modifying life

histories as well as the dynamics of populations (Benton et al. 2001).

For example, young individuals often face nutritional deficit, which

they may later compensate for by accelerated growth when the con-

ditions get better (Metcalfe and Monaghan 2001).

The effects may be different between sexes. For example, weaning

condition in grey seals may have a greater effect on survival for male

pups than for females (Hall et al. 2001). This may have an impact on

differential allocation between sexes among offspring. Hall et al.

(2001), for example, suggested that females in good condition should

invest favor in male pups because the marginal return in investing in

the offspring is higher in males. These effects on early development can

thus be called maternal (or parental effects) (Lindström 1999), or more

generally cohort effects when a discernible cohort is thus affected, in

turn affecting the dynamics of the entire population.
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quality (Bernardo 1996). If all females experience the same environmental

condition, then their effects can be expressed in the next cohort of

offspring. So, the properties of the offspring due to the mother’s experi-

enced environment (maternal effects) may be passed on as an entire

cohort effect (Beckerman et al. 2001). Cohort and maternal effects are a

special variant of the more general problem of delayed density depen-

dence, studied in a wide range of taxa (e.g., insects: Turchin 1990;

Benado 1997; Bjørnstad et al. 1998, 2001; fish: Myers et al. 1997a,b;

Fromentin et al. 2001; birds: Lindström et al. 1997b, 1999; Watson et al.

1998, 2000; mammals: Bjørnstad et al. 1995; Boonstra et al. 1998; Stenseth

et al. 1998b; Erb et al. 2001; plants: Crone and Taylor 1996; Gillman and

Dodd 2000).

The interaction between environmental variability and demography

can also cause lags through cohort and maternal effects. A number of

biological factors have been suggested to cause delays. Trophic interac-

tions are regarded as one of the most important ones (e.g., Berryman

1996; Fryxell and Lundberg 1997; Turchin et al. 1999; Bjørnstad et al.

2001; Turchin 2001). Environmental stochasticity also has the potential

to cause lagged dynamics, both actual and spurious (Chapter 2).Mousseau

and Fox (1998) reviewed the empirical evidence for maternal effects and

found examples across a wide range of environments and taxa. The life

history consequences of early development are also well documented

(Lindström 1999; Metcalfe and Monaghan 2001).

We can now consider eq. 6.1 as the starting point for our investigations

of how demographic structure and environmental variability affect the

dynamics of the entire populations. As noted earlier, the elements of the

population transition matrix determine the population dynamics. Should

they change over time, or be affected in a single pulse in a given year, the

dynamics change. As far back as 1959, Leslie (1959) did, in fact, incorpo-

rate cohort effects into the first matrix models. Ever since, the dynamical

consequences of maternal effects have been studied (Ginzburg and

Taneyhill 1994; Crone 1997; Inchausti and Ginzburg 1998; Benton et al.

2001). As may be expected, these studies suggest that such intrinsic lags can

destabilize dynamics much in the same way as do extrinsic lags.

If individual resource acquisition is density dependent, then changes in

age- or stage-specific densities will have effects on population growth

rate. Thus modeling cohort effects requires an understanding of the

distribution of competitors across the life cycle. In many species, age

or size may not be strong indicators of how and where resources

are acquired. In such species, density-dependent processes act as in
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nonstructured populations: the number of competitors is the total popu-

lation size. However, there are several cases where the age classes of the

population may be ecologically very different, sometimes to the extent

that the direct interaction between them is very weak or nonexistent.

Ontogenetic niche shifts

In many species diet changes with stage or age, and it is quite common that

different age groups of a single species live in different habitats. Such

changes in diet, or shifts in habitat, with age are known as ontogenetic

niche shifts (Wilbur 1980; Werner and Gilliam 1984; Werner and Anholt

1993; Arendt andWilson 1997; Plaistow and Siva-Jothy 1999). Hence, the

feedback environment of an individual is again not only contingent on the

demography and the densities of the different stage classes in the popula-

tion, but potentially also on how the demography is spatially located.

A flexible demographic model

The model we are developing here (Lundberg et al. unpublished) is a

rather straightforward extension of Leslie’s original ones (Leslie 1945,

1948, 1959). In those models, the density-dependent feedback was

experienced as the sum of all individuals in the population, regardless of

age. In our modification of Leslie’s models, we allow an ontogenetic

niche shift to reduce the number of individuals (from adjoining age

groups) affecting the density-dependent feedback of the target age group.

Let the population consist of individuals belonging to x age groups.

Their numbers at any time t can be given in a column vector n of length x.

Each age group i has its specific fecundity mi and probability li that a

female of age i at twill survive to iþ 1 at time tþ 1. In the Leslie matrix L,

the values of mi are the elements of the first row and the values of li are the

elements of the first subdiagonal. The other elements of L are all zero,

eq. 6.1. The number of individuals in the different age groups at t can now

be mapped to tþ 1 as

nðt þ 1Þ ¼ LnðtÞ; (6:2)

and for the population size we haveN(t)¼
P

ni(t). Note that eq. 6.2 is just

a compact form of eq. 6.1.

Leslie (1948) incorporated density-dependent feedback by postulating

that population density at each time affects survival of the different age

groups. He defined the quantity
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qðtÞ ¼ 1þ aNðtÞ; (6:3)

where

a ¼ l� 1

K
: (6:4)

The constant parameter a is the coefficient of density dependence and l,
the dominant eigenvalue of L, is the population growth rate. The para-

meter K is the carrying capacity of the environment, hence a is the

strength of the density dependence. Note also that q is time dependent

because N is. The q(t) values are the diagonal elements of a matrix Q,

which can now be combined with eq. 6.2 to achieve growth of an age-

structured population in a resource-limited environment

nðt þ 1Þ ¼ LQ�1nðtÞ: (6:5)

Leslie (1959) also introduced time lags into eq. 6.3. If the lags are taken to

be the number of relevant age groups in the population for each age group

i one has

qiðtÞ ¼ 1þ bNðt � i� 1Þ þ aNðtÞ; (6:6)

where b is the effect of density at birth on the probability of survival at

some later time tþ x. The constants b [age group number, x, lagged

density dependence, lag(x)] and a (direct density dependence) are

both> 0 and their relative magnitude, b/(bþ a), determines how strong

the impact of the cohort effect is on the density dependence feedback in

eq. 6.6. For clarity we shall write the elements of Q(t) for a population

with four age groups

QðtÞ ¼

q0ðtÞ 0 0 0

0 q1ðtÞ 0 0

0 0 q2ðtÞ 0

0 0 0 q3ðtÞ

2
664

3
775: (6:7)

Equation 6.5 now characterizes the dynamics with the lagged effects

taken into consideration.

Ontogenetic niche shift

A straightforward way to incorporate the effect of an ontogenetic niche

shift into the Leslie matrix model is to assume that the different age groups

either completely overlap in their relevant niche dimensions or that the
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different age groups have nothing in common except that they belong to

the same population. The former case indicates that all age groups live in

the same environment (and have identical diets), while in the latter different

age groups live in entirely different environments (or their diets do not

overlap). The degree to which those cases apply can be handled as follows.

LetA be an x-by-xmatrix, where the elements �ij indicate how much

the niche of the ith age group overlaps with that of the jth age group. The

diagonal elements �ii are standardized to unity. If all �ij¼ 1 we have the

original Leslie model (with different age groups competing fully on

common resources), while with 0��ij� 1 we have relaxed competition

among age classes. In this case, it is natural to assume some hierarchy in the

niche overlap values, e.g., �1 2>�1 3>�1 4. When the off-diagonal

elements of A are all zero there is a complete ontogenetic niche shift

among ages. The upper and lower off-diagonals in A can be either

symmetric (sequential niche shift) or asymmetric (Wilson 1975).

A population model of an age-structured population with the cohort

effect and with the ontogenetic niche shift needs the following modifica-

tion to eq. 6.6.

qiðtÞ ¼ 1þ b
Xx
i¼1

�ijnðt � i� 1Þþ a
Xx
i¼1

�ijnðtÞ: (6:8)

The summations give the overlap-specified weights for age-group-specific

densities. Note that when A is a matrix of 1s we are back to Leslie (1959),

and when the diagonal elements that make Q(t) are all matching, we are

back to Leslie (1948).

Dynamics of cohort effects and niche shifts

In the explorations of the model, we used K¼ 100 for all age groups

regardless of the values in the A matrix. Using Leslie’s original values for

the four age groups in L we had four different A matrices. The first one,

composed of 1s as elements, corresponds to that of Leslie’s (1948, 1959)

approach, where all individuals are equal competitors. The entries of the

second A matrix were 1s along the diagonal and 0s elsewhere. This

corresponds to perfect ontogenetic niche segregation. The third (all

elements below diagonal and diagonal values¼ 1, others being 0) and

fourth (diagonal and above diagonal elements equal to 1, others equal

to 0) A matrices were asymmetric. These correspond to the scenarios

where the adult environment/resources can be used by adults and
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juveniles, but the juvenile environment or resources are only accessible to

juveniles (third case) and vice versa (fourth case). We initiated the system

with Leslie’s (1959) values for n(0) and let the system stabilize for 10 000

generations and sampled the next 50 generations of population dynamics.

The simulation was repeated for a range of values from 0.6 (with a step of

0.02) to 1 for the impact of the cohort effect, b/(bþ a).

Our results suggest that the presence of ontogenetic niche shifts stabil-

izes the population dynamics (fig. 6.1). With A deviating from full-niche
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Fig. 6.1. Fluctuations in population size [log[N(t)] over a 50-year period (x axis) after

a neutral period of 5000 generations has elapsed. Maternal effect, z axis (range from

0.6 to 1, from modest effect to maternal effect dominating the density dependence

feedback) depicts the relative contribution of the maternal effect [b/(bþ a), where b is

the density-dependent component lagged by x time steps, and a is the direct density

dependence]. The four panels give four differing scenarios in the ontogenetic niche

shift. In panel (A), A is a matrix of 1s, in (B) there is no niche overlap among the

different age groups (i.e., all elements in A are 0s, exception the diagonal of 1s). In

panel (C), older age groups completely overlap with younger age groups, while

individuals of the age group x share 50% in common in their diet with the subsequent

age group xþ 1. In panel (D), the case of (C) is reversed. The Leslie matrix elements

are taken from Leslie (1959, p. 154).
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overlap induces the periodic phase of population fluctuations to start with

larger values of b/(bþ a) (around 0.85) than with Leslie’s (1959) original

formation. To substantiate the first conclusion, we used another set of

simulations. We let the number of age groups range from x¼ 3 to x¼ 6,

we also let the parameter l range from 1 to 20 [Leslie’s (1959) l for four

age groups was 3.0]. However, only two kinds of A were tested: the full

overlap and the complete ontogenetic niche differentiation. The b/(bþ a)

ratio was set to 0.7 throughout. The system was initialized with random

numbers for n(0). For these data we calculated the coefficient of variation

for the log-transformed population sizes. The system was repeated 100

times for each combination of l, x andA, and the averages of these values
are reported.

For this system we find persistent (smooth cyclic; see fig. 6.1) fluctua-

tions over all values of x and A used only when l is large enough, the

value depending on the number of age classes, x (fig. 6.2). Second, and

most importantly, population variability with the cohort effect but with-

out an ontogenetic niche shift is substantially higher than that with a

complete ontogenetic niche shift (fig. 6.2). Experimentation shows that

the conclusion holds forAmatrices between the two extremes used. The

closer the values of A are to the full ontogenetic niche shift values the

smaller is the population variability under the cohort effect.

A few comments

The approach we have taken is highly flexible. For example, a full range

of differential resource use can be modeled from complete niche overlap

amongst all age classes, through asymmetric resource partitioning to

complete niche separation. Numerous studies have indicated that incor-

porating biological detail (such as age structure, noise, different functions

of density dependence, and so on) may radically affect the conclusions

from a model. This particular modeling framework can be extended to

incorporate noise, and may therefore be useful in predicting population

dynamics in applied problems. Furthermore, it is now well established

that behavior acting on demography (e.g., nonlethal effects) is responsible

for a large array of trophic interactions (direct and indirect), patterns of

habitat use and subsequent demography (Lima and Zollner 1996;

Wellborn et al. 1996; Schmitz et al. 1997). As our model is based on a

matrix describing the distribution of competitive interactions over a life

history, it is quite capable of accommodating both direct and indirect
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impacts on a life history through density dependence (Yodzis 1989;

Brommer et al. 2000).

Delayed effects often tend to destabilize the dynamics of populations.

The general conclusion from our model is that adding niche differentia-

tion between age classes reduces the impact of the delay due to the cohort

effect. This is in line with the general belief that age structure together

with differentiation among population members tends to stabilize the

dynamics (Fryxell and Lundberg 1997). It is clear that the competition

between age classes has a major effect on the stability properties of the

system. The impact of the cohort effect therefore depends on the number

of competitors faced by the youngest individuals, rather than the exis-

tence of ontogenetic niche shifts per se.
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Fig. 6.2. Population variability (measured as coefficient of variation over time in

log-transformed population size) against different population growth rates l in

age-structured populations with the number of age groups x varying from 3 to 6. In

panel (A) matrix A is a matrix of 1s, while in (B) there is no food overlap among

the different age groups (i.e., all elements in A are 0s, exception the diagonal of 1s).
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Doers and viewers

The model presented above is a very general solution to the age/stage

problem. In this section, we are going to have a closer look at an

application and special case of the previous theory, namely a population

divided into only two classes. We will not, however, make any detailed

assumptions about the exact background of the class division. That is,

they may not necessarily represent, for example, ages or sizes. We will

only assume that a fraction of the population is responsible for the

recruitment to the population next year (the doers), whereas the other

fraction is only present and using resources, but otherwise not engaged

in reproduction (the viewers). The doers and viewers are, e.g., represent-

ing the breeding and the floater segments of a bird population.

Moreover, this fraction is very likely not constant from one generation

to the next (see, e.g., Rohner 1996). We will instead assume that this

fraction is environmentally determined such that, in a good year, a large

fraction of the population is going to have the opportunity to repro-

duce, whereas a bad year means that only a few of the individuals will

have that possibility.

There is good evidence that in many natural populations only a

fraction of individuals of mature age are capable of reproduction. The

reasons for this are manifold; sometimes it is due to lack of food,

sometimes to lack of breeding territories, or even the presence of

predators might make some individuals postpone their reproduction.

Most obvious examples are helpers in birds where mature offspring may

assist their parents to breed (Brown 1987). Further, in social species

performing co-operative breeding the degree of reproductive skew may

be related to environmental conditions. In dwarf mongoose (Helogale

parvula) and meerkats (Suricata suricatta), for example, reproductive perfor-

mance in subordinates depends on age and food abundance (Creel and

Macdonald 1995; Waser et al. 1995; O’Riain et al. 2000). Blumenstein

and Armitage (1999) suggested that the degree of co-operative breed-

ing in marmots could result from environmental constraints. Brood-

adjusting strategies as a response to fluctuations in prey populations,

e.g., in the vole-eating Tengmalm’s owl, Aegolius funereus, (Korpimäki

1987; Korpimäki and Hakkarainen 1991), may cause the fraction of

mature and reproducing females to fluctuate. Finally, in four allopatric

species of mockingbirds (Nesomimus sp.) co-operative breeding is main-

tained where limited availability of preferred habitat constrains dispersal

(Curry 1989).
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A population model for doers and viewers

Again, we will use the Ricker dynamics as the skeleton of the population

renewal process for the doers and viewers. Each year t, a proportion p(t) of

all individuals NT(t) in the population is not able to reproduce for one

reason or another. They are the viewers, NV(t), while the rest are the

doers ND(t) who take care of the reproduction. For the renewal process

under these circumstances we have

NTðt þ 1Þ ¼ NDðtÞ exp r 1�NTðtÞ½ �f g
NV ðt þ 1Þ ¼ p ðt þ 1ÞNT ðt þ 1Þ
NDðt þ 1Þ ¼ NTðt þ 1Þ �NV ðt þ 1Þ:

(6:9)

Parameter r is the population growth rate. We used here r¼ 1.5 (yielding

stable dynamics). We let p(t) be a random variable, but assumed that it is

temporally autocorrelated. We therefore made p(t) an autoregressive

process of order 1, AR(1), according to Ripa and Lundberg (1996)

with the parameter � assuming three values, �0.7 (blue), 0 (white), and

0.7 (red) so that the p(t) assumed values from 0 to pMAX (see eq. 2.12,

p. 27).

The proportion of viewers in the population affects overall popula-

tion variability (fig. 6.3). When the proportion of viewers is small (0.1–0.3,

fig. 6.3), the viewers are the most variable segment of the population. As the

environment goes from blue to red, the coefficient of variation in population

size, CV(viewers), decreases, whereas the CV(doers) increases. If the propor-

tion of viewers is high (0.6–0.8, fig. 6.3), the CV(viewers) now increases as

we go from blue to red environments and so does the CV for both the doers

and the total population. However, in red (and white) environments, the

CV(doers) now exceeds the CV(viewers). Population variability is hence

much dependent on the composition of the population (the proportion of

doers versus viewers) and the properties of the environmental variability

(blue versus red). When looking at the variability of the total population it

follows the same pattern. The CV(total) decreases as we go from blue to red

environments if the proportion of viewers is low (left column, fig. 6.3), but

increases as we go from blue to red if this proportion is large (right column,

fig. 6.3). For any one color of the environmental variability, the CV(total)

invariably increases with increasing proportion of viewers. This highlights

the fact that it might be important to know the population structure and not

just basic vital rates before conclusions about population stability conditions

can be drawn.
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Another interesting feature of this system is illustrated in fig. 6.4. With

two segments of the population inversely related by the parameter p, we

would perhaps expect them also to be inversely related under most

circumstances when measured from data. The data we produced here

are simulated trajectories of the doers and viewers according to eq. 6.9.

The two population segments were plotted against each other for small to

large proportions of viewers (columns in fig. 6.4) and under different

environmental variability (from blue to red; rows in fig. 6.4). When the

environment was blue, there was no relationship at all between doers and

viewers, regardless of the proportion of viewers. When the environment

was red, on the other hand, the expected negative relationship between
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Fig. 6.3. The nine panels show how population variability (measured as the

coefficient of variation in population size of the last 1000 generations in the

simulations extending over 5000 time steps) varies with both the average proportion

of viewers in the population (columns) and with the color of the variability of the

proportion of viewers (rows; upper: blue (�¼�0.7), middle: white (�¼ 0), bottom:

red (�¼ 0.7)). As the variability of the proportion of viewer goes up along the x axis

in each panel, so does naturally the CV of the populations.
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the two groups was revealed, but only if the proportion of viewers was

small. For high proportions of viewers, there was a positive relationship

between the groups. When the viewers constituted roughly half of

the total population, there was no discernible relationship no matter

what the environmental variability was like. This again underscores the

fact that the interaction between the environmental driver (here the

variability of the proportion of nonreproductive viewers in the popula-

tion), demography, and population structure is an intricate determinant of

the emergent dynamics.
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Stage structure and the Tribolium example

One particularly nice example of the analysis of stage-structured population

comes from the experiments on the dynamics of the flour beetle, Tribolium

(Box 6.2) carried out in Park’s (1948) tradition by Costantino, Cushing,

Dennis and colleagues (e.g., Costantino et al. 1995, 1997, 1998;Cushing et al.

1998a,b; Dennis et al. 1997, 2001). In many invertebrates (and also many

plants), the subclasses of a population are both easily discernible and naturally

grouped, unlike, for example, the size classes used when studying fish

or reptiles. In the Tribolium populations studied (actually the two species

Box 6.2 . The Tribolium cannibalism experiment

The three-stage life cycle of Tribolium, including cannibalism of eggs

by larvae and adults and pupa by adults, may produce highly compli-

cated population dynamics patterns. The model of the development

and interaction of larval, pupae, and adultTribolium numbers is given as

(Costantino et al. 1997)

Lðt þ 1Þ ¼ bAðtÞ exp �celLðtÞ � ceaAðtÞ½ �
Pðt þ 1Þ ¼ LðtÞð1� �lÞ
Aðt þ 1Þ ¼ PðtÞ exp �cpaAðtÞ

� �
þ AðtÞð1� �aÞ:

L, P, and A are the numbers of larvae, pupae, and adults, respectively.

The constant fractions �l and �a are larval and adult mortality rates.

The density-dependent fractions exp[�celL(t)] and exp[�ceaA(t)]

describe egg survival in the presence of larvae and adults, and

exp[�cpaA(t)] is the survival of pupae in the presence of adults.

We may predict the behavior of the dynamics by simulating the

age-structured model with cannibalism on pupae, cpa, as a bifurcation

parameter. The other estimated parameters are as follows: b¼ 6.598,

cel¼ 0.01209, cea¼ 0.01155, �l¼ 0.2055, �a¼ 0.96. Figure B5 illus-

trates the change of the dynamics between different types depending

on the value of the bifurcation parameter, cannibalism of pupae by

adults. The bifurcation diagram, with a further study of the attractors,

indicates that as the cannibalism rate increases, the dynamics range

from stable equilibrium to different periodic, quasiperiodic, and

chaotic population trajectories (Costantino et al. 1997). Interestingly

enough, the range 0.423< cpa< 0.677 spawns multiple attractors.
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Here a stable period-three cycle coexists with stable cycles of period

eight or higher and with chaotic dynamics.Which attractor is reached in

this parameter range depends on the initial population sizes.

Cannibalism can be controlled in the laboratory experiment on

Tribolium. Thus, Costantino et al. (1997) posed the problem of whether

such complicated dynamics, as predicted by the theoretical modeling,

can be repeated in an experimental laboratory. The experimental

population paths indeed were a good match with those predicted by

the model. This experiment gave a lot of hope for complexity studies

in population ecology: ‘‘fluctuations in natural populations might often

be complex, low-dimensional dynamics produced by nonlinear feed-

back’’ (Costantino et al. 1997).

.

.

.

...

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

..

.

.

.

.

.

.

....

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

..

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

..

...

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

..
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..
.

.

..

.

.

.

..

.

.

.

.

.

..

.

..

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

...

.

.

..
...

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

..

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

...
.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...

.

.

...
.
.

.

.

.

.

.

.

..
..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

...

..

.

.

.

.

.

.

.

..

.

.

..

.

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

..

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

...

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

...

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

...

.

.

...
.

..

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..
.
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

...

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

....

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

..
.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

...
.

..

.

.

..

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

...

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

..

..
.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.
...

.

..

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...
......

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

...

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.
.

.

.

...

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

...

..
..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

...
.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

..

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

..

.

.

...

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

...

.

..

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

...
.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

...
.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

...

.

..

.

.

..

.

..

.

.

.

.

.

.

.

.

.

..

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

...
.
.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

...

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

...

.

.

..

.

...
.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..
..

.

.

.

..

..

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..
.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...

.

.

...
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

..

.

....

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..
.
.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

...
.

..

.

.

..

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

..

.

.

.

..

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

..

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.

..

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...
......

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

....

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...
.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

...

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..
.

.

.

..

.

.

.

.

.

.

.

.

..

.

...

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.

.

.

.

.

.

..

.

...

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

...
.

.

.

.

.

.

.

.

.

.

...
.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

.

..
.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

...
.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

...

.

..

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

...

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

...

.

.

..

.

..
.
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

..

.

.

..
.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

...

...

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...

.

.

...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

...
.

..

.

.

.

.

.

.

.

..
.
.

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..

.

.

.

.

.

.

.

.

.

...
......

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..
.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

..

.

.

.

..

.

.

.

.

.

..

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

..

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

..

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

....
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..
.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

..

.

.

.

..

.

..

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

..

.

.

.

.

.

.

....
.

.

.

.

.

...

...

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

...
.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

..

.

.

.

.

.

.

...

..
..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

...

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

....

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.
.
.
.

...

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

...

.

.

..

.

..
..

.

.

.

.

.

.

.

.

..

.

.

..
..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

...

.

.

.

.

.

.

.

...

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.
.

.

.

...

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

...
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..
.

..

.

.

.

.

.

.

.

.

..
.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..
.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.
.
.
.

...

....

..

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

...
.

.

.

.

.

.

.

.

.

.

..
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

...

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

...

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.
...

.

..

.

.

.

.

..

.

.

.

.

.

.

..
..

.

.

.

.

.

.

.

.

.

...
......

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

..

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

..
.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

..

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

...

.

.

..

.

....

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

.

.

...

.

.

..

.

.

..

.

.

..

.....

.

..

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

...

...

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

.

....

.

.

.

.

...

.

...

..

.

.

.

..

.

......

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

...

..

.

.

....

..

.

.

.

..

.

.

.

.

..

..

..

.

.

.

..

..

...

.

..

.

.

..

.

...

.....

.

.

..

.

..

.

.

...

.

.

.

..

...

.

.

.

..

....

.

.

.

.

.

...

.

.

..

.

..

.

...

..

.

..

..

.

.

.

...

.

.

.

..

.

.

..

.

...

.

...

.

..

..

.

..

.

..

.

.

.

.

...

.

.

...

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

..

.

..
.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

200

150

100

50

0

0 0.2 0.4 0.6 0.8 1

Parameter cpa

P
op

ul
at

io
n 

si
ze

Fig. B5. Bifurcation diagram of the total population size (adultsþ pupaeþ larvae)

in the three-stage Tribolium model (Box 6.2; Costantino et al. 1997) as a function

of adult mortality cpa. The initial population sizes are random numbers and

different for each value for the bifurcation parameter cpa.
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T. confusum andT. castaneum) the obvious classes are larvae, pupae, and adults.

The three-stage model can hence be written as

n1ðt þ 1Þ
n2ðt þ 1Þ
n3ðt þ 1Þ

2
4

3
5 ¼

0 0 m3

l1 0 0

0 l2 l3

2
4

3
5 n1ðtÞ

n2ðtÞ
n3ðtÞ

2
4

3
5; (6:10)

where n1 refers to larvae, n2 and n3 to pupae and adults, with their

respective net fecundities (only adults reproduce) and survival rates. Just as

in the cohort effect and ontogenetic niche shift in the preceding sections,

some of the elements of the transition matrix are density dependent. In the

Tribolium case, it is the adult fecundity (m3, sensitive to both adult and larvae

density), and the survival of pupae into the adult stage (l2). The density

effect is due to cannibalism. The eggs are eaten by both larvae and adults

(hence the effect on net fecundity), and pupae are eaten by adults.

This model has very rich dynamics (Box 6.2), which are also seen in the

experimental populations. Costantino et al. (1997) were able to experi-

mentally manipulate the cannibalism, i.e., adults predating on pupae, and

also to estimate the population dynamics from the experimental results.

The agreement between experimental results and predictions from the

iterated model with a varied cannibalism coefficient is very good (fig. 6.5).

The Tribolium experiments are a nice example of how data and theory

can meet. The details and sophistication of such experiments, however,

require strict control of the experimental situation. Apart from the fact that

this is only possible for certain model systems there is another interesting

challenge when interpreting the results. The model for the population,

eq. 6.12, includes the population parameters for a strictly isolated population

only, and that is exactly how the experiment is also set up. Hence, the

feedback environment has been reduced to its bare bones. This is exactly

how it has to be done in order to reveal the detailed dynamics in relation to

the model. The rest of the environment of the population under natural

circumstances is then, of course, lacking. (We note in passing, though, that

the Tribolium project has also dealt with critical aspects of the abiotic

environment, e.g., Costantino et al. 1998.) Revealing the underlying

mechanisms of a population or community process is one thing, translating

it into a wider context is another challenge. Conversely, inferring from

observable patterns the underlying mechanisms is definitely not a trivial

task. This transition from the mechanistic processes to large-context mani-

festations, and the reverse, is one of the major challenges in ecology, but

unfortunately too rarely taken seriously.
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Finnish grouse dynamics

As another illustration of the problem of generalizing larger pictures from

smaller, sometimes fragmented or isolated data, here we are going to

have a closer look at the data from Finnish woodland grouse population

dynamics collected by the Finnish Game and Fisheries Research Institute

(FGFRI). The data include time series of counts of both young (first year)

and adult birds in late summer across the entire country. The details of
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Fig. 6.5. Fluctuations in numbers of larvae, pupae, and adults in the Tribolium

experiments by Dennis et al. (2001). The data (solid line, closed dots) are displayed for

their replicates 1 (A)–(C) and 21 (D)–(F) with different values of the parameter cpa.

The model (Box. 6.2) prediction is indicated with dashed line and open dots.
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the data collection and their limitations are found in, e.g., Lindén (1981)

and Lindén and Rajala (1981).

The life history of grouse is relatively straightforward. The population

can essentially be divided into two groups, young birds or first-time

breeders and older adults. Both categories of the birds reproduce. We

can then use the following model for the dynamics

n1ðt þ 1Þ
n2ðt þ 1Þ

� �
¼ m1 m2

l1 l2

� �
n1ðtÞ
n2ðtÞ

� �
; (6:11)

where n1 and n2 are the densities of young first-time breeders and older

adult birds, respectively (this is a revised model from Lindström et al.

1997b). The first-time breeders survive with probability l1, thus moving

to the group of older adults. The older adult birds also remain as adults,

i.e., they stay alive from one year to another and reproduce successfully

next year, with probability l2.

Before analyzing this model, we introduce two more assumptions.

First, we let the net per capita reproduction be density dependent. This

density dependence is set to be a second-order process, i.e., implying an

unspecified cohort effect such that it is the time at birth that partly

determines the fecundity in young birds during the next year, and that

the investment of older birds is discounted by the reproductive invest-

ment during the previous year. This is indeed a crude way of implement-

ing the more straightforward cohort effects modeled in the previous

sections. With grouse, however, there is another factor that likely plays

an important role, and that is predation (e.g., Lindström et al. 1995, 1999).

As shown earlier, predation generally enters as a second-order time lag.

Second, we assume that the first age class is slightly less fecund than the

older birds. In fact, we simply scale their respective fecundities thus;

m1¼ vm2, where v is [0, 1].

The above model fits excellently to the data from the grouse in Finland

across the geographic provinces. Figure 6.6 shows an example of the

dynamics of young and old birds in one of the provinces, together with

the simulation results. Here, the model parameters (l1¼ 0.4, lm2¼ 0.5,

m2¼ 2.1) yield dynamics with six-year periodicity. The outcome of the

model is compared with the 21-year data on the dynamics of hazel grouse

population in the province of Mikkeli, Finland. Not only do the dynamics

match very well at a more superficial level, but the more detailed cross

correlation pattern (see Chapter 4) is also consistent with data. To achieve

this fit, one does not have to use exceptional parameter values. Instead, the
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parameter values used in the model are in fact also easily derived from the

data. Hence, the simple model exercise shown here indicates that, indeed,

rather crude stage structuring of the population is flexible enough qualita-

tively and quantitatively to account for processes at large geographical scales

and for systems embedded in real complexity, such as the grouse popula-

tions in Finland are (see also Chapter 4).

Summary

This chapter has dealt with the more detailed and refined aspects of

population ecology. The often-used assumption that the vital rates of a

population can be averaged over all individuals may not often be true.We

therefore need a more detailed resolution of the birth and death processes.

Births and deaths are often stage (e.g., age, sex, size) dependent and

differences in those stage-specific rates may be critically important for

population dynamics, abundance, and distribution. We review the basic
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Fig. 6.6. Population dynamics of young and adult game birds. (A) Predictions by a

stage-structured model where the fecundity is subject to delayed density dependence.

(B) The dynamics of hazel grouse in the province of Mikkeli for 1964–1984. The

right-hand panels provide cross correlation coefficients between adult and juvenile

birds. Both the data and the simulation results are detrended (drawn after Lindström

et al. 1997b).
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building blocks for stage-structured population modeling. We also show

that a rather minor extension of Leslie’s original matrix models of popula-

tion growth can capture a wide range of features, including maternal

effects, cohort effects, and ontogenetic niche shifts. The former two

effects are related to temporally variable environments, the former impli-

citly potentially (but not necessarily) assuming spatial structure. We are

hence equipped with more sophisticated tools for understanding not only

population dynamics under various temporal and spatial circumstances,

but also the very basis of life history evolution. We also give two brief

examples (a classic insect laboratory study and one on Finnish woodland

grouse) of how stage-structured modeling can elucidate the mechanisms

behind observed dynamics. We also introduce the simple structuring of

the population into two parts: the doers and the viewers, i.e., individuals

that contribute to population renewal and those who do not. Also, such a

simple subdivision has notable influences on the resulting population

dynamics and the interpretation of population data without consideration

of population structure.
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7 . Biodiversity and community
structure

This chapter is devoted to biodiversity, viz. the local and global number of

coexisting species. We first show how community assembly critically

depends on the interaction terms �ij of the community matrix A. In an

isolated community, elimination of a single species easily leads to cascading

extinctions. Attempts to reintroduce the species lost may not always succeed,

and may even lead to further extinctions. Extending community assembly

into space enhances local and global diversity but too much dispersal among

communities may considerably reduce maximum achievable species rich-

ness. We also suggest that harvesting species from a community with strong

interactions may result in unexpected extinction cascades.

Community assembly

The issue of species richness ultimately translates into the concept of the

ecological niche, defining the resource utilization profile of any single

species either when alone or in a network of interactions with other

species with closely matching profiles (e.g., Levins 1968; Emlen 1984;

Lundberg et al. 2000b). The classic question now becomes howmany and

how similar species can (locally) coexist. This problem of local species

richness crystallizes into a simple set of questions (Diamond 1975):

* To what extent are the component species in a given locality or commu-

nity mutually selected from a larger species pool to fit with each other?
* Does the resulting constellation resist invasion?
* If so, how?
* To what extent is the final species composition of a community

uniquely specified by the properties of the physical environment, and

to what extent does it depend on chance events?

These questions outline much of the skeleton in research of community

structure, the study on the pattern of species richness and species abun-

dance relationships (Pielou 1974; Cody and Diamond 1975; Brown



1984; Diamond and Case 1986; Lawton et al. 1994; Gaston 1996; Gaston

et al. 1997; Johnson 1998; Tokeshi 1999; Weiher and Keddy 1999).

Ecologists in the 1970s were very optimistic when suggesting that it is

likely that competition between species plays a key role in the integration

of species communities (a view pioneered by MacArthur 1972; for a

critical tune, see Strong et al. 1984). Diamond (1975, pp. 347–348) put

it very explicitly by stating that, ‘‘Real or potential utilization of some of

the same resources could be an obvious explanation why similar species

do not occur in the same community, unless their resource utilizations are

somewhat co-adjusted.’’ The research tradition on biodiversity and spe-

cies assembly was born. In this chapter, we shall trace the principal

achievements of this tradition.We first focus on biodiversity in an isolated

community context. Then we extend our explorations of community

assembly into spatially structured communities. In Hubbell’s (2001)

recent terminology, we build on the ‘‘niche-assembly’’ approach, but

will also explore, at the end of this chapter (p. 172), the ‘‘dispersal-

assembly’’ approach. However, at the time of writing, our attitude towards

Hubbell’s new theory on biodiversity is neutral.

Ecologists have long attempted to understand the rules for how eco-

logical communities are assembled (Diamond 1975; Pimm 1982; Post and

Pimm 1983; Drake 1991; Anderson et al. 1992; Law 1999). That work has

taught us about the limits to species diversity, expected relative abun-

dance of species in natural and undisturbed communities, and the tempo

and mode of ecological succession processes, both in genuinely virgin

habitats (e.g., newborn volcanic island) and in secondary succession (e.g.,

reforestation after logging). The theories of community assembly have

always struggled with the null model problem. For example, defining the

species pool from which potential members of the community are drawn

is often problematic (Law 1999). Both theoretical (Pimm 1980; Post and

Pimm 1983; Law and Morton 1996; Morton et al. 1996; Law 1999;

Tilman 1999) and empirical (Drake 1991; Jenkins and Buikema 1998;

Law et al. 2000) work has shown that once a community has been

assembled, there are certain limitations to the addition of further species.

Community matrix

In an attempt to answer the four questions above, we shall take a prag-

matic approach and build on the concept of the community matrix

(Levins 1968; May 1974). The elements of the community matrix A are

the pairwise interspecific interaction terms, specifying how the different
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species influence each other. Suppose there are S species sharing (at least

to some degree) a common resource. We can now write S simultaneous

equations, each one specifying the dynamics of species i. Let species i have

densityNi(t) at time t, and let the population dynamics be described by the

Ricker model, and we have

Niðt þ 1Þ ¼ NiðtÞ exp ri 1�
NiðtÞ þ

PS
j 6¼i

�ijNjðtÞ

Ki

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;
;

i; j ¼ 1; : : : ; S:

(7:1)

This is a discrete time analogue of the Lotka–Volterra competition

equation where densities are mapped from time t to tþ 1, ri is species-

specific maximum per capita growth rate, and Ki is the species-specific

carrying capacity of the system. The coefficients �ij tell us how much

species j (per capita) contributes to the density-dependent feedback of

species i. If all the S equations are solved for the respective K values, we

have for species i (Levins 1968)

Ki ¼ N�
i þ

X
j 6¼i

�ijN
�
j : (7:2)

This is a system of linear equations with coefficients �ij. This linear system

can be expressed in matrix form, and we have

K ¼ AN�; (7:3)

whereK is a column vector of species-specific carrying capacities, andN�

is a column vector of the equilibrium population densities for the S

species in the community. The community matrixAwith the interaction

terms �ij is given as

A ¼

1 �12 �13 . . . �1S

�21 1 �23 . . . �2S

�31 �32 1 . . . �3S

..

. ..
. ..

. . .
. ..

.

�S1 �S2 �S3 . . . 1

2
666664

3
777775
: (7:4)

Note that all the diagonal elements (�ii) are normalized to 1s. Going back

to eq. 7.1, we see that if an interaction term �ij is positive, then species j

has a negative effect on the equilibrium density,Ki, of species i. Should �ij
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be negative, then species j has a positive effect on i. Hence, if�ij and�ji are

both positive, then species i and j are competing (perfectly symmetrically

if �ij¼�ji). Should the interaction terms have opposite signs, then in

effect species i and j are a resource–consumer pair.

Assembling communities

Equation 7.3 can be used to make predictions of the species assembly

(Emlen 1984). That requires, of course, that we know the �ij values ofA.

By knowing the equilibrium population densities, N�
i , it is possible to

calculate K. Let us assume that we have the relevant information for an S

species community, as specified by eq. 7.3. We can now ask questions

about the effects of deleting and adding species. The effect of removing

species s from the community is found by solving eq. 7.3 for N� after

deleting the sth row and the sth column fromA and the sth element fromK.

We rewrite eq. 7.3, now with one species less, and we have

N� ¼ ðA0Þ�1
K0: (7:5)

The vector N� gives the new population equilibrium values (Emlen

1984). A0 is the new community matrix with species s removed.

For the community to persist then, obviously all species must have

equilibrium population size greater than zero (i.e., all the elements of the

vectorN� have to be positive). To find out which one of the S species can
be eliminated, we have to calculate the expected equilibrium densities

after eliminating one species at a time. By doing this, we first find all

feasible communities of S� 1 species, then S� 2 species, . . . , and finally
we are left with some persistent two-species combinations. The rules of

combinatorics tell us that the number of unique combinations of s species

out of the total of S species is: SCs ¼ S!=½s!ðS�sÞ!�;where S! is the factorial of
S (e.g., the factorial of 6 is 1� 2� 3� 4� 5� 6¼ 720). In a three-

species system, there are three one-species combinations (a, b, and c),

three two-species combinations (ab, ac, and bc), and one three-species

combination (abc). In a system of six species there are naturally six

different ways for one-species communities, 15 unique two-species

combinations, 20 for three species, 15 for four species, 6 for five species

and, of course, one six-species assemblage. It is easy to see that with

increasing S the number of S� s species combinations increases rapidly

(e.g., from a species pool of S¼ 20, unique ten-species combinations can

be taken no less than 184 756 times). This naturally creates problems if
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one aims to compare realized species assemblages with those expected

purely by random causes. The sample size of repeated assemblages that are

observed in nature has to be big enough before one can say with certainty

which of the species combinations are forbidden ones. Before going

further, let us remind ourselves that the method to calculate the vector

N� (with all values positive) does not tell us whether the equilibrium

community is stable or unstable (Box 7.1). It only lets us decide that the

given species constellation is possible.

The technique outlined above can, however, be used for reconstruc-

tion to address problems of species assembly. To demonstrate this we have

selected a species pool of six species. These species all have r¼ 1.5 and

K¼ 1 in eq. 7.1 and the A matrix (off-diagonal elements generated by

drawing random numbers between 0.5 and 1.0) is displayed in Table 7.1.

With the pool of six species, the potential number of assemblages is 63.

However, in this example we have only 37 realized ones. Naturally, all

the one-species assemblages are found, as were all of the potential two-

species assemblages. However, only 11 (out of 20 feasible) three-species

assemblages are possible, while no more than four (out of 15) of the four-

species constellations are possible. None of the five-species systems is

possible with the A matrix used (Table 7.1(B)). The ‘‘forbidden combi-

nations’’ for each assemblage size are those with some values in the N�

vector that are �0. Table 7.1(B) also demonstrates the ‘‘Humpty

Dumpty’’ effect in community assembly (Pimm 1991): once a larger

Box 7.1 . Local stability analysis of the Ricker community

Consider community dynamics defined by theRicker equation, eq. 7.1,

for which the population equilibria are given in eq. 7.2. The local

stability properties of the equilibrium population size are defined by

the eigenvalues of the linearized matrix (see Chapter 2)

B ¼

1� r1
K1
N�

1 � �12r1
K1

N�
1 � � � � �1nr1

K1
N�

1

� �21r2
K2

N�
2 1� r2

K2
N�

2 � � � � �2nr2
K2

N�
2

..

. ..
. . .

. ..
.

� �n1rn
Kn

N�
n � �n2r2

Kn
N�

n � � � 1� rn
Kn
N�

n

2
66664

3
77775
:

If the absolute values of all the eigenvalues are<1 then the community

equilibrium is locally stable. Note that r and K both influence the

entries in the B matrix. See also Box 2.2 and 2.4.
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community (in terms of S) is broken down, it cannot be easily reas-

sembled. With our example, the reassembly will result in a community of

four species (see also the Community closure section below).

We can now extend the above results to analyze in more detail the

problem with ‘‘forbidden combinations’’ in assemblage sizes close to the

size of the entire species pool SPOOL.We begin by letting the species pool be

small, intermediate, or large (SPOOL¼ 6, 11, and 16). All species in all species

pools have r ¼ 1 andK¼ 1.We also let the communities be characterized by

two sets of interaction terms. In the potentially more competitive one the

off-diagonal elements of theAmatrix were randomly drawn from a uniform

distribution between 0 and 1. In the less competitive scenario, the elements

were randomly selected between 0 and 0.5. Using eq. 7.5 we ensured that all

entries in theN�
POOL > 0.We first rarefied the assemblage size by removing

one species at a time from the pool, resulting in a community SASS (equal to

SPOOL� s), and scored whether all elements of N�
ASS > 0 for all combina-

tions of SPOOL� s. Second, we took any SPOOL from 16 to 2 and reduced

each by one and again scored whether N�
i;ASS > 0 for all i and for all

combinations of SPOOL� 1. We repeated the two procedures 100 times

(each time drawing a newA for the species pool) for all combinations to get

Table 7.1. A community matrix for six species (A) and feasible assemblages of

S< 6 (B).

(A) A six-species ( a – f ) community matrix A.

a b c d e f

a 1.000 0.999 0.808 0.853 0.944 0.552

b 0.772 1.000 0.858 0.645 0.830 0.740

c 0.610 0.998 1.000 0.786 0.837 0.657

d 0.698 0.865 0.869 1.000 0.536 0.892

e 0.814 0.761 0.911 0.752 1.000 0.688

f 0.584 0.841 0.718 0.962 0.710 1.000

(B) Assemblage size number and {Possible assemblages} from a species pool of six

species with all r¼ 1.5 and K¼ 1 based on the community matrix displayed

above. (Note that none of the five-species assemblages was possible.)

No. 1: {a} {b} {c} {d} {e} { f }

No. 2: {a,b} {a,c} {a,d} {a,e} {a, f } {b,c} {b,d} {b,e} {b, f } {c,d} {c,e} {c, f } {d,e}

{d, f } {e, f}

No. 3: {a,b,c} {a,b, f } {a,c,d} {a,c, f } {a,e, f } {b,c, f } {b,d,e} {b,d, f } {b,e, f } {c,d,e}

{c,e, f }

No. 4: {a,b,e, f } {b,c,d, f } {b,c,e, f } {c,d,e, f }

No. 6: {a,b,c,d,e, f }

Community assembly . 157



an estimate of the probabilities that a rarefied or a reduced assemblage is

feasible. The results (fig. 7.1) unambiguously support the preliminary finding

presented in Table 7.1. Smaller communities are far more likely than larger

communities to assemble from the species pool, to values closer to the

original species number in the pool. Assembling subsets of any size from

the SPOOL becomes easier if the pool is less competitive, i.e., the interaction

terms inA are closer to 0 than 1. This echoes the old sagacity: the closer the

species are packed together the harder it is to get them to coexist (Levins

1968). This is the principle of competitive exclusion (Gause 1934).
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Fig. 7.1. Probability of observing an assemblage of a give size, SASS, as a function of

the rarefied assemblage size, SASS¼ SPOOL� s, when the rarefaction is done species

by species. In (A), the values of the interaction terms range from 0 to 1, representing a

more competitive situation compared to (B), where the interaction term values are

smaller (0–0.5). Trajectories for three differing SPOOL sizes (6, 11, and 16) are shown.

(C) Probability of observing an assemblage reduced in size by one species from the

species pool. The interaction terms are either drawn between 0 and 1 (filled symbols)

or between 0 and 0.5 (open symbols). The rightmost data points are for assemblages

reduced from SPOOL¼ 16 to SASS¼ 15, the next data points to the left are for

SPOOL¼ 15 reduced to SASS¼ 14, and so on. The results are averages of 100

replicates for each parameter combination.
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These results have interesting consequences for the maintenance of

biodiversity. Despite that fact that the species in the ‘‘pool’’ can happily

coexist, it is far harder to get subsets of the species to coexist. Hence, if one

species is lost, more are likely to join it in the fall. Our model commu-

nities are, however, not entirely general in one important sense. The

interaction coefficients defined in the A matrix imply communities that

are strictly competitive (all the interaction terms are positive). To what

extent species assemblages in nature are build on competition rather than

on other kinds of interaction, is a matter of argument (Hubbell 2001). It

has been (Strong et al. 1984), and still is (Tokeshi 1999), a focus of

observational and experimental research as well as theoretical explora-

tions. One could argue, of course, that the model communities we have

used here are in fact representing at least the subset of communities called

guilds (e.g., MacArthur 1972). A guild is a set of species making use of

common resources. Good examples of guild-based communities are

found among insects, e.g., nectar and pollen-feeding bumblebees, fresh-

water zooplankton (Bosmina,Ceriodaphnia,Daphnia) feeding on algae, and

tits (Paridae), small passerine birds in boreal forests, and dabbling ducks

(Anas). Another restriction of this initial exploration is that there is no

spatial structure in the community organization. The results in this sec-

tion implicitly suggest that species-rich communities are easier to build up

on a spatially structured basis than on a local basis. That is, having several

units of suitable habitats for species in the focal guild enhances the species

diversity pooled over all local units. For example, the three-species

ass emb la ge s i n T able 7.1(B), when pooled together, maintain the six

species of the community (the same conclusion is, of course, true for the

one-, two-, and four-species assemblages). We will extend the analysis of

spatial structure and community organization below.

Species abundances

Equation 7.3 suggests a relationship between the species abundance at the

equilibrium and the interaction terms �ij. However, the relative impor-

tance of intra- and interspecific interactions, or some combination of

them, is not directly discernible. To examine this we calculated the

equilibrium population densities N� from eq. 7.5. We first did this

for S¼ 15 and the equilibrium population sizes were graphed against

��ji (the influence of the focal species on others), ��ij (the influence

of other species on the focal species) and the net effect ��ji���ij.

Figure 7.2(A)–(C) suggests that the relationship between the equilibrium
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density of the focal species and how strongly the other species interact

with it (specified by the A matrix) is tighter than the relationships

between the two other measures. This was also confirmed in an analysis

where S ranged from 3 to 25. The correlation between N� and ��ij was

negative and the tightest (fig. 7.2(D)). However, the correlation gradually

reduces with an increasing number of species in the community. Linear

regression between the two variables indicates that with an increasing

number of species the slope ofN� versus ��ij gets shallower (fig. 7.2(E)).

The regression line between N� and ��ij can be called the ‘‘assembly

line.’’ It is the line in abundance–interaction space that defines the feasible
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Fig. 7.2. (A)–(C) Scatter plots of population equilibrium density,N�, versus measures

of overall interactions characterized by the community matrix A. Panel (A) indicates

how the focal species influences the other species
P

�ji, while (B) indicates how

other species influence the focal species
P

�ij, and (C) gives the difference between

the two
P

�ji�
P

�ij (intra-specific interactions excluded). Panel (D) shows the

corresponding correlations against the number of species in the community. Panel

(E) shows the regression slopes and intercepts between N� versus �ij with increasing

numbers of species. For the results in (E) and (F) the mean of 100 replicated runs are

indicated for each S, min(�ij)¼ 0, max(�ij)¼ 0.5, r¼ 1, K¼ 1.
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community. Wilson et al. (2003) used a mean-field approximation of

generalized Lotka–Volterra models like the one we have used to show

that the results shown in fig. 7.2 are due to the covariance between

interaction coefficients and population densities.

A more conventional way to summarize abundance patterns in a

community is to rank the species in descending order and to graph

these ranked abundances. As seen in fig. 7.3, the rank versus abundance

graphs generated from the model communities resemble those from real

communities (Tokeshi 1999; Hubbell 2001). Several alternative models

have been put forward to explain such patterns (Tokeshi 1999).

However, for the highly linked communities (no 0s in A) the ‘‘assembly

line’’ suffices here. It efficiently summarizes the relevant characters of A

and N� of the equilibrium community.

Stochasticity and biodiversity

The analyses in the preceding sections have all assumed that the environ-

ment is constant and that only the deterministic properties of the com-

munity matter. Here, the role of environmental stochasticity for

community structure will be briefly dealt with. External perturbations

are attributed to enable the coexistence of several species with similar

ecological requirements (Hutchinson 1961). Environmental fluctuations
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Fig. 7.3. Species abundance rank graphs for equilibrium communities, eq. 7.5,

of three different sizes [mean of 100 replicated runs are indicated for each S,

min(�ij)¼ 0, max(�ij)¼ 0.5, r¼ 1, K¼ 1].

Community assembly . 161



are an unavoidable part of real systems. Here, we will let the interaction

terms in the community matrix be subject to random perturbations. We

shall modulate the interaction terms in theAmatrix bymultiplying the off-

diagonal elements with �¼ 1þ ", where " is a uniformly distributed

random number between �w and þw, where 0<w< 1. Increasing the

value of w (here w ranges from 0 to 0.9) increases the intensity of the noise

but does not affect its expected value. For each w we generated 1000

A matrices and calculated the probability that all species from the species

pool (SPOOL being 5, 10 or 20 species) were persistent. As shown in fig. 7.4,

the probability of having a full community declines with increasing w.

The results suggest that large communities are more vulnerable to species

losses when disturbed. To explore in more detail the impact of stochasticity

on community structure, we let two sources of stochasticity affect the

community. We let either all off-diagonal elements of A be multiplied by

a random number �(t) ranging between 1�w and 1þw, i.e., the perturba-

tion is global for all species, or by �i(t), when the perturbation is species-

specific. As before, the off-diagonal elements of A were random numbers

from a uniform distribution between 0 and 1. We used S¼ 5 and S¼ 10,

with three different values of r (1.5¼ stable dynamics, 2.25¼ two-point

fluctuations, 3.25¼ chaotic fluctuations). The initial population vector

was also a set of random numbers from a uniform distribution between

0 and 1. For each w, we iterated the community dynamics for 300 time

steps after which we scored the number of species present. A species was

0.5
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Fig. 7.4. The probability that a S species community persists when the off-

diagonal values of the interaction matrix A are perturbed with white noise of varying

strength, w. For each parameter value, the system was replicated 1000 times, and

the number of cases with all elements of N�> 0 was scored.
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said to be present if at t¼ 300 its population size was>1� 10�5. This

procedure was repeated 100 times for all parameter combinations.

The results shown in fig. 7.5 confirm the previous observation that larger

assemblages are more sensitive to environmental stochasticity (the lines in

fig. 7.5 for S10 drop earlier from 100% than for S5). Another interesting

feature is that global disturbance [matching modulation, �(t), for all spe-
cies], i.e., all species fluctuate in perfect synchrony, yields fewer extinctions

than species-specific perturbations [with �i(t) and with increasing w the

different species will begin to fluctuate out of synchrony]. Thus, across-

species synchrony enhances local diversity, while asynchrony reduces it.

This is in contrast to the observations of single-species systems, where

synchrony increases local extinctions (e.g., Heino et al. 1997a). Finally,
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Fig. 7.5. Assemblages of SINIT¼ 5 and SINIT¼ 10 were disturbed with white

external noise of varying strength w. After 300 iterations, we scored the number of

species remaining, SFINAL. If the SFINAL¼ SINIT, the index of assembly persistence is

100% (y axis). The external perturbation was either matching (global) for all species,

or species specific. The systemwas explored using three different values of r. Averages

of 100 replicated runs for each parameter combination are shown.
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not so unexpectedly, chaotic systems (r ¼ 3.25) are more vulnerable to

species extinctions than stable ones (fig. 7.5).

Community closure

Invasions from a closed species pool

Assembling model communities is technically rather straightforward, but

the rules for doing it are far from trivial. Lundberg et al. (2000c) used eq. 7.1

as the basis for their explorations. For each community size they kept

r ¼ 1.5 and K¼ 1 for all S species. As above, the interaction terms �ij

were randomly drawn from uniformly distributed random numbers

between 0 and 1. For each community size S, they sought persistent

communities and created 50 of them, all of sizes of S ranging from 2 to

10. From each such community a species was randomly removed and the

remaining community was allowed to interact for 1000 time steps to reach

a new equilibrium. In that process, more species than just the target species

were weeded out due to interspecific competition. The resulting commu-

nity, after deleting one randommember, was frequently (31.6% out of 450)

less than S� 1 (fig. 7.6). The frequency of cascading extinctions differed

among original community sizes. For small S, the new community size was

very close to the expected S� 1 but with increasing community size the

probability of cascading extinctions increased steeply (fig. 7.6(B)).

Lundberg et al. (2000c) kept track of the identity of the species

removed and attempted to reintroduce it back to the community result-

ing after its disappearance. The post-extinction community was kept at its

equilibrium and the previous member was reintroduced with a popul-

ation density of 10�2 (i.e., two orders of magnitude below carrying

capacity). The reinvasion was mostly successful. However, in 8.4% of

cases the former member of the community could not invade. The failure

also caused extinction cascades (fig. 7.6(C)). Reinvasions were more

successful into initially small communities (fig. 7.6(D)). Thus, local

extinction loss of a species potentially has cascading effects such that the

community erodes, but also that community restoration may be impos-

sible. This was termed ‘‘community closure’’ (Lundberg et al. 2000c).

Extinction and invasion cascade versus stability

There are some interesting extensions of the above analysis. Our tool-

box (eq. 7.5, Box 7.1) enables us to not only distinguish between
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Fig. 7.6. (A) The number of species remaining after one randomly selected species is

eliminated from the initial community. The dots indicate the size of the remaining

communities. (B) The probability that more than one species becomes extinct with the

loss of a randomly selected species increases with increasing community size. A logistic

regression model PðkÞ ¼ exp �þ �kð Þ= 1þ exp �þ �kð Þ½ � was fitted to the data

(�¼ 0.46 and �¼�3.8) to give the probability that at least one extra species was

eliminated with the extinction of the target species (the extinction cascade). (C) After

allowing the weeded out community to stabilize for 1000 time steps the target species

was reintroduced to the community with a density of 10�2. Most of the time, the

introduction was successful. However, sometimes the introduction caused new

extinctions. The dots indicate the size of the resulting communities after

reintroduction. (D) The probability of the reinvasion extinctions increased with

increasing community size (�¼ 0.6, �¼�6.9; modified after Lundberg et al. 2000c).
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feasible communities, i.e., those with N�
i > 0 for all i, but to separate

these into two categories: those that are locally unstable and those that

are locally stable. To explore the effects of local stability on the extinc-

tion and invasion cascades, we first selected 100 replicated feasible

communities from a small range of initial species SINIT. We then

reduced their size by letting one species become extinct (all one-species

combinations of extinctions) SEXT¼ SINIT� 1. For each replicate, we

scored the number of SEXT which were feasible and which were locally

unstable. It turns out that with all elements in N�
INIT > 0 the outcome

much depends on whether the SINIT is locally stable or unstable. With

stable SINIT the proportion of feasible communities (all elements in

N�
EXT > 0) is rather high if the initial community size is small (low

SINIT), but levels off soon at about 25% when the number of species

approaches ten (fig. 7.7(A)). With initially unstable communities, the

proportion of feasible communities is much lower (25% to 15%) and

more stable throughout the range of SINIT examined (fig. 7.7(B)). In the

feasible SEXT communities, the proportion of unstable ones sharply rises

with increasing number of SINIT in the community. The data also show

that with large-enough initial communities the outcome is roughly

matching regardless of whether the initial community was locally stable

or unstable (fig. 7.7).

These results suggest that the locally stable and unstable communities

do differ in terms of both extinction cascade and invasion cascade. We

addressed this in more detail by using 100 initially stable and unstable
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communities of eight species. For each replicate, we eliminated one

species (target) and after 1000 iterations of eq. 7.1 we scored the number

of remaining species (a species was considered extinct if its density

dropped below 1� 10�5). The expectation is that the number of species

remaining in the community should be seven. However, due to extinc-

tion cascades SEXT¼ 7 was observed only in four cases with locally

stable initial communities and once in locally unstable initial commu-

nities. The average number of species after the extinction cascades was

5.1 with the initially stable communities and only 3.8 with the initially

unstable communities (fig. 7.8(A)). The target species was returned back to

the community (with an initial density of 1� 10�4) and again after 1000

iterations of eq. 7.1 we scored the number of remaining species in the

reinvasion communities. In our simulations, we sought for cases where the

extinction cascade resulted into 100 replicates of each SEXT from 2 to 7. Out

of the 600 replicates with initially stable communities of SINIT¼ 8, the

invasion from SEXT to SEXTþ 1 took place in 63% of the cases; with the

initially unstable communities the corresponding figure is 49% (a two-by-

two test yields �2¼ 19.6, p< 0.001). Thus, the two initial community

categories locally stable and unstable, differ in terms of both extinction and

invasion cascade. When a species leaves a community via extinction, the

doors of the community are often closed and thus reinvasion becomes

impossible.

It should be kept in mind that these model communities are far

from realistic representations of natural species assemblages. The results,

nevertheless, highlight several important community processes. Previous

studies have shown that cascading extinctions are positively related to

species abundance and connectance (Pimm 1980; Law 1999). Here con-

nectance was held constant and all species had equal weight excepting

entries in the A matrix. Species diversity was the only variable property

of the communities. Yet, we observe that communities that are more

diverse were not more resistant in relative terms to species loss. That

locally unstable communities have more extinction cascades is under-

standable perhaps just due to their unstable character.We do not have any

good explanation as to why the locally stable and unstable communities

differ in terms of invasion cascade. This observation clearly calls for more

research.

Cascading extinctions are only one of the problems with species loss

(Borrvall et al. 2000). Should the extinction be local and the original species

pool still extant, then reinvasion is far from certain. Experimental studies

also indicate that species richness in the resident community has only weak
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species. (A) The extinction cascades are shown for 100 replicated runs with stable and

unstable communities (Box 7.1). In each run a randomly selected species was

removed and the number of remaining species was scored after 1000 time steps

(eq. 7.1, r ¼ 1.5, K¼ 1, min(�ij)¼ 0, max(�ij)¼ 1). The difference in the remaining

number of species in the initially stable and unstable communities is significant in

statistical terms: t198¼ 8.95, p< 0.001. ((B), (C)) The extinct species was returned

(with an initial density of 1� 10�4) at t¼ 1001 and again after 1000 time steps the

number of species present was scored. The invasion analyses were replicated 100

times for each SEXT after the extinction cascade. The size of the circle refers to the

number of cases (e.g., in (B) the number of observations in {2,2} is 34, in {2,3} 64).
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effects on invisibility (Law et al. 2000). Community closure can be a

problem in ecological time. For example, cod (Gadus morrhua) has been

driven to commercial extinction (Northern cod off Newfoundland,

Canada; Myers et al. 1997c) or is very close to being so (Baltic cod;

Kuikka et al. 1999). Despite moratoria or dramatically reduced catches,

the two cod populations seem to have severe problems recovering. In the

Baltic Sea, the loss of cod has been followed by a decrease in the numbers of

one (herring, Clupea harengus), and an increase in the numbers of the other

(sprat, Sprattus sprattus) dominating species in fish community (ICES 1999).

These examples from fisheries are by no means evidence for community

closure, but might give us a hint for where to start looking.

Community closure can also be a problem in evolutionary time. An

evolutionarily stable (ESS) community defined such that all the (current)

adaptive peaks are occupied by the potential members (Brown and

Vincent 1992) may lose species that are not able to reinvade. Similarly,

ESS communities may not even be reached in the first place. Sudden

losses from the community will alter the adaptive landscape such that the

peak where a former member resided no longer exists and, although it

would have all the ecological and evolutionary characteristics for a suc-

cessful return, the route (and thereby the continual change of the adaptive

landscape) to that potential peak is closed by the resident community

members.

This study (Lundberg et al. 2000c) has shown that the irreversibility of

species loss from communities adds to the dangers of severe distortions of

natural ecosystems and that the problem may have both ecological and

evolutionary dimensions. Community closure may have far-reaching

consequences for conservation biology, harvesting, and ecosystem

restoration.

Invasion from an open species pool

In the previous section, the initial number of the species was fixed, and

the only change in the community structure was through extinctions.We

nowmodify the model, using eq. 7.1, by allowing invasion of new species

into the community. We begin by having two species in the community.

At a random point of time an invading species, with known interaction

terms �ij with the extant members, attempts to enter the community.

The interaction terms are drawn from uniformly distributed random

numbers between 0 and 1 (still, �ii¼ 1). The invasion, with a density of

1� 10�4, is either successful or not. The success is scored after a randomly
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selected point of time (uniform random numbers between 5 and 50 time

units). All species with an abundance<1� 10�5 are considered extinct.

The system is repeated for 200 invasion cycles. To score an established

presence, a species has to remain for at least two cycles in the community.

As we learned on p. 168, the invasion might not always increase the

number of species in the community. It may also happen that an

extinction cascade follows the invasion (fig. 7.8). The succession of

species is rapid, and presence time for species in the system is character-

ized by many short stays and a few long ones. The presence time is

longer for chaotic population dynamics than for stable ones. Yet, species

composition between any subsequent time cycle is about 90% matching.

A typical feature for the interactive open-pool invasion system is that the

number of species present seldom increases above 10 (figs. 7.9, 7.10).

Systems with stable dynamics have more species compared to systems

with chaotic dynamics. These features owe much to the fact that the

interaction terms in the A matrix are random draws from a uniform

distribution between 0 and 1. Narrowing the range of �ij terms will

increase species numbers.

An assembly of species in time is vulnerable to invasions by a species

with average �ij larger than in the extant assembly. For example, in the

succession data (fig. 7.9(A)), invading species which established them-

selves had mean �ij¼ 0.503, while the corresponding figure for unsuc-

cessful invaders was 0.478, and in the target assembly it was 0.386. These

invasions cause extinction cascades in about 10–20% of cases when

extinctions take place. We generally find the ‘‘assembly line’’; that is,

there is a strong negative relationship between species abundancesNi and

how strongly the other species influence the target species, ��ij (see

fig. 7.2 (B),(D), on p. 160). The overall correlation between Ni and ��ij

for the 200 cycles of time averages was approximately �0.7 for the stable

dynamics and a bit less, approximately �0.6, for the chaotic dynamics.

The ‘‘assembly line’’ correlation weakens a bit after extinctions but

strengthens again at events of extinction cascades.

Spatial extension

The logical next step is spatially extended community dynamics and here

we ask how spatial heterogeneity influences biodiversity. By space we, of

course, refer to the spatially coupled system of population subunits. This

coupling is due to either dispersal or shared environmental fluctuations

(Chapter 4).
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Dispersal

We first assume that a landscape consists of n subunits initially inhabited

by a total of S species. In each such subunit, the community dynamics

are given by eq. 7.1. Each subunit for every local species is sufficiently

independent that the species-specific population renewal process is

governed by local processes. The units are linked together with dis-

persing individuals. Each year, after population renewal, a fraction m of

each species in each location emigrates and will redistribute into the

other subunits. Here, the dispersal process follows kernel II (Box 3.2,

p. 54) with dMAX specifying the maximum distance the dispersing

individuals can reach (here, the 25% percentile of all distances among

the n sites). Thus, for the temporal dynamics of the S species commu-

nity we write

Nðt þ 1Þ ¼ MNðtÞ exp r½D� ANðtÞ�f g: (7:6)
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Fig. 7.10. The species invasion system is run for 200 cycles. At the end, the length of

the time present is scored for all species involved (see Fig. 7.9(C)). For stable and

chaotic dynamics the frequency distributions of persistence times (averages of 100

replicated runs) is given (A), (B), together with the frequency distributions of the

terminal species numbers, (C), (D).
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HereN is a matrix with S, n, and time t as dimensions.D is a column vector

with all S elements equal to 1. The elements of N are species-specific

population densities in each locality. The matrix M is the dispersal matrix

M ¼

1� m m=ðn� 1Þ m=ðn� 1Þ � � � m=ðn� 1Þ
m=ðn� 1Þ 1� m m=ðn� 1Þ � � � m=ðn� 1Þ
m=ðn� 1Þ m=ðn� 1Þ1� m � � � � � � m=ðn� 1Þ

..

. ..
. ..

. . .
. ..

.

m=ðn� 1Þ m=ðn� 1Þ m=ðn� 1Þ � � � 1� m

2
666664

3
777775
:

(7:7)

The dispersing fraction of individualsm (0.0, 0.05, 0.1, or 0.5) is the same for

all species. The initial number of the species was S¼ 15, and the off-diagonal

elements of the community matrix A are random numbers from uniform

distribution between 0 and 1 (we ensured that for all elements inN�> 0, and

of course �ii¼ 1.0). For each subunit, we first determined by uniform

random numbers how many species (from 1 to S) and which ones will be

present, and their populations were initialized by using uniformly distributed

random numbers between 0 and 1. For all the S species we set r ¼ 1.5, and

the presence (with density>1� 10�4) of species was checked after 1000

iterations of eq. 7.6. The number of local units n was 5, 10, 20, or 50. For

each parameter combination, we replicated the simulations 100 times.

In this system with m¼ 0 we have the situation indicating the sole

effect of space. As there is no dispersal, local species richness per subunit

will settle down to matching levels despite the number of subunits in the

global system (fig. 7.11). When the number of local units is low, the

global species richness will remain much below the maximum of S¼ 15

possible. However, when m> 0 local species richness starts to increase,

but for a substantial effect in local diversity the number of subunits n has to

be sufficiently high. In dispersal-coupled systems, global and local species

richness will show opposite patterns. With increasing dispersal, global

species diversity goes down with increasing m, while local diversity is

enhanced with increasing m (fig. 7.11).

Interactions and distribution

In the dispersal-coupled community (eq. 7.6) with S species and n locations

we have for each time step S� n distribution matrices. Such matrices are

often used to score ecological distance among the S species (e.g., Gauch

1982). There are several differing ways to calculate the entries, eij (similarity
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in habitat use between species i and j ), of the ecological distance matrix E.

With the proportional similarity index eij¼�min( pij, pjh), pij and pjh are the

fractions of individuals in the locality h, and the summation is over all the

n habitat subunits. We now have two different measures of similarity

among the S species, the community matrix A and the ecological simi-

larity matrix E. By taking S¼ 15 in the initialization phase, and by using

r ¼ 1.5 and 3.25, A from random draws between 0 and 1 (except 1s for

diagonal elements), and m¼ 0.05 and dMAX of the dispersal kernel II

(p. 54)¼ 25% percentile of the interpatch distances, we scored the match

between the two similarity measures. With n¼ 50 the system was left

running for 500 iterations of eq. 7.6, and the final time step was used to

score the correlation between elements of the two matrices A and E
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Fig. 7.11. Global (A) and local (B) number of species at t¼ 1000 in iteration of

eqs. 7.6 and 7.7. Initially, S¼ 15 using a randomly drawn A matrix. Results are

presented for four values of m. When m¼ 0 (open bar), the spatial effect is alone in

operation, with m> 0 the n units are coupled with redistribution of individuals; the

spatial effect now interacts with redistribution. The results are averages (þ95%

confidence limits) of 100 replications for each combination of m and n.
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(diagonal values of both matrices excluded). Due to the cascading extinc-

tions we did not control for the weeded-out species number, instead we

repeated the system 1000 times for both values of r used.

The expectation is that interspecific interactions (the A matrix) when

strong enough should also affect the distribution and abundance of species

over the n sites. If so, the correlation between the elements of theA and E

matrices are expected to be negative. This is what we also tend to find

(fig. 7.12). However, the association between the elements of A and E is

by no means always very strong. In fact, with chaotic dynamics one quite

often also scores high positive correlations between the elements of the

two matrices (fig. 7.12(B)). Thus, the results warn against drawing con-

clusions too hastily on the strength and direction of ecological interac-

tions based on the terms in the E matrix (Connell 1980). Our

experimentation further shows that the relationship between A and E

(fig. 7.12) is rather robust to changes in m and dMAX.

An interesting feature emerges when the temporal dynamics of the

relationship are examined: the relationship between A and E is by no

means temporally stable. Periods of tighter association are intervened

with periods of lower association (fig. 7.13). In addition, one finds rather

high levels of synchrony both within species (r0� 0.9 for all species in

this example) and more interestingly also across species (fig. 7.13(B)).

Temporal fluctuations in the correlation between entries in A and E fit

well to the power law (fig. 7.13(C)). This pattern suggests that dispersal

and the density-dependent feedback system in a multispecies community
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Fig. 7.12. Correlation between elements in the A (interspecific interactions, �ij) and

E (similarity of species distribution eij over n¼ 50 sites). The expectation is for a

negative relationship between the two variables. Both stable (A) and chaotic (B)

Ricker dynamics (r values indicated) are explored (in both graphs results of 500

replicated runs are displayed).
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act in a similar manner as in spatially coupled single-species systems (see

Chapter 5, p. 104; Kaitala et al. 2001a).

Management implications

We shall close this chapter by considering some of the implications for

population and community management that may result from the ana-

lyses above. The starting point will be the B matrix given in Box 7.1.

The community stability criterion is that the absolute values of all

eigenvalues of the B matrix are less than 1 (which means that perturba-

tions away from the community equilibrium are diminishing). An import-

ant feature of the B matrix is that the entries include both ri and Ki. This

has implications for population management both in terms of harvesting

and conservation biology. Consider, e.g., a fisheries system where one of
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fluctuations calculated across the species. (C) The power spectrum of the fluctuations
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the species in the community is harvested. We simulated this scenario

with a four-species community.We assembled a community usingmatrix

A with ri¼ 1.75, and with initial values N�> 0. The system was left

running for 1000 generations. In the first scenario, one system was

disturbed only with external noise (the Moran effect, w¼ 0.1, �¼ 0.8),

while the numerically dominant species in the other one was subject to

harvesting. This system was also subject to external disturbance. The

annual harvesting rate was selected to be a colored random variable

between 0 and 20% with �¼ 0.8. The nonharvested community dis-

played only minor fluctuations aroundN�, while population fluctuations

in the harvested community were much wilder (fig. 7.14). Interestingly,

the annual harvesting rate (with long-term average of 10%) drastically

changes species abundance relationships in the community. The formerly

most abundant species now becomes the least abundant, and one of the
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Fig. 7.14. Population fluctuations in a four-species community without (A) and with

(B) 10% harvesting on the most abundant species a. Note the periods of transition

(around t¼ 810 and t¼ 940) in species abundance relationships.
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rare species becomes the top-abundant species. There are also interesting

transition periods in the community structure (fig. 7.14(B)).

We extended the above analysis by initiating 100 random communities

withA so thatN�
i > 0 for all i for S¼ 4 to S¼ 8. Harvesting was as above,

and at t¼ 1000 we scored the number of species present. The harvesting

caused quite a number of species extinctions, and often the species

becoming extinct did not include the target (randomly selected from the S )

species (fig. 7.15). The number of cascading extinctions increased with
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Fig. 7.15. Harvesting (left-hand column) and stocking (right-hand column)

extinction cascades in communities of S¼ 4 to S¼ 8. The inserted numbers give the

number of cases (out of 100 replicated runs) when species extinctions were recorded.

In the harvesting cascades, the first number gives the number of cases (graphed in the

histograms) when some species other than the harvested one became extinct. The

second figure gives the number of cases when the target species became extinct.
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increasing number of species in the community. Our next step was to

reverse the system. Instead of harvesting, we enhanced the population

size of a randomly selected target species. The annual stocking rate

was a colored random variable with a range from 1 to 1.05 (�¼ 0.8) by

which theNTARGET(t) was multiplied. After enhancing the population of

the target species with the average annual rate of 2.5% of the population

size, we observed stocking cascades (fig. 7.15). They were not as many as

with harvesting, but their numbers did increase with the increasing

community size.

These results extend the extinction/invasion cascade to the domain of

population management. Harvesting a (randomly selected) target species

in a multispecies community may easily lead to extinction of the target

species. We also find a rather high number of cascading extinctions and

single-species extinctions that do not include the target species.

Summary

Species co-existence is an intriguing problem in ecological systems.

Likewise, the assembly process towards a more or less coherent commu-

nity is no less challenging. In this chapter, we extended our models to

include entire communities, and we revisit a number of classic problems

in community ecology. For this purpose, we use very simple models to

highlight a number of fundamental problems without attempting to

recreate realistic representations of extant natural communities.

Community assembly is equivalent to what has been termed succession –

the sequential inclusion of new species interacting with the ones already

present. We show that both community assembly and the resulting final

community are nonequilibrium systems under very modest stochasticity.

This chapter takes a closer look at one aspect of that stochasticity, namely

the loss and reintroduction of species from putative stable ones. The loss

of species is often followed by extinction cascades, the relative size of

which depends on the initial size of the community. This may often

also lead to ‘‘community closure,’’ i.e., that former members of a persis-

tent community cannot reinvade the community to which they once

belonged. Such cascades are not only confined into actual extinction, but

also significant reductions in population size, e.g., when species are

harvested. When these processes are taken to a spatial context, a number

of other phenomena emerge. For example, we show that there is an

intricate interaction between expected local and global diversity depend-

ing on the rate at which species can redistribute between landscape
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elements. With increasing dispersal ability of the community members,

global diversity decreases whereas average local diversity increases. This

chapter thus concludes that spatial structure and temporal stochasticity are

indeed major components not only in single-species dynamics, but in

community dynamics as well.
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8 . Habitat loss

Our focus is on population fluctuations, extinction risks, and on

species coexistence in a fragmented landscape. As this is an entirely

theoretical enterprise, we can control for various aspects (constant carry-

ing capacity, fixed density of fragments per unit area, increasing isolation,

etc.) while altering others. This is often impossible to achieve with natural

systems. The concept of refugee-arrival (former inhabitants of habitats

lost) caused perturbations in local populations will be introduced. In

addition, we shall explore population fluctuations in the center and

border of a species’ distribution range. Finally, we shall provide a few

explanations as to why species with periodic multi-annual dynamics may

lose the cycle.

What is meant by habitat loss?

The issue of habitat loss brings into mind various aspects of changes over

time in pristine habitats in nature. Often we tend to associate habitat loss

with human-caused consequences: intensifying agriculture initially, tim-

ber logging for sawmills and pulp mills of the paper industry, not forget-

ting urban development (fig. 8.1). The picture that we tend to have in

mind when somebody mentions ‘‘habitat loss’’ is that in the beginning

there was large widespread homogeneous coverage of uniform habitat

areas all over a given biome. Ever since those times everything has

deteriorated, fragmented, and we have lost habitats. Areas suitable for

breeding of a given species have become isolated from each other. Many

species have become extinct and numerous others have become threat-

ened. This has all happened in a very short historical time. Let us take a

more analytical approach when attempting to articulate an answer to the

question: what is meant by habitat loss? The answer is, naturally, very much

dependent on the target species, the target habitat, and the target context.

In what follows, we shall first aim for a clarification of what habitat loss

might mean in its various different views. Then we shall explore what



consequences the different meanings of habitat loss may have on popula-

tion and community dynamics in space and time.

The most obvious answer to our question is that there used to be

homogeneous coverage of a given habitat and now only splinters of it are

left (fig. 8.1). Other views are that the suitable habitat for our target species

or community has always occurred in various forms of spatially scattered

areas suitable for breeding, surrounded by areas that are more hostile to the

population renewal process. Over time some of these areas have been lost,

seen as a reduced number of suitable areas (fig. 8.2(A)), or reduced resource

availability in some areas, while in others it remains at the original level

(fig. 8.2(B)), or the profitability reduction is global (fig. 8.2(C)). This is not

all: habitable areas may become lost in a given spot to appear elsewhere later

on. Inhabitants of the lost areas, refugees, have to move elsewhere in search

of habitable areas (fig. 8.2(D)). During ontogeny of a given species, juve-

niles and adults may live in different habitats perhaps not exactly matching

in per capita profitability for the different age groups (fig. 8.2(E)). Finally,

for many species still living in their natural habitats, the availability of

habitable areas is different throughout their distribution range. Often

at the center of the distribution area habitat availability is higher,

while towards the edges of the range habitable areas are more scanty

(fig. 8.2(F)). The different scenarios of habitat loss (fig. 8.2) are further

Espoo, Finland 
Forested areas 
in 1752 and 1976

5 km

Fig. 8.1. Loss of forested area in Espoo, southern Finland during the past 200 years

(modified from Halme and Niemelä 1993).

182 . Habitat loss



commented on in Table 8.1. The exploration of various kinds of habitat

loss can be summarized by stating that, ultimately, it is resource loss.

Consequences of habitat loss – a primer

It is worth noting that many of the different routes to habitat loss not only

yield habitat loss, but are often associated with other changes in the

ambient environment (Table 8.1). We shall now explore the conse-

quences of habitat loss under controlled conditions, where just one aspect

of habitat loss is in action at a time.

TIME

TIME

(A) (a)

(E) (e)

What is habitat loss?

Reduction in number (and total area)

Reduction in total area

TIME(C) (c)

Reduction in quality

Habitable areas vary in space over time

Juvenile and adult habitats separate (KJ ≠ KA)

Availability of habitable areas varies in space

(F)

TIME(B) (b)

TIME(D) (d)

Fig. 8.2. Examples of different varieties of habitat loss (Table 8.1) In panel (B)–(b)

symbol size refers to habitat area, in (C)–(c) * is a habitat patch of higher quality

than �, while in (E)–(e) * refers to juvenile habitats and � to adult habitats (likely

differing in their carrying capacities, too).
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Population-level consequences

Our focus is on the population size and on the number of local extinctions

(when the number of local sites n> 1). The tool for our purposes is described

in Box 8.1. Losing resources – a reduction in carrying capacity – is the most

obvious method of habitat loss (fig. 8.3). Reduction in habitable area,

e.g., due to timber logging, is one way this can take place. It is feasible to

think that at least some residents of the clear-cut take refuge in the intact

habitat area. This feature – refugee forged dynamics (p. 196) – can

potentially cause, via the density-dependent feedback, a drastic drop in

the population size of the intact area (fig. 8.3). The kickbackmay also cause

the resident population to become extinct even though the remaining

habitat would easily maintain a viable population.

Let us take a uniform single habitat (n¼ 1) withK¼ 200 as a reference.

As expected, the mode of the population size at t¼ 1001 is 200.

However, with demographic stochasticity (p. 185) there is some variation

around this value (fig. 8.4(A)). We now split the habitat into n¼ 20

Table 8.1. Different ways of perceiving habitat loss (see also fig. 8.2)

(A) Reduction in number

Reduction in total area

Increasing distance among remaining fragments

May generate dispersal sinks, Ii<Ei

(B) Reduction in local area

Local reductions in carrying capacity, Ki

In reduced areas increasing risk of demographic stochasticity

Reduction in total area

May generate dispersal sinks

(C) Reduction in quality

Local and global carrying capacity goes down

Overall increase in risk of demographic stochasticity

(D) Habitable areas vary in space over time

Temporal habitats

Refugee dynamics (p. 196)

(E) Juvenile and adult habitats separate

Ontogeny-caused habitat shifts

Carrying capacities in habitats for different life stages may differ (KJ 6¼KA)

(F) Availability of habitable areas varies in space

Spatially linked population dynamics likely to differ in central and bordering

areas
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fragments (randomly allocated into a 10� 10 co-ordinate space, 0.2 per

unit area), with Ki¼ 10, thus retaining the global KE¼ 200. The change

from uniform habitat into 20 fragments generates a problem for the

dispersing individuals (m¼ 0.05) to disperse across the hostile environ-

ment separating the fragments (fig. 8.4(D)). In our particular example, the

median distance is six units among the n¼ 20 local units. Assuming that

the best dispersers of the focal species can barely manage this distance, i.e.,

in kernel II dMAX¼ 6 (and that local population sizes less than 0.01

become extinct due to various stochastic reasons), the ensemble popula-

tion size XE¼�Xi (the summation is over all n at t¼ 1001) has the mode

of 100 (fig. 8.4(B)). This is all due to habitat loss increasing fragmentation,

viz. the distances among the remaining habitable units. Retaining all

other things, but increasing the maximum distance that individuals are

capable of dispersing to and surviving, eq. 8.2, to dMAX¼ 9 increases the

mode of the XE back to 200 (fig. 8.4(C)). Notably, the ensemble

Box 8.1 . Demographic stochasticity and Ricker dynamics

Ricker dynamics will be taken as the skeleton of the population

renewal process. It will be set into a spatial frame, so that we are able

to address a few general questions of habitat loss. The renewal process

is enriched with demographic stochasticity to make addressing small

population dynamics more realistic. Thus, we write

X�
i ðt þ 1Þ ¼ Poisson XiðtÞ exp r 1� XiðtÞ

Ki

� �� �� �
:

The number of population subunits ranges from 1 to n, depending on

the question we are addressing. Ki is the carrying capacity of the ith

subunit, r is the population growth rate (here r ¼ 2, i.e., stable

dynamics) and X� refers to population size before any dispersal adjust-

ments have taken place. Dispersal follows kernel II (p. 54), where the

mortality of dispersing individuals increases with distance, and none

will survive distances longer than dMAX. The system is initiated with

Xi(0) drawn from i.i.d. random numbers �10% around the carrying

capacity Ki, and is left running for 1000 generations. The data of

ensemble population size (summed over all n) and on the number of

extinct units out of the n are collected at t1001. We replicated the

simulation 1000 times for each parameter combination, and shall dis-

play results of these frequency distributions.
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population size does not peak at such high values as observed in the

uniform nonfragmented habitat (fig. 8.4(A)). These findings underline

the significance of occasionally successful long-distance movements

(e.g., Turchin 1998) in affecting the sustainable population size in a

fragmented landscape. However, it is not only dMAX that is significant –

parameter m also affects the outcome. The bending isoclines (fig. 8.4(E))

of (the median of) the XE contour graph show that dispersal agility and

maximum distances dispersed are not related linearly: to reach matching

population sizes as in the pristine nonfragmented habitat, dispersal dis-

tances should be long, but the agility to disperse should not be that high

(fig. 8.4(E)). High dispersal rates and long maximum distances dispersed

keep the incidence of local extinctions low (fig. 8.4(F)).

One element of habitat fragmentation is that while the habitat thins out

the fragments become isolated. We simulated the effects of increasing

isolation by gradually increasing the co-ordinate space where the n¼ 20

subunits were randomly located. Understandably, isolation due to habitat

loss leads to reduced population size, and increased risks of local (and
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the two phases are stochastic (obeying AR(1) process with �¼ 0.9). The populations

obey Ricker dynamics with r¼ 2.0 and demographic stochasticity (p. 185),

accounting for the variation in population size in (A).
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eventually also regional) extinctions (fig. 8.5). The next step is to keep the

carrying capacity of the ensemble constant atK¼ 200, but to increase the

number of subunits. This was done in two different environments (with

four combinations of dispersal parameters m and dMAX), in the 10� 10
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Fig. 8.4. (A) Frequency distribution of population sizes (Ricker dynamics with

demographic stochasticity and r ¼ 2) of 100 replicated runs at t ¼ 1001 in a single

homogeneous habitat with K¼ 200. The habitat is split into 20 fragments, Ki¼ 10

in each (frequency distribution distances among the fragments is shown in (D)), thus

retaining the total carrying capacity of 200. The dispersing fraction ism¼ 0.1 of the local

population size. In (B) the maximum distance at which the dispersing individuals survive

is dMAX¼ 6 (matches the median distance among the fragments (D)). The median

ensemble population size is 90, much less than the 200 in the nonfragmented habitat (A).

Increasing dMAX¼ 9 recovers the median population size of the ensemble to 200 (C).

Note, however, that in the fragmented system the tail of high population sizes is truncated

as compared to the nonfragmented habitat (A). Experimentation in (B) and (C) suggests

that the rate of local extinctions depends on dispersal distance. The effect of dispersal ratem

and maximum distance dispersed dMAX (a parameter of the dispersal kernel II, p. 54) on

the ensemble population size and the number of local extinctions is explored in the

contour diagrams in panels (E) and (F), respectively. The results for the fragmented system

are for 100 replicated runs (for each parameter combination) at t ¼ 1001.
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co-ordinate space and in a constant-density space (with 0.2 subunits per

unit of area). At first glance, the results are somewhat unexpected

(fig. 8.6). The two scenarios (constant area, constant density) do not differ

much in terms of XE and risk of extinction; rather, the dispersal para-

meters seem to be the discrimination parameters here. The more one

disperses and the further one goes, the more ‘‘safe’’ (in terms of larger

population size, smaller extinction risk) is the outcome.

One way to summarize the impact of habitat loss is to explore its

significance on population extinction risk. A straightforward assumption is

that loss of habitat will affect the carrying capacity, K. The relationship

between carrying capacity and extinction risk can be simply exemplified by

applying the techniques described, e.g., in Burgman et al. (1993). Let us

assume the Ricker dynamics with demographic stochasticity (Box 8.1) with

different growth rates. We can now calculated the terminal population size

at t¼ 1001 for 1000 independent replicates for various r andK values. From

these distributions, one can estimate (Burgman et al. 1993) the risk of

population extinction. The outcome of this exercise is straightforward

(fig. 8.7). Populations with periodic and chaotic fluctuations have a much

higher risk than stable populations of becoming extinct. More important is

the observation that the smaller the carrying capacity, the larger the extinc-

tion risk (fig. 8.7), even in stable populations. Thus, a habitat-loss-caused

reduction in carrying capacity increases the risk of population extinction.
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Community-level consequences

It is natural to think that populations of any species are not entirely isolated

from the web of ecological interactions in which they live. For example, a

given pair of species may often encounter each other – more often than at

random – in using the same resources that limit the population growth of

other species. Alternatively, one of the species benefits from the presence

of the other one by consuming some of them.Wehave either a community

of two competing species or a genuine food web.We shall first explore the

consequences of habitat fragmentation on the co-existence of two compe-

ting species by the system described in Box 8.2.
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dispersal distance is dMAX¼ 6 (the median distance among 20 fragments in a 10� 10

co-ordinate space), while in (C) and (D) it is dMAX¼ 9. See also f ig. 8.4.
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The results of the two competing species system are interesting. First,

with the parameter selection used, when n¼ 1, species 2 became extinct

in 63% of the cases (fig. 8.8(A)). However, with increasing n the prob-

ability of the outcome that both species persist in the system also increases.

In this scenario (Box 8.2), with n¼ 25, both species will persist in the

network of the n population subunits (fig. 8.8). It also turns out that

population sizes in the two-species community of competitors are reason-

able for both species with these parameter selections (fig. 8.8(B)).

The next step is to analyze a resource–consumer interaction (Box 8.3).

The parameter values for the resource–consumer, R and C, dynamics are

taken from Leslie and Gower (1960) when they simulated the long-term

persistence of R and C in the system. We selected the Leslie–Gower

‘‘second’’ set (fig. 8.9), as this keeps the equilibrium densities of the two

species low, ‘‘making chance extinction of either the predator or the prey

population a very real possibility.’’ Indeed, with n¼ 1, the probability of

extinction of C was as high as 0.83 (for R it was 0.12; fig. 8.9). When

increasing the degree of fragmentation an interesting diversification, in

terms of extinction risk, took place depending on whether the noise was
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Fig. 8.7. Risk of extinction of a homogeneous population as a function of carrying

capacity K. The population renewal obeys the Ricker dynamics (different r values

indicated) with demographic stochasticity. The risk of extinction is estimated based

on the frequency distribution of population sizes (e.g., Burgman et al. 1993) at

t¼ 1001 of 1000 independent replicates of each parameter value combination. In

these calculations, we assume that demographic stochasticity takes care of effects of

inbreeding and problems of mate finding in small populations.
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local only or global only (fig. 8.9). With solely local noise, the risk of

extinction for both R (already at n¼ 3) and C went down (at n¼ 12).

However, no such reduction of extinction risk was observed with only

global noise (fig. 8.9). This finding has a natural explanation. With only

local noise, populations of Ci and Ri keep fluctuating independently. At

times some Ci (rarely Ri) may be extinct in some of the local fragments

while in others they thrive well. In contrast, when the only external

modulator of population dynamics is the global noise [the Moran effect

(Chapter 4)], synchrony of the population fluctuations is the outcome.

When the AR(1) noise with �¼ 0.7 generates a sequence of bad years in

Box 8.2 . Two-species competition

Leslie and Gower (1958) have a discrete-time version of a two-species

competition model, which we shall extend here to cover dispersal-

linked dynamics in an n patch system

N�
1;iðt þ 1Þ ¼ l1N1;iðtÞ

1þ �1N1;iðtÞ þ �1N2;iðtÞ

N�
2;iðt þ 1Þ ¼ l2N2;iðtÞ

1þ �2N2;iðtÞ þ �2N1;iðtÞ
:

Here l is the growth rate, � refers to the density-dependent effect that

the species has on itself, while � is the interspecific competition term

(�1, �2, �1, �2> 0). The system is in equilibrium when l equals the

divisor. Leslie and Gower (1958) derived the following relations

y ¼ �1ðl2 � 1Þ
�2ðl1 � 1Þ and x ¼ �1�2

�1�2

to indicate the outcome of the competition (when n¼ 1). Here we are

particularly interested in 1< y< x, which says that the stationary state

is unstable, and either species 1 or 2 will become extinct depending on

the initial number of the two species. N � refers to population size

before any redistribution of individuals has taken place. The dispersal is

after kernel II (p. 54). We initiated the system with i.i.d. random

numbers �10% around the equilibrium densities for the two species.

The system was left running for 1000 generations. We scored the

presence of the two species checking whether N1(1001)> 0.01 and

N2(1001)> 0.01 in any of the n fragments. We varied n from 1 to 50.

Each parameter combination was replicated 1000 times.
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one place, it generates a spell of bad years all over. With a high degree of

synchrony, extinction of one local population means the simultaneous

extinction of all other populations (Allen et al. 1993; Heino et al. 1997a).

We also experimented with both global noise and local noises simulta-

neously. As expected, the results depend very much on the strength of the

two processes relative to each other. For example, with �(t) and "(i, t)
drawn from the same range, the number of fragments reducing the risk of

extinction to zero stabilizes after n� 30 around 0.62 forC and to 0.03 for

R with the parameter values as in fig. 8.9. When global disturbance

dominates the system, synchrony prevails and the extinction risk, espe-

cially of C, is high. When local disturbances dominate, asynchronous,

local-unit-independent fluctuations prevail. This leads to low risks of

extinction (Allen et al. 1993; Heino et al. 1997a).

Habitat-loss-generated population fluctuations

We are here examining the extent to which the dynamics of resource

availability affect the population dynamics of the resource users. We

imagine a system where the population renewal process is indirectly

affected by a variable environment by explicit changes in resource supply.
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Fig. 8.8. A system of two competing species that is unstable (i.e., either S1 or S2 wins,

depending on initial densities) when the number of fragments is small [when n¼ 1,

P(S1 wins)¼ 0.63] becomes a stable co-existence system for the two species when the

number of fragments exceeds 10. The parameter values used are: l1¼ 1.5, l2¼ 2.2,

�1¼ 0.01, �2¼ 0.23, �1¼ 0.77, �2¼ 0.95, m1¼m2¼ 0.1, dMAX,1¼ dMAX,2¼ 6

(see also Leslie and Gower 1958). The outcome is based on 1000 replicated

simulations for each parameter value combination.
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Models of population dynamics in patchy landscapes have been much

studied (Gilpin and Hanski 1991; Bascompte and Solé 1997; Fryxell and

Lundberg 1997; Tilman and Kareiva 1997). However, with a single

exception (Hanski 1999b), the patch availability has invariably been

assumed to be constant, i.e., there has been population dynamics and

dispersal, but no dynamics of the landscape itself. Consider a system

where the resources are patchily distributed but the void in between

them is not entirely hostile to the consumer population. Individuals

Box 8.3 . Resource–consumer dynamics

Leslie andGower (1960) studied a discrete-time version of predator–prey

dynamics. For the dispersal-linked dynamics in an n patch system (here i

refers to the ith patch) we write

R�
i ðt þ 1Þ ¼ lRRiðtÞ

1þ �RRiðtÞ þ �CiðtÞ
�ðtÞ"ði; tÞ

C�
i ðt þ 1Þ ¼ lCCiðtÞ

1þ �C
CiðtÞ
RiðtÞ

�ðtÞ"ði; tÞ:

Here l is the growth rate, � is the density-dependent effect that the

species has on itself, and � is the voracity of the predator (�1,�2, � > 0).

R� and C� refer to population sizes before any redistribution of indi-

viduals has taken place. The dispersal is after kernel II (p. 54). The

Leslie and Gower (1960) resource–consumer dynamics calls for sto-

chastic elements.We have implemented the stochasticity here by using

global external disturbance �(t) and local noise "(i, t). For the global
noise, when in action, we used AR(1) random numbers between 0.5

and 1.5 with �¼ 0.7. When the global disturbance was off we had all

�(t)¼ 1. For the local noise at each t we selected n by i.i.d. random

numbers between 0.5 and 1.5. In runs with no local noise, all "(i, t)¼ 1.

We experimented n from 1 to 15, with 1000 replicates for each

parameter combination. Populations were initiated with i.i.d. random

numbers �10% of the equilibrium values (Leslie and Gower 1960).

Our measure of extinction of either R or C is simply that all the

n populations are extinct at t1001. When n> 1 mR¼mC¼ 0.1 and

dMAX,R¼ dMAX,C¼ 6, the dimension of the co-ordinate space, into

which the n fragments were allocated, was always 10� 10. The thresh-

old for extinction was set to 0.5 (the 5% percentile of the long-term

frequency distribution of the noise-disturbed dynamics of C).
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leaving one habitable patch are likely to locate to another patch. The

patches are assumed to be sufficiently distant that the local dynamics

within a patch do not directly influence the dynamics in the other

patches. These systems are characterized by having some localities that

are persistent over time, and some that are occasionally unable to support

a subpopulation of the focal species. Some sites are more vulnerable than

others to periodic catastrophes or spells of adverse weather. For species

with a large latitudinal range, it may be that local populations near the

distribution center are always suitable, but those towards the distribution

margin are only extant at most benign times.

Imagine a landscape consisting of two patches with identical carrying

capacities, K1¼K2. The focal species inhabits both resource patches

whenever they are available. We let density-dependent renewal occur

before dispersal between the patches takes place.Wewill now assume that

one patch has a certain probability of disappearing before the next

breeding season. Thus, the former residents, the refugees, of the patch

lost have to redistribute themselves. The refugees, either all of them or a

given fraction of them – depending on the mortality rate while in transit –

subsequently arrive at the remaining patch. Because of the arrival of the
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(see also Leslie and Gower 1960). The probabilities are based on 1000 replicated
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194 . Habitat loss



refugees, the patch becomes crowded. However, local density-dependent

renewal takes care of over-crowding. The resource dynamics can also be

seen from the other side of the coin. A single patch exists, but at good

times the number of inhabitable patches, where reproduction can take

place, doubles. After colonization of the newly emerged patch, there is a

certain probability that the extra patch disappears and the residents have

to settle back into the remaining patch. A model for such dynamics is

outlined in Box 8.4.

A two-patch refugee system

In the Ricker model with r¼ 1 not much happens, but a dynamic land-

scape with refugee arrival (Box 8.4) changes the picture dramatically: the

local dynamics are destabilized (fig. 8.10(A)).Typical for the fluctuations

is that once one of the resource patches disappears, the refugees will

increase the population size in the remaining patch. Due to density

dependence, the population quickly returns towards the carrying capacity

and even well below it. Increasing refugee mortality slightly dampens the

fluctuations (fig. 8.10(C), 8.10(D)). However, even with 50% mortality,

substantial fluctuations of the population size remain.

We conclude that the dynamic appearance and disappearance of

resource patches, and the subsequent arrival of refugees, cause stable local

dynamics to turn into complex dynamics. Here, we have used the Ricker

model but experimentation with many other population renewal models

gives similar results. This suggests that refugee-caused complex dynamics

are not the anomaly of the Ricker model. It is true that the strong over-

compensatory dynamics of the Ricker model easily destabilize population

dynamics, but in our study it is environmental stochasticity at the landscape

level, and not exactly local overcompensatory population responses, that

causes complex dynamics. It is tempting to suggest that a substantial part of

the observed complexity in the dynamics of many natural populations

might simply be due to underlying resource dynamics and the episodic

arrival of refugees. Refugee arrival and subsequent population crashes due

to density dependence can thus operate as the key elements modulating a

stable population equilibrium into more complex dynamics.

Local dynamics and ensemble dynamics

We now extend the above scenario to a population inhabiting several

patches (n¼ 40), all carrying the same amount of resources. In the local
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Box 8.4 . Refugee-forced population dynamics

We shall assume that the renewal of our focal population in discrete

time t follows the Ricker equation

Xiðt þ 1Þ ¼ XiðtÞ exp r 1� XiðtÞ½ �f g;
where X refers to the population size of the ith population, and r is the

maximum per capita population growth rate. In this model, the equili-

brium population density (without migration) is unity. Assume further

that the population subunits, or patches, occur in implicit space (kernel 0,

p. 53) and are coupled via dispersing individuals. Following, e.g., Allen

et al. (1993), this can be modelled as

~XiðtÞ ¼ ð1� mÞXiðtÞ þ mXðtÞ;
where m is the dispersing proportion of individuals and XðtÞ is the

mean density of individuals taken over all populations at time t. The

population size after the dispersal is ~XiðtÞ.
We shall first deal with a two-patch system. Of course, in a two-

patch case with equal population renewals the dispersal is symmetric.

Once the other patch is gone, the residents will disperse to the

remaining patch. In this system, the dispersing fraction m allows for

colonization of the patch that emerges with benign times to come.

While in transit, a given proportion d of the refugees may die before

they reach the resource patch of destination. One more parameter, p,

the probability of the disappearance and reappearance of the resource

patch, is needed.

The next step is to make the number of subunits much larger,

N¼ 40. On top of this system, we shall overlay the temporal dynamics

of the resource patches. For the annual habitat loss (and reappearance

of resources) we write

kðtÞ ¼ h sin
2pt
P

� �
þ 1

� �
;

where k(t) is rounded up to integers, P is the period length, h is a

constant affecting the maximum k(t) can achieve [we used h¼ 10;

making k(t) to range from 0 to 20, i.e., 0% to 50% of all available

patches]. Thus, after the annual loss of habitat patches the remaining

patches are simply nt¼N� k(t). The patches were initiated in phase by

setting Xi(1)¼ 0.5, the system was left running for 500 generations,

and we used the final 100 generations for our analyses.
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units, population dynamics are assumed stable. The resource patches have

their own dynamics such that the patch numbers fluctuate in a cyclic

manner with 10-year periodicity (Box 8.4). At times, a fraction of the

units is lost. The former residents of the lost patches disperse to locate to a

new patch. In what follows, we shall deal with the emerging dynamics at a

single-unit level and in the ensemble dynamics, i.e., population fluctuations

in time summed over all the subunits. The single-population fluctuations

match a systemwhere a local population is assessed independently of others.

While the ensemble dynamics match a system such as a migrating species

breeding in several subareas, e.g., in the arctic tundra, that are annually

counted (at a bird observatory) on their way back to the over-wintering

grounds.We consider a scenario where the patches are ranked according to

their persistence ability. Patch loss follows the rank order. That is, the
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Fig. 8.10. Examples of the complexity of refugee-arrival-generated dynamics in a

patch remaining after its sister patch is lost and gained (the probability of patch

disappearance/reappearance, p¼ 0.2). The uppermost panels give dynamics for two

differing dispersal values without dispersal mortality (d¼ 0). In the phase portrait (C)

the data are the same as in (B), and they should be compared with (D) where

everything else is equal, but dispersal mortality is d¼ 0.5. Throughout r¼ 1, m is

the dispersing fraction.
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different breeding sites are differently susceptible, e.g., for climatic forcing

that comes in cycles (e.g., Burroughs 1992).

As in the two-population case, the stochastic arrival of refugees breaks

down the stable local dynamics, creating local population trajectories with

complex features (fig. 8.11). Dynamics in the most heavily tolled patches

are pulse-periodic with high amplitude (irrespective of the population

growth rate r). Most importantly, however, at the local-patch level, the
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Fig. 8.11. An example of local population dynamics ((A), (B), (D), (E)) and ensemble

dynamics ((C), (F)) with systematic loss of habitat units. Two subpopulations are

graphed, ((A), (D)) is for a patch which is absent� 50% of its time, ((B), (E)) for a patch

which is always extant. The left-hand panels are for the stable skeleton of the dynamics,

while in the right-hand panels the skeleton is chaotic. Note that the periodicity of the

habitat loss is differently pronounced in different local populations (and varies after r),

while in both cases the ensemble dynamics display clear 10-year periodicity.
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forcing periodicity of the habitat loss disappears, while at the ensemble

level of the 40 patches the 10-year periodicity of habitat loss is clearly

visible over the range of stable to chaotic population dynamics. An

interesting detail is that habitat-loss-caused refugee disturbance does not

synchronize the dynamics of the local populations (in stable dynamics

synchrony averages r0¼ 0.3, in chaotic dynamics r0¼ 0.07).

Habitat loss and refugees

The inflow and outflow of individuals to and from a local population is of

course an example of environmental disturbances and it may have pro-

found implications for the local dynamics (Fryxell and Lundberg 1993,

1997; Ranta et al. 1997a,b,c; Chapter 4). We have shown here that

variability in the underlying resource supply (through the refugee effect)

can alter very stable dynamics to complex ones indirectly. This has con-

sequences for how we interpret time series data from natural populations.

If we fail to recognize that not only can direct external stochasticity

change the dynamics, but that the indirect effects of fluctuating resources

can do so as well, then it will be difficult to disentangle the deterministic

and stochastic components of the observed dynamics. Our results also

emphasize the importance of the underlying spatial structure. It is both

the temporal variability of resources and other factors, as well as how that

variability manifests itself in space, which matter.

Another important result is that any periodicity in the structural per-

turbation affecting the population system interacts in a complex manner

with both spatial scale and the fundamental frequencies of the within-

patch population processes. This has important implications for defining

an appropriate spatial scale for empirical study of the phenomena

described here. With spatially structured loss, some frequencies of per-

turbation do show through strongly in local population time series

whereas others do not. This phenomenon is likely to be caused by

some frequencies of perturbation being strongly amplified because they

resonate with ‘‘natural’’ frequencies of the local population dynamics.

We argue that population networks, where the number of habitable

areas fluctuates from year to year, are likely to be common in nature. Of

particular interest is the strong effect of vulnerable patches on the popula-

tion dynamics of other patches within the system. This has important

potential consequences; for example, for the management of conserva-

tion areas. It is usually assumed that the more habitable areas that are

added to a population network, the better this would be for persistence of
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the target species, but this may not be true. If the added fragments are of

low quality, such that they are often unavailable, then adding them to a

population networkmay have a strongly negative effect by amplifying the

range of population fluctuations in other habitat fragments. Conversely,

however, it may have a beneficial effect, in breaking down synchroniza-

tion of population dynamics between sites. Hence, further work is

required to fully understand the management importance of these effects

in specific situations.

Life on the edge

In this section, we take a closer look at the dynamics in different parts of a

species distribution. Local extinctions can be assumed to be more frequent

in the areas near the border of the distribution than in the distribution

center. Habitable patches at the border will receive fewer dispersing

individuals than areas in the center because there is nobody coming

beyond the border. Thus, simply by demographic stochasticity bordering

areas might become locally extinct for a longer period than areas sur-

rounded by habitable patches. An alternative explanation for the distribu-

tion border is that the rate of loss of habitable patches is higher there than

in the center. The bordering areas might, e.g., be located in climatically

more harsh environments than in the central areas. Thus, in bad years the

availability of habitable areas along the distribution borders might be

much less than in benign years. With a loss of a patch, one of two things

can happen for the resident individuals. Either they die out with the

patch, or at least some of them, the refugees, may manage to redistribute

themselves into the remaining habitable patches (as above, p. 196).

Dynamics in the center and at the border of the distribution range

Imagine a population living in a landscape of habitable patches matching

in resource availability. For our argument, we shall let the n¼ 40 patches

form a one-dimensional array, the spacing between adjacent subunits

being one distance unit. Local population renewal follows the Ricker

model (Box 8.4). In each generation, a given fraction m of individuals in

the local subunits disperse. Their dispersal success is assumed negatively

distance-dependent. Every time step a fraction � of the n available habitat
units will become hostile to reproduction. The distribution center is the

least disturbed, while patches in the distribution margins at both ends of

the landscape vector will often be unavailable for colonization and hence
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for successful reproduction. After reproduction, the annual distance-

dependent dispersal takes place. Each patch sends out mXi(t) immigrants

and the number of emigrants received in patch i follows the dispersal

kernel I (p. 53). The loss of habitable patches (takes place after reproduc-

tion) from each end of the vector follows a negative binomial distribution

with parameters k¼ 4 and p¼ 0.5. The refugees follow the same distance-

dependent rule as the dispersing individuals so that the patches next to the

destroyed area receive more refugees than other redistributing individuals.

The reverse takes place in the central patches. The simulations of the system

(populations initiatedwith randomnumbers between 0 and 1) were run for

1124 generations, from which the first 100 were omitted. From the census

after habitat loss, we recorded the coefficient of variation in population size

and the color of the population time series.

The extent of annual habitat loss had a median of 10% of the habitable

patches being unavailable for reproduction each year. The frequency of

years when no habitat loss took place was 6%, while only rarely close to

50%of the patcheswere eliminated. The habitat loss created a clear gradient

in population variability. It increased from relatively low values in the

distribution center towards much larger values in the distribution margins

(fig. 8.12(A)). This effect is dependent on the spatial extent of the dispersal:

with localized dispersal c ¼ 1 (dispersal kernel I, p. 53) the overall variability

was higher than when the distance among the habitable patches was not

that important, c ¼ 0.05. The color of the dynamics of local populations

was blue in the least-disturbed central areas. This matches to the blue color

of Ricker dynamics of a single population. In the area where the coefficient

of variation reached its highest values, the population fluctuations were

dominated by long-term variations (fig. 8.12(B)). The bluish nature of the

Ricker dynamics turned to red due to the stochastic temporal loss of

habitable units in bordering areas of a species distribution.

The result that long-term fluctuations are redder at the distribution

border than in the central areas inspires further explorations of this

pattern. We now take n¼ 41 subunits, arranged in a one-dimensional

array as above, and we modified the renewal process slightly to have one

additional lag

X�
i ðt þ 1Þ ¼ XiðtÞexp r 1� Xiðt � 1Þ

Ki

� �� �
: (8:1)

Lag to (t� 1) makes the populations fluctuate cyclically (fig. 8.13(A)).

Population size before dispersal isX�
i , and each generation a fraction mi of
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the residents of the ith subunit take leave and redistribute themselves after

the dispersal kernel I (p. 53).

The landscape structure within a distribution range of a species resem-

bles that in fig. 8.2(F), i.e., habitable areas are more numerous per unit

area in the center of the distribution than at the borders. Thus, we took

unit 21 as the most central one; we placed 20 units on both sides of this

unit, to achieve symmetrical distribution. In one set of simulations,

the units were of increasing distance from each other (fig. 8.13(B)) to

mimic the distribution of habitable units when moving from the center

towards the border in fig. 8.2. Thinning out of a population at the margins

of its distribution range can also be due to carrying capacity Ki being lower
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Fig. 8.12. Coefficient of variation (A) in population size and (B) color of the long-

term population fluctuations along the distribution range. Habitable patches close to

the 0 co-ordinate in the x axis are in the distribution center, while getting away from

these areas in both directions leads towards the margins of the distribution. Two

different dispersal-distance scenarios (long distance c¼ 0.05, and short distance c¼ 1)

are displayed; the Ricker parameter r ¼ 2.2.
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there than at the center. In what follows, interpatch distances are either

constant or they gradually increase towards the distribution border, and

local carrying capacity is either constant or it decreases towards the

border. In our simulations, populations are initiated with random num-

bers �10% of Ki and r ¼ 1.75. Our focus is on the length of the cycle in

various parts along the gradient from center to the distribution border.

Experimentation with the system shows that nothing very interesting

happens with constant spacing of the n units, regardless ofKi being constant
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Fig. 8.13. (A) Population fluctuations in the distribution center and at the border of

distribution. The autocorrelation function, ACF, for the data in (A) is given in (B). Note

that the center population has a period length of 6 years, while the border population

peaks at 9-year intervals. (C) Cycle period lengths graphed for all populations against

distance from the distribution center. In this particular simulation, the parameter values

were as follows: r ¼ 1.75, m¼ 0.1, c ¼ 0.5, K¼ 1 for all patches (interpatch distance

increases to the power of 1.75 of the patch rank from the center).
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or a decreasing function of distance from the border.However, changing the

spacing between adjacent units to increase with the distance from the center

(thinning out of the habitat) brings an extra feature: the cycle length increases

towards the distribution border, i.e., the dynamics redden (fig. 8.13). In our

particular setting, populations at the center fluctuate with 6- to 7-year

periodicity, while towards the distribution border cycle period gradually

increases to 9 years (fig. 8.13(C)). This feature remains (though not as

prominent) even with constant carrying capacities in the local units.

Cyclic dynamics – a special feature

Elton (1924) was the first to draw the attention of population ecologists to

the peculiar feature that many animal populations in northern latitudes

tend to display rather regular self-repeating dynamics. This phenomenon

is especially pronounced in the Canada lynx and snowshoe hare in North

America, both species showing 10-year cycles (Elton and Nicholson

1942). Fennoscandian voles (Clethrionomus spp.,Microtus spp.) are another

good example of species with cyclic dynamics, here with a period of 3–5

years (Hansson and Henttonen 1985; Stenseth 1999). In addition, many

forest grouse species show regular periodicity (6- to 7-year) in their

dynamics (Lindén 1981; Lindström et al. 1995, 1999). Since Elton

(1924), research on cyclic populations has been the center of population

ecology. Therefore, we shall dwell a bit on the possible consequences of

habitat loss on cyclic population dynamics.

A common feature of these animal groups is, perhaps apart from the

Canada lynx, that in some parts of the distribution range the populations

show regular cyclic dynamics, and in other parts long-term dynamics are

either stable or fluctuate with no clear periodicity (e.g., Smith 1983;

Hansson and Henttonen 1985; Lindström 1994; Stenseth 1999).

Finding explanations for the cyclic population dynamics has been a

preoccupation of population ecologists for the past three-quarters of a

century (Elton 1924; Stenseth 1999; Lindström et al. 2001). Several

explanations have been suggested for this observation (Batzli 1992).

Therefore, the enigmatic observation that a given group of species dis-

plays cyclic dynamics in some parts of their distribution range but not

everywhere has caused much trouble and confusion (Lindström et al.

2001). We shall now provide a model to explain why cyclic dynamics

may exist in certain parts of the distribution range of cycle-prone species,

but not everywhere. The model is an extension of the models used in the

previous section.
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Population cycles, but not everywhere

The landscape of a cycle-prone species consists of a network of habitable

patches suitable for reproduction, and of less hospitable areas. The patches

are connected via dispersing individuals. For a dispersing individual it is

less costly to reach nearby habitable sites than favorable localities far away.

We assume that the patches can be arranged in a gradient of increasing

vulnerability to stochasticity, e.g., due to weather. The south-to-north

(lowland-to-highland, temperate-to-alpine) gradient in stability of the

areas may suffice as a metaphor, but it may also be the increasingly

fragmented border area between the pristine taiga forest biome and

agricultural landscape. We assume that the habitable patches are located

in one-dimensional space and that the patches are coupled by dispersal.

We used the delayed Ricker model for the simulations, and dispersal

according to kernel I (p. 53)

Xiðt þ 1Þ ¼ 1� mð ÞXiðtÞexp r 1þ a1XiðtÞ þ a2Xiðt � 1Þ½ �f g
þ
X
s;s 6¼i

MsiðtÞ: (8:2)

Here Xi is population size in the ith subunit at time t, m is the dispersing

proportion of the population, andMsi is the number of immigrants arriving

to patch i from patch s. The parameters a1 and a2 specify the direct and

delayed density dependence, respectively. They were selected so that the

resulting cycle period length was 4, 6, and 10 years. With the parameter

values (fig. 8.14) the resulting population fluctuations are damped. There is

good empirical support for both direct, a1, and delayed, a2, density depen-

dence in the systems we are interested in (e.g., Hörnfeldt 1994; Berryman

and Turchin 1997). In the best-documented cases, the delayed Ricker

equation, when fitted to data, indicates that the skeleton of the population

dynamics are damped (Canada lynx: Stenseth et al. 1998b, 1999; voles:

Stenseth et al. 1998b,c; Stenseth 1999; grouse: Lindström et al. 1999).

To make a patch vulnerable to temporal loss – or at least unsuitable for

population growth – we did the following. The n habitable patches were

arranged into a one-dimensional vector. The local populations in the habi-

table patches were initialized by drawing random numbers between 0 and 1.

The populations were left to renew for 500 time units (to get rid of

transients). From this time on at any given year, � of the n patches were

temporarily lost, to reappear some time later on. This was achieved by setting

n ¼ 50, and drawing � for each year from a uniform random distribution
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between 0 and 10. The lost habitable patches were always eliminated from

the ‘‘northernmost’’ (locations 41–50) cells in the vector. Thus, the patch

indexed i¼ 50 was always lost whenever a patch was lost, while patch i¼ 41

was lost only when n¼ 10. Individuals from the patches lost, refugees, were

left to redistribute themselves into the remaining patches. Note that patch

loss does not imply loss of individuals. The redistribution also followed

dispersal kernel I (p. 53). Thus, both the individuals dispersing annually

among the habitable patches and refugees attempting to locate to extant

patches obeyed the same distance-related dispersal pattern.

With power spectral analysis, we scored the contribution of the cycle

period length to population fluctuations by calculating the periodicity index.

For the 4-year period we calculated the sum of the log(power) over period

length ranging 3–5 years; for the 6-year period the range is 5–7 years and for

the 10-year period it is 8–12 years. The value of this cycle period index is

larger the more the cycle period dominates the power spectrum (fig. 8.14).

Our results suggest that cyclic dynamics can be found in one part of the

distribution range of a species but not in other parts. In this particular

example, the areas with cyclic dynamics have to be close enough to areas

where habitat loss occurs now and then and residents of the habitable areas
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Fig. 8.14.Cycle period index values for the delayed Ricker dynamics with parameter

values yielding a damped 4-year period (r¼ 2.25, a1¼�0.075, a2¼�0.05; eq. 8.4)

in cyclic dynamics (‘‘voles’’), 6-year (r¼ 1.2, a1¼�0.035, a2¼�0.074) cycles

(‘‘grouse’’) and 10-year (r¼ 0.46, a1¼ 0.05, a2¼�0.095) cycles (‘‘lynx and hare’’).

Large positive values of the index indicate that the corresponding period length is

recognizable in the population dynamics. The x axis gives the position of the

habitable patches relative to the habitat loss gradient. Close to the origin, there is no

habitat loss, while habitable patches 41–50 are vulnerable to temporary loss. In (A)

the effect of three different values of the parameter c (of the dispersal kernel I, p. 53)

are shown separately, in (B) c¼ 0.5, and m¼ 0.1 in both cases.
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lost have to redistribute themselves to the remaining patches. The extent of

the distribution range of a given species with prevailing cyclic dynamics and

the region of the stable dynamics both depend on the overall extent of the

area where habitat loss regularly takes place. It also depends, to some extent,

on the dispersal parameter c (fig. 8.14(A)).

Several hypotheses have been suggested to explain the geographical

gradient of cyclic population dynamics in small mammals in Fennoscandia

(Stenseth 1999; Lindström et al. 2001). The current dominating idea is

that the predator communities exploiting the grouse and rodents differ

from north to south. The north is dominated by specialist predators

tending to destabilize the dynamics, whereas generalist predators

dominate in the south, implying more stable predator–prey dynamics

(e.g., Hansson andHenttonen 1985, 1988; Hanski et al. 1991, 1993). This

effect is thought to be reinforced by differences in the winter climate such

that a thick and hard to penetrate snow cover in the north makes general-

ist predation less favorable. In the south, a thin or absent snow cover in

winter puts no limits to generalist predators. Our findings here do not

exclude the predation possibility, but could merely reinforce it. Here, we

have chosen to be parsimonious with the only critical assumption that

environmental stochasticity is more severe towards the edge of the popu-

lation’s range than in the center. That, together with well-substantiated

assumptions about local population dynamics and dispersal between land-

scape elements, is enough to create a gradient of local dynamics from

nonperiodic to periodic one. It is perhaps not surprising that environmental

stochasticity, here modeled as random loss of landscape fragments and sub-

sequent redistribution of refugee individuals to remaining patches, causes

deterministically damped oscillations to become persistent. This finding

highlights the fact that landscape structure (or spatial structure in general)

may have a profound influence on local population dynamics. The properties

of the landscape together with dispersal mechanisms and local dynamics can

explain a suite of large-scale population phenomena ranging from region-

wide synchrony of fluctuations to spatial differences in local dynamics (Ranta

et al. 1995a, 1997a,b,c, 1998, 1999a,b).Here,we have reinforced that general

conclusion, but also added an explanation for the geography of Fennoscand-

ian vole and grouse cycles.

Cycle lost

The drive to crack the secrets of cyclic dynamics has obsessed empiricists

(Kalela 1962; Hansson andHenttonen 1985; Krebs et al. 1995; Korpimäki
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and Norrdahl 1998) as well as theoreticians (Stenseth 1977; Stenseth et al.

1998a,b; Hanski et al. 1993; Turchin and Hanski 1997). Despite many

efforts, there is no consensus of the causes that keep the clockwork ticking

(Stenseth 1999). Ironically, just as the mysteries of the cyclic dynamics

began to yield to scientists (Stenseth 1999), the voles and woodland

grouse ceased to cycle in vast areas of Fennoscandia. Prior to the mid

1980s voles in Fennoscandia fluctuated with clear 4-year periodicity over

decades (Kalela 1962; Henttonen 1985). Since 1986, the regular cycle

waned to mere irregular variation in a forest-covered study area

(fig. 8.15(A)). The cycles have ceased also in Finnish woodland grouse

(fig. 8.15(B)), which have been showing 6-year periodicity from at least

the beginning of the last century (Lindström et al. 1995). Where have all

the cycles gone?

Naturally, a number of explanations are possible. One of the most

obvious is that the environment in which the populations live has chan-

ged. Apart from a slight but noticeable recent change in climate, we know

that the Finnish boreal landscape has changed such that it has become

more fragmented and the fraction of old forest has declined drastically due

to forestry.

Here, we explore the hypothesis that habitat fragmentation may be

responsible for the changes in dynamics. We assume that the population

dynamics obey eq. 8.4. By selecting the parameters properly, one can

easily reproduce cyclic dynamics with the period of 4, 6, and 10 years

(fig. 8.16, see also previous section). The landscape is built up of habitable

areas coupled by dispersing individuals. We also assume that dispersal

among patches close to each other is far easier than dispersing long

distances. In the increase phase of a cycle, a substantial proportion of

individuals in the population is assumed to be young individuals prone to

dispersal, while during the decline the proportion of young individuals is

lower, resulting in a lower migration rate. We used n habitable units

arranged in one-dimensional space. We modeled habitat fragmentation

by modifying the interpatch distances (fig. 8.16). In one end of the array,

they were short, and increased towards the other end. The distance

dependence of dispersal was selected so that migrating individuals were

able successfully to cover short interpatch distances, but the probability of

reaching the most distant ones was low. Regardless of the position of a

subunit on the gradient, all units keep sending dispersing individuals. The

dispersing fraction of individuals, m, leaving population, i, is taken to be a

function of change in population size between subsequent time intervals.

In particular, when the difference Xt�Xt� 1 is positive (increasing
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population size) m¼w�, where w� 1. With zero or negative population

change we have m¼�, where � is the base level of dispersal (here 10%).

In the simulations, populations in the local habitat units were initiated

with random numbers drawn from a uniform distribution (between 1 and

20). The system was left running for 2000 generations but we sampled

only the final 100 generations for calculating our descriptive statistics: the

coefficient of variation of the log(population size). Large values of this
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Fig. 8.15. (A) Long-term data on vole dynamics at Pallasjärvi (boreal forest),

Northern Finland (by courtesy of Heikki Henttonen). (B) Long-term data on

fluctuations of black grouse in South Western Finland (by courtesy of FGFRI). For

heterogeneity in sampling methods, the time series for each period is standardized to

zero mean and unit variance. Note that Turku-Pori, a Finnish province, includes

both Satakunta and Varsinais-Suomi.
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coefficient indicate that the periodicity of the cyclic dynamics is clearly

pronounced, while small values suggest weak or absent cycles. We have

experimented with a suite of different combinations of the landscape and

dispersal. Therefore, we are confident that the results reported here are

general, with the reservation that the system requires interconnectedness

among the habitat subunits.

The modeling clearly shows that habitat fragmentation and differential

dispersal in both the increase and decrease phase of the cycle reduce the

amplitude and periodicity of the population dynamics (fig. 8.16). It is

worth noting that with uniformly structured habitat there are no signs

that the cycle of the population dynamics will disappear. In addition, our

analyses show that dying-out of cyclic dynamics is not particularly sensi-

tive to the period of the cycle, nor to the parameters controlling dispersal.

The cycle die-out in the 1980s is not limited to Finland. There are

observations of fluctuations becoming tamer in population numbers of

field and bank voles in forest areas in northern Sweden (Hansson 1999).

These are, at least partly, attributed to changes in forestry practice. Usage

of large clear-cut areas became more common practice in Sweden too

after the 1970s. The altered landscape structure, with associated changes

in food availability and risk of predation, is the proposed reason why the

northern Swedish vole cycle is losing its high peaks (Hansson 1999). We

thus suggest that the documented loss of the vole and grouse cycle in

forest areas in Finlandmay also be accounted for by habitat fragmentation.

In the previous section, we proposed an alternative explanation for

presence and loss of cyclic dynamics. It is built on the assumption that the

skeleton of the underlying dynamics is damped. Temporal loss of suitable

areas forces residents of those areas to disperse. This, in turn, affects the

density-dependence feedback so that the dynamics become cyclic.

Common to both hypotheses is that changes in habitat availability can

explain the observed changes in dynamics. We have also previously

shown (Chapter 5, Ranta et al. 1997a) that a more explicit spatial structure

together with dispersal coupling may cause loss of cyclic dynamics. We

therefore conclude that landscape configuration, and possibly changes in

it, is a strong candidate for regionwide and temporal changes in popula-

tion dynamics.

Summary

Landscape heterogeneity is a topic that draws ecologists’ attention. Spatial

heterogeneity can change population and community dynamics
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considerably. It is also important from a more applied point of view. In

this chapter we reflect on the meaning of habitat loss and fragmentation

for population persistence and dynamics. We show that the interaction

between different patterns of fragmentation, and local and global stochas-

ticity, have far-reaching consequences for population persistence and the

co-existence between competing species. We also introduce the hitherto

largely unnoticed ‘‘refugee’’ effect, i.e., that individuals in a landscape

patch abandon it as it deteriorates and are relocated to other patches. This

also has effects on overall persistence and co-existence, as well as on local

and global dynamics. The loss of patches has further indirect effects, such

that losses in one end of the distributional range of a species may translate

into changes far away fromwhere the loss occurs. This chapter also shows

that changes in landscape structure may explain changes in large-scale

dynamics, e.g., the disappearance of cyclic behavior over large geographic

areas. We conclude that care must be taken when attempting to predict

the population consequences of habitat loss. First, habitat loss and

fragmentation require careful definition. Second, depending on where

and how that loss is manifested, the resulting dynamics, persistence, and

co-existence may be largely affected, or not at all. This is indeed a rich

field for further studies.
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9 . Population harvesting
and management

Apart from giving us a general and fundamental understanding of

dynamic processes at the population and community level, population

ecology also has obvious practical connections and associations. It helps us

to analyze and manage natural populations. In this chapter, we address

selected aspects of population management. We first consider problems

related to conservation issues, i.e., dealing with small and/or declining

populations. The other side of the coin is pest management, not dealt

with here however.We then focus on exploited populations, where there

is generally a trade-off between the number of individuals (or amount of

biomass) removed and the viability of the target population, i.e., the

problem of sustainability. We do this by emphasizing the need for

rigorous risk analysis procedures.

From a conservation point of view, we become concerned when the

number of individuals of a species declines to low numbers, or when a

particular population of a species becomes small. There is, of course, an

ongoing debate about what the appropriate conservation units really are –

should we, e.g., only focus on species preservation when there is so much

biological diversity (genetic and phenotypic) also within a species? We

take no stand in this debate here, and we boldly neglect the concern about

genetic diversity. Here, it will be assumed that the population is a useful

and reasonably well-defined entity, and that the population is an appro-

priate management unit. Depending on circumstances, a single popula-

tion may represent the entire distribution range of the species, or

represent a local part of a species that might be abundant, unthreatened

or unexploited elsewhere. Conservation biology and harvesting theory

typically have focused on single-species problems. Clearly, no species

lives in isolation and both direct and indirect effects of human activities on

larger parts of the community in which the focal species is embedded are

now getting more attention. One such both direct and indirect commu-

nity effect is the nontarget problem in fisheries, and we are going to have a

closer look at the problem in this chapter.



The problem with small numbers

Aswe noted in the introductory chapters, most population theory rests on

the mean-field or a single-population approach. This means that we can

view the population as consisting of a very large number of individuals,

whose behavior can be averaged such that, e.g., population density and

population growth rate are accurate descriptions about the population as a

whole. However, when a population becomes sufficiently small, the

mean-field approximation may break down. Chance events in births

and deaths, easily averaged out when a large number of individuals are

involved, may now become important. The inherent stochasticity in

births and deaths (see Chapter 2, p. 26) that manifests itself when the

number of individuals involved becomes small is called demographic

stochasticity. It is a well-studied problem (Lande 1987, 1993, 1998;

Burgman et al. 1993; Kokko and Eberhardt 1996; Engen et al. 1998;

Sæther et al. 1999) and we will not dwell on it much here. Just recall the

population renewal process outlined in Chapter 2. Equation 2.14 gives

the probabilities of births and deaths, respectively, when they are truly

stochastic variables.When the population is large, an excess of deaths over

births due to chance may reduce population size considerably. Should the

number of individuals be small, however, such an event may lead to

extinction. It is also obvious that when the population is small a suffi-

ciently distorted sex ratio might have irreversible consequences. A popu-

lation relying on the possible reproduction of one female is far more

vulnerable to chance than a population with a larger number of mature

females, albeit in a population possibly dominated by males. The above

birth and death problem is, of course, only relevant in a situation when

the population is indeed the only extant one, or in fact isolated from other

ones, and there is neither immigration nor emigration, possibly both

reinforcing and mitigating the demographic chance events.

The issue of demographic stochasticity also highlights another import-

ant problem in population ecology, namely whether we should represent

populations as the number of individuals or population density. The

mean-field approach has no problem with the density measure. It is in

fact the only operational one, since it is explicitly assumed that there

should be density-dependent feedback mechanisms in the population.

However, as mentioned in Chapters 2 and 8, density is in fact ambiguous

and useless for populations with very few individuals. When caring about

a rare species or population, it is not necessarily primarily its low density

that matters. A population with high density and few individuals might be
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far worse off than a population with low density but with very many

individuals. The Allee effect (Stephens et al. 1999) is also an interesting

and potentially important factor at low population density, but not always

when the population is small (Stephens et al. 1999; Petersen and Levitan

2001). A low-density population might withstand demographic stochas-

ticity, but not Allee effects, whereas a high-density (but small) population

might experience the reverse.

Declining populations

As Caughley (1994) pointed out, conservation biology has to consider two

principal problems: populations that are already small (and therefore threa-

tened) and populations that are declining (but not yet small). In a sense,

declining populations are far more problematic than populations that are

already small. There are, of course, a number of both practical and theore-

tical problems associated with really small populations, except one: we

usually are already well aware that they are small. Declining populations

are more problematic because it can often be difficult to decide that a

population actually is declining. Although an appropriate monitoring

scheme may report that the number of individuals sampled (or some

index thereof ) has decreased over the years, it does not necessarily mean

that the population in question is in fact under more threat than previously.

When dealing with declining populations we need to take a few steps.

First, the trend has to be detected. That is, a time series of the population

size has to have a significant negative slope over some relevant time

interval. Second, given that a trend can be detected, it then has to be

interpreted. Is this trend due to some inherent problem in the population

such that the demography has changed significantly over the year? Is the

trend a reflection of some larger changes in the relevant environment

of the population, such as habitat alterations or climatic changes?

Alternatively, is the trend actually a reflection of any problematic change

in the first place? How dowe ascertain that the putative trend due to some

external and unwanted forces is not just part of the stochastic dynamics

the population exhibits? Imagine, for example, that the population lives

in a positively autocorrelated (red) environment, and that the population

responds to the environment in a more or less direct manner (cf., the

visibility problem in Chapter 2, p. 34), where trends are integral parts of

the dynamics. Then a negative trend may not be informative at all about

any immediate threats to the population. Figure 9.1 shows such a time
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series. The series is long, but we may only have information about it in

short time windows, as we usually do. This piece-wise knowledge is

obviously not very informative about any long-term trends. The detec-

tion of trends also hinges on the assumption that whatever change in the

environment that affects the demography of the population or population

size directly (e.g., habitat alteration) is unambiguously manifested in the

time series of the population. In other words, this is a practical visibility

problem. Naturally, sufficiently big changes must inevitably be seen given

enough time. For shorter time periods, however, the response by the

population may be lagged to the extent that the detection of the under-

lying trend is not possible in time.

Detecting trends and sampling – the spatial dimension

In addition to temporal aspects, there is also a spatial problem in sampling

populations for the detection of changes. Sampling a resident population is

usually straightforward. Naturally, one cannot avoid direct measurement

errors and other sampling biases, but at least one knows what is sampled.

Migratory species with large distribution ranges may be trickier. We will

illustrate this with a simple example. Imagine we are interested in monitor-

ing a species that has a rather wide distribution such that its range comprises

areas experiencing different environmental variability. Assume further that

we monitor the abundance of this species by sampling the population as it

migrates away from its summer range to wintering areas elsewhere. This is
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Fig. 9.1.A hypothetical (but very realistic) population time series. Although the series

is stationary over a long time [i.e., the series is generated with a stationary AR(1)

process, eq. 2.12], there are periods with both negative and positive trends,

illustrating that short time series may reveal trends, but not that they are part of

stationary time series with strong long-term fluctuations.
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the situation for many monitoring schemes of birds that are based on

samples (banded birds or counts of the visible migration). To make things

a little simpler, we now assume that the total summer range of the focal

species consists of two areas experiencing environmental variability that

may ormay not be correlated. Denote this correlation rE. Suppose now that

at the sampling site, a fraction p of all individuals originates from one of the

areas, and a fraction 1� p from the other. To what extent does the sample

reflect the population dynamics, possibly including trends, in one of the

areas? This, of course, depends on the environmental correlation rE and the

fraction p that originates from the target population. One of the problems is

that p is rarely known. A high correlation between the sample and the focal

population can be due to two things. If the environmental correlation

between areas is very high, then whatever happens to one population also

happens to the other. The detected changes in the sample are true of the

populations in both areas. Also, if p is large, then of course the sample gives a

rather accurate picture of what is happening in area one (fig. 9.2). If p is

large, then the correlation is overall high (but not perfect due to
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Fig. 9.2. An illustration of the problem of the information in sampled time series. On

the x axis is the correlation between the environmental noise in two locations, and on

the y axis the correlation between the population size in one of the populations, N1,

and the sample drawn from N1þN2. This correlation is illustrated for three cases:

when the fraction from the target population N1 is 0, 0.5, and 0.8. Hence, when a

sample originates from several populations (as in, e.g., migratory birds), the measured

fluctuations in the sample may not reflect the changes in the environment one is

interested in monitoring.
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stochasticity, both measurement error and environmental variability along

the migratory route). As the proportion of the sample actually originates

from the population we want to keep track of, naturally the correlation

vanishes if there is no correlated environment between the two areas.

Increasing environmental correlation is matched by the correlation

between the sample and the target population. Clearly, the correlation

between the sample and the target is dependent on the balance between the

proportion actually originating from the target population, and the envir-

onmental correlation between the two (or more) areas from where the

sample stems. If none of those factors is known, then severe bias in our

estimates of the dynamics in the target population may be introduced.

Finally, given that a trend can be ascertained, then the problem is to do

something about it. We stress here again that observing a trend in a time

series is quite another thing to revealing the causes of it. A trend detected

by monitoring is nothing but a trailing index and there may be little room

for action once the trend has started. Should we also have overcome the

problem of deciding about the factual nature of the trend, one still has to

make sure where it comes from.

Decline – slow or sudden?

It is normally assumed, and data often speak in favor of the assumption,

that populations on their way to becoming rare (or even becoming

extinct) decline in number relatively slowly. Dynamically, the route to

extinction can, however, be both complicated and unexpected.

In many population models, extinctions tend to occur from very high

population densities, often from far above the deterministic equilibrium

population density (or expected population density in stochastic models,

e.g., Ripa and Lundberg 2000). This observation is counter to the

commonly observed extinction process when in fact extinctions tend to

occur from very small population sizes. This has also cast doubt on

whether current models actually are appropriate tools for understanding

the route to extinction in natural populations. The alternative – that our

models indeed are doing a good job, but that our data are too poor for

generalizations – would make us re-think much of conservation ecology

theory. Ripa and Heino (1999) showed nicely where the problem lies.

Models producing extinctions predominantly from very high population

densities are generally set so that the endogenous dynamics are over-

compensatory. Overcompensatory dynamics tends to be ‘‘blue’’ (see

Chapter 2) and alternating from (very) high to (very) low numbers even
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in the absence of any stochasticity. Hitting sufficiently small numbers for

extinction to occur is thus preceded by very high population densities.

Extinction in models with undercompensatory dynamics, in contrast,

would appear more gradually. Undercompensatory dynamics are inher-

ently positively serially autocorrelated, and once at low numbers the

populations tend to stay there for several time steps in a row. Any

stochasticity now gets several chances to knock the population over the

extinction edge. Ripa and Heino (1999) argued that strong overcompen-

satory dynamics are unlikely in most organisms; hence, such catastrophic

extinctions from high densities are also unlikely. Hence, data, intuition,

and theory are no longer in conflict. It is worth noting though that there

are some remarkable examples of very swift population crashes from high

numbers that resemble the previous model outcomes. The moose popu-

lation on Isle Royale in Lake Superior in North America (Peterson 1997)

declined �80% in 1995–1997 (fig. 9.3). This crash happened for a

population near or rather above the expected carrying capacity. The

reason for the sudden decrease is not clear, but Peterson (1997) argued

that the cause might have been over-browsing on the island. Another

example of possible overcompensatory mechanism working in the popu-

lation dynamics is the Soay sheep (Clutton-Brock et al. 1997). Regardless

of what the mechanism turns out to be, it is clear that dramatic cata-

strophes actually do occur in natural populations.
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Fig. 9.3. The times series of moose population size on Isle Royale showing the

dramatic decline over the last few years. This is a true crash! Redrawn from

Peterson (1997).
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Harvesting

The exploitation of natural populations is as long as human history. In

fact, much of modern population ecology has its roots in the need for

controlled or sustainable harvesting. The early studies of game (e.g.,

Leopold 1933) and marine fishes (e.g., Beverton and Holt 1957)

initiated much of the fundamental work on basic population ecology

concepts such as density dependence, recruitment, and population

sampling. Although fundamentally similar from a biological point of

view, the exploited game and fish populations have rather different

dynamics. Hunting is usually a small-scale, small-unit and less controlled

activity than, e.g., high seas fishery. The latter is not only technically

advanced and highly efficient, but also under the influence of major

factors outside the biological realm. Economic, social, and political

forces play a major role in determining the extent, duration, and control

of the harvesting activities. There is also generally a rather weak and

less direct response to short-term changes in the exploited stocks,

whereas hunters tend to have a more immediate and flexible response

to game availability. However, both activities do share, at least in

principle, the interest of sustainability, i.e., the idea that exploitation is

a long-term activity that should ensure future availability of resources.

Alas, the severe over-exploitation of many marine fish stocks and most

of the larger whale species does not give that thought much credit

(Hutchings 2000).

In pace with the increasing concern about over-exploitation parti-

cularly of marine resources, conservation issues have emerged (Reynolds

et al. 2001). An appropriate tool for the management of rare, vulnerable,

and exploited populations is risk analysis (e.g., Burgman et al. 1993). Risk

analysis is the quantitative assessment of the probabilities of certain out-

comes given a set of actions and given a set of hypotheses about the state of

the system (e.g., Kokko et al. 1999). For example, we may be interested in

the probability that a certain fish stock drops below some critical level. In

order to evaluate the risk, we need to have some estimates of the stock

size, the processes that determine stock size (i.e., both the biological

population process and the harvesting activity), and the alternative

actions, e.g., harvest rate (e.g., Restrepo et al. 1992). Because all this is

usually associated with a fair degree of uncertainty, the risk analysis

requires some statistical tools. Very useful introductions to the field are

found in Hilborn and Mangel (1997), Burnham and Andersson (1998)

and Wade (2001).
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Harvesting in temporally varying environments

In a stochastic world, populations fluctuate. The nature of these fluctua-

tions has been dealt with in previous chapters. Albeit population fluctua-

tions are interesting from a theoretical point of view, they are a nuisance

from a practical one. Population size, density or age and size composition

may be difficult to measure with enough precision, and the sampling

inaccuracy introduces uncertainty about the very process behind the

dynamics. In fact, it can be argued that stochasticity and uncertainty

about the state and dynamics of populations have, together with eco-

nomic and various political factors, contributed to over-exploitation of

many target populations (Lande et al. 2001).

Given all this uncertainty, is there a harvesting strategy that is better

than others in coping with the trade-off between maximum yield and the

avoidance of extinction? This problem has been addressed by Lande,

Engen and Sæther in a series of important articles (Lande et al. 1995,

1997; Sæther et al. 1996; see also Kaitala et al. 2003). Unlike most previous

approaches, their work is free from the critical assumption that the

populations in question have stationary population size distributions

(see also Ludwig 1998). That is, the population is allowed to drift from

say high numbers prior to harvesting, down to very low numbers as the

exploitation rate increases, without compromising the accuracy of the

statistical analyses of extinction risk. A way to handle that problem is to

use diffusion approximations of the population process instead of the

traditional discrete time renewal outlined in Chapter 2. Lande and col-

leagues also implemented four different harvesting strategies, all com-

monly applied in real systems and in theoretical investigations: a constant

harvest independent of population size, a proportional harvest linearly

dependent on population size, a threshold harvest with no harvest below a

certain threshold population size and with some maximum harvest rate

above that, and a proportional threshold harvest which is a combination

of the latter two (fig. 9.4). In their models, Lande and his colleagues were

able to show that the proportional threshold harvest resulted in the

highest cumulative (over a certain time horizon) and average yield.

Interestingly, this was also associated with the lowest risk of population

extinction. In population management, fixed exploitation rate strategies

have often been preferred over threshold harvesting (Hilborn andWalters

1992; Walters and Parma 1996; Ludwig 1998), a policy that has recently

been questioned by Lande et al. (1997, 2001). An important argument for

fixed exploitation rate strategies is that it reduces the variance of the yield
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compared to a threshold strategy (often called constant escapement in the

fisheries literature).

An important aspect of work by Lande and colleagues is also how

harvesting can affect the average size of the exploited population as well as

influence the population dynamics. They argue that the proportional

threshold harvesting strategy is a stabilizing strategy. The extent to

which harvesting activity is indeed stabilizing, or not, also depends on

the overall harvesting rate and the underlying deterministic dynamics of

the population. One approach to this problem is illustrated in the follow-

ing example from Jonzén et al. (2003). They used a nonlinear auto-

regressive model structurally modified from Royama (1992) and with

an added harvesting term

Nðt þ 1Þ ¼ NðtÞ exp 1� 1

NðtÞa1Nðt � 1Þa2
� �

1�HðtÞ½ �: (9:1)

The parameters a1 and a2 give the strength of density dependence at lags

1 and 2, respectively. Themodel is scaled such that the equilibriumwithout

harvest is 1. Two different harvesting strategies were investigated. First,

the fraction of the population harvested, H(t), was assumed to be beta

distributed, hence restricted to [0, 1], which must be the case regardless of

the distribution of annual kills (Lauck et al. 1998). The mean and variance

of a beta distribution are determined by two parameters, � and �. If � and

� are equal, the probability density function is symmetric around 0.5 (for

further details about the beta distribution, see, e.g., Gelman et al. 1995).
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Fig. 9.4. Differing harvesting strategies as a function of the estimate of target

population size. The three classical strategies are constant quota, proportional

harvesting, and harvesting all after a given threshold, c. Harvesting in proportional

threshold harvesting commences after a threshold c 0 population size is reached.
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Harvesting was taking place after reproduction and all individuals in the

population were assumed equally vulnerable. In this version, all stochas-

ticity stems from the harvest term.

The other version of the model incorporated environmental stochas-

ticity as follows

Nðt þ 1Þ ¼ NðtÞ exp 1� 1

NðtÞa1Nðt � 1Þa2 þ �"ðtÞ
� �

1�HðtÞ½ �;

(9:2)

where "(t) is a random normal deviate with mean zero and unit variance.

The value of � sets the magnitude of the environmental stochasticity.

Without harvesting, this model generates fluctuations with a period of

5–7 years for certain values of a1 and a2. Now, instead of using a beta-

distributed harvest rate, the harvest rate is dependent on whether the

population size before harvesting has increased or decreased compared to

the previous year. This seems to be the pattern, e.g., in grouse hunting in

Finland (Lindén 1991). This can be called an ‘‘adaptive’’ harvesting

strategy, and we set H(t)¼ 0.10, 0.15 or 0.25 after an increase and set

H(t)¼ 0.05 after a decline.

The effect of a1 and a2 on the population renewal process in the delayed

Ricker model was recently treated in detail by Kaitala et al. (1996a, 1996b).

The parameter values used here were taken from Lindström’s (1996)

estimation based on black grouse data from a Finnish province (Turku-

Pori). Hence, a1 was set to �0.12 and a2 to �0.71. The two models were

run for 800 generations and each parameter combination was repeated

1000 times. Periodicity in the time series produced was judged from the

autocorrelation function.

Harvesting, now acting as an extra external disturbance to the system,

clearly makes the dynamics more fluctuating (fig. 9.5). There is nothing

new in suggesting that damped internal dynamics topped with noise can

produce quasi-cyclic oscillations (Leslie 1959; Nisbet and Gurney 1982;

Potts et al. 1984; Kaitala et al. 1996a, 1996b; Stenseth 1999), but harvesting

has rarely been treated as a stochastic variable (but see Lauck et al. 1998;

Patterson 1999; Mangel 2000b) and the potential role of harvesting as an

external noise factor keeping periodic fluctuations has rarely been analyzed

in detail (e.g., Kendall et al. 1998). It has, however, been noted that if there

is a lagged response of harvest rate to population size, the effect may be

periodic fluctuations of the exploited resource (Botsford et al. 1983). In fact,

Botsford et al. (1983) touched upon some of the general results presented
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here inmore detail. Also, Beddington andMay (1977) andMay et al. (1978)

demonstrated that harvesting may affect population responses to environ-

mental noise. Harvesting may be a stabilizing or destabilizing factor

depending on the demography of the population.

Hence, apart from the obvious reduction in population size, the effects

of harvesting on the dynamics of exploited populations may be intricate.

This was further investigated in some detail by Jonzén et al. (2002b). They

generalized the problem of harvesting effects on population dynamics by

studying linearized versions of arbitrary stochastic nonlinear population

models. By doing so, they were able to show that the harvesting effect on

population variability hinges on three important properties of the popula-

tion and the environment: the strength of the density-dependent feedback

in the population, the variability in harvest rate (due tomeasurement errors,

or bad control), and the degree of autocorrelation in the environmental

variability. The results (fig. 9.6) were derived by Jonzén et al. (2002b) by

analyzing the following modified Ricker model

Nðt þ 1Þ ¼ NðtÞexp r � �NðtÞ þ uðt þ 1Þ½ � 1�H 1þ wðt þ 1Þ½ �f g;
(9:3)

where � is the strength of density dependence, and H is the harvest rate

(proportion of the population removed each time step). Both population

renewal and harvesting were assumed to be stochastic variables, u and w,

respectively. Environmental variability (u) was also allowed to be tempo-

rally autocorrelated, whereas harvesting variability (w) was white noise.
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(approximately 6- to 7-year cyclic fluctuations) with (thin line) and without (thick

line) harvesting. The figure illustrates how harvesting (as an external force) can alter

the dynamics of the exploited population.
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The response to harvesting depends on whether the underlying demo-

graphy results in over- or undercompensatory dynamics. Thus, the var-

iance of a population with undercompensating dynamics will increase as

the autocorrelation of the environment increases. At the same time, the

relative importance of variable harvest will decrease. A population with

overcompensating dynamics will, however, be relatively more affected by

a variable harvest in a positively autocorrelated environment than in an

uncorrelated environment (fig. 9.6).
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of the population (h). The standard deviation was set to 0.1 for both environmental
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Variable harvesting can therefore – depending on the temporal struc-

ture of the environment in which the exploited population lives, and the

demography – have notable effects on our abilities to manage the popula-

tions we harvest. If that activity in itself introduces further uncertainty,

then management practices may become very crude and inaccurate.

Seasonality

Very early in the history of ecology, the question has been posed of

whether harvesting (hunting) generally has an additive effect on natural

mortality, or whether there are (presumably density-dependent) factors

that might mitigate the decreased survival (Burnham and Andersson

1984). Pronounced seasonality is a possible scenario under which the

necessary feedback mechanisms can operate to either reinforce or buffer

the mortality consequences of harvesting (Kokko and Lindström 1998).

Jonzén and Lundberg (1999), and later Boyce et al. (2000) have shown that

sequential density dependence is the mechanism required. Sequential

density dependence can not only neutralize the extra hunting mortality,

it can even overcompensate for it so that harvesting increases expected

population density compared to the nonharvested situation. Suppose, for

example, that breeding takes place during a relatively short and well-

defined period each year. Assume further that the per capita birth rate is

negatively density dependent. The breeding season is followed by a period

of proportional (constant effort) harvesting, and the year is ended by a

period of density-dependent mortality, but no reproduction. Such a

sequence of events easily creates feedback mechanisms due to the nested-

ness of the density-dependent (and density-independent) processes that are

capable of absorbing the harvesting mortality, or even overcompensating

for it (fig. 9.7). The capacity to overcompensate for the harvestingmortality

is of course dependent on the strength of the density-dependent natural pro-

cesses, the actual sequencing of events, and the harvest rate that must not

be too large. Although these results are not necessarily generally valid, they

show that the effects of harvesting on average or expected population size

are not always straightforward and intuitive (Kokko and Lindström 1998).

Spatial heterogeneity

Despite the strong emphasis on spatial aspects in theoretical ecology, and

the evidence for the importance of spatial structure in natural populations,

most harvesting theory is built on the assumption of continuously
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distributed populations in uniform environments (exceptions are

Bisonette 1997; and short sections in Clark 1990; Hilborn and Walters

1992; Mangel 1994, 1998, 2000a, 2000b; Lauck et al. 1998; Quinn and

Deriso 1999). There have been, however, a few recent attempts to inject

harvesting theory with spatial ecology (see references in Quinn and

Deriso 1999), e.g., metapopulation dynamics (Tuck and Possingham

1994, 2000; McCullough 1996; Supriatna and Possingham 1998;

Cooper and Mangel 1999), source-sink dynamics (Lundberg and

Jonzén 1999a; Tuck and Possingham 2000), and habitat selection theory

(MacCall 1990; Lundberg and Jonzén 1999b). One may argue that the

spatial aspects of harvesting theory are still premature. In practice, how-

ever, spatial regulation has a long history in conservation and manage-

ment of terrestrial systems (e.g., Leopold 1933) and is receiving immense

interest also among contemporary scientists and managers ( Joshi and

Gadgil 1991; McCullough 1996). This trend towards spatial control of

harvested populations as an alternative or complement to quotas and

temporal restrictions is most obvious in fisheries management (e.g.,

Botsford et al. 1997; Acosta 2002; Lockwood et al. 2002).

Although notoriously difficult to document (Watkinson and

Sutherland 1995; Diffendorfer 1998), sources and sinks are integral parts

of the landscape of any species (Chapter 3). The whole idea behind the
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source-sink theory is that although certain habitats are very poor in terms

of survival and reproduction, they may nevertheless be used by indivi-

duals of a population and are in a sense the extension of the fundamental

niche of a species (Holt 1997). Lundberg and Jonzén (1999a) investigated

what implications such a source-sink environment might have for har-

vesting. They let this be illustrated by a very simple population model

where S is the density in the source habitat and N is the density in the

sink. The rate of change in the respective habitat can now be expressed as

(Lundberg and Jonzén 1999a)

dS

dt
¼ rS 1� S

K

� �
� eS þ iN � ESS (9:4)

dN

dt
¼ eS � mN � iN � ENN : (9:5)

In the source, the population grows logistically where, as before, r is the

maximum per capita growth rate and K the carrying capacity. Individuals

emigrate from the source at a rate e and immigrate to the sink at a rate i. The

only net input into the sink is the number of individuals emigrating from

the source. Since mortality exceeds reproduction in the sink, the popula-

tion decreases intrinsically at a ratem. In addition, individuals leave the sink

at a rate i. Harvesting is also introduced as a fishing effort in the source, ES,

and in the sink, EN. Lundberg and Jonzén (1999a) showed the outcome of

attempting to optimize the fishing effort in the above situation. It turns out

that, under the assumptions specified above, two principal situations

emerge. To maximize sustainable yield, either: (i) the sink should be

harvested at an optimal effort (a value of E that maximizes the product of

the fishing effort,E, and the corresponding equilibrium population density)

and the source be left alone, or (ii) if the sink is a very poor habitat and there

is little back migration into the source, the sink should be harvested at

maximum effort and the source at its optimal effort (fig. 9.8).

Not all spatial heterogeneity is manifested as sources and sinks. The

resource matching across habitats of different qualities is, however, a

ubiquitous phenomenon. In Chapter 10 this problem will be dealt with

in some detail. However, we have already come across the notion of

habitat selection. This process of habitat selection may have interesting

and important ramifications for harvesting. One example is the possible

effects of reserves on both the harvesting decisions and the exploited

populations. Not least in marine fisheries, the idea of no-take areas (e.g.,

marine reserves) has become much emphasized (Lauck et al. 1998).
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Suppose now that we distinguish between two habitats in the landscape

or part of the ocean. The two habitats may or may not be inherently

different. If we denote the total area A and the fraction of that area set

aside as a reserve c, then we have two habitats with area (1 – c)A and cA,

respectively. To make things simple, the habitats are characterized by

only two parameters: the maximum per capita population growth rate, li,
and the strength of the density dependence, ai. The change in population

density in the two habitats can now be written as

X1ðt þ 1Þ ¼ X1ðtÞl1exp½�a1X1ðtÞ� (9:6)

X2ðt þ 1Þ ¼ X2ðtÞl2 exp½�a2X2ðtÞ� � EX2ðtÞ; (9:7)

where Xi is population density in the respective habitats, and E is the

fishing in the area outside the reserve (Lundberg and Jonzén 1999b).

Again, harvesting is assumed to be a fixed fraction (constant effort) of the

2

4
4

6

0

0

00

0.1

0.2

0.3

0.1

0.2

0.3

0 0.5 1 1.5 2 0 0.5 1 1.5 2

4 6

8

8

10

0

(A) Poor sink, little migration (B) Good sink, intensive migration

YIELD ISOCLINES

Sink Sink

S
ou

rc
e
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dispersal between the source and the sink habitat is limited. In (B), the sink is a

relatively better habitat (still a sink) and the dispersal between the two habitats is high.

Maximum yield is achieved if the sink is harvested at maximum rate and the source at

an intermediate (here between 0.1 and 0.2) rate. Redrawn from Lundberg and

Jonzén (1999a).
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population. According to the ideal free distribution (IFD) theory

(Fretwell and Lucas 1970; Sutherland 1996), the per capita growth rates

in the two habitats should be the same at equilibrium. That is, X1(tþ 1)/

X1(t)¼X2(tþ 1)/X2(t). Under this condition, the equilibrium den-

sities in the two habitats can be solved. Noting that X1 ” N1/(cA) and

X2 ”N2/(1 – c)A, whereNi is population size, the proportion of the total

population that is occupying the reserve can now be calculated as follows

N�
1

N�
1 þN�

2

¼ a2c lnðl1Þ
a2c lnðl1Þ þ a1ð1� cÞln½l2=ð1þ EÞ� (9:8)

(Lundberg and Jonzén 1999b). Figure 9.9 summarizes the main results.

Note that: (i) optimal fishing effort (with respect to maximum sustainable

yield) does not change with the fraction set aside as reserve (c), or with the

quality of the reserve; and (ii) the size and quality of the reserve affect the

possibility of protecting a large proportion of the population. Hence,

large fitness hot-spots may be needed for satisfactory protection.

The above results apply to situations when there is a cost-free and

continuous flow of individuals across the reserve border. If there is a net

migration in either direction, i.e., if the pure IFDdoes not apply, things will

change. Imagine, for example, that the recruits within the reserve are partly

exported to the outside and that only mature individuals are harvested.

Lundberg and Jonzén (1999b) showed that under such circumstances,

the fishing effort actually changes somewhat depending on the design of

the reserve (fraction allocated to the reserve and its quality relative to the

harvested areas, fig. 9.9). Although the habitat selection models used here

may have little resemblance to real management situations they never-

theless further elucidate the problem of spatial heterogeneity in harvesting

theory. This is true also for situations when habitat heterogeneity is created

as a management tool (such as reserves).

Reproductive success is not, however, the only factor on which IFD

may be based. An important alternative is distribution based on resource

matching (Chapter 8). We shall now look, for comparison, at a modifica-

tion of the model where the fish redistribute in space according to the

availability of resources (Kaitala et al. 2004). In a homogeneous environ-

ment, this means that the population densities in the two areas will be

equalized after harvesting.

After harvesting, the population densities will be given by eqs. 9.5 and

9.6, and the population sizes are

N 0
1ðtÞ¼ cAX1ðtÞl1exp½�a1X1ðtÞ� (9:9)
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harvesting, and the other (N2) is open for exploitation. It is assumed that

individuals are distributed across the two habitats according to either the fitness

equalizing ideal free distribution (A)–(C) or the resource matching ideal free

distribution (D). (A) The fitness in the absence of harvesting decreases with increasing

population densities, X¼X1¼X2. When the population values are such that the

fitness values in each area are equal to 1, the fitness equalizing ideal free distribution

is reached. (B) The proportion of the entire population found in the reserve

habitat increases with increasing fishing effort outside it, but differently so depending

on the relative intrinsic quality of the reserve compared to the exploited habitat.

(C) The optimal fishing effort does not change with the size of the reserve (the fraction c,

here either 10% or 25%, of the entire habitat set aside). (D) Under the assumption

of the resource matching ideal free distribution, the optimal fishing effort will

depend on the size, c, of the reserve. Panels (A)–(C) are modified after Lundberg and

Jonzén (1999b).
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N 0
2ðtÞ ¼ ð1� cÞAfX2ðtÞl2 exp½�a2X2ðtÞ� � hX2ðtÞg: (9:10)

Now, after the densities are balanced, we get

X1ðt þ 1Þ ¼ X2ðt þ 1Þ ¼ ½N 0
1ðtÞ þN 0

2ðtÞ�=A
¼ cX1ðtÞl1 exp½�a1X1ðtÞ�
þ ð1� cÞfX2ðtÞl2 exp½�a2X2ðtÞ� � EX2ðtÞg;

(9:11)

from which we get the following condition for population equilibrium

1 ¼ cl1 expð�a1XÞ þ ð1� cÞ ½l2 expð�a2XÞ � E�: (9:12)

For illustrative purposes we assume that a1¼ a2¼ a, yielding the follow-

ing equilibrium population size

X ¼
ln 1þ ð1�cÞE

cl1þð1�cÞl2

h i
�a

: (9:13)

At equilibrium, the fitnesses in area 1 and 2 are

l1 expð�a1X1Þ;
l2 expð�a2X2Þ � E;

(9:14)

respectively. The equilibrium densities are denoted as X1 and X2. A

comparison of the two IFD models shows that the yield is much higher

in the resource matching IFD model than it is in the fitness equalizing

IFD model (fig. 9.9(C),(D)). This appears to depend on the fact that in the

resource matching IFD model the growth potential of the whole popula-

tion can be better utilized than in the fitness equalizing IFD model.

Moreover, in the resource matching IFD model, the maximum sustain-

able yield will be reached at considerably higher fishing efforts than in the

fitness equalizing IFD model. Thus, for the fisheries economy, it is of

paramount importance to understand the dispersal mechanisms in the

fish populations. For example, for the 25% protection policy (c¼ 0.25),

the resource matching IFD model would suggest that maximizing the

yield would require a fishing effort of about 0.85, which in the fitness

equalizing IFD fishery would eventually result in a substantial crash in the

yield. Finally, we can recognize a crucial difference between the models.

Increasing the area of the refuge will decrease the harvest in the fitness

equalizing IFD fishery whereas increasing the area of the refuge may

increase the harvest.
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Harvesting and evolution

So far, we have had a look at the two perhaps most obvious and immedi-

ate effects that harvesting can have on exploited populations. Harvesting

changes population size, usually negatively, but sometimes positively,

and it influences population stability. Harvesting may also change the

genetic composition of a population. Selective harvesting of certain types

of individuals, or just the reduction in population size, can both affect,

e.g., genetic variability and selective forces. The exploitation itself may

also be a strong direct selective force. Hunting is rarely random but often

affects old and large males more than females (trophy hunting). Marine

fisheries are generally strongly size selective both for management and

market purposes (Myers and Hoenig 1997).

The evolutionary responses to harvesting have attracted surprisingly

little attention (Getz and Kaitala 1993; Law 2000; 2001; Kokko et al.

2001; Ratner and Lande 2001; Olsen et al. 2004). However, it is now

established that the high and selective mortality due to exploitation can

cause evolutionary changes in size-dependent life history traits in fish

(Law and Grey 1989; Stokes et al. 1993; Kaitala and Getz 1995; Heino

1998). It is reasonably easy to show that life history changes have

occurred (e.g., changed age of maturity) under high exploitation rates,

but it is less trivial to show that they are evolutionary responses

(Rijnsdorp 1993; Heino 1998).

Multi-species harvesting

No species lives in isolation from other species: all are embedded in a

complex network of interactions at the same trophic level and across

trophic levels. In a multi-species community of competitors, we have

already seen the effect of targeting harvesting on the most abundant

species (Chapter 7, p. 176). In such a system, harvesting can easily alter

species abundance relationships (fig. 7.14, p. 177), and may also lead to

extinction of some species, even those that were not targets for harvesting

(fig. 7.15, p. 178). The aim of most fisheries is to capture species that are of

financial value. Often these target species are associated with other species

that may not be the intended catch of the fishery. However, many fishing

gear are not selective enough to avoid nontargeted species.

We shall illustrate here the impact of the fishing of targeted and

nontargeted species that are in a resource–consumer interaction. For

our purposes, we use the discrete time resource–consumer model

(Leslie and Gower 1960; Box 8.3, p. 193). For the model, we use the
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Fig. 9.10. Long-term yield (the frequency distributions summarize results of 1000

replicated runs of the model, p. 193) of the target species is a resource–consumer

interaction. Four different fishing scenarios are indicated. (A) Resource species is the

target without nontarget catch (hatched bars), and with nontarget catch (darkened

bars). (B) Consumer species is the target without nontarget catch (hatched bars), and

with nontarget catch (darkened bars). The parameter values used for the resource

consumer dynamics (Box. 8.3) are: lR¼ 2, lC¼ 1.2, �¼ 0.1, �R¼ 0.1, �C¼ 0.5.

234 . Population harvesting and management



parameter values given in fig. (9.10). The system is set running from the

expectations of the resource population size and the consumer population

size (Poole 1974, p. 157). The population dynamics of both the resource

and the consumer are subject to common white noise. The systemwas set

running for 500 time steps, and harvesting rate is 10% of population size.

At the end, we scored the average yield of the target species over the

previous 100 time steps. For each harvesting scenario, we repeated this

process 1000 times. The following harvesting scenarios were used:

(i) resource species (R) is the target, no nontarget, (ii) R is the target,

the consumer species (C) is the nontarget harvested at the same rate as the

target, (iii) C is the target, no nontarget, and (iv) C is the target, R is the

nontarget harvested at the same rate as the target.

The results are simple: whenR is the target, the highest long-term yield

is achievable by harvesting both the resource and the consumer species

(fig. 9.10(A)). When C is the target, the highest long-term yield is a result

of harvesting only the consumer species (fig. 9.10(B)). The explanation is

simply that when resource is harvested, harvesting acts as extra mortality,

and therefore reducing consumer population via nontarget harvesting

enhances the resource population. When the consumer is the target,

harvesting consumers only gives them an enhanced resource level

upon which to build the consumer population. Thus, when trawling,

e.g., on herring (Clupea harengus), it does not harm the target population if

cod (Gadus morhua) comes in as a nontarget catch. However, for max-

imizing cod yield, its major prey, herring, should not be trawled as

nontarget.

Summary

In this section we have shortly dealt with a few selected aspects of

harvesting and resource management. In resource management, conser-

vation issues are of high importance. Here we are usually dealing with

small or declining populations, or populations that are exploited, prob-

ably on a commercial basis. Sometimes these two go together. Obviously,

the means to handle the conservation issues usually vary. When working

with small populations, we are worried about the declining trends, and

whether these can be detected reliably. In addition, we need to take into

account the effects of demographic stochasticity (Chapter 2). When

working with harvested populations, we should consider our resource

as a structured unit. We have shown that when addressing the harvesting

problem using a spatial population ecology paradigm, many new aspects
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will arise. We gave examples of how harvesting may destabilize popula-

tion dynamics and how stochasticity in harvesting will be diluted into

population dynamics. We also gave examples of how spatial conservation

reservoirs may yield different outcomes and policies depending on the

ecological system with which we are dealing.
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10 . Resource matching

This chapter addresses the problem of how individuals are distributed in

space and time. Space is assumed to consist of areas differing in terms of

profitability, some being more productive or otherwise of higher quality

than others. The theory of ideal free distribution (IDF), or in more general

terms resource matching, was developed to address the issue of how

individuals are expected to be distributed across areas differing in availability

of relevant resources. We shall first discuss resource matching in terms

of distribution of foragers over their renewable resources under various

circumstances. We end by extending our exploration at the level of popula-

tion dynamics in areas with differing carrying capacities.

Ideal free distribution

Ecology is the scientific exploration of the distribution of individuals and

species in space and time (Krebs 1972). This is also the central theme of this

chapter. We are specifically addressing the following question: how should

individuals be distributed in an environment consisting of a number of

habitat patches varying in resource availability? This is a question studied in

the framework of the ideal free distribution (Fretwell and Lucas 1970;

Fretwell 1972; or the theory on resource/habitat matching in general,

Parker 1974; Morris 1994). According to the IFD theory (fig. 10.1),

assuming virgin habitats, the first arriving individual should occupy the

most rewarding area. From then on, its presence and activity there devalue

that particular habitat patch. The next arrival should also go to a place

where the highest reward can be extracted. It may be the same patch as for

the first individual, or another one with lower initial rank. The decision of

where to settle depends on how much the earlier individual has reduced the

quality of the initially best patch. If resources per individual in the richest

patch are higher than in the second best patch, the new individual should

go there. Thus, the filling up of the different habitat patches will be dictated

by initial resource availability and how sensitive the patch profitability and



individuals occupying it are to increased population density. Eventually,

all the available patches will be filled up so that resources monopolized per

individual should be the same regardless of the initial quality of the patch.

The model is ideal, as every individual knows the value of each patch and

every individual is free to go to the patch giving the best fitness advantage.

This yields to an ideal free distribution (Fretwell and Lucas 1970).

The IFD model is an example of game theoretical approach in ecology.

These models assume that the fitness benefit of an individual’s active

choice, e.g., whether to stay in the current patch or to move elsewhere,

depends not only on the focal individual itself, but also on the actions taken

by other individuals in the population (Maynard Smith 1982). The result

of games of this kind often is, as with the IFD, that at one point in time a

situation is reached when it does not pay anyone to move. If so, an

evolutionarily stable habitat occupancy strategy, ESS (Maynard Smith

1982), is met.
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Fig. 10.1.The idea of the ideal free distribution. Patches a, b, and c differ in profitability

(a> b> c) when no consumers are around. An increasing number of consumers

devalues the profitability of the three patches. (Differing slopes indicate differences in

the way increasing consumer numbers reduce the value of each patch. The functions

of patch quality against consumer number do not necessarily need to be linear.)

Individuals will first settle into patch a until level (i) is reached where the suitability

of the patch b is reached. The number of consumers in patch a is indicated by the open

arrow. From then on, the next individuals will gain matching benefits by going to patch

b. With the competitor numbers still increasing point (ii) is reached (consumer numbers

in patches a and b indicated with solid arrows). From this point onwards the consumers

will start to use also patch c (modified from Fretwell and Lucas 1970).
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The theory of resource matching predicts that individuals should be

distributed across the landscape so that the percapita resource usage

matches the resource distribution over all patches. The model has been

a focus of intensive theoretical and empirical research (Fretwell and Lucas

1970; Milinski 1979; Sutherland 1983, 1996; Morris 1994; Tregenza

1995). In many empirical tests, animals have been given two or more

choices of patches (often feeders) differing in food delivery rate. For

example, Milinski (1979) used an aquarium system with two feeders

and six sticklebacks of equal competitive ability. Prey input of the better

feeder was twice the input rate in the poor one. The IFD expectation,

two sticklebacks feeding at the poor feeder and four at the good feeder,

was closely met. The main finding in this experiment, and in numerous

other empirical tests, has been that the foragers distribute themselves

roughly matching with the prediction of resource availability, but not

quite so (Kennedy and Gray 1993).

Distribution of unequal competitors

What happens to the IDF if we allow individuals to differ in their

competitive ability? This question has been addressed by Sutherland

and Parker (1985) and Parker and Sutherland (1986). The question

can be specified by asking: what is the intake rate and optimal

distribution of an individual with a given competitive ability across

sites differing in profitability and with other individuals of varying

competitive ability? Sutherland and Parker assumed a range of competi-

tive abilities and a range of patch productivities and let individuals

of varying competitive abilities settle where their intake rates were

maximized. After letting the system run for long enough, the final

distribution was roughly that the good competitors eventually settled

down into the most productive patches, whilst the least competitive

individuals were found in the leanest patches. Thus, individuals differing

in competitive ability, while maximizing their food intake rates, tend

to be found in habitat patches where profitability correlates with the

competitive ability of the individuals. However, the answer is not

that straightforward, as one might guess that even a small number of

individuals in a few competitive phenotypes can be combined several

different ways, and yet individuals will enjoy food intake rates matching

their competitive ability (Milinski and Parker 1991). Let us illustrate

emergence of such multiple IFD distributions with the following

example.
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Ruxton and Humphries (1999) followed the classical IFD setting of

two patches, one twice as good as the other. They assumed a population

of 72 individuals in two classes, 36 good competitors (competitive

weight¼ 2) and 36 poor competitors (competitive weight¼ 1). In the

beginning, individuals of the two phenotypes were randomly allocated

between the two patches. In their simulations, each lasting 10 000 turns, a

genuine IFD movement took place, i.e., an individual that could improve

its intake rate shifted from one patch to another one. There was also a

constant probability for a non-IFD movement. This involved 1 out of the

72 individuals being selected and displaced from its current patch to the

other one. The individual that moved was either selected randomly from

among all its kinds, or it was the individual having the lowest intake rate.

The insight into this is that the system has, in theoretical terms, in total 18

different ways in which an IFD could be achieved: the more productive

patch could have all 36 good competitors, or 35 good ones and 2 poor
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Fig. 10.2. The number of good competitors in the more profitable patch. The system

has two patches and the total number of good competitors is 36 (competitive

weight¼ 2) and there are 36 poor competitors (competitive weight¼ 1) in the

system. The frequency distributions are the outcome of 10 000 replicated runs.

It is evident that in the four configurations of the model, the majority of good

competitors are aggregated at the best patch. Note, however, that in every case there

are a number of differing good/poor combinations yielding the IFD outcome

(modified from Ruxton and Humphries 1999).
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competitors, or 34 good and 4 poor, and so on until finally 18 good and

36 poor competitors. The outcome of the study by Ruxton and

Humphries (1999) is consistent with Sutherland and Parker’s predictions.

At the end of the simulations, regardless of the movement rule, most of

the individuals of the better competitive rank were found in the high-

quality patch (fig. 10.2). Interestingly enough, when the error rate

increased from 0 to 1%, the good competitors tended to aggregate more

into the better-quality patch. This was accounted for by the erroneous

moves (i.e., non-IFD moves) triggering a cascade of good-quality IFD

moves (Ruxton and Humphries 1999). The frequency distributions in

fig. 10.2 clearly demonstrate that phenotype-matching food intake rates

can be achieved with a multitude of individual combinations even in a

case of two competitive abilities and two patch qualities.

Natural ways of achieving undermatching

Most experimental results show slight biases towards the poorer areas

(Kennedy and Gray 1993). This finding is known as undermatching.

Several explanations have been suggested to account for this (Kennedy

and Gray 1993; Milinski 1994; Tregenza 1995; Ranta et al. 1999c). We

will here show why, in fact, the resource matching expectation should be

undermatching rather than the perfect IFD match (Ranta et al. 1999c,

2000b).

Limited knowledge

In the IFD theory, individuals are assumed ideal in the sense that they

know the status of every patch in their environment and the number of

individuals exploiting them. The matching of individuals to available

resources is a result of this knowledge. A realistic modification is to

assume that individuals have limited knowledge of their environment,

on which they base their decisions to stay or move.

To model a system with spatially limited information of resource

availability for the foraging individuals, we shall make use of a cellular

automaton. Cellular automata are lattice-based models where the status of

a focal cell in the next step in time is based on the status of the cell itself and

the status of the neighboring cells. In the foraging context of resource

matching the rule how the status changes is rather simple. A focal

individual knows its food intake rate, and the food intake rate of other

individuals in the neighborhood. If the focal individual’s food intake rate
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in the current cell is less than the average intake rate in the neighborhood,

it leaves the current patch; otherwise, it stays put. The individuals leaving

will disperse in the neighborhood, but as they do not have knowledge of

the quality of the surrounding patches, they will select the destination

randomly from the neighboring patches.

In the system studied by Ranta et al. (1999c), the number of discrete

food items delivered per unit time per patch is ri, the environment

consisting of a squared grid of k cells totaling a ration of R¼
P

ri.

A population of N foragers is exploiting these resources, ni per patch at

every time unit. By letting N¼R, the expectation of the distribution of

individuals among patches after resource matching follows a linear model

n ¼ a þ br: (10:1)

The perfect resource matching expectation in this system is: a¼ 0 and

b¼ 1. At every time unit foragers score their food intake rate relative to

the intake rate of others in the neighboring cells. The neighborhood size

is determined by s cell rings around the focal cell. In fact, s is the only

parameter in this model. With s matching the entire world we have the

classical IFD with perfect knowledge, while with s¼ 1 only the nearest

neighborhood is familiar to the foragers. If a forager’s current intake rate is

less than the local average, the forager moves to another cell in the

neighborhood; otherwise, it stays put. The results shown below are for

a 100� 100 lattice initialized forR drawn from uniform random numbers

between 1 and 20, the distribution of foragers, N, was initialized by

shuffling R randomly in the lattice (ensuring that N¼R). The automaton

was allowed to run for 200 updating events for each value of s examined.

As expected, convergence of the slope, b, and the intercept, a, towards the

IFD expectation is very dependent on the neighborhood size, s (fig. 10.3).

With a large area of reference, IFD resource matching in forager distribu-

tion is almost – but not exactly – met, whilst with small s there is no

convergence whatsoever. More interesting, however, is that the model of

limited knowledge yields undermatching (a> 0, b< 1): low-productive

patches have more individuals than expected whereas high-productive

patches have a lower number of exploiters than expected by resource

availability (fig. 10.3). This is understandable: if foragers do not have any

knowledge of the surroundings, each patch, regardless of its ri, will harbor

a random number of foragers, with the consequence that the slope b¼ 0.

Undermatching, the major result observed in a large number of empirical

tests of the IFD (Kennedy and Gray 1993), appears very easily to be the

outcome with limited knowledge of the environment.
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Environmental grain

For most animals, their foraging environment consists of a network of

patches. In random environments, there is no spatial autocorrelation at all,

while in fine-grained systems positive autocorrelations flip to negative

ones and back again with distance. With increasing grain size, the turn-

over rate of spatial autocorrelation slows down. Thus, the grain size refers

to how rapidly the environment changes relative to the movements of the

consumer (Levins 1968). Life in a coarse-grained world would make all

patches look alike. Despite the fact that a consumer individual switches

patches, little – if anything – will change, and the resource level remains

much the same. On the other hand, movements in a fine-grained world

would, move-after-move, transfer the consumer to a patch likely to be

different from the previous one.

In order to study the effects of grain size on the resource matching

process, we modify the cellular automaton system to form a closed loop of

k¼ 1000 cells (Ranta et al. 2000b). As previously, an individual knows

its own food intake rate and the average food intake rate of other

consumers in the neighborhood of size s. The decision to stay or to move

is based on this information. Those leaving a patch will disperse to the

surrounding s patches. The parameter smeasures how well the consumers

know the resource environment. In our simulations, we let s range from

0.2 to 30% of the size of the automaton. For the grain size G, we used the
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Fig. 10.3. Intercept a and slope b of eq. 10.1 graphed against time in cellular auto-

mata realizations with differing neighborhood sizes (1, 2, and 10 cells). The IFD

expectation for the slope is 1.0 and 0 for the intercept with perfect resource matching

(modified from Ranta et al. 1999c).
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following: random, G¼ 2, 5, 10, 20, and 50 with ri ranging from 1 to 20.

The value ofG indicates how many subsequent cells it takes to travel from

a top-productive patch to another top-productive patch (fig. 10.4). The

automaton was left to run for 500 updating events for each value of s and

the resource grain G. At the end of the runs we estimated a and b in

eq. 10.1. For every s and the resource grain combination the procedure

was repeated 100 times. Spatial autocorrelations of consumer distribution

across the entire landscape were calculated for various grain sizes. In the

random world, spatial autocorrelation was virtually nonexistent, while in

the world with the alternate patch sizes correlations flipped in each pair of

cells from �1 to 1. Increasing the grain size even further makes the spatial

autocorrelation functions smooth (fig. 10.5). That is, by definition, an

increase in grain size improves the predictability of the resource world:

what a forager finds in the current patch is likely to be what it will find

in the neighborhood too. Thus, even with limited information the

consumers know a lot of the structure of their feeding environment

when grain size is large.

However, large grain size produces a good match between resource

and consumer distribution only if knowledge of the neighborhood size is

also very large (fig. 10.5). Generally, the smaller the grain size, the more
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Fig. 10.4. (A) One realization of the resource matching model with limited

knowledge (s¼ 2). The thick line gives the realized relationship between consumer

numbers and resource availability. The thin line is the perfect match expectation.

(B) With no knowledge of resource availability consumers will distribute randomly

across the food patches irrespective of resource availability in them. With increasing

information, the dotted line starts to turn counter clockwise until the perfect resource

match is met (modified from Ranta et al. 1999c).
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accurately the consumers can match their resource distribution, and the

values of the intercept a and slope b will approach the IFD expectations

(Ranta et al. 2000b). In environments with various structures the con-

sumer distribution almost matched that of the resources only in the G¼ 2

world (fig. 10.5). Note that the IFD expectation will be met with all grain

sizes when s matches the landscape size.

Noisy world

In the preceding section we assumed that space may be structured but not

varying in time (other than by the actions of the individuals in the

population). It is also quite likely that the information the consumers

acquire while harvesting resources in the patches is slightly erroneous.
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Fig. 10.5. Spatial autocorrelation functions (shaded areas, scale on the left y axis)

against increasing distance in four worlds differing in terms of resource-patch grain

structure (from random patches to grain size of G¼ 50 cells). The overlays (thick

lines and dots) are examples of the numbers of resources in neighboring patches (scale

on the right y axis). The sample of 25 consecutive cells is picked from a random

location of the cellular automaton (modified from Ranta et al. 2000b).
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This is because the quality of the food patches changes (e.g., due to

unpredictable resource renewal, or local hazards) without the foragers

immediately knowing it. The question is hence to what extent the IFD

model can be used as the ESS expectation when explaining the distribu-

tion and abundance of consumers relative to their resources when the

information is wrong.

For those purposes, we shall use the closed loop version of the cellular

automaton (k¼ 2000). Again, the number of discrete food items deliv-

ered per unit time per patch ri is drawn from uniform random numbers

between 1 and 20. Also, as previously, the distribution of consumers, ci,

was initialized by shuffling ri randomly in the loop. By letting C¼R, the

expectation after resource matching under IFD follows eq. 10.1 with the

expectations of a¼ 0 and b¼ 1. The parameter s is a measure of how well

the consumers know the extant resource environment. On top of this, we

shall implement environmental noise as follows. For each cycle a given

proportion of the cells, w, will be randomly selected from the k cells to

swap their contents. This makes the local resource level change unex-

pectedly, but keeps the overall level of resourcesR constant in the system.

Both s and w were selected so that the entire range from 1% to 30% of the

entire landscape was covered. For increasing s, the foragers approach
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(modified from Ranta et al. 2000b).
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perfect knowledge; for increasing w, the disturbance level increases from a

silent world towards complete disorder. The automaton updating rules

are as previously and 500 updating events run for each value of s and w

examined. At the end of the runs we estimated a and b and for every s and

w combination the procedure was repeated 100 times.

The results are straightforward: the perfect match between resource

availability and consumer numbers is hard to achieve in a noisy world

(fig. 10.6). With increasing noise level the estimate for the slope b rapidly

degrades from values close to 1.0, and the intercept a starts to deviate

increasingly from zero. It is interesting to note that increasing neighbor-

hood size s interferes with the noise level (bending isoclines in fig. 10.7).

However, even with a perfect knowledge of the resource environment, the

increasing noise soon takes the b and a estimates far out of their IFD

expectations.

Resource matching and trophic interactions

Here, we will extend the IFD problem by studying consumer–resource

matching in a community context ( Jackson et al. 2004). Let the community

in focus be a linear food chain with three trophic levels: sessile resources

(R), which are preyed upon by consumers (C), who are themselves prey for

top predators (P). The question of interest is whether the consumers will be
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Fig. 10.7. (A) Intercept a and (B) slope b isoclines graphed against the neighborhood

size (s as a percentage of k¼ 2000) and noise level (w as a percentage). The

expectation of perfect resource matching is a¼ 0 and b¼ 1.0.
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able to match their resources with or without considering the risk of being

preyed upon by their predators. The predators have to chase a prey which

attempts to maximize both resource acquisition (reproduction) and avoid

the risk of predation (survival) by moving and selecting habitat patches

accordingly. The mobile prey and predators may then have varying degrees

of knowledge of the global and local resource distribution.

The three-species food chain exists in an environment consisting of a

closed loop of k identical discrete patches. The resource level, ri, in each

patch is drawn independently from a uniform distribution between 0 and 1.

The patch-specific resource level persists unchanged throughout the

simulation. The total numbers of consumers and predators in the whole

system remain constant (also R¼C¼P), but their distribution across the

environment is liable to vary over time. At the start of a simulation, ci and

pi are independently assigned to the habitat patches at random. The

simulation then consists of a fixed number of movement events.

The suitability of the current patch of location for predators is their

intake rate – the number of consumers divided by the number of pre-

dators, ci/pi. They assess the consequences of moving by calculating the

mean of the intake rate of all individuals in their current patch and in all

the patches up to some constant number of positions (wp) either side of the

current patch. If this mean � is greater than ci/pi, then the individual will

move with probability

PðmoveÞ ¼ �� ci=pi
�

: (10:2)

The greater the disparity between the situation in the current patch and

how well others are doing in the neighborhood, the more likely an

individual is to move. If it moves, then its new patch is determined

randomly from the subset of patches (including its current one) it used

to estimate the performance of others.

Movement works in an analogous fashion for consumers, with the

difference that the parameter wc now describes the size of consumers’

sampling window. Consumers will also use different measures of habitat

suitability. They are referred to as ‘‘resource maximizers,’’ when consid-

ering just the availability of resource for them, ri/ci. The consumers are

‘‘risk averse,’’ when they aim to minimize their risk of predation hazard,

pi/ci, per unit of resource that they can gain access to, ri/ci. This simplifies

to minimizing local predator number divided by local resource level,

which is equivalent to maximizing local resource level divided by local

predator number.
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As earlier (p. 242), the measure of resource sharing match is, for

consumers and predators, respectively

c ¼ aC þ bCr

p ¼ aP þ bPc
; (10:3)

where aC, bC, aP and bP are parameters of a regression model. Because we

have R¼C¼P, it also follows that the IFD expectations are aC¼ aP¼ 0,

and therefore we fit these regression lines using a reduced major axis

(Fowler and Cohen 1990). A gradient (bC or bP) of 1 indicates perfect IFD

matching; <1 indicates undermatching; and >1, overmatching. The

system was left running for 500 updating rounds and we calculated

means and standard deviations over the last 100.

First, the information and movement windows for both consumers and

predators will be assumed identical and equal for the whole of the system.

The expectation is that the resource-maximizing model would lead to

perfect matching of consumers to resources and predators to consumers,

and this is the finding (fig. 10.8). We would expect perfect matching

0.4

0.6

0.8

1

1.2 (A)

0.4

0.6

0.8

1

1.2

0 25 50 75 100

(B)

Time

G
ra

di
en

t o
f c

on
su

m
er

s
ag

ai
ns

t r
es

ou
rc

es
G

ra
di

en
t o

f p
re

da
to

rs
ag

ai
ns

t c
on

su
m

er
s

Resource maximizing

Balancing

Fig. 10.8. Plots of the gradients of (A) consumers against resources and (B) predators

against consumers for both the resource-maximizing and risk-averse models.

Parameter values: C¼ 600, P¼ 600, L¼ 23, wc¼ 11, wp¼ 11 (modified from

Jackson et al. 2004).
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to be achieved in the risk-averse model too. Note that in this model

consumers seek to maximize ri/pi rather than ri/ci, so we would expect the

predator population distribution to mimic that of the consumers; thus, the

two currencies for the consumers will be equivalent. We again find

perfect matching (fig. 10.8).

We now explore the consequences for the risk-averse behavior by

reducing the size of the information and movement windows. The effect

on the resulting distribution of keeping the consumers’ window large and

reducing the predators’ window is shown in fig. 10.9(A). For medium-

sized windows, predators are still able to track the consumer population

effectively, and we see perfect resource matching. Reducing the window

size leads ultimately to limited knowledge and mobility. It follows that the

predators generally undermatch the consumers. Under these circum-

stances patches with high resource levels harbor fewer predators than

expected due to perfect matching to their consumer numbers. In turn,

this encourages more consumers to aggregate into these patches, leading

to overmatching of consumers on resources.

The reverse situation (a large window for predators but a small one for

consumers) leads to a rather different pattern. Limited knowledge and

mobility tend to produce overmatching to resources, and high movement

rates. These high movement rates make it hard for predators to perfectly

match consumers. This undermatching of predators on consumers tends to

induce overmatching of consumers on resources. The different and

opposing pressures on consumers often interact, yielding very good

matching even when the consumers’ window is very small (fig. 10.9(B)).

However, this is not always the case, and in extreme situations there

generally is overmatching of the consumers to resources and undermatch-

ing of predators to consumers (fig. 10.9(C)).

The results above hold when the resource levels on neighboring

patches are not correlated. We shall now introduce spatial autocorrelation

into resource availability by setting the resource level in patch i to be

ri ¼
1 þ sin 2pi=�ð Þ

2
: (10:4)

The larger some positive constant � , the more gradually resource levels

change in space (see fig. 10.9). As one would expect, when � is low, the

situation with overmatching of consumers to resources and undermatch-

ing of predators to consumers is recovered. However, with increasing � ,

the limitations of the consumers’ small window size become more and
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more pronounced, leading to stronger and stronger undermatching of

consumers to resources (fig. 10.9(D)).

These results confirm the already known effects of limited knowledge.

If the consumers have poor estimates of the global resource distribution

and/or limited possibilities to realize that knowledge through constrained

movement among patches, then the general consequence is undermatch-

ing. There is ample empirical evidence for that conclusion (e.g., Abrahams
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Fig. 10.9. Plots of the gradients of consumers against resources (solid symbols) and

predators against consumers (open symbols) for (A) several values of wp (parameter

values: C¼ 600, P¼ 600, k¼ 23, wc¼ 11) and (B) of wc (C¼ 600, P¼ 600, k¼ 23,

wp¼ 11). Panel (C) gives the gradients of consumers against resources and predators

against consumers for a very low value of wc (C¼ 600, P¼ 600, k¼ 60, wp¼ 29,

wc¼ 1). In panel (D) the consumer and predator gradients are given for spatially

structured resource distribution (C¼ 600, P¼ 600, k¼ 60, wp¼ 29, wc¼ 1; modified

from Jackson et al. 2004).
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1986; Kennedy and Gray 1993; Tregenza 1995; Sutherland 1996), as well

as strong theoretical reasons for it (see figs. 10.3, 10.6–10.9).

With the linear food chain system we find undermatching, or, when

the information windows are equal across trophic levels, even perfect

resource matching (IFD), as well as overmatching. This can happen to

both predators p (when the information window of the predators is larger

than that of the prey and prey are risk-averse) and prey c (when prey know

more about the environment than predators do). Hence, there can easily

be situations when both prey and predators err in relation to the

IFD expectation, but in opposite directions. This shows that resource

matching is contingent not only on the spatial structure of the environ-

ment and how well individuals can gain knowledge about it, but also on

more complicated trophic interactions.

Territoriality and despotic behavior

The IFD theory is not particularly well suited to predict the individual

distribution of territorial animals, where some individuals may restrict the

access of others to resources. For this reason, Fretwell (1972) developed

the ideal despotic distribution, IDD, to predict the settling of territorial

birds into an area of habitable patches differing in resource availability. In

his model, each individual arriving in the area can assess the value of the

different patches but is not free to settle into those already occupied.

There is a striking difference in interest among empiricists and theoreti-

cians between the two theories. IFD has been a focus of intense research,

and numerous variations of the basic theme have emerged. Most of the

IFD modifications are specifically relaxing the two central aspects (ideal

and free) of the theory (Milinski and Parker 1991). This is particularly

interesting as despotism, or interference in any other form, is common

in many natural situations (e.g., Huntingford and Turner 1987).

Against this background, it is interesting to note (Tregenza 1995) that

in the basic form of the IDD the only prediction not common to the IFD

is that territory ownership will lead to the differential success of otherwise

equal competitors. Another reason why IDD has remained largely unde-

veloped is that the outcome it predicts is intuitively obvious and hence

regarded as naı̈ve. Consider, e.g., a number of habitats ranked in resource

availability and a number of individuals (making the population) also

being ranked in terms of competitive ability. The IDD theory predicts

linear matching between the two rankings. This simple model is shown to

fit distribution of salmonids occupying territories in rivulet pools with
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better access to drift food in upstream pools than in pools of the lower end

(Hughes 1992; Nakano 1995). However, not all habitats housing territorial

animals suit this scenario (see also Box 10.1 below on related individuals).

IDD in variable environments

Ruxton et al. (1999) used an individual-based model to address IDD in a

two-dimensional world with variation in territory quality. Their world is

composed of a lattice, where cells refer to the territories. Each territory

has its own resource production rate that is harvestable only by the top-

ranked individual in that particular location. The reward rate of each

territory is a function of its resource production and the relative rankings

of the other individuals in that territory. After each round of environ-

mental change, each of the N individuals is considered in turn (in random

order). If the intake rate of an individual at the current territory is higher

than its expectation it stays put, otherwise it moves to a randomly chosen

neighboring territory. If the focal individual cannot improve its food

intake in any of the adjacent territories, it stays put. The model has an

implicit assumption that individuals cannot estimate the resource produc-

tion rate of the territories but that they can detect the competitive rank of

individuals seated in any of the neighboring territories. The movement

rules in the model (Ruxton et al. 1999) have similarities to the biased

diffusion model used by Farnsworth and Beecham (1997).

In the simulations, after each individual has been allowed to make one

environmentally triggered move, each receives a reward, F, which is either

equal to the resource production rate in the current territory E (provided it

is the top-ranked individual there) or zero (otherwise). Each individual then

updates its expected foraging return Ei(NEW)¼�Fþ (1��)Ei(OLD). Here

� is a constant (0<�< 1); the higher it is, the more quickly the individual

discounts previous experience. With each parameter combination (Ruxton

et al. 1999, p. 115) the model was simulated for 10 000 time steps and both

intake rates and movement rates were assessed for the last 5000 steps.

The model generated three main predictions. When the number of

foragers exceeds the number of territories, there is a sigmoid relationship

between dominance rank and resource gain (fig. 10.10(A)). Middle-

ranking individuals in the competitive hierarchy are more mobile than

those with higher or with lower rank (fig. 10.10(B)). Finally, the geo-

metry of the landscape where the territories are located has a major effect

on resource gain and movement patterns only when the array reduces

into one dimension of a single territory wide (fig. 10.10(A),(B)). The

Territoriality and despotic behavior . 253



territory occupancy system is driven by three fundamental elements. An

individual moves, or attempts to move, when its intake rate falls below

the average it can remember having experienced. An individual cannot

move into a territory used by a more dominant individual, and when

subordinate individuals are forced to share space with a dominant, they

gain no resource. Ruxton and his co-authors suggested that the key

predictions of the model (fig. 10.10) are rather robust and generally

observable in nature. Hence, the predictions serve as a valid discriminator

between alternative explanations of the IDD. In addition, these results

should encourage empirical research into IDD, as they are so clear-cut.

Population structure and resource matching

Almost all IFD theory rests on the assumption of individual choices. For

many organisms, this is not necessarily an appropriate premise. Morris and

his associates (Morris et al. 2001) suggested that among relatives there is no

free choice. They based the argument on the theory of kin selection

(Hamilton 1964a, 1964b), assuming purely selfish decisions to be less

favored than those maximizing inclusive fitness. The core of the argu-

ment by Morris et al. (2001, p. 921) is that, ‘‘Individuals maximizing

inclusive fitness may thus distribute themselves so as to over-exploit

habitats where each individual has little negative effect on fitness (low

fitness loss) while their relatives under-exploit habitat where each indi-

vidual has a large effect (high fitness gain).’’ The inclusive fitness-based

habitat selection model is given in Box 10.1.
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Box 10.1. . An inclusive fitness theory of habitat selection

After Morris et al. (2001), let us assume that the per capita population

growth rate in habitats 1 and 2 is a function of population size.

Individuals in the population are identically related to each other. The

inclusive fitness I of an individual occupying either of the two habitats is

I1 ¼ f1ðN1Þ þ rðN1 � 1Þf1ðN1Þ þ rN2 f2ðN2Þ
I2 ¼ f2ðN2Þ þ rðN2 � 1Þf2ðN2Þ þ rN1 f1ðN1Þ;

where fi(Ni) is the density-dependent fitness function in habitat i and r

is the coefficient of relatedness. With a further assumption that the

costs of movement are negligible, the decision functions of departure

from one habitat to the other one are

B1 ¼ I2ðN1 � 1;N2 þ 1Þ � I1ðN1;N2Þ
B2 ¼ I1ðN1 � 1;N2 þ 1Þ � I2ðN1;N2Þ;

respectively. The term B1 is the inclusive fitness of an individual if it

moves and B2 is its inclusive fitness if it stays, and an individual should

move whenever Bi> 0. The decision function for an individual in

habitat 1 can be approximated by

B1 ¼ I2 � I1 �
@I2
@N1

þ @I1
@N2

;

which, after substitution, becomes

B1 ¼ f2 � f1 þ rðN2 f
0

2Þ þ f 02ð1 � rÞ;
(note that the arguments of the functions fi are dropped, and the Ni fi

0 is
the change in fitness in a habitat with changes in population size). The

final term will be very small relative to the others, and, for any reason-

able value of N, will be a small fraction of fitness. Let g(N1, N2)

represent the remaining terms

gðN1;N2Þ ¼ f2ðN2Þ � f1ðN1Þ
þ r½N2 f

0
2 ðN2Þ �N1 f

0
1 ðN1Þ�:

After performing the same procedure for B2, Morris et al. (2001)

arrived at the decision rule for an individual tempting to move as

g(N1, N2)> 0 in habitat 1 and g(N1, N2)< 0 in habitat 2. If all

individuals are unrelated, r¼ 0, then these conditions reduce to com-

parison between f1 and f2 such that if f1¼ f2 no migration is expected

and one has the classical IFD.
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We can illustrate the result derived in Box 10.1 by letting the fitness of

an individual decline with increasing density of individuals in habitat i as

fi ¼ ai � biNi (10:5)

(ai is the maximum fitness achievable and bi describes how it decreases

with an increasing number of individuals in that particular habitat). When

solving f1¼ f2 for N2 we have

N2 ¼
a2 � a1

b2

þ b1

b2

N1: (10:6)

This defines the isodar (Morris 1988), the set of population densities in

both habitats yielding IFD for unrelated individuals. Along the isodar,

there is no net migration between the two habitats. When individuals in

the population are related, the above equation holds for the per capita

growth rate but not for the fitness (Morris et al. 2001). Now the condition

for no migration is satisfied when g¼ 0 (Box 10.1) yields the isodar

N2 ¼
a2 � a1

b2ð1 þ rÞ þ
b1

b2

N1: (10:7)

The conclusion is simply that the equal per capita growth isodar does

not coincide with the zero-migration isodar if r > 0 (fig. 10.11(A)). The

combinations of population densities in the two habitats giving no net

population growth (when r> 0), i.e.,N1 f1þN2 f2¼ 0, is (Morris et al. 2001)

N2 ¼
a2

2b2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2b2

� �2

þ N1ða1 � b1N1Þ

s
: (10:8)

This function intersects the N2 axis at the equilibrium density for that

habitat, N�
2 ¼ a2=b2, and the per capita growth-rate isodar at the joint

population equilibrium in both habitats (a1/b1, a2/b2), and it intersects the

zero-migration isodar (fig. 10.11(B)).

These results have interesting implications. When r> 0, each equili-

brium occurs at a different combination of population densities. There is

no simple ESS (fig. 10.11) because the system cannot settle on a single pair

of N1 and N2. In systems with fast migration relative to population

growth, the pattern of habitat occupancy will move towards the zero-

migration isodar. In the reverse case, the system settles towards the IFD
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equilibrium. The result with r> 0 is that the resources across will be

mismatched against the IFD expectation (fig. 10.11). Thus, relatedness

among habitat selectors adds one more explanation to the list of factors

yielding mismatch between the theoretical expectations and empirical

observations (Kennedy and Gray 1993).
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Fig. 10.11. (A) An isodar (solid line) corresponding to ideal free habitat

selection when fitness declines linearly with an increase in density N in habitats

1 and 2. Zero population growth rate occurs when the population density in habitats

1 and 2 is at their K (dashed lines, a1/b1, a2/b2). (B) An example of the inclusive

fitness ‘‘no migration’’ isodar for the two habitats when individuals are related

(r¼ 0.5; the IFD isodar r¼ 0, long dashes, is shown for comparison). An unstable

equilibrium occurs at the intersection with the arched zero-total-growth isodar

(N1¼ 87.65; N2¼ 70.40). Migration attempts to maintain the equilibrium,

which is opposed by positive population growth in habitat 2 and negative

population growth in habitat 1 (a1¼ 80, a2¼ 60, b1¼ 1, b2¼ 2). Modified from

Morris et al. (2001).
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Resource matching and spatial population dynamics

Here we combine two often unrelated processes, resource matching and

population dynamics. We first study two slightly differing two-patch

systems and will finish this chapter by an n patch extension of the system.

Linking resource matching and dispersal

The IFD theory assumes that individuals can accurately assess habitat

quality and that movements between habitats are unconstrained. As a

result, there should be no net flow of individuals to and from a given

habitat. Note that this does not necessarily mean that (at fitness and

dynamic equilibrium) there is no dispersal, only that emigration always

equals immigration. If the assumption about no net migration is relaxed, a

number of deviations from the IFD may result (Palmqvist et al. 2000). The

biological justification for this relaxation is obvious if we consider the

spatial scales at which the habitat selection process takes place. If by

‘‘habitats’’ we mean a set of patches from among which an individual

can choose at a short spatial and temporal scale, e.g., a set of patches within

a homerange, or patches used during a foraging bout, then individuals are

(potentially) moving in and out of the patch several times in order to assess

habitat quality. On the other hand, if we let the habitat be a landscape

element that is only chosen, say, once per breeding season, then the

migration among habitats will also only occur relatively rarely, and

at distinct times of the year. This is the situation that Palmqvist et al.

(2000) studied. They let the population renewal process in habitat 1 be

described by

N1ðt þ 1Þ ¼ N1ðtÞ � E1ðtÞ þ E2ðtÞ

þ r1 N1ðtÞ � E1ðtÞ þ E2ðtÞ½ � 1 �N1ðtÞ � E1ðtÞ þ E2ðtÞ
K1

� �
:

(10:9)

Note that this is a sequential process within a year (from time t to tþ 1).

Ei are the migration rates, where E1 is total migration from habitat 1 to

habitat 2 and E2 is migration from habitat 2 to habitat 1. Hence, in this

model migration takes place before population renewal. Equation 10.9

also tells us that dynamic equilibria in both habitats are functions of E1

and E2. If net migration, i.e., |E�
1�E�

2| (� indicating equilibrium

rates), is greater than zero, both post- and pre-reproductive population

equilibria will differ from the IFD solution. That is, the result is over- or
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undermatching. Those general results are robust to any assumptions about

the dispersal rules (Palmqvist et al. 2000), i.e., what determines the

number of individuals leaving a habitat each year.

Since the model is explicit about the timing of events within a year, both

pre- and post-reproductive population equilibria are shown in relation to

the IFD isodar for the system (fig. 10.12). The figure also shows that the

deviations from the IFD solution are affected by the maximum per capita

growth rates in the two habitats. The problem of establishing the expected

0
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∗ ∗

X1,N1

150

200

100 150 200

∗ ∗
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Fig. 10.12. Positions of stable pre- and post-reproductive equilibria, in the N1�N2

and N1�N2 plane, respectively, for a two-habitat system with unequal carrying

capacities K1¼ 200, K2¼ 100. Population equilibria are shown for systems with

different r but with equal differences in Ki (K1¼ 200, K2¼ 100 and m ranges from

0 to 0.6 for all curves). Broken straight line is the isodar. The uppermost curve

shows the positions of pre-reproductive population equilibria (n�1; n
�
2) for the two

habitats, for all r (r¼ 0.6, 0.9, 1.3, and 1.5). The lower curves show the position

of post-reproductive equilibria (N�
1 ;N

�
2 ) for different r (r increasing downwards).

Dots indicate equilibria from systems with density-dependent fractions of emigrants

and circles represent equilibria from systems with constant fractions of emigrants.

For each emigration type, the symbols from (K1, K2) and outwards, represent

equilibria resulting from m¼ 0, 0.3 and 0.6. (modified from Palmqvist et al. 2000).
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resource matching when there is net migration between habitats is further

illustrated in fig. 10.13. In a stochastic environment, whether the stochas-

ticity is local or global, the point equilibria are now stretched out along

straight lines (or at least close to straight lines). Those lines are the realized

isodars, all with slopes and intercepts different from the null expectation

with no net migration. Hence, we could easily arrive at ‘‘erroneous’’ con-

clusions about the habitat selection process should we rely on population

estimates in the two habitats only. This should be taken as a caveat for

overinterpreting isodars thus derived. As is often the case, patterns only

rarely reveal unambiguous information about underlying processes.

Population dynamics and IFD dispersal

We shall continue with a two-patch system. For simplicity of our argu-

ment, the two patches are taken to be equal (K1¼K2¼ 1), and they are in

close enough proximity to cause no mortality or fitness costs for dispersing

individuals. Individuals in the population are assumed ideal by knowing the

status both of patches in the environment and the size of the populations

(N1 and N2) exploiting resources in them. A perfect match with resource

availability and population size is met with (Pulliam and Caraco 1984;

Fagen 1987; Kennedy and Gray 1993; Morris 1994)
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: (10:10)
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Fig. 10.13. Distribution of population sizes in a two-habitat system with

environmental stochasticity (global stochasticity in (A), local stochasticity in (B))

affecting habitat-specific carrying capacities. The broken lines are the isodars. Each

panel displays results for three systems with a constant fraction of emigrants (from

above: m1¼m2¼ 0.4, m1¼m2¼ 0.1, and m1¼ 0.2, m2¼ 0.6), always K1¼ 200,

K2¼ 100 and r¼ 1 (modified from Palmqvist et al. 2000).
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In order to build up a patch-departure rule obeying the IFD theory we

shall take the departure rule for leaving to be

�i ¼ Ni � �N

if �i > 0 then move

otherwise stay put:

�
(10:11)

The individuals dispersing, �i, are a random sample of the Ni individuals

resident in the patch i and where �N is the average. For population

renewal, we used the Ricker model

N 0
i ðt þ 1Þ ¼ NiðtÞ exp r 1 �NiðtÞ

Ki

� �� �
: (10:12)

Here N 0 refers to population size before any IFD-based dispersal adjust-

ments have taken place and r is the maximum per capita growth rate. This

is the system explored by Ranta and Kaitala (2000).

Experimentation shows that both subpopulations – even though initiated

out of phase – will eventually fluctuate in step (fig. 10.14(B),(C)). In fact,

even chaotic fluctuations will become synchronized with the IFD dispersal

rule (fig. 10.14(E)). Experimentation also allows us to conclude that dis-

persal of individuals between the two patches after the perfect resource-

matching movement rule neither dampens nor destabilizes fluctuating

population dynamics. Rather, the subpopulations will start to fluctuate in

perfect synchrony.

A question now emerges: will the conclusion remain valid if the patch

departure does not obey the perfect IFD rule? Fuzziness into the patch-

departure process can be implemented, e.g., as follows: for each step a

random number v was drawn from a uniform distribution ranging from

vmin to vmax (with � ¼ 1:0) by which �N was multiplied. Another random

number, w, was drawn from the same distribution and �i was multiplied

by it. The navigation success of the departing individuals was decided

by comparing a random number, h, drawn from a uniform distribution

[0,1]. For h>½ the dispersing individuals returned back to the patch

of their origin; otherwise, their navigation succeeded. As there were

many stochastic elements in the system, they were all taken to be in

action at the same time. The Ricker renewal in the two patches, linked

via the fuzzy IFD patch-departure rule, yields synchronous dynamics

(fig. 10.14(C),(F)). A word of caution is appropriate here, however.

When the growth rate is in the chaotic range, an IFD match in population

sizes in the two patches becomes harder to achieve for very long periods

(more details in Ranta and Kaitala 2000).
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We have now extended research on the relationship between resource

supply and population size under the conditions of fluctuating population

dynamics. For the dispersal the IFD rule was applied: leave if local

conditions will be worse than elsewhere in the environment, on average.

This dispersal rule synchronizes local population dynamics. Unlike many
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Fig. 10.14. Each of the panels displays dynamics of two populations obeying the

Ricker dynamics in their renewal ((A)–(C) with two-point cycle, (D)–(F) with

chaotic dynamics). At t1 the populations are initiated in opposite phase. In panels

(A) and (D) the populations behave as two independent units. In panels (B) and (F)

they are linked together by dispersing individuals obeying the IFD dispersal rule with

perfect knowledge. The populations – initially out of phase – rather soon come to

fluctuate in step (the length of the transient phase in (B) depends on the initial

population sizes). In panels (C) and (F) the IFD departure rule is prone to errors

(vmin¼ 0.5, vmax¼ 1.5; see text for more details). Nevertheless, when a long enough

period has elapsed, the two populations will eventually fluctuate in synchrony.

Modified from Ranta and Kaitala (2000).
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other dispersal rules (Ruxton 1996b; Ruxton et al. 1997; Kendal and Fox

1998; see also fig. 4.8, p. 83), the perfect IFD patch-departure rule does

not stabilize or destabilize the dynamics. It simply leaves the underlying

skeleton of the population dynamics unaltered! This holds even in the

chaotic range of population fluctuations. An explanation is that since the

IFD patch-departure rule utilizes information derived from short-term

predictions, then long-term uncertainties in chaotic dynamics do not

affect the functioning of this departure rule. These results are rather robust

for effects of biased information and failures during the dispersal phase.

Resource matching and synchronous population fluctuations

The results of the previous section prompt us to explore the tempting

implication that synchronous population dynamics and resource match-

ing have something in common. In fact, it has been shown in various

simulations, with a number of population units coupled by dispersing

individuals (Chapter 4), that dispersal easily synchronizes the dynamics of

local populations. In these systems, synchronous population fluctuations

are achievable via redistribution of individuals, or if the system of n

subpopulations is disturbed by a common external modulator (Moran

1953b), or if both of them are in action simultaneously (Ranta et al.

1995a, 1997c, 1999a). The achieved synchrony, when gained via redis-

tribution of individuals, does not call for dispersal rules after the IFD.

Often the dispersal is taken to be negatively distance dependent with a

constant fraction of dispersers leaving the natal population unit, but other

rules (positively density dependent, negatively density dependent, spa-

tially implicit dispersal, etc.) have been shown to give largely matching

results of synchrony as long as the number of population subunits n is large

enough (Ylikarjula et al. 2000).

Characteristic of the explorations discussed above is that the n local

subunits explored have equal profitability. When synchrony is achieved

in fluctuations of local population numbers, it implies that individual

numbers at every patch are on average the same. Thus, in the frame of

the IFD theory it would not pay individuals to disperse elsewhere as all is

matching everywhere. Yet, under local disturbance, the system in syn-

chrony would eventually drift away from synchronous fluctuations with-

out any dispersal.

A simple extension of the spatially structured population systems

explored in Chapter 4 is to assume that the local subunits differ in their

carrying capacity Ki. Assuming no dispersal, the density-dependent
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feedback system keeps the subunit-specific population fluctuations

around theKi. Thus, the resource matching is roughly met. In this system,

there are two different measures of resource matching: deviation from the

resource matching line (fig. 10.15(A)), i.e., squared standardized residuals,

and the deviation of the regression slope (between Ki and Ni(t)) from zero

(fig. 10.15(B)). Redistribution of individuals among the subunits corrupts

the match between resources and local population size. This is because

units with higher Ki (with fixed proportion dispersal) will send out more
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Fig. 10.15. Measures of resource matching for population sizes, Ni(t), in a spatially

structured heterogeneous (in terms of local carrying capacity, Ki) world. (A) The

dashed line (a) indicates resource matching expectation (regression line between

Ki and Ni(t)) under stable population dynamics, while the two solid lines (b and c)

indicate resource matching expectation under periodic dynamics. (B) Illustrations of

(a) undermatching, i.e., larger populations sizes relative to local resource availability

in areas with smaller carrying capacities, and (b) overmatching. Examples of deviation

from resource matching in a 25-population system obeying eq. 10.13 in population

renewal under constant fraction dispersal, m (x axis). Panel (D) gives the sum of

squared residuals (standardized by dividing by n), while (C) is the intercept of the

regression line between Ki and Ni(t), cf. panel (B).
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dispersers than they will receive and units with lowerKi will receive more

individuals than they send out. Thus, contrary to a system where each

subunit is alike, in a heterogeneous and spatially structured world under-

matching (i.e., deviation of the intercept (fig. 10.15(B)) from zero) is the

expectation. A demonstration of this will be given next.

We let the n¼ 25 population subunits be randomly distributed into a

10� 10 co-ordinate space. Each subunit has its renewal process (match-

ing in all units) influenced by local disturbance, ui(t), i.e., local densities

multiplied by uniform random numbers between 0.95 and 1.05. All the

units are also disturbed by the global Moran effect, �(t), i.e., all units

multiplied by uniform random numbers between 0.9 and 1.1. For sim-

plicity, we assume that a fixed proportion of individuals (0<m< 1) from

the local subunits redistribute annually. The number of immigrants

arriving to patch i from patch j follow dispersal kernel I (p. 53) with c¼ 1.

After Moran (1953b), we have selected an AR(2) process for the popula-

tion renewal function

Niðt þ 1Þ ¼ ð1 � mÞ Ki þ a1NiðtÞ þ a2Niðt � 1Þ½ �uiðtÞ�ðtÞ
þ
X
s;s6¼i

Ms;iðtÞ: (10:13)

The values of Ki are selected so that the expectations (carrying capacities)

of local population sizes range between 5 and 50, while a1¼ 1.25 and

a2¼�0.75 yield, when the system is disturbed, roughly cyclic dynamics

with 7- to 8-year period length. The populations are initiated out of

phase with random numbers between 5 and 50. The system is left

running for 5000 generations and, for our purposes, we shall sample the

next generation to assess the match between resource availability and

population size. As an index of resource matching, we scored two

measures: (i) the mean squared deviance between subunit-specific popu-

lation size and resource match at the end of the simulation, and (ii) the

intercept of the regression between Ki and Ni(5000). The results of this

exercise are as anticipated above: with increasing fraction of dispersing

individuals the deviation from perfect resource matching increases

(fig. 10.15(C)) and the deviance is towards a higher degree of undermatch-

ing (fig. 10.15(D)). Let us remind ourselves that experimentation with

different values of a1 and a2 in eq. 10.13 yield matching outcome in terms

of undermatching and deviation from resource matching.

We conclude that in a spatially structured heterogeneous world (in

terms of local carrying capacity) perfect resource matching is achievable
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via perfect IFD redistribution rules. However, if we take the position that

redistribution rates are substantial and the departure/arrival rules do not

resemble the IFD rules (such as with constant fraction dispersal), there is

no perfect resource matching. Rather, undermatching will be the out-

come. However, it is also obvious that much more research is needed into

combining population dynamics and resource matching theories.

Summary

The distribution and abundance of individuals is contingent on the

distribution and abundance of the essential resources for the population.

The IFD theory provides us with the template for our understanding of

how and to what extent the distribution of individuals matches the

distribution of resources. In this chapter, we review the processes under-

lying the IFD, and we scrutinize why we generally observe consistent

deviations from the IFD predictions. We show that, in fact, the IFD gives

biased predictions and that ‘‘undermatching’’ (the overuse of poorer

patches in relation to the richer ones) should be the null-model, not a

deviation from the IFD. This chapter takes a closer look at some of the

factors that are responsible for this pattern, e.g., environmental stochas-

ticity, poor knowledge, and environmental grain size. We also show that

the trade-off between resource acquisition and predation risk may be

a delicate one sometimes resulting in deviations from the expected null-

models. In this chapter, we also analyze the role of dispersal for the

resulting resource matching. Populations with closely genetically related

individuals distort the expected dispersal pattern. Also, should there be a

net flow of individuals (immigration exceeding emigration, or the

reverse) between patches, significant deviations from expected patterns

are expected. Finally, we closed with a brief excursion between resource

matching and population dynamics.
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11 . Spatial games

Individuals in natural populations encounter each other in numerous

different ways. Such encounters include mating, conflicts over food or

other resources, or the joint and co-operative acquiring of resources. The

behavioral adaptations to such situations are often studied by evolution-

ary game theory. In this chapter, we will review some classic behavioral

games: the Hawk–Dove, the Prisoner’s Dilemma (including the evolution

of co-operation), and the somewhat more obscure Rock–Scissors–Paper

game. We also extend those problems to spatially heterogeneous environ-

ments. Towards the end of this chapter, we will combine the game

theoretical analyses with dispersal-coupled population models.

Many, but far from all, encounters between individuals are pairwise. If

the encounter involves a conflict, there is generally a winner and a loser.

Take, e.g., two male deer fighting for the chance of mating with a female.

The fight may be furious and last for a long time, possibly resulting in

injuries to one or both contestants. Eventually one of the males will

retreat and the winner will gain the mating. Such behavioral and ecolog-

ical problems have inspired the development of evolutionary game theory

(Maynard Smith and Price 1973; Maynard Smith 1982).

Most evolutionary theory assumes selfishness-driven adaptations

(Dawkins 1976). It does not pay an individual to be nice or altruistic

and helpful towards others unless there is a guarantee for not being

cheated. Hence, altruistic behaviors are susceptible to selfish cheaters

and will disappear from the population. In a striking contrast to this,

social behavioral patterns, such as co-operation and helping, are fre-

quently observed throughout the animal kingdom (Clutton-Brock and

Parker 1995; Connor 1995; Dugatkin 1997; Komdeur and Hatchwell

1999; Clutton-Brock 2002). The evolution of co-operative behaviors,

such as shared vigilance for predators in birds and fish, nonparental care

for young in birds, and co-operative hunting in primates, has therefore

received much attention in modern evolutionary ecology (Hamilton

1964a, 1964b).



Evolutionary game theory has often been used to address both animal

conflict and co-operation (Maynard Smith 1982; Axelrod 1984; Dugatkin

and Reeve 1998). The evolution of co-operation has also been a particu-

larly interesting challenge for evolutionary game theory (Trivers 1971;May

1981, 1987; Maynard Smith 1982; Sigmund 1993; Dugatkin and Reeve

1998; Hofbauer and Sigmund 1998; see also recent summaries byDugatkin

1997, 1998). Before having a closer look at that research, here we briefly

review some of the classic behavioral games.

Classic games

The Prisoner’s Dilemma

The Prisoner’s Dilemma game gives an elegant setting in which to intro-

duce the problems that evolutionary game theory is addressing. Imagine

two players in a game with two options: to either co-operate or be selfish

(defect). Initially the Prisoner’s Dilemma game was framed to address the

behavior of two prisoners having committed a crime (Axelrod andHamilton

1981), therefore Prisoner’sDilemma. Defecting would mean that you accuse

the partner of being solely guilty of the crime. Co-operating, on the other

hand, would mean not revealing anything. Denoting defecting as D and

co-operating as C, we have four possible outcomes: DD, DC, CD, and

CC. In the DD case, both prisoners will accuse each other of having

committed the crime. Should both do so, they will both get a sentence of,

say, 5 years in prison. In theDC case, the cheater will be released and the

one admitting nothing will be sentenced for 7 years in prison. If both

prisoners collaborate (CC ) then they will both get a sentence of 2 years.

Thus, the payoffs (the rewards for the respective person) would be

DD: (�5, �5); DC: (0, �7); CD: (�7, 0); and CC: (�2, �2). We can

now normalize the payoffs (by adding 7 to all), and we have: DD: (2, 2);

DC: (7, 0);CD: (0, 7); andCC: (5, 5). The question now is whether there

is a behavioral strategy (C orD) that is the ‘‘best’’ solution to this dilemma.

The decision matrix for Player 1 with the above payoffs is:

Naturally, the payoff matrix for Player 2 is the same as for Player 1 (for a

more general version of the payoff matrix in the Prisoner’s Dilemma game,

Player 2

D C

Player 1
D 2 7

C 0 5
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see Box 11.1). Both players need to carry out the following reasoning in

isolation. If Player 2 decides to defect then the best response for Player 1 is to

defect as well. If Player 2 decides to co-operate then the best response for

Player 1 is to defect. Thus, whatever Player 2 decides to do the best Player 1 can

do is to defect. Because the game is symmetrical the same applies for Player 2,

and the outcome of the game (the ‘‘best’’ solution) is defection by both players.

The Prisoner’s Dilemma game illustrates the following profound problem in

evolutionary ecology. Nature seems to waste resources: individuals would be

better off by co-operating. However, individual fitness maximization drives

the evolution towards selfish behavior, since co-operation represents an

unstable behavior – it is vulnerable to cheating (hence Prisoner’s Dilemma).

For this reason, the evolution drives the populations towards evolutionarily

stable behavior, ESS (Maynard Smith 1982), where no individual can

improve its benefit or fitness by deviating from the ESS behavior.

The Hawk–Dove game

In theHawk–Dove game (Maynard Smith 1982), a population is composed

of two behavioral phenotypes: Hawks andDoves. In pairwise encounters,

Box 11.1 . The Prisoner’s Dilemma

In the Prisoner’s Dilemma, two players (prisoners) have been involved in

an illegal act which they in fact have committed jointly. Consequently,

they are accused of having carried out a crime. While being kept in

custody, they are isolated from each other. In this troublesome situation,

they have two options: defect or co-operate. If both players co-operate

they can avoid most of the charges, at least. In this case, the payoff for

Player 1 isR. If both players choose to defect then the payoff for Player 1 is

P. If Player 1 decides to co-operate when Player 2 defects, she gets S.

And finally, if she defects when Player 2 co-operates her payoff will be T.

The payoff matrix for Player 1 can be presented as follows

If P>S andT>R the only stable outcome is defection by both players,

even if the sum of the payoffs for co-operation (2R) would be greater

than the sum of the payoffs for defection (2P).

Player 2

Defect Co-operate

Player 1
Defect P T

Co-operate S R
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two individuals compete for a resource, whose value is V. A Hawk

first displays and, if the opponent does not retreat, the encounter is

escalated into a fight in which the loser will suffer a cost of C. If a Dove

is the first displayer and if the opponent is a Hawk, the Dove will

retreat. Two Doves have an equal opportunity to get the resource

without anyone suffering costs. In a Hawk–Hawk encounter, both

competitors have an equal probability of winning the resource and to

suffer costs from fighting. Thus, the payoff will be 0.5(V�C ). In a

Hawk–Dove encounter, the payoff for the Hawk is V and 0 for the

Dove. In a Dove–Dove encounter, the payoff for each will be 0.5V.

Which strategy is the unbeatable (ESS) one in the long run?

Obviously, it is always better to play Hawk independent of whether the

opponent is a Hawk or Dove. Thus, the Hawk strategy is an ESS. This

means that, in a population of Hawks, the Dove strategy cannot increase. In

this case, Hawks can also invade a population of Doves. The problem

becomes more challenging if the cost from possible injury is higher than

the reward obtained from the resource, i.e.,V<C. It is not evident that the

individuals should all play the Hawk strategy. In particular, in a population

ofHawks, it pays to playDove against a Hawk, andwemay predict that, in a

population of Hawks, individuals playing the Dove strategy would gain an

advantage and therefore theDove strategy will start to increase in frequency.

However, in a population of Doves, Hawks will gain advantage against

Doves, and the Hawk strategy would start increasing. Under these circum-

stances, both strategies are ‘‘best,’’ depending on the frequency of Hawks

andDoves in the population. That is, neitherHawk norDove is an ESS, and

the population will be composed of a mixture of Hawks and Doves.

Assume now that a fraction p of the population plays the Hawk strategy

and the remaining ones, (1� p), play theDove strategy. If a Hawk is engaged

Box 11.2 . The Hawk–Dove game

In the Hawk–Dove game, the players fight for a resource using two

different tactics: Hawk and Dove. In an encounter, Hawks display and

escalate, and Doves display and retreat. The payoff matrix for Player 1

can be presented as

where V is the reward and C is the cost for two Hawks fighting.

Player 2

Hawk Dove

Player 1 Hawk (1/2)(V�C) V

Dove 0 (1/2)V
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in an encounter with an opponent the probability of gaining 0.5(V�C ) will

be p, and the probability of gaining V will be (1� p). The total expected

payoff will be 0.5p(V�C )þ (1� p)V. Following the same reasoning, the

payoff for an individual obeying the Dove strategy is 0.5(1� p)V. Is there a

value of p such that both strategies have equal payoffs, i.e., no individual

would like to change its strategy? Thus, we get the following condition for an

ESS: 0.5p(V�C )� (1� p)V¼ 0.5(1� p)V. Solving for the frequency we

get p¼V/C. The frequency of Hawks is exactly equal to the ratio between

the value of the resource and the cost from the injury.

The Hawk–Dove game illustrates another fundamental phenomenon

in evolutionary ecology: frequency-dependent selection. It states that if a

rare phenotype gains advantage from being rare it will increase in fre-

quency until the gain has been lost.

The Rock–Scissors–Paper game

The Rock–Scissors–Paper game represents a situation where multiple

phenotypes play against each other and the competitive ability is ordered

in a circular manner: Rock blunts Scissors, Scissors cut Paper, and Paper

wraps Rock. Assume that the payoff for a winner is always equal to 1; for

the loser, �1. However, each type can also play against itself. Let us

denote the score against the same type by �" (Box 11.3). This game has

no pure strategy ESS solution. Thus, we need to look at mixed strategies.

Maynard Smith (1982) showed that a frequency distribution of one-third

of each type in the population is an ESS when the diagonal of the payoff

matrix is negative. When the diagonal of the payoff matrix is positive,

there is no ESS.

Box 11.3 . The Rock–Scissors–Paper game

In this game (Maynard Smith 1982), the players may apply three

different tactics: Rock, Scissors, and Paper. Rock beats Scissors,

Scissors beats Paper, and Paper beats Rock. The payoff matrix for

Player 1 is

where �" is the payoff playing against self.

Player 2

Rock Scissors Paper

Rock �" 1 �1

Player 1 Scissors �1 �" 1

Paper 1 �1 �"
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Co-operation: early history

Hamilton’s (1964a, 1964b) idea revolutionized the research on evolution

of co-operation in two ways. First, he formulated the problem by using

very intuitive mathematical notation (Box 11.4). Second, with the help

of the model, he suggested that for co-operation to evolve calls for not

only the cost and benefit of the nonselfish behavior for the donor but also

for the level of relatedness between the donor and the recipient (the one

receiving the benefits of the donor’s act). In its simple formHamilton says

that a gene linked with the co-operative behavior will increase in fre-

quency when the relatedness between the players and the benefit-to-cost

ratio are high enough (Box 11.4). Thus, according to Hamilton’s rule,

genetic relatedness should help co-operation evolve among players. The

problem remains for genetically unrelated individuals. Two ways to solve

the evolution of co-operation have been suggested.

Axelrod and Hamilton (1981) and Axelrod (1984) suggested that

repeated interactions could solve the situation for the Prisoner’s

Dilemma (originally only played once by each player). This led to the

tit-for-tat strategy (TFT; i.e., co-operate first, thereafter follow what-

ever your opponent did last turn; Axelrod and Hamilton 1981) and its

various descendants (Dugatkin 1997). Now, players can adjust their

strategies according to previous plays. Second, in the 1980s, trait-

group selection models (Wilson 1980) replaced the traditional group

selection models (Wynne-Edwards 1962; Williams 1966) to explain

co-operation. A thorough description of the ins and outs of trait-

group models is provided by Dugatkin (1997) and Dugatkin and

Reeve (1998). The underlying idea is that a population is divided into

small groups, and those with co-operative individuals are better off than

Box 11.4 . Hamilton’s Rule

Hamilton’s rule (1964a, 1964b) states that a gene linked with the

co-operative behavior will increase in frequency always when the

inequality

b=c > 1=r; or rb� c > 0

is true. Here b is the benefit the recipient gains and c is the cost the

donor pays. Hamilton’s rule clearly says that there is no option for

co-operation unless the relatedness r between the players is higher than

zero. Thus, with r¼ 0, no co-operation is expected to occur.
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groups including selfishly acting individuals. Thus, groups favoring

co-operation will produce more offspring to next generations than

groups with selfish behavior dominating. These models are spatial, but

the reference is implicit (fig. 11.1). The different trait-groups, within

which interactions among individuals take place, are separately located.

All individuals in the population, or their descendants, come into con-

tact in the mixing phase, and new trait-groups are formed. Trait-group

models have been rather powerful in explaining the evolution of

co-operation (Wilson 1983; Dugatkin 1997, 1998).
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Fig. 11.1. Reference to space in models explaining the evolution of co-operative

behavior. In panels (A) and (B) space is implicit, while in (C) it is explicit. (A) Group

selection models refer to spatially separated populations that are reproductively

isolated. The probability that a group becomes extinct (here group 3) is in proportion

to co-operativeC individuals (S¼ selfish individuals) in the local population. Extinct

populations are colonized by individuals in extant populations (here from group 2).

(B) In trait-group models groups are embedded in the population and individuals

reproduce in these trait-groups to redistribute into the population and to form new

trait groups ((A) and (B) modified after Dugatkin and Reeve 1998)). (C) In lattice

games individual(s) in a focal cell (shaded) interact with individuals in neighboring

cells (here the neighborhood size is one cell layer around the focal cell). Rewards of

these interactions are given after a specified payoff table. The cell occupancy is

updated after the payoffs of individuals gained during one round of games played.

The updating rules may vary.
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The two approaches are related when the games are played in space

(fig. 11.1). Despite this, there is a clear distinction between spatially

extended games and trait-group models (Nowak and Sigmund 1998).

In the Nowak–Sigmund model, random pairs of players are chosen in

succession from a population, one as a potential donor and another as a

recipient. After the interaction, individuals return to the population. In

this type of game, some individuals may never meet, while others play

repeatedly. The ratio of playing to nonplaying individuals depends on

population size and the number of plays per generation. After all inter-

actions have been played, individuals reproduce according to their pay-

offs. We shall return to this issue on p. 294.

Space and strategy co-existence

Boundary and order

In order to play the game in space and time, we need to define the size of

the lattice, boundary conditions on the borders of the lattice, and the rules

for scoring the payoffs in each cell. Two different boundary conditions

have been used. With fixed boundaries, the cells on the border of the

lattice have fewer neighbors with which to interact. With periodic

boundaries, cells on the lattice margins assume that cells on the opposite

edge are their neighbors as well (i.e., the lattice is a toroid, a doughnut-

like topological object). There are also several options to be used for

scoring the payoffs. Firstly, we need to define the neighborhood for each

cell. One option is to assume that the game is played against a minimum

number of neighbors. One choice could be that a focal cell plays against

the four orthogonal neighbors. For our purposes, we assume that the

game is played against all eight neighboring cells in the lattice.

On a lattice, the interior cells have eight neighbors, the edge cells have

five neighbors, while the corner cells have three neighbors. Consider first

a cell sitting in the interior of the lattice. The scores in pairs are taken from

the payoff matrix on p. 268. Assume that such a focal cell (cell (2, 3) in

fig. 11.2(A) ) is occupied by an ind ividual playing C, and has eight n eighbo rs,

three playingC and five neighbors playingD. Thus, the payoff (middle row

of panels in fig. 11.2) for the focal individual will be 4. Instead, if the focal

cell with the same number of different neighbors (cell (3, 3 ) in f ig. 11.2(A) )

is playingD its scorewould be 4b. Updating depends nowon the parameter

value b. Assume that b> 5/4. Updating the lattice results in global take-

over by the defecting strategy (fig. 11.2(C)). We shall next illustrate the
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importance of order in the space. Assume that 5/4< b< 2, and consider a

configuration where an individual of the C strategy occupies the lower

right corner (fig. 11.2(D)). The ones playing C are able to utilize their

synergy and hence they are able to take over a neighboring cell from

in di vi du al s p la yi ng th e D str at egy (fi g. 11 .2 (F) ). Ultimately, t he co-operative

strategy will occupy the whole lattice in the third step. The importance of

the order can be illustrated by the following example. Assume, in the

previous example, that 4/6< b, and further that the upper left cell (1, 4)D

is replaced by C (fig. 11.2(G)). Thus, one might predict that the more

individuals there are playing C, the better the co-operative strategy is

doing. However, in this example it helps the defection strategy more than

the co-operative strategy. We see that the lonelyCwill in fact destroy the

effective order of the co-operative strategy (fig. 11.2(I)). In this example,

the co-operative strategy is driven into extinction in the third step!

Prisoner’s Dilemma

We observed in the Hawk–Dove game that under certain conditions two

different strategies might co-exist. We will now show that the conditions

for strategy co-existence may be much relaxed in a spatial context. The

first explicit spatial extension of evolutionary games was done by Nowak

and May (1992 ). Using coupled lattices (fig. 11.1(C)) as spatial reference,

they played the Prisoner’s Dilemma game with two kinds of players: C,

(A)

C  D  D  C 
C  D  C  D 
D  C  D  C 
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D  D  D  D 
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b 2b 3b4b
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6
6 4
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4b
4

3

1
3
3b
2

Fig. 11.2. Three examples (A, D, G) of a 4� 4 lattice configuration with the

corresponding scores (B, E, H). The last row (C, F, I) gives the updated configuration

for the first row using fixed boundary conditions.
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who always co-operates, and D, who always defects. Each lattice cell is

occupied by a single individual playing eitherD orC. The neighborhood

was selected to be one cell layer around the focal cell. In their plays,

mutual co-operators each scored 1, mutual defectors 0 and D scored b

benefit (exceeding unity) againstC, who scored 0 in such encounters (see

the payoff matrix below). The fitness function for each player is the sum

of payoffs in the encounters. Each generation is updated by re-occupying

the lattice cells by the player type with the highest score between the

previous owner and the immediate neighbors.

Varieties of this game were played byNowak andMay (1992; lattice size

varying, initial proportion of C and D varying, and b varying). The main

conclusion of their study was that co-operation, once evolved, can be

maintained in a spatially structured population. The system stabilizes for an

asymptotic frequency of co-operators with a great range of initial frequen-

cies of C and parameter values of b. Another alternative is that the fre-

quency of co-operators oscillates in a complicated manner around some

level. In both cases, however, the system yields complex (often aesthetic)

spatial clusters of C and D traveling through space over time.

Nowak and May (1992) considered the patterns arising when the

Prisoner’s Dilemma game is put into a spatial context. They chose the

following payoff matrix for the game

We observe that the parameter values do not satisfy exactly the assump-

tions T>R>P> S and R> (SþT )� 0.5 posed to the Prisoner’s

Dilemma (e.g., Dukatkin 1997). However, one can see immediately

that to defect is an ESS. Whatever strategy Player 2 plays, D is always

the best choice by Player 1. Thus, to defect is an ESS in a single shot game,

and co-operation should not be maintained in the population.

A spatial version of the game is composed of a lattice where each cell

contains one player. The players either defect (D) or co-operate (C ). An

individual in each cell plays the game with its neighbors. The payoff each

player will get is the sum of the payoffs of the individual games the player

will play with each of its neighbors. In the next generation (the game is

extended also in time!), the cell will be occupied by an identical offspring

Player 2

D C

Player 1
D P¼ 0 T¼ b, b> 1

C S¼ 0 R¼ 1
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of the individual playing the strategy with the highest payoff obtained in

the neighborhood and in the focal cell.

Nowak and May in space

The crucial importance of the spatial structure of the games has now been

recognized for about 10 years (Nowak and May 1992). To illustrate the

nature of the effect of the spatial dimension in games, we carried out a

simulation using a 61� 61 lattice with b¼ 1.82. Each focal cell plays

against itself in addition to playing against each of its eight neighbors. We

first assumed a random initial configuration. Such a game will lead to

sequential spatial patterns where the strategies in space vary in a very

unpredictable manner (Nowak andMay 1992). The strategies often make

single-strategy clusters of varying size (see fig. 11.9, p. 285). These clusters

grow and diminish in a fractal manner, and they frequently disappear and

reappear. Here, instead of attempting to understand the spatial-temporal

changes in the strategy composition, we pay attention to the co-existence

between the different strategies. Our focus is on the temporal dynamics

of the frequencies of the two strategies. We observe that the frequency of

co-operation first drops close to zero. This is because the aggregations of

the co-operative strategy have had no time to build up yet such that the

co-operative strategy could take advantage of the organization (fig. 11.3(A)).

After a relative short transient phase, aggregations of co-operators will

begin to emerge. Such aggregations are born and lost in place through

time. In a spatial setting, such a dynamic process makes the co-existence

of both strategies possible. After the transient phase, the frequency of

co-operators will fluctuate around 0.34. It is tempting to use the same

time series analysis tools as used in the population dynamics context

(Chapters 2 and 5). In the population renewal process, population size

fluctuates due to density-dependent feedback. In the evolutionary games,

fluctuations in the numbers of players of different strategies in time are

due to the payoff matrix and the temporary spatial constellation of the

strategies. In the spatial plays of the Prisoner’s Dilemma, as described

here, the frequencies of C and D continue to oscillate forever. The oscilla-

tions are more violent at a regional level (a sample of 100 cells in the center

of the lattice) than at the global level (frequencies of C and D summed

over all cells). At the cell level, the strategies flip between C and D

(fig. 11.3(C)). The power spectra of strategy-specific frequencies do not

indicate any apparent periodicity. Instead, it suggests that the temporal

dynamics of the frequencies of C and D are close to a power law
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(fig. 11.4), with a slope indicating red dynamics. Also, when we scored

the time for how long sequences a randomly selected cell was occupied

by a given strategy, e.g., by C, the data appear to obey the power law

(fig. 11.8(A)).

There is no doubt that the Nowak and May (1992) spatial Prisoner’s

Dilemma game yields spatial self-organization. Earlier (Chapter 5; Kaitala
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PRISONER’S DILEMMA

Fig. 11.3. The frequencies of the defecting and the co-operative strategies in a spatial

Prisoner’s Dilemma game (61� 61 lattice) with random initial configuration

(b¼ 1.82). (A) The global frequency of co-operative strategy stabilizes to fluctuate

around 0.34. (B) The frequencies of the two strategies fluctuate muchmore widely in

a 10� 10 subset in the center of the lattice. (C) The local presence of defecting

strategists is given for a randomly selected cell.
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et al. 2001a, 2001b), we have proposed that when the temporal dynamics

of a population follow the power law (Kauffman 1993; Halley 1995) it is a

signature of the underlying spatial self-organization process. Here we

have yet another hint at self-organization being involved.

We also simulated the spatial dynamics using a symmetrical initial

configuration by initiating the game by one defector in the middle of

the lattice that was otherwise occupied by co-operators. When the

frequency of co-operators is high enough then the frequency of defectors

increases rapidly until self-organization occurs in the configuration.

Co-operative individuals remain on the lattice as aggregations and are

able to persist in a population of mostly defectors. As in the random initial

configuration withC andD in the space, we witness sustained oscillations

of the frequencies ofC andD. The average frequency level of co-operators

stabilized again around 0.34, indicating that strategy co-existence may

occur on the lattice in a dynamical manner. Again, the power spectra

suggest that temporal fluctuations of the two strategies match the

power law. Thus, there appear to be no major differences between the

games with random and symmetrical initial conditions. However, regard-

less of the initial configuration, the Nowak and May (1992) spatial
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Fig. 11.4. Power spectrum for the frequency of the co-operative strategy in a spatial

Prisoner’s Dilemma game (fig. 11.3(A)). The power spectrum was calculated

omitting the first 100 generations of the simulations lasting 500 generations.

The slopes of the global (upper) and regional (lower) power spectra are inserted.
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Prisoner’s Dilemma game does not explain the evolution of co-operation;

it only tells us that the selfish and co-operative strategies will co-exist in a

spatially structured population. We shall return to this topic on p. 291 of

this chapter.

Hawk–Dove game

The Hawk–Dove game is an interesting description of conflict situations.

It allows strategy co-existence even in the absence of spatial or temporal

modification of the game. It is interesting to ask how the predictions of

the Hawk–Dove game are modified when the game is put into a spatial

context. Consider, e.g., the game on a lattice studied by Killingback and

Doebeli (1998). The payoff matrix is given as

where 0<�. Clearly, if a Hawk plays against a Hawk the payoff from the

encounter will be 1��. If a Hawk plays against a Dove, the payoff will

be 2. For a Dove playing against a Hawk and a Dove the payoffs will be 0

and 1, respectively. When �> 1 we have in a single shot game a mixed

solution: p¼V/C¼ 2/2�¼ 1/�. With the above values we have

We analyzed the Hawk–Dove spatial game assuming �¼ 1.1. From the

single shot game we get the prediction that the frequency of Hawks will be

p¼ 1/�¼ 0.91. A 61� 61 lattice was initiated with equal abundance of

Hawks and Doves. Starting from random initial conditions, the simulations

result in strategy co-existence where the frequency of Hawks will be much

less than predicted from a single shot game (0.67 versus 0.91). As in the

spatial Prisoner’s Dilemma game, in the spatial Hawk–Dove game the

frequencies of the two strategies soon settle at a certain level (fig. 11.5),

where they keep fluctuating. Again, the fluctuations are more violent at the

regional than at the global level, and at a local single-cell level a strategy

stays a short time only. Most interesting, however, is the finding that, as in

Player 2

Hawk Dove

Player 1
Hawk 0.5(V�C)¼ 1�� V¼ 2

Dove 0 0.5V¼ 1,

Player 2

Hawk Dove

Player 1
Hawk �0.1 2

Dove 0 1
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the Prisoner’s Dilemma game, the strategy-specific frequencies show red

dynamics, the power spectrum indicating a behavior close to a power law

(fig. 11.6). Thus, the spatial organization in this game is also visible as the

power law of the strategy frequencies. Also in this game we scored for how

many sequences a randomly selected cell was occupied by a given strategy,

e.g., by Hawk. The data appear to obey the power law (fig. 11 .8 (B )).
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Fig. 11.5. The frequencies of Hawk and Dove strategies in a spatial Hawk–Dove

game (61� 61 lattice) with random initial configuration (�¼ 1.1). (A) The global

frequencies of the two strategies soon stabilize, while (B) they keep on fluctuating

more widely in a 10� 10 subset in the center of the lattice. (C) The local presence of

Hawk strategists is given for a randomly selected cell.
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Rock–Scissors–Paper game

An interesting application of the Rock–Scissors–Paper (RSP) game was

provided by Sinervo and Lively (1996). They showed that territory

defense by males in a small iguanid lizard (Uta stansburiana) is dependent

on throat-color polymorphism. Males with orange throats defend large

territories and are more aggressive than males of the other morphs. Males

with dark-blue throats defend smaller territories and are less aggressive.

Males with yellow stripes on their throats do not defend territories – they

are sneakers. Putting the problem of frequency-dependent selection in a

game theory context, Sinervo and Lively (1996) concluded that the

territory defense is an example of the RSP game. The aggressive strategy

of yellow-throated males is defeated by the sneaker strategy; sneakers are

defeated by the blue-throated males with small territories that again are

defeated by the aggressive strategy. Thus, no morph is an ESS.

The term ‘‘territory’’ above refers to space. Therefore, we shall com-

mence the exploration of the RSP game in a 61� 61 lattice, initiated

with equal abundance of R, S, and P, one strategy per cell. After an erratic

initial phase, the dynamical changes of the strategy frequencies start to

oscillate in a periodic manner. A closer look at the period length shows

that it is about 9 years (fig. 11.7). As compared to the Prisoner’s Dilemma
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Fig. 11.6. Power spectrum for the frequency of Hawks in a spatial Hawk–Dove game

(fig. 11.5(A)). The power spectrum was calculated omitting the first 100 generations

of the simulations lasting 500 generations. The slopes of the global (upper) and

regional (lower) power spectra are inserted.
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and Hawk–Dove games, the Rock–Scissors–Paper game shows crucially

different properties when put into a spatial context. With a proper

selection of diagonal values of the payoff matrix (Maynard Smith 1982;

Hofbauer and Sigmund 1998), cyclic dynamics of the three strategies are
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Fig. 11.7. The frequencies of Rock, Scissors, and Paper strategies in a spatial RSP

game (61�61 lattice) with random initial configuration ("¼ 0.1). (A) At the global

level, the strategy-specific frequencies will start to oscillate in a regular cyclic manner

(the inset) after an initial phase. (B) At the regional level (a 10� 10 subset in the

center of the lattice) the frequencies settle much sooner to a stable cyclic fluctuation,

but with a considerably wider amplitude than in (A). (C) At the local level (in a

randomly selected cell) a strategy (here displayed for Rock) stays a while, and then

turns to Paper, only to be replaced by Scissors, to be replaced by Rock, etc.
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easy to maintain. The periodic fluctuations are well pronounced at the

regional level (fig. 11.7(B)). At the cell level a strategy, say R , stays for a

few time steps, is replaced by another strategy P, which in turn is replaced

by another strategy S, and the original strategy R is back again after a few

more time steps (fig. 11.7(C)).

The frequency distribution of temporal cell occupancy by a given

strategy (say R) i s c le ar ly b i mo da l ( f i g. 11 .8 (C )). This is in striking contrast

to the spatial versions of the Prisoner’s Dilemma and Hawk–Dove games.

For these two games, strategy-specific cell occupancy time clearly obeys the

power law (fig. 11.8). In a spatial context, a match with the power law is

often taken as a sign of self-organization (Kauffman 1993; Halley 1995). To

illustrate that all three games will display temporal spatial organization, we

took samples of the cell occupancies by the strategies in the three different

games.Not unexpectedly (Nowak andMay 1992; Killingback andDoebeli

1998), both the Prisoner’s Dilemma and Hawk–Dove games display clear

spatial patterning (fig. 11.9(A),(B)). However, we also see clear spatial

structuring in the RSP game (fig. 11.9(C)). This was also suggested by

Sinervo and Lively (1996) with the color morph data of the iguanid lizard.

Here the periodicity for the global lattice is 9 years while most lattice cells

display either 3-year or 6-year periodicity in occupancy of a given strategy

(fig. 11 .9 (C )). Thus, spatial organization is pronouncedly visible in the RSP

game, though via cyclic fluctuations of the three morphs.

Noise in the RSP payoff matrix

Based on an empirically derived payoff matrix, Sinervo and Lively (1996)

suggested in their RSP model that the lizard morph frequencies oscillate
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Fig. 11.8. Frequency distribution of the times for which a local cell is occupied by

a given strategy in spatial versions of the three evolutionary games, Prisoner’s

Dilemma, Hawk–Dove and Rock–Scissors–Paper.
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in cycles such that the oscillations are damped but maintained by random

perturbations. Here we would like to explore the influence of stochastic

elements on the outcome of the RSP game. This is because the standard

spatial RSP game tends to yield clearly pronounced sequential cyclic

replacement of the strategies. A 20� 20 lattice is used and is initiated

(A) Prisoner’s Dilemma

(B) Hawk–Dove

(C) Rock–Scissors–Paper

t = 200 t = 202 t = 204

Fig. 11.9. Temporal snapshots of cell occupancies by the playing strategists in

the spatial versions of the (A) Prisoner’s Dilemma game (D¼white, S¼ black),

(B) Hawk–Dove game (Hawk¼ black, Dove¼white), and (C) Rock–Scissors–Paper

game (Rock¼Black, Paper¼white, Scissors¼ gray). In each case, the game is

played in a 61�61 lattice (cf. figs. 11.3, 11.5, 11.7). The snapshots are taken at

t¼ 200, t¼ 202, and t¼ 204 to show the changing spatial reconfiguration of cell

occupancies.
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with an equal abundance of R, S, and P. We shall use the same payoff

matrix as used to generate the data displayed in fig.11.7. However, the

payoff matrix elements are perturbed for each play by adding a small

random element � to them, so that � takes values from uniform random

numbers between �w and w (here w¼ 0.05; i.e., �5% noise). The

rationale is that, now and then and for one reason or another, the contest-

ants are either in better or in worse shape at influencing the payoff values.

Note, however, that the long-term expectations of the strategy-specific

payoffs are as in the previous exploration.

The stochasticity introduces interesting features of the RSP game.

First, omitting the initial transient phase, the interactions and the spatial

configuration will yield lengthy periods under which the three strategies

fluctuate in a stable cyclical manner, one strategy replacing another in a

predictable sequence. However, now and then the system breaks down,

and a new transient phase occurs (fig. 11.10(A)). These phases do not last

long, and the system returns back to stable cyclic fluctuations. This will

last until the system breaks down again, followed by a recovery of the

stable cycles some time later on. During such periods the sequence order

of the strategies may also change (fig. 11.10(B)). Another interesting
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Fig. 11.10. The spatial Rock–Scissors–Paper game is played with noise in the payoff

matrix. Note the emerging irregularities in the R!P!S!R . . . sequence and in

the appearance of the strategy-specific dynamics. Despite the irregularities the three

strategies co-existed at least up to 10 000 generations in the game (A), while in (B)

Rock becomes extinct around t¼ 910, soon to be followed by Paper.
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feature is that the intervening transition phase may escalate to a take-over

and extinctions (fig. 11.10). The fact that our simulated games did not

reproduce the outcome by Sinervo and Lively (1996) is because we did

not use their payoff matrix. Clearly, the RSP game is far from thoroughly

analyzed.

RSP game generalized to � strategies

The critical element for strategy co-existence and dynamics in the RSP

game are the diagonal elements ": with a proper selection of them,

periodic strategy fluctuations follow (Maynard Smith 1982; Hofbauer

and Sigmund 1998). We took the following as a general form of the

payoff matrix:

" q 0 q 0 q

0 " q 0 q 0

q 0 " q 0 q

0 q 0 " q 0

q 0 q 0 " q

0 q 0 q 0 "

2
6666664

3
7777775
:

To reveal the pattern, it is here shown in a complete form for six

strategies, �¼ 6, but there is no limit to extend it to any number of

playing strategies�. The matrix entries are, for simplicity, of three kinds:

the diagonal elements " are payoffs when two individuals of the same

strategy play against each other, the alternating elements, q and 0, ensure

that we have the sequence: R>P> S>T>U> . . . �>R, the RSP

game sequence. The diagonal of the payoff matrix " can take any value.

We limited our analysis into three cases, "¼�1, "¼ 0, and "¼ 1; always

q¼ 1. In our simulations a 30� 30 lattice was used. We initially had

�¼ 10, and we initiated the lattice in random proportion to the �
strategies. The system was left running for 10 000 replicated plays for

each cell (neighborhood being the eight surrounding cells). Fixed bound-

aries were used. After each play session, we scored the number of

strategies present. The system was replicated 100 times for the three

differing values of ". The results are clear-cut (fig. 11.11): with "< 0

and "¼ 0 the remaining number of strategies was always an odd number.

Only when "¼ 1 did the remaining number of strategies include even

numbers as well (fig. 11.11(D)). An explanation for this is provided in

Box 11.5
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Fig. 11.11. Frequency distributions of the number of RSP strategies remaining

with different initial strategy numbers �, and the diagonal of the payoff matrix ".
Each panel is a result of 10 000 independently replicated runs (initially �¼ 10).

Box 11.5 . Strategy dynamics in the Rock–Scissors–Paper game

Assume there are � strategies in a generalized Rock–Scissors–Paper

game (in the original game, �¼ 3). The original game with three

strategies is symmetrical, i.e., A beats B, B beats C, C beats A. In a �
strategy game, there are�(�� 1)/2 interactions. Let x be the number

of interactions in which each player is beating the other. Then, �x is

the total number of interactions. Hence

�x ¼ �ð�� 1Þ
2

;

i.e.,

x ¼ �� 1

2
:
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Assume that a system with a stable co-existence of three (or any odd

number) RSP strategies exists. An interesting question is: can the system

be invaded by a new strategy? To address this question, we did some pilot

invasion analyses (Box. 12.2). When "¼�1 or "¼ 0, the invasion is not

possible in small numbers. In large enough numbers of the invading new

RSP strategist exist, two things can happen. The invader is capable of

entering the system, but drives one of the extant strategies into extinction,

or only one strategy survives. Invasion to such an odd-numbered RSP

Integer solutions (required for an integer number of strategies) only

hold for� being odd. That is, symmetrical games are only possible for

an odd number of strategies.

We can also calculate the equilibrium proportions of the different

strategies. The frequency of the ith strategy, pi, varies over time as

piðt þ 1Þ ¼ piðtÞWiðtÞ= �W ðtÞ;

where Wi(t) is fitness of strategy i at time t and �W ðtÞ is mean fitness.

Mean fitness is

�W ¼
X

piWi :

At equilibrium, we know that WiðtÞ= �W ðtÞ must equal 1, i.e.,

Wi ¼ �W: Wi is easily calculated from the payoff matrix. For example,

from the payoff matrix

" a b

c " d

f g "

2
4

3
5:

W1¼ "p1þ ap2þ bp3. UsingWi ¼ �W and some algebra, we then

have

p1 ¼
aðc � f Þ � cg þ "ð f þ g � "Þ

aðc"� df Þ þ bð f "� cgÞ þ "ðdg � "2Þ

p2 ¼
aðd þ "Þ � bðg � "Þ þ dg � "2

aðc"� df Þ þ bð f "� cgÞ þ "ðdg � "2Þ

p3 ¼
bðc þ f Þ þ c"� dð f � "Þ � "2

aðc"� df Þ þ bð f "� cgÞ þ "ðdg � "2Þ :

Space and strategy co-existence . 289



strategy system can occasionally succeed, but only if two alien strategies

enter the system within a short enough time interval from the entrance of

the first invading strategy. The outcomes of successful invasions we have

seen have had periodic dynamics. When "¼ 1, invasion is more often

successful than in the previous case. However, with even-numbered

co-existing RSP strategies, we quite often see stable dynamics instead of

periodic fluctuations. It is obvious that the RSP game system, with its

many extensions, clearly calls for more research.

Evolution of co-operation

Indirect reciprocity

We shall now return to the Nowak and Sigmund (1998) game (p. 277), in

which random pairs of players are chosen in succession from a single

population to interact, one as a potential donor and another as a recipient.

If the donor acts as a co-operator, it will suffer a cost c from helping

the recipient, whereas the recipient – regardless of its type – will enjoy

the benefit b from being helped. Thus, in each interaction in pairs, the

co-operating individual will create additional value in the group without

being able to benefit itself at all. Instead, this individual suffers costs from

being helpful as compared with the rest of the population.

Nowak and Sigmund (1998) proposed that indirect reciprocity

through image scoring can provide a basis for the evolution of conditional

co-operation. Unlike inmost formulations of the evolution of co-operation

(see Dugatkin 1998 for a review) direct reciprocity with repeated inter-

actions cannot occur in the Nowak–Sigmund game. The crucial feat-

ure is that each individual has a reputation, or image, which increases

every time the individual helps another one. The reputation is known to

every other member in the population. It follows that the strategies,

whether to co-operate or not, can be made to depend conditionally on

the image scores of the recipients. Nowak and Sigmund (1998) showed

that, starting with random distribution of strategies, co-operative action

may overcome the selfish action in the population. The details of the

outcome, of course, depend on the payoff structure of the game. In

particular, individuals helping those who have helped others in the past

may be favored in selection. The problem of reciprocity and image

scoring has also been analyzed in some detail by Riolo et al. (2001) and

Milinski et al. (2001), and also with spatial elements by Leimar and

Hammerstein (2001).
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Direct reciprocity

We shall now show – with a slight modification of the Nowak–Sigmund

game – that image scores are not necessary for co-operative behavior to

become common in the population. In these games, the strategies are

pure: an individual either co-operates, C, or acts selfishly, S. Consider

first a single population of N, N¼Cþ S, composed of two types of

individuals playing two different unconditional strategies. Individuals of

type C always co-operate or help in interactions in pairs as donors

regardless of the type of the recipient, whereas individuals of type S

always play selfishly as donors. In each generation, pairs of players are

drawn at random in successions of n times to interact with each other.

Each individual interaction results in a change in the fitness scores of the

individuals in the pair, while the fitness scores of the rest of the population

remain unchanged (i.e., they are living in implicit solitude). The fitness

scores of the interacting individuals increase according to the payoff table

in fig.11.12. Thus, an individual may be chosen for interactions from zero

up to n times. At the end of each generation individuals produce progeny

of their kind in proportion to the fitness scores. In each generation the

population size is held constant (N¼ 100, n¼ 25 or n¼ 75, initially

S:C¼ 1:1, c¼ 0.1).

Simulation outcomes with a range of benefit-to-cost ratios and with a

fixed number of encounters in pairs within each generation are shown in

fig.11.13(A). When the benefit-to-cost ratio increases, the proportion of

the games with the co-operative strategy winning will increase. It appears

that with small numbers of plays (n¼ 25, i.e., limited mixing) the propor-

tion of games taken over by the co-operative players is larger than with

n¼ 75. The re-formulated game shows that image scoring is not neces-

sary for the maintenance of co-operation in this game. It appears that

when the benefit-to-cost ratio is large enough one may observe frequent

take-overs by co-operative strategies in the population. Nonetheless,

despite the benefit-to-cost ratio being large enough co-operation never

becomes invasion-proof against selfish individuals. The same is true for

the invasion ability of selfish-only populations by co-operative indivi-

duals. In fact, within a rather wide benefit-to-cost ratio we find that with

matching parameter values a proportion of the games will evolve to all-

selfish populations, or to all-co-operative populations (fig. 11.13(B)).

We shall now extend this game into a spatial context by using a coupled

lattice of size 100� 100. The neighborhood size is taken to be one cell

layer around the focal cell. The lattice is initialized with 1:1 ratio of S and
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C players totalingN, so that each cell is occupied and the average number

of individuals per cell is 10 in one set of runs, and 20 in another one. For

each round, every cell in the lattice will be scanned through. The number

of games played in the focal cell is the number of individuals in that cell,

FSþFC. A pair of individuals, a donor and a recipient, will be a random

draw (with replacement) from these individuals. Payoffs of S and C

players will be scored for the S and C strategists in the focal cell. As in

the single-population games above, the S andC player composition in the

focal cell will be replaced after their accumulated payoffs after each

simulation round, when the entire lattice is updated. With the reproduc-

tion, we standardized population size to N individuals. A total of 1000

generations were played before calculating the proportion of S and C

individuals in the population. Onemore refinement: a given proportion p

of the FSþFC plays in the focal cell can be played by drawing the donors

and recipients from the focal cell itself. For a proportion of the plays,

q¼ (1� p), donors and recipients will be drawn from among individuals

in the neighboring layer of cells. The payoffs for S and C players in the q

plays will be scored for S and C in the focal cell, respectively. Thus, q is a

measure of redistribution of individuals.

We first set q¼ 0.1 and played an entire range of benefit-to-cost ratios

from 2 to 100. Stable co-existence of S and C strategies emerges over

almost the entire b/c range (fig. 11.13(C)), though at low b/c ratios only a

Pay-off matrix

recipient

donordonor

donordonor

recipient

recipient

recipient

S

S

C

0 + c 0 + c 

b + c 

0 + c 0 + c 

–c + c –c + c

b + c

C

Fig. 11.12. Payoff matrix for the direct reciprocity game. There are two strategies:

S is a selfish player,C is a co-operative player (donor payoffs above diagonal, recipient

payoffs below diagonal in each box), b is benefit gained by the recipient of the

interaction; c is the cost to the donor of the altruistic act.
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small proportion of individuals in the population are co-operative. It also

appears that with larger population size the b/c ratio has to be substantial

for the co-operatives to succeed. Note also that there is a very sharp

transition phase in the b/c ratio (approximately 20 and 30 for the two
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Fig. 11.13. (A) Proportion of single-population games ending in populations with all

co-operating individuals against a range of differing benefit-to-cost ratios, b/c (the

number of replicated runs is 100 with initially 1:1 ratio of S:C, N¼ 100, random

draws of donors and recipients for each round numbers, either 25 or 75, 100

generations played). (B) Examples of outcomes of the single-population donor-

recipient game with b/c¼ 30, n¼ 25. A proportion of the games end with all

co-operating individuals, while other realizations with exactly same parameter values

end up as all selfish populations. In some runs the fixation takes a long time (thick

line) while in other runs the fixation to either end may last just a few generations.

(C) The donor–recipient game is extended to space. Here we used a coupled lattice

of 100� 100 cells, 1000 plays (with 10% of plays by individuals drawn from the

neighborhood before scoring the proportion of co-operative individuals, the average

number of individuals per cell is either 10 or 20). A wide range of b/c ratios is used in

the plays. (D) Proportion of co-operative players in the population (b/c ratio varies) in

plays where donors and recipients are drawn in varying proportions from the

neighborhood. The trajectories give the maximum proportion of neighborhood

games tolerated when co-operation still persists (mean population size per cell is 10).
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population sizes examined) from mixed populations to all-co-operative

populations. We shall now turn to investigate how the proportion of

co-operative individuals in the population changes with changing q, the

proportion of plays played by drawing donors and recipients from the

neighborhood (when all the plays in the focal cell are played using

individuals drawn from the focal cell (q¼ 0) we have a total of 100� 100

isolated single-population games). The proportion of co-operative indi-

viduals in the population depends much on the benefit-to-cost ratio

(fig. 11.13(D)), and another interesting finding is that with increasing q

the proportion of co-operative individuals in the population decreases

very sharply. The value of q leading to extinction of the co-operative

behavior depends on the benefit-to-cost ratio (fig.11.13(D)).

The question of whether co-operative behavior can invade a popula-

tion of selfish individuals remains. By using the single-population game

(N¼ 100, n¼ 25 or n¼ 75, c¼ 0.1), we addressed this using an invasion

analysis technique. With various benefit-to-cost ratios (1000 plays of

the game for each b/c ratio) we searched for the minimum amount of

co-operative players needed for invasion of the co-operative strategies.

Our score for a successful invasion is that the co-operative behavior takes

over (cf., fig. 11.13(B)) the population at least once out of 100 trials.

In this game, it is possible for individuals using co-operative behavior to

invade a population of selfish individuals (fig. 11.14). However, when the

benefit-to-cost ratio is small, the number of invaders has to be pretty

large, while with increasing benefit-to-cost ratios the number of invaders

needed for successful long-term co-existence of the two strategies

becomes smaller and smaller–even to the point that when the benefit-

to-cost ratio is very large only one co-operative individual is needed to

invade the population of selfish individuals. Moreover, the invasion by

co-operative players appears to be dependent on the proportion of the

plays played with the neighborhood: a smaller number of invaders is

needed for success when n¼ 25 than when n¼ 75 (fig. 11.14).

Games and population dynamics

We shall finish this chapter by moving the evolutionary games towards

population dynamics. While doing this, we shall follow the path cleared

by Hofbauer and Sigmund (1998), albeit in much less technical terms. In

population dynamics density-dependent feedback takes care of the popu-

lation renewal process (Chapter 2). Survival and reproduction as a func-

tion of current and previous population sizes are the agents influencing
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changes in local population sizes. In dispersal-coupled populations, redis-

tribution of individuals (Chapters 3 and 4) adds an extra flavor to the

emerging dynamics of populations. In evolutionary games, the frequencies

of the various strategies are due to the payoff matrix. In dispersal-coupled

games the frequencies also depend on what strategies the neighbors

are playing.

Consider a population in which the individuals use two or more

interaction strategies. Each individual occupies one patch (or territory).

The space is made up of a fixed numberN of such territories, which may

be distributed evenly (lattice structure) or unevenly (heterogeneous

environment). A territory may be occupied by only one individual

with a certain strategy or it may be empty. The individuals produce a

strategy-specific number of offspring, which then redistribute among the

territories according to a given dispersal rule (dispersal kernel). After

redistribution, each territory may attract a varying number of individuals

of different strategies. However, before reproduction, the individuals

queuing for a territory play a game among themselves. The strategy getting

the highest payoff will win and occupy the territory for reproduction. The

losers will not reproduce. The sequence is: payoff-dependent survival !
reproduction! redistribution! payoff-dependent survival! and so on.

In the simplest case, reproduction is just strategy-specific offspring

numbers produced by the survivors. However, it may as well be dictated

by any of the renewal functions discussed in Chapter 2 (e.g., in Box 2.1)
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Fig. 11.14. The minimum initial number of co-operative individuals needed for

successful invasion of an all-selfish population with varying benefit-to-cost ratios. For

details of the invasion criterion, see p. 293–294. ( N ¼ 100, n ¼ 25 or n ¼ 75, c ¼ 0.1).
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(with the restriction that population size should be in integers, in indivi-

duals). For simplicity, we here use the first option, and will demonstrate

the idea with the Rock–Scissors–Paper game using the payoff matrix

used for fig. (11.7). The N¼ 400 territories are distributed into a 5� 5

co-ordinate space with uniform random numbers, nR:nS:nP being initially

1:1:1 and each territory occupied. The three strategies all produce equal

numbers of offspring per reproduction, l¼ 10. The dispersal follows

kernel II (p. 54), with dMAX¼ 2.5 (median distance among the territories

in these conditions). The territory occupant will be decided from among

all the potential invaders based on the payoff matrix, Rock> Scissors,

Paper>Rock, and Scissors>Paper. Only one individual can possess the

territory at a time.

Recall that in the lattice context the RSP game yielded clearly cyclic

dynamics with 9-year period length (see the inset in fig. 11.7(A)). The

new setting makes the frequencies of the three strategies fluctuate more

irregularly (fig. 11.15), as is also the case with the total population size.

Note that in the spatial RSP game (discussed on pp. 279–284) the popu-

lation remains stable, while frequencies of the strategies R, S, and P

fluctuate in a cyclic manner. In fact, the deterministic cycle of nR, nS,

and nP is replaced by long-term fluctuations (fig. 11.15). The game was

repeated in a regular 20� 20 lattice (with 0.55 units being the distance

between neighboring cells; the median distance between the cells is about

the same as above). The results echo what was found with the irregular

placing of the territories: cyclic dynamics turn into long-term and less

regular fluctuations obeying the power law. In these plays, all strategies

being equal in terms of reproduction, l, and redistribution, dMAX, the

long-term average numbers match (fig. 11.15).

In the second exercise, we let both strategy-specific l and dMAX vary.

Now the population sizes for the different strategies very much depend

on what the other strategies are doing. For example, letting lR¼ 30,

lP¼ 10 and lS¼ 10, increased only slightly the numbers of R, reduced

much the numbers of P , and increased the numbers of S (fig. 11.16(A)).

Changes in the maximum distances dispersed by the different strategies

brought up similar surprises. When the dMAX for R was reduced, their

numbers went down to a half of what they were with matching dispersal,

while the numbers of P almost doubled and S suffered the most

(fig. 11.16(B)). When we had strategy-specific differences both in l and
dMAX we observed similar changes in strategy numbers (fig. 11.16(C)).

That is, when one strategy is doing well in terms of either reproduction or

dispersal, it is not necessarily the strategy that is gaining the most. Rather,
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the winning strategy, in terms of strategy-specific numbers, is the next

one in the chain R>P> S>R> . . . . This finding contradicts, to some

extent, that of Frean and Abraham (2001). They used the RSP game to

study competition among three species with the competitive hierarchy

being A>B>C>A. In their models, the weakest competitor was the
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Fig. 11.15. The RSP game as a population renewal process. Population trajectories

for the Rock (B), Paper (C) and Scissors (D) strategies (and for the pooled data (A)),

with the corresponding power spectra (slopes inserted). The population data are

displayed for the final 100 steps of a 500-steps-long simulation. The power spectra are

calculated for data excluding the first 100 steps of the simulation.
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Fig. 11.16.Numbers of individuals of Rock, Paper, and Scissors strategists when the

three strategies differ (A) in terms of reproduction, (B) in terms of dispersal, and (C) in

both. In (A) maximum dispersal distance dMAX is always the median, distance (Q2)

among the population subunits. In (B) l¼ 10 throughout while dMAX is either the

lower quartile (Q1), median or the upper quartile (Q3) distance among the population

subunits. In (C) the top row in the inserts is for reproduction, while the lower row is

for dispersal. The simulations are run for 500 steps, and averages of 25 replicated runs

(with 95% confidence limits) are given for each parameter combination.
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one winning. In our case, the success is measured in terms of offspring

production, and the strategy producing the most is not necessarily the

one gaining the most in terms of strategy-specific numbers. A trade-

off between reproduction and dispersal can balance the situation

(fig. 11.16(C)), and the outcome is the expectation of the theory of

allocation (Roff 1992; Stearns 1992).

Summary

After introducing the classical evolutionary games, Prisoner’s Dilemma,

Hawk–Dove and Rock–Scissors–Paper, we extend them into space. The

games show clear features of spatial self-organization: strategies aggregate

and the aggregates move in space and time. Self-organization is also

visible in strategy-specific frequencies aggregated over the population.

These frequencies have periodic features matching the 1/f power law.

The evolution of co-operation is discussed and it is shown that with large

enough benefit-to-cost ratio co-operative behavior can invade a popula-

tion of selfish individuals. The Rock–Scissors–Paper game is explored in

more detail. It turns out that with negative entries in the diagonal of the

payoff matrix (strategy playing against itself ), only co-existing strategies

are always odd-numbered. We also introduce a novel way to incorporate

evolutionary games into population dynamics. We assume a territorial

species, where individuals produce a strategy-specific number of off-

spring, which then disperse. After redistribution, each territory may

attract a varying number of individuals of different strategies. However,

before reproduction, the individuals queuing for a territory play a game

among themselves. The strategy getting the highest payoff will win and

reproduce. With the Rock–Scissors–Paper game we are able to show,

using these rules, that the deterministic cyclic fluctuation of the strategy

frequencies turns out to be fluctuations matching the 1/f power law.
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12 . Evolutionary population
dynamics

The interface between the evolution of life history traits and population

dynamics in temporally and spatially variable environments is the topic

of this chapter. Thus, the frame for the life history processes is set by

spatial and temporal fluctuations in population density. Here, we will

focus primarily on modes of reproduction and we are especially inter-

ested in whether alternative reproductive strategies can co-exist in a popu-

lation. We show that spatially structured populations may allow

co-existence of various life history strategies that do not easily co-exist

in a nonstructured environment. Also, intrinsic and external temporal

fluctuations in the environment tend to enhance polymorphism in certain

traits, e.g., iteroparity versus semelparity and whether monogamy or

polygamy are favored reproductive strategies. In this chapter, we largely

omit genetics, but a short comment on that aspect is found towards

the end.

All life history problems are related to optimizing reproduction. One

central question is how individuals allocate resources to survival and

reproduction, and, for example, how offspring number, size, and sex are

decided. When we put the evolution of life histories and optimizing

behavioral decisions into the context of population dynamics, we will

change our focus from optimizing to evolutionary stability. We may

introduce, say, different reproductive behavioral patterns in our population

models and ask which one of them will be an ESS. Technically, as is the

tradition in the ESS literature, we will assume two or more distinct

phenotypes competing (Maynard Smith 1982; Bulmer 1994). Naturally,

we may also continue posing population ecology questions, and ask,

for example, whether one or another behavioral pattern will stabilize or

destabilize population dynamics (Fryxell and Lundberg 1997). Throughout

this chapter, we are focusing on the role of spatial and temporal hetero-

geneity for the evolution of life history strategies (Levins 1968), and

conversely how the dominance of one strategy over the other may change

the population dynamics.



Wewill begin by considering sexual reproduction, mating systems, and

reproductive allocation during the life span.

Sexual reproduction

Various views exist about how males affect population dynamics. A most

explicit position is that any population has enough potent males to

fertilize all sexually mature females. This idea is implicitly reflected in

the fact that, in standard population renewal models, the presence of sex is

reduced to bookkeeping of female numbers (Chapter 2). The few studies

that explicitly focus on the consequences of sexual reproduction on

population dynamics are referring to dynamics of populations in isolation

(Das Gupta 1972; Schoen 1983; Caswell and Weeks 1986; Dash and

Cressman 1988; Doebeli and Koella 1994; Johnson 1994; Castillo-

Chavez and Huang 1995; Ruxton 1995b; Doebeli 1996, 1997;

Lindström and Kokko 1998). These authors have come to differing

conclusions on the significance of sex in population dynamics: sex has

no effect on population dynamics (Castillo-Chavez and Huang 1995), sex

stabilizes the dynamics (Doebeli and Koella 1994; Ruxton 1995b;

Doebeli 1996), or sex does not necessarily stabilize the dynamics

(Lindström and Kokko 1998). One obvious reason for these conflicting

views is the use of various approaches in different studies. Reduced

propensity to complex dynamics has been observed in two-sex models

with mixing of different genotypes (Doebeli and Koella 1994; Ruxton

1995b; Doebeli 1996). Polygyny and demographic sex differences

become important if the role of males in reproduction and density

dependence is explicitly considered (Lindström and Kokko 1998).

There is, however, one unifying aspect in the research on the con-

sequences of sexual reproduction on population dynamics: the focus has

been on dynamics of isolated populations. This contradicts other aspects

of current research on population dynamics where the focus is on tem-

poral behavior of populations coupled by redistributing individuals.

In many species females and males differ in their dispersal ability and

distances traveled (Cockburn et al. 1985;Matter 1996; Alonso et al. 1998).

In addition, data exist to indicate that females andmales may differ in their

demography. Especially in polygynous, sexually sized dimorphic species

males often suffer higher mortality risk than females (Clinton and

LeBoeuf 1993; Anholt 1997; Jorgenson et al. 1997) while in monoga-

mous species sex differences are often less dramatic and more variable

(Berger and Cunningham 1995; Cooch et al. 1996; Gaillard et al. 1997).
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There is also an often forgotten ecological aspect to the very existence of

sexual reproduction. Sexual reproduction prevails despite the famous

twofold cost of it compared to asexual reproduction. Doncaster et al.

(2000) have shown that there are critical population dynamical circum-

stances that may or may not make sexual reproduction more or less likely,

regardless of the genetic mechanisms promoting it. Thus, sexual repro-

duction not only affects the dynamics of populations – the dynamics of

populations may affect the mode of reproduction.

Sex in space

The question we address here is whether spatial dynamics affect the

dynamics of two-sex populations. In order to do this we will use a

modification of the delayed Ricker model (Lindström and Kokko

1998) but we shall assume a large number of subpopulations that are

coupled by dispersal (Ranta et al. 1999d). The mating system is either

monogamy or polygamy. In our analyses, there are sex-correlated differ-

ences in dispersal rate and vulnerability to density dependence. The

structure of the model is given in Box 12.1

Box 12.1 . A spatial model of sexual reproduction

To track temporal changes in two-sex population dynamics in a spatial

setting we write

~NF;iðtÞ ¼ ð1� mFÞNF;iðtÞ þ mF
�NFðtÞ

~NM;iðtÞ ¼ ð1� mMÞNM;iðtÞ þ mM
�NMðtÞ

and

N�;iðt þ 1Þ ¼ f� ~NF;iðtÞ; ~NM;iðtÞ
� �

:

Here NF,i(t) is the number of female and NM,i(t) the number of male

individuals in the ith subpopulation at time t. The symbol * refers to

either females or males. A given sex-specific proportion m* of indivi-

duals leaves the natal population, which also receives immigrants from

the other populations in the system, �N�ðtÞ is the mean density of

females or males taken over all populations at time t, and ~N� is the

population size after dispersal which is spatially implicit. The depen-

dence of the number of births B on population size and the sex ratio is

taken from the harmonic mean birth function (Caswell and Weeks

1986; Caswell 2001), which is modified to incorporate polygyny
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Before we proceed, we set out a reference and explore the consequences

of sex on population fluctuations in an isolated population. For that pur-

pose, we used the model of Lindström and Kokko (1998; which is

identical to the one given in Box 12.1, with single population). In terms

of population variability (illustrated as bifurcation diagrams: fig. 12.1),

polygamy yields far more complex population fluctuations than mono-

gamy. Increasing the harem size in polygynous populations enhances

the difference. The difference between the two breeding strategies also

greatly affects the emergent sex ratio dynamics. However, to achieve this,

one has to assume differential density dependence for the two sexes (details

in Ranta et al. 1999d). In our particular example, we assume that males

suffer more from density than females (fig. 12.1). Extending the system into

space (more than one population; Box. 12.1) reveals an interesting feature.

In monogamous populations, population fluctuations and sex ratio

changes are much tamer (fig. 12.2(A),(B)) when compared to the single-

population system. With a polygamous mating system, one can also

BðNF;i;NM;iÞ ¼
2lNF;iNM;i

NF;ih�1 þNM;i
:

The total number of offspring per female is l (here from 1 to 40).

When h¼ 1 we have monogyny, while h> 1 refers to polygyny. The

number 2 in the denominator is simply due to the harmonic mean. For

the population renewal function f* we shall use

NF;iðt þ 1Þ ¼ 0:5B ~NF;iðtÞ; ~NM;iðtÞ
� �

exp ��F ~NF;iðtÞ þ ~NM;iðtÞ
� �� �

;

NM;iðt þ 1Þ ¼ 0:5B ~NF;iðtÞ; ~NM;iðtÞ
� �

exp ��M ~NF;iðtÞ þ ~NM;iðtÞ
� �� �

:

The parameter �* is for sex-specific density-dependent responses. The

simulations were done with 100 populations. They were initiated for

female numbers drawn from uniformly distributed random numbers

from the interval (0.5, 2). Initial male numbers per population were

set to NM,i¼NF,iþ "i, where "¼ uniform random numbers from

the interval (�0.05, 0.05). Here we define sex ratio as females/

(femalesþmales). The data to be displayed were sampled by randomly

selecting one population from the 100 as the focal one. For the focal

population, initial values were held constant for all values of l. We let

the system run for 1000 generations and displayed the next 100 gen-

erations in the bifurcation graphs.
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conclude (fig. 12.2(C),(D)) that details in population and sex ratio

fluctuations will change according to the spatial extension. However, one

can hardly conclude that spatial linkage will stabilize population dynamics.

These findings (Ranta et al. 1999d) suggest that sexual reproduction

may be a more important determinant of the local dynamics than dis-

persal. An interesting result is the difference between monogamous and

polygamous mating systems. A likely explanation is the variation in the

population sex ratio induced by dispersal and the corresponding conse-

quences of sex ratio variation on the local population growth rate. If the

number of births occurring in the population at a given time is given by

the harmonic mean birth function, the optimal sex ratio for population

growth is given byXF ¼ XM

ffiffiffi
h

p
, whereXF andXM refer to the number of

females and males, and h is the average harem size (Caswell and Weeks

1986). In monogamy, the population growth peaks at 50:50 sex ratio

(see also Lindström and Kokko 1998 for a discussion of the interpretation

of parameter values that relate to monogamy and polygamy). However,
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Fig. 12.1. Bifurcation diagrams of the monogamy–polygamy model (Box 12.1) of

explicit sexual reproduction in an isolated population. Left-hand panels display

population size variation while right-hand panels give sex ratio dynamics.

Monogamous and polygamous breeding systems are treated separately (throughout

�M¼ 1.2�F, in polygamy h¼ 3).
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in a polygamous system the number of females present becomes relatively

more important than the number ofmales for population growth. Therefore,

increased male mortality or deviations from a 50:50 sex ratio influence the

population growth rate less than in a monogamous mating system.

Monogamy or polygyny?

The rich variety of mating systems in nature is striking. It is also a great

challenge for evolutionary explanations (Clutton-Brock 1991; Davies

1991; Kokko et al. 2002). For example, in birds, up to 90% of all species

have (social) monogamy as the predominant mating system (Lack 1968).

This observation alone is enough to raise our interest in the evolution of

polygyny as a mating system (Ranta and Kaitala 1999). Polygyny is used

here as a term for a mating systemwhere onemale canmonopolize several

females. We are not seeking the ultimate fitness benefits of polygyny or
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Fig. 12.2. Bifurcation diagrams for dispersal-coupled populations with explicit sexual

reproduction (eq. 12.1) with monogamy (A), (B) and polygamy (C), (D) as the

breeding system. Population size variation (A), (C) and sex ratio variation (B), (D) are

displayed against net offspring number l. Sex-specific dispersal rates are: mF¼ 0.05,

mM¼ 0.2 and density-dependency values: �M¼ 1.2�F, in polygamy h¼ 3 (for a

more detailed analysis see Ranta et al. 1999d).
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monogamy (Clutton-Brock 1991; Davies 1991). Rather, we shall exam-

ine whether a rare polygynous breeding strategy can invade a purely

monogamous population. The objective is to analyze conditions under

which a mutant strategy can invade, i.e., whether one or both of the

strategies is an ESS, and under what conditions monogamy and polygyny

can co-exist. In our study, the two strategies are treated as pure strategies.

The invasion analysis outlined in Box 12.2 will help us answer these

questions.

Box 12.2 . Evolutionary invasion analysis

Consider a population dynamics model where the dynamics are

affected by some life history or behavioral trait. Let the trait be denoted

as  . Now, let the population dynamics be described as

Nðt þ 1Þ ¼ F NðtÞ;  ½ �;
where N denotes the vector of population densities of the common

(resident) type. Let the rare mutant type be denoted as Ñ and the

corresponding single-type dynamics as

~Nðt þ 1Þ ¼ F ~NðtÞ; ~ 
� �

:

The joint competition dynamics can be described as

Nðt þ 1Þ ¼ F NðtÞ; ~NðtÞ;  
� �

~Nðt þ 1Þ ¼ F NðtÞ; ~NðtÞ; ~ 
� �

:

Usually, the competition is assumed to be additive in population size,

within age classes or within a population component, such as sex.

Now, when studying the invasion dynamics, we assume that the

common type has reached its typical attractor. Thus, in the simula-

tions, we let the common type renew alone for a few hundred to

several thousands of generations to remove the initial transient. When

the dynamics of the common type are settled to its attractor we

introduce a rare type into the system, initiating it with a small number.

We let these two types compete for a certain period, and then we score

the outcome. We have three options. First, the invasion does not

succeed, and the rare type becomes extinct. Then, the common type

is resistant to the invasion of this particular rare type. Second, the

invasion succeeds, and the two types will co-exist. And, third, the

invasion succeeds, and the rare type replaces the common type. These

outcomes can be scored by the use of bifurcation diagrams.
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The harmonic birth function (Box 12.1) provides a way to incorporate

female F and maleM roles into population dynamics. In that function, the

parameter h characterizes the mating system by indicating the number of

fertile females a single male is capable of monopolizing. If h¼ 1 the

population is monogamous and if h> 1 it is polygamous. The behavior

of the birth function is explored under very simple settings (fig. 12.3). It is

apparent that over a wide range of sex ratios, the polygynous mating

strategy will beat monogamy, raising the question as to why there are

monogamous species in nature at all. In an attempt to answer that

An alternative for evaluating the invasion success is to calculate the

invasion exponent (Metz et al. 1992). It gives an estimate of the growth

rate of the rare type when the densities of the common type fluctuate

within its attractor. Thus, this method is based on linearizing the

population dynamics of the rare type at ð �N ; 0Þ where �N denotes the

distribution of the population sizes of the attractor of the common

type. If the (average) growth rate of the rare type exceeds 1 then

invasion is considered to be successful.We prefer to use the bifurcation

approach in this book, as it also gives information about the possible

co-existence of different types.
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Fig. 12.3. The number of offspring per female after the harmonic birth function

(Box 12.1) graphed against the sex ratio in a population of 20 individuals for

monogamous and polygynous breeding strategies (h is the number of fertile females a

male can monopolize, l¼ 5). For the numerical exercise we have selected 20 as the

population size, l¼ 5, and varied h frommonogamy (h¼ 1) tomodest polygyny (h¼ 2)

and to a relatively high harem size (h¼ 10). Modified from Ranta and Kaitala (1999).
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question, we have to modify the last equation in Box 12.1 such that the

invasion analysis can be undertaken. In practice, we shall set either

monogamy or polygyny as the resident (common) strategy and examine

under what conditions the alternative rare strategy can invade the popu-

lation. The dynamics of the system, including dispersal, then become

(Ranta and Kaitala 1999)

Nðt þ 1Þ�;m ¼ 0:5� BðNm;F;Nm;MÞexp ���;m �NðtÞ�;m þ �NðtÞ�;p
h in o

Nðt þ 1Þ�;p ¼ 0:5� BðNp;F;Np;MÞexp ���;p �NðtÞ�;m þ �NðtÞ�;p
h in o

:

(12:1)

Here, the subscripts m and p refer to monogamy and polygyny, respec-

tively. The symbol * refers to either female or male, hence in eq. 12.1, we

actually have two equations for females and two for males. The first

summation in the parentheses is over monogamous females and males,

while the second summation is over polygynous females and males.

Individuals of the two strategies are symmetric competitors.

The invasion analysis revealed the following. Everything else being

equal, i.e., the two strategies differ in the number ofmatings only, polygyny

is a superior strategy. It can always invade and exclude a monogamous

resident population. A monogamous strategy cannot, however, invade a

polygynous one. Thus, polygyny is an ESS. These conclusions hold both

for nonstructured and spatially structured populations. The existence of

monogamy hence seems to require that there is a cost to polygyny. The

costs of polygyny can be due to reduced fecundity, lp< lm, stronger
density dependence, �*,p>�*,m, or higher dispersal costs, d*,p< d*,m.

If there is no spatial structure, invasion by polygynous (/monogamous)

breeders into a population of monogamous (/polygynous) breeders is

successful when lp is sufficiently smaller than lm (Ranta and Kaitala

1999). For a few polygyny levels (h¼ 2, 5, and 10) we sought for lp
values to make both invasion and co-existence possible for the two

strategies. Co-existence is possible by reducing lp relative to lm; the
reduction has to be greater the larger the number of females a male can

monopolize (fig. 12.4). Successful co-existence is possible also when the

density dependence is stronger in the polygynous strategy than in mono-

gamy. Long-term co-existence is possible only in the range of

1.17<�M,p � 1.2 (fig. 12.4(A),(a)). Outside this range, monogamy

and polygyny are exclusively ESSs (fig. 12.4(B),(b)). The border is strict and

the value of l of demarcation depends on the value of �M,p (or of �F,p and
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(b) Monogamy (c) Polygamy, h = 5
µ M,p = 1.4
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(B) Polygamy, h = 2
µ M,p = 1.25

(C) Monogamy

Offspring number

Nonstructured population

Fig. 12.4. Bifurcation graphs of resident (top row) and intruder (bottom row)

reproductive strategies in a nonstructured population. The data are taken after 10 000

generations had elapsed since the introduction of the invading strategy. Relevant

parameters are given in the different panels. The panels are paired so that (A) and (a),

(B) and (b), (C) and (c) are from the same simulations. The dots in the panels indicate

population size with each given offspring number, l. For example, in (a) the

dynamics are stable up to l¼ 12, two-point periodic from then on up to l¼ 20, from

this point onward the period number increases until complex or chaotic dynamics are

achieved from l> 25. In the region of lwhere population sizes are graphed for only
one strategy, this strategy is the ESS (e.g., in panel pairs (A) and (a) polygyny is an ESS

with l< 35). When population sizes are indicated for both reproductive strategies,

long-term co-existence is possible (e.g., in panel pairs (A) and (a) the range of

coexistence is 35 � l � 43). The resident strategy is left to establish itself for 10 000

generations. Then a rare (1� 10�8) mutant of the other strategy attempts to invade

the population. The success of invasion is checked after 10 000 time steps of the joint

dynamics, eq. 12.1, have passed. A sample of the next 100 steps is taken for this

analysis. For a more detailed account, see Ranta and Kaitala (1999).
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�M,p if they both deviate from 1.0). The strategy-specific bifurcation

graphs after the invasion are symmetric, i.e., independent of which

strategy was resident or mutant. The invasion of the intruding strategy

is not very sensitive to the polygyny parameter h (fig. 12.4(c)) the

parameter of relevance is �*,p. Also, polygyny can invade a resident

monogamous population, but their stable co-existence is in a very limited

range of l at the region of chaotic population dynamics, i.e., when there is

strong temporal heterogeneity.

In spatially structured populations, invasion of polygyny into a mono-

gamous population is possible. Also here the invasion system is symmetric.

In the spatially structured population, differences in the density-dependent

parameter are no longer necessary, provided the two strategies differ in

their dispersal rates, dm> dp. However, the difference between the strat-

egy-specific dispersal rates should be substantial (fig. 12.5; the difference in

dispersal rates can be reduced if simultaneously also �*,p>�*,m). Polygyny

is the ESS breeding strategy for low values of l (the number of offspring

produced). Long-term co-existence of monogamy and polygyny is possible

only in the chaotic range of population dynamics, again indicating that

temporal heterogeneity enhances co-existence.

The results of the above analysis can be summarized as follows (Ranta

and Kaitala 1999). Polygyny is an ESS breeding system as long as it imposes

no costs. It can overcome monogamy over a wide range of offspring

produced per female. This suggests that the polygyny superiority is due

to the risk of females remaining unmated, this risk becoming smaller when

the parameter h increases. Likewise, the polygyny superiority assumes that

monogamous systems suffer from difficulties of finding mates. Hence,

Lindström and Kokko’s (1998) suggestion that h> 1 might be appropriate

for monogamy, but h� 1 for polygyny. Co-existence of monogamy and

polygyny as pure strategies requires a cost of polygyny. One such cost is

reduced offspring number lp. Alternatively, density dependence is stronger
in the polygynous strategy (�*,p>�*,m). This yields, however, a very

narrow range of l* and �*,p, where the long-term co-existence is possible.

The third way to stable co-existence is to assume that both monogamous

and polygynous breeders live in a spatially structured environment.Making

the dispersal rate of polygynous breeders substantially lower than that of

monogamous ones enables co-existence. There are few empirical studies of

the potential costs of polygyny. A study of Spanish house sparrows (Passer

domesticus) found, however, that polygynous males raised 30% fewer nest-

lings than monogamous males (Veiga 1990). In a Swedish tree sparrow

(P. montanus) population, monogamous pairs raised on average 4.7
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fledglings, whereas polygynous pairs only raised 1.0 fledglings (Pekka

Rintamäki, pers. com.). Kvarnemo et al. (2000) could also show that in

an Australian seahorse (Hippocampus subelongatus), the polygynous male’s

inter-brood interval was about one-third longer than that of monogamous

males. Thus, it appears that in these species polygynous males pay a fitness

cost. It remains to be seen whether there is any evidence for the two other

costs: stronger sensitivity to density dependence or poorer dispersal.

Sex ratio dynamics

An increasing amount of evidence suggests that animals are capable of

adjusting their progeny sex ratio in an adaptive fashion at the family level
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(a) Polygamy, h = 2 (b) Monogamy
mM,m = 0.3

..
...

.....
...

......................
...

.....
..
.
...

......

.

.
............

...
.....

...
.......................

...
.....

..
.
...

......
.

.
............

...
.....

..
.
......................

...
.....

..
.
...

......
.

.
............

...
.....

..
........................

...
.....

..
..
....

....
.

.
............

...
.....

..
.......................

...
.....

..
...

....
...

.

.
............

...
.....

..
........................

...
.....

..
...

....
...

.

.
.
...........

...
.....

..
.......................

...
.....

..
...

....
...

.

.
............

...
.....

..
........................

...
.....

..
...

....
...

.

.
.
...........

...
.....

..
........................

...
.....

..
...

....
...

.

.
.
...........

...
.....

..
........................

...
.....

..
...

....
...

.

.
.
...........

...
.....

..
........................

...
.....

..
...

....
...

.

.

.
...........

...
.....

..
........................

...
.....

..
...

....
....

.
.
...........

...
.....

..
........................

...
.....

..
...

....
....

.

.
...........

...
.....

..
........................

...
.....

..
...

....
....

.

.
...........

...
.....

..
........................

...
.....

..
...

....
....

.
.
...........

...
.....

..
........................

...
.....

..
...

....
....

.

.

.
..........

...
.....

..
.......................

...
.....

..
...

....
....

.
.
.
..........

...
.....

..
........................

...
.....

..
...

....
.....

.

.
..........

...
.....

..
........................

...
.....

..
...

....
....

.
.
.
..........

...
.....

..
........................

...
.....

..
...

....
.....

.

.
..........

...
.....

..
........................

...
.....

..
...

....
....

.
.
.
..........

...
.....

..
...........

.
............

...
.....

..
...

....
.....

.

.
.
.........

...
.....

..
........................

...
.....

..
...

....
.....

.
.
..........

...
.....

..
........................

...
.....

..
...

....
.....

.

.
.
.........

...
.....

..
.......................

...
.....

..
...

....
....

.
.
.
..........

...
.....

..
........................

...
.....

..
...

....
......

.

.
.........

...
.....

..
........................

...
.....

..
...

....
....

..
.
.
.........

...
.....

..
...........

.............
...

.....
..
...

....
......

.

.
.........

...
.....

..
........................

...
.....

..
...

....
.....

.
.
.
.........

...
.....

..
............

............
...

.....
..
...

....
....

.
.

.

.
.........

...
.....

..
........................

...
.....

..
...

....
....

..
.
.
.........

...
.....

..
...........

.............
...

.....
..
...

....
....

..
.

.

.........
...

.....
..
........................

...
.....

..
...

....
....

..
.
.
.........

...
.....

..
...........

.............
...

.....
..
...

....
....

.
.
.

.

.........
...

.....
..
........................

...
.....

..
...

....
....

..
.
.
.........

...
.....

..
...........

.
............

...
.....

..
...

....
.....

.
.

.

.........
...

.....
..
........................

...
.....

..
...

....
....

.

.
.
.
.
........

...
.....

..
............

...
.......

0 10 20 30 40 50

............
....

..
.
.
......

.
... . .

..........
. ... . ..

............
...

.
..
.
.
.....

.
.... . .

..........
.
.

... . ..
................

...
.
......

.
... . .

..........
.
.

... . ..
.............

.....
.
.
.....

.
.... . .

.........
.
.

... . ..
...............

..
.
.
......

.
... . .

.........
.
.

... . ..
............

.....
.
.
.....

.
.... . .

..........
.

... . ..
...............

..
.
.
......

.
... . .

..........
.

... . ..
............

.....
.
.
..
.
..
.

.... . .
..........

. ... . ..
..............

.
.
.
.
......

.
... . .

..........
. ... . ..

...........
.....

.
.
..
...

.
.... . .

..........
. ... . ..

..............
.
..
.
......

.
... . .

..........
. ... . ..

...........
.....

.
.
.....

.
.... . .

..........
. ... . ..

..............
..
.
.
......

.
... . .

.........
.
.

... . ..
...........

.....
.
.
.....

.
.... . .

.........
.

.
... . ..

..............
..
.
.
......

.
... . .

.........
.
.

... . ..
...........

.....
.
.
.....

.
.... . .

..........
.

... . ..
..............

...
.
......

.
... . .

..........
. ... . ..

...........
.....

.
.
.....

.
.... . .

..........
. ... . ..

..............
..
.
.
......

.
... . .

..........
.
.

... . ..
..........

.....
.
.
.....

.
.... . .

..........
. ... . ..

.............
..
.
.
......

.
... . .

..........
.
.

... . ..
..........

..
.
..
.
.
.....

.
.... . .

..........
. ... . ..

.............
..
.
.
......

.
... . .

..........
.
.

... . ..
...........

....
.
.
.....

.
.... . .

..........
.
.

... . ..
.............

.
.
.
.
......

.
... . .

.........
.
.

... . ..
...........

....
.
.
.. ..

.
.... . .

.........
.
.

... . ..
.............

.
..
.
..
.
...

.
... . .

..........
. ... . ..

...........
....

.
.
..
.
..
.

.... . .
..........

. ... . ..
.............

..
.
.
..
.
...

.
... . .

..........
.
.

... . ..
..........

....
.
.
..
.
..
.

.... . .
..........

. ... . ..
............

..
.
.
..

.
...

.
... . .

..........
.
.

... . ..
..........

....
.
.
..
...

.
.... . .

..........
. ... . ..

............
...

.
..
....

.
... . .

...........
.

... . ..
...........

.
..
.
.
..
.
..
.

.... . .
..........

.
.

... . ..
............

..
.
.
.. ...

.
... . .

..........
.

... . ..
...........

...
.
.
.....

.
.... . .

.........
.
.

... . ..
............

.
.
.
.
......

.
... . .

..........
. ... . ..

...........
...

.
.
.. ..

.
.... .

.
.

..
.

. .

.

. .
.

..
.

.
.
.

.

.. .

.
.

. ..
.

. .

.
.

.
.

.

.
.

.

.
.

..
.

.. .
.

.

.

..
.

.
.
.

.

.

.

.

.
.

. .

.
.

.

.
.

.

.

. .

.
..

.

.

.

. .

.
.

.

.

. ...

.

.
.

.

.

..

.

. .
.

.
.
.
. .

.
.

.

.

.

..
..

.

.

.
.

. ..

...

.

.

.
.

.
.

.
.

.

..

.

. .

.
.

. .

.

.

.

. .
.

.

.

.
.

.

.

.

. ..
.

. . ..
. .

..

.

.

.
. .

.

.

.

.
.

. .
.

..

.

.

.
.

.

.

... .

.
.

.
. .

. ..
.
.

.

.
.

..
. .

.
. .

.

.

.

.

.
. ..

.
. .

.

.

.

.
. .

.

.

.

. .

.
.

.

.

. . .

.

..

.
.

.
.

.

. .

.

. .

.

. .

.

.

..

. .

.
.

..

.
. . . .

. .

.
.

..

.
.

. .

.

.

.
.
.

.

..

. .

.

.

.

..
.
.

.
. .

.
.

.

.

. .
.

.
.

.. .
.

.
.

.

...

.
.

.

.
.

..

.

.

.

.

. . .

.
.

.

.

..

.

.
.

.
.

.

.

.

.

.. .

.
.

.
. .

.
.

.
..

.

.
.

..
.
.

.
.

.
..

. .
.

. .

.

.

.

.

.

.
.

.
.

..

..

.

.

.

..

.

.
.

. .

. .

..

.

.

.

.

.

.
.

.

4

8

.
.

. ..
.

.

.
..
...

.

..
.

......

.

.
.

. .. .
.
..
..
.
.

..

.
......

.

.

.
.

. ..

.
.
..
...

.
..

.

......

. .

.
.

. .. .
.
..
..
.
.

..

.
......

. .

.
.

. ..
..

..
...

.

..
.

......
..
.

.

.
.

. ..
..

..
..
.
.

..

.
......

.

.
.

.

.
.

. ..
. ..

..
...

.
..

.

......

.

.
.

. ..

.
.

.

.
..
..
.
.

..

.
...... ..

.

. ..
.

.
.
..
...

.

..
.

......

.

..

.

.
.

. ..

.

.
..
..
.
.

..

.
......

.

..
.

. ..

.

.
..
...

.
..

.

......

.

.

.

.

.
.
.

. ..

.
.
..
..
.
.

..

.
......

.
..

.

. .. .

.

.

.

.

.
..
...

.

..
.

...... . . ..
.

. ..

.

.

.
..
..
.
.

..

.
......

.

..
.

. ..

.

.

..
..
...

.
..

.

......
.
..

.

. ..
.
.

.
..
..
.
.

..

.
.......

.

. ..

.

.

.
..
...

.

..
.

......
..

.

. ..

. .

.
..
..
.
.

..

.
......

. .

.
.

. ..

.

.

.
.
..
...

.
..

.

...... . ..
.

. ..
.

.
.
..
..
.
.

..

.
......

.
.

.
.

. ..

.

.
..
...

.

..
.

......

.
.
.

. ..
.

.

.

..
..
..
.
.

..

.
.......

.

. ..
.
..
...

.
..

.

......

.

.
.

. ..
.

.
.
..
..
.
.

..

.
.......

.

. ..

.
.

.

.
.
..
...

.

..
.

.......
.

. ..

. .
..

..
..
.
.

..

.
......

.

.

.
.

. ..

.

..
..
...

.
..

.

......

.

.
.

. .. . .

.

..
..
..
.
.

..

.
.......

.

. ..

.

.

.

.

.
..
...

.

..
.

......

.

.

.
.

. ..
.

.

.
.
..
..
.
.

..

.
......

.

.
.

. ..

.

. .

.
..
...

.
..

.

......

.

.
.

. ..
.

..
..
..
.
.

..

.
......

.

.
.

. ..
. ..

..
...

.

..
.

......
. .

.
.

. ..

.

.

.
..
..
.
.

..

.
......

.

.
.

. ..
.

...
..
...

.
..

.

......

.

.
.

. ..

..

.
..
..
.
.

..

.
......

.

.
.

. .. .

..
.
..
...

.

..
.

...... ..
.

. .. .

. .
..

. ..

.

....

..
.

.

...
.
.

.

.
.
.
. .

.

.
..

. ..

.
..
.

.
.

.

.

...
..
.

.

... .
.

.
..

. ..

..
..

..

.

.

...
.
.

.

.
.
.
. .

.

.
..

. ..

.
.
..
..

.

.

.....
.

.

... .
.

.
..

. ..

..
..

..
.

.

...
.
.

.

.
.
.
. .

.

.
..

. ..

.

.
..

..

.

.

..
...

.

.

... .
.

.
..

. ..

.
..
.

..

.

.

..
.

.
.

.

.
.
.
. .

.

.
..

. ..

.

.
..
.
.

.

.

..
.

..
.

.

... .
.

.
..

. ..

.
.
..

..
.

.

..

.
.
.

.

.
.
.
. .

.

.
..

. ..

.

.
..

.
.
.

.

..
.
..
.

.

... .
.

.
..

. ..

.
.
..

..
.

.

..
..
.

.

.
.
.
. .

.

.
..

. ..

.

.
.
.
..

.

.

...
..
.

.

... .
.

.
..

. ..

.
..

..

.

.

..
..
.

.

.
.
.
. .

.

.
..

. ..

.
.
.
..

.

.

...
..
.

.

... .
.

.
..

. ..

.
..

..
.

.

...
.
.

.

.
.
.
. .

.

.
..

. ..

.

.
.
..
.

.

.....
.

.

... .
.

.
..

. ..

.
.
.

..
.

.

...
.
.

.

.
.
.
. .

.

.
..

. ..

.

.
.
..

.

.

...
..
.

.

... .
.

.
..

. ..

.
.

..

.

.

...
.
.

.

.
.
.
. .

.

.
..

. ..

.

.
.
..

.

.

.....
.

.

... .
.

.
..

. ..

.
.

..
.

.

...
.
.

.

.
.
.
. .

.

.
..

. ..

.

.
.
.
.

.

.

..
...

.

.

... .
.

.
..

. ..

.
.

.
.

.

.

...
.
.

.

.
.
.
. .

.

.
..

. ..

.
...

.

.

.....
.

.

... .
.

.
..

. ..

.
.

..
.

.

..
.

.
.

.

.
.
.
. .

.

.

.
..

. ..

.

.
.
.
.

.

..

.

..
.

.

... .
.

.
..

. ..

.
.

..
.

.

..

.

.
.

.

.
.
.
. .

.

.
..

. ..

.

...

.

.

..

.

..
.

.

... .
.

.
..

. ..

.

..

.

.

..

.
.
.

.

.
.
.
. .

.

.
..

. ..

.

...

.

.

..

.

..
.

.

... .
.

.
..

. ..

.

..
.

.

..

.
.
.

.

.
.
.
. .

.

.
..

. ..

.

..
.
.

.

..

.

..
.

.

... .
.

.
..

. ..

.

..
.

.

..

.

.
.

.

.
.
.
. .

.

.
..

. ..

..
.

.

.

..

.

..
.

.

... .
.

.

.
..

. ..

.

.
.

.

.

...
.
.

.

.
.
.
. .

.

.
..

. ..

.
..

.

.

.....
.

.

... .
.

.
..

. ..

.

..
.

.

..
.

.
.

.

.
.
.
. .

.

.

.
..

. ..

.

(c) Polygamy, h = 5
µ M,p = 1.2,
mM,p = 0.05

(A) Monogamy,
mM,m = 0.3

(B) Polygamy, h = 5 (C) Monogamy
mM,m = 0.1

Spatially structured population

Offspring number

µ M,p = 1,
mM,p = 0.05

µ M,p = 1,
mM,p = 0.05

Fig. 12.5. Bifurcation graphs of resident (top row) and intruder (bottom row)

reproductive strategies in a spatially structured population. See fig. 12.4 for more

explanation.
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in relation to their own circumstances, such as attractiveness, condition or

territory quality (Cassinello and Gomedio 1996; Ellegren et al. 1996;

Svensson and Nilsson 1996; Bereczkei and Dunbar 1997; Komdeur

et al. 1997; Bradbury and Blakey 1998; Kruuk et al. 1999). There are

also data showing that the sex ratio between subsequent years is negatively

correlated (Lummaa et al. 1998; Ranta et al. 2000c; Byholm et al. 2002).

This is expected based on the sex ratio theory (Fisher 1930; Hamilton

1967; Karlin and Lessard 1986). In a population with one sex dominating,

parents producing offspring of the opposite sex will experience a fitness

advantage, as their offspring will gain more mates than the offspring of

those parents not adjusting their offspring sex ratio. After initial over-

production of the previously rare sex, selection will turn to favor parents

producing offspring with an opposite sex ratio. If nothing else is disturb-

ing the system, after repeated iterations – even with a differential cost of

producing either sex – a balanced sex ratio is expected to evolve. Here,

we ask whether it is possible for a mutant strategy to invade a population

producing an ESS sex ratio of 1:1. The mutant strategy is assumed to obey

locally the adaptive sex ratio allocation precisely according to the

Fisherian rule. We are also interested to find out under what conditions

such invasions are most likely to succeed.

Let us remind ourselves here that sex allocation in offspring obeys the

Binomial process with a probability of 0.5. That is, if a pair produces only

one offspring it is either female or male, but offspring in a large population

of such parents will balance close to the 50:50 sex ratio. The results of the

invasion analysis after the sex allocation model (Box 12.3) are rather

straightforward: the parameter space (total number of breeding pairs,

offspring number per pair, or, rather, the number of recruited offspring)

enabling invasion of the mutant capable of locally adapting the sex ratio of

their offspring is rather limited (fig. 12.6(A),(B)). The invasion is possible

with relatively small population sizes and small offspring numbers per

pair. Even within the narrow area of population sizes where invasions are

possible, the success quickly goes down when the number of offspring

produced per breeding pair increases (fig. 12.6(B)). The proportion of the

mutants in the population after a successful establishment with one

offspring per pair averages 43% for nPOP¼ 10; for nPOP¼ 20, it is 29%;

for nPOP¼ 50, it is 15%. The corresponding values are 31%, 18%, and 5%

when the offspring number per breeding pair is two. If the population

consists entirely of the wild type obeying the global 1:1 sex ratio alloca-

tion rule, the frequency distribution of sex ratios within a single run is

symmetrically distributed around 0.5, and there is no relationship
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Box 12.3 . An inclusive-fitness model for sex ratio allocation

Assume a diploid and bigametic population consisting of a number of

breeding pairs or families, nWILD(t). Each season t, every pair i will

produce bWILD(t, i) offspring, and a proportion of these are daughters.

Sex allocation for each breeding pair obeys binomial probability with

the parameters bWILD(t, i) and 0.5. For the number of daughters

fWILD(t, i) and sonsmWILD(t, i) per breeding occasion per family we get

fWILDðt; iÞ ¼ Binomial bWILDðt; iÞ; 0:5½ �
mWILDðt; iÞ ¼ bWILDðt; iÞ � fWILDðt; iÞ:

Let FWILD(t)¼
P

fWILD(t, i) and MWILD(t)¼
P

mWILD(t, i), the sum-

mation being over all nWILD(t) families. For the population sex ratio we

then get sWILD(t)¼FWILD(t)/[FWILD(t)þMWILD(t)].

Can such a population be invaded by a mutant strategy

(nMUTANT¼ 1), which adjusts offspring sex ratio using local informa-

tion? For the intruding mutant family we shall write

fMUTANTðt; iÞ ¼ Binomial bMUTANTðt; iÞ; pðtÞ½ �
mMUTANTðt; iÞ ¼ bMUTANTðt; iÞ � fMUTANTðt; iÞ

[bWILD � bMUTANT, and p(1)¼ 0.5]. The population-wide sex ratio,

calculated over all wild type and mutant families, becomes

sPOPðtÞ ¼
FWILDðtÞ þ FMUTANTðtÞ

FWILDðtÞ þMWILDðtÞ þ FMUTANTðtÞ þMMUTANTðtÞ
:

The parameter p(t) above is p(t)¼ 1 – sPOP(t). Thus, if one sex is under-

represented in the population, the mutant is capable of producing

more of the rare sex in the next generation.

At an invasion by the mutant strategy, the strategy-specific inclusive-

fitness will be defined as the relative number of daughters plus the

number of females inseminated by sons as follows (Bulmer 1994, p. 213)

wWILDðt þ 1Þ ¼ FWILDðtÞ þ
FPOPðtÞMWILDðtÞ

MPOPðtÞ

� 	
=nWILDðtÞ

wMUTANTðt þ 1Þ ¼ FMUTANTðtÞ þ
FPOPðtÞMMUTANTðtÞ

MPOPðtÞ

� 	
=nMUTANTðtÞ:

These are the fitness measures for an average individual of the wild and

mutant type, respectively. Let the number of breeding pairs in the
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between subsequent population sex ratios in time (fig. 12.6(C)).

However, when the mutant is present (in our example ca. 30% the

population) there is clear negative correlation between sex ratios sepa-

rated by one time step (fig. 12.6(D)).

Why then should the success of invasion be highest in small popula-

tions and with small offspring numbers? The answer is simple. In large

populations sex ratio is averaged over a large number of families and the

sex ratio is close to 1:1 (Palmer 2000). With smaller populations, the

stochasticity of the binomial probability process very easily deviates

the sex ratio from the expected 1:1 and the deviation is bigger the smaller

the offspring number is per pair.

population be nPOP(t)¼ nWILD(t)þ nMUTANT(t). In the next genera-

tion the number of breeding pairs formed is in proportion to the fitness

of the wild and mutant type

nWILDðt þ 1Þ ¼ wWILDðtÞnWILD

wWILDðtÞnWILD þ wMUTANTðtÞnMUTANT

nPOPðtÞ

nMUTANTðt þ 1Þ ¼ nPOPðtÞ � nWILDðtÞ:

It is now possible to explore whether a mutant, capable of adjusting

its offspring sex ratio, manages to invade a population obeying the

global 1:1 ESS sex ratio allocation rule. Our points of deviation from

the majority of sex ratio theorizing (reviewed in Karlin and Lessard

1986) is that we are:

* dealing with populations of relatively small size (in our simulations

nPOP ranges from 10 to 200 breeding pairs),
* and with limited litter sizes (b ranges from 1 to 10),
* and that the sex allocation process of the offspring born is governed

by binomial stochasticity.

At the beginning of each simulation round we had nWILD¼ nPOP – 1,

and nMUTANT¼ 1, and the offspring production was decided after the

above equations for 1500 generations. At the end of each run, we

scored the presence of the wild and the mutant type. To classify as a

successful invasion, we accepted those cases where the proportion of

the mutant increased from the initial of one breeding pair. The

simulations were repeated 100 times to get an estimate of the prob-

ability of invasion by the mutant strategy.
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Note that we are not arguing that a mutant strategy could not invade a

large population. For a successful invasion the large population has to be

divided for smaller semi-independent subunits or neighborhoods from

which the information about the prevailing sex ratio is gathered (Ranta

et al. 2000c). Hence, our analysis suggests that if a mutation arises that can

locally adjust the offspring sex ratio in a true Fisherian manner it can easily

establish itself into a relatively small local population. Once established it

can spread to neighboring populations and become established in them,

given that they also are small enough to allow the stochastic deviations

from the 1:1 sex ratio.

Another interesting aspect of this analysis is that although the popula-

tion consists of two different strategies producing 1:1 or variable sex

ratios, the average sex ratio in the population in the long run is, in

statistical terms, 1:1. This occurs because the mutant strategy is continu-

ously working to respond to random changes in the population sex ratio.

This feature is consistent with an increasing amount of empirical evidence

showing that – despite the fact that animals are capable of adjusting their

progeny sex ratio in an adaptive fashion (Cassinello and Gomedino 1996;

Ellegren et al. 1996; Bereczkei and Dunbar 1997; Komdeur et al. 1997;

Lummaa et al. 1998) – the population sex ratio is still usually 1:1. Hence,

there is no apparent conflict with Fisher’s (1930) theory predicting a 1:1

sex ratio and the theories (e.g., Trivers and Williard 1973) predicting

individual sex ratio adjustments. There is, however, a subtle snag with this

reasoning. As pointed out by Frank (1990), the Fisherian theory assumes

random matings in large, panmictic populations, and that both sexes gain

equal fitness returns per unit investment. However, if the fitness returns,

for example, are sex-specific or nonlinear, or if the population is inbred,

then other mechanisms come into play, e.g., local mate competition.

Life histories

Iteroparity versus semelparity

One of the central issues in evolution of life histories is to understand the

fitness trade-off between reproducing only once (semelparity) or repro-

ducing repeated times (iteroparity) during a lifetime. The research on this

topic has been keen since Cole’s (1954) influential treatise (Murphy 1968;

Charnov and Schaffer 1973; Goodman 1974; Stearns 1976, 1992; Horn

1978; Emlen 1984; Bulmer 1985, 1994; Roff 1992; Charlesworth 1994).

Charnov and Schaffer (1973) made progress in addressing the question of
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whether to reproduce once or repeatedly per lifetime by proposing the

following model to account for the temporal dynamics of semelparous,

S, and iteroparous, I, reproducers

NSðt þ 1Þ ¼ PJbSNSðtÞ
NIðt þ 1Þ ¼ ðPJbI þ PAÞNIðtÞ:

(12:2)

HereN* refers to population size in different years (the symbol * refers in

turn to semelparity and iteroparity), and b* is the offspring number.

Juvenile survival is PJ, while PA is the adult survival rate in iteroparous

breeders (for the geometric rate of increase we have lS¼PJbS and

lI¼PJbIþPA). If the populations are to increase at the same geometric

rate, lS¼ lI, one has

bS ¼ bI þ
PA

PJ
: (12:3)

If PJ¼PA, resulting in bS¼ bIþ 1, this is known as Cole’s paradox: ‘‘[for

a semelparous breeder] a clutch of 101 at age 1 would serve the same

purpose as [for an iteroparous breeder] having a clutch of size 100 every

year forever’’ (Charnov and Schaffer 1973, p. 791). That is, by just having

one offspring more, the semelparous breeder would beat iteroparity. Yet,

iteroparity is a widespread strategy. The paradox dissolves when realizing

that, usually, PJ<PA. Bulmer (1985, 1994) pointed out that the

Charnov–Schaffer model, eq. 12.2, ignores density dependence affecting

the dynamics of the populations. We shall here adopt the way Bulmer

(1994) introduced density dependence in the model

P J ¼ pj exp �� bSNSðkÞ þ bINIðtÞ½ �f g: (12:4)

The term pj is themaximum juvenile survival in the absence of competition

from other juveniles. The parameter � is a scaling coefficient affecting the

maximum values of N*. When eq. 12.4 is substituted into eq. 12.2, the

desired effect of density dependence is achieved (eq. 12.4 is one version of

the Ricker equation).

We can now pose two questions: is it possible for iteroparous breeders

to invade a population of semelparous breeders? Is it possible for semel-

parous breeders to invade a population of iteroparous breeders? Answers

will reveal whether one of the two lifetime reproductive strategies is an

ESS. This calls for an invasion analysis (Box 12.2). Bulmer (1985, 1994)

was able to show that an iteroparous breeding strategy – when initially
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rare – will be unable to invade a population of semelparous breeders when

the following inequalities hold (Bulmer 1994)

bS >
bI

1� PA

or
bI

bS
þ PA51: (12:5)

The same inequality gives the answer when a semelparous mutant strategy

is capable of invading a population of iteroparous reproducers. From

eq. 12.5 one can see that the inequality is independent of the juvenile

survival rate, PJ. Bulmer (1994, p. 74, equating semelparity and iteropar-

ity with annual and perennial breeding systems of plants) concludes,

‘‘Thus the annual form is at an unconditional advantage, and we should

expect to find only annual plants under these circumstances. When the

opposite inequality holds, the reverse is true and we should expect to find

only perennials.’’ For the Bulmer’s inequality to hold, the only condition

needed is that eq. 12.2, enhanced with the density-dependent juvenile

mortality, leads to a stable equilibrium population size.

Nonlinear dynamics, iteroparity versus semelparity

The invasion analysis here follows Ranta et al. (2000d). The first step is to

describe the dynamics of populations obeying the two breeding strategies

without the influence of the other. Figure 12.7 shows the stability proper-

ties of a system with semelparous breeders or iteroparous breeders only.

Fig. 12.7. Bifurcation diagrams for semelparous (A) and iteroparous (B) breeding

strategies when alone. The bifurcation parameter is the number of offspring produced

(bS and bI). For both reproductive strategies, population dynamics obey eq. 12.1

where juvenile mortality (PJ) is replaced by eq. 12.4. The other parameter values are:

pj¼ 0.2, PA¼ 0.8, bI¼ vbS with v¼ 0.1�¼ 0.05 (for semelparous breeders the x axis

labels in italics indicate bI).
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The dynamics are first stable (up to bS � 40 after which they turn to

more complex dynamics), while the dynamics for iteroparous breeders

are stable for the entire range of bI used. Invasion of the iteroparous

breeding system is not possible under stable dynamics (when bS< 40),

while invasion of the semelparous breeding system is possible. It is now of

interest to look at the invasion success of a given reproductive strategy

into a well-established resident population with the opposite reproduc-

tive strategy. For these analyses the parameter values were selected so that

the inequality (12.5) holds (i.e., under stable dynamics, invasion by

iteroparous breeders is not possible, while invasion by semelparous bree-

ders is). Examples of the bifurcation graphs of the invasion analysis are

displayed in fig. 12.8.

Successful invasion and long-term persistence by iteroparously breed-

ing individuals is possible in the entire nonlinear (periodic and chaotic)

region of the population dynamics of semelparous breeders examined

here (fig. 12.8(A)). Second, the invaders often display complex popula-

tion dynamics (this is much dependent on the parameter values used).

In addition, the dynamics of the resident semelparous population may

change, even drastically, as comparison of figs. 12.7 and 12.8 indicates.

This is in line with the earlier finding of co-existence in temporally

heterogeneous environments.

With an extensive analysis, Ranta et al. (2000d) could conclude that

under complex (i.e., unstable) population dynamics the parameter range

(offspring numbers, survival rates) for co-existence of iteroparous and

semelparous life histories is much wider than in Bulmer’s (1994) analysis

under stable dynamics.

Space-modulated dynamics, iteroparity versus semelparity

Our argument throughout this book is that spatial extension appears to

give a better understanding of a wide range of ecological and evolutionary

phenomena. This we will demonstrate here when addressing the question

of whether a mutant life history can invade a population with a resident

life history. We are especially interested in the region of stable population

dynamics, i.e., the conditions in which invasion by the rare strategy is

governed by the inequality in eq. 12.5, and when invasion otherwise is

improbable or impossible.

In this system, we shall assume the environment consists of n dispersal-

coupled habitable patches of equal quality (Ranta et al. 2000e). As earlier,

we assume that a constant fraction m* (0�m*� 1) of any given
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Fig. 12.8. Examples of the invasion analysis. For these bifurcation graphs, semelparous

breeders have been the resident reproductive strategy for 500 generations. Then, after

a short randomly selected period, 1� 10�8 iteroparous breeders are introduced.

Semelparous and iteroparous breeders are left to reproduce 600 generations, and their

population sizes are displayed for the final 100 generations against the strategy-specific

offspring numbers, b. The parameter values used are as follows: (A), (B) pj¼ 0.2,

PA¼ 0.8; (C), (D) pj¼ 0.35, PA¼ 0.35; (E), (F) pj¼ 0.8, PA¼ 0.2. Here, always,

v¼ 0.1 (for semelparous breeders, the x axis labels in italics indicate bI). The protocol

of=the invasion analysis (Ranta et al. 2000c) is: first, either the semelparous or the

iteroparous breeding strategy was the resident strategy. The selected values of b*, pj and

PA were initiated withN*(1)¼ 1 and left to renew for 500 generations. Then a period

drawn from uniform random distribution [0, 30] was applied, after which the opposite

reproductive strategy was introduced with a frequency of 1� 10�8. The populations

were left to renew for 600 generations, and the final 100 generations were taken as a

sample of the achieved dynamics to illustrate bifurcation against bS and to score whether

the invasion was successful or not.
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population disperses annually. Thus, the spatially linked dynamics have

the familiar form

N�;iðt þ 1Þ ¼ ð1� m�ÞF½N�;iðtÞ� þ �s;s 6¼iM�;siðtÞ (12:6)

whereN*,i(t) is the population size of semelparous or iteroparous breeders

in patch i at time t. The term M*,si(t) refers to the number of immigrants

arriving in patch i from patch s as a consequence of dispersal after dispersal

kernel I (p. 53). An exhaustive parameter search (m*, c*, pj, PA, bS, and bI)

was done to uncover the possibilities of co-existence of the two strategies

(Ranta et al. 2000d). In their explorations the parameters v, bS, and PA
were selected so that under stable dynamics invasion of the rare strategy is

impossible in spatially nonstructured populations.

The results are clear-cut: invasion of the mutant strategy is possible for

both reproductive strategies being the invaders (fig. 12.9). However,

there are clear differences in the parameter space enabling the invasion.
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Fig. 12.9. Parameter space (juvenile and adult survival rates, pj and PA, respectively),

where invasion by a rare mutant is possible. (A) For the invading semelparous breeders,

values above the lower rim of the gray border indicate parameter combinations calling

for spatially explicit systems; the borderline indicates juvenile and adult survival rates

enabling invasions. The upper rim of the gray border approximates parameter

combinations where the spatially implicit structure allows successful invasion (note that

close to adult survival values the divider zone goes up steeply). In the white area

surrounded by the gray border, both spatially explicit and spatially implicit population

structures enable invasion. (B) Invasion of resident populations of semelparous breeders

are possible above the graph dividing line (close to PA¼ 0.51). Above the demarcation

line, both spatially implicit and explicit systems are possible.
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Perhaps the most pronounced is that, for invading iteroparous breeders,

the spatial structure of the population system can be both implicit and

explicit (fig. 12.9(B)). For invading semelparous breeders, there is a

narrow range of parameters in which invasion is possible in the implicit

spatial structure alone, whereas most of the parameter space (fig. 12.9(A))

also allows invasion in spatially explicit systems.

For demonstration purposes only, we shall redo a few of the simula-

tions reported by Ranta et al. (2000d). These simulations were run to

illustrate some features of the rich behavior of population dynamics

emerging after introducing the two life histories into a spatially variable

environment. This exploration of population dynamics of semelparous

and iteroparous breeders in the invasion-enabling parameter space

(fig. 12.9) reveals a few interesting observations. First, the co-existing

populations assume nonlinear dynamics (fig. 12.10). Second, the non-

linearity emerges after a transient period of stable dynamics ruled by the

established strategy. During the transient phase, the invader population

builds a foothold in terms ofN*. Third, the transient period is sensitive to

many of the parameter values selected, as well as to the spatial configura-

tion in the spatially explicit systems. Fourth, the locally co-existing

populations often fluctuate in opposite phase. In the invasion-allowing

parameter space, the percentage of negative cross correlation coefficients

was 96% for the cases of invading semelparous breeders, and 100% for the

cases of invading iteroparous breeders. This again underscores the fact that

co-existence is promoted by heteorogeneity, whether it is spatial or

temporal (e.g., Fryxell and Lundberg 1997; Ranta et al. 2001). Further

details of the semelpary versus iteropary story are given in Ranta et al.

(2001), Kaitala et al. (2002) and Tesar et al. (2002).

Seed bank in annuals

Plants may also delay their reproduction by allocating a part of their

offspring into a dormant state, known as the seed bank (e.g., Baskin and

Baskin 1998). Delaying reproduction is an apparent maladaptation since

the mean annual number of offspring is reduced. Seed bank gives a

‘‘storage effect’’ (Chesson 1986), which enables the renewal of the banker

morph even after years of complete reproductive failure. Germination

from the seed bank reduces variance in the yearly number of recruits.

Allocation of seeds into bank may thus function as an evolutionary bet-

hedging strategy (Cohen 1966; Bulmer 1984; Silvertown 1988; Rees and

Long 1992; Rees 1994; Baskin and Baskin 1998; Clauss and Venable
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2000; Easterling and Ellner 2000). Environmental unpredictability favors

allocation to the seed bank, especially when the environmental variation

affects the success of seedling establishment (Cohen 1966; Rees 1994).

A notable effect is also that part of the banker morph population is able to

escape the density-dependent effects of competition, which the nonban-

ker morph is unable to do. Allocating seeds into seed bank as a life history

strategy should be evaluated in a competitive situation, where its viability

is determined by its ability to invade (Box 12.2) the population of

conspecific nonbankers. We will do this by following Aikio et al. (2002).

Consider a model (Box 12.4) of an annual plant population where two

morphs of seed dormancy compete against each other. The seeds of the

nonbanker morph germinate during the next growing season, whereas a

fraction of the banker morph’s seeds is allocated to the seed bank to

Box 12.4 . Banker and nonbanker competition in annuals

The population census in the model by Aikio et al. (2002) is at the time

of seed ripening but before the seeds are dispersed. The current year

density of the banker B(t) and nonbankerN(t) populations and the size

of the seed bank, S(t), are projected to the next year as

Bðt þ 1Þ ¼ P½ð1� �Þð1� pÞbBBðtÞ þ �ð1� pÞSðtÞ�
Nðt þ 1Þ ¼ Pð1� pÞbNNðtÞ
Sðt þ 1Þ ¼ ð1� pÞð1� �ÞSðtÞ þ ð1� pÞ�bBBðtÞ:

The numbers of seeds produced by the banker, bB, and nonbanker

morph, bN, are positive constants. Other parameters of the model are

probabilities or proportions (range between 0 and 1): seed mortality in

the seed bank p, seed germination �, and seed allocation to the seed

bank �. The density-dependent probability of seed survival to maturity

P is assumed to obey the following dynamics (Bulmer 1994)

P ¼ p exp �vð1� pÞ bNNðtÞ þ ð1� �ÞbBBðtÞ þ �SðtÞ½ �f g:
Here p is the maximum seedling survival rate to maturity (ranges

between 0 and 1). The parameter v is a scaling coefficient, set to the

value v=0.01. In this model, allocation of seeds into a seed bank is set

in a population dynamics frame.

The system was simulated by initiating the nonbanking morph and

the banking morph populations with i.i.d. random numbers drawn

from uniform distribution between 0 and 1. The system was left
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germinate one or several generations later. Seeds in the soil are subject to

density-independent mortality. Regardless of the morph, population

renewal follows the Ricker model (e.g., Bulmer 1994; Box 12.4), with

the density dependence affecting directly the maturation of seedlings to

adults. Germination from seed bank increases population density and thus

brings an annual extra to the density dependence of seedling mortality.

Therefore, not all of the seeds that survive to spring will produce viable

seedlings to mature. Now, one can ask: when is it beneficial for an annual

plant to allocate a fraction of seeds into the seed bank and when should a

plant produce seeds that germinate without delay? Aikio et al. (2002)

explored conditions that enable either of the morphs to become an ESS,

or allow the co-existence of the two morphs. The outcome is conditional

on the number of seeds produced, seedling survival to seed set, the

fraction of seeds allocated to seed bank, the mortality of the seeds in the

bank, and the proportion of the survivors being able to germinate.

The results of the competitive outcome split the parameter space into

three regions: the banker morphwins (banker is ESS), the nonbankermorph

wins (nonbanker is ESS) or the two morphs co-exist (figs. 12.11–12.13).

All three competitive outcomes may show complex population dynamics.

The banker morph wins if it has a higher seed production than the

nonbanker one, regardless of seedling survival, seed mortality or germi-

nation rate (fig. 12.11). When both morphs have a low seed production

rate, either one of the two morphs wins. Co-existence is possible when

the nonbanker morph has a high seed production and the banker

morph has a low seed production, if seedling survival is sufficiently

high (fig. 12.11(A),(B),(D),(E)). When seedling survival is low, the para-

meter space where the morphs may co-exist is narrow or undetectable

(fig. 12.11(C),(F)). At high levels of seed production, the banker morph

running for 10 000 generation, of which the final 500 were used to

score the long-term average population size for the two strategists. If

the average population density of either of the morphs was<1� 10�4

it was scored to lose in the competition against the other morph.

The stability properties of the system were evaluated from the value

of the Lyapunov exponent (p. 109) l of the system. These were

computed after von Bremen et al. (1997). Positive values of l suggest

that the trajectory of population densities is sensitive to the initial

conditions of simulation, which is an indication of complex popula-

tion dynamics.

Life histories . 325



0

20

40

60

80

0 20 40 60 80 0 20 40 60 80
0

20

40

60

80

0 20 40 60 80
0

20

40

60

80

0 20 40 60 80
0

20

40

60

80

0 20 40 60 80
0

20

40

60

80

0 20 40 60 80
0

20

40

60

80

B
an

ke
r 

se
ed

 p
ro

du
ct

io
n

B
an

ke
r 

se
ed

 p
ro

du
ct

io
n

B
an

ke
r 

se
ed

 p
ro

du
ct

io
n

Nonbanker seed production Nonbanker seed production

(A) γ = 0.5, π = 0.5, p = 0.75

(C) γ = 0.5, π = 0.5, p = 0.25

(E) γ = 0.25, π = 0.5, p = 0.75
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(D) γ = 0.25, π = 0.25, p = 0.75

(F) γ = 0.25, π = 0.25, p = 0.25

Fig. 12.11. The long-term outcome of the competition between banker and

nonbanker morphs under different combinations of morph-specific seed production.

The symbols indicate: &¼ the banker morphs wins (outcompetes the nonbanker),

�¼ the nonbanker morph wins, no symbol¼ the morphs co-exist, gray

background¼ complex population dynamics (indicated by a positive value of the

Lyapunov exponent). Seed allocation rate was �¼ 0.1, and other parameter values

are as given above the corresponding panels. Modified from Aikio et al. (2002).
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(C) σ = 0.1, γ = 0.5, p = 0.25
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(E) γ = 0.5, π = 0.25, p = 0.75 (F) γ = 0.5, π = 0.75, p = 0.75

Fig. 12.12.The long-term outcome of competition between the banker and nonbanker

morphs under different combinations of banker seed production and (A), (B) maximum

seedling survival, (C), (D)¼ seed mortality and (E), (F)¼ allocation to seed bank. The

seed production for the nonbanking morph was bN¼ 80. The different panels indicate

the effects of varying seed survival for the seedling survival (A), (B) and seedling survival

for the seed survival (C), (D) inspections. Modified from Aikio et al. (2002).
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Fig. 12.13.The long-term outcome of competition between the banker and nonbanker

morphs under different combinations of seed mortality and maximum seedling survival

with three banker morph seed production rates. The seed production for the

nonbankingmorphwas bN¼ 80. The different panels indicate the effects of varying seed

production by the banking morph, bB¼ 30, bB¼ 50, and bB¼ 80. Other parameter

values are: �¼ 0.1, �¼ 0.5. Modified from Aikio et al. (2002).
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may win if it has a lower seed production than the nonbanker one. The

parameter space of co-existence is wide when the nonbanker morph’s

seed production and seedling survival are high. The co-existence of the

morphs is only slightly affected by seed mortality and germination rate

(fig. 12.11(A),(B),(D),(E)).

The parameter space where the banker morph wins or the morphs

co-exist increases with seedling survival rate (fig. 12.12 (A)) and decreases

with increasing seed mortality rate (fig. 12.12(B)–(D)). Moderate alloca-

tion to the seed bank and high seed production by the banker morph

benefit the banker morph, while high rates of allocation increase the

possibility of co-existence by the two morphs (fig. 12.12(E)). A high

seed mortality level disables banker morph persistence (fig. 12.12(F)).

When the banker morph has a low seed production it wins only when

seed mortality is low and seedling survival is high (fig. 12.12(A)). Low

seedling survival and high seed mortality disables the persistence of both

morphs (fig. 12.13). When seed production by the banker morph is close

to that of the nonbanker morph, the banker morph wins at a larger

parameter space, and the parameter space for co-existence becomes

narrow (fig. 12.13). Again, neither of the morphs is viable under the

combination of high seed mortality and low seedling survival.

The dynamics of the system were complex when the banker morph

was the winning strategy. In addition, the co-existence of the morphs was

strongly characterized by complex population dynamics. When the non-

banker morph was ESS it showed complex population dynamics on those

parts of the parameter space that are near to the parameter space for the

co-existence of the two morphs. The long-term persistence of the

morphs was increased by their own seed production and lowered by

the seed production of the competing morph. Co-existence of the

morphs was lowered by the banker morph seed production and increased

by the nonbanker seed production. Seedling survival increased the long-

term persistence of both morphs and their co-existence. High allocation

to the seed bank and high seed mortality reduced the banker morph’s

persistence and increased the nonbanker morph’s persistence and the

co-existence of the morphs. Aikio et al. (2002) showed that all parameters

of the model have nonlinear effects on the persistence of the morphs.

Complex population dynamics make the competitive pressure unpre-

dictable for the two competing morphs. Results of the above analysis

clearly tell us that even a simple question in evolutionary population

ecology may yield a complex answer. The unpredictability of the environ-

ment favors allocation of seeds into the seed bank, which works as an
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evolutionary bet-hedging strategy (Cohen 1966; Bulmer 1984; Rees and

Long 1992; Rees 1994; Baskin and Baskin 1998; Clauss and Venable

2000; Easterling and Ellner 2000). Seed bank appears to have a similar

effect on competitive unpredictability as it has on environmental varia-

tion. Complex dynamics in plant population are most likely to be

encountered in populations of annuals (Silvertown and Lovett Doust

1993; Gonzales-Andujar and Hughes 2000). These are also most depen-

dent on the existence of a seed bank, since the lack of one could drive

them to extinction in the event of a single reproductive failure. Unstable

population dynamics may therefore have been closely involved in the

evolution of a seed bank as a life history strategy.

Aikio et al. (2002) found that population dynamics were complex

throughout the parameter space where the seed banking morph was an

ESS. This seems to be opposite to the ‘‘storage effect’’ hypothesis, which

predicts that seed bank stabilizes population dynamics by buffering popu-

lation renewal against fluctuations in reproductive success (Chesson

1986). These results rather suggest that the instability of population

dynamics is a requirement for seed banking to be ESS. Alternatively,

strong environmental stochasticity could open for shifting relative advan-

tages of the two morphs such that co-existence is promoted. Complex

population dynamics do not, however, seem to make the banker morph

a winner, since population dynamics are also complex in most of

the parameter space where banker and nonbanker morphs co-exist.

The complexity of population dynamics cannot be a sole consequence

of the presence of the banker morph either, since the nonbanker

morph may also have complex population dynamics when it is an ESS.

Evolutionary genetics

Throughout this book, we have largely omitted genetics, not because we

regard it as unimportant or irrelevant, but because we have had a strong

focus on population and community dynamics in ‘‘ecological time.’’

Clearly, there is no meaningful distinction between the time scales of

ecological and evolutionary processes; they are inevitably intertwined.

Fully aware of that, we have nevertheless had a somewhat biased

approach. In this, and in some of the preceding chapters, we have,

however, come closer to the genetics domain. Hence, a few words on

evolutionary genetics.

Some of the conclusions we arrive at when analyzing population and

community dynamics also have their counterparts in population genetics.
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Hopefully, the similar results obtained by different approaches, e.g.,

population genetics and game theory (including both density- and

frequency-dependent feedback) indicate that we have come closer to

understanding the systems we study. Population genetics has been

much concerned about the role of spatial heterogeneity for the evolution

and maintenance of (co-existing alternative) adaptations. For example,

the debate on the role of random factors (e.g., genetic drift) versus

deterministic and directional forces (natural selection) originating with

RA Fisher and Sewall Wright (e.g., Fisher 1930; Wright 1932, 1948) is

directly related to the importance of spatial structure for creating the

heterogeneity necessary for evolutionary change and the maintenance

of, e.g., polymorphism. This debate is not settled (e.g., Coyne et al. 1997;

Wade and Goodnight 1998).

The results shown in this chapter suggest that spatial and temporal

variability may be equally important for the maintenance of alternative

strategies. Genetics have that differently. If there is only temporal varia-

bility, it has to be strong and relatively ‘‘blue’’ (as in the chaotic dynamics

promoting co-existence), otherwise alternative genotypes may have dif-

ficulties in coping with one another, as in more stable environments

where one would be the winner (see also, e.g., Felsenstein 1976; Wade

and Kalisz 1990; Svensson and Sinervo 2000 for the role of spatial

heterogeneity).

As we have shown here, the density-dependent feedback is an important

factor for the evolution of alternative life history strategies (cf. Charlesworth

1971; Roughgarden 1971). Recent work by Sinervo and Svensson and

colleagues (Sinervo et al. 2000; Svensson et al. 2001a, 2001b) nicely show

how a combination of frequency- and density-dependent selection may

operate in nature for the maintenance of polymorphism.

The ecology of populations is indeed a rich branch of the scientific tree.

Summary

The process of evolution can be abstracted as the course of strategy

replacement, where ‘‘strategy’’ means a set of traits under selection. The

evolution of life history traits (traits that determine age- (or stage-) specific

survival and fecundity) is an important part of evolutionary population

ecology. Theoretical explorations of life history evolution often conclude

that there is only one optimal solution to a given life history problem and

that the co-existence of two or more strategies is ‘‘impossible.’’ In this

chapter, we show that co-existence is indeed possible, and even likely,
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if we allow for heterogeneous environments, both spatially and tempo-

rally. We show, for example, that in a homogenous world, polygyny is

always a better mating strategy (i.e., the ESS mating strategy) than

monogamy (assuming monogamy to have the cost of finding mates),

unless polygyny carries some costs that monogamy does not. However,

in temporally varying environments (due to intrinsic variability – cycles

or chaos – or environmental stochasticity) polygyny and monogamy

might very well co-exist as alternative mating strategies. The same is

often true for spatially heterogeneous environments. We show that the

same conclusion holds for, e.g., iteroparity versus semelparity and in

plants with or without seed banks. Spatial and temporal heterogeneity

open alternating windows for the respective strategy to bemore successful

relative to the other. That is, at any given moment, the optimal solution

may favor one over the other, but over longer time spans (or larger spatial

scales), both strategies will thrive. We also show in this chapter that the

evolutionary forces shaping life histories may have profound effects on the

dynamics of populations, as well as the reverse: the dynamics of popula-

tions may have consequences for the possible evolutionary avenues.

332 . Evolutionary population dynamics



13 . Epilogue

Twelve short chapters, some of them rather superficial, is, of course, not

much for a book on the ecology of populations. In most chapters, we

have caught glimpses of intriguing and sometimes unexpected population

phenomena; in others, we have been able to reach more definitive and

firm conclusions and somewhat deeper understanding. This book does

not, however, primarily summarize and synthesize; rather, it illustrates a

set of approaches and points of departure for studies and analyses yet to

be done. This book is a manifestation of ecological and evolutionary

significance of dispersal-linkage in spatially structured populations. If the

book serves its purpose as a source of inspiration, we have performedwell.

The power ofmodern computers hasmade it easy to simulate complicated

population processes with various sources of environmental stochasticity,

population structure, and spatial heterogeneity. That is not to say that we

are therefore necessarily closer to a more robust understanding of the

ecology of populations, but it helps. Real understanding can only be

achieved if there is a theory to aid us in obtaining insights. Such a theory

does arguably exist for the temporal structure of population abundance

(Turchin 1999; Berryman and Turchin 2001). We have the data, means

to analyze them, and the theory to interpret the results for single-population

dynamics in uniform space. This is the ‘‘vector’’ approach to population

processes, i.e., a vector [x1, x2, x3, . . . xk] of abundances x from time

step 1 to k is under scrutiny (possibly together with vectors of relevant

environmental variables). By analogy, the analysis is obviously extended

by letting the system take a matrix format by structuring the system

either by stage (of the focal population) or by adding other populations

presumably interacting with the focal one. The latter is a multispecies

community, the former a ‘‘community’’ of conspecifics. Likewise, by

perfect analogy, a third dimension can be added, now representing spatial

locations. This matrix version of population (and community) ecology

hinges on the assumption that the measurable objects can be discretized.

Although this may be an objectionable view of the natural world, it is



nevertheless a very operational one – population and community data

almost invariably come in discrete form. The correspondence between

the theoretical constructs and what is observed is hence straightforward.

As shown inChapters 4 and 5, there are also indications that the identification

of at least spatial location may be largely arbitrary without losing import-

ant information about spatial and temporal dynamics. We believe that the

‘‘matrix’’ view of population and community processes is indeed a fruitful

one because it so transparently merges theory, statistics, and data.

The feedback environment

The study of the distribution and abundance of organisms is still often

regarded as different from the study of evolution. Of course, that is not really

true. It is true that population ecologists often ask ‘‘how-questions’’ and not

‘‘why-questions.’’ For example, the interest may be focused on describing

and characterizing abundance and distribution patterns rather than asking

which evolutionary forces have caused them. This putative dichotomy is

neither valid nor true. As we show in the Introduction, understanding the

(stage-specific) rates of births and deaths is the starting point for all ecology

and evolutionary biology no matter how we want to label the respective

approaches and brands of science. One could argue that there is a slight shift

in focus between the two important biotic components of the feedback

environment of an organism: density- and frequency-dependent processes.

In this book, we have primarily studied the density-dependent feedback,

although with some exceptions, especially in the last two chapters

(Chapters 11 and 12). The feedback environment is becoming a key

concept in ecology and evolutionary biology (e.g., Heino et al. 1997b;

Meszéna and Metz 1999). The concept is not entirely unambiguously

defined. When emphasizing the community level of organization, then

the dimensionality of the feedback environment can be said to be equal to

the number of discernible regulatory factors. In a two-species system

(without population structure) the number of dimensions would be two

(selfþ other species). With a stronger emphasis on genetics, there are

potentially infinitely many dimensions, each one representing every

possible mutant (genotype or strategy). Since we have largely omitted

genetics in this treatise, we have regarded the dimensionality equal to the

number of relevant population stages, and the number of interacting

species (and their relevant stages), and finally other environmental factors

(including abiotic ones) affecting the dynamics (and hence potentially

the feedback structure). The conclusion that this reasoning implies
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‘‘everything affects everything’’ is falsely drawn. A species-rich habitat is

not necessarily more multidimensional than a poor habitat from the point

of view of the organism. The relevant feedback environment only consists

of the factors affecting the rate of change (i.e., fitness) of a population

(which is not necessarily the case if A eats B or vice versa). We refer to

Meszéna and Metz (1999) for rigorous definitions of the dimensionality.

We raise the question of the feedback environment dimensionality for

two reasons; for what we have, and what we have not, done. Throughout

this book,we have shown that environmental variability plays a fundamental

role as a feedback component. Environmental ‘‘noise’’ is therefore an

unfortunate term in this respect. Environmental variability is rather the

unknowns we tend to sweep under the carpet, but may contain crucial

information about components of the environment that we have not

identified (theoretically or empirically). The simple noise term in for

example time series analysis is an illustrative example. Consider the model

RðtÞ ¼ a0 þ a1XðtÞ þ wðtÞ; (13:1)

whereR(t) is the rate of change of the population,X(t) is the natural logarithm

of population density, ai are parameters and w(t) is noise (cf. Chapter 2 and

Box 2.7). The entire feedback environment is encompassed in a1 and the

noise term; although a1 is usually interpreted as the strength of density

dependence, being a metaphor for that feedback environment. The

problem here is that it is impossible to know what aspects of it are captured

by a1 and the noise term. The last term encompasses, as a scalar, the entire

feedback environment except self-regulation by population X.

What we have not done, at least not in any significant depth, is to

consider simultaneously the ecological and evolutionary consequences of

a serious feedback environment analysis. The tools of that trade go under

the name of adaptive dynamics. Although adaptive dynamics are likely to

become one of the most fundamental concepts in evolutionary biology

during the years to come, we have felt that widening the scope of this

book into that realm would simply be too much.

The feedback environment dimensionality problem is related to the

two versions of the visibility problem we have outlined here (Chapter 2).

If the feedback environment is ill-defined or poorly understood, then

model estimation and interpretation can be very problematic (Jonzén et al.

2002a). Royama’s problem (Chapter 2, p. 38) is an illustrative example of

that challenge. The other side of the coin is the correlation between the

environmental variability and population dynamics. As shown in Chapter 2,

such correlations tend to be very risky to interpret, which raises caution
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against using biological time series as ‘‘bio-assays’’ of environmental change

(cf. also Chapter 9, p. 219).

At the core of the feedback problem lie the issues brought up in

Chapter 1 and the whole of Chapter 12. In that chapter, we show that

the static view of life history solutions is restricted and that nonequili-

brium situations are more promising and realistic scenarios for life history

(phenotypic) evolution. We also argue that the trade-offs imposed when

selection acts at whole organisms and whole-organism traits directly

related to fitness must necessarily go beyond and extend the analysis of

evolutionary genetics. This was also succinctly pointed out by Stearns

(2000) in a recent review of the significance of population dynamics in the

study of life history evolution.

Generalizations

Throughout this book, we have attempted generalizations. However, as

indicated at the very beginning, we are aware of the obvious bias we have

had towards animal (especially vertebrate) populations. There is no question

that this is a rather serious bias and we fully realize that there are a number

of traits and life history properties that are unique to this restricted group

of organisms. It is, however, also quite clear that most of the theory and

statistical analysis of populations, i.e., the analytical tools we attempt to

acquire, are indeed general. Chapters 2 and 3 briefly review the major

building blocks of such general analyses of populations, although, for

example, the modal life-style of most plants is not included. Chapter 4 is

rich in examples of spatially synchronous dynamics in birds andmammals,

but the principles and statistical analyses are perfectly general. Chapter 5

deals with more abstract pattern formation and is perhaps the chapter least

related to vertebrate populations. Some of the most convincing examples

of spatial pattern formation and self-organization come from invertebrates

and infectious diseases (Grenfell et al. 2001). The brief exposé of structured

populations in Chapter 6 is not very taxonomically biased, but is restricted

in other ways. Again, we have assumed here that the population state can

be discretized in unambiguous stages (e.g., age) although that may indeed

be a questionable assumption (e.g., Metz et al. 1992; Tuljapurkar and

Caswell 1997). It is likely, for example, that many organisms are better

modeled by continuous time models than the discrete ones we have

restricted ourselves to here. We still believe, however, that the suggested

way of representing and analyzing maternal and cohort effects, as well as

ontogenetic niche shifts has sufficient generality to merit closer attention.
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Although single-population dynamics may be rather accurately dealt

with by a very general approach, the problem expands quickly when

studying communities. In Chapter 8, we made a limited number of

excursions into that rich field, but without, we hope, too much loss of

generality. The major problem in multispecies analyses is to accurately

define the interaction terms. Model communities are relatively easily put

together, but the question is to what extent such rather tightly connected

systems can actually be mapped to real ones.

The generality of our treatment of habitat loss and landscape fragmen-

tation (Chapter 8) remains an open question and must do so until we have

reached a more fundamental agreement on basic definitions and concepts.

The field of landscape ecology has by now an explicit history of several

decades. Yet, the basic notion of, e.g., fragmentation remains open to

debate. In Chapter 9 we become more explicitly applied, hence in a sense

by definition reducing the degree of generality. Themodels reviewed are,

however, primarily aimed at generalizations rather than management

tools. The three last chapters address very fundamental concepts in

evolutionary ecology but are, to the extent that it is possible to find

examples and empirical support, primarily exemplified by a limited set

of organisms. We feel, however, that this drawback is outweighed by the

general aim. This book is neither a comprehensive catalog of animal and

plant population dynamics, nor a handbook for the field biologist. Our

aim has been to highlight a set of population and community ecology

problems that are in need of firmer establishment in the ecological

scientific community, or need to be picked up and developed further

and in more breadth and depth. Hence, although there are examples

found throughout, and although we strongly feel that there is a not fully

used possibility to tie theory and empirical evolutionary ecology closer

together (for example, by recent developments in model selection pro-

cedures; Burnham and Anderson 1998), this book has become ‘‘theore-

tical,’’ i.e., general. Obviously, many of the models used for that theory

building are not ‘‘realistic’’ in the sense that they mimic the details of real

systems. No theory should do that. But we strongly believe that the

combination of broad theoretical generalizations (preferably in analyti-

cally tractable mathematical format) together with numerical explorations

of larger systems (simulations), and model selection procedures by data

confrontation is the most fruitful way to expand the science of evolu-

tionary ecology.
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Bascompte, J., Solé, R. V. and Martinez, N. 1997. Population cycles and spatial

patterns in snowshoe hares: an individual-oriented simulation. Journal of Theoretical

Biology 187:213–222. Chp 5

* Refers to the chapter where the reference appears



Baskin, C. C. and Baskin, J. M. 1998. Seeds – Ecology, Biogeography, and Evolution of

Dormancy and Germination. London: Academic Press. Chp 12

Batzli, G. O. 1992. Dynamics of small mammal populations: a review. In

McCullough, D. R. and Barrett, R. H. eds. Wildlife 2001: Populations. London:

Elsevier, pp. 831–850. Chp 8

Beckerman, A., Benton, T., Ranta, E., Kaitala, V. and Lundberg, P. 2001. Population

dynamic consequences of delayed life history effects. Trends in Ecology and Evolution

70:590–599. Chp 2, Chp 6

Beddington, J. R. and May, R. M. 1977. Harvesting natural populations in a ran-

domly fluctuating environment. Science 197:463–465. Chp 9

Begon, M., Harper, J. L. and Townsend, C. R. 1996. Ecology. Oxford: Blackwell

Science. Chp 2

Benado, M. 1997. Second-order density-dependence in a Drosophilid community

in La Florida, Santiago, Chile. Revista Chilena de Historia Natural 70:415–420.

Chp 6

Benton, T. G., Ranta, E., Kaitala, V. and Beckerman, A. P. 2001. Maternal effects

and the stability of population dynamics in noisy environments. Journal of Animal

Ecology 70:590–599. Chp 6

Bereczkei, T. and Dunbar, R. I. M. 1997. Female-biased reproductive strategies in a

Hungarian Gypsy population. Proceedings of the Royal Society of London B

264:17–22. Chp 12

Berger, J. and Cunningham, C. 1995. Predation, sensitivity and sex: why female

black rhinoceroses outlive males. Behavioral Ecology 6:57–64. Chp 12

Bernardo, J. 1996. The particular maternal effect of propagule size, especially egg

size: patterns, models, quality of evidence and interpretations. American Zoologist

36:216–236. Chp 6

Berryman, A. A. 1996. What causes population cycles of forest Lepidoptera?Trends in

Ecology and Evolution 11:28–32. Chp 6

Berryman, A. A. 2002. Population: a central concept for ecology? Oikos 97:439–442.

Chp 1, Chp 2

Berryman, A. A. and Turchin, P. 1997. Detection of delayed density dependence:

comment. Ecology 78:318–320. Chp 8

Berryman, A. A. and Turchin, P. 2001. Identifying the density-dependent structure

underlying ecological time series. Oikos 92:265–270. Chp 2, Chp 13

Beverton, R. J. H. and Holt, S. J. 1957. On the dynamics of exploited fish popula-

tions. Fisheries Investigation Series 2 19:1–533. Chp 2, Chp 9

Bisonette, J. A. ed. 1997. Wildlife and Landscape Ecology: Effects of Pattern and Scale.

New York: Springer. Chp 9

Bjørnstad, O. N. and Bascompte, J. 2001. Synchrony and second-order correlation

in host-parasitoid systems. Journal of Animal Ecology 70:924–933. Chp 5

Bjørnstad, O. N., Falck, W. and Stenseth, N. C. 1995. Geographic gradient in small

rodent density-fluctuations – a statistical modelling approach. Proceedings of the

Royal Society of London B 262:127–133. Chp 6

Bjørnstad, O. N., Begon, M., Stenseth, N. C., Falck, W., Sait, S. M. and Thompson,

D. J. 1998. Population dynamics of the Indian meal moth: demographic stochas-

ticity and delayed regulatory mechanisms. Journal of Animal Ecology 67:110–126.

Chp 6

References . 339



Bjørnstad, O. N., Ims, R. A. and Lambin, X. 1999a. Spatial population dynamics:

analysing patterns and processes of population synchrony. Trends in Ecology and

Evolution 14:427–432. Chp 4, Chp 5

Bjørnstad, O. N., Stenseth, N. C. and Saitoh, T. 1999b. Synchrony and scaling in

dynamics of voles and mice in northern Japan. Ecology 80:622–637. Chp 4

Bjørnstad, O. N., Sait, S. M., Stenseth, N. C., Thompson, D. J. and Begon, M. 2001.

The impact of specialized enemies on the dimensionality of host dynamics. Nature

409:1001–1006. Chp 2, Chp 6

Bjørnstad, O. N., Finkenstaedt, B. F. and Grenfell, B. T. 2002a. Dynamics of measles

epidemics: estimating scaling of transmission rates using a time series SIR model.

Ecological Monographs 72:169–184. Chp 5

Bjørnstad, O. N., Peltonen, M., Liebhold, A. M. and Baltensweiler, W. 2002b.

Waves of larch budmoth outbreaks in the European Alps. Science

298:1020–1023. Chp 5

Blasius, B. and Stone, L. 2000. Nonlinearity and the Moran effect. Nature

406:846–847. Chp 4

Blumstein, D. and Armitage, K. 1999. Cooperative breeding in marmots. Oikos

84:369–382. Chp 6

den Boer, P. J. and Reddingius, J. 1996. Regulation and Stabilization Paradigms in

Ecology. London: Chapman and Hall. Chp 2

Bolker, B. and Pacala S. W. 1999. Spatial moment equations for plant competition:

understanding spatial strategies and the advantage of short dispersal. American

Naturalist 153:572–602. Chp 5

Boonstra, R., Krebs, C. J. and Stenseth, N. C. 1998. Population cycles in small

mammals: the problem of explaining the low phase. Ecology 79:1479–1488. Chp 6

Borrvall, C., Ebenman, B. and Johnson, T. 2000. Biodiversity lessens the risk of

cascading extinction in model food webs. Ecology Letters 3:131–136. Chp 7

Botsford, L. W., Method, R. D. and Johnston, W. E. 1983. Effort dynamics of the

northern California Dungeness crab (Cancer magister) fishery. Canadian Journal of

Fisheries and Aquatic Sciences 40:337–346. Chp 9

Botsford, L. W., Castilla, J. C. and Peterson, C. H. 1997. The management of fish-

eries and marine ecosystems. Science 277:509–515. Chp 9

Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. 1994. Time Series Analysis:

Forecasting and Control. Englewood Cliffs, N. J.: Prentice Hall. Chp 2, Chp 4,

Chp 5, Chp 10

Boyce, M. S., Sinclair, A. R. E. and White, G. A. 2000. Seasonal compensation of

predation and harvesting. Oikos 87:419–426. Chp 9

Bradbury, R. B. and Blakey, J. K. 1998. Diet, maternal condition, and offspring sex

ratio in the zebra finch, Poephila guttata. Proceedings of the Royal Society of London B

265:895–899. Chp 12

von Bremen, H. F., Udwadia, F. E. and Proskurowski, W. 1997. An efficient QR

based method for the computation of Lyapunov exponents. Physica D 101:1–16.

Chp 5, Chp 12

Brommer, J. E., Kokko, H. and Pietiäinen, H. 2000. Reproductive effort and repro-

ductive value in periodic environments. American Naturalist 155:454–472. Chp 6

Brown, J. H. 1984. On the relationship between abundance and distribution of

species. American Naturalist 124:255–279. Chp 7

340 . References



Brown, J. L. 1987. Helping and Communal Breeding in Birds: Ecology and Evolution.

Princeton, N. J.: Princeton University Press. Chp 6

Brown, J. S. and Vincent, T. L. 1992. Organization of predator-prey communities as

an evolutionary game. Evolution 46:1269–1283. Chp 7

Bulmer, M. G. 1974. A statistical analysis of the 10-year cycle in Canada. Journal of

Animal Ecology 43:701–718. Chp 5

Bulmer, M. G. 1984. Delayed germination of seeds: Cohen’s model revisited.

Theoretical Population Biology 26:367–377. Chp 12

Bulmer, M. G. 1985. Selection of iteroparity in a variable environment. American

Naturalist 126:63–71. Chp 12

Bulmer, M. G. 1994. Theoretical Evolutionary Ecology. Sunderland, Mass.: Sinauer

Associates. Chp 12

Buonaccorsi, J. P., Elkinton, J., Evans, S. R. and Liebhold, A. M. 2001. Measuring

and testing for spatial synchrony. Ecology 82:1668–1679. Chp 4

Burgman, M. A., Freson, S. and Akcakaya, H. R. 1993. Risk Assessment in

Conservation Biology. London: Chapman & Hall. Chp 2, Chp 8, Chp 9

Burnham, K. P. and Andersson, D. R. 1984. Tests of compensatory vs. additive

hypothesis of mortality in mallards. Ecology 65:105–112. Chp 9

Burnham, K. P. and Anderson, D. R. 1998. Model Selection and Inference: A Practical

Information- theoretic Approach. New York: Springer-Verlag. Chp 1, Chp 2, Chp 9,

Chp 11, Chp 13

Burroughs, W. J. 1992. Weather Cycles: Real or Imaginary? Cambridge: Cambridge

University Press. Chp 4, Chp 8

Butler, L. 1953. The nature of cycles in populations of Canadian mammals. Canadian

Journal of Zoology 31:242–262. Chp 4, Chp 5

Byholm, P., Ranta, E., Kaitala, V., Lindén, H., Saurola, P. and Wikman, M. 2002.

Resource availability and goshawk offspring sex ratio: a large-scale ecological

phenomenon. Journal of Animal Ecology 71:994–1001. Chp 12

Cassinello, J. and Gomedino, M. 1996. Adaptive variation in litter size and sex ratio at

birth in a sexually dimorphic ungulate. Proceedings of the Royal Society of London B

264:1461–1466. Chp 12

Castillo-Chavez, C. and Huang, W. 1995. the logistic equation revisited: the two-

sex case. Mathematical Bioscience 128:299–316. Chp 12

Caswell, H. 2001. Matrix Population Models, 2nd edn. Sunderland, Mass.: Sinauer.

Chp 1, Chp 2, Chp 3, Chp 6, Chp 12

Caswell, H. and Weeks, D. E. 1986. Two-sex models: chaos, extinction, and other

dynamic consequences of sex. American Naturalist 128:707–735. Chp 12

Cattadori, I. M. and Hudson, P. J. 1999. Temporal dynamics of grouse populations

at the southern edge of their distribution: the Dolomitic Alps. Ecography

22:374–3874. Chp 4

Cattadori, I. M., Merler, S. and Hudson, P. J. 2000. Searching for mechanisms of

synchrony in spatially structured gamebird populations. Journal of Animal Ecology

69:620–638. Chp 4

Caughley, G. 1994. Directions in conservation biology. Journal of Animal Ecology

63:215–244. Chp 9

Charlesworth, B. 1971. Selection in density-regulated populations.Ecology 52:469–474.

Chp 12

References . 341



Charlesworth, B. 1994. Evolution in Age-structured Populations. Cambridge: Cambridge

University Press. Chp 12

Charnov, E. L. and Schaffer, W. M. 1973. Life-history consequences of natural

selection: Cole’s result revisited. American Naturalist 107:791–793. Chp 12

Chatfield, C. 1999. The Analysis of Time Series, 5th edn. London: Chapman & Hall.

Chp 1, Chp 2, Chp 4

Chesson, P. L. 1986. Environmental variation and the coexistence of species. In

Diamond, J. and Case, T. J. eds. Community Ecology. New York: Harper and

Row, pp. 240–256. Chp 12

Clark, C. J. 1990. Mathematical Bioeconomics, 2nd edn. New York: Wiley. Chp 9

Clauss, M. J. and Venable, D. L. 2000. Seed germination in desert annuals:

an empirical test of adaptive bet hedging. American Naturalist 155:168–186.

Chp 12

Clinton, W. L. and LeBoeuf, B. J. 1993. Sexual selection’s effects on male life-history

and the pattern of male mortality. Ecology 74:1884–1892. Chp 12

Clutton-Brock, T. H. 1991. The Evolution of Parental Care. Princeton, N. J.: Princeton

University Press. Chp 6, Chp 12

Clutton-Brock, T. H. 2002. Behavioral ecology: breeding together. Kin selection

and mutualism in cooperative vertebrates. Science 296:69–72. Chp 11

Clutton-Brock, T. and Parker, G. A. 1995. Punishment in animal societies. Nature

373:209–216. Chp 11

Clutton-Brock, T. H., Illius, A. W., Wilson, K., Grenfell, B. T., MacColl, A. D. C.

and Albon, S. D. 1997. Stability and instability in ungulate populations: an

empirical analysis. American Naturalist 149:195–219. Chp 9

Cockburn, A., Scott, M. P. and Scotts, D. J. 1985. Inbreeding avoidance and male-

biased dispersal in Antechinus spp (Marsupialia, Dasyuridae). Animal Behavior

33:908–915. Chp 12

Cody, M. L. and Diamond, J. M. 1975. Ecology and Evolution of Communities.

Cambridge, Mass.: Harvard University Press. Chp 7

Cohen, D. 1966. Optimizing reproduction in a randomly varying environment.

Journal of Theoretical Biology 12:110–126. Chp 12

Cohen, J. E. 1995. Unexpected dominance of high frequencies in chaotic nonlinear

population models. Nature 378:610–612. Chp 2

Cohen, Y., Vincent, T. L. and Brown, J. S. 1999. A G-function approach to fitness

minima, fitness maxima, evolutionarily stable strategies, and adaptive landscapes.

Evolutionary Ecology Research 1:923–942. Chp 1

Cole, L. C. 1954. The population consequences of life history phenomena. Quarterly

Reviews of Biology 29:103–137. Chp 12

Comins, H. N., Hassell, M. P. and May, R. M. 1992. The spatial dynamics of host-

parasitoid system. Journal of Animal Ecology 61:735–748. Chp 5

Connell, J. H. 1980. Diversity and the coevolution of competitors, or the ghost of

competition past. Oikos 35:131–138. Chp 7

Connor, R. C. 1995. Altruism among non-relatives – alternatives to prisoners

dilemma. Trends in Ecology and Evolution 10:84–86. Chp 11

Cooch, E. G., Lank, D. B. and Cooke, F. 1996. Intraseasonal variation in the

development of sexual size dimorphism in a precocial bird: evidence from the

lesser snow goose. Journal of Animal Ecology 65:439–450. Chp 12

342 . References



Cooper, A. B. and Mangel, M. S. 1999. The dangers of undetected metapopulation

structure for the conservation of salmonids. Fishery Bulletin 97:213–226. Chp 9

Costantino, R. F., Cushing, J. M., Dennis, B. and Desharnais, R. A. 1995.

Experimentally induced transitions in the dynamic behaviour of insect popula-

tions. Nature 375:227–230. Chp 6

Costantino, R. F., Desharnais, R. A., Cushing, J. M. and Dennis, B. 1997. Chaotic

dynamics in an insect population. Science 275:389–391. Chp 6

Costantino, R. F., Cushing, J. M., Dennis, B., Desharnais, R. A. and Henson, S. M.

1998. Resonant population cycles in temporally fluctuating habitats. Bulletin of

Mathematical Biology 60:247–273. Chp 6

Coyne, J. A., Barton, N. H. and Turelli, M. 1997. Perspective: a critique of Sewall

Wright’s shifting balance theory of evolution. Evolution 51:643–671. Chp 12

Creel, S. R. and Macdonald, D. W. 1995. Sociality, group size and reproductive

suppression among carnivores. Advances in Studies of Behavior 24:203–257. Chp 6

Crone, E. E. 1997. Parental environmental effects and cyclical dynamics in plant

populations. American Naturalist 150:708–729. Chp 6

Crone, E. E. and Taylor, D. R. 1996. Complex dynamics in experimental popula-

tions of an annual plant, Cardamine pensylvanica. Ecology 77:289–299. Chp 6

Curry, R. 1989. Geographic variation in social organization of Galapagos mocking-

birds: ecological correlates of group territoriality and cooperative breeding.

Behavioral Ecology and Sociobiology 25:147–160. Chp 6

Cushing, J. M., Costantino, R. F., Dennis, B., Desharnais, R. A. and Henson, S. M.

1998a. Non-linear population dynamics: models, experiments, and data. Journal of

Theoretical Biology 194:1–9. Chp 6

Cushing, J. M., Dennis, B., Desharnais, R. A. and Costantino R. F. 1998b. Moving

toward an unstable equilibrium: saddle nodes in population systems. Journal of

Animal Ecology 67:298–306. Chp 6

Das Gupta, P. 1972. On two-sex models leading to stable populations. Theoretical

Population Biology 3:358–375. Chp 12

Dash, A. T. and Cressman, R. 1988. Polygamy in human and animal species.

Mathematical Bioscience 88:49–66. Chp 12

Davies, N. B. 1991. Mating systems. In Krebs, J. R. and Davies, N. B. eds. Behavioural

Ecology: An Evolutionary Approach. Oxford: Blackwell, pp. 263–294. Chp 12

Dawkins, R. 1976. The Selfish Gene. Oxford: Oxford University Press. Chp 11

DeAngelis, D. and Gross, L. eds. 1992. Individual-based Models and Approaches in

Ecology. New York: Chapman and Hall. Chp 6

Dennis, B., Desharnais, R. A., Cushing, J. M. and Costantino R. F. 1997. Transitions

in population dynamics: equilibria to periodic cycles to aperiodic cycles. Journal of

Animal Ecology 66:704–729. Chp 6

Dennis, B., Desharnais, R. A., Cushing, J. M., Henson, S. M. and Costantino, R. F.

2001. Estimating chaos and complex dynamics in an insect population. Ecological

Monographs 71:277–303. Chp 6

Diamond, J. M. 1975. Assembly of species communities. In Cody, M. L. and

Diamond, J. M. eds. Ecology and Evolution of Communities. Cambridge, Mass.:

Harvard University Press, pp. 460–490. Chp 7

Diamond, J. M. and Case, T. J. 1986. Community Ecology. New York: Harper and

Row. Chp 7

References . 343



Dieckmann, U. 1997. Can adaptive dynamics invade? Trends in Ecology and Evolution

12:128–131. Chp 1

Dieckmann, U. and Law, R. 1996. The dynamical theory of coevolution: a deriva-

tion from stochastic ecological processes. Journal of Mathematical Biology

34:579–612. Chp 1

Diffendorfer, J. E. 1998. Testing models of source-sink dynamics and balanced

dispersal. Oikos 81:417–433. Chp 9

Doebeli, M. 1995. Dispersal and dynamics. Theoretical Population Biology 47:82–106.

Chp 3

Doebeli, M. 1996. Quantitative genetics and population dynamics. Evolution

50:532–546. Chp 12

Doebeli, M. 1997. Genetic variation and persistence of predator-prey interactions

in the Nicholson-Bailey model. Journal of Theoretical Biology 188:109–120.

Chp 12

Doebeli, M. and Koella, J. C. 1994. Sex and population dynamics. Proceedings of the

Royal Society of London B 257:17–23. Chp 12

Doncaster, C. P., Pound, G. E. and Cox, S. J. 2000. The ecological cost of sex.Nature

404:281–285. Chp 12

Drake, J. A. 1991. Community-assembly mechanics and the structure of an experi-

mental species ensemble. American Naturalist 137:1–26. Chp 7

Dugatkin, L. A. 1997.Cooperation Among Animals: an Evolutionary Perspective. Oxford:

Oxford University Press. Chp 11

Dugatkin, L. A. 1998. Game theory and cooperation. In Dukatkin, L. A. and Reeve,

H. K. eds. Game Theory and Animal Behaviour. Oxford: Oxford University Press,

pp. 38–63. Chp 11

Dugatkin, L. A. and Reeve, H. K. 1998. Game Theory and Animal Behaviour. Oxford:

Oxford University Press. Chp 11

Earn, D. J. D., Rohani, P., Bolker, B. M. and Grenfell, B. T. 2000. A simple model

for complex dynamical transitions in epidemics. Science 287:667–670. Chp 5

Easterling, M. R. and Ellner, S. P. 2000. Dormancy strategies in a random environ-

ment: comparing structured and unstructured models. Evolutionary Ecology

Research 2:387–407. Chp 12

Edelstein-Keshet, L. 1988. Mathematical Models in Biology. New York: Random

House. Chp 1, Chp 2

Efron, B. and Tbshirani, R. J. 1983. An Introduction to Bootstrap. London: Chapman &

Hall. Chp 4

Ellegren, H., Gustafsson, L. and Sheldon, B. C. 1996. Sex ratio adjustment in relation

to paternal attractiveness in a wild bird population. Proceedings of the National

Academy of Science USA 93:11 723–11 728. Chp 12

Elton, C. S. 1924. Periodic fluctuations in the numbers of animals: their causes and

effects. British Journal of Experimental Biology 2:119–163. Chp 2, Chp 4, Chp 8

Elton, C. S. and Nicholson, M. 1942. The ten-year cycle in numbers of the lynx in

Canada. Journal of Animal Ecology 11:215–244. Chp 4, Chp 5, Chp 8

Emlen, J. M. 1984. Population Biology. The Coevolution of Population Dynamics and

Behavior. New York: Macmillan Publishing Company. Chp 2, Chp 7, Chp 12

Engen, S., Bakke, Ø. and Islam, A. 1998. Demographic and environmental stochas-

ticity – concepts and definitions. Biometrics 54:840–846. Chp 9

344 . References



Erb, J., Boyce, M. S. and Stenseth, N. C. 2001. Population dynamics of large and

small mammals. Oikos 92:3–12. Chp 6

Fagen, R. 1987. A generalized habitat matching rule. Evolutionary Ecology 1:5–10.

Chp 10

Farnsworth, K. D. and Beecham, J. A. 1997. Beyond the ideal free distribution: more

general models of predator distribution. Journal of Theoretical Biology

1187:389–396. Chp 10

Felsenstein, J. 1976. The theoretical population genetics of variable selection and

migration. Annual Review of Genetics 10:253–280. Chp 12

Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Oxford: Oxford

University Press. Chp 12

Fowler, J. and Cohen, L. 1990. Practical Statistics for Field Biology. Chichester: Wiley.

Chp 10

Frank, S. A. 1990. Sex allocation theory for birds and mammals. Annual Review of

Ecology and Systematics 21:13–55. Chp 12

Frean, M. and Abraham, E. R. 2001. Rock-scissors-paper and the survival of

the weakest. Proceedings of the Royal Society, London, B 268:1323–1327.

Chp 11

Fretwell, S. D. 1972. Populations in a Seasonal Environment. Princeton, N. J.: Princeton

University Press. Chp 10

Fretwell, S. D. and Lucas, H. L. 1970. On territorial behavior and other factors

influencing habitat distribution in birds. I. Theoretical development. Acta

Biotheoretica 19:16–36. Chp 9, Chp 10

Fritts, H. C. 1976. Three Rings and Climate. London: Academic Press. Chp 4

Fromentin, J. M., Myers, R. A., Bjørnstad, O. N., Stenseth, N. C., Gjosaeter, J. and

Christie, H. 2001. Effects of density-dependent and stochastic processes on the

regulation of cod populations. Ecology 82:567–579. Chp 6

Fryxell, J. M. and Lundberg, P. 1993. Optimal patch use and metapopulation

dynamics. Evolutionary Ecology 7:379–393. Chp 3, Chp 8

Fryxell, J. M. and Lundberg, P. 1997. Individual Behavior and Community Dynamics.

London: Chapman & Hall. Chp 6, Chp 8, Chp 12

Gabriel, W. and Bürger, R. 1992. Survival of small populations under demographic

stochasticity. Theoretical Population Biology 41:44–71. Chp 2

Gaillard, J.-M., Boutin, J.-M., Delorme, D., Van Laere, G., Duncan, P. and

Lebreton, J.-D. 1997. Early survival in roe deer: causes and consequences of

cohort variation in two contrasted populations. Oecologia 112:502–513. Chp 12

Gaston, K. 1996. The multiple forms of the interspecific abundance-distribution

relationship. Oikos 76:211–220. Chp 7

Gaston, K. J., Blackburn, T. M. and Lawton, J. H. 1997. Interspecific abundance-

range size relationships: an appraisal of mechanisms. Journal of Animal Ecology

66:579–601. Chp 7

Gauch, H. G. 1982. Multivariate Analysis in Community Ecology. Cambridge:

Cambridge University Press. Chp 7

Gause, G. F. 1934. The Struggle for Existence. Baltimore, Md.: Williams and Wilkins.

Chp 7

Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. 1995. Bayesian Data Analysis.

London: Chapman & Hall. Chp 9

References . 345



Getz, W. M. and Kaitala, V. 1993. Ecogenetic analysis and evolutionary stable

strategies in harvested populations. In Stokes, T. K., McGlade, J. M. and Law R.

eds. The Exploitation of Evolving Resources, Lecture Notes in Biomathematics, vol. 99,

pp. 187–203. Berlin: Springer-Verlag. Chp 9

Gillman, M. P. and Dodd, M. 2000. Detection of delayed density dependence in an

orchid population 11. Journal of Ecology 88:204–212. Chp 6

Gilpin, M. and Hanski, I. eds. 1991.Metapopulation Dynamics: Empirical and Theoretical

Investigations. London: Academic Press. Chp 8

Ginzburg, L. R. and Taneyhill, D. E. 1994. Population cycles of forest Lepidoptera –

a maternal effect hypothesis. Journal of Animal Ecology 63:79–92. Chp 6

Gonzalez-Andujar, J. L. 1998. Effect of immigration on a chaotic insect population.

Ecological Research 13:259–261. Chp 3

Gonzales-Andujar, J. L. and Hughes, G. 2000. Complex dynamics in weed popula-

tions. Functional Ecology 14:524–526. Chp 12

Goodman, D. 1974. Natural selection and a cost ceiling on reproductive effort.

American Naturalist 108:247–268. Chp 12

Gotelli, N. J. 1995. A Primer of Ecology. Sunderland, Mass.: Sinauer Associates. Chp 2

Grebogi, C., Ott, E. and Yorke, J. A. 1987. Chaos, strange attractors, and fractal basin

boundaries in nonlinear dynamics. Science 238:632–638. Chp 3

Greenman, J. V. and Benton, T. G. 2001. The impact of stochasticity on the beha-

viour of nonlinearpopulation models: synchrony and the Moran effect. Oikos

93:343–351. Chp 2, Chp 4

Grenfell, B. T. and Bolker, B. M. 1998. Cities and villages: infection hierarchies in a

measles metapopulation. Ecology Letters 1:63–70. Chp 5

Grenfell, B. T. and Harwood, J. 1997. (Meta)population dynamics of infectious

diseases. Trends in Ecology and Evolution 12:395–399. Chp 5
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Korpimäki, E. and Norrdahl, K. 1991. Do breeding nomadic avian predators dampen

population fluctuations of small mammals? Oikos 62:195–208. Chp 4

References . 351
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Solé, R. V. and Gamarra, J. G. P. 1998. Chaos, dispersal and extinction in coupled

ecosystems. Journal of Theoretical Biology 193:539–541. Chp 3
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lattice games, 273

least weasel, 30, 75, 89

Lefkovitch, 12

Lepus timidus, 69, 75

Leslie, 11

Leslie matrix, 78, 132, 135, 136, 138

Leslie–Gover predator–prey model, 92, 190
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outbreak, 118

over-exploitation, 220

overcompensation, 15, 218

overmatching, 250, 252
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PACF (see also partial autocorrelation

function), 33 , 34

parental effect, 133

Paridae, 159

partial autocorrelation function, 32, 33, 34

Passer domesticus , 310

Passer montanus , 310

payoff matrix, 268, 269 , 270, 271, 276 , 280,

284 , 287, 292

Pennycuick model, 17

period doubling, 20 , 44

period length, continuum, 23

period-four cycle, 30, 47

period-ten cycle, 30, 50

periodic dynamics, 41 , 79

periodic population dynamics, 188

periodic solution, 23

periodic window, 41

periodicity, 73

periodogram, 28, 30

pine marten, 75 , 91

Poisson process, 185

polygamy, 302 , 305

polygyny, 301, 308 , 310

population, declining, 215

population density, 25

dynamics, chaotic, 145

equilibrium, 156

growth, 10, 71, 136

interactions, 16

periodic, 145

renewal, 43

size, 25

unstable, 24

variability, 140, 142, 201

power law (see also 1/ f ), 105 , 277

power spectrum (power spectral analysis), 28,

30, 104, 128, 176, 206, 277

predator–prey model, 88, 100

Prisoner’s Dilemma, 268, 269, 275, 277, 278,

279, 282, 284, 285

process order, 34, 35

projection matrix, 132

qualitative property, 43

quasi-cyclic, 223

R, 5, 11, 12

r, 5, 11, 16

r0, 73, 74, 122

rD, 73, 120

random normal deviate, 29

ranked abundances, 161

re-sampling, 73

recipient, 272

recruitment function, 15

red fox, 75, 89, 90, 91

red grouse, 117

red squirrel, 75, 89, 91

redistribution, 82

refugee, 182, 184, 194, 197

regulated, 13

relatedness, 272

relatives, 272

renewal function, 2, 4, 15, 16

renewal process, 3, 10, 258

reproductive rate, 84

residuals, 32, 69, 71

resource matching, 237, 242, 244, 263,

264, 265

resource matching Ideal Free Distribution,

231, 232

resource–consumer interaction, 93, 94,

155, 190

Rickermodel,16,17,19,20,21,23,24,29,41,

42,47, 61, 79, 82, 83, 84, 89, 91, 121, 142,

154, 156, 175, 185, 186, 187, 188, 190,

195, 196, 200, 223, 261, 262, 302, 325

delayed, 23, 25, 80, 83, 85, 86, 87, 109,

120, 205, 206

risk analysis, 220

Rock–Scissors–Paper game, 271, 282, 283,

284, 285, 286, 287, 288, 296, 297

Sciurus vulgaris, 75

seahorse, 311

seasonal cycle, 118

seasonality, 226

seed bank, 322, 330

seed-masting, 81

self-organization, 100, 102, 108, 110,

119, 278

selfish behavior, 268, 291, 294

semelparity, 316

sex, 301

sex ratio, 303, 304, 311, 312, 313, 316

sex ratio allocation, 313, 314

sexual reproduction, 301, 304

signal, 27

single-patch model, 40

six-year periodicity, 149, 204

snowshoe hare, 76, 204
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Soay sheep, 80, 95, 219

source-sink dynamics, 58, 64, 184, 227

spatial autocorrelation, 74, 96, 111, 115,

244, 245

spatial chaos, 98, 99, 101, 107

spatial games, 277

spatial heterogeneity, 170

spatial population dynamics, 40

spatial structure, 43

spatially explicit structure, 211

spatially implicit dispersal, 48, 53

spatially linked system, 43

spatially structured communities, 153

species abundance, 152, 159, 161

species assembly, 153, 155, 156

species co-existence, 152

species loss, 162

species pool, 153

species richness, 152

spectral analysis, 28, 32

spiral wave, 101, 103, 104

sprat, 169

Sprattus sprattus, 169

stability, 4, 15

stabilization, 41, 138, 222, 330

stable equilibrium, 47

stable equlibrium community, 156

stable population dynamics, 170, 188, 195

stage structure, 131

standardizing, 69

stationary, 32, 216

stationary state, 191

sticklebacks, 239

stoat, 75, 89, 91

stochastic population models, 29

stochastic process, 20, 26, 28

stochastic time series, 31

stochastic variable, 27

stochasticity, 78

stocking, 178, 179

stocking cascade, 179

storage effect, 322, 330

structured populations, 131

subpopulation, 44

succession, 170, 171

Suricata suricatta, 141

survival, 131, 132, 329

sustainable, 220

synchrony, across species, 89, 91, 93

synchrony (temporal coherence), 50, 53, 67, 70,

73,75,79,81,83,85,86,87,88,91,94,95,

105, 106, 108, 111, 115, 119, 120, 123,

127, 128, 163, 175, 192, 261, 263

ten-patch model, 47

ten-year cycle, 80, 85

Tengmalm’s owl, 141

Tetrao tetrix, 68

three-patch model, 51, 52

three-stage model, 147

time series, 10, 28, 31

color, 31

decomposing, 69

tit-for-tat, TFT, 272

tits, 159

trait-group selection, 272, 273

transient phase, 47, 322

transition matrix, 12

traveling wave, 98, 99, 109, 113, 114, 116,

117, 118, 128

tree-rings, 81

tree sparrow, 310

trend, 32, 73

Tribolium castaneum, 147

Tribolium confusum, 145

Tribolium spp., 12, 145, 146, 147, 148

trophic level interactions, 92, 94, 134

two-patch model, 42, 43, 260

two-point cycle, 18, 44, 262

two-sex model, 301, 302

two-species competition, 191

undercompensation, 15, 219

undermatching, 241, 242, 250, 251, 265

unstable equilibrium community, 156

Uta stansburiana, 282

Varley model, 17

Verhulst model, 17

viewers, 141, 143, 144

visibility, 34, 81, 95

vole damages, 113, 115

voles, 89, 91, 109, 113, 117, 204, 208, 209

Vulpes vulpes, 75

wavelength, 28

willow grouse, 91

yield, 229, 234

Zeiraphera diniana, 118

zooplankton, 159
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