


Challenges and Advances in Computational 
Chemistry and Physics

Volume 17

Series Editor

Jerzy Leszczynski
Jackson State University, Jackson, Mississippi, USA



This book series provides reviews on the most recent developments in computation-
al chemistry and physics. It covers both the method developments and their applica-
tions. Each volume consists of chapters devoted to the one research area. The series 
highlights the most notable advances in applications of the computational methods. 
The volumes include nanotechnology, material sciences, molecular biology, struc-
tures and bonding in molecular complexes, and atmospheric chemistry. The authors 
are recruited from among the most prominent researchers in their research areas. 
As computational chemistry and physics is one of the most rapidly advancing sci-
entific areas such timely overviews are desired by chemists, physicists, molecular 
biologists and material scientists. The books are intended for graduate students and 
researchers.

More information about this series at http://www.springer.com/series/6918



Leonid Gorb • Victor Kuz’min • Eugene Muratov
Editors

Application of Computational 
Techniques in Pharmacy  
and Medicine



ISBN 978-94-017-9256-1    ISBN 978-94-017-9257-8 (eBook)
DOI 10.1007/978-94-017-9257-8
Springer Dordrecht Heidelberg New York London

Library of Congress Control Number: 2014952367

© Springer Science+Business Media Dordrecht 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part 
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, 
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or 
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar 
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts 
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of 
being entered and executed on a computer system, for exclusive use by the purchaser of the work. 
Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright 
Law of the Publisher’s location, in its current version, and permission for use must always be obtained 
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance 
Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for 
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with 
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Editors
Leonid Gorb
Department of Molecular Biophysics
Laboratory of Computational  

Structural Biology
Kiev
Ukraine

Victor Kuz’min
Department of Molecular Structure  

and Chemoinformatics
A.V. Bogatsky Physical-Chemical Institute, 

National Academy of Sciences  
of Ukraine

Odessa
Ukraine

Eugene Muratov
Department of Chemical Biology  

and Medicinal Chemistry 
University of North Carolina, Laboratory 

for Molecular Modeling
Chapel Hill
North Carolina
USA 



v

Preface

Advances in computer hardware parallel by recent enormous progress in develop-
ing computer algorithms that utilize hundreds and even thousand of computer nodes 
made applications of computational techniques to be indispensable in scientific re-
search and fundamental science applications. Such research areas as computational 
biology, molecular pharmacy and molecular medicine are certainly among those 
where these computational applications are actively introduced. As the result, mod-
ern multiprocessor computers are able to treat real-life biological systems consist-
ing of millions of atoms (ribosoms, nucleosoms, or even viruses) in a time frame of 
hundred nanoseconds. This tendency manifests itself even more clearly in the area 
of bioinformatics. Nowadays, combinatorial and high–throughput screening (HTS) 
technologies are widely used in both academia and industry. The pharmaceutical 
companies run the HTS platforms, incorporating libraries of several millions of 
compounds. Also, there are more and more academic centers that conduct HTS 
and integrate their platform with industrial drug discovery centers. Therefore, one 
can safely say that the computational chemist has become a respectable member of 
a drug design community, playing the same role as the synthetic or pharmacolo-
gists chemists. More and more often such projects have interdisciplinary character 
presenting an interplay between the theory and the experiment. They are intended 
to provide basic information as well as the data which could be used in practical 
pharmacological and medical applications.

The proposed volume provides basic information as well as the details of com-
putational and computational-experimental studies improving our knowledge on 
functioning of alive, different properties of drugs, and predictions of new medi-
cines. Whenever it is possible the interplay between the theory and the experiment 
is provided. The unique feature of the book is the fact that such different in prin-
ciples computational techniques as quantum-chemical and molecular dynamic ap-
proaches on one hand and quantitative structure–activity relationships on another 
hand are considered inside one volume. The reviews presented in the volume cover 
main tendencies and priorities in application of computational methods of quantum 
chemistry, molecular dynamics and chemoinformatics to solve the tasks of phar-
macy and medicine.
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The present book is aimed at a relatively broad readership that includes advanced 
undergraduate and graduate students of chemistry, physics and engineering, post-
doctoral associates and specialists from both academia and industry who carry out 
research in the fields that require molecular and QSA(P)R modeling. This book 
could also be useful to students in biochemistry, structural biology, bioengineering, 
bioinformatics, pharmaceutical chemistry, as well as other related areas, who have 
an interest in molecular-level computational techniques.

The book starts from the reviews that describe the studies of biological systems 
which are performed by the methods of quantum chemistry and classical molecu-
lar dynamics. The two initial chapters describe the theory and application of such 
methods as hybrid quantum-mechanical/molecular mechanical approximation, 
Monte-Carlo, molecular docking and molecular dynamics, in conjunction with the 
application of experimental techniques as Infra-Red, Raman, UV-VIS spectros-
copies, and microcalorimetry. Next four chapters continue to describe the current 
status of the investigations in such vital area as functioning of DNA. It covers for-
mation of DNA lesions, computational rational design of DNA polymerase inhibi-
tors, modeling the structure of DNA quadruplexes, and the study on the structure, 
relative stability, and proton affinities of such building blocks as nucleotides. The 
seventh, eighth, ninth and tenth chapters are devoted to the application of compu-
tational and experimental techniques in such areas of medical and pharmaceutical 
chemistry as enzyme-inhibitor interactions, interaction of enzymes with biological 
membranes and a probe of polyphenol glycosides as potential remedies in kidney 
stones therapy and transformations of epoxided in vivo and in vitro. The following 
six reviews describe the advantages in the area of chemoinformatics. Most of them 
are devoted to developing and applications of the QSAR methodology to predict 
an activity and design of novel biologically active compounds. In particular, the 
criteria for correct QSAR models, their opprtunities and limitations are studied in 
the eleventh chapter. Very original QSAR methodoly named MICROCOSM is pre-
sented in chapter twelfth. The chapters 11th, 13th and 14th devoted to analysis such 
important properties of biologivally active compounds (possible drugs) as toxicity 
and farmokinetics. Very interesting methodology which combines molecular dy-
namics and docking approaches is described in the 15th chapter. The book is clos-
ing up by the 16th chapter which describes modern state of chemoinformatics, new 
problems and perspectives of treatment of avalanche-like amount of experimental 
chemical and biological information.

The editors of this book gratefully thank all the authors for their time and con-
tribution. We hope that this volume may give the reader (both in academia and in 
an industrial pharmaceutical community) a useful overview of the computational 
and experimental techniques that are currently in use in the areas of computational 
pharmacy and medicine.

May, 2014 Leonid Gorb
 Victor Kuz’min
 Eugene Muratov
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Chapter 1
Hybrid QM/MM Methods: Treating Electronic 
Phenomena in Very Large Molecular Systems

Antonio Monari and Xavier Assfeld

© Springer Science+Business Media Dordrecht 2014  
L. Gorb et al. (eds.), Application of Computational Techniques in Pharmacy and Medicine, 
Challenges and Advances in Computational Chemistry and Physics 17,  
DOI 10.1007/978-94-017-9257-8_1

X. Assfeld () · A. Monari
Université de Lorraine, Théorie-Modélisation-Simulation, SRSMC UMR 7565,  
Vandœuvre-lès-Nancy, 54506 France
e-mail: xavier.assfeld@univ-lorraine.fr

A. Monari
e-mail: antonio.monari@univ-lorraine.fr

Abstract Hybrid methods, combining the accuracy of Quantum Mechanics and the 
potency of Molecular Mechanics, the so-called QM/MM methods, arise from the 
desire of theoretician chemists to study electronic phenomena in large molecular 
systems. In this contribution, a focus, on the Physics and Chemistry on which theses 
methods are based on, is given. The advantages, flaws, and limitations of each type 
of methods are exposed. A special emphasis is put on the Local Self-Consistent 
Field method, developed in our group. The latest developments are detailed and 
illustrated by chosen examples.

1.1  Introduction

Except some very specific experiments dealing with gas phase with very low pres-
sure, or some particular media (interstellar space, high atmosphere,  …), chemists 
encounter molecules in interaction with their surroundings. In fact, most of chem-
ical or biochemical reactions take place in solution or involve macromolecules. 
The role of the surroundings is crucial. For example, some chemical reactions, like 
ethylene bromination, are quasi unfeasible in gas phase, very slow in apolar sol-
vents, but instantaneous in water [1]. In the same vein, most biochemical reactions 
wouldn’t be possible if not catalyzed by enzymes [2]. In addition to the role played 
in enzymatic catalysis, the environment is also crucial to modify, to precisely tune 
or to induce the response to light in photo-active systems. A paradigmatic example 
being for instance the role played by opsin protein in assuring an ultra-fast highly 
efficient photo isomerization of retinal chromophore in vision process [3, 4]. The 
precise understanding and tuning of light-induced responses in complex biosystems 
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is also of seminal importance in the growing field of phototherapy [5]. For instance 
small organic or organometallic drugs can interact with DNA and induce permanent 
lesions of the nucleic acid once activated by exposition to light [6–8], so as to 
constitute very efficient photo-chemo-therapeutic agents. Taking care of the envi-
ronment in theoretical calculations, both for ground and excited states is thus man-
datory if one wants to obtain realistic results, i.e. directly comparable to experimen-
tal data, or to make reliable predictions [9–13].

The surrounding, i.e. the solvent or the bio-macromolecule, is a very large sys-
tem, containing at least thousands of atoms to obtain an acceptable representation. 
Even if the progresses of quantum chemistry over the past decades are tremen-
dous (algorithms, computer, new method, …), describing such large systems with 
quantum methods is still far beyond our computational capacities, especially when 
dealing with electronically excited states. We have however to acknowledge the 
development of linear scaling methods that allow obtaining the electronic energy 
of quite large molecular systems [14–17]. Nevertheless, one cannot, for the time 
being, carry out millions of such calculations which are nonetheless required to 
sample all the possible conformations, necessaries to properly describe highly flex-
ible and dynamic systems like biomolecules. This sampling is generally realized 
by means of Molecular Dynamics or Monte Carlo techniques using classical force 
fields [18]. The main drawback of such simulations is that they cannot describe 
electronic phenomena (chemical reactions, electronic transitions) since electrons 
are only implicitly taken into account via empirical parameters. We then face an 
ambiguous situation where Quantum Chemistry is required but cannot be applied.

The first solution was proposed by Warshel in 1976 [19] at the semi-empirical 
level and by Rivail and Assfeld [20] 20 years later at the ab initio level of theory. 
The seminal idea is to divide the large molecular system into two communicating 
parts, one considered as the active part (where the electronic phenomenon takes 
place) is small and is described with Quantum Mechanics (QM) methods, the other, 
considered as the surroundings, contains the remaining thousands of atoms and is 
then treated with Molecular Mechanics (MM) Force Fields. This is the principle of 
the so-called QM/MM methods, which rely on the locality of the electronic phe-
nomenon under investigation [9].

In regard of the large panel of available QM methods (HF, PM3, PBE0, MPn, 
CCSD, CI, …) [21–23] and of current MM force fields (AMBER, CHARMM, UFF, 
DREIDING, …) [24–30], it exist an impressive bestiary of QM/MM couplings 
[31–47]. Although these trivial differences can have a non-negligible effect on the 
potential applications one can theoretically decipher, they won’t be discussed in this 
chapter. A contrario we will focus our discussion on the fundamental differences to 
treat the physical and or chemical interactions between the two sub-systems, QM 
and MM. Once the general review will be set in the next section, the Local Self-
Consistent Field (LSCF) method developed in our group [9, 20] will be detailed in 
Sect. 1.3. Finally several illustrative examples will be given in the fourth section in 
order to show the applicability and potency of the method.
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1.2  QM/MM Methods

1.2.1  QM/MM, QM:MM, QM–MM?

Before going through all the interactions between the QM and the MM parts, we 
will first settle a nomenclature that will be used throughout the chapter, to specify 
which criteria are used to specify which atoms are treated by QM methods and 
which are described by MM force fields. Two cases need to be considered:

• The two subsystems are not chemically bonded. For example, a solute molecule 
in a solution. The interactions between the fragments are then weak interaction 
(Keesom, Debye, London, H-bond, …), and we will call them physical interac-
tions. In such situations we will use the acronym QM:MM, where the colon “:” 
symbolizes these non-bonded interactions (in the chemical sense).

• The two subsystems are connected through covalent bonds. For example, the 
amino-acid residues constituting a protein. To define the QM region one has 
then to formally cut these strong chemical bonds. For such cases, we will use the 
QM–MM acronym, where the dash “–” represents the cut bond(s).

• The QM/MM acronym will be used to describe any situation, following the tra-
ditional use of the slash “/” character in Quantum Chemistry.

1.2.2  Partition of the Hamiltonian

For any system modeled with any QM/MM method, the total Hamiltonian ( )totΗ  
can be written as

 (1.1)

Where ˆ
QMH  is the Hamiltonian of the QM region, ˆ

MMH  the one of the MM region 
and /

ˆ
QM MMH  the Hamiltonian containing the interactions between the two parts. 

Most of the QM/MM methods use this additive partition of the Hamiltonian. How-
ever, a very famous method (ONIOM) developed by Morokuma [48] use a subtrac-
tive partition:

 (1.2)

Where QM MM
MMH +
  is the MM Hamiltonian of the whole system, i.e. the union of the 

QM and the MM parts, and QM
MMH  is the MM Hamiltonian of the region described 

with Quantum Mechanics. The parenthesis in Eq. (1.2) is then equal to the sum of 
the last two terms of Eq. (1.1). One has to note that with this subtractive partition-
ing, the QM/MM interactions are treated at the MM level of theory.

/
ˆ ˆ ˆ ˆ

tot QM MM QM MMH H H H= + +

( )ˆ ˆ ˆ ˆQM MM QM
tot QM MM MMH H H H+= + -
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1.3  QM/MM Embeddings

The way the QM part feels the presence of the MM surroundings is called embed-
ding. Prior to detail the various possible embeddings, it is important to recall the 
elementary particles of each part and how they interact.

The MM force fields consider a set of connected atoms (point masses). The 
atomic interactions are divided in two families: the bonded ones (stretching, bend-
ing, torsion) and the non-bonded ones (mainly electrostatic and van der Waals in-
teractions). Some elaborated force fields allow the atomic point charges to vary 
according to their environment (polarization). Albeit the lack of explicit description 
of the electrons and nuclei is a strong limitation of MM methods, the main restric-
tion of the MM representation is the predefined and fixed connectivity between the 
atoms.

The QM part is composed by a set of nuclei surrounded by electrons, and in ab-
sence of external field, solely the coulombic interaction is considered.

The QM/MM interactions are classified in three categories listed below.

1.3.1  Mechanical Embedding (ME)

The surroundings create geometrical constrains on the QM part. For QM:MM meth-
ods, only non-bonded interactions are responsible for these constrains (mainly van 
der Waals, but electrostatic repulsion or attraction can also have a non-negligible 
effect). They define regions of space that exclude the QM atoms and consequently 
modify its geometry. For QM–MM methods, the terms corresponding to bonded 
interactions between the QM part and the close-by MM atoms also play a major 
role. One has to note that van der Waals parameters need to be attributed to QM 
atoms (most of the time these parameters are those of the used force field, but one 
can optimize them [51]). If the QM part doesn’t feel the electrostatic field of the 
MM surroundings, i.e. only when bonded and van der Waals QM/MM interactions 
are considered, one speaks about Mechanical Embedding. In this approximation the 
additive and the subtractive partitioning would give the same answer, since the QM 
electronic wave function is only affected through geometrical polarization. This ap-
proximation is suitable only for very weak polar, or isotropic, environment.

1.3.2  Electrostatic Embedding (EE)

Most of the time, the charge distribution of the MM region is anisotropic and this 
results in a non uniform external electrostatic field felt by the QM fragment. As a 
consequence, the electronic cloud of the QM region is polarized and the physical 
properties are then greatly modified. This electrostatic QM/MM interaction is then 
of primary importance and has to be taken into account for, of course, the calcula-
tion of the total energy of the whole system, but also in the Hamiltonian which will 
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give the electronic wave function. If this interaction is considered one speaks about 
Electronic (or Electrostatic) Embedding, depending if it is included (or not) in the 
QM Hamiltonian. Taking into account this embedding with the additive scheme is 
straightforward. For the subtractive portioning, special care has to be taken. One has 
to note that, independently of the partitioning, the charge distribution of the MM 
system is not perturbed by the polarization of the QM part.

1.3.3  Polarizable Embedding (PE)

Rigorously speaking, if the MM part polarized the QM region, in turn the QM region 
should polarize the MM part and so on until convergence is reached. Some specific 
force fields, which allow such procedure, are said to be polarizable (AMOEBA, 
TCPEp, SIBFA, …) [28–30, 49, 50, 52, 53]. Another approach, called Electronic 
Response of the Surrounding (ERS), that uses the dynamical part of the dielectric 
constant of a polarizable continuum, is developed in our group [9, 54–61]. One 
speaks of Polarizable Embedding when such level of sophistication is used. Al-
though, PE is certainly the most realistic possible QM/MM simulation, it is barely 
used and EE is the standard. The reason behind is not the laziness of theoretical 
chemists but the way force fields parameters are defined. In fact, most of the (non-
polarizable) force fields define the atomic point charges in such a way to reproduce 
condensed phase properties. Thus the MM point charges are implicitly polarized 
and the EE level is sufficient. It exist however some situations for which the PE ap-
proximation is mandatory: when the force field parameters are based on gas phase 
data, or when the electronic variations of the QM part are drastic (for example for 
some chemical reactions like Menshutkin’s one or for electronic transitions between 
states of different nature). PE calculations with the additive partitioning are straight-
forward from a theoretical point of view. Within the subtractive decomposition of 
the total Hamiltonian one has to modify further the initial methodology.

Up to now, the partitioning of the Hamiltonian and the Embedding of the QM 
part are enough to discriminate between QM:MM methods (in addition to the trivial 
differentiation induced by the methods used for the QM and the MM parts). For 
QM–MM methods, one needs to go one step further and to consider the way they 
connect the MM part to the QM one, since formally covalent bonds of the total 
molecule are cut and have to be modeled.

1.4  QM–MM Junctions

Whatever the connection scheme, the frontier atom on the QM side must possess 
classical parameters for the bonded terms linking the two fragments. The most com-
mon habit is to include all MM bonded interactions when at least one MM atom is 
involved. However, this implies to define connectivity inside the QM region which 
could be incompatible with the investigated chemical process. This induces an in-
trinsic limitation to the smallest size the QM part can have.
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1.4.1  Link Atom (And Related Schemes)

The simplest way to saturate the dangling bonds is to add monovalent atoms, most 
of the time Hydrogen atoms, called link atoms [31–37]. These atoms are artificial 
in the sense that they do not exist in the initial molecule (see Fig. 1.1a). Although 
apparently quite simple to implement, this scheme requires some care to treat the 
exceeding degrees of freedom when computing energy gradient for geometry op-
timization or molecular dynamics. One must be aware that, when using large dif-
fuse basis functions, the electronic density of the QM system can spill-out to the 
neighbor classical atoms. Although this can be true for any QM–MM junction, it is 
particularly evident for link atom methods for which the extra atom is very close 
to the classical part. In addition, if a single C–C bond polarity can be adequately 
modeled with a C–H bond, C–O or C–N bond polarity can hardly be reached. Some 
attempts involving (pseudo-)halogen atoms or atom group (CH3 for example) have 
been proposed, but no universal method was given so far. Finally, multiple bonds 
are quite challenging to cut with this scheme.

1.4.2  Connection Atom (And Related Schemes)

The second family of methods suppresses the exceeding degrees of liberty intro-
duced by the supplementary atoms. The second atom of the cut covalent bond is 
included in the QM region, and is then a quanto-classical atom having all the QM 
parameters (basis set, nuclear charges, semi-empirical parameters if needed) and 
all the MM parameters (depending of the force field used). It is called a connection 
atom (see Fig. 1.1b). This scheme needs an intense parameterization but is easily 
applicable at the ab initio level thanks to pseudopotentials [38–40]. The pseudo-
bond approach belongs to this family. Up to now, only few atom types have been 
parameterized owing to the strong dependence to the MM force field used and to 

a b c

Fig. 1.1  Schematic representations of the three types of QM–MM junctions for the frontier bond 
X–Y where the X atom is in the QM part and the Y atom is in the MM part. The quantum part 
is depicted in Balls and Sticks representation and the MM one in Sticks only. a Link Atom (LA) 
approach. b Connection Atom (CA) method. c Frozen density approach, here a Strictly Localized 
Bond Orbital is depicted in blue
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the QM method considered. Hence, this scheme cannot be considered as universal 
neither.

1.4.3  Frozen Density (And Related Schemes)

Finally, the third class of approaches encompasses all methods dealing with frozen 
electronic density (see Fig. 1.1c). Generally, the electronic density is obtained from 
orbitals (hybrid orbitals or localized molecular orbitals) determined on small mol-
ecules which contain the bond of interest [9, 19, 20]. It is then possible to cut bonds 
of any polarity (P–O in DNA for example), or multiplicity. It is even possible to cut 
peptide bond, which represent a serious advantage for the study of proteins. The 
universality of these methods is however accompanied by an inherent coding com-
plexity. Among these methods, the Local Self-Consistent Field approach (LSCF) 
developed in our group since more than fifteen years is detailed in the next section.

1.5  The LSCF Method

The first published QM/MM method using an ab initio Hamiltonian was based on 
the LSCF method [19]. The basic ideas of the Local Self Consistent Field, i.e. us-
ing frozen strictly localized bond orbitals (SLBO) to describe the bonds separating 
the quantum to the classical subsystems, already developed for the semi-empirical 
level, have been applied to the ab initio or density functional levels of computation 
[20, 62–71]. In the latter cases a difficulty appears due to the fact that overlap be-
tween atomic orbital is no longer neglected. Therefore, the molecular orbitals of the 
quantum subsystem have to be kept orthogonal to each SLBO. This can be achieved 
by an orthogonalization of the basis set to the SLBOs, but owing to the fact that 
some functions of the set enter the SLBOs, a linear dependency appears between 
the orthogonalized functions. This inconvenience can be overcome by means of a 
canonical orthogonalization which yields a set of orthogonal, linearly independent 
basis functions which can be used to develop the molecular orbitals of the quantum 
subsystem. In order to recall to the reader the general equations used in the LSCF 
method, we present below the very basic theory [20].

Solving the LSCF problem implies optimizing a monodeterminantal wavefunc-
tion in the orbital approximation knowing that some predefined orbitals are given, 
and that these “external” orbitals should remain constant during the optimization 
procedure, i.e. frozen. The type of frozen orbitals is completely free. They can be 
monatomic, diatomic or polyatomic. In addition they can be occupied or empty. Of 
course to link the QM and MM together, they are doubly occupied SLBOs. The 
coefficients defining these frozen orbitals, are the only data needed to start the com-
putation and are generally obtained on a simple molecule containing the bond to be 
mimicked. Let say that the user gives L frozen orbitals 1,{ }i i Lψ =  expanded on the 
initial basis set 1,{ } Kµ µϕ =  composed of K real functions.
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(1.3)

If the given frozen orbitals are non orthogonal, they can be orthogonalized by the 
standard Löwdin or Gramm–Schmidt procedures. Let’s suppose here for simplicity 
and without loss of generality that these frozen orbitals are orthogonal. Each func-
tion of the initial set is projected out of the subspace spanned by the frozen orbitals.

 
(1.4)

where Nμ is a normalization factor. This transformation can be represented by a 
square matrix M, of dimensions K × K, acting on the initial set to provide the new 
set and whose elements are given by:

 

(1.5)

Where Sλµ λ µϕ ϕ=  is an overlap matrix element for the ϕ base. The new set of K 
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Finally, the two matrices X and M can be contracted in one performing the trans-
formation of the initial set of K functions ϕ into a set of K − L functions mutually 
orthogonal and orthogonal to the L frozen orbitals.

 
(1.8)

The rectangular B matrix is used in the SCF procedure instead of the usual Löwdin 
matrix. Hence this method can be employed either for Hartree-Fock or Kohn-Sham 
equations resolution in the Roothaan formalism. The extension to the unrestricted 
spin case is trivial.

The only other modification one has to take care of is the construction of the total 
density matrix ( )T Q FP P Pµν µν µν= +  to build the Fock (or Kohn-Sham) matrix elements. 
To the usual density matrix built over the variational orbitals ( )
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The derivatives needed to allow a full optimization of geometry, or to perform 
molecular dynamics trajectories, have been given elsewhere, and can be obtained 
analytically. It appeared that during this optimization, the length of the frontier 
bond, i.e. the bond linking the quantum to the classical system is systematically 
found too short and the shape of the potential energy surface (PES) around the 
minimum is different from the one obtained by a full QM calculation, whatever the 
method used to localize the orbital. This defect is analysed as the consequence of 
the fact that the nucleus of the quanto-classical atom of charge Z is replaced by a 
charge + 1 since this atom contributes for one electron to the SLBO. Therefore, the 
interaction between nuclei is underestimated and, in addition, the variation of the 
overlap between the basis function with respect to the bond length is not taken into 
account. This defect has been corrected by introducing a 5 parameters empirical 
interaction potential for the frontier bond of the form:

 
(1.9)

where r is the distance between the two atoms forming the bond. The parameters 
have been adjusted for any pair of C, O, N atoms, either at the quanto-classical or 
quantum position and for various hybridization states of the carbon atom.

In order to set up a non-empirical method and then to avoid the use of an empiri-
cal potential, the analysis of the factors affecting the energy variations of the system 
when the length of the frontier bond is varied proved that the discrepancy comes 
from the fact that the quanto-classical atom is treated as a pseudo one electron atom 
[9, 67, 68]. Taking into account the inner shell electrons of the quanto-classical 
atom by means of frozen or variational core orbitals gives an elegant solution to this 
problem. The nuclear charge is then switched to + 3 and two electrons are added 
in the QM system. The acronym used to specify this modification is LSCF + 3, by 
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contrast to the initial approach called LSCF + 1. Many results have shown that the 
LSCF + 3 scheme reproduces satisfactorily the position of the minimum as well as 
the curvature obtained with the full quantum results, the error on the equilibrium 
distance being less than 0.1 Å [9]. Of course, no agreement can be obtained for long 
interatomic distances because the SLBO is only valid in the vicinity of the distance 
at which it has been obtained. This scheme has been extended successfully to the 
peptide bond where the C atom is at the MM frontier. It has also been extended to 
the same bonds in which the quanto-classical atom is the nitrogen atom. In this case, 
adding two extra valence electrons, those contained in the orbital conjugated with 
the C=O π orbital, is mandatory. The acronym is then trivially LSCF + 5. This meth-
od is free of fitted parameters and allows a symmetric description of the amino acid 
residues without the arbitrariness of adjusting the classical point charges to obtain 
an integer value. This procedure is particularly attractive for QM/MM calculations 
on proteins since it permits to directly cutting through a peptide bond, keeping the 
electron delocalization occurring at the amide bond. Indeed by using LSCF + 3 and 
LSCF + 5 cutting scheme we have shown that the QM/MM equilibrium geometry 
of a tripeptide in which only the central monomer is treated with QM reproduces 
well the equilibrium geometry of the full QM systems, both for bond lengths and 
angles. In particular the planarity of the amide groups is always perfectly respected 
confirming the fact that the electron delocalization is taken into account whatever 
atom between C and N is treated as quanto-classical. The link atom approaches 
which use hydrogen atom to saturate the dangling bond are of course not able to 
reproduce this feature.

Several localization procedures exist and many have been tested in the LSCF 
framework [73–80]. It has been shown that, when one is interested in relative ener-
gies, the results do not depend on the localization scheme.

One can thus consider that the LSCF method is universal in the sense that it can 
be applied to any MM and QM methods, to bonds of any polarity and multiplicity.

1.6  Applications

We will present here some applications of QM/MM methods to the treatment of 
problems related to biological systems. Although these methods have been initially 
developed to deal with enzymatic catalysis or biochemical reactivity in general [81, 
82], they are nowadays also applied to study the photophysics or photochemistry 
of complex biological systems. In this chapter, we will focus on the calculations 
of electronic excited states and on the different effects of the environment induced 
on the different chromophores [83–85]. We will consider systems in which the 
chromophore being covalently bounded to the macromolecule the use of QM–MM 
methods will be necessary, together with different cases in which QM:MM allows 
to treat non-covalently bounded systems. Finally the role and the necessity of a 
proper sampling of different conformations with using MD techniques using MD 
techniques will be tackled and discussed.
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1.6.1  Absorption of Human Serum Albumin (HSA)

HSA is a liver produced protein present in the blood where it exercises regulatory 
and transport functions. Despite its huge mass, it only possesses one tryptophan 
residue. Tryptophan is fluorescent and its optical properties are strongly dependent 
on the environment. The latter can be used to probe their conformation. Indeed in 
the protein (Fig. 1.2) the tryptophan is embedded in a pocket between different α-
helices, in an environment strongly different from the one of the denatured protein 
where it will be mainly surrounded by water molecules.

In Fig. 1.2 (right panel) one can also see the QM/MM absorption spectrum 
computed at Time Dependent Density Functional (TD-DFT) level using B3LYP 
exchange correlation functionals and a 6–311 + G(d, p) basis set [9]. The protein 
environment where treated using amber99 force field. Note that the transitions have 
been obtained as Franck-Condon vertical transitions from the ground state equilib-
rium geometry. The QM-MM frontier has been treated placing an SLBO between 
the Cα–Cβ bond of the tryptophan lateral chain.

The spectrum obtained with the three different embedding schemes [9] is provid-
ed and one can see that the computed spectrum presents two well defined absorption 
maxima at about 250 and 275 nm, respectively. This represents a significant red-
shift compared to the absorption of water solvated tryptophan, accounting for the 
environment effects. Notice also that the inclusion of polarization effects, treated 
using the ERS technique, induces a non negligible shift over the ME and EE ab-
sorption maxima, confirming the fact that differently from the case of ground state 
studies, in the case of electronic transitions all the three embedding effects should 
be taken into account.

1.6.2  Absorption of Copper Proteins (From Red to Blue Protein)

Plastocyanin (Fig. 1.3) are metallo-protein present in superior plants were they as-
sure electron-transfer during the photosynthetic process [57, 58]. The active site of 
the protein is constituted by a copper ion complexed by four aminoacids residues: 
one deprotonated cysteine, one methionine and two hystidines. Notice that the elec-
tron-transfer is assured by the copper atoms that can reversibly convert between the 
+ II and + I form. QM–MM calculations have allowed us to show that the protein 
environment regulates the necessary high rate of electron-transfer by constraining 
the copper environment in a geometry that is somehow mid-way between the ones 
of the + II and + I complex in gas phase [57] (i.e. copper coordinated by the lateral 
chains of the previous cited aminoacids, only), moreover in the protein geometrical 
differences between the oxidized and reduced form are extremely small, thus mini-
mizing the reorganization energy of the redox process.

   But oxidized plastocyanin are also known to exhibit a very peculiar absorption 
spectrum, characterized by a very intense absorption at about 600 nm responsible 
for the intense blue color, and quite different from the one of isolated copper com-
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plexes. The QM–MM absorption spectrum obtained at TDDFT level putting only 
the copper ion and the ligating aminoacids in the QM part is also reported in Fig. 1.3 
and one can notice the very good agreement with the experimental values, provid-
ing that the PE effect is taken into account, on the contrary ME gives totally unreli-
able results indicating an important effects of electrostatic and polarization effects 
[57]. Note also that more in detail the PE spectrum is composed of a large tail in 
the near infrared region while the visible part is constituted by the huge absorption 
band peaking at 600 nm and of a much less intense band appearing close to 490 nm. 
Indeed we have shown that by a selective mutation of the methionine residues com-
plexing copper one can induce an important shift of the position of the two bands, 
coupled with an important change on the relative intensity ratio (Table 1.1 ). These 
two phenomena together induce an important change on the color of the protein and 
indeed by selectively mutating only one aminoacid, one is able to continuously pass 
from a blue to a red protein when methionine is substituted with the non proteino-
genic aminoacid homocysteine (Hcy) [58]. Note also that these results also nicely 
reproduce experimental observations [86].

Fig. 1.3  Structure ( left) and computed absorption spectrum ( right) of plastocyanin. For the spec-
trum wavelengths in nm and intensities in arbitrary units

 

Fig. 1.2  Structure ( left) and computed absorption spectrum ( right) of tryptophan in HSA. For the 
Spectrum wavelengths in nm and intensities in arbitrary units
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1.6.3  Interactions with DNA: Light-Switch Effect  
and Phototherapy

The interaction of organometallic and organic metal with nucleic acid and especial-
ly DNA is nowadays a very well recognized phenomenon that is strongly exploited 
in chemotherapy to induce apoptosis of cancer cells or simply as DNA probe. More-
over a growing interest is devoted to the non-covalent interactions between DNA 
and xenobiotics [59–61, 87]. Indeed this interaction can take place by electrostatic 
binding to the DNA, with the interactor laying close to the minor or major groove 
or by intercalation and/or insertion. In these latter situations usually the xenobiotic 
has one large planar and conjugated moiety that can intercalate between two base 
pairs (intercalation) or eject one of the bases and substitute it in the double helix 
(insertion).

It is noteworthy to recognize that the interaction with DNA can strongly alter the 
photophysical and photochemical properties of many chromophores. One paradig-
matic example is the so called light-switching effect in which a non luminescent 
Ruthenium complex becomes strongly luminescent when DNA is added to the so-
lution. Most strikingly by just a small modification of the ligands of the complex 
the behavior is completely reversed, and the complex now become luminescent in 
water, while the emission is totally quenched by DNA. This general behavior can 
be interpreted in term of a competition between luminescence and a photo-induced 
charge transfer from DNA (most often guanine) to the organometallic complexes. 
In other words when in its excited state Ruthenium complexes is able to oxidize 
DNA and therefore to induce an irreversible lesion that can ultimately provoke the 
cellular death, the possible application of this feature in phototherapy is of course 
straightforward, and indeed some Ruthenium complexes have already entered the 
clinical trial phase. It is evident that to be able to produce efficient and selective 
phototherapeutic agents the nature of the Ruthenium complex excited states should 
be carefully elucidated as well as the effects induce by the DNA environment.

To this end we studied by using QM:MM methods the behavior of Ru di-bipyr-
idyl, dipyridophenazine (Ru(bipy2,dppz)) [59, 60], whose structure is reported in 
Fig. 1.4, interacting with a double helix DNA pentadecamer (Fig. 1.4). After having 
optimized the intercalated complex at DFT level we performed TD-DFT calcula-
tions of the absorption spectrum. In all cases only the chromophore was treated at 
QM level, using B3LYP as exchange correlation functionals and the LANL2DZ 
basis, DNA as well as the water solvation box was instead treated using CHARMM 
force field.

Table 1.1  Variation of absorption wavelengths and of the intensity ratio between first and second 
band in plastocyanin upon mutation of methionine

First band λmax (nm) Second band λmax (nm) Intensity ratio

Cys 589 452 2.00
Cys- 526 447 0.44
Glu- 550 440 0.66
Hcy 452 403 0.84
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In Fig. 1.5 we report the QM:MM spectrum, including polarization effects, 
of Ru(bipy2,dppz) interacting with DNA compared to the experimental one. It is 
straightforward to notice the very good agreement with experimental results, in par-
ticular for the bands in the visible region. The large band situated at about 450 nm 
as well as the weak, but important, band appearing at about 350 nm.

By analyzing the single excitation in terms of orbital contribution, and in particu-
lar in terms of natural transition orbitals (NTO) [57, 58] we have been able to cor-
rectly interpret the spectral features. In particular the band at 450 nm is dominated 
by metal-to-ligand charge-transfer (MLCT) transition, while the band at 350 nm is 
much more complex and is composed of MLCT as well as of intra- and inter-ligand 
charge transfer transitions. In particular the latter are extremely important since they 
can leave a hole in the intercalated ligand that can favor the charge-injection from 
the DNA (Fig. 1.6).

Fig. 1.4  Molecular Structure ( left) of Ru(bipy2,dppz) cation and its interaction with DNA ( right)

 

Fig. 1.5  Computed and experimental absorption spectrum of Ru(bipy2, dppz) interacting with 
DNA. Wavelengths in nm, intensities in arbitrary units
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Up to now the examples we have presented were obtained considering vertical 
transitions from the equilibrium geometry in the framework of the Franck–Condon 
principle. Indeed biological macromolecules such as nucleic acids are quite flex-
ible and can explore important regions of the configuration space. The inclusion of 
dynamic and vibrational effects, as well as its coupling with the solvent and with 
environment motion can be straightforwardly tackled by using classical molecular 
dynamics (MD) techniques [61]. Indeed one can run a sufficiently long MD trajec-
tory (usually some nanoseconds) and extract statistically independent snapshots. 
The excitation spectrum can be calculated at QM/MM level for each snapshot 
and the resulting final absorption spectrum will be composed by the convolution 
of all the individual snapshots. This technique has also the advantage to take into 
account the vibrational structure of the spectrum and can therefore recover the 
asymmetry of the absorption band or the shifts induced by vibronic coupling.

An example of a system for which such a treatment is compulsory is the one 
of a β-carboline, harmane, whose cation interacts with DNA via minor groove-
binding or intercalation (Fig. 1.7) [61]. Due to the important out of plane vibra-
tion of the fused ring, and to its coupling with the electronic transition energy, the 
static approach from equilibrium geometry, gave a shift of more than 50 nm on the 
absorption maximum. On the other hand when considering the convolution from 
a MD trajectory one gets the exact experimental value, as can be seen in Fig. 1.7. 
Note also that MD proved that the two interaction modes where stable and almost 
degenerate in terms of interaction energy, they also gave rise to a practically undis-
tinguishable absorption spectrum.

1.7  Conclusions

In this contribution we have presented the advantages and flaws of general QM/
MM philosophies. Whatever the chosen method, if well parametrized, one can get 
reliable results and insights on very large molecular systems still unreachable by 
standard QM methods. However, we think that the LSCF approach is the only one 
that doesn’t need specific parameters to be applied on any kind of (covalent) sys-
tems. In that sense, it can be qualified to be “universal”.

Fig. 1.6  NTOs for two selective transitions of Ru(bipy2,dppz)
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Many factors can be of tremendous importance for large anisotropic biomolecu-
lar systems, like the sampling of the conformational space, the mutual polarization 
of both subsystems and so on. One must be aware that these effects are system 
dependent and for every study special care has to be taken. Hybrid methods are not 
yet black-boxes. Let’s hope it will stay so for a long time.

We are really convinced that the most important feature of QM/MM methods is 
to give insights, and more importantly to give correct trends, on systems on which 
obtaining absolute number has no meaning.

The applications we have chosen to present here are just few examples of what 
these methods are able to tackle. However, one has to bear in mind that one can only 
study systems in which the electronic phenomenon is localized in a small portion of 
the total space. This is perhaps the area where linear scaling methods will find their 
most exciting applications.
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Abstract In this chapter we demonstrate the large usefulness of using complex 
approach for understanding the mechanism of binding of biologically active com-
pounds (antitumour antibiotics, mutagens etc.) with nucleic acids (NA). The appli-
cations of various biophysical methods and computer modeling to determination 
of structural (Infra-red and Raman vibrational spectroscopies, computer modeling 
by means of Monte-Carlo, molecular docking and molecular dynamics methods) 
and thermodynamic (UV-VIS spectrophotometry, microcalorimetry, molecular 
dynamics simulation) parameters of NA-ligand complexation with estimation of 
the role of water environment in this process, are discussed. The strategy of energy 
analysis of the NA-ligand binding reactions in solution is described, which is based 
on decomposition of experimentally measured net Gibbs free energy of binding in 
terms of separate energetic contributions from particular physical factors. The main 
outcome of such analysis is to answer the questions “What physical factors and to 
what extent stabilize/destabilize NA-ligand complexes?” and “What physical fac-
tors most strongly affect the bioreceptor binding affinity?”
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2.1  Introduction

Rational design of new compounds for therapeutics requires knowledge about their 
structural stability and interactions with various cellular macromolecules—their 
molecular receptors or targets. In order to optimize the efficacy of drugs, as well 
as discover new ones, it is important to fully characterize the drug—bioreceptor 
(biopolymer) interaction [1].

Nucleic acids (NA) are common targets for antiviral, antibiotic and anticancer 
drugs that are used in cancer therapeutics [2] and also are viewed as a non-specific 
target for cytotoxic agents [3]. Many antitumour drugs are considered to exert their 
cytotoxic effect through DNA-specific interactions, resulting in genotoxic stress and 
consequent induction of programmed cell death (apoptosis) [4]. Presently, when 
patients can be provided with a full genome sequence as a part of their medical 
records, the field of drug design must be adapted and improved in order to meet this 
challenge [5]. Rational drug design thus requires detailed knowledge of both the 
structural consequences of ligation and the binding characteristics of the drug. Ideal-
ly, such information is required for DNA targets of genomic size and complexity [6].

In this regard it is important to know how small biologically active molecules—
drugs or other ligands—will interact with nucleic acids [7]. One can use biophysical 
techniques to characterize the binding of the drugs with DNA and, based on experi-
mental data, to expand further understanding of the binding process with an aid of 
molecular modelling or computer simulations. Such approach allows to get differ-
ent physical parameters of the interaction in the system “molecular target (DNA)—
drug” and to use them for the establishment of correlation between these parameters 
and drug activity in vitro or in vivo [8, 9].

2.2  Biophysical Methods for Studying DNA-Drug 
Complexation

One of extensively developing trends in molecular biophysics is prediction of phar-
macological action of drugs at the molecular level that requires: (1) determination 
of the structural features of the complexes “target-drug” containing the biologically 
active ligands and exerting their maximal biological effectiveness; (2) determina-
tion of correlations of the physical parameters of interaction in the system “tar-
get-drug” and the biological activity of the drugs; (3) obtaining the most probable 
molecular models of the “target-drug” complexes based on various experimental 
physical methods and molecular modelling studies. As a practical outcome, one 
can formulate recommendations for the synthesis of new biologically active ligands 
with improved pharmacological properties based on information about the biomo-
lecular target and the calculated physical parameters of ligand interaction with the 
target.
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2.2.1  UV-VIS Spectroscopy

Absorption UV-VIS spectroscopy is one of the most widespread experimental 
methods used in molecular biology and biophysics for qualitative and quantitative 
studies of the interaction of biologically active ligands with DNA. This experimen-
tal method enables to identify the formation of complexes, to evaluate their com-
plexation constants, to determine different types of ligand states in solution (e.g. 
free and bound with polymer matrix by various modes) on the basis of the shape 
and positions of the maxima in the corresponding spectra, to calculate the size of the 
binding site and the sequence specificity [10–17]. The changes in absorption spectra 
on addition of drugs to DNA solutions may be used for identification of different 
types of ligand complexation (e.g. intercalation or major/minor groove binding).

The method of spectrophotometric titration is usually used for detailed analysis 
of the binding modes and the structures of the molecular complexes [18]. Concen-
tration dependencies obtained during the titration of the DNA—ligand complexes 
may be used for calculation of the binding parameters. The most important factor 
in correct determination of these parameters is the choice of the model of complex-
ation, in which all physically possible binding modes (intercalation, binding with 
one of the DNA grooves, weak binding or electrostatic interactions of the ligand 
cation with negatively charged phosphate groups of the polynucleotide) should be 
taken into account. When a suitable model (or the most probable models) is se-
lected, the equations, determining the relation between the equilibrium concentra-
tions of the molecular components and the interaction parameters, may be used for 
quantitative description of the titration curve [19–21].

Thermodynamic parameters and the process of thermal denaturation of the 
drug—DNA complexes can be systematically studied by spectrophotometric 
method. Such approach yields a thermodynamic profile, i.e. standard free energy, 
enthalpy and entropy changes in ligand-DNA reaction of binding, using the van’t 
Hoff plot based on determining the value of equilibrium binding constant at vari-
ous temperatures. These thermodynamic parameters allow to further evaluate the 
enthalpic and entropic contributions to the free energy change in the DNA complex-
ation process [22].

However, the most fruitful outcome can be achieved by a combination of the 
UV-VIS spectroscopy with other experimental methods.

2.2.2  Infrared and Raman Vibrational Spectroscopy

Among different physical methods of investigation of specific structural features 
and intermolecular interactions of nucleic acids with drugs and water, the Infrared 
(IR) and Raman vibrational spectroscopies occupy very important position. Both 
of these methods can effectively probe structural details of solution complexes be-
tween the drugs and DNA molecules of genomic size, and are used to determine the 
ligand binding mode, binding affinity, sequence selectivity, DNA secondary struc-
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ture, and structural variations of the DNA—ligand complexes in aqueous solution 
[23–28].

IR and Raman spectroscopies are able to provide information on the formation of 
hydrogen bonds in solution. It has long been known that the formation of hydrogen 
bonds between the proton donor (OH, NH, NH2, CH) and acceptor (C = O, C–O, 
C–N, C = N) groups is accompanied by a low-frequency shift, rising in intensity 
and increase in the half-width of the absorption bands of stretching vibrations in 
the IR spectrum [29, 30]. At the same time the absorption bands of deformation 
vibrations (e.g. NH2- and OH-groups) experience high-frequency shifts [31]. These 
spectral features are considered as a direct evidence of H-bonds formation between 
the interacting molecules in solution [32]. Thus, the groups of atoms involved in 
stabilization of different types of DNA—ligand complexes can be identified by the 
vibrational spectroscopy [33–35]. In particular, analysis of Raman spectra allows 
to identify the atomic groups of the drugs forming hydrogen bonds with donor or 
acceptor atomic groups of DNA in all possible types of DNA-drug complexes [36, 
37], and to determine, for example, the unwinding of double-stranded B-DNA in-
duced by drug intercalation [38] or structural transition of DNA from B- to A-like 
conformation accompanying the DNA-ligand complexation [39].

2.2.3  Hydration

Since the formation of DNA—ligand complex occurs in water environment and 
brings one of the most significant contributions to stabilization of the DNA-ligand 
complexes, it is important to carry out analysis of the role, which water plays in the 
ligand binding processes [40–42]. From a practical point of view, understanding of 
hydration is valuable for rational design of novel DNA—binding drugs with pre-
dictable affinity and specificity to selected sequences of nucleic acid structures [43].

Investigations of the interaction between water molecules and DNA—ligand 
complexes in diluted solutions face serious difficulties due to the fact that the bound 
water is present only in insignificant amounts in solution. This fact implies the need 
to utilize highly sensitive physical methods for the study of water involvement in 
the complexation process. This is the reason why there is still a lack of reliable in-
formation on the distribution of water molecules in the hydration shells of various 
complexes, although the investigations of water surrounding of nucleic acid—li-
gand complexes have so far been carried out using numerous methods including 
X-ray crystallography [44], osmotic stress [43, 45], volumetry [46, 47] and mo-
lecular modeling methods [48–50]. In the IR spectroscopy the main difficulties are 
associated with the strong OH vibration of water molecules. This problem may be 
resolved by applying this method with respect to DNA—water systems prepared in 
wet films with changing water content [51–54]. Analyzing the changes in IR spectra 
which occur in several frequency modes (e.g. the stretching vibrations of OH- or 
OD-groups, the absorption band of bases—double and multiple bands, the absorp-
tion band of sugar-phosphate backbone) with an increase of the relative humidity, 
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it is possible to observe the atomic groups, which represent hydration centers, to 
estimate the order and the degree of their filling with water molecules, to determine 
distinctive features of the formation of DNA secondary structure in the complexes 
with ligands and the structure of the hydration environment. This procedure enables 
to control the state of water and the state of individual structural groups of the 
biopolymer and the ligand as a function of film moistening. Such an approach also 
gives an opportunity to estimate thermodynamic parameters of hydration and to 
construct a model of hydration shell of the complexes [55].

In order to reveal the energy contribution of water to stabilization of nucleic acid 
structures and their complexes, it is necessary to know the thermodynamic param-
eters characterizing hydration of DNA, the ligands and the DNA-ligand complexes. 
Various physico-chemical methods may be used to solve this problem experimen-
tally. In particular, a sufficiently sensitive piezomicrobalance or piezogravimetric 
method based on the use of quartz resonator, allows to obtain hydration isotherms 
or dependencies of sorption on relative humidity (in moles of water per mole of 
sorbent) [51, 52]. The isotherms measured for biopolymers or their complexes with 
ligands give insight into heterogeneity in the energies of interaction between the 
hydration sites and the sorbed water molecules.

2.2.4  Calorimetry

Structural studies are crucial for identifying the specific molecular interactions be-
tween the host DNA and the ligand, such that the overall three-dimensional shape of 
the complex and exact position or binding mode can be determined. But structural 
analysis alone can provide little knowledge on the nature of molecular forces that 
drive the complex formation in solution, and on the relative energetic contributions 
of specific molecular interactions. It is therefore essential to complement structural 
studies with detailed and rigorous thermodynamic analysis to fully characterize bi-
molecular complex formation. Differential scanning calorimetry (DSC) is one of 
the most convenient and informative methods for determining the energy param-
eters of interaction of the ligands with DNA. Direct measurement of heat effects 
caused by melting of DNA and its complexes enables to determine the full set of 
thermodynamic binding parameters and the energetic parameters of structural tran-
sitions: enthalpy, entropy and free energy changes, melting temperature and melting 
interval [56–61]. In order to quantify the energetic parameters of the interaction 
from DSC heat capacity curves, specific theoretical models must be used. The most 
well-elaborated approaches for the analysis of heat capacity curves have so far been 
developed only for protein interactions with ligands, because protein unfolding can 
often be described by simple two-state model [62, 63]. When the DNA-ligand sys-
tem is being analysed, certain specificities of the complexation and melting of linear 
polymeric molecules should be taken into consideration. Recently a novel analytical 
approach for detailed analysis of the DNA-ligand interactions from DSC data was 
proposed [64]. The DNA macromolecule in this study is represented as an assembly 
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of cooperative units, which melt according to the two-state model. Explicit account 
of ligand distribution on polymeric DNA and the temperature dependencies of melt-
ing and binding constants, as well as enthalpies, were considered. Such approach 
enables to extract the binding constant, stoichiometry, enthalpy, entropy, and heat 
capacity changes from multiple excess heat capacity profiles obtained at varying 
concentrations of the ligand (i.e. the two-dimensional DSC curves). Comparison of 
the binding parameters calculated by fitting of two-dimensional DSC curves with 
the literature data and with that obtained by alternative experimental techniques, 
had demonstrated that the approach presented in [64] gives satisfactory results.

2.2.5  Computer Modeling

Binding affinity of the ligands with DNA may be estimated at the molecular level 
based on shape complementarity of the interacting parts of the ligands and DNA, 
and by explicit consideration of physical interactions (electrostatic, van der Waals, 
hydrophobic, specific hydrogen bonding etc.). It allows to determine the extent to 
which the formation of the complex under investigation is energetically favour-
able. However, all microscopic details of the interaction cannot be identified in 
experiment. In such case computer simulations are commonly used as an appropri-
ate complementary tool for modeling atomic-level interactions that produces the 
data about the structure of the most probable DNA—ligand complexes and on the 
contributions of different interactions to their stabilization with explicit account of 
water environment [65–71].

Molecular docking method is one of the most effective computer simulation 
methods, making possible a fast re-construction of all possible configurations of 
complexes between biological macromolecule and the ligand of interest. The mo-
lecular docking method is commonly used for estimation of specifity of protein–
ligand interactions [72–74]. The docking of ligands to DNA molecules is a less 
frequently used approach. In this approach anticancer drugs are usually taken as 
the ligands [75]. In order to investigate their complexes by computer simulation, 
the initial coordinates must be known. If the structure of the complex under study 
is absent in structural databases, the investigator often faces a difficulty on how to 
create the binding site. The results of docking of the ligands with different DNA-
targets indicate [76] that upon formation of the intercalation site it is usually enough 
to take into account only the most significant unwinding in one particular helical 
step or in the adjacent helical step of DNA double helix. The magnitude of the total 
unwinding of the DNA in the intercalation complex was found to be dependent on 
the sequence and length of the target DNA.

The application of Monte Carlo method for the study of hydration of nucleic 
acids, their components [77–80], and hydration of the DNA-ligand complexes (for 
example, dCpG with proflavine [81] and DNA with azinomycin B [82] intercalated 
complexes) was described in literature in detail. Monte Carlo simulations enable to 
evaluate the low energy conformations of various complexes of DNA fragments, 
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including their complexes with ligands, and to determine the hydration properties 
of the complexes being formed [54, 55, 83, 84].

Another very valuable tool in arsenal of theoretical investigation of biological 
molecules is the method of molecular dynamics simulations. This computational 
method describes the time dependent behaviour of the given molecular system. To 
date an extensive use of molecular dynamics simulations has resulted in generation 
of a wealth of detailed information on the fluctuations and conformational changes 
of proteins and nucleic acids. Such methods are now routinely used to investigate 
the structure, dynamics and thermodynamics of biological molecules and their com-
plexes [48–50, 65–71, 85].

2.3  Results of Experimental Investigation and Computer 
Simulation of DNA Complexation with New Synthetic 
Analogues of Anticancer Antibiotics

2.3.1  General Description of New Synthetic Analogues  
of Anticancer Antibiotics

As outlined above, in order to provide a scientific basis for rational design of DNA-
targeted drugs, it is necessary to understand how the molecules form complexes 
with DNA. Another important factor is the ability to quantify such complexation in 
order to make meaningful comparisons of the behaviour of different drugs. This is 
the focus of the biophysical studies reviewed below.

Here we present the results of investigations of the physical mechanisms of the 
interaction with DNA of a new series of biologically-active ligands, analogues of 
anticancer antibiotic Actinomycin D (AMD), obtained using complex approach in-
volving various experimental biophysical methods and molecular computer model-
ing.

AMD, the synthetic phenoxazone antibiotic, consists of a phenoxazone chromo-
phore substituted with two equivalent cyclic pentapeptide lactone rings. AMD is a 
DNA-binding drug. Its biological activity is thought to be due to preferential inter-
calation of the planar phenoxazone chromophore into GC sequence of DNA with 
the two cyclic pentapeptide rings lying in the minor groove [86].

AMD is an anticancer drug used in treatment of tumours, but its use suffers 
from induction of negative side effects [87]. With a general aim to reduce the side 
toxicity of AMD, a new set of drugs with phenoxazone chromophore and dimethyl-
aminoalkyl side chains (actinocin derivatives with side chains of different lengths, 
ActII—ActV, Fig. 2.1) have been synthesized [8].

The cytotoxic effects of the synthetic actinocin derivatives were investigated by 
examination of the drug-induced apoptosis and cell cycle perturbations in a human 
leukemia MOLT-3 cell line [88].

Examination of cytotoxic effects in leukemia cells showed that the variation in 
length of dimethylaminoalkyl side chains of actinocin derivatives leads to signifi-
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cant variation in cytotoxic activity as a function of the number of CH2 groups in 
their side chains, with pronounced maximum in cytotoxic activity for the ligand 
with two CH2 groups, i.e. ActII. Hence, the antitumour activity in the series of Ac-
tII—ActV ligands was found to be very sensitive to minor modifications in the side 
chains of the AMD derivatives, indicating a direct correlation between structure and 
activity of the drugs [8].

2.3.2  Free Ligand: Investigation by Experimental and Computer 
Simulation Methods

The main goal of the biophysical part of these studies is to understand the nature 
of specificity interaction between the drugs under investigation and nucleic acids, 
taking into account the interaction of individual components with water molecules. 
The following experimental physical methods were used to solve this problem: UV-
visible spectrophotometry for the study of different modes of ligand binding with 
DNA and the corresponding binding parameters, infrared spectroscopy and piezo-
gravimetry, giving information on the influence of water on the formation of DNA-
drug complexes, and differential scanning calorimetry for obtaining direct data on 
the thermostability of such complexes. In order to determine the most probable 
molecular models of the DNA-ligand interactions, the methods of computational 
analysis (molecular docking, Monte Carlo simulations and molecular dynamics) 
were used. It is assumed that the results obtained by these methods may be useful 
for directed synthesis of new drugs with improved medico-biological properties.

The first step of the study was the investigation of the solution behaviour of 
the synthetic drug molecules alone prior to their complexation with DNA. In-
vestigations of the self- and hetero-association of biologically active compounds 

Fig. 2.1  Chemical structures 
of the actinocin derivatives 
ActII—ActV
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with heterocyclic planar rings (aromatic ligands) in water are interesting from the 
physico-chemical point of view, resulting in determination of the influence of the 
structures of the chromophores and side chains on association ability, and estima-
tion of contributions of different interactions to the formation of stable aggregates. 
Another important issue is the pharmacological aspect, because the self- and hetero-
complexations, as well as competitive binding of the drugs with bioreceptor, may 
influence their activity.

Distinctive features of the self-association of the actinocin derivatives were 
determined experimentally (by UV-VIS spectrophotometry, piezogravimetry and IR-
spectroscopy) and using computer simulation (by Monte Carlo method and molecular 
dynamics modeling).

Analysis of both spectral and thermodynamic parameters obtained from UV-
VIS spectrophotometric data for the set of synthetic actinocin derivatives enabled 
us to conclude that the drugs experience strong tendency to aggregate in solution 
and the aggregation is appreciably higher in solutions of high ionic strength. The 
dimerization parameters depend slightly on the number of methylene groups in the 
side chains of phenoxazone antibiotics. Dimerization of the investigated ligands in 
aqueous solution leads to significant changes in the spectral characteristics of the 
antibiotics ActII-ActV, which needs to be taken into account in any studies of drug 
complexation with DNA [89].

Formation of DNA complexes with actinocin derivatives is accompanied by hy-
dration changes for both the DNA molecule and the intercalated ligands. In order to 
evaluate the energy contribution of water molecules to stabilization of these com-
plexes, it is necessary to obtain experimental data on the energies of interaction 
between water molecules and the free ligands. An investigation of the adsorption 
of water in the films of actinocin derivatives was performed using quartz crystal 
microbalance (piezogravimetry). In order to identify the hydration-active centers, 
the IR absorption spectra of wet and dry films of the actinocin derivatives were 
recorded in the spectral range 900–1700 cm−1, in which the DNA molecules can be 
characterized by the nitrogen base absorption region (1500–1700 cm−1) and by the 
region of sugar phosphate absorption (900–1300 cm−1). The main conclusion of this 
stage of investigation was that in contrast to the DNA molecule, the investigated 
actinocin derivatives demonstrate very weak absorption in the spectral region 950–
1250 cm−1 and, thereby, analysis of the IR spectra of the DNA-drug complexes can 
be carried out without taking into account the drug absorption in this IR region [55].

Computer simulation of the hydrated environment of actinocin derivatives in 
aqueous clusters by Monte Carlo method allows to determine the most energetically 
favourable “ligand-water” configurations, the number and the positions of water 
molecules forming hydrogen bonds with actinocin derivatives or their hydrated ac-
tive sites. Comparative analysis of the simulation data and the results of IR-spec-
troscopic and piezogravimetric studies of the actinocin derivatives’ hydration had 
demonstrated their complementarity and general agreement.

With an aim to investigate the molecular mechanisms of actinocin derivatives 
complexation in water solution, the molecular dynamics simulation of both mono-
mer and dimer forms of the ligands was carried out [90]. The hydration properties 
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of the monomer and the aggregated forms of the actinocin derivatives were deter-
mined (Fig. 2.2). The calculated values of interaction energies of the monomers in 
dimers show that the aggregation of these compounds in aqueous solutions is an 
energetically favourable process. The aggregates were stabilized by the van der 
Waals, electrostatic and hydrophobic interactions, and also due to formation of in-
termolecular hydrogen bonds [91].

In summary, the results of the first step of the investigation gave insight into the 
nature of the state of actinocin derivatives in aqueous solution and their interaction 
with solvent molecules. These results are needed for building molecular models of 
binding of these ligands with DNA. In particular, positions of the hydration centers 
indicate the sites of possible interactions of the ligands with atomic groups of DNA 
double helix. The information on the dimerization of the actinocin derivatives in 
water solution is necessary for estimation of the amount of drug molecules available 
for binding with DNA.

2.3.3  Investigation of the Ligand-DNA Complexation

The second step in the investigation of the activity of new synthetic anticancer 
antibiotics (actinocin derivatives) at the molecular level is a detailed study of their 
complexation with DNA.

UV-VIS spectrophotometry was used to investigate the parameters of DNA-ac-
tinocin complexation. It was shown that two types of complexes are being formed 
in DNA-drug solutions, viz. binding of the drug with DNA phosphate groups and 

Fig. 2.2  Two stable forms of ActII dimers with the nearest water molecules ( white) and Na+ ions 
( violet balls). a Stable form I: phenoxazone chromophores are titled. b Stable form II: phenoxa-
zone chromophores are parallel

 



31

intercalation or/and groove binding of the drug with DNA. The binding constant, 
the sizes of the drug binding sites with DNA and the cooperativity parameters for 
both types of complexes were calculated [36, 37, 89].

The thermodynamic parameters of the DNA-drug complexes were obtained by 
using UV-VIS optical melting [18] and DSC methods [89]. From the UV melting 
curves of DNA alone and its mixture with ligands (ActII-ActV) the melting (melt-
ing temperature, melting interval) and the binding parameters (changes of binding 
free energy, binding enthalpy and entropy) for all the samples studied were deter-
mined. From these data it was found that the largest value of the binding free energy 
change is associated with DNA-ActII complex. This result indicates that within the 
set of the actinocin derivatives having different number of methylene groups in 
dimethylaminoalkyl side chains studied in this work, specifically ActII containing 
two CH2 groups features the strongest interaction with DNA.

Quantitative estimation of the binding parameters accomplished using the DSC 
data showed that the stability of the DNA-ligand complexes is higher than that 
in the case of free DNA. On decrease in the number of methylene groups in the 
ligands’ side chains both the binding enthalpy and the free energy changes increase 
non-linearly reaching the maximal value for the number of CH2 groups equal to 2 
(i.e. DNA-ActII). Hence, there is a satisfactory agreement between the values of 
thermodynamic parameters and their dependence on the number of CH2 groups in 
the ligands’ side chains, obtained from DSC and UV-VIS optical melting. The mag-
nitude of the binding enthalpy can be explained by the intercalative type of interac-
tion, which may additionally be stabilized by hydrogen bonds and water bridges. 
The melting entropy of the complexes is higher by absolute value than that of free 
DNA. It is due to more ordered structure of the hydration environment around the 
complexes in comparison with free DNA.

Some peculiarities of the heat absorption curves caused by melting of DNAs 
having different nucleotide compositions were observed for the solutions of free 
DNA and its complexes with actinocin derivatives ActII-ActV. Notably, for the 
DNA-ActII complex the heat absorption curve is significantly distorted in high-
temperature area when the GC-rich blocks of DNA are melted.

The role of water in the DNA-drug complexation was investigated by piezogra-
vimetry and IR spectroscopy. Hydration isotherms and IR-spectra of the free DNA 
and the DNA-drug complexes were obtained in films. Analysis of the spectra was 
carried out using reliably-assigned DNA absorption bands sensitive to hydration 
and conformational states of nucleic acids, as well as by the absorption bands of 
the drugs. Investigation of the properties of water absorption to DNA and DNA-
drug complexes had led to the conclusion that the energy of interaction between 
the water molecules and the complexes depends on the length of side chains of 
synthetic phenoxazone drugs ActII-ActV. The hydrated environment makes signifi-
cant contribution to stabilization of double-helical structure of either free DNA and 
of its complexes with the drugs. Increase of relative humidity of the films in the 
range of 0 to 90 % leads to increase in the intensity of the IR-absorption bands for 
the sugar-phosphate backbone vibration, in- and out-ring groups of DNA base pairs 
in the drug-DNA complexes, and also of the absorption bands of C = O, C = N 
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and NH2(ND2) groups of the drugs. These changes in spectral parameters confirm 
simultaneous hydration of the drugs and DNA, which most likely originates from 
the water molecules acting as bridges between the drugs and DNA. In the case of 
actinocin derivative ActII there is also an interaction between cationic groups of the 
drug and DNA sugar-phosphate backbone resulting in additional stabilization of the 
DNA-ActII complex.

In order to determine the most probable molecular models of the hydrated acti-
nocin drug-DNA complexes, computer simulations of the interaction of the drugs 
and DNA fragments (referred to as “the target”) were carried out.

First, molecular docking methods were applied to the systems containing nucleic 
acids fragments as the targets and actinocin derivatives with different lengths of the 
dimethylaminoalkyl side chains as the ligands. It was found that the actinocin de-
rivatives could form energetically favourable complexes with DNA both as interca-
lators and minor groove binders. The complexes of actinocin derivatives and DNA 
fragments were stabilized by hydrogen bonding on either, intercalation and minor 
groove binding. It was found that the change in solvent-accessible surface area on 
binding of the actinocin derivatives with DNA linearly increases with the number 
of CH2 groups in the ligands’ side chains. The solvation energy change on binding, 
calculated by the weighted solvent-accessible surface area method, was reported to 
be unfavourable for positively charged ligands [92].

Second, the Monte Carlo method was employed taking the solvent (water mol-
ecules) into account [89]. The following assumptions were introduced as a result of 
the experimental investigations of actinocin-DNA complexation reviewed above 
and of the molecular docking simulations: (1) the possibility of intercalation of the 
planar phenoxazone chromophore of actinocin drug into GC-sites of DNA, and 
(2) the possibility of binding of the actinocin derivatives in the minor groove of 
the double helix. Hence, the starting configurations of the complexes were built in 
agreement with these assumptions. The energy parameters of the molecular systems 
containing free DNA fragments and their complexes with various intercalated ac-
tinocin derivatives, and for the actinocin derivatives bound in the minor groove of 
DNA fragments, were obtained. Using these data, some conclusions concerning the 
stability of the molecular complexes could be made by comparison of the values 
of the average total potential energies of the systems studied and the drug-target 
interaction energy. For the series of actinocin drugs it was found that the highest by 
absolute value target-drug interaction energy was associated specifically with the 
ActII-target system for the both types of complexes.

Analysis of the instantaneous configurations of all the complexes had enabled us 
to describe the obtained structures in more detail. A remarkable feature of the struc-
ture of the free ActII in solution is the presence of intramolecular hydrogen bond be-
tween C = O and N-H groups of one of the dimethylaminoalkyl chains [90], which 
may hinder the conformational fitting of the side chain of the drug when interacting 
with DNA. This intramolecular hydrogen bond is preserved on complexation of 
ActII with the DNA fragment.

The complex of ActII with the DNA fragment is additionally stabilized by for-
mation of two hydrogen bonds between O4′ atoms of the deoxyribose rings of both 
chains and NH2-group of the drug chromophore and NH-group of one of the side 
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chains of ActII (Fig. 2.3a). In addition, seven water molecules occupying bridging 
positions between the hydration centres of the drug and the DNA fragment were 
found to give additional stabilization to this complex (Fig. 2.3b).

Hydrogen bonds between the drugs and the sugar-phosphate backbone of the 
DNA fragment were not observed for the intercalated complexes of DNA frag-
ments with ActIII—ActV drug molecules, however, two water molecules occupy-
ing bridging positions between the hydration-active centres of the drugs and the 
DNA fragment were found for each of these complexes.

In the ActIII—ActV complexes the hydration of both the target and the drugs is 
nearly the same as compared to the case when they are in the free state, thus con-
firming the assumption that the drug molecules are partially intercalated in the DNA 
duplex. It follows that the overlap of the planar phenoxazone chromophore with the 
planes of DNA base pairs is decreased in such complexes, resulting in a decrease 
of the absolute value of the interaction energy of the drugs and the target. These 

Fig. 2.3  The structure of 
DNA [d(GAAGCTTC)2]—
drug (ActII) intercalated 
complex (Monte Carlo 
computer simulation data): 
а hydrogen bonds ( black 
points and arrows) in 
intercalation GC-site of the 
DNA fragment between the 
sugar-phosphate backbone 
atoms (O4′ of deoxyribose) 
and NH2- and NH-group of 
the ligand, b water molecule 
( W) occupying bridging posi-
tions between the donor and 
acceptor groups of the ligand 
( black balls) and the DNA 
fragments in the intercala-
tion site
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results correlate with the values of melting temperatures obtained for the drug-DNA 
complexes [89].

In order to obtain more detailed information on the DNA-ActII complexation, 
molecular dynamics simulation was carried out. Analysis of the molecular dynam-
ics trajectories allows one to describe in detail the structures of the investigated 
complexes (Fig. 2.4).

In the intercalated d(AGCT)2-ActII complex the planar phenoxazone chromo-
phore is inserted into the GC-site and the dimethylaminoalkyl side chains are lo-
cated along the sugar-phosphate backbone. The complex with ActII is additionally 
stabilized by formation of few hydrogen bonds. Two of them formed between N-H 
group of ActII and C = O group of cytosine from the first strand of the DNA frag-
ment, and N2-H group of ActII and C = O group of cytosine from the second strand 
of the DNA fragment, were stable during the equilibrium phase of the trajectory 
(Fig. 2.4). One more hydrogen bond found was of a bifurcational type. This hydro-

Fig. 2.4  Structure and dynamics of GC–site of DNA [5′-d(AGCT)2]—drug (ActII) intercalated 
complex. Hydrogen bonds are shown as dotted line. Data were obtained by molecular dynamics 
simulation
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gen bond connects N-Н group of ActII with C = O group of ActII (intramolecular 
hydrogen bond) or with the atom O4′ of the sugar-phosphate backbone of the DNA 
fragment (intermolecular hydrogen bond). The formation of these hydrogen bonds 
can explains the specificity of ActII interaction with GC-site of the DNA fragment.

Of special interest are the results of analysis of re-construction of the hydra-
tion environment in the process of complexes formation. The complexation of the 
ligands with DNA is accompanied by partial or full dehydration of the ligand mol-
ecules and re-construction of DNA hydration shells. In the isolated state ActII forms 
hydrogen bonds with 7 water molecules [90]. Ligand molecule was found to be 
partially dehydrated in the intercalated state in GC-site. ActII preserves hydrogen 
bonds with 3 water molecules. Two of these molecules occupy bridging positions 
between HN and C = O groups of ActII and N3 atom of guanine, and C = O group 
of ActII and NH group of guanine of the opposite strand.

2.3.4  Summary of the Results

It was found that at least two types of complexes may be formed between DNA and 
actinocin derivatives, viz. the intercalation of planar phenoxazone chromophore of 
the drugs into GC-sites of DNA double helix, and the binding of the drugs with the 
minor groove of DNA duplex. The complex in minor groove is energetically less fa-
vourable than the intercalated one. A preference is observed for both the intercalated 
and groove-bound types of complexes for the complexation of ActII with the DNA 
target. Additional stabilization of the intercalated complex may be due to formation 
of hydrogen bonds between the NH-group of dimethylaminoalkyl side chains of 
ActII and the sugar-phosphate backbone of DNA, as well as formation of specific 
water structure around this complex. It is likely that water molecules occupy bridg-
ing positions between the hydration-active centers of the drugs and DNA providing 
additional stabilization to the intercalated type of complex.

In conclusion, it is worth noting that the biophysical investigation sketched out 
above, including the set of experimental and computer simulations methods, has 
enabled us to shed new light on the molecular mechanism of biological action of a 
new series of biologically active ligands—analogues of anticancer antibiotic Acti-
nomycin D. These data are in general agreement with the results of examination of 
cytotoxic effects of the same set of drugs on cellular level [8].

2.4  Energetics of Drug Complexation with Nucleic Acids

2.4.1  The Problem Behind the Thermodynamic Analysis

Investigation of the structure and thermodynamics of drug binding with nucleic ac-
ids performed above, demonstrates the power of using various biophysical methods 
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in understanding the mechanism of binding, as well as provides quantitative infor-
mation on thermodynamics of binding in terms of Gibbs free energy (ΔG), enthalpy 
(ΔH), entropy (ΔS) and heat capacity (ΔCp) changes. In general it is considered that 
such approach provides a scientific basis for rational drug design, but what might be 
the link to designing of new drugs? In very first approximation the thermodynami-
cal parameters of binding may be correlated with biological activity of the drug 
(for reviews see [93, 94]). The typical examples are the semisynthetic antibiotic 
Novantrone (an anthracycline derivative), which is widely used in the treatment 
of leukemia [95], and bis-doxorubicin (a doxorubicin derivative), which exhibits 
activity against multidrug-resistant tumour cells [96]. It follows that a manipulation 
by the parameters of drug-NA binding by means of directed chemical synthesis of 
the drug molecules may potentially lead to creation of new drugs. The problem 
behind this is that experimentally-measured ΔG, ΔН and ΔS are made up of the sum 
of contributions from various types of physical interactions (see Ref. [97] and refer-
ences therein), viz. van der Waals, electrostatic, hydrophobic etc:

 
(2.1)

where ΔGi (or ΔHi, ΔSi) stands for the contribution of the i-th physical factor to ΔG 
(or ΔH, ΔS).

Any modification in the structure of a ligand in general case will likely lead to 
unpredictable change in magnitudes of the energy components in Eq. (2.1) and the 
effect of their summation in Eq. (2.1) may change the magnitudes of ΔG/ΔH/ΔS or 
even leave them unchanged. It follows that direct comparison of experimentally-
measured thermodynamic parameters for different ligands is unlikely to be very 
meaningful and may even lead to erroneous conclusions. A common manifestation 
of that problem is encountered in the enthalpy-entropy compensation for binding 
processes in aqueous media [98, 99]. Additionally, the long-existing discussion ex-
ists in the literature on what forces (van der Waals, electrostatic or hydrophobic) or 
types of interactions (solute-solvent or solute-solute) dominate the stacking interac-
tions in solution [100, 101], which makes a thermodynamic analysis intrinsically 
ambiguous. Nevertheless, greater understanding of the thermodynamics of drug-
NA binding processes can be achieved if the problem of energy partitioning (also 
known as energy parsing or energy decomposition) is solved [97, 102]. This needs 
an independent calculation of the energy components in Eq. (2.1) and comparison 
of the results to the experimentally-measured total Gibbs free energy. Knowledge 
of these contributions is crucial in managing the properties of ligand binding with 
NA by manipulating the distribution of energy over various physical factors govern-
ing the reaction of complexation. However, there is a fundamental problem behind 
any attempt to parse experimentally-measured thermodynamic quantities ΔG, ΔН, 
ΔS, viz. it is generally not possible to measure independently the contribution of 
specific energy term to the total binding energies. Nevertheless, as we shall demon-
strate below, partial overcome of this problem may be achieved using the methods 
of computational chemistry.
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In this section we shall briefly review the solution of the energy decomposition 
problem for various types of NA binding drugs, viz. DNA aromatic intercalators, 
DNA minor groove binders (or MGB-ligands), RNA aptamer binders.

2.4.2  General Computational Approach to Study the Energetics 
of Binding

When studying the ligand-NA binding processes in aqueous media, two important 
factors must be taken into consideration:

1. binding of the ligand must be accompanied by formation of the binding site on 
NA, which is commonly referred to as DNA unwinding ( i.e. transition of the 
DNA helix from a regular B-form into an unwound DNA) for the intercalation 
process [103], and DNA/RNA adaptation—for the DNA minor groove and RNA 
aptamer binding processes [104, 105]. Hence, the total energy of binding, ΔGtotal, 
should be decomposed into two parts: the energy of NA conformational change, 
ΔGconf  , and the energy of ligand insertion, ΔGins

 (2.2)

2. the NA-binding process occurs in solution, which means that the total Gibbs 
energy should be partitioned into inter- or intra-molecular interactions of NA and 
ligand in vacuum, ΔGim, and their interaction with solvent, ΔGsolv [106]:

 (2.3)

The dissection of the total energy on solvation/intermolecular (Eq. (2.3)) and on 
conformation/insertion (Eq. (2.2)) terms can be incorporated into a thermodynamic 
cycle (Fig. 2.5).

The thermodynamic cycle suggests that at least two different ways for energy 
decomposition may exist [107,108]:

1. decomposition in terms of physical interactions—Eq. (2.4)

 (2.4)

 2. further decomposition of the “vdW”, “el” and “HB” components in Eq. (2.4) in 
terms of the types of interaction (intermolecular interactions in vacuum and with 
solvent)—Eq. (2.5)

 (2.5)
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where ΔGconf is the energetic contribution due to conformational changes of the 
molecules during the complexation process, ΔGvdW and ΔGel are the contributions 
from van der Waals (VDW) and electrostatic (EL) interactions, respectively, ΔGpe 
is the polyelectrolyte contribution, ΔGhyd is the hydrophobic (HYD) contribution, 
ΔGHB is the contribution from hydrogen bonds (HB).

The entropic term, ΔGentr, originates from the loss of translational (ΔGt), ro-
tational (ΔGr) degrees of freedom, change in the mode of vibrations of chemical 
bonds (the high frequency term or type I vibrations, I

vG∆ ) and appearance of new 
mechanical oscillations of the ligand in the binding site (the low frequency term or 
type II vibrations ∆Gv

II), i.e.

 
(2.6)

Recently, it has been shown that the ΔGentr term also contains hidden systematic 
contribution from the entropy dependence on the number of bound ligands [109] 
and the change in rigidity of NA on sequential ligand binding [110]. However, both 
factors have been reported to give negligible contribution to ΔGentr for the case of 
small ligands having much smaller dimensions than the DNA receptor, and may be 
excluded from the analysis of energetics.

Briefly, the computation of each of the terms in Eq. (2.4), Eq. (2.5) was per-
formed according to the following protocols. The calculation of the VDW interac-
tions was performed by averaging the VDW part of the interaction energy during 
the course of MD [107, 108]. The energies of electrostatic interactions were calcu-
lated by means of solution of non-linear Poisson-Boltzmann equation [111], and the 
overall approach used was shown to depend relatively weakly on the underlying 
method of atomic charges computation [112]. The energy of hydrophobic inter-
actions was computed from the change in solvent accessible surface area, which 
had been proved to give more consistent results as compared to the alternative ap-
proaches [107, 113]. Calculation of the vibrations of chemical bonds was performed 
by normal mode analysis [107, 108, 114]. Calculation of mechanical vibrations of 
the molecules in complex was performed by means of estimation of the rigidity fac-
tor against small translational shifts [107, 108, 114].
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Fig. 2.5  Thermodynamic cycle for the ligand (D)—nucleic acid (NA) binding process
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A special note should be given to the method of explicit account of the energy of 
H-bonds, ∆GHB . The energy contribution from hydrogen bonds to water molecules 
on complexation was estimated from the change in hydration index of the system 
( Nim or ΔNsolv representing the average number of intermolecular H-bonds and the 
change in the number of H-bonds to water molecules on complexation, respec-
tively) and further calculation of ∆GHB by means of formula [107, 115]

 
(2.7)

Within the framework of such approach, it is considered that a part of the H-bond 
energy is already accounted in the ΔGvdW and ΔGel terms, hence, the ΔGHB quantity 
bears meaning of an additional amount to the sum of VDW and electrostatic ener-
gies in order to account correctly for the total contribution due to H-bonding. 

Equations (2.4), Eq. (2.5) provide the background of the methodology reviewed 
in this chapter. In order to make the calculated from Eq. (2.4), Eq. (2.5) energy 
terms meaningful the protocol for their computation must satisfy the following con-
ditions [116]:

1. summation of the independently calculated energy terms reproduces the experi-
mentally measured total energy of interaction within reasonable error limits. In 
that case the magnitudes of the calculated energies for various physical factors 
are meaningful and so these energies may be used in comparative analysis. The 
calculations must use all available experimental information on binding obtained 
from various biophysical methods, described above;

2. the calculations should be applied to a set of molecular systems that differ in 
structure and charge state. If the protocol only demonstrates satisfactory coin-
cidence with experiment for a single system (as is often the case), the transfer-
ability to other systems will always be questionable, hence, there is no guarantee 
that the calculated energies are generally meaningful;

3. the calculations should be made using a similar protocol and set of parameters/
restraints for each system studied. Otherwise, it appears that there may be an 
artificial adjustment to the results, making the calculated energies less reliable.

If the computations match these conditions, then deeper analysis of each particular 
energy term in (4), (5) provides an answer to the basic questions “What forces sta-
bilize/destabilize the ligand-NA complexes in solution and what are their relative 
importance?” The consequence of this analysis would be an answer to a follow-
up question “What physical factor exerts the highest correlation with experimental 
binding energy?” When answered, it may give an idea of which factor should be tar-
geted in first instance when optimizing drug affinity to NA in rational drug design.

Below we shall review the solution of the energy decomposition problem tak-
ing as an example classical DNA intercalating reactions, and then discuss the main 
outcomes of solving the same task with respect to MGB-ligands and RNA binders.

∆ ∆G N NHB
im solv= − ⋅ ⋅ +0 25 9. ( ),  kcal/mol
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2.4.3  Energy Analysis of Ligand-DNA Intercalation Reactions

To date the successful energy decomposition has been accomplished for wide va-
riety of aromatic DNA intercalators [107, 117, 118]. We shall briefly review these 
results taking as an example four typical aromatic drugs [107], viz. antibiotics, 
daunomycin (DAU), mitoxantrone (NOV) and mutagens, ethidium bromide (EB), 
proflavine (PF). The conclusions to be drawn for these ligands also remain essen-
tially the same for other aromatic ligands investigated in the cited literature.

2.4.3.1  Structure of the DNA Receptor

Although the specificity of the aromatic molecules (EB, NOV, PF, DAU) to particu-
lar DNA sequences is not great, analysis of the literature suggests that the intercala-
tor molecules not containing heavily-branched side chains commonly have some 
specificity towards 5′-CG and 5′-GC sites [119, 120]. Also, taking into account that 
DAU exerts greater specificity to CGA triplet sites on DNA rather than to CG or 
GC dinucleotide sequences [121], it is reasonable to take the self-complementary 
fragment, d(TCGA)2, flanked at both ends by CG pairs, as the minimal site for 
ligand binding. Hence, the 10-mer oligonucleotide duplex, d(CGCTCGAGCG)2, 
was used as the model DNA receptor. It was shown that such length of DNA is long 
enough for correct reproducing of electrostatic interaction for the group of aromatic 
intercalators [122].

2.4.3.2  Van der Waals Energy, ΔGvdW

The MD averaged van der Waals energies in the selected ligand-DNA complexes 
are presented in Table 2.1.

The intramolecular energies of DNA base pairs interaction, ∆Gconf
im , at the stage of 

unwinding are all positive, which is a result of separation of base pairs upon forma-
tion of the intercalation cavity. The energies of the solvation of the intercalation site, 
∆Gconf

solv , are all negative and result from hydration of the intercalation cavity upon 
DNA unwinding.

At the stage of ligand insertion the intermolecular energy of ligand-DNA interac-
tion, im

insG∆ , has a negative sign, which results from the attractive nature of VDW 
forces acting between the ligand and DNA base pairs within the intercalation site. 
The positive VDW energy of the interaction with solvent, solv

insG∆ , is due to dehydra-
tion of the ligand after its insertion into DNA interior.

The total VDW energy of insertion, insG∆ , is a relatively small value and is a 
result of mutual compensation from favourable intermolecular interaction between 
DNA and the ligand, and unfavourable interaction with the solvent. The compensa-
tion may lead to positive (PF) and negative (DAU, EB, NOV) ∆Gvdw

ins  (see Table 2.1) 
which means that VDW interactions at the stage of insertion may either favour or 
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disfavour complex formation as it depends on the interplay between the intermo-
lecular interactions and the interactions with solvent.

The total VDW energy of binding, ∆Gvdw , is the sum of two large numbers, 
∆ ∆G GvdW

im
vdW
solv+ , of opposite sign, which results in a small net energy effect and 

leads to the conclusion that VDW interactions do not play a significant role in li-
gand-DNA binding. This is correct in terms of overall binding but not in terms of 
stabilization of the complexes. The portion of the total VDW energy of ligand bind-
ing, insG∆ , discussed above, which really contributes to stabilization of the complex, 
may have the values (see Table 2.1) higher by modulus than the experimentally-
measured energies of binding, ΔGexp. It means that it is necessary to take into ac-
count the contributions of VDW interactions at different stages of binding (unwind-
ing and insertion) and for different types of interaction (in vacuum and with solvent) 
for energy decomposition in ligand-DNA complexation.

2.4.3.3  Electrostatic Energy, ΔGel

The results of calculations of electrostatic energies are summarized in Table 2.2. It 
is seen from the table that the change in the electrostatic component of the energy 
of interaction with the surrounding water, ∆Gconf

solv , upon DNA unwinding is positive 
for all the ligands studied. These observations may be explained in terms of the de-
crease in charge density on the DNA surface as a result of unwinding, which inevi-
tably causes the weakening of interaction with water surrounding. The contribution 
of coulombic interactions to the free energy of unwinding, ∆Gconf

im , for all ligands is 
negative (Table 2.2), i.e. this type of interaction promotes the unwinding of DNA 
molecule. This behaviour results from the increase in distance between the nega-
tively charged phosphates on the formation of intercalation cavity, which as a whole 
is an energetically favourable process. A good correlation between the values of the 
untwist angle, ΔΩ, of the DNA duplex upon intercalation of the ligands and the cal-
culated energy, ∆Gconf

im , was noted in [122]: the greater the ΔΩ angle, the greater are 
the negative changes of ∆Gconf

im . The net conformational electrostatic energy, ∆Gconf , 
is a relatively small number with a sign depending on the type of ligand.

Upon ligand insertion to unwound DNA the magnitudes of the solvation com-
ponent, ∆Gins

solv , are positive for DAU, EB, PF, and negative for NOV (Table 2.2). 
By contrast, the change in the energy of atom-atom coulombic interaction, ∆Gins

im , is 

Table 2.1  Inter(intra)molecular in vacuum and with solvent van der Waals energies (kcal/mol) for 
ligand binding with DNA
Ligand Unwinding Insertion Intercalation

∆Gconf
solv ∆Gconf

im
insG∆ solv

insG∆ insG∆ im
vdWG∆ solv

vdWG∆ vdwG∆
DAU 22.3 − 7.7 14.6 − 84.2 67.1 − 16.5 − 61.9 59.4 − 2.5
EB 26.9 − 15.5 11.4 − 52.1 41.1 − 11.0 -25.2 25.6 0.4
NOV 21.9 − 7.7 14.2 − 57.9 41.9 − 16.0 − 36.0 34.2 − 1.8
PF 30.2 − 30.8 − 0.6 − 41.7 43.1 1.4 − 11.5 12.3 0.8

∆Gconf
im

2 Structure, Thermodynamics and Energetics of Drug-DNA Interactions
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negative for DAU, EB, PF and positive for NOV. Such a pattern can be explained 
by the fact that NOV is neutral, whereas the other ligands carry a single positive 
charge. When the positively-charged molecules intercalate into the DNA double 
helix, their charges are compensated by the negative charge of the neighbouring 
DNA phosphates, which leads to an overall weakening of electrostatic interaction 
with solution. It also provides energetically favourable electrostatic interaction be-
tween positively-charged molecules and negatively-charged phosphates which, in 
turn, leads to large-by-absolute-value negative magnitude of ∆Gins

im. For the neutral 
molecule, NOV, the quantities ∆Gins

im and ∆Gins
solv are opposite in sign (Table 2.2), 

probably because on intercalation a part of the charge distributed over the ligand 
atoms falls inside the intercalation cavity and is shielded from solution. At the same 
time the portion of the charge remaining on atoms of the ligand and protruding into 
solution effectively interacts with it by ion-dipole-like interactions, which makes 
∆Gins

solv quantity negative.
The total electrostatic energy, ΔGins, is the sum of two numbers, in which the 

quantities ∆Gins
im and ∆Gins

solv  are large in value and have opposite signs (Table 2.2) 
resulting in small values. In total ΔGins is positive and relatively small for aromatic 
intercalators. Hence, the total electrostatic interactions at the stage of ligand inser-
tion appear to be energetically unfavourable and hinder the formation of the com-
plexes between DNA and aromatic molecules.

The magnitude of the total change in electrostatic energy ΔGel is relatively small 
by absolute value but, on average, is comparable to the experimental energy of 
binding ΔGexp, and is the sum of components (∆Gel

solv  and ∆Gel
im) with large values 

but opposite in sign, similar to the situation found for the van der Waals energies 
(see above). Analysis of the results for wide variety of aromatic ligands [107, 123] 
enabled us to conclude that there is no significant correlation between the type of 
ligand and the total electrostatic energy (ΔGel), although some correlation was ob-
served above at the level of DNA unwinding (ΔGconf) and ligand insertion (ΔGins). It 
is likely that any link between ΔGel and the structure/charge of the ligand becomes 
masked on summation of ΔGconf and ΔGins in Eq. (2.4), Eq. (2.5). This conclusion 
drawn with respect to electrostatic energy resembles a problem of enthalpy/entropy 
compensation in biomolecular interactions [98] which makes analysis of total Gibbs 
energy to certain extent ambiguous. Hence, it is concluded that any search for a 
correlation between the structure of a ligand and its energy of complexation should 
only be made at the level of separate steps of the complexation process and appro-

Table 2.2  Inter(intra)molecular in vacuum and with solvent electrostatic energies (kcal/mol) for 
ligand binding with DNA
Ligand Unwinding Insertion Intercalation

∆Gconf
im ∆Gconf

solv ∆Gconf ∆Gins
im ∆Gins

solv ∆Gins ∆Gel
im ∆Gel

solv ∆Gel
DAU − 20.0 29.0 9.0 − 127.7 130.6 2.9 − 147.7 159.6 11.9
EB − 29.1 26.4 − 2.7 − 144.5 149.9 5.4 − 173.5 176.3 2.8
NOV − 39.2 35.2 − 4.0 20.7 − 8.1 12.6 − 18.5 27.2 8.7
PF − 27.1 24.4 − 2.7 − 125.3 127.3 2.0 − 152.4 151.7 − 0.7
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priate components of the electrostatic energy rather than in terms of total electro-
static energy [107, 122, 123]. The same conclusion was drawn above with respect 
to the van der Waals energy.

2.4.3.4  Polyelectrolyte Energy, ΔGpe

The polyelectrolyte contribution contains both an enthalpic term, originating from 
coulombic interaction of solute molecule with counterions present in solution, and 
an entropic term, coming from disordering of ion atmosphere upon ligand interca-
lation. Within the framework of the approach being reviewed in this chapter, the 
ΔGpe component is separated from the total electrostatic energy because it can be 
measured experimentally and the experimental values for some drugs are available 
in the literature (for review see [124]). It is also assumed that the main contribution 
to the polyelectrolyte energy comes from the ligand insertion stage.

Analysis of literature suggests that the magnitudes of ΔGpe for aromatic inter-
calators show very similar values even though the ligands may have very different 
structures. By that reason it is reasonable to take the average value, ΔGpe ≈ − 1.1 kcal/
mol, for the set of aromatic molecules studied [107]. In general, the polyelectrolyte 
contribution favours formation of complexes. The effect is predominantly entropic 
in origin and is due to entropically favourable ion release upon ligand insertion into 
DNA.

2.4.3.5  Hydrogen Bonding Energy, ΔGHB

Hydrogen bonding in the complexation of ligands with DNA comes from [107, 115]:

1. formation of intermolecular H-bonds between the ligand and DNA within the 
intercalation cavity, characterized by the number of intermolecular H-bonds, Nim, 
and

2. the loss of hydrogen bonds to water due to dehydration of the ligand upon inser-
tion into the intercalation site, characterized by change in hydration index, ΔNsolv.

As noted in section 2.4.2, within the framework of the methodology used for en-
ergy analysis the magnitude of ΔGHB does not bear the meaning of real energy of 
H-bonding, and an analysis of the number of hydrogen bonds, Nim and ΔNsolv, is 
considered to be more appropriate.

It is seen from Table 2.3 that the sign of ∆Nconf
solv  value is positive indicating the 

predominant solvation of the intercalation cavity on DNA unwinding, whereas the 
∆Nins

solv  value is negative pointing out on the net removal of water molecules on li-
gand insertion. The resulting effect of the whole complexation process is negative, 
∆N solv < 0, indicating that there is a dehydration of the ligand and DNA molecules 
during the intercalation.

The dehydration on insertion (∆Nins
solv ) is not overbalanced by the sum of hydra-

tion on unwinding (∆Nconf
solv ) and formation of intermolecular H-bonds (Nins

im), result-
ing in net positive contribution of H-bonding to the total energy of the intercalation 

2 Structure, Thermodynamics and Energetics of Drug-DNA Interactions
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reaction, ∆GHB > 0. It follows that the net effect of H-bonding is destabilizing with 
respect to the intercalation.

It is worth noting that there is much controversy in literature regarding the ques-
tion whether the ligand-DNA binding process is accompanied by uptake or release 
of water molecules (reviewed in [41, 115]). The results presented here clearly show 
that there is a net removal of water molecules during the intercalation.

2.4.3.6  Hydrophobic Energy, ΔGhyd

It is seen from Table 2.4 that the hydrophobic contribution is favourable and much 
higher by absolute value than the experimental total energy (see also Table 2.6). 
Inspection of the data in Table 2.4 suggests that the hydrophobic energy decreases 
in the sequence: DAU > NOV > EB > PF.

Such a sequence qualitatively correlates with the degree of branching of the side 
chains of the investigated ligands, i.e. from large side chains for DAU down to two 
relatively small hydrophilic aminogroups in PF. The bulkyness of the side chains 
influences the effectiveness of removal of water molecules from the hydration lay-
ers of DNA and the ligand on complexation and, hence, the hydrophobic contribu-
tion is usually higher for bulky side chains of the intercalators buried in the DNA 
grooves. The effect of removal of water molecules is also confirmed by the fact that 
the total change in solvent accessible surface area for the stages of DNA unwinding 
and ligand insertion is negative (data not shown). This result agrees with the general 
view on water involvement in complexation reactions but is unable to shed any light 
on the results of osmotic stress measurements [41], which had led to the completely 
opposite conclusion, viz. binding of DAU/PF ligands is accompanied by uptake 
instead of release of water molecules.

Table 2.3  Energetic contribution of Hydrogen bonds (kcal/mol)
Ligand Unwinding 

∆Nconf
solv

Insertion Intercalation

Nins
im ∆Nins

solv ∆N solv ∆GHB
DAU 2.0 3 − 7.5 − 5.5 5.8
EB 3.1 1 − 5.9 − 2.8 4.1
NOV 2.0 1 − 4.6 − 2.6 3.6
PF 3.0 1 − 6.3 − 3.3 5.3

Table 2.4  Calculated values of the hydrophobic contribution (kcal/mol)
Ligand Unwinding Insertion Intercalation
DAU 14.2 − 43.9 − 29.7
EB 10.7 − 34.5 − 23.8
NOV 11.8 − 37.0 − 25.2
PF 10.7 − 26.7 − 16.0
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2.4.3.7  Entropic Contribution, ΔGentr

The results of calculations of the entropic contributions are summarised in 
Table 2.5. The major contribution to the quantities ΔGt and ΔGr is entropic in nature 
(|TΔS| > |ΔH|) [107, 114] which is unfavourable and therefore yields a positive sign 
of ΔG. This result is quite expected and is due to the entropically unfavourable loss 
of three translational and rotational degrees of freedom upon complexation.

The mean values of ΔGt and ΔGr averaged over various aromatic ligands equal to 
∆Gt  = (10.3 ± 0.3) kcal/mol and ∆Gr  = (10.0 ± 0.8) kcal/mol [107, 114]. The dif-

ferences in these energies for the different types of ligand are relatively small and so 
the mean energies ∆Gt  and ∆Gr  can effectively be used in analysis of the con-
tributions for different aromatic ligands. The mean sum, ∆ ∆G Gt r+  = (20.2 ± 1.1) 
kcal/mol [107, 114], is close to but slightly higher than the empirical value 
ΔGt + r = 15 kcal/mol, used previously [124] for energy partitioning of ligand-DNA 
interactions.

Analysis of the results of calculations for the change in type I vibrations (∆Gv
I) 

suggests that this factor is enthalpically unfavourable but entropically favourable 
[107, 114], which can be interpreted in terms of formation of new vibrational de-
grees of freedom. In total the entropic factor overwhelms and type I vibrations ap-
pear to favour complex formation for the ligands studied.

The values of type II vibrations exhibit only small deviations from the mean 
value ∆Gv

II  = –(8.1 ± 0.5) kcal/mol for different ligands and so one value may be 
used for different aromatic ligands as found above for the contributions of transla-
tional and rotational energies [107, 114]. The type II vibrations are mainly entropic 
in origin and favour formation of the complexes, which is the result of creating new 
vibrational degree of freedom due to the appearance of mechanical oscillation of a 
ligand on intercalation. It is important to note that the magnitudes of ∆Gv

I  and ∆Gv
II  

are commensurable to the experimental energy of binding, which means that con-

Table 2.5  Energetic contribution of entropic factors (kcal/mol)
Ligand Translational Rotational Vibrational of 

type I
Vibrational of 
type II

∆Gentr

DAU 10.5 10.3 − 4.3 − 8.0 8.4
EB 10.0  9.4 − 7.6 7.5
NOV 10.3 10.3 − 9.0 7.3
PF  9.7  8.6 − 7.6 6.3

Table 2.6  Partition of the total energy of ligand-DNA binding (kcal/mol)
Ligand Unwind-

ing
ΔG for ligand insertion ΔGtotal ΔGexp
VDW el + HB pe hyd entr

DAU 33.2 − 16.5 13.3 − 1.0 − 43.9 8.4 − 6.6 − 9.0
EB 12.3 − 11.0 16.7 − 1.2 − 34.5 7.5 − 10.3 − 9.5
NOV 17.4 − 16.0 20.8 − 1.1 − 37.0 7.3 − 8.6 − 9.5
PF  0.5  1.4 14.2 − 1.1 − 26.7 6.3 − 5.4 − 6.0

2 Structure, Thermodynamics and Energetics of Drug-DNA Interactions
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sideration of these components is important in the energy analysis of ligand-DNA 
interactions.

The sum of all entropic terms ∆ ∆ ∆ ∆ ∆G G G G Gentr t r v
I

v
II= + + +  

≈ 7.8 kcal/mol is, on the whole, unfavourable and destabilizes ligand-DNA bind-
ing [107, 114]. As discussed above, each entropic component differs little from the 
mean value, which suggests that the total sum ∆Gentr  = 7.8 kcal/mol can be used in 
the energy analysis of ligand-DNA complexation for different aromatic ligand with 
non-heavily branched side chains.

2.4.3.8  The Total Energy of the Ligand-DNA Binding Process

The total energy of ligand-DNA binding according to Eq. (2.4) is summarised in 
Table 2.6 using the values of the various contributions to the energy in Tables 2.1, 
2.2, 2.3, 2.4, 2.5 and data in Ref. [107]. The H-bonding term, ΔGHB (see Table 2.3), 
was included in the electrostatic energy for the stages of unwinding and insertion. 
The unwinding energy, ΔGconf, was taken as a sum of all contributing factors from 
Tables 2.1, 2.2, 2.3, 2.4.

As seen from Table 2.6, the sum of 6 different energy components for various 
ligands has ended up with values, which differ from the experimental energies, 
on average, for 1.2 kcal/mol. This result is considered to be successful and makes 
possible further analysis of individual energy components. Note that the selected 
ligands (as a small subset of the ligands studied in literature) have very different 
structures and charge states and very different approaches were used to calculate 
each energy component.

 As seen from Table 2.6 the DNA unwinding stage is always unfavourable for 
ligand binding and is the main contributor to the activation energy for the reaction 
of ligand-DNA complexation. Other unfavourable contributions are the net effect 
of electrostatic interactions, entropic factors and hydrogen bonding. The main sta-
bilization comes from hydrophobic, van der Waals (except that for PF) and poly-
electrolyte terms, which is in general agreement with what is known about stacking 
of molecules with aromatic surfaces in solution [125, 126]. The van der Waals and 
hydrophobic forces are the most important and the latter one is dominant for all the 
ligands studied.

Another important issue is the fact that the small value of the total Gibbs free 
energy of ligand-DNA complexation ( ca. − 9 kcal/mol) is the result of summation 
of components with large magnitude but of opposite sign (see the components in 
Tables 2.1 and 2.2 having the magnitude of dozens and hundreds of kcal/mol). It can 
be seen that the ligand binding to DNA is governed by the effect of compensation 
of energy contributions at the levels of physical forces, different stages of ligand 
binding and inter(intra)molecular/to-solvent interactions in vacuum. This fact was 
shown to be the reason why the net energies in Eq. (2.4) does not generally cor-
relate with the physico-chemical properties of the ligand and such correlation can 
be observed only on the level of the energy components in Eq. (2.5) [107, 123]. In 
fact, similar conclusions have been drawn with respect to the energy of π-stacking 
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interactions in solution for variety of aromatic molecules [116], largely resembling 
the process of DNA intercalation.

Search of a correlation ( r) of the energy terms in Eq. (2.5) with the experimental 
energy, ΔGexp, has shown that the highest impact on it is provided by the VDW 
energy of ligand insertion, ∆GvdW

ins  ( r = 0.66) and VDW energy of DNA unwinding, 
∆GvdW

uw  ( r = –0.67). The rest terms give lower correlation not exceeding |r| = 0.5. The 
correlation between ΔGexp and ΔGhyd was equal to r = 0.42. This result is in accord 
with the above-made conclusion on the importance of VDW interactions in the 
net energetics of binding. Noteworthy, the EL energy, formally featuring the larg-
est magnitude of the energy components (see Table 2.2), appears to be relatively 
unimportant in the modulating the binding affinity in the intercalation reactions. 
This result highlights the key role of the intermolecular VDW forces in managing 
the affinity of aromatic drugs to DNA and points out the way to modify the ligand 
structure with an aim to increase the binding strength with DNA.

2.4.4  Energy Analysis of DNA Minor Groove Binding Reactions

Ligand molecules which exert predominant affinity to DNA minor groove common-
ly contain a set of hetero-cycles linked by single bonds and closely matching the 
shape of DNA minor groove. Typical examples of MGB-ligands are Hoechst33258, 
Netropsin, Berenil, Distamycin. The DNA-binding and medico-biological proper-
ties of the MGB-ligands have been extensively reviewed and these molecules are 
currently considered as promising agents in chemotherapy of cancer [127, 128]. 
The MGB-ligands exert major specificity to AT sites of DNA, covering approxi-
mately 4 base pairs when binding within the minor groove [127], hence, the non-
selfcomplementary dodecamer d(CGCA4GCG)/(CGCT4GCG) may be selected as a 
receptor in energy analysis [108].

The full energy analysis of MGB-ligands binding with DNA was accomplished 
in Ref. [108] using the methodology generally similar to that reviewed above for 
DNA intercalation. The general patterns of the sign and magnitude of various en-
ergy terms, already discussed above for DNA intercalators, were reported to be pre-
served in the case of MGB-binding as well. In particular, the compensatory effect, 
the absence of apparent correlation of the net energies in Eq. (2.4) with the proper-
ties of ligand, and the coincidence of ΔGtotal and ΔGexp, remain valid. It was found 
that there are at least three major stabilizing factors, appearing in Eq. (2.5), which 
govern the binding process of the MGB-ligands with DNA, placed in descending 
order according to the absolute value of the energy change: intermolecular electro-
static interactions (∆Gel

im), intermolecular van der Waals interactions (∆GvdW
im ) and 

hydrophobic interactions (ΔGhyd). The stabilization of the complexes is also provid-
ed by the formation of intermolecular H-bonds ( Nim), formation of residual mechan-
ical vibrations in the binding site (∆Gv

II) and the polyelectrolyte factor (ΔGpe)—the 
latter two giving minor contribution as compared to other factors. The major factors 
which destabilize complexes of the MGB-ligands with DNA are the electrostatic 

2 Structure, Thermodynamics and Energetics of Drug-DNA Interactions



48 M. P. Evstigneev and A. V. Shestopalova

(∆Gel
solv ) and van der Waals (∆GvdW

solv) desolvation, loss of H-bonds to-water (ΔNsolv), 
change in the number of translational (ΔGt), rotational (ΔGr), vibrational ( ∆Gv

I ) 
degrees of freedom, and restriction of internal rotations in MGB molecules (ΔGconf). 
The hydrogen bonding factor among the rest energy terms was shown to be more 
important specifically for the MGB-ligands than for the intercalators [129].

The net energies in Eq. (2.4), which stabilize complexes, can be placed in de-
scending order by the absolute value: ∆ ∆ ∆G G Ghyd vdW pe> > , whereas the order of 
destabilizing factors is ∆ ∆ ∆G G Gentr HB el≥ >  [108].

With the aim of searching the physical factor the most strongly affecting the 
binding affinity, the correlation coefficients of experimental energy with the solva-
tion and intermolecular components for all the factors in Eq. (2.5) were calculated 
[108]. It was found that the highest correlation is observed for the electrostatic en-
ergy, which suggests that the major effect on variation of DNA binding affinity with 
the type of ligand is provided by the electrostatic component. This is in agreement 
with the qualitative estimations of other authors [130, 131].

2.4.5  Energy Analysis of RNA Binding Reactions

Ligand binding with RNA is probably the most difficult object to study as compared 
with DNA binding reactions due to large variability of RNA binding sites. In Ref. 
[132] the energy analysis of binding of 11 small molecules to RNA aptamers was 
accomplished using the methodology reviewed in section 2.4.2. Although the de-
tails of specific adaptation of the ligand to the binding site, currently considered to 
be important in case of RNA binding ligands [133, 134], were not unveiled in this 
work, the general patterns of distribution of energy over various energy terms were 
reported to be similar to DNA intercalation and minor-groove binding, presumably 
reflecting the general pattern of binding reactions in aqueous media [123, 129].

The most important contribution to the binding energetics in terms of the net 
absolute energies in Eq. (2.4) is given by the ∆Ghyd  and ∆GvdW  (∆ ∆G Ghyd vdW> ) 
factors, and the destabilization originates from ∆Gentr  and ∆GHB, which is qualita-
tively similar to what was found above for the DNA intercalation and minor-groove 
binding. The electrostatic factor ∆Gel  is relatively unimportant for the ligands with 
no charge or bearing single charge, whereas the doubly- or more-charged ligands 
elevate ∆Gel  to the level commensurable with ∆GvdW .

The stabilizing energy terms in Eq. (2.5) can be placed in the sequence by ex-
tent of their contribution: ∆ ∆ ∆G G GvdW

im
hyd v

II> > . The sequence for the destabiliz-
ing energies is: ∆ ∆ ∆G G GvdW

solv
v
I

t r≥ ≥ , . The VDW energies were found to depend 
strongly on the type and dimensions of side chains of the ligand and the efficacy of 
π-stacking with RNA bases.

Intermolecular (∆Gel
im) and to-water (∆Gel

solv) electrostatic energies by the magni-
tude and sign strongly depend on the charge of the ligand, viz. ∆Gel

im is favourable 
and ∆Gel

solv is unfavourable for positively charged ligands, whereas the signs of these 
terms get reversed for negatively charged ligands.
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The correlation coefficients of the terms in Eq. (2.5) with ΔGexp do not exceed 
0.5 and do not allow selecting the terms which exert the maximal impact on the 
binding affinity. It means that the principal physical factors, such as VDW, EL, 
HYD, HB, give approximately equal contribution to the variability of ΔGexp with 
the type of ligand.

2.4.6  Summary of the Results, and Implications on the Use  
of Energy Analysis in Rational Drug Design

Energy analysis of ligand-NA interactions, sketched out above for typical DNA in-
tercalators, DNA minor groove binders and RNA binders, enables us to answer the 
key question, viz. “What physical factors stabilize/destabilize the ligand-NA com-
plexes in solution and what are their relative importance?” The follow-up question 
now is “How one can use the results of the energy analysis, say, in rational design 
of new drugs?”

The set of stabilizing and destabilizing energies aligned in descending order, as 
the main outcome of the energy analysis, provides a fundamental knowledge on 
energetics of binding reactions in solution but, in fact, gives little idea on the way 
how one can manipulate the magnitude of ΔGexp and, eventually, the medico-bio-
logical effect of the NA-binding drugs [123, 129]. It is considered that the search of 
the factor which is most strongly correlated with the equilibrium binding constant 

K
G
RT

= −






exp exp∆
 may give this idea. If it is known what factor modulates the 

ligand affinity to DNA (VDW, hydrophobic, electrostatics or else), it becomes more 
clear what type of atomic group must be chemically added/substituted in the ligand 
structure in order to amplify the contribution of this particular physical factor to 
the net energy of binding, resulting in increase of ΔGexp. In particular, it was shown 
above that in the case of DNA intercalators the “managing” of the binding affinity 
may be achieved via the VDW factor, whereas for the group of DNA minor groove 
binders the EL energy appears to be the key factor. However, such approach may 
be of value if the binding affinity is the target property to be manipulated, or if no 
sufficient data on biological activity of the studied group of ligands is available, and 
the amplification of the binding affinity to bioreceptor remains the only possible 
strategy. The case if relevant biological data are available, search of correlations 
between the biological activity and specific energy terms may have real practical 
outcome. Let us consider such possibility taking as an example the results of analy-
sis performed for the group of MGB binders in Ref. [129 ].

Table 2.7 contains the calculated values of the energy terms for the set of MGB-
ligands and the ID50 factor for the same ligands (which is a micromolar concentra-
tion of the drug, needed for 50 % suppression of L1210 leukemia cell growth).

It must be noted that rather limited dataset presented in Table 2.7 does not al-
low reporting on statistically reliable correlation, nevertheless, the qualitative level 
of correlation may be considered. It is seen that the highest correlation of the ID50 
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factor is the case with the change in the net number of hydrogen bonds on binding: 
Nim + ΔNsolv, hence, it is suggested that this factor might be modified in first instance 
in rational drug design. Interestingly, the ID50 factor does not show apparent cor-
relation with the MGB− DNA binding constant (as an integral measure of the net 
energetics of binding, see Table 2.7). Although this result may be considered as 
preliminary, it clearly demonstrates the potential importance of the energy analysis 
in designing new drugs.

Taking as a whole, the strategies based on energy analysis of drug-NA binding 
reactions and reviewed above, may extend the existing approaches in rational drug 
design based on computer modeling.

2.5  Concluding Remarks

The results of application of various biophysical methods in understanding the 
mechanism of drug binding with DNA, reviewed above, demonstrate the power and 
mutual complementarity of experiment and computer modeling in solving particu-
lar scientific problem. Taking the derivatives of antitumour antibiotic Actinomycin 
D as an example, we have shown that initial experimental evidence, provided by the 
Nature on in vitro level, can be fully investigated in detail on molecular level yield-
ing complete structural/thermodynamic/energetic picture of the drug’s binding with 
bioreceptor, and eventually resulting in understanding the key factors governing 
this process. Further manipulation of the governing factors by means of chemical 
modification of the drug provides scientific background of the strategy of rational 
drug design. Its main outcome is the possibility to create new drugs with improved 
pharmacological properties, which currently remains one of most important chal-
lenges in biomolecular sciences.
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Table 2.7  Correlation ( r) of the energy terms (kcal/mol) and equilibrium binding constant, K 
(М−1), with the measure of biological activity of the drug, ID50

MGB-ligand ID50 ∆GvdW
solv ∆GvdW

im ∆Gel
solv ∆Gel

im ΔGhyd ΔNsolv Nim ΔNsolv + Nim K

SN6999 0.02 54.0 − 64.9 258 − 255 − 45.7 − 11.5 1 − 10.5 2.0·106

Hoechst33258 1.5 52.7 − 64.1 141 − 140 − 46.3 − 14.1 4 − 10.1 3.2·106

Distamycin  9 61.4 − 65.8 138 − 136 − 53.0 − 16.4 10 − 6.4 2.0·105

Netropsin 10 75.4 − 63.0 266 − 260 − 44.6 − 11.2 11 − 0.2 1.0·105

Berenil 10.4 43.3 − 45.9 267 − 264 − 34.7 − 7.7 2 − 5.7 1.3·107

r 0.27 0.48 0.20 − 0.20 0.25 0.24 0.58 0.83   0.27
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Abstract The present review discusses three important aspects which are inti-
mately related to human health at the molecular level. The first aspect is the forma-
tion of DNA lesions caused due to the reactions of DNA with certain free radicals 
known as reactive oxygen species (ROS) and reactive nitrogen oxide species 
(RNOS). Some of these free radicals are constantly formed in biological systems 
during the metabolic activities while others can be ascribed to the exposure to radia-
tion or pollution. These species react with DNA bases, particularly guanine, leading 
to base misparing, mutation and several diseases including cancer. The mechanisms 
of reactions of certain ROS and RNOS with the DNA bases, particularly guanine or 
its modifications are discussed. The second aspect discussed here is the role of anti-
oxidants some of which are present inside biological systems while others can be 
taken from external sources as food supplements. Certain endogenous anti-oxidants 
present in biological systems inhibit the formation of reactive free radicals while 
others, particularly those taken from outside, scavenge the same through appropri-
ate chemical reactions. The molecular mechanisms of action of several anti-oxi-
dants are discussed. The third aspect discussed here is the working of the complex 
and  intelligent molecular machinery which is constantly active in biological sys-
tems and removes or repairs the damaged bases. Molecular mechanisms involved 
in some of these activities are reviewed. Details of recent theoretical studies on all 
the three aspects mentioned above are discussed.
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3.1  Introduction

Several reactive species are continuously produced inside living cells during the 
normal metabolic activities. Formation of these species in low concentration is ben-
eficial for living cells as they are involved in mitogenic response, cellular signal 
transduction, neurotransmission, blood pressure regulation etc. [1–3]. However, in 
vivo overproduction of these reactive species can be quite harmful for living sys-
tems as they perturb structures and functions of important biomolecules such as 
DNA, proteins and lipids severely. These reactive species can be subdivided into 
three main categories, i.e. (1) reactive oxygen species (ROS), (2) reactive nitrogen 
oxide species (RNOS), and (3) reactive halogen species (RHS). Oxygen in ROS, 
nitrogen in RNOS, and the halogen atom in RHS are the main constituents that 
readily react with different biomolecules in living systems. Although these reactive 
species can damage almost all biomolecules in living cells, damages to DNA are 
most abundant and harmful. As a consequence, several genotoxic and mutagenic 
lesions are created which ultimately induce life degrading diseases such as aging, 
cancer, neurodegenerative disorders including Alzheimer’s disease, Parkinson’s 
disease, and acute central nervous system injuries [2, 4]. In addition to these in vivo 
reactants, pre-solvated electrons [5, 6], other chemical agents [7], particularly pol-
lutants [8], and high energy radiation [9–13] can also damage DNA by participat-
ing in complex biochemical reactions involving the various components of DNA. 
Several drugs [14, 15] used for cancer therapy can also potentially interfere with 
the normal functioning of DNA, thereby inducing other complicated diseases. It 
should be noted that in comparison to exogenous factors, endogenous factors are 
more responsible for the formation of several DNA damaged products which cause 
different pathological consequences.

Damage to DNA can occur in various possible ways such as base modifica-
tion [16–18], conformational changes, formation of abasic sites [19], DNA strand 
breaks [20, 21], DNA strand cross-links [22, 23] and DNA-protein cross-links [24–
26]. Among all forms of DNA damage, base modifications by reactive species are 
the simplest and very significant, following which a plethora of base lesions are 
generated in cells. Occurrence of these base lesions is frequently observed in dis-
ease-prone cells and tissues, particularly in tumours [27, 28]. It is believed that the 
various base lesions that are formed mainly due to oxidation of DNA accumulate in 
both mitochondrial and nuclear DNA with increasing age. This accumulation fol-
lowed by failure of cellular defence mechanisms to repair or excise different DNA 
base lesions ultimately induces diseases. Not only these base lesions are capable of 
directly generating stable mutations, cancer and other pathological conditions, they 
can also be involved in the creation of several complicated processes indirectly by 
participating in the formation of complex tandem lesions. For example, generation 
of base damages in DNA can interfere with other bases on the same or the other 
strand, thereby creating intra-strand or inter-strand crosslinks respectively. Simi-
larly the interference of these base lesions with proteins can also create different 
DNA-protein crosslink products [24–26].
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Although a plethora of different lesions are formed in living cells every day, 
under normal conditions, majority of cells remain disease free. This is due to the 
fact that living cells have complex defense mechanisms operating against cell al-
terations mediated by reactive species. The main components of these defence 
mechanisms include several anti-oxidants which can be classified into enzymatic 
and non-enzymatic categories [29, 30]. Enzymatic anti-oxidants such as superox-
ide dismutase (SOD), catalase, glutathione, glutathione peroxidase and reductase in 
general inhibit the formation of reactive species in cells [31] while non-enzymatic 
anti-oxidants like vitamin E (α-tocopherol), vitamin C (ascorbic acid), carotenoids, 
flavonoids etc. scavenge the reactive species. These anti-oxidants ensure that there 
is minimal damage to DNA and other cellular components. The other and most im-
portant mechanism of cellular defense involves direct repair of the damaged bases 
[32–34] or their excision out of DNA followed by insertion of a new appropriate 
base at the corresponding location [35, 36]. This function is basically performed 
by different proteins that have inherent catalytic abilities. Biological systems have 
evolved with many such enzymes that have specific repair functions. For example, 
oxidative DNA base lesions are repaired by DNA glycosylases while alkylated base 
lesions are repaired by DNA alkyl transferases. The enzymatic DNA repair path-
ways have been shown to consist of two important processes i.e. damage recogni-
tion and catalysis.

Due to a spectrum of DNA damage lesions produced in cells, multiple cellular 
defense mechanisms are sometimes unable to prevent and repair these lesions. As a 
consequence, cells get affected by diseases. Therefore, understanding of formation 
of different biochemical reaction intermediates and products and multiple functions 
of various cellular defense mechanisms will certainly enrich our knowledge which 
can enable us to devise techniques to protect cells from diseases, e.g. by designing 
appropriate drugs. Application of theoretical methods can be immensely valuable 
towards understanding molecular mechanisms involved in the functioning of DNA, 
anti-oxidants and proteins. It is established that use of density functional theory 
(DFT) and molecular dynamics simulation can greatly help in the pursuit of ex-
plaining structures and functions of different biomolecules. For relatively smaller 
molecules, DFT calculations can predict structures and even reaction energetics 
fairly accurately. Therefore, we will mainly discuss results of DFT studies regarding 
mechanisms of formation of different DNA base lesions, action of anti-oxidants and 
repair of different base lesions in DNA by enzymes.

3.2  Endogenous Formation of Reactive Species

It is established that during the normal metabolic activities, some electrons (1–3 % 
of the total number) leak away from the mitochondrial electron transport chain and 
get bound to normal molecular oxygen, producing superoxide radical anion (O2

•−) 
[37, 38]. Electrons also leak from enzymatic sources such as NAD(P)H and xan-
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thine oxidases and produce O2
•−. Superoxide radical anion (O2

•−) is quite reactive, 
having the half-life of 10−6 s, and has been observed in many pathological condi-
tions including cancer [37, 38]. It is rapidly converted to nonreactive H2O2 by su-
peroxide dismutatse (SOD) [39]. H2O2 is quite unreactive and does not participate 
in biochemical reactions directly. Further, enzymatic anti-oxidants like catalase and 
glutathione peroxidase transform H2O2 to H2O.

It is believed that under stress conditions, in living cells, larger numbers of O2
•− 

are formed which act as oxidants for certain enzymes which release Fe2 +. Subse-
quently, Fe2 + catalyzes the formation of OH• from H2O2 following the Fenton reac-
tion (Eq. 3.1). Further, horseradish peroxidase catalyses the formation of OH• from 
H2O2 and O2

•− involving Fe + 2/Fe + 3 by the Haber-Weiss reaction (Eq. 3.2) [40]. OH• 
is the most reactive among all in vivo reactants and can perturb structures and func-
tions of all components of DNA. It has been found that OH• has a very short half-
life i.e. 10−9 s due to which it cannot diffuse to large distances [40]. Therefore, it 
reacts with DNA and other biomolecules only when formed in their close proximity.

 (3.1)

 (3.2)

Peroxyl radicals (ROO•) are also formed in cells via lipid peroxidation. These radi-
cals are quite stable and can diffuse to remote cellular locations. It is estimated that 
the half-lives of peroxyl radicals are upto a few seconds [41]. Among several ROO•, 
HOO• is the simplest peroxyl radical formed due to the protonation of O2

•− in living 
cells. It can modify fatty acids, proteins and DNA. HOO• mediated damage to DNA 
mainly occurs through its reactions with the bases and sugar moieties. Similarly, 
metal induced catalysis of organic peroxyl radicals can generate alkoxyl radicals 
(RO•), which are even more reactive than ROO•. However, the half-life of an alk-
oxyl radical is much shorter than that of a typical ROO•.

Nitric oxide (NO•) is generated in living cells during nitric oxide synthase (NOS) 
mediated conversion of arginine to citruline [42]. It is quite beneficial for cells and 
is involved in insulin secretion, neural development, immune regulation, muscle re-
laxation, blood pressure regulation, neurotransmission etc. [43]. NO• is quite stable 
and has a half-life of a few seconds. However, during oxidative stress, immune 
cells produce NO• and O2

•− in excess. As a result, these two species react rapidly to 
form peroxynitrite (ONOO−) [44, 45]. ONOO− is an RNOS which is more reactive 
than NO•. Although reactivity of ONOO− is much less than that of OH•, due to its 
stability and large diffusion constant, it can react with DNA, proteins and lipids 
very effectively. Further, ONOO− itself is capable of generating other RNOS that 
are very reactive. For example, on protonation, it can generate ONOOH [46], which 
upon homolytic dissociation generates the reactive species nitrogen dioxide (NO2

•) 
and OH• [47].

2 3
2 2Fe H O Fe OH OH+ + -+ → + +

2 2 2 2O  H O O OH  OH- -+ → + + 
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During the respiratory burst, H2O2 and O2
•− are rapidly released by immune 

cells to kill pathogens. During this process, reaction of H2O2 with chloride anion 
(Cl−), catalysed by heme myeloperoxidases produces hypochlorous acid (HClO) 
[48]. HClO is a powerful RHS and is quite cytotoxic. Due to this property, neutro-
phil cells use HClO to kill bacteria and different pathogens. However, it has been 
found that HOCl interferes with gene function by modifying different components 
of DNA. Another RHS, HBrO is also generated in living cells by human eosino-
phils that readily brominate DNA bases [49]. NO2Cl is believed to be produced in 
cells by reaction of HOCl with nitrite (NO2

−) [50]. NO2Cl is quite cytotoxic and is 
capable of causing oxidation, nitration and halogenation of almost all biomolecules 
including DNA and RNA [51]. It has also been observed that when HOCl is added 
to a buffer containing Cl−, it generates 1O2(Eq. 3.3) [52], and in the presence of 
metal cations (Mn + ), it generates OH• (Eq. 3.4) [53]. Thus it is clear that although 
metals such as iron, manganese, copper etc. are essential for the maintenance of cell 
homeostasis, their excess presence in cells enhances production of different in vivo 
reactive species [54].

 (3.3)

 (3.4)

3.3  DNA Base Modifications

As discussed earlier, guanine (G), adenine (A), cytosine (C), and thymine (T) in 
DNA can be modified by in vivo reactive species or different exogenous factors 
giving rise to a plethora of DNA base lesions. In vitro studies with DNA or model 
compounds have shown that almost seventy different types of base lesions can be 
produced in DNA [55]. However, quantification of all these lesions in cellular DNA 
is difficult. As a result, only about 20 different base and sugar lesions have been 
identified so far in cells [56]. These include both simple and complex base lesions. 
Simple base lesions mainly consist of different oxidatively damaged products of 
DNA bases whereas complex base lesions mainly include bulky lesions like DNA-
DNA and DNA-protein crosslinks. It should be noted that as the oxidation potential 
of G is the lowest among all the bases [57, 58], it is more frequently attacked by 
different reactive species than others. Therefore, we will here mainly consider the 
formation of different simple base lesions related to the modifications of guanine in 
DNA by different in vivo reactive species.

According to several model in vitro studies, oxidation of guanine can generate 
different lesions. These lesions include 8-oxoguanine (8-oxoG) [59–76], 2,6-diami-
no-4-oxo-5-formamidopyrimidine (FapyG) [77–82], 2,5-diamino-4H-imidazolone 

1
22HOCl O 2Cl 2H- +→ + +

n n 1HOCl M OH Cl M+ - ++ → + +
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(Iz) [83–90], 2,2,4-triamino-5(2H)-oxazolone (Oz) [83–91] etc. as the primary oxi-
dation products and guanidinohydantoin (Gh) [92–96], spiroiminodihydantoin (Sp) 
[96, 97], cyanuric acid (Ca) [98], oxaluric acid (Oa) [98–103], etc. as secondary ox-
idation products. The secondary oxidation products of guanine arise due to the deg-
radation of 8-oxoG in DNA [95–105]. Among these lesions, the formation of only 
8-oxoG, FapyG, and Iz or Oz [78, 106] has been accurately quantified in cellular 
DNA. Structures of these oxidative lesions of guanine are shown in Fig. 3. 1(a-d).

Biological implications of different guanine oxidation products are not yet fully 
understood since studies regarding their structures and properties in cellular DNA 
are limited. However, it is expected that these guanine lesions would play important 
roles in different disorders [76, 107] and diseases [7]. Among the nitration lesions 
in cellular DNA, only 8-nitroguanine (8-NO2G) and 5-guanidino-4-nitroimidazole 
(NI) have been quantified [107–114]. An overview of mechanisms of the formation 
of different mutagenic species due to in vivo reactions of certain common reactive 
species with guanine is presented below.

3.3.1  By Hydroxyl Radical (OH •)

The hydroxyl radical reacts preferentially with four carbon centres of guanine, 
thereby generating C2-OH, C4-OH, C5-OH, and C8-OH radical adduct intermedi-
ates [59, 74, 78]. The formation of the C8-OH radical adduct is also possible from 
the C4-OH and C5-OH radical adducts by subsequent dehydration and hydration. It 
has been shown that dehydration (elimination of OH−) of C4-OH and C5-OH radi-
cal adducts generates guanine radical cation (G+), which upon hydration (addition 
of OH−) at the C8 position ultimately yields C8-OH neutral radical intermediate 
(Fig. 3.2) [115].

It has been shown that once the C8-OH radical adduct is formed, it undergoes 
subsequent oxidation to yield 8-oxoG which is far more stable than the C8-OH 

Fig. 3.1  Structures of dif-
ferent oxidative lesions of 
guanine observed in cellular 
DNA [55]. Here R stands for 
the sugar group
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radical intermediate [59]. On the basis of DFT studies, it is shown that under high 
concentration of OH radicals, reaction of the C8-OH with another OH• can yield 
either 8-hydro,8-hydroxyguanine (8-OHG) or an imidazole ring-opened intermedi-
ate, which subsequently rearranges to 8-oxoG [59]. It is further found that the for-
mation of 8-oxoG via this ring-opened intermediate is the most preferred pathway 
of 8-oxoG formation [59, 76, 78]. In addition to 8-oxoG, FapyG can also be formed 
from the C8-OH radical adduct and the ring-opened intermediate following reduc-
tion [77, 80, 81, 83] (Fig. 3.2). On the basis of a DFT study, it is proposed that the 
C8-OH radical adduct may undergo imidazole ring-opening followed by simultane-
ous protonation and reduction, or vice versa, to yield FapyG [77]. Existence of both 
8-oxoG and FapyG in DNA may lead to guanine to thymine transversion mutation 
which is observed in a number of tumours [116].

3.3.2  By Superoxide Radical Anion (O2
•−)

It should be noted that guanine radical cation (G •+) formed from C4-OH and C5-
OH radical adducts or direct oxidation of guanine by loss of an electron is prone 
to quick deprotonation (rate constant = 1.8 × 107 s−1) to produce the guanine radical 
G(-H)• [57, 58, 117, 118]. This reaction channel operates in competition with the 
one that leads to the formation of 8-oxoG in DNA [119]. Electron paramagnetic res-
onance and laser flash photolysis studies in aqueous media at the normal tempera-
ture have shown that the lifetime of the G(-H)• is a few seconds. Thus under normal 
conditions, G(-H)• is quite stable and does not degrade to other reaction products. 
However, its oxidation by O2

•− has been observed to yield Iz, which on subsequent 
hydration yields Oz [103]. Oz is suggested to be the most stable oxidation product 
of guanine. Although O2

•− mediated oxidation of guanine can result in the formation 

Fig. 3.2  Mechanisms of the formation of 8-oxoG and FapyG [76, 78]
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of 8-oxoG, due to its low oxidation potential, it further reacts with O2
•− to form the 

most stable guanine oxidation product Oz. It is found that degradation of 8-oxoG to 
Oz readily occurs at neutral pH, while formation of Iz is relatively more favoured 
at basic pH [120].

3.3.3  By Peroxynitrite (ONOO−)

It has been suggested that ONOO− is capable of initiating both oxidation and nitra-
tion of guanine. ONOO− mediated oxidation of guanine mainly generates 8-oxoG 
and Oz, while its nitration produces 8-NO2G [61, 65, 106, 108, 109] and NI [110–
114]. However, in cellular DNA, NI has been observed to be the dominant nitration 
product of guanine. A DFT study has revealed that ONOO− mediated oxidation of 
guanine generates 8-oxoG and NO2

−, while nitration of guanine can yield either 
8-NO2G

− + H2O or 8-NO2G + OH− [61]. Further, DFT studies have revealed that the 
reactivity of ONOO− gets enhanced in the presence of carbon dioxide (CO2) that 
catalyses its reaction with guanine to produce 8-oxoG as discussed below [65]. A 
theoretical study of the reaction of ONOO− with guanine in the presence of CO2 
was carried out [65] at the B3LYP/6-31G(d, p) and B3LYP/AUG-cc-pVDZ levels 
of density functional theory [121, 122]. Geometry optimization calculations were 
carried out in gas phase while bulk solvent effect in aqueous media was treated by 
single-point energy calculations at the B3LYP/AUG-cc-pVDZ level of theory em-
ploying the polarizable continuum model (PCM) [123, 124]. An important catalytic 
role was found to be played by CO2 in the reactions of ONOO− with guanine as 
discussed below.

Initially, ONOO− and CO2 react together to form the nitrosoperoxycarbonate an-
ion (ONOOCO2

−) complex and subsequently this complex reacts with guanine [65]. 
Certain details of this reaction are as follows (Fig. 3.3). (a) The cis-conformer of ni-
trosoperoxycarbonate anion is more stable than its trans-conformer by about 1 kcal/
mol. Further, the cis-conformer of nitrosoperoxycarbonate anion makes a stronger 
hydrogen bonded complex with the H9 atom of guanine than its trans-conformer. 
(b) The reactions between ONOOCO2

− and guanine occurring through different 
schemes mainly produce 8-oxoG or 8-NO2G

−. (c) An analysis of the structures of 
products and barrier energies reveals that CO2 acts as a catalyst in these reactions. 
It is found that ONOOCO2

− is broken into the CO3 radical anion and NO2
• due to 

dissociation of the OO bond while reacting with guanine. Intermediacy of CO3
•− and 

NO2
• appears to be the main cause of the catalytic action of CO2. (d) As revealed by 

the calculated total energies of the products, 8-oxoG would be produced in much 
more abundance than 8-NO2G

−. Therefore, ONOO− in complexation with CO2 
would cause mutation mainly through the formation of 8-oxoG. (e) The bulk sol-
vent effect of water plays an important role in reducing the reaction barrier energies.



673 Formation of DNA Lesions, its Prevention and Repair

3.3.4  By Nitrogen Dioxide (NO2
•)

Formation of the guanine radical G(-H)• has been observed experimentally [118]. 
Reaction of G(-H)• with NO2

• generates 8-NO2G as shown by DFT calculations 
[67]. Details in terms of structures and energies for a particular scheme of reaction 
between G(-H9•) and NO2

• leading to the formation of 8-NO2G obtained by geom-
etry optimization at the BHandHLYP/6-31G(d, p) level in gas phase followed by 
single point energy calculations at the MP2/Aug-cc-pVDZ level of theory in aque-
ous media are shown in Fig. 3.4. The polarizable continuum model (PCM) [123, 
124] was used to study solvation in bulk aqueous media. Water molecules facilitate 
proton transfer between different sites. In this case, proton transfer takes place from 
C8 to N9 in two steps. It should be noted that addition of NO2

• to G(-H)• where H9 
is removed would not be relevant to the actual DNA since in DNA N9 is bonded to 
deoxyribose sugar. Reaction of G(-H)• with NO2

• has also been suggested to yield 
NI [78]. This in general occurs due to the addition of NO2

• at the C5 position of G(-
H)• followed by subsequent hydration and decarboxylation. Formation of NI from 
2′,3′,5′-Tri-O-acetyl-guanosine has been observed in UV/vis spectroscopy, ESI-
MS, and NMR studies [113]. Further, it has been found that NI does not degrade to 
other products and is quite stable in aqueous solutions at both acidic and basic pH.

Formation of guanine radical cation (G• +) has been observed experimentally 
when the specimen is exposed to high energy radiation [118]. The reaction of G• + 
with NO2

• has been shown to yield 8-NO2G
 + [63]. Details of a particular scheme 

a b

cde

Fig. 3.3  Reaction of nitrosoperoxycarbonate anion with guanine. a Initial reactant complex, b, 
c, d Intermediates and e Product complex (8-oxoG + NO2

− + CO2). Gibbs barrier (positive) and 
released (negative) energies (kcal/mol) at each step obtained at the B3LYP/AUG-cc-pVDZ level 
in aqueous media are given near the arrows. The last step is barrierless [65]
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of this reaction obtained by geometry optimization at the B3LYP/AUG-cc-pVDZ 
level in gas phase followed by single point energy calculations at the MP2/Aug-cc-
pVDZ level in aqueous media are shown in Fig. 3.5. Several barrier energies were 
appreciably lowered down due to the bulk solvent effect of water. A water molecule 
facilitates proton transfer from C8 to N7 in two steps. A comparison of binding 
energies of seven base pairs between one of the normal DNA bases and any one of 
8-oxoG, 8-NO2G or 8-NO2G

 + showed that the initially formed 8-NO2G
 +-adenine 

base pair stabilized as 8-NO2G-adenine + base pair and it was the most stable among 
all the base pairs considered [63]. It shows that 8-NO2G

 + is highly mutagenic. In 
human respiratory tract epithelial cells, direct exposure of guanine to NO2

• has also 
been observed to yield xanthine due to the deamination of guanine instead of its 
oxidation leading to 8-oxoG [125].

3.3.5  By Carbonate Radical Anion (CO3
•−)

Formation of carbonate radical anion (CO3
•−) as a site-selective oxidizing agent of 

guanine in double-stranded oligonucleotides leading to the formation of 8-oxoG has 
been observed experimentally [126–128]. In view of this observation, the reaction 
between guanine radical cation (G• +) and CO3

•− was studied theoretically [73]. The 
relevant geometries were fully optimized in gas phase at the B3LYP/6-31G(d, p), 
BHandHLYP/AUG-cc-pVDZ, and B3LYP/AUG-cc-pVDZ levels of density func-
tional theory. It was followed by single point energy calculations at the MP2/AUG-
cc-pVDZ level in chlorobenzene using the gas phase geometries optimized at the 

a b c

Fig. 3.5  a Reactant complex, b Intermediate complex, and c Product complex consisting of G• + 
with NO2

• in presence of a water molecule. The water molecule facilitates proton transfer. Gibbs 
barrier ( above the arrows) and released ( below the arrows) energies (kcal/mol) at each step are 
given. A negative barrier energy implies a barrierless reaction [63]

 

a b c

Fig. 3.4  a Reactant complex of G(-H9)•, NO2
• and six water molecules, b Intermediate complex, 

and c Product complex (8-NO2G + 6H2O). Water molecules facilitate proton transfer. Barrier (posi-
tive) and released (negative) energies (kcal/mol) at each step are given near the arrows [67]

 



693 Formation of DNA Lesions, its Prevention and Repair

BHandHLYP/AUG-cc-pVDZ level. The Gibbs barrier and released energies thus ob-
tained are shown in Fig. 3.6. The calculated binding energy of the reactant complex 
(RC) between G• + and CO3

•− and three specific water molecules in gas phase was 
found to be large negative while that in bulk water using the PCM was found to be 
large positive. It was a clear indication that the reaction between G• + and CO3

•− would 
not occur in pure water. The RC was not stabilized in aqueous media since the indi-
vidual charged reactants would polarize the aqueous medium to much larger extents 
than their electrically neutral RC. It is to be noted that the experimental medium is 
very complex having several additional chemical species, and it is also photoirradi-
ated [128]. In order to find an equivalent medium to the experimental one satisfying 
the condition that the RC was satisfactorily stabilized, bulk solvent effect on its stabil-
ity in various solvent media corresponding to different dielectric constants was inves-
tigated at the level of single point energy calculations in toluene, acetone, dimethyl-
sulfoxide, chlorobenzene, dichloroethane and water employing the PCM. It was thus 
found that the experimental medium would be represented by chlorobenzene fairly 
closely. The calculated results in chlorobenzene and certain other media showed that 
the reaction between G• + and CO3

•− leading to the formation of 8-oxoG would occur 
efficiently (Fig. 3.6). Thus CO3

•− is found to be an efficient ROS.

3.3.6  By HOCl

It is established that HOCl is a potent oxidant that readily oxidises and chlorinates 
DNA, in particular guanine. The major reaction products of guanine thus formed 
are 8-oxoG and 8-chloroG [62, 129]. As suggested earlier, HOCl reacts mainly at 

a cb

e d

Fig. 3.6  a Reactant complex of G• + , CO3
•− and three water molecules in the medium of chloro-

benzene, b, c, d Intermediate complexes, and e Product complex (8-oxoG + CO2 + 3H2O). Gibbs 
barrier (positive) and released (negative) energies (kcal/mol) at each step are given near the arrows 
[73]
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the C8 position of guanine to generate the above mentioned species. In addition 
to this, HOCl also reacts with the C8 position of adenine (A) and C5 position of 
cytosine (C), thereby generating 8-chloroA and 5-chloroC respectively. It is further 
found that HOCl facilitated the formation of 8-chloroG which is more efficient than 
that of 8-oxoG. As activated neutrophils secrete myeloperoxidase produced HOCl, 
8-chloroG can be a potential biomarker of inflammation [130, 131].

3.3.7  By NO2Cl

It has been shown that the reaction of NO2Cl with guanine can lead to its oxidation, 
chlorination and nitration, thereby forming 8-oxoG, 8-chloroG and 8-NO2G respec-
tively. Among these reactions, NO2Cl has been proposed to efficiently induce nitra-
tion of guanine producing 8-NO2G [68, 132]. However, epithelial cells at the site of 
inflection near the human stomach and respiratory tract can form NO2Cl-mediated 
oxidized guanine lesions efficiently, as speculated earlier [132]. Both 8-oxoG and 
8-NO2G are mutagenic and can induce guanine to thymine transversion mutation 
in mammalian cells. In addition to this, 8-NO2G can cause depurination to produce 
different cytotoxic products in DNA [132].

3.4  Prevention of Formation of Lesions by Anti-oxidants

As mentioned earlier, anti-oxidants can readily scavenge reactive species from 
biological media. Fruits, vegetables, whole grains and certain Indian spices are in 
general good sources of anti-oxidants [133]. Depending on their ability to scavenge 
reactive species, they can be classified in different categories [133]. There are three 
different important mechanisms by which anti-oxidants scavenge free radicals. If 
we consider R as a free radical and A as an anti-oxidant, we can express these three 
mechanisms as follows.

Single electron transfer (SET):

Hydrogen atom transfer (HAT) (or hydrogen abstraction):

Radical adduct formation (RAF):

Here TS and TS′ stand for transition states for hydrogen abstraction and addition re-
actions respectively. This section describes roles of SET, HAT and RAF mechanisms 

+A + R A + R -→ 

[ ] ( )A + R TS A -H + RH→ → 



[ ]A + R TS AR→ ′ → 
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with regard to the reactions of various nutritional anti-oxidants including different 
vitamins and certain other important anti-oxidants which scavenge the different free 
radicals.

3.4.1  Superoxide Radical Anion Scavengers

As superoxide radical anion (O2
•−) is a negatively charged radical, its behaviour in 

charge transfer processes differs significantly from those of the uncharged ROS and 
RNOS. In addition to superoxide dismutase (SOD), dietary polyphenols including 
flavonoids and non-flavonoids can potentially scavenge O2

•− from cells. Among 
other chemical agents, quercetins, and chlorogenic acids are shown to be potential 
superoxide scavengers [134, 135]. In an early study, it has been shown that ascorbic 
acid has a better O2

•− scavenging ability than SOD [136]. However, in a subsequent 
study, on the basis of calculated rate constants involving reactions between different 
superoxide scavengers and O2

•−, it has been shown that the superoxide inhibitory 
ability follows the order SOD > L-ascorbic acid > eugenol > guaiacol > phenol [137].

Carotenoids (Figs. 3.7a–3.7c) are the naturally occurring organic pigments abun-
dant in human diet mainly in carrots, pumpkins and sweet potatoes. Among this 
general class of carotenoids, β-carotene is distinguished by its beta rings at both the 
ends of the molecule. In nature, β-carotene is a precursor (inactive form) to vitamin 
A and the corresponding reaction occurs via the action of β-carotene 15,15’-mo-
nooxygenase. Carotenoids are very strong anti-oxidants having ability to scavenge 
almost all ROS and RNOS [138]. They have been found to have an excellent ability 
to directly scavenge O2

•− [139, 140]. Carotenoids scavenge O2
•− through the SET 

mechanism. In a recent theoretical study [141], it was proposed that O2
•− inverts 

the direction of electron transfer in comparison to other ROS and RNOS. The SET 
mechanism can be expressed as follows.

Here carotenoids act as electron acceptors while O2
•− acts as an electron donor. Thus, 

the anti-oxidant property of carotenoids lies in their ability to convert O2
•− into O2. 

Reactions of O2
•− with different carotenoid molecules including β-carotene (BC), 

adonirubin (ADO), astaxanthin (ASTA), canthaxanthin (CAN), β-doradexanthin 
(BDOR), 4-oxo-rubixanthin (OXO), torulene (TOR), lycopene (LYC) etc. were 
studied theoretically [141] using the B3LYP functional of DFT along with the 
6-311G(d) basis set. Solvent effects in polar media e.g. water and non-polar media 
e.g. benzene were treated employing the integral equation formalism of the PCM 
(IEF-PCM) [141]. Since carotenoids are hydrophobic molecules, these are expected 
to be located mainly in the lipid portions of membranes. Therefore, their high reac-
tivity towards O2

•− in non-polar media e.g. benzene would play an important role 
with regard to their ability to prevent lipid peroxidation. The carotenoids which 
were found to have high scavenging ability towards O2

•− in non-polar media are 
ADO, ASTA, CAN, BDOR, OXO, etc.

2 2Carotenoids O Carotenoids O- -+ → + 
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3.4.2  OH Radical Scavengers

The hydroxyl radical is the most reactive ROS present in biological systems. Uroca-
nic acid (UCA) (Fig. 3.7d), a metabolite of histidine, is located in the upper layers 
of the human skin epidermis and acts as an absorber of UV-radiation. It has been re-
cently shown that UCA can effectively scavenge OH radicals [142]. As high energy 
radiation produces OH• by water splitting and dissociation of H2O2, UCA can play 
a vital role in protecting genome from OH• mediated mutagenesis.

Fig. 3.7  Structures of some potential ROS/RNOS scavangers [133]
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It was found that when an OH• attacks UCA, the RAF mechanism takes place 
and the lowest Gibbs barrier energy for this reaction corresponds to the C5 site 
(Fig. 3.7d). Barrier energies for the corresponding reactions at the C6 and C7 sites 
were found to be similar. The second OH• attack at all these three sites led to adduct 
formation barrierlessly. Binding energy analysis of the thus formed adducts revealed 
that the most stable adduct was formed by the addition of an OH• at the C6 site of the 
C7-OH• adduct. The third OH• abstracts the hydrogen atom of OH group bonded to 
the C6 or C7 site leading to two different mechanims which are initiated barrierless-
ly. Attack of the fourth OH• leads to the formation of imidazole-4-carboxaldehyde, 
glyoxylic acid and two water molecules as the primary products [142]. Formation 
of imidazole-4-carboxaldehyde and glyoxylic acid as the primary products has been 
observed experimentally [143, 144]. It was found that a positive barrier energy was 
involved only in the addition reaction of the first OH• to urocanic acid, while the 
reactions of the other three OH• were barrierless each [142]. Thus UCA has been 
shown to be an effective anti-oxidant. It is believed that UCA can serve as a better 
OH• scavenger than the traditional anti-oxidants like vitamins C and E.

Recently, it has been shown that compounds with phenolic rings in general can 
act as good OH• scavengers. For example, resveratrol and salicylates have been 
shown to have protective roles in this respect [145–147]. Curcumin, an extract of 
turmeric, has been shown to act as a potential OH• scavenger (Fig. 3.7j). It is known 
to have protective roles in cancer and the Alzheimer’s disease [148]. On the basis of 
density functional theoretical studies, it has been shown that curcumin exhibits its 
anti-oxidant property by donating an electron to OH•, by undergoing hydrogen ab-
straction or by addition reactions with OH radical [149]. Ferulic acid which can be 
derived from curcumin [150] also scavenges OH• in a similar manner as curcumin. 
It is present in leaves and seeds of brown rice, whole wheat, apple, orange etc. In 
addition to the above, phenolic compounds can also scavenge OH radicals following 
addition of OH• to their double bonds in aromatic rings. Natural polyene and poly-
phenol classes of substances, such as flavonoids, present mostly in fruits and veg-
etables can also protect biological systems against OH• mediated oxidative damage.

A detailed theoretical study of the anti-oxidant activity of curcumin has been 
performed [149]. All geometry optimization calculations were carried out at the 
BHandHLYP/6-31G(d, p) level of density functional theory in the gas phase. It was 
followed by single-point energy calculations in the gas phase at the B3LYP/aug-cc-
pVDZ and BHandHLYP/aug-cc-pVDZ levels of theory. Solvent effect in aqueous 
media was treated at the level of single point energy calculations at all the levels 
of theory mentioned above and employing the PCM along with the gas phase opti-
mized geometries at the BHandHLYP/6-31G(d, p) level. Geometry optimization in 
aqueous media was also performed for certain reaction steps, and the Gibbs barrier 
energies thus obtained were quite similar to those obtained by single-point energy 
calculations. The SET mechanism was found to be more likely in polar media than 
in the gas phase. For hydrogen abstraction and OH• addition, all the possible sites 
were considered (Fig. 3.7j). It was observed that the most favorable site for hy-
drogen abstraction is the OH group attached to C2 while OH• addition was found 
to be the most favored at the C10 site of the heptadiene chain (Figs. 3.7j, 3.8). In 
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Fig. 3.8, {TSs} and {TS′s} symbolically represent sets of three and four transition 
states respectively. The structures shown near {TSs} and {TS′s} are those of the 
last transition states in each set. RC and PC stand for reactant complex and product 
complex respectively. M stands for the molecule lying near ferulic acid in Fig. 3.8. 
In the RC of Fig. 3.8, an OH radical is already added at the C10 site. A sequence of 
addition and hydrogen abstraction reactions (Fig. 3.8) lead to the formation of feru-
lic acid and vanillin. Thus curcumin and its degradation products in total scavenge 
eight OH radicals.

Glutathione (Fig. 3.7e) is a major detoxifying agent inside our body particularly 
in the brain. Reduced glutathione (GSH) plays a central physiological role in pro-
tecting cells against exogeneous and endogenous oxidants, toxicants, DNA damag-
ing agents e.g. OH• and carcinogens [151–155]. It is produced in biological systems 
from the amino acids cysteine, glutamic acid and glycine. Glutathione is produced 
inside cells and cannot be ingested as a supplement as it is too large a molecule to 
pass through the intestinal walls. Further, glutathione levels cannot be increased 
by ingesting cysteine orally because oral cysteine is potentially toxic and is spon-
taneously destroyed in the gastronomical tract [156]. However, N-acetylcysteine 
(NAC), can be ingested orally, is the bioavailable form of cysteine and acts as a 
precursor for glutathione synthesis [157, 158].

A theoretical study on the OH• scavenging ability of glutathione in its neutral 
non-zwitterionic form through the HAT mechanism has recently been carried out 
[155]. Hydrogen abstraction was considered from all the possible sites of gluta-
thione (Fig. 3.7e). All the geometry optimization calculations were performed at 
the B3LYP/6-31G(d, p) level followed by M06/Aug-ccpVDZ and M06-2X/Aug-
ccpVDZ level single point energy calculations in water [155]. In this work, abstrac-
tions of twelve hydrogen atoms attached to different carbon or nitrogen atoms of 
glutathione were found to be associated with small positive or negative Gibbs bar-
rier energies. Further, the Gibbs barrier energies for abstractions of hydrogen atoms 

Fig. 3.8  A scheme showing the formation of ferulic acid and vanillin by a sequence of hydrogen 
abstraction and OH• addition reactions between curcumin or its degradation products and eight 
OH• [149]

 



753 Formation of DNA Lesions, its Prevention and Repair

attached to four different sites including that attached to the sulphur atom were 
found to be moderate while the Gibbs barrier energy for abstraction of a hydrogen 
atom attached a nitrogen atom was found to be high. Thus glutathione has been 
shown to be an excellent scavenger of OH• [155]. Glutathione exists in an anionic 
form at physioplogical pH where the glycine moiety is deprotonated while the glu-
tamic acid moiety is in the zwitterionic form [159]. A theoretical study was carried 
out at the M05-2X/6-311 + G(d, p) level of theory on the OH• scavenging ability 
of glutathione where its anionic form (GS−) was considered [153]. To treat solvent 
effect in water, the SMD continuum model was employed [160]. The SET mecha-
nism was found to be endergonic and hence was ruled out. It was concluded that 
glutathione acts as an anti-oxidant exclusively by the HAT mechanism. Further, the 
most reactive site was found to be that of sulphur where the hydrogen abstraction 
reaction occurred in a barrierless manner and with a high rate constant (1.16 × 109 
M−1s−1) [153]. It is clear that the barrier energy for hydrogen abstraction from the 
SH group of glutathione is small. However, whether it is negligibly small or not is 
still not established [153, 155].

Vitamin B6 (Fig. 3.7f), also named as pyridoxine, is one of the eight water solu-
ble vitamins of class B [161–163]. A high OH• quenching ability was reported for 
vitamin B6and it was also found to be as effective as Vitamin E (Fig. 3.7i) [161]. 
Pyridoxine was found to be the most reactive among the vitamin B6 sub-class of 
molecules i.e. pyridoxine, pyridoxal, pyridoxamine and pyridoxal-5-phosphate. In 
a recent theoretical study performed on this system at the B3LYP/6-31G(d, p) level 
of theory, it was found that it can scavenge up to eight OH• [163]. Thus vitamin 
B6would be very beneficial as an OH• scavenger. Hydrogen abstraction reactions 
between OH• and pyridoxine were found to occur preferentially either from the C8 
or the C9 site at the first step (Fig. 3.7f) [163]. In subsequent reactions, addition and 
cyclization were also considered. Thus vitamin B6 is also shown to be an efficient 
OH• scavenger.

Interestingly, recently, high concentration of molecular hydrogen (H2) has been 
shown to scavenge OH•. Drinking of water that contains higher level of H2 has been 
shown to decrease urinary 8-oxoG significantly by mainly scavenging OH•. It is fur-
ther suggested that the use of H2 can be beneficial in the prevention of rheumatoid 
arthritis that mainly arises due to OH• mediated oxidative stress [164].

A density functional theoretical study was performed on the OH• scavenging 
property of N-acetylcysteine (NAC) which is a precursor of glutathione (Fig. 3.7g) 
[165]. Solvent effect in water was treated employing the PCM. N-acetylcysteine 
was found to effectively scavenge OH• through the HAT mechanism. This reaction 
at the sulphur site was found at the BHandHLYP/Aug-cc-pVDZ level of theory in 
polar media to take place barrierlessly and with a high rate constant. However, hy-
dogen abstraction from two carbon sites was also found to contribute significantly 
to the OH• scavenging ability of N-acetylcysteine.

The mechanism of action of vitamin C (ascorbic acid) as an anti-oxidant towards 
OH• is well known. At physiological pH, it exists in a monoanionic form (AA−). A 
theoretical study of the reactions between AA− and OH• was performed employing 
density functional theory [166]. Solevnt effect in water was treated employing the 
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PCM. The SET mechanism being extremely endothermic has been ruled out. It 
was found that scavenging of OH• was possible by the HAT and RAF mechanisms. 
Hyrogen abstraction reactions from the O9, O10, O11 and C4 sites (Fig. 3.7h) were 
found to be barrierless. Thus vitamin C is shown to be an excellent scavenger of 
OH•. Its most preferred site for OH• addition was shown to be C2 (Fig. 3.7h) for 
which the Gibbs barrier energy at the B3LYP/6-311++G(3df,2pd) level was found 
to be ~ 1.25 kcal/mol in solution.

A theoretical study of the OH• scavenging ability of vitamin E (α-Tocopherol) 
(Fig. 3.7i) has revealed the following information [167]. The reaction was found to 
proceed through the HAT and RAF mechanisms. Hydrogen abstraction reactions 
from the phenolic OH group and methyl groups and OH• addition reactions at sever-
al positions of the aromatic ring were studied at the BHandHLYP/6-311 + + G(2d,2p) 
level of theory. The most probable site for hydrogen abstraction with a low barrier 
energy (0.8 kcal/mol) was found to be C2 while OH• addition was found to take 
place at the C6 site in a barrierless manner. Reaction rate constants for the HAT and 
RAF mechanisms were found to be 2.2 × 108 M−1s−1 and 5.6 × 107 M−1s−1 respec-
tively [167]. Thus vitamin E is also shown to be an effective OH• scavenger like 
vitamin C.

3.4.3  OOH Radical Scavengers

Garlic is a well known for its medicinal properties. It has been shown to be an excel-
lent anti-oxidant. It effectively scavenges free radicals due to its active ingredients 
allicin (2-propenyl 2-propenethiosulfinate) and 2-propenesulfenic acid (Fig. 3.7k, l) 
[168–170]. Both of these molecules can effectively scavenge OOH•. In addition, ca-
rotenoids are also well known OOH• scavengers. In recent theoretical studies [171, 
172], reactions of OOH• with several carotenoids have been studied where these 
molecules have shown to be potent scavengers of OOH•. The OOH• scavenging 
ability of allicin has been found to be 1000 times less than that of 2-propenesulfenic 
acid [170]. A theoretical study of both the ingredients of garlic was carried out at the 
BHandHLYP/6-311++G(d, p) level of theory followed by CBS-QB3 calculations to 
overcome limitations arising due to the truncation of basis set and spin contamina-
tion. Solvent effect in water was treated by the IEF formalism of the PCM [141]. 
All the three reaction mechanisms mentioned earlier were taken into account. It was 
found that the SET mechanims would not contribute significantly to the reactions of 
OOH• with allicin and 2-propenesulfenic acid. Therefore, the HAT and RAF mecha-
nisms are important in these reactions. Hydrogen abstraction was considered from 
the α1 and α2 sites of allicin and α1 and δ sites of 2-propenesulfenic acid (Fig. 3.7k, 
l). It was found that 2-propenesulfenic acid is much more reactive towards OOH• by 
the HAT mechanism than allicin. However, allicin was found to be somewhat more 
reactive towards OOH• by the RAF mechanism than 2-propenesulfenic acid. On 
the whole, the 2-propenesulfenic acid ingredient of garlic was shown to be a better 
scavenger of OOH• than the other ingredient allicin.
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Carotenoids have also been found to scavenge OOH•. Their reactions with OOH• 
can take place along more than one pathways. Certain theoretical studies have sug-
gested that the SET mechanism is highly unfavourable for the reaction between 
carotenoids and OOH• [173]. A theoretical study of reactions between carotenoids 
and OOH• was performed at the BPW91/6-31G(d, p) level of theory [171]. Solvent 
effect of water and benzene on the reactions was studied employing the IEF for-
malism of the PCM [141]. A comprehensive study of HAT and RAF mechanisms 
was carried out considering three different carotenoids, namely, β-carotene (BC), 
lycopene (LYC) and torulene (TOR). For the HAT mechanism, in the cases of BC 
and LYC, lowest Gibbs barrier energies were found for hydrogen abstraction from 
the sites 5a and 4 while in the case of TOR, the lowest Gibbs barrier energy sites 
were 30 and 4 (Fig. 3.7a–c) in both water and benzene solvents. Among the three 
carotenoids, TOR was found to be the most efficient as an OOH• scavenger through 
the HAT mechanism [171]. For RAF mechanism [171] in non-polar media, the C5 
site corresponds to lowest barrier energy for both BC and LYC, while in the case 
of TOR, the lowest barrier energy corresponds to addition at the C30 site followed 
by that at the C5 site. However, polar media alters the order of reactivities of the 
different sites. For BC, Gibbs barrier energies for additions at C5, C7 and C9 sites 
were found to be comparable, and in the case of LYC, the barrier energy for addi-
tion at C15 was also found to be similar to that for addition at C5. In the case of 
TOR, the lowest barrier energy corresponds to the C5 site, and it was followed by 
the C30 site. Therefore, there would be a wider product distribution in polar media 
than in non-polar ones. The calculated reaction rate constants suggested that TOR 
is appreciably more reactive than BC through the RAF and HAT mechanisms in 
non-polar media. The RAF mechanism seems to be much less important in the con-
text of reactions of carotenoids with OOH• than HAT. On the whole, reactivities of 
carotenoids towards OOH• are predicted to follow the order [171]: LYC > TOR > BC 
in non-polar media and TOR > LYC > BC in polar media. Adducts of OOH•

. are pre-
dicted to be formed mainly at the terminal C5 site of the conjugated polyene chains.

3.4.4  NO2 Radical Scavengers

Carotenoids are also highly reactive towards NO2
•. Among all carotenoids, 

β-carotene scavenges NO2
• most effectively, preventing cardiovascular diseases 

[174]. Several experimental studies had been carried out for the reaction between 
β-carotene and NO2

• in different environments but the favourable reaction mecha-
nism and solvent effects could not be conclusively established [175–178]. Certain 
pulse radiolysis experiments had suggested that the reaction would proceed through 
electron transfer [177] while in other experiments, it was suggested to take place 
through the RAF mechanism [178]. All the three mechanisms (SET, HAT, RAF) for 
the reaction between β-carotene and NO2

• were studied theoretically at the B3LYP/ 
6-31G(d) level [174]. Solvent effect was treated employing the PCM in the solvents 
heptane, methanol and water having low, medium and high polarities respectively. 
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This theoretical study [174] revealed that the SET mechanism would operate only 
in polar media while the HAT mechanism would operate in all the solvents though 
it would also be more favoured in polar media. The most favoured site of β-carotene 
for hydrogen abstraction was found to be C4 of the β-ionone ring (Fig. 3.7a).

Structural changes occurred in β-carotene due to addition of NO2
• at any of the 

carbon atoms of the polyene chain [174]. It resulted in breaking of the conjugated 
system and partial loss of planarity of the chain. Addition of NO2

• at any of the C5 
and C6 positions of the β-ionone ring caused ring twisting which had a noticeable 
effect since the double bond of the ring remained only partially conjugated with the 
polyene chain. The adduct BC(C5)-NO2

• was found to be the most stable among all 
radical adducts confirming this site to be the most favoured one for the RAF mecha-
nism [174]. A greater stability of the BC(C5)-NO2

• adduct than that of BC(C6)-
NO2

• was due to a combination of two effects i.e. stabilization by resonance of 
the unpaired electron which does not occur in the latter, and partial extension of 
planarity of the conjugated polyene chain to the end groups by proper twisting of 
the β-ionone rings.

3.4.5  ONOO− Scavengers

Xanthine and hypoxanthine are formed from guanine following its oxidation. Uric 
acid (UA) is formed as a reaction product of xanthine and hypoxantine during the 
metabolic activities. UA has been shown to have ONOO− scavenging ability that 
significantly reduces nitration of tyrosine. Thus UA prevents inflammatory cell in-
vasion into the central nervous system [179, 180]. Similarly, marine extracts like 
2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether can also act as potential ONOO− 
scavengers [181]. It has been shown that compounds that contain galloyl group 
exhibit high ONOO− scavenging activity. For example, several components of the 
green tea tannin such as epigallocatechin 3-o-gallate (Fig. 3.7m) and gallocatechin 
3-o-gallate have been shown to scavenge ONOO− actively [182].

The above discussion shows that there is a strong support in favour of ability of 
the anti-oxidant molecules to scavenge ROS and RNOS which cause DNA damage 
and produce mutagenic products. Application of density functional theory has been 
particularly very useful in this context.

3.5  Enzymatic DNA Repair

Enzymatic DNA repair mainly depends on three vital processes, i.e. (1) protein 
translocation, (2) identification of the target, and (3) lesion repair by catalysis. 
These processes are discussed below.
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3.5.1  Protein Translocation

It has been proposed that proteins find their target by diffusing along DNA in sev-
eral possible ways such as hopping or jumping, sliding, intersegment transfer etc. 
[183]. Protein translocation by hopping involves scanning of DNA by the protein 
by making various microscopic associations and dissociations [183]. During hop-
ping, proteins need to be associated with DNA initially by a non-specific binding. 
During this process, a protein jumps by dissociating from one segment of DNA and 
associating at another segment of the same (Fig. 3.9). It is believed that due to a 
small diffusion constant, after dissociation, a protein molecule spends some time 
near the initial site of binding. As a consequence, the next binding occurs by short 
range hops involving a few base pairs. However, during this process, a protein may 
also jump farther distances involving many base pairs away from its initial site of 
binding [184, 185].

During sliding, proteins remain bound at a site of DNA without being dissoci-
ated for a fairly long time so that translocation by one dimensional diffusion can 
occur accurately [186, 187] (Fig. 3.9). However, due to random thermal diffusion, 
the protein may move forward or backward on DNA from its initial site of binding. 
It has been suggested that if the length of DNA which is being scanned by a protein 
is relatively small, the rate of protein translocation by sliding gets accelerated. In 
intersegment transfer, proteins move from one segment of DNA to another via loops 
[188]. In this case, proteins bind to DNA at two different sites simultaneously and 
then dissociate from one end to move to the other. Further, intersegmental transfer 
requires a mean step size of about 400 base pairs and two parts of DNA binding 
surface to complete translocation [189, 190]. For this reason, it is not the most 

Fig. 3.9  Protein transloca-
tion by hopping and sliding 
on DNA [194]
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preferred mode of protein translocation. Recent studies involving both experimental 
and theoretical analyses performed on model systems in vitro suggest that proteins 
diffuse by employing the sliding mechanism when the length of DNA is less than 
100 base pairs and by hopping if it is longer than 100 base pairs [191, 192]. It is also 
possible that proteins may undergo rotation along the helix axis of DNA during its 
translocation [193].

3.5.2  Target Recognition

Once a protein reaches the target site on DNA, it needs to recognize the lesion 
completely, as it can be a simple base lesion or a bulky cross-link product or an 
abasic lesion. Depending on the nature of the lesion, repair proteins adopt different 
strategies to accurately identify them. In the case of a simple base lesion, lesion 
recognition and repair occur by the nucleotide flipping mechanism where the base 
and the sugar get flipped out of the DNA double helix into the active site of the 
protein for further processing [194–199]. Two different mechanisms of nucleotide 
flipping have been proposed in some recent experimental and theoretical studies 
where either a protein is directly involved in base flipping or base flipping occurs 
without the involvement of a protein. According to the first mechanism, specific 
binding of a protein with DNA at the lesion site followed by subsequent squeezing 
can make the lesion extrahelical in DNA [200]. Alternatively, after binding to DNA, 
proteins may recruit one or more amino acid residues to intercalate into the DNA 
to push the damaged nucleotide out of the helix into its active site [201–203]. The 
space thus generated due to the affected base extrusion is ultimately filled by an 
amino acid that provides the necessary interaction required to stabilize the comple-
mentary base on one of the DNA strands [201–213]. It is proposed that due to a base 
modification, DNA gets locally distorted. This distortion is sensed by the protein 
during its translocation. As a result, the protein specifically binds at the lesion site 
and the protein translocation ends after recognizing the correct nucleotide. Sev-
eral enzymes such as different DNA glycosylases like human (hOGG1) or bacterial 
(FPG) 8-oxoguanine-DNA glycosylase, human (AAG) and bacterial (AlkA/AlkB) 
alkyl adenine-DNA glycosylase, uracil-DNA glycosylase (UDG) [204–216], etc. 
and different DNA transferases like O6-alkylguanine-DNA alkyltransferase (AGT) 
[217], cytosine-5-methyltransferase [218, 219], etc. are proposed to identify and 
process the base lesion following the above mentioned mechanism. In addition to 
the above mentioned enzymes, endonuclease V (EndoV) [220, 221], which repairs 
bulky DNA lesions like thymine dimers has also been proposed to identify and 
process the lesion by the above protein facilitated nucleotide flipping mechanism.

According to the second mechanism of nucleotide flipping, intrinsic dynamics 
of DNA pushes the modified base significantly out of the DNA double helix, which 
then gets captured by the protein during its translocation on the DNA surface [222, 
223]. This is argued to be possible due to differences in stabilities of base pairs and 
stacking interactions between the modified and complementary bases in DNA. In 
this situation, the repair protein may undergo conformational changes in such a 
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way that the damaged base enters exactly into its active site where its repair can 
be completed accurately. It is also argued that repair proteins possess an inherent 
intriguing gate keeping strategy by which they deny unmodified bases access to its 
active site [224].

Molecular dynamical studies have recently emerged as a valuable tool to under-
stand DNA repair by nucleotide flipping. Analysis of distributions of DNA bending 
and angle opening can indicate how nucleotide flipping occurs in DNA. Thermo-
dynamical and kinetic factors associated with nucleotide flipping can be calculated 
which may give valuable insights into the mechanism of this process. Mechanisms 
of nucleotide flipping of thymine dimers by EndoV and uracil by UDG have been 
studied recently by molecular dynamics simulation [224]. This study revealed that 
due to base damage, DNA becomes quite flexible and the energy difference be-
tween the closed and open states decreases. This flexibility in DNA is sensed by 
the protein which binds to DNA at the damaged site. Due to this binding, DNA gets 
distorted which diminishes the barrier energy required for nucleotide flipping. In 
another similar study, it has been found that DNA bending due to base modifica-
tion and internal DNA dynamics is the initial stage of base flipping where DNA 
becomes heavily distorted at the site of a mutated base pair. As a result, the mutated 
base may become slightly extrahelical which will then be captured by the protein 
that would subsequently push it into its active site after making it completely ex-
trahelical [195]. As during nucleotide flipping, only a few bases close to the lesion 
site are involved, DFT can be employed to understand the detailed mechanism of 
nucleotide flipping. For example, using DFT, a two-step mechanism of nucleotide 
flipping has recently been proposed for the repair of O6-methylgunine (O6MG) by 
AGT [196]. According to this mechanism, at the first-step, AGT recruits one of its 
amino acids (Arg128) to intercalate into DNA at the lesion site that perturbs base 
pairing interactions of O6MG with C. In the second-step, Arg128 pushes O6MG 
out of the DNA double helix into the enzyme active site for catalysis and takes the 
vacant position of O6MG by making necessary hydrogen bonds with C to stabilize 
the DNA [196].

3.5.3  Repair by Catalysis

After placing the nucleotide into the protein’s active site correctly, the enzyme initi-
ates the catalytic reaction to repair the damage. Different enzymes use different cat-
alytic processes depending on the nature of the lesion [76]. For example, alkylated 
DNA base damages are repaired by removing the alkyl group attached to the base 
by DNA alkyl transferases [225, 226]. However, oxidative damages are generally 
removed from DNA by different DNA glycosylases [224]. Monofunctional glyco-
sylases cleave the N-glycosidic bond of one of the bases in the affected base pair, 
thereby creating an isolated base and apurinic or apyrimidinic (AP) site [208, 210, 
212, 224, 225]. AP sites are then further processed by AP endonucleases forming 
3’-hydroxyl and 5’-deoxyribose phosphate termini (Fig. 3.10a). In contrast, bifunc-
tional glycosylases not only cleave the N-glycosidic bond but can also cleave the AP 
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Fig. 3.10  Mechanisms of N-glycosidic bond dissociation by a monofunctional and b bifunctional 
DNA glycosylases [208]
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site, leaving a 5’-phosphate and a 3’-α,β-unsaturated aldehyde [208] (Fig. 3.10b). 
Subsequently, a new nucleotide is synthesized by DNA polymerase β to be placed 
in the vacant position in DNA which then gets sealed to the nearest backbone by a 
DNA ligase [208].

As described above, catalysis by DNA glycosylases involves the dissociation 
of the N-glycosidic bond which can be achieved by its hydrolysis [208]. Generally 
a nucleophile located proximal to the glycosidic bond helps in the hydrolysis of 
the glycosidic bond [227]. After N-glycosidic bond dissociation, the corresponding 
base carries an extra electron which needs to be stabilized by an acid. It has been 
shown that in the case of monofunctional DNA glycosylases [228], a water mol-
ecule acts as a nucleophile leading to hydrolysis of the glycosidic bond. However, 
in the case of bifunctional glycosylases, an amino acid residue of the enzyme acts as 
the necessary nucleophile [208, 210, 212, 224, 225]. Other amino acids that directly 
or indirectly (through water mediated hydrogen bonds) stabilize the transition states 
of the glycosidic bond cleavage reaction are of paramount importance in reducing 
the barrier energy. As proposed earlier, a complete glycosidic bond cleavage may 
occur in multiple steps depending on the enzyme and the affected DNA base. In ad-
dition to this, processing of the phosphate and sugar moieties previously attached to 
the affected base also occurs in multiple steps and ultimately the DNA polymer gets 
sealed by completing the repair process [208, 210, 212, 224, 225].

The enzyme adenine DNA glycosylase which is also known as MutY catalyzes 
base excision repair by removing adenine from the abnormal base pair between 
2′-deoxyadenosine and 8-oxo-2′-deoxyguanosine. In their study, McCann and Berti 
[228] studied the crystal structure of Escherichia coli MutY, obtained the transition 
state structures of MutY catalyzed DNA hydrolysis and also computed energetics 
of the reaction mechanism employing B3PW91/6-31þG(d, p) level of density func-
tional theory. Gibbs free energy changes involved in the reaction mechanism pro-
posed by McCann and Berti [228] were calculated at the MP2/AUG-cc-pVDZ level 
of theory in the gas phase using the B3LYP/6-31G(d, p) level optimized geometries 
[228]. It was found that in the model proposed by McCann and Berti [228], the 
second barrier energy was too high to be overcome in the biological medium. This 
difficulty was resolved by showing that the formation of the product having disso-
ciated N-glycosidic bond of 2′-deoxyadenosine from the intermediate formed after 
the first step which has a moderate barrier energy would occur directly and bar-
rierlessly without involving any other step [229]. This example shows that detailed 
quantum chemical studies of reactions can be immensely valuable to investigate 
mechanisms operating in complex biological systems.
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Abstract DNA dependent DNA polymerases (DNA pols) are key enzymes provid-
ing the processes of DNA replication and reparation in living systems. Exceptional 
importance of DNA pols makes them to be attractive targets for specific low-molec-
ular weight inhibitors, which can be used (and are actually used) as molecular tun-
ing tools in molecular biology investigations, and as antineoplastic and antiviral 
drugs as well. Detailed comprehension of structural insights of pol–inhibitor inter-
action would not only give a possibility to design new drugs with highly selective 
activity with respect to the targeted polymerases, but would essentially extend our 
understanding of the structural basis of replicative/reparative processes as a whole. 
Several computational approaches including sophisticated modeling of protein 
structure, blind and site-oriented docking of inhibitor molecules, molecular dynam-
ics simulation of pol–inhibitor complexes and free energy decomposition analysis 
are useful tools to improve the quality of structural analysis of pol–inhibitor interac-
tions as well as selectivity of pols’ inhibitors developed de novo. Extended applica-
tion of these methods is principle tendency in modern rational design, including 
search and/or design of new inhibitors of DNA polymerases. 

4.1 Introduction

Life on Earth would be impossible without the processes of reproduction, storage, 
repairing and transmission of hereditary information in a series of generations. Key 
factors providing these processes are DNA dependent DNA polymerases (DNA 
pols). These enzymes catalyze the synthesis of a new DNA chain based on pre-
existing DNA molecule, according to the principle of complementarity of nitrog-
enous bases in the “mother” and “daughter” chains. Such process of matrix DNA 
synthesis is known as DNA replication. The elementary chemical act of catalysis 
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by DNA polymerases during replication is the addition of nucleoside monophos-
phate deriving from appropriate nucleoside triphosphate to OH-group on 3′-end of 
growing DNA chain [1].

Second important DNA polymerases’ function in living systems is participation 
in the DNA repair, aimed at correcting errors of the DNA synthesis during repli-
cation as well as numerous injuries that occur in DNA as a result of chemical and 
physical factors [2]. Most of the reparation process involves removing the damaged 
fragment with subsequent single-stranded DNA synthesis that is performed by DNA 
polymerases.

Besides their essential tasks in vivo, DNA polymerases are now the key tool in 
numerous important molecular biological and medical core technologies, such as 
the widely applied polymerase chain reaction (PCR), cDNA cloning, genome se-
quencing, nucleic acids based diagnostics, and in techniques to analyze the ancient 
and otherwise damaged DNA [3].

Like the other cellular and molecular “bottlenecks”, the DNA dependent DNA 
polymerases are attractive targets for low-molecular weight inhibitors. These com-
pounds can be used (and are actually used) as molecular tuning tools in molecular 
biology investigations, and as antineoplastic and antiviral drugs as well. Despite 
numerous investigations, devoted to the search for DNA pol inhibitors and their de-
velopment, some fundamental problems in this field are still unresolved. The most 
important of them is the problem of structural insights of inhibitor–pol interactions 
and the inhibitor selectivity to different DNA polymerases. Detailed comprehension 
of these insights would not only give a possibility to design new drugs with highly 
selective activity with respect to the targeted polymerases, but would essentially 
extend our understanding of the structural basis of replicative/reparative processes 
as a whole.

4.2 Diversity of DNA Dependent DNA Polymerases

According to present views, all of the known DNA polymerases are divided into 
seven families based on their sequence homology (especially, sequences of the 
catalytic domain) and the structure of catalytic domain. Six of them—A, B, C, 
D, X and Y—are DNA-dependent DNA polymerases, one is a DNA polymerase 
of a different nature, namely it is RNA-dependent (more commonly known as 
‘reverse transcriptases’ or RT family) [3]. The spectra of DNA polymerases’ 
families are individual for different organic kingdoms. For example, bacteria 
usually contain DNA polymerases of A, B, C, X and Y families, while archaea 
have members of families B, D, X and Y. Among eukaryotic DNA polymer-
ases, we can find various members of A, B, X, Y families (and at least one RT-
member—telomerase supplying synthesis of the terminal fragment of chromo-
some which cannot be synthesized in the matrix way). Viral DNA polymerases 
are presented by families A, B and X (as well as RT—reverse transcriptases of 
retroviruses) (see Table 4.1).
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Family Kingdom Members Main functions
A Virus T3, T5 and T7 DNA pol(s) Replication

Bacteria DNA pol(s) I ( E. coli, T. 
aquaticus, etc.)

Replication, repair

Eukaryotes DNA pol γ Mitochondrial DNA 
replication

DNA pol θ Replication of cross links, 
base excision repair

B Virus T4, T6, RB69, Adeno, 
HSV-1, Vaccinia, Phi29 
DNA pol(s)

Replication

Archaea DNA pol(s) BI, BII Replication, repair(?)
DNA pol BIII Repair, replication(?)

Bacteria DNA pol II Repair, replication(?)
Eukaryotes DNA pol α Replication (priming)

DNA pol δ Replication (lagging 
strand), repair

DNA pol ε Replication (leading 
strand), repair

DNA pol ζ/Rev3 Translesion synthesis 
(extension)

C Bacteria DNA pol(s) III ( E. coli, T. 
aquaticus, B. subtilis, etc.), 
DNA pol E ( B. subtilis)

Replication

D Archaea DNA pol D Replication
X Virus ASFV DNA pol Repair

Archaea DNA pol(s) × (various 
species)

Repair

Bacteria DNA pol(s) × (various 
species)

Repair

Eukaryotes DNA pol β (pol IV in S. 
cerevisiae)

Base excision repair

DNA pol λ (pol LSP in S. 
pombe)

Base excision repair, 
double-strand break 
repair, immunoglobulin 
recombinational repair, 
translesion synthesis

DNA pol μ Immunoglobulin recombi-
national repair

DNA pol σa Sister chromatid cohesion
TdT Antigen receptor diversity

Y Archaea Dpo4 DNA pol, Dbh DNA 
pol

Translesion synthesis

Bacteria DNA pol IV, DNA pol V 
( E. coli)

Translesion synthesis

Eukaryotes DNA pol η, DNA pol κ, 
DNA pol ι, Rev1

Translesion synthesis 
(incorporation)

a DNA pol σwas later shown to be a poly (A) RNA polymerase [4]

Table 4.1  Classification of DNA dependent DNA polymerases
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4.2.1  Common Peculiarities of DNA-Dependent DNA 
Polymerases

The available data on the spatial organization of DNA polymerases from different 
families testifies that, independently of their detailed domain structures, all poly-
merases, whose structures are known presently, appear to share a common overall 
architectural feature. Their polymerase domains have a shape that can be compared 
with something like a right hand and has been described as consisting of “thumb,” 
“palm,” and “fingers” subdomains1 [5] (Fig. 4.1). The function of the palm subdo-
main appears to be the catalysis of the phosphoryl transfer reaction, whereas that 
of the fingers domain includes important interactions with the incoming nucleoside 
triphosphate as well as the template base to which it is paired. The thumb, on the 
other hand, may play a role in positioning the duplex DNA and in processivity and 
translocation. Although the palm domain appears to be homologous among the pol 
I, pol α, and RT families, the fingers and thumb domains are different in all of these 
families for which structures are known to date [3, 5].

1 In the literature, these components of polymerase domain are also often named “domains”, which 
makes sense due to their different spatial folds. However, to avoid terminological confusion, we 
propose to consider them as subdomains of a unified polymerase domain.

A B 

C
X 

Y 

Fig. 4.1  Spatial organization 
of catalytic domains of DNA 
dependent DNA polymer-
ases from different families. 
Fingers, palms and thumbs 
colored by green, blue and 
yellow, respectively

A. Yu. Nyporko
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Each DNA polymerase can be characterized by at least two significant param-
eters—fidelity and processivity. Fidelity is a common property of polymerase en-
zymes (DNA and RNA polymerases) to reproduce a polynucleotide chain with cer-
tain accuracy. Distinct DNA pols families have different levels of fidelity (Fig. 4.2).

Structural mechanisms providing the distinct fidelity of DNA polymerases from 
different families are investigated well enough. First, it is known that DNA poly-
merases having proofreading exonuclease activity are significantly more precise 
because of the ability to recognize and remove the wrongly embedded nucleotides. 
The proofreading activity is realized with 3′–5′ exonuclease domains in the com-
position of appropriate DNA polymerases and improves the synthesis fidelity by 
three to four orders of magnitude. Second, active sites of DNA polymerases from 
different families have individual features of amino acid composition that result in 
distinct substrate specificity. It is indicative that the amino acid substitutions in ac-
tive site can reduce fidelity of exact DNA polymerases [6]. However, the structural 
basis of the DNA polymerase fidelity phenomenon itself are not completely clear, 
despite numerous investigations in this field [1, 7–10].

DNA polymerase processivity is a measure of the average number of nucleo-
tides added by the enzyme per one association/disassociation with the template. 
DNA polymerases associated with the DNA replication tend to be highly proces-
sive, while those associated with the DNA repair tend to have low processivity. 
Because the binding of the polymerase to the template is the rate-limiting step in 
the DNA synthesis, the overall rate of the DNA replication during the S phase of the  
cell cycle is dependent on the processivity of the DNA polymerases performing the 
replication [11].

4.2.2 Features of Different DNA Polymerase Families

4.2.2.1 Family A

This family includes viral, bacterial and eukaryotic DNA polymerases. The main 
functions of these enzymes are replication and, to less extent, repair of the genetic 
material. For instance, representatives of the A family provide replication of mito-
chondrial DNA in eukaryotic cells [3].

The most known bacterial member of this protein family is the DNA polymerase 
I (pol I). This enzyme is encoded by the polA gene and is ubiquitous among pro-
karyotes. This repair polymerase is involved in excision repair with 3′–5′ and 5′–3′ 
exonuclease activity and processing of Okazaki fragments generated during the 

Fig. 4.2  Comparative fidelity 
of different DNA polymerase 
families. (Adapted with 
permission from [7])
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lagging strand synthesis [3]. Pol I is the most abundant polymerase accounting for 
>95 % of polymerase activity in E. coli, yet cells lacking pol I have been found, 
suggesting that pol I activity can be replaced by the other four polymerases. Pol I 
adds ~15–20 nucleotides per second, thus showing poor processivity. Instead, pol I 
starts adding nucleotides at the RNA primer–template junction known as the origin 
of replication (ori). Approximately ~ 400 bp downstream from the origin, the pol III 
holoenzyme is assembled and takes over replication at a highly processive speed 
and nature [12].

Pol γ, encoded by the polG gene, is the only mitochondrial DNA polymerase 
and therefore replicates and repairs mitochondrial DNA. In addition, pol γ has 
proofreading 3′–5′ exonuclease (like the other A-member polymerases) and 5′ dRP 
lyase activities. Any mutation that leads to a limited or non-functioning pol γ has 
significant effect on mtDNA and is the most common cause of autosomal inherited 
mithochondrial disorders (pol γ contains a C-terminus polymerase domain and a 
N-terminus 3′–5′ exonuclease domain that are connected via the linker region bind-
ing the accessory subunit. The accessory subunit binds DNA and is required for the 
proccessivity of pol γ. Point mutation A467T in the linker region is responsible for 
more than one third of all pol γ-associated mitochondrial disorders [13].

While a lot of pol θ homologs, encoded by the polQ genes, are found in eukary-
otes, their functions are not clearly understood. The sequence of amino acids in the 
C-terminus is what classifies pol θ as family A polymerase, although the error rate 
for pol θ is more closely related to family Y polymerases. pol θ may extend the 
mismatched primer termini and can bypass abasic sites by adding a nucleotide op-
posite the lesion.

Among viral members of A family, one should mention the T3 and T5 DNA 
polymerases that provide the replication of DNA of those viruses.

4.2.2.2 Family B

This polymerase family includes enzymes with the highest level of replication fidel-
ity. It is clearly understood that the members of this family are actually the main 
catalysts of DNA replication in viruses, archea and eukaryotes. Functions of bacte-
rial B DNA polymerases are more complicated.

The DNA polymerase II (pol II) is the most known bacterial B-family poly-
merase. It is coded by polB gene and has 3′–5′ exonuclease activity [14]. Pol II par-
ticipates in the DNA repair and replication restart to bypass lesions. Its cell presence 
can vary from 30 to 50 copies per cell to 200–300 during SOS induction. Pol II is 
also thought to be a backup to pol III as it can interact with holoenzyme proteins and 
assumes a high level of processivity. The special role of pol II is thought to be the 
ability to direct polymerase activity at the replication fork and its help to the stalled 
pol III in bypassing terminal mismatches [14].

Eukaryotic family B DNA pols (α, δ, ε and ζ) are multisubunit enzymes which, 
with the exception of the DNA pol ζ, are responsible for the replication of nuclear 
DNA in all eukaryotic organisms.

A. Yu. Nyporko
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Pol α (primase) consists of four subunits, two α and two-subunit primase which 
are encoded by the POLA1 and POLA2 genes. The primary role of this enzyme is 
the initiation of the leading strand DNA replication and in the repeated priming of 
Okazaki fragments during lagging-strand DNA replication. The DNA pol α holo-
enzyme possesses two distinct yet functionally interacting active sites: one in the 
large subunit responsible for the DNA synthesis, and one in the dimeric primase 
responsible for the RNA synthesis [15]. Once primase has created the RNA primer, 
pol α starts replication elongating the primer with ~ 20 nucleotides.

Due to their high processivity, pol ε and pol δ take over from pol α the leading 
and lagging strand synthesis, respectively [16]. Pol δ is expressed by genes polD1, 
creating the catalytic subunit, polD2, polD3, and polD4 creating the other subunits 
that interact with the Proliferating Cell Nuclear Antigen (PCNA) which is a DNA 
clamp that allows pol δ to possess processivity [3, 16]. Pol ε is encoded by the polE, 
the catalytic subunit, polE2, and polE3 genes. While pol ε’s main function is to 
extend the leading strand during replication, pol ε’s C-terminus region is thought 
to be essential to cell vitality as well. The C-terminus region is thought to provide 
a checkpoint before entering anaphase, to provide stability to the holoenzyme, and 
to add proteins to the holoenzyme, necessary for the initiation of replication [3, 17].

Pol ζ, another B family polymerase, is made of two subunits Rev3, the catalytic 
subunit, and Rev7, which increases the catalytic function of the polymerase, and 
is involved in the translesion synthesis [18]. Pol ζ lacks 3′–5′ exonuclease activity, 
and is unique in that it can extend primers with terminal mismatches. Rev1 has 
three regions of interest in the BRCT domain, ubiquitin-binding domain, and C-
terminal domain, and has dCMP transferase ability, which adds deoxycytidine op-
posite lesions that would stall replicative polymerases pol δ and pol ε. These stalled 
polymerases activate ubiquitin complexes, which in turn disassociate replication 
polymerases and recruit pol ζ and Rev1. Together, pol ζ and Rev1 add deoxycyti-
dine and pol ζ extends past the lesion. Through a yet undetermined process, pol ζ 
disassociates and replication polymerases reassociate and continue replication. pol 
ζ and Rev1 are not required for replication, but loss of REV3 gene in budding yeast 
can cause increased sensitivity to DNA-damaging agents due to collapse of replica-
tion forks where replication polymerases have stalled [18].

4.2.2.3 Family C

Family C of DNA polymerases is presented exceptionally by bacterial enzymes 
involved in replicative processes. So, the DNA polymerase III holoenzyme is the 
main enzyme realizing the DNA replication in Escherichia coli, Bacillus subtilis, 
and belongs to family C polymerases. It consists of three assemblies: the pol III 
core, the beta sliding clamp processivity factor and the clamp-loading complex. The 
core consists of three subunits—α, the polymerase activity hub, ε, exonucleolytic 
proofreader, and θ, which may act as a stabilizer for ε. The holoenzyme contains 
two cores, one for each strand, the lagging and leading [19]. The beta sliding clamp 
processivity factor is also present in duplicate, one for each core, to create a clamp 
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that encloses DNA allowing for high processivity [20]. The third assembly is a 
seven-subunit (τ2γδδ′χψ) clamp loader complex.

4.2.2.4 Family D

D family consists exclusively of archaea polymerases. The DNA polD enzyme is 
a heterodimer composed of large DP2 and small DP1 subunits [21]. DP2 is the 
catalytic subunit, while DP1 serves as an accessory factor. The interaction of the 
two subunits has been reported to be necessary for the optimal DNA pol and 3′ → 5′ 
exonuclease activity [21]. Accordingly, DP1 has been shown to possess an intrinsic 
proofreading activity [22]. The DP1 subunit shows homology to small, non-catalyt-
ic subunits of eukaryotic DNA pols α (p70 subunit), DNA pol δ (Cdc27p) and DNA 
pol ε (p55 subunit). Similarly to archaeal DNA pol B, DNA pol D is also stimulated 
by PCNA and RF-C. However, the DP1 subunit also directly interacts with RadB, a 
homolog of the eukaryotic proteins Dmc1 and Rad51 in Pyrococcus furiosus, sug-
gesting that DNA pol D may participate in recombination and/or repair in addition 
to its role in replication [23].

4.2.2.5 Family X

Family X polymerases contain the well-known eukaryotic polymerase pol β—the 
main reparative polymerase of eukaryotes, as well as other eukaryotic polymer-
ases such as pol σ, pol λ, pol μ, and terminal deoxynucleotidyl transferase (TdT) 
[24]. Family X polymerases are mainly found in vertebrates and a few are found 
in plants and fungi. These polymerases have highly conserved regions that include 
two helix–hairpin–helix motifs that are imperative in the DNA–polymerase inter-
actions. One motif is located in the N-terminal lyase domain (8 kDa domain) that 
interacts with the downstream DNA and one motif is located in the thumb domain 
that interacts with the primer strand. Pol β, encoded by polB gene, is required for 
short-patch base excision repair, a DNA repair pathway that is essential for repair-
ing alkylated or oxidized bases as well as abasic sites. Pol λ and pol μ, encoded by 
the polL and polM genes respectively, are involved in non-homologous end-joining, 
a mechanism for rejoining DNA double-strand breaks due to the influence of the 
hydrogen peroxide and ionizing radiation, respectively. TdT is expressed only in 
lymphoid tissue, and adds “n nucleotides” to double-strand breaks formed during 
V(D)J recombination to promote immunological diversity [24].

4.2.2.6 Family Y

In E. coli, DNA polymerase IV (pol 4) is an error-prone DNA polymerase involved 
in non-targeted mutagenesis [25]. Pol IV is a family Y polymerase expressed by 
the dinB gene that is switched on via SOS induction caused by stalled polymerases 
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at the replication fork. During the SOS induction, pol IV production is increased 
10-fold and one of its functions during this time is to interfere with the pol III holo-
enzyme processivity. This creates a checkpoint, stops replication, and allows time 
to repair DNA lesions via the appropriate repair pathway [26]. Another function of 
pol IV is to perform translesion synthesis at the stalled replication fork, for example, 
bypassing N2-deoxyguanine adducts at a faster rate than transversing undamaged 
DNA. Cells lacking dinB gene have a higher rate of mutagenesis caused by DNA 
damaging agents [27].

DNA polymerase V (pol V) is a Y-family DNA polymerase that is involved in 
SOS response and translesion synthesis DNA repair mechanisms [28]. Transcrip-
tion of pol V via the umuDC genes is highly regulated to only produce pol V when 
damaged DNA is present in the cell, generating the SOS repsonse. Stalled polymer-
ases cause RecA to bind to the ssDNA, which causes the LexA protein to autodigest. 
LexA then loses is ability to repress the transcription of the umuDC operon. The 
same RecA-ssDNA nucleoprotein post-translationally modifies the umuD protein 
into the umuD′ protein. UmuD and umuD′ form a heterodimer that interacts with 
umuC, which in turn activates the umuC’s polymerase catalytic activity on the dam-
aged DNA [29].

Pol η, pol ι, and pol κ are family Y DNA polymerases involved in the DNA repair 
by translesion synthesis and encoded by genes polH, polI and polK, respectively. 
Members of family Y have 5 common motifs to aid in binding the substrate and 
primer terminus and they all include the typical right-hand thumb, palm and fin-
ger domains, with additional domains like little finger (LF), polymerase-associated 
domain (PAD), or wrist. The active site, however, differs between family members 
due to the different lesions being repaired [30]. Polymerases in family Y have low 
fidelity, but have been proven to do more good than harm as mutations can cause 
various diseases, such as skin cancer and xeroderma pigmentosum variant (XPS). 
The importance of these polymerases is evidenced by the fact that one refers to the 
gene encoding DNA polymerase η as XPV, because the loss of this gene results in 
the disease xeroderma pigmentosum variant [30]. Pol η is particularly important 
for allowing accurate translesion synthesis of the DNA damage resulting from ul-
traviolet radiation or UV. The functionality of pol κ is not completely understood, 
but researchers have found two probable functions. Pol κ is thought to act as an 
extender or an inserter of a specific base at certain DNA lesions. All three transle-
sion synthesis polymerases, along with Rev1, are recruited to damaged lesions via 
stalled replicative DNA polymerases. There are two pathways of damage repair 
leading researchers to conclude that the chosen pathway depends on which strand 
contains the damage, the leading or the lagging strand [30].

4.3 Pol Inhibitors and Possible Mechanisms of Action

All known inhibitors can be subdivided into several groups according to certain 
analytical criteria. Mostly, inhibitors are sorted by their chemical nature or by speci-
ficity regarding to certain polymerases and polymerase families.
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According to the chemical nature, the pol inhibitors can be divided into two 
large groups—substrate analogs (nucleoside/nucleotide/dNTP compounds) and all 
other compounds2. This division reflects the special role played by nucleotides in 
replicative/repair processes. Due to the chemical similarity to natural DNA poly-
merase substrate, practically any nucleoside/nucleotide analogs are able to bind 
with active site, thus competing with the natural substrates of DNA polymerases. 
At first glance, selectivity of these inhibitors is not out of the question. However, 
one should mention that amino acid compositions of dNTP-binding sites are distinct 
in different DNA pol families and, thus, affinity of various nucleotide inhibitors to 
them also can be substantially different.

There are at least three types of nucleoside inhibitors’ behavior at the DNA poly-
merase active site:

• the nucleoside analog incorporates in the growing DNA chain and terminates 
the next DNA synthesis due to the lack or modification of the 3′-OH group in 
its composition. Strictly speaking, such compound does not influence the DNA 
polymerase activity itself, but prevents the addition of the next nucleotide only;

• the nucleoside analog binds at the active center of DNA polymerase, but does not 
incorporate in the DNA chain;

• the nucleoside analog incorporates in the growing DNA chain and (possibly) 
deforms the spatial geometry of the active center, which results in a slowdown of 
the further inclusion of natural nucleotides.

The inhibitors of DNA polymerases have been found among dNTP derivates modi-
fied in the base (2-substituted dATP and N2-substituted dGTP analogs, derivatives 
with altered base-pairing specificity), derivates modified in the sugar (arabinonu-
cleotides, 2′,3′-dideoxynucleotides, acyclonucleotides) and derivates modified in 
the triphosphate group (for example, phosphorothioates of dATP) [31–33].

Among nucleotide inhibitors one should specially mention acyclic nucleoside 
phosphonates, in particular, (S)-[3-hydroxy-2-(phosphonomethoxy)propyl] nucleo-
sides (HPMP) [34, 35]. These compounds exhibit activity with respect to a wide 
spectrum of viral and eukaryotic DNA polymerases—herpes simplex virus 1 (HSV-
1) DNA polymerase [36], human cytomegalovirus HCMV DNA polymerase [37, 
38], vaccinia virus DNA polymerase [39, 40], human DNA polymerases α, δ, and 
ε [41] as well as reverse transcriptases [42]. Several antiviral drugs with a wide 
spectrum of targets are developed on the basis of acyclic nucleoside phosphonates. 
Among them one can mention cidofovir (commercial name vistide®) (Fig. 4.3) that 
is used against polyoma-, papilloma-, adeno-, herpes-, irido- and poxviruses [34, 
43, 44], tenofovir ( viread®) acting on hepata- and retoviruses [34, 43], adefovir 
( hepsera®) (Fig. 4.4), which is effective against all above mentioned groups of vi-
ruses [34, 43]. A feature of the HPMP interaction with DNA replicative machine is 
that they are not simple terminators of the DNA chain growth. These compounds 
can be incorporated into DNA and this, in principle, permits the continuation of 
DNA synthesis, but it becomes significantly slower [35].

2 Some researchers [31] consider the pyrophosphate analogs as a separate inhibitor group (product 
analogs’ group).
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One should remark that the most discovered nucleoside/nucleotide inhibi-
tors are compounds decreasing the activity of viral DNA-dependent DNA poly-
merases. Consequently, a lot of them are used as antiviral drugs [33]. In addition 
to the substances mentioned above, among them one finds acyclovir which is a 
synthetic guanosine analogue used for treating herpes simplex virus (HSV) and 
varicella zoster virus (VZV) infections [45, 46], brivudin which is a 5′-halogenated 
thymidine nucleoside analogue highly active against HSV-1 and VZV [47, 48], 
ganciclovir—an acyclic 2′-deoxyguanosine analogue for the management of CMV 
[49], penciclovir—an acyclic guanine analogue chemically similar to acyclovir that 
is efficient against HSV-1, HSV-2, and VZV, and, to less extent, against EBV [50], 
farmcyclovir—a diacetyl 6-deoxy analogue of penciclovir with the same antiviral 
activity, valacyclovir, the l-valyl ester prodrug of acyclovir [51] approved for VZV 
treatment [33]. Structures of these compounds are shown on Fig. 4.4.

In contrast to DNA pol substrate analogs, non-nucleotide inhibitors (NNI) of 
DNA-dependent DNA polymerases are potentially able to specifically interact with 
different regions on DNA pol surface. They can be competitive in relation to the 
dNTP binding site (in this case we can talk about nucleotide mimics), bind to DNA 
template binding area and directly prevent initial DNA interaction, have allosteric 
binding site and, thus, exhibit non-competitive type of inhibition.

Non-nucleotide pol inhibitors have been discovered among different classes of 
natural and synthetic chemical compounds. The main of them are long-chain fatty 
acids, fatty acid derivatives, bile acid derivatives, steroid derivatives, triterpenoids, 
cerebrosides, alkaloids, flavonoids, anthocyanins, glycolipids, catechins, coenzyme 
Qs, isosteviols, dipeptide alcohols, vitamins, etc. [52, 53]. The most well-studied 
non-nucleotide inhibitors are presented in Table 4.2.

As opposed to nucleotide ones, the lion’s share of known non-nucleotides in-
hibitors are inhibitors of eukaryotic DNA polymerases. In turn, most of them are 
inhibitors of animal pol β. Discovered non-nucleotide inhibitors are characterized 
by different selectivity with respect to different polymerases. Selectivity can reveal 
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Fig. 4.3  Comparative structure of natural (cyclic) and acyclic cytosine nucleotides: a natural 
nucleotide 2′-deoxycytidine-5′-monophospate, b acyclic nucleotide cidofovir
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itself at the level of pol families as well as at the level of individual polymerases. So, 
classical antibiotic aphidicolin is able to inhibit only animal (human in particular) 
pol α [52, 56], curcumin derivates are able to oppress only pol λ [85, 86], but glycyr-
rhetinic acid inhibits effectively the mammalian pols α (B family), k (Y family), β 
and λ (X family) [70], and kohamaic acid A derivative 11 decreases activity of the 
all eukaryotic pol families [76].

Besides of eukaryotic pols, non-nucleotide inhibitors are known for DNA pols 
from viruses. Non-nucleotide inhibitors of viral pols are presented by few class-
es of compounds. So, the 4-oxo-dihydroquinoline-3-carboxamides (4-oxo-DHQ) 
demonstrated inhibition of HCMV, HSV, and VZV polymerases in subnanomolar 
concentrations [91, 92]. High specificity for viral DNA polymerases compared to 
human pols α, γ and δ is observed. 4-Oxo-DHQs are inactive against unrelated 
DNA or RNA viruses, indicating specificity for herpesviruses. A strong correlation 
between the inhibition of viral DNA polymerases and the antiviral activity for this 
class of compounds supports inhibition of the viral DNA polymerase as the mecha-
nism of antiviral activity. The 4-oxo-DHQs were found to be competitive inhibitors 
of nucleoside binding [107].

Further SAR studies led to the discovery of 4-oxo-4,7-dihydrothienopyridines 
(DHTPs) [108, 109] and 7-oxo-4,7-dihydrothieno [3, 2-b]pyridine-6-carboxamides 

tenofoviradefovifoviracyclovir

gancyclovir

brivudin

penciclovir

famcyclovir valacyclovir

Fig. 4.4  Structures of DNA pol nucleoside inhibitors approved as antiviral drugs
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Table 4.2  The most well-studied non-nucleotide inhibitors of DNA dependent DNA polymerases
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Table 4.2  (continued)
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Table 4.2  (continued)
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Table 4.2  (continued)
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Table 4.2  (continued)
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Table 4.2  (continued)

Abbreviations: DRB 1,4-dideoxy-1,4-imino-d-ribitol, HCMV human cytomegalovirus, HSV 
herpes simplex virus, HMI 4-Hydroxy-17-methylincisterol, KA-A 11 (1S*,4aS*,8aS*)-
17-(1,4,4a,5,6,7,8,8a-octahydro-2,5,5,8atetramethylnaphthalen-1-yl)heptadecanoic      acid, 
KAG kaempferol 3-O-(600-acetyl)-b-glucopyranoside, KN-208 1-O-(6′-sulfo-alpha-d-
glucopyranosyl)-2,3-di-O-phytanyl-sn-glycerol, MK-866 1H-Indole-2-propanoic acid, QAG 
quercetin 3-O-(600-acetyl)-b-glucopyranoside, PGG penta-O-galloyl-beta-d-glucose, SQAG 
sulfoquinovosyl-acylglycerol, SQMG sulfoquinovosylmonoacylglycerol, VZV varicella zoster 
virus
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[110]. Some of these compounds demonstrated broad-spectrum inhibition of the 
herpesvirus polymerases HCMV, HSV-1, EBV, and VZV with high specificity com-
pared to human DNA polymerases. DHTPs, in contrast to the kinetics determined 
for the 4-oxo-DHQs, proved to be competitive inhibitors of dTTP incorporation into 
primer template by HCMV DNA polymerase [108].

However, as we mentioned above, the majority of non-nucleotide inhibitors 
influence the activity of eukaryotic DNA-dependent pols. Despite the significant 
number of known ones, search and development of new selective NNI is continu-
ing up to now. For instance, inhibitors of several DNA polymerases were found 
among flavonoide derivates. Shiomi et al. [88] investigated the inhibitory activi-
ties of 16 major bioflavonoids against mammalian DNA polymerases. Myricetin 
(3,3′,4′,5,5′,7-hexahydroxyflavone) was the most potent inhibitor of pols among 
the compounds tested, with IC50 values of 21.3–40.9 μM. This compound did not 
affect the activities of plant (cauliflower) pol α or prokaryotic pols. Myricetin also 
inhibited human DNA topoisomerase II (topo II) activity with an IC50 value of 
27.5 μM, but did not inhibit the activities of other DNA metabolic enzymes tested 
[88]. Myricetin also did not influence the direct binding to double stranded DNA as 
determined by the thermal transition analysis. It was found to prevent the prolifera-
tion of human colon HCT116 carcinoma cells with an LD50 of 28.2 μM, halt the cell 
cycle in G2/M phase, and induce apoptosis. These results suggest that the decrease 
of proliferation may be a result of the inhibition of cellular topoisomerase (topo) II 
rather than pols [88].

Significant inhibitory effectiveness against representatives of B and Y pol fami-
lies is demonstrated for natural plant gallotannin penta-O-galloyl-beta-d-glucose 
(PGG) that has been shown to inhibit the in vivo growth of several types of tumors 
without evident adverse side effects [111–113].

PGG exhibits a selective inhibition against the activities of pol α and pol κ in 
nanomolar concentrations. The inhibitory effect of PGG on pol α is the strongest 
among known low-weight inhibitors, with IC50 value of 13 nM. PGG activity 
against pol κ is slightly less—IC50 in this case is 30 nM [94]. PGG is also able to in-
hibit pol β, but its potency is an order of magnitude less than that against pol α—the 
corresponding value of IC50 is in the range of 108–160 nM. PGG inhibition of pol α 
and κ activity is non-competitive with respect to the DNA template-primer and the 
dNTP substrate; in contrast to the inhibition of pol β activity which is competitive 
[94]. The structural model of ‘pol β–PGG’ interaction is also proposed (see the next 
chapter for details). PGG seems to be a very promising compound for fundamental 
investigations (distinct inhibitory mechanisms for different pol families) as well as 
for practical application (potential anticancer drug).

4.4 Structural Analysis of Pol–Inhibitor Interactions

There is essential difference between analytical approaches suitable for the analysis 
of structural mechanisms/features of DNA polymerase interactions with nucleoside 
and non-nucleoside inhibitors. Being the analogs of incoming dNTP, the nucleoside 
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inhibitors a priori bind into appropriate active site in the pol structure and compete 
with natural enzyme substrates. Consequently, the structure of polymerase complex 
with nucleoside inhibitor can be easy reconstructed in silico with high accuracy and 
without any additional experimental data. On the contrary, the structural analysis 
of DNA polymerase interaction with non-nucleotide compounds requires the pre-
liminary identification of appropriate binding site(-s), which is a very sophisticated 
task without additional input. Direct in silico identification of the interactive site, 
based on structures of protein and ligand only (blind docking) in many cases is not 
completely exact. So, it is not surprising that one usually uses a combination of 
computational and instrumental approaches to identify non-nucleoside compounds’ 
sites on the DNA polymerase surface.

Mizushina et al. [82, 114] identified for the first time the mode of interaction 
between the human DNA pol β and the lithocholic acid (LCA) (see Table 4.2). The 
39-kDa pol β was separated proteolytically into two fragments corresponding to 
the template-primer binding domain (8 kDa) and the catalytic domain (31 kDa). 
It was shown that LCA bound tightly to the 8-kDa fragment but not to the 31-kDa 
fragment. In 1H–15N HMQC NMR analysis of pol β with LCA, the 8-kDa domain 
bound to LCA as a 1:1 complex with a dissociation constant (KD) of 1.56 mM. The 
chemical shifts were observed only in residues mainly in helix-3, helix-4, and the 
79–87 turn of the same face. No significant shifts were observed for helix-1, he-
lix-2, and other loops of the 8-kDa domain [82]. The maximal shift was observed 
for three amino acid residues—Lys60, Leu77, and Thr79 of pol β on the LCA. Ob-
tained data were used for the further docking of LCA molecule into the appropriate 
region on the pol β surface and interaction interface reconstruction [114].

Later, the same group reported about reconstruction pol β complexes with LCA 
derivates—3-alpha-methoxy-5-beta-cholan-24-oic acid (compound 2) and 3-alpha-
O-lauroyl-5-beta-cholan-24-oic acid (compound 9) [115]. The docking was carried 
out using a fixed docking procedure in the Affinity module within Insight II3 model-
ing software (Accerlys Inc., San Diego, CA). The calculations used a CVFF force 
field in the Discovery module and the Monte Carlo strategy in the Affinity module 
of Insight II. Each energy-minimized final-docking position of LCA derivatives 
was evaluated using interactive score function in the Ludi module. The Ludi score 
includes the contribution of the loss of translational and rotational entropy of the 
fragment, number and quality of hydrogen bonds, and contributions from ionic and 
lipophilic interactions to the binding energy. According to the data obtained, com-
pound 2 shares the same binding site with LCA. Compound 9, containing long fatty 
acid moiety, is one of the strongest pol β inhibitors (KD = 1.7 nM) and binds into a 
different site in the surface 8-kDa pol β domain. A critical role in the compound 
9 binding belongs to amino acid residues Leu11, Lys35, His51, and Thr79 [115]. 
Second site is also able to bind another pol β inhibitor—nervonic acid (NA) [115].

Inhibitor of different eukaryotic DNA polymerase (pol α, pol δ, pol ε, pol γ, 
pol ι, pol κ and TdT) sulfoquinovosylmonoacylglycerol (SQMG) also was found 
to identify its binding mode with pol β [104]. According to the data of the NMR 

3 Now Accerlys Inc. has discounted a development and support of Insight II. Functionality of this 
software is transferred to Discovery Studio and Pipeline Pilot program suites.

A. Yu. Nyporko
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chemical shift mapping and subsequent molecular docking ( Affinity and Discovery 
modules of Insight II software, ESFF force field [116]), the two potential binding 
were proposed. Site I includes amino acid residues Leu22, Phe25, Glu26, Asn28, 
Ile33, Lys35, Asn37, site II—residues Lys60, Leu62, Gly64, Gly66 and Ala70, con-
sequently. Both discovered sites are located on template DNA binding interface 
of the 8-kDa domain, and SQMG incorporation into any of them would prevent 
interaction with the DNA template [104]. The above-described binding sites for 
LCA and its derivates, as well as for NA, are situated on the template DNA binding 
interface, too [82, 114, 115]. Thus, one can conclude that all pol β inhibitors identi-
fied by industrious japanese researchers as interacting with 8-kDA domain have a 
very similar structural mechanism of action. These compounds interact with the 
DNA binding area and compete with the DNA template in a similar fashion.

Similar strategy combining spectroscopic and computational approaches was ap-
plied by Hazan et al. [93] to identify the pamoic acid binding site on the surface of 
DNA polymerase β. The ability of pamoic acid to interact with the 8-kDa template-
primer binding domain was previously demonstrated by Hu et al. [78]. The mo-
lecular docking of pamoic acid to the 8 kDa domain of pol β was carried out using 
AutoDock 3.0.5 software [117, 118].

Structures generated by AutoDock have been ranked according to their binding 
energy and 100 lowest energy structures were selected for the further analysis. With 
the force field used by AutoDock, the energy values for the best ligands varied from 
− 9.58 to − 8.96 kcal/mol. Systematic analysis of the 100 best docked structures 
revealed that all of them were located at a single site, although pamoic acid could 
move freely around the 8 kDa domain during docking. Close atomic contacts be-
tween pairs of protein–ligand atoms (with a distance cutoff of 2 Å) were computed. 
Nine residues—His34, Lys35, Asn37, Ala38, Lys41 on helix 2 and Gly64, Gly66, 
Lys68, Lys69 on helix 4—were frequently found to be close to the pamoic acid. 
In fact, in more than 50 % of the resulting conformations, at least one proton of 
Ala38, Lys68 and Ile69 was located within 2 Å from the pamoic acid. For residues 
His34, Lys35, Asn37, Lys41, Gly64 and Gly66, over 20 % of the 100 best docked 
structures contained a pair of protein–ligand atoms with a separation below 2 Å. 
Mapping these residues onto the 8 kDa domain structure indicated that they form 
a single positively charged groove at the protein surface (Fig. 4.5a). Interestingly, 
Lys35, Lys60 and Lys68, which have been shown to be responsible for single-
stranded DNA binding by site-directed mutagenesis [119] are located in the groove 
where pamoic acid binds to. As this groove is the one where DNA binds, pamoic 
acid is likely to interfere with single-stranded DNA recognition.

Clustering the 100 best ligand structures has been performed using the RMSD 
(root mean square deviation) cutoff value of 2 Å. The five resulting clusters indi-
cated that the ligands adopt five different ensembles of conformations in the binding 
site described above [93]. Calculated conformation ensembles were verified us-
ing NMR chemical shift mapping [120], NOE (Nuclear Overhauser Enhancement) 
spectroscopy and STD (Saturation Transfer Difference) experiments [121, 122]. 
Only one reconstructed complex between the 8 kDa domain and pamoic acid was 
consistent with the entire NMR data (Fig. 4.5b).

4 DNA Dependent DNA Polymerases as Targets for Low-Weight …
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Hazan et al. [93] have analyzed in detail the contacts between the validated li-
gand structure and amino acid microenvironment. The aromatic groups of pamoic 
acid participate in hydrophobic interactions with the main amino acids of the bind-
ing site, such as Tyr39, Ala42, Gly64 and Gly66. Furthermore, numerous lysine 
residues present in the site can form electrostatic interactions with both carboxyl 
groups. One of the carboxyl groups is oriented towards His34 and Lys35. It makes 
close contacts with Ile69 amide proton and electrostatic interaction with the termi-
nal NH3

+ group of the Lys68 side chain. The other carboxyl group forms hydrogen 
bonds with the amide proton of Lys68 (distance of 1.67 Å) and with the hydroxyl 
group of Thr67 (distance of 1.94 Å). Obviously, the two carboxyl groups contribute 
to pamoic acid affinity for the 8 kDa domain.

One more pol β inhibitor with 8 kDa domain affinity—solanapyrone A—was 
studied in molecular docking experiments [103]. Docking procedure was per-
formed in the same way as for the above-described LCA, NA and SQMGA [82, 
104, 114, 115] with the subsequent decomposition analysis of the binding energy 
using Ludi module of Insight II modeling software. Solanapyrone A binding site 
is located on the protein-DNA template contact interface, similar to the interac-
tive sites described above, and consists of amino acids Ile53, Gly56, Ala59, Lys60, 
Ala70 and Ile73. The main contribution to the total binding energy is made by 
the binding energy between NH3

+ of Lys60 and the ketone groups in solanapyrone 
A—−28.230 kcal/mol by hydrogen bond, and the binding force consists of the Cou-
lomb force (− 27.212 kcal/mol) and van der Waals forces (–1.018 kcal/mol). The 
distances between the two ketone groups of solanapyrone A and the NH+

3 residue 
of Lys60 were 2.01 and 2.41 Å (Fig. 4.6). The sum of binding energy between the 
benzene backbone of solanapyrone A and the hydrophobic amino acids (i.e. Ile53, 
Gly56, Ala59, Ala70, and Ile73) is only − 7.682 kcal/mol.

Thus, all known DNA pol β inhibitors with a specific affinity to the template–
primer binding domain have similar structural mechanisms of the inhibitory action. 

Fig. 4.5  a Amino acid microenvironment of pamoic acid bound to 8 kDa domain of pol β, b 
pamoic acid docked into pol β. (Adapted from [93])

A. Yu. Nyporko
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Appropriate binding sites are localized on the DNA template binding interface suf-
ficiently close to each other and can contain shared amino acids. The binding of any 
of the above-considered low-weight molecular compounds directly prevents inter-
action with ssDNA and defines the competitive character of polymerase inhibition.

The computational modeling of protein–ligand interactions was performed also 
for compounds inhibiting other DNA-dependent DNA polymerases. So, structural 
insights of actions were investigated in silico for high specific pol λ inhibitors—
petasiphenol [95] as well as curcumin and its derivate monoacetylcurcumin [86].

The petasiphenol is a natural phenolic compound produced from a higher plant, 
a Japanese vegetable ( Petasites japonicus) that was originally found to be a bioan-
timutagen in UV-induced mutagenic Escherichia coli WP2 B/r Trp-isolated from 
the same plant [123]. It was established experimentally that petasiphenol binds to 
N-terminal BRCT domain of pol λ with IC50 of 7.6 µM and does not bind to the C-
terminal catalytic domain including the pol β-like core of pol λ [95].

Spatial structure of pol λ BRCT domain was reconstructed via homology model-
ing using molecular modeling software Insight II (module Homology) (Accelrys 
Inc., San Diego, CA). The spatial structure of human XRCC1 (PDB accession code 
is 1CDZ [124]) was used as a template for the modeling. Molecular docking of 
petasiphenol molecule into pol λ BRCT domain and the further binding evalua-
tion were performed according to the procedures described above for solanapyrone 
A. It was revealed that the N-terminal BRCT domain of pol λ (residues 36–132) 
consists of three α-helices and four β-sheets. The petasiphenol-binding region in 
the BRCT domain of pol λ is assumed to consist of the two loops (residues 74–81 
and 84–107) between the β-sheet (residues 82–83) and includes amino acids Gln76, 
Ile83, Asp90, Glu92, Arg93 Ala94 Leu95, Arg96, Leu98, Arg99, Leu100, Gln102, 
Leu103 and Pro104 [95].

The hydroxyl and ketone groups of petasiphenol may show a preference for bind-
ing to the hydrophilic residue of Gln76, Arg93, and Arg99, and, on the other hand, 
the benzene groups may be absorbed to the hydrophobic amino acids in the loops. 
The binding energies between NH2 of Gln76, NH2

+ of Arg93, or NH2
+ of Arg99 and 

the hydrophilic groups in petasiphenol were − 9.400, − 3.652 and − 4.642 kcal/mol 
respectively, and the binding force consisted of the Coulomb force (−  7.904, − 2.220 

4 DNA Dependent DNA Polymerases as Targets for Low-Weight …

Fig. 4.6  Hydrophobicity 
map on molecular surface of 
solanapyrone A binding site. 
(Adapted with permission 
from Mizushina et al. [103])
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and − 3.186 kcal/mol, respectively) and van der Waals forces (− 1.496, − 1.432, and 
− 1.656 kcal/mol, respectively). The distances between the three hydroxyl groups of 
petasiphenol and the hydrophilic residues of Gln76, Arg93, and Arg99 were 1.69, 
1.79 and 2.00– 2.04 Å, respectively. The binding energy between the other hydro-
philic amino acids (Asp90, Glu92, Ala94, Arg96, Gln102 and Pro104) and petasi-
phenol is − 11.284 kcal/mol, and the binding energy between the benzene backbone 
of petasiphenol and the hydrophobic amino acids (Ile83, Leu95, Leu98, Leu100 
and Leu103) was −  15.342 kcal/mol. On the BRCT domain of pol λ, petasiphenol 
was smoothly intercalated into the pocket of the loops, and the residues around the 
amino acid site consisting of hydrogen bonds (i.e., Gln76, Arg93, and Arg99) ap-
pear to be most important for petasiphenol binding [95].

Takeuchi et al. [86] have investigated the structural insights of the interaction 
between the pol λ BRCT domain and curcumin derivates. The curcumin is known 
as an antichronic inflammatory agent and an anti-oxidative compound. The proce-
dures of BRCT homology modeling, monoacetylcurcumin molecular docking and 
binding energy decomposition analysis were carried out in the same way as for 
the petasiphenol docking experiment [95]. It was shown that monoacetylcurcumin 
binding site on the pol λ surface does not coincide with the petasiphenol binding site 
and consists of residues Thr51, Gly52, Gly54, Ala58, Glu59, Glu62, Lys63, Val66, 
Val85, Glu87 and Ala113 belonging to β-sheet1 (Thr51, theα-helix-1 (residues 
57–69) and two loops (residues 51–56 and 70–75)). The main contribution to the 
total binding energy is made by the interaction between curcumin and Lys63—the 
energy of this interaction is − 37.93930 kcal/mol (the Coulomb energy is − 29.59488 
and the van der Waals energy is − 8.34442 kcal/mol). The energies of interaction 
with dicarboxylic amino acids Glu59 and Glu62 are − 7.55664 and − 9.11299 kcal/
mol, respectively [86].

The distances between the three hydroxyl groups of monoacetylcurcumin and the 
hydrophilic residues of Glu59, Glu62, and Lys63 are 2.65, 2.74–2.87 and 2.43 Å re-
spectively. The binding energy between the other hydrophilic and neutral amino ac-
ids (Thr51 and Glu87) and monoacetylcurcumin is − 7.48746 kcal/mol, the binding 
energy between the benzene backbone of monoacetylcurcumin and the hydrophobic 
amino acids (Gly52, Gly54, Ala58, Val66, Val85 and Ala113) is – 23.12777 kcal/
mol. On the BRCT domain of pol λ, monoacetylcurcumin is smoothly intercalated 
into the pocket of the loops, and the side of the nonacetoxy group on it is just fitted 
into pocket of the BRCT domain. The residues around the amino acid site consisting 
of a covalent bond (i.e., Cys73) and five hydrogen bonds (i.e. Glu59, Glu62 and, 
Lys63) appear to be important for binding to monoacetylcurcumin [86].

Non-nucleotide inhibitors are also able to get bound to the DNA polymerase 
active site. So, the above-mentioned gallotannin PGG inhibiting polymerases α, β 
and k were docked into the active site on the pol β surface [94]. The docking re-
sults show that PGG could form several favorable interactions with the polymerase 
catalytic pocket/binding site for the incoming dNTP. The free energy of the bind-
ing is predicted to be − 10.26 kcal/mol and the docking runs gave only one pos-
sible spatial geometry (Fig. 4.7). In addition, the compound seems to bind in a way 
that sterically obstructs two amino acids (Asp192 and Asp196) that are part of the 
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catalytic core of the protein, potentially inhibiting the enzyme activity. The docking 
simulation provides important molecular insights into how PGG inhibits pol β in a 
competitive manner with respect to the dNTP substrate and DNA template–primer 
[94]. It is extremely exciting that PGG binding by polymerases from different fami-
lies proceeds by distinct mechanisms (it is non-competitive for pol α and pol k but 
competitive for pol β), and future investigations of these processes can essentially 
extend our knowledge about structural insights of specificity and selectivity of low-
weight molecular compound in relation to various biomolecular targets.

Recently, the structural mechanisms of Y-family pol k inhibition by1H-Indole-
2-propanoic acid (MK-866) were investigated with in silico docking (Ketkar et al. 
[125]). Docking runs were performed using the PDB files 4EBC (pol ι), 3MR2 (pol 
η) and 2OH2 (pol κ) downloaded from the Protein Data Bank [126], for target Y-
family DNA polymerases, either with the DNA coordinates (binary) in place or after 
removing the DNA atoms (apoenzyme). The protein PDB files were preliminarily 
prepared for docking using the Dock Prep tool [127] available in the free software 
package UCSF Chimera [128]. This involved the addition of hydrogens, removal 
of water and other extra molecules, and assigning partial charges (using the AM-
BER99 force field).

The spatial coordinates for the MK886 molecule were generated using the Mar-
vin Sketch free software tool in the ChemAxon package (http://www.chemaxon.
com/products/marvin/marvinsketch). Automated in silico docking was performed 
using the web-based docking server SwissDock (http://www.swissdock.ch/) that is 
based on the docking algorithm EADock DSS [129]. The processed coordinates file 
(as described above) for each of the proteins and for the ligand MK886 were up-
loaded, and docking runs were performed using the “Accurate” parameters option, 
which is the most exhaustive in terms of the number of binding modes sampled. 
Docking runs were performed as blind, covering the entire protein surface, and 
not defining any specific region of the protein as the binding pocket in order to 
avoid sampling bias. Output clusters were obtained after each docking run and were 
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Fig. 4.7  Localization of 
PGG binding site in space of 
pol β. (Reprinted from Ref. 
[94], © (2010), with permis-
sion from Elsevier [94])
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ranked according to the FullFitness (FF) scoring function specified by the Swiss-
Dock algorithm (cluster 0 being the cluster with the best FullFitness score). Within 
each cluster, the individual binding poses were further arranged and ranked based 
on their FF score.

According to docking results, three MK886 possible binding pockets for pol ι 
(Fig. 4.8A) and only two MK886 binding pockets for pol η (Fig. 4.8B) and pol κ 
(Fig. 4.8C) were consistently identified. For all three polymerases, the highest num-
ber of clusters was found to localize at the interface between the DNA-binding cleft 
and the active site of each Y-family member, which we refer to as pocket A (Fig. 4.8). 
In addition to this pocket, two more distinct binding pockets were observed for pol 
ι. The first of these, which we call pocket B, lies at the junction between the finger 
and palm subdomains of pol ι (Fig. 4.8A). Pocket B was also identified in docking 
analyses with pol η and pol κ. The final binding pocket for MK886 on pol ι (pocket 
C) lies at the junction between the palm and thumb subdomains (Fig. 4.8A). Consis-
tently, it was observed that at least one cluster from the top 5 (top 10 in the case of 
pocket C) localized at these three pockets on pol ι. It is interesting to note that nearly 
all of the binding modes identified in docking analyses for the polymerases localized 
at one of these three pockets, with only an occasional outlier cluster, which localized 
at a completely different region of the polymerase. The consistent identification of 
MK886 binding pockets on the DNA polymerases is in stark contrast to what was 

Fig. 4.8  Localization of possible MK886 binding sites on surface of Y family pols. (Adapted with 
permission from Ref. [125]. Copyright (2013) American Chemical Society [125])
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observed with BSA where the top 10 binding modes changed positions dramatically 
between docking. Docking runs were performed with two versions of the target poly-
merase PDB files, one in which the coordinates for the DNA atoms were left in place 
(binary form) and the other in which these were removed to give an “apo” form. The 
only difference observed in the results obtained with these two versions was in the 
number of clusters observed in pocket A.

Unfortunately, information about structural details of Y family pols interaction 
with MK886 presented in paper of Ketkar et al. [125] is very poor. The negative im-
pact upon catalysis if MK886 binds to pocket A is obvious for all three polymerases. 
In the case of pol ι, the interactions between MK886 and the side chains of Arg103 
and Arg331 would disrupt key electrostatic interactions between the polymerase 
and the template strand. Similar effects upon DNA binding could be predicted for 
pol η and pol κ. Consideration of inhibitor binding to pocket B in pol ι shows that 
electrostatic interaction between the docked MK886 molecule and Asn216 stations 
the inhibitor near the “gate” to the dNTP binding cleft, which could also reasonably 
be assumed to interfere with the productive binding of the incoming nucleotide tri-
phosphate. Likewise, binding of MK886 to pocket B of either pol η or pol κ could 
conceivably interfere with the productive dNTP binding. Finally, pocket C is only 
observed with pol ι, where MK886 is found to interact with residues in the thumb 
and palm domains. The potential inhibitory effect of pocket C is less obvious than 
that of either pocket A or pocket B. In pocket C, MK886 interacts with residues that 
are near the base of the αH helix (Gln227) in the thumb domain, located not far from 
the binding site of the third metal ion. Transient coordination of the third metal ion 
was recently shown to play a role in the catalysis by pol η, and metal ion coordina-
tion has been suggested to be the rate-limiting step in the catalysis by pol η [130, 
131]. Other studies have revealed that conformational changes in the thumb domain 
play a role in nucleotide selection by Y family polymerases [132, 133]. Thus, it 
would appear that binding of MK886 to pocket C near the pol ι thumb region may 
contribute to the more potent inhibitory effect by interfering with either conforma-
tional changes or metal ion dynamics and that this effect is not observed for either 
pol η and pol κ since they do not possess a well-formed pocket C.

In silico approaches are also used for the analysis of structural insights of bac-
terial polymerases inhibition. Martin et al. [134] have studied possible structural 
mechanisms of Taq polymerase I inhibition by 6,10,2′,6′-tetraacetyl-O-catalpol 
(Table 4.2) with the wide spectrum of computational methods. Classical and semi-
empirical methods were used to characterize the conformational preferences of this 
organic compound in solution. The Gabedit software package [135] was used to 
generate a catalpol starting geometry which was initially optimized using the classic 
quasi-Newton method, followed by semiempirical optimization using the software 
MOPAC [136]. Minimized conformation was used to obtain the parameters and 
topology files for the GROMACS software [137, 138] using the ProDGR server 
[139]. The analysis of catalpol conformational space was performed using two dif-
ferent approaches—simulated annealing (SA) and molecular dynamics (MD). SA 
was performed with GROMACS software using appropriate protocol. The force 
field used was ffG53a6, the solvent was explicitly simulated using the SPC model, 
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periodic boundary conditions were implemented using the PME (particle mesh 
Ewald) algorithm [140] and the cut-off values were 1.4 and 0.9 nm for the van der 
Waals and electrostatic interactions, respectively. MD was carried out with Yasara 
Dynamics 10 software [141]. The time step of 2 fs was used. The Amber03 force 
field [142] was selected; the simulation box allowed at least 10 Å around all of 
the atoms in 6,10,2′,6′-tetraacetyl-O-catalpol, and was filled with the TIP3 water 
model. Periodic boundary conditions were used as implemented in the PME algo-
rithm. Na+ and Cl− ions were added in order to properly simulate the ion strength in 
physiological solution. Two simulations of 300 productive nanoseconds each were 
performed starting from the best energy conformation identified during the SA pro-
cedure and minimized with the Amber03 force field, and the same conformation 
with the torsion angle α rotated 180° and minimized with the Amber03 force field.

Using docking simulations, the most probable binding mode was found, and the 
stabilities of the docked solutions were tested in a series of molecular dynamics 
experiments. The docking was performed with Autodock 4.0 software [118] using 
two different modes—blind docking search and binding site restricted search. The 
coordinates of the target molecule (including the Klentaq fragment and a short DNA 
portion) were taken from the Protein Data Bank [126] deposited under the accession 
code 2KTQ [143].

The ligand position with the lowest energy (the best energy solution of 
− 4.45 kcal/mol) is located at the active site of the enzyme [134]. This result is in 
line with previous experimental observations regarding the inhibitory mechanism of 
catalpol [144], and supports the hypothesis of a competitive inhibitory mechanism 
for 6,10,2′,6′-tetraacetyl-O-catalpol. Spatial microenvironment of catalpol in bind-
ing site consists of amino acids Asp610, Tyr611, Ser612, Gln613, Ile614, Glu615, 
Leu616, Lys663, Phe667, Leu670, Tyr671, Asp785 and Glu786. All of them except 
Leu616 participate in the incoming dNTP binding as well. The time stability of 
calculated ‘Taq polymerase–catalpol’ complex was confirmed by a set of molecular 
dynamics simulations [134]. Trajectory analysis indicated four time-stable hydro-
gen bonds between 6,10,2′,6′-tetraacetyl-O-catalpol and the enzyme that were pres-
ent for > 20 % of the simulation time. Spatial structure of reconstructed complex can 
be used as a starting point for directed optimization of DNA pol inhibitors based on 
catalpol derivates.

Computational analysis is also applied to the investigation of structural mecha-
nisms of actions of viral DNA polymerase inhibitors. So, Li et al. [145] have used 
in silico approaches, including homology modeling, docking, MD simulation and 
MM/PBSA free energy analysis, to study structural insights underlying the influ-
ence of DNA polymerase from different genotypes of hepatitis B virus (HBV) on 
the binding affinity of acyclic nucleotide adefovir (ADV). An important feature of 
HBV pol is its ability to act as a matrix for the complimentary DNA synthesis of 
both DNA and RNA molecules. Spatial structure of HBV pols of B and C geno-
types was reconstructed by the homology modeling using the automated modeling 
module, MODELLER [146] in the Discovery Studio (DS) software 3.0 (Accelrys, 
San Diego, CA, USA). After the energy minimization, the geometric quality of the 
modeled structures was evaluated by PROCHECK [147].
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The molecular docking study was performed with the Glide program. One 
should mentioned that ADV is a prodrug, and due to its bioactive form, ADV di-
phosphate (ADV-DP), which is generated through stepwise phosphorylation after 
the oral administration of ADV, was modeled,. The 3D conformation of ADV-DP 
was constructed according to the coordinates of the ligand, TDV-DP, which was 
deposited in the template structure, by deleting a methyl group.

The molecular docking was performed using standard precision protocols with 
default parameters. The docking poses were ranked by their glide scores, and the 
best predicted conformation in each system was used for the subsequent molecular 
dynamics simulation and binding energy analysis.

Classical molecular dynamics simulations of docked conformation-HBV poly-
merase complexes were performed using the AMBER 9.0 suite [148]. The elec-
trostatic potential of ADV-DP was computed with Gaussian03 at the HF/6-31G* 
level [149], then the charges were assigned using the RESP (restrained electrostatic 
potential) methodology [150]. The charges and force field parameters for ADV-DP 
were generated by an Antechamber [151]. The polyphosphate parameters of ADV-
DP in studied system were identical to those developed by Meagher et al. [152]. 
The AMBER03 force field [142] and the general AMBER force field (GAFF) [153] 
were chosen to create the potential of the proteins and ADV-DP, respectively. The 
systems were then solvated in a truncated octahedral box of TIP3P water molecules 
10 Å away from the protein. Counter-ions of Cl − were then added to obtain the elec-
trostatic neutrality of the systems. The ADV-DP binding free energies (ΔGbind) HBV 
pols of B and C genotypes were calculated using the MM-PBSA method [154]. The 
best possible binding modes of ADV-DP in the HBV pol active sites of genotypes B 
and C are illustrated in Fig. 4.9.

Both complexes are stabilized by extensive hydrogen bonding networks. The ni-
trogen base of ADV-DP displayed two hydrogen bonds with the complementary base 
pair dTMP in the template chain. Moreover, it formed a π–π stacking interaction with 
the DNA base in the primer chain. The β-phosphate and γ-phosphate of the ligand 
formed a hydrogen bond with the backbone amide NH of Ala86 and Ala87. The side 
chains of Arg41 and Lys32 were involved in ionic interactions with the phosphate 
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Fig. 4.9  The best possible binding modes of ADV-DP in the HBV pol active sites of genotypes B 
and C are. (Adapted by permission from Macmillan Publishers Ltd.: [145]. © 2013 [145])
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group of ADV-DP. Arg41 in the systems of genotypes B and C formed three and two 
hydrogen bonds with ADV-DP, respectively. The carbonyl groups of Asp83, Asp205 
and Val84 together with the three phosphate groups of ADV-DP formed a metal che-
lating interaction with the two Mg2+ ions that were present in the active site [145].

Sequence analyses revealed that residue 238 near the binding pocket was not 
only a polymorphic site but also a genotype-specific site (His238 in genotype B, 
Asn238 in genotype C). The calculated binding free-energy for the HBV pol from 
genotypes C and B is − 147.81 and − 126.85 kcal/mol, respectively. It confirms the 
hypothesis that the HBV pol from genotype C is more sensitive to the ADV treat-
ment than one from genotype B. By using the MD simulation trajectory analy-
sis and binding free energy decomposition, some energy variation in the residues 
around the binding pocket was observed. According to the energy decomposition 
data, residues Lys32, Arg41, Asp83, Ser85, Ala86, Ala87 and dTMP make a main 
contribution into the ADV-DP binding, due to the hydrogen bonding. The purine 
ring of ADV-DP formed a strong π–π stacking interaction with the primer DNA 
base, which also showed an obvious hydrophobic interaction with Phe88. Phe88 
is located within the hydrophobic pocket comprised of Ala87, Phe88, Ile180, and 
Met204. This result is consistent with the report by Daga et al. [155]. In addition, for 
most of the key residues, a slightly stronger binding energy contribution was found 
in the genotype C system [145].

Thus, investigations of structural insights of pol–inhibitor interaction have re-
ceived a substantial boost during the last years, which provides the opportunity to 
use their results in rational design of new compounds with directed antipolymerases 
activity.

4.5  Computational Approaches in Rational Design 
of DNA Polymerase Inhibitors

Modern strategies of rational design of specific/selective effectors for biomolecu-
lar targets naturally combine the computational approaches, used for the detailed 
analysis of the structural mechanisms of ligand–target interaction, and predictions 
of the ligand affinity with instrumental methods of activity and selectivity assess-
ment for the developed compounds [156]. Actually, the rational design procedure 
consists of the following steps:

• the choice of a biomolecular target (protein in the most common case);
• the analysis of individual spatial structure features of the functional and alloste-

ric sites of the target protein;
• high throughput receptor-based virtual screening of libraries of low-weight mo-

lecular organic compounds, and identification of classes of compounds charac-
terized by the highest affinity to the target protein in silico;

• experimental verification of the inhibitory activity and selectivity of the most 
promising compounds according to the previous stage on set close to the target 
protein in vitro;
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• correlation analysis of the "structure-activity" and selecting the “compound hits” 
for directed (purposeful) chemical optimization based on the results of biochem-
ical assays;

• chemical synthesis and optimization of new inhibitors based on the analysis of 
“structure–activity”, selectivity and computer simulation data.

From this viewpoint the clear understanding of structural aspects of protein–ligand 
interaction is a key factor for the correct prediction of inhibitor affinity. Unfortu-
nately, structural information about binding sites for non-nucleoside inhibitors on 
the surface of DNA-dependent DNA polymerases is rather limited (see the previous 
section).

At the same time, researchers start to use various computational approaches in 
the rational design procedure of new (nucleoside analogs or nucleoside containing) 
inhibitors of DNA-dependent DNA polymerases (especially, human pols). Spec-
trum of applicable approaches is sufficiently broad and includes all the above-men-
tioned methods of the structural analysis in silico.

Richartz and co-workers [157] have successfully applied the methods of molecu-
lar docking and molecular dynamics for the analysis of structural action mechanisms 
of several nucleotide analogs—potential inhibitors of human DNA polymerase α 
(pol α), and of the well-known non-nucleotide pol α inhibitor aphidicolin [56, 157].

In molecular dynamics simulations, aphidicolin occupied the catalytic centre, 
but acted in a not truly competitive manner with respect to nucleotides. It desta-
bilized the replicating “closed” form of the pol alpha and transferred the enzyme 
into the inactive “open” conformation [157]. This result is consistent with recent 
experiments on the binding mode of aphidicolin. Unfortunately, aphidicolin could 
not be introduced into therapy because of its toxicity and rapid metabolism after 
systemic application [158]. Among studied ‘nucleotides’, the highest potential for 
selective pol α inhibition was established for 2-butylanilino-dATP (BuAdATP). The 
butylphenyl moiety of BuAdATP occupies a lipophilic pocket, formed by the resi-
dues Leu960, Leu972, Val976, Ile869, Tyr865 and Tyr957. These lipophilic interac-
tions, coupled with hydrogen bonds between BuAdATP, template nucleotide and 
side chains of residues Tyr865 and Lys950, are likely to be responsible for the good 
inhibition efficiency of the butylanilino derivatives. The lowest abilities to inhibit 
human pol α were demonstrated for lamivudine-TP and zidovudine-TP (both com-
pounds in three phosphate form) [157].

Later Höltje and co-workers (from the same research team) reported the devel-
opment of several new human polymerase α inhibitors applicable for skin tumor 
treatment (in order to design new drugs for actinic keratosis and squamous cell 
carcinoma) [159] (Fig. 4.10). To study the binding modes of these compounds, the 
same computational approaches as described in Richartz et al. [157] were used.

It was shown that the compound HM1-TP forms two hydrogen bonds with the 
DNA template nucleotide, two hydrogen bonds with the side chain of Lys950 and 
one hydrogen bond each with the backbone of Tyr865 and the side chain of Arg922 
in the active center of human pol α. At the same time BuP-OH-TP forms two hy-
drogen bonds with the DNA template nucleotide, two hydrogen bonds with the 
backbone and side chain of Tyr865, and one hydrogen bond with Lys950 side chain.

4 DNA Dependent DNA Polymerases as Targets for Low-Weight …
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Assays in the squamous cancer cell line SCC25 have shown that the developed 
compounds exhibit cytotoxicity and antiproliferative activity in the nanomolar 
range of concentrations [160]. Thus, they can be considered as promising antitumor 
drugs.

In further investigations, the BuP-OH was used as an initial compound for the 
design of new pol α inhibitors [161]. Activity of new BuP-OH derivates was evalu-
ated in silico (by docking into the enzyme active site and molecular dynamics of 
obtained complexes), after that the predicted hits were assayed in vitro on the cul-
ture of NHK and SCC-25 cells. It was demonstrated that 2 new derivates OxBu and 
OxHex are able to efficiently inhibit the grow of neoplastic cells without registered 
effects on normal keratocytes. Thus, results of these investigations confirm the pro-
ductivity of drug design approach including the computational procedure of drug 
affinity evaluation.

Computational approaches also have started to apply for design low-weight 
molecular inhibitor of bacterial and viral polymerases. So, Karampuri et al. [162] 
reported about design of new inhibitors of HSV pol on the base of α-pyrone (4-oxo-
dihydroquinoline-3-carboxamide). Drug prototypes were constructed on the base of 
Lipinski rules and undergone in conformation search procedure, after that their low 
energy conformation were docked into spatial structure of HSV DNA polymerase 
[162]. It was found that designed compounds 5h (Fig. 4.13a) is more active against 
HSV than well-known acyclovir and is more selective in relation to HSV-1 com-
pared to HSV-2. (Fig. 4.11).

4.6 Conclusions

Initial stage of development of DNA polymerases’ inhibitors can be characterized 
as a pre-structural. The absolute majority of known pol inhibitors were either dis-
covered among natural metabolites from plants and fungi or among synthesized 
analogs of dNTP. However, currently we can observe the principal paradigm shift in 
this field. Inclusion of computational approaches into procedures of structural anal-
ysis and rational design let to perform the target-directed development of new pol 
inhibitors. Clear comprehension of structural insights of pol–inhibitor interactions 

Fig. 4.10  Structure of human 
pol α inhibitors HM-1 ( 1), 
BuP-OH ( 2a) and iso-Hex-OH 
( 2b)
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gives a possibility to optimize the known inhibitory compounds towards enhanced 
affinity and selectivity in relation to desirable polymerases. One should note that 
this paradigm shift reflects the common tendency in development of new drugs, 
herbicides, fungicides and other biologically active compounds.

The next development of pol inhibitors can be associated with search of allo-
steric binding sites on the DNA polymerases. These compounds have to be a priori 
more selective than ones binding into active site of enzyme. Unfortunately, among 
the all known pol inhibitors only MK886—inhibitor of Y family pols—can pretend 
to be really allosteric. This state of facts is a result of absence of appropriate infor-
mation about allosteric sites’ localization. However, it can be corrected via analysis 
of correlated motions in proteins calculated from molecular dynamics trajectories. 
This approach lets to reveal behavior coordination between spatially distant parts of 
macromolecule. The ligand bound to one from such “coordinated” parts appropri-
ately causes the structural changes in another. Using this approach it’s possible to 
reveal the all sites on protein surface, their changes can significantly influence on 
spatial organization of enzyme active site.
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Abstract In this chapter we analyze and systematize the data related to intramo-
lecular hydrogen bonds and their impact on molecular geometry of nucleotides. The 
application of various non-empirical methods of quantum chemistry to determination 
of conformational characteristics of anions of the canonical 2′-deoxyribonucleotides 
and their methyl esters, as well as their energetics, is discussed. We revealed an exis-
tence of novel intramolecular interactions of the canonical 2′-deoxyribonucleotide 
anions. They are caused by incorporation of 2′-deoxyribonucleotide anions into DNA 
as well as by the impact of the nucleobases on the conformational features of the 
nucleotides and intramolecular interactions of these molecules. The efficient strategy 
of the evaluation of proton affinity for the different types of nucleotides is described. 
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It is based on the analysis of consequences of nucleobases protonation along with 
the details of intramolecular interactions in 2’-deoxyribonucleotide anions. The 
results of our molecular simulations cast light on relationship between the confor-
mational dynamics of a molecule and the tautomeric transitions in the components 
of nucleotides.

5.1  Introduction

The canonical 2′-deoxyribonucleotides (DNTs) represent the monomeric unit of 
DNA macromolecules [1–3]. Substituted or modified nucleotides are widely used 
as antibiotics, hormones, coenzymes, etc. [1–5]. In addition, nucleotides have other, 
independent functions of being cofactors, allosteric effectors, they are incorporated 
into coenzymes and directly involved into metabolic and accumulation processes, 
as well as into energy transfer. Nucleosides and nucleotides interact with proteins in 
all stages of their metabolism. Interestingly, the derivatives of adenosine in living 
cells perform a variety of biological functions, e.g. they are the inhibitors of protein 
synthesis. In the form of di- and triphosphate, adenosine is the energy source for 
a set of enzymatic reactions and muscle contractions. Therefore, knowledge of the 
structure and nature of intermolecular interactions in nucleotides is essential for 
understanding of the molecular mechanisms that take place in living cells.

The structures of monomeric DNTs and their derivatives were extensively stud-
ied by experimental methods—mainly by X-ray diffraction [6–8] and NMR spec-
troscopy [9]. Information concerning the structure of DNTs as building blocks of 
DNA was derived from experimental data for various oligonucleotides. As a result 
of such studies it is generally accepted that nucleotides are not rigid molecules 
[10–12]. The nonrigidity of nucleotides is described by the rotation of the nucleo-
base and furanose moiety relative to each other around the corresponding σ-bonds, 
and the phenomenon of the pseudorotation of the furanose ring. It was also demon-
strated that DNTs adopt two preferable conformations which have close orientation 
of the nucleobase and phosphate with respect to sugar moiety, but have different 
conformations of the furanose ring. This finding was supported by ab initio quan-
tum chemical investigations of the molecular structure of DNTs [12–18].

Typically, the experimental studies of DNTs were carried out in the condensed 
states where their conformations are significantly affected by intermolecular in-
teractions (hydrogen bonds, interactions with counter ions). This makes uncertain 
what exactly have been studied and taken into account: intramolecular properties of 
DNTs or the influence of the environment on molecular structure of DNTs. There-
fore, experimental data may not reflect the intrinsic conformational properties of 
DNTs. Such information may be obtained using gas phase experiments. However, 
this information is not available for 2′-deoxyribonucleotides. Therefore, in this case 
a missing data could be obtained from investigation of the intrinsic conformational 
characteristics of DNTs using computational methods.

Ab initio quantum chemical methods allow not only to calculate the equilib-
rium geometry, but also to examine the nature of the electron density distribution in 
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the molecule. This facilitates investigation of intramolecular interactions [19–21]. 
One needs to acknowledge that modern computer resources are adequate for 
conformational studies of molecules at a high theory level, revealing data of the 
experimental accuracy. This opens up new possibilities for the study of conforma-
tional characteristics and intramolecular interactions of fundamental biologically 
active molecules, such as nucleotides.

In the past conformational characteristics of DNTs were studied using force field 
[10–12] and semi-empirical quantum-chemical, e.g. [13] methods. Although these 
methods deliver valuable insight into the conformational features of DNTs they are 
not able to provide accurate quantitative data related to the conformational char-
acteristics of these molecules. The most reliable structural data of DNTs may be 
obtained from static and dynamic ab initio and DFT quantum-mechanical (QM) 
calculations. However, such methods are much more time and resources demand-
ing than the classical MD simulations. By now, published results of DFT molecular 
dynamic simulations and QM studies on simple DNA constituents revealed huge 
amount of data. Such studies have been reported for nucleobases and base pairs, e.g. 
[22–30], nucleosides and nucleotides, e.g. [31–36]. They provide vital information 
about molecular and electronic structure, conformational flexibility, tautomerism, 
and interactions with metals, water, and other molecules.

In this review, we present the recent results of the comprehensive studies of 
the conformational and energy characteristics of the anions of the canonical DNTs, 
their methyl ethers, and protonated methyl ethers anions. The special attention is 
paid to the analysis and classification of the ample set of intramolecular hydrogen 
bonds which are an essential part of the structures of the nucleotide molecules. 
We discuss special criteria which allow delineating the hydrogen bonds with 
some stable electrostatic interactions in a nucleotide. Noticeable consideration is 
given to data that explain the effect of hydrogen bonding on structural geometry 
changes in nucleotides. The specific biological relevant composition of DNA is 
described from the point of view of the non-standard “orthogonal” syn-conformers 
of 2′-deoxycytidine-5′-phosphate and 2′-deoxyadenosine-5′-phosphate, which are 
stabilized due to unusual strong intramolecular hydrogen bonds N–H…O between 
the amino group of nucleobase and the oxygen atom of the phosphate group.

5.2  Structure of 2′-Deoxyribonucleotides in DNA 
Macromolecules and Oligonucleotides

The main interest in canonical DNTs is caused by the fact that they are building 
blocks of DNA. If we uncoil the two strands, as shown in Fig. 5.1, then each strand 
may be seen to consist of a series of nucleotides units. These are linked to one 

Fig. 5.1  The two strands of 
DNA separated, showing a 
nucleotide. Each nucleotide is 
about 6 Å wide
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another with a certain “directionality”, known technically as “5-prime to 3-prime”, 
in a head-to-tail sense. The two strands run in opposite directions, as shown in 
Fig. 5.1 by the labels 5′ and 3′, and by the arrows.

Each nucleotide is made of about 20 atoms, such as carbon, nitrogen, and oxy-
gen. These atoms can again be grouped into smaller parts which are connected 
in a particular way. The three parts of a nucleotide are its sugar, phosphate, and 
base. Numerous experimental and theoretical studies of 2′-deoxyribonucleotides, 
e.g. [37–39] indicate that these molecules are very flexible and they can adopt 
many different conformations. These conformations may be classified based on 
geometrical parameters of deoxyribose ring (SU), sugar–phosphate backbone 
(BB), and orientation of the base (BU) with respect to deoxyribose ring. These 
main fragments of DNT can adopt different stable conformations leading to nu-
merous conformers of DNTs with different combination of configurations of its 
fragments.

From the whole set of possible conformations the ribose ring in DNTs adopts 
two conformations with C2′ (C2′-endo, south) or C3′ (C3′-endo, north) atoms lying 
on one side of average plane of a ring with the C5′ atom (Fig. 5.2). The DNA base 
can display two orientations with respect to SU due to rotation around glycosidic 
C–N bond (syn and anti). These orientations are described by a value of torsion 
angle χ. The χ value is within − 115º ÷ − 180 º for the anti conformers and 60º ÷ 80º 
for syn conformers.

In DNA macromolecules two oxygen atoms of phosphate residue are involved in 
the formation of the phosphodiester bridge to neighboring nucleotides. Therefore, 
the charge of the phosphate group is − 1. Experimental studies of various DNA and 
oligonucleotides showed that the nucleotides exist within these macromolecules as 
a monoanions [1]. In this case, the negative charges of the phosphate groups are 
compensated by the counterions: K+, Na+, or Mg2 +.

The BB includes atoms of a phosphate group and the C3′–C5′ carbon atoms of 
ribose. Conformation of the BB for each form of DNA is described by unique set 
of torsion angles α, β, γ, δ, and ζ (Fig. 5.3). Previous numerous experimental and 
theoretical investigations, e.g. [1, 2, 39] shown that each of these torsion angles 
have the most populated range of values associated with different types of DNA 
conformation. The recent systematization includes five main forms of DNA: A, 
BI, BII, ZI and ZII [39–42]. The values of the torsion angles corresponding to 
each of the types of DNA are shown in Table 5.1. Additionally, comprehensive 

Fig. 5.2  The ribose ring 
conformations
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study by Schneider et al. [39] clearly demonstrated differences in backbone tor-
sion angles for A, BI, BII, ZI, and ZII types of DNA. In A-DNA north conforma-
tion of SU is observed while BI-, and BII-DNA contain south conformation of 
SU. In Z-DNA both south and north conformations of sugar are observed. The 
А, BI, and ВII forms of DNA include conformers of nucleotides only with the 
anti-orientation of a base with respect to the SU. In the case of Z-DNA purine 
nucleotides have a syn-orientation of a base [2, 39].

Fig. 5.3  The sugar–phos-
phate backbone
 

Table 5.1  The average values of torsion angles in different forms of DNA (The data were obtained 
through the analysis of 118 naked (noncomplexed) DNA structures, see Ref. [39])
DNA form Torsion angles of backbone (deg.)

α β γ δ ε ζ χ
Canonic A-DNA (AI) 295 173  54  82 206 285 201
AII-form 146 192 183  85 197 289 203
Canonic B-DNA (BI) 299 179  48 133 182 263 250
BII-form 293 143  46 143 251 168 278
ZI-form, Y-R step  66 186  54 147 264  76 205
ZI-form, R-Y step 210 233 177  96 242 292  63
ZII-form, R-Y step 169 162 179  95 187 187  58

Y pyrimidine, R purine
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5.3  The Structure and the Relative Stability  
of 2′-Deoxorybonucleotides Conformers

Theoretical studies [19, 20] of the molecular structure of canonical DNTs, namely, 
2′-deoxythymidine-5′-phosphate (TMP), 2′-deoxycytidine-5′-phosphate (CMP), 
2′-deoxy-adenosine-5′-phosphate (AMP), and 2′-deoxyguanosine-5′-phosphate 
(GMP), have revealed the presence of numerous intramolecular N–H…O and C–
H…X (X=O, N) hydrogen bonds. The structures of discussed monoanions are pres-
ent in Fig. 5.4. It was found that every conformation of each DNT contains up 
to four intramolecular hydrogen bonds. Formation of these hydrogen bonds sig-
nificantly influences the equilibrium conformation of the nucleotides. In particular, 
this concerns the orientation of the nucleobase and phosphate group with respect 
to a sugar fragment. The revealed examples include south/anti and north/anti con-
formers of all molecules (Fig. 5.5), south/syn and north/syn conformers of GMP 
(Fig. 5.6), and north/syn conformers of CMP and AMP with orthogonal orientation 
of base with respect to SU (Fig. 5.6). An especially strong influence of intramolecu-
lar hydrogen bonds is observed for dianions of DNTs, where the presence of very 
strong C–H…O bonds results in significant deformation of the SU conformation. 
Formation of N–H…O intramolecular bonds is also responsible for the stabilization 
of conformers with a syn orientation of nucleobases [12, 20] in the case of GMP.

Fig. 5.4  Structure and nomenclature of the canonical anionic 2′-deoxyribonucleotides
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The most striking differences in the molecular structure of DNTs, revealed by the 
results of calculations performed using an extended basis set 6-31++G(d,p) (com-
pared to 6-31 (d)), are found for conformers with a south/syn orientation of the nu-
cleobase. The obtained data concluded that pure south/syn conformers correspond 
to local minima on the potential energy surface only in the case of GMP (Fig. 5.6). 
Earlier it was demonstrated [12, 20] that only south/syn conformers of GMP are 
stabilized by the formation of a strong intramolecular N–H...O hydrogen bond be-
tween the amino and the phosphate groups. All other south/syn conformers were 
stabilized by the C–H…O hydrogen bond or by other intramolecular interactions. 
Therefore, a more rigorous computational treatment of the anionic states of DNTs, 
due to the application of diffuse functions results in the disappearance of these con-
formers also for TMP and AMP. Previously, similar results were obtained for dian-
ions of DNTs [19, 20]. In the case of monoanions the absence of syn-conformers 
was observed only for CMP [19].

In addition, the CMP and AMP conformers with an almost orthogonal orientation 
of the nucleobase with respect to the C1′–H bonds are found instead of the north/
syn conformers (Fig. 5.7). Such an orientation of the cytosine and adenine moiety is 
stabilized by the intramolecular N–H...O hydrogen bond between the amino and the 
phosphate groups following significant out-of-plane deformation of the pyrimidine 
ring (Tables 5.2 and 5.3). The formation of this type of hydrogen bond is impossible 

Fig. 5.6  The structure of S/
syn and N/syn conformers of 
anion of GMP molecule

 

Fig. 5.5  The structure of S/
anti and N/anti conformers 
of anionic 2′-deoxyribo-
nucleotides. TMP molecule 
is shown as representative 
example

 

Fig. 5.7  The structure of 
syn-conformers of CMP and 
AMP with an orthogonal 
orientation of the nucleobase 
relatively deoxyribose ring
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in south conformers of CMP and AMP because of the equatorial orientation of the   
phosphate group. The absence of an amino group makes the presence of any syn-
conformers of TMP impossible, unlike the previously reported case [19].

Table 5.2  Selected geometrical parameters of the pyrimidine 2′-deoxyribonucleotides calculated 
at the B3LYP/6-31++G(d,p) level
Parameters Nucleotide, conformation

TMP TMP CMP CMP CMP
S/anti N/anti S/anti N/anti N/syn

C2(C4)–N10(N8)H2 (Å) 1.377 1.376 1.373
N9(N1)–C1′ (Å)    1.468 1.488 1.473 1.487 1.493
C1′–O4′ (Å)    1.429 1.412 1.423 1.416 1.418
C4′–O4′ (Å)    1.449 1.443 1.450 1.444 1.457
C3′–O3′ (Å)    1.438 1.425 1.438 1.426 1.437
O5′–P (Å)    1.687 1.689 1.680 1.694 1.676
Σ(NH2) (deg.) – – 349.4 350.8 335.8
OH–P–O5′–C5′ (deg.)   83.5 76.6 61.2 93.2 69.0
β (deg.)   180.0 178.4 142.6 155.3 159.3
γ (deg.)   10.6 55.3 40.1 53.0 42.2
δ (deg.)   143.5 86.6 142.3 85.9 98.2
χ (deg.) − 115.7 − 148.5 − 144.1 − 155.8 162.1
P   181.4 12.9 184.9 5.1 330.7
νmax   33.3 28.9 34.3 30.9 34.5
Sugar conformation 3T2 3T2 3T2 3T2 2T1

Table 5.3  Selected geometrical parameters of the purine 2′-deoxyribonucleotides calculated at the 
B3LYP/6-31++G(d,p) level
Parameters Nucleotide, conformation

AMP AMP AMP GMP GMP GMP GMP
S/anti N/anti N/syn S/anti N/anti S/syn N/syn

C2(C4)–
N10(N8)H2 (Å)

1.367 1.365 1.367 1.393 1.389 1.353 1.355

N9(N1)–C1′ (Å) 1.456 1.470 1.473 1.451 1.477 1.451 1.454
C1′–O4′ (Å) 1.423 1.414 1.420 1.425 1.414 1.425 1.421
C4′-O4′ (Å) 1.452 1.446 1.454 1.445 1.457 1.447 1.437
C3′-O3′ (Å) 1.439 1.425 1.429 1.446 1.415 1.445 1.427
O5′-P (Å) 1.684 1.692 1.691 1.689 1.679 1.661 1.657
Σ(NH2) (deg.) 354.0 353.8 335.1 338.7 340.7 349.4 346.1
OH–P–O5′–C5′ 
(deg.)

68.4 −72.7 73.4 150.3 − 106.5 66.4 65.1

β (deg.) 132.9 − 163.2 174.2 101.0 96.7 174.0 −166.8
γ (deg.) 30.6 53.2 51.2 30.6 −66.9 42.7 47.4
δ (deg.) 142.9 90.1 100.2 134.3 99.7 139.1 86.5
χ (deg.) − 130.2 − 139.6 122.4 − 110.7 − 117.3 70.9 62.0
P 171.9 3.3 320.9 146.5 358.7 158.2 44.0
νmax 36.5 27.3 35.1 40.2 28.6 36.4 26.8
Sugar 
conformation

2T3 3T2 1T2 2T1 2T3 2T1 4T3
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The application of an extended basis set allows revealing the clear dependence 
of lengths of the C3′–O3′ bonds on the conformation of the SU. This bond in the 
south conformer is systematically longer compared to the north conformer. The 
biggest differences are found for GMP (Δℓ is 0.031 Å for anti- and 0.018 Å for 
syn-conformers), while this value for other DNTs is considerably smaller (Δℓ is 
0.012–0.014 Å). The existence of such dependence clearly indicates that the C3′–
O3′ bond is involved in some stereo electronic interactions, such as the anomeric 
effect, despite the absence of a second heteroatom bound to the C3′ atom.

Among south and north conformers of DNTs the south/anti conformer is sig-
nificantly more stable for TMP and AMP (Table 5.4). In the case of CMP the dif-
ference in energy between south/anti and north/anti conformers is considerably 
smaller. Nevertheless, the south/anti conformer remains the most stable one. North/
syn conformers of CMP and AMP possess significantly higher relative energy. An 
unexpected inversion of stability of conformers is observed for GMP. Conformers 
with a syn orientation of guanine are more stable compared to anti conformers, in 
agreement with the previous study [21], with the south/syn conformer being the 
most favorable one. However, among anti-conformers, the north/anti conformer 
possesses significantly lower energy compared to the south/anti conformer. Similar 
results were obtained earlier only for dianions of GMP [20, 21]. Probably, a more 
rigorous treatment of the anionic state and the intramolecular hydrogen bond due to 
an application of extended 6-31++G(d,p) basis set is responsible for the inversion 
of the relative stability of conformers of GMP.

A different explanation of the unusual stability of the north/anti conformer of 
GMP may be derived from an analysis of intramolecular hydrogen bonds. This con-
former contains the O–H…O bond between the phosphate and the O3′–H hydroxyl 
groups, leading to a significant decrease in the energy of the molecule. However, 
such a hydrogen bond is impossible in DNA, where the O3′ atom is involved in a 
phosphodiester linkage with a neighboring nucleotide. Thus, high stability of the 
north/anti conformer of GMP may be observed only in isolated DNT.

Table 5.4  The relative energy of conformers of the 2′-deoxyribonucleotides anions, kcal/mol
B3LYP/6-31++G(d,p) MP2/aug-cc-pvdz//

B3LYP/6-31++G(d,p)
Molecule Conformer ΔEDFT ΔG0 K ΔG298 ΔEMP2 ΔG0Ka ΔG298a

TMP S/anti 0 0 0 0 0 0
TMP N/anti 3.35 3.15 3.19 4.49 4.28 4.32
CMP S/anti 0 0 0 1.33 0.80 1.09
CMP N/anti 0.44 0.48 0.44 2.62 2.15 2.39
CMP N/syn 3.14 3.67 3.38 0 0 0
AMP S/anti 0 0 0 0 0 0
AMP N/anti 4.15 4.00 4.14 5.56 5.40 5.54
AMP N/syn 7.56 8.08 7.76 1.66 2.18 1.86
GMP S/anti 9.64 9.82 10.02 9.32 9.68 9.77
GMP N/anti 4.74 5.66 5.60 5.62 6.54 6.48
GMP S/syn 0 0 0 0 0 0
GMP N/syn 4.58 4.40 4.51 5.57 5.40 5.51

a Values of ZPE and ΔGt  were obtained from the B3LYP/6-31++G(d,p) calculations
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To verify the obtained results, a more rigorous account of electron correlation 
using the MP2/aug-cc-pvdz method has been performed. As follows from the data 
presented in Table 5.4, the application of the MP2 level does not change the order 
of stability of anti conformers of DNTs. Only some increase of differences in energy 
between south/anti and north/anti conformers is observed. However, the MP2 meth-
od significantly decreases the relative energy of orthogonal (north/syn) conformers 
of CMP and AMP (Table 5.4). In the case of CMP this conformer becomes the most 
stable, and the energy of this conformer in AMP is lower, compared to the north/
anti conformer. Such stabilization may be caused by differences in energy of defor-
mation of the fragments of these DNTs, calculated at the DFT and MP2 levels of 
theory. In particular, it was recently demonstrated [43] that the MP2 method slightly 
underestimates the conformational flexibility of the pyrimidine ring in uracil, com-
pared to the more accurate, CCSD(T) data. The value of ring deformation energy 
calculated within the density functional theory is slightly higher, compared to the 
MP2 data. Similar effects may be expected for other fragments of DNTs. Therefore, 
the contribution of these differences in deformation energy may be considerable.

An analysis of the geometrical parameters and relative stability of conformers 
discussed above indicates that the application of diffuse functions is required for a 
correct description of the molecular structure and energetics of DNTs. An absence 
of diffuse functions may lead to the appearance of artificial local minima on the 
potential energy surface. A comparison of the molecular structure of DNTs calcu-
lated using the 6-31(d) basis set as reported in [19, 20] and the 6-31++G(d,p) basis 
(Tables 5.2, 5.3) reveals that an increase in the size of the basis set results in slight 
changes in the geometrical parameters of the considered molecules. A decrease of 
differences between the O4′–C bond lengths and the degree of pyramidality of the 
amino groups are among molecular parameters which changes are observed when 
going from the 6-31G(d,p) to the 6-31++ G(d,p) basis set.

5.4  Intramolecular Hydrogen Bonds  
in the 2′-deoxyribonucleotide

According to the AIM theory [44], the presence of a hydrogen bond that appears 
in topological analysis of the electron density distribution, like any chemical bond, 
must correspond to the existence of a bond path between the hydrogen atom and 
the acceptor containing bond critical points (BCP). This is the requirement and 
first criteria for the existence of any chemical bond. In the case of hydrogen bonds 
several additional criteria were developed [45, 46]. Two of them concern proper-
ties of the BCP, namely, the value of electron density (ρ) at the BCP should be be-
tween 0.002 and 0.035 a.u. and the value of the Laplacian of electron density ∇2(ρ) 
should be within 0.024–0.139 a.u. Besides that, some useful information about the 
stability of hydrogen bonds may be retrieved from the values of bond ellipticity at 
the BCP [47] and the distance between the BCP and the ring critical points (RCP) 
[48]. RCP is defined as a (3, + 1) critical point and exists whenever a succession 
of bond paths closes into a ring. An abnormally high value of ellipticity and the 
short distance between BCP and RCP usually indicate locally unstable topology of 
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 electron  density, a so-called bifurcation point [44], which is not observed for normal 
hydrogen bonds. Taking into account that all criteria mentioned above deal with the 
properties of the BCP, they can be referred to as BCP criteria.

The most immediate evidence of bonding within the AIM theory is the existence 
of a bond path containing BCP between two atoms. The collection of bond paths 
within a molecule represents a molecular graph showing all intramolecular bond-
ing interactions, including also hydrogen bonds. An example of a molecular graph 
for all located by computational study conformers of CMP is visualized in Fig. 5.8. 
The molecular graph from AIM analysis demonstrates the presence of a network of 
bond paths corresponding to all chemical bonds in agreement with the Lewis model 
of molecules.

The results of the calculations reveal also the existence of bond paths correspond-
ing to potential intramolecular hydrogen bonds in DNTs. The main part of these 
hydrogen bonds represents the interaction of nucleobases with phosphate and sugar. 
Only a few examples of interactions between phosphate and sugar, or between dif-
ferent atoms of sugar are observed. Geometrical parameters, characteristics of BCP, 
and the distance between BCP and RCP of these potential hydrogen bonds are listed 
in Table 5.5. Thus, all these interactions meet the first criteria for hydrogen bonds.

All revealed interactions could be divided into three groups, based on geometri-
cal parameters and values of electron density and Laplacian of the electron density. 
The first group, which may be called “well-defined” hydrogen bonds, includes first 
of all classical N–H…O and O–H…O hydrogen bonds in GMP, characterized by 
the shortest H…O distances and the highest values of ρ and ∇2(ρ). On the basis of 
the sum of van der Waals radii of the hydrogen and oxygen (2.45 Å, for reliability 
we used the shortest radii by Zefirov and Zorkii [49]) and geometrical criteria [50] 
of classic hydrogen bonds (H…A < 2.3 Å, D–H…A > 130°), the N–H…O bond in 
the north/syn conformer of CMP and some C–H…O bonds in all DNTs should be 
also considered as representatives of this group.

Among “well-defined” C–H…O bonds the main part includes interactions with 
participation of the C6–H atom of pyrimidine and the C8–H atom of purine frag-
ments, for conformers with anti orientation of the base. This agrees well with the 
conclusion by Hocquet about the ability of these hydrogen atoms to form stable 
intramolecular hydrogen bonds in 2′-deoxyribonucleosides [48, 51]. However, in 

Fig. 5.8  Molecular graph of CMP`s conformers according to AIM theory: (i) south/anti, (ii) north/
anti, (iii) north/syn (orthogonal)
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DNTs, a clear difference is revealed between purine and pyrimidine nucleotides. 
In the case of TMP and CMP, the C6–H…O5′ hydrogen bond is observed in all 
conformers except the south/anti conformer of CMP where the C6–H atom interacts 
with the oxygen of the phosphate group. An opposite situation is found for purine 
nucleotides. The C8–H…O-P hydrogen bond is located in south/anti conformers of 
AMP and GMP, while the C8–H…O5′ bond is formed in the north/anti conformer 
of AMP. Unlike these conformers, interactions with the participation of the C8′–H 
atom were not found in the north/anti conformer of GMP (Table 5.5).

The values of electron density and Laplacian of electron density at the BCP for all 
of these hydrogen bonds meet Popelier′s criteria. The range of variation of the prop-
erties of the BCP for well-defined hydrogen bonds (ρ > 0.015 a.u., ∇2(ρ) > 0.044 a.u.) 
may be used for further classification of other intramolecular interactions in DNTs. 
An analysis of the ellipticity of these hydrogen bonds (ε < 0.09) and the distance be-
tween BCP and RCP (LRCP > 1.5 a.u.) does not indicate any instability of these inter-
actions, and these values also may be used as a reference for further consideration.

Molecule Conformer D–H…A H…A 
(Å)

D–H…A 
(deg.)

ρ 
(Å/a.u.3)

∇ρ 
(ε/a.u.5)

ε LRCP 
(a.u.)

AMP S/anti C8–H…O–P 2.028 177.6 0.0228 0.0610 0.0366 2.57
C2′–H…O5′ 2.519 110.0 0.0110 0.0398 0.4462 0.82

AMP N/anti C8–H…O5′ 2.200 154.8 0.0160 0.0472 0.0800 1.78
AMP N/syn N6–H…O–P 2.215 129.3 0.0148 0.0510 0.1760 3.92

C2′–H…N3 2.322 120.9 0.0157 0.0518 0.1158 1.46
GMP S/anti C2′–H…O–P

C8–H…O–P
2.262
2.030

153.7
162.1

0.0154
0.0223

0.0441
0.0640

0.0574
0.0396

1.93
2.14

GMP N/anti C3′–H…O–P 2.490 135.1 0.0108 0.0085 0.0795 1.40
O3′–H…O(H)–P 1.792 166.2 0.0357 0.0263 0.0620 2.37

GMP S/syn N10–H…O–P
C2′–H…N3
C2′–H…O5′

1.681
2.359
2.638

174.6
127.2
108.7

0.0457
0.0138
0.0081

0.1335
0.0456
0.0325

0.0262
0.0489
2.0929

2.82
1.32
0.31

GMP N/syn N10–H…O–P
C3′–H…N3

1.714
2.893

161.5
111.7

0.0426
0.0055

0.1248
0.0192

0.0427
0.4419

2.61
0.92

TMP S/anti C9–H…O–P
C1′–H…O7
C2′–H…O5
C6–H…O5′

2.331
2.211
2.495
2.161

166.3
110.7
109.4
160.5

0.0125
0.0198
0.0112
0.0182

0.0376
0.0785
0.0413
0.0512

0.0437
0.8871
0.2387
0.0670

1.89
0.46
1.03
1.73

TMP N/anti C9–H…O–P
C6–H…O5′

2.253
2.128

178.6
171.2

0.0143
0.0188

0.0424
0.0529

0.0317
0.0529

2.26
1.52

CMP S/anti C6–H…O–P
C1′–H…O7
C2′–H…O5′

2.195
2.238
2.513

149.4
104.0
111.0

0.0174
0.0197
0.0109

0.0477
0.0804
0.0393

0.294
0.9646
0.3163

2.69
0.44
0.93

CMP N/anti C5–H…O–P
C6–H…O5′

2.785
2.069

121.2
161.5

0.0052
0.0220

0.0201
0.0611

0.1969
0.0650

1.06
1.56

CMP N/syn N8–H…O–P
C6–H…O4′
C3′–H…O5′
C2′-H…O7

2.150
2.255
2.332
2.90

141.2
 99.7
107.6
118.1

0.0169
0.0196
0.0144
0.0159

0.0523
0.0855
0.0609
0.0561

0.0861
1.6105
1.6211
0.2114

1.75
0.39
0.30
1.17

Table 5.5  Geometrical parameters, characteristics of (3, − 1) BCPs, and distances between BCP 
and RCP for all potential intramolecular hydrogen bonds. True hydrogen bonds are underlined
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The second group of hydrogen bonds includes interactions that do not meet BCP 
criteria. The value of the Laplacian of the electron density at the BCP is smaller than 
0.024 a.u. for the C5–H…O–P bond in the north/anti conformer of CMP and the 
C3′–H…N3 bond in the north/syn conformer of GMP (Table 5.5). Therefore these 
interactions should be considered to be electrostatic interactions rather than real 
hydrogen bonds. They are characterized by the longest H…O distances (more than 
2.7 Å), small values of the C–H…O angles (less than 122°), and the electron density 
at BCP (ρ <  0.006). In addition, these interactions have relatively high ellipticity at 
the BCP (ε > 0.19) and a shorter distance to the RCP (LRCP  < 1.1 a.u.).

The remaining interactions belong to the third group, and they require addi-
tional careful consideration. Using characteristics of the two groups of interactions 
mentioned above, we can classify these potential intramolecular hydrogen bonds 
in DNTs. First of all we should consider the N–H…O interaction in the north/syn 
conformer of AMP (Table 5.5). This interaction demonstrates all properties of the 
inherent hydrogen bond, namely, clear directionality and influence on the confor-
mation of the molecule. The formation of this hydrogen bond results in out-of-
plane deformation of the pyrimidine ring of adenine and stabilization of an unusual 
conformer with orthogonal orientation of the base with respect to sugar. All BCP 
properties of this hydrogen bond (Table 5.5) are within the ranges typical for well-
defined hydrogen bonds mentioned above, except the N–H…O angle that is only 
129.3° and the value of ellipticity at BCP that is too high for normal hydrogen bonds 
(Table 5.5). Therefore, this interaction undoubtedly should be classified as a real 
hydrogen bond. The high value of ellipticity probably reflects the weak character 
of this bond, which is in agreement with the relatively long H…O distance and the 
small value of the N–H…O angle. Consideration of the N–H…O interaction as a 
true hydrogen bond allows the criteria for the existence of hydrogen bonds to be 
refined. In particular, this concerns the value of ellipticity at the BCP that should be 
less than 0.18.

An analysis of the BCP properties of the remaining potential intramolecular hy-
drogen bonds demonstrates that all values of ρ and ∇2(ρ) meet Popelier’s criteria 
(Table 5.5). Therefore, these parameters cannot be used for the classification of the 
interactions under consideration. The values of bond ellipticity and the distance 
between the BCP and the RCP are much more informative for this purpose. The 
C1′–H…O7 interaction in the south/anti conformer of TMP and CMP, the C6–H…
O4′ and the C3′–H…O5′ interactions in the north/syn conformer of CMP, and the 
C2′–H…O5′ interaction in the south/syn conformer of GMP are characterized by 
extremely large values of ellipticity (ε > 0.8) and very short distances between the 
BCP and the RCP (LRCP < 0.5 a.u.). This indicates that the topology of the electron 
density distribution at these BCPs is very unusual and lies out of range for normal 
hydrogen bonds. Therefore, these interactions cannot be considered as hydrogen 
bonds and should be treated as strong electrostatic interactions. It should be noted 
that the H…O distances for some of these interactions are relatively short (2.21–
2.33 Å), but the values of the C–H…O angle are considerably smaller than 120° 
(99.7–110.7°). This demonstrates that the H…O distance cannot be a good indicator 
for the existence of hydrogen bonds. It should be combined with the value of the 
C–H…O angle that is normally larger than 120°.
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At least the characteristics of two interactions (C3′–H…O–P in the north/anti 
conformer and C2′–H…N3 in the south/syn conformer of GMP) are very similar to 
the characteristics of well-defined hydrogen bonds. Only the H…O distance in the 
C3′–H…O–P bond (2.490 Å) is considerably longer, compared to other hydrogen 
bonds (Table 5.5). However, this probably is compensated by a higher value of the 
C–H…O angle (135.1°). Therefore, these interactions undoubtedly should be con-
sidered as true hydrogen bonds.

The most interesting situation is observed for the C2′–H…O7 interaction in the 
north/syn conformer of CMP. The geometrical parameters of this potential hydrogen 
bond are almost appropriate for hydrogen bonding. The C–H…O angle is slightly 
smaller than 120° (Table 5.5). The values of ellipticity and LRCP are also close to 
suitable ranges, but are slightly outside the normal values. Therefore, it is possible 
to consider this interaction as a hydrogen bond, but it represents a borderline case 
for the classification of such interactions.

The remaining interactions (C2′–H…O5′ in the south/anti conformer of TMP, 
CMP, and AMP) are characterized by unsuitable geometrical parameters, a shorter 
distance between the BCP and RCP, and considerably higher ellipticity at the BCP 
(Table 5.5). Therefore these interactions also should be considered as electrostatic 
interactions, rather than the hydrogen bonds.

In summary, a topological analysis of the electron density distribution in DNTs 
reveals numerous intramolecular D–H…A interactions that may be considered as 
potential hydrogen bonds. However, a more detailed analysis of the properties of 
BCP for these interactions allows a clear enough distinction between true hydrogen 
bonds and strong electrostatic interactions of atoms with opposite charges to be 
made. On the basis of data presented in [52] it is demonstrated that geometrical 
parameters and values of the electron density and the Laplacian of electron density 
cannot be used for classification of such interactions. Only the values of the bond 
ellipticity (ε) and distance between BCP and ring critical points (RCP) allow a dis-
tinction between true hydrogen bonds and strong electrostatic interactions to be 
made. According to the analysis true hydrogen bonds should be characterized by 
the following values of BCP properties: ε < 0.1 and LRCP > 1.4 a.u. for well-defined 
hydrogen bonds and ε < 0.22 and LRCP > 1.1 a.u. for all hydrogen bonds, including 
very weak hydrogen bonds.

5.5  Deformation of 2′-Deoxyribonucleotides Inside DNA 
Macromolecule

As was previously shown, investigation of structure of canonical 2′-deoxyribonu-
cleosides and 2′-deoxyribonucleotides [12, 15, 18–20, 48, 52] revealed existence 
of numerous N–H…O and C–H…X (where X = O, N) intramolecular hydrogen 
bonds. Purine and pyrimidine nucleotides are characterized by the unique set of 
intramolecular interactions defined by the nature of the base and conformation of 
SU and BU. Formation of intramolecular hydrogen bonds significantly influences 
conformations of molecules [15, 19, 48, 52]. In particular, they are responsible for 
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orientation of base and a pronounced deformation of ribose in dianionic nucleotides 
[19, 20].

Comparison of values of torsion angles describing conformation of isolated nu-
cleotides with average values of these angles for different forms of DNA indicates 
that incorporation of DNTs into DNA macromolecule results in some deformation 
of geometry of nucleotides. This also should be accompanied by changes in intra-
molecular hydrogen bonds. However, the energy values related to variety of such 
deformations are still unknown.

Our study [53] reveals that the change of nucleotides geometry also leads to 
change of intramolecular hydrogen bonds pattern which become unique for every 
form of DNA. Thus, some corrections should be made for modeled structures of 
nucleotides, as far as previous investigations of DNTs concluded that compensa-
tion of negative charge of phosphate group by hydrogen atom lead to appearance 
of “artificial” intramolecular hydrogen bonds with participation of the P-O-H frag-
ment. That also resulted in changes of equilibrium conformation and relative stabil-
ity of different conformers of DNTs. In order to prevent formation of such hydrogen 
bonds we use model of monomethyl esters of DNTs (Fig. 5.9) where the carbon 
atom of methyl group corresponds to the C3′ atom of neighboring SU.

The investigations were carried out using the density functional theory approach. 
The molecular structures of methyl ethers of DNTs namely thymidine-5′-phosphate 
(mTMP), 2-deoxycytidine-5′-phosphate (mCMP), 2-deoxyadenosine-5′-phosphate 
(mAMP), and 2′-deoxyguanosine-5′-phosphate (mGMP) were optimized applying 
the Becke’s three-parameter exchange functional, the gradient-corrected functional 
of Lee et al. [54–56] and the standard aug-cc-pvdz basis set. Local minima were 
verified by establishing that the matrix of energy second derivatives (Hessian) has 

Fig. 5.9  Numbering of atoms in methyl esters of 2′-deoxyribonucleotides
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only positive eigenvalues. The energy of zero point vibrations was calculated at the 
same level of theory (B3LYP/aug-cc-pvdz) within the harmonic approximation. In-
fluence of environment on relative stability of conformers was estimated by single 
point calculations using Polarized Continuum Model (PCM) [57–59] and water as 
a solvent at the same level of theory.

The results of calculations demonstrate that the set of stable conformers of meth-
yl esters of DNTs corresponds well to the structures considered in the previous 
studies [19, 20, 52]. The revealed species include south/anti and north/anti con-
formers of all molecules (Fig. 5.10), south/syn and north/syn conformers of mGMP 
(Fig. 5.11), and north/syn conformers of mCMP and mAMP with orthogonal ori-
entation of base with respect to ribose (Fig. 5.12). But in addition to our previous 
investigations, south/syn conformer of mAMP was also found. Existence of this 
rare conformer is possible because presence of intramolecular C–H…N hydrogen 
bond. This conformer corresponds to minimum on energy surface which is nearest 
to syn-conformer of mAMP in ZI–ZII–DNA form. Such a distribution of minima on 
the PES of the molecule of methyl nucleotide repeats and confirms the results of the 
conformational analysis performed for DNTs anions with P–OH fragment.

An absence of “artificial” intramolecular hydrogen bonds results in a change of 
relative stability of anti-conformers of mGMP. Unlike previous studies, here the 
south/anti conformer of mGMP is more stable than the north/anti form. However, 
the syn conformers of this nucleotide are considerably more stable (Table 5.6) due 
to the formation of intramolecular N–H…O hydrogen bond, in agreement with the 
previous findings [19, 20, 52].

Fig. 5.11  The structure of S/
syn and N/syn conformers of 
mGМР

 

Fig. 5.10  The structure of S/
anti and N/anti conformers 
of anions of 2′-deoxyribo-
nucleotides. mTMP molecule 
is shown as representative 
example

 

Fig. 5.12  The structure of 
north/syn conformers of 
mCMP and mAMP with 
orthogonal orientation of base 
with respect to ribose
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The results of calculations in a solution (PCM model) reveal drastic changes in 
relative stability of DNTs conformers compared to the gas phase data (Table 5.6). 
In the case of mTMP and mCMP the north/anti conformer becomes the most stable. 
In the case of mGMP and mAMP the south/syn conformer remains the most stable. 
However, relative energy of other conformers is only slightly higher (less than by 
1 kcal/mol). The exceptions are south/syn conformers of mAMP and mCMP. Rela-
tive energy of these conformers is significantly higher (close to 11 kcal/mol). These 
data demonstrate that relative stability of DNTs conformers may be easily regulated 
by environment effects.

The comparison of the geometrical parameters of DNTs containing P–OH and 
P–OCH3 fragments demonstrates that the replacement of a hydroxyl group by me-
thoxy group leads to some changes of the torsion angles defining the conformation 
of nucleotide (Table 5.7). A significant reduction of range of variation of torsion 
angles within BB, especially values of β and γ angles, is predicted. It is possible to 
ascertain, that with elongation of backbone, the deformability of DNTs molecules 
slightly decreases and their equilibrium conformations becomes closer to each other.

The comparison of values of the torsion angles in equilibrium conformations 
of DNTs with the average values of these angles for each type of DNA (Table 5.1) 
demonstrates that the smallest difference is accounted for the A-DNA. However, 
the results of calculations demonstrate some decrease of energy of nucleotides with 
backbone constrained to values corresponding to A-DNA (Table 5.8). Detailed 
inspection of molecular structure of nucleotides indicates that such geometry of 
backbone is favorable for attractive interactions between O3′ hydroxyl group and 
phosphate residue. This leads to change of orientation of the hydrogen atom of OH 
group toward the oxygen atom of the PU, as compared to equilibrium conforma-
tion of nucleotides. The O…H distance in constrained DNTs is out of range of 
usual values for the O–H…O hydrogen bond. However, such attractive interac-
tions results in additional stabilization of molecule. Thus, deformation energy in 

Table 5.6  B3LYP/aug-cc-pvdz relative energies (kcal/mol) of conformers of methyl ethers of 
2′-deoxyribonucleotides in gas phase and PCM
Nucleotide Conformer Vacuum PCM

ΔEDFT ΔG0K ΔEDFT

mAMP S/anti 0 0 0.46
mAMP N/anti 7.16 6.72 0.11
mAMP S/syn 13.93 13.28 0
mAMP N/syn 12.14 12.19 10.96
mGMP S/anti 7.59 7.54 0.45
mGMP N/anti 16.01 15.84 0.45
mGMP S/syn 0 0 0
mGMP N/syn 4.41 4.15 0.46
mTMP S/anti 0 0 0.66
mTMP N/anti 5.07 4.83 0
mCMP S/anti 0 0 0.85
mCMP N/anti 3.42 3.15 0
mCMP N/syn 8.33 8.53 11.76
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the case of  A-DNA does not correspond to real deformation of nucleotides due to 
incorporation into macromolecule. Nevertheless, taking into account rather small 
differences in values of torsion angles for equilibrium conformation of DNTs and 
average values for A-DNA it is possible to suggest that deformation energy in this 
case should be the smallest. The largest increase of energy is found for the Z-forms 
of DNA (Table 5.8).

The obtained data demonstrate that the polarization effect of environment results 
in considerable decrease of deformation energy of nucleotides during incorporation 
into all types of DNA (Table 5.8). Only for A-DNA notable decrease of deformation 
energy is not found.

In the case of A-DNA amount of energy for the deformation of the geometry of 
nucleotides is practically equal for all molecules. However, for BI, BII, ZI, and ZII-
forms of DNA (south/anti conformation of nucleotides) a difference between purine 

Table 5.7  B3LYP/aug-cc-pvdz geometrical parameters (deg.) of conformers of methyl ethers of 
2′-deoxyribonucleotides
Nucleotide Conformer Backbone torsion angles

α β γ δ ζ χ P υmax

mTMP S/anti − 87.7 −105.6 63.1 141.6 −71.6 − 113.5 171.8 30.1
N/anti − 70.7 − 166.6 57.6 87.6 − 73.5 − 144.7 11.6 28.1

mCMP S/anti − 85.1 − 107.9 60.7 141.5 − 72.0 − 124.3 171.1 30.5
N/anti − 65.8 − 177.0 59.0 85.9 − 73.8 − 153.3 6.2 30.8
N/syn − 65.3 − 160.9 58.8 95.5 − 75.4 161.0 330.6 33.1

mAMP S/anti − 102.3 − 101.0 61.3 144.7 − 70.9 − 99.0 183.2 29.8
N/anti − 75.8 − 161.9 54.1 89.5 − 73.8 − 138.5 3.8 27.7
S/syn 74.2 157.4 − 172.0 115.4 73.0 79.8 120.0 40.3
N/syn − 66.9 − 169.5 58.9 99.2 − 77.1 121.0 322.5 35.2

mGMP S/anti − 105.3 − 99.6 60.0 145.3 − 71.1 − 95.1 183.4 30.4
N/anti − 80.3 − 155.4 52.6 92.7 − 73.8 − 133.7 6.3 23.7
S/syn − 68.2 − 110.7 58.2 134.2 − 70.0 72.7 155.0 31.8
N/syn − 90.0 − 139.9 53.4 85.7 − 67.8 65.8 40.6 27.3

Table 5.8  B3LYP/aug-cc-pvdz deformation energies (kcal/mol) of isolated and hydrated (within 
parentheses) methyl ethers of 2′-deoxyribonucleotides resulted from incorporation into DNA
DNA form Nucleotide

mTMP mCMP mAMP mGMP
Aa − 1.8(− 0.1) − 1.6(− 0.1) − 1.8(− 0.6) − 2.0(− 0.2)
BIb 5.1(− 0.1) 4.4(0.2) 6.6(− 0.4) 6.3(0.2)
BIIb 12.0(0.5) 4.2(0.5) 6.7(0.4) 5.9(0.4)
ZIb 5.8(1.1) 5.0(1.3) 10.8(0.6) 10.8(− 0.3)
ZIIb 6.4(0.8) 5.1(0.6) 10.8(0.6) 10.8(− 0.3)
ZIa, ZIIa 9.7(0.0) 9.8(0.9)
ZIc, ZIIc 0.5(2.8) 10.1(− 10.6)
ZId, ZIId 1.0(1.1) 13.0(0.2)

a N/anti-conformers
b S/anti-conformers
c N/syn-conformers
d S/syn-conformers
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and pyrimidine nucleotides is observed. In all cases purine nucleotides require more 
energy for deformation of backbone (largest difference is observed for ZI- and ZII-
DNA—about 5 kcal/mol). In the case of north conformers of purine nucleotides in 
Z-DNA a similar to south/anti conformations values of energy are found. For the syn 
conformers of purine nucleotides in Z-form of DNA drastic changes between mAMP 
and mGMP are observed. In the case of mAMP, energy of deformation is less than 
1 kcal/mol, but for mGMP the analogous energy amounts more than 10 kcal/mol.

Interestingly, the energy of deformation of isolated base pairs of: A–T and G–C 
in each form of DNA is almost identical. They amount to 3.6 kcal/mol for A-DNA, 
10.9–11.4 kcal/mol for BI- and BII-DNA, and 15.8–17.2 kcal/mol for Z-types of DNA 
(Table 5.8). Thus, a formation of isolated Watson–Crick A–T and G–C base pairs of 
nucleotides is practically equivalent from viewpoint of energy required for deforma-
tion of nucleotides geometry. However, a presence of polar environment makes a dis-
tinction between deformation energy of nucleotides in A–T and G–C pairs (Table 5.8).

The comparison of geometrical parameters of nucleotides in equilibrium and 
DNA-like conformations (Tables 5.9–5.11) indicates that the changes of confor-
mations of the considered species do not lead to their appreciable variations. The 
only significant difference revealed is related to the C–O bond lengths within the 
C4′–O4′–C1′ fragment. In the case of Z-forms of DNA considerable increase of 
these bond lengths (Δℓ = 0.028–0.057 Å) is predicted. This is usually explained by 
strengthening of anomeric interactions.

An incorporation of nucleotides into different types of DNA results in consid-
erable changes of ribose conformation (Tables 5.9–5.11). Comparison of the val-
ues of pseudo rotation angles in equilibrium and DNA-like conformations demon-
strates that these values in B-forms of DNA are systematically lower (ΔP = 36.9°) 
as compared to the equilibrium conformation. At the same time we observe notice-
able changes of the values of pseudo rotation angles among different nucleotides in 
similar form of DNA, and for one nucleotide in different types of DNA. These data 

Table 5.9  Selected geometrical parameters of methyl ethers of 2′-deoxyribonucleotides in equi-
librium and DNA-like conformations, calculated at the B3LYP/ aug-cc-pvdz level
Nucleotide Param-

eter
Equilibrium DNA-like conformation
S/anti N/anti Aa BIb BIIb ZIb ZIIb

mTMP C1′–O4′ 
(Å)

1.426 1.415 1.415 1.417 1.426 1.419 1.414

C4′–O4′ 
(Å)

1.447 1.448 1.447 1.451 1.461 1.449 1.442

χ (deg.) − 113.5 − 144.7 − 150.5 − 121.4 − 106.7 – 132.7 – 143.1
P 171.8 11.6 11.4 159.9 155.3 171 177.2

mCMP C1′–O4′ 
(Å)

1.428 1.418 1.419 1.420 1.422 1.421 1.414

C4′–O4′ 
(Å)

1.447 1.448 1.447 1.447 1.449 1.449 1.443

χ (deg.) − 124.3 − 153.3 − 154.6 − 129.9 − 146.7 – 137.8 – 152.1
P 171.1 6.2 8.6 159.8 165.3 170.7 180.6

a N/anti conformers
b S/anti conformers
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confirm the earlier suggested assumptions [19, 20, 52] that the SU plays a role of 
a soft buffer, changing the conformation according to the interactions between the 
BB and the BU.

Based on the analysis of the electron density distribution it was demonstrat-
ed that conformers with anti orientation of the base are characterized by the C6/
C8–H…O5′, or the C6/C8–H…O-P hydrogen bond (Table 5.12). However, in the 
case of some conformations of backbone such reference hydrogen bond converts to 
another form. Thus, in BII-form of DNA in case of all nucleotides, the C6/C8–H…
O3′ (n − 1) hydrogen bond is observed. In the case of mGMP in BI-form of DNA 
this hydrogen bond is weaker and it can be classified as rather strong electrostatic 
interaction rather than an intramolecular hydrogen bond. An absence of such ref-
erence H-bonds for anti-conformers of purine nucleotides in case of ZI–ZII-form 
of DNA (Table 5.13) is observed. Presence of all these reference hydrogen bonds 
(C6/C8–H…O5′, C6/C8–H…O–P, and C6/C8–H…O3′ (n − 1)) can be summarized 

Table 5.10  Selected geometrical parameters of methyl ethers of 2′-deoxyribonucleotides in equi-
librium, A-DNA and B-DNA like conformations calculated at the B3LYP/ aug-cc-pvdz level
Nucleotide Parameter Equilibrium DNA-like conformation

S/anti N/anti Aa BIb BIIb

mGMP C1′–O4′ (Å) 1.426 1.413 1.415 1.416 1.419
C4′–O4′ (Å) 1.447 1.449 1.445 1.447 1.446
χ (deg.) − 95.1 − 133.7 − 146.6 − 120.9 − 133.2
P 183.4 6.3 16.7 146.3 165.4

mAMP C1′–O4′ (Å) 1.426 1.415 1.416 1.416 1.419
C4′–O4′ (Å) 1.446 1.449 1.446 1.447 1.447
χ (deg.) − 99.0 − 138.5 − 147.5 − 119.5 − 137.4
P 183.2 3.8 11.3 162.3 166.0

a N/anti conformers
b S/anti conformers

Table 5.11  Selected geometrical parameters of methyl ethers of 2′-deoxyribonucleotides in equi-
librium and DNA-Z like conformations, calculated at the B3LYP/ aug-cc-pvdz level
Nucleotide Parameter Equilibrium DNA-like conformation

S/anti N/anti ZIa ZIIa ZIb, ZIIb ZIc, ZIIc

mGMP C1′–O4′ (Å) 1.426 1.413 1.412 1.404 1.406 1.414
C4′–O4′ (Å) 1.447 1.449 1.460 1.457 1.457 1.464
χ (deg). − 95.1 − 133.7 − 140.6 − 161.0 44.9 69.1
P 183.4 6.3 167.6 17.6 6.8 177.8

mAMP C1′–O4′ (Å) 1.426 1.415 1.411 1.403 1.410 1.414
C4′–O4′ (Å) 
(Å)

1.446 1.449 1.460 1.460 1.453 1.459

Χ (deg.) − 99.0 − 138.5 − 150.0 − 169.4 79.1 81.4
P 183.2 3.8 171.0 2.1 36.0 169.3

a N/anti conformers
b N/syn conformers
c S/syn conformers
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as C–H…O hydrogen bond between C6/C8–H group of base and oxygen atom of 
backbone. In anti-conformers of purine nucleotides in ZI–ZII-forms of DNA an 
absence of such H-bonds may be explained by some screening of the oxygen atoms 
of backbone by hydrogen atoms of the C5′–H2 methyl groups, which in our inves-
tigations, corresponds to the C3′ atom of previous nucleotide.

Two other reference hydrogen bonds are observed in syn-conformers of nucleo-
tides in equilibrium and Z-forms of DNA (Table 5.14). First of them is the N10–
H…O–P hydrogen bond. This H-bond occurs in all syn-conformers of mGMP. This 
hydrogen bond is also found in case of north/syn conformer of mAMP. This refer-
ence H-bonds are also responsible for the stabilization of the syn-conformers of 
mCMP, mAMP, and mGMP. Other reference hydrogen bond is the C2′–H…N3 hy-
drogen bond. In case of north/syn conformer of mGMP in equilibrium, and north/
syn conformers in Z-forms of DNA such bond is weaken. Therefore, it is possible to 
conclude that it corresponds to rather strong electrostatic interaction rather than to 
intramolecular hydrogen bond. These H-bonds stabilize syn-conformers when for-
mation of the N–H…O–P hydrogen bond between the amino and phosphate groups 
is impossible. Interestingly, in some cases an existence of two such reference hydro-
gen bonds (C2′–H…N3 and N–H…O–P) at the same time is observed.

There are three specific hydrogen bonds in the structure of methyl ethers of 
DNTs. These are the C–H…O–P bonds between the methyl and phosphate groups 

Table 5.12  B3LYP/aug-cc-pvdz intramolecular interaction in methyl ethers of 2′-deoxyribonucle-
otides in equilibrium and DNA like conformations. True hydrogen bonds are underlined
Interaction Nucleotide

А-DNA ВI-DNA BII-DNA
H…A (Å) D–H…A 

(deg.)
H…A (Å) D–H…A 

(deg.)
H…A (Å) D–H…A 

(deg.)
mTMP
C6–H…O3′ 
(n − 1)

3.84 150.0 3.54 132.4 2.48 127.8

C6–H…O5′ 2.14 173.0 2.23 163.4 2.50 159.2
C9–H…O–P 2.38 176.2 2.48 173.4 2.53 167.6
mCMP
C6–H…O3′ 
(n − 1)

3.75 149.8 3.39 139.6 2.16 155.2

C6–H…O5′ 2.09 168.3 2.23 165.7 2.78 141.5
mAMP
C8–H…
O3′(n − 1)

3.97 149.6 3.51 141.3 2.20 168.4

C8–H…O5′ 2.36 155.8 2.55 144.2 3.02 132.8
C8–H…O–P 3.35 154.8 3.14 163.6 3.32 138.9
mGMP
C8–H…O3′ 
(n − 1)

4.13 148.6 3.98 146.2 2.26 164.2

C8–H…O5′ 2.53 153.5 3.07 138.8 3.04 133.7
C8–H…O–P 3.53 160.2 3.76 174.2 3.31 143.3
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in north/anti conformer of mTMP. However, it should be noted that these H-bonds 
are rather weak and probably do not influence significantly the properties of DNTs. 
In syn conformer of mGMP in Z-forms of DNA the C–H…N hydrogen bond be-
tween the H5′ hydrogen atom of sugar and the N3 nitrogen atom of base is revealed. 
On the other hand, in south/syn conformer of mGMP the C3′–H…O–P hydrogen 
bond (Table 5.14) is found.

The results of calculations demonstrate that a general pattern of reference in-
tramolecular hydrogen bonds in methyl esters of DNTs is almost the same as in 
species containing P–OH fragment. Only in the case of C3′-endo/anti conformer of 

Table 5.13  B3LYP/aug-cc-pvdz intramolecular interaction in anti-conformers of methyl ethers 
of 2′-deoxyribonucleotides in Z-DNA like conformations. True hydrogen bonds are underlined
Interaction Nucleotide

ZI-DNA ZII-DNA
H…A (Å) D–H…A (deg.) H…A (Å) D–H…A (deg.)

mTMP
C6–H…O3′ (n − 1) 3.67 137.6 3.72 125.5
C6-H…O5′ 2.26 159.7 2.43 144.9
C9–H…O–P – – 2.46 164.7
mCMP
C6–H…O3′ (n − 1) 3.69 135.7 3.78 117.9
C6–H…O5′ 2.28 156.0 2.48 135.4
mAMP
C8–H…O3′ (n − 1) 3.31 165.4 3.31 165.4
C8–H…O5′ 3.47 143.9 3.47 143.9
C8–H…O–P ------ ------ ------ ------
mGMP
C8–H…O3′(n − 1) 3.39 178.2 3.39 178.2
C8–H…O5′ 3.67 137.4 3.67 137.4
C8–H…O–P ------ ------ ------ ------

Table 5.14  B3LYP/aug-cc-pvdz intramolecular interaction in syn-conformers of methyl ethers 
of 2′-deoxyribonucleotides in Z-DNA like conformations. True hydrogen bonds are underlined
Interaction Nucleotide

ZI-DNA ZII-DNA
H…A (Å) D–H…A (deg.) H…A (Å) D–H…A (deg.)

mAMP
C2′–H…N3 2.67 107.0 2.36 129.3
C5′–H…N3 3.74 125.1 3.32 139.6
N10–H…O–P – – – –
mGMP
C2′–H…N3 3.06 108.9 2.44 125.0
C5′–H…N3 2.35 140.8 2.56 141.6
N10–H…O–P 1.93 154.0 2.01 144.3
C3′–H…O–P 4.93 100.3 4.96 102.9
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mGMP replacement of the hydrogen atom by methyl group results in disappearance 
of “artificial” O3′–H...O(H)–P hydrogen bond, which cannot be formed in DNA.

The comparison of intramolecular hydrogen bonds in nucleotides for equilib-
rium and DNA-like conformations (Tables 5.12–5.14) demonstrates conformational 
dependence of hydrogen bond characteristics that is typical for weak H-bonds. A 
change of conformation sometimes leads to appreciable variation of reference hy-
drogen bonds. In particular, H-bonds between the oxygen atoms of backbone and 
the hydrogen atoms of sugar in DNA-like conformations are not revealed. This con-
firms our earlier conclusion that the effective (or specific) hydrogen bonds, because 
of their weakness, should be viewed as a kind of electrostatic interactions, rather 
than the real hydrogen bonds, as they do not affect the structure and conformational 
characteristics of nucleotides. Recognition of such interactions can be made on the 
basis of the Bader`s analysis of the electron density distribution.

5.6  Structure of Protonated 2′-Deoxorybonucleotides and 
Relative Stability of Conformers

Protonation, in some sense, is one of the simplest acid-base chemical reactions that 
are observed in both living systems and inorganic species. In case of DNA, the 
protonation of nucleobases significantly influences on it structure and function. In 
particular, the protonated cytosine makes significant contribution to the stabiliza-
tion of DNA triplexes [3, 60, 61]. The protonation can also cause mutations in the 
DNA via mispairing of complementary bases [62–65]. It was suggested [66] that the 
structures of so-called rare tautomers stabilized by transition metals could also ap-
pear in complexes between protonated bases and a metal. Protonation is considered 
as a catalytic factor for the hydrolytic cleavage of the N-glycosidic bond [67–70], 
high reactivity of the C8 atom in purine bases [71–73], and it is closely related to 
the conformational dynamics of nucleotides [74]. Being so important, acid-base 
equilibrium involving nucleic acid bases has been widely studied by experimental 
and theoretical methods both in gas and condensed phases. There are several funda-
mental questions for these studies to address, namely, comparative proton affinity of 
different nucleobases, preferable sites of protonation within each nucleic acid base, 
and changes of the molecular structure and conformational characteristics of DNA 
constituents induced by a protonation of nucleobases.

More than 10 years ago the structure of protonated DNTs containing a neutral 
phosphate group was investigated only by the semiempirical AM1 method [75, 76]. 
These studies were focused on calculations of values of the PAs of nucleobases, 
without analysis of the conformation of protonated molecules. It was concluded 
that appearance of a phosphate group in DNTs results in a change of preferable 
protonation sites. In the case of neutral CMP, GMP, and AMP molecules, the highest 
PAs were found for the N3 atom, while in TMP the oxygen atom of the C4=O car-
bonyl group remains the most preferable site for protonation. In the case of anionic 
DNTs containing a deprotonated phosphate group, it was concluded on the basis 
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of calculations by the AM1 method that the N7 atom has the highest PA value for 
GMP [77]. Other anionic nucleotides have the same preferable sites of protonation 
as molecules with a neutral phosphate group. In the case of anionic AMP, the high-
est stability of tautomer with the proton located at the N3 atom was also confirmed 
by calculations using DFT methods [78]. However, contrary to AM1 data, it was 
found that the N7 atom of adenine is the most preferable site for protonation of a 
molecule with a neutral phosphate group. It should be noted that analysis of the 
molecular structure of protonated DNTs represents a considerably more complex 
task as compared to nucleobases. As it was discussed above, the nucleotides can 
adopt several stable conformations differing in geometrical parameters and energy 
[19, 20, 52]. Moreover, the presence of negative charge on the phosphate group 
significantly influences the relative stability and geometry of molecules. Proton-
ation of such molecules may lead to significant changes in their conformations and 
energetics. For example, investigation of protonated AMP indicated [78] that at-
tachment of a proton to the N3 atom results in switching of the base orientation from 
anti to syn because of the formation of strong intramolecular hydrogen bond. A 
significant increase of strength of usually weak C-H...O hydrogen bonds was found 
in protonated AMP due to electrostatic attraction between the negatively charged 
phosphate group and protonated adenine. Taking into account these data, it is pos-
sible to assume that each tautomer of protonated nucleotide can exist in several 
stable conformations characterized by different energy. Therefore, comprehensive 
evaluation of PAs requires careful consideration of the population of conformers of 
non-protonated anionic DNTs and each tautomer of protonated molecules.

Before starting an analysis of the influence of a protonation on the molecular 
structure and relative stability of conformers of protonated molecules, it is neces-
sary to summarize conformational characteristics of non-protonated nucleotides, 
discussed above. Despite the high conformational flexibility of nucleotides, they 
adopt only four conformational states, being incorporated into DNA macromol-
ecules. These states are characterized by the conformation of a SU belonging to the 
south or north region of a pseudo rotation cycle and by the syn or anti orientation of 
BU. Therefore, only these conformations are considered usually for DNTs as related 
to DNA. Earlier, [52, 53] it was found that conformers with a syn orientation of 
base are absent in pyrimidine nucleotides as well as in AMP. However, in the case 
of CMP and AMP, it was found that minima on the potential energy surface cor-
respond to conformers with an almost orthogonal orientation of base with respect 
to the C1′−H bond and geometry of the furanose ring belonging to the north region 
of the pseudo rotation cycle. Thus, non-protonated DNTs contain two (mTMP), 
three (mCMP, mAMP), or four (mGMP) stable conformers. On the basis of the 
relative Gibbs energy of these conformers, it is possible to conclude that for every 
nucleotide only one of conformers dominates in the gas phase state (Table 5.15). 
There is an S/anti conformer in mTMP, mCMP, and mAMP and an S/syn conformer 
in mGMP. The latter conformer is stabilized by a strong intramolecular N–H...O 
hydrogen bond between the amino and phosphate groups.

The relative stability of tautomers was calculated as the difference in average 
Gibbs free energies as compared to the most stable tautomer. Average Gibbs free en-
ergies were calculated using population of conformers of tautomers with Eq. (5.1):
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Table 5.15  B3LYP/aug-cc-pvdz relative Gibbs free energy (kcal/mol), 298 K and population (%)
Nucleotide Tautomer Conformer ΔG P
Conformers of non-protonated 2′-deoxyribonucleotides
mTMP S/anti

N/anti
0
4.85

100
0

mCMP S/anti
N/anti
N/ort

0
3.22
8.22

99.96
0.04
0

mAMP S/anti
N/anti
N/ort

0
6.95

12.00

100
0
0

mGMP S/anti
N/anti
S/syn
N/syn

8.11
16.28
0
4.18

0
0

100
0

Conformers of protonated tautomers of 2′-deoxyribonucleotidesa

mTMP-H H7cis
H7cis
H7trans
H8cis
H8cis
H8trans
H8trans

S/ort
N/anti
C4′-endo/syn
S/ort
S/anti
S/anti
N/anti

11.67
19.61
0
5.65
6.11
0
1.09

0
0

100
0
0

86.2
13.8

mCMP-H H3
H3
H3
H7cis
H7cis
H7cis
H7trans
H7trans
H7trans

S/anti
N/anti
C2′-exo/ort
S/anti
N/anti
C2′-exo/ort
N/anti
C4′-endo/syn
C2′-exo/ort

4.06
5.35
0
1.04
3.55
2.06

10.36
0
9.37

0.1
0

99.9
14.3
0.2
2.6
0

82.9
0

mGMP-H H3
H7
H7
H10
H11
H11

S/syn
C3′-exo/ort
S/syn
C3′-exo/ort
C3′-exo/ort
S/syn

0
0
2.50
0

16.13
0

100
97.5
2.5

100
0

100
mAMP-H H1

H1
H3
H7
H10

S/syn
S/ort
C3′-exo/ort
C3′-exo/ort
C3′-exo/ort

9.24
0
0
0
0

0
100
100
100
100

a Energies for non-protonated molecules are taken from ref [53]
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where Gi is the calculated Gibbs free energy of the i-th conformer and Pi is the 
population of this conformer (0 ≤ P i ≤ 1). The relative stability of conformers and 
tautomers were calculated at 298 K.

Starting geometries of protonated nucleotides were generated from each stable 
conformer of non-protonated molecule by addition of a proton to the heteroatom. 
Therefore, it is possible to expect that every tautomer of protonated nucleotides will 
have two to four stable conformers. However, results of calculations demonstrated 
(Table 5.15) that protonation results in significant changes of the number of stable 
conformers. As follows from obtained results, up to six conformers are observed for 
tautomers of protonated pyrimidine nucleotides and only one to two conformers for 
tautomers of mGMP and mAMP.

5.6.1  Protonated mTMP

The mTMP anion has only two sites for protonation, namely, the oxygen atoms of 
carbonyl groups. However, each of these protonated tautomers possesses an ad-
ditional degree of freedom caused by rotation around the C−O bond, leading to 
existence of conformers with cis and trans orientation of the hydrogen atom of the 
protonated carbonyl group with respect to the N3 atom (Fig. 5.13).

Results of calculations reveal that the most stable conformers of both tautomers 
of mTMP (mTMP–H7 and mTMP–H8) have the hydrogen atom of the protonat-
ed carbonyl group being oriented away from the N3 atom of the pyrimidine ring 
(Table 5.15). The furanose ring adopts only slightly different conformations: south 
for mTMP−H8trans and C4′-endo for mTMP–H7trans. The C4′-endo  conformation 
is close to the south region of the pseudo rotation cycle. The thymine moiety has 

 

Fig. 5.13  Tautomers of protonated mTMP
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an opposite orientation: syn in mTMP−H7 trans and anti-orientation in mTMP−H8 
trans. In both cases, the orientation of the base is stabilized by intramolecular hydro-
gen bonds, namely, strong O−H...O in the C4′-endo/syn conformer of mTMP−H7 
trans and considerably weaker C−H...O bonds in the S/anti conformer of mTMP−
H8 trans. It should be noted that only the last type of the hydrogen bonds is observed 
in all other conformers of mTMP forms. Some of such hydrogen bonds are quite 
strong because of opposite charge assistance, as was mentioned earlier [78]. Nev-
ertheless, the influence of relatively strong C−H...O interactions on the relative en-
ergy of conformers is considerably smaller, as compared to the strong conventional 
O−H...O hydrogen bond. It is possible to conclude that the mTMP−H7 tautomer 
exists exclusively as the C4′-endo/syn conformer, while the conformational state of 
the mTMP−H8 tautomer may be described as S/anti with a minor supplement of N/
anti conformer (Table 5.15).

5.6.2  Protonated mCMP

In the case of mCMP, it is possible to suggest existence of three tautomers with a 
protonated ring nitrogen atom, carbonyl and amino group (Fig. 5.14). However, re-
sults of calculations demonstrated that the mCMP-H8 tautomer does not correspond 
to a minimum on the potential energy surface. A proton transfer from the proton-
ated amino group to the phosphate group was revealed during optimization of its 
molecular geometry. Therefore, only tautomers with a protonated ring nitrogen and 
carbonyl group should be considered. Taking into account two possible orientations 
of the OH bond of a protonated carbonyl group, one can conclude that tautomers of 
protonated mCMP have three stable conformers similar to a non-protonated mol-
ecule (Table 5.15). Only in the case of the mCMP-H7 trans tautomer, protonation 
leads to disappearance of the S/anti conformer because of the transition of the base 
from anti to syn orientation accompanied by deformation of the furanose ring.

Results of calculations show that protonation of the mCMP yields significant 
stabilization of conformers with orthogonal orientation of cytosine with respect to 
the C1′-H bond. This conformer possesses the lowest energy among the mCMP-H3 
tautomers, and it has only slightly higher energy for the mCMP-H7 tautomer. For 
the last tautomer, the most stable conformer is the C4′-endo/syn with trans orienta-
tion of the hydrogen atom of a protonated carbonyl group with respect to the N3 
atom of the pyrimidine ring (Table 5.15, Fig. 5.14). It should be noted that the 
conformers with the lowest energy in both tautomers are stabilized by the N–H…
O (mCMP -H3) and O-H…O (mCMP-H7) hydrogen bonds. The N-H…O bonds 
also are found in the C2′-exo/ort conformers of the mCMP-H7 tautomer. However, 
its energy is considerably smaller, as compared to the C4′-endo/syn conformer of 
mCMP-H7trans. This allows suggesting that the strength of the N-H…O or O-H…
O hydrogen bonds plays a very important role in stabilization of conformers of 
protonated mCMP.
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5.6.3  Protonated mGMP

In the molecule of 2′-deoxyguanosine number of possible sites of protonation is 4. 
This includes two nitrogen atoms in the purine ring (N3, N7), the nitrogen atom of 
the amino group (N10) and the carbonyl oxygen (O11). According to the stability 
of mGMP conformers with syn orientation of the base respectively to the furanose 
ring, one can expect a significant conformational variety of tautomers for proton-
ated mGMP (Fig. 5.15). Interestingly, in the case of mGMP, protonation leads to 
complete disappearance of conformers with anti orientation of the guanine moiety 
(Table 5.15). Minima on the potential energy surface are found only for conformers 
with syn and orthogonal orientation of the base.

Besides that, all stable conformers of protonated mdGMP possess S or C3′-exo 
conformation of the furanose ring in contrast to a non-protonated nucleotide (Ta-
ble 5.15). The number of stable conformers is limited to one (H3 and H10 tauto-
mers) or two (H7 and H11 tautomers).

One may suppose that the significant decrease of conformational space of pro-
tonated mGMP is caused by the formation of strong intramolecular hydrogen bonds. 
Especially strong hydrogen bonding is observed between the amino and phosphate 
group in mGMP−H3 and mGMP−H11 tautomers. Geometrical parameters and 
energy of the N−H…O bonds in these conformers allows suggesting almost free 
transition of the hydrogen atom between interacting heteroatoms. However, only 
one minimum on the potential energy surface corresponding to the location of the 
hydrogen atom at the nitrogen of the amino group was found.

The C3′-exo/ort conformers of the mGMP−H7 and mGMP−H10 tautomers are 
stabilized only by the C−H…O hydrogen bonds. However, their strength is in-
creased significantly by electrostatic interactions between the nucleobase and phos-
phate group possessing opposite charges. Earlier, it was demonstrated [74, 78] that 

 

Fig. 5.14  Tautomers of protonated mCMP
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an opposite charge assistance in hydrogen bonding may lead to transformation of 
usually weak C–H…X hydrogen bonds into very strong bonds. Such situation is 
observed for the C8−H…O−P hydrogen bond in the C3′-exo/ort conformer of the 
mGMP−H7 tautomer. Geometrical parameters and estimated energy of bonding in-
dicate that C—H…O bond is stronger than the quite strong conventional N1–H…
O5′ hydrogen bond in the S/syn conformer of the mGMP–H3.

5.6.4  Protonated mAMP

In the molecule of mAMP only protonation of nitrogen atoms of purine ring is pos-
sible (N1, N3, N7), and of nitrogen atom of amino group (N10). Based on the simi-
larity of the nitrogen atoms of purine one can expect a set of base protonated tauto-
mers (Fig. 5.16) in different conformations. However, the results of computational 
study showed that mAMP protonation leads to a decrease of conformational space.

Only one stable conformer was located for all tautomers, except the mAMP−H1. 
All the most stable conformers have the S or C3'-exo conformation of the furanose 
ring with orthogonal orientation of base with respect to the C1'-H bond (Table 5.15). 
They are stabilized by strong intramolecular N−H…O or C−H…O hydrogen bonds, 
as was described earlier [78]. The second conformer of the mAMP−H1 tautomer 
has a syn orientation of base with respect to sugar and considerably higher energy, 
as compared with the S/ort conformer (Table 5.15).

More detailed analysis of geometrical parameters of protonated nucleotides 
demonstrates that, besides the conformation of the molecules, the protonation also 
results in significant changes of bond lengths within the C4′-O4′-C1′-N fragment. 
It is well-known that protonation is a first stage of hydrolytic cleavage of the N-
glycosidic bond [69, 70, 79]. The transition state of this process is highly dissocia-

 

Fig. 5.15  Tautomers of protonated mGMP
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tive with substantial elongation of the C1′−N bond [79–81]. Therefore, increase of 
the N-glycosidic bond length due to protonation creates favorable conditions for 
disruption of this bond. It should be noted that this process has been investigated 
mainly for the purine nucleotides because it represents the first step in the base 
excision repair pathway [82, 83]. In agreement with previous findings, [19, 20, 52, 
53] the length of the N-glycosidic bond C1′−N in non-protonated purine nucleo-
tides is smaller than that for pyrimidine ones (average values are 1.464 and 1.482 
Å, respectively). This is caused by the nature of the base [18]. The same situation 
is observed in protonated species. The average length of the C1′-N bond in the pu-
rine nucleotides (1.481 Å) remains shorter than that in the pyrimidine nucleotides 
(1.519 Å). However, in all cases, the protonation results in significant elongation of 
this bond, causing its weakening. This effect is more pronounced in the pyrimidine 
nucleotides than in the mAMP and mGMP (differences between average values 
of the C1′−N bond lengths are Δℓ = 0.037 Å for pyrimidine and Δℓ = 0.017 Å for 
purine nucleotides). Results of our calculations [84] demonstrate that weakening 
of the N-glycosidic bond is more pronounced in the pyrimidine nucleotides than in 
the mAMP and mGMP. This means that cleavage of the N-glycosidic bond in the 
pyrimidine nucleotides should be even easier than in the purine ones, especially 
taking into account C1′−N bond`s length.

5.7  Proton Affinity of Nucleobases  
in 2′-Deoxyribonucleotides

Experimental [85–92] and theoretical [92–96] studies of PAs of nucleobases in the 
gas phase demonstrated clear differences in PA values of DNA bases. For nucleobas-
es the following inequality holds PA (G) > PA (C) > PA (A) >> PA (T) [94]. In particu-

 

Fig. 5.16  Tautomers of protonated mAMP
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lar, PAs of thymine were found to be considerably lower (8.9−9.2 eV) as compared 
to guanine, cytosine, and adenine (9.6−9.9 eV). It should also be noted that there is 
a good agreement between experimental and theoretical data. Appearance of a sug-
ar fragment in molecules of 2′-deoxyribonucleosides results in an increase of PAs 
of all nucleobases [75, 88–99]. Nevertheless, the PA value for 2′-deoxythymidine 
(9.8 eV) remains lower than that for other nucleosides (10.1–10.3 eV). The values 
of PA for nucleoside follow the trend: PA (dG) > PA (dC) ≥ PA (dA) >> PA (dT) [88]. 
According to experimental data [75, 76], the presence of a neutral phosphate group 
in DNTs does not influence the PAs of the nucleobases. For instance, the value 
of PA for TMP is 9.7−9.8 eV and it amount to 10.1−10.3 eV for CMP, GMP, and 
AMP. Whereas for nucleotides the analogous trend is as follows: PA (GMP) ≈ PA 
(CMP) ≈ PA (AMP) >> PA (TMP) [96]. In general, these data agree well with results 
of semiempirical quantum-chemical calculations by the AM1 method [75].

Further increase of the PA of the nucleobases was found in anions of DNTs [77]. 
As it was expected, appearance of negative charge due to deprotonation of the phos-
phate group results in an increase of the PA values by 2.7−2.9 eV. However, similar 
to results for isolated bases, the base in the TMP anion has the lowest PA. Besides 
that, the PA value for CMP also becomes slightly lower than that for AMP and GMP 
(ΔPA ≈ 0.3 eV). In the discussed here investigations, P–O group of phosphate is not 
considered as a protonation sites. The PA of P–O is always much higher than PA of 
any nucleobase atom.

It should be noted some experimental problems in study of protonation of nucle-
otides. At the first stage the protonation of phosphate (PU) always happens. This is 
explained by the significant difference in the values of PA of nucleobases proton-
ation sites and PU. Therefore, the experimental data reflect the process of proton-
ation of neutral forms of deoxyribonucleotides. But it is well known, that in vivo, 
nucleotides have a negative charge, which is balanced by the metal cations (Na+or 
K+). Thus, the issue of nucleobases protonation in monoanionic DNTs remains un-
answered in experimental investigations.

According to semiempirical AM1 study [75, 76] of PA of protonated DNTs con-
taining a neutral phosphate group it was concluded that appearance of a phosphate 
group in DNTs results in a change of preferable protonation sites. In the case of neu-
tral CMP, GMP, and AMP molecules, the highest PA were found for the N3 atom, 
while in TMP the oxygen atom of the C4=O carbonyl group remains the most pref-
erable site for protonation. In the case of anionic DNTs containing a deprotonated 
phosphate group, it was concluded on the basis of calculations by the AM1 method 
that the N7 atom has the highest PA value for GMP [77]. Other anionic nucleotides 
have the same preferable sites of protonation as molecules with a neutral phosphate 
group. In the case of anionic AMP, the highest stability of tautomer with the proton 
located at the N3 atom was also confirmed by calculations using DFT methods [78]. 
However, contrary to AM1 data, it was found in the DFT study that the N7 atom 
of adenine is the most preferable site for protonation of a molecule with a neutral 
phosphate group.

Taking into account that fact one concludes that protonation of anionic nucleo-
tides may lead to significant changes in their conformations and energetic. It is 
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possible to assume that each tautomer of protonated nucleotide can exist in several 
stable conformations characterized by different energy. Therefore, comprehensive 
evaluation of PA requires careful consideration of the population of conformers 
of non-protonated anionic DNTs and each tautomer of protonated molecules and 
should be calculated using the analysis of the population of the stable conformers.

Taking into account that each tautomer exists in several conformations, the ob-
served PA represents a average value. Therefore, a PA for every protonation site was 
calculated using Eq. (5.2):

 

(5.2)

where Etot is the total energy of protonated (mXMP-H) and non-protonated (mXMP) 
nucleotide obtained from DFT calculations, Ecorr is the thermal correction to enthal-
py, and the term of 5/2RT includes ΔnRT for acid–base reaction and translational 
energy of proton. M represents the number of conformers of a protonated tautomer 
of nucleotide, N is the number of conformers of non-protonated nucleotide, and P 
is the population of each conformer calculated using a Boltzmann distribution func-
tion (0 ≤ P i ≤ 1).

The PA of nucleobases in DNTs was calculated in the same way, taking into ac-
count the population of all tautomers of protonated nucleotide using the following 
Eq. (5.3):

 

(5.3)

where K is the number of tautomers for protonated nucleotide and Pn is the popula-
tion of each tautomer. PA values for all conformers and tautomers were calculated 
at 298 K.

The analysis of population of different conformers of monoanionic DNTs 
showed that in the gas phase, they exist in form of only one conformer. This is S/
anti conformer for mTMP, mCMP, mAMP and S/syn-conformer for mGMP. The 
appearance of the polar environment, simulated with PCM model, leads to larger 
conformational space. The greatest population in this space has N/anti conformer 
for mTMP, mCMP and mAMP. S/syn-conformer retains a dominant position for 
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mGMP. However, its population is reduced by more than half. The protonation of 
the nitrogen atoms in the gas phase always yields one dominant conformer. Proton-
ation of the oxygen atom of the carbonyl group leads to a mixture of two conform-
ers. The exception is only in the case of tautomers H7 and H11 for mTMP mGMP. 
The appearance of the polar environment leads to a mixture of conformers for all 
possible tautomers.

Results of calculations of the relative stability of tautomers in protonated DNTs 
demonstrate an existence of the tautomeric equilibrium only in protonated mTMP 
molecule (Table 5.16). Other protonated nucleotides have only one stable tauto-
mer. This especially concerns the purine nucleotides where differences in energy 
between the most stable H3 tautomer and other tautomers are higher than 10 kcal/
mol. The analogous tautomer is also the most stable form for the mCMP. However, 
in the case of this nucleotide, the difference in energy between the H3 and H7 tau-
tomers is considerably smaller. For mCMP, mGMP and mAMP the greatest value 
of PA is associated with a nitrogen atom N3, and protonated nucleotides exist in 
form of tautomers H3. For mTMP, in the gas phase protonated nucleotide exists as 
a mixture of tautomers H7 and H8. Thus, the most preferable protonation sites of 
anionic nucleotides are the same as for neutral nucleotides [75, 76]. In contrast to 
previous conclusions based on AM1 data, [77] the more accurate DFT level calcula-
tions reveals that the N7 atom of the mGMP has a significantly smaller PA value as 
compared to the N3 site.

In general, the highest PA values in the gas phase and in a polar environment 
have a nucleobase of mGMP. In the gas phase values of PA for mCMP and mAMP 
tautomers are almost identical, but in the polar environment the PA of mAMP is 
slightly higher. The smallest PA is predicted for mTMP tautomers. It should be not-
ed that the PA values for mCMP, mGMP and mAMP tautomers are very close and 
significantly higher than those for mTMP. This is in agreement with experimental 
data. Thus one concludes that purine bases are more attractive to protonation than 
pyrimidine.

Table 5.16  B3LYP/aug-cc-pvdz level relative energies (ΔE, kcal/mol), populations (P, %), and 
proton affinities (PA, kcal/mol) for 2′-dexyrobonucleotides in gas phase and hydrated state (PCM)
Molecule Tautomer ΔE P PA P (PCM) PA (PCM)
mTMP H7

H8
0
0.39

65.92
34.07

12.07
12.06

0
100

11.26
11.47

mCMP H3
H7

0
5.0

99.98
0.02

13.33
12.77

100
0

12.05
11.77

mGMP H3
H7
H10
H11

0
12.93
74.83
19.03

100.0
0.0
0.0
0.0

13.59
13.19
10.51
12.58

99.4
0.6
0
0

12.40
12.29
11.58
11.68

mAMP H1
H3
H7
H10

14.84
0

11.14
31.96

0.0
100.0

0.0
0.0

13.18
13.30
12.82
11.29

8.3
91.65
0.03
0

12.31
12.37
12.17
11.72
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On the basis of PAs and populations of the individual tautomers of each proton-
ated molecule, it is possible to calculate the PAs for anionic nucleotides as whole. 
According to these values, the mGMP possesses the highest PA and the mTMP 
has the lowest PA value (Table 5.17). PAs of the mCMP and mGMP are almost the 
same. Comparison of the PA values of nucleic acid bases in different molecules 
(Table 5.17) indicates that the PA depends on the presence of the substituent and its 
charge. Appearance of the sugar moiety in nucleosides or the sugar −phosphate sub-
stituent in neutral nucleotides results in an increase of the PA values for all bases. 
Further increase of the PA is observed for anionic nucleotides (Table 5.17). There-
fore, one may suggest that the variation of the degree of neutralization of negative 
charge of the phosphate group of DNA nucleotides may be used as a tool for tuning 
of the proton affinity of base.

5.8  An Unusually Strong Intramolecular Hydrogen 
Bonds In The Protonated 2′-Deoxorybonucleotides

As mentioned above, the protonation of a DNTs base in some cases leads to abnormal 
hydrogen bonds C-H...O. Usually, such bonds represent weak hydrogen bonds and 
are characterized by the O...H distance of about 2.1–2.5 Å. However, in some tauto-
mers of protonated nucleotides this distance is less than 2 Å. The shortest bonds are 
observed in purine rings, where the H...O distance is reduced to 1.6 Å, which is typical 
bond length for strong classical hydrogen bond. This is also in agreement with energy 
of a hydrogen bond (more than 10 kcal/mol), calculated from the characteristics of the 
BCP. Such abnormally strong intramolecular hydrogen C–H...O bonds have been dis-
cussed in [78] from the point of view of the possible tautomeric transitions and their 
impact on the conformational dynamics of nucleotides. The results of calculations 
showed that protonation of N7 atom in the mAMP molecule leads to the strengthening 
of the C8–H...O hydrogen bond. The obvious reason for this unusual behavior of the 
C8–H...O bond is electrostatic attraction between oppositely charged nucleobases and 
phosphate groups. Thus, this bond becomes the strongest, as measured by the geomet-
ric parameters and the characteristics of the electron density distribution.

Table 5.17  Proton affinities (eV) of nucleobases, nucleosides, neutral, and anionic nucleotides 
obtained from theoretical and experimental studies
Molecules Studies Thy Cyt Gua Ade
Nucleobases Exp. Ref. [88] 9.09 9.79 9.86 9.72

Exp. Ref. [89] 9.05 9.70 9.67 9.69
MP4(SDTQ)/6-31+G(d,p)//
MP2/6-31+G(d,p), Ref. [96]

8.94 9.91 9.86 9.75

Nucleosides Exp. Ref. [88] 9.75 10.11 10.16 10.13
Neutral 
nucleotides

Exp. Ref. [75] 9.72 10.27 10.28 10.29

Anionic 
Nucleotides

B3LYP/aug-cc-pvdz 12.07 13.33 13.59 13.30
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The geometrical parameters (Table 5.18) of the C8–H...O–P hydrogen bond in 
mAMP-H7 tautomer make it possible to characterize this interaction as a strong 
hydrogen bond with characteristics close to the classical O–H...O and N–H...O hy-
drogen bonds. In the case of C–H...O hydrogen bonds, these features suggest the 
unique event of the hydrogen bond strengthening. Due to the presence in the con-
sidered species of the strong electrostatic interactions these hydrogen bonds can be 
classified as opposite charges assisted hydrogen bonds.

To verify that feature, we have manually transferred the proton to create the C8–
H…O–P → C8…HOP type of proton transfer. The obtained in this way structure 
was optimized and verified for the presence of imaginary frequencies. No imagi-
nary frequencies have been found. Therefore, another local minimum having C8…
HOP type of hydrogen bond has been established. An analysis of energy profile for 
this process as a function of the H…O distance (Fig. 5.17) also reveals existence of 
the second minimum on the potential energy surface corresponding to C8…H–OP 
tautomer (mAMP-H7*) lying 3.3 kcal/mol higher as compared to mAMP-H7 tauto-
mer. We have also found that the total energy difference between a local minimum 
and the transition state for proton transfer process is 3.6 kcal/mol in forward direc-
tion, and just 0.33 kcal/mol in reverse direction.

As we already mentioned, the value of barrier of reverse proton transfer C8…H–
OP → C–H…OP is very small. Therefore, in order to verify a population of this 
minimum on the potential energy surface we have applied the approximation which 
we have already used earlier [100]. It based on the well known quantum-chemical 
conclusion that minimum is really populated, if at least one vibrational level could 
be placed inside of it. Otherwise, such an area on potential surface should be consid-
ered as an area of large amplitude vibration. The results of calculations reveal that 
energy of ground vibrational level for the O–H stretching vibration of mAMP-H7* 
tautomer is 3.2 kcal/mol. This indicated that the considered level lies above barrier 
of proton transfer from the oxygen to the carbon atoms. Moreover, an analysis of 
energy of vibrational levels for stretching vibration of the C8–H bond in mAMP-H7 
tautomer reveals that energy of ground vibrational level (3.7 kcal/mol) is also higher 
than the barrier of tautomeric transition [78]. Thus, one can expect that mAMP-H7 
species might exist as the structure when the hydrogen atom possesses barrierless 
motion between the C8 and oxygen atom of the phosphate group in the wide range 
of the distances. Accordingly, protonation of N7 atom significantly increases the 
reactivity of adenine, especially at the C8 atom.

Table 5.18  The geometrical parameters of the intramolecular hydrogen bonds in the monoan-
ionic nucleotide mAMP and its protonated tautomers mAMP-H7 and mAMP-H7* calculated at the 
B3LYP/aug-cc-pVDZ level
Hydrogen bond Parameter mAMP mAMP-H7 mAMP-H7*
C8–H…O–P H…O (Å) 2.281 1.640 1.670

C–H…O (deg.) 164.6 168.9 175.5
C3′–H…O–P H…O (Å) 2.365 2.398 2.398

C–H…O (deg.) 140.0 130.0 130.0
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Interestingly, analysis of published data showed that the carbon atom C8 is the 
most preferred for bonding with various chemical agents, particularly in the oxida-
tion reactions [101, 102]. The process of oxidative damage of DNA chain is one of 
the most likely causes of mutagenesis and carcinogenesis [103]. That is why the 
activation of C8 carbon molecules in adenine is a negative factor for the function-
ing of the DNA chain. Taking into account the high-performance system of DNA 
repairing, one can assume that the protonation of the nitrogen atom N7 at nucleotide 
mAMP should lead to some deformation of the geometry of the molecule to avoid 
the formation of a strong hydrogen bond C8–H…O, in order to deactivate the car-
bon atom C8.

Rotation of nucleobase around the glycosidic bond is one of the easiest ways 
to deactivation. Ab initio molecular dynamics Car-Parrinello (CPMD) studies show 
that the tautomer mAMP-H7 is stable during the first 3.5 ps of simulation [74]. This 
indicates that this tautomer corresponds to the actual minimum of the potential en-
ergy surface. After 3.5 ps mAMP-H7 carries out significant conformational changes, 
which are expressed in a rotation of nucleobase around the glycosidic bond. This 
leads to the disappearance of the hydrogen bond C8–H…O. Thus, the interaction be-
tween the oxygen atom of phosphate and the hydrogen atom of protonated nitrogen 
(N7) significantly increase. Further rotation around the glycosidic bond leads to no-
table increase in the interaction PO…H–N7, which makes possible proton transfer to 
the oxygen atom. This process corresponds to the transformation of mAMP-H7 into 

Fig. 5.17  Energy profile of proton transfer in mAMP-H7 tautomer (B3LYP/aug-cc-pvdz)
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another tautomer—mAMP-OH1 (Fig. 5.18). This process is accompanied by signifi-
cant conformational changes. B3LYP/aug-cc-pVDZ geometry optimization of this 
new tautomers showed that this structure corresponds to a minimum on the potential 
energy surface [74]. CPMD simulation at 300K revealed that the energy barrier of 
this transformation on the potential energy surface is about 1 kcal/mol. This value is 
less than kT calculated with static quantum-chemical method (about 2.1 kcal/mol). 
The obtained results clearly show that syn to anti conformational change of adenine 
causes the proton transfer and further modifications of the nucleotide.

5.9  Summary

During the last few decades computational studies become an important source of 
information related to DNA fragments. Based on the data obtained from ab initio 
and DFT investigations vital data related to biomolecules have emerged.

Among the frequently studied DNA components are nucleotides and nucleo-
sides. A number of the DNA-like conformations of the isolated nucleotides have 
been revealed. The S/anti conformation is the most favorable for 2′-deoxythymi-
dine monophosphate (mTMP), 2′-deoxycytidine (mCMP), and 2′-deoxyadenosine 
(mAMP); S/syn conformation is favorable for 2′-monophosphate deoxyguanosine 
(mGMP). Conformers with the syn orientation of nucleobase, relative to the sugar 
moiety, exist only in the case of mGMP. However, conformers with an orthogo-
nal orientation of the nucleobase relative to the sugar moiety are found in mCMP 
mAMP molecules.

All conformations of deoxyribonucleotides are stabilized by weak C-H...O hy-
drogen bonds. Based on the obtained results, the existing hydrogen bonds may be 
divided into two groups: reference (stable) hydrogen bonds encountered in many 
conformations of all DNTs and specific (effective) hydrogen bonds that exist only 
for given (instantaneous) nucleotide conformation and are easily destroyed by the 
small changes in the conformation of the molecule. The differences between these 
two types of hydrogen bonds could be derived from characteristics of the bond criti-
cal point (3, − 1) of electron density distribution. Reference hydrogen bonds are also 
responsible for stabilization of the syn-conformers of CMP, AMP, and GMP.

Fig. 5.18  B3LYP/aug-cc-pVDZ level predicted structures of tautomers of protonated mAMP, 
from left to right: mAMP-H7, mAMP-OH1 and mAMP-OH2
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The presence of polar environment around the deoxyribonucleotides signifi-
cantly affects the relative stability of their conformers. In the case of mTMP and 
mCMP molecules the N/anti-conformation is most advantageous in terms of the 
relative energy, whereas in the case of mAMP and mGMP the S/syn conformation 
is the most preferable. The difference in conformer’s energies changes noticeable 
in polar solvent.

An incorporation of nucleotides into A-DNA macromolecules requires the 
smallest deformation energy. Nucleotides mAMP and mGMP undergo the greatest 
deformations, during their incorporation into Z-DNA. Change of DNTs conforma-
tion causes switch between different types of intramolecular H-bonds and results in 
different energetic effects for purine and pyrimidine during their incorporation into 
DNA structure. Every type of DNA possesses unique set of intramolecular hydro-
gen bonds in nucleotides.

Protonation of nucleobases in anions of canonical 2′-deoxyribonucleotides dem-
onstrated that this process leads to significant decrease of conformational space of 
purine nucleotides. Interestingly, almost all conformers found for non-protonated 
molecules correspond to minima of the potential energy surface for protonated 
mTMP and mCMP. However, in all nucleotides, only one conformer is populated. It 
concerns all tautomers of protonated molecules except of mTMP and mCMP with 
the proton attached to the carbonyl group. In these two cases also a minor popula-
tion of second conformer is observed. Protonation of nucleobase leads to significant 
elongation of the N-glycosidic bond. These findings agree well with suggestions 
that protonation of nucleobase is a first step in cleavage of the glycosidic bond. The 
oxygen atoms of both carbonyl groups of thymine and the N3 atom of the pyrimi-
dine ring of cytosine, guanine, and adenine represent the most preferable sites for 
protonation of anions of 2′-deoxyrobonucleotides. The highest proton affinity is 
observed for the base in mGMP and the lowest for the thymine moiety in mTMP. It 
should be noted that calculated values of the proton affinities in anionic nucleotides 
are significantly higher (by 2−3 eV) than for nucleosides and neutral nucleotides. 
This emphasizes that the proton affinity of the base in DNA macromolecule may 
be tuned by changing the extent of shielding or neutralization of negative charge of 
the phosphate group.

Relationship between the conformational dynamics of nucleotides and their tau-
tomeric transitions demonstrated that deprotonization of nucleobase is carried out 
due to rotation of nucleobase around the glycosidic bond. This leads to the proton 
transfer from the nitrogen atom of nucleobase to the oxygen atom of the phosphate 
group. Such deformation of the geometry of the molecule prevent the formation of 
a strong C8–H...O hydrogen bond, in order to deactivate the nucleobase`s carbon 
atom C8. This carbon is the most preferred for bonding in oxidation reaction, par-
ticularly in the process of oxidative damage of DNA chain.
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Abstract Certain guanine-rich DNA and RNA sequences can fold into unique bio-
logically significant high-order structures called G-quadruplexes (G4) formed by 
stacked arrays of guanine quartets connected by non-canonical hydrogen bonds. 
Novel anticancer strategy is based on the use of organic molecules that specifi-
cally target quadruplex structures present in telomeres and some other regions of 
the genome. We provide a brief overview of the structural features of quadruplex 
nucleic acids and main mechanisms of G4-ligand interaction. Current methods for 
the molecular modeling of quadruplex DNA structures and their ligand binding 
are discussed in the review. We mainly focus on quantum chemical computational 
approaches to model the interaction of G4 DNA and its structural elements with 
metal cations and small molecules, including hybrid QM/MM approaches.

6.1  Introduction

The molecular basis of the formation of biologically functional structures of bio-
macromolecules (proteins, nucleic acids, etc.) and their specific interactions with 
low-molecular ligands remains one of the most exciting problems of biomedical 
science and a foundation of modern drug design.

Quite recently emerged the antitumor strategy based on the use of small mol-
ecules that specifically target telomeres and telomerase [1–4]. Telomeres are gua-
nine-rich DNA sequences localized at the ends of the chromosomes. They protect 
chromosomal DNA from degradation, prevent end-to-end fusion and other forms 
of aberrant recombination, and allow it to be completely replicated without loss of 
genetic material. The length of the telomeres correlates with the ability of a cell to 
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undergo a large number of cell divisions. Normally telomeric DNA is shortened by 
50–200 nucleotides upon each cellular division that may control the proliferative 
capacity of normal somatic cells. However, this does not occur in tumor cells due 
to high activity of telomerase, an enzyme which is responsible for maintaining the 
telomere length and synthesizes the lost telomeric sequences by adding telomeric 
repeats (5’-TTAGGG-3’ sequence in humans), that leads to uncontrolled prolifera-
tion. Inhibition of telomerase activity induces senescence in cancer cells followed 
by their death. In contrast, normal somatic cells are devoid of telomerase activity, 
so high level of enzyme expression is directly associated with cancer. Indeed, in-
creased telomerase activity was detected in 85–90 % of human tumors [1, 3]. As a 
result, telomerase system is now considered a promising biological target for novel 
anticancer drugs.

Telomerase is a multicomponent highly specialized enzyme responsible for the 
synthesis of telomeres. Its catalytic subunit (TERT, telomerase reverse transcrip-
tase) utilizes the RNA component of the enzyme (TR) as a template to synthesizes 
telomeric DNA repeats. A number of strategies for telomerase inhibition by low-
molecular drugs have been proposed. They include the application of nucleoside 
and non-nucleoside reverse transcriptase inhibitors, antisense oligonucleotides and 
their analogues against TR RNA, ribozymes and siRNA directed against TR and 
TERT components of the enzyme, etc. [5–9]. These approaches are rather tradi-
tional for the inhibition of enzymes of nucleic acids biosynthesis. Totally different 
approach is based on the presence of unique structural motifs in telomeric DNA 
called G-quadruplexes (G4).

Certain guanine-rich DNA sequences readily fold into the four-stranded struc-
tures formed by stacked arrays of guanine quartets (or tetrads) – square planar ar-
rangements of four guanine bases connected by Hoogsteen-type hydrogen bonds 
(Fig. 6.1).

These stable higher-order DNA arrangements were shown to play a crucial bio-
logical role in a living cell. DNA sequences able to adopt quadruplex structures are 
prevalent in telomeres as telomeric repeats, although they have been also found in 
a number of gene promoter regions, first of all in proto-oncogenes, like c-myc, c-kit 
or k-ras, that can be also targeted by drugs [10–15]. RNA sequences can also form 
quadruplex structures as recent finding demonstrated that telomere DNA is tran-
scribed into telomeric repeat-containing RNA [11, 16–18].

Perhaps the formation and dissociation of quadruplex structures in nucleic acids 
is one of the universal ways of the regulation of gene expression in vivo. So the 
development of specific quadruplex ligands, besides the development of antican-
cer compounds, would allow controlling many fundamental biological processes. 
Therefore, quadruplex nucleic acids are an important new target for drug design, 
and there is growing interest in the development of small molecules targeting these 
structures with high affinity and selectivity.
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6.2  G-Quadruplex DNA and its Ligands

G-quadruplexes are specific structures that include planar G-quartet stacks and four 
grooves providing different geometries and spatial distribution of functional group 
as compared to duplex DNA. This difference allows specific recognition of qua-
druplexes by low-molecular ligands and binding selectivity over duplex DNA, i.e. 
the ability to interact only with quadruplex but not duplex nucleic acids. Selective 
G4 ligands stabilizing G4 structures may disturb the binding of enzyme to telo-
meric DNA and thus block its elongation that results in anticancer activity [4, 5, 
7, 10]. In other words, single-stranded DNA is a substrate of telomerase, whereas 
G-quadruplex DNA is not.

It is interesting to note that in this approach enzyme inhibition is achieved due 
to the interaction of a ligand with telomerase substrate, i. e. telomeric DNA, rather 
than with the enzyme itself.

Thermodynamic and kinetic data suggest that quadruplex stability depends on 
a number of factors, including the type of structure adopted by the DNA strand 
(or strands), strand sequence, the size of intervening loops, base and phosphate 
modifications, pH and the presence of cations [19]. Small molecules may stabi-
lize quadruplex DNA (or facilitate DNA folding into quadruplex structures) due to 
shifting the competitive equilibrium between the single-stranded or Watson-Crick 
duplex and quadruplex DNA towards the latter form [19, 20]. Inhibition activity of 
G4 ligands depends mainly on the stability of their complexes with telomeric DNA 
quadruplexes.

Fig. 6.1  a Structure of guanine quartet. Four guanine bases are linked by Hoogsteen H-bonds. b 
simple quadruplex model: side view of the stack of three G-quartets containing two monovalent 
metal cations. Ions are located in the channel formed by guanine residues
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A number of efficient quadruplex binding/stabilizing ligands with anticancer 
properties were reported, e.g. TMPyP4, BRACO-19, telomestatin, BMVC, quar-
floxin. Typical G4 ligands (Fig. 6.2) are usually based on heteroaromatic polycyclic 
structures like acridines, anthraquinones, carbazoles, macrocyclic polyoxazoles, 
etc. [5, 7, 21–23].

Generally, stabilization of quadruplex DNA conformations by small organic 
molecules can occur via the π-π interaction of cationic or neutral aromatic frag-
ments with G-quartets (usually external stacking of the ligand at the terminal 
G-quartet) and by the electrostatic interaction of positively charged ligands, either 
aromatic cores or cationic or easily protonated basic substituents, with G4 DNA 
polyphosphate backbone. The design of quadruplex ligands is mainly based on pla-
nar polycyclic aromatic scaffolds able to interact with G-quartets via the stacking 
mechanism.

Since G-quartet (or G-tetrad) consists of four guanine bases, its square is at least 
twice as large as the square of usual DNA purine-pyrimidine base pair. So a spe-
cific quadruplex binder should contain a large aromatic/heteroaromatic core, larger 

Fig. 6.2  Chemical structures of classic G4 ligands: TMPyP4 (1), telomestatin (2), BRACO-19 (3), 
RHPS4 (4), triazine (5) and cyanine (6) derivatives
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than that required for common duplex DNA binding compounds. Only in this case 
G4 ligand would be able to ensure an efficient overlap with guanine tetrad and 
thus provide good quadruplex selectivity of the drug over the duplex DNA [7, 21, 
22]. From this point of view, large ligands like porphyrins and telomestatin may be 
preferable as their molecules perfectly overlap with G-tetrads. At the same time, 
relatively small size of the central aromatic core can be efficiently compensated by 
the substituents of cationic nature.

There are numerous experimental methods to investigate quadruplex DNA and 
monitor and quantify its interactions with low-molecular ligands [24–26]. Besides 
biochemical and electrophoretic methods [27], various biophysical approaches 
are available, including e.g. absorption spectroscopy [28, 29], circular dichroism 
spectroscopy [29, 30], fluorescence resonance energy transfer (FRET) [31, 32], 
fluorescence melting assays [33] and other fluorescence-based techniques, and 
mass spectrometry [25]. Another popular approach for studying biomolecular in-
teractions in G-quadruplexes is surface plasmon resonance (SPR) [34–36]. These 
methods provide valuable and diverse structural, kinetic and thermodynamic data.

At the same time, the main sources of precise structural information on 
G-quadruplexes and their complexes with small molecules are X-ray crystallogra-
phy [37–41] and NMR spectrometry [38, 42, 43]. Dozens of 3D structures of vari-
ous forms of quadruplexes are currently available from Protein Data Bank and other 
sources. These crystallographic or NMR structures are of great importance as they 
are the basis for molecular modelling and modern drug design.

6.3  Theoretical Studies on G-Quadruplex Structures  
and Their Interactions With Low-Molecular Ligands

The accurate modelling of the structures of biomacromolecules and their complexes 
with small molecules and determining their thermodynamic parameters is still a 
complicated and challenging problem due to the large size and complexity of mo-
lecular systems. Nevertheless, computer modelling of the structures of nucleic acids 
and proteins and their interaction with low-molecular ligands is now an integral 
part of drug design. Molecular modelling based on docking or molecular dynam-
ics is very common in this field. At the same time, quantum chemical (quantum 
mechanical) approaches are not so common; however, they are able to provide in-
formation that cannot be obtained by the other methods.

6.3.1  Computer Modelling Methods in the Study  
of Biomacromolecules

In general, computational approaches to modelling a molecular system may be 
divided into two broad categories: quantum mechanics (QM) [44] and molecular 



186 M. Ilchenko and I. Dubey

mechanics (MM) [45]. QM methods provide more accurate modelling results than 
MM-based approaches, although they are generally much more demanding in terms 
of a computation power. It is now widely recognized that both methods reinforce 
one another in an attempt to understand chemical and biochemical behaviour of bio-
molecules at the molecular level. From a practical point of view, the complexity of 
the system, time limits, available computation resources and other limiting factors 
determine which method is feasible [46].

MM may be used to model biomacromolecular systems to which even semi-
empirical QM calculations can be applied effectively. In MM, molecular motions 
are determined by the masses of atoms and the forces acting on them, whereas wave 
functions or electron densities are not computed. MM is widely used in chemistry 
and biochemistry to obtain molecular models since this approach is much faster and 
requires less computation power than QM methods. It allows the modelling of large 
molecular systems. However, MM energies have little meaning as absolute values 
and can be used rather to compare relative energies obtained for several molecular 
structures [46]. Moreover, MM approaches often cannot succeed with molecular 
systems where electronic interactions are dominant, including π-π-stacking interac-
tions which are the basis of most ligands binding to G-quadruplex DNA structures. 
In this case, QM calculations should be used to obtain accurate results. At the same 
time, despite some severe intrinsic limitations in MD approaches, base stacking can 
be reasonably approximated based on well-calibrated force fields [47].

It should be noted that the molecular mechanics provide only a static view of 
the flexible molecular system. The most common approach used for the simulation 
of biomolecules motion on the atomic level is the molecular dynamics (MD) [48]. 
The forces acting on atoms are usually calculated here using MM methods. MD can 
provide information on the possible conformations and dynamics of the system, as 
well as its thermodynamic parameters.

MD simulations have some intrinsic limitations, e.g. force-field imperfections 
and often insufficient simulation times. Nevertheless, MM-based methods, includ-
ing MD, have become very popular research tools in biochemistry and drug design, 
including the studies on G-quadruplexes and G4-ligand complexes. MD simula-
tion of G-quadruplex structure and dynamics [49–52] and the interactions of qua-
druplexes of various topologies with cations [49, 50, 53–56] and low-molecular 
organic compounds [50–52, 57–63] has been widely used to understand the basic 
properties of quadruplex DNA and to improve the recognition of quadruplexes by 
small molecules in the design of efficient G4 ligands, as well as to complement 
available experimental data (see e.g. [25] and references therein). Such common 
approaches to modern drug design as molecular docking and virtual screening have 
also been successfully applied to the development of potential G4 ligands as antitu-
mor agents [57, 62–67]. However, in the present review we will mainly concentrate 
on purely quantum chemical (i. e. quantum mechanical) methods being currently 
used to model G-quadruplex DNA and quadruplex-drug complexes with high ac-
curacy. Moreover, non-QM methods of molecular modelling of G4 structures and 
G4-ligand complexes, in particular MD approaches, have been recently reviewed 
in a number of works [50, 52, 60, 63–66], including a detailed methodology review 
by Haider and Needle [68].
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6.3.2  Quantum Chemical Calculations on G-Quadruplexes

Recent advances in computational processing power and modelling algorithms 
have resulted in the development of new efficient computer-aided methods for the 
discovery of novel drugs interacting with biomacromolecules. The availability of 
crystallographic and NMR data for G4 structures strongly facilitates the design of 
potent antitumor compounds using computational methods.

6.3.2.1  G-Quadruplex Structures and Ligand Binding

Despite recent theoretical advances, the complexity of quadruplex architectures re-
mains a great challenge for computer modelling of G4 and their complexes. One 
of the main problems for any molecular modelling approach is unusually broad 
structural polymorphism of quadruplex DNA. This polymorphism results mainly 
from the conformational flexibility of DNA chains and non-covalent (hydropho-
bic, stacking, electrostatic) interactions of quadruplex fragments, both heterocyclic 
nucleic bases and sugar-phosphate backbone. There are intra- and intermolecular 
(dimeric, tetrameric) quadruplexes, with parallel, antiparallel or mixed (hybrid) 
type of G4 structures. The geometric parameters of guanine quartets may differ to 
some extent as well. The topology of a quadruplex is determined by a number of 
factors, including e.g. nucleotide sequence, pH, the nature (Na+ , K+ or NH4

+ ) and 
concentration of cations present in the medium, etc. Moreover, depending on the 
conditions the same nucleic acid sequence may form several quadruplex structures 
with different conformations, or their equilibrium mixtures [5, 7, 10–15, 37–43, 
69–72]. It is widely accepted that the crystal (X-ray) and solution (determined by 
NMR) structures may be also different for the same oligonucleotide sequence [38, 
72, 73]. Some examples of diverse quadruplex topologies are presented in Fig. 6.3.

To understand the functioning of G-quadruplexes and its recognition by small 
molecules, a deep analysis of structural and energetic properties of G4 fragments, 
first of all guanine quartets and their stacks as a key element of quadruplex struc-
tures, is required.

In general, there are several possible binding modes for quadruplex ligands: they 
can stack externally upon a terminal G-quartet (mainly via π-π interactions), inter-
calate between two G-quartets, and bind to the quadruplex grooves between two ad-
jacent DNA chains. Additional electrostatic interaction of a ligand with phosphate 
groups, most often provided by basic/cationic side chains, is usually required to 
ensure high binding affinity. Ligand interaction with quadruplex loops may further 
increase the binding specificity [5, 7, 10, 12, 21–23]. Taking into account the struc-
tural diversity and polymorphism of quadruplex structures, design of efficient G4 
ligands is a complicated and challenging task, especially when specific binding to a 
particular topologic form of a quadruplex should be achieved.

Nevertheless, all forms of quadruplexes have common structural elements as 
these assemblies are formed by DNA chains and contain the stacks of G-quartets. 
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As a result, known to date G4 ligands share some common structural features as 
well: they are based on large planar polycyclic heteroaromatic scaffolds able to 
interact with guanine tetrads, and usually contain one or several cationic substitu-
ents for strengthening the interaction with anionic DNA backbone (sometimes the 
aromatic core of the ligand can be cationic itself, e.g. in ethidium-based compounds 
or acridinium derivative RHPS4, although most known G4 ligands are based on the 
neutral heteroaromatic systems).

There are also G4 ligands that bind at the grooves of quadruplexes, with struc-
tures similar to those for duplex DNA minor groove binding ligands [76, 77].

6.3.2.2  DFT Calculations of the Structure of G-Quartets  
and Their Interaction With Metal Cations

Since G-quartets and their stacked arrays are a unique component of all topological 
types of G-quadruplexes, much effort were made to study guanine quartets and oc-
tets by quantum chemical methods. QM-based approaches are very appropriate for 

Fig. 6.3  Top ( left) and side ( right) views of G-quadruplex structures of various topologies: a – 
parallel (Protein Data Bank entry 1KF1). b – mixed (PDB 1K8P) [37]. c – antiparallel (PDB 143D 
[74]) intramolecular human telomeric DNA quadruplexes. PDB structures were visualized with a 
Chimera package [75].
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these studies since the size of G-quartet molecular system is not too large for QM 
methods which are at the same time much more accurate than the methods based on 
molecular mechanics, including MD, and provide more complete information on the 
structure of quadruplex building blocks – guanine quartets. Since the latter are the 
principal targets for virtually all G4-binding drugs, the availability of accurate mo-
lecular structures of G-tetrads is of critical importance for successful drug design.

Guanine bases in quadruplexes are held together by a number of non-covalent 
interactions: hydrogen bonds responsible for the organization of four guanine frag-
ments into the planar quartet; π-π-stacking interactions between individual quartets 
enable the assembly of their stacks, and the presence of a monovalent cation (typi-
cally Na+ , K+ or NH4

+) between the quartet planes within the quadruplex channel 
stabilizes G4 structure by neutralizing the electrostatic repulsion between guanine 
O6 oxygen atoms that form the inner rim of the quartet [78–81]. Some variations in 
the geometry of guanine quartets are possible that depend on the type of hydrogen 
bonding (classical Hoogsteen or so-called bifurcated system of H-bonds) (Fig. 6.4). 
All these structural and electronic factors should be thoroughly considered when 
performing the molecular modelling studies.

Quantum chemical theoretical studies on the structure of G-quartets and their 
stacks most often employ the DFT (Density Functional Theory) method [82, 83].

A systematic DFT study of nucleic acid G-quartets was performed in [84]. A 
number of functionals, including B3LYP [85, 86], M05-2X [87] and M06-2X [88], 
were used in the calculations. M05-2X and M06-2X functionals effectively incor-
porate the long-range dispersion forces [89] which are important for modelling the 
stacking-based systems. RI-DFTD [90, 91] calculations at BLYP/TZVPP [92] level 
were also performed to account for dispersion interactions using TURBOMOLE 6.0 
program system [93, 94]. The polarizable continuum model (PCM) [95] was used 
for the solvent calculations which were performed at B3LYP/6-31G(d) level. In 
this fundamental theoretical work [84] the structures of G-quartets with Hoogsteen-
type bonding (S4 symmetry), with two bifurcated bonds (C2 symmetry) and with all 

Fig. 6.4  Top and side views of G-quartets with Hoogsteen (a), mixed (b) and bifurcated (c) sys-
tems of hydrogen bonding. Structures were obtained by the authors using B3LYP/6–311 + G(d, p) 
DFT calculations in vacuum
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bifurcated H-bonds (S4 symmetry). The structures of G-octet with two bifurcated 
bonds (C2 symmetry) was also investigated. Analysis of binding energies demon-
strated that G-quartet with two bifurcated bonds (C2 symmetry) is the most stable 
structure in gas phase. It was also shown that G-quartets with no bifurcated bonds 
(C2, S4, C4h symmetries) did not give a stable structure at the M05-2X/6-31 + G(d, p) 
level in gas phase. At the M06-2X/6-31 + G(d, p) level, optimization of the three dif-
ferent types of quartets studied resulted in the quartet with all bifurcated H-bonds 
with S4 symmetry. We have independently come to analogous conclusions on the 
stability of G-quartets n vacuum [96]. As to the effect of aqueous medium, our data 
strongly differ from those obtained in [84]. We have found that full optimization 
of G-quartets in water results in immediate zero barrier transformation of all types 
of G-quartets into a single structure with Hoogsteen-type bonding. These data are 
supported by the results presented in [97] demonstrating that the structures of S4 
symmetry are global minima in water for G-quartets with Hoogsteen-type system 
of hydrogen bonds. We also suppose that Jissy et al. [84] were not correct while 
mentioning that there is one quartet with two bifurcated bonds in PDB crystal struc-
ture of G-quartet 1LVS. In our opinion, quartet of this type more closely resembles 
the deformed G-quartets with Hoogsteen bonding. We have found only one more 
paper in the literature [98] where the analogous mixed quartet form was briefly 
mentioned, although with no comparison with other possible structures. The authors 
studied guanosine 5’-hydrazide self-assemblies in the gel state by the combination 
of spectral data and B3LYP/6-31G** DFT calculations and concentrated mainly 
on the dependence of H-bond parameters on the orientation of ribose fragments in 
nucleoside.

It was recognized early that the ability to stabilize guanine gels depends on the 
cation nature and that the ionic radius is important for complex stability; in the al-
kali series K+ promotes the most stable complexes [80]. Cations play a critical role 
in stabilizing G-quadruplex structures to the extent when changing e.g. potassium 
cation for Na+ can completely alter the whole topology of G-quadruplex [37–43, 
69–74]. It is not surprising therefore that the role of metal ions in formation and 
stability of G-quadruplex structures was studied thoroughly in a number of theoreti-
cal works.

In addition to the above mentioned research, the authors of [84] have also per-
formed calculations for Li+ , Na+ , K+ , Be2+, Mg2+ and Ca2+ complexes of G-tetrads. 
Calculations showed that for an isolated quartet, the metal ion with the smallest 
ionic radius in their respective groups (IA and IIA) form more stable complexes. 
Other properties such as the HOMO-LUMO gap and polarizability have also been 
analyzed. The variation in the polarizability has been studied with respect to the 
movement of cations along the central cavity of the quartet to show that such move-
ment leads to a large anisotropy of polarization and hence the refractive index (η) 
thereby creating optical birefringence which have potential applications in biomo-
lecular imaging.

The structures and interaction energies of guanine and uracil quartets have been 
determined by B3LYP hybrid density functional calculations in [99]. The total in-
teraction energy of the C4h-symmetric guanine quartet consisting of Hoogsteen-type 
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base pairs with two hydrogen bonds between two neighbour bases was found to be 
−66.07 kcal/mol at the B3LYP/6-311G(d, p) level of theory. Complexes of metal ions 
with G-quartets can be classified into different structure types. The one with Ca2+ 
in the central cavity adopts a C4h-symmetric structure with coplanar bases, whereas 
the energies of the planar and nonplanar Na+ complexes are almost identical. Metal 
cations with small radii (Li+ , Be2+ , Cu+ , and Zn2+ ) and a high charge enforce a 
nonplanarity of the base quartets and may thus prevent a stacking of G-quartet, un-
like Na+ and K+ cations. The electrostatic potential of G-quartets provides probably 
favourable binding sites for metal ions between the stacked quartet planes, whereas 
isolated quartets have the region of most negative electrostatic potential in the cen-
tral cavity. Uracil quartets in the orientation with N3–H3…O4 H-bond are probably 
also capable of binding cations at the centre.

The complexes of metal cations Fe2+ , Co2+ , Ni2+ , Cu2+ and Zn2+  with guanine 
tetrads (G4) of C4h, C4 and S4 symmetry) were studied in [100]. The system con-
tained two water molecules above and under the G4-cation plane, with six-coordi-
nated metal ion. G4–Co2+ and G4–Cu2+ being open shell species were treated using 
unrestricted method UB3LYP and 6-31G(d) basis set. BSSE (Basis Set Superposi-
tion Error) correction was evaluated according to the counterpoise method of Boys 
and Bernardi [101]. Bader’s AIM (atoms in molecules) theory [102] was applied to 
determine a strong hydrogen bond [103]. The main conclusions were as follows: 
(a) the stability sequence is Ni2+ > Cu2+ > Co2+ > Fe2+ > Zn2+  when including BSSE 
correction, and Ni2+ > Fe2+ > Co2+ > Cu2+ > Zn2+ after hydration energy correction; 
(b) the sequence for G4–M–water complexes is Co2+ > Fe2+ > Ni2+ > Cu2+ > Zn2+  with 
BSSE correction; (c) electron density and its Laplacian at the bond critical points 
well correlate with the hydrogen bond length in the tetrads.

Structural properties and the effect of interaction of alkali (Li+, Na+ , K+ ) and 
alkaline earth (Be2+, Mg2+, Ca2+) metal cations with guanine and thioguanine (SG) 
tetrads were studied [104]. Complex formation was investigated using ab initio 
and DFT methods. In some cases MP2/6-311G** single point energy calculation 
was performed for the geometries optimized by B3LYP/6-311G** level of theory. 
Single point energy calculations were carried out to study the solute–solvent in-
teraction using the self-consistent reaction field theory (SCRF) [95] at B3LYP/6-
311G** level of theory. This method is based on Tomasi’s polarized continuum 
model (PCM), which defines the cavity as the union of a series of interlocking 
atomic spheres. The calculations revealed that cation-G and SG-tetrad complexes 
adopt normal four-stranded Hoogsteen bonded structures. The substitution of cat-
ions on guanine and SG-tetrads affects their geometries and charge distributions. 
The gas phase binding sequence for cation-G and SG-tetrads follows the interaction 
energy and metal ion affinity order Li+ > Na+ > K+ , Be2+ > Mg2+ > Ca2+. The smaller 
ions are tightly bonded to the quartets suggesting the domination of electrostatic 
interaction in the cation–tetraplexes systems. The solvent interaction with the mo-
lecular systems has increased the stability of both guanine and thioguanine quartets 
and their complexes. The two and three-body interaction energies have been used to 
analyze the influence of a metal cation on the stability of tetrads. AIM theory was 
also used to study the hydrogen bonds in the metal interacting complexes.
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Theoretical study of incorporating 6-thioguanine into a guanine tetrad and their 
influence on the metal ion–guanine tetrad was performed by Meng et al. [105]. The 
initial structure of the G-quartet has been generated from the coordinates of the 
human telomeric DNA (PDB code 1KF1) [37]. The calculation method used was 
B3LYP, and the basis set was the standard double-zeta with polarization functions 
6-31G*. The geometries, energies and charge distributions were discussed. The ef-
fects of different cations (K+ and Na+) on the various tetrads were studied as well. 
The calculation results demonstrated that upon the increase of SG units number 
the quartet becomes more and more unstable. Without hydration correction, the 
Na+ cation was found to bind more tightly with the tetrad than that of potassium, 
whereas when hydration effects were considered the stability sequence changed to 
K+ > Na+ . More favorable binding of potassium ion comparing to Na+ in solution 
is due to higher dehydration energy of the latter, although Na+ cation has higher 
intrinsic propensity to bind tightly to DNA quadruplexes [106].

Effect of external electric field on H-bonding and π-stacking interactions in gua-
nine aggregates were studied by Jissy and Datta [107]. The DFT calculations were 
carried out at the M05-2X level of theory with the 6-31 + G(d, p) basis set. The struc-
ture and electronic properties of guanine oligomers and π-stacks of guanine quartets 
with circulenes were investigated under an external field through first-principles 
calculations. The binding energy of the circulenes with G-quartets were fond to in-
crease on application of an electric field along the stacking direction. Besides that, 
the stability of G-quartet–circulene π-stacks was shown to depends on the phase of 
the dipole moment (in-phase or out-of-phase) induced by an external electric field. 
The stability of stacks of bowl-shaped circulenes with G-quartets depended on the 
direction of the applied field.

At the end of this paragraph we would like to mention two pioneering papers 
published by Leszczynski, Gu and Bansal [108, 109], where the first HF and DFT 
calculations on the stability and structure of G-quartets were performed and the 
possibility of the formation of the structures with bifurcated hydrogen bonds was 
demonstrated.

Thus, guanine quartets were studied in depth by quantum chemical methods. 
Their structural diversity based on different possible patterns of hydrogen bonding 
was demonstrated and the key role of metal cations in stabilizing guanine assem-
blies was shown.

6.3.2.3  DFT Studies on the Structure of G-Octets and Their Metal 
Complexes

Guanine octets are more complex structural elements of quadruplex systems than 
the quartets. G-octet is the system of two stacked G-quartets interacting via the 
π- π-stacking mechanism. This molecular assembly is closer to natural G-quadru-
plexes which usually contain three or four guanine quartets, thus its modelling is 
able to provide more realistic structural and thermodynamic data to be extrapolated 
to quadruplex DNA. At the same time, G-octet molecular system is twice as large 
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as guanine quartet, and forces stabilizing them include π-π-interactions between the 
quartets, thus quantum chemical calculations with G-octets are much more compli-
cated and require more computational resources.

Characterization of the monovalent ion position and hydrogen-bond network 
in guanine quartets and octets by DFT calculations of NMR parameters was per-
formed by van Mourik and Dingley [110]. The structures of the guanine quartets 
at C4h and S4 symmetry (G4 and G4-M+ systems) were fully optimized using the 
B3LYP and B97 [111] functionals employing basis sets ranging from 6-31G(d) to 
6-311 + + G(d, p) with NWChem software [112]. At the same time, only constrained 
optimization was carried out for more complex G4-M+ -G4 and G4-M+ -G4-M+ sys-
tems keeping the quartet-quartet distances fixed. Similar calculations using Gauss-
ian 03 package failed to converge or converged to an alternative structure containing 
bifurcated hydrogen bonds, whereas using NWChem both the Hoogsteen H-bonded 
structure obtained in crystallographic and NMR studies, as well as the bifurcated 
structure could be optimized. It was shown that the presence of a monovalent ion 
in the centre of G-quartet led to the contraction of the quartet O6–O6 distance. This 
effect was largest for the smallest ion, thus showing that the contraction of the G-
quartet facilitates the optimal coordination of the monovalent ion with the O6 atoms 
of the guanine bases. In addition, cation localization sites were found for G-octets 
with the distances between G-quartet planes ranging from 3.3 to 5.2 Å. The results 
for the G4-M

+ -G4 model showed that at quartet–quartet distances observed in the 
DNA quadruplex crystal structures, the smaller Na+ and Li+ cations have two shal-
low minima located at 0.55 and 0.95 Å outside the plane of the quartet, respectively. 
At the same time, the larger K+ ion has a minimum centred between successive 
G-quartets. At increasing quartet–quartet distances the Na+ and Li+ ions converged 
to a position coplanar with the G-quartet, whereas the optimal K+ ion position con-
verged to a location just outside the G-quartet. Apparently at shorter quartet–quartet 
distances the sodium and lithium cations are weakly attracted to the second G-quar-
tet and therefore do not favour a coplanar position with the G-quartet. Increasing 
the quartet–quartet distance reduces this weak attraction to zero and the Na+ and Li+ 
ions shift to an energetically favoured coplanar position. The attraction of the ion to 
both G-quartets at quartet–quartet distances observed in DNA quadruplex structures 
may facilitate the transport of the ions through the DNA quadruplex central channel. 
The smaller Li+ and Na+ ions have rather low energy barriers separating the minima 
in the quartet-ion-quartet model that under physiological conditions are most likely 
overcome by vibrational and thermodynamic effects. Consequently, their move-
ment through the channel is energetically unimpeded, in contrast to larger K+ ion 
that will not move as freely.

An interesting work [98] that we have already mentioned as the paper where 
the mixed G-quartet structure was presented, applied the electrospray ionization 
mass spectrometry (ESI-MS) to investigate hydrogen-bonded G-quartets and their 
complexes. ESI analysis displayed magic numbers of guanine tetramer adducts with 
Na+, Li+ and K+, not only for guanine, but also for xanthine bases. The optimized 
structures of guanine and xanthine quartets have been determined by B3LYP hybrid 
DFT calculations. The optimized structures obtained for each quartet explained the 
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gas-phase experimental results. The gas-phase binding sequence between the mon-
ovalent cations and the xanthine quartet follows the order Li+ > Na+ > K+ , which is 
consistent with that obtained for the guanine quartet in the literature. The small-
est stabilization energy of K+ and its position versus the other alkali metal ions in 
guanine and xanthine quartets is consistent with the fact that the potassium cation 
can be located between two guanine or xanthine quartets, for providing a [(G or 
Xan)8 + K]+ octamer adduct. While an octamer adduct with K+ for xanthine was de-
tected by ESI-MS, it was not the case for guanine. The formation of tetrameric and 
octameric aggregates of guanine analog 3-methylxanthine with NH4

+ , Na+ and K+ 
ions has been also observed in the gas phase in ESI-MS spectra to confirm the re-
sults of computational studies performed at the BLYP-D/TZ2P level of theory [113].

Nucleic acid tetraplexes and lipophilic self-assembling G-quadruplexes contain 
stacked base tetrads with intercalated metal ions as basic building blocks. In [114] 
quantum-chemical methods were also used to systematically explore the geometric 
and energetic properties of base tetrads with and without metal ions. The structures 
were optimized with the B3LYP hybrid density functional method and the DZVP 
basis sets. Sandwiched G-, C-, U-, and T-tetrads with Na+ and K+ ions at different 
symmetries were studied. The detailed information on total energies as well as on 
metal ion tetrad and base– base interaction energies was obtained. The geometrical 
parameters of the sandwiched metal ion complexes were compared to both experi-
mental structures and to calculated geometries of complexes of single tetrads with 
metal ions. A microsolvation model was successfully applied to explain the ion 
selectivity preference of K+ over Na+ in a qualitative sense.

A systematic DFT study of sandwiched isoguanine (iG) complexes with interca-
lating alkali metal ions was carried out in [115]. The study of sandwiched isogua-
nine tetrad and pentad complexes consisting of two polyads with Na+ , K+ and Rb+ 
ions was performed at the B3LYP level. In iG sandwich structures, the ion-base 
interaction energy is slightly larger than in the corresponding guanine sandwich 
complexes. Because the base–base interaction energy is even more increased in 
passing from guanine to isoguanine, the iG sandwiches are thus far the only exam-
ples where the base–base interaction energy is larger than that of the base–metal ion 
interaction. Stacking interactions have been studied in smaller models consisting of 
two bases, retaining the geometry from the complete complex structures. From the 
data obtained at the B3LYP and BH&H levels and with Møller-Plesset perturbation 
theory, one can conclude that the B3LYP method overestimates the repulsion in 
stacked base dimers. For the complexes studied in this work, this is only of minor 
importance because the direct inter-tetrad or inter-pentad interaction is supplement-
ed by a strong metal ion-base interaction. Using a microsolvation model, the metal 
ion preference K+ ≈ Rb+ > Na+ was found for tetrad complexes. On the other hand, 
for pentads the corresponding ordering is Rb+ > K+ > Na+ . In the latter case experi-
mental data are available that agree with this theoretical prediction.

DFT calculations at the M052X/6-31G(d) level and PCM/TD-PBE0/6-31G(d) 
level were performed in [116] to get insights into the effect of metal ions on the 
excited states of guanine nanostructures, short d(TG4T)4 quadruplexes and long G4-
wires. As a first step, the ground state geometry of short d(TG4T)4 quadruplexes 
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was optimized at the PCM/M052X/6-31G(d) level. Although the absence of the 
sugar-phosphate backbone does not allow detailed comparison of computation re-
sults with experimental data on G-quadruplex DNA, the developed model was able 
to reproduce the different location of K+ and Na+ ions within the G-quadruplexes. 
A similar inter-quartet distance was obtained for Na+ (3.35 Å) and K+ (3.36 Å), in 
agreement with NMR measurements. As expected, independently of the type of 
cation, the two 9-Me-G involved in the electronic transition adopt the structure of 
a 9-Me-G+ cation and a 9-Me-G− anion. The position of all the ions changes with 
respect to that found in the ground state minimum. The metal ions lose the symmet-
ric arrangement with respect to the G-quadruplex axis; they move farther from the 
9-Me-G+ cation and get closer to the 9-Me-G− anion.

As to the cation-free octets, we have determined the structures and energies of 
guanine quartets and octets in water by DFT calculations using M06-2X functional 
and 6-31G(d, p) basic set [96]. Guanine quartets in vacuum were found to have not 
only the Hoogsteen or bifurcated, but also mixed system of hydrogen bonds; in wa-
ter the latter two forms are transformed into the classic Hoogsteen-type structure, as 
it has been mentioned above. Four stable configurations of G-octets with D4, C4 and 
S4 symmetry formed by the pairs of guanine quartets with Hoogsteen, bifurcated or 
mixed system of H-bonds were identified. In contrast to G-quartets, the most stable 
structure of G-octet in aqueous medium was shown to be S4-symmetric assembly 
consisting of the pair of mixed Hoogsteen-bifurcated type G-quartets.

Protonation of guanine quartets and a two-plane guanine quartet stack was 
studied [117]. For G-quartets, the optimized geometries were obtained at the 
B3LYP/LACVP** level of theory. Relative energies were obtained by perform-
ing single point calculations at the B3LYP/6-311 + G(2df, p) level for G4 and B3L-
YP/6-311 + G(d, p) level for G-octet. The singly protonated G4 complex prefers 
protonation at the Watson–Crick face of the O6 moiety. However, all multi-proton-
ated G4 complexes were found to favour protonation at the Hoogsteen face of the 
O6 base centres. The proton affinities were also calculated for the addition of one, 
two, three and four protons to the central oxygens of G4 and compared with those 
of monomeric guanine and other biochemically appropriate bases. These results 
suggest that guanine quartet unit might reasonably readily accept two protons. For 
the singly to quadruply protonated octets, the added protons prefer to distribute 
over both planes with maximally two per plane. Furthermore, unlike the (G4-nH+ ) 
complexes (n > 2), protonation at the Watson–Crick faces of the O6 moieties was 
found to be preferred for all protonation states. In addition, (2G4-nH+ ) complexes 
(n = 1–4) were also obtained in which inter-plane hydrogen bonds were formed, ef-
fectively enabling the protons to “sit between” the planes.

Thus QM methods, primarily DFT calculations, have been successfully used to 
study guanine quartets and octets and their interactions. It should be remembered 
however that while the conventional DFT is much superior to MM force fields and 
can accurately calculate H-bonding in G-quartets and guanine-cation interactions, 
most DFT functionals do not account for π-π-stacking and therefore cannot cor-
rectly describe the interactions between different G-quartets [68]. In order to ac-
curately calculate stacking interactions, one can alternatively employ e.g. the MP2 
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method. Nice example is a recent work [118] examining how guanine base stacking 
influences the stability of G-quadruplexes. Quartet models were created by first 
performing QM geometry optimization of a single G-tetrad at the MP2/6-31(d, p) 
level. The optimized tetrad was then used to create models for single-point energy 
calculations and structural characterization, which contain two parallel G-tetrads 
with a single central K + ion. The geometries of stacked tetrads were varied by their 
separation and relative rotation. Single-point interaction energy calculations used to 
create energy landscapes were performed at the MP2 level using the modified split 
valance basis set 6-31G*(0.25). The calculations of stacked G-tetrads revealed large 
energy differences of up to 12 kcal/mol between different experimentally observed 
geometries at the interface of stacked G-quadruplexes. Energy landscapes were also 
computed using an AMBER molecular mechanics description of stacking energy 
and were shown to agree quite well with QM calculated landscapes.

Nowadays, old issue of deficient description of stacking interactions in DFT has 
been satisfactorily resolved, and many current DFT approaches include quite well 
the dispersion energy. The most popular and computationally most effective way 
to do so is to add well-calibrated empirical dispersion force-field-like correction 
to the DFT electronic structure calculations [47]. New empirical dispersion correc-
tions such as D3 (DFT-D3) can be successfully applied for the study of G-quartet 
systems [119].

Gradient optimization of a two-quartet structure (i.e. G-octet) can result in BSSE 
error originating from the incompleteness of the basis set of atomic orbitals and 
causing an artefactual stabilization of complexes. As has been already mentioned, 
this error can be corrected for single-point calculations by employing the standard 
counterpoise method [101]. It should be mentioned that empirical dispersion cor-
rections are also able to absorb small BSSE effects [120].

6.3.2.4  QM and QM/MM Modelling of Small Organic Molecules Binding  
to G4 DNA 

Determining the accurate structures of guanine quartets and their stacks is a key 
step in the development of specific G4 ligands using the computer modelling ap-
proaches. However, drug design is based on studying the interactions of potential 
ligands with their biomolecular targets, in this case quadruplex DNA. Molecular 
dynamics is most often employed in these studies. G-quadruplexes for which X-ray 
and NMR structures are available are large molecular systems (from 500 to 1000 
atoms) that cannot be easily computed with non-empirical QM methods. For this 
reason, quadruplex fragments can be used as G4 models to perform quantum chemi-
cal studies on ligand binding. Of course, the optimization of ligand structures is 
routinely performed by QM calculation methods, usually DFT (often followed by 
the manual docking of the optimized ligand onto G4 target and MD simulations of 
quadruplex-ligand interaction).

Theoretical calculations applying the “pure” QM method to the studies on qua-
druplex-ligand binding are quite rare. We have already mentioned a work studying 
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the circulene stacking complexes with G-quartet by DFT method [107]. We have 
proposed a G-octet as a simple and convenient model to study quadruplex-ligand 
binding, quite adequate at least in the case of neutral ligands that do not interact 
with phosphate DNA backbone [96].

“Pure” QM methods have some intrinsic limitations, including e.g. insufficient 
sampling of conformational space and difficulties with modeling the systems evolv-
ing in time. These problems can be successfully overcome by MD approaches. In 
the studies of large biomacromolecules QM and MM methods are sometimes com-
bined into a single relatively fast QM/MM approach where only a functionally im-
portant part of the system is modelled with QM, whereas the most of the molecule 
is modelled using MM [121]. Application of combined quantum and molecular 
mechanical methods focuses on predicting activation barriers and the structures of 
stationary points for organic and biomolecular reactions. Characterization of the 
factors that stabilize transition structures in solution and in active sites of biomole-
cules provides a basis for design and optimization of catalysts and drugs [122, 123].

Combined QM and MM methods were applied to investigate the nature of stack-
ing interactions in triple stacks of guanine quartets which is a central part of the 
human telomeric DNA and a drug target [124]. In this fundamental theoretical work 
Clay and Gould studied in detail the differences in the human telomeric structures, 
including the structural changes observed upon changing the potassium to sodium 
cation. The QM calculations were carried out at the DFT B3LYP and HF levels of 
theory using the 3–21G* and 6–31G** basis sets. The molecular dynamics simula-
tions were carried out using the AMBER8 suite of programs with the Cornell force 
field [125, 126]. It was concluded that the sodium filled guanine core may appear to 
be energetically more stable than for the potassium case from the QM calculations, 
but the partial QM optimization indicated that the guanine core is not stable and the 
MD simulations showed that even with the DNA structure present, the core does 
not remain stable. This could be due to the fact that the structure was based on the 
potassium form and not the sodium one which has a different strand pattern and the 
bases are a mixture of syn and anti conformations rather than just anti.

Another work that employed the combined QM/MM method studied the interac-
tion of preclinical 9-aminoacridine anticancer derivatives with a human telomeric 
quadruplex [127]. The mixed pseudo-bond ab initio QM/MM approach was used 
along with a molecular docking and MD simulations of G4-ligand complexes. For 
the QM/MM calculations, the DNA-ligand system resulting from the docking study 
was first partitioned into a QM subsystem and an MM subsystem. The reaction sys-
tem used a smaller QM subsystem consisting of the ligand and bases within 3.5 Å, 
whereas the rest of the system (the MM subsystem) was treated using the AMBER 
force field, together with a low memory convergence algorithm. The boundary prob-
lem between the QM and MM subsystems was treated using the pseudo-bond ap-
proach. With this quadruplex-substrate QM/MM system, an iterative optimization 
procedure was applied, using B3LYP/3-21G* QM/MM calculations, leading to an 
optimized structure for the reactants. The convergence criterion used was set to ob-
tain an energy gradient below 10-4, using the twin-range cut-off method for non-
bonded interactions, with a long-range cut-off of 14 Å and a short-range cut-off of 
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8 Å. It was shown that 9-aminoacridines selectively bind to G-quadruplex sequence 
between A and G-tetrads, involving significant π- π-interactions and several strong 
hydrogen bonds. The specific interactions between different moieties of the ligands 
to the DNA were shown to play a key role in governing the overall stabilities of G4 
complexes. The ligands were found to induce different level of structural stabiliza-
tion through intercalation. This unique property of altering structural stability is like-
ly a contributing factor for affecting telomerase function and, subsequently, the ob-
served differences in the anticancer activities between the studied 9-aminoacridines.

The molecular modelling studies on binding of novel dimethylamino-ethyl-ac-
ridine analogues to G-quadruplex DNA were described in [128]. The comparison 
of force field and quantum polarized docking methods was performed. The dock-
ing study was conducted at three levels: (a) Glide XP [129] force field docking, 
(b) Quantum Polarized Ligand Docking (QPLD) using Jaguar software [130] with 
B3LYP density functional method and LACVP basis sets, and (c) QPLD docking 
with B3LYP density function method and LACVP* basis sets. Ultimately, the re-
sults from each of these methods were compared and contrasted for obtaining useful 
insights. Binding energies were calculated for a number of ligands to identify three 
drug-like molecules for future optimization.

As we have already mentioned, “pure” quantum chemical methods are now in 
common use when G4 ligand structure optimization is considered. It is of great im-
portance for the subsequent modelling of ligand-quadruplex binding by any method, 
including docking or MD simulations, and at the same time can provide an interest-
ing information helping to understand experimental data. For example, our quantum 
chemical study of the molecular structure of efficient telomerase inhibitors, cationic 
porphyrin-imidazophenazine conjugates and their metal complexes [131] supple-
mented and explained spectral data. Calculations were performed by DFT method 
using M06 and M06-2X [88, 132] functionals that are known to adequately describe 
stacking interactions, and 6-31G(d) and 6-31G(d, p) basic sets. Full geometry op-
timization was performed in vacuum and in water, employing the supermolecular 
approximation and CPCM model [133] to consider the solvent effects. Calculations 
demonstrated that conjugates could form stable intramolecular complexes due to 
either stacking interaction or metal coordination between the chromophores. Both 
in vacuum and water, two types of complexes are formed. Non-metalated conjugate 
was found to adopt the conformation with coplanar chromophores stabilized by 
π-π-stacking. At the same time, a hybrid containing Zn(II) porphyrin complex forms 
different structure where the metal ion coordinates a nitrogen atom of Imidazophen-
azine fragment. The folding of linear conjugates to form intramolecular complexes 
is energetically very favourable; e.g., for Zn(II) complex ΔG298 of the process in 
vacuum and water is 15.61 and 12.34 kcal/mol, respectively. The computation re-
sults fully confirmed the experimental data obtained for these conjugates and their 
interaction with Tel22 G-quadruplex [134, 135]. The absorption and fluorescence 
studies of the hybrids revealed the formation of intramolecular heterodimers based 
on strong electronic interaction between the cationic porphyrin and imidazophen-
azine heterocycle, which obviously affects the binding of these telomerase inhibi-
tors to intramolecular G4.
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We would like to mention here also the recent work by Nicoludis et al. [136], 
where B3LYP/6-31G(d) calculations were successfully applied to the detailed study 
of the structure of mesoporphyrin IX and N-methyl mesoporphyrin IX and possible 
ways of binding of these specific G4 binders to human telomeric DNA sequence 
d[AGGG(TTAGGG)3] (Tel22).

6.4  Conclusions

Increasing understanding of the molecular basis of cancer has resulted in the iden-
tification of a number of novel molecular targets for anticancer drugs, including 
telomerase and quadruplex nucleic acids that play critical role in the development 
of tumors and other pathologies. The variability of DNA structures (from common 
single- and double-stranded to more complex triplex and quadruplex forms) and 
their conformational flexibility are the key factors in diverse biological functions 
of DNA. Among possible DNA structures, G-quadruplexes deserve a special atten-
tion. The formation of these non-canonical assemblies in telomeres and some gene 
promoter regions is a way of regulating the variety of basic biological processes in 
a living cell. Taking into account important biological functions of G-quadruplexes, 
the understanding of the structural, electronic and thermodynamic properties of 
these DNA arrangements, their topology, dynamics, stability and mechanisms of 
interaction with small molecules is of fundamental interest to biology, biomedical 
science and pharmacology, as well as supramolecular chemistry and nanotechnol-
ogy (see e.g. [78, 79, 137] and references therein). In this review we have discussed 
biological functions and structural features of G-quadruplex DNA and quadruplex-
binding compounds, and focused on molecular modelling methods being used in 
the studies of these specific assemblies and their interaction with low-molecular 
ligands, including metal cations and small organic molecules of potential interest 
to pharmacology. As the structures of more and more quadruplexes and G4-ligand 
complexes become available, modern computational approaches, along with bio-
chemical and biophysical experimental methods, are increasingly considered indis-
pensable tools in the study of DNA quadruplexes. These in silico tools allow deeper 
insights into quadruplex structures and energetic features and, even more important, 
predicting of many important properties of G4 and quadruplex-ligand complexes. 
A number of successful anticancer drugs have already emerged from molecular 
modelling studies. However, the real challenge in medicinal chemistry over the next 
years will be the development of novel drugs that would not only be selective to 
quadruplex over duplex nucleic acids to efficiently bind to G4 structures, but would 
be also able to discriminate between the unique quadruplex topologies. Quantum 
chemical computational approaches will undoubtedly be a key player in achieving 
this exciting goal.
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Abstract The density functional theory (DFT) is currently predominating theoreti-
cal approach in quantum chemistry. It is suitable for investigating structures up to 
several hundreds of atoms, studying of reaction pathways and calculating precisely 
reaction energy values. The usage of the DFT approach for studying enzyme–sub-
strate interactions could be a prospective way for elaborating new efficient enzyme 
inhibitors. This is a direct way to discovery of new drugs and modification of the 
existing drugs. While enzymes are still too large for the computational analysis 
using DFT, numerous efforts have been exerted in the last years in this field using 
simplified enzyme models or calculating for the substrate some valuable proper-
ties, important in the enzyme–substrate interactions. These examples have been 
analyzed in the current review. A rapid development of new efficient calculation 
routines makes it possible to increase the role of the DFT methods in medicinal 
chemistry in the nearest future.

Listing of Used Acronyms

ACE angiotensin-converting enzyme
AChE acetylcholinesterase
AD Alzheimer’s disease
AIDS acquired immune deficiency syndrome
BACE-1 betasite of APP-cleaving enzyme-1
BChE butyrylcholinesterase
Cat B cathepsin B
DFT density functional theory
DNA deoxyribonucleic acid
EP electrostatic potential
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EPS electrostatic potential surface
FAAH fatty acid amide hydrolase
FEP free energy perturbation
HIV human immunodeficiency virus
HMGR 3-hydroxy-3-methylglutaryl-coenzyme A reductase
HOMO highest occupied molecular orbital
IC50 half maximal inhibitory concentration
IEF integral equation formalism
IN integrase
LUMO lowest unoccupied molecular orbital
MD molecular dynamics
MD/MM molecular mechanics/molecular dynamics
MEP molecular electrostatic potential
MFCC molecular fractionation with conjugate caps approach
MMP matrix metalloproteinase
MNDO modified neglect of diatomic overlap
MO molecular orbital
MP2 second-order Møller-Plesset perturbation theory
PCM polarizable continuum model
PDE phosphodiesterase
PES potential energy surfaces
PLA2 phospholipases A2 enzymes
PM3 parameterized model number 3 (Stewart’s semi-empirical approach)
PMF potential of mean force
QM/MM quantum mechanic/molecular mechanics hybrid approach
QSAR quantitative structure–activity relationship
RHF restricted Hartree-Fock method
RI resolution of the identity
RNA ribonucleic acid
SCC-DFTB self-consistent charge-density functional tight binding
SCRFPCM self-consistent reaction field polarizable continuum model
SIBFA sum of interactions between fragments ab initio computed
TSS transition state structures
XO xanthine oxidase

7.1  Introduction

Over the last few decades, quantum chemical calculations became a powerful alter-
native to experimental methods in medicinal and drug chemistry in creating novel 
drug candidates [1–3]. One of these modern approaches is based on elaboration of 
small molecules, binding to the active site of an enzyme and inhibiting the reac-
tion catalyzed by the enzyme [4]. These chemical substances should also exhibit 
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an unique selectivity for the target enzyme and exert their biological effect at low 
doses. Nowadays, enzyme inhibition is one of the key approaches to the drug design 
in the research and industry [5]. As reported in the recent review devoted to drug 
predictions methods [6], the drugs using the enzymes as targets amount to 24 % 
from the total number of small-molecule medicaments. Currently the computational 
techniques and software have become suitable for the theoretical analysis of the en-
zyme–substrate interactions [2]. The molecular docking [7], based on the molecular 
mechanics/molecular dynamics techniques, and quantitative structure–activity rela-
tionship (QSAR) methods [8], are widely used for this purpose.

An efficient enzyme–inhibitor interaction is usually characterized by a negative 
free binding energy, ∆G. This is equivalent to the reaction free energy, widely used 
in the quantum chemical description of chemical processes. Therefore, a maximi-
zation of the enzyme–substrate negative interaction energy under control of clas-
sical quantum-mechanical methods, ab initio or density functional theory (DFT), 
would probably be the most direct way to discover new efficient drug substances 
and to modify the existing drugs. The detailed outlook of using the DFT for calcula-
tions of ligand–protein complexes is given in the recent review of Utkov et al. [9]. 
However, despite the rapid development observed in computational techniques and 
routines, the quantum-mechanical methods ( ab initio and DFT approaches) are still 
too slow and size-restricted or too inexact (molecular mechanics or semi-empirical 
methods) to provide a quantitative description for kinetics and thermodynamics of 
enzyme inhibition processes. One way to overcome the size problem in DFT cal-
culations is to consider the interactions with every amino acid in the polypeptide 
chain separately and then to sum all the contributions. This approach is realized, for 
example, in the molecular fractionation with conjugate caps (MFCC) approach [10, 
11]. In the other approaches, such as QM/MM calculations [12–14] or ONIOM rou-
tine implemented in the Gaussian sets of programs [12], the DFT calculations are 
used only for the small fragments of the active site and inhibitor structure, whereas 
the other part is described semi-empirically or by a classic force field [15]. The 
enzyme–inhibitor interactions investigated by using QM/MM methods are analyzed 
in the several recent reviews [16–18]. DFT calculations of the enzyme inhibition 
processes can be also performed for the truncated (up to several hundreds atoms) 
enzyme binding sites [19]. Recently some important steps have been undertaken for 
the rapid development of DFT-based drug chemistry. First of all, several efficient 
linear-scaling techniques [20] such as the Resolution of the Identity ( RI) [21–27] 
have been proposed as an efficient solution of the size problem by quantum chemis-
try calculations and implemented into several popular quantum mechanic program 
sets (see, for example Ref. [28, 29]). Other well known indirect applications of the 
DFT methods in medicinal chemistry and drug design should be mentioned here: (a) 
evaluation of structure, conformation and properties, which can directly correlate 
with the inhibition activity of a molecules-candidate, such as molecular orbitals 
(MOs) [30, 31], electron density distribution, dipole moments [32], electrostatic 
potential surfaces (EPS) [33–36] etc.; (b) calculations of properties of structures, 
subsequently used as descriptors for QSAR analysis [8, 31–39].
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The current short review is not exhaustive in the field. It covers mainly the last 
five years and gives examples of successful using the DFT methods for elaborating 
new drugs based on enzyme–inhibitor interactions.

7.2  Enzyme–Substrate Interaction Modelling  
Using DFT Methods

7.2.1  Hydrolase

Fatty acid amide hydrolase (FAAH) catalyzes hydrolysis of several fatty acid am-
ides, in particular, transforms arachidonoylethanolamide to arachidonic acid and 
ethanolamine. The FAAH inhibition has an attractive therapeutic effect for the treat-
ment of several central nervous system disorders. The inhibition mechanisms for 
two efficient FAAH inhibitors, O-aryl carbamate (1) and piperidinyl/piperazinyl-
arylurea (2), have been recently studied by Lodola et al. [40] using the QM/MM 
approach. These inhibitors carbamoylate the active-site nucleophile Ser241. The 
theoretical model included self-consistent charge-density functional tight binding 
(SCC-DFTB), the approximate density functional theory method as the quantum-
mechanical part. For the crucial steps of deacylation and decarbamoylation reac-
tions, potential energy surfaces (PESs) were calculated and compared to that for 
deacylation of FAAH by the acylated substrate oleamide. A carbamic group bound 
to Ser241 substantially increased the activation energy for the hydrolysis reaction. 
Moreover, the activation energy derived theoretically for 1 was lower than that 
found for 2, which is in line with the experimentally found for 1 and 2 reversible 
and irreversible inhibition, respectively.

1 2

7.2.2  APP-Cleaving Enzyme-1

The betasite of APP-cleaving enzyme-1 (BACE-1) was used as target for the semi-
empirical, DFT and MP2 calculations [41] for the adducts with a series of 14 hy-
droxyethylamines with a general formula 3 taken from Brookhaven Protein Data 
Bank. BACE-1 is a key enzyme in the production of Amyloid-β peptides, a major 
pathological feature of Alzheimer’s disease [42, 43].

The interaction energy was determined for the complexes formed between the 
hydroxyethylamine as the BACE-1 inhibitors and 24 residues in the BACE-1 active 
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site. After a short molecular dynamics simulation the structures were optimized at 
the semiempirical level of theory. The optimized structures were used for single-
point energy calculations with the M062X [44] and X3LYP DFT functional [45], 
which account for London dispersion forces, proper hydrogen-bonding and van der 
Waals complexes; alternatively the MP2 level of theory was employed. The active 
site cavity was separated into individual fragments to isolate each residue energy 
contribution when interacting with each ligand. The polar interactions were pre-
dominant in the system studied. In particular, the most remarkable role played the 
negatively charged aspartate residues with positively charged ligand moiety, pro-
viding a main contribution (over 90 %) to the total attractive interaction energy. On 
the other hand, the positively charged ARG296 residue exhibited the most repulsive 
ion–ion interaction that should also be reduced to improve the complex stability. 
The interactions with non-polar residuals, such as π,π-interactions, were less im-
portant, but taking them into account at the M062X or MP2 level of theory was 
required for providing better agreement with the experiment in the studied series of 
BACE-1 inhibitors.

3

7.2.3  Reductase

A high level of cholesterol in blood (also called hypercholesterolaemia) [46] often 
cause the hardening and narrowing of arteries (atherosclerosis) in the major vas-
cular systems. The cholesterol moderating statin drugs inhibit the second step in 
the biosynthetic pathway of producing cholesterol by binding to the active site of 
3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), blocking the natural 
substrate of HMGR and disabling the synthesis of cholesterol [47]. Cafiero et al. 
[48] investigated theoretically (at the MP2 and DFT levels of theory) structures 
4–7 and 8–10 (Fig. 7.1) – the products of modification of the existing drugs, the 
efficient HMGR inhibitors rosuvastatin and simvastatin, respectively. The rosuv-
astatin and simvastatin moieties interact with one end of the active site (Ser684, 
Asp690, Lys691 and Lys692), whereas the novel products bind to another end of 
the active site (Tyr479). The calculated interaction energies between Tyr479 and 
fragment 11 increased with increasing electron acceptor effects of the substituents 
X1–X3 (Table 7.1). The popular B3LYP DFT method was inadequate for this type 
of system and the local functional SVWN was used instead. The highest interaction 
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energies were predicted for X1–X3 = NO2, but it was not suitable for creating novel 
drug molecules because the bulky NO2 group prevented the molecule’s ability to 
penetrate the enzyme’s cavity. The CN group was chosen as a good compromise for 
modifying the heterocyclic site.

Table 7.1  Counterpoise corrected interaction energies (kcal/mol) between Tyr479 and bicy-
clic fragment 11 by variation of the substituents X1–X3 (6-311++G(d,p) basis sets were used). 
( Reproduced with permission from Ref. [48]. Copyright © 2011 Elsevier)
Calc. 
method

NH2 (X1) CN (X2) CN (X1, 
X2)

CN (X3) CN 
(X1–X3)

CN 
(X1–X3)

Cl 
(X1–X3)

NO2 
(X1–X3)

MP2 − 5.45 − 6.68 − 8.51 − 6.09 − 7.94 − 9.27 − 8.46 − 11.73
B3LYP 2.75 2.00    0.51 2.33 0.83 0.01 1.03 − 3.48
SVWN − 4.31 − 5.17 − 6.75 − 4.80 − 6.34 − 7.34 − 6.55 − 13.04

4-7

Fig. 7.1  Structure of drug candidates 4 (n = 3), 5 (n = 4), 6 (n = 5), 7 (n = 6), 8 (n = 8), 9 (n = 9) 
and 10 (n = 10), and structure 11 as a novel drug fragment (see Table 7.1 for substituents X1–X3). 
(Reproduced with permission from Ref. [48]. Copyright © 2011 Elsevier)
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The candidates 4–10 were docked in the active site of HMGR and then DFT and 
AM1 calculations were performed for the final structures of the molecules. The 
calculated interaction energy values (Table 7.2) indicated that the SVWN approach 
provided better agreement with the data obtained at the MP2 level of theory than the 
B3LYP and HCTH functionals.

The highest interaction energy was predicted for 7: proton transfer occurs be-
tween the carboxyl group of 7 and NH2 group of Lys692, leading to the very strong 
charge–charge interaction, whereas 1 reveals approximately twice a lower interac-
tion energy. All three simvastatin-based candidates 8–10 seemed to interact stronger 
with HMGR than the original drug. Thus, the modified drugs might also possess 
higher efficacy.

Russo et al. [49] applied DFT for studying binding mode of flavonoids brutieri-
din (12) and melitidin (13). These structural analogs of statins, extracted from ber-
gamot, inhibit HMGR, lower lipid concentration and cholesterol levels and reduce 
the risks of stroke [50]. Similarly to statins, brutieridin and melitidin were expected 
to interact effectively with the active site of the human HMGR enzyme. The active 
site of the enzyme was modeled starting from the X-ray structure of the adduct of 
simvastatin with HMGR. After the crude geometry optimization using the MD/MM 
simulation, the structure was truncated to the size suitable for the quantum chemical 
description (approx. 150 atoms) [51], considering only 17 amino acids and substitut-
ing some of them by more simple moieties. Also for modeling brutieridin and melit-
idin the smaller structures, 14 and 15 (Fig. 7.2) were utilized. The B3LYP/6-31 + G* 
approach was used for geometry optimization. One H atom of each amino acid resi-
due coming from the protein was kept frozen at its crystallographic position. The 
energy values were then defined more exactly at the B3LYP/6-311 + + G** level of 
approximation. The solvent effects were taken into account within the framework 
of Self Consistent Reaction Field Polarizable Continuum Model (SCRFPCM) us-
ing the IEF-PCM approach. The B3LYP-optimized structure of the HMGR com-
plex with 14 is shown in Fig. 7.3a. The found binding energy (∆E), not corrected 

Table 7.2  Interaction energies (kcal/mol) for novel candidate molecules with the HMG-CoA 
reductase active site calculated using DFT in combination with 6-311++G** basis sets and semi-
empirical methods. (Reproduced with permission from Ref. [48]. Copyright © 2011 Elsevier)

B3LYP SVWN HCTH407 AM1
HMG-CoA − 1.11 − 39.93[3]a 1.06 –
Rosuvastatin − 5.01 − 31.51 − 5.14 − 106.14
4 − 23.12 − 57.72 − 18.27 9.89
5 10.71 − 26.84 12.78 5.40
6 19.18 − 6.27 18.56 9.67
7 − 74.22 − 104.46 − 73.45 − 41.95
Simvastatin − 5.81 − 27.64 − 7.01 1.20
8 − 14.43 − 40.28 − 14.00 − 6.30
9 1.28 − 32.46 1.89 − 1531
10 − 6.56 − 29.82 − 5.53 − 4.70

a MP2 value for comparison is: − 20.49 using 6-311 + G* basis sets
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for entropy effects, was rather high (− 101.1 kcal/mol). The interactions in the ad-
duct were mainly of electrostatic nature and include numerous hydrogen bonds. 
The equilibrium structure of the complex with 15 (Fig. 7.3b) was only slightly less 
favored (∆E = − 90.8 kcal/mol). Therefore, 14 and 15 are good basis structures for a 
development of new anticholesterolemic drugs.

Fig. 7.2  Structures of brutieridin (12) and melitidin (13) and the model structures 14 and 15 
used for calculations. (Reproduced with permission from Ref. [49]. Copyright © 2010 American 
Chemical Society)

 

Fig. 7.3  B3LYP optimized geometry of the 3-HMGR ( left) and 4-HMGR ( right) complexes. For 
clarity, unimportant hydrogen atoms are omitted. (Reproduced with permission from Ref. [49]. 
Copyright © 2010 American Chemical Society)
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7.2.4  Metallo-β-lactamase

The d- and l-captopril (16) [52] and d- and l-thiomandelate (17) [53], were stud-
ied theoretically as the simplified models for potential inhibitors of bacterial Zn2 + 
metallo-β-lactamase from B. fragilis. This enzyme cleaves the lactam ring of 
 penicillin (Scheme 7.1), cephalosporin, and carbapenem antibiotics, strongly re-
ducing their efficiency, which is a serious problem in medicine.

The theoretical investigations included molecular dynamics, SIBFA (Sum of In-
teractions Between Fragments Ab initio computed), molecular mechanics, HF and 
DFT calculations (on models of inhibitor–enzyme complexes on small model com-
plexes including 88 atoms, extracted from the 104-residue complexes [53]. Calcula-
tions were carried out both with uncorrelated (HF) as well as correlated (DFT, MP2) 
quantum chemical approaches.

7.2.5  Topoisomerase II and T7 RNA Polymerase

Authors [54] studied the structure–activity relationship of four new polypyri-
dyl ruthenium(II) complexes ([Ru(4dmb)2(ppd)]2+ (4dmb = 4,40-dimethyl-2,20-
bipyridine, ppd = pteridino[6,7-f][1,10]phenanthroline-1,13(10H,12H)-dione) (18), 
[Ru(5dmb)2(ppd)]2+ (5dmb = 5,50-dimethyl-2,20-bipyridine) (19), [Ru(dip)2(ppd)]2+  
(dip = 4,7-diphenyl-1,10-phenanthroline) (20), and [Ru(ip)2(ppd)]2+ (ip = 
imidazole[4,5-f][1,10]phenanthroline) (21)) as topoisomerase II and T7 RNA poly-
merase inhibitors and potential antitumor drugs. The frontier MOs were derived 
using the optimized geometries of the complexes. It was suggested that the lowest 
unoccupied MO (LUMO) provided a more effective overlap with the highest oc-
cupied MO (HOMO) of DNA. This correlated well with the DNA affinities of the 

16-D 16-L 17

Scheme 7.1  Cleavage of the lactam ring of penicillin in presence of metallo-β-lactamase

 

7 Density Functional Theory Calculations of Enzyme–Inhibitor …



216 A. B. Rozhenko

complexes, but the experimentally found trend of topoisomerase II inhibition activ-
ity was somewhat different from the DNA binding ability.

7.2.6  Cathepsin B Cysteine Protease

A series of organometallic compounds were studied using the DFT approach on 
the inhibitory properties against cathepsin B (cat B), a lysosomal papain-family 
cysteine protease [55]. Cat B is involved in cellular metabolism processes and im-
plicated in the tumor progression and metastasis and hence it is the widely used 
target in medicinal chemistry. The Ru and Os complexes 22 and 23 and antimeta-
static compound NAMI-A (29) showed similar enzyme inhibition properties in vitro 
(with IC50 values in the low µM range), whereas the Rh(III) and Ir(III) compounds 
(24–28) turned out to be inactive. As the direct coordination of the metal centre to 
the active site cysteine occurs, the different activities of the investigated organo-
metallic complexes toward cat B were expected to be essentially determined by the 
strength of the corresponding covalent M–S bonds between the metal and cyste-
ine residue. The authors used N-acetyl-l-cysteine-N′-methylamide (CH3CO–NH–
CH(CH2SH)–CO–NHCH3) as the model of cat B target, which mimics the cysteine 
side chain of the enzyme active site and neighboring peptide groups.

22, 23 24, 25 26

27 28 29

M= 22: Ru, 23: Os, 24: Rh, 25: Ir
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The calculations predicted for some compounds thermodynamically favorable 
binding (negative ∆G values), whereas the inactive compounds were characterized 
by slightly positive binding free energy values. Thus, in contrast to Ru(II), Os(II) or 
Ru(III) complexes, the Rh(III) and Ir(III) compounds possessed a weak inhibition 
activity toward cat B, probably because the corresponding M–S bonds formed by 
these metal ions. They were characterized by ca. 20–30 kJ mol− 1 lower bond ener-
gies than the more active complexes.

Shokhen et al. [56] analyzed possible mechanisms for the reversible formation 
of the complex between papain, a prototype enzyme of cysteine proteases, and pep-
tidyl aldehyde inhibitors, using the quantum mechanical (DFT)/self consistent reac-
tion field (virtual solvent) approach.

7.2.7  Acetylcholinesterase

Inhibitors of the acetylcholinesterase (AChE, E.C. 3.1.1.7) and butyrylcholinester-
ase (BChE, E.C. 3.1.1.8) activity demonstrate good results in the treatment of Al-
zheimer’s disease (AD) [57, 58]. In the last years, the pathogenesis of AD has been 
associated with both cholinesterases, resulting in several studies that have targeted 
these two enzymes [59, 60]. Authors [61] investigated 88 N-aryl-substituted struc-
tures with general formulas 30 and 31 as potential inhibitors of the AChE and BChE 
residues using docking and density functional theory (DFT) methods. Some com-
pounds were synthesized and their activities were tested in vitro. Among the can-
didates studied, several structures with the electron-acceptor substituents attached 
to the aromatic ring were predicted to be the most potent AChE inhibitors. These 
results demonstrated the importance of the electronic effects on ligand recognition 
and prompted authors to analyze HOMO and LUMO energies. They were suggest-
ed to correlate with biological activity [62]. The interaction between the amino-
acids at the active site and inhibitors were considered to be determined by energies 
of frontier orbitals of the cholinesterase and substrate. This approach seems to be 
prospective for the design of new efficient AChE inhibitors.

In the other work [63], semi-empirical, restricted Hartree-Fock (RHF) and DFT 
calculations were carried out to study the well-known acetylcholinesterase inhibi-
tors tacrine (32), galantamine (33), donepezil (34), tacrine dimer (35), and physo-
stigmine (36). Some electronic and structural properties were evaluated (Table 7.3), 
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such as charge distribution, dipole moments, frontier orbital energies, acidicity of 
hydrogens, molecular size, molecular volume, distance between the most acid hy-
drogens (H–H), and the molecular electrostatic potential (MEP). The calculated 
properties were used to correlate an inhibitory activity of the studied compounds 
towards acetylcholinesterase with their molecular structure.

Ganguly et al. analyzed the reaction of the sarin- [64] and VX-inhibited AChE 
[65] with nucleophiles by means of DFT [B3LYP/6-311G(d,p)] calculations. The 
hydroxylamine anion turned out to be more efficient in the reactivation process 
than other nucleophiles, for instance formoximate anion, and can be used as a good 
antidote agent against sarin and VX.

7.2.8  Matrix Metalloproteinases

Matrix metalloproteinases (MMPs) is a primary target for drug design, because it 
is involved in many biological processes, such as embryonic development [66], 
tissue remodeling and repair [67], neurophathic pain processes [68], cancers [69] 
[70], and other diseases. (4-Phenoxyphenylsulfonyl)methylthiirane also known as 
SB-3CT (37b) is the selective inhibitor of matrix metalloproteinase 2 (MMP2). 
The coupled deprotonation and ring-opening mechanism of SB-3CT inhibition of 
MMP2 (Scheme 7.2) as well as by 4-(phenoxyphenylsulfinyl)methylthiiranes (38b, 
39b), the sulfoxide analogue of SB-3CT, was examined computationally using DFT 
and QM/MM approaches [71].

For the model structures 38a and 39a, the complete conformational analysis was 
performed at the DFT (B3LYP/6-31+G(d)) level of theory. Nine conformational 
minima were identified for 38a with energy differences between 0.2 and 4.8 kcal/
mol. For the concerted deprotonation/ring-opening reaction, five different transition 
state structures (TSS) were located for the ( R, R) diastereomer 38a with the barrier 

Table 7.3  Electronic and geometrical parameters data for optimized AChEI structures by 
B3LYP/6-31+G(d,p) method. (Reproduced with permission from Ref. [63]. Copyright © 2008 
Elsevier)
Property 32 33 34 35 36
HOMO (eV) − 5.76 − 5.05 − 5.95 − 5.90 − 5.46
Gap (eV)a 4.49 5.53 4.41 4.43 5.12
Volume (Å3) 236 329 454 606 321
C–N (Å) 1.386 1.468 1.465 1.443 1.362
N–H (Å) 1.009 – – 1.013 1.008
C–O (Å) – 1.436 1.364 – 1.373
O–H (Å) – 0.967 – – –
H–H (Å) 1.683 2.360 2.342 1.998 2.319
Charge H + 0.30 0.34 0.15 0.26 0.32
Molecular size (Е) 9.516 10.290 17.254 19.386 12.927

a Difference of energy between LUMO and HOMO orbitals
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energies from 16.9 to 23.3 kcal/mol. For six located TSS for ( S, R) diastereomer 39a 
amplitudes of the relative energy variation was similar (from 16.9 to 22.0 kcal/mol). 
The lowest energies for the transition states turned out to be higher than that found 
for 37a, modeling SB-3CT structure (16.9 vs. 11.3 kcal/mol, respectively). There-
fore, the sulfoxide is less disposed to the concerted deprotonation/ring-opening re-
action, probably due to the lower acidity of alkylarylsulfoxides compared with the 
corresponding sulfones.

Relative energies for the MMP2 complexes of 37b, 38b and 39b (Fig. 7.4) were 
calculated using the ONIOM(B3LYP/6-311+G(d,p):AMBER) approach. In the ac-
tive site of MMP2, the barriers for ring-opening for the sulfoxide analogues of SB-
3CT (23.3 kcal/mol for 38b and 28.5 kcal/mol for 39b) were higher than that for 
SB-3CT (19.9 kcal/mol) [72], and overall the reactions for 38b and 39b (− 17.2 and 
− 17.3 kcal/mol, respectively) were less favored than that for SB-3CT (− 21.0 kcal/
mol), both kinetically and thermodynamically. The sulfoxide analogue of SB-3CT 
was found to be a linear competitive inhibitor, whereas SB-3CT itself was classified 
as a slow binding inhibitor.

One more important aspect of using the MMP inhibitors as drugs is their specific 
inhibition of one of 25 MMPs known in humans, or at least of one specific subgroup 
of this family of enzymes [73]. Guillaume et al. [74] reported a DFT (B3LYP/6-
31G** + LANL2DZ) study for a series of potentially efficient inhibitors of matrix 
metalloprotease (MMP), N-acetyl-N′-sulfonylhydrazides (40–48). N-acetohy-
droxamic acid (49) and N-phenylsufonylglycine (50) were used for comparison.

37a,b 38a,b 39a,b

Scheme 7.2  Coupled deprotonation and ring-opening mechanism of the SB-3CT inhibition of 
MMP2. (Reproduced with permission from Ref. [71]. Copyright © 2010 American Chemical 
Society)

 

7 Density Functional Theory Calculations of Enzyme–Inhibitor …



220 A. B. Rozhenko

40-48 49 50

R: 40 Me; 41 Ph; 42 4-MeC6H4; 43 4-PhC6H4; 44 4-PhOC6H4; 45 4-FC6H4; 46 3-NO2C6H4; 47 2-
NO2C6H4; 48 2,4,6-(i-Pr)3C6H2

The authors [74] evaluated the zinc-binding ability of ligands in an enzyme active 
site model composed of a Zn2 + ion using the DFT level of theory. Three main types 
of Zn–ligand interactions were found in the series of complexes studied. Type I 
corresponded to a bidentate zinc coordination involving the oxygen of the carbonyl 
group and the sulfonamide nitrogen atom. Type II resulted from an additional in-
teraction with one of the sulfonyl oxygen atoms. As three 4-methylimidazole li-
gands were attached, the sulfamide nitrogen atom did not participate anymore in 
the complexation (the corresponding Zn–N distances were ~ 3.35 Å). Similar, but 
even more stable complexes were formed with a deprotonated form of the ligands.

A subsequent docking study resulted in the different coordination ability of 40–
50 towards enzymes MM-1, MMP-2, MMP-9, MMP-12 and MMP-14 and dem-
onstrated that these species can be used for the drug design as the efficient and 
selective MMP inhibitors.

Zhang and co-authors studied theoretically pyrogallic acid (51) and myricetin 
(52) as the potential non-peptide inhibitors of MMP-1 and MMP-3 [75]. The cor-
responding docked complexes with the model active sites were optimized at the 
B3LYP/6-31G* level of theory. Total calculated interaction energies for MMP-1 
with 51 and 52 are − 77.07 and − 108.39 kcal/mol, respectively). Therefore, myric-
etin bound to MMP-1 more tightly than pyrogallic acid, which agreed with the 

Fig. 7.4  Energy profiles for 37b (a) and its sulfoxide analogues 38b (b) and 39b (c) in the MMP2 
active site. R: reagents, TS: transition state, P1: products 1, P2: products 2. (Reproduced with 
permission from Ref. [71]. Copyright © 2010 American Chemical Society)
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experimentally derived IC50 values for 51 and 52 (2.57 and 1.01 µM, respectively). 
The determined binding affinities with MMP-3 were found to be significantly lower 
(− 52.37 and − 74.56 kcal/mol, respectively), whereas the corresponding IC50 mag-
nitudes were essentially higher (12.47 and 4.18 µM, respectively). Thus, 52 indi-
cated better potency on both MMP-1 and MMP-3 than pyrogallic acid. The authors 
explained such result by a favorable interaction of the S′ cavity in the both MMPs 
with the benzopyran-4-one substituent in adducts of MMPs with 52 (Fig. 7.5), 
whereas by binding with 51 it remained empty.
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Fig. 7.5  Detailed representation of adducts of 51 (a, c) and 52 (b, d) adducts with MMP-1 (a, b) 
and MMP-3 (c, d) active sites. (Reproduced with permission from Ref. [73]. Copyright © 2011 
Elsevier)
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7.2.9  Phospholipases

The phospholipases A2 (PLA2) enzymes are responsible for the hydrolysis of mem-
brane phospholipids that release arachidonic acid. The latter serves as substrate for 
pro-inflammatory mediators, such as prostaglandins and leucotriens. Inhibition of 
the enzymatic activity and edema induction by (PLA2), extracted from the venom 
of Crotalus adamanteus, was explored by da Silva et al. [76]. Five different polyhy-
droxy phenolic compounds 53–57 were studied, both theoretically and experimen-
tally, as the potential PLA2 inhibitors. Molecular mechanics optimization indicated 
that the substrate binding occurred mainly via Asp49. This destabilized the interac-
tion with calcium playing an important role in the catalytic activity of PLA2. The 
electrostatic potential surface (EPS), calculated for compounds 53–57, explained 
differences in inhibition of enzymatic activity of PLA2: compounds 53–55 pos-
sessed the positive EPSs (approx. 0.7 eV) favorable for the formation of complexes 
with PLA2. Compound 56 indicated the even higher positive magnitude of EPS 
(0.912 eV), strengthening the formed complex. Compound 57, showed the EPS 
around 0.7 eV, but the hydroxyl groups in this molecule were sterically hindered 
by acetyl group. This prevented the formation of the inhibitor complex with PLA2. 
Both 55 and 57 formed internal hydrogen bonds between the hydroxyl from posi-
tion 2 and the carbonyl group. Thus, structures 53 and 54 demonstrated the highest 
inhibition activity.

53 54 55 56   57

7.2.10  Angiotensin-Converting Enzyme

Šramko et al. investigated thermodynamics of the interaction of angiotensin-
converting enzyme (ACE, EC 3.4.15.1) inhibitors with a truncated zinc metal-
lopeptidase active site (Fig. 7.6) using DFT (B3LYP) and two-layered ONIOM 
B3LYP:MNDO approaches [77]. The authors investigated binding of various ACE 
inhibitors with [Zn2 + (imidazole)2CH3COO −] + as the model binding site of ACE in 
neutral and anionic forms and calculate interaction and dissociation enthalpies and 
Gibbs energies (see Table 7.4). Several tested inhibitors were widely used drugs, 
effective in the treatment of hypertension, congestive heart failure, post-myocardial 
infarction and diabetic nephropathy [78], whereas the other ones were products of 
their structural modification. The 6-31+G(d,p) basis set was used for zinc, the dis-
sociating functional groups and their closest vicinity, and the standard 6-31G(d) 
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basis sets were used for all the other atoms in the high layer. The ionized species 
originated by removal of proton from the acidic functional group of ACE inhibitor.

Complexes containing ionized (non-protonated) ACE inhibitors are marked with 
‘‘a” and complexes containing neutral (protonated) ACE inhibitors are marked with 
‘‘b”. The structures of the optimized complexes 59a–66a were very similar, with 
dissociated N-terminal carboxyl group of ACE inhibitors bound to zinc cation par-
tially bidentately and acetate anion bound to zinc monodentately. Interestingly, the 
structural fragment of complex 59a with inhibitor enalaprilat taken from Protein 
Data Bank (reference code 1UZE) was similar to the calculated structure, whereas 
in the optimized complex 69a with inhibitor captopril, the inhibitor molecule was 
turned to the opposite side compared to the crystal structure (reference code 1UZF).
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Fig. 7.6  Structural formulas of complexes of enzyme (‘‘receptor”) part (R) and neutral inhibitors 
with atom numbering. Asterisks exhibit different parts of molecules treated at the different levels 
of theory. (Reproduced with permission from Ref. [77]. Copyright © 2011 Elsevier)
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In general, interaction enthalpies and Gibbs free energies of negatively charged 
ionic ACE inhibitors (Table 7.4) were significantly larger than those of neutral in-
hibitors (not shown here), but the acidity of the inhibitors considerably increases 
upon chelation: deprotonation Gibbs free energies (∆G298) of ACE inhibitors in 
complex with the model active site R were by the average of 85.96 kcal/mol lower 
than the deprotonation Gibbs energies of the free inhibitors. The results of the study 
[77] demonstrate that all structures within the investigated series are able to form 
stable tetra- or penta-coordinated complexes with R system. The highest binding 
affinity was observed for N-terminal anion of captopril (∆G298 = − 96.66 kcal/mol). 
The model used was proven to be suitable for the analysis of the potential angioten-
sin-converting enzyme inhibitors and can be treated using DFT methods.

7.2.11  Phosphodiesterase

Inhibitory properties for series of 54 phosphodiesterase 7 (PDE7) inhibitors (spi-
roquinazolinones), previously reported by Lorthiois and coworkers [79, 80], was 
studied using docking and DFT methods with the aim of identifying the character-
istics that distinguish between potent and weak inhibitors [81]. The conformations 
from docking studies were further used for DFT (B3LYP/6-31G*) geometry opti-
mization. It is generally suggested that molecules with similar electrostatic potential 
(EP) surfaces may bind well to the same receptor [82–84]. The EPs calculated for 
the series of inhibitors (Fig. 7.7) were compared with the experimentally deter-
mined pIC50 magnitudes. The relative nucleophilicity of N1 with respect to N3 in 

Table 7.4  Calculated gas-phase affinities of neutral ACE inhibitors to R expressed as interaction 
enthalpies, Gibbs Energies and entropies (at T = 298 K). (Reproduced with permission from Ref. 
[73]. Copyright © 2011 Elsevier)
Complex Inhibitor ∆H298 ∆G298 ∆S298 ∆∆G298

58b H2O − 13.56 − 2.58 − 36.82 0.0
59b Enalaprilat − 22.07 − 10.57 − 38.60 − 7.99
60b Cilazaprilat − 23.21 − 11.93 − 37.82 − 9.36
61b Imidaprilat − 23.26 − 11.78 − 38.50 − 9.20
62b Perindoprilat − 21.31 − 10.94 − 34.78 − 8.36
63b Quinaprilat − 22.19 − 11.20 − 36.87 − 8.62
64b Ramiprilat − 21.80 − 10.59 − 37.60 − 8.02
65b Spiraprilat − 22.53 − 11.68 − 36.41 − 9.10
66b Trandolaprilat − 21.89 − 10.95 − 36.68 − 8.37
67b Fosinoprilat − 24.93 − 11.92 − 43.63 − 9.35
68b Omapatrilat − 17.68 − 5.94 − 39.38 − 3.36
69b Captopril − 14.85 − 2.32 − 42.03 0.25
70b Zofenoprilat − 15.10 − 3.25 − 39.75 − 0.67
71b Silanediol − 13.67 − 0.94 − 42.71 1.64
72b Keto-ACE − 21.07 − 6.14 − 50.07 − 3.56

a Relative interaction Gibbs free energy values against water complex (58b)
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the spiroquinazolines was found to be important for the activity: all the active mol-
ecules had low EP(N1) and EP(N1) < EP(N3).

Thus, the electron density distribution in the molecules and steric factors are 
equally important for binding the molecules to the receptor. This computational 
study should aid in design of new molecules in this class with improved PDE7 
inhibition.

7.2.12  HIV-1 Transcriptase

Searching for new effective anti-AIDS drug remains the challenge for drug chem-
istry [85]. One of the prospective ways is the development of efficient inhibitors of 
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73 74 75

EP(N1) 30.84; 42.81 28.93
EP(N3) 38.50 36.73 38.25
pIC50 7.85 5.02 7.42

76 77 78

EP(N1) 50.12 30.85 42.54
EP(N3) 38.45 38.22 36.53
pIC50 5.32 6.77  5.18

Fig. 7.7  Structural formula, electrostatic potential values on N1 and N3 atoms (EP(N1) and 
EP(N3), respectively) and activity in molar concentration (pIC50) for structures 73–78
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the human immunodeficiency virus reverse transcriptase (HIV-1 RT). Authors [86] 
studied theoretically the binding of five different ligands 79–83 to the HIV-1 RT us-
ing molecular dynamics (MD) simulations within hybrid QM/MM potentials. Both 
potential of mean force (PMF) and free energy perturbation (FEP) methods pre-
sented 81 as the best candidate to inhibit the HIV-1 RT with binding energies −57.2 
and −30.3 kcal/mol, respectively while for 83 the lowest negative binding energy 
was predicted (− 16.4 and − 9.0 kcal/mol, respectively). The EPS were derived from 
B3LYP/6-31+G(d,p) calculations. The active site displays the large positive elec-
trostatic potential at the positions of the magnesium cations and nitrogen backbone 
atoms of Asp443, Glu478, Asp549 and His539, whereas the large negative regions 
were found at the positions of oxygen atoms of backbone belonging to His539, 
Asp443, Glu478, Asp498 and Asp549. The negative EP in the fragment of DNA-
chain was at the oxygen atoms of the phosphate groups, hence there is a reasonable 
complementarity between the active site of the enzyme and its natural substrate.

Liang and Chen [87] investigated the interaction between a potential anti-AIDS drug 
dapivirine and and the HIV-1 RT binding site using the ONIOM2 (B3LYP/6-31G(d,p): 
PM3) approach and calculating the energy at the B3LYP/6-31G(d,p) level of the-
ory. The interaction energy was divided into several contributions coming from 
interactions with individual residues of the active site. The calculations predicted 
two hydrogen bonds between 2-aminopyrimidine groups of dapivirine with the car-
bonyl oxygen and amino hydrogen of Lys101. Additionally, two aromatic residues, 
Tyr181 and Tyr188, exhibited H…π and π…π interactions with the aromatic ring 
of dapivirine.

7.2.13  HIV-1 Aspartic Protease

Fleurat-Lessard et al. [88] analyzed the methods suitable for modeling human im-
munodeficiency virus type 1 aspartic protease (HIV-1 PR) enzyme. The semiem-
pirical methods failed to describe the geometry of the protease active site. Within 
DFT, the best results were obtained with hybrid GGA B3LYP or X3LYP and with 
hybrid meta GGA functionals with a fraction of exact exchange around 30–40 %, 
such as in the M06, B1B95, or BMK functionals. In the more recent work, Fleurat-
Lessard et al. [89] studied using QM/MM method new HIV-1 drug candidates, po-
tential inhibitors of HIV-1 PR. Though rigid structures are usually more efficient 
inhibitors of HIV-1 PR, they are less amenable to adapt to shape modifications of 
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the  enzymatic  binding site induced by mutations. Hasserodt et al. [90–92] proposed 
previously a new type of more mobile aspartic protease inhibitors, amino-aldehyde 
peptides, which adopted their form based on a non-covalent interaction of a tertiary 
amine nitrogen with a carbonyl group, the so-called N···CO bond. However, the 
calculations exhibited that the presence of water molecule W301 induced a system-
atic competition between formation/dissociation of the N···CO bond and the inter-
action network involving the structural water molecule. Probably, this competition 
determined the poor inhibition activity of amino-aldehyde peptides [90] and might 
be avoided by the proper design of non-peptidic cyclic hydrazino-urea derivatives.

Another way for the development of drugs using HIV-1 PR as target with mini-
mizing the drug resistance effect of HIV-1 is an irreversible inhibition. It consists 
in the chemical modification of the binding site of HIV-1 PR, in particular, at the 
key Asp 25 and Asp25′ amino acid fragments resulted in the complete lost of cata-
lytic activity. One possible way is to include the oxyrane ring in the potential drug 
structures [93–95]. Kóňa [96] analyzed two possible mechanisms of the irreversible 
inhibition of HIV-1 protease by epoxide inhibitors by means of ab initio (MP2) and 
DFT (B3LYP, MPW1K and M05-2X) calculations. In the first version of the reac-
tion mechanism, the water molecule participated in the reaction, but another mecha-
nism with a direct proton transfer from the acid catalyst to the inhibitor was shown 
to be more preferable. The structures (118 atoms) modeling both the local minima 
and transition state were located at the DFT [B3LYP/6-31+G(d,p)] level of theory. 
The activation energy was predicted to be ca. 15–21 kcal/mol. The process of irre-
versible inhibition exhibited significantly large negative reaction energy. The most 
probable mechanisms of modifying the model inhibitor structure were discussed.

7.2.14  HIV-1 Integrase

HIV-1 integrase (IN) is the relatively new and highly promising target for develop-
ing anti-AIDS drugs [97–99]. Understanding the inhibition mechanism of known 
inhibitors would make possible testing new perspective drug candidates using the 
DFT methods. However, it is still not known how the enzyme binds the inhibi-
tors or its substrate, viral DNA [100]. The active site of HIV-1 IN is characterized 
by the dinuclear magnesium center, coordinated by carboxylate groups of three 
amino acid. Therefore, the main aim of theoretical efforts for the future develop-
ment of the HIV-1 IN inhibitors with novel scaffolds is to provide a suitable ligand 
capable of chelating two Mg2 + ions [101]. Noteworthy, some efficient IN inhibi-
tors exist in the multiple tautomeric forms [102], which were not studied in detail. 
Even less was known about the tautomerism of the ligands in the binding site of 
HIV-1 IN. The most stable tautomeric forms and rotamers for the known inhibi-
tors of HIV-1 IN: α,γ-diketoacids (84), α,γ-diketotriazole (85), dihydroxypyrimi-
dine carboxylate (86) and 4-quinolone-3-carboxylic acid (87) were calculated at the 
B3LYP/6-311++G(d,p) level of theory by Liao and Nicklaus [100]. Next, for the 
studied structures the chelating complexes with two magnesium ions in the moiety 
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modeling the active site of HIV-1 IN were calculated. As objects for DFT calcula-
tions, the magnesium ions were surrounded with three formic acids and four water 
molecules in order to mimic the IN binding site. In the optimized structures, the 
most stable forms in water solution included deprotonated, enolized or phenolic 
hydroxy groups, with the two eight-coordinated magnesium ions separated by a 
distance 3.70–3.74 Å. Replacing one water in the complex with one molecule of 
methanol mimiced the terminal 3′-OH of viral DNA, and the chelating complex 
remained stable. Probably, after 3′-processing, in the binding site of IN the terminal 
3′-OH of viral DNA interacts with one Mg2 + by chelation.

Wolschann et al. [103] used DFT calculations to identify the protonation state of 
HIV-1 IN, in particular, residues Lys156 and Lys159, which are of importance for 
binding 5CITEP inhibitor (88). The most favored conformations of 5CITEP were 
derived at the B3LYP/6-31G(d,p) level of theory by a variation of two torsion an-
gles, Tor1 (C19-C11-C9-C8) and Tor2 (N3-C5-C6-C8) (Fig. 7.8, left). The poten-
tial energy surface (PES) was analyzed at the HF/3-21G level with subsequent re-
optimization of the structures corresponding to local minima at the more superior 
B3LYP/6-31G(d,p) theoretical approach. The initial geometry of the IN/5CITEP 
adduct was taken from Protein Data Bank (PDB, entry code 1QS4). Interestingly, 
5CITEP in the complex with IN in the X-ray determined structure, differs slightly 
from the equilibrium conformation of the free ligand, probably, due to additional 
interactions arising between 5CITEP and the surrounding amino acids.

Seven different structures of the complex were generated including both neu-
tral and deprotonated forms of 5CITEP as well as both neutral and protonated 
forms of two lysines (Lys156 and Lys159) and then optimized by fixing the Cα 
 atoms in the amino acids. The lowest energy structures for the protonated and non-
charged states of the adduct are shown in Fig. 7.9. 5CITEP is in its  neutral form, 
where the hydrogen atom is attached to N3 of the tetrazole ring while Lys156 
and Lys159 are non-protonated and protonated, respectively. The structure of the 
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non-charged state is similar, but in contrast to the protonated form, both lysine 
residues are non-protonated.

For determining the binding energy, the most important six amino acids (Thr66, 
Gln148, Glu152, Asn155, Lys156, and Lys159) were selected (Fig. 7.8, right). Al-
though the calculated structure of 5CITEP was slightly different from that found 
in the co-crystal structure, its binding energy (− 41.33 kcal mol−1) indicated the 
energetically favorable system. In contrast to the aforementioned adduct of 5CITEP 
with two lysine molecules (Lys156 and Lys159), in the complex including six ami-
no acids, where the side chains of amino acids were allowed to change their posi-
tion, proton at N3 of the ligand was transferred to Lys156.

Alves and co-authors [104] compared the activity of HIV-1 IN effective inhibitor 
S-1360 (89), that underwent clinical trials, with two its analogues 90 and 91. While 
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Fig. 7.8  Conformational analysis of 5CITEP ( left); modeling the adduct of 5CITEP with the bind-
ing site of HIV-1 IN (right). (Reproduced with permission from Ref. [103]. Copyright © 2007 
Elsevier)

 

Fig. 7.9  The lowest energy configurations for the protonated ( left) and non-charged ( right) states 
of the adduct of 88 with Lys156 and Lys159 from HIV-1 IN. (Reproduced with permission from 
Ref. [103]. Copyright © 2007 Elsevier)
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the QM/MM calculations (using BLYP/6-31G* level for the QM region) predicted 
lower interaction energies for 90 and 91 (− 611.7 and − 622.7 kJ/mol) than for 89 
(− 667.0 kJ/mol), they exhibited strong interactions with the residues of the active 
site. The EP surfaces were analyzed for all three structures.

89: X=O, Y=N; 90 X=NH; Y=N; 91 X=O, Y=H

7.2.15  Xanthine Oxidase

Xanthine oxidase (XO) is a flavoprotein enzyme which catalyzes the oxidative 
hydroxylation of purine substrates. Because of its availability (it is abundant in 
cow’s milk), XO has become a well-established target of drugs against gout and 
hyperuricemia. The reduction of molecular oxygen by XO produces free radicals 
which can cause damage to surrounding tissues. The activation of XO generates 
superoxide and hydrogen peroxide, hence it is generally seen as a potentially 
destructive agent in the vasculature. The paper of Lespade and Bercion [105] is 
devoted to the computational (DFT) study of one of the possible mechanisms of 
XO inhibition: the attraction and anchorage of the molecule inside the cavity. Two 
classes of potential inhibitors were tested as inhibitors: the series of flavonoids of 
natural origin [106, 107]: luteolin (92), apigenin (93), chrysin (94), kaempferol 
(95), galangin (96), myricetin (97), quercetin (98), morin (99); and gallic acid 
derivatives [108]: gallic acid (100), ellagic acid (101) and ellagic acid-4-O-β-
d-xylopyranoside (102). For this purpose, electrostatic interactions between the 
molybdopterin moiety and two series of inhibitors were calculated at the DFT 
level of theory, in order to evaluate the interconnection between the electrostatic 
potential and inhibition forces. The most stable conformations were determined 
for the inhibitors using B3LYP/6-31+G(d,p) approach. As this functional poorly 
reproduces electron dispersion, the energies of the conformations were calculated 
at the MP2/6-31+G(d,p) level of theory. The authors of [105] concluded that the 
most potent inhibitors in the investigated series should be polar, possess a longi-
tudinal dipole moment, and weakly dissociate at physiological pH.

7.2.16  Trombin

The activity of trombin is responsible for the cleavage of fibrogen to form fibrin 
that then polymerizes with forming a network of fibers. This determines not only 
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the positive wound-healing process, but also such diseases as myocardial infarction, 
pulmonary embolism and stroke [109]. Understanding the binding mechanism of 
the known inhibitors to thrombin would provide a valuable information for a dis-
covery of new more efficient and selective inhibitors.

The authors [110] studied interactions of two pyrazinone- and prolyne-based macro-
cyclic inhibitors (103 and 104, respectively) using molecular dynamics simulations, 
DFT and molecular mechanics calculations. An analysis of binding interactions be-
came possible by applying molecular fractionation with conjugate caps (MFCC) 
approach [10, 11]. In the case of 103 main binding attractions were provided by 
six residues with individual gas-phase binding energies > 2 kcal/mol: Ser214, Trp215, 
Gly216, Glu217, Asp102, and Asp189. Similarly, for 104 interactions with Asp189, Ser214, 
Trp215, Gly216, Asp102, and Glu146 were of importance. The fragment interaction en-
ergies calculated at the MP2/6-311G* level of theory agreed well with those derived 
using the DFT (B3LYP/6-31G*) method. A good agreement was observed between 
the calculated and experimental binding free energy values.

103 104  
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7.2.17  Lipase B

De Oliveira et al. [111] carried out quantum chemical (DFT) calculations for ad-
ducts of three flavonoids, quercetin (98), isoquercitrin (105) and rutin (106), docked 
in the mini-model that mimicked the catalytic site of Candida antarctica lipase B 
(CALB). The analysis of these results showed that an ester bond with the carbonyl 
C atom of the Ser105-bound acetate was expected for the rhamnose 4′″-O of rutin 
and for the glucose 6″-O of isoquercitrin, but no ester bond was predicted to be 
formed with the B-ring of 3′-O of quercetin. The mechanism of coordination was 
modeled calculating non-covalently bound as well as covalently bound intermedi-
ates. The theoretical results agreed well with the experiment.

105  106

7.2.18  Urease

Urease (urea amidohydrolase, EC 3.5.1.5) is involved in a number of diseases, such 
as pyelonephritis, ammonia encephalopathy, hepatic coma, peptic ulcers and forma-
tion of kidney stones [112, 113], hence the urease inhibitors could be useful as ef-
ficient drugs. Leopoldini et al. [114] explored at the DFT (B3LYP using LANL2DZ 
basis set for Ni atoms and 6-311G** for all other atoms) boric acid as a rapid revers-
ible inhibitor of urease. Two models of different size were analyzed. The smaller 
one included truncated amino acids from the first coordination shell of two Ni2 + 
ions: the histidine residues (His137, His139, His249, His275), the carbamylated 
lysine (Lys220) and the Asp363 were simulated by imidazole rings, a carboxyl-
ated methylamine (CH3NHCOO −) and an acetate group (CH3COO −) (Fig. 7.10). 
The B–O interactions were strong and possessed the covalent character. The bond-
ing character did not change when the binding site model was extended by adding 
other amino acid residues and two water molecules involved in the inhibitor binding 
mode (totally 122 atoms). The boric acid molecule seemed to be firmly anchored to 
the enzyme and thus prevented the urease catalytic reaction.
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7.2.19  Other Results

Several 1,3-bisphospho-d-glyceric acid analogs were studied theoretically (using 
QM/MM molecular dynamics and DFT-based EPS) as potential inhibitors of glyc-
eraldehyde-3-phosphate dehydrogenase, and as new drugs against Chagas disease 
[15]. The first detailed QM/MM study on the possible mechanisms for the reaction 
of proteasome with a representative peptide inhibitor, Epoxomicin was reported 
[115]. The obtained novel mechanistic insights should be valuable for a future ra-
tional design of more efficient proteasome inhibitors.

7.3  Conclusions and Prospects

The DFT approach is widely used nowadays in the pure form or in combination 
with other, less computationally demanding approaches for modeling enzyme–li-
gand adducts towards understanding mechanisms of enzyme catalyzed reactions 
and constructing novel drugs based on enzyme–inhibitor interactions. The recently 
developed efficient linear-scaling techniques like the Resolution of the Identity (RI) 
provide a new quantum chemical methodology for modeling ligand–protein interac-
tions. Recently, the novel efficient linear-scaling methods have also been proposed 
for the hybrid functionals, such as the popular B3LYP [116, 117]. The frontiers 
of using DFT for modeling the enzyme–inhibitor interactions exceed now several 
hundreds atoms. This makes it possible to increase significantly the size of the DFT-
calculated enzyme binding site fragments for the virtual ( in silico) construction 
of the enzyme–inhibitor adducts. For example, the RI-DFT molecular dynamics 
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Fig. 7.10  Model used for the urease active site. The outer amino acids ( bold) were added in the 
larger model. In the inset: optimized geometry of the complex of boric acid with the model of the 
urease binding site. The distances are in Å. (Reproduced with permission from Ref. [114]. Copy-
right © 2008 Wiley Periodicals, Inc.)
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methods, RI-DFT-based geometry optimization and RI-MP2 single-point energy 
calculations can be combined for the model adducts of relatively large size. This 
gives us believe to assert that, similarly to quantum chemistry of small molecules, 
such kind of calculations will sooner or later turn into a routine.

Finally, the special event should be mentioned here as the scientific and pub-
lic recognition of achievements of computational chemistry over the last decades 
and its great prospects in the future: the Nobel Prize in Chemistry 2013 awarded 
jointly to Martin Karplus, Michael Levitt and Arieh Warshel “for the development 
of multiscale models for complex chemical systems”. Inter alia, the laureates laid 
the foundation for the modern QM/MM approach [118] based nowadays on the ab 
initio or DFT and MM/MD approaches. There is no doubt that the extent of the 
DFT constituent will grow, increasing the reliability of the method by modeling 
enzyme–inhibitor reactions.
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Abstract Biological membranes are important cell structures that play impor-
tant role in the transport of the ions and other molecules into and out of the cell 
and regulate the signaling pathway. They are composed of lipid bilayer, integral 
and peripheral proteins. The ionic channels, enzymes and most of the membrane 
receptors belong to integral proteins that span the membrane and contact by their 
hydrophobic part with hydrophobic interior of the lipid bilayer. These hydrophobic 
interactions are crucial for the effect of peptide on a lipid bilayer matrix and vice 
versa. The study of the mechanisms of these interactions is important for under-
standing the functioning of the peptides in a membrane. However the study of 
native biomembrane is rather complicated due to its complexity and inhomogeneity. 
Therefore model lipid bilayers and short peptides can be used as a model for study 
of the protein–lipid interactions. In this chapter we review the current state of the 
art in experimental and molecular dynamics simulation study of the short peptide–
membrane interactions. As an example we consider in more detail the application 
of molecular dynamic simulations on the study of interaction of a model lysine-
flanked α-helical peptides P24, LA12, L24 and its analogues A24, I24, and V24 with 
lipid bilayers composed of dimyristoylphosphatidylcholine (DMPC) and dipalmi-
toylphosphatidylcholine (DPPC) both in a gel and in a liquid-crystalline state. We 
have shown that these peptides cause disordering of the lipid bilayer in the gel state 
and small changes in a liquid-crystalline state. The peptides affect ordering of the 
surrounding lipids depending on the helix stability, the amount of dihedral angles 
in trans conformation and the number of transitions between trans and gauche con-
formation. It has been found the tendency of Lys-flanked peptides to compensate 
the positive mismatch between peptide and membrane hydrophobic core by tilting. 
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In some cases the tilt was replaced by superhelical double-twisted structure. The 
rest of helices were bend or produced kink in addition to the tilt. The lipid structural 
state around the peptide has been also analyzed.

8.1  Introduction

Lipid–protein interactions are of fundamental importance for understanding both 
the structural integrity and the functions of biological membranes [1, 2]. In particu-
lar, the chemical composition and physical properties of the lipid bilayer membranes 
(BLMs) can markedly influence the activity, thermal stability, and the location and 
disposition of a large number of integral membrane proteins in both model and 
biological membranes [2]. For these reasons, many studies of the interactions of 
membrane proteins with their host BLM have been carried out, in both biologi-
cal and reconstituted model systems, employing a wide range of different physical 
techniques [3–6]. To overcome the problem of the complicated structure of integral 
proteins and the problems with their isolation and purification, a number of workers 
have designed and synthesized peptide models of specific regions of natural mem-
brane proteins and have studied their interactions with model lipid membranes of 
defined composition (see [7, 8]). In particular, the study of the mechanisms of the 
interactions of peptides with BLM has also very important practical significance for 
understanding of the mechanism of interaction of e.g. neuropeptides [9] or antimi-
crobial peptides [10] with membranes. The cell-penetrating-peptides can also trans-
port other macromolecules inside the cell and thus are perspective in drug delivery.

The synthetic peptide acetyl-K2-G-L24-K2-A-amide (P24) and its structural ana-
logs, e.g. acetyl-K2-L24-K2-amide (L24), have been successfully utilized as a model 
of the hydrophobic transmembrane α-helical segments of integral proteins [8, 11]. 
These peptides contain a long sequence of hydrophobic leucine residues capped at 
both the N- and C-termini with two positively charged lysine residues. The cen-
tral polyleucine region of these peptides was designed to form a maximally stable 
α-helix which will partition strongly into the hydrophobic environment of the lipid 
bilayer core, while the dilysine caps were designed to anchor the ends of these 
peptides to the polar surface of the BLM and to inhibit the lateral aggregation of 
these peptides. In fact, circular dichroism (CD) [11] and Fourier transform infrared 
spectroscopy FTIR [12] spectroscopic studies of P24 have shown that it adopts a 
very stable α-helical conformation both in solution and in lipid bilayers. X-ray dif-
fraction [13], fluorescence quenching [14] and FTIR [12] and deuterium nuclear 
magnetic resonance (2H-NMR) [15] spectroscopic studies have confirmed that P24 
and its analogs assume a transbilayer orientation with the N- and C-termini exposed 
to the aqueous environment and the hydrophobic polyleucine core embedded in hy-
drocarbon core of the BLM when reconstituted with various phosphatidylcholines 
(PCs) [16]. 2H-NMR [17] and electron spin resonance (ESR) [18] spectroscopic 
studies have shown that the rotational diffusion of P24 about its long axis perpen-
dicular to the membrane plane is rapid in the liquid-crystalline state of the bilayer.



2438 Molecular Dynamics Simulations of Lipid Bilayers with Incorporated Peptides

We applied high-performance liquid chromatography (HPLC), CD, differential 
scanning calorimetry DSC and attenuated total reflectance ATR-FTIR methods for 
study studied specially designed α-helical transmembrane peptides (acetyl-K2-Lm-
An-K2-amide, where m + n = 24) in respect of their solution behavior and interactions 
with phospholipids [19]. These peptides exhibit strong α-helical conformation in 
water, membrane-mimetic media and lipid model membranes, however the stability 
of the helices decreases as the Leu content decreases. Also, their binding to reversed 
phase high-performance liquid chromatography columns is largely determined by 
their hydrophobicity and the binding generally decreases with decrease in the Leu/
Ala ratio. However, the retention of these peptides by such columns is also affected 
by the distribution of hydrophobic residues on their helical surfaces, being further 
enhanced when peptide helical hydrophobic moments are increased by clustering 
hydrophobic residues on one side of the helix. This clustering of hydrophobic resi-
dues also increases peptide propensity for self-aggregation in aqueous media and 
enhances partitioning of the peptide into lipid bilayer membranes. We also found 
that the peptides LA3LA2 (acetyl-K2-(LA3LA2)3LA2-K2-amide) and particularly 
LA6 (acetyl-K2-(LA6)3LA2-K2-amide) associate less strongly with bilayer and per-
turb the thermotropic phase behavior of phosphatidylcholine bilayers much less 
than peptides with higher L/A ratios. These results are consistent with free energies 
calculated for the partitioning of these peptides between water and phospholipid bi-
layers. This suggests that LA3LA2 has an equal tendency to partition into water and 
into the hydrophobic core of phospholipid model membranes, whereas LA6 should 
strongly prefer the aqueous phase. We conclude that for α-helical peptides of this 
type, Leu/Ala ratios of greater than 7/17 are required for stable transmembrane as-
sociations with phospholipid bilayers. Experimental studies have been focused also 
on the analysis of the effect of substitution of some amino acids in peptides on their 
properties. Idiong et al. [20] studied α-helical antimicrobial peptides purified from 
the venom of the Central Asian spider Lachesana tarabaevi and showed that replac-
ing the glycine at position 11 with alanine resulted in more rigid peptide structure 
due to the reduced conformational flexibility.

Detailed DSC, FTIR, NMR and electron paramagnetic resonance (EPR) studies 
of interaction of P24 or L24 with BLM [21] have revealed that the results obtained 
from different physical techniques generally agree well with one another. However, 
certain discrepancies have been found in comparison of the results obtained by spec-
troscopic techniques, i.e. FTIR and 2H-NMR. While the 2H-NMR technique indi-
cated that incorporation of P24 peptide into the DPPC bilayers resulted in a decrease 
of the ordering of the membrane in gel state and increase in the liquid crystalline 
(LC) state, FTIR experiments suggest that peptide induced a decrease of the order-
ing of the lipid bilayer in both structural state of the membrane [21]. This discrep-
ancy has been explained by different peculiarities of these two methods. While the 
order parameters in 2H-NMR spectroscopy are primarily sensitive to trans/gauche 
isomerisation, the molecular interpretation of the changes in membrane ordering 
based on changes in frequency of the methylene stretching modes in IR spectrosco-
py are likely attributed to the sensitivity of the band position phenomena other than 
trans/gauche isomerisation, such as the interchain coupling and the contribution 
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of peptide in the methylene and methyl stretching region. Interchain coupling is 
significant enough even in fluid bilayers [21]. Therefore, using exclusively FTIR it 
is difficult to decide what process is dominant in fluid state—interchain coupling or 
trans/gauche isomerisation.

In contrast with spectroscopic methods that provide information about micro-
scopic changes of the lipid bilayer in close proximity of the protein, macroscopic 
methods, such are membrane compressibility measurements, are sensitive to chang-
es of large membrane regions. The sensitivity and utility of measurements of volume 
compressibility has been proved in several studies of the interaction of integral pro-
teins with lipid bilayers, e.g. bacteriorhodopsin [4] or peptides like ACTH24 [9] or 
gramicidin S [10]. In the case of bacteriorhodopsin, it has been shown that one mol-
ecule of the peptide is able to change the structural state of the lipid bilayer of whole 
large unilamellar vesicle (LUV). We applied this method also to the study of the 
interaction of synthetic α-helical transmembrane peptides like L24 with lipid bilay-
ers [22]. We used precise measurement of density and ultrasound velocity to study 
the physical properties of LUVs composed of a homologous series of n-saturated 
phosphatidylcholines (PC) containing L24. PCs whose hydrocarbon chains contained 
from 13 to 16 carbon atoms, thus producing phospholipid bilayers of different thick-
nesses and gel to liquid-crystalline phase transition temperatures. This allowed us 
to analyze how the difference between the hydrophobic length of the peptide and 
the hydrophobic thickness of the lipid bilayer influences the thermodynamical and 
mechanical properties of the membranes. We showed that the incorporation of L24 
decreases the temperature and cooperativity of the main phase transition of all LUVs 
studied. The presence of L24 in the bilayer also caused an increase of the specific 
volume and of the volume compressibility in the gel state bilayers. In the liquid crys-
talline state, the peptide decreases the specific volume at relatively higher peptide 
concentration (mole ratio L24:PC = 1:50). The overall volume compressibility of the 
peptide-containing lipid bilayers in the liquid crystalline state was in general higher 
in comparison with pure membranes. There was, however, a tendency for the vol-
ume compressibility of these lipid bilayers to decrease with higher peptide content 
in comparison with bilayers of lower peptide concentration. For one lipid composi-
tion, we also compared the thermodynamical and mechanical properties of LUVs 
and large multilamellar vesicles (MLVs) with and without L24. As expected, a higher 
cooperativity of the changes of the thermodynamical and mechanical parameters 
took place for MLVs in comparison with LUVs. These results are in agreement with 
previously reported DSC and 2H NMR spectroscopy study of the interaction of the 
L24 and structurally related peptides with phosphatidylcholine bilayers. An apparent 
discrepancy between 2H NMR spectroscopy and compressibility data in the liquid 
crystalline state may be connected with the complex and anisotropic nature of mac-
roscopic mechanical properties of the membranes. The observed changes in mem-
brane mechanical properties induced by the presence of L24 suggest that around each 
peptide a distorted region exists that involves at least two layers of lipid molecules.

Further information on the structure and dynamics of lipid bilayer as well as 
on the molecular mechanisms of protein–lipid interactions, can be obtained by 
molecular dynamics simulations (MD). This method is widely used for this purpose. 
During the last three decades MD method has been applied to many short peptides 



2458 Molecular Dynamics Simulations of Lipid Bilayers with Incorporated Peptides

and larger proteins starting with simple artificial peptides (see e.g. [23–25]). Later, 
naturally occurred integral proteins such as channel forming peptides gramicidin A 
[26, 27] and alamethicin [30], or larger transmembrane protein bacteriorhodopsin 
[28, 29] were analyzed. The specially designed model peptides were also studied. 
They consist typically from hydrophobic core (usually leucine (Leu) residues [31] 
or in combination with alanine (Ala) [32]). This alternation of residues decreases 
the core hydrophobicity and peptide better mimics the natural proteins [33]. These 
peptides are flanked at both sides by hydrophilic residues stabilizing both ends in 
headgroup region of the lipid bilayer. As the anchors usually lysine (Lys) [11, 34] 
or tryptophan (Trp) [35] are used. In a membrane these model peptides form stable 
α-helix [36, 37], even without polar anchors [38]. The evidence of peptide tilting or 
changing in membrane thickness is the basis for stating the “hydrophobic match-
ing” theory (more can be found in review published by e.g. Killian [39] or Lee [40]). 
Among most used are model structures are L24, P24, WALP19 and longer WALP23 
with two more (LA) repeating pairs [41, 42]. But also other peptide lengths were 
tested—e.g. P16 [d43] or different peptides—KWALP23: acetyl-G-K-A-L-W-(LA)6-
W-L-A-K-A-amid. The peptide–lipid interactions were studied in many lipid bilay-
ers composed of various phosphatidylcholines (PC): dilauroyl PC (DLPC), dimy-
ristoyl PC (DMPC). dipalmitoyl PC (DPPC), dioleoyl PC (DOPC), palmityloleoyl 
PC (POPC). The MD e.g. Tieleman et al. [30] and NMR studies [42] indicated that 
although helix is stable in a membrane, some parts of it were bended or even kinked.

There exists a difference in binding to a membrane the peptides flanking with Trp 
and Lys residues. Maurits et al. [44] studied WALP and KALP peptides of differ-
ent lengths. The WALP16 (acetyl-G-K2-(LA)5-K2-A-amid) peptide in DOPC bilayer 
converts membrane into inverted hexagonal HII phase, while KALP16 remains in LC 
state. In general the behavior of KALP23 in a membrane is similar to that of WALP21 
and consisting in peptide tilt and in inducing changes in the thickness of surround-
ing lipid layer. This is due to firm interaction of indole group of the peptide with 
carbonyl group of lipids, while the Lys amino group NH3

+ lies at the end of long 
flexible chain. Therefore Lys residue is able to snorkel into (thicker) membrane.

De Jesus and Allen [45, 46] simulated WALP peptides with different number 
of Trp repeating. The longer Trp parts were used, the higher tilt has been detected 
(with positive mismatch). The negative mismatch resulted in increases of the mem-
brane deflection, decreases in lipid chain ordering and peptide gets shorter. They 
also simulated long (92 amino acids) poly-Leu helical peptide with inserted Trp or 
its analogue 3-methylindol (3-MIND). Trp and 3-MIND lower membrane deflec-
tion and interacts with glycerol core, carbonyl oxygens and (farther from membrane 
center) with phosphate oxygen.

8.1.1  Membrane (Dis-)ordering

Lewis et al. [47] measured energetic effect of transfer the Lys-flanked peptides into 
the membrane. They found the presence of helix, but also observed the decrease of 
temperature and enthalpy of phase transition. This suggests that the peptides de-
crease ordering of membrane in a gel state. Simulations of peptides with membrane 
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in liquid crystalline state were performed by Esteban-Martнn and Salgado [48]. 
They studied WLP23 (acetyl-G-W2-L17-W2-A-ethanolamine) and KLP23 in DMPC 
bilayers and observed faster relaxation of Lys-flanked peptides (~10 ns) but lower 
tilt angle (~20°), while Trp-flanked ones relaxed during 50 ns (in some simulations 
even till 150 ns), but the final tilt was ~31°. Based on experimental data [49, 50] 
they stated the hypothesis that the 200 ns simulation is not enough to fully relax the 
system. Certainly, the measured tilt by 2H-NMR quadrupole splittings is lower than 
in simulated systems.

Davies et al. studied phase transitions with 2H-NMR quadruple splittings spectra. 
The longer peptides L24 in DPPC membrane in peptide to lipid molar ratio of 100:1 
caused 30 % increase of order in lipids acyl chains, while in molar ratio of 43:1 there 
was only 5 % order increase [11]. In Pan et al. X-ray experiments and MD simula-
tions [51] of alamecithin it has been shown that this peptide decreases thickness of 
diC22:1-PC membrane and increases its own length in a peptide to lipid molar ratio 
of 1:10. However, in a DOPC membrane this peptide tilts in approx. ~15°. In both 
cases the peptide decreased of membrane fluctuations (bending modulus Kc), but 
the diC22:1-PC is more stabilized (factor ~10) than DOPC (only ~2).

Other peptide, the maculatin 1.1, remains in helical conformation in bilayers of 
wide range of lipid composition (DHPC to DPPC, POPC, DOPC, DMPA, DMPS, 
DPPS and DMPG). Only exceptions were the DHPC/LQ and DPPC in liquid crys-
talline and gel phases, respectively, where there is the too large difference between 
hydrophobic lengths of membrane and peptide [52].

Hoernke et al. [53] used modified Lys-flanked peptides and those in which Lys 
has been replaced by ornithine, α,γ-diaminobutyric acid, α,β-diaminopropionic acid 
in negatively charged phosphatidyl glycerol (PG) membrane. These smaller side-
chains caused higher increase of phase transitions temperature and decrease of sur-
face pressure. The long polylysines (more Lys residues at the ends) increase phase 
transitions temperature, but short ones lower it.

8.1.2  Mutation Studies

Johannson and Lindhal [54] tested systematic mutations of acetyl-G2PG-A19-GPG2-
amid peptide in DMPC membrane. Some amino acids did dissolve completely in 
hydrophobic part of the membrane, but caused surface defects and water snorkeling 
into membrane. This suggests that even for polar/charged residues a large part of 
solvation cost is due to entropy, not enthalpy losses. Basic side chains cause much 
less membrane distortion than acidic, since they are able to form hydrogen bonds 
with carbonyl groups instead of water or other lipid headgroups. This preference 
is supported by sequence statistics, where basic residues have increased relative 
occurrence at carbonyl z-coordinates. Snorkeling effects and N-/C-terminal orien-
tation bias are directly observed, which significantly reduces the effective thick-
ness of the hydrophobic core. Aromatic side chains intercalate efficiently with lipid 
chains (improving Trp/Tyr anchoring to the interface) and Ser/Thr residues are sta-
bilized by hydroxyl groups sharing hydrogen bonds to backbone oxygens.
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Similar study has been published by Li et al. [55]. They simulated analogue of 
Arg side chain—MguanH +. In all membranes tested they detected the ion induced 
defect. In thinner membranes (DDPC, DLPC) the peptide chain even caused its 
perforation. The peptide caused increase of lipid area by 0.03 nm2/lipid for DDPC, 
while decrease of the area (by 0.03 nm2/lipid) has been observed for e.g. DLPC or 
DSPC. This was caused by ordering or disordering of lipid chains, respectively, and 
agrees with experimental data [56].

Lam et al. [57] studied the antimicrobial peptide protegrin-1 in a membrane by 
atomic force microscopy (AFM) and MD methods. This 18 amino acid peptide 
contains six Arg residues and created “edge instabilities” in low concentrations and 
“wormhole” structure in high concentrations.

MacCallum et al. [58] simulated different amino acid interactions with DOPC 
membrane. The most hydrophobic amino acids (Ile, Leu, Val, Ala) incorporate into 
middle part of membrane—lowest energy has been found for Ile (− 22 kJ/mol) and 
highest for Ala (− 8 kJ/mol). Cys and Met were located at region between hydrocar-
bon chains and beginning of choline groups (carbonyl groups)—Region II. Amino 
acids with aromatic side chains Tyr, Trp, Phe had energetic minimum also in this re-
gion. But Tyr has positive energy in Region I (acyl chains). The same holds for Phe. 
Trp is allowed to be localized in Region I, but with higher energy than in Region 
II. Polar amino acids Asn, Gln, Ser, Thr have also energetic minimum in Region 
II, but in Region I they have high positive energy (24–13 kJ/mol). The charged 
amino acids Arg, Lys, Glu, Asp also prefer Region II. But the negatively charged 
amino acids show steady increase of energy from water to center of the membrane, 
while positively charged ones have minimum of the energy in Reg. II, which then 
increase toward the center. All charged amino acids cause large water defects in a 
membrane and all but (possibly) Arg lose their charge in the middle of the mem-
brane. In similar work published by Yoo et al. [59] using free energy perturbations 
method—the pKa of Arg in DPPC membrane has been estimated. The simulation 
shows that pKa > 7 (center of membrane has neutral pH = 7). This means, the Arg is 
probably charged in the middle of membrane.

Daily et al. [47] measured 2H-NMR splittings of KWALP23 peptide (acetyl-G-
K-A-L-W-(LA)6-x-W-L-A-K-A-amid) in DLPC, DMPC and DOPC membranes. 
The fitting of splittings of middle six amino acids doesn’t fit to helix in the DLPC 
and DMPC membranes. This suggests creation of kink of 9–13° in this region. The 
same defect was detected in previous study of WALP23 in DLPC bilayers. However 
significant improvement of previous fitting of the same authors resulted in 15° kink. 
In the thicker DOPC membranes the peptides didn’t exhibited this effect.

Kim and Im [60] used PMF method (potential mean force) in simulations of 
WALPn (n = 16, 19, 23, 27) peptides in DMPC or POPC membrane. They also mu-
tated Trp flanking residues with Ala, Lys and Arg. Their results can be summa-
rized as follows: (1) tilting of a single-pass transmembrane (TM) helix is the major 
response to a hydrophobic mismatch; (2) TM helix tilting up to ~10° is inherent 
due to the intrinsic entropic contribution arising from helix precession around the 
membrane normal even under a negative mismatch; (3) the favorable helix–lipid 
interaction provides additional driving forces for TM helix tilting under a positive 
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mismatch; (4) the minimum-PMF tilt angle is generally located where there is the 
hydrophobic match and little lipid perturbation; (5) TM helix rotation is dependent 
on the specific helix-lipid interactions; (6) anchoring residues at the hydrophilic/
hydrophobic interface can be an important determinant of TM helix orientation.

Also at large peptide tilt angles the surrounding membrane is even thinner than 
pure membrane. The tilt angles of different flanking residues depend on its hydro-
phobicity—lowest tilt angle has RALP peptide in comparison with other peptides: 
RALP < KALP < WALP < AALP. The authors also compared MD results with previ-
ous published experimental data for similar peptides obtained by 2H-NMR splitting 
measurements (for example the tilt angles have been 4.4° for KALP23 and 5.2° 
for WALP23) [61, 62]. They concluded that for correct determination of tilt angles 
from splittings data, the proper averages of rotation angles is necessary, as it has 
been done in Ref. [63–65]. For example the florescence spectroscopy determined 
WALP23/DOPC tilt angle 24° ± 5° [65].

Monticelli et al. [66] published another comparison of 2H-NMR quadrupole 
splittings and MD simulations. They used WALP23 in DMPC and stated that the 
underestimation of peptide movements can affect the measured tilt angle. This has 
been also concluded in [63, 64], where authors recognized the problem in GALA 
method (geometric analysis of labeled alanines) with position averaging. They used 
nonlinear averaging of goniometric functions and showed that the peptide in mem-
brane tilted by 30° can have the same quadrupolar samplings as motionless peptide 
with 5° tilt.

In this chapter we show usefulness of the molecular dynamics simulations on the 
study of model helical peptides composed of acetyl-K2-A24-K2-amide (A24), ace-
tyl-K2-L24-K2-amide (L24), acetyl-K2-(LA)12-K2-amide ((LA)12), acetyl-K2-I24-K2-
amide (I24), acetyl-K2-G-L24-K2-A-amide (P24) and acetyl-K2-V24-K2-amide (V24) 
incorporated into the phospholipid bilayers (DMPC, DPPC). The behavior of some 
of these and other peptides in membranes of various lipid compositions has been 
analyzed by Host and Killian [67]. We have shown that the effect of peptides on the 
lipid bilayer strongly depends on membrane physical state—gel or liquid crystal-
line.

8.2  Methods

MD has been applied for the determination of changes of physical properties of 
lipid bilayers caused by the incorporated peptide as well as for the determina-
tion of possible peptide structural alterations. MD were performed under periodic 
boundary conditions using the GROMACS software [68] and the GROMOS87 [69] 
forcefield with corrections for lipids [70, 71]. The initial models of transmembrane 
α-helix peptides have been generated by means of HyperChem [72]. Preequilibrated 
DMPC and DPPC bilayers with 128 lipid molecules and 3655 molecules of water 
in Lα liquid-crystalline state published by Tieleman et al. [73] have been used in 
bilayer modeling. For the simulations with membrane in Lβ’ gel state, we created 
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the bilayers on the basis of the experimental data (taking into account parameters 
for the area per lipid and bilayer thickness) [33, 74]. Initial structures were solvated 
with SPC water model (4764 molecules for DMPC and 4784 for DPPC), energeti-
cally minimized and simulated for over 20 ns until the membrane parameters were 
close to the experimental values. A cylindrical hole has been created in the center 
of a bilayer by removing four lipids whose atoms were within 0.23 nm of the cen-
tral axis of a cylinder. The peptide was then inserted into the cavity. The resulting 
system (peptide, 124 PC molecules, 4 chlorine ions and water) consisted from more 
than 16,000 atoms for LC and more than 20,000 for gel state of the membrane. The 
system has been energetically minimized and equilibrated during 0.5 ns while the 
peptide atoms were fixed. Then MD took place for at least 40 ns at temperatures 
T = 288 and 310 K (bellow and over phase transition) for DMPC and 296/346 K for 
DPPC bilayer. The temperature of phase transition is 297 K for DMPC and 314 K 
for DPPC. MD was performed with constant pressure of 1 bar (semi-isotropic baro-
stat), constant temperatures and with the time step of 2 fs. The LINCS algorithm 
has been used to constrain covalent bond lengths. The used conditions were similar 
to that reported by Berger et al. [75]. For results confirmation we extended seven 
simulations to 100 ns.

Trajectories were analyzed from the last 5 ns of the simulations by subroutines 
(programs) available from Gromacs package. Ramachandran plot were calculated 
by Procheck software [76].

8.3  Properties of Pure Membranes

Interactions of the peptides with lipid bilayers have been studied in a gel and in a 
liquid-crystalline state. At the end of the simulation the hydrophobic core of pure 
lipid bilayers in a gel state is 3.61 nm thick for DPPC and 3.26 nm for DMPC. 
The area per lipid is 0.4733 nm2 per lipid for DPPC and 0.4676 nm2 per lipid for 
DMPC membrane, respectively. Values determined by experimental methods are 
0.479 nm2/lipid for DPPC and 0.472 nm2 for DMPC [74, 77]. Membranes with 
similar difference in parameters have been used in MD simulations by Tu et al. [78] 
or Tieleman et al. [79].

For the membrane in a gel state most of dihedral angles should be in trans 
conformation [80]. Almost for whole chains it is over 90 %, only on beginnings 
and ends it goes lower, but it is still more than 80 %. Also deuterium order pa-
rameters (SCD) shows highly ordered system. The order parameters are defined 
as 2

, 3/2 cos ( ) 1/2CD z zS Θ= - , where Θz is the angle between normal to the mem-
brane and axis of that molecule. The axis is defined as a vector from Cn − 1 to Cn + 1 
and angle brackets represents averaging in time. Maximal and minimal values are 1 
(parallel to the membrane normal) and − 1/2 (perpendicular to the membrane) [81]. 
Order parameters depend on the structural state of lipid membrane—in a gel state 
it reaches up to value 0.4, but in LC state it is only up to 0.3. Experimental values 
for gel state reaches maximum 0.35 till 0.4 at 3rd till 4th Cα atom and goes down to 
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0.2 in the middle of membrane [82]. The order parameters calculated based on MD 
simulations of pure membranes are shown on Fig. 8.1 (presented as small spheres). 
These parameters reach 0.38 for DMPC and 0.34 for DPPC in region between 3rd 
and 6th atom. The frequency of transitions between trans and gauche conformation 
of dihedral angles goes from 7 till 30 changes per ns and lipid. However, as shown 
below, this parameter depends only on temperature and it is not affected even by 
presence of peptide.

The corresponding values for lipid bilayers in a LC state indicated in Tieleman’s 
web site are as follows. The hydrophobic thickness of bilayers is 2.97 nm for DPPC 
and 2.77 nm for DMPC, respectively. The areas per lipid are 0.629 nm2/DPPC and 
0.596 nm2/DMPC, respectively.

8.4  Changes in the Peptides

Based on molecular modeling studies, it has been estimated, that the hydrophobic 
length of the α-helix composed of 24 Leu residues is approx. 3.1 nm [83]. Note 
that this is lower than routinely calculated end-to-end distance of this α-helical 
peptide, assuming 0.15 nm per amino acid residue × 24 amino acids = 3.6 nm 

Fig. 8.1 Order parameters from last 5 ns of the simulations of peptides and four types of lipid 
bilayers. Lipids are separated into two slices around peptide: nearer to the peptide and more influ-
enced as s1 and farther, less influenced, as s2. In gel phase peptide causes disorder by its presence. 
In PC phase most of peptides relatively keep properties of pure lipid. Only I24 increases order in 
membrane. However more fluctuating peptides disorder membrane in the middle
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[84]). This value is shorter than hydrophobic thickness of the bilayer in a gel state 
(3.44 for DPPC and 3.2 nm for DMPC), but longer for BLM in a liquid-crystalline 
state (2.85 nm for DPPC and 2.62 nm for DMPC) [85]. Therefore we have ana-
lyzed the geometry of the systems in both gel and LC phases. Two examples of 
starting state and at the end of simulation (after 40 ns) are presented on Fig. 8.2. 
On beginning are lipids oriented perpendicular to membrane, but one example 
showed tilted linear helix, the other tilted but bended helix.

8.4.1  Peptide Tilting

The most basic response of system with positive hydrophobic mismatch is tilting 
of a peptide. As demonstrated on Fig. 8.3, in most cases the peptide tilts for at least 
20° were observed. In some simulations with DPPC membrane in a gel state, the tilt 
was less than 10°. The difference between thickness of DPPC membrane in gel state 
and length of the peptide hydrophobic core oriented perpendicular to membrane is 
very small. The helix changes the conformation of the main chain—the whole helix 
is twisted again to produce similar configuration like helices in coiled coil configu-
ration. This configuration is most visible for LA12 in both DMPC and DPPC mem-
branes in a gel state, it was less expressed for P24 and V24 in DPPC bilayers. This 
modification shortens effective hydrophobic length of the peptide and equals lengths.

Fig. 8.2 Time development of two systems. On A and B is linear tilted peptide (L24) in the mem-
brane in LC state; on C and D is peptide (V24) nearly perpendicular to membrane, but it is bended

 



252 M. Melicherčík et al.

In the rest of simulations, the peptide is more or less tilled. In more than half of 
simulations, the peptide doesn’t stay linear, but change its main chain conformation 
(more to the tilting). The peptide bends like a bow (Barlow et al. called it curved 
peptide [86]), or even breaks the helical structure (kinked as mentioned by the same 
authors)—see Fig. 8.4. Amount of bending is different for each simulation, but we 
were not able to find correlation between composition of system and amount of 
bending or place of break. But peptide A24 keeps best the linear conformation of ide-
al α-helix and doesn’t bend or break (see Table 8.1—the difference between angle 
of 1st and 2nd peptide half, but helicity analysis is not shown). The peptide V24 also 
keeps linear conformation—exception is DMPC/gel, where the peptides are curved. 
For providing some quantification of bending we calculated the tilt of whole helix 
(as axis from first to last four Cα atoms) and tilt of separated upper and lower halves 
(Cα from 13th–16th residue)—see Table 8.1. From tilt of the helix and its length we 
can calculate effective length of peptide in a membrane. The effective length is 
length of projection of helix to the membrane normal (Table 8.1). In ideal case it 
should be equal to thickness of membrane to minimize system internal energy.

8.4.2  Fluctuations of the Peptide

To check stability of helix itself, we have calculated RMS fluctuations of Cα atoms 
(Fig. 8.5). In general, the highest fluctuations took place at the polar part of the 
membrane (both ends) and in its central, hydrophobic core. The ends are in hydro-
philic regions with many small movable water molecules, while the central part is 
in region of membrane of lower density. The major fluctuations occur when peptide 
linear helix bends or breaks (for example I24/LC simulation). Beside of this, the I24 
is generally of lowest stability and the L24 peptide is in contrast the most stable. 
The V24 and (LA)12 fluctuate more than L24, but less than I24. The P24 fluctuates 

Fig. 8.3 Time development 
of L24 tilt. The peptide is 
tilted in LC and DMPC/
gel simulations. In DPPC/
gel was peptide bended (see 
Table 8.1, angle between 1st 
and 2nd half of peptide)
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similarly like I24, but in DPPC/gel phase fluctuates even more because it is longer 
due to additional amino acid. But for example the fluctuations of I24 in DMPC/LC 
can be increased also by bending and unbending of peptide, which increase standard 
deviation from average structure.

The differences in fluctuations of I24, A24, V24 and L24 are presented on Fig. 8.6, 
where root mean square fluctuations (RMSF) of Cβ, Cγ and Cδ atoms are compared. 
The fluctuation depends also on temperature and position of C atom in side chain. 
Because of temperature dependence it is possible only to compare fluctuations from 
simulations made by same conditions of atoms with same parameters. The Leu side 
chains are most stable, while the Ile side chains are the most fluctuating. The fluc-
tuation of Val side chains are between that of Leu and Ile. This instability of amino 
acids side chains affect also surrounding lipids (see below). The fluctuations are af-
fected also by distortions in helical structure—for example Cδ in DPPC/gel. In this 
case in C end of the peptide the fluctuations are similar in Leu and Ile. But the L24 
peptide formed a kink at this position (aprox. one turn from C end). The stability of 
side chains has been studied also by Pace et al. [87] and Johanson and Lindahl [54] 
(determined enthalpy and entropy of exchanging Ala with different amino acids in 
poly-Ala transmembrane chain) and Barlow et al. [86] (studied entropy of χ angles). 

Fig. 8.4 Bended peptide 
during simulation (I24 in 
DMPC/LC)

 



254 M. Melicherčík et al.

Ta
bl

e 
8.

1  
A

ng
le

s a
nd

 le
ng

th
s o

f h
yd

ro
ph

ob
ic

 p
ar

ts
—

m
em

br
an

e 
an

d 
pe

pt
id

e
Sy

st
em

A
ng

le
 1

st
 a

nd
 2

nd
 h

al
f 

(n
m

)
Ti

lt 
(°

)
Pe

pt
id

e’
s e

ffe
ct

iv
e 

th
ic

kn
es

s 
(n

m
)

Fu
ll 

pe
pt

id
e’

s l
en

gt
h 

(n
m

)
M

em
br

an
e’

s e
ffe

ct
iv

e 
th

ic
kn

es
s

1st
 sh

el
l (

nm
)

2nd
 sh

el
l (

nm
)

A
24

/D
M

PC
/g

el
9.

33
35

.5
5

2.
75

3.
38

3.
00

2.
83

A
24

/D
PP

C
/g

el
6.

88
13

.9
3.

29
3.

39
3.

33
3.

40
A

24
/D

M
PC

/L
C

7.
16

50
.8

5
2.

15
3.

41
2.

07
2.

34
A

24
/D

PP
C

/L
C

7.
16

37
.7

3
2.

69
3.

41
2.

71
2.

71
I 24

/D
M

PC
/g

el
4.

11
22

.4
3

3.
25

3.
52

3.
08

2.
97

I 24
/D

PP
C

/g
el

8.
29

18
.1

3
3.

31
3.

49
3.

29
3.

33
I 24

/D
M

PC
/L

C
18

.4
6

47
.4

9
2.

4
3.

56
2.

43
2.

52
I 24

/D
PP

C
/L

C
8.

74
9.

19
3.

55
3.

6
3.

06
2.

9
L 24

/D
M

PC
/g

el
5.

24
37

.9
8

2.
67

3.
39

2.
66

2.
74

L 24
/D

PP
C

/g
el

12
.6

6
7.

34
3.

4
3.

43
3.

26
3.

49
L 24

/D
M

PC
/L

C
10

.5
51

.9
2

2.
12

3.
44

2.
4

2.
55

L 24
/D

PP
C

/L
C

9.
19

43
.6

3
2.

49
3.

43
2.

59
2.

72
LA

12
/D

M
PC

/g
el

14
.6

5
16

.1
7

3.
26

3.
4

2.
82

2.
93

LA
12

/D
PP

C
/g

el
13

.1
6

5.
61

3.
38

3.
39

3.
37

3.
43

LA
12

/D
M

PC
/L

C
8.

91
50

.4
3

2.
18

3.
42

2.
36

2.
27

LA
12

/D
PP

C
/L

C
6.

68
41

.1
9

2.
58

3.
43

2.
53

2.
74

P 24
/D

M
PC

/g
el

10
.4

2
13

.3
2

3.
45

3.
54

2.
93

2.
92

P 24
/D

PP
C

/g
el

5.
97

15
.6

9
3.

29
3.

42
3.

4
3.

55
P 24

/D
M

PC
/L

C
5.

48
50

.7
2

2.
28

3.
59

2.
48

2.
56

P 24
/D

PP
C

/L
C

6.
12

51
.5

6
2.

15
3.

45
2.

63
2.

66
V

24
/D

M
PC

/g
el

19
.6

3
5.

24
3.

39
3.

41
3.

24
3.

1
V

24
/D

PP
C

/g
el

7.
21

3.
56

3.
48

3.
49

3.
14

3.
05

V
24

/D
M

PC
/L

C
4.

86
47

.3
3

2.
36

3.
48

2.
49

2.
49

V
24

/D
PP

C
/L

C
7.

24
46

.6
6

2.
4

3.
5

2.
58

2.
76



2558 Molecular Dynamics Simulations of Lipid Bilayers with Incorporated Peptides

Fig. 8.5  RMS Fluctuations from last 5 ns of simulations. Each peptide has lower stable parts at 
both ends and in the middle. Stability of peptide is influenced by sidechains—Leu stabilizes helix, 
Ala, Ile and Val increase the fluctuations

 

Fig. 8.6  Fluctuations of amino acid side chains. Lys atoms are most stable and Ile atoms are the 
lowest stable at same temperature and a position on side chain. But the distortions of helical con-
formation can increase fluctuations (L24 at DPPC/gel at C end)
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Their results agree with our findings that stability decreases in following order: 
Ile > Val > Leu > Ala.

8.4.3  Other Helix Parameters

We also calculated (using program g_helix from Gromacs package) other helix pa-
rameters—rise per residue, twist per residue, helix radius, Φ and Ψ angles, etc. The 
values computed from simulations are presented in Table 8.2. But the algorithms 
used by g_helix are influenced by changes of dihedral angles and by linearity of an-
alyzed helix. For example on Fig. 8.7 there are two nearly identical structures from 
I24/DMPC/LC simulation (from 2 ps distant snapshots). Each structure has only 1 
amino acid (different in each) outside the favored region for α-helix (Fig. 8.8), but 
for frame 1 the twist per residue is 100.95° and for frame 2 it is 83.23°. The values 
of radius of helix are 0.2436 nm (frame 1) and 0.2635 nm (frame 2)—graph not 
shown. Also the rise per residue and consequently also the helix length are affected 
(which is computed by multiplying the previous one by number of amino acids). 
Moreover, it seems that there is correlation between decreasing of the twist and in 
increasing of the rise per residue.

Problem with calculating of radius of helix is in using single helix axis. Axis is 
fitted to z-axis and using Pythagorean theorem the radius is calculated from x and y 
positions of Cα atoms. As the helix is bended or kinked, some atoms are moved to 
one side and other to opposite one. In both cases it causes increasing of helix radius. 
But in part, which is near to axis, the radius is (relatively) lowered.

There are virtually no changes in Φ and Ψ angles and during the simulation most 
of the time all angles are in most favorable region for α-helices. Also the averages 
angle values do not deviate from ideal values for the helix (Table 8.2).

8.5  Changes in the Membrane

The membrane affects the conformation of the peptide due to the difference in the 
length of their hydrophobic cores and vice versa the peptide affect the membrane 
structural state. In the case of positive difference, lipids could extend around helix 
to compensate (at least) part of the difference [8]. We can analyze deuterium order 
parameters, fraction of dihedral angles in trans conformation, frequency of changes 
between trans and gauche dihedral angles conformation and thickness of membrane 
surrounding peptide. All of these parameters are calculated for two cylindrical 
shells of lipids. First one is up to 0.8 nm and second one lies between 0.8 till 1.6 nm 
from peptide surface, respectively. Tieleman reported that the effect of peptide on 
the lipids is negligible at distances surpassing 1.6 nm from the peptide surface [88]. 
Due to this property we divided lipids into following three groups—1st shell, 2nd 

shell and the rest of the lipids. We calculated parameters only for first two groups.
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8.5.1  Order Parameters

In all simulations of the membrane gel phase, the peptides caused changes of the 
lipid bilayer into less ordered state (lower values of deuterium order parameters)—
Fig. 8.1. Each peptide decreases these parameters by different value. The temper-

Fig. 8.7  Two ns distant 
frames from trajectory with 
small differences in atoms 
positions, but with very 
changed helix parameters 
(calculated by g_helix)

 

Fig. 8.8  Ramachandran graphs of frames from Fig. 8.7
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ature also affected the order parameters. With increasing of the temperature the 
disorder increases and consequently the order parameters decrease. The decrease 
of order parameters for membranes in gel state has been confirmed experimentally 
[16, 21, 89]. This effect is probably correlated with decreasing of membrane thick-
ness (see below).

In simulations with DPPC in LC state, the order parameters increase. The only 
exception is longer P24. In the DMPC membrane the 1st lipid shell is less ordered 
than in 2nd shell (with exception of P24). The same holds also for the membrane in 
a gel state. In experiments with WALP peptides De Planque et al. found that the 
ordering of membrane can increase and decrease depending mainly on the peptide 
length [89] (using the same type of the membrane). The order parameters for L24 
or P24 peptides are comparable with that reported by Tieleman et al. [90] and those 
obtained in experiments [83, 85, 91]. Unfortunately there is no sufficient informa-
tion for comparison of the behavior of other peptides.

There is also observable effect of different side chains of peptides. I24 shows big-
gest stabilizing effect (higher order parameters) and V24 also orders surroundings 
lipids, but less than I24. The Leu based peptides (L24 together with LA12 and P24) 
cause high disordering. But A24 induced very small disordering effect. It is probably 
due to small volume of A24 side chains, which are less hydrophobic in comparison 
with other simulated peptides.

8.5.2  Fraction of Dihedral Angles in Trans Conformation

Another parameter, which can be used for characterizing the phase state of the lip-
ids, is amount of dihedral angles in trans conformation (Table 8.3). There is cor-
relation between this parameter and the temperature—the higher temperature, the 
more energy have atoms and are able to change conformation from nearly all-trans 
state. But there is also influence of peptide on this transition. In a pure gel state the 
membrane has around 90 % of dihedral angles in the trans conformation, but in a 
LC state it is 70–75 % [80]. We detected this fraction in 2nd lipid shell to be approx. 
85 % for gel state and between 72 and 78 % for LC membrane state. In 1st shell in 
a gel phase this fraction decrease is even lower by 2–4°. The lowest decrease of di-
hedral angles has been caused by I24 and V24 peptides, while A24 and all Leu-based 
(L24, LA12 and P24) produced drop up to 6°. As for LC state, the highest increase 
in dihedral angles in both shells has been observed for I24. The angle increase has 
been produced also by V24, LA12, L24. Slight angle decrease is possible for A24 or 
P24 peptides. But these changes were lower than 3° for all analyzed peptides. All 
changes noticed above suggest, that the peptides modify surrounding lipids to pro-
duce some type environment. The properties of this environment (order parameters, 
trans fraction, etc.) correspond to the structural state between gel and LC phase, but 
are shifted nearer to LC.
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8.5.3  Area Per Lipid

Table 8.4 shows how incorporated peptide influences the area per membrane lip-
id. The area occupied by the peptide is not subtracted. The peptides with small 
side chains (A24) induced lowest area parameter. The highest area can be found in 
simulations with L24 or I24. Area per lipid is increased with increasing of the size 
of amino acid side chains and for more fluctuating peptide (I24). Because Val has 
shorter side chains than Leu or Ile, the total area for V24 is lower than that for I24, L24 
or LA12 but higher in comparison with A24.

8.5.4  Transitions between Trans and Gauche Conformation

The amount of transitions (Fig. 8.9) between trans and gauche conformations (per 
lipid and per ns) depends on the temperature. But also peptides affect the frequency 
of these changes and amount of transitions. In a gel state all peptides destabilize the 
surrounding lipids and increase the amount of transitions. There are some but small 
differences between peptides. A24, L24 and LA12 provide the highest amount of tran-
sitions, while I24 the smallest one. The effect of V24 lies between these boundaries. 
In LC state the situation is exactly reversed—the Leu-based peptides modify lipid 
chains into some conformation, which lies between gel and LC state. The differ-
ences in LC state are very small.

In a gel state the changes agrees with previous findings. The side chains of 
I24 and V24 shows the highest fluctuations from all amino acids. This movement 
causes steric clashes with surrounding lipids (1st shell) and pushes lipids away from 

Table 8.4  Area per lipid (peptide is not subtracted from total area)
System Area/lipid (nm2) System Area/lipid (nm2)
DMPC/gel A24 0.4942 DPPC/gel A24 0.4718

I24 0.4956 I24 0.4730
L24 0.4948 L24 0.4731
(LA)12 0.4953 (LA)12 0.4719
P24 0.4958 P24 0.4739
V24 0.4945 V24 0.4751
Pure 0.4640 Pure 0.4694

DMPC/LC A24 0.5856 DPPC/LC A24 0.6207
I24 0.5881 I24 0.6233
L24 0.5877 L24 0.6231
(LA)12 0.5872 (LA)12 0.6219
P24 0.5862 P24 0.6206
V24 0.5873 V24 0.6230
Pure 0.5860 Pure 0.6213
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peptide. This (comparing with other peptides) keeps chains in trans conformation 
of dihedral angles (order parameters) and stabilizes them (amount of transitions). 
Chains with less gauche dihedral angles needs less space (lower area per lipid). 
V24 has shorter side chains (only Cγ), which causes lower area per lipid than L24.

8.5.5  Membrane Thickness

We have calculated thickness of membrane for 1st and 2nd shell of lipids around 
peptide (see Table 8.1). The change of membrane thickness is alternate way (to 
peptide tilt) to compensate the hydrophobic mismatch. In most of simulations the 
thickness of 1st shell is lower than 2nd shell. The exceptions are simulations of a gel 
phase (A24/DMPC, I24/DMPC, P24/DMPC, V24/DMPC, V24/DPPC) and I24/DPPC 
in LC state. In these 6 cases the peptide did not tilt to compensate the hydrophobic 
mismatch as mentioned bellow. Above mentioned simulations in a gel state have 1st 

shell appox. 0.1 nm thicker than 2nd shell and in case of I24/DPPC/LC the difference 
is 0.15 nm. In the rest of peptides the 1st shell is up to 0.2 nm thinner than 2nd one. 
In some cases (e.g. A24/DPPC/LC or V24/DMPC/LC) the thickness is virtually the 
same (the changes are less than 0.01 nm). We did not find any significant influence 
of amino acid side chains on this parameter.

Fig. 8.9  Amount of transitions between trans and gauche conformations (per lipid and ns)
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8.6  Hydrophobic Mismatch

It is possible to calculate peptide’s effective thickness from its tilt angle and its 
length. Effective thickness means length of projection of the peptide to normal of 
the membrane. This parameter should be equal to length of membrane hydrophobic 
core to minimize system energy. The effective lengths (perpendicular to membrane 
surface) of hydrophobic parts of peptides and both lipid shells of the membrane 
are compared in Table 8.1. When comparing these values, it is important to keep in 
mind that Lys side chains can flip in or out. This resulted in shortening or prolong-
ing ofeffective length of peptide (max. to 0.4–0.5 nm). Thus, it is not necessary to 
keep the same effective length of peptide and 1st shell of lipids to satisfy hydropho-
bic mismatch.

The thickness of hydrophobic part of unmodified membranes has a value of 
3.6 nm for DPPC/gel, 3.2 nm for DMPC/gel, 3.0 nm for DPPC/LC and 2.6–2.7 nm 
for DMPC/LC. In all cases the thickness of the second shell (compared with the first 
shell) are closer to the unmodified membrane: the average thickness is 3.58 nm for 
DPPC/gel, 2.93 nm for DPPC/LC, 3.12 nm for DMPC/gel and 2.62 nm for DMPC/
LC. Nearly in all cases of simulations, which resulted in the peptide tilt, the mem-
brane is by 0.3 nm thicker than the effective length of the peptide. In those cases the 
peptide tilt is bigger (according to the simulation results) so its effective length is 
smaller. But the average membrane thickness does not contain direct information on 
the orientation of individual lipid chains. Lipid chains can still be longer even in the 
LC state (higher order parameters, more trans conformations of dihedral angles), 
because they can tilt like the peptide.

The simulations of membrane in a gel state (V24/DPPC, P24/DPPC, LA12/DMPC, 
and LA12/DPPC) suggest that the membrane affects the peptides conformation. The 
whole helix is twisted into superhelical structure—helix composed from helical 
chain (see Fig. 8.10). The whole structure resembles single chain from coiled coil 
conformation. This structure is produced only in the gel membrane phase, where 
there is only small hydrophobic mismatch. The difference of thickness between 
peptide and membrane in LC state are too large to solve the situation similarly like 
for gel state.

The I24/DPPC/LC simulations suggest that the average peptide tilt is very small 
and didn’t solve the mismatch. Visual observation shows that at the beginning the 
peptide tilted (up to approx. 20°), but it didn’t stay in this conformation, rather went 
back nearly into its starting position. After short period of time it tilted again in 
random direction, but again returned back. During the 40 ns of simulation, whole 
tilting and returning process is repeated 5 times. The reason of this behavior remains 
unknown.

Because some membrane phenomena are quite rare, we ran some (I24&DMPC/
LC, I24&DPPC/gel, I24&DPPC/LC, LA12&DMPC/gel, L24&DMPC/gel, V24&DPPC/
gel, V24/DPPC/LC) simulations to 100 ns. In all cases the conformation didn’t differ 
much from end of original simulations. E.g. tilt in I24&DMPC/LC decreased by 2°, 
I24&DPPC/LC finally stabilized at average angle 5.15° (effective thickness: 3.2 nm, 
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1st shell 2.87 nm, 2nd shell 2.39 nm). The tilt for V24&DPPC/gel increased to 4.33 nm 
and for V24/DPPC/LC the tilt decreased to 45.88° (by 1.8°). All these findings agrees 
with RMS deviation data—the systems reached (at least some meta-) stable state.

Barlow et al. published study of helix conformation from PDB database [86]. Al-
though they studied 48 helices, only 15 % keep conformation near to ideal α-helix. 
From rest of them 10 % have different lengths, 17 % have been kinked and 58 % 
were curved. These results are not fully comparable with ours. The reason is that 
they didn’t study helices transmembrane proteins and the amino acid composition 
was quite different.

Tieleman et al. [73] performed 2 ns MD simulation of α-helix with long hydro-
phobic segments (Flu26 and Flu34) in POPC bilayers. They observed considerable 
extension of the membrane thickness around Flu26 peptide and declination by 10°. 
At the same time, they did not observe extension of the thickness for the peptide 
Flu34 with longer hydrophobic length, but the peptide molecules declined by 25°. As 
summarized by Killian [39] from experimental and simulation data, there is change 
of the membrane thickness near the protein in systems with WALP protein and only 
a small tilt is created. However Lys flanked peptides such (in his case only L24, 
(LA)12) do not change the membrane thickness so extensively, and rather increase 
the peptide tilt. This agrees with our results, namely the mismatch of thickness of 
hydrophobic parts is compensated by peptides tilt.

Petrache et al. [92] also discussed possible drawback of the molecular dynam-
ics simulations. First there are problems connected with the rather short time of 

Fig. 8.10  Superhelical 
configuration of LA12 peptide 
at the end of the simulation. 
Lime dashed line is axis con-
nects centers on the begin-
ning and ends of peptide. The 
peptide tilts around this axis
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the simulations restricted by several ns. At the same time they received similar 
results with shorter—around 5 ns and longer—around 10 ns simulations. However, 
it should be noted that characteristic time of relaxation of phospholipid dipole mo-
ments following membrane disturbance by voltage jump lies between micro- to 
mili-second scale. Longer time probably corresponds to the collective movement 
of lipid clusters [93]. Incorporation of the short peptide influences this relaxation 
time significantly [92]. We can therefore expect that the relaxation time of the short 
peptides, like L24, should be comparable or even larger than that for phospholipids. 
Therefore, in order to receive equilibrium state of the peptide in a membrane, the 
simulations should last in order of microseconds. Currently it is possible by means 
of the coarse-graining (CG) models, which however lack the details of atomic reso-
lution. In addition due to less degree of freedom the CG systems move rapidly than 
atomic models. However, even simple CG models allow to obtain important infor-
mation on the features of peptide-lipid interactions. This explains growing interest 
to this method in recent five years, which include also combination of full atomic 
and CG approach in modeling the peptide/lipid interactions (see Polyansky et al. 
for recent review [30]). However as stated by Monticelli et al. [95], more shorter  
simulations can provide better sampling of conformation space than longer one. 
Despite the large number of limitations, MD represents a useful approach for the 
study of fast conformational movements of peptides and phospholipids in a mem-
brane, though we cannot be sure whether the model system reached equilibrium 
or not. But results obtained by MD are consistent with experiments, in respect of 
inducing hydrophobic mismatch and disordering effect of peptide on the membrane 
in the gel state.

8.7  Conclusion

Our results confirmed the tendency of Lys-flanked peptides to compensate the posi-
tive mismatch between peptide and membrane hydrophobic core by tilting. Some 
of the peptides, however, produce superhelical double-twisted structure. This only 
occurs in the membrane in the gel phase, where only a small hydrophobic mis-
match exists. The peptide also alters certain properties of the surrounding lipids 
such as membrane ordering, the amount of dihedral angles in trans conformation 
and the number of transitions between trans and gauche conformation. It is likely 
that these effects should provide some preferable structural state of the peptides in 
a membrane. The lipid structural state around the peptide is probably between gel 
and liquid-crystalline state. This effect depends on peptide amino acid composition. 
Amino acids with large side chains branched at Cβ (Ile, Val) produce helix, which 
has more side chains fluctuates than that of a poly-Leu helix. This holds also for 
small side chains (Ala).
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Abstract Polyphenol glycosides are potential compounds in the kidney stones 
therapy. Experimental data indicate the formation of glycoside complexes with 
calcium ions. Theoretical studies support experimental finding in elucidating the 
structures of studied complexes. DFT methods constitutes reasonable approach to 
investigate the strength and structural properties these complexes. The extraction 
of main structural factors responsible for complexing activity allows to design new 
ligands for calcium ions, being helpful in the kidney stones treatment.

9.1  Introduction

Calcium in human body is mostly deposited in skeleton and bones as calcium phos-
phate. The rest of calcium ions, about 1 % of the whole concentration, play many 
important functions in the organism. The concentration of Ca2 +  in blood controls 
the proper functioning of heart and circulatory system [1]. The Ca2 +  concentration 
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controls the blood pressure. The blood clotting is also the Ca2 + -dependent process 
[2]. Moreover, calcium ions, as the second messenger, control processes related to 
the muscle contraction and nerve impulse transmission [3, 4]. There are hundreds 
of known proteins binding calcium but the most important is Calmodulin, the spe-
cial protein dedicated for Ca2 + , which after binding with calcium ions changes the 
conformation and performs different functions. The only available form of Ca2 +  
are dietary sources. The metabolism of Ca2 +  is regulated by three mechanisms: 
intestinal absorption, renal reabsorption, and bone turnover [3]. Beside the proper 
homeostasis of Ca2 +  in the organism, there are also pathological changes in the 
calcium economy as osteoporosis or nephrolithiasis. The osteoporosis is related to 
calcium losses in the biggest reservoir of calcium—bones, while the urolithiasis 
involves the formation of calcium deposit in kidneys. In almost 80 % cases kidney 
stones contain calcium oxalate as a fundamental compound. Moreover, nephroli-
thiasis is the worldwide problem, which is usually more common for men than for 
women [5]. Lewandowski and Rodger [6] divide factors causing nephrolithiasis 
on: environmental factors (climate, occupation), physiochemical factors (urine vol-
ume, urinary concentration of oxalate and other elements) and dietary patterns and 
nutrients. Nowadays, medicine offers only few methods of the treatment of kidney 
stones: traditional-surgery or, less invasive extracorporeal shock wave lithotripsy 
(ESWL), percutaneous stone removal (PCNL), and endourological stone treatment 
[7]. The possible treatment constitutes only instrumental techniques and no active 
drugs or active substances which prevent this disease are available. The only offered 
drug for patients are those causing increase of urine flow or controlling colic pain 
[8]. Unfortunately nephrolithiasis is a recurrent disease and about 75 % of patients 
suffer the recurrence within 10 years. Therefore it is important to develop new more 
efficient preventative therapies, which can inhibit the formation of kidney stones or 
possess properties of dissolution of calcium oxalate deposits. The possible approach 
constitutes modeling the potential inhibitors forming calcium oxalate crystals. On 
the other hand there are available compounds directly influencing the calcium oxa-
late formation (inhibitory or dissolution effect) e.g. citrate. It should be noted that 
compounds possessing dissolution properties of calcium oxalate cannot interfere 
too much into the whole calcium economy.

Crystallographic data show that the preferred donor for calcium cation are oxy-
gen atoms, while the complexes with nitrogen or sulfur as ligands are a rarity [9]. 
Hence, potential structures applied for dissolution of kidney stones should contain, 
in their skeleton, many oxygen atoms. We must remember however that there are 
many different oxygen atoms with regard to their chemical environment (e.g. hy-
droxyl, acid, ester, ether, glycosidic and others) and their ability to bind calcium will 
depend on this factor.

The extract from Rubia tinctorum L. is rich in hydroxyanthraquinones and these 
compounds were used in the kidney stones treatment. Unfortunately it contains also 
lucidin, one of anthraquinones which exhibit the genotoxic activity [10]. Anthraqui-
nones are polyphenols and they have ability to interact with calcium ions (as will be 
described later in this chapter). Due to their condensed aromatic polycarbon struc-
ture there is a risk of genotoxity. There are some other polyphenols without con-
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densed aromatic polycarbon fragment, which exhibit complexation activity to cal-
cium ions. Polyphenol glycosides constitute the group of such compounds, which 
beside standard aromatic part substituted by many hydroxyl groups also possess 
glycon part of the carbohydrate molecule. The number of potential binding sites in 
these compounds increases due to additional oxygen atom contained in sugar part. 
The carbohydrate part increases their solubility in water, which is of great advan-
tage if such compounds are used in kidney stone therapy.

9.2  Carbohydrates as Ligands

In this section we try to bring the issue of Ca2 +  complexation by sugars from the 
structural point of view. Gyurcsik and Nagy [11] pointed out that although some 
reviews regarding carbohydrates–metal complexes are available (e.g. “Complexes 
of natural carbohydrates with metal cation” by Alekseev et al. [12]), no comprehen-
sive monograph which treat carbohydrates as ligands can be found. We also do not 
pretend to cover the whole topic of the area. Hence, we will mostly focus on the 
general principles of forming complexes by carbohydrates with a special emphasis 
to the cases in which calcium constitutes the metal ion and we present selected the 
most typical structures.

At the beginning, it should be noted that interactions between carbohydrates and 
metal ions are usually weak. Water strongly binds to hydroxyl groups of carbohy-
drates, and as a result complexes in water solution and in solid state can be structur-
ally different. The formation of carbohydrate complexes in water requires replace-
ment of water molecules by hydroxyl group from the first coordination sphere. To 
form complex in water the interaction of the ligand must be stronger than that with 
water molecules. Therefore there are some complexes which cannot exist in water 
solution but they exist in crystalline form. Monosaccharides and oligosaccharides 
as well as polysaccharides possess in their skeleton, as donors, hydroxyl oxygen 
atoms which are relatively weak ligands. Some sugar derivatives can possess ion-
izable functional group, which might exhibit stronger interactions with metal ion. 
Carbohydrates with carboxylic, sulphonic or phosphate groups as an anchoring sites 
can form much stronger complexes with calcium ions [13–16]. They are not the 
subject of consideration in this chapter.

In 1961 J.A. Mills studied the acidity of sugars by the paper electrophoresis. 
He has found that some sugars, even at neutral pH, penetrated toward cath-
ode. This indicated that they are positively charged probably by complexing 
cations. The extent of migration was a measure of the complexing ability. The 
only coordination centers in neutral sugars are constituted by oxygen atoms of 
hydroxyl groups. Since water solvates cations much better, the question that 
arises is regarding the number hydroxyl groups needed to form a stable com-
plex. It is believed that at least two or three hydroxyl centers in the favorable 
arrangement are required. There is another question related to their favorable 
steric arrangements.
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The above considerations apply to neutral conditions since in basic environment 
sugars even possessing only hydroxyl groups can be in the anionic form due to disso-
ciation of hydroxyl groups, and then the situation becomes different. The general rule 
presented in 70th years of XX century by Angyal [17] is based on his experimental 
research and defines the preferred spatial arrangement of hydroxyl group in the car-
bohydrate structure for complex formation. The results of his work indicated that for 
cyclitols and carbohydrate in the six-membered ring form, the preferred arrangement 
for the hydroxyl group are 1,3,5-triaxial ( ax–ax–ax) or 1,2,3-axial–equatorial–axial 
( ax–eq–ax) sequences and also quasi axial–quasi equatorial–quasi axial sequence of 
three adjacent hydroxyl group for the furanose form. These rules by some are called 
as Angyal rules[12]. In further Angyal further showed [18] structural arrangement of 
hydroxyl group for acyclic compounds. Gyurcsik and Nagy [11] collected all possi-
ble spatial positions, arranged in the order according to the decreasing ability to form 
the complex (Fig. 9.1). All above mentioned ligands form 1:1 complexes with metal 
cations in the hydrophilic solvent [11, 17–19]. Further Angyal studies [20] specified 
another factor, which leads to the formation of carbohydrate complexes. Namely, it 
is that the size of the ionic radius of complexed ion. The cation with the ionic radius 
lower than about 80 pm is better bounded by the ax–ax–ax arrangement, whereas the 
cation with larger ionic radius prefers the ax–eq–ax sequence for the coordination. 
Since the ionic radius of calcium is estimated at 114 pm, the preferable carbohydrate 
sequence for calcium ions is ax–eq–ax. Molecular mechanics computations, carried 
out by Hancock and Hegetschweiler [21], confirmed such preferences. However, as 
noted by Alekseev et al. [12] only three complexes in solid state are known, which 
are in accordance with Angyal rules. On the other hand, there exist carbohydrate 
complexes with metal ions (e.g. α-d-glucopyranose) without special spatial arrange-
ment required by Angyal rules. Another independent computations carried out by 
Palma and Pascal [22] have proved that in the gaseous phase general Angyal rules 
are not fullfilled. It is not surprising that tetra- and pentacoordinated complexes for 
β-anomers are characterized by the lowest energy. The structural analysis of carbo-
hydrate–metal complexes in water solution is very difficult. The weak complexation 
results in the equilibrium shifted strongly toward the uncomplexed form. In addi-
tion, sugar in water exists in many equilibria, and each conformer can form different 
complex with the metal cation with the different complex constant. Constants of 
complexes for simple carbohydrates are in the range between 0.1 and 6.0. Alekseev 
pointed out that complexes between metal ions of sugar acids are characterized by 
the one order higher complex constant. In the next part of this section we will pres-
ent some examples of calcium complexes with carbohydrates and their derivatives.

9.2.1  Calcium–Carbohydrate Complexes in the Crystal Form

Since, as mentioned above, calcium plays very important role in biological systems, 
our studies are devoted to calcium complexes with polyphenol glycosides. So this 
review will be devoted mostly to describe the research done on calcium–carbohy-
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Fig. 9.1  Possible arrangements of hydroxyl groups in six- and five-membered rings and in acyclic 
form of sugar and their derivatives: (a) ax–ax–ax, (b) ax–eq–ax, (c) cis–cis–cis, (d) threo–threo-
triol, (e) threo-diol, (f) erythro–threo–triol, (g) erythro-diol, (h) erythro–erythro-triol (i, j) cis-diol 
on a five- and six-membered ring, (k) trans-diol on a six membered rings. (Reprinted from [11], 
Copyright (2000) with permission from Elsevier)

 



276 D. Toczek et al.

drate complexes. Due to variety of coordination numbers, calcium cations shapes 
are characterized by the great diversity of shapes of its complexes. The majority of 
calcium complexes with carbohydrates are 7–9 coordinated structures [23]. Typi-
cally seven-fold coordination geometry can be described as a pentagonal bipyramid 
(Fig. 9.2a) or as an alteration of the square antiprism in which one square is replaced 
by triangle (Fig. 9.2b) and eight coordination as square antiprism (Fig. 9.2c). The 
centers of squares and triangle in both seven and eight fold geometries are col-
linear with the calcium ion. The nine coordination geometry (Fig. 9.2d) can also 
be described as a distorted square antiprism in which one square is significantly 
larger allowing additional oxygen to interact with calcium in the direction defined 
by the axis passing through the centers of squares. Polyhedron geometries pos-
sesses triangular arrangement of oxygen atoms allowing contacts ranging in length 
2.30–2.85 Å, which enables tridendate ligands to bind to calcium ion in the solu-
tion. In the crystal structures such arrangements could be the restricted by crystal 
packing [23].

Fig. 9.2  Seven to nine 9-fold coordination geometries: (a) bipiramid pentagonal, (b) modified 
square antiprism (c) square antiprism, (d) nine-fold coordination geometry
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One of the first historical confirmations of the structure of the carbohydrate com-
plex with metals was the X-ray study of the crystal structure of sucrose NaBr · 2H2O. 
It has to be mentioned that sucrose does not form the complex in the solution [24].

In 1972 crystal structure of sugar and calcium was determined for d-man-
nose CaCl2 · 2H2O. Calcium in this case is coordinated to O1, O2, and O3 of one 
β-furanose ring and to O5 and O6 of the another mannose molecule [25].

The structure of the sugar unit in complexed and uncomplexed inositol is the 
same since inositol presents three axial hydroxyl groups in a manner ready for in-
teractions with calcium ion [26]. The only slight change is observed in the distance 
between syn-axial oxygen atoms (2.82 Å in comparison to 2.96 Å in uncomplexed 
molecule). This reduction in the gauche or syn-axial interactions between partici-
pating oxygen atoms seems to be generally true, providing the driving force toward 
the complex formation [18].

In 1988 calcium complexes with d-glucose in the solution and in crystal form 
were investigated by Tajmir-Riahi [27]. He pointed out that there are strong interac-
tions in calcium–d-glucose complexes in the solid and in the non-aqueous solution, 
while water, as a solvent, causes significant decreasing of these interactions. He also 
observed that calcium ion complexes in solid state can form two kind of complexes 
with 1:1 and 1:2 calcium–sugar ratio. In the first one calcium is coordinated by 
seven oxygen atoms (three oxygen atoms from sugar and four oxygen atoms from 
water molecules). In the 1:2 complex the calcium atom is coordinated by eight 
oxygen atoms: four oxygen atoms from water molecules and two hydroxyl oxygen 
from each d-glucose molecule.

The very interesting case was observed for the disaccharide α-d-allopyranosyl-
α-d-allopyranose molecule synthesized intentionally as it has potential pentaden-
date possibility of binding calcium due to the presence of two ax–eq–ax sequenc-
ing. Nuclear magnetic resonance (NMR) studies in the solution did not prove such 
complexation, however pentadentate interaction was observed in the crystaline 
CaCl2 complex (Fig. 9.3) [28]. The coordination was found involving O1, O2, O3, 
O2′, O3′ and four molecules of water. It is worth to point out that isomer α-d-
glucopyranosyl-α-d-glucopyranose having no ax–eq–ax sequencing crystallizes in 
completely different manner [18].

Fig. 9.3  Pentadentate 
complex of α-allopyranosyl-
α-d-allopyranose with CaCl2. 
(Reprinted from [28], Copy-
right (1978), with permission 
from Elsevier)
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d-Ribose forms a complex in which each calcium ion is shared by two ribose 
molecules. One ribose molecule represents tridendate ligand binding calcium ion 
through O1, O2, O3 atoms, the second ribose is a bidendate ligand and binds via 
O4 and O5 oxygen hydroxyl atoms. The coordination shell is completed by three 
molecules of water giving the total of eight coordinating oxygens for each calcium 
(Fig. 9.4). The tridendate binding is due to the fact that arrangement of oxygen 
atoms O1, O2, O3 in this pentasaccharide is similar to ax–eq–ax arrangement in 
six-membered rings [29].

Bugg [14] analysed the crystal structure of calcium bromide complex of lactose. 
Lactose, component of milk, is responsible for the absorption of calcium from the 
gastrointensinal tract due to calcium–metal binding properties. Lactose belongs to 
disaccharide and its molecule forms the complex in which one lactose molecule is 
coordinated to the calcium ion through O3 and O4 of its galactose part and through 
O2′ and O3′ of its glucose moiety. The coordination shell is completed by addi-
tional molecules of water (Fig. 9.5). In the same paper another galactose complex is 
presented in which calcium binds to five hydroxyl groups but from three different 

Fig. 9.5  Calcium complex 
with lactose—8 coordination 
structure. The first coordi-
nation sphere is formed by 
four water molecules, two 
hydroxyl oxygens from 
glucose and two hydroxyl 
oxygen atoms from the 
galactose part. (Reprinted 
with permission from [14], 
Copyright (1973) American 
Chemical Society)

 

Fig. 9.4  Structure of d-ribose complex with CaCl2. Two molecules of ribose coordinate the cal-
cium cation. The first one is tridentate, the second bidentate. (Reprinted from [29], Copyright 
(2003), with permission from Elsevier)
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carbohydrate molecules; O1 and O2 from the first, O3 and O4 from the second and 
O6 from the third. The coordination shell is completed by three molecules of water 
[13].

Takashi et al. [30] and Cook and Bugg [31] studied the complexes of trehalose 
(disaccharide formed by an α,α-1,1-glucoside bond between two α-glucose units) 
with calcium chloride and calcium bromide respectively. Both structures were very 
similar. In each complex the calcium ion is coordinated to one molecule of water 
and four molecules of trehalose (hydroxyl groups O2 and O3 from two molecules 
and two O6 hydroxyl oxygen from other molecules. These seven oxygen atoms are 
arranged in pseudo pentagonal bipyramid—similar to one discussed for the calcium 
bromide—lactose complex.

Fructose exists in the complex with calcium surrounded by eight oxygen atoms 
from four molecules of sugar and two molecules of water, which form a distorted 
square antiprism. Two fructose molecule binds through their O2 and O1 oxygen 
atoms in bidendate fashion and other two by their O6 oxygen atom in monodentate 
fashion [32].

The open chain carbohydrate derivatives like alditols form complexes with 
calcium but their formation strongly depends on their conformation. Angyal [17] 
based on NMR studies, has proposed that three consecutive hydroxyl groups have 
to be able to form conformation similar to ax–eq–ax. It is possible when they have 
the threo–threo configuration. In the case of the erythro–erythro configuration side 
chains are parallel to each other, thus making such a conformation of relatively 
higher energy. When three consequitive hydroxyl groups are in threo–erythro con-
figuration two side chains are in the gauche arrangement which makes this isomer 
less stable than threo–threo but more stable than erythro–erythro. Angyal pointed 
out, based on electrophoretic mobility, that the ratio of all-threo to all erythro is in 
the range of 0.24–0.09. The above consideration relates to complexes when three 
hydroxyl groups from one alditol is complexed to the same calcium atom. If it is not 
possible the carbohydrate becames bidendate ligand. The situation is less compli-
cated when one or even two side chains are small hydrogen atoms.

Yang et al. [33] have studied the coordination behaviour of neutral erythritol 
with calcium and lanthanide ions. Erythritol is one of the simplest representative of 
carbohydrates with four carbons each with the hydroxyl group on it. The hydroxyl 
group are not in the threo–threo arrangement to form tridentate ligand. They have 
identified three different metal complexes with the molar ratio of metal ion to eryth-
ritol as 2:1, 1:1, and 1:2. In all structures erythritol acts as the bidendate ligand. 
The structures are shown on Fig. 9.6. In the first structure (Fig. 9.6a) the calcium is 
surrounded by seven ligands: three chloride ions, two water molecules, and two hy-
droxyl groups from erithritol, which results in the pentagonal bipyramidal arrange-
ment. In the second structure (Fig. 9.6b), calcium is coordinated to four hydrohyl 
groups from two erythritol molecules and four molecules of water. Chloride ions do 
not coordinate to calcium. Calcium is 8-fold coordinated in the bicapped trigonal 
prism. In the third structure (Fig. 9.6c) the calcium is surrounded by eight hydroxyl 
groups from four erythritol molecules.
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Another interesting structure of open chain carbohydrate derivative is presented 
by the galactitol complex with calcium. Galactitol—1,2,3,4,5,6 heksahydroxyhex-
ane is the metabolite of galactose. It lacks the carbonyl group and so it has an the 
open chain structure. It forms the complex in which the galacitol binds through its 
four hydroxyl groups to two calcium ions as shown on fig below (Fig. 9.7) [34]. 
Galactitol in this case is bidentate ligand also, despite that 1,2,3 as well as 4,5,6 hy-
droxyl groups can arrange in a way to form tridentate ligand with preferred threo–
threo geometry.

There is one structure which is worth of analysis despite it is not a neutral poly-
saccharide. Alginates, b-d-mannopyranosyluronic acids are polysaccharides which 
form gels with calcium ions. Calcium ion binds to two neighboring molecules of 
uronic acid to five oxygen atoms: two from hydroxyl oxygens, one from ring oxy-
gen, one from glycosidic oxygen and one oxygen atom from the carboxylic group 
[17]. More about the structure of alginate gels can be found in Agulhon et al. [35] 
paper, in which using density functional calculations the interactions were investi-
gated between diuronate units and some divalent cations.

Fig. 9.6  Three crystal forms of erythritol complexes with CaCl2 with molar ratios of metal to ery-
thitol: (a) 2:1, (b) 1:1, (c) 1:2. (Reprinted with permission from [33], Coryright (2003) American 
Chemical Society)
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9.2.2  Calcium–Carbohydrate Complexes in Solution

As mentioned above, simple carbohydrates with s-block metal ions including cal-
cium form complexes in water but their stability is very low. NMR is probably 
the most suitable method the studies of a complex formation in solution. It has 
been reported long time ago that the addition of calcium chloride to the solution 
of epi-inositol and some glycosides in deuterium oxide causes the downfield shift 
of some or all signals in the 1H-NMR [36, 37]. The shifts are in the same direc-
tion, similar to that caused by paramagnetic reagent, however the value of changes 
are smaller. When the calcium salt is added to the solution of carbohydrates the 
downfield movement of NMR signals is observed in some or all NMR signals from 
dipole formed by the metal cation and the coordinated oxygen atom. The shift in 
hydroxyl–proton resonances in water as a function of the concentration of added 
calcium chloride yields, in general, has a linear dependence. The larger slope the 
stronger is the complex formation.

Angyal was also one of the first who studied the complexes of calcium with 
carbohydrates in the solution by means of NMR. He noticed that addition of para-
magnetic ions like europium and praseodium shifts the signals to a greater extend, 
so that better analysis can be performed [38–40].

Some chosen examples of NMR studies of calcium sugar complexes in the solu-
tion are given below.

Similar shifts were observed in 1,2,3,4,5 in the pentahydroxycyclohexanes. In 
the epi-inositol the interaction was attributed to interaction with O2, O3, and O4 
hydroxyl oxygen atoms. The signal shifted the most where the protons are attached 
to central carbon in the three consecutive carbon atoms with the hydroxyl group in 
the configuration ax–eq–ax.

α-d-Allopyranose in its more stable conformation contains ax–eq–ax configura-
tion of hydroxyl groups but its β anomer does not. Both anomers are in dynamic 
equilibrium in water at room temperature [41]. The addition of calcium ions causes 
a substantial increase in concentration α-d-allopyranose with substantial downfield 

Fig. 9.7  The structure of calcium ions complex with galactitol. (Reprinted from [34], Copyright 
(2002), with permission from Elsevier)
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shift of its anomeric proton. This experiment indicates the formation of complex 
formation with the α-d-allopyranose only and as a consequence the appropriate 
equilibrium shift. It is worth to note that the effect after the addition of monovalent 
sodium ion is small due to weak complexing ability of sodium. The NMR studies 
also revealed that spectra of α-furanose but not β-furanose was changed indicat-
ing that the cis–cis arrangement of five membered α-furanose ring also favors the 
complex formation. The fact that only α-d-allopyranose and α-d-allofuranose form 
complexes with calcium and β forms was not independently confirmed by electro-
phoresis experiments [17].

In the case of 5-o-methyl-d-ribose [17] α-furanose isomer consist of 33 % and 
β-furanose 67 % in the solution. After the addition of calcium chloride the propor-
tion was changed to 70:30 respectively. It is due to the possibility of α-furanose to 
adopt conformation in which hydroxyl groups O1, O2, O3 are quasi axial, quasi 
equatorial, quasi axial which is close to typical arrangement ax–eq–ax.

As expected, α-d-ribopyranose and α-d-ribofuranose [41] signals in NMR are 
shifted downfield due to the addition of calcium chloride, since they have acquired 
the arrangement of three hydroxyl groups. In addition β-d-ribopyranose signals has 
also been shifted due to the change of conformational equilibrium from 4C1 to 1C4 
(Fig. 9.8), since only the later has the sequence ax–eq–ax.

The conformation change was also observed in the case of d-lyxose. From 
two possible forms, only β-pyranose has the required ax–eq–ax configuration but 
α-pyranose does not. The NMR spectrum in the presence of calcium ions [17] has 
shown that β-anomer consists of 50 % whereas in the solution without calcium chlo-
ride its concentration amounts to 28 % only. This is the evidence that equilibrium is 
shifted due to the complexation with calcium ions.

d-Gulose, d-glycero-d-gulo-heptose are carbohydrates possessing the ax–ex–ax 
sequence in α-pyranose forms. Addition of calcium ions to in the solution also shifts 
the equilibrium in similar manner to that observed in d-allose. Similar conforma-
tional change was observed in the case of apiose, where the α-d-apio-d-furanose 
signals become the major components of the isomer mixture. This sugar has three 
cis-hydroxyl groups.

Fig. 9.8  The conformational equilibrium enforced by binding of calcium ions. The nomenclature 
4C1 and 1C4 are in accordance with the IUPAC nomenclature [42]. (The letters defining conforma-
tions are described by numerals, which are locants of ring-atoms, indicated as superscripts and 
subscripts)
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In the contrast, only small changes were observed in the solution of d-mannose, 
d-glucose, d-xylose, d-arabinose, d-galactose, d-fucose, l-sorbose [17, 43]. These 
sugars has no ax–eq–ax configuration in three subsequent hydroxyl groups. This 
fact again supports the thesis that such arrangement in six membered cyclitols is 
required for the complexation with calcium cations. However, some of these sugars 
can form complexes in bidentate form.

Weak interactions between d-xylose and calcium ions were observed in NMR. 
None of the forms of d-xylose possesses the required ax–eq–ax configuration need-
ed for the strong bonding. Authors [43] attributed the NMR shift change to weak 
interactions in the bidentate mode. α-anomer in the 4C1 conformation has ax–eq pair 
and in the 1C4 conformation the cis ax–ax pair. Presented results indicate also that 
from two β-anomers 4C1 and 1C4, only β-anomer in 1C4 conformation has two cis 
axial OH groups. Since only the β-4C1 structure dominates, the conclusion is that 
none of β-anomers form complexes with calcium [44]. The final conclusion was 
that the chemical shift change was due to the complex formation within the α-4C1 
conformation. The α-4C1 possess an ax–eq pair which form stronger interaction that 
ax–ax in the case of α-1C4 conformer.

In the case of d-glucose [43], between all possible conformers which are able 
to bind in the bidentate form, only the α-4C1 conformer having ax–eq pair (O1, 
O2 hydroxyl oxygen atoms) is responsible for a weak interaction with calcium. In 
the absence of calcium the major conformer is constituted of β-4C1 characterized 
with all equatorial hydroxyl groups—allowing stronger interactions with water. 
This conclusion is supported by the fact that 2-deoxyglucose does not bind to the 
calcium ion.

d-Galactose can form only weak complexes in α-4C1 and α-1C4 pyranose confor-
mations due to the presence of ax–eq hydroxyl groups and β-4C1 due to the ax–eq 
pair of the hydroxyl groups arrangement.

d-Fructose and l-sorbose are ketoses. The first one forms weak complexes in 
the β-pyranose 1C4 conformation with ax–eq sites for binding of calcium and weak 
complexes by α- and β-furanose isomers. l-Sorbose forms also very weak com-
plexes. It is possible only in the β-4C1 conformer due to two sets of cis ax–ax.

9.3  Other Methods Used for Complex Formation Studies 
in the Case of Polyphenol Glycosides

There are a number of other methods, spectroscopic as infra-red (IR), ultraviolet–
visible (UV–Vis), which allow the evaluation of the ability of the Ca2 +  complex 
formation. Not all of them are suitable in every case. We have decided to explore 
the flame photometry and conductometric titration since the NMR changes were too 
small to perform the correct analysis.

The flame photometry indicates the concentration of calcium in the solution. 
It could be used for evaluation of dissolving power of the ligand or prevention of 
crystallization of the solid calcium salts in solution.
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9.3.1  Flame Photometry

The flame atomic emission spectrometry (FAES) was used by us to measure the com-
plexing ability of tested compound. The flame photometry constitutes the relatively 
sensitive method which allows the determination of studied element concentrations 
in the range of 0.1–1000 ppm with a relative small error of 1–3 %. This approach 
was used for the determination of the calcium concentration in the water solution 
over solid calcium oxalate i.e. the shift of the solid–liquid interphase equilibrium in 
and without the presence of synthetic or natural complexing agent [45–47].

9.3.2  Conductometric Titration

The conductometric titration is based on the observation of changes in the conduc-
tivity of the analyzed solution during the addition of the titrating reagent—(sodium 
oxalate in this case) to the solution of calcium chloride and the complexing agent. 
The formation of the complex results in a decreasing of conductivity. Since some 
of calcium ions are complexed and they are not participating in the conductance. In 
this reaction, during the addition of Na +  and C2O4

2 −, the insoluble calcium oxalate 
is formed. The conductivity of such solution decreases until it reaches the end point 
(EP) of titration, which corresponds to the moment when the total amount of Ca2 +  
ions in the solution is bonded. The conductivity of the solution at this point is mini-
mal. Further addition of sodium oxalate result in increase of conductivity because 
of the excess of Na +  and C2O4

2 − ions. If addition the analyzed compound causing 
that EP is reached sooner than in standard curve, that mean the compound possess 
complexing ability to calcium ions. The end point of the titration is thus a measure 
of the degree calcium ions complexing. The greater difference with respect to the 
calibration curve, the better properties of the inhibition of calcium oxalate forma-
tion. When EP values of the standard curve and the curve with analyte are similar, 
it is considered that the compound does not have the properties of inhibiting of the 
formation of calcium oxalate. This method was applied to measure the properties of 
studied compounds [48, 49].

9.4  Results and Discussion

The flame photometry and conductometric titration methods were used to evaluate 
the complexing property of pure synthetized compounds as well as plant extracts 
containing polyphenol glycosides [45]. Several glycosides of hydroxyanthraqui-
nones were prepared. The synthesis was conducted according to a four-step method 
consisting acetylation of sugar compounds, their bromination, coupling with hy-
droxyanthraquinone, and finally the removal of acetyl groups. Properties of pure 
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hydroxyanthraquinone and their glycosides were compared. The presence of sugar 
leads to higher change of end point (ΔEP) and the increase of calcium concentration 
(Δ%) of emission (Tables 9.1, 9.2 and 9.3). The highest dissolving properties were 
observed for 1,2,5,8-tetrahydroxy-9,10-anthraquinone and its glycosides. It can be 
expected, that higher the number of hydroxyl groups in the aromatic region the bet-
ter is complexing properties. The results of flame photometry (Tables 9.2 and 9.3,) 
indicate that all synthetized glycosides and their aglycones have good properties 
of coordination to calcium ions and in consequence dissolving properties of model 
kidney stones. It was also found that the presence of the sugar fragment increases 
the complexing ability, compared with that of pure aglycones [45]. In the conduc-
tometric titration, the best properties were exhibited by 1,2,5,8-tetrahydroxy-9,10-
anthraquinone and its glycosides indicating good inhibition of calcium oxalate 
crystals formation. The analysis of dissolving properties of hydroxyanthraquinone 
derivatives in the case of natural kidney stones was also performed. The best prop-
erties in this case were found for 2-(β-d-glucopyranosyloxy)-1,5,8-trihydroxy-9,10-
anthraquinone (Tables 9.2 and 9.3). The effect in the case of real kidney stones is 
much higher than in calcium oxalate experimental model. The effect is probably 
due to the different composition and different crystalline structures of kidney stones 
[45].

Polyphenol- and polyalcohol-glycosides were synthetized according to the same 
procedure as anthraquinone glycosides.

They have also good calcium oxalate solubility properties, but do not prevent the 
formation of model kidney stones. Glycosides with the best solubility of calcium 
oxalate were tested at the case of real kidney stones. In few cases Δ% of emission 
was negative. It means the reduction of the amount of calcium in the solution, prob-
ably by formation of complexes which are not soluble in water. Photometric and mi-

Table 9.1  Results of conductometric titration. (This table was published in Frąckowiak et al. [45], 
Copyright © 2010 Elsevier Masson SAS. All rights reserved)
Compound The end of the sample curve (µl) ΔEP (µl)
None (standard) 270  0
1,2-Dihydroxy-9,10-anthraquinone 230  40
2-(β-d-Glucopyranosyloxy)-1-hydroxy-
9,10-anthraquinone

190  80

1,4-Dihydroxy-9,10-anthraquinone 240  30
1-(β-d-Glucopyranosyloxy)-4-hydroxy-1,9-
anthraquinone

210  60

1,2,5,8-Tetrahydroxy-9,10-anthraquinone 180  90
2-(β-d-Glucopyranosyloxy)-1,5,8-trihydroxy-
9,10-anthraquinone

 90 180

2-(β-d-galactopyranosyloxy)-1-hydroxy-9,10-
anthraquinone

200  70

2-(β-d-galactopyranosyloxy)-1,5,8-trihydroxy-
9,10-anthraquinone

100 170

ΔEP = the end point of the standardization curvex − the end point of the sample curve
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croscopic observations confirm that synthetized glycosides changed the morphol-
ogy of kidney stones [46]. The similar behavior was observed for the plant extract 
of Galium verum, Rubia tinctorum, Hypericum perforatum and Humulus lupulus, 
which contain high amount of polyphenol glycosides [47].

Table 9.2  Results of flame photometry—calcium oxalate test. (This table was published in 
Frąckowiak et al. [45], Copyright © 2010 Elsevier Masson SAS. All rights reserved)
Compound Concentration of 

Ca2 +  in sample test 
(10−4 M)

ΔCa2 +  (10−4 M) The increase 
of calcium 
concentration 
(%)

1,2-Dihydroxy-9,10-anthraquinone  9.1  5.4  246
2-(β-d-glucopyranosyloxy)-1-hydroxy-
9,10-anthraquinone

22.0 18.3  595

1,4-Dihydroxy-9,10-anthraquinone  7.60  3.9  205
1-(β-d-Glucopyranosyloxy)-4-hydroxy-
9,10-anthraquinone

20.0 16.6  541

1,2,5,8-Tetrahydroxy-9,10-anthraquio-
none

49.0 45.3 1324

2-(β-d-Glucopyranosyloxy)-1,5,8-
trihydroxy-9,10-anthraquinone

56.0 52.3 1513

2-(β-d-Galactopyranosyloxy)-1-hydroxy-
9,10-anthraquinone

16.0 12.3  432

2-(β-d-Galactopyranosyloxy)-
1,5,8-trihydroxy-9,10-anthraquinone

19.0 15.3  513

Concentration of Ca2 +   in reference test = 3.70 × 10−4  M. ΔCa2 +  = Concentration of Ca2 +  in sample 
test (2) − Concentration of Ca2 +  in reference test (1)

Table 9.3  Results of flame photometry—real kidney stones. (This table was published in 
Frąckowiak et al. [45], Copyright © 2010 Elsevier Masson SAS. All rights reserved)
Compound Concentra-

tion of Ca2 + 
in sample test 
(10− 4 M)

ΔCa2 +  (10− 4 M) The increase 
of calcium 
concentration 
(%)

1,2-Dihydroxy-9,10-anthraquinone  8.6  7.4  717

2-(β-d-Glucopyranosyloxy)-1-hydroxy-9,10-
anthraquinone

19.0 17.8 1583

1,4-Dihydroxy-9,10-anthraquinone 10.0  8.8  833
1-(β-d-Glucopyranosyloxy)-4-hydroxy-9,10-
anthraquinone

24.0 22.8 2000

1,2,5,8-Tetrahydroxy-9,10-anthraquionone 50.0 48.8 4167
2-(β-d-Glucopyranosyloxy)-1,5,8-trihydroxy-
9,10-anthraquinone

58.0 56.8 4833

2-(β-d-Galactopyranosyloxy)-1-hydroxy-9,10-
anthraquinone

18.0 16.8 1500

2-(β-D-Galactopyranosyloxy)-1,5,8-
trihydroxy-9,10-anthraquinone

20.0 18.8 1667

Concentration of Ca2 +   in reference test = 1.20 × 10− 4  M. ΔCa2 +  = Concentration of Ca2 +  in sample 
test (2) − Concentration of Ca2 +  in reference test (1)
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The plant material was obtained through by the stepwise extraction by the or-
ganic solvent: chloroform, methanol, and water. The dry extract was analyzed for 
their complexing activity. Extracts obtained in each methods were tested by con-
ductometric titration method (Table 9.4) and flame photometry (Table 9.5). Their 
properties were evaluated as the shift of the end point (EP) in the conductometric 
titration and the flame photometry results as a Δ% of emission (ΔCa2 + ) as described 
above. The results are presented in Tables 9.4 and 9.5.

NMR spectra have shown that ethanol–water and water extract at Galium ver-
um, Rubia tinctorum, Hypericum perforatum and Humulus lupulus contain: sugar 
alcohols (myoinositol, arabitol, rybitol, inositol), and monosaccharides (glucose, 
xylose, ribose, fructose, galactose. Acids, such as citric, malonic, malic, glucuronic 
are also present. For more details see [47].

9.5  Computational Modeling

Nowadays, computational methods is an inherent and parallel tool for research of 
new compounds. As mentioned previously, the interactions, between carbohydrates 
and metal ions usually are very weak. There are several aspects, which can be con-
sidered by using computational approaches e.g. structures of complexes, their sta-

Table 9.4  Results of conductometric titration. (Reprinted from [47], Copyright (2010) with 
permission from Elsevier)

End point of the sample 
curve (μl)

End point of the stan-
dardization curve (μl)

ΔEP (μl)

Crude extract 250 270  20
Fraction chloroform I 280 280  0
Fraction water II 170 250  80
Fraction soluble in methanol 190 280  90
Fraction insoluble in methanol  90 250 160
Rubinex 270 280  10

Table 9.5  Results of flame photometry for studied preparations—calcium oxalate test. (Reprinted 
from [47], Copyright (2010) with permission from Elsevier)

Concentration 
of Ca2 +  in 
sample test 
(10− 4 M)

% Of 
emission in 
sample test

Concentration 
of Ca2 +  in blind 
test (10− 4 M)

% Of 
emission in 
blind test

ΔCa2  
(10− 4 M)

Δ% of 
emission

Crude extract 14.0 56 13.0 55 −3.50 −14
Fraction water II – – – – – –
Fraction soluble 
in methanol

 9.6 39  0.74  3  5.18  21

Fraction insolu-
ble in methanol

 9.9 40  9.9 40 −3.70 −15

Rubinex  1.4  6  3.0 12 −5.10 −21
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bility, interaction energies, nature of interactions, dissociation energy, its correla-
tion with complex constants, the contribution of oxygen atoms to interaction due to 
their different chemical nature, and the influence of solvent model on all mentioned 
parameters. Beside searching the active site to bind metal cations, relevant obser-
vations constitute conformation changes between complexed and non-complexed 
structures (deformation energy). Hancock and Hegetschweiler [21] by using mo-
lecular mechanics calculations proved, above mentioned, Angyal postulates. Us-
ing inositols, as compounds structurally similar to sugars, they have presented the 
correlation between the preferred arrangement of binding and size of metal ionic 
radius. Because metal ions cannot be readily described by semi-empirical or clas-
sical molecular dynamics methods [50], the density functional methods (DFT) [51] 
are widespread for interaction energy investigations [52]. Moreover, when needed, 
DFT methods can be easily extended to higher level ab initio methods such as Sec-
ond-order Møller-Plesset Perturbation Theory (MP2) [53] or the coupled-cluster 
singles and doubles model (CCSD) [54]. Zheng et al. were investigating interac-
tions between metal cations and inositols by applying the DFT functional. Similar 
to Hancock and Hegetschweiler, they also used cis-inositols to find possible binding 
site for Be2 + , Mg2 + , Ca2 +  and Li +  ions. The computations confirm previous expec-
tations. Additionally, they studied β-d-glucose–calcium complexes and the results 
show that there are five possible active sites which can bind calcium cation—four 
bidendate structures and one tridendate. The strongest interaction was observed for 
structure, which binds the calcium ion by anomeric oxygen atoms, hydroxymethyl 
and O-ring oxygen atoms [55]. Wong et al. [56] carried out similar studies for man-
nose complexes with a calcium cation. Their results further indicated several ac-
tive sites to bind metal cations. Moreover, these two papers unanimously inferred 
that the stability of complexes and the strength of interactions increase with an in-
creasing coordination number. Our calculations of glucose–Ca complexes confirm 
those inferences and additionally we obtained four coordinated structures, which 
according to expectations has the higher interaction energy. Glucose adopts skew-
boat—OS2 conformation, in this four coordinated complex [57]. The result suggests 
that metal ions could induce conformational interconversions. In 2007 Fabian [58] 
presented results, which indicated that metal binding might cause the shift of the 
conformation equilibrium to normally less preferable conformation.

Wong et al. pointed out three types of energy in complexes: binding, deforma-
tion, and stabilization energies. Interaction energy (Eq. 9.1) is the only energy be-
tween cation and ligand moiety without any additional effect e.g. conformation 
changes. Deformation energy (Eq. 9.2) is a difference between complexed form of 
ligand and non-complexed and stabilization energy (Eq. 9.3) is the same like dis-
sociation energy but with the opposite sign. That means that the stabilization energy 
is a sum of interaction energy and deformation energy (see Fig. 9.9).

 (9.1)

 (9.2)

E E E Eint AB A B= − −

E  E Edef complex non complex= − −
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 (9.3)

In our previous study [57] we indicated that not only sugar is able to form com-
plexes with calcium ions but also their derivatives like glycosides could bind metal 
ions. In this study we further indicated that alizarin glucoside interacts with calcium 
ion due to aglycon moiety, which possess additional oxygen atom (carbonyl and 
hydroxyl), there are more potential places to bind calcium. Results show that com-
plexes with higher coordination number are characterized by higher stability than 
those with lower coordination number (Table 9.6). The presented data in [57] also 
showed that with increasing coordination number the contribution of single interac-
tion decrease but at the same time total interaction energy increase. Our studies also 
confirm the above mentioned Fabian conclusion and also experimental findings that 
metal ions can enforce conformational changes. Our recent studies [59] also sup-
port such conclusion. Moreover, apart from the structure, stability and interaction 
energy in gaseous phase, we also were investigated the influence of solvent on pre-
viously mentioned parameters. We calculated all these parameters in two different 
ways (PCM model or the first shell taken directly into account). In both the cases, 
results indicate that interaction energy between glycoside and calcium is weaker. 
The results of the second procedure also indicate that each of water molecule in the 
first coordination sphere significantly neutralizes the charge on the calcium cation. 
The results suggest that in water solution glucoside complexes do not form strong 
complexes. These calculations also confirm the Angyal rule regarding the preferred 
arrangement of hydroxyl groups. All our computations were carried out applied 
GAUSSIAN 09 suite of codes [60].

E E Estab int def= +

Fig. 9.9  The scheme of defining deformation, interaction, stabilization energies and in complexes
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9.6  Concluding Remarks

The above results suggest that polyphenol glycosides possess ability to form 
complexes with calcium ions contained in calcium oxalate, the main compo-
nent of kidney stones. Described above experiments and computations indicate 

Table 9.6  The number of contacts O–Ca2 + .(N), relative interaction energy (ΔΔEint), relative 
enthalpy (ΔH), and relative free enthalpy (ΔG) for glucoside complexes, the atomic charge on Ca 
and the C = O∙∙∙Ca2 +  distance. Energy in kcal/mol, atomic Mulliken charge in electron, distance 
in angstrom. The reference lowest interaction energy amounts to − 233.0 kcal/mol. (Springer and 
the original publisher/Journal of molecular modeling, Theoretical studies of structure, energetics 
and properties of Ca2 +  complexes with alizarin glucoside, Toczek et al. [57], Table 9.3, original 
copyright (2013) with kind permission from Springer Science and Business Media)

N ΔΔEint ΔH ΔΔEint − ΔH ΔG Atomic 
charge on 
Ca2 + 

Distances 
C = O∙∙∙Ca2 + 

a_Gli_1S5_gt_
BEFO1O2_Ca(85)

5  7.8 13.0 − 5,2 12.8 1.367 2.28

a_Gli_1S5_gt_
BEFO1O2_Ca(-161)

5  8.4 16.9 − 8.5 16.6 1.373 2.30

a_Gli_1C4_gg_
BDFO1O2_Ca

5  9.5  9.1   0.4 10.1 1.374 2.28

a_Gli_1C4_gt_
BDFO1O9_Ca(-85)

5 14.5 23.2 − 8.7 23.6 1.356 2.34 (O9)

a_Gli_OS4_tg_BDO1O2_
Ca(75)

4 17.2 14.8   2.4 14.3 1.422 2.27

a_Gli_OS4_tg/
gg_BDO1O2_Ca(77)

4 18.4 12.6   5.8 12.4 1.426 2.27

a_Gli_OS4_gt_BDO1O2_
Ca(72)

4 18.7 18.8 − 0.1 17.9 1.423 2.27 

a_Gli_25B_gt_DFO1O2_
Ca

4 23.3 25.3 − 2.0 24.6 1.409 2.26

a_Gli_1S5_gt_EFO1O9_
Ca

4 24.4 25.9 − 1.5 25.2 1.378 2.31 (O9)

b_Gli_OS2_gg_
CEFO1O2_Ca(-95)

5  0.0  0.0   0.0  0.0 1.365 2.28

b_Gli_O3B_gg_
CEFO1O2_Ca(168)

5  2.5  5.9 − 3.4   6.5 1.373 2.32

b_Gli_O3B_gg_
CEFO1O9_Ca(-42)

5  9.2 16.1   6.9 16.7 1.335 2.35 (O9)

b_Gli_2S4_gg/
gt_EFO1O2_Ca(-121)

4 14.5 15.5 − 1.0 15.7 1.410 2.27

b_Gli_OS4_gt_EFO1O9_
Ca(-75)

4 22.6 26.8 − 4.2 25.2 1.374 2.33 (O9)

b_Gli_OS2_gt_CFO1O2_
Ca

4 23.7 24.5 − 0.8 23.1 1.395 2.26

b_Gli_2SO_gg_
BEO1O2_Ca

4 29.5 32.3 − 2.8 31.7 1.411 2.27

b_Gli_4C1_gt_EFO1O9_
Ca(-59)

4 33.8 31.2   2.6 30.2 1.372 2.33 (O9)

b_Gli_4C1_gt_EFO1O9_
Ca(-83)

4 34.5 25.6   8.9 24.8 1.383 2.32 (O9)
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that glycosides are characterized by higher ability to form complexes in the 
comparison to their glycon or aglycon parts alone. The findings indicate that 
the complexation process proceeds by both part simultaneously. Data for the 
gas phase show that the interaction energy strongly depends on the coordina-
tion number. However computations including the solvent effect indicate the 
influence of importance of other interactions. The inclusion of the solvent ef-
fect increases the contribution of conformational effects of carbohydrate part 
into the stability of complexes. The studies of glycosides with the potential 
complexation ability still need optimization of structural parameters respon-
sible for these properties.
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Abstract Transformation of epoxides is a key step for numerous processes impor-
tant both for synthetic organic chemistry and biochemistry. Since experimental 
methods are restricted by the fixation of source compounds, intermediates and prod-
ucts of reactions, quantum chemical calculations serve as the only direct approach 
for prediction of the structure and energy of transition states thus clarifying detailed 
mechanisms of chemical reactions. This chapter summarizes results of quantum 
chemical investigation of epoxides transformation mechanisms in alkaline, neutral 
and acidic environments. Special attention has been paid to stereo- and regiochem-
istry of the processes, influence of solvation effects and nature of catalytic action of 
mono- and bidentate acids.

10.1  Introduction

Epoxides play important role in the synthesis of wide row of chemicals and phar-
maceutical intermediates [1]. Owing to the presence of heteroatom and high strain 
energy of three-membered ring (119 kJ/mol [2]) oxiranes possess much higher re-
activity if compare to acyclic analogs which results in easy C–O bond rupture [3–6] 
through where disadvantage of a highly basic leaving group is compensated by sig-
nificant decreasing of oxirane ring strain during reaction [7]. In addition to nucleo-
philic opening reactions epoxides can undergo elimination resulted in formation of 
allylic alcohols [8, 9]. In acidic medium or in the presence of Lewis acids ring open-
ing reaction can be accompanied by rearrangement to carbonyl compounds [10].
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Reactions of epoxides are not restricted by in vitro transformations but also have 
medical relevance since epoxides can be formed via endogenous biochemical path-
ways or oxidation of xenobiotics, for example, by cytochrome P450 [11–13]. This 
process is important in drug metabolism, as epoxides formed during the oxidation 
of drug molecules [14] can undergo ring opening in vivo by biological nucleophiles, 
such as DNA/RNA bases [15, 16], causing damage to cells. Another direction of 
epoxides transformation vital for organisms is hydrolysis facilitated by epoxide 
hydrolase (EH) [15, 16]. Epoxides that are poor EH substrates tend to be highly 
carcinogenic [17, 18]. Thus in vivo toxicity of epoxides stated to be correlated with 
their alkylation rate [19–23].

In this chapter we summarize the results of computational investigation of ep-
oxide ring opening reactions modeling the main features of the processes such as 
the nature of medium effects, solvent, attacking nucleophile and substitutes on the 
mechanisms of reactions. Special attention has been paid to study of stereo- and 
regiochemical peculiarities of the processes; as example of epoxycycloalkanes and 
spirooxiranes relationship between reactivity of oxiranes and their strain energy 
has been investigated. In particular, implicit and explicit consideration of solvation 
effects on epoxide ring opening has been performed. Investigation of the oxiranes 
transformation in the presence of electrophilic activators includes consideration of 
the following issues: relation between SN1 and SN2 mechanisms, and nature of cata-
lytic action of mono- and bidentate acids.

10.2  Interaction of Epoxides with Anionic Nucleophiles

Among indexes of reactivity of epoxides with nucleophiles the most useful are pa-
rameters of electronic density distribution such as atomic charges, C–O bond or-
ders, energy of LUMO and hybridization of atomic orbitals of oxirane ring [24–30]. 
However it should be noted that afore mentioned parameters of epoxides are not al-
ways in a good agreement with the results of kinetic studies [27, 28, 30], especially 
in those cases when steric effect in the course of reaction overcomes electronic. By 
these reasons, predictions of reactivity of epoxides has been mostly based on the 
analysis of potential energy surfaces (PES) of corresponding reactions with local-
ization of transition states (TS) and prereactive complexes and further calculations 
of activation barriers.
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One of the first theoretical study of the nucleophilic bimolecular ring-opening of 
ethylene oxide has been performed by Fujimoto and co-workers using semiempiri-
cal approach as an example of oxirane (1) interaction with hydride ion [25]. It has 
been shown that oxirane contributes to the interaction not only LUMO but also next 
unoccupied molecular orbital. The authors also stated the preference of reaction 
with inversion of epoxide carbon atom. Later on ab initio study (at the HF/3-21G 
level) performed by this group confirmed the preference of back-side attack of nu-
cleophile (by fluoride ion) (see Fig. 10.1) [31]. Destabilization of transition state 
for front-side attack has been explained by strong repulsion of oxygen-atom and 
fluoride ion due to antibonding overlap of their orbitals and significant deformation 
of three-membered ring in a tighter transition state.

Investigation of potential energy surface for alkaline hydrolysis of oxirane per-
formed by Lundin and co-workers at B3LYP/6-311 + G(d, p) level of theory has also 
shown that trans SN2 reaction is strongly favored as compare to the corresponding 
cis reaction (see Fig. 10.2) [32].

∆

Fig. 10.2  Structure of transition states and values of activation enthalpies (∆H≠
298, kJ/mol) for 

alkaline hydrolysis of oxirane. (Adopted from [32])

 

Fig. 10.1  Structure of transition states and values of relative energies (Erel) for reaction of oxirane 
with fluoride ion [31]
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Interesting from methodological point of view investigations have been performed 
by Glad and Jensen [33]. They have calculated deuterium α-secondary kinetic iso-
tope effects (SKIE) as an example of oxirane interaction with nucleophiles and 
compared them with optimized transition state geometries (Table 10.1).

In the row of Н −…NH3 when nucleophilicity decreases transition states becomes 
to have more pronounced late character. All calculated at MP2/6-31 + G(d) level 
values of SKIE lie between 0.91 and 1.06 in absolute value, typical for an SN2 re-
action [34]. Analysis of changes of SKIE as function of broken C1–O bond length 
confirms relationship between TS geometry and KIE. For second-row nucleophiles 
and hydride ion a difference in SKIE of 0.02 (a typical experimental uncertainty) 
corresponds to geometry changes at the TS of ~ 0.03  Å in bond length (RCO) and 
~ 3 0 difference in torsional angle (ΘHCCO), i.e. isotope effects are quite sensitive to 
the TS geometry.

To discuss the early/late and loose/tight features of the TSs, degrees of forming 
and breaking of bonds (n≠) have been calculated according to (Eq. 10.1)

 
(10.1)

where r0—bond length in oxirane, r≠—corresponding parameters in transition state.
Analysis of two-dimensional More O’Ferrall-Jencks diagram, drawn as function 

of degrees of formation of С–Nu bond on (1 − n≠
C1–O) value, has shown that the main 

determining factor for the SKIE is the loose/tight feature of the TS rather than the 
early/late position, i.e. the lower KIE for the more product-like TSs is primarily due 
to the increased tightness.

0n exp ( )/0.6 ,r r≠ ≠ = - 

Table 10.1  Geometrical parameters and values of SKIE calculated at MP2/6-31 + G(d) level of 
theory [33]
Nu С1–О C1–Nu С2–О C1C2O NuC1C2 SKIE
H − 1.654 2.148 1.436 70.2 106.7 1.058
NH2

 − 1.708 2.307 1.423 73.1 113.5 1.011
OH − 1.753 2.129 1.420 75.4 112.1 0.981
F − 1.831 1.922 1.413 79.7 111.7 0.940
SH − 1.861 2.463 1.402 81.3 110.9 1.049
Cl − 1.988 2.212 1.388 88.2 113.6 0.999
NH3 2.075 1.763 1.361 93.2 114.8 0.916
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Regiochemistry of basic-catalyzed epoxide ring opening has been studied for the 
case of interaction of methyloxirane with hydroxyl- [7] and formiat-anion [35], and 
1S,2S-trans—2-methylstyrene oxide (tMSO) with acetate [36].

According to Krasusky rule in case of methyloxirane (2) more energetically pref-
erable is attack of nucleophile on sterically more accessible primary carbon atom of 
epoxide ring. In case of tMSO lower activation barrier corresponds to phenyl side 
attack by acetate (Table 10.2).

As could be seen from Table 10.2, Hartree-Fock approach significantly (by al-
most 50 %) overestimates Eact values if compared to that predicted by correlated ap-
proaches such as B3LYP and MP2. Forth-order Meller-Plesset perturbation theory 
at MP4(SDQ) level predicts virtually the same values of activation energy [35].

Reaction of methyloxirane with strong nucleophile ОН − is characterized by 
lower activation barriers if compare to formiate; transtition state in the latter case 
has rather late nature. Transition states corresponding to nucleophile attack on the 
primary carbon atom of epoxide cycle for both nucleophiles are tighter (Fig. 10.3).

Fig. 10.3  Structure of transition states of epoxide ring opening of methyloxirane (2) with hydroxyl 
anion (МР2/6-31G* level of theory [7]) and formiate (B3LYP/6-31G* [35]) level of theory)

 

a Calculation of Eact values has been performed relatively to prereaction complexes using 
6–31 + G** basis set for geometry, optimized with 6–31G* basis set for ОН– and 6–31 + G** for 
the rest cases

Table 10.2  Values of Eact (kJ/mol) for epoxide ring opening reactionsа 
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To assess the effect of ring strain Gronert and co-workers have compared interac-
tion of НО − with methyloxirane and corresponding acyclic analog СН3СН2ОСН3. 
According to calculations in the case of methylethyl ether activation barrier is by 
87.0 kJ/mol higher if compared to that for methyloxirane so from ~113.0 strain 
energy of oxirane ring ~75 % is released at the transition state [7].

A specific group of epoxy derivatives consists of compounds in which the oxi-
rane ring is fused to an alicyclic fragment (3–9). Kinetic study of alkaline metha-
nolysis reaction for this row of compounds (hexane-1 oxide 10 has been studied for 
comparison) has shown the relation between their strain and reactivity [27, 37]. It 
has also been shown that stereoisomeric epoxynorbornanes possess isomers having 
different reactivity: exo-isomer (8) is stable to sodium methoxide ([MeO–] = 6.21 M) 
for 20 h at 60° C, whereas under the same conditions endo-isomer (7) undergoes 
slow methanolysis at a rate of 0.036 l mol−1 s−1 [27].

α

As has been shown in [27], increase in the strain energy of epoxycycloalkanes 
is accompanied by increase in the LUMO energy and the order of the C–O bond 
(Table 10.3). Obtained therein parameters of electron density distribution evidence 
that in the case of epoxides (3–5) and epoxybicycle[2.2.2]octane (9) values of 

Table 10.3  Calculated parameters of oxiranes (1, 3–10) and relative values of rate constants (krel) 
for their alkaline methanolysis reaction [27]
Epoxide Strain energy 

(kJ/mol)a
ELUMO (eV)b Angle α 

(deg.)b
С–О bond 
orderb

krel

1 2.3862 0.9705 –
3 224.86 2.1415 90.6 0.9650 –
4 134.61 2.3628 108.3 0.9603 0.41
5 С1−О 126.78 2.3591 120.8 0.9583 1.00
  С2−О 0.9595
6 142.68 2.4061 121.6 0.9605 15.5 × 10 −3

7 206.32 2.3392 104.5 0.9654 Does not 
react

8 196.83 2.4188 104.6 0.9638 Does not 
react

9 173.91 2.4857 111.0 0.9630 5.52 × 10 −3

10 2.3628 – 0.9703 5.96
a Method ММ2Е [38]
b Method РМ3 [39]



301

ELUMO and С–О bond orders are in a good agreement with the kinetic study [27], 
which reveals the following order of reactivity changes:5 > 4 > 8 > 9. At the same 
time, results of calculation of bond orders and values of ELUMO do not reflect any 
particularities for methanolysis of hexane-1 oxide (10) and steroisomeric epoxynor-
bornanes (7, 8). In fact, for epoxide (10), which is characterized by the highest reac-
tivity, calculations predict the highest values of breaking С–О bond order (0.9703). 
For epoxides (7, 8) this parameter is equal to 0.9654 and 0.9638 correspondingly.

Using semiempirical method PM3 transition states and corresponding prere-
action complexes have been localized for interaction of epoxides (1, 3–10) with 
methoxy-anion modeling gas-phase conditions and taking into account solvent ef-
fects using macroscopic and supermolecular approach with explicit consideration 
of solvent (methanol) molecules [30]. Activation barriers calculated for reaction in 
vacuo (Table 10.4) are in a good agreement with such characteristics of epoxides as 
strain energy and the C–O bond orders: increasing strain in the alicyclic fragment is 
accompanied by increase in the enthalpy of activation.

Among geometric parameters of transition states the most illustrative are the 
bond angles O1CO2 (β) and O1CCO2 (γ), where O1 is the oxirane oxygen atom, 
and O2 is the oxygen atom of methoxide ion. The first of these angles decreases 
as ∆H≠ rises: from 167.9 ° for oxirane (1) to 144.0 ° for the most strained endo-
epoxynorbornane (7):

An analogous correlation is observed between ∆Н≠ and γ. The existence of such 
correlations is closely related to the SN2 character of the reaction under study: the 
corresponding angles in a classical bimolecular substitution reaction approach 180°. 
Deviation from this value reduces overlap of molecular orbitals, and the activation 
barrier increases (Fig. 10.4).

Epoxy compounds (4–6, 9, 10) show a satisfactory correlation between the cal-
culated values of ∆H≠ (Table 10.4) and logarithms of the rate constants given in [2]:

However, the calculations performed for the gas phase incorrectly predict greater 
reactivity of exo-epoxynorbornane (8) relative to its endo-isomer (7). This may be 
due to underestimation of steric factor whose contribution considerably increases in 
reactions of epoxy derivatives with solvated methoxide ion. Taking into account that 
experimental data on alkaline methanolysis of epoxycycloalkanes were obtained in 
methanol which is a fairly polar solvent capable of forming hydrogen bonds, we 
performed a theoretical study of the solvent effect on the process.

Transition states, optimized at macroscopic approximation using the COSMO 
procedure [40] are characterized by lower degree of O2–C bond formation and 
greater degree of the C–O1 bond cleavage, as compared with the gas-phase calcula-
tions, i.e. the transition states are looser in the former case. In this case, the endo 
isomer of epoxynorbornanes turns out to be more reactive; however, the variation of 

H  1.35    331.72;     r 0.95     n 10.≠∆ = - × β + = =

rellgk 0.31 H 37.42; r 0.95 n 5.≠= - × ∆ + = =
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the activation barrier is as small as 2.38 kJ/mol, which is not quite consistent with 
the experimental data [27]. In addition, the ∆Н≠ values for compounds (9, 10) are 
considerably underestimated.

The supermolecular approximation provides a more appropriate description of 
specific solvation and reaction mechanisms, where solvent molecules are consid-
ered to be reagents. Successful application of the supermolecular approach requires 

Table 10.4  Calculated geometric parameters of transition states for opening of the oxirane ring 
and corresponding activation barriers for compounds (1, 3–10) [30]
Compound 
no.

Bond length (Å) Angle (deg.) ∆Н≠ (kJ/mol)
СО1 СО2 ССО1 β γ

In vacuo
1 1.740 1.995 74.5 167.9 175.6 108.74
3 1.779 2.071 76.1 147.8 −157.6 133.55
4 1.775 2.005 76.6 150.9 −158.5 129.91
5a 1.787 2.000 76.8 152.5 159.6 120.58
6 1.837 2.036 79.3 148.8 162.8 134.08
7 1.854 2.058 80.3 144.0 −142.7 141.24
8 1.876 2.064 81.5 144.4 −144.9 135.60
9 1.867 2.043 81.2 148.0 −148.5 136.20
10 1.737 1.982 74.1 159.3 175.1 115.23

Macroscopic approximation
1 1.772 2.065 76.1 154.7 179.5 128.24
3 1.841 2.193 79.0 142.3 −153.1 149.66
4 1.832 2.142 79.1 145.8 −157.6 156.98
5a 1.826 2.101 78.7 148.1 −151.7 150.37
6 1.873 2.124 81.3 147.8 −151.5 127.32
7 1.893 2.155 82.2 139.3 −137.2 169.74
8 1.981 2.292 87.0 137.0 −136.8 172.05
9 1.903 2.152 82.8 144.0 −144.5 132.97
10 1.775 2.014 75.9 159.5 176.1 149.62

Supermolecular approximation
1 1.862 1.991 81.3 156.0 179.6 141.46
3 1.950 2.088 85.5 147.5 16.1 179.79
4 1.890 2.046 82.2 145.0 157.8 163.43
5a 1.892 2.030 82.3 143.3 155.5 188.28
6 2.046 2.298 91.1 143.7 138.8 205.23
7 2.078 2.205 92.8 134.5 124.3 214.85
8 2.015 2.190 89.4 138.4 134.3 198.76
9 1.871 1.993 81.1 158.1 174.8 148.82
a For the reaction at C1 (favorable attack); the value of ΔH≠  for gas-phase attack on C2 is equal 
to 129.12 kJ/mol
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that the necessary and sufficient number of solvent molecules be adjusted. While 
studying the reaction of oxirane (1) with methanol [41], the most acceptable results 
were obtained when the first solvate shell of methoxide ion contained four solvent 
molecules (methanol) and the less basic oxirane oxygen atom was solvated with 
one methanol molecule, i.e., the model CH3O3(CH3OH)n + oxirane(CH3OH)m (n = 4, 
m = 1) has been used. The same model has been applied to examine alkaline metha-
nolysis of epoxy derivatives (3–10).

Localized therein transition states have more pronounced loose character if com-
pare to calculations in vacuo and using COSMO approximation (Table 10.4). Cal-
culated values of ∆Н≠ are in good agreement with logarithms of the experimental 
relative rate constants.

It should be noted that the activation barrier for the reaction of endo isomer (7), 
calculated in the supermolecular approximation, is lower by 9.62 kJ/mol than the 
corresponding barrier calculated for exo isomer (8). Comparison of these results 
with those obtained by in vacuo calculations shows that steric factor is actually 
determinative for the reactivity of strained epoxynorbornanes (7, 8). Only this fac-
tor is taken into account in terms of the supermolecular approach, where solvent 
molecules are included in the explicit form. As a result, the effective volume of the 
reagent considerably increases (Fig. 10.5).

Such supermolecular model has been successfully applied for investigation of 
chemo-, region- and stereoselectivity of dicyclopentadiene diepoxide (11) alkaline 
methanolysis [42, 43] and reaction of spirooxiranes (12–19) with methoxy anion 
[44].

lgk r nrel = − × + = =≠0 14 23 14 0 96 5. . .∆H

Fig. 10.4  Structure and energies of frontier molecular orbitals of the transition state in alkaline 
methanolysis of oxirane, calculated by РМ3 approach
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α

∆

Calculated values of ∆Н≠ for epoxides (12, 14, 15, 18, 19) are in a good agreement 
with kinetic studies:

rellgk  16.86 H 163.94,      r 0.90,    n 5≠= - × ∆ + = =

Fig. 10.5  Structure of transition states in the methanolysis of stereoisomeric epoxynorbornanes 
(7, 8), calculated in the supermolecular approximation (n = 4, m = 1)
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In the row of conformationally flexible spirooxiranes (14–16) conformers with 
pseudo equatorial orientation of methylene group (conformer A) possess higher 
reactivity. Worthwhile mentioning, that no one calculated parameter of initial ep-
oxides as well as in vacuo ∆Н≠ values, does not correlate with experimental kinetic 
results [44].

In vacuo reactions of formiat-anion with complex “methyloxiran—formic acid”, 
which correspond to nucleophile attack of primary (TS 20) and secondary (TS 21) 
carbon atoms of epoxide ring are characterized by Eact values equal to 28.0 and 
36.0 kJ/mol correspondingly (calculated at B3LYP/6-31 + G(d, p) level of theory) 
(see Fig. 10.6) [45]. Taking into account solvation effects at B3LYP/6-31 + G(d, p)/
IPCM-HF/6-31 + G(d, p) level results in Еact values equal to 40.5 and 56.3 kJ/mol. 
Thus, activation of epoxidic ring in methyloxirane by formic acid does not change 
regiochemistry which corresponds to Krasusky rule. Acid catalysis decreases acti-
vation barriers for alternative reactions by 37 and 40 kJ/mol for reaction in vacuo 
and by 28 and 23 kJ/mol for reaction in solution.

Adding of phenol as catalyst of trans-methylstirole epoxide acidolysis also leads 
to decreasing of Еакт by about 40 kJ/mol if compared to uncatalyzed reaction [36]. 
Calculated at MP2/6-31 + G(d, p)//HF/6-31 + G(d, p) and B3LYP/6-31 + G(d, p)//
HF/6-31 + G(d, p) levels of theory values of Еact are equal to 43.5 and 38.5 kJ/mol 
respectively, for attack on benzilic and 47.3 and 45.2 kJ/mol, respectively, for attack 
on the secondary carbon atoms.

Modeling the inhibition activity of peptides and peptidomimetics containing ep-
oxide ring against the cysteine protease Helter and co-workers explored the poten-
tial energy surface for interaction of oxirane (1), α,β-epoxy carbonyl compounds 
(22, 23) with methylthiolate-anion at BLYP/6-311 + G(d) and BLYP/TZV + P levels 
of theory [46, 47].
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Fig. 10.6  Structure and some 
geometrical parameters (Å) 
of transition states for open-
ing of methyloxirane epoxide 
ring by formiat-anion in the 
presence of formic acid as 
catalyst (B3LYP/6-31G* 
level of theory [45])
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Their inhibition potency of peptides and peptidomimetics is usually characterized 
by two inhibition constants (Eq. 10.2, minimal two-step mechanism for irreversible 
enzyme inhibition where E = enzyme, I = inhibitor, EI = noncovalent enzyme-inhibi-
tor complex, E–I = inactivated enzyme): the dissociation constant Ki, characterizing 
the preliminary reversible complexation step, and the first-order rate constant of 
inhibition ki, ascribing the rate of irreversible enzyme alkylation (Fig. 10.7) [46].

 (10.2)

In model system, the attacking cysteine is mimicked by a methyl thiolate while 
oxirane was considered as inhibitor.

The effect of a decreasing pH value on the reaction profile was captured by a 
series of model systems in which solvent molecules with increasing proton donor 
ability are placed in the vicinity of the heteroatom of the oxirane and in the vicin-
ity of the methyl thiolate. Water molecules were employed to mimic environments 
with weak proton donor ability (pKa = 15.74), while NH4

 + (pKa ≈ 9.3) and HCO2H 
(pKa ≈ 3.8) molecules were used to simulate environments with higher proton donor 
abilities (Fig. 10.8). According to calculations the electrophylic activation of oxi-
rane ring by water molecule decreases activation barrier by 10.46 kJ/mol, while for 
a stronger proton donor such as NH4

 + and HCO2H this effect is more pronounced 
(activation barrier decrease is 15.06 and 20.08 kJ/mol, respectively). There is one 
more reaction pathway found on the potential energy surface for reaction in the 
presence of formic acid, which corresponds to interaction of activated oxirane with 
compex “methyl mercaptan—formiat anion”. This pathway is characterized by 
significantly higher activation barrier (71.13 kJ/mol). Obtained results explain the 
experimental observations of Meara and Rich [48] who found a strong decrease of 

Ki KiE I EI E 1→+ → -←

Fig. 10.7  Proposed inhibition mechanism of cysteine protease inhibitors containing three-mem-
bered heterocycles (His159, Cys25: active site diad, papain numbering) [47]
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ki at decreasing pH values and assigned it to the protonation of an acidic group pos-
sessing pKa of about 4.

Comparison of activation energy values for interaction of methyl thiolate with 
oxirane and epoxides (24, 25) shows decreasing of reaction rate for epoxyacid 
(Fig. 10.9) [47], while increasing of inhibition activity has been found experimen-
tally for acid-substituted oxiranes [48]. According to [47] increased activity of ep-
oxide (24) arises from interaction of carboxylate with imidazolium ion stabilizes the 
noncovalent enzyme inhibitor complex and thus improves Ki.

∆

∆

Fig. 10.8  Geometrical arrangements of the transition states for interaction of oxirane with methyl 
thiolete with explicit consideration of proton donors Н2О, NH4

 + and HCO2H and corresponding 
values of activation barriers calculated at COSMO/BLYP/6-311 + G(d) level of theory (the geo-
metrical values obtained if only bulk effects of water as solvent are considered (given in paren-
thesis)) [46]
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∆

∆

Fig. 10.9  Geometrical arrangements of the transition states for interaction of oxiranes (1, 24, 25) 
with methyl thiolate with explicit consideration of water molecule and corresponding values of 
activation barriers calculated at COSMO/BLYP/TZV + P level of theory COSMO/BLYP/TZV + P 
[47]
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10.3  Transformation of Oxiranes in Neutral Environment

Among uncatalyzed reactions of oxiranes in neutral environment theoretical investi-
gations mostly focused on interaction with HF [49], NH3 [33, 50–52], H2O [32, 53], 
N-(3-chlorophenyl)piperazine molecules [54]. In early study Alagona and co-work-
ers optimized geometry of transition states for alternative pathways of HF interac-
tion with oxirane with the retention and inversion of carbon atom [49]. According to 
their calculations the activation energy for pathway with inversion of configuration 
is equal to 136.6 and 141.7 kJ/mol at CI/STO-3G and HF/4-31G levels of theory. 
Reaction with retention of configuration is characterized by significantly lower val-
ues of activation energy (67.5 and 84.0 kJ/mol). The authors concluded that sig-
nificant decreasing of activation energy observed at CI level could be explained by 
pronounced contribution of excited states to wave function of transition states.

Mechanism of in vacuo oxirane aminolysis has been studied by numerous 
quantum-chemical approaches (MINDO/3 [50, 52], B3LYP/6-31G(d) [51], HF/6-
31 + G(d) [33] and MP2/6-31 + G(d) [33]). In all cases transition states are localized 
close to typical SN2-type transition states where nucleophile is located in the plane 
of oxirane ring and bond angle between forming and breaking bonds is close to 
180 ° (Fig. 10.10).

It should be noted that in spite of some difference in transition states geometries, 
all used approached give close values of Eact. In contrast to reaction with HF the 
alternative reaction with front-side approach of ammonia molecule to oxirane ener-
getically is less favorable (Еact = 200.7 kJ/mol (B3LYP/6-31G(d) [51])).

More complicated aminolysis reaction has been studied theoretically for cyclo-
hexadiene monoepoxide interaction with N-(3-chlorophenyl)piperazine [54]. Both 
pathways corresponding to front- and rear-side attacks have been found. The first 
pathway is one-step reaction where breaking of C–O bond, forming of C–N bond 
and proton transfer between N and O atoms occur simultaneously (Fig. 10.11). 
In contrast, at the first step of rear-side attack zwitterionic intermediate is formed 

Fig. 10.10  Structure of transition state for oxirane aminolysis and corresponding values of activa-
tion energy (Еact)
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under the neat conditions and another amine molecule is required for intermolecular 
proton transfer on the next step. Comparison of activation parameters shows the 
preference of rear-side attack. In order to model process of nucleophilic opening of 
epoxide at the “oil” droplet/water interface Zheng and Zhang have studied afore-
mentioned reaction with explicit consideration of four-water cluster which consid-

Fig. 10.11  Optimized 
structures and relative free 
energies for the pathways of 
the neat and water-catalyzed 
mechanism, calculated at 
the B3LYP/6-311 + + G(d, p) 
level (bond lengths in Å and 
energies in kJ/mol as adopted 
from [54])
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ered as a key fragment in the reaction surface. On the contrary to reaction under 
neat conditions, both front- and rear-side pathways therein are one-step processes 
at that water assistance results in decreasing of ∆G≠ values on 8.2 and 11.1 kJ/mol 
correspondingly (Fig. 10.11). The performed NPA analysis revealed that the water 
cluster accelerated the reaction not only by assisting the proton transfer, but also by 
strengthening both the entering and the leaving groups through a charge-transfer 
process induced by different strengths between the two proton-transfer processes. 
The enhancement of the entering- and leaving-group effects were qualitatively sup-
ported by the evaluation of the nucleophilicity index and the stabilization energy, 
respectively [54].

For neutral hydrolysis of oxirane Lundin and co-workers have been investigated 
two mechanisms, one where OH − and H + are formed as a results of hydrolysis re-
action, and a second where the heterolytic decomposition of the epoxide occurs in 
concert with protolysis of water which is the limiting bare reaction [32]. In contrast 
to aminolysis reactions there is no transition state on potential energy surface which 
correspond to transoid hydrolysis and formation of ions OH− and H +. Transition 
state for cisoid opening for bare reaction is shown in Fig. 10.12, adding a second 
water molecule does not effect on activation energy since, both transition states are 
associated with the protolysis of water. Both reactions in neutral environment are 
characterized by significantly greater activation enthalpy than those under acidic 
and alkaline conditions, which agrees well with experimental results [55–59].

Comparison of activation enthalpies for neutral hydrolysis of substituted oxi-
ranes (propene oxide and butane oxides) [53] clearly demonstrates the preference 
of Beta pathways corresponding to the attack of water molecule on more substi-
tuted carbon atom (Fig. 10.13). Activation enthalpies lowering has been ascertained 
in the series: ethene oxide > trans-2-butene oxide ≈ cis-2-butene oxide ≈ propene 
oxide > isobutene oxide.

A special role in the chemistry of epoxidic compounds have 2-oxabicyclobutane. 
Its derivatives have been postulated as intermediates in various thermal, photo-
chemical and chemical reactions which have as a final product different aldehydes 

∆

Fig. 10.12  Geometrical 
parameters of transition 
states for neutral hydrolysis 
of oxirane and correspond-
ing values of activation 
enthalpies (kJ/mol) calculated 
at B3LYP/6-311 + + G(d, p) 
level of theory
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and ketones. However, all attempts to isolate or even spectroscopically detect ox-
abicyclobutanes were unsuccessful.

The analysis of the potential energy surface for unimolecular fragmentation of 
2-oxabicyclobutane at CASSCF(10,10)/6-31G(d) and UQCISD(Т)/6-31G(d) levels 
of theory has shown that reaction may occur through two pathways (see Fig. 10.14) 

∆

∆ ≠

∆ ≠

Fig. 10.13  Geometrical parameters of transition states for neutral hydrolysis of oxiranes and cor-
responding values of activation enthalpies (kJ/mol) calculated at B3LYP/6-311 + + G(d, p) level of 
theory. (Adapted from [53])
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[60]. The first one is an asynchronous concerted transformation with a prior break-
ing of the C2–O bond of the epoxidic cycle in the transition state. The second 
mechanism involves stepwise nonconcerted transformation with breaking during 
the first (rate-determining) stage of the C1–C3 bond and the formation of the biradi-
cal intermediate which transforms to acrolein with a very small barrier. As could be 
seen from Fig. 10.14, transformation of 2-oxabicyclobutane through both pathways 
is characterized by high values of activation barriers thus one may conclude that 
interaction of cyclopropene with epoxidation reagents most probably proceeds via 
routes which exclude formation of epoxycyclopropanes as intermediates [60].

10.4  Transformation of Epoxides in Acidic Environment

A number experimental and theoretical studies confirm significant increasing of 
epoxides reactivity in the presence of electrophylic catalysts [27, 61–64]. Along 
with increasing of reaction rate the activation of epoxide ring leads in some cases to 
alteration of stereo- and regiochemistry of the processes.

The simplest system modeling reaction in the presence of electrophylic cata-
lyst is the nucleophiles interacting with protonated epoxide. Exploring equilibrium 
structures “oxirane-proton” using CNDO/2 approach Kretov and co-workers have 
located stable forms, which correspond to O-protonation and proton coordination 
of C–C bond [29, 65, 66]. More precise analysis of potential energy surface for 
С2Н5О

 + system at HF/4-31G has shown, that O-protonated oxirane is the only struc-
ture which corresponds to minimum. Protonation at C–C and C–O bonds leads to 
barrierless transformation to isomeric structures [67]. O-protonated form of oxirane 
also has been confirmed at MP2 [68–70], CCSD [69, 70] and DFT levels [60, 70]. 
Among mono- and dimethyl substituted oxiranes analyzed in [60, 70] 2-methyl-1,2-
epoxypropane has been found to be a challenging problem for density functional 
theory. Numerous functionals including popular B3LYP fail in predicting the struc-
ture of protonated 2-methyl-1,2-epoxypropane while the functionals M05 and M05-
2X recently proposed by Truhlar and co-workers give a good correspondence with 
CCSD and MP2 results (Fig. 10.15) [69].

≠

≠≠

Fig. 10.14  Pathways for transformation of 2-oxabicyclobutane and values of activation barri-
ers for rate-limiting stages, calculated at UQCISD(T)//6-311 + + G(d, p)//UQCISD/6-31G(d) and 
CASSCF(10,10)/6-31G(d) (in parenthesis), kJ/mol

 

10 Quantum-Chemical Investigation of Epoxidic Compounds Transformation



S. Okovytyy314

In contrast to neutral oxiranes molecule their protonated form characterized by 
shorter C–C and remarkable longer C–O bond length [68–70]. In addition, due to 
increasing of π-character of protonated epoxides flattening of hydrogen or substi-
tutes part of molecules takes place [27, 68–70], which results in lighter access of 
nucleophiles to reaction center.

Along with steric factor, stereoelectronic factor plays significant (and, probably, 
decisive) role in determination of protonated oxiranes reactivity with nucleophiles. 
This statement is supported by increasing of positive charge on carbon atoms [27], 
decreasing of C–O bond orders and energy [26, 27, 66], and significant decreasing 
of the lowest unoccupied molecular orbitals [71]. It should be noted that formally 
in the case of protonated oxiranes neutral hydroxyl group serves as leaving group 
instead of highly unstable O – anion.

Aforementioned changes of structural and electronic characteristics of proton-
ated epoxides naturally leads to alteration of their transformation mechanism. De-
pending on epoxide substituent character and strength of attacking nucleophile the 
mechanism may change from borderline SN2′ to SN1-like mechanism (Fig. 10.16). 
The possibility of realization of the SN1-like mechanism has been confirmed by for-
mation of structures with retention of epoxidic carbon configuration [72]. Explor-
ing of potential energy surface for monomolecular opening of protonated oxirane 
in vacuo at MP2/6-31G(d, p)//HF/6-31G(d) [73] and MP2/6-31G(d, p)//MP2/6-
31G(d) [68] levels of theory has shown that reaction in one stage leads to proton-
ated acetic aldehyde with activation barrier of 102.9 and 115.9 kJ/mol, correspond-
ingly. Monomolecular transformation of protonated propylene oxide to protonated 
propanale is characterized by lower value of Еact (74.1 and 76.8 kJ/mol at MP2/6-
31G(d) and MP2/6-311 + + G(d, p) levels, correspondingly) and also occurs in one 
stage [72, 74]. Detailed analysis of intrinsic reaction coordinate paths has shown 
that the lowest energy pathway involves two distinct steps. The first step, rupture 
of the oxirane ring, is followed by a second step, hydride migration, a process not 
commenced until breaking of the C–O bond is complete. The combination of these 
two steps defines a concerted asynchronous pathway. Although the carbocation was 
identified on the of potential energy surface it was not characterized as a mini-
mum at the MP2 level which contradicts the SN1 mechanism (reaction steps) where 
carbocation is the reaction coordinate [72, 74]. Thus for investigation of “classic” 
epoxide ring-opening reaction in acidic environment nucleophile molecule has to 
be involved from the first stage.

Fig. 10.15  Structure of 
protonated 2-methyl-1,2-ep-
oxypropane [69]
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Comparison of activation barriers values for hydrolysis of oxirane, catalyzed 
by oxonium ion, clearly demonstrates the preference of rear-side attack of nucleo-
phile if compared with front-side attack, where transition state destabilized by Cou-
lomb and Pauli repulsion between the electron rich OHδ − and CH2O

δ − fragments 
(Fig. 10.17) [32].

For unsymmetrical epoxides using isotopic labeling in the H2
18O molecule 

Long and Pritchard [56] showed that hydrolysis reaction was regioselective 
with formation of so-called abnormal products resulted from nucleiphilic attack 
on the more substituted carbon atom [56]. As it could be seen from Fig. 10.18, 
for hydrolysis of protonated propylene oxide in vacuo formation of abnormal 
product is in 5.02 kJ/mol favored relative to attack on the less substituted carbon 
atom [72].

In contrast to oxirane and methyloxirane, corresponding carbocations have been 
located at MP2/6-31G(d) level of theory on the potential energy surface of pro-
tonated epoxide derivatives of benzene (26), and naphthalene (27). Epoxide (26) 
transformation to carbonium ion requires activation energy 8 kJ/mol, in case of 
naphthalene oxide (27) pathways for Ca–O and Cb–O bond cleavage are character-
ized by values of activation energy equal to 1 and 6 kJ/mol, correspondingly. In all 
cases carbonium ions formed are more stable if compared to protonated epoxide 
(on 52 kJ/mol for 26 and − 53 and 29 kJ/mol for Ca–O and Cb–O bond cleavage in 
27) [75].
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∆ ≠

Fig. 10.18  Geometrical parameters of transition states for in vacuo hydrolysis of oxirane in acidic 
environment and corresponding values of activation enthalpies (kJ/mol) calculated at MP2/6-
311 + + G(d, p) level of theory. (Adopted from [72])

 

∆

Fig. 10.17  Geometrical parameters of transition states for hydrolysis of oxirane in acidic envi-
ronment and corresponding values of activation enthalpies (kJ/mol) calculated at B3LYP/6-
311 + + G(d, p) level of theory. (Adopted from [32])
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In case of partially saturated systems the compounds (28, 29), do not appear as 
stable species on the MP2/6-31G(d) potential energy surface. The approach of pro-
ton leads to spontaneous ring opening via Ca–O and Cb–O bond breaking for com-
pounds (28) and (29), respectively [75]. Formation of carbonium ion intermediates 
also has been shown for monomolecular transformation of fluorooxirane [73], chlo-
rooxirane [76], and styrene oxide [77].

Investigation of kinetic particularities of epoxide interaction with carboxylic ac-
ids [62–64, 78] showed that proton transfer with formation of protonated epoxide 
takes place only in case of reaction with strong acids such as trifluoroacetic acid. 
Interaction with relatively weak dichloroacetic acid leads to formation of complex 
without proton transfer and involvement of the second molecule of acid is required 
for epoxide ring opening which corresponds to experimentally determined second 
order of reaction [63].

Complexes of such kind have been used by Omoto and Fujimoto for investigation 
of catalytic strength of 1,8-biphenyldiole (30) and number of monodentate catalysts 
(complexes 31–36) [51].

As could be seen from Table 10.5 the least effective activators are water and 
methanol molecules. Among phenols more effective are compounds with electron-
attracting groups in para-position of benzene ring. It should be mentioned that 

Table 10.5  Calculated activation energy (Еact) for the reaction of oxirane (1) and complexes (30–
36) with ammonia (in kJ/mol)
Complex 1 30 31 32 33 34 35 36
Еact B3LYP/6-31G(d) 162.6 58.7 93.1 87.0 81.4 82.9 107.9 109.5
Еact MP2/6-311 + + G(d, p)//
B3LYP/6-31G(d)

162.3 84.0 115.5 111.7 108.1 108.9 130.8 133.6
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1,8-biphenyldiole catalyzes reaction in greater extent as it could be expected from 
Brønsted dependence [35, 36]. Similar influence of bidentate phenols has been also 
shown in some experimental investigations devoted to interaction of phenyl glycid-
yl ether with diethylamine [79], and for Diels-Alder reaction with α,β-unsaturated 
ketones and aldehydes [80].

The reason of such high catalytic activity of 1,8-biphenylenediol has been stud-
ied in [51] by the method of paired interaction orbitals [81–84]. As could be seen 
from Fig. 10.19, orbitals Ψ1′ and Ψ2′ are localized completely on the two O–H 
bonds of the diol and overlaped in-phase with the orbitals φ1′ and φ2′, for the lone 
pairs of electrons of oxirane, respectively. By means of these two pairs of orbitals, 
the diol can accept the electronic charge from the oxygen, and the two hydrogen 
bonds are formed. In the system “phenole-oxiran” interaction between molecular 
orbitals is not so effective. Two effects resulted from addition of acidic catalyst have 
been derived from the detailed analysis of electron density distribution in complex-
es (30–36) and transition states of the corresponding reactions. One is to enhance 
electrophilicity of the C–O bond connected with removing the electronic charge 
from oxirane before the attack of a nucleophile and the second is stabilization of 
transition states due to electronic charge shifting from the attacking nucleophile to 

Fig. 10.19  Interaction orbitals responsible for electron delocalization from the oxirane part to the 
acid part in the 1:1 complex of oxirane and an acid. The orbital φ′s are given by the combination 
of the occupied MOs of the oxirane part, and Ψ′s are given by the combination of the unoccupied 
MOs of the acid part. Two orbital pairs on the left-hand side are for the (oxirane + 1,8-biphenylene-
diol) system and a pair on the right-hand side is for the (oxirane + phenol) system [51]
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the oxirane ring further onto the acid framework. That is, acids serve as temporary 
reservoir of electronic charge during the reaction to maintain high nucleophilicity 
of oxirane and to reduce overlap repulsion between the substrate and the attacking 
nucleophile.

10.5  Conclusion

In this brief review, there are summarized the results of quantum chemical investi-
gation of epoxides transformation in neutral, alkaline and acidic environment. It has 
been shown that in the presence of both basic and acid catalysts back-side attack of 
nucleophile is more preferable if compared to front-side approach due to strong re-
pulsion between nucleophile and oxygen atom of epoxide. Having the same stereo-
chemistry the reactions in alkaline and acid medium possess opposite regiochem-
isty—protonation facilitates nucleophile attack on the less substituted carbon atom 
resulted in formation of abnormal product while in alkaline medium nucleophile 
forms bond with more substituted carbon atom. Uncatalyzed transformation of ep-
oxides is characterized by high values of activation energy. Modeling hydrolysis 
of oxirane with explicit consideration of one and two water molecules showed the 
preference of front-side attack. For neutral aminolysis, on the other hand, back-
side attack is more favorite where four-water cluster assists the proton transfer, 
and strengthens both the entering and the leaving groups through a charge-transfer 
process induced by different strengths between the two proton-transfer processes.

Detailed analysis of epoxides model reactions in different environment 
built background for theoretical modeling of large-scaled biologically valuable 
processes.
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Abstract Different methods of computational toxicology are used in drug discov-
ery to reveal toxic and dangerous side effects of drug candidates on early stages of 
drug development. Information about chemoinformatic, toxicogenomic and system 
biological approaches, commercial and freely available software and resources with 
data about toxicity of chemicals used in computational toxicology are represented. 
General rules and key components of QSAR modeling in respect to opportunities 
and limitations of computational toxicology in drug discovery are considered. The 
questions of computer evaluation of drug interaction with antitargets, drug-metab-
olizing enzymes, drug-transporters and related with such interaction toxic and side 
effects are discussed in the chapter. Along with an overview of existing approaches 
we give examples of the practical application of computer programs GUSAR, PASS 
and PharmaExpert to assess the general toxicity and toxic properties of individual 
drug-like compounds and drug combinations.

11.1  Introduction

The practical use of computer technology to predict the effects of chemicals on the 
environment and human health, preclinical evaluation of toxicity, side effects and 
metabolism of drug candidates is of great interest to the scientific community and 
human society [1]. Currently, the benefits of using computational methods to pre-
dict the toxicity of compounds are properly recognized by members of the business 
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community and the public authorities responsible for safety of the environment and 
human health. Pharmaceutical companies use computer predictions of toxicity at 
the design stage to identify lead compounds with low toxic properties, as well as in 
selection of candidates at the optimization stage of potential drugs [2]. An important 
priority of pharmaceutical companies during the drug design programs and safety 
assessment is an early detection of dangerous toxic effects before significant time 
and financial resources will be spent for new drugs at the latest stages of clinical 
trials.

Computational prediction of toxicity is a significant part of a more general field 
of science—Computational Toxicology. Definition of Computational Toxicology 
was given by U.S. Environmental Protection Agency (EPA): an integration of mod-
ern computational and information technology with molecular biology, which is 
aimed to improve the prioritization and risk assessment of chemicals [3]. Thus, we 
have the following definition of toxicology: Toxicology (from the Greek τοξικος—
poison and λογος—science, that is τοξικολογία—the science of poisons) means the 
science that studies poisonous, toxic and harmful substances, a potential risk of 
their effects on organisms and ecosystems, mechanisms of toxicity, and methods 
of diagnosis, prevention and treatment of emerging diseases as the result of such 
exposure. Therefore, computational prediction of toxicity can be characterized as 
prediction of the effects provided by chemical compounds on biological organisms 
and ecosystems which is based on the analysis of structure-activity relationships 
using the modern computational and informational technology.

The National Research Council of the United States (NRC) has recently pub-
lished a basic report entitled “Toxicity Testing in the twenty-first Century: A Vision 
and Strategy” [4]. The report is devoted to a well-established methodology in the 
toxicity study and discussion on the use of alternative methods, strategies to in-
crease effectiveness and appropriateness of toxicity tests for the risk assessment of 
chemicals. According to NRC, the application of system biology, high-throughput 
screening and computational technology will be increased significantly in future, 
together with other toxicological tests that generate a huge amount of the biological 
data (toxicogenomics, proteomics, metabolomics, etc.). The progress in a bioinfor-
matics field, system biology, omics and computational toxicology can transform 
and change the animal toxicity testing to the alternative testing methods.

As a practical development and promotion of the computational toxicity predic-
tion for the risk assessment of chemicals in industry, the European Community 
has adopted a special law—Registration, Evaluation, Authorization and Restriction 
of Chemicals (REACH). REACH provides the basis for a regular use of quanti-
tative/ qualitative analysis of structure—activity (Quantitative Structure-Activity  
Relationships—(Q)SAR analysis) in the European Community. The aim of REACH 
is to improve the protection of humans and the environment through the better and 
earlier identification of the toxic properties of compounds [5]. The effect of 60,000 
compounds on humans and the environment, which are produced in the EU in 
amounts of more than 1 ton per year, will be evaluated by REACH. Examples of 
QSAR practice in REACH are given in the following review [6, 7].
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The advantage of computational prediction methods in comparison with the 
experimental biological toxicity is their lower cost and time, high efficiency and 
reproducibility using the same model. (Q)SAR models have no restrictions related 
to chemical synthesis, they can be continuously improved (allow adding important 
properties, descriptors, and expansion of the chemical space), and can also help to 
reduce the number of experimental animals. It is important to understand that, in 
spite of all possibilities for computation prediction methods, they cannot be used 
separately from experimental studies and cannot fully replace biological experi-
ments designed to determine the toxicity of compounds. In most cases the compu-
tational prediction of toxicity is an effective tool to support the decision about ex-
perimental testing of compounds. In addition, an ability of computational methods 
to predict ADME (Adsorption, Distribution, Metabolism and Excretion) properties 
for virtual structures allows investigating the chemical space without chemical syn-
thesis and experimental testing of compounds.

11.2  General Principles of the Computational Prediction 
of Toxicity

Toxicity prediction is based on the assumption that an activity of chemicals depends 
on their structures. This statement is valid both for the creation of (Q)SAR models 
and for calculation of risk assessment using expert rules, which allow detecting the 
toxic compounds based on the so-called alerts, simple structural components asso-
ciated with the manifestation of toxicity [8, 9, 10].

For the construction of any toxicological model the three key components are 
used:

1. Data of chemical compounds (structure, physicochemical and biological proper-
ties) and biological experimental systems (species, strain, sex, clinical character-
istics, gene expression and protein synthesis);

2. Descriptors are used for description of chemical structures (constitutional 
descriptors, topological, electro-topological, quantum-chemical, structural frag-
ments, fingerprints, physicochemical descriptors);

3. Mathematical methods are used to identify the relationship between descriptors 
and the biological effects (multiple linear regressions, neural networks, nearest 
neighbors, support vector machine, random forest, etc.).

In 2002, the Organization for Economic Cooperation and Development (OECD) 
had developed and introduced the guidelines for creation of predictive (Q)SAR 
models [11]. The guidelines are that a valid QSAR/QSPR should have:

1. A defined endpoint. An independent variable, which is used for modeling has to 
be well defined;

2. An unambiguous algorithm. It is a necessary to use an unambiguous algorithm 
for the model building;
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3. A defined domain of applicability. It is a necessary to estimate an applicability 
domain for each developed model;

4. Appropriate measures of goodness for fit, robustness and predictivity. It is a nec-
essary to validate the developed models according to different types of validation 
procedure;

5. A mechanistic interpretation, if possible. Each model, if possible, should have a 
mechanistic interpretation;

The analysis of key components in QSAR modeling procedure, which includes 
common mistakes, is given below.

11.2.1  Data

A considerable attention should be given to data, which are used for the models 
construction. The following criteria are used for this purpose:

1. Reliability: accurate and complete description of the experimental values;
Data should be obtained by the same experimental protocol (using the same type 
and sex of the animal, route of administration, time of exposure);
For quantitative parameters (LD50, EC50, etc.) the molar concentrations (mmol/
kg) should be used instead of weight (mg/kg) or volume (ppm). The following 
equations are used for conversion of weight and volume values to the molar 
concentrations:

mMole kg mg kg
g mole

mMole m ppm/ /
/

, /
.

= =3

24 25

The structure of compounds should be a single-component and presented in a 
neutral form;
References or literature sources should be provided for each type of data;

2. Consistency: experimental results must be reproducible with low error;
For qualitative data (for example, a carcinogen and not a carcinogen) should not 
be contradictions;
Classification of the compounds should be made according to the same criteria;

3. Reproducibility: experimental results should be reproducible in different 
laboratories.

In addition, it is a necessary to take into account the range of a dependent variable 
during the construction of (Q)SAR models. Gedeck et al. has showed on different 
datasets that the prediction accuracy is significantly increased with magnification 
of a value range in the dependent variable [12]. The authors have proved that to de-
velop a good model, it is required to use the data, which has the range of dependent 
values as at least one logarithm (the value of Y (e.g., LD50) varies by 10 times).
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Some database may contain information about the weak activity of compounds 
that are labeled like LD50 > 300 mg/kg. This type of data should be censored. There 
are different methods of using this data for QSAR modeling [13, 14], but it is better 
to avoid using them. Especially, these values could not be assigned for a specific 
threshold (for example, LD50 > 300 mg/kg cannot be assigned to the LD50 300 mg/
kg or 600 mg/kg or 900 mg/kg). Quality and reproducibility of the data used for 
the toxicity modeling is one of the most important issues for creation of (Q)SAR 
models. For example, can rodent’s experimental test results be used for the (Q)SAR 
modeling? Although, currently, there are more than 5000 experimental results of 
carcinogenicity in rodents for compounds, most of them are not public available 
(e.g., private and proprietary archival research) [15]. As well as quality of data, the 
transparency of standardized bioassays using specific protocols, such as NTP (Na-
tional Toxicology Program: http://ntp.niehs.nih.gov/), is important. It is considered 
that the usage of rodent’s carcinogenicity data is efficient for (Q)SAR modeling. 
However, it was found that the data of experimental protocols are varied depending 
on the sources. For some compounds contradictions in the measurement data were 
found in the published reports [16], while for other compounds results were well 
reproducible [17].

Since the correlation strategy of toxicity values with molecular structures of the 
training set is used during in silico modeling, an inability of software to process the 
mixture of compounds with a small amount of salts containing ions such as HCl- or 
SO4 or hydrated condition indicates that the wrong representation of endogenous 
molecules can result in inaccurate predictions [18]. Some (Q)SAR developers ig-
nore the small molecule ions, but they can affect the pKa of the molecule, which 
depends on various physiological conditions and may affect the behavior of the 
whole molecule, such as absorption. Therefore, this ignoring leads to errors in the 
model as well as prediction results.

11.2.2  Databases with Experimental Toxicity Data of Compounds

Toxicity databases are widely used for developing models, prediction of undesir-
able drug effects, safety assessment of different xenobiotics, selection of promising 
compounds and, ideally, estimation of the risk assessment of compounds. The main 
aim in the design of such database is aggregation of the acceptable scientific data 
from different toxicity studies for constructing an electronic resource that can be 
used for search of chemicals, for model developing and for read-across strategy of 
structurally similar compounds. OECD has published the guidance on the quantita-
tive and qualitative read-across approach, which can be used to fill the data gaps 
in the risk assessment of chemicals [19]. Computer toxicology databases are often 
used by regulatory agencies and industry for the safety assessment and predictions 
of xenobiotics side effects [20].

Definition of toxicology databases is varied as the definition of computational 
toxicology. The most common definition of toxicology databases is a set of electron-
ic information that can be related to the toxicity of compounds, which is organized 
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by the certain computer software and is used for the safety assessment and risk 
analysis of industrial compounds, research and development products in the field 
of biomedical and toxicological sciences [1]. Therefore, toxicology databases have 
to be constantly updated by cheminformatic resources, which are useful for the cre-
ation of secondary data sets, e.g. training sets for the (Q)SAR modeling of toxicity.

A huge amount of information from toxicity databases has become freely avail-
able recently. It has played an important role in the development of (Q)SAR models 
and computer programs for the toxicity prediction. Unfortunately, the content of 
freely available databases is still different from compound libraries used for devel-
opment of drugs and from industrial compounds. Recent initiatives of regulatory 
agencies require to develop the toxicology database with a free access and pro-
mote the usage of a computer technology [6]. Table 11.1 shows the list of publicly 
available toxicity databases, which describe the effect of substances on the human 
health, and electronic resources, which are useful for risk assessment and safety of 
chemical compounds [1].

The private toxicity databases offer more accurate toxicity data and the extended 
chemical space of representative structures in comparison with public databases. 
Despite expansion of the chemical space and various numbers of proposed descrip-
tors, the private databases have limitations related to the models selection, types of 
algorithms and the content of data, which is probably a part of confidential busi-
ness information, such as a proprietary structure of pharmaceutical molecules. The 
private toxicity databases may also provide internal systems created by industry or 
government agencies [21]. These databases may not be suitable for a commercial 
usage, but are useful for the internal analysis. Therefore, publication of the scien-
tific research based on these data is often difficult to evaluate independently. The 
most known commercial databases associated with toxicity are Accelrys Toxicity 
Database (contains information about the structure and different types of toxicity 
for more than 150,000 compounds from RTECS and other sources) and Leadscope 
Toxicity Database. Standardization of toxicity databases is designed to facilitate 
integration between different sources and to provide their quality. Since databases 
are often not compatible with each other, standardization initiatives (e.g., controlled 
vocabularies) can help to combine their data [22].

11.2.3  Descriptors

Appropriate description of the chemical structure is a major component and limita-
tion for creation of high-quality (Q)SAR models. Molecular descriptors are impor-
tant for the toxicity modeling technology because their numeric representation is 
the basis for construction of structure-activity relationships by computational mod-
els. Therefore, if the selected descriptors do not reflect aspects influencing on mani-
festation of the molecule toxicity, the developed model may show a poor accuracy. 
There are both commercial and public software which allow generating different 
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Database Definition
ACToR ACToR (Aggregated Computational Toxicology Resource) is EPA’s online 

warehouse of all publicly available chemical toxicity data. Publicly avail-
able data produced by the industry in the medium and large amounts, includes 
information about the components of drinking water. Database has a searching 
system, which includes a chemical structure, physicochemical properties, in 
vitro and in vivo experimental toxicity data: http://actor.epa.gov/actor/faces/
ACToRHome.jsp

AffyTrack FDA Toxicogenomics-centric gene microarray expression database: http://www.
fda.gov/ScienceResearch/BioinformaticsTools/Arraytrack/default.htm

Cal/EPA The toxicity database includes the standard criteria levels of chronic exposure 
and carcinogenic potential. Developed by the U.S. Agency for Environmental
Protection California: http://www.oehha.ca.gov/risk/ChemicalDB/index.asp

CCRIS Chemical Carcinogenesis Research Information System (CCRIS). System 
includes carcinogenicity and mutagenicity test results for over 8000 chemicals: 
http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?CCRIS

CEBS US NIH/NIEHS Chemical Effects in Biological Systems Knowledgebase; 
integrates genomic and biological data, including dose-response studies in toxi-
cology and pathology: http://www.niehs.nih.gov/research/resources/databases/
cebs/index.cfm

CEDI/ADI  
Database

US FDA/CFSAN Cumulative Estimated Daily Intake/Acceptable Daily Intake 
Database of food compounds: http://www.fda.gov/Food/IngredientsPackag-
ingLabeling/PackagingFCS/CEDI/default.htm

CERES Chemical Evaluation and Risk Estimation System (CERES). US FDA/
CFSAN develops a knowledge base of nutritional supplements. Knowl-
edge base includes a toxicity database of food ingredients, pharmaceuticals, 
agricultural and industrial chemicals, structural alerts and QSAR-based 
toxicity prediction: http://www.accessdata.fda.gov/FDATrack/track-
proj?program=cfsan&id=CFSAN-OFAS-Chemical-Evaluation-and-Risk-Esti-
mation-System

ChEMBLdb ChEMBLdb contains freely available data on cytotoxicity and interaction with 
more 9000 targets including off-targets, transporters and drug-metabolizing  
enzymes: https://www.ebi.ac.uk/chembldb/

ChemIDPlus It contains information about the structure, name, physical-chemical properties, 
biological activity and toxicity for 139,354 compounds: http://chem.sis.nlm.nih.
gov/chemidplus/

CPDB Carcinogenic Potency DataBase (Database of carcinogenic potential of chemical 
compounds supported by the University of California, Berkeley), includes the 
results collected from the literature of 2-year carcinogenicity tests for different 
species of mammals: http://potency.berkeley.edu/

CTD Comparative Toxicogenomics Database contains the data on changes of gene 
expression, gene ontology, associations and relationships of genes with diseases 
and biological pathways that give an insight into the mechanisms of influence of 
chemical compounds on human health: http://ctdbase.org/

Danish (Q)
SAR Database

Database of Danish Agency for Environmental Protection includes more than 
70 QSAR models and the information about biological effects for 166,072 
chemical compounds: http://qsar.food.dtu.dk/

DITOP Drug-Induced Toxicity-Related Protein Database provides information about 
drug-induced toxicity associated with proteins. It includes data overdose 
toxicity, idiosyncratic toxicity, drug-drug interactions and genotoxicity: http://
bioinf.xmu.edu.cn/databases/DITOP/

Table 11.1  Publicly available toxicity databases (DB) and resources 

http://actor.epa.gov/actor/faces/ACToRHome.jsp
http://actor.epa.gov/actor/faces/ACToRHome.jsp
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Arraytrack/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/Arraytrack/default.htm
http://www.oehha.ca.gov/risk/ChemicalDB/index.asp
http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?CCRIS
http://www.niehs.nih.gov/research/resources/databases/cebs/index.cfm
http://www.niehs.nih.gov/research/resources/databases/cebs/index.cfm
http://www.fda.gov/Food/IngredientsPackagingLabeling/PackagingFCS/CEDI/default.htm
http://www.fda.gov/Food/IngredientsPackagingLabeling/PackagingFCS/CEDI/default.htm
http://chem.sis.nlm.nih.gov/chemidplus/
http://chem.sis.nlm.nih.gov/chemidplus/


332 A. Zakharov and A. Lagunin

Database Definition
DRAR-CPI Prediction of Drug Repositioning and Adverse Reaction via Chemical-Protein 

Interactome: http://cpi.bio-x.cn/drar/
Drugs@FDA Information about the US FDA approved drug products: http://www.fda.gov/

Drugs/InformationOnDrugs/ucm135821.htm
DSSTox Distributed Structure-Searchable Toxicity Database Network. Distributed toxic-

ity databases, which is focused on structure search, upload and the standardiza-
tion of the structural information associated with toxicity data: http://www.epa.
gov/ncct/dsstox/index.html

DTome Information on adverse drug–drug interactions: http://bioinfo.mc.vanderbilt.edu/
DTome/

EAFUS US FDA/CFSAN Everything Added to Food Database. It contains data about 
ingredients, which are added to food: http://www.accessdata.fda.gov/scripts/fcn/
fcnnavigation.cfm?rpt=eafuslisting

ECETOC European Centre for Ecotoxicology and Toxicology of Chemicals: http://www.
ecetoc.org/

ECOTOX US EPA toxicity database includes information about water and soil organisms: 
http://cfpub.epa.gov/ecotox/

ESIS European chemical Substances Information System provides information about 
the risks and safety of chemical compounds: http://esis.jrc.ec.europa.eu/

eTOX Library Contains links to articles of toxicological relevance (data that can be used for 
modeling purposes, computational models, and toxicity mechanisms), public 
databases, standardized vocabularies and modeling tools: http://cadd.imim.es/
etox-library/

EXTOXNET The database provides information about toxicity of pesticides: http://extoxnet.
orst.edu/ghindex.html

FAERS The FDA Adverse Event Reporting System (FAERS) is a database that contains 
information on the adverse event and medication error reports submitted to 
FDA. The database is designed to support the FDA’s post-marketing safety sur-
veillance program for drug and therapeutic biologic products: http://www.fda.
gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/Adverse-
DrugEffects/default.htm

FDA Poison-
ous Plant 
Database

Database US FDA/ CFSAN with references to the scientific literature describes 
the study of toxic properties of plants: http://www.accessdata.fda.gov/scripts/
plantox/index.cfm

GAC US NIH/NIEHS Genetic Alterations in Cancer database; Quantitatively 
described mutations found in the tumors induced by the compounds present in 
the environment: http://www.niehs.nih.gov/research/resources/databases/gac/
index.cfm

Gene-Tox Expertly curate data of genetic toxicity tests for more than 3000 chemical com-
pounds of US NLM: http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?GENETOX

HERA Human and Environmental Risk Assessment on Ingredients and Household 
Cleaning Products. It contains toxicological information about ingredients sup-
plied by European manufacturers: http://www.heraproject.com/RiskAssessment.
cfm

Household 
Products 
Database

Database provided by Department of Health and Human Services with Material 
Safety Data Sheets. It includes products used in the household with the assess-
ment of their effects on human health and chemicals, which are presented in 
these products: http://hpd.nlm.nih.gov/

Table 11.1 (continued) 
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Database Definition
IARC 
Monograph

Monograph of International Agency for Research on Cancer (IARC) describes 
human carcinogenic risks assessment: http://monographs.iarc.fr/

IRIS Integrated Risk Information System (IRIS) includes electronic reports on the 
compounds available in the environment and their potential to cause effects on 
the health: http://cfpub.epa.gov/ncea/iris/index.cfm

ITER The database of the human health risk values and the cancer classification for 
over 680 chemical compounds from the environment: http://www.tera.org/iter/

JECDB Database of chemical toxicity provided by Ministry of Health, Labour and 
Welfare, Japan. It contains reports of toxicological tests of compounds in the  
environment: http://dra4.nihs.go.jp/mhlw_data/jsp/SearchPageENG.jsp

LAZAR The resource allows to predict hepatotoxicity, mutagenicity and carcinogenicity: 
http://www.in-silico.de/

MRL Database provides Minimal Risk Levels for compounds. Supported by US 
DHHS/ATSDR: http://www.atsdr.cdc.gov/mrls/index.html

MRTD The database includes maximum recommended therapeutic doses of 1220 
drugs. Developed for US FDA/CDER/OPS/SRS/ICSAS: http://www.fda.
gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/
ucm092199.htm

NPIC The National Pesticide Information Center at Oregon State University and US 
EPA, provides information about pesticides and toxicity of compounds: http://
npic.orst.edu/

NTP The National Toxicology Program of US NIH/NIEHS gives information about 
the compounds that are registered in the U.S. and providing the public interest 
in terms of health: http://ntp.niehs.nih.gov/

OpenTox Web resource provides the ecotoxicity data of chemical compounds. It has 
standardized data exchange, allows to calculate descriptors on-line and to apply 
of mathematical methods for QSAR modeling: http://www.opentox.org

PAN Pesticide Pesticide Action Network North America includes data on 6500 pesticides, 
insecticides and herbicides, water pollution, ecological toxicity and regulatory  
status: http://www.pesticideinfo.org/

Pesticide 
Database

Database of pesticides. Supported by Toyohashi University of Technology, 
Japan: http://chrom.tutms.tut.ac.jp/JINNO/PESDATA/00alphabet.html

PubChem PubChem provides information on the biological activities of small molecules 
including toxicity data: http://pubchem.ncbi.nlm.nih.gov/

RAIS Risk Assessment Information System provides values of specific toxicity of 
chemical compounds: http://rais.ornl.gov/

RITA Registry of Industrial Toxicology Animal-data. Developed for comparison and 
interpretation carcinogenicity studies: http://reni.item.fraunhofer.de/reni/public/
rita/

SIDER Information on marketed medicines and their recorded adverse drug reactions 
(ADRs): http://sideeffects.embl.de/

STITCH Search Tool for Interactions of Chemicals (STITCH). STITCH contains interac-
tions between 300,000 small molecules and 2.6 million proteins from 1133  
organisms: http://stitch.embl.de/

TEXTRATOX Agricultural Institute of the University of Tennessee. The TETRATOX database 
is a collection of toxic potency data for more than 2400 industrial organic com-
pounds of which more than 1600 have been published: http://www.vet.utk.edu/
TETRATOX/index.php

Table 11.1 (continued) 
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types of molecular descriptors. The most popular programs are public Mol2d, 
which is available from FDA’s National Center for Toxicological Research [23] and 
commercial Dragon, provided by Italian company Talete. Several descriptor and 
fingerprint generators are also available in KNIME and CHEMBENCH. The list of 
mostly known generators of molecular descriptors is presented in Table 11.2.

It is necessary to emphasize that sometimes different descriptors generators pro-
vide the same descriptors, but called in different ways. It is considered that one 
should avoid the use of collinear descriptors, when correlation between the de-
scriptors for the compounds in a training set is close to 100 % [24]. In addition 
to descriptors directly calculated from the molecular structure (the topology of a 
molecule, the number of acceptors, etc.), there are experimentally received descrip-
tors or based on computer predictions (both biological (e.g., absorption, resulting 
line CaCo-2 cells) and physical-chemical (e.g., LogP)). Currently, 20 computer pro-
grams calculates the LogP values and in most cases the prediction results are not 
the same [24]. The usage of these descriptors may provide an error and noise into 
developed model. In these cases it is necessary to pay attention to coefficients for 
these descriptors in QSAR equation. If the descriptor coefficient is equal to or less 
than the descriptor’s error, then the descriptor should be deleted from the equation, 
since it would result in less accuracy of prediction for compounds from the test set. 
Another important feature of descriptors is their intervals. For example, for some 
training sets one descriptor (LogD) can range from −3.572 to 3.773, second descrip-
tor (F) can range from − 0.04 to 0.67 and the third (dCox) has values from 0.0000 to 
0.0646 [25]. Therefore, for all descriptors which will be used for the model build-
ing, it is necessary to carry out the procedure of auto-scaling when the value of all 
used descriptors vary in the same range, for example from 0 to 1.

Many systems use computer predictions of toxicity based on a two-dimensional 
representation of the chemical structure in the training set. However, the three-di-
mensional representation of the molecular structure can be sometimes more reason-
able and demonstrative regarding to manifestations of toxicological and pharmaco-

Database Definition
ToxML Editor Enter toxicity data with a standardized vocabulary for data exchange and 

integration: http://www.leadscope.com/product_info.php?products_id=51
TOXNET Databases on toxicology, hazardous chemicals, environmental health, and toxic 

releases: http://toxnet.nlm.nih.gov/
ToxRefDB Toxicity Reference Database captures standard toxicological studies of 

pesticides and other chemical compounds present in the environment, including 
acute, subacute, chronic toxicity and influence on the development of the body.  
Support by ToxCast program: http://www.epa.gov/ncct/toxrefdb/

Toxtree Open source application, which is able to estimate toxic hazard by applying a 
decision tree: http://toxtree.sourceforge.net/

USGS The results of aqueous toxicity tests collected by US Geological Survey, Colum-
bia Environmental Research Center: http://137.227.231.90/data/acute/acute.html

Table 11.1 (continued) 
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Name Source Definition
AFGen University of 

Minnesota
It generates the set of fragment-based descriptors with 
three different types of topologies: paths, acyclic sub-
graphs, and arbitrary topology subgraphs: http://glaros.
dtc.umn.edu/gkhome/afgen/overview

CDK Independent 
developers

The Chemistry Development Kit (CDK) is a Java library 
for structural chemo- and bioinformatics. Calculates 260 
types of descriptors: http://cdk.sourceforge.net/

CODESSA University of Florida Program automatically calculates more than 500 types 
of descriptors (Constitutional, Topological, Geometrical, 
Electrostatic, Thermodynamic, Quantum-chemical): 
http://www.codessa-pro.com/index.htm

DRAGON Talete s.r.l. Calculates 4885 types of descriptors (represented by all 
classes of descriptors): http://www.talete.mi.it/index.htm

E-DRAGON VCCLAB E-DRAGON remote version of the DRAGON, which is 
an application for the calculation of molecular descrip-
tors developed by the Milan group of Prof. Todechini: 
http://www.vcclab.org/

ISIDA Université de 
Strasbourg

Software for calculation of Substructural Molecular 
Fragments (SMF) as well as ISIDA Property-Labeled 
Fragments (IPLF) descriptors: http://infochim.u-strasbg.
fr/spip.php?rubrique49

MODEL National University of 
Singapore

Software for a non-commercial use that calculates about 
4000 molecular descriptors based on 3D structure of 
a molecule: http://jing.cz3.nus.edu.sg/cgi-bin/model/
model.cgi

MOE Chemical Computing 
Group

Calculates over 600 molecular descriptors including 
topological indices, structural keys, E-state indices, 
physical properties (such as LogP, molecular weight 
and molar refractivity), topological polar surface area 
(TPSA) and CCG’s VSA descriptors: http://www.chem-
comp.com/software-chem.htm

Mol2D FDA Freely available software that calculates more than 700 
descriptors types based on a two-dimensional structure 
of molecules. http://www.fda.gov/ScienceResearch/Bio-
informaticsTools/Mold2/default.htm

MOLGEN MOLGEN Freely available web-service that calculates 708 arith-
metical, topological and geometrical descriptors: http://
molgen.de/

PreADMET PreADMET Calculates more than 2000 descriptors, including both 
2D and 3D descriptors: http://preadmet.bmdrc.org/

PaDEL National University of 
Singapore

The software currently calculates 863 descriptors (729 
1D, 2D descriptors and 134 3D descriptors) and 10 
types of fingerprints: http://padel.nus.edu.sg/software/
padeldescriptor/

PCLIENT VCCLAB PCLIENT (Parameter Client) provides an interface for 
different programs, which calculate several groups of 
indices. In total, more than 3000 kinds of
descriptors: http://www.vcclab.org/

QSARpro Vlife Calculation of over 1000 molecular descriptors of vari-
ous classes: http://www.vlifesciences.com/products/
QSARPro/Product_QSARpro.php

Table 11.2  Generators of molecular descriptors

http://glaros.dtc.umn.edu/gkhome/afgen/overview
http://glaros.dtc.umn.edu/gkhome/afgen/overview
http://infochim.u-strasbg.fr/spip.php?rubrique49
http://infochim.u-strasbg.fr/spip.php?rubrique49
http://jing.cz3.nus.edu.sg/cgi-bin/model/model.cgi
http://jing.cz3.nus.edu.sg/cgi-bin/model/model.cgi
http://padel.nus.edu.sg/software/padeldescriptor/
http://padel.nus.edu.sg/software/padeldescriptor/
http://www.vlifesciences.com/products/QSARPro/Product_QSARpro.php
http://www.vlifesciences.com/products/QSARPro/Product_QSARpro.php
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logical effects of some molecules in the biological system, e.g. the ligand-receptor 
interaction has a distinct isomeric specificity. Influence of three-dimensional char-
acteristics of ligand-receptor interactions, such as dimensional alignment of mol-
ecules and fitting electronic properties of molecules based on their surfaces can be 
very significant in pharmacology [26]. For example, the interaction of ligands with 
CYP2C9 was extended to the fourth dimension (conformer’s analysis) and led to a 
4-D classification of drugs [27]. The multi-dimensional relationships between pre-
cursors of anabolic steroids and mineral corticoid receptor were modeled and it was 
shown how these substances disrupted the endocrine system [28].

11.2.4  Mathematical Methods

There are several handbooks [29, 30, 31] with descriptions of mathematical meth-
ods (machine learning techniques) used in QSAR modeling. The most known meth-
ods are: Naïve Bayes, Decision Trees, Fuzzy Logic, Genetic Algorithms, Multiple 
Regressions, Neural Networks, Partial Least Squares, Radial Basis Function, Sup-
port Vector Machines. Here, we describe the most well-known computer programs, 
providing the algorithms, used to build (Q)SAR models (Table 11.3).

Currently, the main tendency in the development of QSAR modeling is the use 
of consensus models. When several models with different machine learning tech-
niques and/or different sets of descriptors are developed based on the same training 
set. The consensus model results in aggregation of predictions from all developed 
models. Predictions from the models can be arithmetically averaged (simple un-
weighted consensus) or can be averaged with some weights for each model (weight-
ed consensus) [32, 33]. It is considered that the use of the consensus model reduces 
the variability of the individual models, which leads to more reliable predictions 
[34]. These statements are valid for both QSAR, and SAR models.

11.3  The Practical Use of the Methods for Computational 
Toxicity Prediction

Toxicological (Q)SAR models are essentially used for the toxicity prediction of 
new compounds. These models are developed mainly from the training set of com-
pounds with a known activity. If the training set is large and diverse (chemically 
heterogeneous), then (Q)SAR models based on this set are considered to be global. 
If the training set consists of a homogeneous compound, the (Q)SAR models, based 
on this set, are called as local. The assessment of existing (Q)SAR methods to pre-
dict most significant toxicological values was performed during preparation of the 
computational toxicology report by the European Commission under REACH de-
velopment (early 2000’s). According to this report the accurate (Q)SAR models 
were developed based on non-heterogeneous data (local (Q)SAR models). Nowa-
days the situation has been considerably changed. At the present time a reasonable 
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Name Source Definition
ASNN VCCLAB Creates a non-linear model based on neural network. 

Freely available: http://www.vcclab.org/
CHEMBENCH Carolina Exploratory 

Center for Chemin-
formatics Research

A freely available portal providing cheminformatics 
research support to molecular modelers, medicinal 
chemists and quantitative biologists by integrating 
robust model builders, property and activity predictors, 
virtual libraries of available chemicals with predicted 
biological and drug-like properties: http://chembench.
mml.unc.edu/

GUSAR GeneXplain Software for creation of (Q)SAR models on the basis of 
atom-centric QNA and MNA descriptors: http://www.
genexplain.com/

KNIME KNIME.com AG A graphical workbench for the analysis process: data 
transformation, predictive analytics, visualization and 
reporting. It includes plug-ins for descriptors generation, 
creation of QSAR models: http://www.knime.org/

MATLAB The MathWorks Interactive environment, using its own language, and 
includes almost all of the most commonly used machine 
learning methods in QSAR: http://www.mathworks.
com/

MOE Chemical Computing 
Group

Construction of QSAR/QSPR models using probabilis-
tic methods and decision trees, PCR and PLS methods: 
http://www.chemcomp.com/software-chem.htm

PLS VCCLAB Partial Least Squares (PLS). The original two-step 
descriptors selection procedure: http://www.vcclab.org/

PNN VCCLAB Polynomial Neural Network (PNN): http://www.vcclab.
org/

R R-project A freeware product for statistical calculation and graph-
ics creation. R provides a wide range of tools
 (linear and nonlinear modeling, classical statistical 
tests, consistent analysis, classification, clustering): 
http://www.r-project.org/

Small-molecule 
drug discovery 
suite

Schrodinger 2D/3D QSAR with a large selection of fingerprint 
options, shape-based screening, with or without atom 
properties, ligand-based pharmacophore model-
ling, R-group analysis: http://www.schrodinger.com/
productsuite/1/

StarDrop Optibrium The software for QSAR modeling, data analysis and 
structures optimization: http://www.optibrium.com/

Statistica StatSoft Data processing environment includes almost all of the 
most frequently used mathematical methods in QSAR: 
http://www.statsoft.com/

Discovery-
studio

Accelrys The software package for QSAR modeling, for data 
analysis and structures optimization: http://accelrys.
com/products/discovery-studio/

WEKA University of Waikato A collection of machine learning algorithms for data 
analysis. It contains tools for data pre-processing, classi-
fication, regression, clustering and visualization: http://
www.cs.waikato.ac.nz/ml/weka/

Table 11.3  Computer programs used to create the (Q)SAR models 

http://chembench.mml.unc.edu/
http://chembench.mml.unc.edu/
http://www.genexplain.com/
http://www.genexplain.com/
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http://www.mathworks.com/
http://www.vcclab.org/
http://www.vcclab.org/
http://www.schrodinger.com/productsuite/1/
http://www.schrodinger.com/productsuite/1/
http://www.statsoft.com/
http://accelrys.com/products/discovery-studio/
http://accelrys.com/products/discovery-studio/
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robust classification or continuous global QSAR models on heterogeneous data 
have been created for many toxicological endpoints. Nevertheless for some, mostly 
chronic toxic effects only reasonable local QSAR models exist (Table 11.4). The 
main reason of that is an insufficient size of accurate and heterogeneous experi-
mental data.

There are software products providing an opportunity for prediction of differ-
ent toxic effects on the basis of already existing (Q)SAR models. Most of them 
are based on the heterogeneous data of toxicity effects mentioned in Table 11.4. 
Table 11.5 shows the well known software products which are used for prediction 
of toxic effects.

The parameters of some software presented in Table 11.5 have been compared 
in Table 11.6.

The Table 11.6 shows that most programs do not provide the access to the train-
ing set, but some programs may be modified (adding the data and retraining of the 
models). Also, for some programs, there is no information on the external validation 
of accuracy. It does not allow estimating in advance the accuracy of these programs.

It is a necessary to emphasize that some developers provide a free access to the 
created models. For instance, GUSAR development team provides on-line web ser-
vice, which allows predicting the acute rat toxicity for four type of administration: 
oral, intraperitoneal, intravenous and subcutaneous. Authors used in-house database 
(more than 10,000 compounds) prepared on the basis of data from SYMYX MDL 
Toxicity Database (now Accelrys Toxicity Database) for models developing and 
validation. The models were created using GUSAR program. The developed mod-
els were compared to prediction results of the acute rodent toxicity for non-conge-
neric sets made by ACD/Labs Inc. It was shown [35] that the consensus prediction 
results obtained by GUSAR models on the test sets were equal or higher than those 
achieved by ACD/Labs models. In addition, the results of GUSAR predictions were 
also compared ones given by the T.E.S.T. program (Toxicity Estimation Software 
Tool) Version 3.0, developed by U.S. Environmental Protection Agency, 2008 on 

Table 11.4  The applicability of (Q)SAR methods
Type of activity 2003 2013
Acute toxicity, fish General General
Acute toxicity, algea Local Local
Acute toxicity, daphnia Local General
Acute toxicity, rodents Local General
Human chronic toxicity Local Local
Skin irritation Local General
Eye irritation Local General
Skin sensitization Local General
Mammalian chronic toxicity Local Local
Mutagenicity in vitro Local—general General
Carcinogenicity Local Local
Teratogenicity Local General

local QSAR models created for non-heterogeneous data; general QSAR models created for het-
erogeneous data
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Name Definition
ACD/Percepta It predicts ADME, toxicological, and physicochemical property endpoints: 

http://www.acdlabs.com/products/percepta/
Admensa 
Interactive

Computer system of QSAR modeling is developed for ADME optimization: 
http://www.bioportfolio.com/biotech_news/Inpharmatica_3.htm

ASTER ASTER (Assessment Tools for the Evaluation of Risk) was developed in US 
EPA. It is a database of toxic effects AQUIRE (AQUatic toxicity Information 
Retrieval) integrated with an expert system QSAR and valuation techniques for 
activity prediction: http://www.epa.gov/med/Prods_Pubs/aster.htm

CATABOL A hybrid expert system for predicting the biotransformation pathways, works 
together with model which calculates the probabilities of individual transfor-
mation of molecule: http://oasis-lmc.org/?section=software&swid=1

Cerius2 Molecular modeling package providing computer models for predicting ADME 
and toxic properties of compounds: http://accelrys.com/products/cerius2/

DEREK DEREK (Deductive Estimation of Risk from Existing Knowledge). An expert 
system is based on rules. It identifies the so-called toxicophores fragments 
of the molecule associated with the corresponding activity) and provides the 
related commentary for them and references to the available information: 
http://www.lhasalimited.org/

DIGEP-Pred Web-service for prediction of drug-induced changes in the gene expression 
profile based on the structural formula of drug-like ompounds: http://www.
way2drug.com/GE

DISCAS The cascade model with an ability to analyze local correlations in the training 
sets with a large number of variables: http://www.clab.kwansei.ac.jp/mining/
discas/discas.html

DvD An R/Cytoscape plug-in assessing system-wide gene expression data to predict 
drug side effects and drug repositioning: http://www.ebi.ac.uk/saezrodriguez/
DVD

ECOSAR Ecological Structure Activity Relationships (ECOSAR)—a computer predic-
tion system for assessing the aquatic toxicity of industrial compounds. It was 
developed in 1979 by US EPA. The program is based on the SAR calculates 
acute and chronic toxicity for aqueous organisms (fish, aquatic invertebrates 
and plants): http://www.epa.gov/oppt/newchems/tools/21ecosar.htm

GUSAR Software for modeling of any quantitative and qualitative relationships based 
on self-consistent regression and neighborhoods of atoms descriptors (QNA, 
MNA). GUSAR provides prediction of rat acute toxicity (LD50), ligand inter-
action with several antitargets and some ecotoxicological end-points: http://
www.way2drug.com/GUSAR

HazardExpert An expert system is based on rules. The program had been developed in 
1992 by Smithing Darvas. Program identifies toxicophores (fragments of the 
molecule associated with the corresponding activity). It is based on US EPA 
database: Toxic Fragments Knowledge Base: http://www.compudrug.com/

Lazar Lazy Structure-Activity Relationships. Gets the prediction from the toxicity 
data by searching similar compounds in the database which are associated with 
a given toxic activity: http://in-silico.de/

MCASE MCASE (Multiple Computer Automated Structure Evaluation). Program auto-
matically generates its own descriptors (Biophores) from the training set, which 
are related to the activity. Biophores may be a group of atoms and distances 
between them, the physico-chemical parameters. The program estimates the sta-
tistical significance of each Biophore for active and inactive compounds, and on 
the basis of these estimations it makes a prediction: http://www.multicase.com/

Table 11.5  Software for prediction of toxicity and adverse side effects

http://www.way2drug.com/GE
http://www.way2drug.com/GE
http://www.clab.kwansei.ac.jp/mining/discas/discas.html
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http://www.ebi.ac.uk/saezrodriguez/DVD
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the available training and test sets with data on oral acute toxicity measured in LD50 
(mmol/kg) values for 7286 compounds. It was demonstrated that GUSAR models 
had the highest accuracy in comparison with the models from T.E.S.T. program and 
provided the highest speed of prediction (18 times faster).

The developed models are freely available on the web site: http://www.way-
2drug.com/gusar/acutoxpredict.html. The characteristics of the models are given 
in Table 11.7. The service includes an on-line chemical editor [36] for drawing the 
studied structure. It provides acute toxicity prediction results in the different units, 
but does not support the batch prediction mode.

Name Definition
MetaDrug Toxicity assessment by the generation of networks around the proteins and 

genes (toxicogenetics platform): http://www.genego.com/metadrug.php
OASIS A computer system is designed for modeling acute and chronic toxicity, for 

screening and prioritization of compounds: http://www.oasis-lmc.org/
OncoLogic An expert system which was developed by US EPA to predict carcinogenicity 

in rodents. Chemicals are divided into 4 groups: fibers, polymers, metals and 
organic compounds. OncoLogic makes prediction for each group based on the 
rules: http://www.epa.gov/oppt/newchems/tools/oncologic.htm

PASS The program predicts the biological activity spectrum of chemical compounds 
on the basis of their structure. A freely available web-site provides prediction 
for several thousand types of biological activity,
 including pharmacological effects, mechanisms of action, adverse or toxic 
effects, interaction with metabolic enzymes, transporters, and influence on the 
gene expression: http://way2drug.com/PASS

PreADMET The calculation of the important descriptors and neural network to create 
QSAR models: http://preadmet.bmdrc.org/

SADR-Gengle PubMed records text mining-based data on 6 serious adverse drug reaction: 
http://gengle.bio-x.cn/SADR

SePreSA Binding pocket polymorphism-based serious adverse drug reaction predictor: 
http://sepresa.bio-x.cn

SRC EPIWIN 
(EPI Suite)

Package of freely downloadable models from the site of Syracuse Research 
Corporation. It calculates physicochemical properties and predicts bioconcen-
tration factor (BCF) based on linear regression, log octanol/ water partition 
(LogKow) and taking into account type of substances (ionic and non-ionic): 
http://www.epa.gov/oppt/exposure/pubs/episuite.htm

TOPKAT TOPKAT (Toxicity Prediction by Komputer Assisted Technology) uses 
multiple linear regression equation (quantitative prediction) or two-group 
discriminant function for qualitative prediction of different effects: mutagenic-
ity, carcinogenicity and teratogenicity. It uses substructural, electro-topological 
descriptors and bonds between the atoms from the library containing about 
3000 molecular fragments: http://accelrys.com/products/discovery-studio/
toxicology/

Table 11.5 (continued)

http://accelrys.com/products/discovery-studio/toxicology/
http://accelrys.com/products/discovery-studio/toxicology/
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11.4  Development of New Medicines

Availability of side effects in drugs is one of the major problems in clinical practice. 
Serious pathologies that affect the number of patients due to taking of some drugs 
are the cause for rejection of using these drugs in the clinic. Approximately 35–40 % 
failures of the drug application fall on these cases [37, 38, 39]. This leads to with-
drawal of the drug from the market and increasing costs, since the usage of these 
drugs results in severe injuries in various organs and tissues, which may cause the 
patient death. The central nervous system, cardiovascular system and liver (9–26 % 
of all cases of stopping treatment) are affected in the most commonly cases [40, 41].

Table 11.6  Comparison of software for the toxicity prediction
ACD/
Percepta

ADMET 
predictor

CASE 
Ultra

Meteor/
Derek

GUSAR PASS StarDrop TOPKAT

Modifica-
tion

− − + + + + + −

Availabil-
ity of train-
ing set

+a − + − − − − +

Method 
description

+ + + + + + + +

Internal 
validation

+ + + + + + + +

External 
validation

+ + − +a + + + + a

Applicabil-
ity domain

+ − − + + + + +

Number of 
end-points 
(ADME/T)

30/26 37/30 6/471 dozens/40 0/44 282/638 11/40 7/16

Source ACD/ 
Labs

Simula-
tions 
Plus, Inc.

Multi-
case Inc.

Lhasa 
Ltd.

GeneX-
plain

GeneX-
plain

Optib-
rium, 
Ltd.

Accelerys

a for some models

Table 11.7  Characteristics of GUSAR models for the rat acute toxicity predictions
Administration Ntrain Ntest N models R2 Q2 R2

 test RMSEtest Coverage, %
Oral 6280 2692 40 0.61 0.57 0.59 0.57 97.5
Intraperitoneal 2480 1065 68 0.66 0.56 0.57 0.57 96.1
Intravenous  920  394 50 0.73 0.66 0.63 0.62 99.2
Subcutaneous  759  325  7 0.69 0.59 0.50 0.69 92.0

Ntrain number of compounds in the training set, Ntest number of compounds in the test set, R2  aver-
age R2  of the models calculated for the appropriate training set, Q2  average Q2  of the models 
calculated for the appropriate training set, Coverage percent of the compounds from the test set 
fell in the Applicability Domain
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There are several indexes which are useful to assess the general drug toxicity 
in clinical studies or to compare drug-candidates on the basis of experimental or 
predicted data:

1. Therapeutic index (TI): TI = LD50/ED50 or TI = LD10/ED90. The safest drug has 
the highest index. Review of QSAR models for prediction of rodent LD50 values 
is presented above.

2. Maximum recommended therapeutic dose (MRTD). The MRDD is essen-
tially equivalent to the NOAEL (no observed adverse effect level) in humans, 
a dose beyond which adverse (toxicological) or undesirable pharmacological 
effects are observed. The correlation between MRDD and LD10 is about 94 %. 
FDA’s Center for Drug Evaluation and Research provides MRTD database [42] 
with information on MRTD for 1220 drugs. QSAR models for prediction of 
MDTD are provided by Simulation Plus and ACD/Labs. QSAR models for mice 
and rat maximum tolerated dose are provided by Accelrys.

There is a classification of hazard classes to humans based on LD50 values for rats 
and mice (OECD Project of Toxicity Classification of Chemicals). It is presented 
in Table 11.8.

As stated above, assessment of the specific drug toxicity is very important during 
the drug development process. For instance, it is a well known that the non-steroidal 
anti-inflammatory drug (NSAID) Vioxx (rofecoxib) produces the side effects. It is a 
selective inhibitor of cyclooxygenase 2, which has been developed for the treatment 
of arthritis. The basic idea to create such NSAIDs is the reduction of ulcerogenic 
effect due to affinity decreasing of cyclooxygenase 1 (COX 1), towards a greater 
selectivity for cyclooxygenase 2 (COX 2). COX 1 is a conservative enzyme in con-
trast to COX 2, which is synthesized only during inflammation and is involved in 
the synthesis of prostaglandins, providing a protective effect on the gastric mucosa. 
In clinical trials of VIGOR (VIOXX Gastrointestinal Outcomes Research), a low 
ulcerogenic effect of rofecoxib compared to naproxen was obtained, but, in addi-
tion, toxic effects on the cardiovascular system were also found. However, further 
clinical trials have not revealed the increase in risk of these side effects, which 
became the basis for the product approval by regulatory authorities and its release 

Table 11.8  Modified OECD project of toxicity classification of chemicals
Parameter 1 class 2 class 3 class 4 class 5 class Low toxic
LD50, mg/kg 
(oral)

≤ 5 (5:50] (50:300] (300:2000] (2000:5000] > 5000

LD50, mg/kg 
(i. v.)

≤ 0.7 (0.7:7] (7:40] (40:300] (300:700] > 700

LD50, mg/kg 
(i. p.)

≤ 1 (1:10] (10:75] (75:500] (500:1250] > 1250

LC50, ppm 
(inhalation)

≤ 100 (100:500] (500:2500] (2500:5000] > 5000

LD50, mg/kg 
(s. c.)

≤ 2 (2:20] (20:150] (150:1000] (1000:2500] > 2500

LD50, mg/kg 
(skin)

≤ 50 (50:200] (200:1000] (1000:20000] > 20000
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to the market. Then a prospective, multicenter, randomized, placebo-controlled, 
double-blind clinical trial APPROV (Adenomatous Polyp Prevention on VIOXX) 
was performed. Its purpose was to evaluate the effectiveness for prevention of colon 
polyps in patients with colorectal adenomatous polyps in the medical history. An in-
creasing risk of cardiovascular events such as myocardial infarction and stroke was 
found. Therefore, clinical trials (APPROV) were terminated and the drug Vioxx 
was withdrawn from the market [43].

Along with these critical side effects, like VIOXXa, there are less serious side ef-
fects, such as nausea, dizziness, dry mouth, skin rash, etc. They are significant only 
with the long-term usage of drug compounds. Table 11.9 shows the most frequent 
adverse effects of therapeutic compounds [44].

Traditionally, the drug development process starts with definition of the target 
protein. An interaction of the drug with this target leads to the manifestation of a 
therapeutic effect. It is also well known, that drugs in most cases interact with dif-
ferent additional targets (off-targets). Availability of these additional mechanisms 
of action provides the emergence of side effects. The proteins which led to the ap-
pearance of side effects are known as antitargets. The list of antitargets associated 
with the cardiovascular system was published by Whitebread with co-authors [44]. 
The antitarget interactions predicted by GUSAR Online web-service [http://www.
way2drug.com/GUSAR] and associated with the toxic and side effects are shown 
in Table 11.10.

Table 11.9  The most frequent side effects of drugs
Localization Effect
Gastrointestinal tract Hepatitis and/or hepatocellular damage; Constipation; Diarrhea; 

Nausea and/or vomiting; Ulceration; Pancreatitis; Dry mouth
Blood Agranulocytosis; Hemolytic anemia; Pancytopenia; Throm-

bocytopenia; Megaloblastic anemia; Clotting and/or bleeding; 
Eosinophilia

Cardiovascular system Arrhythmias; Hypotension; Hypertension; Congestive heart failure; 
Angina and/or chest pain; Pericarditis; Cardiomyopathy

Integuments Erythemas; Hyperpigmentation; Photodermatitis; Eczema; Urti-
caria; Acne; Alopecia

Metabolism Hyperglycemia; Hypoglycemia; Hyperkalemia; Hypokalemia; 
Metabolic acidosis; Hyperuricemia; Hyponatremia

Respiratory System Airway obstruction; Pulmonary infiltrates; Pulmonary edema; 
Respiratory depression; Nasal congestion

Musculoskeletal system Myalgia and/or myopathy; Rhabdomyolysis; Osteoporosis
Urogenital System Nephritis; Nephrosis; Tubular necrosis; Renal dysfunction; Bladder 

dysfunction; Nephrolythiasis
Endocrine system Thyroid dysfunction; Sexual disfunction; Gynecomastia; Addison 

syndrome; Galactorrhea
Nervous system Seizures; Tremor; Sleep disorders; Peripheral neuropathy; Head-

ache; Extrapyramidal effects
Central nervous system Delirium, confusion; Depression; Hallucination; Drowsiness; 

Schizophrenic and/or paranoid reactions; Sleep disturbances
Eye Disturbed color vision; Cataract; Optic neuritis; Retinopathy; Glau-

coma; Corneal opacity
Hearing Deafness; Vestibular disorders
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Action on antitarget Related side effects
5HT 2A receptor antagonist Hypnotic; Sedative
5-HT 2C receptor antagonist Obesity; Weight loss
Alpha 1a adrenergic receptor antagonist Dizziness; Flushing; Impotence; Nasal congestion; 

Postural (orthostatic) hypotension; Tachycardia; 
Weakness

Alpha 1b adrenergic receptor antagonist Ejaculation dysfunction
Alpha 2a adrenergic receptor antagonist Anxiety; Depression
Androgen receptor antagonist Virilization; gynecomastia; hepatic pelioza; 

hepatoma
Carbonic anhydrase inhibition Acidosis, metabolic; Alopecia (hair loss); Anaphy-

laxis; Anemia, aplastic; Anxiety; Bone marrow 
suppression; Chronic fatigue syndrome; Confusion; 
Corneal edema; Depression; Dyspepsia; Dysphagia; 
Impotence; Irritation; Keratitis; Malaise; Nausea; 
Nephrotoxic; Neuroprotector; Paralysis; Pulmonary 
edema; Renal tubular acidosis; Stevens-Johnson 
syndrome; Taste disturbance; Thrombocytopenia; 
Urinary stone; Vision blurring; Weight loss

Estrogen receptor antagonist Depression; Headache; Obesity; Sickness; Hot 
flashes; Puffiness

Delta-type opioid receptor antagonist Reverse analgesia; Opioid withdrawal symptoms
MAO A inhibitor Blood pressure lability; Bradycardia; Chorea; 

Convulsions; Delirium; Diarrhea; Hepatotoxicity; 
Drowsiness

Mu-type opioid receptor antagonist Laxative
Sodium- and chloride-dependent GABA 
transporter 1 inhibitor

Neurotoxicity

Sodium-dependent dopamine transporter 
inhibitor

Neurotoxicity

Sodium-dependent serotonin transporter 
inhibitor

Acute respiratory distress syndrome (ARDS); 
Agitation; Akathisia; Anorgasmia; Antialcoholic; 
Constipation; Convulsant; Diarrhea; Dizziness; 
Drowsiness; Dysesthesia; Dyskinesia; Dystonia; 
Ecchymosis; Ejaculation dysfunction; Emetic; 
Epistaxis; Exanthema; Extrapyramidal effect; Glau-
coma; Hallucination, visual; Headache; Hemor-
rhage; Hepatotoxic; Hormone secretion (SIADH); 
Hot flush; Hyperprolactinemia; Hypersexual-
ity; Hypertensive; Hypoglycemic; Hypomania; 
Hyponatremia; Hypothermic; Insomnia; Ischemic 
colitis; Mania; Menorrhagia; Myoclonus; Nausea; 
Neuroleptic malignant syndrome; Panic; Parkinson-
ism; Purpura; QT interval prolongation; Serotonin 
syndrome; Sexual dysfunction; Shivering; Sleep 
disturbance; Stevens-Johnson syndrome; Sweating; 
Syncope; Taste disturbance; Thrombocytopenia; 
Tremor; Weight gain; Weight loss; Xerostomia

Table 11.10  Relationships between drug action on antitargets and adverse side effects from 
PharmaExpert
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PharmaExpert is a commercial software providing data on relationships between 
drug interactions with antitargets and specific toxicity [45]. The part of known an-
titargets associated with specific toxicity and side effects are freely available in 
Drug Adverse Reaction Target [http://bidd.nus.edu.sg/group/drt/dart.asp] and Drug-
Induced Toxicity-Related Protein [http://bioinf.xmu.edu.cn/databases/DITOP/] da-
tabases. Interaction with a primary target may also result in adverse reactions due to 
no local distribution of a target in the body and its multiple functions.

All side effects are usually divided into five classes [46, 47]:

a. Includes dose-dependent side effects, which are often found in preclinical 
studies.

b. Includes side effects, the frequency of which is not dose-dependent, they are 
often detected in observation of marketed drugs.

c. Includes adaptive functional changes in the body during a long-term drug usage. 
They are identified in the measurement of functional parameters during the long-
term studies.

d. Includes delayed side effects such as carcinogenicity and teratogenicity.
e. Includes those side effects, which can lead to refuse of the drug.

Side effects of B, C, D and E classes are of considerable interest due to the difficulty 
of timely registration.

Currently, QSAR (quantitative structure-activity relationship) and SAR (struc-
ture-activity relationship) methods are widely used for computational prediction of 
different toxicity types, such as cardio-, hepato-, renal toxicity, teratogenicity, and 
carcinogenicity.

In addition to traditional SAR methods used in DEREK, TOPKAT, MCASE 
there are examples of using the method of molecular docking to predict side effects 
of drugs. For example, Ji and co-authors described the search of targets associated 
with side effects for various anti-HIV drugs available on the market [48]. For the 
docking procedure, the authors used the docking program INVDOCK [49]. This 
program was designed for an automated search of targets for low-weight ligands, 
by attempting to integrate them into “cavities” of each protein, e.g. search of the 
corresponding binding sites. Three-dimensional protein structures, data about in-
hibitors, activators, agonists, antagonists, and the toxic side effects data caused by 
interaction with targets were obtained from the DART database [50]. As a result, 
for 11 anti-HIV drugs, which are inhibitors of HIV protease and reverse transcrip-
tase, nonviral target molecule interactions have been found which lead to the side 
effects. Existence of two targets was shown for delavirdine: DNA polymerase beta 
and DNA topoisomerase I. The action on these targets causes pancreatitis, nausea, 
vomiting, leukopenia, peripheral neuropathy, and abdominal pain.

This method also has significant drawbacks. Firstly, it requires a lot of compu-
tational power and time. Secondly, a clear correlation between the target and side 
effects is not always established, and mechanisms of adverse drug reactions are not 
always known. Thirdly, three-dimensional structures are known only for a limited 
number of proteins. All these drawbacks limit the application of the method.
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Current methods based on “structure–activity” relationships, have also some dis-
advantages. Firstly, they are not applicable to predict biological activities of poly-
mers, especially proteins, and inorganic compounds that can act as drugs. Secondly, 
many experimental data is obtained from animals. Therefore predictions based on 
these end-points cannot be always extrapolated to humans. Thirdly, predictions 
were made for the substance itself, but toxic or side effects might be provided by its 
metabolites. Fourthly, most of the methods allow predicting only one type of toxic-
ity or one mechanism of side effects.

Thus, the desirable method is to predict the full range of side effects, without a 
three-dimensional structure of the target, without spending a lot of time and com-
puting resources. These capabilities are presented in the program PASS—Predic-
tion of Activity Spectra for Substances (www.way2drug.ru/PASS). Its algorithm is 
based on MNA descriptors for describing the structure of compounds and modified 
Bayesian approach for prediction of biological activities [31]. The program allows 
predicting both the mechanisms of toxic effects (interaction with antitargets) and 
main side effects of compounds [51]. Table 11.11–11.12 shows the main toxic side 
effects and interaction with antitargets predicted by PASS 2012, the number of ac-
tive compounds in the training set and the prediction accuracy. An average accuracy 
of prediction calculated by leave-one-out cross-validation is 87.7 % for side and 
toxic effects and 96.7 % for interaction with antitargets.

GUSAR software is another method corresponded to above mentioned require-
ments. It is based on Multilevel and Quantitative Neighbourhoods of Atoms (MNA, 
QNA) descriptors [52, 53] and the self-consistent regression (SCR) algorithm [52, 
54]. It was shown that GUSAR may successfully be applied for multiple QSAR 
tasks [35, 52, 54, 55, 56].

A freely available on-line service for the simultaneous prediction of thirty two 
antitarget end-points (IC50, Ki and Kact) has been developed on the basis of GUSAR 
[http://www.way2drug.com/GUSAR/Antitargets/]. These antitarget end-points are 
related to 18 proteins: 13 receptors, 2 enzymes and 3 transporters. The relationships 
between predicted drug interactions with antitargets and adverse side effects are 
represented in Table 11.10. The accuracy of end-point predictions, calculated for 
the appropriate external test sets was typically in the range of R2

test = 0.6–0.9. This 
service provides a reasonable computational speed (about 2 compounds per second 
for the simultaneous prediction of 32 antitarget end-points).

In addition, the web service allows calculating the total number of targets for 
which the input compound has been predicted to be active. This can be useful for 
selection and prioritization of compounds during the drug discovery process. A par-
ticular compound can be considered as a potential source of adverse drug reactions 
(ADRs) if interactions with three or more antitargets have been predicted and ex-
ceed the cut-off value (1 µM). Compounds for which antitargets are not predicted 
can be selected for further development as potential drugs. The service can also help 
medical chemists to determine targets (molecular mechanism of toxicity) on which 
a particular compound should be tested experimentally, to avoid ADRs.

Fourteen known drugs, which had been withdrawn from the market, were ana-
lyzed by Zakharov with co-authors using GUSAR Online web-service [57]. In addi-
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Activity name N AUC, %
Abortion inducer 38 94.9
Agranulocytosis 408 84.1
Allergic reaction 789 81.9
Anaphylaxis 392 83.0
Anemia 228 84.8
Arrhythmogenic 481 81.2
Carcinogenic 1813 93.3
Carcinogenic, group 1 23 86.9
Carcinogenic, group 2A 36 95.5
Carcinogenic, group 2B 194 96.0
Carcinogenic, group 3 387 94.8
Carcinogenic, mouse 456 92.1
Carcinogenic, rat 603 93.1
Cardiodepressant 160 91.5
Cardiotoxic 982 82.4
Cataract 115 82.0
Coma 311 82.6
Convulsant 890 85.3
Cytotoxic 721 93.1
DNA damaging 466 96.3
Dependence 70 84.1
Depression 125 81.7
Embryotoxic 1743 90.7
Emetic 788 82.0
Endocrine disruptor 223 85.2
Eye irritation, high 528 93.7
Eye irritation, moderate 229 96.7
Eye irritation, weak 348 96.8
Genotoxic 146 94.9
Hematotoxic 1142 82.7
Hepatotoxic 1033 83.7
Hypercalcaemic 19 84.7
Hypercholesterolemic 10 85.1
Hyperglycemic 71 80.1
Hypertensive 736 81.5
Hypertensive, ophthalmic 10 95.8
Hypocalcaemic 29 85.4
Hypoglycemic 413 91.9
Hypothermic 295 84.4
Immunotoxin 43 79.1
Leukopenia 542 82.0
Mutagenic 3542 97.1
Nephrotoxic 787 84.0
Neurotoxic 638 85.8
Ocular toxicity 639 82.1
Ototoxicity 43 87.4
Pneumotoxic 17 95.5
QT interval prolongation 117 86.2

Table 11.11  Main adverse and toxic effects predicted by PASS 2012
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Activity name N AUC, %
Reproductive dysfunction 219 79.2
Respiratory failure 323 83.4
Sedative 1223 91.8
Sensitization 161 92.5
Skin irritative effect 1117 95.9
Teratogen 1552 90.5
Thrombocytopenia 494 81.6
Thrombocytopoiesis inhibitor 11 84.0
Thrombophlebitis 146 80.2
Torsades de pointes 90 82.2
Toxic, respiratory center 15 92.7
Ulceration 53 90.7

N number of active compounds in the training set AUC Area Under Curve, calculated by leave-
one-out cross-validation procedure

Table 11.11 (continued)

Activity name N AUC, %
11-Beta-hydroxysteroid dehydrogenase 2 inhibitor 253 99.8
5 Hydroxytryptamine 1A agonist 1131 98.8
5 Hydroxytryptamine 2A agonist 59 95.0
5 Hydroxytryptamine 2B agonist 9 94.7
5 Hydroxytryptamine 2C antagonist 1781 98.5
5 Hydroxytryptamine 3 agonist 73 96.9
5 Hydroxytryptamine uptake inhibitor 4311 98.5
ATPase inhibitor 150 93.3
Acetylcholine M1 receptor antagonist 1263 98.8
Acetylcholine M2 receptor agonist 39 97.1
Acetylcholine M2 receptor antagonist 1374 98.9
Acetylcholinesterase inhibitor 1646 97.5
Aconitate hydratase inhibitor 22 99.2
Acyl-CoA dehydrogenase inhibitor 15 99.4
Adenosine deaminase inhibitor 165 98.4
Adenylate cyclase I inhibitor 54 99.7
Adenylate cyclase inhibitor 174 95.0
Adenylate kinase inhibitor 23 93.5
Adrenaline uptake inhibitor 2366 98.8
Alcohol dehydrogenase inhibitor 119 95.7
Aldosterone antagonist 58 87.2
Alkaline phosphatase inhibitor 336 95.7
Alpha 1a adrenoreceptor agonist 48 100.0
Alpha 1a adrenoreceptor antagonist 3142 98.2
Alpha 2a adrenoreceptor antagonist 629 98.1
Alpha galactosidase inhibitor 16 100.0
Alpha-mannosidase inhibitor 59 98.5
Aminopeptidase A inhibitor 55 99.9
Aminopeptidase N inhibitor 183 98.2
Androgen agonist 219 98.5
Arginase inhibitor 34 99.3

Table 11.12  Antitarget activities predicted by PASS 2012
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Activity name N AUC, %
Argininosuccinate synthase inhibitor 21 98.9
Aryl hydrocarbon receptor agonist 12 92.1
Beta 1 adrenoreceptor agonist 49 97.6
Beta 1 adrenoreceptor antagonist 677 98.9
Beta 2 adrenoreceptor agonist 683 99.5
Beta 2 adrenoreceptor antagonist 670 99.0
Butyrylcholinesterase inhibitor 952 98.9
CYP1A2 inhibitor 412 89.0
CYP2C9 inhibitor 748 90.1
CYP2D6 inhibitor 994 93.6
CYP3A4 inhibitor 1396 91.1
Ca2+-transporting ATPase inhibitor 12 86.1
Carbamoyl-phosphate synthase (ammonia) inhibitor 15 99.0
Carbonic anhydrase I inhibitor 812 99.9
Carbonic anhydrase II inhibitor 1211 99.8
Carbonic anhydrase inhibitor 1344 99.8
Catalase inhibitor 27 96.1
Catechol O methyltransferase inhibitor 58 98.2
Cyclooxygenase inhibitor 4216 96.6
Cystathionine beta-synthase inhibitor 12 99.0
Cytochrome oxidase inhibitor 11 99.9
DNA polymerase beta inhibitor 31 99.6
DOPA decarboxylase inhibitor 10 98.5
Diamine oxidase inhibitor 32 99.0
Dihydrofolate reductase inhibitor 1812 99.3
Dipeptidyl peptidase IV inhibitor 1195 99.0
Dopamine D2 antagonist 4605 98.1
Electron transport complex I inhibitor 26 98.5
Estrogen agonist 734 98.0
Excitatory amino acid transporter 2 inhibitor 44 99.9
Fumarate hydratase inhibitor 24 99.6
GABA A receptor agonist 231 94.5
GABA A receptor antagonist 2765 98.7
GABA aminotransferase inhibitor 14 85.3
GABA transporter 1 inhibitor 150 99.6
Glucocorticoid agonist 307 99.4
Glucose-6-phosphate isomerase inhibitor 22 99.9
Glutamate dehydrogenase inhibitor 34 96.0
HERG channel blocker 1207 95.2
HMG CoA reductase inhibitor 484 99.2
Heat shock protein 70 antagonist 23 96.4
Hexokinase inhibitor 193 95.6
Histamine H1 receptor antagonist 858 97.7
Histamine H2 receptor antagonist 375 98.2
Hypoxanthine phosphoribosyltransferase inhibitor 37 99.0
Insulin and insulin analogs 10 78.7
Insulin antagonist 339 96.7
Luteinizing hormone-releasing hormone antagonist 969 98.8

Table 11.12 (continued)



350 A. Zakharov and A. Lagunin

tion to the withdrawn drugs, seven currently marketed drugs were also analyzed to 
find out the difference in the number of predicted antitargets. The prediction results 
are presented in Table 11.13.

The results have shown that the number of predicted antitargets for withdrawn 
drugs is considerably higher than one for marketed drugs. Thus, this service can 
successfully be applied for the selection and prioritization of safe compounds dur-
ing the drug discovery process.

Activity name N AUC, %
Lysine carboxypeptidase inhibitor 35 99.8
MAO A inhibitor 463 98.2
MAO inhibitor 1124 97.1
Na+K + transporting ATPase inhibitor 165 98.5
Neutral endopeptidase inhibitor 698 99.5
Opioid delta receptor antagonist 2044 99.0
Opioid mu receptor agonist 133 95.7
Ornithine carbamoyltransferase inhibitor 40 99.0
Peroxidase inhibitor 16 93.1
Phenylalanine 4-hydroxylase inhibitor 30 97.9
Phosphodiesterase inhibitor 5905 97.1
Phosphofructokinase-1 inhibitor 33 98.5
Phosphoglycerate kinase inhibitor 189 99.6
Phospholipase A2 inhibitor 541 96.5
Phospholipase C inhibitor 51 92.8
Phosphorylase inhibitor 279 98.5
Platelet activating factor antagonist 2431 97.2
Prostaglandin F2 alpha agonist 26 100.0
Protein kinase C stimulant 61 98.8
Pyruvate kinase inhibitor 38 97.3
Retinoic acid alpha receptor agonist 27 99.7
S-adenosyl-L-homocysteine hydrolase inhibitor 69 100.0
Sarcoplasmic reticulum calcium ATPase inhibitor 11 94.3
Sodium channel blocker 1004 93.8
Succinate dehydrogenase inhibitor 14 95.7
Superoxide dismutase inhibitor 15 88.4
Thyroid hormone agonist 104 98.6
Thyroid hormone beta agonist 74 100.0
Topoisomerase I inhibitor 478 96.3
Topoisomerase II alpha inhibitor 44 96.7
Triose-phosphate isomerase inhibitor 23 98.6
Tyrosine 3 hydroxylase inhibitor 12 88.4
UDP-glucose 4-epimerase inhibitor 28 97.2
Ubiquinol-cytochrome-c reductase inhibitor 10 81.6

N number of active compounds in the training set AUC Area Under Curve, calculated by leave-
one-out cross-validation procedure

Table 11.12 (continued)
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Typically, the affinity of a pharmaceutical agent to the drug target should exceed 
the affinity to antitargets for at least one to two orders of magnitude. The medium 
affinity of current drugs to drug targets is about 16 nM, ranging from 16 mM to 
1.6 pM [58]. Therefore, GUSAR prediction of interaction with antitarget(s) should 
be carefully considered in each individual case taking into account the predicted/
measured affinity of an analyzed compound to the drug target. A particular attention 
should be paid to compounds, for which the predicted affinity of interaction with 
four or more antitargets exceeded 1 µM.

One of the main limitations for in silico assessment of toxic/side effects based 
on prediction of ligand interaction with antitargets is an insufficient knowledge 
about “target-side effects” relationships. The computer evaluation of relationships 
between the predicted targets or drug-target interactions and known side effects is 
carried out using statistical methods of disproportionality analysis. The prediction 
of drug-target interactions were made by a similarity assessment with the com-
pounds from ChEMBL database [59], PASS prediction of biological activity spectra 
[60] or docking [61]. Another method for revealing associations between targets 
and side effects is based on creation of SAR models for compounds interacted with 
each target and causing the side effect. For example, if the prediction of interac-
tions with targets and prediction of side effects carried out based on the Bayesian 
approach, the relationships between targets and adverse effects can be calculated by 
the Pearson correlation coefficient between the conditional probability P (A|Di) and 
P (M|Di) models (A—a side effect, M—target, Di—descriptor) [62].

Table 11.13  Prediction results for withdrawn and marketed drugs
Drug name State The number of predicted antitargets
Amineptine Withdrawn 13
Duract Withdrawn 8
Vioxx Withdrawn 7
Astemizole Withdrawn 17
Cerivastatin Withdrawn 8
Chlormezanone Withdrawn 10
Fenfluramine Withdrawn 11
Flosequinan Withdrawn 11
Glafenine Withdrawn 14
Grepafloxacin Withdrawn 12
Mibefradil Withdrawn 16
Rofecoxib Withdrawn 7
Troglitazone Withdrawn 14
Ximelagatran Withdrawn 14
Aspirin Marketed 2
Ibuprofen Marketed 2
Valtrex Marketed 3
Microzide Marketed 3
Neurontin Marketed 3
Enoxaparin Marketed 2
Lyrica Marketed 2
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Biological pathways and biological processes can characterize mechanisms of 
drug side effects at more general level than the target molecules. Their assessment 
is based on prediction of drug interactions with the targets and analysis of drug-
induced changes in gene expression profiles. In the first case, assessment of profiles 
in drug interactions with proteins is made for a set of compounds, some of which 
cause, and others do not cause side effects. Each of the predicted protein is asso-
ciated with the biological pathway (signaling, metabolic, and regulatory). Every 
biological pathway receives a score, which is calculated as the sum of probable 
interactions with proteins that are a part of the way for all compounds causing an 
appropriate side effect. The same estimation is calculated for the compounds that 
do not cause this side effect. After that the ratio of estimates is calculated. Pathways 
are considered associated with a side effect if the ratio is greater than 1, or the way, 
the interaction with which is predicted only for compounds that cause the side ef-
fect [63].

Drug-induced changes in gene expression profiles can be used for searching of 
the biological processes associated with side effects by the gene set enrichment 
analysis [64]. In this method a set of genes involving in a biological process is cre-
ated. Then, a list of estimates for changes in the gene expression is calculated based 
on comparison of gene expression after the compound action and in the norm. The 
list is sorted by ascending or descending the estimates subject to direction in which 
the gene expression is changed (hyper-or hypo-expression). The basic analysis hy-
pothesis is that the genes involved in the same biological process should be clus-
tered mainly on the top or bottom of the sorted list.

In 2006, Lamb and co-authors introduced Connectivity Map (CMap) as a phe-
notypic-based drug discovery approach based on comparison of the disease gene 
signature and drug-induced changes in gene expression profiles [65]. It was shown 
that CMap approach can be used to reveal side effects of drugs [66]. The construct-
ed multigene expression signature was used to predict future onset of the proximal 
tubular injury in rats [67]. CMap approach has a limitation due to its applicability 
only for drugs having experimentally determined drug-induced changes of gene 
expression and it cannot be used for new drugs or new drug-candidates. This limita-
tion may be partly overcome by prediction of possible drug-induced changes in the 
gene expression for new drug-like compounds on the basis of existed experimental 
microarray data. Such possibility is realized on a freely available DIGEP-Pred web-
service (http://www.way2drug.com/GE). It also provides the links between gene 
names in the predicted drug-induced changes in the gene expression and Compara-
tive Toxicogenomics Database [68] which simplifies interpretation of predicted 
results due to the access to relationships of genes with diseases, side effects and 
biological pathways [69].

One of most important parameters considered during the drug development is 
assessment of a potential participation of drugs in drug-drug interactions. Usage of 
multiple drugs is a common practice in the treatment of many diseases, including 
cardiac insufficiency (diuretics and vasodilators), malignant neoplasms and some 
infectious diseases (HIV, hepatitis C, etc.). Despite a positive effect of the simul-
taneous usage for several drugs, there is a risk of negative influence on each other 
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and on the human body. On the average the frequency of adverse drug interactions 
is between 3–5 to 20 %, if patients take simultaneously from 2 to 10 drugs [70]. The 
possible estimation of those interactions will increase the safety of drug therapy.

Several computational studies of drug-drug interactions depending on the mo-
lecular mechanisms of action and biotransformation pathways were performed [71, 
72]. They are mainly related to the analysis of drug metabolizing enzymes, such 
as isoforms of cytochrome P450, and are restricted by narrow classes of chemical 
compounds.

Drug-drug interactions can be a physical (e.g., changing the pH, which depends 
on the absorption of these compounds as ketoconazole and glipizide), chemical 
(e.g., ciprofloxacin is a chelator of cations such as aluminum, magnesium and iron), 
and biological, which depends on interactions with human proteins. The last type of 
interaction is of great interest for computational predictions.

There are many mechanisms of the drug-drug interactions in humans. They may 
be divided into two large groups: pharmacokinetic and pharmacodynamic drug in-
teractions. Pharmacokinetic drug interactions include cases where one drug affects 
the absorption, distribution, metabolism and excretion of another drug. Pharmaco-
dynamic drug interactions include cases where drugs have additive or antagonistic 
pharmacological effects.

11.4.1  Pharmacokinetic Drug-Drug Interactions

The key molecular mechanisms were identified during the detailed analysis of phar-
macokinetic drug-drug interactions. Transport proteins play an important role for 
manifestation of negative drug interactions during absorption and excretion [73]. 
The reason for changing the drug absorption and excretion can be the direct com-
petition for reaction with transport protein (compounds are substrates of the same 
transporter enzyme) and the influence of one drug on the activity (inhibition) or the 
amount (induction of expression) of transport protein, while the other drug is a sub-
strate of this transport protein. Therefore, the computer prediction of interaction for 
chemical compounds with transporter proteins can be used to assess possible drug-
drug interactions. The QSAR models for prediction of drug interaction with trans-
porters are provided by Simulation Plus Inc. (OATP1B1 transporter), ACD/Labs (P-
glycoprotein), Optibrium (P-glycoprotein). QSAR modeling for the several major 
transporters including MDR1, BCRP, MRP1–4, PEPT1, ASBT, OATP2B1, OCT1, 
and MCT1 was made by Sedykh with co-authors [74]. The most representative pro-
file of interaction with transporters is calculated by PASS software (Table 11.14).

Drug distribution in the body depends on several factors: the total amount of ex-
tracellular liquid, the percentage of adipose tissue and an ability to bind with plasma 
proteins, which depends on a structural formula of the compound. The last factor 
plays a significant role in process of drug-drug interactions during distribution. Al-
bumin and alpha-1 glycoprotein plasma proteins are responsible for the transfer of 
major drugs and undesirable interactions between these drugs may occur due to 
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Activity name N AUC, %
5 Hydroxytryptamine uptake inhibitor 4311 98.5
ATP-binding cassette G2 inhibitor 44 96.9
Adenosine uptake inhibitor 55 100.0
Adrenaline uptake inhibitor 2366 98.8
Amino acid-polyamine-organocation (APC) transporter 
antagonist

82 100.0

Apical sodium codependent bile acid transporter inhibitor 16 100.0
Cationic amino acid transporter 4 inhibitor 32 100.0
Dopamine transporter inhibitor 1221 99.1
Dopamine uptake inhibitor 1848 99.2
Electron transport complex I inhibitor 26 98.5
Endocannabinoid uptake inhibitor 29 99.2
Equilibrative nucleoside transport protein 1 inhibitor 97 99.5
Equilibrative nucleoside transport protein inhibitor 127 99.5
Excitatory amino acid transporter 1 inhibitor 33 99.9
Excitatory amino acid transporter 2 inhibitor 44 99.9
Excitatory amino acid transporter 3 inhibitor 10 100.0
Fatty acid transport protein 4 inhibitor 19 00.0
GABA transporter 1 inhibitor 150 99.6
GABA transporter 2 inhibitor 11 98.9
GABA transporter inhibitor 157 99.4
GABA uptake inhibitor 68 99.3
Glycine transporter 1 inhibitor 466 99.7
Glycine transporter 2 inhibitor 74 98.4
Glycine transporter inhibitor 550 99.2
Ileal bile acid transport inhibitor 144 99.8
Monoamine uptake inhibitor 41 91.6
Multidrug resistance-associated protein 1 inhibitor 223 96.7
Multidrug resistance-associated protein inhibitor 224 96.2
Neuronal K-Cl cotransporter inhibitor 17 91.1
Nucleoside transporters inhibitor 18 99.9
P-glycoprotein 1 inhibitor 450 93.6
P-glycoprotein 3 inhibitor 62 92.2
P-glycoprotein inhibitor 644 93.4
P-glycoprotein substrate 59 85.1
P2 nucleoside transporter inhibitor 11 100.0
Phosphate transporter inhibitor 26 98.1
Proline transporter inhibitor 23 100.0
Sodium/bile acid cotransporter inhibitor 16 97.0
Sodium/calcium exchanger 1 inhibitor 25 97.3
Sodium/calcium exchanger inhibitor 109 98.7
Sodium/glucose cotransporter 1 inhibitor 180 99.2
Sodium/glucose cotransporter 2 inhibitor 425 99.8
Sodium/hydrogen exchanger 1 inhibitor 296 99.9
Sodium/hydrogen exchanger 2 inhibitor 157 100.0
Sodium/hydrogen exchanger 3 inhibitor 220 99.9
Solute carrier family 22 member 12 inhibitor 19 100.0
Tetracycline antiport transporter antagonist 36 100.0

Table 11.14  Interactions with transport proteins and transport systems predicted by PASS 2012
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the competition with their binding center, which lead to increase in concentrations 
of the drugs in blood and cause adverse and toxic effects. It is considered that the 
clinically significant binding of drugs with plasma proteins is 95 %. [75]. Currently, 
several studies of the plasma proteins binding predictions were performed [76, 77]. 
QSAR models for assessment of the plasma proteins binding are provided by Ac-
celrys, Simulation Plus Inc., ACD/Labs, PreADMET, Optibrium.

Metabolic change of one drug by another is one of the most significant causes for 
drug-drug interactions. Thus, the study of drug interactions with enzymes involved 
in their metabolism is very popular. There are four types of adverse drug reactions 
arising from influence on metabolic pathways of drugs.

1. Inhibition of the enzyme increases toxicity of the drug compound, which is a 
substrate of this enzyme. Most drugs are metabolized into inactive or less active 
metabolites by the liver and intestine enzymes. Inhibition of metabolism can 
increase the compound concentration and, consequently, enhance its effect. If 
the increasing of concentration is significant, it may cause toxicity. It is one of 
the most common and important interaction mechanisms of drug compounds 
in the clinic. The limited number of cytochrome P450 isoforms is involved in 
metabolism of drugs. Thus, competition between two drugs for these isoforms 
is possible. For example, inhibitors of CYP1A2 (cytochrome P450 isoform) 
may increase the risk of toxicity for clozepine and theophylline. Inhibitors of 
CYP2A9 may cause toxicity of phenytoin, tolbutamide and oral anticoagulants 
(e.g. warfarin). Inhibitors of CYP3A4 (e.g., phenytoin) increase the risk of tox-
icity of many drugs, including carbamazepine, ciclosporin, lovastatin, protease 
inhibitors, rifabutin, simvastatin and vinca alkaloids.

2. Enzyme inhibition reduces a therapeutic effect of the drug compound, an active 
form of which is produced by metabolism of an initially inactive or low active 
compound (prodrug). Inhibition of prodrug metabolism may reduce the amount 
of active forms and hence reduce the therapeutic effect. For example, analgesic 
and toxic effects of codeine occur as a result of its transformation into mor-
phine by CYP2D6. Thus, CYP2D6 inhibitors can reduce the therapeutic effect 
of codeine.

3. The enzyme induction reduces therapeutic effects of its substrates. Some drugs, 
which are enzyme inductors, are able to increase the activity of drug metaboliz-
ing enzymes, which lead to reduce the therapeutic effect of other drugs. For 
example, the most common enzyme inducers are aminoglutethimide, barbitu-

Activity name N AUC, %
Urate transporter 1 inhibitor 29 97.9
Vesicle monoamine transporter 2 inhibitor 13 100.0
Vesicle monoamine transporter inhibitor 14 99.6
Vesicular acetylcholine transporter inhibitor 75 99.8

N number of active compounds in the training set AUC Area Under Curve, calculated by leave-
one-out cross-validation procedure

Table 11.14 (continued)
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rates, carbamazepine, glyutetimid, griseofulvin, primidone, finitoin, rifabutin, 
rifampin and troglitazone. Some drugs, as ritonavir, may act both inducers of 
enzymes and their inhibitors. It is considered that drugs metabolized by CYP3A4 
and CYP2A9 are especially sensitive to enzyme induction.

4. The enzyme induction may increase toxic metabolites because of some drugs 
are transformed into toxic metabolites. For example, analgesic acetaminophen 
is mainly converted into non-toxic metabolites, but its small amount is trans-
formed by CYP2E1 into a cytotoxic metabolite N-acetyl-p-benzoquinone imine. 
Enzyme inductors may increase the formation of toxic metabolite and increase 
the risk of hepatotoxicity and damage of other organs.

Obviously, it is necessary to create models to predict an interaction of compounds 
with the most important drug metabolizing enzymes and to develop an algorithm 
for analyzing results of these predictions. QSAR models for estimation of drug in-
teractions with drug-metabolizing enzymes are provided by Simulation Plus, ACD/
Labs, GeneXplain, Accelris, Optibrium, Lhasa and Multicase. The excellent review 
of software and in silico methods for evaluation of possible ligand interactions with 
drug-metabolizing enzymes and prediction of possible metabolites was recently 
published [78].

11.4.2  Pharmacodynamic Drug Interactions

Pharmacodynamic drug interactions include the cases where drugs show additive or 
antagonistic pharmacodynamic effects.

1. Antagonistic pharmacodynamic effects. This group of interactions includes 
the cases where drugs have the opposite pharmacodynamic effects, leading to a 
decrease in the exposure of one or both drugs. For example, compounds, which 
have a tendency to increase the blood pressure (as a non-steroidal anti-inflam-
matory compound), can inhibit an antihypertensive effect of angiotensin-con-
verting enzyme inhibitors. Decrease of benzodiazepine effects by theophylline 
is another example.

2. Additive pharmacodynamic effects. In the case when two or more drugs exhibit 
similar pharmacodynamic effects it may produce an excessive manifestation of 
toxicity. It could be compounds whose combination may cause QT interval pro-
longation, leading to ventricular arrhythmia, as well as compounds that increase 
the concentration of potassium in blood and lead to hyperkalemia. An additive 
pharmacodynamic effect is also used for therapeutic purposes, so diuretics and 
angiotensin-converting enzyme inhibitors cause the blood pressure reduction.

To reveal these types of interaction, different types of prediction results are required. 
It is necessary to take into account the interaction of compounds with proteins, as 
well as information on the relationship between molecular mechanisms of action 
and biological effects. This analysis can be done with a computer program PASS 
(Prediction of the Activity Spectrum of Substance) and PharmaExpert (analysis of 
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PASS prediction results, which is based on the knowledgebase of “mechanism-ef-
fect” relationships) [45]. The current version of PASS predicts the biological activ-
ity spectrum, including molecular mechanisms of action, pharmacological effects 
and toxicity, interaction of compounds with transport proteins and drug metaboliz-
ing enzymes. Analysis of the biological activity spectrum prediction allows identi-
fying potential pharmacokinetic and pharmacodynamic drug interactions by Phar-
maExpert. Pharmacokinetic interactions are detected based on prediction results 
of compounds interactions with drug metabolizing enzymes and transport proteins 
involved in absorption, distribution and excretion. Pharmacodynamic interactions 
are identified based on analysis of prediction results for the molecular mechanisms 
of action, pharmacological effects and toxicity. Overall flowchart identification of 
pharmacokinetic drug interactions is shown in Fig. 11.1.

The algorithm of the pharmacokinetic drug interaction identification is based on 
comparison of biological activity spectra in compounds (in the block diagram they 
are labeled as Compound 1 and Compound 2), predicted by PASS. It is necessary to 
determinate whether compounds are predicted as substrates of the same transporter 

Fig. 11.1  Overall flowchart identification of pharmacokinetic drug interactions
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or biotransformation enzyme, or compounds are predicted as an inhibitor or inducer 
of another transporter or drug metabolizing enzyme. The possible pharmacokinetic 
drug interactions are concluded in accordance with the result of comparison.

The analysis of potential pharmacodynamic drug interactions is based on com-
parison of the biological activity spectra in compounds and information from the 
database of “mechanism-effect” relationships provided by PharmaExpert. The 
knowledge base contains data of “cause-effect” relationships, classifications and 
antagonism of biological activities (Fig. 11.2).

Currently, the knowledge base contains information about 6233 mechanisms of 
action, 707 pharmacological and 996 side effects, and 12,785 relationships between 
them (PharmaExpert 2012). Mechanisms of action which may cause additive and 
antagonistic effects associated with drug interactions can be easily determined by 
using these data. The overall flowchart for identification of the pharmacodynamic 
drug interactions is shown in Fig. 11.3.

Algorithm for identification of pharmacodynamic drug interactions is based on 
comparison of biological activity spectra of the compounds (in the block diagram 
they are labeled as compound 1 and compound 2), predicted by PASS, together with 
information from the PharmaExpert knowledge base (“activity-activity” relation-
ships). Antagonistic pharmacodynamic effects are determined by:

1. Biological effects with an opposite action. For example, hypertensive and anti-
hypertensive effects, antispasmodic and spasmogenic effects, etc.

2. Antagonistic action on the same target. For example, stimulation and blocking of 
beta adrenoreceptors, an activator and blocker of the potassium channel, etc.

Fig. 11.2  The “activity-activity” relationships in PharmaExpert knowledge base. Mechanisms and 
Effects are classes of biological activities. Classification, Cause-effect relationships and Antago-
nism are classes of “activity-activity” relationships
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3. Molecular mechanisms causing the opposite biological effects. For example, an 
alpha adrenergic agonist increases the blood pressure, and angiotensin convert-
ing enzyme inhibitor reduces the blood pressure.

Additive pharmacodynamic effects are determined by:

1. Identical biological effects, if these compounds provide the same biological 
effect. For example, the blood pressure reduction or increase of QT interval.

2. Mechanisms of action providing the common biological effect, if these com-
pounds have different molecular mechanisms of action, causing the common 
biological effect. For example, a diuretic and angiotensin-converting enzyme 
inhibitors decrease the blood pressure, and inhibitors of carbamoyl phosphate 
synthetase and acyl-CoA dehydrogenase induce hyperammonemia.

The algorithms for the analysis of pairwise drug-drug interactions are also useful 
for the analysis of interactions between several substances. The example of evalu-

Fig. 11.3  Overall flowchart to identify pharmacodynamic drug interactions
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ation of possible interaction between three drugs (HIV reverse transcriptase inhibi-
tors—efavirenz, emtricitabine, and tenofovir disoproxil) using in the treatment of 
HIV, which are included into the medicinal preparation Atripla [79], at a threshold 
of Pa > 0.5, is represented at the Fig. 11.4.

Figure 11.4 shows that in addition to correctly predicted antiviral effect, the 
known side effects given from Drugs.com (http://www.drugs.com/sfx/atripla-side-
effects.html): hepatotoxic, nephrotoxic and emetic were also predicted by PASS/
PharmaExpert as possible additive/synergistic side effects. None of additive/syner-
gistic/antagonistic effects of the test compounds by reaction with drug metabolism 
enzyme or transporter protein was predicted. The presence of such interactions on 
the website Drugs.com information is also not shown. The known interactions of 
the compounds with HIV reverse transcriptase (a known target of the studied drugs) 
and RNA-dependent DNA polymerase (the name of the general class of enzymes 
including HIV reverse transcriptase) were also predicted.

The another example of the interaction analysis between compounds from Saint 
John’s wort by PharmaExpert was described by Lagunin and co-authors [80].

Fig. 11.4  The results of PharmaExpert analysis of drug-drug interaction between the three drugs 
from Atripla. Comments are marked in italics
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11.5  A Critical Assessment of Computational Approaches 
for Toxicity Prediction

For a better understanding of the possible toxicity prediction it is necessary to pay 
attention to a number of limitations that may occur using modern computer tools 
for creation of (Q)SAR models. The major limitation factors are the guarantee of 
high-quality experimental data used for creation of the training sets and understand-
ing of what is exactly modeled by the user. When mistakes occur (e.g., an incorrect 
structure of the molecule or incorrect data from toxicological studies) in the training 
set, it leads to the wrong model, which provides incorrect predictions. Therefore, 
considerable efforts should be made for the appropriate high-quality selection of ex-
perimental data, which will be used for creation of the model. Some recommenda-
tions for data curation in cheminformatics and QSAR modeling were published by 
Fourches and co-authors [81]. Since the concept of the “most suitable” and “qual-
ity” is subjective, even among experts, determination of the quality data can be 
done in several ways. FDA considers prospects of the evidence base for study and 
approval of products. This includes the standard of proof, performed by regulations, 
recommendations, guidelines, GLP (Good Laboratory Practice), GCP (Good Clini-
cal Practice), under accurate and standardized research protocols. It can be used for 
well-defined parameters of the compounds studied in toxicity tests and required for 
risk assessment and design of experiments [18]. But there are some factors that can-
not be clearly defined. For example, there is no sufficient information on nature of 
the liver damage which occurs at the hepatic toxicity. A priori it is not clear which 
factors should be taken into account for the dose modeling of this damage. From a 
pathology point of view it may be necrosis, fibrosis, inflammation, etc. Which of 
these data should be used for QSAR modeling? It is necessary to check carefully 
the data sources, how the data were obtained and to use methods for ranking the 
data quality before applying it for the toxicity modeling. Therefore, the model built 
for highly specialized mechanisms or clinical measurements (e.g., the prediction of 
transaminases or bilirubin increase in the blood plasma) can be more accurate and 
useful. However, in the computational prediction of toxicity, these cases are rare 
and it is usually required to predict more uncertain parameters. Other limitations 
of modern QSAR methods are difficult to build models for organometallic com-
pounds, complex mixtures (e.g., plant extracts), and macromolecular compounds 
as polymers.

Another problem is to assess the safety of polypharmacological compounds act-
ing on multiple targets. Also, there are significant limitations for the models build-
ing of carcinogenicity in rodents due to many existing mechanisms which may be 
caused by this effect. More important is how to interpret the data obtained in the 
carcinogenicity testing of drug compounds for rodents to humans. Some animal tu-
mors have no analogs in humans [80]. If a molecule acts as a prooncogen, then it is 
difficult to estimate an activity dose and tumor tissue. It is considered that creation 
of the model describing toxicity or carcinogenicity based on various mechanisms 
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as QSAR equation is much more complicated. However, there are several computer 
programs designed to solve those problems [82].

Another limitation is the difficulty of combining biological data generated in real 
time with computer predictions. Nevertheless, there are few successful examples 
of this approach, such as association of structure metabolites predictions with the 
spectra of liquid chromatography in mass spectrometry [83, 84].

It is considered to be the fundamental concept that the computer prediction of 
toxicity applied to the analysis of preclinical drug compounds, in fact, is a pre-
diction of the prediction. It is necessary to take into account that most preclinical 
parameters (e.g., carcinogenicity, genetic toxicity and teratogenicity) are predic-
tions of human toxicity, which help to establish the safety of drugs before their 
clinical trials. Thus, the creation of models based on other models, can only result 
in uncertainty. In reality, (Q)SAR is a theoretical analysis, based on the modeling 
of the chemical space and data from human toxicity models [1]. Unfortunately, 
uncertainty is still inevitable, because another layer of the modeling is added for the 
safety assessment. QSAR predictions have to be based on the same type of features 
among many important pieces of information (e.g., duration and level of exposure, 
confounding factors, and a risk/benefit ratio) in the general risk analysis. An appli-
cability domain of the model is also the main criterion and restricting factor to use 
(Q)SAR models in toxicology and pharmacology [85, 86]. If a compound does not 
fall into an applicability domain of the model during in silico screening the predic-
tion is considered to be incorrect. At the same time, it can be expected that the de-
velopment of new chemical entities requires moving towards new chemical spaces, 
since they are created for new therapeutic targets. Thus, the domain of applicability 
for new QSAR models is needed to be extended for new molecules. This will lead to 
overcoming limitations and thus provide more accurate and acceptable predictions.

Predictions of a specific toxicity (e.g., carcinogenicity) based on QSAR models 
associated with the alerts classification schemes (e.g. Ashby-Tennant alerts) or ex-
pert rules, also have their own limitations. A significant part of used drugs shows a 
positive result in the rodent’s carcinogenicity and negative results for genotoxicity 
[87]. It leads to the dilemma how to predict non genotoxic carcinogens, can it be 
based either on the structure formula or on the structural alerts associated with the 
inducing of DNA damage? Therefore, the developments, which are devoted to this 
problem, and the predictions of epigenetic mechanisms with a carcinogens action 
have the primary importance. In addition, recently it has been proposed that there is 
a new research area for computer predictions of carcinogenicity: creating computer 
models to predict carcinogens acting through inhibition of protein kinase networks.

The expert system based on rules has limitations in an ability to identify struc-
tural alerts, which lead to the manifestation of activity and does not have built-in 
rules for the estimation of compounds, which includes two or more structural alert 
or deactivating fragments in the molecule. Moreover, the “negative” prediction of 
these programs means that nothing has been found and prediction could not indicate 
the loss of toxicity. Finally, there is a human factor underlying this approach. It is 
represented by the consensus opinion or expert opinion which are prone to subjec-
tivity and can result in incorrect or inaccurate prediction rules [88].
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Another important factor that influences on the accuracy of models is a meta-
bolic pathway or metabolic activation of the parent compound which is not usually 
considered. It would be reasonable to predict the first reactive metabolite or find an 
actual proof that it is produced, and then make a separate prediction for the metabo-
lite of interest. Several computer programs provide either the prediction of human 
metabolism or common metabolic pathway based on the rules extracted from sev-
eral species of mammals (rat, mouse, human, hamster), using a mixture of in vitro 
and in vivo metabolism data of compounds [68, 89]. However, in these programs, 
predictions made for the possible reactive metabolites do not affect the prediction 
for a parent compound.
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Abstract This chapter discusses Microcosm, an information technology package 
for predicting the pharmacological activity of chemical compounds. This technol-
ogy is based on a complex prediction methodology with a consensus approach to 
prediction as its central component. The complex methodology of prediction in IT 
Microcosm is essentially different from that of other QSAR approaches in that it 
employs a redundant multi-descriptor, multi-level representation of the structure of 
chemical compounds by an aggregate of fragment descriptors with different physi-
cochemical meanings and varying extents of complexity. The methodology also 
includes several classification methods that differ in their mathematical formalisms 
and several decision making circuits that are conceptual in the results they yield. At 
the same time, no feature space reductions are made, and no significant variables 
are isolated; all of the parameters of description are used in the construction of the 
prediction regularities. The integral decision rules are constructed by generalizing 
the spectrum of primary prediction estimates using different levels and types of 
consensus. In this chapter, we describe the paradigm of IT Microcosm, including 
its theoretical concepts, a specialized QL language for chemical structure repre-
sentation, and prediction methods and strategies using the package. The adequacy, 
validity and high accuracy of IT Microcosm are demonstrated via sample predic-
tions of the various pharmacological activities of structurally similar and structur-
ally diverse organic compounds, complex organic salts, supramolecular complexes 
and substance mixtures, accounting for the synergy between the individual compo-
nents of mixtures. The authors also present the results of a successful application 
of IT Microcosm, along with in vivo and in vitro experimental methods for (1) the 
search for novel potent antioxidants, antiarrhythmics and antiplatelet agents; (2) the 
optimization of the composition of supramolecular complexes with antioxidant and 
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antiarrhythmic activity; (3) the evaluation of the spectrum and the extent of phar-
macological effects and the optimization of the composition of naturally occurring 
multicomponent drugs; and (4) the evaluation of the synergistic effects of mixtures 
of drug substances. IT Microcosm consists of a package of 20 computer programs; 
there is a separate free Microcosm White computer program.

Abbreviations

5-HT 5-Hydroxytryptamine
BA Bayesian approach
CS Conservative strategy
DLOOCV Double leave-one-out cross-validation
DM Distance method
GA Glycyrrhizinic acid
H Histamine
in silico  research of biologically active substances that is performed using  

a computer or via computer simulation
IT Information Technology
LBDD Ligand-Based Drug Design
LDM Local distribution method
LOOCV Leave-one-out cross-validation
LP Lipid peroxidation
NNM Nearest neighbor method
NS Normal strategy
QSAR Quantitative Structure-Activity Relationships
QSPR Quantitative Structure-Property Relationships
RS Risk strategy
SBDD Structure-Based Drug Design
SHCV Split-half cross-validation
ST Self-testing

12.1  Introduction

In silico methods are currently common practice in drug discovery [61, 72]. The 
methods for in silico drug design are traditionally divided into the following types: 
2D and 3D approaches based on the way that a chemical structure is represented 
[27] or SBDD and LBDD based on the information that is available about the struc-
ture of pharmacologically relevant target proteins [61]. The use of SBDD meth-
ods is standard under several circumstances, including cases where a 3D model is 
not informative enough but there is sufficient information about the activity of the 
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studied compounds or where no structural data are available for a given target, such 
as when the desired effect is of a systemic nature. For this reason, QSAR appears 
to be the most common method of in silico drug discovery [27]. MFTA [73], HIT 
QSAR [51], PASS [70], ISIDA [92], NASAWIN [8], and CORAL [89] are QSAR 
software packages that have been successfully utilized for the prediction of a wide 
variety of biological activities.

The fragmental approach is one the most productive QSAR methods [43, 111, 
139]; this approach is based on the idea that a chemical structure is a set of sub-
structural fragments that can be isolated from the structural formulas of compounds 
according to certain rules, together with various parameters that characterize these 
fragments. In a certain sense, the classical structural formula is superior to any 3D 
model with respect to the reliability of information about a compound; the reliabil-
ity of 3D models depends on the methods and conditions of their development. An 
adequate methodology of extracting information contained in the structural formula 
yields up to 90 % of for information about the properties of a given substance, even 
without resorting to 3D modeling [104, 110].

Any parametric description of a chemical structure, including a fragment-based 
description, destroys the pattern of a compound as a whole [27, 43], which can 
lead to the loss of information about the substance as a unique object at an over-
cybernetic level of organization. Therefore, an adequate representation of a chemi-
cal structure, without the loss of information specific to any compound, is of the ut-
most importance in QSAR. This is especially relevant for highly active compounds, 
which commonly show chemical novelty and can be termed “upstarts” according to 
their characteristics. Such compounds do not follow the conventional regularities 
describing compounds with medium activity [135]. One rewarding way to over-
come the loss of information about the integrity of a compound is to resort to a 
multilevel hierarchical description of the chemical structure by a set of substructural 
descriptors with increasing complexity [51, 107].

A wide range of methods for restoring empirical regularity are used within the 
framework of the fragmental approach for the calculation of structure-activity re-
lationships: regression [51, 137], pattern recognition [23, 57], artificial neural net-
works [9], and machine learning [23, 31]. Meanwhile, the relationship between the 
pharmacological activity and structure of a chemical compound is not originally 
continuous in nature because it includes a multiplicity of discrete components such 
as pleiotropic effects [71] (i.e., multiple physiological mechanisms of action [25] 
or interactions with several biological targets [62]), selective complementarity to 
certain pockets of binding sites (the privileged molecule phenomenon) [21], se-
lective transport by specific proteins [7], synergy with other compounds [86], and 
so on. In addition, the variability of pharmacological data is very high, due to the 
extreme complexity of higher animals; for example, the parameter dispersion of 
techniques for studying behavioral performance can be as high as dozens of percent 
[14]. Therefore, the use of methods for restoring smooth continuous dependencies 
in QSAR analysis of pharmacological activity is considerably limited.

The vast majority of QSAR studies depend on a rather controversial working 
concept: the choice of a “better equation” for the prediction of the studied activity. 
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These “better equations” are always context-dependent; minimally, they depend 
on the way that the compound structure is represented and on the computational 
method for predictive relation. It was shown as early as 1972 that it is impossible 
to choose a single regularity that provides an adequate description of a predicted 
biological activity when you are faced with a number of QSAR models with compa-
rable accuracy [18]. On the other hand, if one simultaneously uses several equations 
for prediction and the calculated estimates of the activity of a certain compound 
coincide, the prediction error is considerably lower. Mathematical tools for object 
classification that simultaneously use several decision rules began to be developed 
heavily starting in the 1990s [65]. Within the framework of in silico drug discovery, 
this approach is referred to as a consensus, ensemble, or committee approach by 
different authors, and methods using these approaches were first used in the 2000s 
[10]. At present, the consensus approach to prediction based on the synthesis of data 
obtained from several QSAR dependencies is at the peak of popularity [42].

The process of selecting the so-called significant variables is an indispensable 
stage of virtually all QSAR analysis methods [9, 27, 33, 72]. Despite its apparent 
clarity and attractiveness, this approach often results in the generation of artifact 
dependencies, and this effect has been noted by several authors on many occasions 
[18, 39]. The equations calculated in this manner, though simple and clear at first 
glance, do not give a fair representation of the individual features of the predicted 
compounds; they are therefore only marginally suitable for the design of intriguing, 
highly active substances that show mostly nonstandard characteristics, which dis-
tinguishes them from other compounds. The transformation of a primary parameter 
set into latent variables, as in PLS-regression [24] or in multilayer artificial neural 
networks [40], does not settle the issue because primary variable weighting (the 
determination of significance) is also performed in these cases. On the other hand, 
the mathematical methods themselves often contain limitations that preclude the 
simultaneous use of a large number of variables in model construction. Thus, there 
should be no less than three observations for each variable in a regression analysis 
[22], and no less than two observations in artificial neural network modeling [9]. 
QSAR approaches that consider the use of all of the available variables in making 
decision rules (for example, the support vector machine (SVM) method) have only 
recently appeared [91] in conjunction with kernel function use [13, 58].

The concept of significant variables presumes their independence. The methods 
for restoring empirical regularities that are used in QSAR are also intended to be 
only used in a Euclidean space [1]. However, all of the parameters of a compound 
description are generated from the same object (the chemical structure of the com-
pound), which is why all of the obtained variables are always inter-dependent. Fur-
thermore, if the feature space is also nonlinear, then we must at least face the task of 
adapting the existing QSAR methods to such spaces.

Taking into account all of the peculiarities of the chemical-biological univer-
sum discussed above, and in order to overcome the deficiencies of the existing 
QSAR systems, a complex methodology to predict the properties of organic com-
pounds was developed [93, 96, 102, 116] and served as a base for the development 
of IT Microcosm [45, 98, 103, 105,] in the form of a software package [113]. This 
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software package is designed to aid in the in silico discovery of chemical com-
pounds with a desired pharmacological activity, which can be defined as “high” in 
case of positive effects, and “minimal” in case of adverse effects.

This complex prediction methodology is dramatically different from other ap-
proaches to structure-activity analysis in that it simultaneously employs:

• a redundant multidescriptor and multilevel representation of the structure of 
chemical compounds as a set of fragment descriptors with different physico-
chemical meanings and varying extents of complexity;

• several classification methods that differ considerably in their mathematical for-
malism; and

• several decision-making circuits that are conceptual in the results that they yield.

An additional point to emphasize is that in calculating the prediction dependencies, 
no feature space reduction is carried out, and no significant variables are selected; 
all of the parameters of the object area description are used in the construction of 
the separating functions.

A complex methodology of prediction allows the formation of integral consen-
sus decision rules that are context-independent and work stably in extra-large-di-
mension correlated spaces. The current version of IT Microcosm 5.1 [113] for the 
calculation of QSAR dependencies uses a fourth-order consensus.

The adequacy, validity and high accuracy of IT Microcosm have been demon-
strated on multiple occasions when predicting various pharmacological activities 
of “conventional” structurally diverse [109, 117, 121, 140] and structurally similar 
[80, 127, 131, 132, 130] organic compounds as well as “nonstandard” chemical 
systems, complex organic salts [105, 123], supramolecular complexes [128, 129] 
and substance mixtures [35, 74, 75, 97, 112, 111, 114, 119, 120], including cases 
where the synergy of the components of a mixture was taken into consideration [74, 
75, 112, 111, 114].

12.2  Theoretical Basis of IT Microcosm

Information technology, in the general meaning of the word, is a package of tech-
nological components (devices or methods, for example) that are used by people to 
manage information [20].

Information technology Microcosm for predicting the properties of organic 
compounds is a package of original theoretical concepts, mathematical methods, 
and rules driving computer algorithms and software that allow a calculated estimate 
of the properties of a chemical compound based on its structural formula, with the 
help of multilevel consensus classification QSAR dependencies [105].

In IT Microcosm, predictions are based on the task of classifying compounds 
into two classes: active compounds and inactive compounds. Compounds are called 
active if they show a certain level of a given biological activity; this level is pre-set 
by the researcher. Inactive compounds do not meet the requirement of this pre-set 
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activity level. For example, activity may be described as “absent-present,” “high-
low” (in the opinion of an expert pharmacologist), or “fitting-missing” (when we re-
fer to a range of some quantitative evaluation, such as 100 < LD50 < 500 mg/kg). For 
a quantitative evaluation, this prediction is carried out according to several binary 
oppositions describing the activity; for example, “high-other,” “moderate-other,” or 
“low-other.” To enhance the adequacy and consistency of the prediction, associated 
classes of activity are formed, such as “high or moderate-other”, “high or moder-
ate or low-other” (“active-inactive”). This delineation usually suffices for practical 
purposes because the experimenting pharmacologist is typically interested in highly 
active compounds, which he or she will test on a first-priority basis.

In IT Microcosm, prediction is made on 11 levels by describing the chemical 
structure by various types of descriptors using four mathematical methods; the 
spectrum of intermediate prediction estimates is generalized on the basis of three 
voting strategies, and the prediction results are generalized for all strategies, while 
the spectrum of prediction estimates is simultaneously checked for noncontradic-
tion [96, 102, 103, 105, 110, 127].

In a training set, the classification dependences are established by methods of 
pattern recognition and machine learning. These regularities unite various activity 
levels that are pre-set in the form of semiquantitative gradations, and the structure 
of a given compound is represented as a matrix of structural descriptors. The chemi-
cal structure is represented by 11 types of descriptors in a specialized hierarchic 
multilevel language, QL [107, 110]. These descriptors form generalized patterns of 
classes of active/inactive compounds, represented as matrices of structural descrip-
tors [109] within the framework of a generalized pattern of a compound class with 
the desired properties [94, 101, 105].

When predicting the presence or extent of a desired pharmacological activity, the 
structural formula of an untested compound represented as a standard connection 
table is transformed by the translator program into descriptors in the working lan-
guage. By comparing the obtained pattern with models of class patterns using four 
prediction methods that are essentially different in their mathematical formalism, a 
spectrum of 44 intermediate prediction estimates (11 for each type of QL descriptor) 
is calculated for each type of activity. This spectrum is then generalized on the basis 
of one of three strategies, and a final estimate of the predicted compound activity is 
calculated [103, 105, 109].

At the final stage, the prediction results are generalized in relation to all strat-
egies, and the spectrum of prediction estimates is checked for noncontradiction 
[102]. To enhance the reliability of this method, one can consolidate the prediction 
results in relation to several levels of a predicted pharmacological activity [133].

The integral decision rules that are generated by IT Microcosm are consensus 
QSAR regularities of the fourth level; the first consensus level relates to the 11 
types of QL descriptors, the second level relates to the four prediction methods, the 
third level consists of the three prediction strategies, and the fourth level is based on 
the levels of the predicted activity [134].
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12.2.1  Concepts

The IT Microcosm paradigm goes as follows: The biological activity of a chemical 
compound is determined by the complex effect of this compound as a whole on all 
of the components of a biological system by multiple characteristics of its structures 
[96, 105, 99, 110]. By extension, we consider the properties of a compound instead 
of its biological activity and a high-complexity dynamic chemical system instead 
of a biological system.

The semantic content of the IT Microcosm paradigm is a complex methodol-
ogy for the computer prediction of the properties of a chemical compound. This 
methodology is founded on uniting the following for calculations: various ways of 
representing the chemical structure that differ in their physicochemical meaning, 
various levels of representing the chemical structure that differ in their complexity, 
redundant representations of the chemical structure that expand its parameters, clas-
sification methods that vary in their mathematical formalism, and decision circuits 
that are conceptual in the results they yield [105, 122]. Because it synthesizes all 
of the above mentioned components, the complex methodology produces context-
independent decision rules (i.e., rules that do not depend on the composition of 
the training set, the ways of representing compound structures, or the methods of 
recognizing regularities) and predictive estimates of biological activity founded 
on these rules. The IT Microcosm paradigm comprises several basic theoretical 
concepts: high-complexity dynamic chemical systems, a generalized pattern of a 
class of compounds with desired property, a multidescriptor hierarchic multilevel 
representation of the structure of a chemical compound, mega-dimensional spaces, 
complementarity of the decision rules for the computer prediction of chemical com-
pound properties, and strategies for the computer prediction of chemical compound 
properties.

A high-complexity dynamic chemical system (hereafter referred to as a complex 
chemical system) [95] is defined as an entire system containing a large number of 
individual chemical compounds contained in a space with a limited volume; these 
compounds interact with one another and the external environment and are sepa-
rated from the external environment and one another by one or more semipermeable 
surfaces.

The activity of a chemical compound can be defined as the ability of this com-
pound to cause a change in the value of one or more external parameters in a com-
plex chemical system by a system interaction. The methods that were developed 
to predicting the activity of a compound in a certain complex chemical system can 
be applied to other complex chemical systems with minor adjustments. A complex 
chemical system recognizes a chemical compound through the sum of its character-
istics, where each characteristic in isolation is of no great consequence. An active 
compound interacting with a complex chemical system is regarded as an object with 
a large number of degrees of freedom. An adequate description of such an object 
is only possible using a huge number (ideally, an infinite number) of parameters 
that differ in their physical and chemical meanings. The complex chemical system 
responds to components with varying degrees of complexity and at different stages. 
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Therefore, a representation of a chemical structure should be multilevel, and the 
variables should reflect both the local and integral properties of the compound.

The generalized pattern of a class of compounds with a desired property is a set 
of all of the compounds that showing this property described by the set of param-
eters that characterize this compound [94, 101, 110]. The cardinality of this general-
ized pattern goes to infinity because its elements include both synthesized (tested) 
and nonsynthesized (untested) active compounds when the number of parameters 
is not limited. The more compounds in the training set and the greater number of 
contrast variables of varying degrees of complexity describing their structure, the 
more adequate the model of the generalized pattern.

If we unite these concepts, three important consequences ensue:

1. the biological activity shown by a chemical compound is not necessarily related 
to its interaction with a specific biological target;

2. the chemical compound is regarded as a whole. There are no “significant” or 
“insignificant” fragments in its structure; likewise, there are no “significant” or 
“insignificant” variables describing this structure; and

3. a parametric description of the model of a generalized pattern is context-inde-
pendent from the method of data analysis because it is redundant; the model also 
does not presuppose the involvement of any procedures for detection of “infor-
mative” variables.

Thus, the parameter space of the models of generalized pattern of a class of com-
pounds with a desired property is of extremely great dimension; it is not divided 
into “informative” and “noninformative” subspaces. With this method of represen-
tation, no information that determines the individual specifics of the chemical struc-
tures to be recognized is lost, and this retention of information allows an effective 
extrapolation of the obtained QSAR regularities to the area of new or poorly studied 
compounds with nontrivial specifics of action.

A multidescriptor, hierarchical, multilevel representation of the structure of 
a chemical compound consists of description methods that vary in their complex-
ity and physicochemical meaning; in other words, groups of parameters that are 
simultaneously divided into several levels of chemical structure representation with 
increasing complexity, where each subsequent level of greater complexity is gener-
ated by the preceding one. The redundancy of description expansion in the param-
eters provides for an increased cardinality and improves the resulting model of a 
generalized pattern of a compound class with the desired properties. This concept 
was implemented when developing QL [110], a specialized language that describes 
the structure of chemical compounds using 11 groups of QL descriptors at four 
levels of complexity, with each of the descriptors varying in their physicochemical 
meaning. The higher-ranking descriptor is formed as a combination of the preced-
ing rank and the elementary QL descriptors.

The mega-dimensional space is a nonlinear space with a variable curve of ex-
tra-large dimensionality [105]. As a consequence, it is strongly correlated while 
it is neither orthogonal nor normed. Generally speaking, such a space is mixed 
and discrete-continuous. Mega-dimensional spaces are, in fact, an “impression” 
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of real-world spaces representing real-world objects where there are no rough or 
postulative assumptions about the linearity or orthogonality of these spaces; the 
spaces are not divided into “informative” or “noninformative” subspaces. An object 
description, as a totality of the values of all of the variables in a mega-dimensional 
space, is context-independent because it makes no arbitrary assumptions about the 
properties of the space nor does it include the results of any preliminary analyses in 
any manner, which provides for a high adequacy of this description.

Complementarity of Decision Rules in the Computer Prediction of the 
Chemical Properties of a Compound. As a rule, making a prediction algorithm for 
a high-complexity dynamic chemical system using a single mathematical method 
is based on a series of assumptions that do not prove to be true. When compar-
ing prediction relationships that are comparable in their accuracy, one cannot un-
ambiguously determine which of them are more adequate. These contradictions in 
predicting the activity of the same compound can be resolved by applying several 
approaches that differ in their mathematical content as much as possible. For each 
level of description and each parameter group, several methods are used to calculate 
several classification rules including all of the variables of the given local space. An 
integral multimodel decision rule is developed by generalizing the obtained spec-
trum of intermediate prediction estimates. This suggests that the final estimate that 
is calculated in this way is a reliable indicator of the actual activity of the predicted 
compound; it also gives an adequate idea of the specifics of its behavior in the given 
biological system.

The generally accepted classification system [1] that is applied to the prediction 
of biological activity consists of the following stages:

1. developing a training set from active and inactive compounds;
2. building a primary space that describes the compound structure according to one 

of the classical QSAR paradigms on the basis of a simple, well-known model;
3. selecting “significant” variables using a procedure that is correlated with the 

model; and
4. calculating several activity-structure relationships using the “significant” vari-

ables set and choosing the most appropriate one.

This scheme of decision rule development is context-dependent; thus, “the most 
appropriate” QSAR regularities built from the “significant” variables are mostly 
artificial dependencies.

IT Microcosm produces context-independent classification rules; it has the fol-
lowing features [105] that distinguish it from the classical scheme above:

1. When the training set is developed, no primary space for the description is built; 
rather, working models of generalized patterns of active/inactive compounds 
in extra-large dimensions are developed without defining the “significant” and 
“insignificant” variables. The parametric description of models and generalized 
patterns is context-independent from the methods of data analysis because it is 
extremely redundant and does not suggest any procedure for the detection of 
“informative” features.
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2. No reduction of the dimensionality of mega-dimensional space of description 
is carried out; the totality of the parameters is assumed to be informative. As a 
consequence, no information determining the specifics of the objects to be rec-
ognized is lost, which allows for a more effective extrapolation of the obtained 
regularities to new or poorly studied compounds with nontrivial specifics of 
action.

3. A higher adequacy and enhanced prognostic capacity of the decision rules is 
achieved by expanding the feature space by adding new parameter groups and 
new levels of compound structure representation, rather than selecting “signifi-
cant” variables or reducing the feature space.

4. This approach develops an ensemble of decision rules that are based on several 
classification methods that differ essentially in their mathematical formalism 
instead of a “better” prediction regularity. An independent classification of the 
properties of the predicted object is done by each method for each description 
level of each parameter group. The obtained spectrum of prediction estimates of 
chemical compound activity is then used in final classification procedures.

5. The context-independence of the integral decision rule is a result of the gener-
alization of the spectrum of intermediate prediction estimates of activity by the 
methods of decision-making theory. As a result, primary decision rules that differ 
in their mathematical meaning and chemical structure representation comple-
ment each other; in particular, prediction errors are mutually compensated.

Strategies for the Computer Prediction of the Properties of a Chemical Compound. 
A strategy is an integral decision-making rule regarding the final activity of a chem-
ical compound that is based on a set of intermediate prediction estimates of its 
activity [96]. Methods of decision-making theory [54], particularly various voting 
procedures [136], are used to develop such an integral decision rule. When classify-
ing into two classes, a single activity estimate generated using a separate method 
to describing a certain parameter group at a given level is a binary variable. Its 
meanings correspond to one of alternate possibilities: “pro” or “contra.” Because 
there are different classification methods, description levels and parameter groups, 
the use of all of the intermediate calculated estimates of activity in the final vote 
mimics an objective decision made by an independent expert group. The outcome 
of this voting is context-independent with respect to both the method of structure 
representation and the methods of intermediate prediction estimates construction, 
and we can therefore regard these strategies as reliable tools for the evaluation of 
untested compound activity.

Three prediction strategies are defined in IT Microcosm: a conservative strategy 
that is based on a model of general unweighted consensus, a normal strategy that 
uses a model of selective weighted consensus, and a risk strategy that implements a 
model of supremum consensus.

The combined use of several different strategies during prediction constitutes a 
universal hierarchic multistage final voting procedure; it mimics an objective deci-
sion by several independent expert groups. The ultimate integral decision rule is, in 
essence, a multilevel consensus QSAR model.
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A Complex Methodology for the Computer Prediction of the Properties of a 
Chemical Compound. This is the central concept of IT Microcosm [93, 105, 116] 
and features a synthesis of the fundamental theoretical concepts that underlie the 
development of rules and principles for generating the applied components of the 
technology: algorithms and programs that predict compound activity.

An adequate prediction of chemical compound activity is only possible through 
the generalization of a spectrum of prediction estimates that are obtained by several 
methods of classification that differ in their mathematical formalism; these methods 
are applied to levels of varying complexity and methods of structure representation 
with a varying physicochemical meaning. We use every available description vari-
able and the redundancy of this description when expanding parameters, on the ba-
sis of several decision-making circuits that are conceptual in the results they yield.

The following decision making circuit conforms to the concept described above:

1. constructing a representative training set that includes the structures of reliably 
active and inactive tested substances;

2. constructing models of the generalized patterns of active/inactive compound 
classes on the basis of a mega-dimensional multilevel description of their struc-
ture with parameter groups of different physicochemical meaning;

3. establishing a set of decision rules using several essentially different classifica-
tion methods; each method is used separately for each description level of each 
parameter group;

4. calculating the spectrum of prediction estimates of compound activity in the 
training set using all of the developed classification rules; and

5. constructing integral multimodel consensus decision-making rules using strate-
gies with different spectra of prediction estimates, and evaluating the prognostic 
ability of these decision rules.

Utilizing this complex methodology, we obtain decision rules and results of activity 
prediction that are context-independent from the training set composition, the meth-
ods of compound structure representation, and the methods of regularity detection.

The following principles of constructing the applied components of IT Micro-
cosm arise from the summation of these theoretical concepts:

1. a compound structure should be described by the maximum possible number of 
parameters;

2. the structure representation should be multilevel;
3. the groups of description parameters should differ in their physicochemical 

meaning;
4. the decision rules for activity prediction should include all of the parameters of 

structure representation;
5. the prediction methods should be adapted for use in nonlinear spaces with extra-

large dimensions;
6. the compound activity prediction should be performed by several methods 

simultaneously;
7. the prediction methods should differ in their mathematical formalism; and
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8. the final estimate of compound activity should be made by generalizing the pre-
diction results obtained from different methods.

These principles underlie the means for processing information about chemical 
structure and biological properties that are discussed below.

12.2.2  QL Language for Fragment Coding of Chemical 
Compound Structure

QSAR Language is a specialized multidescriptor, hierarchical, multilevel language 
for the description of the structure of a chemical compound with fragmental sub-
structural notation [107, 110]. It is the working language of IT Microcosm and 
provides an adequate representation of a full molecular graph.

Substructural descriptors are the key elements of the language; a substructural 
descriptor is a chemical structure fragment of a varying degree of complexity, iso-
lated from the structural formula of a compound according to the rules and postu-
lates of the QL language. The simplest fragments are called elementary descriptors; 
they constitute the QL alphabet. All of the other descriptors are a combination of 
several elementary descriptors; in relation to the elementary descriptors, they are 
composite descriptors. Eleven descriptor types of the first four ranks would be suf-
ficient for an unambiguous representation of a molecular graph in QL.

The QL alphabet (a list of first-rank descriptors) is postulated; it is defined by 
three types of elementary descriptors.

A Structural Descriptor (SD) is a fragment of a compound structure with a suf-
ficiently labile electron system constituting a non-hydrogen atom or a group of at-
oms with the immediate environment taken into consideration. The SD subalphabet 
in QL is postulated; it contains 4352 types of descriptors for all of the elements in 
the periodic table, including 378 types of heteroatom-containing SDs, 11 types of 
carbon-containing SDs, 3963 types of cyclic SDs (of three classes—nonconjugated, 
conjugated nonaromatic and aromatic rings smaller than 99 atoms) (Table 12.1). If a 
SD shows chirality, its symbol bears an R or S in accordance with the Cahn-Ingold-
Prelog priority rules [82].

A Length Descriptor (LD) is the length in bonds of the shortest path along the 
carbon chain between two SDs (values ranging from 1 to 99) or the number of total 
atoms when one SD is superposed immediately over another (the occurrence index 
has a negative value in this case). When looking for the shortest path, heteroatomic 
SDs do not cross.

A Bond Descriptor (BD) characterizes the type of electron system in an LD and 
reflects the types of bonds, their number and the presence of conjugation. The BD 
subalphabet is postulated; it consists of 54 types of descriptors, where each one is 
formed from a combination of 4 binary indices: the presence of one or several mul-
tiple bonds (p, P), aromatic (a, A) and noncovalent bonds (n, N), and conjugation 
index (0, 1) (Table 12.2).
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Different types of elementary descriptors have different physicochemical mean-
ings. Thus, an SD shows the local geometric, electron and lipophilic characteristics, 
an LD indicates the integral geometric characteristics, and a BD shows the integral 
electron characteristics.

Table 12.1  Structural descriptors in the QL language
ID SD ID SD ID SD ID SD ID SD
Nitrogen 35 –P< 69 –B< Arsenic 132 >Se=
1 –NH2 36 –P= 70 –B= 99 –AsH2 133 =>Se=
2 >NH 37 –PH2= 71 >B′< 100 >AsH 134 –Se+<
3 =NH 38 >PH< 11072 >B+ 101 –As< 135 –Se′
4 –N< 39 >PH= Silicon 102 –As= 136 Se+n
5 –N= 40 –>P< 72 –SiH3 103 –>As< Tellurium
6 #N 41 –>P= 73 >SiH2 104 –>As= 137 –TeH
7 –=N= 42 –=P= 74 –SiH< 105 >As+< 138 >Te
8 –NH3+ 43 –PH3+ 75 >Si< 106 >As′ 139 =Te
9 >NH2+ 44 >PH2+ 76 >Si= 107 >>As′< 141 >Te<
10 =NH2+ 45 –PH+< 77 Si′n Antimony 142 >Te=
11 –NH+< 46 –PH+= Germanium 108 –SbH2 143 =>Te=
12 –NH+= 47 >P+< 78 –GeH3 109 >SbH 144 –Te+<
13 >N+< 48 >P+= 79 >GeH2 110 –Sb< 145 –Te′
14 >N+= 49 >P′ 80 –GeH< 111 –Sb= 146 Te+n
15 >N′ 50 >P′< 81 >Ge< 112 –>Sb< Metals
Oxygen 51 >P′= 82 >Ge= 113 –>Sb= 147-301 Mt
16 –OH 52 >>P′< 83 Ge′n 114 >Sb+< 148-302 Mt+n
17 >O Halogens 84 Ge+n 115 >Sb′ 11159-11303 Mt′n
18 =O 53 –F Tin 116 Sb′n Carbon
20 –O+< 54 –F′ 85 –SnH3 117 Sb+n 303 –C+<
21 –O+= 55 –Cl 86 >SnH2 Bismuth 304 –C′<
22 –O′ 56 –Cl′ 87 –SnH< 118 –BiH2 305 –СH3
Sulfur 57 Cl+n 88 >Sn< 119 >BiH 306 =CH2
23 –SH 58 –Br 89 >Sn= 120 –Bi< 307 #CH
24 >S 59 –Br′ 90 Sn′n 121 –Bi= 308 –CH=
25 =S 60 Br+n 91 Sn+n 122 –>Bi< 309 –C#
27 >S< 61 –I Lead 123 –>Bi= 310 >C=
28 >S= 62 –I′ 92 –PbH3 124 >Bi+< 311 =C=
29 =>S= 63 I+n 93 >PbH2 125 Bi′n 312 >C(<)
30 –S+< 64 –At 94 –PbH< 126 Bi+n 315 –C(Ar)<
31 –S′ 65 –At′ 95 >Pb< Selenium Cycles
Phosphorus 66 At+n 96 >Pb= 127 –SeH 5 Cycnn
32 –PH2 Boron 97 Pb′n 128 >Se 600-10302 Cycnnkk
33 >PH 67 –BH2 98 Pb+n 129 =Se 10303-10399 CycArnn
34 =PH 68 >BH 131 >Se<

For each structural descriptor, its digital code and symbol are indicated.
Special symbols: «#»—triple bond; «‘»—negative charge; «Ar»—aromatic.
For “Metals” descriptors Mt is a metal symbol in the Periodic Table.
For “Rings” descriptors: nn—ring size; kk—the number of electrons in a conjugated system.
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Elementary descriptors are simple first-rank descriptors. They generate compos-
ite descriptors in QL. Simple composite descriptors of rank 2–4 consist of 2–4 el-
ementary descriptors. Second-rank descriptors are of four types (SD-LD, SD1-SD2, 
SD-BD and LD-BD), third-rank descriptors are of three types (SD1-LD-SD2, SD1-
LD-BD and SD1-SD2-BD), and fourth-rank descriptors are of one type (SD1-LD-
SD2-BD). In all, 11 types of simple descriptors of rank 1–4 are defined in QL. Upon 
translation, a primary QL representation of a structure is constructed as a list of 
fourth-rank descriptors where all of the SDs are numbered. Later on, these descrip-
tors generate the descriptors of all other ranks; therefore, the fourth-rank descriptors 
are also referred to as basic descriptors. Descriptors of rank 5 and higher consist of 
two or more basic descriptors; they are referred to as complex descriptors.

As the rank increases, the dispersion of the compound properties in the descrip-
tors also grows. The simpler the descriptor, the better its extrapolation (prediction) 
ability; more complex descriptors show a better interpolation (recognition) ability. 
For example, using a CH3 group permits a prediction of the activity of many organic 
compounds. However, for this prediction to be sufficiently accurate, one should 
take into consideration more complex structural fragments, too.

In the QL dictionary, all of the elementary descriptors are independent words. 
Basic syntax contains two rules only: (1) each simple descriptor of a higher rank 
(ranks 2–4) is generated by the combination of a descriptor of a lower rank and one 
elementary descriptor, and (2) each complex descriptor of a higher rank at rank 5 
and higher is generated by the combination of a descriptor of a lower rank and one 
basic descriptor through a common SD of the same numerical order in both descrip-
tors. Because the SDs in the basic descriptors are numbered, the rule governing the 
generation of complex descriptors allows the complete reconstruction of the struc-
tural formula of a compound. Thus, QL is a one-to-one language.

Table 12.2  Bond descriptors in the QL language
ID BD ID BD ID BD ID BD
Single-index  5 . . N 1 23 p . N 1 45 P a n 1
 0 . . . 0 Three-index 40 P . N 0 32 p A n 0
 1 . . . 1 24 p a . 0 41 P . N 1 33 p A n 1
Two-index 25 p a . 1  8 . a n 0 50 P A n 0
18 p . . 0 42 P a . 0  9 . a n 1 51 P A n 1
36 p . . 0 43 P a . 1 14 . A n 0 28 p a N 0
19 p . . 1 30 p A . 0 15 . A n 1 29 p a N 1
37 P . . 1 31 p A . 1 10 . a N 0 46 P a N 0
 6 . a. 0 48 P A . 0 11 . a N 1 47 P a N 1
12 . A. 0 49 P A. 1 16 . A N 0 34 p A N 0
 7 . a . 1 20 p . n 0 17 . A N 1 35 p A N 1
13 . A . 1 21 p . n 1 Four-index 52 P A N 0
 2 . . n 0 38 P . n 0 26 p a n 0 53 P A N 1
 4 . . N 0 39 P . n 1 27 p a n 1
 3 . . n 1 22 p . N 0 44 P a n 0

For each bond descriptor, its digital code and symbol are indicated
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A study of information redundancy of QL showed that a set of simple descriptors 
of ranks 1–4 with an indication of their number is almost identical to the molecular 
graph; therefore, only these 11 types of QL descriptors are used in IT Microcosm for 
the calculation of decision rules and the prediction of activity.

The meaning of a QL-based description is easily derived from the symbols of 
descriptors. For instance:

{–CH3 2 ○ ○}  This is a methyl group in a two-bond chain with arbi-
trary type bonds, with conjugation present or absent (“○” 
stands for any elementary descriptor);

{–N < 5 –CH3 ○}  This is a tertiary amino group bonded to a methyl group 
by a five-bond chain with arbitrary type bonds, with con-
jugation present or absent;

{–N = –1 CycAr05 …1}  A secondary imino group included into a five-membered 
aromatic ring.

The structure of an organic compound of medium complexity is usually described 
by 50-1,000 types of QL descriptors.

For example, the QL description of the structure of Thiomedan, an antiepileptic 
drug, includes 165 types of QL descriptors.

For a desired activity type, models of generalized patterns of active/inactive 
compounds are constructed from a training set in the form of a substructural de-
scriptor matrix, which is a table where the lines feature the symbols for unique QL 
descriptors of 11 types of the first four ranks and the columns indicate the numbers 
of compounds. Each table cell shows the number of QL descriptors of this type in 
the structure of a certain compound. In the matrix, the descriptors are placed in the 
order of increasing rank in lexicographic order. The activity of the compounds in the 
training set is annotated in a separate file.

12.2.3  Prediction Methods

To obtain a spectrum of intermediate prediction estimates, IT Microcosm utilizes 
four original classification methods that show a consistent performance in mega-
dimensional spaces. The prediction estimates are binary variables; they can only 
assume two values: A or N (in numerical expression, 1 or 0, correspondingly). Each 
method yields 11 prediction estimates (according to the number of QL descriptor 
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types). All four methods are essentially different in the way that their decision rule 
is constructed. This suggests that a spectrum of 44 prediction estimates gives a 
fairly accurate idea of the various specifics of a generalized pattern of active/inac-
tive compound class, which hereafter allows for a reliable evaluation of the total 
activity of the predicted compound [102, 105, 109].

We will now introduce the following designations:

i QL descriptor type, i = 1,…, 11;
j type of i-type descriptor in QL matrix, j = 1,…, di;
di number of types of unique descriptors of i-type in QL matrix;
ij jth descriptor of i-type;
a active compound class;
n inactive compound class;
k compound class, k = a, n;
N the number of compounds in a training set;
β 0.001– unbiasedness parameter.

The Bayesian approach is one of the probabilistic central parametric classification 
methods; it is based on the consistent application of the classic Bayes equation (also 
known as “the naïve Bayes classifier”) for conditional probability [34] to construct 
a decision rule; a modified algorithm is explained in references [105, 109, 121]. In 
this approach, a chemical compound C, which can be specified by a set of prob-
ability features ( c1,…,cm) whose random values are distributed through all classes 
of objects, is the object of recognition. The features are interpreted as independent 
random variables of an m-dimensional random variable. The classification metric is 
an a posteriori probability that the object in question belongs to class k. Compound 
C is assigned to the class where the probability of membership is the highest.

The logarithm of the probability that the predicted compound C belongs to class 
k, given it has di QL descriptors of ij-type Bij

 
(12.1)

where P C k0 0 5( ) ,∈ =  is the a priori probability that compound C belongs to class 
k before the analysis is started;
P B C kij( | )∈  is the a priori probability that descriptor Bij occurs in class k.
In the formula (1)

 (12.2)

where Sijk is the number of ij descriptors in the QL matrix for class k; and
Sik is the total number of all QL descriptors of i-type for class k.
Compound C is defined as active for the i-type descriptor, if

 (12.3)
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otherwise it is classified as inactive.
The boundary conditions of the Bayesian formula are not satisfied, as a rule, 

in cases of real-world training sets. The set of events may be neither complete nor 
mutually exclusive, while QL descriptors of different ij types are virtually always 
interdependent. Therefore, the value P C ki ( )∈  calculated from the training set is 
not, in fact, an indicator of probability, and the aggregate of the tested compounds is 
a fuzzy set. The fuzzy set A of universe Х is characterized by the membership func-
tion : [0, 1]XAµ → , which places each element x X∈  in correspondence with the 
number ( )A xµ  from an interval [0, 1] describing the degree of membership of ele-
ment x in set А [2]. The membership function in IT Microcosm expresses the degree 
to which the model of the tested compound C pattern corresponds to the generalized 
pattern of class k compounds with the desired activity.

In the Bayesian approach, the membership function of compound C belonging to 
activity class k for i-type descriptor is

 

(12.4)

The distance method is a geometric central parametric method; its modified algo-
rithm is described in references [105, 109]. In this case, the object of classification 
(chemical compound C) is defined by a set of determined features ( c1,…,cm) whose 
values are interpreted as coordinates of a point in a multidimensional space of m 
dimension. The classification metric is the distance from the object in question to 
the geometric center of class k. Compound C belongs to the class placed at a shorter 
distance.

A Pearson weighted L1-distance is calculated in the space of QL descriptors of 
i-type from the predicted compound C to the center of class k

 (12.5)

where cij are the coordinates of compound C for the descriptor ij;
zijk are the coordinates of the center of class k for descriptor ij; and
wij = ( zija + zijn)

−1 is the weighting coefficient for descriptor ij.
Compound C is regarded active for descriptor of i-type, if

 (12.6)

otherwise it is classified as inactive.
In the distance method, the membership function of compound C belonging to 

activity class k for descriptor of i-type appears as

 
(12.7)
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The nearest neighbor method is a local geometric nonparametric method; it is 
useful for the calculation of a piecewise linear separating function [32]. The basic 
algorithm was described in reference [34] and adapted to extra-large dimensional 
spaces as described in [105, 109]. The classification metric is the distance in the m-
dimensional feature space between the object of interest and the object of class k. 
Compound C belongs to the class where its nearest neighbor is located.

The squared Euclidean distance in the space of QL descriptors of i-type from the 
predicted compound C to each compound Hl in the training set is

 

(12.8)

where cij are coordinates of compound C for descriptor ij; and
hijl are coordinates of compound Hl for descriptor ij.
Therefore, in the space of i-type descriptors, the distance from compound C to 

its nearest neighbor of class k is

 
(12.9)

Compound C is defined as active for a descriptor of i-type, if

 (12.10)

otherwise it is classified as inactive.
In the nearest neighbor method, the membership function of compound C be-

longing to activity class k for descriptor of i-type is

 
(12.11)

The local distribution method is one combination method using the geometric lo-
cal nonparametric method in parallel to a probabilistic central parametric method 
for decision rule construction. The algorithm was first described in [109] and later 
modified as described in [105]. Two metrics serve as classification metrics: the 
similarity coefficient of the features of the object to be predicted and class k objects 
in m-dimensional space, and the probability that the object of interest belongs to 
the subclass of similar objects in class k. Compound C is assigned to the class with 
the greatest local probability that the compound belongs to the structurally similar 
subclass.

The similarity coefficient of the predicted compound C and each compound Hl 
in the training set in the space of i-type descriptors is
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(12.12)

where BijC is the number of descriptors ij in compound С; and
Bijl is the number of descriptors ij in compound Hl.
Therefore, the subclass of class k compounds that is structurally similar to com-

pound C in the space of i-type descriptors appears as

 

(12.13)
where {Hʹ1, Hʹ2, Hʹ3, Hʹ4} are the first four members of a set of compounds Hl ar-
ranged in descending order of the Qi(Hl) value, l = 1, … N.

In other words, four structures that are similar to the predicted compound C, 
compounds with a minimal value of Qi(Hl), and compounds with a similarity coef-
ficient for compound C of no less than 0.8 are selected in each class a and n.

Applying the formulas of the Bayesian approach (1–4) to the constructed local 
training set ki = {ai, ni}, we obtain

 
(12.14)

Compound C is defined as active for the i-type descriptor if

 
(12.15)

otherwise it is classified as inactive.
In the local distribution method, the membership function for compound C be-

longing to activity class k for the i-type descriptor is

 

(12.16)

The classification metric (14) and membership function (16) for compound C are 
only calculated for compounds of the local training set.

The central parametric methods of classification are based on generalized infor-
mation about all of the objects in the training set, so when applying these methods, 
one generally takes the most significant regularities that are typical of this type of 
activity into consideration. Conversely, local nonparametric methods consider the 
characteristics of objects that are closest to the predicted structure, so they mostly 

 1

min{ , }1( ) · ,
max{ ,

1, ..., ,
}

i

j C Hl

d
ijC ijl

i l
ji ijC ijl

l
B B

Q H
d B

N
B

∈ ∪
=

== ∑

{ , , , } { | ( ) ( )} { | ( ) 0.8},1 2 3 4 4k H H H H H k Q H Q H H k Q Hi l i l i l i l
′ ′ ′ ′ ′= ∪ ∈ = ∪ ∈ ≥

[ ]0
1

Pr ( ) log ( ) log ( | ) .
id

i i i ij i
j

C k P C k P B C k
=

 ∈ = ∈ + ∈ ∑

Pr ( ) Pr ( );ii i iC a C n∈ ≥ ∈

Pr ( )
.( )

Pr ( ) Pr ( ) 2

i i

i

i i i i

C k
Fb C k

C a C n

β

β

∈ +
∈ =

∈ + ∈ + ⋅



388 P. M. Vassiliev et al.

reflect the fine specific regularities, the individual peculiarities of the predicted 
compound, and the degree of its novelty.

The four classification methods described above are essentially different in the 
way the decision rule is constructed; when applied jointly, they compensate for each 
other’s errors.

12.2.4  Prediction Strategies

IT Microcosm implements three decision strategies that classify a compound as 
either active or inactive on the basis of a prediction estimate spectrum obtained by 
different methods [96, 105]. Each strategy is a method of constructing an integral 
decision rule in the form of a consensus QSAR model; different types of consensus 
are employed.

The conservative prediction strategy uses a simple vote procedure. Here a gen-
eral nonweighted consensus model is implemented, all 44 prediction estimates are 
deemed to be equally significant irrespective of the QL representation level and 
prediction method, and a decision is made according to the majority of coinciding 
estimates.

For example, if we set θ as the number of positive prediction estimates “A” 
that the predicted compound C belongs to class a of active compounds. Within the 
framework of the conservative strategy, compound C is considered to be active 
if θ ≥ 27, and defined as inactive if θ ≤ 17 (95 % is the confidence interval for the 
median in binomial distribution [41]). If the 17 < θ < 27 prediction is discontinuous, 
compound C can be considered conditionally active if 22 ≤ θ < 27, and conditionally 
inactive if 17 < θ < 22.

In the conservative strategy, the membership function for compound C belong-
ing to the activity class k is

 
(12.17)

The conservative strategy takes into consideration the most stable, standard, and 
perhaps even trivial regularities that are typical of this activity type, so with this 
strategy, prediction is notoriously reliable. The conservative strategy can be em-
ployed in searches for novel but typical active compounds or to improve the param-
eters of preexisting standard substances, such as for interpolation or placement into 
the “center” of the class.

The normal strategy implements a model of selective weighted consensus. This 
implies selecting a method with superior accuracy out of four prediction methods, 
based on the results of a leave-one-out cross validation of the training set, with the 
generalization of 11 prediction estimates calculated within the framework of each 
method with the help of weighted voting.

The Bayesian binary classifier serves for the voting procedure [32].
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(12.18)

The weighting coefficients are

 
(12.19)

where 

pkli = (nkli + 1)/(nali + nnli + 2)  is an a priori probability of classifying compound C 
for the i-type descriptor into class k = a, n by method l;

nkli  is the number of compounds in class k of the training 
set that are classified as active for the i-type descriptor 
by method l; and

δСli  is the result of classifying compound C into classes 
a (δCli = 1) or n (δCli = 0) for the i-type descriptor by 
method l.

Within the framework of method b (with superior accuracy), compound C is con-
sidered to be active in the whole of the QL representation if the separating function 
(calculated as in (18)) Lb( C) ≥ 0; otherwise, the compound is classified as inactive.

In the normal strategy, the membership function of compound C belonging to 
the activity class k is

 

(12.20)
where 

Lb(C)  is the meaning of the separating function (18) for compound C in method 
b of superior accuracy;

Lb, low  is the minimal value of the separating function (18) in method b of supe-
rior accuracy (a sum of w0 and all negative wi); and

Lb, high  is the maximum value of the separating function (18) in method b of 
superior accuracy (a sum of w0 and all positive wi).

When using the normal strategy of prediction, we consider both standard and non-
standard regularities for this type of property. Such an approach is advantageous 
when modifying the structures of atypical compounds; it expands the prediction 
area to the nearest boundary of the training set, but it also increases the risk of 
artifacts.
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The risk strategy is also based on selecting the method of superior accuracy out 
of four methods according to the results of a leave-one-out cross-validation of the 
training set, but it is performed for each one of 11 levels of QL representation sepa-
rately, with consideration to the descriptor type. This strategy implements a model 
of supremum consensus. There is no final voting procedure because each one of 44 
prediction sets is treated as an independent information space.

Within the risk strategy, the classification metric and membership function for 
the predicted compound C are calculated from the formula pairs (1, 4), (5, 7), (8, 
11), (14, 16) corresponding to the selected prediction method and QL description 
level.

The risk strategy permits the indirect consideration of the peculiarities associated 
with possible effect mechanisms, assigns more weight to the novelty of the predict-
ed structure than the two other strategies, and offers a broad range of extrapolation 
possibilities. However, this strategy requires great caution because there is typically 
a high probability of erroneous results.

12.2.5  Evaluation of Prediction Accuracy

The accuracy of the consensus prediction regularities obtained by these three strat-
egies is evaluated according to four indicators of the recognizing and predicting 
abilities of the integral decision rule, i.e., the results of self-prediction, leave-one-
out cross-validation, split-half cross-validation, and double leave-one-out cross-
validation.

Self-Prediction. The activity of each one of N compounds in the training set is 
calculated without any changes in the QL matrix or recalculation of the decision 
rules.

Leave-One-Out Cross-Validation. Each compound in the training set is in turn 
excluded from the QL matrix. In the changed set, new decision rules are calculated 
for N1 compounds, and the excluded compound is used as an independent testing 
object. The procedure is repeated N times.

Split-Half Cross-Validation. The working QL matrix and new decision rules are 
calculated with the odd-numbered compounds in the training set, and the even com-
pounds serve as an independent testing set. A reverse procedure is then carried out, 
and the classification regularities are calculated with the even compounds, while the 
odd ones serve as a testing set. The results of testing are averaged out.

Double Leave-One-Out Cross-Validation. One compound is excluded from the 
training set. The procedure of leave-one-out validation is performed with the re-
maining N1 compounds. On the basis of the leave-one-out validation results, the 
parameters of the final decision rule are calculated for the Bayesian binary classi-
fier. This decision rule is used to classify the excluded compound, and the procedure 
is repeated N times. This testing method is only used in the normal strategy.
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Prediction Accuracy Metrics. In all testing methods, the following indicators are 
worked out (and measured as percentages):

F0  the proportion of correctly classified compounds irrespective of the activity 
class (accuracy);

Fa the proportion of correctly classified active compounds (sensitivity);
Fn the proportion of correctly classified inactive compounds (specificity); and
Fu  the proportion of compounds that were rejected from prediction (this is only 

calculated in the conservative strategy).

12.2.6  Noncontradiction Check of the Prediction

Substances that showed the coincidence of two or three calculated estimates of ac-
tivity obtained with different strategies are of the greatest interest for experimental 
study because in this case we take into consideration both standard and nonstandard 
QSAR regularities and the novelty of the chemical structure; the reliability and ad-
equacy of the predictions are therefore greatly increased.

When selecting such structures, IT Microcosm allows a noncontradiction check 
of the prediction estimate spectrum in case of semiquantitative gradations of ac-
tivity [102]. Each activity level is matched to a set of correct evaluations of other 
activity levels referred to as a template. For example, if the activity can be scored 
as “high,” “moderate,” “low,” “high or moderate,” “active,” and “inactive,” the 
template set appears as ANNAAN, NANAAN, NNANAN, AANAAN, AAAAAN, 
NNNNNA. If one decision rule assigns a compound to the “high” class, the clas-
sification of this compound as “moderate”, “low” or “inactive” in other decision 
rules is logically incorrect.

According to the prediction results, we select compounds that received an “A” 
score for the target level (type) of activity in at least one strategy. In this case, for 
each such compound C, the conformity coefficient (ranging from 0 to 1) is calcu-
lated from the spectrum of activity prediction estimates as a ratio of the number of 
estimates that logically predict activity to the number of total estimates

 
(12.21)

where

G is the number of gradations (levels) of activity, G ≥ 3;
q is the index of activity gradation, q = 1, …, G;
s is the index of the prediction strategy, s = 1, 2, 3;
Vq is the number of templates of gradation activity q; and
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ωCts  is the conformity index {0, 1} for compound C based on the results of activ-
ity gradation t prediction in strategy s, and the corresponding value in the 
template of gradation activity q.

To determine the order of experimental testing for a high level of activity, the com-
pounds are first ranked in decreasing order by the number of positive final predic-
tion estimates and then ranked in descending order of conformity coefficient (21). 
When the prediction is refined for a certain compound, a full spectrum of prediction 
estimates and the values of membership functions are used in all three strategies.

12.2.7  Levels and Types of Consensus

Let us define the level of consensus as the step number in a consecutive hierarchical 
generalization of classification estimates.

In IT Microcosm, the chemical structure is represented by 11 types of QL de-
scriptors. For each i level of QL description, separate decision rules are calculated 
including all of the i-type descriptors. Thus, each primary prediction estimate of an 
activity obtained by one of the four prediction methods for the given level of QL 
description is the result of a first-level consensus. All of the prediction methods 
implement a procedure of general weighted consensus, and the contribution of each 
descriptor of type ij to the final estimate is symbatic with its number in the structure 
of the predicted compound.

On the basis of a generalized spectrum of 44 primary prediction estimates, the 
integral decision rules are constructed with the help of three prediction strategies. 
Each of the three strategies models decision-making by an independent expert 
group with a unique method. This procedure may be referred to as second-level 
integral consensus. As stated above, the conservative strategy implements a model 
of general nonweighted consensus, the normal strategy implements a model of se-
lective weighted consensus, and the risk strategy implements a model of supremum 
consensus.

The generalization of prediction results by three strategies corresponds to deci-
sion-making by three expert groups employing different methods to determine the 
“quality” of the predicted object. This type of a QSAR model is something akin to 
a “consensus of consensuses;” it is a third-level integral consensus.

To enhance the reliability of predictions and determine the order of experimental 
testing of compounds, IT Microcosm uses a fourth-level integral consensus in the 
generalization of prediction estimates derived for several activity levels.

12.2.8  Pharmacophore Analysis

The theoretical concepts of IT Microcosm do not include the basic concept of a 
pharmacophore; pharmacophores are merely considered to be extreme particular 
manifestations of a generalized pattern of compound showing a desired biological 
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activity [94, 101, 105]. Nevertheless, the concept of pharmacophore analysis is 
preserved in IT Microcosm because it is the conventional approach to structure-
activity tasks and it is notable for its demonstrativeness and simplicity. Within the 
framework of this approach, IT Microcosm defines a new class of QSAR objects, 
pharmacophorepatterns, each including multiple conjunctions of “conventional” 
pharmacophores, i.e., fixed fragments of the chemical structure. Compared to con-
ventional pharmacophores, pharmacophorepatterns show a much greater predictive 
ability; however, this predictive ability is greatly inferior to that of the generalized 
pattern. The procedure of constructing pharmacophorepatterns is described in detail 
in reference [79]; it consists of two stages.

Stage one entails calculating the lists of the primary statistically significant QL 
features of the desired type (level) of activity.

The Bayesian frequency of occurrence of descriptor ij in class k = a, n

 

(12.22)

where

Sijk is the number of descriptors of ij-type in class k; and
Sik is the total number of descriptors of i-type in class k.

For each descriptor ij, we evaluate the statistical significance of the Bayesian fre-
quency of the occurrence of this descriptor in classes a and n according to the hy-
pergeometric test

 

(12.23)
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The QL descriptor of ij-type is a statistically significant feature of activity if
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where Pr0 is the statistical significance threshold (0.05, 0.01 or 0.001) selected in 
relation to the reliability extent desired by the researcher.

Stage two entails the construction of pharmacophorepatterns according to the 
lists of statistically significant QL features. By the pair-wise comparison of all of the 
features on the list, the pairs of QL descriptors that have coinciding or structurally 
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similar features are selected. The selected feature pairs are united into intermedi-
ate “integral” features. The obtained “integral” features are compared against each 
other and against the QL features that remain on the list, and the resulting analogous 
pairs are united again. This procedure is repeated until the possibility of feature 
pairing of both primary and intermediate features is completely exhausted.

12.2.9  IT Microcosm Software Complex

All of the theoretical concepts, methods and rules discussed above are implemented 
in IT Microcosm software package for Windows [113], which includes 20 applica-
tions and a total of over 58,000 lines of source code.

The IT Microcosm software package makes it possible to solve the following 
tasks associated with the calculation of prediction regularities:

• Notation of compound activity levels;
• Translation of the structure of a compound into QL representation and the con-

struction of generalized classes of compounds with the desired activity;
• The calculation of first-level consensus decision rules using four prediction 

methods;
• The construction of second-level integral consensus decision rules using three 

prediction strategies;
• The construction of third-level integral consensus decision rules by generalizing 

the prediction results for all strategies;
• The validation of the obtained decision rules;
• Making mixtures of compounds with any composition in the form of a set of 

structural files of a standard format;
• Revealing pharmacophorepatterns that are associated with high activity.

The IT Microcosm software package offers researchers the following possibilities 
that are associated with the prediction of the presence or extent of pharmacological 
and biological activity of various types in organic compounds with any chemical 
structure:

• Prediction of the activity of untested compounds;
• Directed search for highly active drug substances;
• Directed design of novel, highly active drug substances;
• Directed search for highly active multi-target compounds that show several 

mechanisms of action at the same time;
• Prediction of the activity of organic compound salts taking the mutual effects of 

their components into consideration;
• Optimization of qualitative and quantitative composition of organic compound 

salts with the aim of achieving the maximum pharmacological effect;
• Predicting the activity of supramolecular complexes that are formed as a result 

of a noncovalent intermolecular interaction between several compounds;
• Optimization of qualitative and quantitative composition of supramolecular 

complexes with the aim of achieving the maximum pharmacological effect;
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• Predicting the activity of mixtures that consist of several individual compounds 
accounting for their quantitative composition and component synergism;

• Optimization of the qualitative and quantitative composition of compound mix-
tures with the aim of achieving the maximum pharmacological effect;

• Directed search for compounds that are highly selective for a certain biological 
target subtype compared to other subtypes of the same target.

A general workflow of data processing in IT Microcosm is shown in Fig. 12.1. The 
IT Microcosm software is available upon request. IT Microcosm White is a freely 

Fig. 12.1  IT Microcosm workflow
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distributed version with limited functionality, for the prediction of individual or-
ganic compound activity.

12.3  Predictive Power of IT Microcosm

The adequacy, validity and accuracy of IT Microcosm were analyzed by testing the 
training sets for the structure and pharmacological activity of structurally diverse 
and structurally similar chemical compounds. It is well known that lead generation 
methods are intended to represent searches for structures with high novelty, parent 
compounds of new chemical classes with the desired pharmacological activity, and 
new chemical entities; these methods should provide for an adequate prediction of 
activity in structurally diverse compounds. Lead optimization methods are aimed at 
revealing the most active compounds in a series of structurally similar compounds; 
these approaches are expected to produce stable results and to predict the pharma-
cological activity of one class of chemical derivatives. The theoretical concepts 
of IT Microcosm are of a universal nature; therefore, the technology permits an 
equally successful prediction of the presence and extent of pharmacological activ-
ity in both structurally diverse and structurally similar compounds, including chiral 
compounds.

12.3.1  Structurally Diverse Compounds

The training sets were constructed from available reference literature and informa-
tion from the internet. The sets include structures of compounds that reliably show 
the predicted activity and compounds that reliably show no activity. The total size of 
databases for 34 types of activity is 10,703 structures of known drugs and biologi-
cally active substances. For 19/34 activity types, the active compounds were divided 
into highly active and moderately active classes using the expert method. The selec-
tion, verification and primary processing of information in relation to structure and 
activity were performed by competent experts: chemists and doctoral-level pharma-
cologists with considerable experience in the corresponding fields. The method of 
training set construction is discussed in detail in references [105, 109].

The sizes of the training sets ranged from 30 to 1140 compounds. Depending on 
the type of activity, the indices of chemical diversity varied within the following 
limits: the dimensionality of the object domain description ranged from 1798 to 
22,461 variables, and the mean number of unique features per compound ranged 
from 14 to 149 QL descriptors.

A summary of the analysis of the adequate decision rules when predicting the 
presence/absence of an activity in structurally diverse compounds is shown in 
Table 12.3. A decision rule was deemed to be adequate if the values of all of the 
prediction accuracy indices F0, Fa and Fn in all testing methods were at least 60 %, 
which corresponds to a confidence level of p ≥ 0.9 with a training set size of N ≥ 30. 
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Altogether, in all strategies and methods of testing, the maximum value of all three 
indices F0, Fa and Fn amounts to 100 %.

The estimates of prediction accuracy for the best decision rules (for the F0 value 
sum for ST, LOOCV and SHCV) are shown in Table 12.4. In this case, the conser-
vative strategy proved to be the best; optimal decision rules were obtained for 26 ac-
tivities out 34 (76 %), mainly for systemic pharmacological effects. This is not sur-
prising because the presence/absence of activity is mostly determined by “standard” 
regularities, and the structural diversity of compounds underlies the multiplicity of 
action mechanisms, especially when dealing with therapeutic activities. The normal 
and risk strategies yielded 4 optimum decision rules (12 % each). Notably, the risk 
strategy produced decision rules for only the receptor activity type, where subtle 
interaction mechanisms between the ligand and receptor site play a key role.

A summary of testing adequate decision rules in predicting a high-level activity 
in structurally diverse compounds is shown in Table 12.5. In this case, the maxi-
mum values F0, Fa and Fn in all strategies only amount to 100 % in the self-pre-
diction model. In the leave-one-out and split-half cross-validations, the maximum 
values of F0, Fa, and Fn were 99 %, 95 %, and 100 %, respectively.

The estimates of the best decision rules accuracy in predicting a high activity 
are shown in Table 12.6. In this case, the conservative strategy again gave the best 
results; optimum decision rules were obtained for 7 activities out of 16 (44 %). 
However, the normal (5 optimum regularities, 31 %) and risk strategies (4 optimum 
regularities, 25 %) were used more often. This outcome is also understandable be-
cause highly active compounds often show a “nonstandard” chemical structure and 
as a result tend to have unconventional mechanisms of action.

Table 12.3  General indices of prediction accuracy for the activity of structurally diverse 
compounds
Strategy ST, % LOOCV, 

%
SHCV, % DLOOCV, 

%
Min Max Min Max Min Max Min Max

Accuracy F0

Conservative 97 100 77 100 70 100 – –
Normal 81 100 69 100 65  95 69 100
Risk 85 100 67 100 65  97 – –
Sensitivity Fa

Conservative 88 100 67 100 67 100 – –
Normal 83 100 63 100 62  97 63 100
Risk 83 100 67 100 63 100 – –
Specificity Fn

Conservative 96 100 68 100 60 100 – –
Normal 79 100 69 100 64  96 69 100

Risk 85 100 67 100 60 100 – –
DLOOCV is not used in the conservative or risk strategy
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12.3.2  Structurally Similar Compounds

Similar testing was performed to predict the levels of 28 types of pharmacological 
activity in structurally similar condensed azole derivatives of the following chemical 
classes: imidazoles, 1,2,4-triazoles, indoles, purines, benzimidazoles, imidazo[1,2-
a]benzimidazoles, pyrimido[1,2-a]benzimidazoles, pyrazolo[1,5-a]benzimidazoles, 
pyrrolo[1,2-a]benzimidazoles, 1,2,4-triazolo[1,5-a]benzimidazoles, thiazolo[2,3-a]

Table 12.4  Accuracy of the best strategy for predicting the presence of an activity in structurally 
diverse compounds
Activity N Better strategy ST F0, % LOOCV 

F0, %
SHCV 
F0, %

Neuroleptic 645 Conservative 99 97 97
Tranquilizer 532 Conservative 100 89 89
Antidepressant 628 Conservative 100 91 90
Nootropic 420 Conservative 99 77 70
Analgesic narcotic 320 Conservative 100 97 95
Anesthetic local 324 Conservative 100 91 91
Spasmolytic 804 Conservative 99 81 82
Antianginal 410 Conservative 99 81 79
Cardiotonic 304 Conservative 100 89 89
Cardiac stimulant 233 Conservative 100 96 95
Hypoglycemic 230 Conservative 100 82 82
Anabolic 184 Normal 99 91 90
Antiseptic 494 Conservative 100 87 86
Leprostatic 52 Conservative 100 79 80
Tuberculostatic 386 Conservative 100 93 92
Antifungal 471 Conservative 100 83 80
Anti-HIV 1140 Conservative 97 80 80
Antiherpetic 412 Normal 90 69 68
Anti-paramixovirus 54 Conservative 98 96 94
Anti-picornavirus 512 Conservative 97 87 88
Anti-rheovirus 30 Normal 93 77 76
Anti-orthovirus 72 Conservative 97 92 92
Antileukemic 252 Conservative 98 81 79
Antineoplastic 821 Conservative 100 89 87
Antioxidant 82 Conservative 100 86 85
Κ-opioid agonist 74 Conservative 100 95 83
5-HT2 antagonist 33 Conservative 100 86 93
5-HT3 antagonist 47 Risk 87 87 81
H1 antagonist 66 Normal 100 89 89
H2 antagonist 50 Risk 100 92 92
H3 antagonist 46 Risk 100 98 96
H3 agonist 47 Conservative 100 100 100

P2Y1 antagonist 36 Risk 100 100 97
Carcinogenic 492 Conservative 100 87 86

N is the number of compounds in a training set
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benzimidazoles, 1,2,4-triazino[2,3-a]benzimidazoles, 1,3,4-thiadiazino[3,2-a]benz-
imidazoles, thiazolo[2,3f]purines, and oxazolo[2,3-f]purines [105]. The sizes of the 
training sets varied from 17 to 459 compounds. A model of a generalized pattern of 
1312 condensed azole derivatives is described by 8615 types of QL descriptors (seven 
descriptors per compound on average), which testifies to their great structural similar-
ity. Quantitative data for all 28 types of pharmacological activity of these compounds 
underwent cluster analysis [59], and four classes of activity were detected: high, mod-
erate, low, and inactive. In each case, the class borders were set using the numerical 
values of one or several indices of the tested activity.

In the first series of tests, we evaluated the prediction accuracy of expressed 
activity, which corresponds to the combined gradation of “high or moderate” versus 
“low or inactive” compounds. The choice of gradations was dictated by the fact that 
in an experimental screening of structurally similar compounds, substances with 
low or no activity were immediately eliminated from further studies.

A summary of the adequacy of decision rules in predicting expressed activity of 
structurally similar compounds is shown in Table 12.7. In this case, the maximum 
values F0, Fa and Fn in all strategies amount to 100 % only in the self-prediction 
model. In leave-one-out and split-half cross-validations the maximum values of F0, 
Fa, and Fn were 91 %, 100 %, and 96 %, respectively.

The estimates of the accuracy of the best decision rules in predicting an ex-
pressed activity are shown in Table 12.8. In this case, the risk strategy showed the 
best results; optimum decision rules were obtained for 10 activities out of 21 (48 %).

The summarized results of testing the adequate decision rules in predicting a 
high activity level in structurally similar condensed azole derivatives are shown in 
Table 12.9. In this case, too, the maximum values for F0, Fa and Fn in all strategies 
amount to 100 % only in self-prediction. In leave-one-out and split-half cross-vali-
dations the maximum values of F0, Fa, and Fn were 93, 100, and 97 %, respectively.

Table 12.5  General indices of prediction accuracy for high-level activity in structurally diverse 
compounds
Strategy ST, % LOOCV, 

%
SHCV, 
%

DLOOCV, 
%

Min Max Min Max Min Max Min Max
Accuracy F0

Conservative 97 100 84 99 85 99 – –
Normal 81 100 72 97 74 96 72 97
Risk 76  99 73 99 97 97 – –
Sensitivity Fa

Conservative 88 100 74 94 72 93 – –
Normal 89 100 66 91 63 90 66 91
Risk 72 100 69 95 64 91 – –
Specificity Fn

Conservative 97 100 89 100 87 100 – –
Normal 78 100 73 98 74 98 74 98
Risk 75 100 73 100 77 100 – –

DLOOCV is not used in the conservative or risk strategy
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The estimates of the accuracy of the best decision rules in predicting a high ac-
tivity are shown in Table 12.10. Here, too, the risk strategy proved to be the best. 
Notably, it showed better results compared to the previous example of an expressed 
activity; optimum decision rules were obtained for 14 activities out of 22 (64 %). 
This result is quite understandable; it is due to the novelty of the chemical structures 

Table 12.7  General indices of prediction accuracy for expressed activity in structurally similar 
condensed azole derivatives
Strategy ST, % LOOCV, 

%
SHCV, 
%

DLOOCV, 
%

Min Max Min Max Min Max Min Max
Accuracy F0

Conservative 88 100 67 86 68 87 – –
Normal 81 100 67 90 69 86 67  90
Risk 72 100 67 87 69 91 – –
Sensitivity Fa

Conservative 89 100 64 100 66 89 – –
Normal 80 100 66 100 60 83 66 100
Risk 65 100 60 92 60 100 – –
Specificity Fn

Conservative 81 100 60 90 61 96 – –
Normal 74 100 67 86 61 92 67  86
Risk 74 100 64 92 67 92 – –

DLOOCV is not used in the conservative or risk strategy

Table 12.6  Accuracy of prediction of the best strategy for a high activity in structurally diverse 
compounds
Activity N Better strategy ST F0, % LOOCV F0, % SHCV F0, %
Neuroleptic 645 Conservative 99 95 94
Tranquilizer 532 Conservative 99 98 97
Antidepressant 628 Risk 77 76 79
Analgesic 
narcotic

320 Normal 100 97 96

Antianginal 410 Conservative 100 99 99
Cardiotonic 304 Normal 100 95 96
Hypoglycemic 230 Risk 87 77 77
Antiseptic 494 Normal 86 81 84
Tuberculostatic 386 Conservative 100 97 95
Anti-HIV 1140 Normal 99 80 80
Anti-paramixo-
virus

54 Conservative 100 93 92

Anti-picornavirus 512 Conservative 97 89 88
Anti-orthovirus 72 Risk 99 99 97
Antileukemic 252 Conservative 98 84 85
Antineoplastic 821 Normal 90 83 81
Antioxidant 82 Risk 96 90 91

N is the number of compounds in a training set
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and the nonstandard mechanisms of action of highly active compounds. The con-
servative strategy yielded 3 optimum regularities (13 %), and the normal strategy 
yielded 5 (23 %).

12.3.3  Chiral Compounds

Different streoisomers of the same medicinal substance differ in the range of phar-
macological effects and the extent of their manifestation.

Three training sets demonstrated the possibility of predicting the pharmacologi-
cal activity of chiral compounds [82].

1. The data for the structure and activity of 26 structurally diverse dopamine D2 
receptor agonists (7 diastereomers, 15 enantiomers, 4 achiral compounds) [87] 
were clustered into three activity classes: “high,” “moderate,” and “low.”

Table 12.8  Accuracy of the best strategy for predicting an expressed activity in structurally simi-
lar condensed azole derivatives
Activity N Better strategy ST F0, % LOOCV 0, % SHCV F0, %
Antioxidant 325 Conservative 97 80 82
Antiradiomimetic 73 Risk 85 74 74
PDE cAMP 
inhibitor

41 Conservative 97 86 87

Anti-calmodulin 23 Risk 100 87 82
H1 antagonist 62 Risk 84 77 77
P2Y1 antagonist 56 Normal 88 73 73

Κ-opioid agonist 91 Conservative 99 84 86
Ca + 2 channel 
blocker

69 Normal 84 71 70

Antiplatelet 312 Risk 100 72 78
Hemorheologic 160 Conservative 98 74 68
Spasmolytic 170 Normal 100 67 69
Antiarrhythmic 305 Conservative 94 75 78
Anesthetic local, 
surface

459 Risk 85 84 86

Anesthetic local, 
infiltration

459 Risk 87 85 88

Anesthetic local, 
conductive

459 Normal 81 79 79

Hypotensive 336 Normal 83 77 77
Hypoglycemic 125 Risk 95 67 69
Antisecretory 73 Conservative 93 76 81
Cerebroprotective 36 Risk 83 81 81
Anti-hypoxic 17 Risk 100 69 82
Actoprotective 32 Risk 72 67 69

N is the number of compounds in a training set
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2. β-Adrenoblocking activity and four pharmacokinetic indices of twelve S- and 
R-isomers of six known structurally similar β-adrenoblockers, 1-aryloxy-3-al-
kylamino-propane-2-ole derivatives (acebutolol, atenolol, carvedilol, meto-
prolol, pindolol, sotalol) [60]. The compounds were classified into two classes 
based on each parameter; 1) the enantiomer activity was higher than that of a 
racemate, or 2) the enantiomer activity was lower than that of a racemate.

3. The values for the β1-adrenoblocking activity of ten optical isomers of a sin-
gle drug, nebivolol, which has four chiral centers [77], were divided into two 
classes: highly active ones and those with a low activity.

The results of testing the best decision rules are shown in Table 12.11. The normal 
strategy was the best in all of these cases, which corresponds to the characteristics 
of chiral compounds; the basal activity level of chiral compounds is established by 
the chemical structure, and specific effects are determined by chiral structural frag-
ments.

In summary, IT Microcosm allows an accuracy approaching 100 % in predicting 
the presence and extent of a pharmacological activity in structurally diverse and 
structurally similar compounds and their stereoisomers.

12.4  IT Microcosm in the Search for Novel Drugs

The fundamental nature of the theoretical concepts behind IT Microcosm makes 
it possible to use this technology to successfully solve various QSAR/QSPR opti-
mization tasks, such as searching for novel compounds with high pharmacological 

Table 12.9  General indices of prediction accuracy for high activity in structurally similar con-
densed azole derivatives
Strategy ST, % LOOCV, 

%
SHCV, % DLOOCV, 

%
Min Max Min Max Min Max Min Max

Accuracy F0

Conservative 89 100 64 93 64 90 – –
Normal 73 100 67 90 64 89 67 90
Risk 71 100 64 90 66 91 – –
Sensitivity Fa

Conservative 91 100 64 100 61 96 – –
Normal 79 100 64 86 63 91 64 86
Risk 71 100 60 92 60 100 – –
Specificity Fn

Conservative 85 100 60 97 66 95 – –
Normal 69 100 64 93 61 92 64 93
Risk 65 100 61 94 68 93 – –

DLOOCV is not used in the conservative or risk strategy
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[19, 37, 38, 47, 48, 49, 79, 80, 82, 1, 122, 127, 130–134 140] or biological [15–17, 
45, 63, 100] activities, making an assessment of the carcinogenic potential of sub-
stances [67, 84, 117, 121], developing new effective polymer composite additives 
[29, 30, 64, 68] and rubber mixture additives [84, 118, 121], and predicting the 
environmental hazards of chemical production plants [67, 108, 115].

The effectiveness of IT Microcosm in the search for novel drugs with high an-
tioxidant, antiarrhythmic and antiplatelet activities among condensed azole de-
rivatives is shown below; the general formulas of these compounds are given in 
Fig. 12.2. These compounds satisfy Lipinski’s rules [56] and the order of priority 
for cyclic and heterocyclic structures [36, 11]; some of them are so-called privileged 
structures [21].

Table 12.10  Accuracy of the best strategy for predicting high activity in structurally similar con-
densed azole derivatives
Activity N Better strategy ST F0, % LOOCV F0, % SHCV F0, %
Antiradical 36 Risk 100 81 81
Antioxidant 310 Conservative 98 93 90
Antiradiomi-
metic

73 Conservative 89 72 75

PDE cAMP 
inhibitor

109 Normal 100 83 85

Anti-calmodulin 23 Risk 100 83 91
5-HT2 antagonist 85 Risk 72 65 69
5-HT3 antagonist 98 Risk 73 68 71
H1 antagonist 62 Normal 94 85 84
P2Y1 antagonist 56 Risk 80 73 71
Κ-opioid agonist 91 Normal 100 75 67
Ca+2 channel 
blocker

69 Risk 100 80 71

Hemorheologic 160 Risk 71 71 72
Spasmolytic 170 Normal 85 74 76
Antiarrhythmic 305 Conservative 98 87 89
Anesthetic local, 
surface

459 Normal 89 88 88

Anesthetic local, 
infiltration

459 Risk 82 82 84

Anesthetic local, 
conductive

459 Risk 85 83 85

Hypotensive 336 Risk 75 71 74
Hypoglycemic 125 Risk 100 73 71
Anti-ulcerogenic 77 Risk 78 68 66
Cerebroprotec-
tive

36 Risk 83 81 81

Anti-hypoxic 17 Risk 100 82 82
N is the number of compounds in a training set
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12.4.1  Antioxidant Activity

The training set was constructed according to the results of experimental studies 
of 325 condensed azole derivatives of four classes (Fig. 12.2): 232 imidazo[1,2-
a]benzimidazoles (IV), 34 benzimidazoles (II), 33 pyrimido[1,2-a]benzimidazoles 
(VIII) and 26 pyrrolo[1,2-a]benzimidazoles (V) [46–48, 105, 122, 124].

Table 12.11  Indices of prediction accuracy for the best strategy of chiral compound activity
Activity level Better strategya F0, % Fa, % Fn, %
D2 agonists
High Normal 89 83 90
High or moderate Normal 73 73 73
β-Adrenoblockers
High adrenoblocking Normal 100 100 100
High Cmax

b Normal 100 100 100

High AUCc Normal 100 100 100
High ClR

d Normal 100 100 100
High t1/2

e Normal 100 100 100
Nebivolol
High β1-adrenoblocking Normal 100 100 100

a In LOOCV
b Maximum blood plasma concentration
c Area under plasma concentration-time curve
d Renal clearance
e Half-life

Fig. 12.2  Condensed azole derivatives tested for antioxidant, antiarrhythmic and antiplatelet 
activity (the interrupted line indicates a possible double bond)
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The substances were studied in vitro on a model of ascorbate-induced lipid per-
oxidation (LP) in the homogenate of rat liver [53]. The indices of the antioxidant 
activity were as follows: EC50–compound concentration (mol/L) inhibiting LP by 
50 %; Δ (10−6)—percentage of LP inhibition at a concentration 1·10−6 M of the stud-
ied substance; Ind10—the module of the exponent of the measure of the substance 
concentration inducing LP inhibition by 10 % (using the value of 2 to 7 points). Tro-
lox C (CAS 53188-07-1) was studied as the comparison drug, and it yielded EC50 
values of 2.76·10−6 M, Δ (10−6) = 36.9 %, and Ind10 = 7.

Based on the results of cluster analysis in combination with an expert assess-
ment, the following activity classes were distinguished:

• high—EC50 < 5.0 · 10−6 M or Δ (10−6) > 20.0 % (78 compounds), or Ind10 = 6, 7 (86 
compounds);

• moderate—5.0 · 10−6 ≤ EC50 < 1.0 · 10−4 M or 10.0 < Δ (10−6) ≤ 20.0 % (69 com-
pounds), or Ind10 = 5 (59 compounds);

• high or moderate—EC50 < 1.0 · 10−4 M or Δ (10−6) > 10.0 % (147 compounds), or 
Ind10 = 5, 6, 7 (145 compounds); and

• low—EC50 ≥ 1.0 · 10−4 M or Δ (10−6) ≤ 10.0 % (178 compounds), or Ind10 = 2, 3, 4 
(165 compounds).

The results of computational accuracy testing for the prediction of the extent of the 
antioxidant activity of the condensed azole derivatives are shown in Table 12.12. 
All of the obtained decision rules proved inadequate for the moderate activity; 
therefore, they were excluded from further prediction.

Substances with a high antioxidant activity were sought among 721 novel, un-
tested condensed azole derivatives of 15 chemical classes (see Sect. 3.2) using sev-
eral consensus approaches to the selection of the most promising compounds, in-
cluding a method of using three strategies in combination, and testing the spectrum 
of the predicted estimates for noncontradiction.

The key criteria for selecting experimental-study candidates were as follows 
(“A” stands for a positive prediction estimate of a compound activity as “high”):

• 2A or 3A in all six decision rules, with a conformity coefficient of the prediction-
estimate spectrum (21) KHigh > 0.5;

• 3A for the index EC50 and 3A for Ind10 simultaneously;
• 3A for EC50 or 3A for Ind10, while KHigh = 1.0; and
• 3A for EC50 and KHigh > 0.8.

Altogether, 41 substances were selected according to these criteria and studied ex-
perimentally.

Twenty-eight compounds (68.3 %) with an expressed antioxidant activity Δ 
(10−6) > 10.0 % were found; 17 of them (41.5 %) were compounds showing a high 
activity Δ (10−6) > 20.0 %. Of 17 highly active compounds, 13 compounds (76.5 %) 
are comparable to the reference drug Trolox C in antioxidant activity, and four com-
pounds (23.5 %) exceed its activity.

For the Δ (10−6) index, the training set contains 45.2 % compounds with an expressed 
activity, including 24.0 % compounds with a high activity. The primary screening did 
not employ in silico methods, so the percentage of the obtained active substances can be 
regarded as an indication of the accuracy of the intuitive human prediction performed 
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Table 12.12  Indices of the prediction accuracy for the antioxidant-activity level of condensed 
azole derivatives
Activity 
level

ST, % LOOCV, % SHCV, %

F0 Fa Fn Fu F0 Fa Fn Fu F0 Fa Fn Fu

EC50
a

CS b
High 96 91 98 5 91 74 97 8 90 75 95 5
Moderate 96 86 99 18 74 35 84 23 79 28 90 18
High or 
moderate

97 94 99 10 80 73 86 11 82 76 87 11

NS c,d

High, BA 94 87 96 – 90 83 93 – 89 79 92 –
Moderate, 
DM

72 75 71 – 66 56 68 – 66 39 73 –

High or 
moderate, 
NNM

99 100 99 – 74 73 75 – 79 75 83 –

RS e
High, 
LDM10

94 88 96 – 90 79 94 – 89 77 93 –

Moderate, 
BA11

73 83 70 – 60 58 61 – 66 60 68 –

High or 
moderate, 
DM10

78 78 79 – 72 72 72 – 74 74 74 –

Ind10
a

CS b
High 97 95 98 4 91 77 96 8 92 83 96 10
Moderate 97 90 99 17 79 30 89 24 82 41 90 18
High or 
moderate

97 94 99 10 80 73 86 11 82 76 87 11

NS c,d

High, 
NNM

99 100 98 – 86 80 88 – 85 78 88 –

Moderate, 
DM

75 75 75 – 68 54 71 – 65 44 70 –

High or 
moderate, 
NNM

99 100 99 – 74 73 75 – 79 75 83 –

RS e
High, 
DM10

88 88 88 – 85 82 85 – 86 86 85 –

Moderate, 
BA11

73 90 70 – 62 59 62 – 66 63 67 –

High or 
moderate, 
DM10

78 78 79 – 72 72 72 – 74 74 74 –

a Criteria for distinguishing an activity class.
b The refusal of prediction was only defined in the conservative strategy.
c The best prediction method is indicated.
d The DLOOCV and LOOCV results are identical.
e The best method of prediction and the type of descriptor are indicated.
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by an experienced experimental pharmacologist based on a conventional comparative 
analysis of literature data. Thus, the effectiveness of IT Microcosm in the search for 
compounds with an expressed antioxidant activity is 1.51 times greater than the accu-
racy of intuitive human prediction; its effectiveness in a search for compounds with a 
high antioxidant activity is 1.73 times greater.

Of the four most active compounds, compound (IX) (Fig. 12.3) was recog-
nized as the most promising for a further, in-depth study (according to accessory 
in vivo tests); this compound showed antioxidant-activity indices Δ (10−6) = 94.4 %, 
EC50 = 3.2·10−7 M and Ind10 = 7. The compound is now covered by a patent [6].

12.4.2  Antiarrhythmic Activity

The training set was also constructed on the basis of an experimental study of 305 
condensed azole derivatives of four chemical classes (Fig. 12.2): 223 imidazo[1,2-
a]benzimidazoles (IV), 31 benzimidazoles (II), 27 pyrrolo[1,2-a]benzimidazoles 
(V) and 24 pyrazolo[1,5-a]benzimidazoles (VI) [3, 37, 38, 69, 105].

The antiarrhythmic activity was evaluated in vitro according to the extent to 
which the compounds affected the prolongation of the myocardial absolute refrac-
tory period in an isolated rat atrium of the heart stimulated by electric impulses [3, 
138]. This method does not allow for the identification of all of the antiarrhythmic 
effects of new substances, but the technique is valid at the stage of primary screen-
ing. MEC, the minimum effective concentration of a substance (mol/L) prevent-
ing the atrium from adopting the rhythm forced on it, served as a measure of the 
antiarrhythmic activity. Moricizine (CAS 31883-05-3) was studied as the drug for 
comparison; its MEC was found to be 5.10·10−5 M.

A cluster analysis helped to single out the following classes of activity:

• high—MEC < 7.3·10−5 M (71 compounds);
• moderate—7.3·10−5 ≤ MEC < 2.8·10 − 4 M (76 compounds);
• high or moderate—MEC < 2.8·10−4 M (147 compounds); and
• low— MEC ≥ 2.8·10−4 M (158 compounds).

Fig. 12.3  Leading compound 
with a high antioxidant 
activity
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The results of the computational-accuracy testing for the prediction of the extent of 
the antiarrhythmic activity of condensed azole derivatives are shown in Table 12.13. 
Not a single adequate decision rule was obtained for the moderate activity class.

According to the predicted results, 25 substances were selected out of 752 novel, 
untested condensed azole derivatives for an experimental study. The selected sub-
stances showed 3A for a high activity level in all three strategies, a conformity coef-
ficient of prediction estimates spectrum (21) KHigh = 1.0 and a membership function 
in the conservative strategy (17) FbHigh > 0.65.

Experimentally, all of the 25 compounds (100 %) showed an expressed antiar-
rhythmic activity MEC < 2.8·10-4 M; 20 of them (80.0 %) showed a high activity 
level MEC < 7.3·10-5 M. Of 20 highly active substances, 11 (55.0 %) are compa-
rable with Moricizine in the extent of the antiarrhythmic activity; nine substances 
(45.0 %) showed a higher extent of activity.

Previously, the primary screening of condensed azole derivatives with a high 
antiarrhythmic activity employed, apart from intuitive prediction, the Hansch meth-

Table 12.13  Indices of the prediction accuracy for the antiarrhythmic activity level of condensed 
azole derivatives
Activ-
ity 
level

ST, % LOOCV, % SHCV, %

F0 Fa Fn Fu F0 Fa Fn Fu F0 Fa Fn Fu

CS
High 98 97 98 12 87 72 91 14 89 78 92 14
Moder-
ate

98 97 99 18 72 40 81 21 74 49 81 18

High or 
moder-
ate

94 94 94 13 75 77 73 15 78 81 75 16

NS
High, 
BA

81 82 80 – 78 79 78 – 79 82 78 –

Moder-
ate, BA

66 91 58 – 56 67 52 – 59 61 58 –

High or 
moder-
ate, 
LDM

90 90 91 – 74 74 75 – 75 76 75 –

RS
High, 
DM11

83 82 84 – 81 80 81 – 80 80 80 –

Moder-
ate, 
BA11

73 91 68 – 59 59 59 – 66 66 66 –

High or 
moder-
ate, 
DM11

79 78 81 – 72 71 73 – 72 72 72 –

The designations are the same as in Table 12.12
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od, discriminant analysis and substructure analysis. Thus, according to the train-
ing set structure, the accuracy of combined primary machine-human prediction of 
an expressed antiarrhythmic activity was 48.2 % and was 23.3 % for high activity. 
Consequently, the effectiveness of IT Microcosm in a search for compounds with 
an expressed antiarrhythmic activity among condensed azole derivatives was 2.07 
times greater, and the search for compounds with a high antiarrhythmic activity was 
3.43 times more accurate than the combined machine-human prediction performed 
with the help of three other QSAR methods.

Out of the nine most active compounds, compound (X) (Fig. 12.4) with a 
MEC = 2.0·10−5 M was selected for a further, in-depth study. This compound is now 
covered by a patent [83].

12.4.3  Antiplatelet Activity

The training set was constructed on the basis of the experimental results for 312 
condensed azole derivatives of eight chemical classes (Fig. 12.2): 192 imidazo[1,2-
a]benzimidazoles (IV), 40 benzimidazoles (II), 28 pyrimido[1,2-a]benzimidazoles 
(VIII), 23 purines (III), 10 pyrrolo[1,2-a]benzimidazoles (V), eight 1,2,4-triazoles 
(I), 8 pyrazolo[1,5-a]benzimidazoles (VI) and three 1,2,4-triazolo[1,5-a]benzimid-
azoles (VII) [4, 49, 105, 125].

The antiplatelet activity of the substances was studied in vitro on a model of 
ADP-induced rabbit platelet aggregation [12, 26]. The indices of the extent of the 
antiplatelet activity were as follows: EC50 was the compound concentration (mol/L) 
decreasing platelet aggregation by 50 %; and Δ (10−4) was the percentage of platelet-
aggregation decrease at a concentration of the studied substance of 1·10−4 M. Aspi-
rin (CAS 50-78-2) served as the drug for comparison; the indices of its antiplatelet 
activity were found to be EC50 = 7.10·10−4 M and Δ (10−4) = 29.3 %.

The following activity classes were singled out on the basis of cluster analysis in 
combination with an expert evaluation:

• high—EC50 < 3.3·10−4 M or Δ (10−4) > 25.0 % (71 compounds);

Fig. 12.4  Leading compound 
with a high antiarrhythmic 
activity
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• moderate—3.3·10-4 ≤ EC50 < 1.0·10-3 M or 10.0 < Δ (10−4) ≤ 25.0 % (82 com-
pounds);

• high or moderate—EC50 < 1.0·10−3 M or Δ (10−4) > 10.0 % (153 compounds); and
• low—EC50 ≥ 1.0·10−3 M or Δ (10-4) ≤ 10.0 % (159 compounds).

The results of the computational-accuracy testing for the prediction of the extent of 
antiplatelet activity of the condensed azole derivatives are shown in Table 12.14.

It can be concluded from the data that no adequate decision rules were developed 
for the moderate- and high-activity gradations.

As discussed above (see Sect. 2), if there is a complete consensus on the positive 
estimates for a high-level activity in three prediction strategies, and a high value of 
the conformity coefficient of the prediction-estimates spectrum (21), the accuracy 
of a search for highly active compounds is considerably higher. This property of 
integral-consensus decision rules was successfully exploited in a search for sub-
stances with a high antiplatelet activity.

Table 12.14  Indices of the prediction accuracy for the antiplatelet-activity level of condensed 
azole derivatives
Activity 
level

ST, % LOOCV, % SHCV, %

F0 Fa Fn Fu F0 Fa Fn Fu F0 Fa Fn Fu

CS
High 97 96 98 17 78 47 87 18 80 53 88 13
Moder-
ate

96 97 95 19 63 41 70 24 71 51 77 23

High or 
moderate

96 97 96 15 73 78 67 19 78 81 74 17

NS
High, 
NNM

100 100 100 – 73 55 79 – 72 61 78 –

Moder-
ate, BA

71 91 63 – 56 60 54 – 53 43 56 –

High or 
moder-
ate, 
NNM

100 100 100 – 72 73 72 – 76 73 79 –

RS
High, 
NNM11

100 100 100 – 74 51 81 – 76 52 83 –

Moder-
ate, 
BA11

75 90 69 – 60 62 59 – 64 62 64 –

High or 
moder-
ate, 
NNM8

100 100 100 – 71 73 71 – 75 72 79 –

The designations are the same as in Table 12.12
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On the basis of the predicted results, 49 substances out of 745 novel, untested 
condensed azole derivatives were selected for an experimental study. The substanc-
es had 3A for a high activity in all three strategies and a conformity coefficient of 
the prediction-estimates spectrum KHigh > 0.9.

According to the experimental data, of 49 compounds, 48 (98.0 %) showed an 
expressed antiplatelet activity Δ (10−4) > 10.0 %; of these, 39 compounds (79.6 %) 
showed a high activity Δ (10−4) > 25.0 %. Of 39 highly active compounds, 19 
(48.7 %) showed an activity comparable to that of Aspirin, the drug for comparison, 
and 17 compounds (43.6 %) exceeded the antiplatelet activity of Aspirin.

When 312 training-set compounds were tested for their antiplatelet activity, no 
computational methods of prediction were used. The primary screening detected 
153 and 71 substances with expressed and high activity, respectively; that is, the ac-
curacy of the intuitive prediction amounts to 49.0 % and 22.8 %, respectively. Thus, 
the accuracy of the search for an expressed antiplatelet activity with IT Microcosm 
was twice as high, and of those with a high antiplatelet activity, it was 3.49 times 
higher than the accuracy of intuitive prediction.

Of the 17 most active compounds, compound (XI) (Fig. 12.5) was selected for a 
further, in-depth study (according to accessory in vivo tests); this compound showed 
antiplatelet activity Δ (10−4) = 46.8 %. The compound is now covered by a patent 
[81].

The consensus search with IT Microcosm for condensed azole derivatives with high 
antioxidant, antiarrhythmic and antiplatelet activities can be summarized as fol-
lows:

1. 115 compounds were studied experimentally; according to the predicted results, 
they were expected to show high-level activity;

2. 101 compounds (87.8 %) with expressed activity were detected; among them, 76 
compounds (66.1 %) showed high-level activity;

Fig. 12.5  Leading compound 
with a high antiplatelet 
activity
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3. 68 compounds (67.3 % of those with high-level activity) are comparable to or 
exceed the activity of comparison drugs; 30 of them (44.1 %) are more active 
than the drugs for comparison;

4. The effectiveness of the search for compounds with an expressed activity was 
2.07 times higher, and for those with a high activity, it was 3.49 times higher, in 
comparison to a prediction without IT Microcosm.

Therefore, the complex methodology of predicting the pharmacological activity 
employed in IT Microcosm and comprising a consensus approach to prediction as 
one of its constituent parts proved to be effective in a search for novel drugs among 
condensed azole derivatives of 15 different chemical classes.

12.5  IT Microcosm in Prediction of Pharmacological 
Activity of Complex Molecular Systems and of Their 
Component Synergism

Prediction of the biological activity of unconventional chemical structures is one of 
the most challenging problems faced by QSAR. In particular, such unconventional 
systems encompass organic salts, including those with organic acids and bases, 
supramolecular complexes formed by noncovalent intermolecular interactions be-
tween certain compounds and mixtures containing several individual substances. 
To make a successful in silico assessment of the pharmacological activity of such 
complex chemical constructs, one should consider both their qualitative and quanti-
tative composition as well as the mutual effect of the components constituting these 
systems, in particular, the synergistic effects. The QL language in IT Microcosm 
provides an option of taking into account the noncovalent interactions [110] and 
making a successful prediction of the biological activity of complex molecular sys-
tems [35, 74, 75, 97, 105, 111, 112, 114, 119, 120, 123, 128, 129].

12.5.1  Organic Salts

Varying the salt-forming residue is a common method in drug design. Several 
examples are the antitussive drug Codeine (manufactured as a hydrochloride or 
a phosphate), the spasmolytic drug Prenoverine (in the form of a citrate) and the 
antibiotic Fumagillin (dicyclohexylammonium salt). A salt of a complex organic 
compound can be likened to a complete supramolecular system because the stability 
in both cases is achieved through noncovalent interactions.

The results of using IT Microcosm for predicting the presence/absence or the 
level of various types of pharmacological activity among the structurally similar 
and structurally diverse compounds discussed in Sect. 3 were obtained for the salts 
of those compounds; the salt-forming residue associated with the main chemical 
structure was used in the computations [105, 109, 123]. In the sets, there were salts 
of the main inorganic acids (HCl, HBr, HNO3, H2SO4, H3PO4, HClO4), of various 
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organic acids (e.g., propionic, oxalic, citric, cyclamic, adamantane-1-carboxylic, 
and p-toluenesulfonic), of various metals (e.g., Na, K, Ca, Mg, Al, Bi, and Cu) 
and of organic bases (e.g., ethylenediamine, benzylamine, tris, and piperazine). A 
directed search for novel drugs among condensed azole derivatives (see Sect. 4) 
was also performed with consideration of the salt component associated with the 
main structure.

The following test was performed with the express purpose of understanding 
how taking into consideration the presence of an acid residue affects the accuracy of 
a prediction [105, 123]. Six model sets were constructed with three types of activity 
studied for condensed azole derivatives (I-VIII): the antioxidant, hemorheological 
and 5HT3-antiserotonin activities. Three of them included the compound structures 
with acid residues added to them; the other three showed only the main structure 
of the same substances. The F0 indices of the total accuracy of predicting various 
levels of these three activity types were evaluated in three strategies by a method 
of leave-one-out cross validation; the results of the evaluation are summed up in 
Table 12.15. One can see that taking the acid residue in consideration increased the 
accuracy of predicting the level of the pharmacological activity in IT Microcosm: 
by 12.5 % as a maximum, and by 6.5 % on the average.

The obtained results indicate that the prediction made with IT Microcosm shows 
an adequate method of taking account of the salt-forming residue associated with 
the main structure, which permits great accuracy and effectiveness in predicting the 

Table 12.15  Comparing the accuracy of predicting the level of the pharmacological activity of 
salts and bases of condensed azole derivatives
Activity F0 for salts, %a F0 for bases, %a Δ, %b

CS
Antioxidantc 87.5 83.8 8.6
Hemorheologicd 72.8 72.4 2.6
5-HT3 antagoniste 55.7 56.8 10.9
Average for activities 72.0 71.0 7.4
NS
Antioxidant 88.6 87.4 4.0
Hemorheologic 74.5 74.1 8.2
5-HT3 antagonist 81.9 78.8 12.5
Average for activities 81.7 80.1 8.2
RS
Antioxidant 91.1 89.6 3.7
Hemorheologic 71.2 71.7 2.1
5-HT3 antagonist 72.5 73.8 6.3
Average for activity 78.3 78.4 4.0
Average for strategy 77.3 76.5 6.5

a The average value in all gradations in leave-one-out cross validation
b The maximum value in all gradations for F0 surplus for salts over the F0 for bases
c The 63 compounds and five activity gradations in the model set
d The 146 compounds and six activity gradations in the model set
e The 94 compounds and five activity gradations in the model set
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presence and extent of the various types of pharmacological activity of the various 
salts of organic compounds in the most diverse chemical classes.

12.5.2  Supramolecular Compounds

The synthesis of supramolecular complexes of known drugs offers a promising ap-
proach to novel drug search. For example, let us look at the development of clath-
rates of nifedipine, allapinin, fluoxetine and phenibut with glycyrrhizinic acid and 
stevioside, which showed effects exceeding those of the nonclathrated compounds 
by 10–290 times [88].

Fig. 12.6  Glycyrrhizinic acid (XII) and condensed azole derivatives with antioxidant (XIII) and 
antiarrhythmic (XIV) activity
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IT Microcosm performed an optimization of the composition of supramolecular 
clathrate complexes of glycyrrhizinic acid (XII) with two pharmacons: an antioxi-
dant agent (XIII) [5] and an antiarrhythmic agent (XIV) [78] (Fig. 12.6) with the 
purpose of achieving the maximal pharmacologic effect.

A prediction of the activity of pure pharmacons and pharmacon clathrates with 
glycyrrhizinic acid with molar compositions of 1:1, 1:2, 1:3 and 1:4 was performed 
in the normal and risk strategies using training sets for the antioxidant and antiar-
rhythmic activity of condensed azole derivatives (see Sect. 3 and 4). The values of 
the membership functions for the classes of active and highly active compounds, as 
well the ranks of these values in ascending order, served as a metric of the expected 
activity. The conservative strategy was not employed due to the nonstandard struc-
tures of the predicted compounds.

The predicted results for the antioxidant activities of the compound (XIII) clath-
rates with glycyrrhizinic acid are shown in Table 12.16.

According to the sum of the rank estimates ∑∑Rank, the antioxidant activity of 
all compound (XIII) clathrates should exceed the activity of the pure nonclathrated 
compound (XIII). In this case, the comparable value of the antioxidant activity should 
decrease in the series: (XIII–GA 1:4) > (XIII–GA 1:3) > (XIII–GA 1:2) ≈ (XIII–GA 
1:1) > (XIII). The clathrate (XIII–GA 1:4) should show the highest activity. The (XIII–
GA 1:2) and (XIII–GA 1:1) complexes should show the lowest activities.

Experimentally, the substances were studied in vivo on rats at a dose equivalent 
to 10 mg/kg of the pharmacon per os. The total antioxidant activity of the blood 
plasma was assessed by a method based on the ability of the biological agents to 
inhibit the accumulation of lipid peroxidation products in a suspension of egg-yolk 
lipoproteins [44]. Δmax, the maximum percentage of the lipid-peroxidation inhibi-
tion (in relation to the outcome) observed for nine hours of the experiment, served 
as an index of the antioxidant activity.

Table 12.16  Prediction of the antioxidant activity of the clathrate complexes of compound (XIII) 
with glycyrrhizinic acid
Composition FbNorm

a FbRisk
b RankNorm

c RankRisk
d ∑Rank e

Presence of the activity
XIII 0.9999 0.5906 3 1 4
XIII–GA 1:1 0.9999 0.5932 3 2 5
XIII–GA 1:2 0.9999 0.5945 3 3 6
XIII–GA 1:3 0.9999 0.5950 3 4 7
XIII–GA 1:4 0.9999 0.5953 3 5 8
High activity ∑∑Rank f

XIII 0.0001 0.4349 1 1 2  6
XIII–GA 1:1 0.6116 0.4887 5 2 7 12
XIII–GA 1:2 0.5908 0.4929 3 3 6 12
XIII–GA 1:3 0.5908 0.4949 3 4 7 14
XIII–GA 1:4 0.5908 0.4974 3 5 8 16

a  Membership function for the normal strategy of prediction
b Membership function for the risk strategy of prediction
c The FbNorm values ranked in ascending order
d  The FbRisk values ranked in ascending order
e  The sum of the ranks in the strategies
f  The sum of the ranks in the strategies and the activity gradations
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The following Δmax values were obtained: (XIII)—36.9 %, (XIII–GA 1:1)—
55.8 %, (XIII–GA 1:2)—55.9 %, (XIII–GA 1:3)—54.7 % and (XIII–GA 1:4)—
65.5 %. The clathrates of the compositions (XIII–GA 1:1), (XIII–GA 1:2) and 
(XIII–GA 1:3) showed the same activity, which was approximately 1.5 times higher 
than the activity of the pure compound (XIII), whereas the clathrate of compound 
(XIII–GA 1:4) was 1.77 times more active than substance (XIII). The correlation 
coefficient between the calculated estimate ∑∑Rank and the experimental value 
Δmax amounted to R = 0.965.

Thus, the optimal composition of the (XIII–GA 1:4) clathrate with the highest 
level of antioxidant activity was established computationally and confirmed experi-
mentally.

The results of predicting the antiarrhythmic activity of the compound (XIV) 
clathrates with glycyrrhizinic acid are shown in Table 12.17. According to the sum 
of the rank estimates ∑∑Rank, the expected antiarrhythmic activity of compound 
(XIV) clathrates did not differ significantly from the activity of the pure nonclath-
rated compound (XIV); the maximum difference was only two units, whereas the 
minimum difference was 10 in the case of the antioxidant activity. Thus, the antiar-
rhythmic activity of all clathrates of compound (XIV) should be comparable with 
the activity of the pure nonclathrated compound (XIV).

The substances were studied in vivo in rats at a dose equivalent to 30 mg/kg 
of the pharmacon per os, in an experimental model of heart-rhythm disturbance 
induced by the intravenous administration of aconitine [28]. The relative time (t) 
(compared with the control) until the onset of arrhythmia after aconitine administra-
tion served as an index of the antiarrhythmic activity.

The following t values were obtained: (XIV)—1.66, (XIV–GA 1:1)—1.50, 
(XIV–GA 1:2)—1.68, (XIV–GA 1:3)—1.31 and (XIV–GA 1:4)—1.7. The indices 
of the activities of the four clathrates did not differ statistically from the activities 
of the pure compound.

Table 12.17  Prediction of the antiarrhythmic activity of the clathrate complexes of compound 
(XIV) with glycyrrhizinic acid
Composition FbNorm FbRisk RankNorm RankRisk ∑Rank

Presence of the activity
XIV 0.9431 0.5028 5 5 10
XIV–GA 1:1 0.4287 0.5008 1 4 5
XIV–GA 1:2 0.6318 0.5004 3.5 3 6.5
XIV–GA 1:3 0.5334 0.5003 2 2 4
XIV–GA 1:4 0.6318 0.5002 3.5 1 4.5
High activity ∑∑Rank
XIV 0.4852 0.4986 1 1 2 12
XIV–GA 1:1 0.5491 0.5004 3.5 5 8.5 13.5
XIV–GA 1:2 0.5491 0.5002 3.5 3.5 7 13.5
XIV–GA 1:3 0.5491 0.5002 3.5 3.5 7 11
XIV–GA 1:4 0.5491 0.5001 3.5 2 5.5 10

The designations are the same as in Table 12.16
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Thus, it was established computationally and confirmed experimentally that the 
antiarrhythmic activity of the clathrates of compound (XIV) with glycyrrhizinic 
acid equaled the activity of the pure compound (XIV).

The results obtained show that IT Microcosm makes it possible to predict the 
pharmacological activity of supramolecular complexes and to optimize their com-
position.

12.5.3  Mixtures of Natural and Synthetic Organic Compounds

Combination drugs that include several active substances are used widely in clini-
cal practice. Such drugs show effects of interaction between pharmacologically ac-
tive compounds, including the synergistic effect that is of the greatest interest for 
practical purposes. The difference between mixtures of compounds and molecular 
complexes is more or less relative; it is determined by the energy of the intermolec-
ular interactions; it is believed that mixtures show a prevalence of weak-dispersion 
interactions, whereas more energetically stable bonds, such as ion-dipole bonds 
and hydrogen bonds that are due to charge transfer, are more typical of molecular 
complexes [85]. We defined a substance as a mixture if it consisted of two or more 
individual substances and if it is not possible make any reasonable assumptions 
about the type of the molecular interactions between them. The prediction of the 
biological activity of mixtures has been successfully performed using the software 
HIT QSAR [50], PASS [52], ISIDA [66] and CORAL [90].

Several examples are given below of using IT Microcosm successfully in the 
prediction of the pharmacological activity of mixtures; these examples include pre-
dictions accounting for the synergism of the components [35, 74, 75, 97, 105, 111, 
112, 114, 119, 120].

12.5.3.1  Spectrum of the Pharmacological Activity of Juglans Regia Extract

Juglans regia extracted from fruits of milky-wax ripeness is a veterinary drug [35]. 
It consists of 23 main active substances: juglone (CAS 481-39-0), leucoanthocyan 
(2-phenylchromen-2-ol), inosite (CAS 6917-35-7), β-sitosterol (CAS 83-46-5) and 
chlorophyll A (CAS 479-61-8); gallic (CAS 149-91-7), ellagic (CAS 476-66-4), 
palmitic (CAS 57-10-3), stearic (CAS 57-11-4), lauric (CAS 143-07-7), myristic 
(CAS 544-63-8), arachidic (CAS 506-30-9), linolenic (CAS 463-40-1), linoleic 
(CAS 60-33-3), oleic (CAS 112-80-1) and palmitoleic (CAS 2091-29-4) acids; and 
vitamins A (CAS 68-26-8), B12 (CAS 68-19-9), C (CAS 50-81-7), D (CAS 67-97-
0), E (CAS 10191-41-0), P (CAS 153-18-4) and PP (CAS 98-92-0).

For each one of these 23 compounds, estimates of the presence of 13 types of 
pharmacological activity were calculated using decision rules developed by IT Mi-
crocosm on training sets with known drug substances (see Sect. 3).
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The estimates of the existence of pharmacological activity were made on 11 
levels of QL description by three methods: the Bayesian approach, distance method 
and chance method [97, 105, 119, 120]. The conclusion on whether the compound 
showed a particular activity was made using the conservative strategy and a quali-
fied 2/3 majority. The compound was deemed active/inactive within the framework 
of one method if at least 8 out of 11 prediction estimates coincided. The final judg-
ment about the activity of the compound was made if the evaluations of all three 
methods coincided; otherwise, the result was regarded as indefinite. An integral 
conclusion about the activity of an extract as a whole was made according to the 
ratio of the positive and negative final estimates of the 23 compounds.

According to the prediction (Table 12.18), Juglans regia extract should show 
the following activity types: an expressed immunostimulatory effect, the ability to 
enhance protein synthesis and energy metabolism of organs and tissues; moderate 
fungicidal, antiviral, cardiotonic effects; and a weak analgesic effect, the ability to 
enhance the CNS energy metabolism. There is no effect on the behavioral reac-
tions of animals nor a direct effect on protozoa nor a local anaesthetizing effect. An 
adaptogenic effect due to combined immunostimulatory and metabolic activities is 
possible, as well as the ability to promote wound healing, which is due to the im-
munostimulatory activity and the ability to enhance protein synthesis.

Table 12.18  Pharmacological activity spectrum of Juglans regia extract according to in silico 
prediction results
Activity Number of estimates Total

Active Inactive Unknown for the extract
Central effects
Neuroleptic 0 18 5 Inactive
Tranquilizer 0 17 6 Inactive
Antidepressant 0 18 5 Inactive
Enhancing 
CNS energy 
metabolism

2 4 17 Low

Analgesic narcotic 3 4 16 Low
Peripheral effects
Cardiotonic 9 1 13 Moderate
Local anesthetic 0 10 13 Inactive
System-wide effects
Immunostimula-
tory

14 1 8 High

Enhancing protein 
synthesis

15 0 8 High

Effects on the Protozoa
Tuberculostatic 1 9 13 Inactive
Antiseptic 0 8 15 Inactive
Antifungal 7 2 14 Moderate
Antiviral 6 9 8 Moderate
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On the whole, the pharmacologic effects of the extract become manifest as a 
result of the complex effect of all 23 components; they are due to its combined im-
munostimulatory and metabolic action, which is predominantly peripheral.

An experimental verification of the prediction results was performed on 60 new-
born Simmental calves on three bred livestock farms [35]. In comparison with the 
controls, the groups of calves receiving the agent showed almost no diarrhea mor-
bidity; there were no mortality cases; the rate of liveweight gain was considerably 
higher; and the protective properties of the blood were considerably better. All of 
the detected differences were statistically significant. The findings obtained indicate 
an enhanced natural resistance of the newborn calves’ organisms, which confirms 
the results of the in silico prediction that the extract has an ability to enhance protein 
synthesis and adaptogenic, immunostimulatory and metabolic effects. A powerful 
wound-healing effect of the extract was shown in experiments on dogs. All of the 
animals showed a good tolerance for the drug; no local irritation, allergy or devia-
tion in behavioural reactions was noted.

Consequently, the results of the experiments confirmed the estimates of the in 
silico prediction of a series of beneficial pharmacological effects of Juglans regia 
extracted from the fruits of milky-wax ripeness [35, 97, 105, 119, 120].

12.5.3.2  Synergism of the Active Compounds in Gymnema Sylvestre Extract

The extract of Gymnema sylvestre leaves is an effective hypoglycemic nutritional 
supplement; it is widely used as an adjuvant agent in antidiabetic therapy [55]. Our 
task was to determine with the help of IT Microcosm how the ratio of the main 
substances in the extract affects the extent of its hypoglycemic activity [74, 75, 105, 
112]. The normal strategy was chosen for prediction because it makes it possible 
to account for nonstandard QSAR regularities, including those associated with the 
pharmacologic interaction of several substances, and it achieves this with fewer er-
rors than with the risk strategy.

Gymnema sylvestre extract is composed of seven main components (Fig. 12.7): 
gymnemic acids I, II, III, IV (XV-XVIII), gymnemosides A and B (XIX, XX), and 
conduritol B (XXI). The structural formulas of six mixtures of these substances 
with varying compositions were constructed. A prediction of the presence of hy-
poglycemic activity in the individual components of Gymnema sylvestre extract 
and their mixtures was made with the help of decision rules calculated for a set of 
known hypoglycemic substances (see Sect. 3). The expected extent of hypoglyce-
mic activity was estimated according to the membership-function value. The results 
are shown in Table 12.19.

According to the results of the predicted hypoglycemic activity of the individual 
components of the extract, it was established that gymnemic acid III (XVII) should 
be the most active among all of the components; gymnemic acid II (XVI) should 
show a high or medium activity; gymnemic acid IV (XVIII) and gymnemoside A 
(XIX) should show a moderate activity; and gymnemoside B (XX) and conduritol 
B (XXI) should be inactive.
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Table 12.19  Results of predicting the hypoglycemic activity of the main components of Gymnema 
sylvestre extract and of their mixtures
Substance, mixture Estimatea Fbb

Gymnemic acid I (XV) A 0.60085
Gymnemic acid II (XVI) A 0.68467
Gymnemic acid III (XVII) A 0.83221
Gymnemic acid IV (XVIII) A 0.60085
Gymnemoside A (XIX) A 0.60085
Gymnemoside B (XX) N 0.50802
Conduritol B (XXI) N 0.99996
Mixture 1– (XV-XXI) 1:1:1:1:1:1:1 A 0.91614
Mixture 2– (XV-XIX) 1:1:1:1:1 A 0.91614
Mixture 3– (XV-XIX) 1:1:2:1:1 A 0.83010
Mixture 4– (XV-XIX) 1:1:3:1:1 A 0.83010
Mixture 5– (XVI, XVII) 1:2 A 0.81400

Mixture 5– (XVI, XVII, XXI) 1:2:3 A 0.81400
a Prediction with the normal strategy, nearest neighbor method
b Membership function

Fig. 12.7  The main components of Gymnema sylvestre extract
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As a result of predicting the hypoglycemic activity of mixtures, it was estab-
lished that the mixture of all of the main components of the extract in equal molar 
fractions should show a higher activity than any individual component; excluding 
two inactive components (XX, XXI) from the complete mixture should not result 
in a higher activity; increasing the ratio of the two most active components (XVI, 
XVII) and excluding two inactive compounds (XX, XXI) from the complete mix-
ture should result in a lower activity; combinations of the two most active com-
ponents (XVI, XVII) should show a considerably lower activity compared with 
the complete mixture; and adding a considerable amount of an inactive compound 
(XXI) to a combination of the two most active components (XVI, XVII) should not 
affect the level of activity [74, 105].

It follows from the data obtained from the prediction that a complex of active 
substances in Gymnema sylvestre extract should show a more powerful and, most 
likely, a more stable and prolonged hypoglycemic effect than any component of the 
extract, either individually or in limited combinations, due to a mutual potentiating 
synergistic effect of all of the components [74, 105, 112].

An experimental study of the hypoglycemic activity of hydroalcoholic Gymne-
ma sylvestre extracts at gravimetric concentrations of 25, 50 and 75 % was made 
on outbred rats at a dose of 280 mg/kg per os; the glucose content in the blood was 
determined by the glucosidase method prior to extract administration and two hours 
after the administration. According to the experimental data, a medium reduction in 
the glucose concentration was 41, 29 and 26 % for the extracts with concentrations 
of 25, 50 and 75 %, respectively [75].

The method of obtaining Gymnema sylvestre extract foresees that, as its gravi-
metric concentration grows, the portion of the active gymnemic acids and gymne-
mosides increases, whereas the portion of the inactive components diminishes [76].

Thus, the experimental results confirm the presence of the synergistic effects 
predicted with IT Microcosm, which enhance the level of the hypoglycemic activ-
ity when administering Gymnema sylvestre extract with a lower content of active 
substances but with a more varied composition.

12.5.3.3  Synergism of Antidiabetic Drug Combinations

In this study, we used IT Microcosm for a prediction of the synergism of the hypo-
glycemic activity shown by Metformin combinations with five other antidiabetic 
drugs used in clinical practice for antidiabetic therapy (Fig. 12.8) [114].

Nine Metformin combinations with these drugs were used in protracted antidia-
betic therapy in multicenter clinical studies with durations of 16 to 26 weeks and 
328 to 1250 patients.

For the purposes of the in silico prediction, the administered doses were translat-
ed into molar ratios at a rate of 1 mol of the second agent per corresponding Metfor-
min moles. In all nine cases, we observed a synergism manifested as a considerable 
enhancement of the hypoglycemic activity of the mixture, which far exceeded the 
effect produced by the portion of the added agent compared with Metformin per se 
(Table 12.20).
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As in the case with Gymnema sylvestre extract, the IT Microcosm prediction of 
the hypoglycemic activity of these mixtures was made with the normal strategy on 
a training set of known hypoglycemic substances. The membership function in the 
class of hypoglycemic compounds served as the evaluation metric of the extent of 
activity.

Spearman’s rank correlation coefficient RS between the synergistic-effect value 
and the membership-function values was calculated, and the value RS = 0.8169 was 
achieved, which corresponds to statistical significance p = 7.192·10−3. Consequently, 

Table 12.20  Experimental clinical indices and predictive estimates of the hypoglycemic activity 
synergism of antidiabetic drug combinations
Drug (1 mol) Metformin, 

mol
Number of 
patients

Duration, 
weeks

Synergism, %a FbDist
b

Nateglinide 10 701 24 55 0.8244
Rosiglitazone 865 328 26 75 0.9974
Glibenclamide 765 806 20 39 0.9132
Glibenclamide 383 411 16 14 0.9131
Rosiglitazone 346 468 32 109 0.9975
Vildagliptin 23 1179 24 64 0.9132
Vildagliptin 47 1179 24 14 0.9131
Sitagliptin 32 1250 18 218 0.9999
Sitagliptin 63 1250 18 129 0.9999

a An average increase in the hypoglycemic activity of a combination of two drugs compared with 
Metformin perper se, according to clinical study data
b The membership function (20) in the class of hypoglycemic compounds in predicting with the 
normal strategy by the distance method

Fig. 12.8  Antidiabetic drugs
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there is a statistically highly significant dependence between the synergistic effect 
of antidiabetic drug combinations and the metric of membership of these com-
pounds in the hypoglycemic compound class calculated by IT Microcosm.

Thus, IT Microcosm permits pinpoint accuracy for predicting the presence and lev-
els of various pharmacological activities of complex organic compound mixtures 
with inclusion of the component synergism. This allows an optimisation of the qual-
itative and quantitative composition of the mixtures, which can lead to the design 
of novel, powerful drugs based on several gently acting, nontoxic compounds and 
several synergistic admixtures potentiating their effects.

Particular emphasis should be given to the fact that the successful prediction of 
mixture activity, including prediction with the inclusion of the synergistic effects, 
was performed on training sets comprising individual compounds only. For this pur-
pose, a special toolkit for processing complex mixtures of up to 9999 components in 
ratios of 1 to 9999 mol fraction of each substance was developed in IT Microcosm.

The results obtained indicate that IT Microcosm permits a prediction of the pres-
ence and level of the various pharmacological activity types of complex molecular 
systems with consideration paid to the mutual effect of their components and opti-
misation of their quantitative and qualitative composition. This makes the technol-
ogy helpful in designing novel, powerful drugs with minimal side effects.

12.6  Conclusions

The results of the computational and experimental studies described above indicate 
that the complex methodology of IT Microcosm for predicting the pharmacological 
activity of organic compounds, which includes consensus methods of constructing 
integral prediction regularities, is a universal, highly effective tool that solves most 
of the diverse problems associated with the search for novel drugs. The technology 
makes it possible to predict the presence and level of various types of pharmaco-
logical activity of structurally diverse and structurally similar compounds in various 
chemical classes (including chiral compounds) and to perform a directed search 
for highly active substances with predetermined properties. The possibility to con-
sider noncovalent interactions provides a successful prediction of the spectrum and 
level of pharmacological activity. It also enables optimisation of the qualitative and 
quantitative composition of complex molecular systems, such as organic salts, su-
pramolecular complexes and mixtures of individual compounds, with account of 
the mutual effect of the constituent components and of their synergism. This enables 
the design of novel, multicomponent drugs showing powerful beneficial effects and 
minimal side effects, on the basis of nontoxic, gently acting compounds and syner-
gistic admixtures that potentiate their action.

The precision of search for highly active drug substances in IT Microcosm ex-
ceeds the precision of noncomputerized “intuitive” prediction performed by quali-
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fied pharmacologists. A considerable number of novel pharmacologic compounds 
were discovered with the help of IT Microcosm; these compounds have subsequent-
ly been patented. The technology was implemented in the form of the IT Microcosm 
software package that consists of 20 basic computer programs and a number of 
auxiliary utilities. The free computer program Microcosm White was developed 
separately. The software is available upon request to any interested persons.
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Abstract The Method of Continuous Molecular Fields is a universal approach to 
predict various properties of chemical compounds, in which molecules are repre-
sented by means of continuous fields (such as electrostatic, steric, electron density 
functions, etc.). The essence of the proposed approach consists in performing sta-
tistical analysis of functional molecular data by means of joint application of kernel 
machine learning methods and special kernels which compare molecules by com-
puting overlap integrals of their molecular fields. This approach is an alternative 
to traditional methods of building 3D “structure-activity” and “structure-property” 
models based on the use of fixed sets of molecular descriptors. The methodology 
of the approach is described in this chapter, followed by its application to build-
ing regression 3D-QSAR models and conducting virtual screening based on one-
class classification models. The main directions of the further development of this 
approach are outlined at the end of the chapter.

13.1 Introduction

Currently, the leading role in predicting biological activity and physicochemical 
properties of chemical compounds belongs to methods of chemoinformatics [1–3], 
which are based on revealing “structure-activity” and “structure-property” relation-
ships using modern statistical, data mining, machine learning and artificial intel-
ligence approaches. Rapid progress of these techniques requires the development 
of new tools of machine learning and data mining specially adapted to work with 
molecular structures of chemical compounds [4].

In this section, we consider a new approach to building “structure-activity” and 
“structure-property” models based on the use of continuous functions on space co-
ordinates (called hereinafter continuous molecular fields) to represent molecular 
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structures. Different types of molecular fields can be used for this purpose, includ-
ing electrostatic, steric, hydrophobic, hydrogen bond donor and acceptor fields, etc. 
This way to describe chemical structures corresponds well to the physical nature of 
the molecules, which interact with the environment through molecular fields. The 
suggested approach is an alternative to traditional methods of representing chemi-
cal structures in SAR/QSAR/QSPR (Structure-Activity Relationships/Quantitative 
Structure-Activity Relationships/Quantitative Structure-Property Relationships) 
studies by means of fixed-sized vectors of descriptors derived from topological 
molecular graphs, as well as interaction energies with certain probes calculated at 
specific points in space (e.g., at the nodes of a hypothetic lattice).

So far, the direct use of continuous molecular fields in their functional form in 
statistical analysis was not possible because standard data analysis procedures can 
only work with finite and fixed number of features (molecular descriptors). Only 
recently, thanks to the development of the statistical learning theory [5] and the 
methodology of using kernels [6] in machine learning instead of fixed-sized feature 
vectors, it has become possible to process data of any form and complexity.

The essence of the Continuous Molecular Fields (CMF) approach consists in performing 
statistical analysis of functional molecular data by means of joint application of kernel 
machine learning methods and special kernels which compare molecules by computing 
overlap integrals of their molecular fields. [7, 8]

The principal novelty of our approach is the ability to conduct a statistical analysis 
of chemical data represented in the form of continuous molecular fields, i.e. an 
infinite number of attributes organized in a functional form. In this case, statistical 
model is not a function relating the values of some properties of chemical com-
pounds with the values of several molecular descriptors, like in the case of tradition-
al SAR/QSAR/QSPR models, but a functional relating the properties of chemical 
compounds with functions describing spatial distribution of molecular fields. As a 
result, the resulting models are characterized by continuous fields of model coef-
ficients, which can be visualized in the same manner as molecular fields themselves 
to provide intuitive interpretation of the models and a deep insight into the nature of 
the corresponding chemical phenomenon. The principal advantage of this approach 
follows from a natural, accurate and comprehensive representation of molecules by 
means of continuous molecular fields.

In combination with kernel based machine learning methods, such as the Sup-
port Vector Machines (SVM) [9], the Kernel Ridge Regression (KRR) [10], the 
Gaussian Processes (GP) [11], etc., continuous molecular fields can be used to pro-
vide the quantitative prediction of various properties of chemical compounds. The 
feasibility of this was demonstrated by us earlier [7, 8]. In conjunction with kernel-
based methods of one-class classification (novelty detection), such as the One-Class 
Support Vector Machines (1-SVM) [12], the use of continuous molecular fields 
allows one to set up a ligand-based virtual screening procedure for searching huge 
databases of available chemical compounds and retrieving from them potentially 
biological active compounds (hits), molecular fields of which are similar to the 
“idealized configuration” (which reflects the structure of the corresponding binding 
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site in biological macromolecule and can be viewed as a “negative image” of its 
molecular fields) learned by the corresponding one-class model. The feasibility of 
this approach in practice has also been demonstrated by us [13, 14].

13.2 Method of Continuous Molecular Fields

3D-QSAR approaches, in which information concerning the spatial structure of 
molecules is explicitly taken into account, play very important role in medicinal 
chemistry and drug design [15–17]. Most of them are based on the use of the mo-
lecular fields reflecting different types of intermolecular interactions in which mol-
ecules under study can be involved. Historically the first and still the most popu-
lar 3D-QSAR method is CoMFA (Comparative Molecular Field Analysis) [18], in 
which electrostatic interactions are approximated by means of the Coulomb law 
with point partial charges computed for each atom, whereas steric interactions are 
expressed using the Lennard-Jones potentials with standard force field parameters. 
Several other types of molecular fields, such as the hydrophobic [19], hydrogen 
bond donor and acceptor fields [20], molecular orbital fields [21], E-state fields 
[22], fields of atom-based indicator variables [23] are also used in the framework 
of the CoMFA method. In the CoMSIA (Comparative Molecular Similarity Indices 
Analysis) approach [24] the same types of molecular fields are approximated using 
the Gaussian radial basis functions. In the GRID method [25] the values of various 
types of molecular fields are computed as interaction energies with certain probe 
atom or group of atoms placed at grid nodes.

In all of the above approaches molecular fields are evaluated at node points of 
some imaginary grid surrounding the set of aligned molecules. The advantage of us-
ing such lattices lies in the possibility to use the values of molecular field potentials 
calculated at grid nodes as a vector of descriptors, which can further be fed to some 
standard statistical analysis procedure, usually PLS (Partial Least Squares) [26], in 
order to build regression QSAR models. Another appealing feature of this approach 
is the possibility to visualize the resulting regression coefficients using easily inter-
pretable isosurfaces (usually colored according to the sign of coefficients and the 
type of the corresponding molecular field) surrounding the molecules. Nonetheless, 
this approach has certain considerable drawbacks. Indeed, it is necessary to: (1) 
choose biologically active conformation for each molecule; (2) align in space the 
training set of molecules; (3) build a lattice around such set of molecules; (4) choose 
molecular fields and compute their potentials at grid points; (5) build regression 
QSAR models. The problems associated with each of these stages are well known 
and present a challenge for the current stage of the development of the 3D-QSAR 
methodology.

The CMF approach addresses the problems caused by the necessity to choose a 
grid of points around molecules. It is known that 3D-QSAR models sharply depend 
on the spatial orientation and extent of such grid, as well as on the step size (i.e. the 
distance between the closest points) in it [16]. Another problem caused by the use 
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of grids is very high dimensionality of the regression task caused by the big number 
of grid points, which precludes the use of many efficient statistical methods. Un-
fortunately, decrease of the number of grid points through increase of the step size 
(i.e. the use of coarser grid) or decrease of its extent causes the loss of important 
information. In order to tackle the problem, we suggest not using grids or fixed 
probe positions in 3D-QSAR studies. Instead of computing descriptor values at a 
discrete set of points, we propose to work directly with descriptions of molecular 
fields in the form of continuous functions on radius vector r, by means of specially 
constructed kernels. The use of such continuous molecular fields seems to be much 
more natural and corresponding to the real physical picture of the world than the 
application of certain speculative grids arbitrary chosen to approximate such fields.

It should be mentioned that continuous molecular fields have already been used 
in QSAR studies. So, indexes of R. Carbó-Dorca, which were used in certain QSAR 
studies [27], can also be considered as a particular case of continuous molecular 
fields.

The method of Continuous Molecular Fields (CMF) performs statistical analysis 
of functional molecular data by means of joint application of kernel machine learn-
ing methods and special kernels which compare molecules by computing overlap 
integrals of their molecular fields [7, 8].

13.2.1 Procedure of Kernel Calculation

The principal element of the CMF approach is the procedure of calculating molecu-
lar field kernels. The joint molecular field kernel K( Mi, Mj) that describes the simi-
larity between all molecular fields of molecules Mi and Mj can be calculated as a 
linear combination of kernels corresponding to each of Nf types of molecular fields:

 

(13.1)

where hf is the mixing coefficient of molecular fields; Kf(Mi, Mj) is the kernel de-
scribing the similarity between the molecular fields of the fth type for the ith and 
jth molecules. Function K( Mi, Mj) represents correctly constructed kernel, because 
a linear combination of kernels is a kernel.

In some cases, we also use the normalized version of the kernels:

 

(13.2)

The molecular field kernel for each the fth type of molecular field is calculated in 
the framework of the CMF approach by summation of the kernels for each pair of 
atoms for the ith and jth molecules:

K M M h K M Mi j f f i j
f

N f

( , ) ( , ),=
=

∑
1

' ( , )
( , )

( , ) ( , )
f i j

f i j
f i i f j j

K M M
K M M

K M M K M M
=

⋅



43713 Continuous Molecular Fields Approach Applied to Structure-Activity Modeling

 
(13.3)

where kf( Ail, Ajm) is the kernel that describes the similarity between the field of the 
fth type of the lth atom in the ith molecule and mth atom in the jth molecule; Ni is 
the number of atoms in the ith molecule; Nj is the number of atoms in the jth mol-
ecule. Kf(Mi, Mj) can be considered as a 1-tuple convolution kernel corresponding 
to decomposition of a molecule into atoms. The value of kernel kf( Ail, Ajm) can be 
calculated by integration of the product of the fields for a pair of atoms over the 
entire physical space:

 
(13.4)

where ρfil(r) is the value of molecular field of the fth type induced by the lth atom 
of the ith molecule at the point r of the physical space; the ρfjm(r) is the same mag-
nitude for the mth atom of the jth molecule. To simplify the integration, one can 
approximate any molecular field as a weighted sum of Gaussian basis functions. We 
have found empirically that in most of cases it is sufficient to use a single Gaussian 
function to represent any kind of fields produced by a single atom, exactly like in 
the CoMSIA method [24]:

 

(13.5)

where ril is the location of the lth atom of the ith molecule in the physical space; αf 
is the fitting parameter for molecular field of the fth type; wfil is the weight of the 
contribution of lth atom of the ith molecule to the molecular field of the fth type. For 
example, in the case of electrostatic field the wfil is the partial charge on the lth atom 
of the ith molecule, for the steric field—the Lennard-Jones potential parameters, for 
the hydrophobic field—the contribution of a given atom to the total hydrophobicity. 
Evidently different sets of the values wf constitute different parameterizations of the 
CMF approach.

Due to the afore-mentioned approximation, the foregoing integral can be calcu-
lated analytically:

 

(13.6)

It should be pointed out that the CMF approach is not confined to the simplest ap-
proximations introduced by Eq. (13.5). Any number of Gaussian functions as well 
as any other sets of basic functions (such as splines, wavelets, etc.) can be used for 
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approximating continuous molecular fields. This provides the ability to use com-
plex types of molecular fields, including those derived from quantum chemistry, 
such as electron density functions.

13.2.2  The Use of Continuous Molecular Fields in Conjunction 
with Regression Kernel-based Machine Learning Methods

Kernel K( Mi,Mj), or its normalized version K’( Mi,Mj), can be plugged in any kernel-
based machine learning method (such as Support Vector Machine, Kernel Ridge 
Regression [10], Kernel Partial Least Squares [28], Gaussian Processes, etc.) in 
order to build regression, classification, novelty detection models, etc.

In the case of 3D-QSAR kernel-based regression models, the value of the predicted 
property yt for a new molecule Mt can be calculated using the following expression:

 
(13.7)

where Nm is the number of molecules in the training set. If Support Vector Regres-
sion (SVR) is used for deriving the values of aj and b, the vector aj appears to be 
sparse, with non-zero values corresponding to a certain subset of compounds from 
the training set. In contrast, contributions of all molecules from the training set 
are needed to make predictions based on regression models built using the Kernel 
Ridge Regression (KRR) [10], the Kernel Partial Least Squares [28] or the Gaussian 
Processes machine learning methods.

In addition to the set of adjustable coefficients aj and b contained in Eq. (13.7), 
the method CMF also requires calculation of a certain number of adjustable param-
eters. Among them are the parameter v for the support vector regression method ν-
SVR and the ridge parameter γ for KRR. Their values should be optimized with the 
aim to improve the predictive capability of the model constructed. In addition, for 
each molecular field one can adjust the values of up to two parameters: αf (attenu-
ation factor, which is related to the width of the Gaussian function) and hf (mixing 
coefficient, which has the meaning of the relative contribution of molecular field 
of the fth type).

13.2.3 Fields of Model Coefficients

Equation (13.7) represents the dual form of the regression model, since in it the 
activity yt is predicted by considering similarity measures of a test compound Mt in 
relation to the training set compounds Mj. In order to obtain the traditional primal 
form of the 3D-QSAR model, which involves an explicit consideration of molecular 
descriptors and regression coefficients, one can make the substitution of Eqs. (13.1) 
and (13.3–13.6) to Eq. (13.7) to obtain:
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(13.8)

 
(13.9)

 
(13.10)

The primal form of the regression model is expressed by Eq. (13.8), in which mo-
lecular field X(r) represents the continuous field of molecular descriptors for the 
test molecule t, whereas Cf(r) is a continuous field of the corresponding regres-
sion coefficients. The principal distinction of the CMF Eq. (13.8) from that of an 
ordinary 3D-QSAR linear model lies in the infinite number of point descriptors in 
the CMF model. As a result, continuous field of molecular field descriptors is used 
in it instead of several thousands of descriptors computed in CoMFA or CoMSIA 
at lattice points, continuous field of regression coefficients is used instead of sev-
eral thousands of regression coefficients obtained by means of the PLS regression, 
and integration over the entire physical space substitutes summation over the grid 
points. It also follows from this analysis that iso-surfaces of the fields of regression 
coefficients Cf(r) could be used in the same manner and for the same purposes as 
CoMFA and CoMSIA contour maps. Table 13.1 lists three types of molecular fields, 
shows isosurfaces of KRR regression coefficients for the case of thrombin inhibi-
tors (2-amidinophenylalanines), and also provides chemical interpretation.

The benefit of such visualization for drug design is evident. Note, however, 
an important difference between isosurfaces in CMF models, from one side, and 
CoMFA, CoMSIA and GRID contour maps, from the other: the former are cen-
tered on atoms (as follows from Eq. 13.10), whereas the latter are situated around 
molecules (as a consequence of the impossibility to place probe atoms and groups 
inside atoms). Although such location of isosurfaces might seem unusual from the 
first glace, but it offers more direct answer to the question as to what changes should 
be introduced in order to increase biological activity of chemical compound.

Replacement of binding measures (such as log(1/IC50)) in relation to individual 
targets for the difference in binding to two targets as an output of regression equa-
tion leads to the concept of selectivity fields, formulated by us earlier for CoMFA 
analysis [29]. In the framework of the continuous molecular field approach analo-
gous fields of regression coefficients can also be built. Graphical visualization of 
their isosurfaces clearly indicates the changes that should be introduced into chemi-
cal structure in order to tune their selectivity towards different biological targets.

Note also that, due to the lack of discrete grids, molecular fields are treated 
in CMF as continuous functions with respect to spatial coordinates and therefore 
can be differentiated and integrated (even analytically, due to the use of Gaussian 
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basis function). Easy differentiability of molecular field functions allows for apply-
ing very powerful although still unexplored in chemistry apparatus of data analysis 
and visualization offered by a newly emerged branch of mathematical statistics, 
functional data analysis [30], to visualize both molecular fields and fields of model 
coefficients. One should also add that, by applying the above-discussed methodol-
ogy, in the framework of CMF, due to modularity of kernel-based approaches, it is 

Type of mo-
lecular field 

Isosurfaces of the fields of regression 
coefficients 

Chemical interpretation 

Electrostatic 

Red color (marked with 
sign “+”) means in-
crease of biological ac-
tivity upon increase of 
partial electric positive 
charge on the nearest 
atoms 

Steric 

Green color (marked 
with sign “+”) means 
increase, yellow color 
(marked with sign “-“) 
means decrease of bio-
logical activity upon 
increase of bulkiness of 
the nearest atoms. 

Hydrophobic 

Yellow color (marked 
with sign “+”) means 
increase, violet color 
(marked with sign “-“) 
means decrease of bio-
logical activity upon 
increase of lipophilicity 
of the nearest atoms. 

Table 13.1  Types of molecular fields, isosurfaces of KRR regression coefficients and chemical 
interpretation for the case of thrombin inhibitors (2-amidinophenylalanines). In all cases the iso-
surfaces are superimposed over the structure of one of inhibitors
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possible to deduce fields of model coefficients not only for 3D-QSAR regression, 
but also for: (a) classification (in the case of Support Vector Machines they describe 
angular orientation of the hyperplane separating active from inactive compounds in 
the infinite-dimensional feature space); (b) novelty detection (or one-class classifi-
cation [31], which can be used for virtual screening); (c) clustering; (d) dimension-
ality reduction; etc. We hope that numerous methods of analyzing and visualizing 
chemical databases and SAR/QSAR/QSPR models offered by the use of continuous 
molecular fields would deepen insights into the nature of structure–activity relation-
ships and facilitate drug design. This is one of the main directions of our current 
studies in this direction and a topic of future publications.

13.3 Modelling Biological Activity

We validated the CMF approach in two case studies and obtained preliminary re-
sults, which have been published as short communications [7, 13]. The first one 
dealt with the use of the CMF to build 3D-QSAR regression models [7]. In the 
second case study [13], the performance of a new method for virtual screening of 
organic compounds based on the combination of the CMF methodology with the 
one-class SVM method (1-SVM) has been assessed. In both cases the CMF has not 
only proven its efficiency, but has also demonstrated some advantages compared to 
state-of-the-art approaches in chemoinformatics.

13.3.1 Building 3D-QSAR Regression Models

We have tested the performance of the CMF approach in building 3D-QSAR regres-
sion models by using eight data sets. These sets were selected as expanded bench-
mark for 3D-QSAR methods as well as examples of various types of biologycal 
activity of organic ligands. We have studied 114 angiotensin converting enzyme 
(ACE) inhibitors [32], 111 acetylcholinesterase (AChE) inhibitors [33], 163 ligands 
for benzodiazepine receptors (BZR) [33], 322 cyclooxygenase-2 (COX-2) inhibi-
tors [33], 397 dihydrofolatereductase (DHFR) inhibitors [33], 66 glycogen phos-
phorylase b (GPB) inhibitors [34], 76 thermolysin (THER) inhibitors [34], and 88 
thrombine (THR) inhibitors [35].

All data on these sets were taken from the supplementary materials to Suther-
land’s paper [33]. They included chemical structures, activity values, splitting into 
the training and test sets, ionization states and conformations for all molecules, their 
spatial alignment and partial charges on atoms. As indicated in [25], ionization states  
of molecules had been prepared by deprotonating carbocyclic acids and phosphates 
and protonating non-aryl basic amines (except NH2 groups that coordinate Zn in 
the ACE set), energy-minimizing the aligned molecules with MMFF94S force field 
in Sybyl was used for determination of atomic coordinates, scaled MNDO ESP-fit 
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partial charges [36] had been calculated for all atoms with MOPAC 6.0, except that 
for the THER set all partial charges on atoms had been computed using the Gastei-
ger-Marsili method [37] as also implemented in Sybyl. Several characteristics of 
benchmarking data sets are presented in Table 13.2.

In the course of building CMF models, the KRR regression method was applied 
to obtain the values of coefficients aj and b, which are necessary for making predic-
tions according to Eq. (13.7) as well as for visualizing the fields of regression coef-
ficients using formula (13.10). The optimal values of attenuation factor αf (which 
was kept the same for all types of molecular fields) and regularization coefficient 
γ were determined by minimizing the root-mean-square error in internal 10-fold 
cross-validation performed inside the training set. The same fixed value for all mix-
ing coefficients, hf = 1, was used.

Statistical characteristics of CMF models obtained for these data sets were com-
pared with the same characteristics built for corresponding data sets using the com-
mon 3D-QSAR methods, CoMFA (Comparative Molecular Fields Analysis) [18] 
and CoMSIA (Comparative Molecular Similarity Index Analysis) [24], based on 
the use of molecular fields. Data on CoMFA and CoMSIA models were taken from 
Ref. [25].

Statistical parameters of CMF, CoMFA and CoMSIA models are shown in 
 Table 13.3. They include the values of 4 statistical parameters: q2 and RMSEcv char-
acterizing internal predictive performance, R2

p and RMSEp—external predictive 
performance estimated using a single external validation set.

CoMSIA (in Ref. [25]—CoMSIA2) models are based on electrostatic and steric 
fields molecular fields and also involve contributions from the hydrophobic and 
two hydrogen-bonding molecular fields. All CMF models are based on the use of 
all afore-mentioned five types of molecular fields. All CoMFA and CoMSIA models 
were obtained by using a lattice with 2 Å spacing expanding at least 4 Å in each di-
rection beyond aligned molecules. Only the most predictive CoMFA and CoMSIA 
models are included in the Table 13.3.

For comparing predictive ability of CMF models with those published in lit-
erature, all the data sets were split into the training and the test sets as specified 

Table 13.2  QSAR DataSets
Ligand data set Training set Test set Activity ranging
Angiotensin converting enzyme (ACE) inhibitors  76  38 pIC50 2.1–9.9
Acetylcholinesterase (AchE) inhibitors  74  37 pIC50 4.3–9.5
Ligands for benzodiazepine receptors (BZR)a  98  49 pIC50 5.5–8.9
Cyclooxygenase-2 (COX-2) inhibitorsa 188  94 pIC50 4.0–9.0
Dihydrofolatereductase (DHFR) inhibitorsa 237 124 pIC50 3.3–9.8
Glycogen phosphorylase b (GPB) inhibitors  44  22 pKi 1.3–6.8
Thermolysin (THER) inhibitors  51  25 pKi 0.5–10.2
Thrombine (THR) inhibitors  59  29 pKi 4.4–8.5

a In the BZR, COX-2, and DHFR data sets several compounds (16, 40, 36, respectively) were 
excluded because they did not have the exact experimental values [33]
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in Table 13.2. The training sets were used for building 3D-QSAR models and for 
assessing their internal predictive performance using the 10-fold cross-validation 
procedure. The test sets were used for assessing the external predictive performance 
of the models.

As it is clear from Table 13.3, models built for 7 data sets by using the CMF ap-
proach almost in all cases show better internal (cross-validation) predictive perfor-
mance (i.e., higher q2) then the corresponding models obtained by the CoMFA and 
CoMSIA methods. The q2 values of the CMF models obtained for the COX-2 and 
BZR data sets are, respectively, equal and lower as compared to the corresponding 
CoMSIA models.

There is also a moderate advantage in external predictive performance (estimat-
ed on external test sets using the parameters R2

p and RMSEp) of the CMF models 
over the CoMFA, models for 5 data sets (ACE, AСhE, BZR, DHFR, and GPB), and 
CoMSIA models for 4 data sets (ACE, AChE, BZR and DHFR).

One can notice that the performance of CMF is closer to that of the CoMSIA 
approach in comparison with CoMFA. This could be attributed to the fact that the 
mathematical form of Eq. (13.5) resembles expressions for similarity indices in 
CoMSIA. So, in spite of absolutely different underlying ideas, CoMSIA can for-
mally be regarded as a discretized approximation of the current version of CMF, 
or, vice versa, CMF—as a continuous functional extension of CoMSIA. Therefore, 
the difference between the models produced by these methods might result from the 
effect of field discretization, different statistical procedure and parameterization of 
molecular fields.

Thus, the 3D-QSAR models obtained by CMF are comparable by the predic-
tive ability with models built by means of such popular state-of-the-art approaches 
as CoMFA and CoMSIA. Moreover, in some cases, e.g. for data sets ACE, AChE, 
BZR and DHFR, the CMF approach is clearly advantageous.

Table 13.3  Statistical parameters of 3D-QSAR CMF, CoMFA and CoMSIA (in Ref. [33]—CoM-
SIA2) models

CMF CoMFAa CoMSIA b

q2 R2
p RMSEp q2 R2

p RMSEp q2 R2
p RMSEp

ACE 0.72 0.65 1.24 0.68 0.49 1.54 0.66 0.49 1.53
AChE 0.58 0.64 0.77 0.52 0.47 0.95 0.49 0.44 0.98
BZR 0.40 0.51 0.79 0.65 0.00 0.97 0.45 0.12 0.91
COX-2 0.57 0.14 1.23 0.49 0.29 1.24 0.57 0.37 1.17
DHFR 0.67 0.65 0.80 0.49 0.59 0.89 0.57 0.53 0.95
GPB 0.69 0.51 0.84 0.42 0.42 0.94 0.61 0.59 0.79
THER 0.60 0.31 1.86 0.52 0.54 1.59 0.51 0.53 1.60
THR 0.73 0.63 0.66 0.59 0.63 0.70 0.72 0.63 0.69

a PLS components: 3 (Ace, BZR), 4 (GPB, THER, THR), 5 (AChE, COX-2, DHFR)
b PLS components/Additional fields: 2/hydro (Ace), 3/hydro (BZR, THER), 4/hydro (GPB), 4/
hydro + H-bonding (AChE, COX-2, DHFR, THR)
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Parameters of external predictive performance of 3D-QSAR CMF models ( q2
ex 

and RMSEcvex) estimated using external 5-fold cross-validation procedure are shown 
in the Table 13.4.

As follows from Table 13.4, in all cases the value q2
ex, which characterizes the 

external predictive performance, is lower than the value q2 computed using the 
internal cross-validation. This means that the use of only two adjustable hyper-
parameters may cause the “model selection bias”. Almost in all cases the value q2

ex 
lies between R2

p and q2. It is interesting to note that q2
ex for CMF models are usu-

ally higher than R2
p for CoMFA and CoMSIA models. The predictive performance 

assessed using the external 5-fold cross-validation procedure is especially high for 
ACE, DHFR and THR.

Despite the important role played by the concept of applicability domain (AD) 
in construction and application of QSAR models [38–40], this issue is usually not 
considered for 3D-QSAR models. Possible reason for this is that the process of 
constructing such models is rather complex and involves several important stag-
es: selection of a congeneric set of chemical compounds with the same putative 
mechanism of action, selection of “biologically active” conformation and align-
ment rule, etc. At some of these steps a separate rule for defining AD can be intro-
duced. For example, specifications for the congeneric set of chemical compounds, 
the occurrence of a common template substructure or of a pharmacophore needed 
for aligning molecules and choosing their conformations, etc. The question arises, 
however, as to does it make sense to apply additional AD criteria to compounds 
that have already passed all the above filters. The following analysis suggests the 
affirmative answer.

We made the following computational experiment. The external 5-fold cross-
validation procedure [39] was applied 20 times to the aforementioned thrombin 
dataset, each time after a random reshuffle of compounds in it. This produced 20 
predicted values for each compound. The variance of these values was considered 
as a “distance to model” (DM) for it, as suggested in paper [39]. All compounds in 
the dataset were sorted in accordance with their DM. All compounds with DM be-
low a certain threshold were considered to belong to AD. For each threshold value 
the mean absolute cross-validation error was computed for compounds within AD. 
The ratio of compounds within AD to the total number of compounds defines its 
coverage. A plot of the mean absolute cross-validation error vs coverage is given in 
Fig. 13.1, along with a smoothing line. Each point in it corresponds to a chemical 
compound from the dataset, while its coordinates correspond to the coverage and 
the mean absolute error, respectively, calculated for a subset of compounds with DM 
not exceeding the DM of this compound. Such subset belongs to the AD defined 
by the threshold value of DM equal to the DM of this compound. So, compounds 

Table 13.4  Cross-validated external predictive performance of 3D-QSAR CMF models
Parameters/Datasets ACE AChE BZR COX-2 DHFR GPB THER THR
q2

ex 0.67 0.54 0.27 0.41 0.67 0.59 0.40 0.71
RMSEcvex 1.31 0.84 0.65 0.89 0.75 0.71 1.56 0.54
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with low coverage value lie in the regions of chemical space densely populated by 
compounds from the dataset, whereas those with high coverage values lie in non-
populated areas rather far from other compounds. One can see that starting from the 
coverage 0.9 the mean absolute cross-validation error of compounds outside AD is 
considerably higher than that of compounds within AD. This means that in this case 
the DM corresponding to coverage 0.9 can be used as a threshold for defining the 
AD of CMF 3D-QSAR model.

13.3.2  Virtual Screening via Combination CMF with 1-SVM 
Technique

As it follows from our earlier publications, one-class classification (novelty detec-
tion) machine learning methods is a mathematical base of a new general approach 
to conducting ligand-based virtual screening of chemical compounds [41, 42]. Al-
though several dozens of different algorithms for building one-class classification 
(novelty detection) models are known [43, 44], only those of them which are based 
on using kernels are suited for working with continuous molecular fields. The One-
Class Support Vector Machines ( 1-SVM) [12] machine learning method is one of 

Fig. 13.1  Plot of the mean absolute cross-validation error (calculated for compounds outside AD) 
vs coverage for the thrombin dataset
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them. It builds one-class classification models by seeking for hyperplane in infinite-
dimensional functional Hilbert space (feature space) with maximum distance from 
the coordinate origin and separating a given proportion of training examples from 
it. In this case, the field of model coefficients is formed by leading cosines of the 
normal to this hyperplane. In the physical space they form description of “ideal” 
molecular fields (shapes), which are compared with molecular fields of test mol-
ecules. This “ideal” combination of fields reflects the structure of the corresponding 
binding site in biological macromolecule and can be viewed as a “negative image” 
of its molecular fields (see Fig. 13.2).

So, 1-SVM models in conjunction with molecular field kernels perform ligand-
based virtual screening based on similarity of molecular fields (shapes). In com-
parison with other shape-based similarity search methods, they are more flexible, 
because one can find the optimal degree of generalization (simplification). See 
Fig. 13.3, in which the level of generalization of model coefficient field description 
increases from the lower to the upper row. This leads to high performance in ligand-
based virtual screening [13].

In the following case study [13], we have assessed the performance of a new 
promising method for virtual screening of organic compounds based on a combina-
tion of the CMF methodology with the one-class SVM method (1-SVM). The first 
step of constructing the model was spatial alignment of the structures of organic 
ligands. In this work, the alignment was performed with the SEAL algorithm [45] 
implemented by us in the framework of the software for CMF modeling. Then, 
kernel values were calculated, and the model was constructed using the LibSVM 
program [46].

In the one-class classification method, only active structures are used. Sequen-
tially excluding one structure at a time and constructing the model based on the re-
maining structures, one can predict the activity of all active compounds. However, 
for assessing the statistical characteristics of classification models, it is necessary 
to determine not only the number of active compounds predicted to be active (true 
positive, TP) and the number of active compounds predicted to be inactive (false 

Fig. 13.2  The “ideal” steric molecular field corresponding to the vector perpendicular to separat-
ing hyperplane in the 1-SVM model built for thrombin inhibitors (2-amidinophenylalanines). Its 
isosurface can be viewed as a “negative image” of the binding site in biological target
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negative, FN) but also the number of inactive compounds predicted to be inactive 
(true negative, TN) and the number of inactive compounds predicted to be active 
(false positive, FP). To determine the last two characteristics, we used structures 
resembling the structures of active ligands in their physicochemical properties but 
presumed to be inactive (so-called decoys).

We have built one-class models for data taken from the DUD database [47], 
which contains the structures of active ligands for different biological targets, as 
well as the structures of corresponding decoys. It is worth noting that the latter 
were used only for assessing the statistical characteristics of classification models 
and were not involved in their construction. In particular, decoys were used for 
determining the TN and FP models constructed with the use of active compounds.

The suggested one-class classifier calculates a continuous quantity (a classifier 
function), for which the threshold value is determined. If the classifier function cal-
culated for a certain ligand exceeds the threshold value, the compound is considered 
active; otherwise, the structure is discarded from further consideration.

Dependence of the FN, FP, TN, and TP on the threshold value is clearly reflected 
by a Receiver Operator Characteristic (ROC) curve [48] in the TPR–FPR coordi-
nates (true positive rate versus false positive rate), where TRP = TP/(TP + TN) and 
FPR = FP/(FP + TN). The larger the area under the curve (AUC), the higher is the 
classifier efficiency.

Fig. 13.3  Isosurfaces for the fields of 1-SVM model coefficients for thrombin inhibitors 
(2-amidinophenylalanines)
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Constructing the classification model necessitates maximizing the AUC value 
by optimizing the 1-SVM parameter ν and parameter αf of the CMF kernel from 
Eq. (13.5). We have studied both the individual electrostatic, steric, and  hydrophobic 
kernels and their linear combinations. For individual kernels, two parameters have 
been optimized: ν and the αf parameter corresponding to a given type of molecular 
field. At the first step, the optimization algorithm was launched ten times, each time 
starting from a set of random parameter values in the ranges ν ∈ [0.01; 0.80], hf ∈ 
[0.0001;0.3000], and αf ∈ [0.001; 1.000]. At the second step, the Nelder–Mead algo-
rithm was used for refining the optimal parameters; the set of the best-fit parameters 
obtained at the first step of optimization were used as the initial approximation.

Tables 13.5 and 13.6 summarize the results of building 1-SVM models on the 
basis of continuous molecular fields for HIV reverse transcriptase (HIVRT) and 
trypsin inhibitors. As follows from Table 13.5, the best performance for HIVRT is 
obtained by the model constructed using the steric kernel and resulting in an AUC 
value of 0.75. For this target, the use of a linear combination of several kernels does 
not improve the AUC value. At the same time, for trypsin inhibitors, rather high 
AUC values (0.86–0.91) were obtained on the basis of individual models construct-
ed with the use of all three kernels, which is likely due to their mutual correlation. 
However, for this target, the use of a linear combination of all kernels increases the 
AUC value up to 0.94.

Our results demonstrate the effectiveness of the suggested methodology. Ap-
plication of 1-SVM models to virtual screening can be viewed as a special kind of 
similarity search, in which similarity is considered with respect not to individual 
actives but to the whole dataset of active compounds. Being an alternative to the 
traditional similarity search for active compounds using of the Tanimoto coefficient 
and to the binary classification methods, this approach possesses unique properties. 
In contrast to the binary classification methods, the described method is not sensi-
tive to the choice of counterexamples. Moreover, with default values of parameters, 

Table 13.6  Parameters and AUC of the models for trypsin inhibitors obtained by the 1-SVM 
method with the use of kernels in the framework of the CMF
Molecular Field ν hel αel hst αst hhyd αhyd AUC

Electrostatic 0.53 – 0.30 – – – – 0.91
Steric 0.47 – – – 0.00 – – 0.87
Hydrophobic 0.66 – – – – – 0.30 0.86
Linear combination of the fields 0.45 0.32 0.30 0.58 0.04 0.11 0.15 0.94

Table 13.5  Parameters and AUC of the models for HIV reverse transcriptase inhibitors obtained 
by the 1-SVM method with the use of kernels in the framework of the CMF
Molecular field ν αel αst αhyd AUC

Electrostatic 0.082 0.031 – – 0.60
Steric 0.002 – 0.010 – 0.75
Hydrophobic 0.466 – – 0.009 0.65
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this method does not require counterexamples at all and therefore, in distinction 
from traditional SVM, can be used in the cases (typical for drug discovery) when 
counterexamples are not known or the dataset is highly imbalanced. As distinct 
from the traditional similarity search, the suggested method can adapt to complex 
structure-activity landscapes and, thus, makes it possible to avoid activity cliffs 
[49]. In addition, as compared to similarity search methods based on the use of 
fragmental descriptors, the suggested approach implies using the same model to the 
sets of compounds belonging to different structural classes.

13.4  The Main Directions of Further Development  
of the CMF Approach

In this article, we have considered a particular implementation of the CMF ap-
proach aimed at building 3D-QSAR models. This implementation is being actively 
developed, and its future version will surely be better than the current one. This 
section, however, concerns more global, strategic directions of further development 
of the whole CMF approach.

13.4.1  Introduction of Additional Types of Molecular Fields, 
Integration with Quantum Chemistry

The CMF approach is not confined to the simplest approximation scheme intro-
duced by Eq. (13.5). Any number of Gaussian functions, (both isotropic, i.e. spheri-
cally symmetrical, and non-isotropic) as well as any other set of basic functions 
(such as splines, wavelets, etc.) can be used for approximating continuous molecu-
lar fields. This provides the ability to work with complex types of molecular fields, 
including those derived from the electron density function.

Close integration with quantum chemistry is a promising direction of further 
development of the CMF approach. Indeed, wave and electron density functions 
are the most natural, comprehensive and accurate way to describe molecules. 
Moreover, all possible continuous molecular fields can be generated from the 
electron density functions with the help of integral transforms [50]. Especially 
promising is the use of conceptual DFT molecular fields [51] based on concep-
tual DFT [52]. Molecular fields (steric, electrostatic, local softness and LUMO) 
derived from the electron density function have already been successfully used 
for building 3D-QSAR models in the field of metal complex catalysis using the 
traditional grid-based CoMFA approach [53, 54]. We can expect that due to the 
ability to approximate all kinds of molecular fields with any degree of accuracy 
the CMF approach will be very useful in the development of new catalysts and 
supramolecular complexes, which require high accuracy in representing the elec-
tronic structure of molecules.
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13.4.2 The Issue of Molecular Alignment

All methods of molecular alignment useful for building traditional lattice-based 
3D-QSAR models can also be applied in the framework of the CMF approach. 
Meanwhile, thanks to the integrability of continuous functions describing molecular 
fields, the latter approach offers additional possibilities.

Molecular alignment exactly corresponds to the “curve registration” procedure, 
which is the first necessary step in any functional data analysis [30]. In the case of 
biological activity caused by protein–ligand interactions, mutual orientation of dif-
ferent ligands inside binding sites defines their “natural alignment”. Such alignment 
can be checked by means of independent physical experiments (X-ray diffraction, 
NMR, etc.), and hence its explicit consideration is equivalent to the inclusion of 
“external domain knowledge”, which is always preferred in machine learning [4]. 
Therefore, the choice of the strategy for molecular alignment should be governed by 
the necessity to mimic mutual orientation of molecules in the underlying physical 
processes. It should however be pointed out that this does not mean that the “natural 
alignment” should always provide the strongest 3D-QSAR models.

In the case when the exact information concerning the structure of binding pock-
ets of biological macromolecules is not available, the CMF approach provides a 
consistent criterion for the pairwise alignment of molecules i and j: maximization 
of the kernel K( Mi, Mj). Indeed, its form appears to be closely related to the function 
used in the SEAL program for aligning molecules [45]. So, the CMF approach of-
fers the possibility to use the same function both for aligning molecules and building 
structure–activity models. This could lead to more close integration of molecular 
alignment into the process of chemical data analysis. Moreover, the CMF approach 
provides an additional criterion for the multiple alignment of molecules—the “com-
pressibility” of molecular fields, which can be assessed using unsupervised dimen-
sionality reduction approaches, such as the kernel (functional) principal component 
analysis. Both criteria can also be applied to choose molecular conformations for 
tackling the problem of molecular flexibility.

The issue of alignment-free approaches deserves special attention. Sometimes 
the necessity to perform alignment of molecules in several grid-based 3D-QSAR 
methods, such as CoMFA and CoMSIA, is considered as limitation of such ap-
proaches, which should be avoided [55]. This has led to the development of align-
ment-free approaches, such as those based on autocorrelation vectors [56], molecu-
lar moments (CoMMA) [57], 3D WHIM [58], EVA [55], GRIND [59], FLAP [60], 
VolSurf [61] descriptors, etc. The CMF approach provides a new kind of solutions 
based on the use of 3D-rotation invariant kernels [62, 63] in the frame of the con-
cept of invariant pattern recognition [64]. The feasibility of this approach results 
from the ability to apply the required integral transforms to continuous functions 
describing molecular fields.
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13.4.3 Taking into Account Molecular Flexibility

A universal way of tackling the problem of molecular flexibility was suggested in 
paper [65] for kernel-based methods. It consists in averaging kernels over all con-
formations for each molecule. This approach is however computationally feasible 
only for very small number of conformations per molecule. Indeed, consideration 
of only 20 conformations for each molecule results in the necessity to consider 400 
pairs of conformations in order to fill each cell in kernel matrix. In addition to huge 
computational burden, this approach does not solve the problem of alignment and 
therefore applicable only for alignment-free approaches.

The CMF approach can offer an alternative solution to this problem. Instead of 
using discrete sets of “representative” conformations, one can consider for each 
molecule an infinite number of conformations organized into a continuous mani-
fold, so-called “conformational space”. This provides the ability to apply functional 
data analysis not only to molecular fields but also to molecular geometry in a con-
sistent way. Such “conformational space” can be described by means of some prob-
ability density function ( pdf) in 3N-dimensional Euclidean space, where N is the 
number of atoms in the molecule under study. Having applied several approxima-
tions from the arsenal of statistical physics, one can obtain the following expression 
for calculating atomic kernels instead of Eq. (13.6):

 

(13.11)

where p(ril) is the one-particle pdf for atom l in molecule i. In order to compute 
all necessary pdf, one should perform molecular dynamics or Monte-Carlo studies 
for all molecules, collect conformations along trajectories, align them (e.g., using 
the common template), and apply the GMM algorithm [66] to approximate pdf for 
each atom as a mixture of several Gaussian functions. In this case the integral in 
Eq. (13.11) contains the product of Gaussian functions and hence can be computed 
analytically. Therefore, due to easy integrability of continuous molecular field func-
tions, it is possible to build models taking into account the whole “conformational 
spaces”. For modeling receptor–ligand interactions, it is important to perform mo-
lecular dynamics simulations of ligands either inside the binding pockets or using 
their simplified surrogates. In the simplest case this amounts to choosing a single 
“biologically active” conformation from the results of molecular docking.

13.4.4 Prediction of Physico-Chemical Properties

It is expected that the CMF approach will be extended to predict physico-chemical 
properties of chemical compounds and their supramolecular complexes. The theo-
retical possibility of this follows from the following analysis.
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Due to the ability to apply methods of functional analysis, continuous molecular 
fields can be tailored for solving many different tasks in chemoinformatics. Con-
sider, for example, prediction of physico-chemical properties in diverse datasets. In 
this case, “natural alignment” corresponds to the uniform probability of molecules 
to adopt any possible mutual orientation. Therefore, kernel Kf(Mi, Mj) describing 
the similarity between the molecular fields of the fth type for the ith and jth mol-
ecules can be computed by averaging over all possible mutual orientations:

 

(13.12)

The resulting kernel does not depend on molecular geometry, although it includes 
all constants describing continuous molecular fields. This kernel can be considered 
as a particular case of the molecular convolution kernels for which the ability to 
model additive physicochemical properties was shown by us earlier [67]. Extension 
to the case of modeling metal complexation would require integration over only two 
angles θ and φ of spherical coordinate system, whereas for modeling cyclodextrine 
complexation it is sufficient to integrate over the single angle φ of the cylindric 
coordinate system, as follows from consideration of the “natural alignment” in each 
of these systems. One can show that in these cases all necessary integrals can be 
taken in analytical form using Bessel functions. Such universality and flexibility 
results from integrability of continuous molecular fields. This opens a direct way to 
extending the CMF approach to predicting physico-chemical properties of chemical 
compounds.

13.4.5  Taking into Account Different Ionization States, 
Tautomers and Conformers

The CMF approach can be extended to the case of the existence of several tauto-
mers, ionization (protonation) states and conformers by replacing the Eq. (13.5) 
with its more general form:

 
(13.13)

where index s counts different ionization (protonation) states, index t counts tau-
tomers, index c counts conformers, vs is the population of the ionization state s, vst 
is the relative population of tautomer t in ionization state s, while vstc is the relative 
population of the conformer c of the molecule in ionization state s and in tauto-
meric state t. Populations vs, vst and vstc can be assessed using molecular modeling 
simulations.
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13.4.6  Further Extension of the Approach to Encompass 
Biological Macromolecules and Their Interactions  
with Both Macro- and Small Molecules

One of the most promising ways to develop further the CMF approach is its further 
extension to the description of the binding sites of biomolecules and their interac-
tions with ligands. This seems to be feasible, because molecular fields of biological 
targets are identical by their nature to those of small ligands. Because of this, many 
of the approaches and methods originally developed for working with small mol-
ecules can be transferred to biological macromolecules.

One can suggest several ways of conducting research in this direction. First, 
kernels for comparing molecular fields of biological targets (or their binding sites) 
could be constructed in exactly the same way as it has been done for small mol-
ecules and described in this paper. By combining them with various kernel machine 
learning methods, various regression, classification, novelty detection, ranking and 
dimensionality reductions tasks could be formulated and solved for biological mac-
romolecules and their binding sites. This could lead to promising applications in 
biology-related sciences.

Second, kernels for protein-ligand pairs can be constructed by combining kernels 
for small molecules (ligands) and kernels for macromolecules (proteins), as it was 
done by Erhan et al. [68], Faulon et al. [69], Jacob and Vert [70], and Bajorath et al. 
[71]. The main advantage of using continuous molecular fields in this case is that 
this approach can be applied consistently to construct kernels for both small or-
ganic and big biological macromolecules using the same typed of molecular fields. 
Thanks to this, the same data analysis methods could be used to describe also pro-
tein–peptide, protein-protein, protein-DNA, protein-RNA interactions, as well as 
properties of peptides and proteins with non-standard residues.

Third, kernels for protein-ligand interactions can be constructed in the frame 
of the CMF approach by encapsulating products of molecular fields of ligand and 
protein into kernels. Such combined kernels could easily be used in conjunction 
with various kernel machine learning methods to solve different tasks relating to 
protein-ligand interactions.

It is expected that the results obtained in this direction might be useful in the 
field of chemogenomics for target profiling, in bioinformatics and proteomics for 
classifying and annotating protein macromolecules and their binding sites by con-
sidering and comparing their molecular fields, and in system biology for predicting 
interaction graphs for biomolecules, and in drug design.

13.4.7  Integration of Approaches to Prevent the Model Selection 
Bias

As it has already been discussed, one of the drawbacks of the CMF approach in its 
present state is the danger of over-fitting because of the model selection bias [72]. 
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Several ways to prevent this phenomenon have been suggested in literature, includ-
ing Bayesian regularization of hyper-parameters [73] and hyper-parameter averag-
ing [74]. Algorithms of multiple kernel learning [75] might also be useful in this 
case. For small datasets the preferred solution would be to apply the full Bayesian 
approach [66], where the hyper-parameters are integrated out rather than optimized. 
Integration of approaches to prevent the model selection bias is one of the most 
important tasks for further development of the CMF approach.

13.4.8 Combining with Different Machine Learning Methods

The CMF approach is easily extensible thanks to its modularity. By combining dif-
ferent types of molecular fields, different types of kernels with different types of 
kernel-based machine learning methods, one can obtain various methods for build-
ing SAR/QSAR/QSPR models and conducting virtual screening. Although some of 
such methods may be similar to the existing ones, nonetheless it is likely that some 
of them will be fundamentally novel approaches. Table 13.7 lists different tasks be-
ing solved by kernel-based machine learning methods, the names of such methods, 
and the roles that the CMF approach could play in conjunction with them in che-
moinformatics. The first row in this table deals with the regression task considered 
in this paper. The second row concerns the use of molecular kernels in combination 

Table 13.7  The use of CMF in conjunction with different kernel-based machine learning methods
Machine Learning 
Task

Machine Learning Methods Role in Chemoinformatics

Regression Support Vector Regression (SVR) [5], 
Kernel Ridge Regression (KRR) [10], 
Kernel Partial Least Squares (KPLS) 
[28], Gaussian Processes for Regres-
sion (GP-R) [11]

QSAR/QSPR

One-class clas-
sification (novelty 
detection)

One-Class Support Vector Machine 
(1-SVM) [12], Support Vector Data 
Description (SVDD) [76]

Virtual screening based of similar-
ity of molecular fields

Binary and multi-
class classification

Support Vector Machines (SVM) [9], 
Gaussian Processes for Classification 
(GP-C) [11]

Classification of chemical com-
pounds (active/inactive), predicting 
profiles of biological activity for 
chemical compounds

Dimensionality 
reduction and data 
visualization

Kernel Principal Component Analysis 
(KPCA) [6], Kernel Feature Analysis 
(KFA) [77]

Drawing maps of chemical space

Cluster analysis Kernel k-means [78] Classification of chemical com-
pounds by mechanism of action 
(including binding mode)

Canonical 
correlation

Kernel Canonical Correlation Analy-
sis (KCCA) [79]

Relationships between molecular 
fields of ligands and molecular 
fields of their binding sites
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with one-class classification kernel-based methods for conducting virtual screen-
ing based on the similarity of molecular fields. The feasibility of this approach has 
already been proved by us, see preliminary communication [13]. The rest of the 
table shows the promising directions for further development of the CMF approach.

13.5 Conclusion

The CMF approach describes molecules by ensemble of continuous functions (mo-
lecular fields), instead of finite sets of molecular descriptors (such as interaction 
energies computed at grid nodes). The potential advantages of this approach results 
from the ability to approximate electronic molecular structures with any desirable 
accuracy level, the ability to leverage the valuable information contained in par-
tial derivatives of molecular fields (otherwise lost upon discretization) to analyze 
models and enhance their predictive performance, the ability to apply integral trans-
forms to molecular fields and models, etc.

The most attractive features of the CMF approach are its versatility and univer-
sality. By combining different types of molecular fields and methods of their ap-
proximation, different types of kernels with different types of kernel-based machine 
learning methods, it is possible to present lots of existing methods in chemoinfor-
matics and medicinal chemistry as particular cases within a universal methodology. 
The CMF methodology can easily be extended to building classification and nov-
elty detection models, visualizing them, performing virtual screening, processing 
diverse datasets.

We see the following main directions for further development of the CMF ap-
proach: introduction of additional types of molecular fields, including conceptual 
DFT molecular fields; tackling the issue of molecular alignment and flexibility; tak-
ing into account molecular flexibility; prediction of physicо-chemical properties of 
chemical compounds; taking into account different ionization states of molecules, 
their tautomers and conformers; extension of the approach to work with biological 
macromolecules and supramolecular complexes; integration of special approaches 
for preventing model selection bias; combining with different machine learning 
methods aimed at solving various tasks.

The CMF approach is implemented as a set of scripts operating under the R en-
vironment for statistical computing and graphics [80]. A version of the software is 
available at http://sites.google.com/site/conmolfields/.
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Abstract The Biopharmaceutics Classification System (BCS) categorizes drugs 
into one of four biopharmaceutical classes according to their water solubility and 
membrane permeability characteristics and broadly allows the prediction of the 
rate-limiting step in the intestinal absorption process following oral administration. 
When combined with the in vitro dissolution characteristics of the drug product, the 
BCS takes into account three major factors: solubility, intestinal permeability, and 
dissolution rate, all of which govern the rate and extent of oral drug absorption from 
immediate-release (IR) solid oral-dosage forms. The concept of BCS provides a 
better understanding of the relationship between drug release from the product and 
the absorption process. This report reviews the current status of computational tools 
in predicting the base properties (aqueous solubility, and passive absorption) of the 
BCS and explores the application of the Simplex representation of molecular struc-
ture (SiRMS) QSAR approach in absorption (bioavailability) research. The main 
advantages of SiRMS are consideration of the different physico–chemical proper-
ties of atoms, high robustness, predictivity, and interpretability of developed models 
that creates good opportunities for molecular design. The reliability of developed 
QSAR models as predictive virtual screening tools and their utility for targeted 
drug design were validated by subsequent synthetic and biological experiments. 
The SiRMS approach was implemented as “HiT QSAR” software. In addition, we 
provide our perspective on the progress of research into an in silico equivalent to 
the BCS.
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14.1 Introduction

During the last few years, the role of pharmacokinetic (absorption, distribution, me-
tabolism, and elimination, i.e., ADME) properties in the drug research and devel-
opment increased dramatically [1–3]. Oral bioavailability is one of these ADME 
components that have been widely studied. Screening of absorption ability is an 
important part of assessing oral bioavailability and attracts efforts from industry and 
academia. Although plethora of in vitro and in vivo ADME screening methods have 
been applied to boost drug discovery process in pharmaceutical industry, this process 
is still resource-intensive and time-consuming. The prediction of oral bioavailability 
is very challenging because bioavailability is a complex function of many biological 
and physico-chemical factors, such as dissolution in the gastrointestinal tract, in-
testinal membrane permeation, intestinal and hepatic “first-pass” metabolism, etc.

Although ADME assays have been the gold standards in pharmacokinetics, there 
are additional tests that should be incorporated, since they play a key role in drug 
discovery and further development. Liberation and dissolution of the drug from the 
pharmaceutical form is a key parameter in bioequivalence studies The solubility and 
permeability of a drug are considered to be the most important properties that deter-
mine absorption and the influence of these two properties on the extent of absorption 
from the intestinal tract has received considerable attention [4–6]. An experimen-
tal system for classification of drugs based on their aqueous solubility and mem-
brane permeability was implemented recently by the Food and Drug Administration 
(FDA). It was named as the biopharmaceutics classification system (BCS). BCS 
was originally implemented to waive clinical studies of generic high-permeability/
high-solubility drugs. The original BCS categorizes drugs into four different classes 
based on combinations of high/low solubility and high/low permeability [7]. As an 
alternative to experimental measurements, the in silico prediction of ADME proper-
ties is very attractive, because it provides an inexpensive and highthroughput way to 
assess the ADME properties of a molecule prior to synthesis and biological testing.

The purpose of this monograph is to discuss basic principles associated with the 
process of drug absorption. Special attention will be given to the use of the BCS 
as a predictive tool for identifying compounds whose absorption characteristics 
may be sensitive to physiological and formulation variables. Investigation of drug 
absorption requires a fundamental understanding of the molecular properties that 
determine passive membrane transport. These properties will be briefly discussed 
in the following section.

14.2  Methodology of the Biopharmaceutics Classification 
System (BCS)

The rate and extent of drug absorption from the gastrointestinal (GI) tract are very 
complex and affected by many factors. These include physico-chemical factors 
(solubility, lipophilicity, stability, pKa, polar surface area, presence of hydrogen 
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 bonding functionalities, particle size, and crystal form), physiological (GI blood 
flow, GI pH, gastric emptying, GI transit time, and absorption mechanisms), and 
factors related to the dosage form (tablet, capsule, solution, suspension, emulsion, or 
gel) [1–4]. Despite this complexity, the work of the various authors [8–10] revealed 
that the fundamental events controlling oral drug absorption are the permeability of 
the drug through the GI membrane and the solubility/dissolution of the drug dose in 
the GI milieu. In the solid oral dosage form active pharmaceutical ingredient (API) 
is characterized by the following interrelated processes occurring in GI: (a) tablet 
degradation and release of solid particles of API; (b) solubilization of solid particles 
in a liquid medium ( Cs) of GI; (c) penetration of API molecules from an intestinal 
liquid through an immobile layer (coated mucosal surface) to mucosal surface; (d) 
transfer of API molecules from the liquid medium into the mucosal layer; (e) pen-
etration (Peff or Papp) of API from the mucosal layer into systemic blood circulation.

The Peff and Papp values are alternative parameters of F (fraction absorption). Peff 
is an effective permeability of organotypic models, Papp is apparent permeability 
determined in vitro [11, 12].

Key parameters are characterized in the BCS by three dimensionless numbers: 
absorption number ( An), dissolution number ( Dn), and dose number ( D0). These 
numbers take into account both physico-chemical and physiological parameters and 
are fundamental to the oral absorption process based on these properties. Amidon 
et al. [1, 13] proposed biopharmaceutic classification system (BCS), which in pres-
ent times is serving as a guide for regulatory and industrial purposes. This concept 
exploring dose number, dissolution number, and absorption number of an orally 
administered drug clearly dictates its systemic availability. These three numbers 
are associated with a number of multifaceted hurdles, which include: (a) physico-
chemical properties of the molecule (solubility/dissolution); (b) stability of drug in 
GI environment (acid degradation); (c) enzymatic stability in GI lumen, epithelium 
and liver; (d) permeability (molecular weight, log P, H-bonding efficiency); and 
(e) substrates specificity to various biological transporters and efflux systems of 
intestinal epithelium.

Dose number ( D0) is characterized by the volume required for solubilising the 
maximum dose strength of the drug.

Where CS is the solubility, M is the dose and V0 is the volume of water taken with 
the dose, which is generally set to 250 ml.

Dissolution number ( Dn) is characterized by the time required for drug dissolu-
tion which is the ratio of the intestinal residence time < Tsit > and the dissolution 
time < Tdiss >
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Where D is the diffusivity of the dissolved drug, ρ is the density of the dissolved 
drug, CS is the drug solubility, and r is the initial radius of the drug particle.

Absorption number ( An) is characterized by the time required for absorption of 
the dose administered which is a ratio of residence time and absorptive time < Tabs >

where Peff-effective permeability, R-the gut radius, and < Tsit > the residence time of 
the drug within the intestine.

However, all these numbers are related to two important parameters controlling 
drug absorption, i.e., solubility and permeability. Drug with complete absorption 
show D0 < 1, while Dn and An > 1. If the Peff of a drug is less than 2 · 10−4 cm/s, then 
drug absorption will be incomplete, whereas complete absorption can be expected 
for substances whose Peff exceeds this value. For poorly soluble drugs, critical vari-
ables include the volume of the intestinal fluids, GI pH, and GI transit time (where 
adequate time is needed to dissolve poorly soluble materials). For these lipophilic 
compounds, food and bile salts may increase drug solubility.

Based on these two parameters, drug API have been classified into one of four 
categories according to the BCS.

Class I API is characterized by the high An and low Dn and D0, indicating that 
they are in solution form throughout the intestine and is available for permeation. In 
this case, F can be expressed as follows [10]:

For these agents, as “An” increases, the fraction of drug absorbed increases, with 
90 % absorption (highly permeable compounds) occurring when An = 1.15. Using 
the equation for An, we conclude that F can be affected by a change in the com-
pound’s membrane permeability, the gut radius of the host, or the intestinal transit 
time. Based on these factors alone, it is evident that differences in GI physiology 
caused by such factors as disease, age, or animal species, can alter the value of An 
and, therefore, the fraction of drug absorbed. Drugs are highly soluble and highly 
permeable and are ideal candidates for oral delivery.

Class 2 drugs are highly permeable across the GI membrane, primarily by pas-
sive transport, because of their high lipophilicity. These drugs are characterized by 
mean absorption time more than mean dissolution time, and thus gastric empty-
ing and GI transit are important determinants of drug absorption. High correlation 
between in vitro dissolution and in vivo rate and extent of absorption is expected; 
however, since the rate of drug getting into solution is rate-limiting, the in vitro 
permeability may not predict the in vivo absorption.

Class 3 drugs are either having less intrinsic permeability due to their unfavor-
able physico-chemical properties. In order for these molecules to permeate the lipo-
philic epithelial cell membranes lining the gastrointestinal tract, they must possess 
optimum lipophilicity. Thus for highly polar compounds, administration of less po-
lar and more lipophilic prodrugs may improve absorption.
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Low and variable absorption for class 4 drugs is anticipated because of the com-
bined limitation of solubility and permeability.

Experience gained through development of traditional in vitro–in vivo correla-
tions, IVIVC (level A, B, or C correlations) for IR products containing poorly soluble 
drugs and for extended release products suggests a significant degree of formulation 
dependency or specificity associated with such correlations. Therefore, for products 
that are likely to exhibit slow in vivo dissolution, IVIVC need to be established and 
their predictive performance verified through experimentation. Future research in 
this area should address how to a priori identify dissolution test conditions that 
yield robust IVIVC that are applicable to a wide range of formulations [14].

In recent years; the validity and broad applicability of the BCS have been the 
subject of extensive research and discussion [4–6, 15]. It has been adopted by 
the US Food and Drug Administration (FDA), the European Medicines Agency 
(EMEA), and the World Health Organization (WHO) for setting bioavailability/
bioequivalence standards for IR oral drug product approval; and the BCS principles 
are extensively used by the pharmaceutical industry throughout drug discovery and 
development [7, 16–18].

The introduction of the simplification of the BCS in FDA guidelines represents a 
major step forward in the regulation of oral drug products. The FDA guideline sug-
gests internal standards and marker substances to characterize the permeability of 
drug substances in vitro and in vivo. The BCS is used to set drug product dissolution 
standards to reduce the in vivo bioequivalence requirements [1, 19]. Knowledge of 
the BCS can also help the formulation scientist to develop a dosage form based on 
mechanistic, rather than empirical, approaches [20]. This allows one to determine 
the potential for IVIVC, and can significantly reduce in vivo studies.

According to the current FDA guidance [17, 18], drug API is considered highly 
permeable when the extent of absorption in humans is determined to be 90 % or 
more of an administered dose based on a mass balance determination or in com-
parison to an intravenous reference dose. The solubility classification of a given 
drug is based on the highest dose strength in an IR product. In this guidance, an IR 
drug product is considered rapidly dissolving when no less than 85 % of the labeled 
amount of the drug substance dissolves within 30 min, using U.S. Pharmacopeia 
(USP) apparatus I at 100 rpm (or apparatus II at 50 rpm) in a volume of 900 ml or 
less in each of the following media: (1) 0.1 N HCl or simulated gastric fluid USP 
without enzymes; (2) a pH 4.5 buffer; and (3) a pH 6.8 buffer or simulated intestinal 
fluid USP without enzymes.

14.3  Pharmacokinetic Characteristics of Absorption  
and Bioavailability

Bioavailability is based on the physiological process of absorption, which include 
three stages: (1) transfer an API through apical plasma membrane inside cells; (2) 
intracellular transport of substances followed by their possible metabolism; (3) 
transfer of the transported and transformed API from cells into blood or lymph. 
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Bioavailability is the degree to which or the rate at which an API from correspond-
ing drug dosage form and at the targeted place of administration in systemic circula-
tion becomes available in the biophase. Such definition reflects relative character of 
the notion of biological availability of drugs. In experiments, intestinal absorption 
is usually measured by fraction absorption, % F, which is defined by the fraction of 
total mass absorbed to the given dose of the drug.

Absolute bioavailability, F, is the fraction of an administered dose which actu-
ally reaches the systemic circulation:

 
(2.1)

where AUCev and AUCiv are, respectively, the area under the plasma concentration-
time curve following the extravascular and intravenous administration of a given 
dose of drug.

Relative or comparative bioavailability refers to the availability of a drug prod-
uct as compared to another dosage form or product of the same drug given in the 
same dose. These measurements determine the effects of formulation differences on 
drug absorption. The relative bioavailability of product A compared to product B, if 
both products containing the same dose of the same drug, is obtained by comparing 
their respective AUCS. When the bioavailability of a generic product is considered, 
it is usually the relative bioavailability that is referred to.

Bioavailability mainly depends on intestinal and hepatic clearance of API. In 
the case when clearance rate depends on blood API concentration absorption and 
bioavailability are identical. However, if clearance process employs active secretion 
or metabolic pathways and it becomes saturable the pharmacokinetic dependence 
becomes nonlinear. In this case changes in absorption is not accompanied by pro-
portional change in bioavailability.

14.4 Prognosis of Bioavailability

Study of drug bioavailability still remains the most complex and expensive test. It is 
based on elucidation of API concentration in certain biological fluids (blood, urine, 
et al.). Unfortunately, there is no common method, which would meet all require-
ments during evaluation of various drugs. In each case, it is a unique method, which 
should provide selective, accurate, and reproducible monitoring of drug concentra-
tion under chosen conditions of a pharmacokinetic study, particularly, its duration. 
In the case of evaluation of bioequivalence the kinetic studies are carried out under 
conditions of certified bioanalytical laboratories independently from drug firms. 
Given that in most cases experimental bioavailability on animals employs radio-
actively labeled API and clinical evaluation of bioequivalence employs volunteers, 
the difficulties for researchers become clearly evident. Consequently, simplification 
of such procedures would be achieved by means of reliable rather simple method 
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predicting API bioavailability. Realization of such project requires information on 
physiological nature of bioavailability and physico-chemical properties of API.

Now the market of software for prediction of biological properties of chemical 
substances is saturated with various products. Analysis of this problem has been 
reviewed in [21–23].

For significant prediction of bioavailability a training set of drugs is subdivided 
into either two (e.g. Yes/No, Positive/Negative), three [24] (high with F > 80 %; 
moderate with F = 21–79 %, and low with F < 20 %), or four groups [25] (1: < 20 %, 
2: 20–49 %; 3: 50–79 %; 4: > 80 %).

While experimental methods always require sufficient amount of chemicals for 
the estimation of drug absorption, computational ( in silico) methods can lead to 
the prediction of intestinal absorption based on chemical structure, and can thus be 
used before synthesis of compounds. In silico predictions could be based both on 
relatively simple quantitative structure-activity relationships (QSAR) analysis and 
more complex physiologically based pharmacokinetic and/or pharmacodynamic 
models. Whichever the approach used for model building, computational methods 
should be based on experimental data that were obtained for a wide range of struc-
turally diverse compounds (training set). It should be noted, however, that current 
in silico methods, are not as reliable as experimental models.

The models can be divided into two categories: regression and classification 
ones. Most of the published studies are based on small or large sets of permeability 
data collected from literature sources. Since the validity of any model primarily 
depends on the data, a large and accurate dataset is required for the development 
of global models with general applicability. Model validation is another critically 
important step in building robust QSPR models. Ideally, one should report results 
based on the training set, the cross-validation set, and an external dataset to increase 
the user’s confidence level. Consistent reporting of model statistics is highly desir-
able so that readers can objectively evaluate the model quality and applicability in 
a real-life drug discovery setting [22].

Rather than trying to predict specific absorption-related quantities, researchers 
have tried to find general principles to distinguish drug-like from non-drug-like 
molecules by analyzing databases of drugs and non-drugs. Generally, these rules 
obtained from database analysis can be used to distinguish well-absorbed molecules 
from poorly-absorbed molecules. Among numerous attempts to find relevant cor-
relation between physico-chemical properties of API and their bioavailability the 
“rule of five” is the most popular ADME-concerned filters, and most widely used 
[24]. The “rule of five” defined several rules for identifying compounds with pos-
sible poor absorption and permeability: (1) molecular weight > 500, (2) calculated  
log P > 5 (CLOGP) or > 4.15 (MLOGP), (3) number of hydrogen bond donors (OH 
and NH groups) > 5, and (4) number of hydrogen-bond acceptors (N and O at-
oms) > 10. A disadvantage of the “rule of five” is that it can only give a quite rough 
classification of molecules, allowing the elimination of only a very limited set of 
molecules. Later Lipinski [26] indicated that this rule does not belong to ideal fil-
ters, because predictions based on these rules are basically related to one parameter 
Mlog P or Clog P, where errors are possible during additive evaluation (CLOGP 
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program). Moreover, “the rule of five” was developed when information about drug 
transporters was very limited and so it described links between physico–chemical 
properties of drugs and their bioavailability based on API absorption determined by 
simple diffusion.

In addition to the molecular properties discussed by Lipinski, other properties 
have been discussed in regard to oral bioavailability. Since then, numerous clas-
sification and regression models for the predictions of absorption were reported by 
applying a variety of statistical and machine-learning approaches, which include 
multiple linear regression (MLR), nonlinear regression, partial least squares (PLS) 
regression, linear discriminant analysis, classification and regression trees, artificial 
neural networks (ANN), support vector machines (SVM), and so forth. Because 
of the fact that many factors are related to intestinal absorption, many physico-
chemical descriptors were introduced into the prediction of absorption and bio-
availability, such as polar surface area (PSA), partition coefficients, molecular size, 
hydrogen-bonding descriptors, topological descriptors, and even quantum chemical 
descriptors. Predictivity of models bioavailability is by prediction of estimated in-
dependent compounds. To be useful in drug development, models should ultimately 
be developed to predict unknown compounds.

In subsequent work, other researchers have introduced rules-of-thumb which can 
increase the chances of drug compounds being well absorbed. In 2002, Veber and 
colleagues reported studies on rat bioavailability data for 1100 drug candidates [27]. 
They proposed two other descriptors and suggested that compounds which meet 
only two criteria of (a) 10 or fewer rotatable bonds and (b) polar surface area equal 
to or less 140 Å2 (or 12 or fewer H-bond donors and acceptors) will have a high 
probability of good oral bioavailability in rat. In 2004, Lu and colleagues investigat-
ed the relationship between the number of rotatable bonds and PSA for rat oral bio-
availability using 434 molecules [28]. Compared to Veber’s work, authors reported 
that the prediction results were dependent on the calculation methods. In 2007, Hou 
and colleagues [29] collected a dataset of 773 compounds with experimental human 
oral bioavailability values. They showed that the percentages of compounds meet-
ing the criteria based on molecular properties does not distinguish compounds with 
poor oral bioavailability from those with acceptable values. A dataset of intestinal 
absorption was also examined and compared with that of oral bioavailability. The 
performance of these rules based on molecular properties in the prediction of intes-
tinal absorption is obviously much better than that of oral bioavailability in term of 
false positive rate, and, therefore, the applications of the “rule-based” approaches 
on the prediction of human bioavailability should be very cautious. Then, Veber’s 
rules were used for the entire dataset to see if these rules could be applied for the 
prediction of human oral bioavailability. Afterwards, the correlations between sev-
eral important molecular descriptors and human oral bioavailability were examined. 
They conjectured that there are no simple rules based on molecular descriptors that 
can be used to predict human oral bioavailability truly well compared to the rules 
based on analyzing rat oral bioavailability data [29]. However, the value of devel-
oped models and all the conclusions mentioned above is significantly decreased 
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by the very low quality of collected dataset that contained plenty of duplicates and 
high inconsistencies in bioavailability values. In the same time, it is still clear that 
powerful descriptors related to carrier-mediated transport and first-pass metabolism 
are needed for building a useful prediction model for human oral bioavailability.

Recently, Hirono et al. published a study of the quantitative physico-chemical 
propertybioavailability relationships for 188 noncongeneric diverse organic API 
using the “fuzzy adaptive least squares” method [30]. The model was validated by 
“leave one out” cross-validation, and not an independent test set. The compounds 
were divided into three groups, non-aromatics, aromatics, and heteroaromatics, and 
separate equations were formulated for each group which were statistically reliable 
and satisfactory. However, in addition to the need for prior classification of the 
compounds into one of the three groups, the lipophilicity of the compounds was not 
separately identified as a factor, although many studies have reported that this is 
one of the most important properties which determines absorption and metabolism. 
Finally, Bains et al. proposed evolutionary and adaptive methods for classifying 
drug bioavailability into “high” and “low” classes [31], and showed that obtaining 
predictive models on the basis of the molecular structure alone is possible. Inno-
vative concepts for correlating molecular structures with biological activities are 
represented by fuzzy logic (FL) [32]. In fact, FL methods based on the possibility to 
handle the “concept of partial truth”, provide interesting solutions to classification 
problems within the context of imprecise categories, in which ADME properties can 
be included. Fuzzy classification represents the boundaries between neighbouring 
classes as continuous, assigning to the compounds a degree of membership of each 
class. FL has been widely used in the field of process control, where the idea is to 
convert human expert knowledge into fuzzy rules, and it is able to extract relevant 
structure-activity relationships (SAR) from a database, without a priori knowledge. 
Wessel et al. have reported a model based on 76 compounds with reported human 
intestinal absorption data, using GA with an ANN scoring function [33]. A standard 
error of 16 % was obtained for the test set of 10 molecules. Clark reports the use of 
polar surface area (PSA) to create a classification model to separate poor (< 10 %) 
from well absorbed (≥ 10 %) compounds [5], using the same dataset as reported by 
[33]. Egan et al. published a model for intestinal absorbtion HIA based on PSA and 
AlogP descriptors alone [34]. This classification model had accuracy of 74–92 % 
for different validation sets. Abraham and collaborators have recently reported a 
model based on a comprehensive intestinal absorption dataset [35]. The absorption 
of 111 drug and drug-like compounds was evaluated from 111 references based on 
the ratio of urinary excretion of drugs following oral and intravenous administra-
tion to intact rats and biliary excretion of bile duct-cannulated rats. Ninety-eight 
drug compounds with known both human and rat absorption data were selected for 
correlation analysis between the human and rat absorption. The results showed that 
the extent of absorption in these two species is similar. For 94 % of the drugs the ab-
sorption difference between humans and rats is less than 20 % and for 98 % of drugs 
the difference is less than 30 %. There is only one drug for which human absorp-
tion is significantly different from rat absorption. The standard deviation is 11 % 
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between human and rat absorption. The linear relationship between human and rat 
absorption forced through the origin, as determined by least squares regression. It 
is suggested that the absorption in rats could be used as an alternative method to 
human absorption in preclinical oral absorption studies.

Using Abraham descriptors, described in the same paper, the authors report 
R2 = 0.74 when trained on the whole set. However, the authors also highlight the 
fact that the training set is heavily biased towards well-absorbed compounds (over 
30 % absorbed). Yoshida and Topliss [36] proposed a classification model to predict 
bioavailability by using a dataset of 272 drugs, fingerprints and pharmacokinetics 
descriptors, with help of a method named ORMUCS (ordered multicategorical clas-
sification method using the simplex technique) This approach, after dividing the 
bioavailability data in four classes, allowed the authors to get a correct classification 
rate of 71 % for the training set and 60 % for the 40 compounds included in the test 
set. A quantitative structure-bioavailability relationship model was developed by 
Andrews et al. on a dataset including 591 compounds [37]. A stepwise regression 
procedure was used to relate oral bioavailability in humans and structural fragments 
in drugs. Compared to the Lipinski’s “rule of five”, this model allowed to reduce the 
amount of false negatives and positives. Poor bioavailability predictions were false 
in only 3 % of cases, but 53 % of predictions of high bioavailability were incorrect.

In addition to the molecular properties discussed by Lipinski, the relation of 
other properties to oral bioavailability was also extensively investigated. Navia et 
al. has postulated the desirability of molecular flexibility for membrane permeation 
[38]. Hirschmann et al. has focused on the undesirable property of water complex-
ation by amide bonds as a negative factor for oral bioavailability [39].The negative 
impact of a high polar surface area on intestinal absorption is recognized [40, 41]. 
Membrane permeation is recognized as a common requirement for oral bioavail-
ability in the absence of active transport, and failure to achieve this usually results 
in poor oral bioavailability.

Similar observations were made by others in an effort to define descriptors that 
can provide a rationale for establishing qualitative, semiquantitative, and quanti-
tative structure-absorption relationship models [28, 31, 32]. The dependence of 
human intestinal absorption on the readily accessible physico-chemical properties 
like lipophilicity, molecular size, hydrogen bonding capacity, PSA, and number of 
free rotatable bonds has been demonstrated. Identification of these basic physico-
chemical properties as determinants is consistent with notions regarding the ability 
of small organic molecules to pass through lipid bilayer membranes.

14.4.1  QSAR Analysis Using Simplex Representation  
of Molecular Structure

Historically, the Simplex approach was developed as a method for the characteriza-
tion of chirality [42] and only later it was used in QSAR analysis [43]. In the frame-
works of Simplex representation of molecular structure (SiRMS) any molecule can 
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be represented as a system of different simplexes (tetratomic fragments of fixed 
composition, structure, chirality and symmetry) (Fig. 14.1). Atoms in a simplex can 
be differentiated on the base of different characteristics:

1. Atoms individuality expressed through the nature (e.g., nitrogen or carbon) or 
more detailed type of atoms (C-sp3 or C-sp2);

2. Partial atom charge that reflect their electrostatic properties;
3. Lipophilicity of atoms that reflects its hydrophobic/hydrophilic properties;
4. Atomic refraction that partially reflects the ability of atoms to dispersion 

interactions;
5. A mark that characterizes the atom as a possible hydrogen donor or acceptor dur-

ing H-bond formation (A: hydrogen acceptor in H-bond; D: hydrogen donor in 
H-bond, I: indifferent atom).

For atom characteristics, that have real values (for example, charge, lipophilicity 
and refraction) the division of continuous values into definite discrete groups is car-
ried out at the preliminary stage. The number of groups (G) is a tuning parameter 
and can be varied (usually G = 3–7).

The use of sundry variants of simplex vertexes (atoms) differentiation represents 
an important part of SiRMS we consider that specification of atoms by their nature 
alone (this actually reflects atom identity, for example, C, N or O), which is realized 
in many QSAR methods limits the possibilities of active fragments selection. For 
example, if the –NH– group has been selected as the determining activity fragment 
and the ability of H-bond formation is a factor determining its properties, then we 
will miss donors of H-bonds, such as OH-groups. The use of atom differentiation 
by donor/acceptor of H-bond allows one to avoid the situation illustrated above. 
One can make analogical examples for other atom properties (lipophilicity, partial 
charge and refraction, for example). Different types of simplexes are generated de-
pending on the level of detail of molecular structure.

1D models. 1D simplex is a combination of any four atoms contained in the 
molecule (Fig. 14.1). The simplex descriptor (SD) at this level is a number of qua-
druples of atoms of the definite composition. 1D simplexes were not used in our 
studies.

2D models. The connectivity of atoms in simplex, atom type and bond nature 
(single, double, triple, or aromatic) have been considered. Thus, the SD at the 2D 
level is a number of simplexes of fixed composition and topology (Fig. 14.1). Other 
structural parameters corresponding to molecular fragments of different size, can 
be used on 1 and 2D levels. The use of 1–4 atomic fragments is preferable, because 
further extension of the fragment length could increase the probability of model 
over-fitting and decrease its predictivity and DA.

3D models. Not only topology, but also the stereochemistry of the molecule is 
taken into account at the 3D level. It is possible to differentiate all the simplexes as 
right (R), left (L), symmetrical (S) and plane (P) achiral (Fig. 14.2). Stereochemical 
configuration of simplexes is defined by a modified Kahn–Ingold–Prelog rule. An 
SD at this level is a number of simplexes of fixed composition, topology, chirality 
and symmetry (Fig. 14.1).
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4D models. Each SD is calculated by the summation of the products of descriptor 
value for each conformer (SDk) and the probability of realizing the corresponding 
conformer ( Pk).

 (14.1)
1

( · )
N

SD SD Pκ κ
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= ∑

Fig. 14.2  Four possible 
stereochemical types of 
simplexes

Fig. 14.1  Example of simplex descriptors generation at 2D and 3D levels ( L Left, P Achiral, R 
Right)
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where N is the number of conformers being considered.
As is well known, the probability of conformation Pk is defined by its energy:

 
(14.2)

This formula corresponds to the Boltzmann distribution of conformers, where Ei 
and Ek are the energies of conformations i and k, respectively. The conformers are 
analyzed within the energy band of 5–7 kcal/mol. Thus, the molecular SD at 4D 
level takes into account the probability of realization of 3D level SD in the set of 
conformers. On a 4D level the other 3D whole-molecule parameters efficient for the 
description of the spatial form of conformer (e.g., characteristics of inertia ellipsoid 
or dipole moment) can be used along with SD.

Plethora of simplex descriptors is usually generated in SiRMS. The PLS method 
proved efficient at the work with a large number of variables and was described 
well elsewhere [44, 45]. Briefly, a PLS regression model could be represented as 
Eq. 14.3 [45]:

 (14.3)

where Y is an appropriate activity, bi is PLS regression coefficients, xi is an i-th de-
scriptor value, N is a total number of simplexes. In PLS one assumes the x-variables 
to be colinear and PLS estimates the covariance structure in terms of a limited num-
ber of weights and loadings. In this way PLS can analyze any number of x-variables 
regarding to the number of objects [45].

The removal of constant and highly correlated (r > 0.9) descriptors, genetic algo-
rithm (GA) [46], trend-vector approach (TV) [47] and automatic variable selection 
(AVS) [48] strategy have been used for the selection of descriptors in PLS. The 
removal of highly correlated descriptors is not necessary for PLS analysis, since 
descriptors are reduced to the series of uncorrelated latent variables. However, this 
procedure frequently helps in obtaining more adequate models and reducing the 
number of used variables by up to five times [48]. Usage of methods of exhaustive 
or partial search (depending on the number of selected descriptors) after AVS or 
GA very often allow one to increase the quality of the models obtained (PLS, MLR 
and TV). After the mentioned statistic-processing model or models with the best 
combinations of statistic characteristics ( R2 and Q2) have been selected from the ob-
tained resulting list for subsequent validation using an external test set. The general 
scheme of the PLS models generation and selection applied in Hierarchical QSAR 
technology (HiT QSAR) has been presented elsewhere [49]. This procedure can be 
repeated several times using as an input (initial set) the SD of different levels of the 
molecular structure representation (usually 2–4D) and/or with various kinds of atom 
differentiation with the purpose of developing several resulting QSAR models for 
consensus modeling. This approach is believed to yield more accurate  predictions.
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Cross validation is the statistical practice of partitioning a sample of data into 
subsets, such that the analysis is initially performed on a single subset, while the 
other subset(s) are retained for subsequent use in confirming and validating the ini-
tial analysis. The initial subset of data is known as the training set, while the other 
subset(s) are known as validation sets. Two types of cross validation can be used in 
QSAR analysis: leave-one-out and leave-group-out cross validation. The latter is a 
more severe method for model robustness estimation [50].

Determination coefficient Q2 calculated in cross-validation terms is the main 
characteristic of model robustness. Q2 is calculated by the following formula:

 

(14.4)

where Ypred is a predicted value of activity, Yactual is an actual or experimental value 
of activity and Ymean is the mean activity value. However, goodness-of-fit or robust-
ness should not be confused with the ability of a model to make predictions [51]. 
Usage of external validation (test) set is the only way for the estimation of model 
predictivity. Thus, a certain fraction of the dataset molecules is removed into a test 
set before the modeling process begins (remaining compounds form the training 
set). Once a model has been developed, predictions can be made for the test set. 
However, even in the case of a beneficial effect, one should be aware that this 
may only represent the model’s ability to predict a certain test set. It is important, 
therefore, that both training and test sets cover the structural space of the complete 
dataset as large as possible.

The most similar or dissimilar compounds as well as those randomly chosen, 
taking into account activity variation, are selected for the external set in our studies 
[43]. Structural dissimilarity/similarity is obtained for all initial training set mole-
cules on the basis of relevant structural descriptors. In our opinion, use of the whole 
set of descriptors generated in the very beginning is not completely correct, because 
during QSAR research we are interested not only in structural similarity by itself, 
but from the point of view of the investigated properties. Thus, mentioned descrip-
tors selection will help in avoiding some distortions caused by the insignificance of 
structural parameters from the initial set for this concrete task.

The targets of the first level are activity prediction or virtual screening. Any 
descriptors could be used here, even those hardly interpretable or noninterpretable, 
such as different topological indices, informational-topological indices or eigen-
values of various structural matrices. The aims of the second level must include 
the interpretability of QSAR models obtained. Only descriptors that have clear 
physico–chemical sense (e.g., reflecting parameters of the molecule such as dipole 
moment, lipophilicity, polarizability and van der Waals volume) can be used at this 
level. Analysis of QSAR models corresponding to this level allows one to reveal 
structural factors promoting or interfering the property investigated.
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Finally, the presence of information useful for molecular design is expected from 
QSAR models corresponding to the third level of purposes. Fragmentary descrip-
tors are usually used in such models. In this case, the analysis of the degree and di-
rection of influence of such descriptors on activity can give immediate information 
for the optimization of known structures and the design of novel substances with 
desired properties.

However, one should be aware that, first of all, any selected model must be 
predictive and only after that interpretable and informative, and so forth. It is a nec-
essary condition of its subsequent usage that mechanistic-based or interpretability-
oriented models, which are not predictive, are not acceptable and senseless.

RF is an effective nonparametric statistical technique for large databases analysis 
[52]. The main features of RF are listed below: (1) it is possible to analyze com-
pounds with different mechanism of action within one dataset; (2) there is no need 
to pre-select descriptors; (3) the method has its own reliable procedure for the esti-
mation of model quality and its internal predictive ability; (4) models obtained are 
tolerant to “noise” in source experimental data.

RF model construction is based on an original algorithm [53]. RF is an ensem-
ble of single decision trees built by a classification and regression trees algorithm 
(CART) [54]. Decision trees are the ensemble of hierarchically structured rules. Ev-
ery rule is a logical construction that can be represented as “if … then …” criterion. 
An RF algorithm recursively tries to find common criteria for objects from the same 
class, using some randomly selected descriptors.

Each tree grows according to the following algorithm: (1) Bootstrap sample 
which will be a training set for current tree is produced from the whole training 
set of N compounds. About one-third of the compounds which aren’t in the current 
training set are placed in out-of-bag (OOB) set. It is used to get a running unbiased 
estimate of the model error and variable importance; (2) The best split among the 
m randomly selected descriptors taken from the whole set of M ones in each node 
is chosen. The value of m is the only tuning parameter for which RF models are 
sensitive; (3) Each tree is grown to the largest possible extent. There is no pruning. 
RF possesses its own reliable statistical characteristics, which could be used for 
validation and model selection. Determination coefficients for training set (R2) and 
out-of bag set (R2

ооb) are two main characteristics of the model. The major criterion 
for estimation of internal predictive ability of the RF models and model selection is 
the value of R2

ооb [55, 56].
Determination of optimal values of T (trees count) and m (descriptors count) are 

the traditional starting points for every RF investigation. The following procedure 
is recommended for determination of an optimal T value: starting from a small con-
stant number of descriptors, increase the number of trees stepwise until R2

ооb does 
not change significantly. Once an optimal T value has been identified, build models 
with the optimal number of trees by increasing the variable number in a stepwise 
manner. The final model is determined by the highest value of OOB set prediction. 
In this study, T and m values equal to 100 and 200, respectively, were found as op-
timal and were chosen for subsequent models.
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The approach outlined above has already been shown to be highly efficient for 
solving various “structure-activity” tasks [23, 27, 30, 57–59]. SiRMS methodology 
does not have the restrictions of such well-known and widely used approaches as 
CoMFA, CoMSIA, and HASL, in which the application is limited to a structurally 
homogeneous set of molecules only. SiRMS approaches also do not have the disad-
vantages of the HQSAR approach [36, 52] that are related to the ambiguity of the 
descriptors system formation.

14.4.1.1  QSPR Prediction of the Drugs Bioavailability on the Base  
of the SiRMS Approach

Influence of the molecular structure of drug API on absorption was investigated us-
ing SiRMS QSAR approach [26, 60]. Data for human oral bioavailability were ob-
tained from the literature and an internal database. SMILES strings were retrieved 
from the World Drug Index (WDI, Derwent Publishers, London) or created manu-
ally. Finally, 628 structures with SMILES, generic name, and bioavailability value 
were obtained. Any compounds whose bioavailability is strongly affected by the 
dose and formulation was excluded from the dataset. Random forest method [61, 
62] was used for the development of QSPR classification models. All compounds 
were divided into three (high, medium and low bioavailability, Table 14.1) or two 
(high and acceptable, Table 14.2) classes. To determine whether the classes limits 
shift affects the quality of predictive models and how it affects, were considered 
different limits of the classes, as shown in Table 14.1.

As seen from the results presented above, misclassification error is high and 
hence predictive ability of models is rather low. Model II has the best prediction 
performance, especially for classes 1 and 2. Regression model with low predictive 
ability (R2

ооb = 0.29) was also obtained using this dataset of 628 compounds.
Binary classification model has better predictive ability (Table 14.2).
Table 14.2 shows that the shift of models boundaries reduces accuracy of their 

prediction. Consequently, in order to identify the causes of this phenomenon, we 
conducted a thorough analysis of medicinal agents by all relevant models (IV—VІ). 
The analysis of the results showed the good concordance between models IV-VI. It 
have been proved that prediction error for the class 1 (bioavailability of 90–100, or 
80–100, or 70–100) is associated with the active participation of specific transport-
ers during absorption. For class 2, insignificant participation of transporters in the 
absorption of medicinal agents has been observed, but there is an intensive metabo-
lism of compounds and their binding to targets (furthermore, the most of medicinal 
agents have multiple targets, binding with which is strong and durable).

Taking into account intersection of models and variation of bioavailability in 
some range of values, we have introduced to the obtained model a confidence inter-
val within 5 % on either side of the chosen threshold value (Fig. 14.3).

Thus, the boundary between the classes has a certain thickness. Errors of clas-
sification shall be specified in the case when the molecules are predicted to be in the 
opposite class beyond the boundary limits.
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As a result, classification models considering the confidence interval were ob-
tained (Table 14.3). The presented models (IV-1 – VI-1) significantly increase the 
predictive ability. For the model IV-1 with the lowest classification error, we have 
cited the medicinal agents for which a detailed analysis, considering various physi-
ological factors that reduce the bioavailability of drugs prior to their entering the 
systemic blood circulation, was carried out. These factors include: physical prop-
erties of medicinal agents, such as hydrophobicity, dissociation rate, solubility, 
drug formulation (immediate, delayed, extended or prolonged release, the use of 
supplementary substances, methods of production); the fact, whether a medicinal 
agent was entered on an empty stomach or after a meal; differences during the day; 

ID of the 
model

Classes 
boundaries

Number of mol-
ecules in the class

Total error, %

І 1) 0–20
2) 20–80
3) 80–100

114
304
210

36

II 1) 0–10
2) 10–90
3) 90–100

68
432
128

27

III 1) 0–20
2) 20–70
3) 70–100

114
250
264

36

Table 14.1  Classification 
models for three classes  
of bioavailability

Number  
of the model

Classes 
boundaries

Number of mol-
ecules in the class

Error of clas-
sification, %

ІV 1) 90–100
2) 0–90

156
472

20

V 1) 80–100
2) 0–80

222
406

24

VІ 1) 70–100
2) 0–70

280
348

27

Table 14.2  Classifica-
tion models by two classes 
bioavailability

  

  

Fig. 14.3  The confidence 
interval of classification
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speed of gastric emptying; induction/inhibition of other drugs or food; interactions 
with other drugs (antacids, alcohol, nicotine), interaction with some food products 
(grapefruit juice, pomelo, cranberry juice); transport proteins, substrates for trans-
porters (e.g., P-glycoprotein); the state of the gastrointestinal tract, its function and 
morphology.

Thus, drugs that give the error in predicting can be divided into the following 
groups:

a. during their absorption transporters play the active role and they have certain 
targets (class 1-Bumetanide, Cefradine, Diflunisal, Folic acid, Levetiracetam, 
Loracarbef, Pramipexole)

b. are intensively subjected to metabolism and have the appropriate targets (class 
1-Amobarbital, Anastrozole, Сlofibratum, Clonazepam, Cyproterone, Dapsone, 
Dofetilide, Dolasetron, Donepezil, Ethosuximide, Felbamate, Galantamine, 
Glimepiride, Hexobarbitalum, Linezolid, Methimazole, Midodrine, Nevirapine, 
Oxaprozin, Pentobarbital, Phenprocoumon, Phenylpropanolamine, Primakvin, 
Pseudoephedrine, Tamsulosin, Tiagabine, Tocainide, Zonisamide; class 2-Busul-
fan, Etofyllinum)

c. have targets (class 1-Diazoxide, Indapamide, Minoxidil, Penbutolol, Pheni-
ramine, Practolol, Rimantadine, Roxatidine, Sotalol, Trihexyphenidyl; class 
2-Butabarbital)

d. all the factors have a place (class 1-Acetazolamide, Bezafibrate, Clonidine, 
Corticosterone, Cyclopenlhiazide, Doxycycline, Etodolac, Gemfibrozil, Hydro-
cortisone, Imatinib, Lamotrigine, Liothyronine, Phenylbutazone, Probenecid, 
Reboxetine, Rosiglitazone, Sertraline)

e. have other factors that affect the bioavailability (class 1-Acipimoks, Amosulalol, 
Antipyrinum, Betaxolol, Cicaplast, Cycloprolol, Chloroquine, Fenspiride, Flu-
pirtine, Gestrinone, Digoxin, Isosorbide mononitrate, Letrozole, Lorazepam, 
Nicorandil, Pirprofen, Rilmenidine, Sulfadimezin, Tianeptine, Trapidil, Treosul-
fan; class 2-Renicin, Rizatriptan, Sulfadimidine)

Thus, the method of Random Forest is a quite promising tool for preliminary analy-
sis for activity (bioavailability) of potential medicinal agents. However, there is a 
significant effect of various physiological factors that reduce the bioavailability of 
drugs prior to their entering the systemic blood circulation, and these factors are 
difficult to determine by modeling, as it requires additional experimental studies. 
In our view, this method is well for predicting the bioavailability of low molecular 
weight compounds, absorption of which occurs by simple diffusion.

Number  
of the model

Class 
boundaries

Number of mol-
ecules in the class

Error of clas-
sification, %

IV-1 1) 90–100
2) 0–90

156
472

14

V-1 1) 80–100
2) 0–80

222
406

16

VI-1 1) 70–100
2) 0–70

280
348

18

Table 14.3  Classification 
models for two classes with  
a confidence interval

  



47914 Quantitative Structure-Property Relationship Analysis …

14.4.1.2  Investigation of Permeability and Solubility of Drugs on the WHO 
List Using SiRMS Approach

Creation of in silico BCS to study the relationship between the structure of APIs 
and their bioavailability is highly important. Similarly to permeability classifica-
tion, this would be based on experimental human intestine permeability data, or 
well-defined mass balance studies and/or comparison to an intravenous reference 
dose. However, since such data are available only for a small number of drugs, the 
provisional permeability classification was based on correlation of the estimated 
n-octanol/water partition coefficient using both MlogP and ClogP of the uncharged 
form of the drug molecule [63, 64]. In order to determine the broad applicabil-
ity and significance of the BCS, we developed a provisional classification of the 
WHO Essential Medicines List [65] and then extended this analysis to the top 200 
drugs on the United States and others country lists [66]. Values for drug solubility 
were obtained from standard references (e.g., Merck Index, USP, etc.). The BCS 
classification of the WHO medicines was conducted using two criteria. The first, 
a solubility classification, was based on the calculated dose number. Drugs were 
categorized as “soluble” if they had a dose number of 1. The finding that 67 % of 
the drugs on the WHO list and 68 % on the top 200 U.S. list were classified as “high 
solubility” drugs suggests that major differences in drug BCS classification of the 
two lists are unlikely. A total of 43 drugs on the WHO list and 49 drugs on the U.S. 
list exhibited a solubility of <  0.1 mg/ml. However, a few of these drugs were clas-
sified as “soluble” drugs on the basis of dose numbers and may reflect recent trends 
toward development of highly lipophilic, low-solubility drugs that are quite potent. 
The percentages of the drugs in IR dosage forms on the WHO list that were classi-
fied as class 1 drugs based on Mlog P or Clog P were 23.6 and 28.5 %, respectively. 
The corresponding percentage of drugs classified as class 3 drugs were 31.7 and 
35.0 %, respectively, and regulatory approval of biowaiver for this class of drugs is 
scientifically justified and recommended by WHO [67]. Hence, the majority of IR 
oral drug products on the WHO List of Essential Drugs are candidates for waiver 
of in vivo BE testing based on an in vitro dissolution test. The impact of waiving an 
expensive in vivo BE testing and its replacement by rapid and affordable in vitro 
dissolution standards in developing countries is expected to be profoundly signifi-
cant. Similar results were obtained in a subsequent classification of the WHO list 
of Essential Medicines that was based primarily on human fraction absorbed ( Fabs) 
literature data for the permeability assignment [49]. Out of 61 drugs that could be 
reliably classified, 34 % were classified as class I, 17 % as class II, 39 % as class III, 
and 10 % as class IV. In this analysis, hence, more than 70 % of the classified drugs 
proved to be candidates for waiver of in vivo BE testing based on in vitro dissolution 
test. Of course, other drug product characteristics, such as the therapeutic index and 
the potential influence of the excipients on the rate and extent of absorption, should 
also be considered.

In our studies, we have used the following drugs relating to different classes of 
BCS. SiRMS approach was used to develop the models that can classify compounds 
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within the framework of BCS. To the set of studied compounds, 95 representatives 
of listed drugs relating to 4 classes of BCS, were included.

Class 1 (High Permeability, High Solubility): Albuterol, Allopurinol, 
 Amlodipine (Amlo), Amoxicillin, Antipyrine, Dexamethasone, Diltiazem, Zidovu-
dine,  Isosorbide mononitrate, Ketoprofen, Lamivudine, Levonorgestrel, Levofloxa-
cin, Metronidazole, Midazolam, Minocycline, Morphine, Nifedipine, Ofloxacin, 
Prednisolone, Pгоpylthiouracil, Stavudine, Phenobarbital, Fluconazole, Chinin, 
Enalapril, Acetaminophen*, Diazepam*, Isoniazid*, Levodopa*, Metoprolol*, 
Paracetamol*, Pyrazinamide*, Salicylic acid*, Ethinylestradiol*.

Class 2 (High Permeability, Low Solubility): Azathioprine, Azithromycin, Al-
prazolam, Warfarin, Haloperidol, Glipizide, Griseofulvinum, Danazol, Dapsone, 
Diclofenac, Indometacin, Itraconzol, Carbamazepine, Carvedilol, Ketoconazole, 
Lansoprazol, Mebendazole, Mefloquine, Nalidixic acid, Nevirapine, Piroxicam, 
Praziquantel, Ritonavir, Rifampicinum, Spironolactone, Tamoxifen, Terfenadine, 
Trimethoprim, Ibuprofen*, Iopanoic acid*, Lovastatin*, Naproxen*, Oxaprozin*, 
Flubiprofen*, Cisapride*.

Class 3 (Low Permeability, High Solubility): Atropine, Aciclovir, Valsartan, Gan-
cyclovir, Didanosine, Dicloxacillin, Zalcitabine, Lomefloxacin, Methyldopa, Meth-
otrexatum, Nadolol, Pravastatin, Ranitidine, Tetracycline, Famotidine, Cefazolin, 
Ciprofloxacin, Erythromycin, Atenolol*, Hydrochlorothiazide*,  Metformin*.

Class 4 (Low Permeability, Low Solubility): Sulfasalazine, Таlinololum, Furo-
semide, Chlorothiazide. (drugs marked with asterisks * are included to the test set). 
They were selected randomly and not used for constructing of models, they were 
only used to examine the predictive ability of models.

In order to determinate both parameters simultaneously, at first, for all mole-
cules, simplex (local) and some integral (describing the entire molecule) descriptors 
(just over 10 thousand) were calculated by us. Differentiation of atoms in simplex 
was conducted based on the following characteristics: (1) the type of atom; (2) par-
tial charge; (3) lipophilicity of atom, (4) atomic refraction; (5) possibility of atom to 
act as a donor/acceptor of hydrogen in the formation of hydrogen bonds.

Total solubility ( CS) of the active pharmaceutical ingredient in an aqueous me-
dium and the coefficient of penetration (P) of an active pharmaceutical ingredient 
through the lipophilic part of biomembranes have been represented as binary scale 
(0—low property value, 1—high property value).

Two models that adequately describe the solubility and penetration of com-
pounds were obtained using classification and regression trees approach (Fig. 14.4). 
Model 1 (Fig. 14.4a) can be described as follows: compounds characterized by a 
high level of penetration, if: (a) molecule have no N–H groups; (b) in the presence 

of N–H groups, number of groups  is more than 2. If the molecule has at least 

one N–H group and two or fewer  groups, the compounds characterized by 
a low level of penetration. Model 2 (Fig. 14.4b) can be described as follows: a 
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compound is characterized by a low solubility if the molecule has more than 6  
fragments. Compound is characterized by a high solubility if a molecule has six or 

fewer  fragments and at the same time no more than 18  fragments.
Statistical models 3 and 4 that quite fairly describe both studied properties 

(Table 14.4) were obtained using PLS method [10].
It is important to note that these models are characterized by lesser prediction 

errors for the training and test sets than models 1 and 2. Ouite low Q2 values can be 
explained by the fact that the PLS method is more suited to the analysis of continu-
ous (but not binary) data. As a result of the interpretation of models obtained by PLS 
method, molecular fragments that promote or prevent penetration and solubility of 
drugs were identified (Table 14.5).

The following rules were established: (1) The degree of penetration of drugs 
remains practically unchanged, and the solubility decreases with an increase in the 
length of alkyl chains (-С4Н8- and above); (2) Amides of carboxylic acids are dis-
solved better than esters of acids; (3) The degree of penetration increases in the 
acid-amide-ester row; (4) To a large extent, the penetration is prevented due to the 

Fig. 14.4  Classification trees describing a the solubility, b the degree of penetration of compounds
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presence tert-butylamino and isopropylamino groups; (5) In the series of saturated 
cycles, heterocycles reduce the degree of penetration compared to carbocycles.

14.4.1.3  Structure-Pharmacokinetic Relationships of Selected  
1, 4-Benzodiazepines Derivatives

Today the number of 1,4-benzodiazepines derivatives synthesized in various labo-
ratories of the world is over 3000 and 30 of them are drugs. This allows to choose 
the compond or drug, which is the most suitable for a given purpose. However, the 
physician must have the appropriate criteria (pharmacodynamics and pharmacoki-
netics) in order to declare that the drug has a certain advantage. The pharmacody-
namic criteria include the duration of action of the benzodiazepines, which fall into 
three groups: (a) short-action of 2–10 h (oxazepazepam, temazepam, triazolam); 
(b) medium-action of about 10–15 h (alprozalam, bromazepam, lorazepam); and c) 
long-action of 15–30 h (clobazam, clonazepam, diazepam, nitrazepam) [68].

The half-life of elimination ( t1/2) of benzodiazepines is a special pharmacoki-
netic parameter. It clearly divides them into three groups: (a) long half-life 48 h and 
above; (b) medium, 24–48 h; and (c) short, less than 24 h [69]. We note also that 
clinical pharmacologists have recently linked the development of dependence on 
benzodiazepines to t1/2 [70]. The half-life of elimination is closely related through 
the clearance ( Cl) to other pharmacokinetic parameters such as the distribution vol-
ume ( Vd) and the bioavailability ( F).

Drugs with a short t1/2 (alprozalam) are prescribed to patients in doses of 0.2–
0.5 mg peroral 2–3 times per day; triazolam, 0.125–0.5 mg. For drugs with a me-
dium t1/2 (diazepam), the dose is 2–10 mg 2–4 times per day; long (flunitrazepam, 
15–30 mg; gidazepam, 20–50 mg), 3 times per day.

These and other properties of benzodiazepine drugs make it critical to establish 
the quantitative relationship between their structure and pharmacokinetic properties 
in order to optimize their action and predict the properties of innovative drugs using 
QSPR models developed by us.

Herein the effects of structure and physico-chemical properties of substituted 
benzodiazepines (27 drugs, Table 14.6) on the change of their pharmacokinetic pa-
rameters ( t1/2, Cl, Vd, F, tmax) in the human body are studied.

Table 14.4  Statistical characteristics of the of the obtained models
№ R2 Q2 SОВ SТВ A N M
1 – – 20 % 21 % – 2 76
2 – – 20 % 26 % – 2 76
3 0.957 0.62 5 % 16 % 2 35 76
4 0.982 0.66 3 % 0 % 3 16 75

R2  coefficient of determination (sign), Q2  coefficient of determination in the conditions of sliding 
control, SОВ percentage of classification errors for the training set, SТВ percentage of classification 
errors for the test set, A number of latent variables, M number of molecules in the training set, N 
number of structure parameters in a model
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Fragment ΔP ΔCS

1 2 3
Linker
–C2H4–, − 0.003 − 0.016
–C3H6– 0.003 − 0.033
–C4H8– − 0.014 − 0.081
–C5H10– − 0.006 − 0.197
–CH = CH– − 0.005 − 0.109
Functional group
–COOH − 0.126 − 0.011
–CONH2 − 0.181 0.252
–NH2 − 0.103 0.059
–CONH– − 0.044 − 0.009
–N(CH3)2 − 0.024 − 0.016
–OH − 0.032 0.03
–OCH3 − 0.018 0.006
–NO2 0.000 − 0.017
–COOC2H5 − 0.022 0.053
Terminal fragment
–F − 0.008 − 0.005
–Cl 0.003 − 0.002
–I 0.0 − 0.115
–CF3 −0.046 − 0.048
–CH3 − 0.011 − 0.004
–C2H5 0.0 − 0.032
–C3H7 − 0.004 0.0
–iPr − 0.05 0.005
–NH–iPr − 0.282 0.049
–NH–tBu − 0.737 0.049
Saturated cycle
Cyclohexane − 0.022 − 0.074
Cyclopentane 0.0 − 0.063
Piperidine − 0.083 − 0.001
Tetrahydrofuran − 0.187 − 0.016
Piperazine − 0.035 − 0.027
Pyrrolidine − 0.156 0.0
Unsaturated cycle
Phenyl − 0.007 − 0.089
Pyridine − 0.038 − 0.152
Pyrazine − 0.134 − 0.048
Pyrimidine − 0.15 − 0.148
Cyclohexene − 0.023 − 0.125
1H-imidazole − 0.102 − 0.017

Table 14.5  Relative effect 
of some fragments on the 
change of the penetration 
coefficient (ΔP) and solubil-
ity (ΔCS) for active phar-
maceutical ingredient in an 
aqueous medium
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Preparation 
name

Skeleton X R1 R2 R3 R4

1 2 3 4 5 6 7
Alprazolam B N CH3 H Ph Cl
Bromazepam A O H H 2–pyridyl Br
Halazepam A O CH2CF3 H Ph Cl
Gidazepam A O CH2–CO–NHNH2 H Ph Br
Diazepam A O CH3 H Ph Cl
Estazolam B N H H Ph Cl
Camazepam A O CH3 O–CO–N(CH3)2 Ph Cl
Quazepam A S CH3 H o–F–Ph Cl
Clobazam C CH3 Ph Cl
Clonazepam A O H H o–Cl–Ph NO2

Clorazepate A O H COOK Ph Cl
Lorazepam A O H OH o–Cl–Ph Cl
Medazepam A 2H CH3 H Ph Cl
Mendon A O H COOH Ph Cl
Midazolam B C CH3 H o–F–Ph Cl
Nitrazepam A O H H Ph NO2

Nordazepam A O H H Ph Cl
Oxazepam A O H OH Ph Cl
Pinazepam A O CH2CCH H Ph Cl
Prazepam A O CH2–cyclopropyl H 1–cyclohex-

enyl
Cl

Temazepam A O CH3 OH Ph Cl
Tofisopam D – C2H5 – 3,4–dime-

thoxyphe-
nyl

OCH3

  

Table 14.6  Investigated compounds
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Several integral parameters (describing the properties of the molecule in general) 
that were generated by the Dragon program were also used to construct statistical 
equations [71].

Thus, simplex and integral descriptors (over 10,000 total) were calculated in the 
initial stage for all molecules. Atoms in simplexes were differentiated based on the 
following characteristics: (1) atom type, (2) partial charge, (3) rigidity, (4) nucleo-
philicity, (5) electrophilicity [72], (6) lipophilicity of the atom [73], (7) atomic re-
fraction, (8) ability of the atom to act as a H donor or acceptor in forming H-bonds, 
and (9) ability of the atom for Van-der-Waals attraction and (10) repulsion [74]. 
MLR, PLS [75] and classification trees [76] were used for building the models. De-
scriptors were selected using genetic algorithm [77] and trend-vector method [78]. 
Considering the small number of studied compounds, the model was not validated 
for a test set to avoid a loss of the required structural information. The model was 
checked for consistency using an iterative procedure [41].

Table 14.7 lists the observed values of the studied pharmacokinetic properties. It 
should be noted that this series is not sufficiently representative at high distribution 
volumes ( Vd) and small bioavailability. Therefore, developed QSPR models have 
limited applicability domain.

Analysis of the data in Table 14.6 showed that the drugs could be divided into 
three groups according to values of one of the most important pharmacokinetic pa-
rameters, t1/2 (elimination half-life) (Table 14.7).

Benzodiazepines in most instances are highly lipophilic compounds (log P = 2 − 4). 
They are eliminated through excretion and metabolism. Benzodiazepine compounds 
with high t1/2 values undergo during metabolism N1-dealkylation (CYP3A4) and 
C3-hydroxylation (CYP2C19). Intrinsic clearance [79] due to intestinal and hepatic 
CYP450 has been reported for this group. All metabolites of this group have phar-
macometabolic profiles [80] with an analogous spectrum of psychotropic action. 

Preparation 
name

Skeleton X R1 R2 R3 R4

1 2 3 4 5 6 7
Triazolam B N CH3 H o–Cl–Ph Cl
Chlordiaz-

epoxide
E H Ph Cl

Phenazepm A O H H o-Cl–Ph Br
Flumazenil F – CO–OC2H5 – – F
Flurazepam A O C2H5N(C2H5)2 H o–F–Ph Cl
Compound 1 A O H OH o–Cl–Ph Br
Compound 2 A O H OCOCH3 o–Cl–Ph Br
Compound 3 A O H OCO–CH(C3H7)2 o-Cl–Ph Br
Compound 4 A O H OCO–(CH2)2COOH o–Cl–Ph Br
Compound 5 A O H OCO–(CH2)3COOH o–Cl–Ph Br
Compound 6 A O H OCO–C6H5 o–Cl–Ph Br
Compound 7 A O H OCO–4-pyridyl o–Cl–Ph Br

Table 14.6 (continued)
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Drugs of the second group eliminate the nitro group during metabolism to amino 
derivatives (NAT1), which do not possess psychotropic activity.

Some of the drugs of the third group (3-hydroxy derivatives) form in the hu-
man organism the corresponding inactive glucuronides (UGT 1). The others form 
triazolobenzodiazepines and imidazolobenzodiazepines, which are oxidized in the 
human organism to 3-hydroxy derivatives (CYP3A4).

We attempted to integrate the proposed classification system based on structural 
parameters (molecular simplexes). A classification tree was constructed (Fig. 14.5) 
and could be used to correctly classify the whole set of benzodiazepines using only 
four structural parameters (S2, S5, S7, S76).

Table 14.7  Observed values of studied pharmacokinetic characteristics
No. Preparation Fa Cla tmax t1/2

a Vd
a

Value Classb

1 2 3 4 5 6 7 8
1. Alprazolam 0.88 0.74 1–2 10–12 3 0.72
2. Bromazepam 0.84 0.5–1.5 8–20 3
3. Halazepam 1–3
4. Gidazepam 3.03 86 1
5. Diazepam 0.99 0.38 0.5–1.5 43 2 1.1
6. Estazolam 1.00 1–1.5 10–24 3
7. Camazepam 12–24 3
8. Quazepam 0.4–1 36–120 1
9. Clobazam 2–4 10–30 3
10. Clonazepam 0.90 92.0 1–4 20–60 2 3.2
11. Clorazepate 0.98 0.75–1 48 2
12. Lorazepam 0.93 1.10 1–2 10–12 3 1.3
13. Medazepam 0.60 1–2 48–60 1
14. Mendon 1 12–24 3
15. Midazolam 0.40 6.6 0.5–1 1.5–3.5 3 1.1
16. Nitrazepam 0.78 0.86 1.5–2 18–25 2 1.9
17. Nordazepam 24 2
18. Oxazepam 0.97 1.05 1–2 8–10 3 0.6
19. Pinazepam 48–60 1
20. Prazepam 0.25 1400 0.5 1.3 3 14.4
21. Temazepam 0.90 1.00 0.3–0.7 5–15 3 0.95
22. Tofisopam 2 6–8 3
23. Triazolam 0.44 5.60 0.5–1 1.5–5.5 3 1.1
24. Chlordiazepoxide 1.00 0.54 2–4 5–30 3 0.3
25. Phenazepam 10–18 3
26. Flumazenil 0.20 17.0 0.25 0.9 3 1
27. Flurazepam 0.93 4.5 0.5–1 36–120 1 22

aF absolute bioavailability, Cl total preparation clearance, tmax time to reach maximum preparation 
concentration in blood, t1/2 preparation elimination half-life, Vd preparation distribution volume
bClassification by elimination half-life: 1-long period, t1/2 48 h; 2-average period, t1/2 = 24–48 h; 
3-short period, t1/2 h
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The results showed that the third class of benzodiazepines usually contained two 
or less S5 fragments and no S2 fragments. Compounds of the second class also con-
tained two or less S5 fragments, S2 fragments, and more than two S76 fragments. 
The first class of benzodiazepines had more than two S5 fragments and more than 
one S7 fragment. Thus, it seemed to us that the constructed classification tree was 

Fig. 14.5  Classification tree for deetermining elimination half-life of substituted benzodiazepines
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entirely suitable for qualitative rapid evaluations of the elimination half-life of ben-
zodiazepine drugs.

Statistical characteristics of the QSPR models obtained by PLS method are 
shown in Table 14.8. Rather high values of R2 and Q2 indicated that the resulting 
models could be used to predict the studied pharmacokinetic properties.

The most influential structural fragments were determined based on the resulting 
QSPR models (Table 14.9, Fig. 14.6). Although a correlation between F and the 
lipophilicity was not observed ( R ≈ 0), the trend toward an increased contribution of 
the molecular fragment to the total bioavailability upon increasing its lipophilicity 
was clearly visible. This was especially evident for aromatic fragments A01—A03 
and D01—D04 (Fig. 14.6). This trend did not hold for non-aromatic fragments 
(e.g., for fragments B11, B14, and D05).

The fragments  (B01) and  (B09) had the highest negative effect 

on the bioavailability. Similar fragment  (B06), which does not contain a 
methyl group, had the highest bioavailability. All molecules containing a group with 
a double bond and without the negative-effect B01 and B09 groups (Table 14.9) 
had high levels of bioavailability. These observations were confirmed by the model 
obtained using integral molecular parameters (Dragon program) and multiple linear 
regression:

where C024 is the number of benzene rings, Me, the average Sanderson atomic elec-
tronegativity, nCaR, the number of substituted aromatic carbons, and nO, the number 
of O atoms.

Thus, the presence of benzene rings increased the bioavailability of the substitut-
ed benzodiazepines. Substitution in the aromatic rings reduced the bioavailability. It 

024
2 2

(%) 0.44· 1.63 1.05 1.53
0.886; 23.3, 0.11, 0.813
= + - -

= = = =
CaR OF C Me n n

R F SE Q

Table 14.8  Statistical characteristics of developed PLS QSPR models 
Statistical characteristics Pharmacokinetic characteristics

Fa log( Cl)a log ( t1/2)
a log ( Vd)

b tmax
a

M, number of molecules in learning set 17 13 26 13 22
N, number of structural parameters in 
model

9 7 6 3 7

A, number of latent variables 1 1 1 1 1
R2, determination coefficient 0.95 0.91 0.91 0.82 0.93
Q2, determination coefficient from itera-
tive procedure

0.94 0.81 0.87 0.81 0.85

SE, standard error of prediction for learn-
ing set

0.06 0.25 0.16 0.22 0.20

a Model constructed based on Simplex structure parameters
b Model constructed based on integral parameters of Dragon program
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Fig. 14.6  Relative effect of structural fragments of substituted benzodiazepines on the change of 
their pharmacokinetic characteristics. Points denote average contributions of fragments. The range 
of their change due to the environment is shown by vertical lines
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Table 14.9  Relative effect of structural fragments of substituted benzodiazepines on the change of 
their pharmacokinetic characteristics (ΔX) calculated from the corresponding PLS models
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should also be noted that more O atoms in the molecule led to lower bioavailability. 
In all probability, this was caused to a large extent by the ability of the O atoms to 
act as acceptors in forming H-bonds. This parameter ( nO) correlated to a large extent 
with the number of acceptor centers for H-bonds ( R = 0.9). This agreed completely 
with the classical “rule of 5” [81]. Tendencies opposite to bioavailability (see above) 
were observed in general for the total clearance ( Cl) of the drug. Thus, the presence 
of unsubstituted benzene rings (D01) and π-donor substituents (–F, –Cl, –Br) in the 
aromatic ring decreased the clearance. The presence of π-acceptors (–NO2, fragment 
A03) increased it substantially. Replacement of an aromatic ring in the D position 

by a cyclohexene (D05) and the presence of B04 fragments , B09 

B11  (Table 14.9) increased the clearance. The clearance ( Cl) was inversely 
related to the lipophilicity only for aromatic fragments.

The following regression model was obtained using integral parameters of the 
molecules (Dragon program):

log( ) . . .
. , . , .

Cl Ui n n
R F SE

HDon CaR= − + +
= = =

1 88 0 99 1 70
0 830 14 68 0 392 ,, .Q2 0 62=

Table 14.9  (continued)
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where Ui is the unsaturation index [82], nHDon, the number of H-donors; nCaR, the 

number of substituted aromatic carbons . Thus, the presence of H-donors in 
the molecule and substitution in the aromatic rings increased the clearance. It was 
also noticed that the clearance was higher for the more substituted molecules.

The effect of structural fragments on the change of elimination half-life ( t1/2) was 
somewhat similar to that described above for the bioavailability. Thus, all lipophilic 
aromatic fragments had high t1/2 values (Fig. 14.6). The following model was ob-
tained with Dragon descriptors and MLR method:

where C−024 is the number of benzene rings, nCIC, the number of rings; nC–N, the 
number of aliphatic imino groups; C−006, the number of –CH2RX fragments, where 
X = halogen.

A study of the effect of the structure of substituted benzodiazepine derivatives 
on the volume of distribution ( Vd) revealed common tendencies in the effect of the 
substituents that were similar to those for the clearance. Thus, Vd increased for B11 

fragments , B14 , and decreased for B12  (Table 14.7).
The MLR model that was obtained using integral parameters (Table 14.7) had 

the form:

where MR is the molar refractivity; ARR, the aromaticity index and Hy, the hydro-
philic factor [83]. Thus, it can be stated that refractivity (electronic polarizability) 
is capable of increasing the distribution volume whereas high aromaticity and hy-
drophilicity decrease it.

Consistent tendencies for the effect of various fragments could not be found 
for the resulting PLS model that described the relationship of the structure of sub-
stituted benzodiazepines and the time to reach the maximum concentration ( tmax) 
(Tables 14.8 and 14.9). Adequate statistical equations for this property could not in 
general be obtained using the parameters of the Dragon program.

The resulting PLS models were used to predict the pharmacokinetic properties of 
several benzodiazepine compounds (Table 14.10).

All predicted compounds will presumably possess high bioavailability and short 
elimination half-lives. Most likely high bioavailability values are caused by the 
presence of two aryl fragments and small number of H-bond donors and acceptors 
whereas short elimination half-lives are caused by the presence in these compounds 
of less than two S5 fragments and the absence of S2 fragments (Fig. 14.6, Node 3).

log( ) . . . .
. ,

/t C n n C
R F

CIC C N1 2 024 006
2

0 77 0 28 0 35 0 35
0 860

= − + +
= =

− − −

331 1 0 21 0 8142. , . , .SE Q= =

log( ) . . .V MR ARR Hyd = − −0 480 0 422 0 375
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14.4.2  Prediction of Absorption and Bioavailability Using 
Physiologically Based Modeling

Oral drug absorption is a complex process. It consists of multiple steps that may 
include drug disintegration and dissolution, degradation, gastric emptying, intesti-
nal transit, intestinal permeation and transport, intestinal and hepatic metabolism. 
The factors that may have impact on the rate and extent of drug absorption are 
dosage form, physico-chemical and biopharmaceutical properties of the API, and 
physiology of the GI. Knowledge of how these steps and factors influence absorp-
tion has fostered the development of predictive models for oral drug absorption. 
Pharmacokinetic models are used to describe the time-dependent distribution and 
disposition of an API in a living system. In contrast to the QSAR, gastrointestinal  
absorption model (Physiologically Based Absorption Modeling, PBPK) mod-
els vary in complexity and capability according to their intended purpose. PBPK 
models differ from one or two compartment models by representing physiologi-
cal, physico-chemical and biochemical processes in the species of interest. In most 
PBPK models, tissues are represented by specific compartments, each with a unique 
set of physiological (blood flows, drug fate in the GI tract), physico-chemical (parti-
tion coefficients) and biochemical (metabolic rates) parameter values. Target tissues 
are generally represented individually. The absorption model connected to a distri-
bution model predicts the in vivo pharmacokinetic profiles.

PBPK approaches are classified into three categories [82]: quasiequilibrium 
models, steady-state models, and dynamic models. The classification of these mod-
els is based upon their dependence on spatial and temporal variables. The quasiequi-
librium models, which are independent of spatial and temporal variables, include 
the pH-partition hypothesis and absorption potential concept. The steady-state mod-
els are limited to prediction of the extent but not the rate of oral drug absorption. 
The dynamic models consider spatial and temporal variables and can predict both 
the rate and extent of oral drug absorption. The dynamic models include dispersion 

Table 14.10  Predicted values of pharmacokinetic characteristics for certain benzodiazepines
Compound F log ( Cl) tabs log ( t1/2) Class by t1/2 log ( Vd)
Phenazepam 0.90 0.34 1.75 1.41 (1.15)a 3 (3) 0.21
Compound 1 0.90 0.34 1.40 0.92 3 0.00
Compound 2 ≈ 1.0 0.61 0.96 0.79 3 0.66
Compound 3 ≈ 1.0 0.84 1.01 0.79 3 1.68b

Compound 4 ≈ 1.0 1.18 2.07 0.66 3 1.08
Compound 5 ≈ 1.0 1.13 2.01 0.66 3 1.25b

Compound 6 ≈ 1.0 − 0.52 1.52 1.47 3 1.11
Compound 7 ≈ 1.0 − 0.12 1.35 1.26 3 1.02

a Observed values given in parentheses
b Unreliable predictions because of significant structural differences of these molecules from the 
learning set according to model
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models and compartmental models. Both models can be linked to pharmacokinetic 
models to predict plasma concentration-time profiles of drugs. The dispersion mod-
els defines the GI tract as a single tube with spatially varying properties ( pH, sur-
face area, etc.). Instead of treating the small intestine as one long cylindrical tube in 
a dispersion model, compartmental models assume the GI tract as one compartment 
or a series of compartments with linear transfer kinetics, and each compartment is 
well mixed with a uniform concentration. There have been several reports on physi-
ologically based mathematical compartmental models (CAT, ACAT, Grass, GITA, 
ADAM) that are capable of producing such predictions, and there are a few com-
mercially available software packages (GastroPlusTM, IDEA™, INTELLIPHARM 
PK, PK-SIM, etc.) that have been shown to predict the human absorption properties 
with a fairly high degree of accuracy. As these models use the interplay between the 
drug characteristics and the human physiology to simulate the processes involved 
in the oral absorption of drugs, they also give information about the underlying 
mechanisms for absorption limitations and as such they are well suited to be used in 
progressing new chemistry and to support formulation development.

Study [84] has attempted to apply gastrointestinal simulation technology and in-
tegration of physiological parameters to predict biopharmaceutical drug classifica-
tion. GastroPlus® was used with experimentally determined physico-chemical and 
pharmacokinetic drug properties to simulate the absorption of several weak acid 
and weak base BCS class 2 compounds. Simulation of oral drug absorption given 
physico-chemical drug properties and physico-chemical parameters will aid justifi-
cation of biowaivers for selected BCS class 2 compounds. In silico models are use-
ful to identify BCS class 2 biowaiver candidate drugs. The risk of bioinequivalence 
in terms of Cmax has shown to be higher than for AUC. Class 2 weak acids and bases 
in immediate release dosage forms may be eligible for biowaivers provided that the 
dose dissolves completely before reaching middle jejunum. Biowaivers for some 
class 2 drugs also necessitate the availability of a discriminative and in vivo predic-
tive in vitro dissolution method. Thus they should be complemented by prospective 
IVIVC studies to validate the proper selection of biowaiver candidate drugs.

The in vivo absorbability of drugs categorized into the BCS class 2 is very dif-
ficult to predict because of the large variability in the absorption and/or dissolution 
kinetics and the lack of an adequate in vitro system for evaluating the dissolution 
behavior. Fujioka et al. [85] tried to predict the plasma concentration-time profile 
of griseofulvin after oral administration into rats, based on GI-Transit-Absorption 
model (GITA model). Griseofulvin, with ClogP = 2.88, was taken as a model drug 
of BCS class 2, and the in vitro dissolution study was performed to evaluate the dis-
solution rate constant by employing several different dissolution media including 
FaSSIF, FeSSIF and a couple of novel media. Using the dissolution rate constants 
( kdis) of griseofulvin obtained with JP 1st solution, JP 2nd solution, FaSSIF, FeSSIF, 
and modified SIBLM as a medium, simulation lines were not able to describe the 
observed mean plasma profile at all. On the other hand, a calculated line provided 
by employing kdis obtained with MREVID 2 (medium reflecting in vivo dissolution 
2), a new medium, was in better agreement with the observed mean plasma profile 
than existing media.
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Grass Model describes fluid movement (emptying and transit) in the GI tract 
and calculates the drug absorption in each compartment (stomach, duodenum, je-
junum, ileum, and colon) over time based primarily on three parameters-solubility, 
permeability, and tissue surface area. This model was shown to predict plasma con-
centration time profiles including the AUC, Cmax, and tmax for ketorolac (BCS 1) 
and gancyclovir (BCS 3) well. The software IDEA™ was developed based upon 
compartmental models (IDEA™ is not currently available). By using IDEA™, the 
fractions of dose absorbed for atenolol (BCS 3), naproxen (BCS 2), and gancyclovir 
(BCS 2) in animals and humans were successfully predicted [86]. Similar to Gas-
troPlus™, factors including dose, solubility, and permeability are considered. How-
ever, IDEA™ does not take first pass metabolism and drug transport into account.

14.5 Conclusions

Sufficient intestinal absorption of orally administered drugs from the gastrointesti-
nal tract is one of the prerequisites for successful oral drug therapy. It is generally 
accepted that the main barrier interrupting drug absorption is formed by the intesti-
nal epithelium and several routes can be followed to pass it. Passive transport often 
occurs through the cell membrane of the enterocytes (transcellular transport), this 
is the predominant transport route for hydrophobic drugs. Another passive route is 
transport via the tight junctions between the enterocytes, i.e., paracellular transport. 
Hydrophilic compounds are mostly transported via the paracellular route. Finally, 
carrier-mediated transport (influx or efflux) can be observed. Intestinal drug absorp-
tion is controlled by dissolution rate and solubility, determining how fast a drug 
reaches maximum concentration in the lumenal intestinal fluid, and permeability 
coefficient, which relates to the rate at which dissolved drug will cross the intestinal 
wall to reach the portal blood circulation. Determination of the dissolution, solubil-
ity (at different pH values), and permeability properties of drug candidates can thus 
provide information about their absorption potential, and thus allows evaluation of 
the compounds according to BCS. The aim of the BCS is to provide a regulatory 
tool for replacing certain bioequivalence studies by accurate in vitro dissolution 
tests. This will certainly reduce costs and time in the drug development process, 
both directly and indirectly, and reduce unnecessary drug exposure in healthy sub-
jects, which is normally the study population in bioequivalence studies. The BCS is 
today only intended for oral immediate-release products that are absorbed through-
out the intestinal tract. It has been reported that an application of a BCS strategy in 
drug development will lead to significant direct and indirect savings for pharma-
ceutical companies.

Usage of in silico tools for modeling of the properties underlying the BCS can 
be used for fast preliminary screening of new compounds to determine their posi-
tions in the BCS. Nowadays a lot of different models and systems for prediction of 
bioavailability, permeability, solubility, etc., are available. But all of them lack the 
prediction accuracy. There are two ways to overcome this problem: (1) improve 
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algorithms of model development, (2) expand the training sets which are used for 
model development by novel experimental data. We believe that the usage of in 
silico modeling for prediction of pharmacokinetic properties will be boosted by the 
recent explosion of chemogenomics and other types of data.
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Abstract Computational techniques have provided the field of drug discovery with 
enormous advances over the last decades. The development of methods covering 
dynamical aspects in protein–ligand binding is currently leading computer-aided 
drug design to new levels of complexity as well as accuracy. In this book chap-
ter we focus on molecular docking to structural ensembles generated by molecular 
dynamics (MD) simulations. Does the incorporation of multiple receptor confor-
mations allow pushing the borders for molecular docking or does it just lead to an 
artificial increase in false positive hit rates due to a broader conformational space 
of the receptor? We aim to identify guidelines for the best practice of molecular 
dynamics simulation-based ensemble docking from recent studies in the literature. 
Hence, we split the computational workflow for MD-based ensemble docking into 
the respective steps starting from protein structure and compound database to in 
silico hit lists. Thereby, we focus on the identification of successful strategies for 
virtual screening.

15.1  Introduction

15.1.1  Structural Ensembles of Proteins

The view on proteins has evolved rapidly over past decades. Starting out from a static 
view on protein structures, it has been recognized that proteins are  intrinsically dy-
namic at room temperature. X-ray structures of proteins represent at best (assuming 
no structural perturbation due to crystallization) one conformational state trapped in 
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a local energy minimum. As proteins may undergo major conformational rearrange-
ments in solution even at room temperature, information accessible from static pro-
tein structures is inherently limited [1].

Hence, also the paradigm of protein–ligand recognition via a lock-and-key 
model [2] had to be adapted several times over the last years. Koshland proposed 
an induced fit of a single protein conformation to adapt to the ligand or substrate 
upon complex formation [3]. This idea has been expanded by Tsai et al. to include 
the whole conformational ensemble thermally accessible to a protein [4, 5]. They 
propose a mechanism of conformational selection picking a protein conformation 
favorable to bind the ligand from a pre-existing conformational thermodynamic 
equilibrium, therefore covering the whole free energy landscape. Consequently, 
higher energy conformations may contribute to ligand binding although not avail-
able from a static view of a protein [6].

These novel findings of protein chemistry are currently being incorporated 
into structure-based drug design [7]. Structural ensembles available from various 
sources are included in the computer-aided design process of novel therapeutics. 
Protein–ligand docking may be extended from static docking to a single X-ray 
structure to multiple X-ray structures, an NMR ensemble or an in silico generated 
 conformational ensemble [8]. Besides covering a more realistic view on protein–
ligand recognition, these novel approaches including conformational plasticity of 
the receptor have been recognized as important step to treat these macromolecular 
binding events with higher accuracy [9, 10]. The acceptance of flexibility as an 
important issue in molecular recognition is also reflected in attempts to include 
backbone-flexibility in protein-protein docking [11].

15.1.2  Molecular Dynamics Simulations

Molecular dynamics (MD) simulations are a computational technique giving ac-
cess to a conformational ensemble for, e.g., a receptor protein [12]. The evolution 
of an atomic system is simulated via a numerical solution of Newton’s law of mo-
tion over time. The potential energy is evaluated at every time step by a molecular 
mechanics force field (e.g., AMBER force field FF99SB-ILDN [13]). The starting 
configuration of the system is generated from an X-ray or NMR structure of the 
macromolecule and a surrounding water shell is added. A time interval according to 
the fastest movements in the system (hydrogen positions)—typically in sub-femto-
second scale—is chosen allowing for a numerical integration over the differential 
equation for the particle movements. Hence, after every time step new positions, 
new forces and new velocities are calculated for each atom of the system. After a 
plethora of repeats a so-called trajectory of the system is successfully generated 
containing an in silico image of biomolecular movements in solution. Nowadays, 
typical trajectories realistically capture protein dynamics at atomistic level of detail 
at nano to microsecond time scale [14]. The latter has been facilitated by the broad 
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application of graphics processing units (GPUs) speeding up molecular dynamics 
simulations and hence allowing for routine microsecond simulations [15].

As all atomic coordinates as well as the system energy are stored, a conforma-
tional ensemble capturing thermally accessible states for subsequent protein–ligand 
docking can be extracted from the trajectory. In addition to capturing enthalpic con-
tributions, these thermodynamic ensembles also include entropic effects rendering 
a valid free energy for the set of conformations. This fact is especially important, 
as flexible regions both close to the binding site as well as at distinct allosteric sites 
were shown to influence protein–ligand binding sites [16]. Thus, inherently flexible 
regions are of considerable interest for both lead identification and lead optimiza-
tion.

15.1.3  Molecular Docking

Molecular docking aims at predicting valid protein–ligand geometry (pose) from a 
receptor conformation and a set of ligand conformations. To identify a promising 
binding mode, the poses are scored according to molecular interactions and steric 
characteristics aiming at the identification of the optimal binding pose of a ligand. 
More important than the identification of a binding mode is the application of mo-
lecular docking on large compound databases. The score is used to rank potential 
ligands to obtain an enrichment of potential high affinity binders amongst high-
est scoring hits. Molecular docking is applied as standard structure-based virtual 
screening technique for the identification of early hits in drug discovery as well as 
idea generator for de novo design [17]. Another application of docking protocols is 
the elucidation of a binding mode for an experimentally verified ligand at atomic 
level.

The described rigid docking approach does not account for receptor flexibility, 
solely aiming at the identification of the most suitable three–dimensional arrange-
ment of two rigid bodies. The inclusion of side chain flexibility to the receptor poses 
additional challenges in form of additional degrees of freedom to be sampled within 
the docking workflow [18]. Soft docking applications were described including side 
chain flexibility inherently by allowing some degree of overlap between ligand and 
receptor atoms [19].

Degrees of freedom are further increased if also the protein backbone is allowed 
to show conformational heterogeneity leading to so-called ensemble docking. This 
can either be achieved by a united description of several receptor conformations 
by a grid averaging approach [20], the remodeling of loop regions after docking 
[21], or the explicit treatment of different conformations during docking. This last 
technique will be the focus of our review, as it largely resembles a mechanism of 
conformational selection.
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15.1.4  The Ensemble Docking Workflow

Docking to multiple receptor conformations (sometimes abbreviated MRC [8]) can 
be applied on a set of conformations from any source. Experimentally different X-
ray conformations or NMR solution structures can represent the same biomolecular 
system. NMR solution structures and conformations sampled during an MD simu-
lation represent a valid thermodynamic ensemble, e.g., a canonical ensemble, for 
simulations with constant number of particles, volume, and temperature. Although, 
a collection of X-ray structures is not a valid thermodynamic ensemble, docking to 
multiple X-ray structures is sometimes also termed ensemble docking.

The idea to combine molecular dynamics simulations and molecular docking is 
an obvious way to include protein flexibility within docking if flexibility is not cov-
ered within experimental structures [22]. Here, we describe the concept of ensemble 
docking to an MD-based ensemble by following the workflow and present recent 
interesting examples applying this technique. The principle workflow is intuitive: 
First, a structural ensemble of the receptor is generated via an MD simulation. Sec-
ond, molecular docking into one or multiple representations of the ensemble is per-
formed. Finally, the docking results for multiple representations are pooled into a 
single score for each compound.

Several practical questions arise along this ensemble docking workflow where 
different strategies can be followed. Moreover, we will discuss that they are not 
only practical questions but are directly related to the underlying theory and should 
be considered regarding the physical interpretation of final results.

• How to setup the MD simulation?
• How to select the right representation of the ensemble for docking?
• How to score given multiple hit lists?

At each step, we tried to systematically cover alternative approaches followed in 
literature. Multiple branching points introduce a lot of variables in the workflow 
making it hard to compare test cases from literature directly with each other. There-
fore, we set up a test case where we can consistently address individual questions 
and systematically show the influence of distinct strategies.

We will focus on influenza neuraminidase, an established drug target, where 
computational techniques were already successfully applied in the development of 
established inhibitors [23]. Influenza neuraminidase is a classical target to investi-
gate and visualize the adaption of side chain orientation upon binding of alternative 
ligands [24]. Additionally, backbone flexibility is an issue for ligand recognition 
[25] and several studies applied molecular dynamic simulations in combination 
with molecular docking for the investigation of novel lead structures [26, 27].

Data presented here are extracted from all-atom simulations of influenza neur-
aminidase with an explicit water model and represent a sampling time of 30 ns 
(Fig. 15.1). The starting structures are three alternative X-ray structures of neur-
aminidase of recent forms of influenza A H1N1 without an inhibitor (Fig. 15.1a), 
bound to the inhibitor zanamivir (compound 1; Fig. 15.1b) and an active site 
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mutation I223R (PDB codes 3NSS, 3TI5 and 4B7M [28–30]). The starting struc-
ture of the mutant I223R has an alternative backbone conformation at a loop region 
next to the binding site which enlarges the binding site cavity (Fig. 15.1c) [25]. 
This so-called “open” state of the binding site is observed for several ligand-free 
X-ray structures of influenza neuraminidase and was shown to allow the binding of 
larger inhibitors in comparison to the classical neuraminidase inhibitors [27, 31]. 
We included 3-(p-tolyl)allyl-2-deoxy-2,3-didehydro-D-N-acetylneuraminic  acid 
[31] (compound 2) in our docking study to examine which protocol can reproduce 
this alternative binding mode. Transitions between the closed state, resembling the 
zanamivir-bound state and the alternative, open state were sampled in simulations 

Fig. 15.1  Structural comparison of three influenza neuraminidase trajectories: Representative 
structures from the trajectories of the ligand-free closed simulation (a), the ligand-bound closed 
simulation (b), and the ligand-free open simulation (c). Root mean square deviations (RMSDs) of 
active site C-α atoms in respect to the first snapshot of the ligand-bound trajectory indicate non-
overlapping conformational spaces between open and closed state simulations (d)
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extending over several dozens of nanoseconds in the absence of a ligand [32]. Here-
in presented trajectories do not overlap in the sampling of alternative conformations 
of the critical loop region. This gives a further hint that the prediction of a specific 
ligand-bound conformation needs extensive sampling (in this case exceeding 30 ns) 
or enhanced sampling methods. We decided to start sampling from three alternative 
starting structures which allows covering a broader conformational space. Howev-
er, this strategy is only feasible when information about alternative conformations 
has already been explored experimentally. Equilibration and sampling simulation 
followed an established protocol [33] using Amber12 [34] and Ambertools13 for 
analysis [35]. Influenza neuraminidases were sampled in their native tetrameric 
state [36].

15.2  Molecular Dynamics-based Ensemble Docking

15.2.1  Sampling the Free Energy Landscape

15.2.1.1  Principles of Molecular Dynamics Simulations

MD simulations provide a complete atomistic view of (bio-)molecular motions on 
the femtosecond to microsecond scale. The free energy landscape determines which 
states will contribute to an ensemble of structures at a given temperature. Also ki-
netic aspects, e.g., transition frequencies between different states are determined 
by the energy barriers within the free energy landscape of the system [12]. Mo-
lecular dynamics simulations explore the landscape given an energy distribution 
determined by the system’s temperature.

First computer simulations of a protein system were described in 1977 [37] with 
a trajectory length of 9 ps in vacuo. Within this time scale side chain movements 
could be observed, whereas the backbone geometry remained virtually unaffected. 
Since then continuous increase in computing power allowed extension of sampling 
time. Time scale of most publications we will refer to is in the nanosecond range. 
Loop movements including fast domain motions can be observed within this time 
scale [12]. There is evidence that increasing sampling time positively affects the re-
sults of subsequent docking to the structural ensemble: the fraction of ligand poses 
similar to the native pose increased for the test cases thrombin and acetylcholines-
terase, when comparing a 50 ps simulation with a 30 ns simulation [38]. Also, single 
observations of transitions between ligand-bound and free state were observed in 
MD simulations of this range, e.g., for influenza neuraminidase in a 100 ns simula-
tion [32]. However, statistical sampling of transition rates between these states is 
mostly not reached and we must expect that the simulations discussed within this 
overview do not cover larger loop movements.

Current simulation techniques are capable of routinely capturing molecular mo-
tions in the microsecond time scale covering water molecules as explicit solvent 
by usage of GPUs [15]. It will show up in the near future how the more thorough 
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sampling of the receptor free energy landscape will influence results of ensem-
ble docking. This technical advance and the use of enhanced sampling methods 
(see Sect. 15.2.1.3) facilitate coverage of dynamical events such as domain rear-
rangements associated with slower kinetics [12].

15.2.1.2  Setting up an MD Simulation to Generate an Ensemble for Docking

Molecular dynamics simulate the evolution of an atomic system via a numerical 
solution of Newton’s law of motion. The potential energy is evaluated at every time 
step by a molecular mechanics force field (e.g., AMBER force field FF99SB-ILDN 
[13]). Small organic molecules can be incorporated into simulations after fitting 
charges from quantum mechanical calculations and atom typing via the Generalized 
Amber Force Field GAFF [39].

The starting configuration of the system is generated from an X-ray or NMR 
structure of the (bio)-molecule and a surrounding water shell is added. A time in-
terval according to the fastest movements in the system (hydrogen positions)—
typically in sub-femtosecond scale—is chosen allowing for a numerical integration 
over the differential equation for the particle movements. Hence, after every time 
step new positions, new forces and new velocities are calculated for each atom of 
the system. After a plethora of repeats a so-called trajectory of the system was suc-
cessfully generated containing an in silico image of biomolecular movements in 
solution.

In a perspective article from 2008, molecular dynamic simulations are pointed 
out to be an “expert system” [22]. The authors highlighted that this technique is 
challenging with a lot of practical caveats to be considered in system preparation 
and simulation protocol. Moreover, the simulation data need to be followed and 
checked for reasonable credibility of the results. As all atomic coordinates as well 
as the system energy are stored, several analysis techniques can be applied after 
performing molecular dynamics simulations. Standard analyses include the calcula-
tion of one-dimensional root mean square deviation (RMSD) to a reference struc-
ture yielding measures for stability of the simulation (see Fig. 15.1d). Additionally, 
two-dimensional RMSD analysis reflects convergence of the simulations (compare 
[33, 36, 40]).

Some of the questions when setting up the simulation are: Should a ligand-bound 
or a ligand-free simulation serve as starting structure? Should the ligand be included 
in the simulation? Which part of the protein should be treated as flexible? How to 
handle protonation and solvation? Considering the high computational costs to run 
the MD simulation an appropriate selection and preparation of the starting coordi-
nates is essential.

Ideally, the impact of alternative starting structures will compensate during the 
simulation when the conformational space is sampled exhaustively. Following the 
conformational selection paradigm the ensemble of a ligand-free simulation of a re-
ceptor should cover a conformation prone to ligand binding. In agreement with this 
concept, the McCammon group selects ligand-free starting structures to generate 
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trajectories for subsequent ensemble-based docking studies [41]. Systematic analy-
sis indicate that conformations similar to the ligand-bound state can be sampled 
in trajectories where no ligand was present during sampling. For our test case, the 
active site C-α atoms of the ligand-free simulation remain close to the starting con-
formation of the ligand-bound simulations reflected in RMSD values below 1 Å in 
Fig. 15.1d.

However, the conformational space of the protein–ligand complex is different 
from the ligand-free state and the overlap is not necessarily large. Upon ligand 
binding a shift in population and accessible conformations is expected [24]. Ex-
amples where the crystal structures of bound and ligand-free state differ in several 
Å in RMSD are known, e.g., the backbone between the L-leucine binding protein 
differs in 7.1 Å RMSD in free state versus phenylalanine-bound state [42]. In such 
cases sophisticated protocols are necessary to generate a conformation resembling 
a ligand-bound state [42]. However, there are cases where a ligand-bound receptor 
state is never sampled in an unbiased ligand-free simulation.

Conformations sampled in the ligand-bound trajectory are adapted to the ligand. 
This is reflected when docking performance is compared for ligand-bound simula-
tion and ligand-free simulation. Enrichment of known ligands within sets of decoys 
is higher for snapshots extracted from trajectories where the ligand is present [43]. 
Ligand-bound X-ray structures representing the holo state are prepared to accom-
modate a ligand. The presence of a ligand in the MD simulations also influences 
conformational sampling. In our test case influenza neuraminidase, the side chain of 
Arg371 stays in an stretched conformation forming a salt bridge with the carboxyl-
ate of zanamivir (see Fig. 15.1b), whereas it explores alternative states in ligand-free 
simulations (see Fig. 15.1a, c). However, the presence of a specific ligand biases 
the sampled conformations of the receptor towards a distinct chemotype. This leads 
to restricted recovery of the correct binding mode of alternative scaffolds [44]. For 
X-ray structures it was shown that ligand-bound structures might be considered as 
overspecialized [44]. Especially, in virtual screening, when the search for novel in-
hibitor scaffolds motivates a docking project, this overspecialization needs to be 
avoided to allow an enrichment of different chemotypes [45]. Therefore, a simula-
tion starting from a ligand-free simulation might be more appropriate. In order to 
allow the binding site to be adapted for ligand binding without bias toward a specific 
ligand, Xu et al. developed an implicit ligand-model [38]. The ligand–model concept 
(LIMOC) uses small molecular probes covering the accessible surface of the binding 
site dependent on the local environment. Subsequent sampling follows an algorithm 
which allows the probes to explore different sites as well as an adaption of the bind-
ing site to the fragment-like structures. Application of the concept on thrombin and 
acetylcholinesterase shows that the recovery of the native binding pose is between 
the one for the simulation with the native ligand and a ligand-free simulation [38].

With focus on subsequent investigation of the protein–ligand interactions in a 
defined binding site within docking the flexibility of regions away from this bind-
ing site might be negligible. Therefore, flexibility is frequently limited on specific 
regions during the MD simulations. The influence of restricted flexibility was ana-
lyzed by Bolstad et al. for dihydrofolate reductase of different organisms and by 
Armen et al. for the case of p38α mitogen-activated protein kinase [46, 47]. Bolstad 
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et al. limited the flexibility on residues within 3.5 or 6 Å around the ligand while 
keeping the ligand and the co-factor restrained. They compared those simulations 
regarding the subsequent docking performance which showed an increase in the 
rate of improper binding poses with an increased flexible region. These results were 
not completely consistent and seem to depend on the quality of the starting struc-
ture. When homology models or NMR structures were used as starting structures, 
docking results improved with the inclusion of more residues within the flexible 
part [46]. Similarly, Armen et al. observed a reduced fraction of poses close to the 
native structure when they allowed the complete protein to be flexible in compari-
son to models with restricted flexibility [47]. Both studies used simulation condi-
tions without specifying a water model, and we agree with the authors of the second 
study that especially the fully flexible model will benefit from an alternative simu-
lation protocol, e.g., inclusion of solvent. We recommend the use of explicit solvent 
environment or at least an implicit solvent model. Otherwise, an all-atom simula-
tion with an empty active site will in general tend to collapse over the active site. 
Explicit water models increase the computing time. Therefore, a water cap around 
the active site is applied in some studies to reduce the water fraction in comparison 
to a simulation in a water-filled periodic simulation box [38, 48]. However, this 
restriction in contrast to a fully solvated state was not yet evaluated in respect to 
docking results. The crucial role of water in docking experiments is well accepted 
[49] and therefore will also be discussed for preparation of structures for molecular 
docking (see Sect. 15.2.3.2).

Similar to the question of solvent treatment, protonation of amino acid side 
chains is an essential step in protein–ligand docking [8, 50]. Therefore, the pro-
tonation state should also be critically considered during setup of the simulation. 
In the case of neuraminidase, we show an example where the ligand-free and li-
gand-bound state do not only differ in starting conformation but also in proton-
ation states (Fig. 15.2). For the test case we present in other parts of this overview, 
we used structures having consistent protonation states for both ligand-bound and 

Fig. 15.2  Active site of influenza neuraminidase protonation can dependent on side chain geom-
etry and ligand binding. a In a ligand-free structure Glu119 orients towards Glu227. A protonated 
state of Glu119 explains this conformation via a hydrogen bond. b Glu119 shows an alternative 
side chain conformation in a ligand-bound structure. Therein, Glu119 faces the positively charged 
guanidinium group of the ligand zanamivir and is deprotonated. Protonation states were predicted 
with the Protonate3D protocol [54]. (PDB accession codes 3BEQ and 3B7E)
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 ligand-free structure. All glutamic acid residues in the binding site are deprotonated. 
Although there are attempts to include reprotonation events in MD simulations with 
constant pH simulations [51], classical force fields do not allow an adaption of the 
protonation state. With the assignment of atom types in simulation setup, proton-
ation and tautomer states of amino acids are determined for the simulation. The 
effect of protonation on docking is essential as the interaction potentials, especially 
electrostatic interactions, will differ for a deprotonated or protonated glutamate. 
Recently, two studies addressed the aspect of binding site protonation for rigid mo-
lecular docking [52, 53]. Especially docking results for binding sites containing a 
histidine residue were shown to be dependent on protonation and tautomer states, as 
for this amino acid various alternative states can occur [53]. The altered interactions 
of a protonated versus deprotonated amino acid will also influence the conforma-
tional sampling during the MD simulation.

15.2.1.3  Alternative Sampling Methods

The conformational transitions observed between X-ray structures in the ligand–
free and ligand-bound state can include loop shifts of several Ångströms or the 
reorientation of whole protein domains [42, 55]. The time scale of such events is 
typically not covered statistically by all-atom simulations ranging in the area of 
several dozens of nanoseconds [12]. Focusing on these transitions several groups 
established different procedures to improve the sampling in comparison to clas-
sical unbiased MD simulation. We refer the interested readers to a recent review 
on enhanced sampling techniques in the context of drug design and the references 
therein [56]. Here we will only focus on methods used in connection with molecular 
docking.

We group methods which rely on the same principles as MD simulation, e.g., 
torsional angle MD [47], replica exchange MD (REMD) [57, 58] and targeted MD 
[59]. Also other enhanced MD sampling techniques, such as accelerated MD 
could be applied [56]. Torsional angle MD is not an enhanced sampling technique 
in the classical sense as no bias is applied to overcome energy barriers more eas-
ily. Sampling using torsional angle MD is more efficient than standard MD as it 
takes advantage of an internal coordinate system based on the relative orientations 
along the dihedral angles in a protein [47]. However, torsional angle MD cannot 
be applied to systems with multiple molecular entities such as solute plus solvent 
molecules hindering its broad application.

In REMD techniques higher temperatures allow an enhanced sampling [60]. 
Multiple copies of a system are simulated at different temperatures and an exchange 
between the replicas is regulated by a Metropolis criterion [61]. The technique al-
lows to overcome energy barriers more easily and was shown to be suitable to repro-
duce a ligand-bound-like conformation of a flexible RNA target [58].  Osgurthorpe 
et al. compared the performance of docking to REMD-derived versus  classical 
MD-derived ensembles. However, they could not observe an improvement on the 
discrimination between active and inactive ligands for the subsequent docking [57].



51115 (How to) Profit from Molecular Dynamics-based Ensemble Docking

Targeted MD can be used when two states of a given protein are known, e.g., 
the open and closed states of the binding pocket of serine racemase in a study of 
Bruno et al [59]. An artificial force is applied during the MD to bias the transition 
between the two states. The need of a reaction coordinate limits this application to 
systems where a target structure is known beforehand. The trajectory of a targeted 
MD simulation can be used in the same way as ensembles derived from unbiased 
MD simulations [59].

Alternatively, biased simulations allow the reconstruction of the potential of 
mean force or a free energy landscape [56]. If the reaction coordinates are selected 
in a way that they cover the ligand binding or unbinding process, enhanced sam-
pling methods allow an estimation of the free energy of binding. This was shown for 
metadynamics simulations using an artificial potential which promotes the system 
to leave conformational spaces already visited [62]. Such a “docking” strategy is 
inherently considering the flexibility of both the ligand and the target, but is not 
suitable for high-throughput screening due to the necessity of a defined reaction 
coordinate and the exhaustive sampling for individual ligands.

Other sampling methods do not rely on the time-dependent evolution of a struc-
ture, but try to cover protein flexibility in collective variables. Collective variables 
describe the global motions within a system and can be derived from an MD simula-
tion or from network models. From an MD simulation a principal component analy-
sis of the covariance matrix of the N atom positions yields a set of N eigenvectors. 
The first ten to twenty eigenvectors contribute significantly to the overall atomic 
fluctuations and are therefore called essential modes or soft modes [63].

Alternatively, collective variables can be obtained by normal mode analysis 
(NMA) when diagonalizing the second derivative of the energy function with re-
spect to the coordinates (the Hessian matrix) [24]. NMA is frequently applied on 
network models of biomolecular systems where heavy atoms, C-α atoms or residue 
representing beads (N) are connected with springs of an adapted force constant. The 
various approaches suggested for subsequent docking have limited comparability 
as they differ by the form of the network model, the underlying energy function 
(origin of spring forces), the extraction of relevant normal modes and the weighting 
of deformation along a normal mode. One of the models applied in the community 
is the elastic network model (ENM) by Hinsen [64] on C-α atoms (N) with distance-
dependent force constants. NMA yields 3N-6 eigenvectors, which can be used as 
coordinates for deformation of the protein and generation of an ensemble of alterna-
tive structures [24]. To limit the number of modes for subsequent structure genera-
tion, one can decide to focus on the first (up to 10) softest modes with the highest 
eigenvalues [65, 66]. Alternative approaches to reduce dimensions are the identifi-
cation of the relevant modes for loops in the binding site after NMA of an ENM [67] 
or the limitation of the ENM on heavy atoms in the binding site region and analysis 
of the first 100 modes [68]. Subsequently, normal modes can be used to generate 
conformations, which are then used similarly as conformations generated during 
an MD trajectory [66, 67, 68, 69]. Rueda et al. used a larger test set of targets and 
could show that their approach could successfully reproduce a near-native ligand 
pose in cross-docking for flexible targets [68]. Alternatively,  collective  variables 
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can be integrated in the docking algorithms as additional degree of freedom [63, 65, 
66]. Zaccharias integrated the MD-derived collective variables [63] in a new dock-
ing algorithm and later NMA-derived collective variables and side chain flexibility 
were combined [65].

Alternative sampling strategies use Monte Carlo (MC) algorithms to sample 
alternative protein structures. Here, we will present two cases where active site 
backbone flexibility is integrated in presence of a ligand. The IREDA algorithm 
generates multiple pocket conformations by an algorithm reorienting the co-crys-
tallized ligand in the pocket (seeding), minimizing the resulting complexes and fi-
nally optimizing the energy with a global MC protocol [70]. During the optimiza-
tion sampling of protein flexibility is enhanced with random perturbation of torsion 
angles around the binding site and small displacement and rotation of the ligand. 
The procedure uses the internal coordinate system of the ICM docking protocol and 
the generated structures are evaluated using a Poisson solvation energy term [70]. 
For a set of kinases the novel generated structures perform equally well as multiple 
X-ray structures in cross-docking experiments and for the discrimination of active 
from inactive ligands. Moreover, novel binding pockets were not overoptimized for 
the ligand used for structure generation and allowed near-native poses for alterna-
tive ligands.

In contrast, ROSETTALIGAND docking uses MC sampling in presence of the 
ligand to be docked [71]. The algorithm presented in this study is improved over the 
first published ROSETTALIGAND algorithm [72] by integrating backbone recep-
tor flexibility and additionally, a more exhaustive sampling of ligand flexibility. 
The presented study used about 5000 trajectories for each ligand conformer limit-
ing its large scale application. A potential reduction of this extensive sampling is 
discussed by the authors. Still, the protocol is highly parallel and therefore scales 
with the number of used CPUs. Each trajectory consists of three phases: first, a 
 coarse-grained placement of the ligand is performed and evaluated for shape com-
plementarity focusing only on receptor backbone and C-β atoms; second, a MC-
based minimization scheme is repeated for six cycles exploring side chain rotamer 
libraries, ligand positions and torsions; third, a final minimization includes back-
bone flexibility. The energy is evaluated with the all-atom ROSETTA scoring func-
tion for the second and third step with soft van-der-Waals repulsion in the second 
step. The bench–marking results show a clear improvement in comparison to the 
previous ROSETTALIGAND implementation indicating the beneficial effect of 
integrating backbone flexibility in terms of identification of the near-native ligand 
poses for the ROSETTALIGAND test cases [72] and the Astex test set. However, 
for a set of urokinase structures inclusion of backbone flexibility lead to generation 
of highly ranked but non-native poses indicating an increased rate of false positive 
hits by the additional degrees of freedom [71].

15.2.1.4  Representation of the Structural Ensemble

Choosing the optimal representation of a collection of conformers (ensemble) is a 
crucial step independent of the origin of alternative conformations. Therefore, most 
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reviews dealing with the integration of receptor flexibility in molecular docking dis-
cuss this aspect extensively [8, 24, 73]. Here, we try to systematically classify dif-
ferent strategies and discuss their application in respect to conformations generated 
by MD simulations. However, some of the concepts are applied mainly to collec-
tions of structures derived by experimental sources (X-ray or NMR structures) rath-
er than to ensembles generated by MD simulations. In this chapter we will present 
the diverse strategies according to Fig. 15.3 and discuss their individual potential.

The easiest strategy is a systematic merging of conformational plasticity sam-
pled during the MD trajectory into one single representation. Prominent examples 
are the unified representation of multiple conformations in FlexE [20] or ensemble-
based grid representation [74].

FlexE is an extension of the docking program FlexX [75]. FlexX implements 
side chain flexibility via sampling of alternative rotamers during docking. Simi-
larly, alternating backbone conformations are sampled in FlexE, whereas equivalent 
structures are unified in one representation based on superposition [20]. The con-
cept relies on a main preserved geometry of the binding site for the different con-
formations; for larger conformational differences FlexE fails to unify the alternative 
conformations, e.g., for the two test cases: X-ray structures of c-jun N-terminal 

Fig. 15.3  We classify the approaches to represent an MD trajectory for the subsequent molecular 
docking into five alternative strategies: merged structure representation, periodic structure selec-
tion, selection of structures based on a clustering, guided by the performance of individual struc-
tures, or selection of structures during docking. Subsequent molecular docking relies on chosen 
the receptor ensemble representation
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kinase 3 and β-secretase [76]. This might be one of the reasons why FlexE was 
more frequently applied on ensembles of alternative X-ray structures and not on 
MD-derived ensembles where larger transitions are expected.

Likewise, ensemble-based grid representation of binding sites is rarely used for 
MD-derived ensembles. Ensemble-based grid representations, also called compos-
ite-grids, are one of the oldest concepts to include protein flexibility within docking 
[74]. Technically, the derivation of one grid from an MD ensemble follows the same 
approach as for multiple X-ray structures or NMR ensembles. Different averaging 
strategies were evaluated to calculate interaction potentials of the grid points for 
experimental ensembles [74, 77]. Broughton averaged the grid representation of 
conformations extracted from short MD simulations (< 100 ps) of cyclooxygenase 
2 and observed an improvement over docking to a rigid protein in terms of ranking 
using the docking program FLOG [78].

Obviously, merging strategies are especially time efficient [79]. A single docking 
run covers all information from an ensemble, so the time per docked compound is 
minimized compared to methods explicitly relying on multiple independent recep-
tor conformations. However, taking into account the computational need for the 
generation of an ensemble using all-atom MD simulations, the argument of compu-
tational demand while docking loses weight. Additionally, atomistic information of 
specific conformational states sampled during MD simulation is lost by the unifica-
tion into one representation. With these aspects in mind it is not surprising that alter-
native strategies of ensemble representation are preferentially used in combination 
with MD-generated ensembles.

Parallel docking to multiple conformations selected from the trajectory is fre-
quently used in combination with MD simulations. The periodic extraction 
of snapshots from an MD simulation is a straightforward way to select multiple 
conformations. Subsequently, molecular docking is performed on the individual 
 snapshots independently from each other. The continuous and unbiased selection 
should ideally represent the state space sampled in the simulation. In consequence, 
the resulting collection of snapshots represents a valid thermodynamic ensemble 
and the subsequent ensemble of docking results are interpreted via statistical ther-
modynamics (see Sect. 15.2.2.3).

A protocol using time-dependent extraction of conformers from MD simulations 
and subsequent docking is developed by the McCammon group and known as “re-
laxed-complex-scheme” (RCS) [41, 80, 81, 82]. Classically, RCS applications use 
AutoDock, an established docking program for flexible ligand docking based on a 
genetic algorithm. Recently, AutoDock Vina a new implementation of the algorithm 
is used as it is more suitable for parallel application [83]. A major success of this 
protocol was the identification of a cavity next to the binding site in HIV integrase 
[81] allowing the development of inhibitors specifically addressing this cavity. The 
approved drug raltegravir was developed based on the binding mode suggested by 
Schames et al. Besides this one significant contribution to drug discovery, several 
more applications of the RCS are described in literature and represent MD-derived 
ensemble docking studies using periodic snapshot extraction.
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In early applications, snapshots are extracted in a time interval of 10 ps for simu-
lation lengths of 2 ns [80] or 22 ns [82], whereas in later applications every 20 ps for 
simulations of lengths up to 50 ns yielding in hundreds to thousands of snapshots 
for docking [43]. Consequently, docking runs for individual snapshots produce a 
range of scoring values for each compound instead of single scores [41, 82, 84, 
85]. Visualization of such scoring profiles over the simulation time shows the fluc-
tuation of the docking scores and typically a histogram is generated for scoring 
values (Fig. 15.4). We docked the approved drug zanamivir and an experimental 

Fig. 15.4  Docking results: Typical score profile predicted by docking to 300 snapshots periodi-
cally extracted from several simulations of influenza neuraminidase over 30 ns sampling time for 
a zanamivir and b compound 2, known to bind the open conformation of influenza neuraminidase. 
The histogram visualizations (c, d) show that best scoring values are obtained with conformations 
from the ligand-bound simulation. Docking poses ( black) discussed in the text are shown in com-
parison with native poses of zanamivir ( green) and compound 2 ( blue) (e–g)
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inhibitor, compound 2, known to bind to the open 150-loop conformation of neur-
aminidase (see Fig. 15.1c). Each of the three different simulations were represented 
by 300 periodically extracted snapshots and docking to in total 900 structures was 
performed with the program GOLD using the knowledge-based fitness function 
GOLDSCORE. As discussed before (Sect. 15.2.1.2) conformations from the ligand-
bound simulations are optimized for zanamivir and result in the most favorable 
poses, reflected by high docking scores (Fig. 15.4a, c). The pose with the best score 
represents a near-native structure (Fig. 15.4e). As expected a near-native pose of 
compound 2 is generated with a conformation from the open simulation. The low 
scoring value for this pose might be related to the conformation of the Arg371 side 
chain in the receptor conformation which is unfavorable to establish the close con-
tact to the ligand’s carboxylate group (Fig. 15.4g). Consequently, a higher score is 
generated with a snapshot of the zanamivir-bound simulation showing a flipped 
ligand orientation in comparison to the native-pose from the X-ray structure but 
an optimal contact between Arg371 and the ligand (PDB code 3O9K) (Fig. 15.4g).

It was shown that the best scoring value does not necessarily represent a binding 
pose close to the crystal structure [80]. Single values showed artificially high non-
physical binding energies generated for docking poses with clashes between ligand 
and protein. Subsequent minimization or post-processing using MM/PBSA as al-
ternative free energy estimation techniques yielded top ranking for the pose near to 
the native X-ray structure [82]. Without further post-processing ranking of different 
compounds by the arithmetic mean over the scoring profile is suggested and the 
mean of scoring values was successfully applied in selecting a lead modification for 
HIV protease inhibitors [82].

Concepts similar to the RCS are applied by other groups using alternative simu-
lation protocols or docking algorithms [24, 86]. Most of them do not present ap-
plications but rather evaluate the technique on multiple test cases in comparison to 
other virtual screening techniques or aim at the identification of useful parameters 
for the workflow. For example, Paulsen et al. investigate how the pooling of dock-
ing scores impacted the ranking accuracy for two test cases: Candida albicans dihy-
drofolate reductase and influenza neuraminidase [86]. Handling of multiple scoring 
values is a major question in ensemble docking, which we will address later (see 
Sect. 15.2.2.3). An exemplary application of a similar method is the virtual screen-
ing study on the estrogen receptor predicting novel leads in silico, unfortunately 
lacking experimental verification [85].

Successful virtual screening projects using the RCS are summarized in a paper 
by Amaro et al [84]. However, for these studies an alternative method to select the 
conformations from the ensemble was chosen as multiple receptor conformations 
increase the docking time per compound linearly with the number of conformations 
considered. Therefore, especially focusing on virtual screening application, where 
the compounds to be docked can easily exceed 105, the number of considered snap-
shots has to be limited. In addition to the increase in docking time per compound, 
more conformations demand a higher overhead time as each protein conformation 
must be prepared separately for the docking run depending on the docking algo-
rithm (e.g., grid generation in GLIDE).



51715 (How to) Profit from Molecular Dynamics-based Ensemble Docking

Reducing the number of snapshots resembles the stochastic experiment of pick-
ing individuals out of a larger collection: The possible combinations to select r 
different snapshots out of N different snapshots registered in a trajectory scales 
with an N over r relation leading to an explosion of possibilities with N [87, 88]. 
For ensembles of X-ray structures an extensive analysis over potential combina-
tions was performed. Indeed, the performance of the individual combinations is not 
equal [87]. In our test case we observed that reducing 300 snapshots to 100 results 
in a similar score profile if the snapshots are selected continuously. The further 
reduction by increasing the incremental interval of extraction to 3 ns yielding 10 
snapshots, which would be a rational number of structures for virtual screening, is 
not sufficient to reproduce the original scoring profile (data not shown). This shows 
that this large extraction interval is not sufficient as one might lose crucial structural 
diversity.

More appropriate is the selection of structures representing specific regions of 
conformational space to ensure coverage of the structural variation in the trajectory. 
Such a clustering approach needs a metric to compare the binding site charac-
teristics of the snapshots and groups them by similarity or distance. Subsequently, 
single structures are selected to represent the individual cluster groups representing 
a specific fraction of a trajectory (population). A plethora of clustering algorithms 
[89] is available for conformations from MD simulations, e.g., as implemented in 
the analysis tools of widely used simulation packages such as AmberTools PTRAJ 
[34]. For the case of the mutant W191G of cytochrome c peroxidase [84], Amaro 
et al. discuss the application of root mean square deviation (RMSD) of atom posi-
tions between pairs of conformations as distance criterion and subsequent cluster-
ing. The applied exclusion sphere clustering based on a similarity criterion of 1 Å 
RMSD between backbone atoms was especially developed to analyze the confor-
mational space sampled during an MD simulation [90]. As most clustering algo-
rithms are based on atom positions, a proper alignment of the overall structures is 
needed. Similarly, the tool “QR factorization” uses an RMSD criterion between the 
snapshots to perform a hierarchical clustering. This procedure allows to select a dis-
tance threshold after clustering, and hence, selection of snapshots by cluster level. 
It was shown that similar results regarding the scoring profile could be produced 
for the RNA editing ligase when docking to an ensemble of 400 snapshots extracted 
periodically or to reduced set of 33 representative structures selected by a certain 
RMSD threshold [84, 91].

Clustering based on active site atoms RMSD was selected as method of ensem-
ble representation in a study to rationalize the binding mode of the natural product 
katsumadain A to influenza neuraminidase [27]. A similar strategy was followed 
for the same target in a lead discovery study [26]. For virtual screening of the da-
tabase the authors first used representative structures of the three most populated 
clusters for two simulations with and without ligand and the two crystal structures 
resulting in 8 parallel docking runs. Subsequently, top ranked compounds were re-
scored using the mean of scores from docking to all 27 cluster representatives of 
the holo simulation following the RCS protocol [84]. Discrimination of active and 
inactive compounds by docking could be improved for serine racemase with cluster 
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 representatives versus two X-ray structures representing the start and target state 
of the targeted MD simulation [59]. Six duster representatives were extracted from 
a targeted MD trajectory by RMSD-based clustering. Xu et al. applied an RMSD-
based clustering to reduce the number of snapshots from different trajectories of 
10 ns or 30 ns simulation time to proceed with a fairly equal number of 200–250 
representatives for the subsequent validation [38].

We performed an RMSD-based clustering on the active site atoms revealing the 
representative structures shown in Fig. 15.1a–d. The clustering was performed with 
CPPTRAJ from AmberTools13 [35] and followed an agglomerative clustering al-
gorithm using complete linkage with an RMSD of 1.5 Å for the formation of a new 
cluster. For each cluster one central conformation is defined as representative. Us-
ing this representation for the subsequent docking the number of necessary docking 
runs is reduced by a factor of around 10 in comparison to the periodical extraction 
using one snapshot every 100 ps (Table 15.1). Still, docking results show that the 
ligand-bound simulations result in the most favorable scoring values. For both li-
gands the maximal scoring values are observed for a structure representing a cluster 
populated only by 11.7 % of the ligand-bound simulation. The respective docking 
poses resemble the near-native pose of zanamivir and the flipped pose of compound 
2 as shown in Fig. 15.4e, g.

The RMSD of C-α or active site atoms is the most popular measure for dis-
tance between conformations. Further criteria suggested are for example relative 
distances measured between binding site atoms forming a conserved ligand binding 
framework in dihydrofolate reductase [46]. The authors combine these distances 
into a one-dimensional measure, compare it to the starting structure and apply it to 
reduce the number of ensemble representatives. Furthermore, the shape of the ac-
tive site can be considered as distance criterion to cluster conformations as applied 
on MD snapshots from a simulation of HIV protease, cyclin-dependent kinase 2 
and androgen receptor [57]. In principle, any other metric allowing to differentiate 
binding site geometries from each other could be used for clustering.

Clustering methods are commonly used to reduce the number of representative 
structures for docking to ensembles derived from MD simulations. Clearly, increase 

Table 15.1  Scoring results (GOLDSCORE) for periodical extracted structures versus ensemble 
representation by cluster representatives generated by RMSD-based clustering on the active site 
atoms shown in Fig. 15.1a–c. In the weighted average score, the scoring values for cluster represen-
tative structures are multiplied with the population of the respective cluster in the MD simulation
Ligand Simulation Periodic structure selection Cluster-based selection

Docking 
runs

Best 
score

Average 
score

Docking 
runs

Best 
score

Weighted 
average 
score

Zanamivir Ligand-free closed 300 76.87 57.01  8 71.29 60.13
Ligand-bound closed 300 93.18 70.96  5 85.29 71.16
Ligand-free open 300 67.47 51.14 14 64.12 52.60

Compound 2 Ligand-free closed 300 72.66 54.24  8 67.75 55.45
Ligand-bound closed 300 80.33 57.85  5 69.60 62.81
Ligand-free open 300 75.61 52.25 14 75.61 56.20
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in efficiency by the reduction of time per docked compound makes clustering at-
tractive compared to the periodic selection of snapshots. The major assumption with 
this strategy is that a suitable selection of representatives should allow to cover the 
important structural variability. By now, a solid statistical evaluation of a standard 
recipe is out of reach considering the variety of clustering criteria and algorithms.

A systematic reduction of structures from the MD simulation can also be 
achieved via a performance assessment of individual snapshots, e.g., selected by 
periodic extraction. Subsequent applications such as virtual screening of large da-
tabases would only proceed with the snapshot(s) performing best. Docking perfor-
mance can be evaluated in, e.g., three categories: reproduction of native binding 
poses, ranking of active compounds, and discrimination of active and inactive com-
pounds [88, 92]. Dependent on the purpose of docking one might choose between 
different performance measures. Various binding site properties such as volume, 
hydrophobicity and opening state were evaluated for ensembles of X-ray structures 
in respect to their performance in discriminating active from inactive compounds 
[93]. The authors could develop some rules depending on the inherent character-
istics of the protein binding pocket which might be useful to select a specific X-
ray structure prone to outperform alternative ones prior of extensive evaluation. 
By now, similar rules are not available for MD-derived structural ensembles [43]. 
Therefore, evaluation strategies are necessary and their dependence on experimen-
tal data might be a general limit of this structure selection strategy. When evaluating 
the performance of periodically extracted snapshots from MD simulations, Nich-
ols et al. could identify individual conformations that outperformed even the best 
available X-ray structure in terms of discrimination between known ligands and 
decoys for all investigated cases [43]. Xu et al. suggest a similar strategy to identify 
suitable snapshots generated via implicit ligand simulations (LIMOC) according to 
their ability to score ligands with more favorable scores than decoys [38]. Besides 
lack of experimental data, the limited chemical diversity of experimentally verified 
ligands hinders performance-based selection of structures. Performance can only 
be evaluated within the chemical space covered by active and inactive compounds. 
However, a conformation recovering known active ligands is not necessarily the 
best conformation to identify novel ligand scaffolds. Searching for novel chemical 
scaffolds by virtual screening one intentionally leaves the applicability area of the 
underlying performance metric.

The restriction on specific conformations selected either by clustering or by per-
formance reduces the complexity of ensemble docking by neglecting that individual 
ligands might have preference for individual snapshots sampled during the MD. To 
overcome this limitation a last strategy attempts to allow a selection of the confor-
mation for each ligand individually. The challenge is the implementation of this 
additional degree of freedom without exhaustively sampling every ligand versus 
snapshot combination. Some ensemble docking strategies integrate the selection of 
the conformation from the ensemble within the docking procedure. The selection 
of the optimal conformation is also subject of the docking algorithm in analogy to 
the translational and rotational degrees of freedom of the ligand optimized during 
posing. In this context the ensemble is not be pre-generated. Zaccharias proposed 
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the use of collective variables sampling the plasticity of the protein in presence of 
a ligand to allow ligand-specific adaption of the protein conformation [63]. Selec-
tion of the ligand-specific conformations from a set of pre-generated conformers 
corresponds to the challenge of cross docking into alternative X-ray structures [94]. 
Applications focusing on MD structures used a consensus representation for all 
conformations as starting point and then included the sampling of individual con-
formations within the simplex optimization of the docking pose using the program 
DOCK [95]. In a review, Totrov and Abagyan suggest that other optimization al-
gorithms might be more suitable to address the optimization of this parameter [8]. 
The concept of four dimensional (4D) docking follows a similar concept using an 
optimization based on MC sampling established by Bottegoni et al. for the docking 
program ICM [96]. For a large set of X-ray derived ensembles, they showed a simi-
lar performance in reproducing the native binding pose in comparison to the parallel 
use of the X-ray ensembles without linear increase of computational time with num-
ber of structures. However, the method was neither evaluated for the performance 
to discriminate ligands from decoys nor was it applied on MD-derived ensembles. 
Using structures generated with a normal mode approach Leis et al. included the 
selection of the structure in the genetic algorithm implemented in AutoDock [66]. 
Studying binding to protein kinase A, they showed that this approach worked best 
to reproduce the binding mode for cases where the additional degrees of freedom, 
e.g., flexible torsion angles in the ligand are limited. The presented cases did not 
use conformations from an MD simulation. However, apart from sampling issues no 
limitations for the application on MD-derived ensembles are known by now.

The ongoing research in the field indicates that the optimal way to tackle the se-
lection of conformers is not yet identified within the variety of strategies followed. 
Moreover, this issue is not an isolated challenge within the workflow of ensemble 
docking, but is directly related to the evaluation of docking results. Depending on 
the strategy followed for structure selection docking results will either be a single 
hit list or a collection of several hit lists. Subsequent pooling strategies for multiple 
hit lists depend on the principal approach employed for selection of receptor rep-
resentation.

15.2.2  Molecular Docking

15.2.2.1  Docking Algorithms and Scoring Functions

Molecular docking can be considered as one of the major pillars of structure-based 
drug design. Docking flexible ligands, mostly small organic molecules, to a spe-
cific site of a receptor representing a rigid bio-molecular structure is an established 
procedure [97, 98, 99, 100, 101]. Therefore, there is a critical awareness for the 
potential as well as the limitations of this technique [92, 102]. Well accepted but still 
open challenges are the inclusion of backbone flexibility (which is subject of this 
overview), treatment of solvent and solvent-related effects [49], and  quantitative 
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estimation of ligand binding [92, 103]. Prediction of accurate binding affinities is 
out of the scope of the scoring functions implemented in established docking ap-
plications [103]. In contrast to rigorous physics-based approaches aiming at the pre-
diction of free energy of binding, scoring functions are fitting functions designed to 
be fast and transferable, thereby allowing high-throughput screening of databases.

Three types of scoring functions can be identified in general: force field-based, 
knowledge-based and empirical scoring functions. Classically, they all treat mo-
lecular interactions as pair-wise additive terms on atom level aiming to score a 
ligand pose at high-throughput speed. In force field-based methods, the energy of 
the protein–ligand interaction is covered by van-der-Waals terms as well as elec-
trostatic contributions from molecular mechanics. The ligand’s force field energy 
is also included in some scoring functions to consider the conformational strain of 
the pose [104]. It has been shown that empirical scoring functions including entropy 
penalties for the ligand fixation and desolvation terms are more accurate to estimate 
binding affinities [105]. Knowledge-based scoring functions derive the terms for 
interaction potential based on experimental geometry distributions. Coefficients are 
directly fitted to experimental data to reproduce binding affinities of protein–ligand 
complexes with known X-ray structures [106]. For a review on scoring functions 
and docking algorithms we recommend the review by Kitchen et al. as an overview 
article [98]. Recent advances in scoring functions are the inclusion of non-additive, 
cooperative effects, e.g., for hydrogen bond networks established upon ligand bind-
ing [107]. Also in the field of solvent effects some progress can be expected by 
inclusion of entropic and enthalpic contributions depending on interaction with ex-
plicitly investigated water molecules by WaterMap [108, 109].

However, the universal scoring function has not yet been developed and the op-
timal choice of the best function is project-dependent [103]. We propose to consider 
results of unbiased docking challenges which are periodically repeated to reflect the 
current state of the technique. One example is the challenge organized by the Com-
munity Structure-Activity Resource (CSAR) around Heather Carlson [92]. Focus-
ing on the application to multiple structures, the speed of the docking and scoring 
algorithm as well as the capability of the program to handle multiple structures in 
parallel might be an issue. When docking to multiple structures derived from an 
MD simulation, the major steps remain the same as for docking to rigid structures. 
However, several docking programs offer a workflow especially tailored for paral-
lel docking to optimize computing time. For example, in GOLD up to 20 protein 
conformations can be processed by the “ensemble docking” feature and allow the 
user to weight the scores for individual protein conformations.

15.2.2.2  Preparation of Structures for Molecular Docking

As important as the choice of the program and scoring function is the preparation 
of the ligand structures or the database of potential ligands used for a virtual screen-
ing [110]. The protein structure must be prepared appropriately as for rigid docking 
[50]. The question of proper protonation of protein residues should already have 
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been focused during the set-up of the MD simulation topology (see Sect. 15.2.1.2). 
Nevertheless, structure preparation before docking could allow an adaptation of 
the protonation state depending on the conformation; an aspect which was not yet 
investigated to our knowledge. A greater issue might be the treatment of solvent 
molecules [49]. Valuable information on the fluctuation, positional and rotational 
degrees of freedom of water molecules in the binding site is generated when one 
uses an explicit solvent model in the MD simulation. This information is available 
from the trajectory stored for conformer generation. It might be worth to perform 
an in-depth analysis to extract this information as it will guide the decision on how 
to proceed with water molecules in receptor preparation. Fixed tightly bound water 
molecules are unlikely to be displaced by ligand molecules and can be treated as 
part of the receptor [49]. If a water position from the X-ray structure is not char-
acterized by high density during the MD simulation, this would support to remove 
the water molecule before docking. Displacement of “unhappy” water molecules is 
expected to contribute favorable to the binding of a ligand [111]. Attempts to inte-
grate MD-derived information on water behavior in scoring are made for example 
in the scoring function Wscore. This scoring function is currently under develop-
ment by the group of Richard Friesner using the WaterMap concept and is likely to 
be implemented in the docking program Glide [108, 109].

Depending on the scoring function one might also consider minimization of 
snapshots or representative structures [48, 86, 112]. For several targets Marelius 
et al. applied an empirical scoring function to evaluate poses sampled during an 
MD simulation. Paulsen et al. used minimized structures from an MD sampling 
of several picoseconds of Candida albicans dihydrofolate reductase and influenza 
neuraminidase to dock and rank active ligands. Ranking accuracy increased for the 
empirical scoring function Surflex-Dock when minimizing the conformations se-
quentially taken from an MD simulation. Additionally, they discuss that an adaption 
of the subsequent pooling strategy of snapshots should be considered using mini-
mized structures [86]. Especially the hydrogen bond term showed high sensitivity 
towards structural variations sampled during the trajectory. Energy minimization of 
structures selected from the MD trajectory consistently led to binding free energy 
predictions which were lower and closer to the experimental value [48]. For scoring 
functions fitted on minimized protein structures this step might improve scoring, 
as observed for an empirical function [113]. Fitting to crystal structures, which per 
se should represent a local energy minimum conformation, might in general limit 
the applicability of empirical scoring functions on MD snapshots. During an MD 
simulation performed at a given temperature, e.g., at 300 K, the conformations are 
explicitly allowed to sample non-minimum configurations. A non-optimal hydro-
gen position at an amino acid will result in an unfavorable scoring of a hydrogen 
bond, when the scoring function judges hydrogen bonds via geometry. In contrast to 
these observations in literature, we observe that minimization does not affect dock-
ing scores or they show even a decrease indicating less favorable poses in GOLD 
(see Fig. 15.5). The minor effect of minimization of hydrogen positions is not unex-
pected as GOLD optimizes hydrogen orientations during docking (Fig. 15.5a). Min-
imization of side chain atoms with the Amber force field FF99SB-ILDN especially 
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decreases scores obtained with receptor conformers from the ligand-bound simula-
tion (Fig. 15.5b). This might be related to the fact that we minimized the structures 
in absence of the ligand and water molecules. Thereby, minimization favors a col-
lapse of the binding site, resulting in structure less suitable for ligand docking. In 
summary, an appropriate preparation of selected structures might be as crucial as 
the setup of the simulation and for this aspect a lot of optimization potential re-
mained unexploited.

15.2.2.3  Scoring of Multiple Protein–Ligand Poses

Handling of multiple scores for one ligand is an issue, when parallel dockingto mul-
tiple conformations representing the MD ensemble is performed. In contrast to clas-
sical molecular docking, ensemble-based docking to multiple structures in parallel 
does not result in a single scoring value but rather a scoring profile (see Fig. 15.4). 
We will present two alternative strategies how these scoring profiles are handled: 
considering the best score versus averaging over multiple scores. Subsequently, we 
discuss both strategies in respect to the thermodynamic interpretations.

Multiple docking results are also generated when a docking algorithm is ap-
plied several times for one protein conformation. This option is selected for docking 
algorithms with random elements in sampling of the ligand pose such as genetic 
algorithms. With increasing number of trials the probability to identify the optimal 
pose is higher and therefore, the pose with the most favorable scoring represents the 
docking result. Similarly, using multiple receptor conformations the pose scoring 
best can be considered as result of the docking run. The resulting docking poses 
and scores are expected to be the same as if the selection of the optimal conformer 

Fig. 15.5  Effect of energy minimization before docking on the docking results of zanamivir. Mini-
mization of the hydrogen positions (a) or the side chain atom positions (b) was performed with the 
force field used for simulation in absence of water and ligand using 500 cycles steepest descent 
and 500 cycles of conjugate gradient minimization. In comparison to the corresponding results 
without minimization (Fig. 15.4c) especially the scoring distributions for the ligand-bound simula-
tion is shifted towards more unfavorable poses
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is a degree of freedom in the docking algorithm (see Sect. 15.2.1.4). In both cases 
the best suitable receptor conformation for each ligand is selected individually. 
Selecting the best pose from multiple hit lists is for example used in a study using 
ensembles of X-ray structures and is also referred to as “merging and shrinking 
procedure” [70]. For various targets it was shown that the enrichment of active 
ligands is improved in comparison to the use of a single X-ray structure [114]. The 
merging strategy was used to compare the performance of representatives derived 
from standard MD simulation and replica exchange MD simulations to X-ray struc-
tures of three systems [57]. Applying the hit list ranking by best pose, MD-derived 
ensemble representatives perform at least similar to X-ray structures. This indicates, 
that MD-derived ensemble docking will be useful in cases where alternative X-ray 
structures are not available [57]. Xu et al. compare the effect of selecting the most 
favorable score over an averaging of multiple scores which will be discussed below 
[115].

No difference is made if the best score is a single event calculated on a recep-
tor conformation occurring only once in the whole trajectory. Taking experimen-
tally derived structural ensembles the composition of the available structures has 
no physical meaning. In some cases, there is experimental evidence that a structure 
representing a specific conformation should be favored or penalized. For example, 
the formation of a subpocket might be an endothermic process and the energy of 
pocket formation is needed to be compensated by ligand binding [116]. Attempts 
to include the energy of individual conformations in scoring similar to the confor-
mational energy for a ligand pose are made for ensemble docking with X-ray struc-
tures. Wei et al. show that the integration of a conformational strain for the receptor 
conformation improved the enrichment of the ensemble docking [116]. They used a 
docking algorithm where flexible parts are sampled from alternative conformations 
during docking for a study on T4 lysozyme and thymidylate synthase. The energy 
for deformation of the binding pocket in reference to the ligand-free conformation 
was estimated by a special function for cavity formation within T4 lysozyme [117] 
or an approximation via the change in total electrostatics and the change in accessi-
ble non-polar surface area for thymidylate synthase. Also Barril and Morley showed 
that a penalty term for the formation of an alternative conformation elevated the 
number of ligands docked with RMSD lower 2 Å compared to the native binding 
pose using a set of 149 heat shock protein 90 structures [118].

Inclusion of a conformational strain for the receptor conformation is not common 
for MD-derived ensembles. Assuming converged sampling, the distribution of the 
conformations within the MD ensemble will reflect not only the strain enthalpy of 
individual conformers but also the free energy. Conformations with unfavorable en-
ergy will be visited less often in comparison to conformations of lower free energy. 
This might be the physical background why averaging over multiple scoring values 
is frequently used to combine scoring values from docking to MD ensembles.

The relaxed-complex-scheme implements sampling information in a straightfor-
ward way by taking the average of scoring values of a ligand when docked to the 
individual periodically extracted conformations. The developers of RCS observed 
in a first application that the most favorable scoring values resulted from non-native 
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poses [41]. Averaging the scoring values, these rarely sampled conformations and 
the respective scoring values contribute less to the final score [41].

In a virtual screening study on influenza neuraminidase, Cheng et al. used 27 
cluster representatives of the holo ensemble and the score of binding to each rep-
resentative was weighted by cluster size [26]. Known inhibitors, zanamivir and 
oseltamivir, were ranked within the top compounds, and superior to the less ac-
tive inhibitor DANA and the natural substrate sialic acid. However, peramivir was 
scored more unfavorable compared to experimental expectations independent from 
the weighting method. In this publication also other ranking metrics were evaluated. 
Taking the arithmetical mean assumes a normal distribution of the energies of the 
conformations underlying the docking experiment. Alternatively, an averaging as-
suming a harmonic distribution for the Ki values [26] or a Boltzmann distribution 
for the predicted binding free energy [86, 115] can be applied. Xu et al. discuss 
the effects of averaging regarding enrichment of active versus inactive compounds 
[115]. They used two ways of merging the hit list: either selection of the best score 
from multiple hit list or averaging over multiple scores clustered by docking poses. 
This averaging strategy performed slightly better for two cases (thrombin, Pneu-
mocystis carinii dihydrofolate reductase) and both methods performed equally on 
the other three out of five cases (acetylcholinesterase, cyclin-dependent kinase 2, 
estrogen receptor α) [115].

Average scores for our test scenarios and most favorable scores are shown in 
Table 15.1. Regarding the bell-shaped symmetric distribution of scoring values for 
periodically extracted structures (Fig. 15.4c, d) we calculated the arithmetic mean 
of these values. Zanamivir preserves a higher average score than compound 2 in 
docking to conformations from the two closed simulations, which is in agreement 
with experimental data. The average scores for compound 2 are in the range of the 
score calculated for the near-native pose (Fig. 15.4f), as docking scores between 
50 and 60 dominate the distribution of scoring values (Fig. 15.4d). To average the 
results for cluster representatives, the scores for the representatives were weighted 
by the population of the respective cluster. The ranking trends between the differ-
ent simulations are preserved independently from the strategy of representation or 
score extraction.

Choosing the best scoring pose to determine the docking result corresponds to 
the dominant state approximation [119]. In the picture of conformational selection 
the optimal conformation for formation of the complex imposes a shift in state 
populations. Moreover, the paradigm of conformational selection states that this 
optimal conformation will be part of the ligand-free as well as the ligand-bound 
ensemble. All other states with less favorable score for the docking pose sampled 
during the MD are ignored. This assumes that a ligand selects one single ideal con-
formation from the MD ensemble. Classical scoring functions are trained to reflect 
the free energy of the bound state based on a single complex structure. The selection 
procedure would allow integrating force field energies for the protein conformation 
in analogy to the ligand conformational strain term in scoring functions.

The free energy of a conformation is reflected in its state probability within 
the MD ensemble. Going with the recently formulated implicit ligand theory, an 
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 averaging over the binding energies of the individual states would be physically rig-
orous as the free energy of binding is expected to be a function of the whole thermo-
dynamic ensemble [119]. Still, classical docking algorithms and scoring functions 
do not fulfill the needs for this approach. This theory relies on a thermodynamic 
ensemble of docking poses whereas most docking algorithms are optimized to gen-
erate a single pose with optimal score [119]. Moreover, scoring functions are fitted 
to experimentally-derived thermodynamic data as free energy of binding or related 
binding constants (Ki) intrinsically representing ensemble properties. Therefore, 
scoring functions inherently include ensemble properties and are trained to mirror 
these effects in the score of a single pose. In contrast, this theory needs alternative 
scoring functions which estimate the free energy of binding directly via averaging 
over an ensemble. Such scoring functions might rather focus on an estimate of the 
enthalpy of binding for each individual receptor conformation in contrast to a global 
free energy of binding. In addition, these scoring functions would need a training 
based on ensemble data rather than single X-ray structures.

15.2.2.4  Validation of Molecular Docking Results

Having decided for a merging strategy of the multiple hit list, the final scoring value 
used for ranking can be evaluated with the same criteria and measures as a classical 
docking run. Performance metrics of molecular docking rely on experimental data 
and can be categorized in: (1) evaluation of the binding pose for ligands with known 
native pose, (2) ranking of known ligands by the experimental activity, (3) discrimi-
nation of active ligands and non-active ligands or decoy molecules.

First, identification of a native binding pose similar to the ligand’s structure in an 
X-ray structures is in the simplest case a redocking of a ligand into the empty bind-
ing pocket. Similarity is classically measured in terms of root mean square devia-
tion (RMSD) of (heavy) atom positions of the ligand. The recovery of a near-native 
pose is a confirmation of a successful sampling of the pose. Moreover, successful 
pose identification alone is not sufficient: a scoring function must guide most dock-
ing algorithms and it should be capable to identify the best pose as the top solution 
or within the top solutions. Therefore, some studies give the RMSD of the highest 
ranked as well as the first occurrence of near-native pose within the solutions. The 
interdependence of posing and scoring is a problem. The posing algorithm SKATE 
tries to provide exhaustively enumerated poses which can be used for evaluation 
and optimization of scoring without interference on pose sampling and show an at-
tempt to decouple posing and scoring [120].

In rigid docking, values below 2 Å are classically considered near-native struc-
tures and a successful docking pose. The tolerance is related to the resolution of the 
X-ray experiments. Considering docking algorithms covering flexibility, the gen-
eration of a ligand pose from an alternative crystal structure is a more appropriate 
measure for posing. Especially when dealing with X-ray ensembles the exclusion of 
the specific ligand complex within the ensemble should be considered. It reduces the 
challenge to a classical redocking challenge if the right combination of ligand and 
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X-ray structure is found [95]. Korb et al. formulated the ensemble pose prediction 
index—a metric to evaluate the ranking of poses for an individual ligand for a set of 
ensemble members [121]. A value over 0.5 indicates that the ranking according to 
the scoring function identifies the pose with the lowest RMSD to the reference on 
the top position of the ensemble results. For the recovery of a near-native pose from 
an ensemble without the corresponding protein structure, a higher RMSD tolerance 
up to 2.5 Å can sometimes be allowed. This is due to the necessary superposition 
of the protein complexes, which might not give a unique solution regarding alter-
native protein conformations [38]. Another aspect in docking considering protein 
flexibility is the recovery of a native complex geometry. Not only could the position 
of the ligand but also the conformation of the protein be evaluated in respect to the 
experimental structures of alternative conformations. This recovery of the proper 
protein geometry of the complex is sometimes performed visually (e.g., see Fig. 4 in 
[70], Fig. 10 in [69]). However this part was not yet part of systematic evaluations.

Second, the ranking of different ligands according to their activity is another cri-
terion. Direct correlation of docking scores with experimental data, not being part of 
the training, is currently out of reach for docking, as discussed before. Paulsen et al. 
classified a set of active ligands into bins of activity classes and evaluated if the 
compounds are scored within the bins or neighboring categories. The ranking accu-
racy by binning is then expressed as success fraction [86]. Categorization of activity 
data is a way to deal with the inaccuracies of the experimental data. The lack of con-
sistent activity data might be a reason why this kind of metric is not that frequently 
applied. Moreover, the ranking of a compound series is a question of lead optimiza-
tion where other methods than docking play a major role (see Sect. 15.2.2.5).

In contrast, molecular docking is a classical high-throughput technique with its 
major application in virtual screening. Therefore, the discrimination between active 
and inactive compounds is a suitable criterion. The enrichment factor is the rate of 
recovered active compounds for a given fraction of a database. Its absolute value 
depends on the data set composition and this limits the comparison of this measure 
for different applications [122]. Displaying the true positive rate (selectivity) versus 
the false positive rate (1 - specificity) according to the ranking by docking cor-
responds to a receiver-operator characteristic curve (ROC) of a docking run [123]. 
The area under this curve (AUC) is an established measure in the field of virtual 
screening which gives 1 for a perfect model and 0.5 for a model with random per-
formance [122]. This metric is sometimes also called the “predictive power” [43]. 
To focus on early enrichment the logarithmic scaling of the fraction of inactive 
compounds or decoys can be chosen [115] or some weighting can be applied, e.g., 
the robust initial enrichment (RIE) and the Boltzmann enhanced discrimination of 
ROC (BedROC) [122]. If an ensemble of protein conformations is evaluated, each 
conformation has its own receiver operator characteristic and the distribution of the 
AUC values seems to be normally distributed [43]. Individual conformations out-
perform the X-ray structures whereas the majority results in AUC values below the 
corresponding X-ray structure. Such a comparison can be useful for the selection of 
conformations representing the ensemble for a subsequent docking application (see 
Sect. 15.2.1.4) and the validation of an MD-derived ensemble over experimental 
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structures. Comparison to the experimental structure in the validation is a necessary 
step in order to judge the value of the MD-derived ensemble. Moreover, different 
performance of two methods should be tested for significance [122]. Okimoto et al. 
evaluated their screening method using a combination of docking and subsequent 
MM/PBSA calculation against classical docking and showed that the new method 
performed better for 3 out of 4 test scenarios with a confidence of 95 % [124].

One major motivation for ensemble docking is the assumption that ligands with 
an alternative scaffold might bind to another protein conformation. To include this 
aspect the ligands for evaluation should ideally represent a collection of chemically 
diverse ligands. A metric covering this aspect would be the chemotype enrichment 
[45, 114, 121]. The definition of a chemotype is not trivial in this context. Consid-
ering for example the two molecules used in this test case, they might fall into the 
same chemotype based on the sialic acid scaffold. However, they bind to different 
conformations of neuraminidase. Ensembles of X-ray structures were able to score 
more diverse ligands compared to single structures [114, 121].

The plethora of measures for the evaluation makes an objective comparison be-
tween different studies nearly unfeasible. The evaluation in respect to experimental 
data is always limited by existing knowledge. For some targets the chemical space 
of known inhibitors does not allow to include a measure of diversity enrichment. 
Additionally, the data we refer to during the validation is subject of change with 
increasing number of available X-ray structures and activity data.

Ultimately, to prove that a method is able to identify new binders the experi-
mental verification upon application to virtual screening is the ideal proof of con-
cept. Successful identification of novel inhibitors for the potential Trypanosoma 
brucei drug target RNA editing ligase 1 by the relaxed-complex-scheme represents 
such a verification [84, 91]. Additionally, for the alternative target UDB-galactose 
4′- epimerase of this pathogen a hit compound was experimentally confirmed and 
led to a series of inhibitors with low µM inhibition. Similar promising results were 
obtained for neuraminidase and were patented based on the µM activity in a floures-
cence-based enzyme inhibition assay [91, 125].

15.2.2.5  Rescoring of Highly Ranked Docking Poses

Apart from rescoring with alternative scoring functions post-processing of docking 
results can include subsequent MD simulations based on the docking pose(s). As 
post-processing requires additional calculation time these calculations are normally 
restricted to highly ranked poses. Besides of the classical techniques for free energy 
estimation with the help of MD simulations, we will first discuss an alternative MD-
based metric to evaluate the poses. Classically, the starting point of the protocols 
is an X-ray structure of a ligand-protein complex or a docking pose from a rigid 
docking protocol.

Proctor et al. evaluated multiple docking poses by the stability of the pose dur-
ing a subsequent simulation [126]. They used non-classical discrete molecular dy-
namics simulations which provide a fast sampling based on multiple independent 
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 repeats. As a criterion for the stability they calculate the residence time of the li-
gand. They showed that on average docking poses close to the native structure have 
a higher residence time and non-native poses can be eliminated based on a low 
residence time. Consequently, they suggest using the residence time as a criterion 
for scoring of ligand poses [126].

Molecular dynamics allow estimating binding free energies of small molecules 
to proteins in a physics-based framework. These methods predict Gibbs free ener-
gies of protein–ligand binding. In post-processing they can complement the esti-
mates from docking and be used for rescoring. Depending on the level of accu-
racy necessary, several different methods for free energy calculation can be applied 
[127]. Free energy calculations are especially suited to provide relative binding free 
energies of congeneric ligand series as errors introduced, e.g., with the force field 
are canceling. So, some of these techniques are applied in lead optimization where 
series of similar compounds are evaluated (thermodynamic integration, free energy 
perturbation). In virtual screening diverse chemical entities need to be evaluated. 
This task can be performed with MM/PBSA, MM/GBSA and LIE approach.

Post-processing of molecular dynamics trajectories allows to perform molecular 
mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) [128] or faster and more 
approximate molecular mechanics/Generalized Born Surface Area (MM/GBSA) 
[129] calculations. These statistical methods estimate binding energies by summing 
up in vacuo force field energies, polar and non-polar solvation energies as well as 
entropic contributions from normal mode analysis. The difference between both 
approaches lies in the calculation of the polar solvation energy, with GBSA using 
more approximations to yield a numerical estimate of the electrostatic solvation 
energy than PBSA. The non-polar solvation term captures the hydrophobic effect, 
forcing apolar groups to bury inside of a protein. A final free energy estimate is gen-
erated by subtracting respective energies of free receptor and free ligand from the 
complex. MM/PBSA was used in first applications of the relaxed-complex-scheme 
to rescore the best poses for each ligand. Artificially high binding energies predicted 
by the force field-based scoring function of AutoDock could be avoided [80]. Negri 
et al. applied docking and subsequent MD simulations evaluated by MM/PBSA to 
investigate the binding mode of bis(hydroxyl)phenylarenes to 17β-hydroxysteroid 
dehydrogenase type 1 [130]. On a larger scale Okimoto et al. suggested to use dock-
ing and subsequent scoring with MM/PBSA in virtual screening application. The 
authors showed that MM/PBSA-based scoring enables to identify the near-native 
pose for a trypsin inhibitor whereas docking scores failed to rank this pose accurate-
ly. ROC values improved for 3 out of 4 test cases using MM/PBSA over a docking 
protocol using the program GOLD [124]. Performing MD-based free energy esti-
mation for multiple ligands and even for multiple poses per ligand (as done in this 
study) leads to an explosion of computational cost. The application of this approach 
in high-throughput scale is only feasible for facilities where tailored computational 
infrastructure is accessible [124].

An alternative approach is the linear interaction energy (LIE) [131]. Herein, the 
binding energy is estimated via summation of weighted contributions of ensemble-
averaged electrostatics and van-der-Waals interactions. The difference between 
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bound and free state gives an estimate of protein-ligand interactions and hence free 
energy of binding. Targets with a wide and flexible binding pocket, like the pro-
miscuous monooxygenase cytochrome P450 isoform 2D6, potentially allow alter-
native binding modes. To include this flexibility Stjernschantz et al. developed a 
LIE model on different initial poses generated by docking for a series of thiourea 
compounds [132]. Marelius et al. included the free energy of the LIE in comparison 
to the results by scoring to illustrate the fluctuation over the simulation time for the 
arabinose binding protein as for this target a LIE model had been already adapted 
[48]. A problem of LIE is the choice of weighting parameters for the energy con-
tributions. Depending on the system these coefficients need readjustments, hence 
hindering the establishment of global models.

15.3  Potential of Ensemble Docking

We gave an overview on recent applications of ensemble docking with the focus on 
MD-derived ensembles. Following the practical workflow it becomes clear that no 
common recipe for a best practice has been established to date. At multiple stages 
variability occurs and at each branching point the possible number of workflows 
increases. This heterogeneity of the different applications limits the comparability 
between them. Moreover, lack of consistent performance metrics and performance 
comparison in respect to docking to single or multiple X-ray structures also limits 
to quantify the benefit from ensemble docking to MD-derived ensembles. A system-
atic evaluation on a tailored benchmark set could allow to characterize the impact 
of variability within the field and also to identify an optimal workflow. However, 
considering the complexity of the ligand recognition process individual contribu-
tions depend on the system investigated. Therefore, we also suspect the “optimal” 
workflow to be dependent on the system of interest. One of the most relevant points 
of opposing concepts is the scoring of multiple poses. We expect that consideration 
of thermodynamic concepts will aid to adapt molecular docking algorithms and 
scoring functions on ensembles. The application of scoring functions and especially 
the averaging of scoring values need a conscious handling and interpretation of 
the resulting scores. These values might be valid to rank hit lists, which is the pri-
mary aim of scoring. However, interpretation in terms of thermodynamic properties 
should be reflected carefully.

Despite of current absence of a clear answer to the question “How to?”, single 
success stories and also attempts to benchmark the method provide a growing num-
ber of pieces of evidence to establish this method within virtual screening. MD 
simulations or alternative computational sampling methods are an essential way 
to investigate the target’s flexibility, especially if the flexibility is not covered by 
experimental ensembles. The gained knowledge on the target gathered while con-
sidering a proper simulation setup or gained directly from the simulation data will 
be of benefit for a structure-based drug discovery project anyway.
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Besides the expected methodological improvements the high-throughput appli-
cation of the ensemble docking becomes more and more realistic with continuously 
increasing computational resources. With the current computational power and the 
efficient use of GPU facilities for simulation, the time for the generation of an MD 
ensemble will no longer be a limit for the its application for subsequent docking. 
These circumstances will also enforce the use of computationally more demanding 
methods which are more accurate than docking scores and ensemble docking might 
be facing a competition with free energy estimation techniques inherently includ-
ing flexibility aspects. Nevertheless, the potential benefit of a defined workflow for 
virtual screening based on an MD-derived ensemble as strategy including target 
flexibility is evident. MD-based ensemble docking has the potential to become a 
standard procedure particularly for detection of chemically different ligands within 
next decades.
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Abstract In this chapter, we discuss how the profusion of experimental chemoge-
nomics data available in public repositories is transforming the field of chemin-
formatics. In particular, we describe (i) both theoretical and technical challenges 
related to the management, analysis, and visualization of large and diverse chemical 
datasets, (ii) the unique opportunities offered by Big Chemical Data for designing 
molecules with the desired properties and expanding the use of cheminformatics in 
novel areas of research, and (iii) some innovative approaches that are likely to shape 
the future of cheminformatics.

The growing compendium of chemogenomics datasets available in publicly-ac-
cessible repositories is moving the field of Cheminformatics from the era of data 
scarcity into the era of “Big Data” [1, 2]. Only ten years ago, a set of chemicals 
with their associated activities was considered “large” when including ca. 100 
compounds. Due to the lack of available experimental data, Quantitative Structure-
Activity Relationships (QSAR) models [3] were built using 20–50 molecules [4], 
sometimes even less [5]. Meanwhile, combinatorial and high–throughput screening 
(HTS) technologies have been skyrocketing in both academia and industry [6]. Al-
though pharmaceutical companies still run the biggest HTS platforms, incorporat-
ing libraries of several millions of compounds, there are more and more academic 
centers that not only conduct HTS but integrate their platform within academic drug 
discovery centers [7]. The following US institutions are notable for this: UCLA’s 
Molecular Screening Shared Resources (MSSR), Stanford’s HTBC, Northwestern 
University’s High Throughput Analysis Laboratory, Molecular Libraries Screening 
Center Network (MLSCN), as well as UNC’s NIMH Psychoactive Drug Screening 
Program (PDSP) and UNC’s Center for Integrative Chemical Biology and Drug 
Discovery (CICBDD). Certain of these centers have the potential to screen ca. 
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250,000 compounds against several panels of targets ( e.g., GPCRs, kinases). The 
development of these facilities is leading to the public release of massive amounts 
of chemical and biological data in the form of published materials and/or deposited 
entries in online databases, which often mix raw and unstructured data with more 
standardized and processed ones. After being curated and integrated, these very 
large datasets can be considered for in-depth cheminformatics studies, including 
selective hit fishing, SAR analysis, QSAR modeling, and study-dependent com-
binations of similarity searches, molecular docking, and pharmacophore analysis 
for virtual screening and/or molecular design. One can also note that phenotypic 
screens (both in vitro and in vivo) can be analyzed using cheminformatics tech-
niques.

Screening is thus one of the most important driving forces for the field of che-
mogenomics, as it can ultimately allow the actual exploration of all possible small 
molecule-target interactions [8]. For drug discovery purposes and side effect as-
sessment and tuning, filling the gaps in this overall molecule-target interaction 
matrix enables the analysis of compounds’ polypharmacology. The latter can be 
at the origin of drug’s high efficacy and/or drug’s undesired effects caused by off-
target binding [9]. Although chemogenomics is developing and expanding based 
on such revolutionary experimental platforms, assays, and protocols, it is clear that 
computer-aided analysis and modeling will have an increasingly important role to 
(i) curate, integrate, and exploit these huge amounts of data; (ii) develop predic-
tive approaches for prognosticating the complex profile of multi-level activities for 
novel molecules; and (iii) screen extremely large libraries of virtual compounds 
using both ligand-based QSARs and structure-based scoring functions for better 
prioritizing promising molecules to be synthesized and tested first.

This novel era of data profusion is drastically modifying the field of chemin-
formatics, from its most practical and technical aspects to its ultimate role of 
chemical exploration and discovery. Utilizing chemical biological databases free-
ly-available on the internet is becoming a common, everyday practice allowing 
researchers to obtain very diverse information at a glance. This diverse informa-
tion includes:

1. Three-dimensional structures of proteins using the Protein Data Bank (PDB, 
http://www.rcsb.org/pdb/), which is very close to incorporating a stunning 
100,000 entries,

2. Experimental activity measurements (mainly in the form of Ki and IC50 val-
ues) using the ChEMBL database, which contains more than 1.5M compound 
records: 9,350 biological targets and 734,000 assays (version 17, August 2013). 
More than 31M compound entries are also available in PubChem [10], the larg-
est repository of molecules and their associated activities against biological 
endpoints, including HTS data deposited by pharmaceutical companies ( e.g., 
antimalaria screen of ~13,000 compounds by GSK),

3. Expert-verified structures (26M unique compounds available as of September 
2013) and associated physico-chemical data using the Chemspider webportal [11]; 
a list of 2.7M purchasable compounds can be found in the ZINC database [12],
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4. Toxicity-relevant bioassays for thousands of chemicals from Toxcast [13] and 
Tox21 [14, 15] projects, which can be complemented by in vivo toxicity data 
from the ToxRefDB [16] database,

5. Chemical-protein interactions structured as systems chemical biology networks 
for different organisms using STITCH [17] and KEGG [18] databases.

All these different resources define a huge chemogenomics data matrix of several 
tens of millions of unique compounds ( row) and a few thousands targets and other 
biological endpoints ( columns). This sparse matrix is ideal for virtual screening but 
is still far too incomplete to represent the overall diversity of the chemical universe 
of drug-like molecules (recently estimated to be close to 1033 compounds) [19]. 
Recently, Reymond’s research group attempted to enumerate all possible chemical 
structures solely incorporating C, O, N, S and halogen atoms. Their most recent 
efforts led to the generation of the GDB-17 database [20] containing more than 
166 billion compounds, each including a maximum of 17 heavy atoms. Of course, 
only a fraction of GDB-17 compounds corresponds to drug-like molecules, whereas 
representative subsets of this database are ideal libraries for fragment-based mo-
lecular docking.

As illustrated in Fig. 16.1, the availability of chemical and biological data in the 
public domain played a critical role in enabling the development of cheminformat-
ics approaches and QSAR modeling studies. This revolution of data availability has 

Fig. 16.1  Concurrent evolution of the availability of major chemical biological data repositories 
with the amount of books (or book chapters—data extracted from Google Scholar nGram Viewer) 
related to cheminformatics and QSAR modeling
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ended the days when multi-linear regression models were built on small congeneric 
sets of chemicals with no rigorous validation protocol, no applicability domain, and 
no experimental confirmation. Based on recent requirements set by the editorial 
board of the Journal of Chemical Information and Modeling [21], a significant por-
tion of QSAR papers published over the past twenty years would not be accepted 
for publication today. This is one of the many consequences of today’s profusion of 
experimental data: because it is now easier and inexpensive to measure experimen-
tal activities and properties for many chemicals, there is no need for non-predictive, 
non- or moderately reliable models built with few compounds that are not transpar-
ent and have not been proven to be efficient for virtual screening.

The vast majority of Cheminformatics approaches and associated computational 
tools are not ready yet for analyzing and modeling these new generations of very 
large, diverse, and complex data streams. Beyond the technical challenges due to 
the extreme size levels of the chemical databases requiring new analysis approach-
es, algorithms, and architectures (such as GPU computing), there are two major re-
lated issues that need to be addressed with priority. When it comes to data accuracy, 
cheminformaticians are indeed at the mercy of data providers who may inadver-
tently publish (partially) erroneous data. Several reports on the presence of errors 
and inaccuracies in public depositories [22, 23] were published recently, especially 
the study from [24] at Bayer describing that only 20–25 % of published data were in 
agreement with their in-house results when attempting to reproduce the exact same 
experiments. This lack of experimental reproducibility motivated Nature’s editorial 
board to reinforce the journal’s acceptance criteria in terms of statistical validation 
for reported results in submitted manuscripts as well as abolishing size constraints 
for method descriptions. Our group at UNC recently published a list of guidelines 
for chemical data curation prior to cheminformatics analysis [25]: we described 
several simple but important steps for cleaning chemical records in a database, in-
cluding the removal of a fraction of the data that cannot be appropriately handled 
by conventional cheminformatics techniques. Chemical and biological curation is 
critical for enabling the accurate integration of data across different databases and 
assuring the correctness of models and hypotheses built on top of these data.

The profusion of chemical and biological data not only enables large scale 
cheminformatics studies but also novel areas of applications. Certain of these ap-
plications are just emerging and likely to significantly expand in the next few years. 
For example, one notable new approach involves the use of text mining of large 
collections of articles to extract information relevant to a specific compound, target, 
disease, or any other user’s defined term. Recently, Chemotext [26] has been devel-
oped on top of Mesh annotations to derive compound-target-disease assertions. Our 
group at UNC showed that it was even feasible to derive predictive QSAR models 
from curated literature assertions extracted using text-mining protocols [27]. An-
other emerging trend is the development of hybrid QSAR models that involves a 
combination of chemical and biological descriptors. For instance, toxicogenom-
ics profiles determined for 127 drugs were recently used together with chemical 
descriptors to generate hepatotoxicity QSAR models [28]. This strategy recently 
culminated in the development of the Chemical-Biological Read-Across (CBRA) 
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approach [29] to infer a compound’s toxicity from its closest chemical and biologi-
cal analogues.

With several thousand nanotechnology-based consumer products available on 
the market, nanotechnology is drawing worldwide attention for its applications in 
various industrial areas, such as material science, medical research, and cosmetics 
[30–32]. Importantly, a significant portion of these efforts is directed towards the 
development of “green” products intended to achieve efficient and less polluting 
energy sources [33, 34]. In this context, cheminformatics has a role to play by: (i) 
facilitating the access, storage, search, and integration of all experimental results 
currently distributed in literature, databases, and other sources; (ii) achieving exter-
nally predictive QSAR models to compute nanomaterials’ properties based on their 
structural characteristics; and (iii) boosting the development and testing processes 
by identifying the most promising nanomaterials that require focused experimental 
investigations. The latter point is especially of importance due to the concerns about 
the safety of certain nanomaterials and the development of nanomedicine [33, 35, 
36]. In a recent proof-of-concept study, our research group introduced the terminol-
ogy of Quantitative Nanostructure-Activity Relationships (QNARs) [37] that em-
ploys classical machine-learning methods for establishing links between chemical 
descriptors and various measured activities of nanomaterials. Published studies and 
developing trends in computational modeling of nanomaterials also have been sum-
marized in a recent review [38].

With the forecasted, concomitant increase of both computing power and avail-
ability of additional chemical biological data, many new types of applications will 
appear and expand in the coming years. Integrated meta-databases are likely to 
emerge, combining structure-based, ligand-based, experimental and predicted prop-
erties, integrating the concepts and levels of systems chemical biology. Novel types 
of chemical descriptors (especially at 2.5D, 3.5D and 4D levels) will be developed 
to better take into account target–ligand interactions, notably molecular flexibility. 
One can also speculate on the development of system fingerprints to characterize, 
analyze, and compare complex chemical biological systems.

On a technical point of view, the performances of computer CPUs have im-
proved as prognosticated by Moore’s law. However, the most time-consuming 
calculations, such as molecular dynamics, quantum-chemical computation, and 
molecular docking, must still be performed on supercomputers and large clusters 
including thousands of CPUs in parallel. Interestingly, parallel calculations can also 
be conducted on modern video cards, also called graphics processing units (GPU) 
computing [39]. The most powerful individual workstations equipped with several 
high-end GPUs can incorporate up to 10,000 CUDA cores ( e.g., 4-way SLI con-
figuration with Nvidia’s Titan cards), allowing massively-parallel calculations as 
long as the software code incorporates specific CUDA instructions. However, to 
date, very few prototypes of cheminformatics software tools have been adapted to 
take advantage of GPU-computing capabilities. GPU-computing could represent an 
interesting solution to rapidly process, explore, and screen extremely large datasets 
of 109 compounds and more.
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Finally, more and more cheminformatics software tools will become fully 
available and functional on tablets, smartphones and other mobile devices such as 
augmented reality glasses ( e.g., Google Glass Project). This new step in technology 
portability could realize one of the initial promises of cheminformatics, which was 
(and still is) to assist experimentalists for chemical-relevant decision making as close 
as possible to the lab bench. For instance, the following tablet applications are nota-
ble: PyMol (edited by Schrodinger; itunes.apple.com/us/app/pymol/) allows users to 
browse and visualize protein structures and protein-ligand complexes; Chemspider 
(edited by Molecular Materials Informatics; itunes.apple.com/us/app/chemspider/) 
enables structural and text queries on the Chemspider database; Chemical Engineer-
ing AppSuite (edited by John McLemore; itunes.apple.com/us/app/chemical-engi-
neering-appsuite/) integrates a collection of chemistry related tools and databases; 
and Elemental (edited by Dotmatics Limited; itunes.apple.com/us/app/elemental/) 
and Molprime (edited by Molecular Materials Informatics; itunes.apple.com/us/
app/molprime/) allows users to draw and export compound structures. These ap-
plications are the first representatives of an entire new generation of “cheminfor-
matics apps” with user-friendly, tablet-ready graphical interfaces that will offer a 
direct and intuitive access to diverse chemogenomics data. It is very likely that the 
features offered by these applications will progressively integrate complex QSAR-
based predictors coupled with sophisticated modules that will be capable of rapidly 
accessing and cross-searching chemical biological databases, visualizing [40] and 
analyzing HTS results, launching modeling and screening computations on remotely 
controlled workstations, and sharing chemical information in the cloud.

In summary, chemical biological data streams produced by modern drug discov-
ery platforms are reaching unprecedented levels of size, diversity, and complexity 
that require the development of novel cheminformatics methods and tools to pro-
cess and analyze them. This situation offers some unique perspectives for invent-
ing a new generation of expert systems and decision making technologies. As the 
profusion of experimental data expands in the coming years to fully reach the level 
and requirements of so-called Big Data, joint efforts and collaborations between 
experimentalists and modelers will not only continue to strengthen but will become 
the key for successful drug discovery. Modelers will have to guarantee fast and 
accurate accesses to the correct and integrated chemical information and generate 
reliable experimentally-testable hypotheses ( e.g, compound X is active toward both 
targets Y and Z to induce phenotype P). In return, experimentalists will have to 
keep on guiding modelers for better understanding their practical needs so that the 
computational technologies can be adapted accordingly. This transitioning period is 
extremely important for the whole cheminformatics research community: from the 
students starting to learn the basics and recognizing the need to know all molecular 
modeling approaches [41], to well-established researchers already facing the new 
scales of data complexity and associated opportunities. The era of Big Chemical 
Data is finally here and therefore it seems that modelers have never been so close 
to achieving the rational, computer-aided design of novel molecules with controlled 
polypharmacology and safety profiles.
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