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PREFACE

During the past three decades of my teaching statistics to the graduate students, I felt
the need to produce a book that will help them in identifying research problems and
solving them by means of a robust statistical software. The SPSS package has been
chosen for this text. While organizing many workshops on research, statistics, and
data analysis in many of the universities in India and abroad, I observed almost
universally that the students at the graduate level find it difficult to identify research
problems and analyze them by using appropriate statistical techniques. With this
background in mind, I decided to produce this book as a self-learning material for
the sports scientists and physical educationists. The USP of this book is the ease of
understanding the contents even with little background knowledge of statistics. Each
chapter is self-contained and starts with the need of the analysis, its details, applica-
tion areas, and step-by-step solved examples with SPSS. Emphasis has been laid on
the interpretation of results produced by SPSS.

Based on the contents of the book and its prospects of teaching computing skills
using SPSS, the book is a go-to-text for every researcher from masters-level studies
onward.

This book aims to provide a crisp, clear, and easy understanding of the methods,
processes, and statistical techniques used in sports research, free from excessive
unrelated material that comes in the way of the student’s understanding. In each
chapter, short-answer questions, multiple choice questions, and assignments have
been provided as practice exercises for the reader. Case studies have been provided
at the end of each chapter so that the users can appreciate the use of the technique
discussed in that chapter and analyzing their research data by using SPSS.

Common mistakes like using two-tailed test for testing one-tailed hypothesis,
using the phrase “level of confidence” for defining the “level of significance” or
using the statement “accepting null hypothesis” instead of “not able to reject the null
hypothesis” have been explained clearly in the text so that the readers may avoid
them while organizing and conducting their research.

A teacher who uses this book as a text will be comfortable because it contains some
illustrative studies with simulated realistic data at appropriate places to clarify and
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discuss the analytical technique covered in each chapter. Further, instructor’s resources
in the form of associated SPSS data file and PPT presentation for each chapter will
make this book more useful for them. Some of the examples cited in the text are from
my colleagues’ and my own research studies.

The book consists of 12 chapters. Chapter 1 is an introductory chapter that deals
with the data types, data cleaning, and procedure to start SPSS on your system.
Chapter 2 deals with descriptive profile. Many students prepare descriptive profile in
their dissertation. Besides computing procedure through SPSS, a new approach has
been shown towards the end of the second chapter to develop the profile graph that
can be used for comparing different domain of the populations.

Chapter 3 explains the procedure of computing correlation matrix and partial
correlations using SPSS. Emphasis has been placed on how to interpret these
correlations.

Chapter 4 deals with the application of t-test in the three situations namely one
sample, two sample independent, and two sample dependent groups. The use of one-
and two-tailed tests has been discussed thoroughly.

Chapter 5 explains the independent measures analysis of variance (ANOVA).
Procedures have been explained by using SPSS to apply one-way ANOVA with
equal and unequal samples as well as two-way ANOVA. A graphical approach has
been discussed for post-hoc analysis of means besides using the p-value concept.
Interaction analysis in two-way ANOVA has been discussed in detail by using SPSS
software.

Chapter 6 discusses the repeated measures ANOVA’s for solving research designs
where same subjects undergo all the treatments. This design is very useful in sports
research if it is difficult to get more subjects in the study. One-way and two-way
repeated measures ANOVA have been discussed by means of solved examples with
SPSS. This will help the researchers to identify their research problems where
repeated measures ANOVA may be applied.

In Chapter 7, the application of ANCOVA has been discussed by means of a
research example. Readers can find the procedure of analyzing their data much easier
after going through this chapter.

Chapter 8 explains various nonparametric tests used by the researchers in their
studies. A step-by-step procedure of computing all nonparametric tests, including
chi-square, has been discussed by means of solved example with SPSS software.

In Chapter 9, multiple regression analysis has been discussed. Both the approaches
of stepwise and backward regressions have been deliberated in detail.

Discriminant analysis technique, another widely used multivariate technique, has
been discussed in Chapter 10. This technique can be used for developing a classifi-
catory model in sports. This technique has tremendous application in sports and
physical education research. Discussions of all its basics have been elaborated upon
so that even a nonstatistician can appreciate it and use it in their research study.

Chapter 11 discusses the use of logistic regression for developing a logit model in
a situation where the dependent variable is dichotomous and independent variable is
either metric or nonmetric.
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Chapter 12 explains the factor analysis, one of the most important multivariate
analysis techniques used for talent identification in sports. Basics of this technique
have been discussed for the beginners before showing the procedure of applying
factor analysis using SPSS. Interpretation of each and every output has been very
carefully explained for easy understanding of the readers.

At each and every step, care has been taken so that the readers can learn to apply
SPSS and understand the minute details for each of the analysis which they will
undertake.

The purpose of this book is to give a brief and straightforward description of how
to conduct a range of statistical analysis using the SPSS software. We hope the book
will encourage the students and researchers for adopting the self-learning approach
in using SPSS for analyzing their data.

Students and other readers are welcome to e-mail me their query related to any
part of this book.

J. P. Verma, PhD
Email: vermajp@bsnl.in
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INTRODUCTION TO DATA TYPES
AND SPSS OPERATIONS

LEARNING OBJECTIVES
After completing this chapter, you should be able to do the following:

» Understand different data types generated in research
 Learn the nature of variables

* Know various data cleaning methods

* Learn to install SPSS package in computer

* Prepare data file in SPSS

1.1 INTRODUCTION

Due to large stake involved in sports, research in this area is gaining momentum in
different universities of the world. Even developing countries have started introducing
sports sciences in different universities. The sole purpose is to create specific
knowledge required for enhancing sports performance. Everyday, enormous data is
being generated in the area of sports all over the world, which can be used to draw
meaningful conclusions. Scientists have started organizing experiments by taking ath-
letes as subjects. It is therefore required to support these scientists with analytical skill

Sports Research with Analytical Solution using SPSS®, First Edition. J. P. Verma.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Verma/Sportsresearch



2 INTRODUCTION TO DATA TYPES AND SPSS OPERATIONS

set to carry out their business. Since they deal with the data, it is essential that they are
aware of its nature. Depending upon the data types, one identifies the relevant analyt-
ical technique for addressing research issues. Sports research can broadly be classi-
fied into two categories: descriptive and analytical. In descriptive research, the nature
of dataset is investigated from different perspectives. Several statistics like mean,
standard deviation, coefficient of variation, skewness, kurtosis, and percentiles are
used to describe the characteristics of the dataset. Many interesting facts about the
population can be investigated by using these descriptive statistics. Analytical research
broadly follows two approach: exploratory and confirmatory. In explorative research,
focus is on discovering the hidden relationships. It is done by hypothesis testing, data
modeling, and using multivariate analysis. On the other hand, in confirmatory studies,
some of the facts are either confirmed or denied on the basis of hypothesis testing.

Numerous statistical techniques are available to the researchers for analyzing their
research data. Selection of an appropriate technique depends upon the research
questions being investigated in the study. Due to complexities of different analytical
solutions in sports research, one needs to use some user-friendly software package.
This chapter will acquaint you with different types of data that are generated in sports
research and some of the widely used statistical techniques by the research scholars
to solve them for answering different research questions by using the most popular
IBM SPSS Statistics package.

1.2 TYPES OF DATA

It is essential to know the types of data generated in research studies because choos-
ing statistical test for analyzing data depends upon its type. Data can be classified
into two categories: metric and nonmetric. Metric data is analyzed by using parametric
tests such as t, F, Z, correlation coefficient, etc., whereas nonparametric tests such as
Wilcoxon signed-ranked, Chi-square, Mann—Whitney U, and Kruskal Wallis are
used to analyze nonmetric data.

Parametric tests are more reliable than the nonparametric, but to use such tests
certain assumptions must be satisfied. On the other hand, nonparametric tests are
more flexible, easy to use, and not many assumptions are required to use them.

Nonmetric and metric data are also known as qualitative and quantitative data,
respectively. Nonmetric data is further classified into nominal and ordinal. On the
other hand, metric data is classified into interval and ratio. These classification is
based on the level of measurements. The details of these four types of data have been
discussed under two categories: qualitative data and quantitative data.

1.2.1 Qualitative Data

Qualitative data is a categorical measurement and is expressed not in terms of
numbers, rather by means of a natural language description. It is often known as
“categorical” data. For instance, smoking habit=“smoker” and gender="“male” are
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the examples of categorical data. These data can be measured on two different
scales: nominal and ordinal.

1.2.1.1 Nominal Scale Variables measured on this scale are known as
categorical variables. Categorical variables result from a selection of categories.
Examples might be response (agree, disagree), sports specialization, race,
religion, etc. If in a class 30 subjects are male and 20 are female, no gradation is
possible. In other words, 30 do not indicate that the males are better than the
female in some sense.

1.2.1.2 Ordinal Scale Variables that are assessed on the ordinal scale are also
known as categorical variables, but here the categories are ordered. Such variables
are also called “ordinal variables.” Categorical variables that assess performance
(good, average, poor, etc.) are ordinal variables. Similarly, the variables that
measure attitude (strongly agree, agree, undecided, disagree, and strongly disagree)
are also ordinal variables. On the basis of the order of these variables, we may not
know the magnitude of the measured phenomenon of an individual, but we can
always grade them. For instance, if A’s playing ability in soccer is good and B’s is
average, we can always conclude that the A is better than B, but how much is not
known. Moreover, the distance between the ordered categories is also not same and
measurable.

1.2.2 Quantitative Data

Quantitative data is a numerical measurement expressed in terms of numbers. It is
not necessary that all numbers are continuous and measurable. For instance, the roll
number is a number, but not something that one can add or subtract. Quantitative data
are always associated with a scale measure. These data can be measured on two
different types of scales: interval and ratio.

1.2.2.1 Interval Scale The interval scale is a quantitative measure. It also has
an equidistant measure. But the doubling principle breaks down in this scale. The
4 marks given to an individual for his creativity do not explain that his nature is
twice as good as the person with 2 marks. This is so because on this scale zero
cannot be exactly located. Thus, variables measured on an interval scale have
values in which differences are uniform, but ratios are not.

1.2.2.2 Ratio Scale The data on ratio scale has a meaningful zero value and has
an equidistant measure (i.e., the difference between 30 and 40 is the same as
the difference between 60 and 70). For example, 60 marks obtained in a test is twice
that of 30. This is so because zero exists in the ratio scale. Height is another ratio
scale quantitative measure. Observations that are counted or measured are ratio data
(e.g., number of goals, runs, height, and weight).
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1.3 IMPORTANT DEFINITIONS

1.3.1 Variable

A variable is a phenomenon that changes from time to time, place to place, and
individual to individual. It can be numeric or attribute. Numeric variable can further
be classified into discrete and continuous. Discrete variable is a numeric variable
that assumes value from a limited set of numbers and is always represented in whole
number. Examples of such variables are number of goals, runs scored in cricket,
scores in basketball match, etc. Continuous variable is also a numeric variable, but it
can take any value within a range and is usually represented in fraction. Examples of
such variables are height, weight, and timings.

On the other hand, an attribute is a qualitative variable that takes sub-values of a
variable, such as “male” and “female,” “student” and “teacher,” etc. An attribute is
said to be mutually exclusive if its sub-values do not occur at the same time. For in-
stance, gender is a mutually exclusive variable because it can take value either “male”
or “female” but not both. Similarly in a survey, a person can choose only one option
from a list of alternatives (as opposed to selecting as many that might apply).

1.3.1.1 Independent Variable An independent variable can be defined as the one
that can be manipulated by a researcher. In planning a research experiment to see the
effect of different intensities of exercise on the performance, exercise intensity is an
independent variable because the researcher is free to manipulate it.

1.3.1.2 Dependent Variable A variable is said to be dependent if it changes as a
result of the change in the independent variable. In the previous example, performance
is a dependent variable because it is affected by the change in exercise intensity. In
fact dependent variable can be defined as the variable of interest. In creating the
graph, the dependent variable is taken along the Y-axis, whereas the independent
variable is plotted on the X-axis.

1.3.1.3 Extraneous Variable Any additional variable that may provide alternative
explanation or create some doubt on the conclusions in an experimental study is
known as extraneous variable. If the effect of three different teaching methods on the
performance is to be compared, 1Q of the subjects may be considered as an extra-
neous variable as it might affect the final outcomes in the experiment, if IQ of all the
groups are not equal initially.

1.4 DATA CLEANING

Data needs to be organized before preparing a data file. There are more chances that
a dataset may contain unusual data due to wrong feeding or due to extreme cases.
And if it is so, the analyzed results may lead to erroneous conclusions. Analysts tend
to waste lots of time in drawing valid conclusions if the data is erroneous. Thus, it is
utmost important that the data must be cleaned before analysis. In cleaned data,
analysis becomes straightforward and valid conclusions can be drawn from it.
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In data cleaning, first an unusual data is detected and then it is corrected. Some of
the common sources of errors are as follows:

» Typing errors in data entry

* Not applicable option or blank options are coded as “0”

* Data for one variable column is entered under the adjacent column
* Coding errors

* Data collection errors

1.5 DETECTION OF ERRORS

The wrongly fed data can be detected by means of descriptive statistics. Some useful
approaches in this regard are given in the text.

1.5.1 Using Frequencies

One of the methods of cleaning data is to use frequency of each score obtained in
descriptive statistics. Since most of the behavioral parameters are normally distrib-
uted; therefore, if any anthropometric or physical variable shows large frequency for
any values, it must be checked for any systematic error.

1.5.2 Using Mean and Standard Deviation

Normally, the value of standard deviation is less than the mean, except in case of the
distribution like negative binomial. Thus, if the value of standard deviation for any of
the variables like age, height, or cardio-respiratory index is more than its mean, then
some of the values of these variables must be negative. However, the value of these
variables cannot be negative, and thus one may identify the wrongly fed data.

1.5.3 Logic Checks

Data error may also be detected by observing whether responses are logical or not?
For example, one would expect to see 100% of responses, not 110%. Another example
would be if a question is asked to female respondents about their periods and the
reply is marked “yes,” but you notice that the respondent is coded “MALE.” Logical
approach is to be adopted with full justification, to avoid the embarrassing situation
like in reporting that 10% of the men in the sample had periods during training.

1.5.4 Outlier Detection

The unusual data can also be identified by detecting the outliers. Any data that lies
outside the two sigma limits can be considered to be outlier. In other words, data
lying outside the range mean+2SD may be identified as an outlier and may be
removed from the dataset. If a liberal view is adopted, then one can take mean+3SD
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limits to detect the unusual data. The outlier can be detected in a dataset by means
of Boxplot discussed in Chapter 2.

1.6 HOW TO START SPSS?

This book has been written by using the IBM SPSS software. The SPSS package
needs to be activated on the computer before entering the data. This can be done by
clicking the left button of the mouse on SPSS icon in the SPSS directory in the Start
and All Programs option (if the SPSS directory has been created in the programs
file). Using the command sequence shown in Figure 1.1, SPSS can be activated. The
last box is marked SPSS, but usually it will be followed by the version you are using.

FIGURE 1.1 Sequence of commands for starting SPSS package.

By using the aforementioned command sequence and clicking IBM SPSS
Statistics 20 in the window shown in Figure 1.2, you will get the screen as shown in
Figure 1.3 to prepare the data file or open the existing data file.

|3 Windows Media Player
£l windows Update

<4 XPS Viewer

| Accessories

\. A-PDF Word to PDF

). CoffeeCup Software

L. DealPly

b Games

J. Google Chrome

L HP

|. IBM SPSS Statistics Default Programs

(&) IBM SPSS Statistics 20 License Authori
_a IBM SPSS Statistics 20 Help and Support
. IBM SPSS Amos 21

4. Maintenance
4 McAfee Security Scan Plus
J. Microsoft Office
L. Quick Heal AntiVirus Pro
L SPSSInc
I Startup
L. WinRAR

Music

Games

Computer

Control Panel

Devices and Printers

FIGURE 1.2 Commands for initiating SPSS.
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FIGURE 1.3 Screen showing the option for creating/opening data file.

If you are entering the data for a new problem and the file is to be created for the first
time, check ‘Type in data’ option and if the existing file is to be opened or edited, then
select the ‘Open an existing data source’ option in the window shown in Figure 1.3.

Click on OK to get the screen for defining variables in the Variable View.

1.6.1 Preparing Data File

The procedure of preparing data file shall be explained by means of the data shown
in Table 1.1.

In SPSS, all variables need to be defined in the Variable View before feeding
data. Once ‘Type in data’ option is selected in the screen shown in Figure 1.3, click
on Variable View. This will allow you to define all variables in the SPSS. The blank
screen shall look like as shown in Figure 1.4.

Now you are ready for defining variables row-wise.

1.6.1.1 Procedure for Defining Variables and Their Properties

Column 1: Under the column heading “Name,” short names of the variables are
defined. The variable name should essentially start with an alphabet only
and may include underscore and numerals in between without any gap. If at all
the variable needs to be defined in two words, then they must be joined by
using the underscore such as Playing_Ability or Muscular_Strength.
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TABLE 1.1 Data on Anthropometric Parameters Obtained on College Badminton Players

Height Weight Arm Length Leg Length Trunk Thigh Shoulder
S.N. (cm) (kg) (cm) (cm) Length (cm) Girth (cm) Width (cm)
1 177 66 82 89 91 50 36
2 172 75 74 90 85 52 41
3 180 68 85 87 91 51 44
4 189 49 81 96 91 54 48
5 180 55 75 95 86 47 37
6 175 74 82 89 88 51 43
7 187 73 86 93 92 52 42
8 181 69 73 96 84 50 44
9 171 68 75 87 86 54 43
10 180 62 78 92 91 48 39
11 177 66 72 91 85 53 44
12 163 68 71 88 77 52 45
13 162 65 73 87 76 54 46
14 168 67 74 89 78 53 48
15 165 69 75 91 79 51 47

a4 Untitled [DataSe10] - SP55 Data Editor

Be EM Vew [es Drwstors Anshze Grichs  (Mtes Addgs  Wndow  beb
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Name =~ Type | Width Decimals Label | Values | Missing  Columns  Align Measure

FIGURE 1.4 Blank format for defining variables.

Column 2: Under the column heading “Type,” format of the variables (numeric or
non-numeric) is defined. This can be done by double clicking the cell. The
screen shall look like as shown in Figure 1.5.

Column 3: Under the column heading “Width,” number of digits that a variable
can have may be defined.

Column 4: In this column, the number of decimal a variable can have may be defined.

Column 5: Under the column heading “Label,” full name of the variable can be
written. User can take advantage of this facility to write expanded name of the
variable.

Column 6: Under the column heading “Values,” coding of the variable is defined
by double clicking the cell if the variable is of classificatory in nature. For
example, if there is a choice of choosing any one of the four sports—
cricket, gymnastics, swimming, and athletics—then these sport categories can
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FIGURE 1.5 Defining variables and their characteristics.
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FIGURE 1.6 Defining code of nominal variable.

be coded as 1=cricket, 2=gymnastics, 3=swimming, and 4 =athletics. While
entering data into computer, these codes are entered as per the response of a
particular subject. SPSS window showing the option for entering the code has

been shown in Figure 1.6.

Column 7: In survey study, it is quite likely that a respondent may not reply certain
questions. This creates the problem of missing value. Such missing value can

be defined under column heading “Missing.”

Column 8: Under the heading “Columns,”

data is typed in Data View is defined (Figure 1.7).

Column 9: Under the column heading “Align,” the alignment of data while feeding

may be defined as left, right, or center.

Column 10: Under the column heading “Measure,”
defined as scale, ordinal, or nominal. Scale is used for interval and ratio

data both.

the width of the column space where

the variable type may be
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FIGURE 1.7 Variables along with their characteristics for the data shown in Table 1.1.

1.6.1.1.1 Defining Variables

1. Write short name of each of the seven variables as Height, Weight, Arm_
len, Leg_len, Trunk_len, Thigh_Gir, and Shoul_wid under the column
heading “Name.”

2. Under the column heading “Label,” full names of these variables may be
defined as Height, Weight, Arm length, Leg length, Trunk length, Thigh girth,
and Shoulder width. One may define some other names as well.

3. Use default entries in rest of the columns.

After defining variables in Variable View, screen shall look like as shown in
Figure 1.7.

1.6.1.1.2 Entering Data After defining the variables, click the Data View option
on the left corner in the bottom of the screen to open the format for entering data. For
each variable, data can be entered column-wise. After entering data, the screen will
look like as shown in Figure 1.8. Save the data file in the desired location before
further processing.

After preparing the data file, one may use it for different types of statistical
analysis available under the Analyze in SPSS. Various types of statistical analyses
have been discussed along with their interpretations in different chapters of the book.
Methods of data entry differ in different applications. Relevant details have been
discussed in different chapters.

1.7 EXERCISE

1.7.1 Short Answer Questions
Note: Write answer to each of the questions in not more than 200 words.

Q.1 What do you mean by exploratory data analysis? Explain any one situation in
research where such analysis can be applied.
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FIGURE 1.8 Format of data entry in most of the applications.

Q.2 What do you mean by ratio scale, and how is it different from interval scale?

Q.3 Under what situations should qualitative data be preferred? Explain its types
with examples.

Q.4 Explain a situation in research where responses can be obtained on mutually
exclusive attributes.

Q.5 What is an extraneous variable? How does it affect findings in an experiment?
Suggest remedies for eliminating its effects.

Q.6 While feeding data in SPSS, what are the possible mistakes that a user may
commit?

Q.7 Explain in brief as to how an error can be identified in data feeding.

1.7.2 Multiple Choice Questions

Note: Questions 1-10 have four alternative answers for each question. Tick mark the
one that you consider the closest to the correct answer.
1 Read the following statements carefully:

(i) Parametric tests do not assume anything about the form of the distribution.
(i) Nonparametric tests are simple to use.
(iii) Parametric tests are the most powerful, if their assumptions are satisfied.
(iv) Nonparametric tests are based upon the assumptions of normality.
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Choose the correct statements.

(a) (i) and (i)

(b) (i) and (iii)

(c) (ii) and (iii)

(d) (iii) and (iv)

If respondents were required to rate themselves on emotional strength on a 9-
point scale, what type of data would be generated?
(a) Ratio

(b) Interval

(¢) Nominal

(d) Ordinal

The term “categorical variables” are used for the data measured on
(a) Ratio and interval

(b) Interval and ordinal

(c) Interval and nominal

(d) Ordinal and nominal

In tossing an unbiased coin, one can get the following events E1: getting a head,
E2: getting a tail. Choose the correct statement.

(a) El and E2 are independent.

(b) El and E2 are mutually exclusive.

(c) El and E2 are not equally likely.

(d) El and E2 are independent and mutually exclusive.

While creating a new data file in SPSS, which option should be used?
(a) Type in data

(b) Open an existing data source

(c) Open another type of file

(d) None

Identify valid name of a variable.
(a) CardioRes

(b) My Flexibility

(c) My Height

(d) Cardio-Res

While defining the types of the variable under the heading “Measure” in SPSS,
what are the valid options out of the following:

(i) Interval

(ii) Scale

(iii)) Nominal

(iv) Ordinal

(a) (1), (ii), and (iii)
(b) (i), (ii), and (iv)
(c) (1), (iii), and (iv)
(d) (ii), (iii), and (iv)
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8

10

Choose the correct statement.

(a) t-test and chi-square tests are parametric

(b) t-test is parametric and chi-square test is nonparametric
(c) t-test and chi-square tests are nonparametric

(d) t-test is nonparametric and chi-square test is parametric

Runs scored in a cricket match is
(a) Interval data

(b) Ratio data

(¢) Nominal data

(d) Ordinal data

In an experiment, the effect of different intensities of aerobic exercises on

cardio-respiratory endurance has to be seen on the subjects. Choose the correct

statement.

(a) Aerobic intensity is a dependent variable and cardio-respiratory endurance
is an independent variable.

(b) Aerobic intensity is an independent variable and cardio-respiratory
endurance is a dependent variable.

(c) Aerobic intensities and cardio-respiratory endurance both are independent
variables.

(d) Aerobic intensities and cardio-respiratory endurance both are dependent
variables.
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LEARNING OBJECTIVES
After completing this chapter, you should be able to do the following:

* State circumstances in which a descriptive study can be undertaken

* Know about various statistics that can be used in profile study

* Understand the procedure for testing normality of data

* Learn to identify outliers in a dataset

* Learn to interpret various descriptive statistics

» Understand the application of descriptive statistics in sports research

» Explain the procedure of computing descriptive statistics using SPSS

* Discuss findings of the outputs generated by the SPSS in a descriptive study
¢ Describe methods used in preparing a profile chart in a descriptive study

2.1 INTRODUCTION

Most of the research studies are either descriptive or inferential in nature. In a
descriptive study, basic characteristics of different parameters are studied; whereas in
an inferential study, different kinds of inferences are drawn on various phenomena.

Sports Research with Analytical Solution using SPSS®, First Edition. J. P. Verma.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Verma/Sportsresearch
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In both type of studies, generalized statements are made about the population on
the basis of sample. In this section, we shall discuss about descriptive studies only.

In descriptive study, different statistics are computed to describe the nature of
data. These statistics provide the summary of various measures in a dataset.
Descriptive statistics are computed in almost all research studies.

The primary goal in a descriptive study is to describe a sample at one specific
point in time without trying to make inferences or causal statements. Normally, there
are three primary reasons to conduct such studies:

1. To provide knowledge about the system
2. To help in need assessment and planning resource allocation
3. To identify areas for further research

Descriptive studies are helpful in revealing patterns and relationships that might
otherwise go unnoticed.

A descriptive study is undertaken in order to ascertain and describe the characteristics
of the variables of interest in a given situation. For instance, a study of an institute in
terms of the percentage of students who are in their postgraduate and undergraduate
courses, gender composition, age grouping, and number of students belonging to
different states can be considered as a descriptive study. Quite frequently, descriptive
studies are undertaken in sports to understand the characteristics of a group of athletes
such as age, participation level, fitness status, and skill performance.

Descriptive studies may also be undertaken to know the characteristics of institutes
that offer similar programs. For example, one might want to know and describe the
characteristics of the institutes that offer physical education programs. Thus, the goal
of a descriptive study is to offer the researcher a profile or to describe the relevant
aspects of the phenomena of interest of an individual institute, organization, industry,
or a domain of population. In many cases, such information may be vital before
considering certain corrective steps.

Descriptive statistics are used in conducting a profile study. In a typical profile
study, we compute various descriptive statistics like mean, standard deviation (SD),
coefficient of variation (CV), range, skewness, and kurtosis. These descriptive
statistics explain different features of the data. For instance, mean explains an average
value of the measurements, SD describes variation of scores around its mean value,
CV provides relative variability of scores, range gives the maximum variation,
skewness explains the symmetricity, and kurtosis describes the variation of a
distribution.

In a descriptive study, one tries to obtain information concerning the current
status of different phenomena. The purpose of such a study is to describe “what
exists” with respect to situational variables. In such studies, the researcher first
states an objective and then spells out various phenomena that are required to be
investigated. Once the parameters required to be studied are identified, the method
of data collection is planned to obtain a representative sample. It is important to
define domain of the population clearly. The size of the sample should be decided
on the basis of any of the two factors: cost or efficiency. For more information,
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readers are advised to refer to the book titled Statistics for Exercise Science and
Health with Microsoft Office Excel (Verma, 2014) and Repeated Measures Design
for Empirical Researchers (Verma, 2015).

Once the data is collected, it is compiled in a meaningful manner for drawing
information. The nature of each variable can be studied by computing various
descriptive statistics. If purpose of the study is analytical as well, then these data may
further be analyzed for testing different formulated hypotheses.

On looking at the values of various descriptive statistics and graphical pictures,
different kinds of generalizations and predictions can be made. While conducting descrip-
tive studies, one gets an insight to identify the future scope of the related research studies.

2.2 EXPLANATION OF VARIOUS DESCRIPTIVE STATISTICS

In this section, different descriptive statistics that are used in descriptive studies
shall be discussed in brief.

2.2.1 Mean

Each descriptive statistic reduces lots of data into a simpler summary. For instance,
consider a simple number used to summarize how well a batsman is performing in
cricket, the batting average. This single number is simply the number of runs scored in
different matches divided by the number of matches played (assuming no not-out
innings). A batsman whose average is 40 means every time he goes for bat, he scores 40.
The single number describes a large number of discrete events. Similarly, consider
the average height of basketball players in a team. This average number describes
general height of a basketball player in the team. Thus, mean is an aggregate score
that represents the whole sample.

2.2.2 Variance

Variance explains the variation of scores in dataset around its mean value. In other
words, one can say that it measures the consistency. Higher variance indicates more
heterogeneity in a group, whereas lower variance indicates more homogeneity of the
scores. Square root of the variance is known as standard deviation.

Like variance, SD also explains the variability of scores around its mean value.
By looking at the value of the SD, it is not possible to draw any conclusion about
the variability of scores. It is because of the fact that the SD is an absolute variability.
In order to know the extent of variability in the dataset, the SD has to be viewed in
relation to the mean. Thus, SD cannot be used to compare the variability of two
groups of scores having different means. To overcome this problem, another index
of variability is defined which is known as CV. It is a relative variability and takes
care of the mean value as well and is defined as follows:

CV =2x100
X

where s is the standard deviation and X is the mean.
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Since CV measures relative variability and is computed in percentage, it can be
used to assess the variability of any variable with respect to its mean value. Further,
it can also be used in comparing the variability of two groups in a situation when
their mean values are not same. Since it is free from units, it can be used to compare
the variability of two variables having different units.

Consider the data on sit-ups performance obtained on the students of class IX and
XI on which the following statistics were obtained. Let us see what conclusion can
be drawn from these information.

Class IX XI
Mean 35 25
SD 8 6

cov B 100-2286% 2 x100=24%
35 25

The SD of the sit-ups data is larger in class IX in comparison to class XI, whereas CV
is larger in class XI. Thus, it may be concluded that the variation among the student’s
performance in class XI on their sit-ups data is higher than that of the class IX students.

2.2.3 Standard Error of Mean

The standard error of the mean, SE ()_(), is a measure of how much the mean varies
from sample to sample drawn from the same population. The standard error of mean
can be used to compare the observed mean to a hypothesized value. The two values
may be different at 5% level if the ratio of the difference to the SE is less than —2 or
greater than +2.

2.2.4 Skewness
Skewness gives an idea about the symmetricity of the data. It is measured by f,.

2

u
Bl :_2
Hy

The value of p gives the magnitude of skewness only and does not provide the
direction. Thus, another statistic v, is used for skewness, which provides magnitude
as well as direction both. The y, is computed by the following formula:

My

For a symmetric distribution y  is 0. A distribution having significant positive value
of y, has a long right tail, whereas a distribution having significant negative value of y,

Y=
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FIGURE 2.1 Distribution of IQ scores of the IIT and engineering students. (a) Negatively
skewed curve and (b) positively skewed curve.

has a long left tail. In general, skewness value when more than twice its SE indicates
a departure from symmetry. Thus, if the data is positively skewed, it simply means that
the majority of the scores are less than its mean value; and in a negatively skewed
curve, most of the scores are more than its mean value.

If the skewness of 1Q scores for the IIT entrants is negative, then the distribution
of the data would look like as shown in Figure 2.1a. Similarly, if the skewness of IQ
scores for the students of engineering institute that does not have any ranking on the
national list is positive, then the distribution of scores shall look like as shown in
Figure 2.1b.

It can be concluded from Figure 2.1a that most of the IIT students have higher IQ
scores in the group. Similarly, from Figure 2.1b, it may be interpreted that the
majority of the engineering students have low IQ scores.

2.2.5 Kurtosis

Kurtosis is a statistical measure used for describing the distribution of the observed
data around the mean. It measures the extent to which the observations cluster around
the mean value.

It is measured by vy, and is computed as follows:

n
v, =B, -3="5-3

2

For a normal distribution, the value of kurtosis is zero. Positive value of kurtosis in
a distribution indicates that the observations cluster more around its mean. In such
situation, the curve is more peaked in comparison to that of normal distribution, whereas
a distribution with negative kurtosis indicates that the observations cluster less around
its mean and in that case the curve is more flat than that of the normal distribution.
Depending upon the value of kurtosis, the distribution of scores can be classified into
any one of the three categories: leptokurtic, mesokurtic, and platykurtic.

If for any variable the kurtosis is positive, the curve is known as leptokurtic, and
it represents a low level of data fluctuation as the observations cluster around the
mean. On the other hand, if the kurtosis is negative, the curve is known as platykurtic
and that the data has more variability. Further, if the kurtosis is 0, the curve is classi-
fied as mesokurtic. The normal curve is a mesokurtic curve. These three types of
curves are shown in Figure 2.2.
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— Leptokurtic
Mesokurtic

Platykurtic

—00 +0co

FIGURE 2.2 Distribution with different types of kurtosis.

2.2.6 Percentiles

Percentiles are used to develop norms on the basis of subject’s performance. A given
percentile indicates the percentage of scores below it and is denoted by P..
For example, P, is a score below which 40% scores lie. Median is also known as
P, and it indicates that 50% scores lie below it.

Similarly, quartiles (the 25th, 50th, and 75th percentiles) divide the distribution
into four quarters. If you want an equal number of groups other than four, select cut
points for ‘n” equal groups in SPSS. You can also specify any specific percentile
value in SPSS for computation. Percentiles can be computed by choosing relevant

option in SPSS, explained in the solved example.

2.3 APPLICATION OF DESCRIPTIVE STATISTICS

Descriptive statistics are used in studying the characteristics of a group of sub-
jects. Such a study is often known as profile study. A profile study is undertaken
in a situation where it is required to describe the nature of a particular population.
For example, if a researcher is interested to know the basic traits of Indian
wrestlers of interuniversity level, then all the wrestlers belonging to the univer-
sities shall form the population in the study. One may typically investigate the
following issues:

1. Testing normality of data
2. Identifying outliers in data

3. Understanding the nature of variables by investigating their SE, CV, skewness,
and kurtosis

4. Developing percentile scale for each variable
Developing classification criteria

o »

. Comparison of performance on different parameters among the wrestlers in
different weight categories
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To cater to the aforementioned objectives, the following steps may be performed:

* Obtain data on physical, physiological, and psychological variables of the
wrestlers.

* Test normality of data by using the Shapiro—Wilk test.

¢ Identify outliers by using boxplot.

* Compute largest and smallest scores, mean, SD, CV, SE, skewness, kurtosis,
and quartile deviation for all parameters of the wrestlers.

» Compute percentile scores at decile points for all variables in order to develop
a scale.

» Use properties of normal distribution for developing five-point classification
criteria for all parameters so that an individual can be classified into any of the
five categories: very good, good, average, poor, and very poor.

* Prepare profile charts of wrestlers in different age categories.

These computations can be done by using SPSS that shall be explained in the
following sections.

2.3.1 Testing Normality of Data and Identifying Outliers

One of the assumptions in using all parametric tests is that the data should come from
normal population. Normality of data can be checked by testing the significance of
skewness and kurtosis. If these two statistics are not significant, then the data is
normal. But what happens if the skewness is significant and kurtosis is not, or vice
versa. To resolve this issue, the Shapiro—Wilk and Kolmogorov—Smirnov tests are
used to test the normality of data. These tests can be applied by using SPSS.

The Shapiro—Wilk test is more suitable for testing normality in case of small
sample (N<50), but it can be used for the sample size up to 2000. However, if the
sample size is large, then the Kolmogorov—Smirnov test is used for checking
normality of data. One of the limitations of these tests is that in case of large
sample, you are more likely to get significant results. In other words, in large sample
these tests become significant even for slight deviation from normality. While testing
the normality with SPSS, one can also choose the option for identifying outliers
using boxplot.

The procedure for testing normality of data and detecting outliers shall be
explained by means of a solved example using SPSS. Let us consider the growth data
obtained on school boys as shown in Table 2.1.

After preparing data file, follow the below mentioned sequence of commands as
shown in the Fig. 2.3.

Analyze — Descriptive Statistics — Explore

After clicking on the Explore option, select variables for testing normality and
identifying outliers as shown in Figure 2.4. Select all three variables from the left
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TABLE 2.1 Growth Data Obtained on School Boys

S.N. Age (years) Height (cm) Weight (Ib)

9
11
10
13
12
12
11
10

9
10
12
11

9
12
11

0 a U AW —

U =
w A WD = O

150 105
152 99
154 108
158 106
162 103
149 100
165 99
156 110
158 103
160 105
162 110
163 115
160 120
185 123
165 135

2 *Untitled1 [DataSet0] - SPSS Data Editor

Mo L& Yew [Dola Irensfom

Analyze  Graphs  Niities Add-gns Window  Help

cCHA @ O E]|

|22: .

Age | Hei
1 9.00 1
2 11.00 1
3 10.00 1
4 13.00 1
5 12.00 1
6 12.00 1
7 11.00 1
8 10.00 1
9 9.00 1

FIGURE 2.3 Command sequence for testing normality and identifying outliers.

e T

Reports »
Descriptive Statistics » | 123 Frequencies... ]
Tebles » | 3 pescriptives... [
Compare Means » | -& Explore...

General Linear Model » |X] crosstabs...
Generalized Linear Models  » | [172] Ratio...

Mixed Models » | p-pPiats...

Correlate » [ g-aPiots...
Regression 4

Loglinear »

Neural Networks »

Classify »
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panel and shift them to the “Dependent List” section of the screen. Click on
Statistics command and select the ‘Outliers’ option. Let other options remain as it

is selected by default.

After selecting option for outliers, click on Continue. Click on the Plots command
in the same screen and then select the ‘Normality plots with test’ option as shown in
Figure 2.5. This option will generate the output of the Shapiro—Wilk test and Q-Q
plot. Let other options remain selected by default. Click on the Continue and OK

options to get the outputs.
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&: Explore

i Explore: Statistics

[¥] pescriptives
Confidence Interval for Mean: sr.

[ m-estimators

Display [v] Qutiers

@goth Ostatistics Opts | [ Bercenties

Lok [ eeste J) [ cotwe J| concet || ree |

FIGURE 2.4 Option for selecting variables and detecting outliers.

&: Explore: Plots

Boxplots ——— rDescriptive ——
© Eactor levelstogether] | | [¥] Stem-and-eat
(O Dependents together [] Histogram

O None

Normality plots with tests
-Spread vs Level with Levene Test

(®) None

O Power estimation

O Transformed Power lNatural log 'l

O Untransformed

[_contivwe J| concel || Hew |

FIGURE 2.5 Option for computing the Shapiro—Wilk test and Q—Q plot.
Select the following outputs from the output window of SPSS:

1. Tests of normality

2. Q-Q plot
3. Boxplot for identifying outliers.
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TABLE 2.2 Tests of Normality for the Data on Memory Recall

Kolmogorov—Smirnov Shapiro—Wilk

Statistics df  Significance Statistic df  Significance

Age 0.163 15 0.200 0918 15 0.179
Height 0.211 15 0.070 0.850 15 0.017"
Weight  0.210 15 0.075 0.872 15 0.036

* Significance at 5% level.

2.3.1.1 Test of Normality Table 2.2 shows the Kolmogorov—Smirnov and
Shapiro—Wilk test statistics. If these tests are significant, then the data is non-normal.
Thus, for the data to be normal these tests should be nonsignificant. Since the
Shapiro—Wilk test is significant for the height (p=0.017) and weight (0.036), it may
be concluded that the data for height and weight are non-normal, whereas age is
normally distributed.

2.3.1.2 Q-Q Plot for Normality Q-Q plot is a graphical way of checking the
normality of data. It compares the two probability distributions by plotting their
Quantiles against each other. If distribution of sample data are similar to that of
standard normal distribution, all the points in the Q—Q plot will lie very close to the
line. It can be seen from Figure 2.6 that the points are not on or close to the lines
for the height and weight variables, whereas points are mostly near the line in case
of age data.

2.3.1.3 Test for Outliers The outlier is an unusual data which a researcher tries to
remove from the sample if the results drawn from the sample need to be generalized
for the population of interest. If the researcher feels that the data is genuine, then he
may decide to keep it in the study. Figure 2.7 shows the Boxplot for all three variables.
It describes the distribution of data and identifies outliers if any. Usually, any data
outside the mean +2SD is taken as outlier. The SPSS computes outlier on the basis of
interquartile range. Any data less than Q,—(Q,-Q,)/2 or more than Q,+(Q,-Q )/2
is identified as outlier by the SPSS. However, you may keep the data in your sample
even if it lies outside this range provided you are convinced that such score is genuine
and can be obtained by the subjects easily. It can be seen in Figure 2.7b that the 14th
score is an outlier. Similarly, Figure 2.7c shows that the SPSS has detected 15th data
as an outlier.

Example 2.1

Consider a study in which physiological profile of a university men’s hockey player
needs to be developed by using their data shown in Table 2.3. Let us see how various
descriptive statistics can be computed using SPSS software.
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FIGURE 2.6 (a—) Normal Q-Q plot for the data on growth parameter.
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FIGURE 2.7 (a—) Boxplot for all three variables: (a) age, (b) height, and (c) weight.
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TABLE 2.3 Data on Physiological Parameters Obtained on University Hockey Players

S.N. Fat% BHC RHR vC Resp. Rate VO, max
1 9.90 38 68 35 21 57.05
2 11.5 40 73 3.0 24 57.15
3 15.9 44 78 2.6 23 53.46
4 153 27 73 2.5 25 49.86
5 5.90 60 67 4.0 19 46.36
6 134 55 71 2.5 22 49.86
7 9.00 34 70 35 25 46.26
8 154 56 69 3.0 17 46.26
9 5.50 54 66 3.7 21 42.66

10 15.40 60 67 2.7 23 46.26

11 9.00 37 77 3.1 20 53.46

12 134 60 72 5.0 20 46.27

13 9.8.0 60 68 3.6 24 42.66

14 15.4 36 72 3.0 20 46.26

15 9.00 60 70 35 21 53.46

16 5.80 31 75 3.0 21 42.66

17 13.40 45 67 3.0 23 42.66

18 13.60 50 72 3.5 23 53.46

19 13.70 53 70 35 22 57.05

20 13.70 37 71 3.0 21 43.66

Fat%, fat percentage; BHC, breath-holding capacity in sec; RHR, respiratory heart rate in beat/min;
VC, vital capacity in liters; Resp. rate, respiratory rate in no. of inhale/min; VO, max, VO, max in
mL/g/min.

2.4 COMPUTATION OF DESCRIPTIVE STATISTICS USING SPSS

2.4.1 Preparation of Data File

Data file in SPSS needs to be prepared before SPSS commands are used for computing
descriptive statistics. It is advised to go through Chapter 1 for starting the SPSS
package for preparing the data file.
After starting the SPSS and selecting the option ‘Type in data,” you will be taken

to the SPSS data editor. The sequence of SPSS commands is as follows:

Start

All Programs

SPSS Inc
SPSS 22.0

Now you are ready for defining variables row-wise.

Type in data
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4 EX1.sav [DataSet?] - SPSS Data Editer

mhmk-mmwﬁwuﬁmw”
CHS E o LRk A Al BOE 068

Name Type | Width | Decimals Label | Values | Missing | Columns  Align | Measure
1 [Fat Numeric 8 2 % Fat(inmm) MNone None 8 = Right & Scale
2 BHC MNumeric 8 2 Breath Holdin... Nene Mone - M Right & Scale
3 RHR Numeric e 2 Respiratory H.. Nene Nene 8 T Right & Scale
4 Ve Numeric 8 2 Vital Capacity ... None None 8 M Right # Scale
[} | ResRate Numeric 8 2 Respiratory R.. None MNone 8  Right & Scale
6 Vo2 MNumeric 8 2 VO2max (mlig... None Mone 8 = Right # Scale

W Data_snaly... T chagter 1 [ B Cester 1 1. P Unditied - N... o Presentatont D Preseetmionz | ] *Ouepei [D. 113 Exi_Profie_.

FIGURE 2.8 Defining variables along with their characteristics.

2.4.2 Defining Variables

In this example, there are six variables that need to be defined along with their
properties. The procedure is as follows:

1. Click on Variable View to define variables and their properties.

2. Write short names of all six variables as Fat, BHC, RHR, VC, ResRate, and
VO, under the column heading “Name.”

3. Under the column heading “Label,” full name of these variables may be defined
as % Fat, Breath-Holding Capacity, Respiratory Heart Rate, Vital Capacity,
Respiratory Rate, and VO, max.

4. Use default entries in rest of the columns.

After defining the variables in Variable View, the screen shall look like as shown
in Figure 2.8.
2.4.3 Entering Data

Once all six variables have been defined in the Variable View, click on the Data
View option on the left corner in the bottom of the screen to open the format for
entering the data. For each variable, data can be entered column-wise. After entering
data, screen will look like as shown in Figure 2.9. Save the data file in the desired
location before further processing.

2.4.4 SPSS Commands

After entering all data in the Data View, do the following steps for computing
descriptive statistics.

1. Initiating SPSS commands: In Data View, click on the following commands in
sequence:

Analyze — Descriptive Statistics — Frequencies

The screen shall look like as shown in Figure 2.10.



COMPUTATION OF DESCRIPTIVE STATISTICS USING SPSS 27

41 EX1,5av [DataSet?] - SPSS Data Fditor

Do BB Yew (e Dwstom rin Goohs UMes Adigre edow Hee
CHA E oo LEk A Gl S05E %00

1 Fm 1]

| Fat BHC RHR VC | ResRate | V02

1 950 38,00 68.00 3 2100 5705
2 1150 40.00 73.00 300 24.00 5715
3 16.90 44.00 78.00 260 23.00 53.46
4 1630 27.00 73.00 250 25.00 4986
5 550 60.00 67.00 400 19.00 46.35
3 13.40 55.00 71.00 250 2200 4986
7 9.00 3400 70.00 350 2500 4626
8 16.40 66.00 69.00 300 17.00 626
9 650 54.00 66.00 370 21.00 4266
10 1640 60.00 67.00 270 2300 4626
1 9.00 37.00 77.00 310 20,00 53.45
12 13.40 60.00 7200 500 20.00 ®21
13 980 0.00 £8.00 360 2400 4266
14 16.40 36.00 7200 300 2000 4626
15 9.00 60.00 70.00 350 21.00 53.45
16 680 31.00 76.00 300 2100 4266
17 13.40 45.00 67.00 300 2300 4266
18 1360 50.00 7200 350 2300 53.45
19 1370 53.00 70.00 350 2200 5705
20 13.70 37.00 71.00 300 21.00 4366
21

2

FIGURE 2.9 Method of data entry in Data View.

Ede Edt View Data Transform | Analyze Graphs Lhities Add-ons Window Heip
CHA B O 2]  reos » BO®
[1:Fat as Descriptive Statistics » | 123 Frequencies...
Fat | Tables » | P pescriptives...
'——  Compare Means » | B Explore...
1 9.90
General Linear Model » | X Crosstabs...
2 11.80 Generalized Linear Models ¥ | /2 Ratio...
3 15.80 Mixed Models » [ ppPicts...
4 16.30 Correlate » [ g-QPits...
5 5.80 Regression » 4.00 :
6 13.40 Logisar ) 250 :

FIGURE 2.10 Command sequence for computing descriptive statistics.

2. Selecting variables: After clicking on “Frequencies”, you will be taken to
the next screen for selecting variables for which descriptive statistics need
to be computed. The screen shall look like as shown in Figure 2.11. Do the
following:

(a) Select all six variables Fat, BHC, RHR, VC, ResRate, and VO2 in the left
panel and bring them into the “Variable(s)” section in the right panel.

The variables can be selected one by one or all at once. The screen will look
like as shown in Figure 2.11.
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7 EX1.sav [DataSet1] - SPSS Data Editor
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FIGURE 2.11 Selection of variables for descriptive analysis.

4 EX1,5av [DataSet1] - SPSS Data Editor
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FIGURE 2.12 Option for different statistics to be computed.

3. Selecting option for computation: After selecting variables, options need to be
selected for the computation of various statistics. Do the followings:
(a) Click on the Statistics command to get the screen as shown in Figure 2.12
for selecting the following options:
(i) Check ‘Quartiles’ and ‘Cut points for /0 equal groups’ options in
“Percentile Values” section.
(i) Check ‘Mean,” ‘Median,” and ‘Mode’ options in “Central Tendency”
section.
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(ii1) Check ‘Std. deviation,” ‘Variance, ‘Range, ‘Minimum, ‘Maximum,’
‘Range,” and ‘S.E. mean’ in “Dispersion” section.
(iv) Check ‘Skewness’ and ‘Kurtosis’ in “Distribution” section.

Remarks

(a) Here, you have four different classes of statistics like “Percentile Value,”
“Central Tendency,” “Dispersion,” and “Distribution” that can be computed.
Any or all the options may be selected under the categories “Central
Tendency,” “Dispersion,” and “Distribution.” Under the category
“Percentile Values,” quartiles can be checked for computing Q, and Q,. For
computing percentiles at decile points, cut points can be selected as 10.
Similarly, if the percentiles are required to be computed in the interval of
5, cut points may be selected as 5.

(b) In using the option “Cut points” for the percentiles, output contains
some additional information on frequency in different segments. If the
researcher is interested, the same may be incorporated in findings; other-
wise it may be ignored.

(c) Percentile option is selected, if percentile values at different intervals are
required to be computed. For example, if we are interested in computing

P,PP,P,etc, then these numbers are added in the Percentile options.

(d) Under the heading “Percentile Values,” ‘Quartiles’ option has been checked
and the value of ‘Cut points for’ has been taken as 10; whereas under the
heading “Central Tendency,” “Dispersion,” and “Distribution,” all options
have been checked.

4. Option for graph: The option of Chart command can be used if graph is
required to be constructed. Any one of the options under this section like Bar
Charts, Pie Charts, or Histograms may be selected. If no chart is required, then
option “None” may be selected. Click on Continue and OK for outputs.

5. Getting outputs: All the results would be generated into output window. The
output panel shall have lots of results. It is up to the researcher to select the
relevant outputs in their results. In the output window of SPSS, the relevant
outputs may be selected by pressing the right click of the mouse and copying
them into the word file. In this example, the output generated will look like as
shown in Table 2.4.

2.5 INTERPRETATIONS OF THE RESULTS

Different interpretations can be made from the results in Table 2.4. However, some
of the important findings that can be drawn are as follows:

1. Mean and median for all the variables are nearly equal.

2. SE of mean is least for the vital capacity, whereas it is the maximum for the
breath-holding capacity.
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3. As a guideline, a skewness value more than twice its SE indicates a departure
from symmetry. Owing to this principle, only vital capacity is positively
skewed as its value is 1.288 that is more than twice its SE (2x0.512). Thus,
it can be interpreted that most of the subject’s performance on vital capacity is
less than the mean value.

4. SPSS uses y,(= B, —3) statistic for kurtosis. If kurtosis value is greater than
two times of its SE, it may be considered significant. For a normal distribution,
kurtosis value is 0. If for any variable the value of kurtosis is positive, then its
distribution is leptokurtic, which indicates low level of data fluctuation around
its mean, whereas negative kurtosis indicates large degree of variation among
data and in that case the distribution is known as platykurtic. In this example,
kurtosis for the vital capacity is 2.936, which is significant. Since kurtosis is
positive, the shape of the curve is leptokurtic indicating less variation among
subject’s vital capacity performance around their mean value.

5. Minimum and maximum values of the parameter can give some interesting
facts and provide range of variation. For instance, fat% of the university hockey
players is in the range of 5.5-15.9%. Since for an adult male, fat% should be
in the range of 10-20%; therefore, it can be interpreted that hockey players had
less fat in their body. This is rightly so as the hockey players need to have an
athletic body due to the very nature of the game.

6. Similarly, respiratory heart rate is in the range of 66 and 78. This indicates that
some of the players had better conditioning of heart whereas others need to
improve upon on this parameter.

7. Percentile scales can be used to draw various conclusions about different
parameters. For instance, P 0 for the fat% is 10.54, which indicates that around
40% of the hockey players had fat below the 10.54% which may be categorized
as lean. Similarly, P, for the respiratory heart rate is 68. This indicates that
30% of the hockey players were very fit and 70% needs to improve their fitness

as lower pulse rate is the sign of better fitness.

2.6 DEVELOPING PROFILE CHART

A researcher who undertakes a profile study generally computes various statistics
that are described in Table 2.4. The significant findings can be explained while
writing interpretation of the results as shown earlier. However, it would be more
interesting to prepare a graphical profile as well by using minimum score, maximum
score, mean, and SD of all the parameters shown in Table 2.4.

After manipulating the data as per the following steps, functionality of EXCEL
can be used to prepare a graphical profile of the hockey players.

Step 1: Segregate the descriptive statistics like minimum score, maximum score,
mean, and SD of all the parameters from Table 2.4. The same has been shown
in Table 2.5.
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TABLE 2.5 Selected Statistics of the Physiological

Parameters of University Hockey Players

Min Max Mean SD
Fat 5.5 159 11.7 3.46
BHC 27 60 46.85 11.17
RHR 66 78 70.8 3.32
VitCap 2.5 5 3.26 0.59
ResRate 17 25 21.75 2.05
VO, max 42.66 57.15 48.84 5.18

TABLE 2.6 Standard Scores of the Physiological

Parameters
Min (Z) Mean (Z) Max (Z)

Fat -1.79 0 1.21
BHC -1.78 0 1.18
RHR -1.45 0 2.17
VitCap -1.29 0 2.95
ResRate -2.32 0 1.59
VO, max -1.19 0 1.6

TABLE 2.7 Transformed Standard Scores of the
Physiological Parameters

Min Mean Max
Fat 32.1 50 62.1
BHC 322 50 61.8
RHR 35.5 50 71.7
VitCap 37.1 50 79.5
ResRate 26.8 50 65.9
VO, max 38.1 50 66.0

Step 2: Convert minimum score, maximum score, and mean of each variable into
their standard scores by using the following transformation:

7=

X-X
S

Thus, mean of all the variables will become zero. The values so obtained are shown

in Table 2.6.

Step 3: Convert these Z values into their linear transformed scores by using the
transformation Z,=50+10xZ. This way negative value of Z can be converted
into positive. Descriptive statistics shown in the form of linearly transformed
scores are shown in Table 2.7.

Step 4: Use EXCEL graphic functionality for developing line diagram to show the
profile of university hockey players. The profile chart so prepared is shown in

Figure 2.13.
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FIGURE 2.13 Physiological profiles of university hockey players.

SUMMARY OF SPSS COMMANDS

. Start SPSS by using the following commands:

Start — All Programs — SPSS Inc — SPSS 20.0 — Type in Data

. Click on Variable View and define the variables Fat, BHC, RHR, VC, ResRate,

and VO, as a ‘Scale’ variable.

. Once the variables are defined, type data for these variables by clicking on

Data View.

. In the Data View, follow the below mentioned command sequence for

generating descriptive statistics.

Analyze — Descriptive Statistics — Frequencies

. Select all variables from left panel and bring them into the right panel for com-

puting various descriptive statistics.

. Click on the Statistics command and select ‘Percentile Values,” ‘Central

Tendency,” ‘Dispersion,” and ‘Distribution’ options. Click on Continue.

. Click on the Charts command and select the required chart, if graph is required.
. Click on OK to get the output.

EXERCISE

2.8.1 Short Answer Questions

Note: Write the answer to each question in not more than 200 words.

Q.1 If mean performance of two groups is same, can it be said that both groups are

equally good?
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Q.2

Q.3

Q4

Q.5

Q6

Q.7

2.8.

DESCRIPTIVE PROFILE

What do you mean by absolute and relative variability? Explain them by means
of examples.

What is coefficient of variation? In what situation should it be computed? With
the help of the following data on weight can it be concluded that group A is
more variable than group B.

Group A (Ib)  Group B (Ib)

Mean 110 170
SD 10 14

Is there any difference between SE of mean and error in computing the mean?
Explain by means of an example.

If skewness of a set of data is zero, can it be said that it is normally distributed?
If yes, how? And if no, how it can be checked for its normality?

If performance of a student is 95th percentile in a particular subject, can it be
concluded that he is very intelligent in that subject? Explain your answer.

What does quartile measures? In what situation should it be used?

2 Multiple Choice Questions

Note: Questions 1-10 have four alternative answers for each question. Tick mark the

one

1

2

3

that you consider the closest to the correct answer.

If an investigator is interested to know as to how many students in a college have
come from different regions of the country and how many of them have opted for
science studies. The study may be categorized as follows:

(a) Descriptive

(b) Inferential

(c) Philosophical

(d) Descriptive and Inferential both

Choose the correct sequence of commands to compute descriptive statistics.
(a) Analyze — Descriptive Statistics — Frequencies

(b) Analyze — Frequencies — Descriptive Statistics

(c) Analyze — Frequencies

(d) Analyze — Descriptive Statistics

Choose nonparametric statistics.
(a) Mean and Median

(b) Mean and SD

(¢) Median and SD

(d) Median and QD
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4

10

SE of mean can be defined as follows:

(a) Error in computing mean

(b) Difference in sample and population mean

(c) Variation in the mean values among the samples drawn from the same
population

(d) Error in measuring the data on which mean is computed

The value of skewness for a given set of data shall be significant if
(a) Skewness is more than twice its SE

(b) Skewness is more than its SE

(c) Skewness and SE are equal

(d) Skewness is less than its SE

Kurtosis in SPSS is assessed by
(@) B,

(b) p,+3

© p,-3

(d) 2B,

In order to prepare a profile chart, minimum score for each variable is converted
into

(a) Percentage

(b) Standard score

(c) Percentile score

(d) Rank

While selecting option for percentile in SPSS, cut points are used for
(a) Computing Q, and Q,

(b) Generating percentiles at decile points only

(c) Cutting Q, and Q,

(d) Generating percentiles at fixed interval points

If IQ for a group of students is positively skewed, what conclusions could be
drawn?

(a) Most of the students are less intelligent.

(b) Most of the students are more intelligent.

(c) There are equal number of high- and low-intelligent students.

(d) Nothing can be said about the intelligence of the students.

If distribution of a dataset is platykurtic, what can be said about its variability?
(a) More variability exists.

(b) Less variability exists.

(c) Variability is equivalent to normal distribution.

(d) Nothing can be said about the variability.
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2.9 CASE STUDY ON DESCRIPTIVE ANALYSIS

Objective

A researcher wanted to study physiological characteristics of the college basketball
players. A pilot study was conducted by him on a randomly selected sample of 20
basketballers on which the data was obtained on eight selected variables. The data so
obtained are shown in Table 2.8.

Research Questions

The following research questions were investigated:

1. Whether all the data were normally distributed?
2. Whether the data contained any outlier?
3. How was the nature of variables?

Data Format

The format used for preparing data file in SPSS is shown in Table 2.8.

Analyzing Data

By using the commands Analyze, Descriptive Statistics, and Explore in sequence
and by selecting the option ‘Normality plots with tests,” the output for the Shapiro—
Wilk test was obtained for all the variables for testing normality. The results so
obtained are shown in Table 2.9. Further by selecting the option ‘Outliers,” the box-
plots were developed for identifying the outliers, if any, in all the variables. Boxplot
for only those variables in which outliers were detected have been shown in
Figures 2.14 and 2.15.

Further, for understanding the nature of data various descriptive statistics were
computed by using the commands Analyze, Descriptive Statistics, and Frequencies
in sequence and selecting options for different statistics in SPSS. The statistics so
computed are shown in Table 2.10.

Testing Normality

It can be seen from Table 2.9 that the Shapiro—Wilk test is nonsignificant for all the
variables, except weight and 9 min run/walk tests. Since the Shapiro test is significant
for weight and 9 min run/walk test, the data for these two variables are non-normal
although other variables are normally distributed.

Checking Outliers

Boxplot for weight and fat indicates that in each of these two variables, one outlier
exists. Figure 2.14 shows that the 20th data for the weight, which is 87, is an outlier.
Similarly, Figure 2.15 indicates that the second data of fat, that is, 23.35 is an outlier.
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TABLE 2.9 Tests of normality

Kolmogorov—Smirnov®

Shapiro—Wilk

Statistic df Significance Statistic df Significance
Height 0.162 20 0.177 0.923 20 0.112
Weight 0.221 20 0.012 0.746 20 0.000
Grip_Strength 0.151 20 0.200* 0.962 20 0.592
Pulse_Rate 0.173 20 0.117 0.922 20 0.108
Explosive 0.095 20 0.200* 0.982 20 0.960
Nine_Min_R/W 0.166 20 0.148 0.896 20 0.035
Body_Density 0.249 20 0.002 0918 20 0.092
Fat 0.170 20 0.132 0.919 20 0.093

“ Lilliefors significance correction.

* This is a lower bound of the true significance.
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FIGURE 2.14 Boxplot showing outlier in weight data.
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FIGURE 2.15 Boxplot showing outlier in fat data.
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Understanding Nature of Data

It is evident from Table 2.9 that the data on weight and fat are skewed because their
skewness is greater than two times of their SE. For instance, skewness of the weight
is 2.493, which is greater than 2x0.512. Since skewness is positive for these two
variables, the data is positively skewed for both these variables. It can be interpreted
that most of the weight and fat scores of the basketballers were less than their respec-
tive mean values.

Since kurtosis for the weight (7.956) is more than two times of its SE (2x0.992),
it is significant and the curve is leptokurtic. In other words, curve is more peak which
indicated that there was less variation among the weights of basketballers.

Reporting

* Since the Shapiro—Wilk test was significant for weight and 9 min run/walk test,
these two variables were non-normal although all other variables were normally
distributed.

* One outlier in each of the dataset of weight and fat was identified.

* Data for weight and fat were positively skewed, indicating most of the data
lying below the mean.

 Data for weight was also leptokurtic, indicating less variation around the mean
value.



CORRELATION COEFFICIENT
AND PARTIAL CORRELATION

LEARNING OBJECTIVES
After completing this chapter, you should be able to do the following:

* State the circumstances in which correlation and regression analysis can be used

 Learn to interpret the significance of correlation coefficient and partial correlation

* Construct hypothesis to test the significance of correlation coefficient

» Formulate research problems where correlation matrix and partial correlation
can be used to draw conclusions

* Know the procedure of using SPSS in computing correlation matrix and partial
correlation

* Interpret the output of SPSS in computing the correlation matrix and partial
correlation

3.1 INTRODUCTION

Researchers in the area of sports science are always engaged in finding ways and
means to improve the capability of athletes to enhance their performance. It is there-
fore important to know the parameters that affect the performance in different sports.
Once the parameters responsible for performance are identified, an effective training

Sports Research with Analytical Solution using SPSS®, First Edition. J. P. Verma.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Verma/Sportsresearch
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schedule can be developed to improve the performance. For instance, if a coach
trains his budding athletes for the middle distance events, his first priority would be
to develop their endurance and then try to improve their other parameters like
strength, skills, and related techniques and tactics. This is so because endurance is
highly associated with the performance of the middle distance event. Thus, it is
important to identify the parameter that is highly related to the performance. This can
be achieved by knowing the strength of relationship between a parameter and the
performance. This strength of relationship between the two variables can be computed
by a measure known as product moment correlation coefficient. In short, it is referred
as correlation coefficient and is denoted by “r.”

The correlation coefficient gives a fair estimate of the extent of relationship
between the two variables, if the subjects are chosen randomly. But in most of the sit-
uations samples are purposive; and therefore, correlation coefficient in general may
not give the correct picture of the real relationship. If a study is to be conducted on
university students for developing a regression equation for estimating shot put
performance, on the basis of some predictors, a sample may be drawn from all the
university students who have participated in the interuniversity tournaments. The next
job is to first identify the most contributing parameter to the shot put performance.
And if the correlation coefficient between the performance and height comes out to be
0.8, it cannot be interpreted that height is highly related with the performance. It may
be due to the fact that the subjects might have very good as well. Further, higher cor-
relation might also be due to their higher coordinative ability, and leg strength. Thus,
in this situation product moment correlation may not be considered as a good indicator
of the real relationship between the height and shot put performance because the
sample was purposive in nature. The sample is called “purposive” because it is not
randomly chosen from the population of interest, rather has been obtained from a
specific domain and for a specific purpose.

Since correlation does not explain the cause and effect relationship, another measure
is computed to overcome this problem, which is known as partial correlation. This pro-
vides a real relationship between the two variables after partialling out the effect of
other independent variables. Partial correlation is a statistical technique of eliminating
the effects of independent variables after the data is collected. Another method of elim-
inating the effect of independent variables is to make them constant while collecting
the data, but this is not feasible all the time. Let us understand this fact through this
example. Consider a situation where the height and weight of 20 children with age
ranging from 12 to 18 years are selected, and the correlation between the height and
weight is computed as 0.75. Although this correlation is quite high, it cannot be consid-
ered as an indicator of a real relationship between height and weight. This higher cor-
relation has been observed because all the children belong to the developmental age;
and during this age, in general, if the height increases weight also increases. Thus, in
order to find the real relationship between the height and weight, the age needs to be
constant. Age can be made constant by taking all the subjects from the same age cate-
gory. But it is not possible in the experimental situation once the data collection is over.
Even if an experimenter tries to control the effect of one or more variable manually, it
may not be possible to control the effect of other variables; otherwise, one might end
up with getting one or two sample only for the study.
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Although the correlation coefficient may not give a clear picture of the real
relationship between the two variables, yet it provides inputs for computing partial
and multiple correlations. And, therefore, in most of the analysis it is important to
compute a correlation matrix for the set of variables in the study. This chapter
discusses the procedure for computing correlation matrix and partial correlations,
and their application in research.

3.2 CORRELATION MATRIX AND PARTIAL CORRELATION

Matrix is an arrangement of scores in rows and columns. If elements in a matrix are
correlation coefficients, it is known as correlation matrix. Usually in correlation
matrix upper diagonal values of the matrix are written. For instance, correlation
matrix with the variables X, X, X,, and X , may look like as follows:

X, X, X, X,
X, 105 03 06
X, 1 0.7 08
X, 1 0.4
X 1

=

The lower diagonal values in the matrix are not written because of the fact that the
correlation between X, and X is the same as the correlation between X, and X,.
Some authors prefer to write this correlation matrix in the following form:

Xl XZ X3 X4
X, 05 03 06
X, 07 08
X, 0.4
X4

In this correlation matrix, diagonal values are not written as it is obvious that these
values are 1 because correlation between the two same variables is always 1.

In this section, we shall discuss product moment correlation and partial correla-
tion along with testing of their significance.

3.2.1 Product Moment Correlation Coefficient

Product moment correlation coefficient is the measure of relationship between any two
variables. When we refer to correlation matrix, it is a matrix of product moment

(3%

correlation coefficients. It is represented by “r”” and is given by the following formula:
NEIXY —(ZX)(EY)

JNexe - (zx) [ Ney? - (2v)']

r=
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where, N is the number of paired scores. This coefficient r was developed by British
mathematician Karl Pearson, hence it is also known as Pearson r. The limits of r are —1
to +1. In general, positive relationship means higher score on one variable tends to
be paired with higher score on the other or lower score on one variable tends to be
paired with lower score on the other. On the other hand, negative relationship
means higher score on one variable tends to be paired with lower score on the other,
and vice-versa.

One of the main limitations of the correlation coefficient is that it measures only
linear relationship between the two variables. Further, it can be computed only when
the data is measured either on an interval or ratio scale. The other limitation of
the correlation coefficient is that it does not explain cause and effect relationship.
To overcome this problem, partial correlation may be computed, which explains
somewhat real relationship between the two variables with certain limitations.

3.2.1.1 Testing the Significance of Correlation Coefficient After computing
correlation coefficient, the next task is to check whether it actually explains some
relationship or not. In other words, it is required to test the significance of r.

The following mutually exclusive hypotheses are used for testing the significance
of correlation coefficient:

H,: p=0 (There is no correlation between the two variables.)
H,: p=0 (There is a significant correlation between the two variables.)

Here, p indicates population correlation coefficient whose significance is tested on
the basis of the sample correlation. To test the null hypothesis H, any of the following
three approaches may be used.

First Approach: The easiest way to test the null hypothesis is to compare the
computed value of r with that of the critical value of r obtained from Table A.6
in the Appendix at n—2 degrees of freedom and some desired level of significance.
If the calculated r is greater than critical r, null hypothesis is rejected; otherwise
we fail to reject it. For instance, if the correlation between the height and self-
esteem scores obtained on 25 individuals is 0.45, then the critical value of r
required at 0.05 level of significance and n—2 (=23) df from Table A.6 in
the Appendix can be seen as 0.396. Since calculated r, that is, 0.45 is greater than
the critical value of r (=0.396), the null hypothesis is rejected at the significance
level 0.05, and we may conclude that there is a significant correlation between the
height and self-esteem.

Second Approach: Null hypothesis for testing the significance of correlation coef-
ficient may be tested by using t-test. In this case, t-statistic is given by the following
formula:

Here “r” is the observed correlation and “n” is the number of paired data.
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The calculated value of t is compared with that of the tabulated value of t (obtained
from Table A.2 in the Appendix) at 0.05 level and n—2 df.

Thus, if calculated t > t, s (n—2), H is rejected at the significance level 0.05.
and if calculated t <t (n—2), we fail to reject H.

Third Approach: In this approach, significance of correlation coefficient is tested on
the basis of p value associated with t statistic. The p value can be defined as the small-
est level of significance at which the null hypothesis would be rejected. The smaller
the p value, the stronger is the evidence in favor of the research hypothesis. If the p
value associated with t is 0.04 for a given correlation coefficient, it indicates that the
chances of wrongly rejecting the null hypothesis are less than 5%. Thus, as long as p
value is less than 0.05, correlation coefficient is significant and the null hypothesis is
rejected at 5% level. On the other hand, if the p value is more than or equal to 0.05, the
correlation coefficient is not significant and the null hypothesis is not rejected.

Note: The SPSS output follows third approach and provides p value for each of
the correlation coefficient in the correlation matrix.

3.2.2 Partial Correlation

Partial correlation is a measure of relationship between two variables after controlling
the effect of one or more independent variables. For example, one may compute
partial correlation if it is required to see the relationship of leg strength with 100-
meter performance after adjusting the effect of reaction time.

The partial correlation of X, and X, adjusted for X is given by

r I.1 3 r23

(1= )(1-x3)

Like correlation coefficient, the limits of partial correlation are also —1 to +1.
Number of independent variable whose effects are controlled determines the order
of a partial correlation. For example, first-order partial correlation is the one in which
the effect of only one variable is controlled.
The generalized formula for (n—2)th order partial correlation is given by

Iiys3

r1234i (n ]) r]n’§45 )r2n 345.. (n ])
T, =

12.34..n
\/ ln 345.. n 1 \/1 2n 345..

3.2.2.1 Assumptions Partial correlation is useful when the effect of one or more
variables needs to be controlled. Following are the assumptions in partial correlation:

1. Partial correlation assumes that the data are measured either on interval or ratio
scale.

2. In computing partial correlation, data should be linearly related with each other
and no outlier should be present. Further data need to be normally distributed.
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3.2.2.2 Testing the Significance of Partial Correlation The significance of
partial correlation is tested in a similar way as is done in case of product moment
correlation.

In SPSS, testing the significance of partial correlation is done on the basis of p
value. Partial correlation becomes significant if p value associated with r is less than
0.05 and nonsignificant otherwise.

3.3 APPLICATION OF CORRELATION MATRIX
AND PARTIAL CORRELATION

If a researcher is interested to study the relationship between the performance in any
sport and several independent variables, he may compute the correlation matrix,
which might facilitate him to understand the extent of multicollinearity among
independent variables besides understanding the pattern of relationship between
performance and independent variables. While investigating the relationships using
correlation matrix, it is relevant to know as to which variable is highly associated with
the performance variable. With certain limitations, these highly associated variables
with the performance may be identified by a coach to develop his training model for
their athletes. Further, partial correlation may be used to identify the priority variables
useful in developing a training model.

3.4 CORRELATION MATRIX WITH SPSS

Example 3.1

A study was conducted on college boys to investigate the relationship between 100-meter
performance and physical variables. The data so obtained is shown in Table 3.1. Let
us see how correlation matrix and partial correlation can be computed.

Solution: The first step is to compute the correlation matrix. Using the correlation
matrix independent variables that have significant correlations with 100-meter per-
formace shall be identified. Partial correlation shall be computed between 100-meter
and the identified variables in order to know the most contributing physical variable
to the 100-meter performance.

The correlation coefficients and partial correlations so obtained in the output from
the SPSS shall be tested for their significance using p values.

3.4.1 Computation in Correlation Matrix

3.4.1.1 Preparation of Data File Before using SPSS commands for the compu-
tation of correlation matrix, a data file needs to be prepared. After starting SPSS and
selecting the option “Type in data,” you will be taken to Variable View option where
all the variables need to be defined. The sequence of SPSS commands is as follows:

Start
All Programs



CORRELATION MATRIX WITH SPSS

TABLE 3.1 Data on Physical Performance

47

S.N. 100-Mt.  Leg Str.  Back Str.  Sit-Ups  SBJ  Vert. Jump  30-Mt. Race
1 13.20 80 71 23 2.24 0.70 4.20
2 13.20 72 80 26 1.91 0.31 4.50
3 14.13 76 62 25 2.05 0.61 5.00
4 13.01 46 72 26 1.85 0.28 4.40
5 14.09 65 60 20 1.81 0.12 5.12
6 15.49 80 80 30 1.80 0.19 5.60
7 14.82 76 92 27 2.00 0.14 5.00
8 14.45 95 86 32 2.20 0.42 4.6
9 14.90 74 91 25 2.12 0.09 5.10
10 17.72 70 59 26 2.05 0.29 5.21
11 14.57 70 59 28 2.19 0.30 4.80
12 15.54 110 85 25 1.70 0.34 5.22
13 16.65 70 60 33 1.45 0.33 5.26
14 14.56 85 80 30 1.96 0.31 4.60
15 15.16 85 83 30 2.25 0.49 4.61
16 15.15 67 65 29 1.90 0.67 4.99
17 14.39 90 76 23 1.95 0.33 4.66
18 13.01 65 62 29 2.20 0.65 4.33
19 15.51 100 90 35 1.35 0.26 5.01
20 14.36 120 105 31 1.90 0.37 4.75

100-Mt., 100-meter timings in sec; Leg Stre., Leg strength in kg; Back Stre., Back strength in kg; Sit-ups,
Sit-ups in nos.; SBJ, Standing broad jump in mt.; Vert. Jump, Vertical jump in mt.; 30-Mt. Race, 30-meter
run timing in sec.

IBM SPSS Statistics

IBM SPSS Statistics 20

Type in Data

Now you are ready for defining variables row-wise.

3.4.1.2 Defining Variables

Here seven variables need to be defined. Since all the

variables are quantitative in nature, they are treated as scale in SPSS. The procedure

of defining the variables is as follows:

1.
2.

Click on Variable View button to define variables and their properties.

Write short name of the variables as HundredMt, LegStr, BackStr, SitUps, SBJ,
VertJump, and ThirtyMt under the column heading “Name.”

. Under the column heading “Label,” define full name of these variables as 100-meter

timing in sec, Leg strength in kg, Back strength in kg, Sit-ups in numbers,
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standing broad jump in cm, vertical jump in cm, and 30-meter timing
in sec. There is no restriction in defining the full name of each variable. One
can take liberty to write any relevant name of the variable without any
restrictions.

4. Under the column heading “Measure,” select the option ‘Scale’ for all the
variables, as all these variables are quantitative in nature.

5. Use default entries in rest of the columns.

After defining variables in the Variable View, the screen will look like as shown in
Figure 3.1.

3.4.1.3 Entering Data Once all the seven variables are defined, click the Data
View option on the left corner in the bottom of the screen to open the format for
entering data. For each variable enter the data column-wise. After entering the data,
the screen will look like as shown in Figure 3.2. Save the data file in the desired loca-
tion before further processing.

3.4.1.4 SPSS Commands After entering all the data in the Data View, the
following steps should be followed for computing correlation matrix:

1. Initiating SPSS Commands for Correlation Matrix: In the Data View, click the
following commands in sequence:

Analyze — Correlate — Bivariate

The screen shall look like as shown in Figure 3.3.

2. Selecting Variables: After clicking the “Bivariate” option, you will be taken
to the next screen for selecting variables for generating correlation matrix.
Select all the variables from left panel and bring them to the right panel by
using the arrow key. The variable selection may be made one by one or all
at once. After selecting the variables, the screen will look like as shown in
Figure 3.4.

&4 [xd sav [DataSet0] - SPSS Data Editor

Be ER Yew [us Dwstrm oo et \HBes Adigrs  edow b
CHS B o L6k A A S0WH YOS

MName Type | Width  Decimals Label | Values | Missing Columns  Align | Measure
m Numeric 8 2 100 meter timing in Sec. None None 8 W Right # Scale
2 |LegStr Numeric 8 2 Leg strengthin Kg. None None 8 = Right # Scale
3 BackStr  Numeric 8 2 Back strength in Kg. None None 8 = Right # Scale
4 SitUps Numeric 8 2 Sit ups in numbers Mene Mone 8 3 Right & Scale
§ sBJ Numeric 8 2 Standing braod jump iInCm  None Nene 8 # Right & Scale
6 |Vertdump MNumerc @ 2 Vertical jump in Cm None None 8 = Right # Scale
T | Thirtyme Numeric 8 2 30 meter timing in Sec. Neone Neone 8 = Right # Scale

FIGURE 3.1 Defining variables along with their characteristics.
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4 Exd.sav [DataSet1] - SPSS
= I oo LEjk A dd E0E 390

Data Editor

20:

HundredMt
1 1320
2 1320
3 14.13
4 1301
[ 1409
6 15.49
7 1482
8 1445
9 1490
10 1772
1 1457
12 1554
13 16.65
14 1456
15 15.16
16 15.15
17 1439
18 13.01
19 1651
20 1436

LegStr | BackStr |

80.00 71.00
76.00 80.00
76.00 62.00
80.00 7200
65.00 60.00
80,00 80.00
76.00 9200
95.00 86.00
T400 91.00
60.00 59.00
7000 69.00
60.00 85.00
§5.00 60,00
85.00 80.00
85.00 83.00
67.00 65.00
90.00 76.00
100.00 62.00
65.00 90.00

90.00 105,00

222
219
A

031
061
028
012
019
0.14
042
009
028
030
034
033
031
049
067
033
065
026
037

5.12

5.10
521
480
522
526
460
481
499
466
433
5.01
4.75

FIGURE 3.2 Data file for the correlation matrix.

i

G
2

il

¥

8lp g
[ 7]
E;'ﬂ'

HundredMt L

13.20
13.20
1413
13.01
14.09
16.49
1482
14.45
14.90
10 17.72
1" 1467
12 16.64
13 16.65

0o ~N OO s W8 =

14 14.56

FIGURE 3.3 Commands sequence for computing correlation matrix.

Regorts

Ogscriptive Statistics
Tables

Compore Means
General Linsar Model

Horparsmetric Tests
Time Series
Survivel

Messing Vb Anabysis

Myipis Response.

]
]

v T T T T T T T T T T T W w

@nolyze | Grephs  (\Rities  Addgns  Yéndow el

pos
BitUps | SBJ | Vertyump | ThirtyMt |
2300 222 070 420
2600 219 031 450
2500 201 061 6.00
% Eivariale... 223 028 440
as Poce.. 203 0412 5.2
= 0.19 5.60
27.00 205 014 5.00
3200 201 0.42 460
2500 212 0.09 5.10
2600 180 029 621
2800 219 0.30 4580
2500 180 034 622
3300 210 033 526
3000 196 031 4860

49

3. Selecting Options for Computation: After selecting variables, option needs to
be defined. Do the following:
(a) Inthe screen shown in Figure 3.4, ensure that the options ‘Pearson’, “Two-tailed,

and ‘Flag significant correlations’ are checked. By default, they are checked.
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_—
& Exd.sav [DataSet1] - SPSS Data Editer

B E® Yew Des Dasiom Ansyze Gravhs
CHD @ oo LEEF M dd

[20:

HundredMt| LegStr |
1 1320 8000
2 1320 7500
3 1413 76,00
4 13.01 80,00
5 14.09 65.00
6 15.49 80,00
7 1482 76.00
8 14.45 95,00
] 14.90 7400
10 17.72 6000/ |
1 1457 70,00 [@"-ﬂn Clendars tass [] Speaman
12 1654 6000 - restor
13 16.66 55,00 [@M ) Crn-tated I
14 1456 85,00
15 1616 g5,00| 0% ot comsecons
16 15.15 67.00 [ok ][ pese J[ meset [ coce |[ 1w ]
17 1439 90,00 7600 Z300 0 i< 166

FIGURE 3.4 Variable selection for computing correlation matrix.

—
¥+ Ex4.sav [DataSet1] - SP5S Data Editor

[l G# Vew Qus Jrarstom Awhze Gropts Lbbes Addgr
=8 o LBl A it 2HE Q0

|20: |
HundredMt  LegStr | VertJump  Thirty
1 1320 k] - givariate Correlations
2 13.20 75.00
3 1413 76.00
4 1301 80.00
5 14.09 65.00
6 15.49 80.00
7 1482 76.00
8 14.45 95.00
9 14,90 74.00
10 1772 §0.00 | 1 Corelaion CoMicients | | &iesne s st oo 21
1 1457 70,00 | | Prewson [lkendarsid | CIgose ronctsovtons ans covmances lso
12 1554 60.00 | - Test of Significance—| [M¥sSin0 Values ————————————— 22
13 16.65 5500 | @ woisied ) onetaid © Exchude cases pairwise 26
14 1456 85.00 | | OBxctue coses istvioe
16 1616 @500 o sunen T g ||
16 16.15 67.00 [Cox J[ e
17 14.39 90.00 76.00 300 210 U333 4.66

FIGURE 3.5 Option for computing correlation matrix and other statistics.

(b) Clicking Options command will take you to the screen as shown in
Figure 3.5. Check ‘Means and standard deviations’ option. Click on

Continue.

(c) Use default entries in other options. Readers are advised to try other options,

and see what changes they get in their output.
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TABLE 3.2 Descriptive Statistics

Variables Mean SD N
100-Meter timing (sec) 14.6955 1.18314 20
Leg strength (kg) 89.8000 16.98482 20
Back strength (kg) 75.9000 13.45519 20
Sit-ups (numbers) 27.6500 3.73145 20
Standing broad jump (mt.) 1.9440 0.24481 20
Vertical jump (mt.) 0.3600 0.18047 20
30-Meter timing (sec) 4.8480 0.36068 20

4. Getting the Output: After clicking on OK, the output shall be generated in the
output window. The two outputs, one for descriptive statistics and the other for
correlation matrix, so generated are shown in Tables 3.2 and 3.3, respectively.

3.4.2 Interpretations of Findings

Values of mean and standard deviation for all the variables are shown in Table 3.2.
These values may be used for further analysis in the study.

Further, actual output shows the full correlation matrix, but only upper diagonal
values of correlation coefficients are shown in Table 3.3. This table shows the corre-
lation coefficients along with their associated p values and sample size. One asterisk
(*) indicates significance of correlation at 5% level, whereas two asterisks (**)
indicate significance at 1% level. In this example, the research hypothesis is a two-
tailed, which states “There is a significant correlation between the two variables.”
The following conclusions may be drawn from the results obtained in Table 3.3:

1. The 100-meter performance is significantly correlated with 30-meter perfor-
mance at 1% level.

2. The correlation between leg strength and back strength is highly significant at
1% level. Whereas 30 meter timing is significantly correlated with standing
broad jump as well as with vertical jump performance at 5% level.

3. All those correlation coefficients having p values less than 0.05 are significant
at 5% level and are marked with an asterisk (*), whereas correlations significant
at 1% level have been marked with two asterisks (*%).

3.5 PARTIAL CORRELATION WITH SPSS

While computing partial correlation in SPSS, user needs to specify variables between
which the partial correlation is computed along with the variables whose effects need
to be controlled. In partial correlation, one of the variables is usually performance
variable or criterion variable, and the other is the independent variable having the
highest correlation with it. Depending upon the situation, a researcher may choose
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any variable other than the highest correlated variable with dependent variable for
computing partial correlation. In this example, partial correlation shall be computed
between 100-meter performance (X)) and that of 30-meter performance (X,) after
eliminating the effect of Leg strength (X,) and Standing broad jump (X,). ThlS is
because the X is highly correlated with the performance variable X . The decision of
eliminating the effect of variables X, and X, has been taken because these are the
only two significantly correlated Varlables w1th X, besides X.. However, one may
investigate the relationship between X, and X, after ehmmatmg the effect of the
variables X, and X,. Similarly, partial correlation between X, and X, may also be
investigated after eliminating the effects of the variables X, and X.. The procedure
of computing these partial correlations with SPSS has been discussed in the
subsequent sections.

3.5.1 Computation of Partial Correlations

3.5.1.1 Preparation of Data File The same data file that was prepared for com-
puting correlation matrix shall be used for computing the partial correlations. Thus,
the procedure for defining the variables and entering the data for all the variables is
exactly the same as was done in the case of computing correlation matrix.

3.5.1.2 SPSS Commands After entering all the data in the Data View, do the
following steps for computing partial correlations.

1. Initiating SPSS Commands for Partial Correlation: In Data View, click the
following commands in sequence:

Analyze — Correlate — Partial

The screen shall look like as shown in Figure 3.6.

2. Selecting Variables for Partial Correlation: After clicking on the “Partial”
option, you will be directed to the next screen for selecting variables for
computing partial correlations.

(a) Select the two variables 100-meter timing (X,) and 30-meter timing (X,)
from the left panel, and bring them into the “Variables” section in the right
panel. X and X are the two variables between which we are interested to
know the real relationship after controlling the effect of Leg strength (X))
and Standing broad jump (X,). Thus, Select the variables, Leg strength (X))
and Standing broad jump (X,), from the left panel and bring them into the
“Controlling for” section in the right panel. X, and X are the two variables
whose effects are to be eliminated.

Here, selection of variable is made either one by one or all at once. After
specifying variables, the screen shall look like as shown in Figure 3.7.

3. Selecting Options for Computation: After selecting the two variables for partial

correlation and identifying the controlling variables, option needs to be defined

for the computation of partial correlation. In Figure 3.7, ensure that the options
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4 Exd.sav [DataSet1] - SPSS Data Editer

e (R Yew Qata  Jranstorm | Anelze  Graphs  (Biltes  Addgns  Y¥ndow  Help

=1 I O LB Regots B

. — — S

T »
Hundreaht L % " Bitups | SBJ | Vertuump
1 1320 23.00 222 070
r . Genersl Linesr Model >

2 1320 Cew s » | 2600 219 031
3 1413 il , | 2500 201 061
4 13.01  Gorrelste b | G Bvariate. 223 028
5 14.09 Bepression > G ol | 203 012
6 15.49 Logines »| 8 pstarces.. 190 019
7 1482 Lo Lo 2100 205 0.14
8 14.45 ooy | s200 201 0.42
9 1490 - | 2500 212 009
10 1772 o tes » | 2600 190 029
1M 1457 Time Series » 28.00 219 0.30
12 1554 Suvivel » | 2500 190 034
13 1665 |3 Missing Value Anaiysis . 33.00 210 033
14 1456 Ll | 3000 196 031

FIGURE 3.6 Command sequence for computing partial correlation.

—
# Exd sav [DataSet1] - SPSS Data Editor

Do E® Yew Dos [onstom ez Grophs UMes Addgns Vindow Leb
CHA R 60 ubik A s SO6 Y00

1 et 132

HundredMt LegStr | BackStr | SitUps | SBJ | Vertump | ThirtyMt |

| 1 | 13-_” 80.00 i Partial Correlations

2 13.20 76.00

3 14.13 76.00 & Back strenghinKg. [Bs... & 100 meter tming in Sec_ .| _gstors..|

4 13.01 80,00 & Stups in rumbers [SIU._, @ & 30 meter tming in Sec. [..

5 14.09 65.00 & Vertical jump in Cen [Ver .

6 15.49 80.00

7 1482 76.00

8 14.45 95.00

9 1490 74.00

10 17.72 60.00 Test of Significance -

1" 1457 70.00 () Iwo-taled () Ope-taled

12 1654 60.00 [#] (splery actusl significance level

12 6% 6500 8 8 8

14 1456 85.00

FIGURE 3.7 Variable selections in partial correlation.

‘Two-tailed’” and ‘Display actual significance level” are checked. In fact, they
are checked by default. Do the following:

(a) Click Options command, you will get the screen as shown in Figure 3.8.
Then check ‘Means and standard deviations’ option. Click on Continue.

(b) Use default entries in other options. Readers are advised to try other
options and see what changes they get in their outputs.

(c) Click on OK to get the results.
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o Sy

5 Exd.sav [DataSet1] - SPSS Data Editor
Ble ER Yew Dsta Iransform  Anelyze Grophs Uhties Addgns  Window  Hel
CHA @ 60 LBk A it E0E 308

1: Huncrean 132
HundredMt  LegStr | | Vertjump | ThirtyMt
1 1320 420
2 13.20 450
3 1413
4 1301
5 14.09
6 15.49 for.
- oL =) e e
| [ Zero-orcer correlations
9 14.90 3
50 1772 Testof Missing Values
1 1457 @Mun () One.taled | © et coses e
12 1554 | [¥)pispiay sctus sigincence level LSO
13 1665 [ ok [ esste [ gest ][ cd
14 1456

FIGURE 3.8 Option selection in computing partial correlation and other statistics.

TABLE 3.4 Descriptive Statistics

Variables Mean SD N
100-meter timing (sec) 14.6955 1.18314 20
30-meter timing (sec) 4.8480 0.36068 20
Leg strength (kg) 76.4000 12.25346 20
Standing broad jump (mt.) 2.0480 0.11423 20

4. Getting the Output: The results are generated in the output panel. It will have
two tables: one for descriptive statistics and the other for correlation matrix.
These outputs can be selected using the right click of the mouse and may be
pasted in the word file. In this example, the output so generated by the SPSS
will look like as shown in Tables 3.4 and 3.5.

3.5.2 Interpretation of Partial Correlation

Table 3.4 shows descriptive statistics for the variables chosen for computing the
partial correlation. Values of mean and standard deviations may be utilized for further
analysis.

In Table 3.5, partial correlation between 100-meter performance (X,) and 30-meter
performance (X.) after controlling the effect of Leg strength (X,) and Standing broad
Jump (X,) is shown as 0.265. Since p value associated with this partial correlation is
0.289 in the table which is more than 0.05, it is not significant. It may be noted that
correlation coefficient between 100-meter performance and 30-meter performance
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TABLE 3.5 Partial Correlation Between 100-meter (X,) and 30-meter (X,)
Performance After Controlling the Effect of Leg Strength (X,) and Standing Broad
Jump (X))

100-meter 30-meter

timing timing
Control Variables (sec) (X)) (sec) (X,)
Leg strength (kg) (X)) 100-meter timing Correlation 1.000 0.265
and Standing broad jump (sec) (X)) Significance — 0.289
(mt.) (X) (two-tailed)
df 0 16
30-meter timing Correlation 0.265 1.000
(sec) (X)) Significance 0.289 —
(two-tailed)
df 16 0

Remark: Readers are advised to compute partial correlations of different orders with the same data.

in Table 3.3 is 0.743, which is highly significant; but when the effects of Leg strength
and Standing broad jump are eliminated, the actual correlation drops drastically.
Thus, it may be concluded that there is no real relationship between 100-meter
performance and 30-meter performance as far as this sample is concerned.

3.6 SUMMARY OF THE SPSS COMMANDS

3.6.1 For Computing Correlation Matrix
1. Start SPSS by using the following commands:
Start — All Programs — SPSS Inc — SPSS 20.0

2. Click Variable View and define the variables HundredMt, LegStr, BackStr,
SitUps, SBJ, VertJump, and ThirtyMt as scale variables.

3. Once variables are defined, type the data column-wise for these variables by
clicking Data View.

4. In Data View, click on the following commands in sequence for generating
correlation matrix.

Analyze — Correlate — Partial

5. Select all the variables from left panel and bring them to the “Variables” section
in the right panel.

6. Ensure that the ‘Pearson,” ‘Two-tailed,” and ‘Flag significant correlations’ are
checked by default.

7. Click on Options command and check ‘Means and standard deviations’
option. Click on Continue and OK to get the outputs.
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3.6.2 For Computing Partial Correlations

1. Follow steps 1-3 as discussed earlier.

2. Using the same data file, apply the following commands sequence for
computing partial correlation:

Analyze — Correlate — Partial

3. Select the two variables between which the partial correlation needs to be
computed. Select those variables whose effects are to be controlled in the
“Controlling for” section.

4. After selecting the variables, click on the Options command. Check ‘Means
and standard deviation’ option. Click on Continue and OK for outputs.

3.7 EXERCISE

3.7.1 Short Answer Questions
Note: Write answer to each of the questions in not more than 200 words.

Q.1 “Product moment correlation coefficient is a useless measure of relationship as
it does not explain cause and effect relation between two variables.” Comment
on this statement.

Q.2 Describe a research situation where partial correlation can be used.

Q.3 Compute correlation coefficient between X and Y and interpret your findings,
considering that Y and X are perfectly related by the equation Y =X?

X: -2 -1 0 1 2
Y: 4 1 0 1 4

Q.4 How will you test the significance of partial correlation using t-test?

Q.5 What does p value refers to? How is it used in testing the significance of product
moment correlation coefficient?

3.7.2 Multiple Choice Questions

Note: Questions 1-10 have four alternative answers for each question. Tick mark the
one that you consider the closest to the correct answer.

1 Intesting the significance of product moment correlation, degrees of freedom for
t-test is
(a) N-1
(b) N
(c) N+1
(d) N-2
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If sample size increases, the value of correlation coefficient required for its
significance

(a) Increases

(b) Decreases

(¢) Remains constant

(d) May increase or decrease

Product moment correlation coefficient measures the relationship which is
(a) Real

(b) Linear

(c) Curvilinear

(d) None of the above

Given thatr,=0.8 and r]2.3=0.15 where X is Performance, X, is Height, and X,

is Leg strength. What interpretation can be drawn?

(a) Height is an important contributory variable to the performance.

(b) Leg strength affects the relationship between performance and height in a
negative fashion.

(c) Leg strength has got nothing to do with the performance.

(d) It seems there is no real relationship between performance and height.

If p value for a partial correlation is 0.03, what conclusion can be drawn?
(a) Partial correlation is not significant at 5% level.

(b) Partial correlation is significant at 1% level.

(c) Partial correlation is significant at 5% level.

(d) Partial correlation is not significant at 10% level.

Partial correlation is computed with the data that are measured on
(a) Interval scale

(b) Nominal scale

(c) Ordinal scale

(d) Any scale

In computing correlation matrix with SPSS all variables are defined as

(a) Nominal

(b) Ordinal

(c) Scale

(d) Any of the nominal, ordinal, or scale option depending upon the nature of
variable.

In computing correlation matrix in SPSS, which of the following command
sequence is used?

(a) Analyze — Bivariate — Correlate

(b) Analyze — Correlate — Bivariate

(c) Analyze — Correlate — Partial

(d) Analyze — Partial — Bivariate
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9 While computing partial correlation in SPSS the variables selected, in “Controlling
for” section are
(a) All independent variables except the two between which partial correlation is
computed.
(b) Any of the independent variables as it does not affect partial correlation.
(c) Only those variables whose effects need to be eliminated.
(d) None of the above is correct.

10  The limits of partial correlation are
(@) -1t0 0
(b) Oto 1
(¢) Sometimes more than 1
(d) -1to+1

3.7.3 Assignment

A study was conducted on swimmers to know the relationships of self-concept with
that of physical parameters. The data so obtained are shown in Table 3.6. Compute the
following:

1. Correlation matrix with all seven variables.

2. Partial correlations: r, , 1, and 1, .

3.8 CASE STUDY ON CORRELATION

Objective

A researcher was interested to investigate as to how fat% of college students relates
with different profile parameters. A sample of 15 college students was randomly
drawn on which the data on the selected variables was obtained, which are shown in
Table 3.7.

Research Questions
The following research questions were investigated:

1. Whether different profile variables have different level of relationship with fat%?

2. Can some of the variables be identified, which are exclusively related with the
fat% after eliminating the effect of other variables?

Data Format

The format used for preparing data file in SPSS is shown in Table 3.7.
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Analyzing Data

In order to address the research issues, a correlation matrix was computed. By
using significant correlations with the Fat% different partial correlations were
computed in order to find the independent contribution of the independent variables
with fat%.

Describing Relationship

The correlation matrix was obtained by using the commands Analyze, Correlate,
and Bivariate Correlation in sequence and by checking the ‘Pearson’ option. The
matrix so obtained is shown in Table 3.8. It can be seen from this table that the fat%
is significantly correlated with weight (p=0.044), pulse rate (p=0.003), and body
density (p=0.000).

Partial Correlations

On this basis of the sampled data, only three variables weight (X,), pulse rate (X,),
and body density (X,) are significantly correlated with the fat%. It was interesting to
investigate their independent contribution to the fat% by eliminating the effect of the
other two variables. This was done by computing three partial correlations: r .,
T, and 1 .. These partial correlations were obtained by using the commands
Analyze, Correlate, and Partial in sequence and by selecting the variables whose
effect was to be eliminated. Table 3.9 shows the partial correlation between the fat%
and weight after eliminating the effect of pulse rate and body density. This correla-
tion 0.439 is not significant. It is worth noting that although the correlation between
the fat% and weight (0.527) in Table 3.8 was found to be significant, after elimi-
nating the effect of pulse rate and body density, this correlation (0.439) has become
nonsignificant. It may thus be concluded that there is no significant correlation bet-
ween fat% and weight. Similarly, Table 3.10 indicates that the partial correlation
between fat% and pulse rate (0.084) after eliminating the effect of weight and body
density is insignificant.

On the other hand, Table 3.11 reveals that the partial correlation between fat% and
body density after eliminating the effect of weight and pulse rate is —0.712, which is
significant (p=0.006). It is worth noting that the correlation between fat% and body
density before eliminating the effect of these variables was —0.801 in Table 3.8. It
may thus be concluded on the basis of the sampled data that a real relationship exists
between fat% and body density.

Reporting

* Fat% seems to be significantly correlated with weight, pulse rate, and body
density.



*(Po[TeI-0M)) TOAR] T()'() AU} & JUBITTUSTS ST UOTIR[AIIOD) 44
*(Pa[TBI-0M]) [9AJ] GO'() Y} I& JUBOIUSIS ST UONB[LIOD) 4

6010 6vL°0 178°0 900°0 SLTO 000°0 S0r°0 (pajrer-omy) “Sis
! [ev'0 060°0— LSOO #%9L9°0 10€°0 %%8C8°0 CET'0  UONB[ALIOD UosIead XmMaT
6010 6¥C0 12740 L9¢0 16L°0 6110 LYS0 (payre-omy) “Sis
Ievo I L1€0 880°0— 1620 SLO0- 0cr'o 691°0— UONB[aLIOS UosIead “XTS10H
6v7L°0 6vC0 9910 099°0 6000 G8¢0 000°0 (payres-omy) “3is
060'0—  LIEO I ¥0T°0 ¥Zro xx069°0— THT0-  ++108°0— UONE[RLI00 UosIEDd °X ANsuaq Apog
178°0 12740 99t°0 9LL'0 €es0 Y0L'0 6660 (pajrer-omy) “Sis
LSOO 880°0— ¥0T°0 ! 080°0— SLT'O L01°0 000°0  UOTIR[a1I00 UOSIEd] X~ AIUIIN QUIN
900°0 L9¢°0 099°0 9LLO ¢98°0 0L0°0 LSS0 (payre-omy) “Sis
%%9L9°0 1620 ¥Zro 080°0— I 8¥0°0— 081°0 $91°0— uone[oL0d UOSIEYd "X Jomod [dxg
SLTO 16L°0 600°0 €0 $98°0 10’0 €000 (payre-omy) “Sis ,
10€°0 SLO0- xx069°0— SLTO 8¥0°0— I x«LC9°0 #x[1L°0  UONB[ALIOD UOSIBSd Xareyesing
000°0 6110 G8¢°0 Y0L'0 0L0°0 100 ¥¥0°0 (payrer-omy) “3is
*x8C8'0 0TV [\ LOT°0 081°0 %*LC9°0 I x*LCS'0  UONB[ALIOD UOSIBdq X Som
Soro LyS0 000°0 6660 LSS0 €000 ¥0°0 (payre-omy) “Sis
ceTo 691°0— xx108°0— 000°0 So1°0- s [1L°0 *LCS0 [ UOHR[aLIOS UosIead XT1ed

XTMET “XUSRH X Ansueq Apod X M/I WA 6 "X Jomod [dxg X ey esind X wSem X red

XLBJA uonepLIo) 8¢ HIdVL



64 CORRELATION COEFFICIENT AND PARTIAL CORRELATION

TABLE 3.9 Correlations r

12.36

Control Variables Fat_X,  Weight_X,
Pulse rate_X, and Body_  Fat_X| Correlation 1.000 0.439
density_X, Significance (two-tailed) — 0.134
df 0 11
Weight_X, Correlation 0.439 1.000
Significance (two-tailed) 0.134 —
df 11 0
TABLE 3.10 Correlationsr , .
Control Variables Fat_X, Pulse Rate_X,
Weight_X, and Fat_X, Correlation 1.000 0.084
Body_density_X, Significance — 0.784
(two-tailed)
df 0 11
PulseRate_X, Correlation 0.084 1.000
Significance 0.784 —
(two-tailed)
df 11 0
TABLE 3.11 Correlationsr,,,
Control Variables Fat_X, Body_Density_X,
Weight_X, and Fat_X, Correlation 1.000 -0.712
Pulse rate_X, Significance — 0.006
(two-tailed)
df 0 11
Body_ Correlation -0.712 1.000
density_X Significance 0.006 —
(two-tailed)
df 11 0

* Partial correlation indicated that there was no real correlation between fat
and weight as well as between fat% and pulse rate once the effect of other
independent variables was removed.

* On the basis of the sampled data, significant partial correlation between fat%
and body density suggested that there was a real relationship between them.



COMPARING MEANS

LEARNING OBJECTIVES
After completing this chapter, you should be able to do the following:

* Understand different forms of t-statistic

* Identify t-test appropriate in different research situations

* Know the assumptions in using t-test

* Understand the difference between one-tailed and two-tailed hypotheses

* Describe the situations in which one-tailed and two-tailed tests should be used
» Compute different t-statistics by using SPSS package

* Interpret the results of t-tests obtained in SPSS.

4.1 INTRODUCTION

This chapter describes the procedure for comparing means of two populations in
hypothesis testing experiments. In comparative studies, we intend to compare the
means of two groups and our focus is to test whether the difference between the two
group means is significant. By comparing the sample means, we intend to find whether
these samples come from the same population. In other words, we try to infer
whether their population means are equal or not. We may come across many research

Sports Research with Analytical Solution using SPSS®, First Edition. J. P. Verma.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Verma/Sportsresearch



66 COMPARING MEANS

situations where it is desired to compare the performance of two groups. For instance
one may wish, to compare IQ of boys and girls, effect of two aerobic programs on
endurance or effect of two relaxation techniques on improving functional efficiency.
In all such situations, samples are used to test the equality of population means.

For comparing two group means, two statistical tests “t” and “z” are used in a
situation where data are measured on metric scale. In case of small sample where
population variance is unknown, t-test is used, whereas z-test is used in large sample
(N >30). For all practical purposes, a sample is said to be small, if it is less than 30
and large if it is equal to or more than 30. Since t-distribution approaches to z-distri-
bution as sample size approaches to infinity, the t-test can be considered as a specific
case of the z-test. Thus, t-test can be used for large sample, but the z-test cannot be
used for small sample if population variance is unknown.

Once the value of “t” is calculated from the sample of size n, a critical value of t
at a desired level of significance and n—1 degrees of freedom (df) can be obtained
from Table A.2. Comparing the calculated value of t with this tabulated t facilitates
us to know whether the difference between the groups is likely to have been a chance
finding. The level of significance, also called the alpha level, is usually set at 0.05
or 0.01. The 0.05 level of significance means that the null hypothesis may be
wrongly rejected five times in hundred similar experiments conducted on the same
population.

In this chapter, we shall discuss three different statistical tests: one-sample t-test,
two-sample t-test for independent groups, and paired t-test for related groups.

4.2 ONE-SAMPLE t-TEST

A t-test can be defined as a statistical test in which the test statistic follows a Student’s
t-distribution under the assumption of null hypothesis. A one-sample t-test is used for
comparing the mean value of a sample to a predefined population mean. It is assumed
that the population mean is known (or defined) in advance. An example of a one-
sample t-test would be a comparison of the mean heart rate of a population to a given
reference value.

In one-tailed test, an experimenter is interested to verify whether the population
mean is larger than or smaller than a given value, whereas in a two-tailed test, it is
required to know whether the population mean differs from the given value. Here, it
is not of much interest to know the direction of difference.

In using one-sample t-test, it is assumed that the distribution of the population from
which the sample has been drawn is normal. The t-distribution depends on the sample
size. Its parameter is called the df, which is equal to n—1, where n is the sample size.

In one-sample test, t-statistic is computed by the formula
XM s - s(x-x)

s/</n n—1

After calculating t, its significance value (p value) is obtained. This p value is

provided by the SPSS output. If p value is below the threshold level of significance

t
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(usually 0.05 or 0.01), then the null hypothesis is rejected in favor of the alternative
hypothesis, otherwise it is not.

4.2.1 Application of One-Sample t-Test

The following situation will explain the application of one-sample t-test. A specific
protocol of exercise used in a physical therapy center brings relief to the spondylitis
patients within a 20-day session. When introducing a new set of exercise, it is admin-
istered to 25 patients, and the days until the exercise shows an effect are recorded.
The mean days of getting the relief is 16 days with a standard deviation (SD) of
4 days. Can it be concluded that the new exercise reduces the time until a patient
receives relief from spondylitis pain?

In this example, sample mean (the mean relief days for spondylitis patients)
requires to be compared with a predefined limit. Here, the limit is fixed and well
known in advance. Had the limit not been predefined but obtained from another
sample (i.e., another group of spondylitis patients receiving the old exercise), one
would have to apply a two-sample t-test for independent samples.

4.3 TWO-SAMPLE t-TEST FOR UNRELATED GROUPS

A two-sample t-test is used to test whether the difference between two population
means is significant. All t-tests are usually called Student’s t-tests. But strictly
speaking, this name should be used only if the variances of the two populations are
also assumed to be equal. In case the assumption of equality of variances is vio-
lated, then the Welch’s t-test is used. Readers are advised to read some other text
for this test.

We often want to compare the means of two populations, such as, comparing the
effect of two training programs, skills of two groups, speed in two different sports
etc. In all these situations, two-sample t-test is used. This two sample t-test is used
if the samples are independent and identically distributed. Consider an experiment
in which the effect of two conditioning programs on fitness level needs to be com-
pared. Two randomly selected group of subjects may be taken in the study. These
two groups may be exposed to two different conditioning programs. Assuming that
initial fitness level of both the groups is same, the null hypothesis of no difference
in their final fitness scores may be tested by applying the two-sample t-test. In this
case, both the samples are independent because the subjects in both the groups are
different.

4.3.1 Assumptions While Using t-Test
While using the two-sample t-test the following assumptions are made:
 Population from which the samples have been drawn is normally distributed.

* Variances of both the populations are equal.
» Samples are independent to each other.
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Since it is assumed that o and o, are equal, we can compute the estimate of pooled
variance by computing S? after combining the two samples. The purpose of pooling the
data is to obtain a better estimate of the population variance. The estimate of pooled
variance is a weighted sum of mean square variances. Thus, if the sample sizes n, and
n, are equal, then S” is just an average of the individual mean square variances of the
two samples. The overall df is the sum of the individual df for the two-samples, that is,

df = df, +df, =(n, —1)+(n, —1)=n, +n, 2.

Computation of t-statistic is same irrespective of testing a two-tailed or one-tailed
hypothesis. The only difference in testing these hypotheses is in their testing criteria
and the critical values of “t.” These cases shall be discussed in the following sections.

4.3.2 Case I: Two-Tailed Test

In two-tailed test if the null hypothesis is rejected, it may be concluded that the group
means differ significantly and one cannot interpret as to which group mean is higher.
The testing procedure is as follows:

1. Hypotheses to be tested

Hytp =,
H :p #n,
2. Test statistic
X, —X

where

3. Degrees of freedom n +n,—2
4. Decision criteria
If calculated [t I> ¢,
and if calculated I tI<t,,, we fail to reject H,,.

H, is rejected at « significance level

4.3.3 Case II: Right Tailed Test

Here, it is desired to test whether the mean of the first group is more than that of the
second group. If null hypothesis is rejected, it may be concluded that the first group
mean is significantly larger than that of the second group mean. The testing procedure
shall be as follows:
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1. Hypotheses to be tested

Hyop =p,
H :0g> o
2. Test statistic
X, —X

where

3. Degrees of freedom n +n,-2

4. Decision criteria
If calculated t > t,, H is rejected at a significance level.
and if calculated t <t , we fail to reject H.

4.3.4 Case III: Left Tailed Test

Here it is desired to test whether mean of the first group is less than that of the
second group. In other words, the researcher is interested in a particular group.
In this testing if the null hypothesis is rejected, it can be concluded that the mean of
the first group is significantly less than that of the second group. The testing
procedure is as follows:

1. Hypotheses to be tested

Ho:py = u,
H :p <y,
2. Test statistic
X, —X,

where
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3. Degrees of freedom n +n,—2

4. Decision criteria
If calculated t < —t_, H, is rejected at a significance level.
and if calculated t > —t_, we fail to reject H,.

4.3.5 Application of Two-Sample t-Test

Two-sample t-test is used to compare means of the two independent groups. Consider
a situation where a coach has developed two circuit training programs for his athletes
and wish to know whether they differ in their effectiveness. Since he does not have an
idea as to which program may be more effective, he would prefer to organize a two-
tailed test as mentioned in Case I. Let us consider another situation where a condi-
tioning program is going on in a university for the last many years. A newly appointed
fitness consultant claims that his proposed program is better in comparison to the exist-
ing one in improving fitness status of the subjects. The authority may decide to conduct
a study on two independent samples where t-test discussed in Case I may be used. The
sole contention in testing the hypothesis in this study is to check whether the proposed
progarm is better than the existing one or not. If the same experiment is conducted to
test whether the proposed conditioning program improves the timing of athletes in a
400-meter event, then the t-test discussed in Case III may be used. Here it is of interest
to see whether average timing of athletes on the 400-meter event reduces in the
proposed conditioning group in comparison to that of existing conditioning group.

4.4 PAIRED t-TEST FOR RELATED GROUPS

Paired t-test is used to test a null hypothesis that the difference between two responses
measured on the same subjects has a mean value of zero. Let us suppose we measure
shooting accuracy of basketballers before and after a training program. If the training
program is effective, we expect the shooting accuracy to improve for most of the
basketballers after the training. Thus, to know the effectiveness of the program, a
paired t-test is used. This paired t-test is also known as “repeated measures” t-test.

In using the paired t-test, sample must be paired data obtained on the same unit or
sets of data obtained on the same subjects before and after the experiment. A typical
example of the paired t-test may be a situation where subjects are tested on cardiore-
spiratory endurance before and after a 4-week aerobic program. Thus, paired t-test is
used in a situation where the subjects are same in pre- and post-testing.

While applying paired t-test for two related groups, a pair-wise difference, D,, is
computed for all n-paired scores. This D,, a new variable, follows the t-distribution.
The D and S, are the mean and root mean squares of the D.’s respectively. Thus,
paired t-statistic is computed as follows:
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While applying paired t-test, it is assumed that the distribution of scores obtained
by pair-wise difference is normal and the differences are a random sample. An
experiment where the paired difference is computed is often more powerful, since it
can eliminate differences in the samples that increase the total variance . When the
comparison is made between groups (of similar experimental units), it is called
blocking. The paired difference experiment is an example of a randomized block
experiment.

If normality assumption is violated, Wilcoxon signed-rank test may be used as a
nonparametric test for paired difference designs. Whether two-tailed or one-tailed
test is used, the test statistic remains the same and only decision-making strategy and
the critical values of the t changes. All these situations have been discussed later.

4.4.1 Case I: Two-Tailed Test

Using this test, difference between means of the post- and pre experiment data is com-
pared; and if the null hypothesis is rejected, one can only say that the post experiment
mean differs from the pre experiment mean and no conclusion can be drawn as to
which group mean is higher. The testing procedure shall be as follows:

1. Hypotheses to be tested

Hy:p—p,=0 [Post experiment is group 1
and pre experiment is group 2]
Howo#u,

2. Test statistic

where

3. Degrees of freedom n— 1
4. Decision criteria
If calculated |t| >1,,,, H, is rejected at a significance level.

and if calculated ’t| <t,,,, We fail to reject H.

al2’

4.4.2 Case II: Right Tailed Test

In most of the situations, we are interested to know as to whether there is an improve-
ment after the treatment effect. Thus, in all such situations it is desired to test whether
the difference between post- and pre experiment means is greater than zero. In such
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testing if null hypothesis is rejected, it may be concluded that the post experiment
group mean is significantly higher than that of the pre experiment group. The testing
procedure shall be as follows:

1. Hypotheses to be tested

H,:u, —u, =0 [Post experiment is group 1
and pre experiment is group 2]
How—p, >0

2. Test statistic

Here

3. Degrees of freedom n— 1

4. Decision criteria
If calculated t>t , H is rejected at a significance level.
and if calculated t <t _, we fail to reject H,.

4.4.3 Case III: Left Tailed Test

In case of timing events, it is required to test whether mean timing of the post
experiment group is less than that of the pre experiment group. In such cases, left
tailed testing is done. In other words, the researcher is interested to know whether
there is a significant improvement in the timing event. In such testing if the null
hypothesis is rejected, it can be concluded that the first group mean is significantly
lower than that of the second group. The testing procedure shall be as follows:

1. Hypotheses to be tested

H,:u, —u, =0 [Post experiment is group 1
and pre experiment is group 2]
H oty —p, <0

2. Test statistic

Here
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3. Degrees of freedom n—1

4. Decision criteria
If calculated t < —t, H, is rejected at a significance level.
and if calculated t > —t_, we fail to reject H,.

4.4.4 Application of Paired t-Test

Application of the paired t-test can be understood by considering the following situation.
In an institution, it has been observed that the research students are becoming lethargic due
to lot of academic load and no compulsive physical activity. It is therefore, decided to
launch a 40-min workout for them so that their muscular strength can be improved. Before
launching the program it is decided to test the effectiveness of the programme hence the
workout may be given to 20 randomly chosen research students for 6 weeks. These sub-
jects may be tested for their muscular strength by means of strength index before and after
the 6-week workout program. In order to know the effectiveness of the workout, the paired
t-test may be used. Since in this situation we are interested in the improvement of post
experiment mean, we may use the testing protocol discussed earlier in Case II.

Now consider another situation where an exercise scientist wishes to see the effec-
tiveness of an aerobic program on agility by means of a 4 x 10-meter shuttle run. Here
she would compare the mean agility score before and after the aerobic program. In
this situation she would choose one-tailed test as discussed in Case III because the
aerobic program will always reduce the timing on the 4 x 10-meter shuttle run but
will never increase it. Here the intention is to test whether improvement in agility is
significant or not. Even if the performance on agility is deteriorated due to noncoop-
eration of the subjects or due to other lifestyle habits during experimentation, it will
not affect the experiment because the whole contention of testing is to know whether
the aerobic program is effective or not.

4.5 ONE-SAMPLE t-TEST WITH SPSS

Example 4.1

Fat% of 15 college football players is shown in Table 4.1. Do these data support the
assumption that the mean fat% of college footballers is equal to 10.5? Let us test this
hypothesis at 5% level and interpret the findings.

Solution: The hypotheses that need to be tested are as follows:
H,:p=10.5
H, :p#105
Once the value of t-statistic is computed by the SPSS, it shall be tested for its signifi-

cance. SPSS output also gives the significance level (p value) along with calculated t.
If p value is less than 0.05, the null hypothesis is rejected at 5% level, otherwise not.



74 COMPARING MEANS

TABLE 4.1 Fat% of Football Players

S.N. Fat%
1 9.90
2 11.50
3 15.90
4 15.30
5 12.50
6 13.40
7 9.00
8 15.40
9 10.20
10 15.40
11 9.00
12 13.40
13 9.80
14 15.40
15 10.20

4.5.1 Computation in t-Test for Single Group

4.5.1.1 Preparations of Data File After starting the SPSS as discussed in
Chapter 1, select ‘“Type in data’ option for preparing data file.

4.5.1.2 Defining Variables There is only one variable in this example that needs
to be defined along with its properties. Since the variable is quantitative in nature, it
shall be treated as scale. The procedure of defining the variable and its characteristics
in SPSS is as follows:

1. Click on Variable View to define variable and its properties.

2. Write short name of the variable as Fat under the column heading “Name.”

3. Under the column heading “Label,” the full name of the variable may be
defined as Fat%. One can choose some other name of this variable as
well.

4. Under the column heading “Measure,” select the option ‘Scale’ for the variable
Fat as this is a quantitative variable.

5. Use default entries in rest of the columns.

After defining the variable in Variable View, the screen shall look like as shown
in Figure 4.1.

Note: More than one variable can be defined in the Variable View for computing
t statistic for each variable.
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4.5.1.3 Entering Data Once the variable is defined in the Variable View, click
on Data View as shown in Figure 4.1 to open the format for entering the data column-wise.
After entering the data, the screen will look like as shown in Figure 4.2. Save the data
file in the desired location before further processing.

4.5.1.4 SPSS Commands After entering all the data in Data View, the following
steps should be followed for computing t-statistic:

1. Initiating SPSS commands: In the Data View, click on the following commands
in sequence:

Analyze — Compare Means — One —Sample T Test

The screen shall look like as shown in Figure 4.3.

2. Selecting variables: After clicking the “One-Sample T Test” option, you will
be directed to the next screen for selecting variable for computing t-statistic.
Select Fat% variable from left panel and bring it to the right panel by clicking
the arrow sign. In case of more number of variables, you may select them as

Bie [Edl Mew Deta Irenstom e Grachs  Mles  Addgns  Window  Heb
CHE T o0 EBF A A8 B06 %09
Name |_ Type | Width |" imal Label [ Values Missing ]Columu Align | Measure
1 Fat Humetic 8 2 Fat%h None Hone B = Right & Scale

Do [® Yew Do Dsiom Greyze Grophs Uit Addgns Windw bep

B I ﬂ"‘h“‘lﬂ? A s BEOH o8

fr2:

Fat var | var | var var | var

1 990
2 1150
3 16.90
4 15.30
5 12,50
6 13.40
T 9.00
8 16.40
9 1020
10 15.40
1" 900
1200 13.40 ]:|
13 980
14 15.40
15 10.20

FIGURE 4.2 Screen showing entered data for the fat% in Data View.
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i Exé_1.sav [DataSet0] - SPSS Data Editor

Fle Edt View Qata  Trnsform | Anslyze | Graphs  LNities Addgns  Widow  Hep
CHAS E 60 B[ reos 'RBRO®
fr2: | Descriptive Stalisics >
Fat i |
1 990| I H| M beos..
k Genersl Linsar Mode! P 1 One-Somple T Test...
2 11.50 Genersized Linesr Modets b | v Incependent-Sampies T Test
3 16.90 Meced Models »|uL, Pared.Samples T Test..
4 15.30 Correlate v | B oneavay anova..
5 1250 Regression »
6 13.40 Logineer 2
7 9.00 Meural Networics 3
8 15.40 mm _ :
9 10.20 T g
10 15.40 S
11 .00 Time Series L3
12 13.40 Survival »
13 9.80 BB wissing Value Ansiysis..
14 15.40 MO BeSpinee %
15 10.20 Complex Samples :
IS [F] rot Curye...

FIGURE 4.3 Command sequence in computing one-sample t-test.

i Ex6_1.sav [DataSe10] - SPSS Data Editor

Fle Ed  View [als Transfom Anshze Graphs  WRilies Addgns  Window  Hep
CHA B 60 L6k A dd S0 SO0
14: [
Fat | var var var var var yar
1 RED : 0ne-Sample T Test |
2 11.50
v
3 15.20 Fot % [Fat)
4 16.30
5 1250
'Y
6 13.40 [—
U 9.00
8 15.40
9 10.20 Teayma: f105 ]
10 16.40 (o ][ eoste ][ gese ][ concet J[ e ]
11 9.00
12 13.40
13 9.80
Y] 16.40 |
15 f 10.20

FIGURE 4.4 Selection of variable in one-sample t-test.

well for computing t value for each variable. The screen shall look like as
shown in Figure 4.4.
3. Selecting options for computation: After selecting the variable, option needs to
be defined for the one-sample t-test. Do the following:
(a) In the screen shown in Figure 4.4, enter the “test value” as 10.5. This is the
population mean for fat% that we need to verify in the hypothesis.
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it Exb_1.sav [DataSet0] - SPSS Data Editor
Ele [at  View Qsta  Trensfom  Aneiyze Graphs  UiMies  Addgns  Window  Hep

CHS @ b LER A it BE0E S09)

[14: |

Fat var var
1 L o One-Sample T Test
2 1160 R
3 16.80 & Fat % [Fal]
4 16.30 %4 One-Sample T Test: Options
5 1250 ] e -
6 13.40  Missing Values-
o 2.0 E(QMWMMM
g 15.40 | e
9 10.20 Test Youe: !0.5 J
10 15.40 [ ok [ emte [ meset ][ conca| [contme J[_concmt |[ ew |
11 ann —_—

FIGURE 4.5 Selecting options for computing one-sample t-test.
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(b) Click the Options command, you will get the screen as shown in Figure 4.5.
Enter the confidence interval as 95% and click on Continue to get back the

screen shown in Figure 4.4.

The confidence interval is chosen to get the confidence limits of mean based
on sample data. Since in this example hypothesis needs to be tested at 5%

level, the confidence interval has been chosen as 95%.
(¢c) Click on OK.

4. Getting the output: After clicking on OK in the screen as shown in Figure 4.4,
you will get the output window. The relevant outputs may be selected by using
right click of the mouse and may be copied in the word file. The following

results shall be picked up:
(a) Sample statistics showing mean, SD, and standard error
(b) t-table showing the value of t and its significance level.

In this example, all the outputs so generated by the SPSS will look like as
shown in Tables 4.2 and 4.3. The model way of writing the results of one-sample

t-test has been shown in Table 4.4.

4.5.2 Interpretation of Findings

The values of mean, SD, and standard error of mean are given in Table 4.2. The
average fat% of the footballers is 12.42. For an average adult, the fat% is in the
range of 10-20% of their body weight; and therefore, it can be interpreted that an
average footballer had an athletic body because their fat% was close to the

ideal fat%.

From Table 4.4 it can be seen that the t value is equal to 2.836, and its associated
p value is 0.013. Since p value is less than 0.05, it may be concluded that the null
hypothesis is rejected at 5% level. Hence, it may be inferred that the average fat% of

footballers is not equal to 10.5.
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TABLE 4.2 One-Sample Statistics

N Mean SD SE Mean
Fat% 15 12.4200 2.62249 0.67712

TABLE 4.3 One-Sample t Test

Test Value=10.5

95% Confidence
Interval of the

. Difference
Sig.
t df (2-Tailed) Mean Difference Lower Upper
Fat% 2.836 14 0.013 1.92000 0.4677 3.3723
TABLE 4.4 t-Table for the Data on Fat%
Mean SD Mean Difference t Value p Value
12.42 2.62 1.92 2.836 0.013

4.6 TWO-SAMPLE t-TEST FOR INDEPENDENT GROUPS WITH SPSS

Example 4.2

In a study, flexibility of 15 gymnasts and 16 athletes was measured by sit and reach
test. Can it be concluded from the data shown in Table 4.5 that the flexibility of
gymnasts and athletes was different at 0.05 significance level?

Solution: The hypotheses that need to be tested are as follows:

Ho P Hoym = Ham
H1 : luGym # #Alh

Once the value of t-statistic is computed by the SPSS, it shall be tested for its significance.
One of the conditions for using the two-sample t-test for independent groups is that
the variance of the two groups must be equal. To do so, Levene’s F-test shall be used
to test the null hypothesis of equality of variances. If p value associated with the
F-test is more than 0.05, the null hypothesis may be retained and this will ensure the
homogeneity assumption required for using t-test.

Another important feature for this test is the method of data feeding in SPSS.
Readers should note the procedure of defining variables and feeding data carefully.
In this example, there are two variables Sport and Flexibility. Sport is a nominal variable
whereas Flexibility is a scale variable.
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TABLE 4.5 Data on Flexibility in Inches

S.N. Gymnasts Athletes
1 11.5 9.0
2 12.5 8.5
3 13.0 10.5
4 11.5 11.0
5 12.5 10.5
6 10.5 8.5
7 11.0 7.5
8 12.5 8.0
9 11.5 7.5
10 9.5 7.0
11 10.5 7.5
12 11.5 8.0
13 10.0 7.0
14 11.5 7.5
15 12.0 8.5
16 7.5

4.6.1 Computation in Two-Sample t-Test

4.6.1.1 Preparations of Data File After starting the SPSS as discussed in
Chapter 1, variables need to be defined by selecting “Type in data’ option.

4.6.1.2 Defining Variables There are two variables Sport and Flexibility in this
example that need to be defined along with their properties. Do the following:

1. Click on Variable View button to define variables and their properties.

2. Write short name of the variables as Sport and Flexibility under the column
heading “Name.”

3. Under the column heading “Label,” full name of these variables may be defined
as Sport group and Flexibility of the subject, respectively. Readers may choose
some other names of these variables as well.

4. For the Sport variable double click the cell under the column heading “Values”
and add the following values to different levels:

Value Label
1 Gymnasts
Athletes

The screen for defining the values shall look like as shown in Figure 4.6.

5. Under the column heading “Measure,” select option “Nominal” for the Sport
and ‘Scale’ for the Flexibility.

6. Use default entries in rest of the columns.
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FIGURE 4.6 Defining code of nominal variable.
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FIGURE 4.7 Defining variables along with their characteristics.

After defining variables in Variable View, the screen shall look like as shown
in Figure 4.7.

4.6.1.3 Entering Data Once both the variables are defined in the Variable View,
click on Data View on the left corner in the bottom of the screen shown in Figure 4.7
to open the data entry format. For the Sport variable, type the first 15 scores as ‘1’
and the next 16 scores as 2’ in the column. This is because the value ‘1’ denotes
gymnasts, and there are 15 flexibility scores for them as shown in Table 4.5. Similarly,
the value ‘2’ denotes athletes, and there are 16 flexibility scores for them. After
entering data, the screen will look like as shown in Figure 4.8.

4.6.1.4 SPSS Commands After entering all the data in Data View, do the following steps:

1. Initiating SPSS commands: In Data View, go to the following commands in
sequence:

Analyze — Compare Means — Independent —SamplesT Test

The screen shall look like as shown in Figure 4.9.
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FIGURE 4.8 Format of data entry in Data View.
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6 1.00 Begression 2l

FIGURE 4.9 Command sequence in two-sample t-test.

2. Selecting variables: After clicking the ‘Independent-Samples T Test’ option,
you will be directed to the next screen for selecting variables for the two-sample
t-test. Select Flexibility variable from left panel and bring it to the “Test
Variable” section in the right panel. Similarly, select the Sport variable from
the left panel and bring it to the “Grouping Variable” section in the right panel.
(a) Once both these variables are selected enter 1 and 2 in Groups 1 and 2,

respectively, by clicking on “Define Groups.”

(b) Click on Continue after selecting both variables, the screen shall look like
as shown in Figure 4.10.
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FIGURE 4.11 Screen showing option for choosing significance level.

Note: Many variables can be defined in the Variable View in the same data file
for computing several t values for different independent groups.

. Selecting options for computation: After selecting variables, option need to be

defined for the two-sample t-test. Do the following:
(a) Click on the Options command to get the screen as shown in Figure 4.11.

(b) Enter the Confidence Interval as 95% and click on Continue to get back to
the screen shown in Figure 4.10.

By default the confidence interval is 95%. However, if desired, it may
be changed to some other level. The confidence level is the one at which
hypothesis needs to be tested. In this problem, the hypothesis is required to
be tested at a significance level of 0.05, and, therefore, the confidence level
here shall be 95%. One may choose the confidence level as 90 or 99%, if the
level of significance for testing the hypothesis is 0.10 or 0.01, respectively.

(c) Click on OK in the screen shown in Figure 4.10.
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4. Getting the output: Click on OK to generate results. In the output window of
SPSS, the relevant outputs can be selected by using right click of the mouse
and may be copied into the word file. The following outputs have been selected
in the analysis:

(a) Descriptive statistics of the groups.
(b) “F” and “t” values for testing the equality of variances and equality of means,
respectively.

In this example, all outputs so generated by the SPSS will look like as shown
in Tables 4.6 and 4.7. The model way of writing the results of two-sample t-test
for independent samples has been shown in Table 4.8.

4.6.2 Interpretation of Findings

The following interpretations can be made on the basis of the results shown in the
outputs:

1. The values of mean, SD, and standard error of mean for gymnasts and athletes
are given in Table 4.6. The mean flexibility of gymnasts is larger than that of
athletes. However, whether this difference is significant or not has to be tested
by using the two-sample t-test for unrelated groups.

2. One of the conditions for using the two-sample t-test for independent groups is
that the variance of the two groups must be equal. To test the equality of variances,
Levene’s test has been used. In Table 4.7, F value is 0.833, which is nonsignifi-
cant, as the p value is 0.369, which is more than 0.05. Thus, the null hypothesis
of equality of variances may be retained, and it is concluded that the variances
of the two groups are equal.

3. It can be seen from Table 4.7 that the value of t-statistic is 7.42. This t value is
significant as the p value associated with it is 0.000, which is less than 0.05.
Thus, the null hypothesis of equality of population means of two groups is
rejected, and it may be concluded that the flexibility of gymnasts and athletes
is different.

4. Ifitis desired to test the hypothesis as to whether the flexibility of gymnasts is
higher than that of athletes or not, one tailed test should be used. In that case,
the hypotheses would be as follows:

Ho : :uGym = :uAlh
Hl : :uGym > luAlh

TABLE 4.6 Descriptive Statistics of the Groups

Sport Group N Mean SD SE (Mean)

Flexibility in inch Gymnasts 15 11.43 0.9976 0.25758
Athletes 16 8.375 1.27148 0.31787
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TABLE 4.8 t-Table for the Data on Flexibility Along with F Value

Mean SE of Mean
Groups Mean SD  Difference Difference tValue p Value F Value p Value

Gymnasts 11.43  0.998 3.06 0.412 7.42 0.000  0.833  0.369
Athletes 8.38 1.271

In using one-tailed test, the value of t (=7.42) should be compared with tabulated
tys(n, + 1, —2). Here n =15 and n,=16 and, therefore, from Table A.2, for one-
tailed hypothesis the value of t,, ,s(29) =1.699. Since calculated value of t (=7.42)
is greater than tabulated t (=1.699), H  may be rejected, and it may be concluded
that flexibility of the gymnasts is significantly higher than that of the athletes.

4.7 PAIRED t-TEST FOR RELATED GROUPS WITH SPSS

Example 4.3

Fifteen women participated in an 8-week management program. Their weights were
measured before and after the program, which are shown in Table 4.9. Let us apply
paired t-test to find whether the weight management program was effective at 0.05
significance level.

Solution: The hypotheses that need to be tested are as follows:
HO : lup(m = ”Pre
H1 : ”Post # ”Pre

TABLE 4.9 Weights of Women in b

Postprogram Preprogram
155 160
158 170
159 160
165 175
145 150
150 158
146 145
158 169
168 172
162 167
152 155
128 132
136 135
138 142

139 147
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Once the value of t-statistic for the paired sample is computed by the SPSS, it needs
to be tested for its significance.

In this problem there are two variables Pre-Testing weight and Post-Testing weight.
For both these variables, data shall be entered in two different columns unlike the
way it was feeded in two-sample t-test for unrelated groups.

4.7.1 Computation in Paired t-Test

4.7.1.1 Preparations of Data File Start SPSS the way it was done in the
Example 4.2 and select “Type in data’ option for defining variables.

4.7.1.2 Defining Variables Here the two variables preprogram weight and
postprogram weight need to be defined along with their properties. Both these
variables are scale variables as they are quantitative in nature.

1. Click on Variable View to define variables and their properties.

2. Write short name of the variables as Post_ Wt and Pre_W?t under the column
heading “Name.”

3. Under the column heading “Label,” full name of these variables may be defined
as Postprogram Weight and Preprogram Weight, respectively. Readers may
choose some other names of these variables if so desired.

4. Under the column heading “Measure,” select the option ‘Scale’ for both
variables.

5. Use default entries in rest of the columns.

After defining variables in the Variable View, the screen shall look like as shown in
Figure 4.12.

4.7.1.3 Entering Data Once both the variables are defined in Variable View,
click on Data View on the left corner in the bottom of the screen shown in Figure 4.12
to open the format for entering the data column-wise. After entering data, the screen
will look like as shown in Figure 4.13.

4.7.1.4 SPSS Commands After entering data in the Data View, perform the
following steps:

1. Initiating SPSS commands: In Data View, click the following commands in
sequence:

Analyze — Compare Means — Paired — Samples T Test

The screen shall look like as shown in Figure 4.14.

2. Selecting variables: After clicking Paired-Samples T Test, the next screen
will appear for variable selection. Select the variable Postprogram Weight and
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i *Untitled [DataSet0] - SPSS Data Editor
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| Name | Type Width  Decimals Labol | Values Missing  Columns Align Measure
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FIGURE 4.12 Defining variables along with their characteristics.

<2 *chap4.sav [DataSet1] - SPSS Data Editor

_Eie Ecit !new _Q_a_ta I_ransiorm ysal_yze Qrcph'
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|18:

Post Wt | Pre Wt | o

1 155.00 160.00
2 158.00 170.00
3 159.00 160.00
4 165.00 175.00
5 145.00 150.00
6 150.00 158.00
7 146.00 145.00
8 158.00 169.00
9 168.00 172.00
10 162.00 167.00
11 152.00 155.00
12 128.00 132.00
13 136.00 135.00
14 138.00 142.00
15 139.00 147.00

FIGURE 4.13 Data Entry format in paired t-test.

Preprogram Weight from left panel, and bring them to the right panel as vari-
able 1 and variable 2 of pair 1. After selecting both the variables, the screen
shall look like as shown in Figure 4.15.
Note: Many pairs of variables can be defined in the Variable View in the same data
file for computing several paired t-tests. These pairs of variables can be selected
together in the screen shown in Figure 4.15.

3. Selecting options for computation: After selecting variables, option needs to be
defined for computing paired t-test. Do the following:

(a) On the screen shown in Figure 4.15 click on Options command, you
will get the screen where confidence level is selected as 95% by default.
Click on Continue. One can define the confidence level as 90 or 99%
if the level of significance for testing the hypothesis is 0.10 or 0.01,
respectively.
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FIGURE 4.14 Command sequence in paired t-test.
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FIGURE 4.15 Selecting variables in paired t-test.

4. Click on OK to generate the different outputs. The following outputs shall be
selected for discussion:

(a) Paired samples statistics
(b) Paired t-test table

5. In this example, selected outputs generated by the SPSS will look like as shown
in Tables 4.10 and 4.11.
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TABLE 4.10 Paired Sample Statistics

89

Mean N SD SE (Mean)
Pair 1
Postprogram Weight 150.60 15 11.69 3.02
Preprogram Weight 155.80 15 13.60 3.51

TABLE 4.11 Paired t-Test Table

Paired Differences

95% Confidence
Interval of the
Difference

Mean SD SE (Mean) Lower Upper t

df Sig. (2-Tailed)

Pair 1

Postprogram -5.20 3.99 1.03 -741 299 -5.053
Weight —

Preprogram

Weight

14

0.000

4.7.2 Interpretation of Findings

The following interpretations can be made on the basis of the results shown in the

earlier output:

1. The values of the mean, SD, and standard error of the mean for the data on

weight in the post- and preprogram are shown in Table 4.10. These values can
be used for further analysis.

. It can be seen from Table 4.11 that the value of t-statistic is 5.053. This t-statistic
is significant as its corresponding p value is 0.000, which is less than 0.05.
Thus, the null hypothesis of equality of mean weights in post- and preprogram
groups is rejected, and it may be concluded that the average weight of the
women in post- and preprogram groups in the weight management program is
not same. However, in order to conclude whether the weight reduction program
is effective or not, one tailed test should be used. The hypotheses that need to
be tested in that shall be

Ho : luPosl = luPre
Hl : :uPnsI < :uPrc

For left tailed test, the value of tabulated t at 0.05 level of significance and 14
(N—-1=14) df can be seen from Table A.2, which is equal to 1.761. Since calculated
value of t (=5.053) is less than tabulated t (14) (=1.761), H may be rejected, and
it may be concluded that the weight management program is effective.
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4.8 SUMMARY OF SPSS COMMANDS FOR t-TESTS

4.8.1 One-Sample t-Test

1.

Start SPSS by using the following sequence of commands:

Start — All Programs — SPSS Inc — SPSS 20.0

2. Click on Variable View and define the variable Fat.

B~ W

. Type the data by clicking on Data View.
. In Data View, follow the below mentioned sequence of commands:

Analyze — Compare Means — One —Sample t Test

. Select Fat% from left panel, and bring it to the right panel by using the arrow

command.

. Enter the test value as 10.5. This is the population mean of Fat%, which we

need to verify in the hypothesis.

. By clicking on the Options command, ensure that the confidence interval is

selected as 95%, and then click on Continue. Confidence level can be entered
as 90 or 99% if the level of significance for testing the hypothesis is 0.10 or
0.01, respectively.

. Click on OK for outputs.

4.8.2 Two-Sample t-Test for Independent Groups

. Start SPSS the way it is done in case of one-sample t-test.
. In the Variable View define Sport as a ‘Nominal’ and Flexibility as ‘Scale’

variable.

. In the Variable View under column heading “Values” define ‘1’ for gymnast

and 2’ for athlete for Sport variable.

. In Data View feed the first 15 entries as 1 and next 16 entries as 2 for the Sport

variable. Under the column Flexibility, enter the first group of flexibility data
and then in the same column enter the second group of flexibility data.

. In Data View, the following sequence of commands must be followed for

computing the value of t:

Analyze — Compare Means — Independent-Samples T Test

. Select Flexibility and Sport variables from left panel, and bring them to the

“Test Variable” and “Grouping Variable” sections in the right panel,
respectively.

. Define values 1 and 2 as two groups for the grouping variable Sport.
. By clicking on the Options command, ensure that the confidence interval is

selected as 95%, and then click on Continue.

. Click on OK for generating outputs.
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4.8.3
1.

Paired t-Test

Start SPSS the way it is done in case of one-sample t-test.

2. In the Variable View define Post_Wt and Pre_ Wt as ‘Scale’ variables.

4.9

4.9.1
Note:

Q.1

Q2
Q3

Q4
Q5

Q6

4.9.2
Note:

. In the Data View the following sequence of commands must be followed for

computing the value of t after entering the data for both the variables:

Analyze — Compare Means — Paired-Samples T Test

. Select variables Pre_Wt and Post_Wt from left panel, and bring them into the

right panel as variable 1 and variable 2 of pair 1.

. By clicking on the Options command, ensure that the confidence interval is

selected as 95%, and click on Continue and OK for generating the outputs.

EXERCISE

Short Answer Questions
Write answer to each of the following questions in not more than 200 words.

Discuss a situation where one-sample t-test can be used. Explain the formula
and procedure of testing the hypothesis.

In comparing two group means, write down steps used in testing the hypothesis.

Under what situation paired t-test should be used? Can it be used if sample size
differs?

What do you mean by pooled SD? How will you compute it?

In testing the hypothesis concerning the equality of two group means
(independent groups), what is the difference in testing two-tailed and one-tailed
hypotheses?

Write steps in using paired t-test for testing the effectiveness of a training
program.

Multiple Choice Questions

Questions 1-10 have four alternative answers for each question. Tick mark the

one that you consider the closest to the correct answer.

1 Choose the most appropriate statement
(a) t-test cannot be used for large sample
(b) z-test cannot be used for large sample
(c) t-test can be used for large sample test
(d) Both t-test and z-test can be used for small sample
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Sample is said to be small, if it is
(a) 39
(b) 31
(c) 29
(d) 30

In two-tailed hypothesis, the critical region is
(a) divided in both the tails in 1:4 proportion
(b) lying in right tail only

(c) lying in left tail only

(d) divided in both the tails

If an investigator is interested to test the effectiveness of a training program in
enhancing the muscular strength and the hypotheses are developed as follows:

HO : ”Post = ”Pre
Hl : lul’osl > luPre

The critical region lies

(a) in right tail only

(b) in left tail only

(c) in both the tails

(d) None of the above is correct.

In using two-sample t-test, certain assumptions are made. Choose the most appro-
priate one

(a) Variances of both the populations are equal.

(b) Variances of both the populations are not necessarily equal.

(c) No assumption is made on the population variance.

(d) Variance of one population is larger than other.

If Cal t < t , choose the most appropriate statement
(a) H, may be accepted

(b) H, is rejected

(c) H, is not rejected

(d) H, may be accepted

If it is desired to compare cardio-respiratory endurance of undergraduate and
postgraduate students, which is the most appropriate set of hypotheses?

@) Hy: o=t Byt o # g

(b) Hy: by =Hpgs Hyt Byg> g

(©) Hy: o=t Hyr g <hpg

(d) Hyt Byg# Hpgs Hyt By =g

In testing the following set of hypotheses
Hyp=p,
H:p<p,
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Choose the most appropriate statement

(a) If calculated t<t , H, may not be rejected
(b) If calculated t<~t , H, may be rejected
(c) If calculated t>—t , H may be rejected
(d) None of the above is correct

9 If there are N pairs of score and paired t-test is used for comparing means of
both the groups, what will be the df for t-statistic?
(a N
(b) 2N-2
(c) N+1
(d) N-1

10 If reaction time of 14 sprinters and 16 gymnasts is to be compared using t-test,
what would be its df?
(a) 28
(b) 30
() 2
(d) 29

11 To see the effectiveness of a circuit training program on the shooting accuracy,
which of the SPSS command shall be used?
(a) One-sample t-test
(b) Independent samples t-test
(c) Paired t-test
(d) None of the above

4.9.3 Assignment

1. Arandom sample of 20 college athletes was tested for their performance on sit-ups.
Their scores were as follows:

23, 26, 25, 26, 20, 29, 27, 27, 25, 26, 28, 25, 29, 29, 29, 29, 23, 28, 35, 31

Can it be concluded that all the college athletes have mean sit-ups equal to 307
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4.10 CASE STUDY
1 Case Study on Comparing two Independent Group Means

Objective

In a sports medicine unit of a university, a researcher wanted to investigate whether
breath-holding capacity of hockey and swimming players differs due to the very
nature of their events. He conducted a study in which 20 hockey and 20 swimming
players who represented the university in the competition were selected for the study.
The breath-holding capacity was tested on them before the competition, which is
shown in Table 4.12.

Research Question

The main issue of investigation was whether due to the nature of the sports the
breath-holding capacity of the players of hockey and swimming differs.

Data Format

The format used for preparing data file in SPSS is shown in Table 4.13.

TABLE 4.12 Breath-Holding
Capacity (in sec) of players

Hockey Swimming
38 45
40 44
44 41
27 39
60 80
55 65
34 45
56 50
54 65
60 65
37 45
60 72
60 65
36 42
60 58
31 45
45 42
50 55
53 48

37 42
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TABLE 4.13 Data Format Used in SPSS

Breath-Holding Capacity Group

38
40
44
27
60
55
34
56
54
60
37
60
60
36
60
31
45
50
53
37

45
44
41
39
80
65
45
50
65
65
45
72
65
42
58
45
42
55
48
42

5

n, =20 (Hockey)

N,=20 (Swimming)

DN DD DR NN RN NN RN NN DNDNDNDNDN /o s s s s s s s b b e e s e e e

Group coding: 1, hockey; 2, swimming.
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Analyzing Data

To investigate research issue a two-sample t-test was applied for testing the null
hypothesis that the difference between hockey and swimming group means of breath-
holding capacity is zero against the alternative hypothesis that it is not. The obtained
value of t in the output was tested for its significance. The two-sample t-test was used
because the data in both the groups were not related. A two-sample t-test was applied
in SPSS by using the commands: Analyze, Compare Means, and Independent
Samples t-Test in sequence. The output was obtained by selecting the test variable
and grouping variable in the SPSS dialog box. The results so obtained are shown in
Table 4.14. One of the assumptions in using the two-sample t-test for independent
groups is that the population variance of these two groups is same. This was tested by
using the Levene’s test in SPSS. Since in Table 4.14 the F value is 0.070, which is not
significant, it may be concluded that the variance of the two groups does not differ
significantly. Hence assumption of equality of variance is satisfied for using the t-test.
Since absolute value of t (1.577) is not significant (p=0.123), the null hypothesis may
not be rejected. It may thus be concluded that the breath-holding capacity of hockey
and swimming does not differ.

Reporting

* Since the absolute value of t (=1.577) is not significant (p=0.123), it may be
concluded that the breath-holding capacity does not differ among hockey and
gymnastics players.

2 Case Study on Paired t-Test

Objective

An exercise scientist developed a circuit training program for improving anaerobic
capacity of tennis players. In order to test its effectiveness he conducted a study in
which 20 national-level tennis players were randomly selected. They were tested for
their anaerobic capacity before and after implementing the circuit training program
for 6 weeks. The data so obtained are shown in Table 4.15.

Research Question

The researcher wanted to test whether the circuit training program improves the
anaerobic capacity?

Data Format

The format used for preparing data file in SPSS is shown in Table 4.15.
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TABLE 4.15 Data Format Used in
SPSS for Anaerobic Capacity (in sec)

Post_test Pre_Test
16.45 13.05
20.47 13.03
14.87 10.48
13.96 11.73
13.48 16.00
12.80 10.14
13.96 12.21
13.84 12.13
15.36 14.12
15.46 12.73
16.84 10.08
17.60 13.16
18.19 17.32
16.97 11.93
15.54 16.13
14.08 13.96
28.05 17.90
22.18 16.34
27.47 16.45
17.93 17.78

TABLE 4.16 Paired Samples Test

Paired Differences

95% Confidence
Interval of the

Difterence Sig
Mean SD SEMean Lower Upper t df (2-Tailed)
Pair I Post testing 3.44150 3.50343 0.78339 1.80184 5.08116 4.393 19  0.000
data—pre

testing
data

Analyzing Data

In order to address the research issue a paired t-test was applied for testing the null
hypothesis that the difference of post- and pre-training means is zero against the
alternative hypothesis that it is not. The obtained value of t in the output was tested
for its significance. The paired t-test was used because the data in both the groups
were related to each other. The paired t-test was applied in SPSS by using the
commands: Analyze, Compare Means, and Paired Samples t-Test in sequence.
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The output was obtained by selecting both variables in the dialog box. The results so
obtained are shown in Table 4.16. Since the value of t is significant (p=0.000), the
null hypothesis may be rejected and alternative hypothesis is accepted. It may thus be
concluded that the circuit training program is effective in increasing the anaerobic
capacity among the tennis players.

Reporting

* Since the paired t-test is significant (p < 0.01) at 1% significance level, it may
be concluded that the circuit training program is effective in improving the
anaerobic capacity of the tennis players.
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LEARNING OBJECTIVES
After completing this chapter, you should be able to do the following:

* Learn to interpret the model involved in analysis of variance

* Describe the situations in which one-way and two-way analysis of variance
should be used

» Explain the assumptions used in two-way analysis of variance
 Construct hypotheses to be tested in a research study
e Interpret various terms involved in analysis of variance

e Understand the steps involved in solving one-way and two-way analysis of
variance

* Interpret the significance of F-statistic using p value
» Know the procedure of making data file for analysis of variance in SPSS

* Learn the steps involved in using SPSS for solving problems with one-way and
two-way analysis of variance and

» Explain the outputs obtained in analysis of variance.

Sports Research with Analytical Solution using SPSS®, First Edition. J. P. Verma.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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5.1 INTRODUCTION

Analysis of variance (ANOVA) is a group of statistical techniques that can be
used to compare means of three or more groups. In this analysis, the null hypo-
thesis of no difference among the group means is tested against the alternative
hypothesis that at least one group mean differs. In ANOVA, variability in a
dependent variable is studied as a function of independent variables. The total
variability is split into different components and then the significance of these
components is tested. In ANOVA if the effect of only one factor on some
dependent variable is investigated, then the technique is known as one-way
ANOVA. If the effect of two factors is investigated simultaneously, then the tech-
nique is referred as two-way ANOVA. Whatever statistical design is used in a
research study, it is always analyzed by the ANOVA technique. Depending upon
the way treatments (independent variable) are allocated to the subjects, the
ANOVA is classified into three different categories: independent measures
ANOVA, repeated measures ANOVA, and mixed ANOVA. If each subject receives
only one treatment, then such studies are investigated by using one-way
independent measures ANOVA; whereas if each subject in the sample receives all
the treatments, then repeated measures ANOVA is used to test the hypothesis.
Independent measures ANOVA is also known as between-groups design, whereas
repeated measures ANOVA is referred to as within-subjects design. However, if
one of the factors is between-groups and another is a within subjects, then the
design is known as mixed design and is solved by using the mixed ANOVA.
Between-groups design with one and two factors shall be discussed in this chapter,
whereas repeated measures design shall be explained in detail in Chapter 6. The
mixed design is outside the purview of this book. For mixed design, readers are
advised to refer to the book titled Repeated Measures Design for Empirical
Researchers by Verma (2015).

5.2 ONE-WAY ANALYSIS OF VARIANCE

Three group means can be compared by using three t-tests. At the same time using
multiple t-tests inflates Type I error rate as well. Thus, if a hypothesis is to be tested
at the significance level 0.05, the actual error would be much higher than this; and
therefore, the conclusion drawn in this manner may not be reliable. To overcome this
problem, some correction is required to be made in the p value associated with t-test.
But this problem can be better managed by using the analysis of variance (ANOVA)
technique discussed in this chapter.

The terms involved in ANOVA shall be discussed in reference with the following
hypothetical experiment. Consider a study in which the effect of three different treat-
ments (low, medium, and high intensity of circuit training program) on muscular
strength is to be compared. The treatments have been randomly allocated to the subjects
in such a manner that each treatment is received by an equal number of subjects.
Table 5.1 shows the data obtained in this study.
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TABLE 5.1 Data on Muscular Strength in Three Different Treatment

Groups

Low (X1) Medium (X2) High (X3)
60 80 65

65 75 70

60 70 65

70 75 70

65 80 75

45 70 55

One-way ANOVA model shall be constructed to understand the concept involved
in hypothesis testing in the analysis.

5.2.1 One-Way ANOVA Model

In this experiment, muscular strength and circuit training are the dependent and the
independent variables, respectively. A model as given below may be developed to
explain total variability in the dependent variable

TSS = SSB + SSE

where TSS is the total variability among scores, SSB is the variability between
groups, and SSE is the variability within groups.

In ANOVA, we try to compare between-group variability with that of within-
group variability. This comparison is done by using F-statistic. Significant value of
F indicates that group means are heterogeneous. In other words, it may be inferred
that the means of the three groups are not same. Significance of F-statistic can be tested
by using p value. F-statistic will be significant at 5% level if its associated p value is
less than 0.05, and nonsignificant otherwise.

If F value is significant, the next question comes as to which group mean is the
largest. Thus, in ANOVA we test the null hypothesis

Ho * Hiow = Hyviediom = Mg

against the alternative hypothesis that at least one group mean differs.

5.2.2 Post Hoc Test

Post hoc test is used for testing the significance of mean difference between groups.
It is used when the null hypothesis of equality of means is rejected. There are many
post hoc tests available to compare the group means such as least significance
difference (LSD), Scheffe, Tukey, Bonferroni, Sidak, Duncan, etc. Tukey and Sidak
are the most widely used tests by the researchers. Readers are advised to read the
details of other post hoc tests from any other standard text on statistics.

In all the post hoc tests, a critical difference is computed at a particular level of
significance. If the difference of any pair of means is greater than critical difference,
group means differ significantly, otherwise not.
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The SPSS output provides p value (significant value) for each pair of means to test
the significance of difference between them. If p value for any pair of means is less
than 0.05, it indicates significant difference at 5% level, otherwise not.

5.2.3 Application of One-Way ANOVA

One-way ANOVA is used when more than two group means are compared. Such
situations are very frequent in research where a researcher may like to compare the
effect of more than two treatments. For instance, one may like to compare the reac-
tion time of basketballers, boxers, and sprinters, or one may wish to compare the
effects of breaststroke, butterfly stroke, and free stroke in swimming learning.

One-way ANOVA should be used in comparing the effectiveness of treatments when
treatments are randomly allocated to the subjects. However, if the effectiveness of treat-
ments is to be compared in intact groups without treatments being randomly allocated
to the subjects, the analysis of covariance should be used. Consider an experiment where
it is desired to compare the effect of different types of warm-up exercises on 400-meter
performance. The three exercises namely warm-up with hot pack, cold pack, and mud
pack may be taken as treatments in three intact groups of athletes. In this situation, one
may take the difference of post- and preperformance of 400-meter in each of the three
treatment groups and then apply one-way ANOVA on these differences of three sets of
data. In this way, the results obtained in comparing the effectiveness of three treatments
will not be reliable because of the fact that all the three groups might not be homogenous
initially. Further, homogeneity of the three treatment groups cannot be ensured as there
might be other covariates affecting the performance. In such situation where compara-
tive effectiveness is to be seen, the analysis of covariance (ANCOVA) is a better design
instead of ANOVA. The ANCOVA has been discussed in Chapter 7.

5.3 ONE-WAY ANOVA WITH SPSS (EQUAL SAMPLE SIZE)

Example 5.1

The data on anxiety obtained on athletes in individual, dual, and team sports and is
shown in Table 5.2. Apply one-way ANOVA to find in which sport anxiety is higher.
Discuss the findings at 5% level.

Solution: The hypothesis that needs to be tested here is

H() : lulnd_Sp = luDuul_Sp = luTeam_Sp

against the alternative hypothesis that at least one group mean differs.

The SPSS output provides F value along with its significance value (p value). The
F-statistic would be significant at 5% level if the p value associated with it is less than
0.05. If F is significant, a post hoc test is used to compare the paired means. SPSS
provides facility to choose any post hoc test for analysis.
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TABLE 5.2 Data on Anxiety

S.N. Individual Sport Dual Sport Team Sport
1 22 25 20
2 21 20 19
3 21 19 22
4 23 20 19
5 22 16 21
6 23 18 19
7 21 21 22
8 24 16 19
9 22 17 20
10 19 19 24
11 21 22 21
12 24 20 24
13 22 19 19
14 23 22 22
15 20 22 20
16 22 19 19
17 21 20 21
18 21 20 21
19 26 21 22
20 24 19 20

In this example, Tukey test shall be used as a post hoc test for comparing the group
means. The SPSS output provides the significance value for each pair of group means
difference. Thus, by looking at the results of post hoc test, one can determine as to which
group mean is higher. The procedure has been discussed while interpreting the output.

5.3.1 Computation in One-Way ANOVA (Equal Sample Size)

5.3.1.1 Preparation of Data File Before starting the SPSS commands, data file
needs to be prepared by selecting the “Type in data’ option for defining variables as
discussed in Chapter 1.

5.3.1.2 Defining Variables There are two variables in this example—namely,
anxiety and sport that need to be defined along with their properties. Anxiety is a
scale variable whereas Sport is a nominal variable. The procedure of defining
variables and their characteristics in SPSS is as follows:

1. Click on Variable View to define variables and their properties.

2. Write short name of the variables as Anxiety and Sport under the column head-
ing “Name.”

3. Under the column heading “Label,” full name of the variables may be defined
as Athlete’s Anxiety and Type of Sport.
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22 Ch5_Example5.1_OneWayANOVA_Anxiety.sav [DataSet1] - SPSS Data Editor

Fis E® View Daln Transform  Anshyze  Graphs  Lfes  Addons  Wndow  Hel

FHO E o0 Bk A Al SEAE Y99

| Name Type | Width | Decimals Label Values Missing Columns Align
1 Anxiety HNumeric ] 2 Athlete's Anxi... None HNone H] 3= Right & Scale
2 | Sport Numaric ] 2 Type of Sport  {1.00, Indiv... Nona i 3 Right &> Nominal

FIGURE 5.1 Defining variables along with their characteristics.

4. Under the column heading “Measure,” select the option ‘Scale’ for the variable
Anxiety and ‘Nominal’ for the Sport.

5. For the variable Sport, double click the cell under the column “Values,” and
add the following values to different labels:

Value Label

1 Individual sport
2 Dual sport

3 Team sport

6. Use default entries in rest of the columns.

After defining variables in the Variable View, the screen shall look like as shown in
Figure 5.1.

Note: More than one dependent variable can be defined in the Variable View for
doing ANOVA.

5.3.1.3 Entering Data Once variables are defined in the Variable View, click on
Data View on the left corner in the bottom of the screen shown in Figure 5.1 to open
the format for entering data column-wise. After entering the data, the screen will
look like as shown in Figure 5.2. Since the data is large, only a portion of the data is
shown in Figure 5.2. Save the data file in the desired location before further
processing.

5.3.1.4 SPSS Commands After entering all the data in the Data View, do the
following steps:

1. Initiating SPSS commands: In the Data View, click the following commands
in sequence:

Analyze — Compare Means — One-Way ANOVA

The screen shall look like as shown in Figure 5.3.

2. Selecting variables: After clicking “One-Way ANOVA” option, you will be
taken to the next screen for selecting variables. Select the variables Anxiety and
Sport from the left panel, and bring them into the “Dependent list” section and
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# Ex7_1.sav [DataSet1] - SPSS Data

Be E® Yew Doia Tanstom  Anayze  Gropns
CHS B o LBk A dd

|12 Ancdety 2
[ Anxiety  spot | i
1 1.00
2 21.00 1.00
3 21,00 1.00
4 23.00 1.00
5 22,00 1.00
6 23.00 100
7 21.00 1.00
8 24,00 1.00
9 22.00 1.00
10 19.00 100
1 21.00 1.00
12 24.00 1.00
13 2200 100
14 23.00 1.00
15 20.00 1.00
16 22,00 1.00
17 21.00 1.00
18 21.00 1.00
19 26.00 100
20 24.00 1.00
21 25.00 200
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FIGURE 5.3 Command sequence for one-way ANOVA.

“Factor” section in the right panel, respectively. The screen will look like as

shown in Figure 5.4.

3. Selecting options for computation: After selecting variables, option needs to be
defined for generating the output in one-way ANOVA. Do the following:
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1 Ex7_1.5av [DataSet1] - SPSS Data Editor
flo Et Vew [as Transfom Anehze Graphs \Mbies Addgns  Window He
CEHS B b0 LEEF M s SBE W%l|7

12 Anudety n
Anxiety Sport var | var var var var
1 2200 1.00
2 21.00 1.00
3 21.00 1.00
4 23.00 1.00
: # One-Way ANOVA
7
8
9
10
11
12 2400 o
13 2200 [¢] Pramussmn—
14 23.00 I | |
16 20,00 -

FIGURE 5.4 Selection of variables in one-way ANOVA.

(a) Click Post Hoc in the screen shown in Figure 5.4. The screen will look like
as shown in Figure 5.5.

(b) Check ‘Tukey’ option. You may choose any other post hoc test if you so
desire.

(c) Write ‘Significance level” as 0.05 or 0.01, as the case may be

(d) Click on Continue. This will take you back on screen in Figure 5.4.

(e) Click on Options and then check ‘Descriptive’ option as shown in

Figure 5.6. Click on Continue and then on OK for generating the outputs.

4. Getting the output: The results of the analysis are generated in the output window.

These outputs can be selected by using the right click of mouse and may be

copied into the word file. Here the following outputs shall be selected:

(a) Descriptive statistics

(b) ANOVA table

(c) Post Hoc comparison table

5.3.1.5 SPSS Output In this example, all the outputs so generated by the SPSS
will look like as shown in Tables 5.3, 5.4, and 5.5.

5.3.2 Interpretation of Findings

Table 5.3 gives different descriptive statistics that may be used by the readers for
their reference and review work. The means of different groups and the results of
Table 5.5 have been used to prepare the graphics shown in Table 5.6, which shall be
discussed later.
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i One-Way ANOVA: Post Hoc Multiple Comparisons

Equal Variances Assumed

[CJLso Cls-nk [ ] waller-Duncan

I:I Bonferroni Type [{Type I Error Ratio: 100

[ sidak [] Tukey's-b [ Dunnett

[ Schefte ] puncan Control Category : | ast -
[R-E-G-WF [JHochberg's T2 [Test

[IrEGWa [] Gabriel (® 2-sided (O <contral O > Control
Equal Variances Not Assumed

[JTamhane's T2 [ |Durnett's T3 [ ] Games-Howell [ | Dunnett's C

Significance level 0,05

[Ccotine J[ cancer |[ e |

FIGURE 5.5 Selecting option for post hoc test and significance level.

ne-Way ANOVA: Options

-Statistics
[v] Descriptive
[] Fixed and random effects

[] Homogeneity of variance test|

[[] Brown-Forsythe
[ weich

] Means plot
Missing Values

(%) Exclude cases analysis by analysis
() Exclude cases listwise

| contiwe || canca || Hew |

FIGURE 5.6 Option for computing descriptive statistics.

The F value in Table 5.4 is significant as its p value (=0.001) is less than 0.05.
Thus, the null hypothesis of no difference among means of the three groups may be
rejected at 5% level.

Since F value is significant, post hoc test needs to be applied for compar-
ing means of groups. The SPSS output shown in Table 5.5 provides such
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TABLE 5.3 Descriptive Statistics for the Data on Anxiety in Different Sport Group

95% Confidence
Interval for Mean

Lower Upper

N Mean SD SE Bound Bound  Min. Max.
Individual sport 20 2210 1.62 036 2134 22.86 19.00  26.00
Dual sport 20  19.75 215 048 18.74 20.76 16.00  25.00
Team sport 20 20.70 1.59  0.36 19.95 21.45 19.00  24.00
Total 60  20.85 202 026 20.33 21.37 16.00  26.00
TABLE 5.4 ANOVA Table for the Data on Anxiety

Sum of Squares df Mean Square F Sig. (p Value)
Between groups 55.90 2 27.950 8.577 0.001
Within groups 185.75 57 3.259
Total 241.65 59

TABLE 5.5 Post Hoc Comparison of Means Using Tukey HSD Test

() Type of Sport (J) Type of Sport Mean Diff. (I-J) SE Sig. (p Value)
Individual sport Dual sport 2.35% 0.57086 0.000
Team sport 1.40* 0.57086 0.045
Dual sport Individual sport -2.35% 0.57086 0.000
Team sport -0.95 0.57086 0.228
Team sport Individual sport —-1.40* 0.57086 0.045
Dual sport 0.95 0.57086 0.228

Note: The values of lower bound and upper bound have been omitted from the original output.

*The mean difference is significant at the 0.05 level.

TABLE 5.6 Means of the Groups with Graphics
Individual Sport Team Sport Dual Sport
22.10 20.70 19.75

\ J

L JRepresents no significant difference between the means.

comparison. It can be seen that the difference between individual sport and dual
sport is significant as the p value for this mean difference is 0.00, which is less

than 0.05.

Similarly, the mean difference between individual sport and team sport is also
significant as the p value for this difference is 0.045, which is also less than 0.05.
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However, there is no difference between the means of the dual sport and team sport.

From Table 5.6, it may be seen that the mean anxiety of the individual sport group is
significantly higher in comparison to that of the team sport and dual sport groups.

5.4 ONE-WAY ANOVA WITH SPSS (UNEQUAL SAMPLE SIZE)

Example 5.2

The self-concept of different positional players of soccer, that is, defenders, midfielders,
and attackers was obtained in a study, which is shown in Table 5.7. Apply one-way
ANOVA to find as to which category of players have the highest self-concept.

Solution: Procedure for one-way ANOVA with equal and unequal sample sizes in
SPSS is almost same. In case of unequal sample size, one should be careful in feeding
the data. The procedure is discussed later. We shall briefly explain the procedure in
this case as it is exactly similar to what we have discussed in Example 5.1. Readers
are advised to refer to the procedure discussed earlier in case of doubt for solving the
ANOVA for unequal sample size.

TABLE 5.7 Data on Self-Concept

S.N. Defenders Midfielders Attackers
1 146 210 182
2 139 195 159
3 158 188 169
4 176 198 155
5 185 186 110
6 72 183 150
7 175 178 167
8 162 191 158
9 185 188 149
10 178 185 175
11 165 178 153
12 164 165 159
13 149 164 191
14 154 185 190
15 170 154 167
16 154 170 152
17 166 182

18 185 182

19 178

[\
o

165
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In this example, the null hypothesis that needs to be tested is

Hy : fpee = Bagig = Haw
against the alternative hypothesis that at least one group mean differs.
If the null hypothesis is rejected, post hoc test shall be used for comparing group
means. Since the sample sizes are different, the Scheffe test shall be used for the post
hoc analysis.

5.4.1 Computation in One-Way ANOVA (Unequal Sample Size)

5.4.1.1 Preparation of Data File Start SPSS and select the “Type in data’ option
for defining variables.

5.4.1.2 Defining Variables There are two variables in this example—namely,
Self-concept and Position that need to be defined along with their properties.
Self-concept is a ‘scale’ variable whereas Position is a ‘nominal’ variable. The
procedure of defining variables and their characteristics is as follows:

1. Use default entries in rest of the columns.

2. Click on Variable View to define variables and their properties.

3. Write short name of the variables as Self Concept and Position under the
column heading “Name.”

4. Under the column heading “Label,” full name of the two aforementioned vari-
ables may be defined as Player’s self-concept and Player’s position.

5. Under the column heading ‘“Measure,” select ‘Scale’ option for the Self_
Concept and ‘Nominal’ for the Position.

6. For the variable Position, double click the cell under the column “Values” and
add the following values to different labels:

Value Label

1 Defenders
2 Midfielders
3 Attackers

7. Instead of 1, 2, and 3, some other numbers may also be chosen to define values
for the labels.

5.4.1.3 Entering Data After defining variables in the Variable View, enter the
data column-wise in Data View. The data feeding format has been shown in
Table 5.8.
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5.4.1.4 SPSS Commands After entering all the data in Data View, save the data
file in the desired location before further processing. Do the following steps:

1. Initiating SPSS commands: In Data View, click the following commands in
sequence:

TABLE 5.8 Format of Data Feeding in Data View

S.N. Self-Concept Position
Defenders n, =20 1 146 1
2 142 1
3 158 1
4 176 1
5 185 1
6 172 1
7 175 1
8 162 1
9 185 1
10 178 1
11 165 1
12 164 1
13 149 1
14 154 1
15 170 1
16 154 1
17 166 1
18 185 1
19 178 1
20 165 1
Midfielders n,=18 21 210 2
22 195 2
23 188 2
24 198 2
25 186 2
26 183 2
27 178 2
28 191 2
29 188 2
30 185 2
31 178 2
32 165 2
33 164 2
34 185 2
35 154 2
36 170 2
37 182 2
38 182 2
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TABLE 5.8 (continued)

S.N. Self-Concept Position
Attackers n,=16 39 182 3
40 159 3
41 169 3
42 155 3
43 110 3
44 150 3
45 167 3
46 158 3
47 149 3
48 175 3
49 153 3
50 159 3
51 191 3
52 190 3
53 167 3
54 152 3

Analyze — Compare Means — One-Way ANOVA

2. Selecting Variables: After clicking “One-Way ANOVA” option, you will be
taken to the next screen for selecting variables. Select variables Self_Concept
and Position from the left panel, and bring them into the “Dependent list” and
“Factor” sections in the right panel, respectively. The screen shall look like as
shown in Figure 5.7.

3. Selecting options for computation: After selecting the variables, option needs
to be defined for generating the outputs. Do the following:

(a) Click on Post Hoc in the screen shown in Figure 5.7.

(b) Check ‘Scheffe’ option. This test is selected because the sample sizes are
unequal. However, you can choose any other test if you so desire.

(c) Write ‘Significance level” as 0.05 or 0.01, as the case may be.
(d) Click on Continue.

(e) Click on Options and then check ‘Descriptive’ option in statistics
section.

(f) Click on Continue and OK options for results.
4. Getting the Output: The outputs selected from the SPSS window are as follows:
(a) Descriptive statistics
(b) ANOVA table
(c) Post Hoc comparison table

5.4.1.5 SPSS Output The outputs generated in this example are shown in
Tables 5.9, 5.10, and 5.11.
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5.4.2 Interpretation of Findings

INDEPENDENT MEASURES ANOVA

Table 5.9 shows the values of means, SD, SE, and other statistics, which may be of
use to the readers. The graphic Table 5.12 has been prepared with the contents of
Tables 5.9 and 5.11, which shall be discussed later.

The F value in Table 5.10 is significant as its p value is 0.000, which is less than
0.05. Thus, the null hypothesis of no difference among the means of the three groups,
that is, defenders, midfielders, and attackers may be rejected at 5% level.

H*Ex7_2.sav [DataSet2] - SPSS Data Editor
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Selection of variables in one-way ANOVA.

TABLE 5.9 Descriptive Statistics for the Data on Self-Concept of Different Positional

Players of Soccer

95% Confidence
Interval for Mean
Lower Upper
N Mean SD SE Bound Bound Min. Max.
Defenders 20 166.5 13.06 292 160.34 172.56 142.00 185.00
Midfielders 18 182.3 13.21 3.11 175.76 188.90 154.00  210.00
Attackers 16 161.6 19.27 482 151.36 171.89 110.00 191.00
Total 54 170.3 17.31 2.36 165.59 175.04 110.00  210.00
TABLE 5.10 ANOVA Table for the Data on Self-Concept
Sum of Squares df Mean Square F Sig.
Between groups 4106.95 2 2053.47 8.89 0.000
Within groups 11778.70 51 230.96
Total 15885.65 53
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TABLE 5.11 Post Hoc Comparison of Means Using Scheffe Test

(I) Position of the (J) Position of the Mean Diff. Sig. (p
Soccer Player Soccer Player a-n SE Value)
Defenders Midfielders —15.883* 4.937 0.009
Attackers 4.825 5.097 0.641
Midfielders Defenders 15.883* 4.937 0.009
Attackers 20.708* 5.222 0.001
Attackers Defenders —4.825 5.097 0.641
Midfielders -20.708* 5.222 0.001

Note: The values of lower bound and upper bound have been omitted from the original output.
*The mean difference is significant at the 0.05 level.

TABLE 5.12 Means of the Groups with Graphics

Midfielders Defenders Attackers
182.3 166.5 161.6
\ J

L JRepresents no significant difference between the means at 0.05 level of
significance.

Since the F value is significant, post hoc comparisons need to be done. The SPSS
output shown in Table 5.11 provides such comparisons. It can be seen that the
difference between self-concept of the defenders and that of the midfielders is
significant as the p value for this mean difference is 0.009, which is less than 0.05.
Similarly, the mean difference between the self concept of midfielders and that of
attackers is also significant as the p value for this difference is 0.001, which is also
less than 0.05. However, there is no difference between defenders and attackers in
their self-concept because the p value is 0.641.

The results thus obtained can be visualized graphically as shown in Table 5.12.
One can see that the self-concept of the midfielders is the best in comparison to that
of attackers and defenders.

5.5 TWO-WAY ANALYSIS OF VARIANCE

In one-way ANOVA, we have seen that the dependent variable is affected by the
change in the different levels of an independent factor. Consider an example of one-
way ANOVA discussed earlier in this chapter where anxiety was influenced by
different types of sport, that is, individual, dual, and group. In that study, effect of only
factor (Sport) on anxiety was investigated. Thus, in one-way ANOVA, the effect of
only one factor is studied. On the other hand, in two-way ANOVA effect of two factors
on dependent variable is investigated simultaneously. For instance, in studying the
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effect of different training intensities and weather conditions on muscular strength,
the two factors that need to be investigated are training and weather. In this situation,
one may conduct few simple experiments by using one-way ANOVA to investigate
the following issues:

* Whether the impact of different training intensities on muscular strength is
same in each weather condition

e Whether the impact of different weather conditions on muscular strength is
same in each training intensity

Thus, if the impact of three training intensities and three weather conditions on
muscular strength is to be studied, one has to organize six one-way ANOVA
experiments. But, the impact of interaction, that is, joint effect of training and weather
cannot be determined in such analysis.

To overcome this problem and to utilize the experimental resources more
economically, a two-way ANOVA experiment can be planned in this situation. In
two-way ANOVA, there are two independent variables or factors (in this case training
and weather) that affect the dependent variable (muscular strength). Further, it may
be interesting to know as to which combination of treatment (training X weather) is
the most effective proposition to enhance the muscular strength.

A two-way ANOVA can be considered as an extension of one-way ANOVA.
In such analysis, the effect of two independent factors on a dependent variable is
studied; hence it is named as two-way ANOVA. Application of two-way ANOVA
requires certain assumptions to be made about the data.

5.5.1 Assumptions in Two-Way Analysis of Variance

The following assumptions are made while using two-way ANOVA in analyzing
the data:

* The population from which the samples have been drawn is normally distributed.
* The samples are independent.
* The population variances are equal.

5.5.2 Hypotheses in Two-Way ANOVA
In two-way ANOVA, the following three null hypotheses are tested:

* The population means of all the levels of the first factor are equal. This is like
the one-way ANOVA for the row factor.

* The population means of all the levels of the second factor are equal. This is like
the one-way ANOVA for the column factor.

* There is no interaction between the two factors. This is similar to performing a
test for independence with contingency table.
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5.5.3 Factors

In two-way ANOVA, each of the two independent variables is usually known as
factors. The effects of these two factors on the dependent variable are studied. Each
of the two factors may have two or more levels, and the degree of freedom for each
factor is 1 less than the number of levels.

5.5.4 Treatment Groups

The number of treatment groups in the experiment is equal to the number of
combinations of the levels of the two factors. For example, if the first factor has two
levels and the second has three, then there will be 2 x 3 =6 different treatment groups.

In the example discussed earlier, let’s assume that there are three different
intensities of exercise and three different weather conditions. To see the impact of
these two factors on muscular strength, there will be nine different treatment groups.
Thus, nine samples having the same size need to be identified so that these different
combinations of treatments can be administered on them.

5.5.5 Main Effect

The main effect is the effect of one independent variable on the dependent variable at
a time. The interaction is ignored for this part. Just the rows or just the columns are
used, not mixed. This is the part that is similar to one-way ANOVA. Each of the var-
iances calculated to analyze the main effects (rows and columns) is like between
variances.

5.5.6 Interaction Effect

The joint effect of two factors on the dependent variable is known as interaction effect.
It can also be defined as the effect that one factor has on the other. The degrees of
freedom for the interaction are the product of degrees of freedom of both the factors.

5.5.7 Within-Groups Variation

The within-groups variation is the sum of squares within each treatment group. The
total number of treatment groups is the product of the number of levels for each
factor. The within variance is equal to within variation divided by its degrees of free-
dom. The within group is also denoted as an error.

5.5.8 F-Statistic

F-statistic is computed for each source of variation to test its significance. F-value is
obtained by dividing the mean sum of squares of main or interaction effect by the
mean sum of squares of the error effect. The numerator degrees of freedom comes
from each effect, and the denominator degrees of freedom is of the within effect in
each case.
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5.5.9 Two-Way ANOVA Table

Let us assume that the main effect A has “r” levels and the main effect B has “c”
levels, whereas n is the sample size in each treatment group. Thus, the total sample
size in the experiment becomes N=nxrxc. The degrees of freedom for each main
effect are 1 less than its level. Similarly, total degrees of freedom are also one less
than the total sample size.

Source SS df MSS F
Main effect A SSR r—1 SZR=SSR/(r— 1) F for row:s—;R
(row) Se
SZ
Main effect B SSC c—1 Sé =SSC/(c-1) F for column:—g
(column) Sk
2
Interaction SSI (r—=1)(c-1) 512 =SSI/(r—1)(c-1) F for interaction:s—;
effect E
Within effect SSE N-rc St =SSE/(N -rc)
Total TSS N-1

5.5.10 Interpretation

The SPSS output provides the significance value (p value) for each of the F-statistic
computed in two-way ANOVA table. If the p value is less than 0.05, F is significant.
Post hoc test for comparing means is applied to those factors and interaction whose
F values are significant.

5.5.11 Application of Two-Way Analysis of Variance

Besides investigating main effects, two-way ANOVA facilitates the investigation of
interaction effect between the two factors on dependent variable. The following
example shall provide an insight to the researchers for appreciating the use of this
analysis.

Consider an example where the effect of three circuit training programs needs to
be compared under two different intensities of the weight training for investigating
the improvement in 100-meter sprinting performance.

Wt. Training (B)

Low (b)) Medium (b,)
I(a) n=10 n=10
Circuit training (A) I (a,) n=10 n=10

I (a,) n=10 n=10
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This is an example of a 3x?2 factorial experiment with six treatment groups
(or cells) each having 10 subjects. In this example, 100-meter sprinting performance
is the dependent variable. If 60 college students are randomly selected in the study,
then six treatments shall be randomly allocated to these subjects in such a manner
that each subject gets one and only one treatment. Thus, each treatment group will
have 10 subjects. These six treatment combinations can be represented by ab , a b,
ab,ab, a3b], and a3bz.

The purpose of this experiment is to find the best combination of treatment
suitable for enhancing the performance in 100-meter event.

Now let’s discuss the type of information this analysis can yield. The following
three types of information may be achieved here:

1. Factor A effect: addresses whether circuit training affects 100-meter
performance.

2. Factor B effect: addresses whether weight training affects 100-meter performance.

3. Interaction effect (A x B): addresses whether the effects of circuit training
depend on the intensities of weight training in improving 100-meter
performance of an athlete.

Thus, the following three hypotheses may be tested in this analysis:
1. H,: Hi_er = Pu_er = Mm_er

All the three circuit training programs are equally effective in improving 100-
meter performance (both the intensities of weight training program combined).

2. Hy o Bigwwr = Hategiomwr

Both intensities of the weight training programs are equally effective (all circuit
training programs combined).

3. H,: No interaction between weight training and circuit training.

Effect of circuit training program on 100-meter performance is independent to
the weight training program.
Thus, in a two-way factorial experiment we investigate two main effects and also
the interaction effect between the factors. If interaction effect is significant, then
simple effects are investigated.

5.6 TWO-WAY ANOVA USING SPSS

Example 5.3

Fifteen wrestlers and fifteen Gymnasts were randomly chosen for the study. In each
category, the subjects were divided into three equal groups. Three different types of
diets were randomly administered to these three groups of subjects for 4 weeks. After
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four weeks of treatment, these subjects were given a fitness test, high score representing
better performance. Test scores so recorded is shown in Table 5.13. Let us see how to
apply two-way ANOVA and interpret the findings:

Solution: Here two main factors, namely, Sport (factor A) and Diet (factor B) as well
as Interaction between Sport and Diet (A xB) need to be studied. Thus, the following
three hypotheses shall be tested:

1' HO : l"lWrcstlcrs = l"LGymnasls

[Fitness levels of the wrestlers and gymnasts are same (all diet groups
combined)].

2. H,: Muigh_piet = MMedium_Diet — MLow_Diet

[Fitness levels of all the three diet groups are same (both sport groups
combined)].

3. H,: No interaction exists between Sport and Diet.

The SPSS output for two-way ANOVA provides F value for Sport (Factor A), Diet
(Factor B), and Interaction (SportxDiet) along with their significance values
(p values). In case F is significant for any factor or interaction, then a post hoc test
shall be conducted to compare the paired means. SPSS provides option for many post
hoc tests for testing the significance of mean difference.

In this example, Tukey test shall be used as a post hoc test for comparing group
means. The SPSS output provides significance value for the difference of each pair
of group means.

TABLE 5.13 Adolescents’ Data on Fitness Test

Diet
Group High Protein Medium Protein Low Protein
Sport Wrestlers 10 8 5
7 6 4
9 8 7
6 5 4
8 6 5
Gymnasts 4 5 3
4 4 3
5 6 4
2 7 2
2 4 1
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5.6.1 Computation in Two-Way ANOVA

5.6.1.1 Preparation of Data File

After preparing the data file, SPSS commands can be used for two-way ANOVA.
After starting SPSS package as discussed in Chapter 1, select the ‘Type in data’
option. The sequence of commands to start SPSS is as follows:

Start — All Programs — SPSS Inc — SPSS 20.0 — Type in Data

Now you are ready for defining variables row-wise.

5.6.1.2 Defining Variables There are three variables in this example, namely,
Fitness Score, Sport, and Diet that need to be defined along with their properties.
Fitness Score is a scale variable, whereas Sport and Diet are nominal variables.
The procedure for defining variables and their characteristics in SPSS is as
follows:

1. Click on Variable View to define variables and their properties.

2. Write short name of the variables as Fitness_score, Sport, and Diet under the
column heading “Name.”

3. Under the column heading “Label,” full name of these variables may be defined
as Fitness test score, Sport of the subject, and Diet type. Alternate names may
also be chosen for describing the variables.

4. Under the column heading ‘“Measure,” select ‘Scale’ option for the variable
Fitness_score and ‘Nominal’ for Sport and Diet variables.

5. For Sport, double click the cell under the column ‘Values’ and add following
values to different labels:

Value Label
1 Wrestler
2 Gymnast

6. Similarly for Diet, add the following values to different labels.

Value Label

3 High-protein diet

4 Medium-protein diet
5 Low-protein diet

7. Use default entries in rest of the columns.

After defining variables in the Variable View, the screen shall look like as shown
in Figure 5.8.

5.6.1.3 Entering Data Once variables are defined in the Variable View, click on
Data View on the left corner in the bottom of the screen shown in Figure 5.8 to open
the format for entering data column-wise.
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FIGURE 5.8 Defining variables along with their characteristics.

One should note the procedure of data feeding carefully in this example. First 15
fitness scores of wrestlers of Table 5.8 are entered in the column of Fitness_score after
which 15 fitness scores of the gymnasts are entered in the same column. Under the
column Sport, first 15 scores are entered as 1 (denotes wrestler) and next 15 scores are
entered as 2 (denotes gymnast). Under the column Diet, first five scores are entered as
3 (denotes high protein), next five scores as 4 (denotes medium protein), and subsequent
five scores as 5 (denotes low protein). These 15 data belong to wrestler’s group.
Similarly, next 15 scores of diet can be just the repetition of the wrestler’s group data.

After entering the data, the screen will look like as shown in Figure 5.9. Save the
data file in the desired location before further processing.

5.6.1.4 SPSS Commands After entering all the data in the Data View, the
following steps must be followed:

1. Initiating SPSS commands: In the Data View, click the following commands
in sequence

Analyze — General Linear Model — Univariate

The screen shall look like as shown in Figure 5.10.

2. Selecting variables for two-way ANOVA: After clicking the “Univariate”
option, you will be taken to the next screen for selecting variables. Select the
variable Fitness test score from left panel, and bring it to the “Dependent vari-
able” section in the right panel. Similarly, select the Sport and Diet variables
from the left panel and bring them into the “Fixed Factor(s)” section in the
right panel. The screen will look like as shown in Figure 5.11.

3. Selecting option for computation: After selecting variables, various options
need to be defined for generating the outputs. Do the following:

(a) Click on Post Hoc in the screen shown in Figure 5.11.

(b) Select the factors Sport and Diet from the left panel, and bring them into
the “Post Hoc Tests for” panel in the right side by using the arrow key.

(c) Check ‘Tukey’ option. The screen will look like as shown in Figure 5.12.

(d) Click on Continue, this will again take you back to the screen shown in
Figure 5.11.

(e) Now click on Options command and then check ‘Descriptive Statistics,’
‘Estimates of effect size,” and ‘Homogeneity test’ options.
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FIGURE 5.9 Data file of fitness data for two-way ANOVA.

(f) Select variables Sport, Diet, and Sport * Diet from the left panel, and bring
them into the “Display Means for” section in the right panel.

(g) Check ‘Compare main effects’ option.

(h) Ensure that the value of significance level is 0.05 in the box. The screen for
these options shall look like as shown in Figure 5.13.

(i) Click on Continue to go back to the main screen shown in Figure 5.11.
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FIGURE 5.10 Command sequence for two-way ANOVA.
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FIGURE 5.11 Selection of variables in two-way ANOVA.

4. Selecting option for means plot: After selecting variables, option needs to be
defined for generating means plots. Click on Plots command to get the screen
as shown in Figure 5.14. Do the following:

(a) Select Sport variable from the “Factors” section and bring it to the
“Horizontal Axis” area for generating means plot of the main effect Sport.
This plot is used to compare the means of sport groups. Click on Add.
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FIGURE 5.12 Options for post hoc test results.

& Univariate: Options

Estimated Marginal Means

Factor(s) and Factor Interactions: for:

(OVERALL)
[v] Compare main etfects
Confidence interval adjustment:
LSO rona) b i

Display

[] Rescriptive statistics

[v] Estimates of etfect sire || Spread vs. level plot

[[] Observed power [ Residusl pict

[[] parameter estmates [ Lack o1 1t

[] contrast coetficient matrix [ | General estimable function

Sigrificance leyet Confidence intervais are 95.0%

[ conwe || cacel |[ Hen |

FIGURE 5.13 Options for various outputs in two-way ANOVA.
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FIGURE 5.14 Options for generating means plot.

Select Diet variable from the “Factors” section and bring it into the
“Horizontal Axis” area for generating means plot of the main effect Diet.
This plot is used to compare the main effect of Diet factor on fitness. Click
on Add.

For generating the mean plots of interaction, bring the Sport and Diet vari-
ables from the “Factors” section to the “Horizontal Axis” and “Separate
Lines” areas, respectively. This plot is helpful in comparing simple effect of
sport in each level of the diet. Click on Add to get the means plot in the
output.

Similarly for comparing the simple effect of diet in each level of the sport
enter Diet and Sport variables from the “Factors” section to the “Horizontal
Axis” and “Separate Lines” areas, respectively. Click on Add.

Click on Continue and then on OK for generating outputs.

5.6.2 Interpretation of Findings

The following outputs have been selected in this analysis from the output windows
for discussion:

nk W =

Descriptive statistics

Two-way ANOVA table

Pair-wise comparisons of sport groups (all diet groups combined)

Pair-wise comparisons of different diet groups (both sport groups combined)
Means plots for interaction analysis

Table 5.14 shows the descriptive statistics. These values are used to generate
means plot for understanding the simple effect of each factor.
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TABLE 5.14 Descriptive Statistics

Dependent Variable: Fitness Score

Sport of the Subjects Diet Category Mean SD N
Wrestlers High diet 8.0000 1.58114 5
Medium diet 6.6000 1.34164 5
Low diet 5.0000 1.22474 5
Total 6.5333 1.80739 15
Gymnasts High diet 3.4000 1.34164 5
Medium diet 5.2000 1.30384 5
Low diet 2.6000 1.14018 5
Total 3.7333 1.62422 15
Total High diet 5.7000 2.79086 10
Medium diet 5.9000 1.44914 10
Low diet 3.8000 1.68655 10
Total 5.1333 2.20866 30

TABLE 5.15 Levene’s Test of Equality of Error
Variances*

Dependent Variable: Fitness Test Data

F dfl df2 Sig.
0.284 5 24 0.917

Tests the null hypothesis that the error variance of the dependent
variable is equal across groups.
“ Design: Intercept+Sport+ Diet + Sport * Diet.

In two-way ANOVA, one of the main assumptions is that the variance of the
dependent scores across entire cell should be same. This can be tested by the
Levene’s test shown in Table 5.15. This table reveals that the F value is not
significant; hence the variability across all the cells is same. Thus, this assumption
is satisfied.

5.6.2.1 Testing Main Effects The output of Table 5.16 may be truncated and
shown in more readable format in Table 5.17. This table shows that the F values for
Sport, Diet, and Interaction are all significant because their associated values of p are
less than 0.05. Since interaction is significant, analyzing main effects of Sport and
Diet becomes meaningless. However, just to show the procedure, we shall discuss
testing significance of main effects as well.

5.6.2.1.1 Main Effect of Sport Since F for sport is significant, pair-wise
comparison shall be done by using the contents in Table 5.18. By using the
information given in Tables 5.14 and 5.18, the means plot as shown in Figure 5.15
can be obtained. In fact, this plot is generated in the SPSS output. It can be seen
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TABLE 5.16 Two-Way ANOVA Table Generated by the SPSS

INDEPENDENT MEASURES ANOVA

Dependent Variable: Fitness Score

Type III Sum of Mean

Source Squares df Square F Sig.
Corrected model 99.067¢ 5 19.813 11.215 0.000
Intercept 790.533 1 790.533 47.472 0.000
Sport 58.800 1 58.800 33.283 0.000
Diet 26.867 2 13.433 7.604 0.003
Sport* Diet 13.400 2 6.700 3.792 0.037
Error 42.400 24 1.767
Total 932.000 30
Corrected total 141.467 29
“R?=0.700 (adjusted R*>=0.638).
TABLE 5.17 Two-Way ANOVA Table for the Data on Fitness Score
Source of Sum of Mean Sum of p Value
Variation Squares (SS) df Squares (MSS) F (Sig.)
Sport 58.80 1 58.80 33.28 0.000
Diet 26.87 2 13.43 7.60 0.003
Interaction 13.40 2 6.70 3.79 0.037

(Sport* Diet)
Error 42.40 24 1.77
Corrected total 141.47 29
TABLE 5.18 Pairwise Comparison of Sport Groups
Dependent Variable: Fitness Test Data
95% Confidence
Interval for
Difference*

(I) Sport of () Sport of Mean Diff. Lower Upper
the Subjects the Subjects I-n SE Sig.“ Bound Bound
Wrestlers Gymnasts 2.800%* 0.485 0.000 1.798 3.802
Gymnasts Wrestlers -2.800%* 0.485 0.000 -3.802 -1.798

Based on estimated marginal means.
“ Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).
*The mean difference is significant at the 0.05 level.
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FIGURE 5.15 Marginal means plot of Sport.

TABLE 5.19 Pairwise Comparison of Different Diet Groups

Dependent Variable: Fitness Test Score

95% Confidence
Interval for Difference”
Mean Diff. Upper
(I) Diet Group (J) Diet Group aIa-Jn SE Sig.® Lower Bound Bound
High protein Medium protein ~ —0.200 0.594 0.982 -1.725 1.325
Low protein 1.900* 0.594 0.012 0.375 3.425
Medium protein  High protein 0.200 0.594 0.982 -1.325 1.725
Low protein 2.100* 0.594  0.005 0.575 3.625
Low protein High protein —-1.900%* 0.594 0.012 -3.425 —-0.375
Medium protein ~ —2.100* 0.594  0.005 -3.625 -0.575

Based on estimated marginal means.
“ Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).
*The mean difference is significant at 0.05 level.

from this figure that the average fitness score of wrestlers is significantly higher
than that of gymnasts irrespective of the diet types.

5.6.2.1.2 Main Effect of Diet 1t can be seen from Table 5.17 that the effect of Diet
on fitness is significant; hence pair-wise comparison shall be done by using the con-
tents of Table 5.19. By using the information given in Tables 5.14 and 5.19, the
means plot as shown in Figure 5.16 can be obtained. This plot is generated in the
SPSS output. This figure shows that the diet with high protein is more effective and
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Variable: Diet

6.00

5.50 1

5.00

4.50 +

4.00

Estimated marginal means

3.50

High protein Medium protein Low protein
Diet

FIGURE 5.16 Marginal means plot of Diet.

that with low protein is least effective for fitness irrespective of the sports. However,
diet with high and medium protein is equally effective.

5.6.2.2 Interaction Analysis Since interaction effect between sport and diet is
significant in Table 5.17, it would be interesting to investigate the simple effect. In
fact, the main purpose of factorial experiment using two-way ANOVA is to test
whether the interaction effect is significant or not. Results of the simple effect are not
obtained in the SPSS outputs; hence, some extra work is required to get the outputs
for simple effects of sport and diet. The detailed procedure is shown in the following
sections:

5.6.2.2.1 Simple Effect of Diet To find the simple effect of Diet, all three diet
groups need to be compared in each sport category separately. To do so, two separate
one-way ANOVA need to be applied. This can be done by splitting the data file
(developed in this example as shown in Figure 5.9) into SPSS by using the following
sequence of commands:

Data — Split File

The screen shall look like as shown in Figure 5.17. Choose the radio button ‘Organize
output by groups’ and bring the variable Sport from left panel into the area marked
with “Grouped based on” in the right panel. Ensure that the radio button ‘Sort the file
by grouping variables’ is selected. This option is in fact selected by default. Click on
OK to get the data file split as per the Sport category. The SPSS will show the
following message in the output dialog box:

SORT CASES BY Sport.
SPLIT FILE SEPARATE BY Sport.
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Go back to the data file and click on the following commands in sequence for
one-way ANOVA:

Analyze — Compare Means — One-Way ANOVA

After clicking on “One-Way ANOVA” option, you will be directed to the next
screen for selecting variables as shown in Figure 5.18. Select the Fitness_score and
Diet from left panel, and bring them to the “Dependent list” and “Factor” sections in
the right panel, respectively. This will provide the outputs for investigating the simple
effect of Diet in each Sport category.

After selecting variables, option needs to be defined for generating the output in
one-way ANOVA. Click on Post Hoc command and check the option ‘Tukey.” The
screen will look like as shown in Figure 5.19. Click on Continue to go back to the
screen as shown in Figure 5.18.

#2|Split File

& Finesstest scare [Fitne.. () Analyze &l cases, do not create groups
Diet category [Diet]

& O Compare groups

(®) organize output by greups

Groups Based on:

waoﬂmmwl

() Sort the file by grouping variables
O e s already sorted

Current Stalus: Analysis by groups is off.

Lot J{ pose J{ messt J{ conce || ree |

FIGURE 5.17 Option for splitting data file for simple effect of Diet.

i One-Way ANOVA

Sporl of the subject [Sp...

FIGURE 5.18 Selection of variables for generating simple effect of Diet.
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Click on Options command in the screen shown in Figure 5.18 and then check
‘Descriptive’ option (Fig. 5.20). Click on Continue and OK commands for gener-
ating outputs as shown in Tables 5.20 and 5.21. The SPSS outputs for sports group
have been shown in these tables.

Table 5.20 shows that the F values for Diet in wrestling (p=0.017) and in gymnas-
tics (p=0.05) are significant as their associated p values are less than 0.025 (value of

£: One-Way ANOVA: Post Hoc Multiple Comparisons

Equal Variances Assumed

O T (] waller-Duncan

D Bonferron El Tukey Type IType ll Error Ratio i] 00 ]

[ sigak (] Tukey's-b (] bunnett

D Scheffe D Duncan Cortrol Category : [Last -

[IREGWF [ Hochberg's T2 [Test

[IREGWQ [] Gabriel (®) 2-sided (O <Contral (O > Control
~Equal Variances Not Assumed

[[] Tamhane's T2 [ Dunnett's T3 [[] Games-Howell [] bunnett's C

Soptcnceiove

rStatistics

v Besortng

[ Eixed and random effects

["] Homogeneity of variance test

[[] Brown-Forsythe
[] weich

Means plot
rMissing Values

() Exclude cases analysis by analysis

(O Exclude cases listwise

| cortinve || concel || Hew

FIGURE 5.20 Options for descriptive statistics.
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TABLE 5.20 F-Table for Testing the Effect of Diet in Each Sport Category

Measure: Fitness Test Data

Sum of Mean
Sport Squares df Square F Sig. (p Value)
Wrestling Between groups 22.533 2 11.267 5.828 0.017
Within groups 23.200 12 1.933
Total 45.733 14
Gymnastics Between groups 17.733 2 8.867 5.542 0.020
Within groups 19.200 12 1.600
Total 36.933 14

a, 0.05 has been divided by 2 as two ANOVA’s have been computed). Thus, the null
hypothesis of no difference in mean fitness scores among the three diet groups is
rejected in each sport category. Since the effect of Diet is significant in each sport
category, it is important to do the pair-wise comparison of means among three levels
of diet in each sport category.

5.6.2.2.1.1 PAIR-WISE COMPARISON OF MEANS IN EACH SPORT CATEGORY Pair-
wise comparison of means among three levels of diet in each sport category has been
shown in Table 5.21. The following conclusions can be drawn:

In wrestling category, there is a significant difference (p<0.025) between high-
and low-protein diet groups.

In gymnastics category, there is a significant difference between medium- and
low-protein diet groups. (p<0.025).

In order to know in which diet group average fitness score is more a means plot
has been shown in Figure 5.13. This has been obtained in the main output of the
SPSS during the analysis of the main effects.

5.6.2.2.1.2 MEANS PLOT (sporTxDIET) The contents of Tables 5.14 and 5.21 can
be used to show the means plots of different diet groups in each Sport category as
shown in Figure 5.21. This means plot provides a clear picture about the analysis. It
shows that the fitness improves if the high protein diet is taken instead of low protein
diet among the wrestlers.

In gymnastics, medium intake of protein diet improves fitness significantly in
comparison to low-protein diet.

5.6.2.2.2 Simple Effect of Sport To investigate the simple effect of Sport, scores
of both the sports groups need to be compared in each diet category separately. Since
sport has two groups, it can easily be known as to which sport group’s fitness is better
in each diet category. However, we shall discuss the procedure so that the readers can
use if there are more than two categories of this factor (Sport). Thus, to investigate
the simple effect of sport, three separate one-way ANOVA need to be applied. This
can be done by splitting the data file (developed in this example as shown in Fig. 5.9)
in SPSS by using the following sequence of commands:
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FIGURE 5.21 Marginal means plot of Sport x Diet.

Data — Split File

The screen shall look like as shown in Figure 5.22. Choose the radio button
‘Organize output by groups’ and bring the variable Diet this time from left panel into
the area marked with “Grouped based on” in the right panel. Ensure that the radio
button ‘Sort the file by grouping variables’ is selected. This option is in fact selected
by default. Click on OK to get the data file split as per the sport category. The SPSS
will show the following message in the output dialog box:

SORT CASES BY Diet.
SPLIT FILE SEPARATE BY Diet.

Go back to the data file and use the commands for one-way ANOVA as we did
earlier. After clicking on “One-Way ANOVA” option, you will be directed to the next
screen for selecting variables as shown in Figure 5.23. Now select Fitness test score
and Sports variables from left panel and bring them to the “Dependent list” and
“Factor” sections, respectively, in the right panel. This will provide the outputs for
investigating the simple effect of sport in each diet category.

After selecting variables and choosing ‘Tukey’ option for the post hoc test, the
outputs have been generated. The SPSS outputs of all the three diet groups have been
combined in Table 5.22.

Since F value for high-protein and low-protein groups are significant (p<0.017),
mean fitness scores of the two sports shall be compared only in these two groups. This
can be done by using the means plot. Here significance of F has been tested at 0.017
(=0.05/3) because three one-way ANOVA have been computed on the same data.

5.6.2.2.2.1 MEANS PLOT (DIETXSPORT) 'The means plot Diet x Sport is generated in
the main analysis by the SPSS. This plot is shown in Figure 5.24. It indicates that
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FIGURE 5.23 Selection of variables for simple effect of Sport.

TABLE 5.22 F-Table for Testing the Effect of Sport in Each Diet Category

Measure: Fitness Test Data

Sum of Mean Sig.
Diet Squares df Square F (p Value)
High protein Between groups 52.900 1 52.900 24.605 0.001
Within groups 17.200 8 2.150
Total 70.100 9
Medium Between groups 4.900 1 4.900 2.800 0.133
protein Within groups 14.000 8 1.750
Total 18.900 9
Low protein Between groups 14.400 1 14.400 10.286 0.012
Within groups 11.200 8 1.400
Total 25.600 9
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fitness for the wrestler is significantly higher than that of gymnasts in the high-
protein diet category. This trend is also followed in low-protein diet category as well.

5.7 SUMMARY OF THE SPSS COMMANDS

5.71 One-Way ANOVA

1.

Start SPSS by using the following commands:

Start — All Programs — SPSS Inc — SPSS 22.0

Click on Variable View and define Anxiety and Sport as a scale and nominal
variables, respectively.

Under the column heading “Values,” define ‘1’ for Individual Sport, ‘2’ for
Dual Sport, and ‘3’ for Team Sport.

Once variables are defined, type the data for these variables by clicking on
Data View button.

. In Data View, for the computation involved in one-way ANOVA, the follow-

ing commands must be followed in sequence:

Analyze — Compare Means — One-Way ANOVA

Select variables Anxiety and Sport from left panel and bring them into
“Dependent list” section and “Factor” section in the right panel, respectively.
Click on Post Hoc command and select ‘LSD’ option and write the value of
‘Significance level’ as 0.05. Click on Continue.
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5.7.2

10.

11.

INDEPENDENT MEASURES ANOVA

. Click on Options command and then check ‘Descriptive.” option.
. Click on Continue and then on OK to generate outputs.

Two-Way ANOVA

. Start SPSS by using the following commands in sequence:

Start — All Programs — SPSS Inc — SPSS 22.0 — Type in Data

. Click on Variable View and define Fitness_Score as a scale variable and Sport

and Diet as nominal variables.

. Once variables are defined, type the data for these variables by clicking on

Data View.

. In the Data View, use the following commands in sequence:

Analyze — General Linear Model — Univariate

. Select Fitness_Scores variable from the left panel and bring it to the “dependent

variable” section in the right panel. Similarly, select the variables Sport and Diet
from left panel and bring them to the “Fixed Factor(s)” section in the right panel.

. Click on Post Hoc command and select the factors Sport and Diet from the left

panel and bring them to the “Post Hoc test” panel on the right side. Check the
option ‘Tukey’ and then click on Continue.

. Click on Options command. Select Sport, Diet, and Sport*Diet variables from

left panel and bring them into the right panel. Select ‘Compare main effects’
and ‘Descriptive statistics’ options and ensure that the value of significance is
0.05. Click on Continue.

. Select option for means plots for main and simple effects.
. Click on OK for output.

For simple effect, split the data file by using the following commands in
sequence:

Data — Split File

Apply one-way ANOVA for generating outputs for the simple effect of diet and
sport

5.8 EXERCISE

5.8.1

Short Answer Questions

Note: Write answer to each of the following questions in not more than 200
words.

Q.1

In an experiment, it is desired to compare the reaction time of basketballers,
gymnasts, and volleyballers. Write the null hypothesis as well as all possible
types of alternative hypotheses.
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Q2

Q3

Q4

Q.5
Q6

Q.7

Q8

Q.9

Q.10

Q.11

Q.12

5.8.2

Explain a situation where one-way ANOVA can be applied. Which variances
are compared in one-way ANOVA?

ANOVA is used for comparing means of different groups but it uses F-test that
is a test of significance for comparing variances of two groups. Discuss this
anomaly.

What do you mean by the post hoc test? Explain its procedure.
What is p value? In what context is it used?

What do you mean by interaction? Explain it by describing an experimental
situation.

Justify the name “two-way ANOVA.” Discuss the advantages of two-way
ANOVA over one-way ANOVA.

In an experiment, the effects of three circuit training programs were compared
under three weather conditions. Thus, nine treatment groups were studied
with five samples in each. With the help of the given results like SS
(Training) =234, SS (Weather)=145, SS (Interaction)=101, and TSS =705,
complete two-way ANOVA table.

While using two-way ANOVA, what assumptions need to be made about the
data?

Describe an experimental situation where two-way ANOVA can be used.
Discuss different types of hypotheses that you would like to test.

What do you mean by ‘Factors’ in two-way ANOVA? Explain the same by
means of examples.

What is main effect? How is it different from interaction effect?

Multiple Choice Questions

Note: Questions 1-10 have four alternative answers for each question. Tick mark the
one that you consider the closest to the correct answer.

1 Choose the correct statement.
(a) Total sum of square is additive in nature.
(b) Total mean sum of square is additive in nature.
(c) Total sum of square is nonadditive.
(d) Total mean sum of square is equivalent to the total sum of square.

2 In ANOVA experiment if the variability due to chance decreases the F value will
(a) remains same.
(b) decreases.
(c) increases.
(d) can’t say with this information.
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3 Choose the correct statement
(a) If F-statistic is significant at 0.05 level, it will also be significant at 0.01 level.
(b) If F-statistic is significant at 0.01 level, it may not be significant at 0.05 level.
(c) If F-statistic is significant at 0.01 level, it will necessarily be significant at
0.05 level.
(d) If F-statistic is not significant at 0.01 level, it will not be significant at 0.05 level.

4 Choose the correct statement.
(a) If p value is 0.02, F-statistic shall be significant at 5% level.
(b) If p value is 0.02, F-statistic shall not be significant at 5% level.
(c) If p value is 0.02, F-statistic shall be significant at 1% level.
(d) None of the above is correct.

5 In comparing the IQ among three classes using one-way ANOVA in SPSS,
choose the correct statement about the variable types.
(a) IQis a ‘nominal’ variable and Class is a ‘scale’ variable.
(b) Both IQ and Class are the scale variables.
(c) IQis a ‘scale’ variable and Class is a ‘nominal’ variable.
(d) Both IQ and Class are ‘nominal’ variables.

6 If coordinative ability is to be compared among three sport groups, then choose
the valid variable names in SPSS.
(a) Coord_Abil and Sport
(b) Coord-Abil and Sport
(c) Coord-Abil and Group_Sport
(d) Coord_Abil and Group-Sport

7 If three groups of students are compared on their physical fitness index and in
each group there are 12 subjects, what would be the degrees of freedom for the
within group in one-way ANOVA?

(a) 30
(b) 31
(c) 32
(d) 33

8 Choose the correct model in one-way ANOVA.
(a) TSS=(SS),+(SS),,
(b) TSS=(SS), - (SS),
(c) TSS=(SS), x(SS),
(d) TSS=(SS),/(SS),

9 In one-way, four groups were compared for their memory retention power. These
four groups had 8, 12, 10, and 11 subjects, respectively. What shall be the degree
of freedom of between groups?

(a) 41
(b) 37
(¢) 3

(d) 40
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10

11

12

13

14

15

If anxiety has to be compared in three different sport groups using one-way
ANOVA, then Anxiety and Sport variables need to be selected in SPSS.
Choose the correct selection strategy.

(a) Anxiety in “Factor” section and Sport in “Dependent list” section.

(b) Anxiety in “Dependent list” section and Sport in “Factor” section.

(c) Both Anxiety and Sport in “Dependent list” section.

(d) Both Anxiety and Sport in “Factor” section.

In applying two-way ANOVA in an experiment, r levels of factor A and ¢
levels of factor B are studied. What will be the degrees of freedom for
interaction?

(a) rc

(b) r+c

(c) re—1

(d) (r=D(c—-1)

In an experiment, “r” levels of factor A are compared in “c” levels of factor B.
There are N scores in this experiment. What will be the degree of freedom for
within group?

(a) N-rc

(b) N+rc

(c) N-=rc+1

(d) Nrc-1

While using two-way ANOVA, certain assumptions are taken. Choose the

correct assumption.

(a) The population variances must be different.

(b) The sample must be dependent.

(c) The populations from which the samples were drawn must have binomial
distribution.

(d) The sample size in all the groups must be same.

Consider an experiment in which the hemoglobin (Hb) contents of different
sportsmen are to be compared under three different exercise programs. Choose
the correct statement in defining three variables Sport, Exercise, and Hb in
SPSS.

(a) Sport and Hb are Scale variables and Exercise is the Nominal variable.

(b) Sport and Exercise are Nominal variables and Hb is the Scale variable.

(c) Sport and Exercise are Scale variables and Hb is the Nominal variable.

(d) Exercise and Hb are Scale variables and Sport is the Nominal variable.

Command sequence in SPSS for starting two-way ANOVA is
(a) Analyze — General Linear Model — Univariate

(b) Analyze — General Linear Model — Multivariate

(c) Analyze — General Linear Model — Repeated Measures
(d) Analyze — Univariate — General Linear Model
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16 In two-way ANOVA, Fixed Factors refer to
(a) Dependent variables
(b) Independent variables
(c) Both dependent and independent variables
(d) None of the above

17 If there are N scores in a two-way ANOVA experiment, the total degree of free-
dom would be
(a) N+1
(b) N-1
() N
(d) N-2

18 If three levels of factor A are compared among the four levels of factor B, how
many treatment groups will have to be created?
(a) 7
(b) 1
() 12
(@ 11

5.8.3 Assignment

1. A study was conducted on cricketers to compare the shoulder flexibility of
bowlers, batsmen, and all-rounders. The data so obtained is shown in Table 5.23.
Apply one-way ANOVA and discuss your findings at 5% level.

2. A study was conducted on the lifestyle of young, middle-aged, and old-aged
executives of production and marketing division of an industry. A lifestyle
inventory was administered on each individual who participated in the study.
A high score on the test indicates a better lifestyle. Test scores are shown.
Analyze the data given in Table 5.24 by using two-way ANOVA and discuss
your findings at 5% level.

TABLE 5.23 Data on Shoulder Flexibility in Inches

Batsman Bowlers All-Rounder
10 18 12
14 17 15
11 15 11
15 16 13
13 16 12
13.5 18 17
10.5 17 13
9.5 17 13
9.6 13 14

15.3 17 14
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TABLE 5.24 Data on Lifestyle Evaluation

Young Middle-Aged  Old-Aged
Group Executives Executives Executives

11
7
9
8

10

11

9
11
12
12

w
3

Production

Marketing
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5.9 CASE STUDY ON ONE-WAY ANOVA DESIGN

Objective

While developing weight training schedule, a coach wanted to know whether
back strength differs among the athletes playing soccer, wrestling, and hockey.
He organized an experiment in which 10 soccer players, 14 wrestlers, and 12
hockey players were selected. Back strength for these subjects was tested by
using the leg dynamometer. The data so obtained is shown in Table 5.25.

Research Questions

The following research questions were investigated:

1. Whether back strength has anything to do with the type of sports one play.
2. Whether back strength of any one sport is significantly different than others

Data Format

The format used for preparing data file in SPSS is shown in Table 5.26.

Analyzing Data

To investigate the research issues, one-way ANOVA was applied for testing the null
hypothesis that the mean difference among the three sports group is same against the
alternative hypothesis that at least one group mean differs. The F value in the ANOVA
table was found to be significant; hence, a post hoc analysis was carried out by using
the Tukey HSD test. The one-way ANOVA was applied in SPSS by using the follow-
ing commands in sequence: Analyze, Compare Means, and One-Way ANOVA.
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TABLE 5.25 Data on Back Strength in kg

Soccer Wrestling Hockey
68 122 78
88 88 82
100 94 96
116 100 110
72 110 120
66 120 88
88 88 92
78 82 98
90 104 88
92 110 110
98 88
105 86
102
95

The output was obtained by placing the dependent variable and group variable in the
appropriate locations in the dialog box, checking ‘Tukey’ as a post hoc test and
‘Means Plot’ options. The results so obtained are shown in Table 5.27.

Interpreting Findings

Table 5.27 shows that the F value is significant at 0.05 significance level; hence the
null hypothesis is rejected. Since null hypothesis was rejected, a Tukey post hoc test
was applied whose results are shown in Table 5.28. It can be seen from this table that
the mean difference between soccer and wrestling groups is significant (p=0.020),
whereas all other mean differences are nonsignificant.

Means Plot

Figure 5.25 indicates the means plot. On the basis of the sampled data, means plot
shows that the mean back strength of soccer and wrestling groups differs signifi-
cantly. Further, there is no difference between soccer and hockey groups and that of
wrestling and hockey groups.

Reporting

* Since F (=4.049) is significant (p=0.027), the null hypothesis that the mean
back strength is same among all the three groups is rejected. Thus, on the basis
of the sampled data, it can be concluded that the back strength is related with the
type of sports one play.

» Tukey post hoc test indicates that there is a significant difference between
soccer and wrestling groups in relation to back strength.

* The means plot indicates that the back strength of the wrestling group is
significantly higher than that of the soccer group.



TABLE 5.26 Data Format used in SPSS for Back

Strength (in kg)

Back Strength

Sports Group

68
88
100
116
72
66
88
78
90
92
122
88
94
100
110
120
88
82
104
110
98
105
102
95
78
82
96
110
120
88
92
98
88
110
88
86

L W L W W LW W W LW WWLW WMDY NDNDNE === ===

Group code: 1, soccer; 2, wrestling; 3, hockey.

TABLE 5.27 ANOVA

Back Strength
Sum of Squares df Mean Square F Sig.
Between groups 1399.098 2 699.549 4.049 0.027
Within groups 5701.124 33 172.761
Total 7100.222 35




"[OAR] 0O°0 Y} Je JUBOYIUSIS ST QOUAIAJJIP UBIW YT, 4

06909 [L0E°61— 910 LLOLT'S S0619°9— Suipsarm

€9L9'CC 0Er6'v— 0LT0 L8LTY'S £9998°8 193508 Koxp0H

1L0€61 0690°9— 91¥°0 LLOLT'S S0619°9 Kayo0H

S6£8'8¢ 0cer'e 0200 80CYY'S x LS8V ST 193008 Suipsarm

0Ev6'y €9L9°CC— 0LT0 L8LTY'S £9998'8— KoxyooH

ocere- S6£8'8C— 020°0 80¢ty'S LS8V CI— Surpsaim 193308
punog 1addn punog 1amo| ‘31S 4as (=1 ‘P ues]y dnoio syods (r) dnoin syods (1)

[EAIIU] QOUPHUOD) %66
dSH oL
pSuang yoeqg

suostredwo) S[dpnA  87°S ATAVL



CASE STUDY ON TWO-WAY ANOVA 147

Variable: Back strength
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FIGURE 5.25 Means plots.

5.10 CASE STUDY ON TWO-WAY ANOVA

Objective

An exercise scientist wanted to evaluate the effect of gender (male and female)
and music (jazz, classical, and opera) on mood of the subjects during treadmill
exercise. He conducted a 2 x 3 factorial study in which 15 male and 15 female par-
ticipated. Male and female were randomly divided into three groups. These groups
were randomly assigned the music treatment in the background while doing the
exercise for 30 min on treadmill with a particular load. After the workout, their
mood score was recorded by means of a questionnaire. The data so obtained are
shown in Table 5.29.

Research Questions

The following research questions were investigated:

1. Whether gender affects the mood during exercise irrespective of the background
music

2. Whether music affects the mood during exercise irrespective of the gender
3. Whether interaction between gender and mood exists

Data Format

The format used for preparing data file in SPSS is shown in Table 5.30.
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TABLE 5.29 Data on Mood After the Treadmill Exercise in Each

Treatment Group

Group Jazz Classical Opera

Female 20 8 27
24 10 26
21 11 31
16 6 24
21 9 26

Male 23 15 15
20 18 19
26 12 20
19 10 12
20 13 18

Analyzing Data

For investigating all the three research questions, a two-way ANOVA was carried out
by using SPSS. The F for Gender, Music, and Interaction was tested for their signif-
icance. Post hoc test was applied if F was significant for the component. The two-
way ANOVA was applied in SPSS by using the following commands in sequence:
Analyze, General Linear Model, and Univariate. Mood variable was placed in the
dependent variable section, whereas gender and music were inserted in the fixed
factor. Appropriate options were defined for generating the means plot. Tukey was
selected as a post hoc test and by checking ‘Descriptive statistics’ and ‘Homogeneity
test’ various outputs were generated, which are shown in Tables 5.30, 5.31, 5.32,
5.33, and 5.34.

Testing Assumption

One of the main assumptions in two-way ANOVA is that the variance of the dependent
scores across the entire cell should be same. To test this hypothesis, SPSS provides
Levene’s test in its output, which is shown in Table 5.31. This table shows that the F
value is not significant. Therefore, the variability across all the cells is same; hence
this assumption is satisfied.

Testing Significance of Different Effects

Table 5.32 shows that the F values for Music (p=0.000) and Interaction (p=0.000)
are significant; hence post hoc analysis was done for getting the correct picture.
Since interaction effect was significant, no post hoc analysis was done for the main
effect, music. The whole concentration was on investigating the interaction effect.
Since interaction effect was significant, simple effects of Gender and Music were
investigated.
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TABLE 5.30 Data Format used in SPSS for Back

Strength (in kg)

Gender Music Mood_Score

W W W W WM == === WLWWWWNNDNPNDN ===

[NOX NS T N I NS I NG T NS S T N T N0 I N T (O i S T N i O i S e O T

20
24
21
16
21

8
10
11

6

9
27
26
31
24
26
23
20
26
19
20
15
18
12
10
13
15
19
20
12
18

Gender code: 1, male; 2, female.
Music code: 1, jazz; 2, classical; 3, opera.

TABLE 5.31 Levene’s Test of Equality of Error

Variances®

Dependent Variable: Mood_Score

F dfl df2

0.421 5 24

Tests the null hypothesis that the error variance of the dependent

variable is equal across groups.
“ Design: Intercept+ Gender+Music + Gender* Music.

149
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TABLE 5.32 Tests of Between-Subjects Effects

INDEPENDENT MEASURES ANOVA

Dependent Variable: Mood_Score

Source Type III Sum of Squares df Mean Square F Sig.

Corrected model 1008.000¢ 5 201.600 25.736 0.000

Intercept 9720.000 1 9720.000 1.241E3  0.000

Gender 13.333 1 13.333 1.702 0.204

Music 696.800 2 348.400 44 477 0.000

Gender* Music 297.867 2 148.933 19.013 0.000

Error 188.000 24 7.833

Total 10916.000 30

Corrected total 1196.000 29

“R2=0.843 (adjusted R*=0.810).

TABLE 5.33 Descriptive Statistics

Dependent Variable: Mood_Score

Gender Music Mean SD N

Male Jazz 20.4000 2.88097 5
Classical 8.8000 1.92354 5
Opera 26.8000 2.58844 5
Total 18.6667 8.05044 15

Female Jazz 21.6000 2.88097 5
Classical 13.6000 3.04959 5
Opera 16.8000 3.27109 5
Total 17.3333 4.43471 15

Total Jazz 21.0000 2.78887 10
Classical 11.2000 3.48967 10
Opera 21.8000 5.95912 10
Total 18.0000 6.42195 30

TABLE 5.34 Mean Mood Scores for Different Music Groups in Each Gender Group

Gender Group CD at 5% level
Male 26.8 (Opera) 20.4 (Jazz) 8.8 (Classical) 3.65
Female 21.6 (Jazz) 16.8 (Opera) 13.6 (Classical) 3.65

“ ‘_, ” Denotes no difference between the means at 0.05 level of significance.



CASE STUDY ON TWO-WAY ANOVA 151

Interaction Analysis

Table 5.33 shows the mean of each cell. To compare these cell means among male and
female and among different music groups, a critical difference was computed as follows:

2(MSS),

CDfor Interaction =t (24)
n

=2.06, {2X7—5833 =3.65

If the difference between two cells” mean is higher than 3.65, significant difference
exists, otherwise not.

Simple Effect of Music

Simple effect of the music can be investigated by using the contents of Table 5.34.
This table has been obtained by using the critical difference and the mean values of
different cell. By looking to Table 5.34, it can be inferred that among male, opera
music enhances the mood significantly during exercise; whereas in female, section
jazz music is more effective.

Simple Effect of Gender

Looking to the results of Table 5.35, it can be inferred that with the classical music
in the background female subject’s mood was significantly better in comparison to
male; whereas in opera music, male’s mood was found to be significantly better in
comparison to that of female.

Reporting

* Since F ratio for the Music was significant (p=0.000), it can be inferred that
the Music has a significant impact on the mood of the subjects while doing the
exercise irrespective of the gender.

TABLE 5.35 Mean Mood Scores for Different Gender Groups in Each Music Group

Music Group Male Female CD at 5% level
Jazz 204 21.6 3.65

| ]
Classical 8.8 13.6 3.65
Opera 26.8 16.8 3.65

“‘—J ” Denotes no difference between the means at 0.05 level.
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* Since F ratio for the interaction was significant (p=0.000), it may thus be
concluded that the interaction effect was significant.

¢ Interaction analysis showed that opera music was more suitable for male and
jazz for female in enhancing their mood while exercising.

Further female’s mood was elevated while exercising with classical music in the
background, whereas male liked the opera music for mood enhancement.



REPEATED MEASURES ANOVA

LEARNING OBJECTIVES
After completing this chapter, you should be able to do the following:

* Understand the difference between independent measures ANOVA and
repeated measures ANOVA

* Know the assumptions that are required to satisfy in repeated measures ANOVA

* Learn the procedure of solving one-way repeated measures design and
mixed design with SPSS.

* Describe the output generated in repeated measures designs

6.1 INTRODUCTION

Experimental studies are conducted to investigate the effect of one or more factors on
some variable of interest. These studies are designed in such a manner so as to ensure
the validity of findings. In experimental studies, a researcher manipulates an
independent variable to see its effect on a dependent variable. It is important that a
researcher controls the effect of extraneous factors. Effect of extraneous factors can
be controlled be using nonstatistical or statistical methods. The nonstatistical
methods include randomization, elimination, and matching. The randomization
method ensures normality of data and enhances external and internal validity.
It refers to random selection of sample from the population of interest and allocating

Sports Research with Analytical Solution using SPSS®, First Edition. J. P. Verma.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Verma/Sportsresearch
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treatments randomly to the subjects in the sample. On the other hand, elimination
method refers to stabilizing a covariate if it affects an experiment. For instance, if
the effect of three different intensities of a circuit training program on muscular
strength is to be compared in a sample of subjects consisting both male and female,
then the female subjects can be eliminated from the experiment. This is because
male and female react differently in the experiment and the effect of gender might be
confounded in the result. But in that case, the findings will only be applicable to the
male subjects. Another nonstatistical procedure of controlling the effect of extra-
neous factor is matching. It refers to dividing the subjects in different treatment
groups based on some criteria. For instance, in investigating the effect of training
intensity on shooting accuracy in basketball, one may think that the performance
during experiment depends upon the height of the players and therefore the sub-
jects may be matched on the basis of their height. In such case, subjects’ heights
can be arranged in ascending order and then first three subjects may be randomly
allocated in the three different treatment groups if there are three levels of training.
Thereafter, next three subjects may be randomly allocated to the three treatment
groups. This process continues till all subjects are allocated to different treatment
groups. Validity of findings can be ensured by following any of these three nonsta-
tistical procedures. However, in many situations these methods are not sufficient
to control internal validity; hence, some statistical methods are used to enhance
the validity of findings. These methods include independent measures design,
repeated measures design, and analysis of covariance (ANCOVA) design. In
independent measures design, each subject received one and only one treatment,
whereas in repeated measures each subject receives all treatments. On the other
hand, ANCOVA design is used when randomization of treatments is not possible
and the treatments are allocated to the intact group.

The one-way ANOVA and two-way ANOVA methods discussed in Chapter 5 are
the independent measures design. This chapter specifically deals with the repeated
measures designs. Here we shall discuss the repeated measures design with one-
way and two-way classification by using the SPSS software. In repeated measures
design, one of the advantages is that variation due to subjects in different treatment
groups is eliminated because each subject receives all the treatments. Another
advantage of these designs is that less number of subjects are required to perform
the experiment.

6.2 ONE-WAY REPEATED MEASURES ANOVA

In one-way repeated measures ANOVA, an experimenter manipulates an independent
variable to see the effect on some dependent variable where all the subjects participate
in all the treatment conditions. Consider an experiment in which the effect of differ-
ent intervention on the recovery pattern after the match is investigated among football
players. The researcher may identify three different interventions (autogenic relaxa-
tion, aqua therapy, and yoga exercises) for a particular duration. In this design, same
subjects are tested under each treatment condition to avoid the individual variation.
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In repeated measures design, subjects serve their own control. In order do away with
the learning or fatigue effect, sufficient time gap is maintained between any two
treatments. Sometimes, a researcher may be interested to investigate the impact of
training on the performance in different durations. For instance, one might be inter-
ested to know the effect of acrobic program on the VO, max after two, four, and six
weeks, respectively. The purpose of such experiment is to know the pattern of
improvement among the subjects over a period of time. Such designs are also treated
as repeated measures design. Repeated measures design is also known as within-
group design.

6.2.1 Assumptions in One-Way Repeated Measures ANOVA

Using repeated measures design requires certain assumptions to be satisfied. It is
essential to test these assumptions before using this design. If assumptions violates,
the level of significance inflates in the experiment; hence, the following assumptions
should hold in repeated measures designs:

1. The independent variable should be categorical and the dependent variable
should be measured on interval or ratio scale.

2. Observations obtained on the dependent variable must be independent from
each other.

3. The data on the dependent variable obtained on the subjects in each treatment
condition must follow normal distribution.

4. The sphericity should not exist among the data. Sphericity assumption is satisfied
if correlations among the repeated measures on the dependent variable are all
equal.

6.2.2 Application in Sports Research

There may be numerous situations in which one-way repeated measures ANOVA can
be used. This design should be used in a situation where it is difficult to control the
variation in the treatment groups due to individual variation. Some of these situations
are as follows:

1. A researcher may wish to investigate the effect of different warming-up exer-
cises on 400 meter event. A group of randomly selected athletes may be tested
for their performance on 400 meter in each of the three treatment conditions;
warm-up exercise with cold pack, hot pack, and mix of both on the abdomen.
These within-group data may be compared by using the single-group repeated
measures design.

2. Aninvestigator may study the effect of angle of release on shooting performance
in basketball. A group of subjects may be tested for their performance on
basketball shooting from a specific distance using three different angles: 45°,
50°, and 55°.
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The effect of conditioning program on fitness index may be studied on the
subjects over a period of time. The purpose of such studies is to identify
the time period in which significant improvement in the criterion variable
occurs and also to know the time period after which the improvement stops
increasing. The study may be planned in such a manner that each subject is
tested for fitness index at 0 days and after 2, 4, 6, 8, and 10 weeks while under-
going the conditioning program.

. An exercise scientist may like to investigate the effect of a low intensity

exercise intervention on the cardio-respiratory endurance on overweight
subjects. A random sample of subjects having weight 2001b or more may
be selected for the study on which the low intensity exercise program may be
implemented. The performance of these subjects on cardio-respiratory endur-
ance may be measured at 0 days and after 3, 6, 9, and 12 weeks of exercise
intervention to identify the minimum duration for significant improvement.
The investigator may further be interested to know the pattern of improvement
in cardio-respiratory endurance during different time periods while under-
going the exercise intervention program.

6.2.3 Steps in Solving One-Way Repeated Measures ANOVA

One of the main assumptions in the repeated measures design is sphericity. If the
assumption of sphericity is violated, the correction is required to be made in the
degrees of freedom attached to the computed values of F. The following steps are
used in solving one-way repeated measures ANOVA in SPSS:

1.

Check the assumption of normality of the data in all the treatment conditions.
(You may refer to the Chapter 2 for the detailed procedure.)

2. Formulate the hypothesis to be tested.

. Use SPSS to generate the following output:

(a) Descriptive statistics

(b) Mauchly’s test of sphericity including estimated value of epsilon
(c) F-table for testing within-subjects effect

(d) Pair-wise comparisons

(e) Means plot

If Mauchly’s test is significant (p <0.05), sphericity assumption is violated and
in that case correction in the degrees of freedom for F statistic is applied;
whereas if the sphericity is not violated, no correction is applied to the degrees
of freedom attached to the F statistic.

. In case sphericity is violated, look for the value of epsilon (¢). If its value is less

than 0.75, apply Greenhouse-Geisser correction. Otherwise, apply Huynh-
Feldt correction in the degrees of freedom and then test the significance of
F by looking to the p value attached to it.
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6. If F ratio is significant, do the pair-wise comparisons among group means by

applying the Bonferroni correction.
7. Report the findings.

6.3 ONE-WAY REPEATED MEASURES ANOVA USING SPSS

Example 6.1

An exercise scientist used a cardio intervention program on 10 randomly selected
sedentary male subjects, aged 41-50 years, to see its impact on VO, max for
assessing the cardio-respiratory efficiency. Repeated measures of VO, max were
obtained on each subject at zero, two, four, and six weeks which is shown in
Table 6.1. Apply repeated measures ANOVA to report its findings at the signifi-
cance level 0.05.

Solution: Here it is required to test whether VO, max of the subjects differs in
all the four time periods of testing during cardio-intervention program. To test
this research hypothesis, the following null hypothesis shall be tested against

alternative hypothesis that at least one group mean differs H 1y, o0 = Hroo e =

ﬂFouriweek = 'uSixiweek'

TABLE 6.1 Data on VO, max (in ml/kg/min) Obtained on the Subjects
at Different Duration During Cardio-Intervention Program

Zero Week Two Weeks Four Weeks Six Weeks
31 36 35 37
31 34 34 35
32 31 37 35
30 32 36 35
34 33 37 37
35 34 36 38
36 31 31 38
36 35 30 40
32 31 35 36
33 32 34 36

6.3.1 Computation in the One-Way Repeated Measures ANOVA

6.3.1.1 Preparation of Data File To solve repeated measures ANOVA in SPSS,
the first step is to prepare a data file. The readers who are using SPSS for the first
time are advised to refer to the Chapter 1 for the detailed procedure in preparing data
file. The data file will look like as shown in Figure 6.1.
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% *Untitled2 [DataSet1] - SPSS Data Editor

Fle Edt View Data Transform Analyze Graphs Lhiities Add-ons

cHA & 60 B A i SEE $Q

[15:

Zero_day l Week_two ] Week_fourl Week_six [
1 31.00 36.00 3500 37.00
2 31.00 34.00 34.00 35.00
3 32,00 31.00 37.00 35.00
4 30.00 3200 36.00 35.00
5 34.00 33.00 37.00 37.00
6 35.00 34.00 35.00 38.00
7 36.00 31.00 31.00 38.00
8 36.00 35.00 3000 40.00
g9 32,00 31.00 35.00 36.00
10 33.00 32.00 34.00 36.00

FIGURE 6.1 Data file of VO, max in one-way repeated measures ANOVA.

< *Untitled? [DataSet1] - SPSS Data Editor

Fle  Edt Mew Data Transform | Analyze Graphs Lbities Add-ons Window  Help
CHE [ O SB[ g rpo®
15: [ Dgscrigtive Statistics 3
Zero_day | Week|  To0ks i’ var |
1 31.00 E Compare Means »
> 3100 4 General Linear Model P |8 Unovariate..,
3 200 {  Generaized Uinear Mocels b | Blf Mustivariate
3 30,00 4 wixed Models b | M Repeated Measures...
5 34.00 Conshato L Yariance Components...
6 35.00 q  Regression >
7 %00 1 Loglinear L4
8 35.00 1 NeurslNelworks L
9 32.00 E Classify »
10 33.00 EhEREE >
s Crale »

FIGURE 6.2 Command sequence in one-way repeated measures ANOVA.

6.3.1.2 SPSS Commands After preparing the data file, save it in the desired loca-
tion before further processing. Do the following steps:

1. Initiating SPSS commands: While being in the Data View, click the following
commands in sequence.

Analyze — General Linear Model — Repeated Measures

The screen shall look like as shown in Figure 6.2.

2. Selecting variables for analysis: After clicking Repeated Measures command,
the screen shown in Figure 6.3 shall be obtained to define the variables.
By default, the “Within-Subject Factor Name” is written as factor 1. Change
this by Time because this is the independent (within-subjects) variable in this
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Ebz Est Yew QDota  Transform  &nalyze Grophs  LRites  Addgns  Window  bein

cHD @ O LR A i EDE 9%

15:

Zera_day | ‘Woeek_two ] Weok_four | Woek_six | |

i 3000 26,00/ 00 37.00 1. Repeated Measures Define Factor(s) 3
2 31.00 3400 34.00 35.00 .
3 32,00 31.00 =l i) 3500 | Rnin-Subject Factor Mame:

A 30.00 3200 36.00 3500 jfochord
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i .00 3.00 .00 3|00
8 35.00 =00 =0 4000
] 200 3100 00 =00
10 33.00 3200 3400 .00 Measure tame: :

FIGURE 6.3 Screen for defining variables.

example. Write the number of levels as 4 as there are four time periods in
which the data has been obtained. Click Add. In the “Measure Name” area
type ‘VO, max.” Click Add. Please note that the name of the independent and
dependent variables should start only from alphabet, and no gap should be
there in between the two words in defining these names. If name contains two
or more words, they must be joined by using the underscore. You should get the
two screens as shown in Figures 6.3 and 6.4 before and after clicking Add,
respectively.

3. Selecting options for computation: Clicking Define in the screen shown in
Figure 6.4 will take you to the screen as shown in Figure 6.5 for selecting the
within-subjects variables. Select all four variables from the left panel and bring
them to the “Within-Subjects Variables” section of the screen. After selecting the
variables, option needs to be defined for generating the output. Do the following:
(a) Click Plots command and transfer the variable ‘Time’ from the “Factor”

section into the “Horizontal Axis” area. Click Add to get the means plot in
the output.

(b) Click Continue to get the screen as shown in Figure 6.6 for selecting
further options in the design.
(c) Click Option and transfer the variable ‘Time’ from the “Factor(s) and Factor
Interactions” section into the “Display Means for” section. Do the following:
(i) Check ‘Compare main effects’ option.
(i1) Select Bonferroni correction by clicking on the sign v in “Confidence
interval adjustment” drop down menu.

(iii) Check ‘Descriptive statistics’ option for computing mean and standard
deviation in each group. Ensure that the level of significance is selected
as 0.05. In fact by default it is selected as 0.05. Let all other options
remain as it is.

(iv) Click Continue and OK to get the outputs.
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FIGURE 6.5 Screen showing option for selecting variables and means plot.
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FIGURE 6.6 Option for computing descriptive statistics and pair-wise comparison of means
using Bonferroni correction.

Estimated marginal means
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FIGURE 6.7 Marginal means plot.

Week_six

6.3.1.3 SPSS Output In SPSS, all the outputs are generated in the output panel.
Only relevant outputs are selected for the discussion. Right click the mouse over the
output which is required to be selected, copy it, and paste it in your word document.
The outputs selected in this analysis are shown in Tables 6.3, 6.4, 6.5, 6.6, and 6.7

and in Figure 6.7.

6.3.2 Interpretation of Findings

Before interpreting the outputs of this analysis, let us first investigate the assumptions
of this design.
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6.3.2.1 Testing Assumptions Let’s see whether all the assumptions required for
this repeated measures design hold true.

1. Since the independent variable ‘Time’ is categorical and the dependent

variable ‘“VO, max’ is measured on ratio scale, the assumption about the data
type holds true.

. Since subject’s performance on VO, max has been independently measured,

the data can be considered independent to each other.

. The assumption about the normality of data is also satisfied as Shapiro—Wilk

statistic is not significant for any of the data set in different treatment groups as
shown in the Table 6.2. Readers are advised to test this normality assumption
by referring to the procedure discussed in Chapter 2.

. Assumption about the sphericity will be tested using the output generated in

the SPSS Ilater in this chapter for further action in case if it is violated.

6.3.2.2 Outputs Selected Following outputs have been selected from the output
window of SPSS for interpretation:

Descriptive statistics (Table 6.3)

Mauchly’s test of sphericity (Table 6.4)

F-table for testing within-subjects effects (Table 6.5)
Pair-wise comparison of means (Table 6.6)
Marginal means plot (Fig. 6.7)

6.3.2.3 Descriptive Statistics The first output in Table 6.3 shows descriptive
statistics in all the treatment conditions. One can show these results in their project in

TABLE 6.2 Test of Normality

Treatment Groups Shapiro—Wilk Statistic df Sig.
Zero week 0.924 10 0.393
Two weeks 0.905 10 0.246
Four weeks 0.879 10 0.128
Six weeks 0.902 10 0.228

TABLE 6.3 Descriptive Statistics

Mean SD N
Zero week 33.0000 2.16025 10
Two weeks 32.9000 1.79196 10
Four weeks 34.5000 2.36878 10

Six weeks 36.7000 1.63639 10
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TABLE 6.4 Mauchly’s Test of Sphericity”
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Measure: VO, max

Epsilon
Within-Subjects Approx. Greenhouse- Lower
Effect Mauchly’s W Chi-Square df Sig. Geisser Huynh-Feldt Bound
Time 0.062 21.441 5 0.001 0.546 0.650 0.333
“ Design: intercept.
Within-subjects design: time.
TABLE 6.5 F-Table for Testing Significance of Within-Subjects Effects
Measure: VO, max
Mean Partial Eta
Source Type I SS df Square F Sig.  Squared
Time  Sphericity assumed 94.475 3.000 31.492 7.281 0.001 0.447
Greenhouse-Geisser 94.475 1.637 57.725 7.281 0.009 0.447
Huynh-Feldt 94.475 1.951 48423 7.281 0.005 0.447
Lower bound 94.475 1.000 94.475 7.281 0.024 0.447
Error  Sphericity assumed 116.775 27.000  4.325
(Time) Greenhouse-Geisser 116.775 14.730 7.928
Huynh-Feldt 116.775 17.559 6.650
Lower bound 116.775 9.000 12.975
TABLE 6.6 Pair-Wise Comparison of Marginal Means
Measure: VO, max
Mean Difference 95% CI for Difference*
(I) Time (J) Time a-n Std. Error  Sig® Lower Bound Upper Bound
Zero week  Two weeks 0.100 0.875 1.000 -1.879 2.079
Four weeks -1.500 1.267 1.000 -4.366 1.366
Six weeks -3.700" 0.367  0.000 -4.529 -2.871
Two weeks Zero week -0.100 0.875 1.000 -2.079 1.879
Four weeks -1.600 1.013  0.893 -3.892 0.692
Six weeks -3.800" 0.573  0.001 -5.097 -2.503
Four weeks Zero week 1.500 1.267 1.000 -1.366 4.366
Two weeks 1.600 1.013  0.893 -0.692 3.892
Six weeks -2.200 1.153  0.532 -4.808 0.408
Six weeks  Zero week 3.700" 0.367  0.000 2.871 4.529
Two weeks 3.800" 0.573  0.001 2.503 5.097
Four weeks 2.200 1.153  0.532 -0.408 4.808

Based on estimated marginal means.

“Adjustment for multiple comparisons: Bonferroni.

*The mean difference is significant at the 0.05 level.
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order to have an idea about the central location and measure of spread in the data of
different groups. These values of means may be used to compare the marginal means.

6.3.2.4 Testing Sphericity Table 6.4 is the output for Mauchly’s test of sphericity
and shows the estimates of epsilon (¢) required for correcting the degrees of freedom
in testing the significance of F value. It may be seen from this table that the Mauchly’s
test is significant as the significance level for the chi-square statistic is 0.001 which
is less than 0.05. Since Mauchly’s test is significant, this indicates that the sphericity
assumption violates. For sphericity assumption to be satisfied, the Mauchly’s test
should not be significant. Since sphericity assumption is violated, some correction is
required to be made in the degrees of freedom for the treatment and the error compo-
nents before testing the significance of F.

6.3.2.5 F-Table for Testing Within-Subjects Effects Two different corrections
namely Greenhouse-Geisser and the Huynh-Feldt are usually applied if the sphericity
assumption is violated. Since the value of epsilon (¢) estimated by the Greenhouse-
Geisser is 0.546 as shown in Table 6.4, which is less than 0.75, the Greenhouse-Geisser
estimate shall be used for correcting degrees of freedom. Had the sphericity assump-
tion satisfied, the degrees of freedom for the treatment (Time) and Error would have
been as usual 3 and 27 as shown in Table 6.5. Since sphericity assumption has been
violated, these degrees of freedom shall not be used to find the p value associated with
the F. Instead, the significance of F shall be tested at the degrees of freedom (1.637,
14.730). In SPSS, the significance of F value is tested by means of p value, and there-
fore you can notice that the p value differs in a situation where Greenhouse-Geisser
correction has been made (p=0.009) with that of a situation where sphericity is
assumed (p=0.001). In other words the Greenhouse-Geisser correction simply changes
the value of p and nothing more.

From Table 6.5, it can be seen that after applying the Greenhouse-Geisser
correction, the F value is significant because associated p value of F is 0.009 which
is less than 0.05. In fact, the F is significant in all the situations and no difference in
findings occurs due to violation of the sphericity assumption.

6.3.2.6 Pair-Wise Comparison of Means In repeated measures design post hoc
test cannot be used because the data in each group is related with each other. Because
of this reason, no option for the post hoc is shown in SPSS while solving one-way
repeated measures ANOVA. In this design if F is found to be significant the paired
t-test is used for pair-wise comparison of group means. Due to multiple comparisons
of pair group means, the level of significance inflates and therefore Bonferroni
correction is used to compensate for this error.

SPSS uses paired t-test for each comparison of paired group means by using the
Bonferroni correction and provides significance value (p) as shown in Table 6.6. The
group means will differ if the significance value (p) attached to the mean difference
is less than 0.05. It can be seen that the difference between the group means of zero
and six weeks and that of between two and six weeks are significant because the
p values associated with these mean differences are less than 0.05. However, no
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TABLE 6.7 Mean Score of VO, max in Different Time Period

Six Weeks Four Weeks Zero Week Two Weeks
36.7 34.5 33.0 329
- J

“\____ J”represents no significant difference between the means at 0.05 level.

difference is found between the group means of zero and two weeks, zero and four
weeks, and two and four weeks.

Pair-wise comparison of marginal means can also be shown by the Table 6.7
which can be obtained by using the information listed in Tables 6.3 and 6.6. Arrange
marginal means in decreasing order and indicate the nonsignificance difference
between the two group means by joining them by line as shown in the table.

6.3.2.7 Marginal Means Plot The marginal means plot of VO, max measured in
different time periods can be shown graphically as depicted in Figure 6.7. This output
is generated by the SPSS. Additional information about the significance level (as
shown in Table 6.6) between the two group means may be added in this figure. It may
be noticed from the Figure 6.7 that the value of VO, max increases in general with
the passage of time during cardio-intervention program. However, there was no
significant increase in VO, max till four weeks of the training because the p value
between zero and four weeks is 0.267, but significant increase has been observed in
the six weeks because the p value between zero and six weeks is 0.000. Similarly, the
mean value between two and six weeks is also significant because the p value for this
difference is 0.000. Thus, based on the sampled data, it may be concluded from this
figure that the significant increase in the VO, max is observed only in six weeks, and
therefore the endurance program should be implemented at least for six weeks to get
the significant increase in the VO, max.

6.3.3 Findings of the Study

In reporting the findings in one-way repeated measures ANOVA, the outputs shown
in Tables 6.3, 6.4, 6.5, 6.6, and 6.7 and Figure 6.7 should normally be mentioned. In
this illustration the findings have been reported as follows:

Since the Mauchly’s test is significant in Table 6.4, sphericity assumption is vio-
lated. Since the Greenhouse-Geisser estimate of epsilon (g) is 0.546 which is less
than 0.75, this estimate was used to correct the degrees of freedom. After the
correction, the degrees of freedom for finding the significance value of F has become
(1.637, 14.730) instead of (3, 27). From Table 6.5, it can be seen that after applying
the Greenhouse-Geisser correction the F value is significant (p=0.009).

The results of the pair-wise comparison of means show that the significant
increase in the VO, max due to cardio-intervention program has significantly
increased only after six weeks of intervention. However, no significant difference has
been observed in VO, max measured at two, and four weeks.
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6.3.4 Inference

On the basis of the sampled data, it may be concluded that the cardio-intervention
program significantly affects the cardio-respiratory efficiency of the subjects.
However, the significant effect has been observed only after six weeks of the inter-
vention program.

6.4 TWO-WAY REPEATED MEASURES ANOVA

In two-way repeated measures ANOVA, effect of two factors on some dependent
variable is investigated simultaneously where both factors are within-subjects. Since
in within-subjects factor all subjects are tested under all treatment conditions, in
two-way repeated measures design all subjects are tested in each level of both the
factors. If a two-way repeated measures ANOVA is planned where first factor has
two levels and the second has three, then in the experiment all the subjects shall be
tested under each of the six treatment conditions. Two-way repeated measures
ANOVA is also known as two-factorial ANOVA with repeated measures. Consider
an experiment in which a researcher wishes to see the effect of temperature (20° and
30°) and exercise machine (treadmill, cycle, and stepper) on sweating loss. Here both
factors, temperature and exercise machine, are within-subjects having levels 2 and 3,
respectively. If temperature levels are denoted by A| (20°) and A, (30°) and exercise
machine levels are denoted by B, (treadmill), B, (cycle), and B, (stepper), then each
subject shall be tested in all the six treatment conditions: A B, A B, AB,, AB,
AB,, and A B..

272
In solving this design, the following three types of hypotheses are tested:

1. Whether loss of sweat differs in two different temperatures irrespective of the
exercise machines

2. Whether loss of sweat differs in different exercise machines irrespective of the
temperatures

3. Whether interaction between temperature and exercise machine is significant

The first two hypotheses test the main effects of temperature and exercise machine.
Testing these effects is meaningful only when the interaction effect is not significant.
But if the interaction effect is significant, then the main effects become meaningless
and in that case simple effects of temperature and exercise machine are evaluated.
The simple effect of temperature refers to the effect of remperature on sweat loss in
each exercise machine and that of simple effect of exercise machine refers to its
effect in each temperature condition.

6.4.1 Assumptions in Two-Way Repeated Measures ANOVA

Assumptions of two-way repeated measures ANOVA are similar to that of one-
way repeated measures ANOVA. In this analysis, one needs to test the sphericity
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assumptions for both the independent variables and also for the interaction bet-
ween them. Normality assumptions need to be satisfied for the data set in each of
the treatment conditions.

6.4.2 Application in Sports Research

Researchers may find this design useful in many situations where less number of
subjects is available and individual variation makes a lot of difference in findings.
One of the advantages of this design is that it requires less number of subjects. Since
each subject is tested in all the treatment conditions, the levels of both the independent
variables should not be large say more than three. Otherwise, it may lead to fatigue
and boring on the part of the subjects. Some of the specific situations where this
design can be used by the researchers are as follows:

1. A sports scientist may like to investigate the effect of warming-up duration
(10, 20, and 30min) and the type of turf (rubberized and cinder) on athlete’s
performance in an 800-meter event. Here warming-up duration and court types
are the two independent within-subjects variables having three and two levels,
respectively. A group of randomly selected athletes may be tested for their
performance on 800-meter event in each of the six treatment conditions
(10 min—rubberized, 20 min—rubberized, and 30 min—rubberized; 10 min—
cinder, 20 min—cinder, and 30 min—cinder). In this design, researchers can
test whether the two main effects for warming-up duration and turf type affect
the 800-meter performance of athletes. Simultaneously, the researcher can also
test the significance of interaction between warming-up and turf type on the
800-meter performance.

2. In order to develop an appropriate exercise regimen for the people, an exercise
scientist may plan a study to investigate the effect of exercise intensity and the
temperature on heart rate. In doing so, he may select three exercise intensities
(low, medium, and high) and two temperatures (25° and 30°) for the study.
Thus, a random sample of subjects may be asked to undergo all the six
treatment conditions (low—25°, medium—25°, and high—25°; low—30°,
medium—30°, and high—30°) after that they may be tested for their heart rate.
This way the effect of exercise, temperature, and their interaction on heart rate
may be tested for their significance.

6.4.3 Steps in Solving Two-Way Repeated Measures ANOVA

The steps in solving two-way repeated measures ANOVA with SPSS are as follows:

1. Check normality assumption for the data in each treatment condition.

2. Formulate all hypotheses concerning main and interaction effects that are
required to be tested.
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3. Use SPSS to generate the following output:

(a) Descriptive statistics

(b) Mauchly’s test of sphericity

(c) F-table for testing within-subjects effects

(d) Estimates of marginal means of independent variable(s) if F value for the
independent variable is significant

(e) Pair-wise comparison of marginal means of variable(s) if F value for the
independent variable is significant

(f) Estimates of mean recovery time in each cell (Environment X Intervention)
if F value for the interaction is significant

(g) Marginal means plots of independent variable(s) if F value for the variable
is significant

(h) Marginal means plots of interaction if F value for the interaction is
significant

4. Test sphericity assumption for each of the independent variable and the inter-
action by means of Mauchly’s test. If Mauchly’s test is significant (p <0.05) for
any effect, sphericity assumption is said to be violated and in that case
correction in the degrees of freedom is applied for testing the significance of F;
whereas if the sphericity assumption is not violated, no correction is applied.

5. In case sphericity is violated for an effect, look for the value of epsilon (g). If
its value is less than 0.75, apply Greenhouse-Geisser correction. Otherwise,
apply Huynh-Feldt correction.

6. If F is significant, do the pair-wise comparisons among group means by
applying Bonferroni correction.

7. Report the findings.

6.5 TWO-WAY REPEATED MEASURES ANOVA USING SPSS

Example 6.2

A coach wishes to investigate the effect of intervention program and environment
condition on the recovery of the basketball players after treadmill run with the
intensity of 75-80% of their maximum heart rate for 30 min. He has taken three inter-
vention therapy (aqua, relaxation, and massage) and two environment levels (hot and
cold). Thus, there are six treatment conditions: aqua-hot, relaxation-hot, massage-
hot, aqua-cold, relaxation-cold, and massage-cold. In order to have the control in the
experiment, he plans a two-way repeated measures design in which all the six sub-
jects in sample are asked to run for 30 min with 75-80% of their maximum heart rate
under each of the six treatment conditions. The time taken by each subject to regain
their original pulse rate has been noted under each treatment conditions, which are
shown in Table 6.8. Let us discuss the procedure used in solving this two-way repeated
measures ANOVA with SPSS. We shall use .05 significance level in this study.
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Solution
The following three research questions need to be investigated in this design:

1. Does Environment significantly affect the recovery time irrespective of
intervention?

2. Does Intervention significantly affect the recovery time irrespective of
environment?

3. Does interaction between Environment and Intervention is significant?

The first two questions can be answered by testing the main effects of Environment
and Intervention, whereas the third question can be answered by testing the simple
effects of Environment and Intervention. Thus, the following three sets of hypotheses
shall be tested in this experiment:

1. Main effect of Environment

Hy @ty = Hegq
against Hi : bty # Heg

2. Main effect of Intervention

HO: :quua = :uRclaxatinn = luMassagc

against H,: At least one group mean differs

3. Interaction effect (Environment X Intervention)

H, :There is no interaction between Environment and intervention

against H, : The interaction effect between Environment and Intervention
is significant

TABLE 6.8 Data on Recovery Time in Minutes

Intervention
Environment Aqua Relaxation Massage
Hot 5.0 8.0 6.0
6.0 9.0 5.0
5.5 7.0 6.5
6.5 10.0 55
7.0 9.0 6.5
Cold 6.0 12.5 7.5
6.5 10.5 8.0
7.5 12.0 6.5
7.0 11.0 7.5

7.5 10.0 6.0
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6.5.1 Computation in Two-Way Repeated Measures ANOVA

6.5.1.1 Preparation of Data File A data file needs to be prepared in solving two-
way repeated measures ANOVA with SPSS. In preparing data file, six variables need
to be defined. Data in each treatment condition is treated as separate variable. The
following variables have been defined in preparing the data file:

Hot_Aqua
Hot_Relaxation
Hot_Massage
Cold_Aqua
Cold_Relaxation
Cold_Massage

Readers who are using SPSS for the first time are advised to refer to Chapter 1 for
a detailed procedure in preparing the data file. The data file will look like as shown
in Figure 6.8.

6.5.1.2 SPSS Commands 1t is advisable to save the data file in the desired loca-
tion before further processing. Do the following steps:

1. Initiating SPSS commands: In the data file, click the Data View and process
the following commands in sequence.

Analyze — General Linear Model — Repeated Measures

2. Selecting variables for analysis: After clicking Repeated Measures option,
the screen shown in Figure 6.9 shall be obtained where variables can be
defined. By default, the within-subject factor name is written as factor 1. Do
the following:

(a) Replace the factor 1 name by the first independent variable Environment
and write the number of levels as 2 as there are two levels (hot and cold).
Click Add to move this information into the box.

i1 *_sav [DataSet0] - SPSS Data Editor

Fle Edt View Data JIransform Analyze Graphs Llities Addons  Window  Help

CHA E b8 LBl A i E6F %00

[1: Hot_agua [s
Hot_Aqua Hut_R:'Iaxatl Hot_Massagd Cold Aqua Culd_uR:Fa:at: Culd_l:assag
1 | | 5.@ 800 6.00 6.00 12,50 7.50
2 6.00 3.00 500 6.50 10.50 8.00
3 550 7.00 6.50 7.50 12.00 6.50
4 650 1000 550 7.00 11.00 7.50
5 7.00 900 6.50 7.50 10.00 6.00

FIGURE 6.8 Data file in two-way repeated ANOVA.
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&t Repeated Measures Define Factor(s)

Within-Subject Factor Name:

Number of Levels: —!
Environment(2)
Intervention(3)

ot ] (e ) (Ccoron J (0]

FIGURE 6.9 Defining independent and dependent variables.

(b) Write the name of second independent variable Intervention in the “Within-
Subject Factor” area and write the number of levels as 3 because
Intervention has three levels (aqua, relaxation, and massage). Click Add to
move this information into the box.

(c) In the “Measure Name” section, type Recovery_time. Click Add to move
this information into the box. While writing the name of the independent
and dependent variables, the first letter should always be alphabet and no
gap should be left in between the two words. However, if the variable name
contains two or more words, they must be joined with an underscore.

3. Selecting options for computation: Clicking Define command in the screen
shown in Figure 6.9 shall take you to the screen as shown in Figure 6.10
for selecting the within-subjects variables. Select all six variables from the
left panel and bring them to the “Within-Subjects Variables” section of the
screen.

After selecting variables, option needs to be defined for generating outputs. Do
the following:
(a) Click Plots command to get the screen as shown in Figure 6.11.

(i) Transfer Environment variable from the “Factors” section to the
“Horizontal Axis” area for generating means plot of the main effect of
Environment on recovery time. Click Add.

(ii) Transfer Intervention variable from the “Factors” section to the
“Horizontal Axis” area for generating means plot of the main effect of
Intervention on recovery time. Click Add.
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4 Repealed Measures

X]
e
+ 1l T J Hot_Aqual1.1) Copfrasts. . I
Hot_Relscention(1,2)
= M.Mmsw:ms
Cobd_Aus(2,1) [ Puuuncﬂ
[Cold_Felaccation(2,2)
| ep——pa [Lswe. )
BetweenSubjects Foctan(s)
-
Covariates
-
(o[ eoste [ gese ][ conems ][ rew ]

FIGURE 6.10 Selecting variables in two-way repeated ANOVA.

& Repeated Measures: Profile Plots

Eactors: Horizontal Auis:
vironment | (2 | ]
rosrvendbn Separate Lines.
)
- ate Plats:
| —
Plots: Add H Change | Remove |
Environmant
Intervention
Intervention"Environment
Environment inter vention
| Continue " Cancel || Help |

FIGURE 6.11 Selecting options for means plot.

(iii) Transfer Intervention and Environment variables from the “Factors”
section to the “Separate Lines” and “Horizontal Axis” areas, respectively,
for generating mean plots to compare simple effects of intervention in
each level of the environment. Click Add to get the mean plot.

(iv) Transfer Environment and Intervention variables from the “Factors”
section to the “Separate Lines” and “Horizontal Axis” areas, respectively,
for generating means plot to compare simple effects of environment in
each level of the intervention. Click Add and Continue to get back to
the screen as shown in Figure 6.10.

(b) Click Options command to obtain the screen as shown in Figure 6.12 for
generating various outputs in the design. Do the following:
(i) Transfer Environment, Interaction, and Environment*Interaction
variables from the “Factor(s) and Factor Interactions” section to the
“Display Means for” section. Do the following:
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i Repeated Measures: Options

rEstimated Marginal Means

Eactor(s) and Factor interactions: Display Means for:
Eronmen
Environment Inkervention
Intervention >, Environment “interveriion

Environment*intervention

[¥] Compare main effects

Confidence interval agustment:
| Banferrani >

Display
[w] Descriptive statistics [ ] Transformation matroc
[¥] Estimates of ettect size [ Homogenstty tests

[#] Observed power [ Spread va. level plot
[l Parameter estimates [ Residual plot
[[] 5¢P metrices [Jusck of

[] Residusl SSCP matrc || General estimable function

Significance lsyel Confidence infervais are 85.0%

| Continue I Cance| l Help |
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FIGURE 6.12 Selecting options for computing descriptive statistics and pair-wise comparison
of means using Bonferroni correction.

(ii)
(iii)

(iv)

)
(vi)

Check ‘Compare main effects’ option.

Check ‘Estimates of effect size’ option
Click Continue and Add to get the outputs.

Select Bonferroni correction by clicking on the sign v in “Confidence
interval adjustment” drop down menu.

Check ‘Descriptive statistics’ option for computing mean and standard
deviation in each treatment condition. Ensure that the level of signifi-
cance is selected as 0.05. In fact by default, it is selected as 0.05. Let all
other options remain as it is.

6.5.1.3 SPSS Output Many outputs are generated in the output panel, but only
relevant outputs are selected for discussion. These outputs are shown in the Tables 6.10,

6.11,6.12, 6.13, 6.14, 6.15, 6.16, and 6.17 and Figures 6.13, 6.14, and 6.15.

6.5.2 Interpretation of Findings

Before interpreting the findings of this design, let us test its assumptions first.

6.5.2.1 Testing Assumptions

assumptions holds true.

Before solving this design, let us see whether its

1. Here both the independent variables, that is, Environment and Intervention are
categorical and the dependent variable, recovery time, is measured on ratio

scale; hence, the assumption about the data type is satisfied.
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Estimated marginal means
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6.5

Hot Cold

FIGURE 6.13 Means plot of recovery time in different environmental groups.

Variable: Recovery time

Estimated marginal means
oo
1

1 2 3
Aqua Relaxation Massage

FIGURE 6.14 Means plot of recovery time in different intervention groups.

2. Since all the subjects have been tested independently within each treatment
condition, the data can be considered to be independent to each other.

3. Since Shapiro—Wilk statistic is not significant (p>0.05) for all six data sets in
different treatment conditions as shown in Table 6.9, the assumption of
normality holds true. Readers are advised to test normality of data with SPSS
by using the procedure discussed in Chapter 2.
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FIGURE 6.15 Means plot in Intervention x Environment.

TABLE 6.9 Test of Normality

Treatment Groups Shapiro—Wilk Statistic df Sig.

Hot_Aqua_Score 0.987 5 0.967
Hot_Relaxation_Score 0.961 5 0.814
Hot_Massage_Score 0.902 5 0.421
Cold_Aqua_Score 0.902 5 0.421
Cold_Relaxation_Score 0.952 5 0.754
Cold_Massage_Score 0.914 5 0.490

4. Sphericity assumption shall be tested on the basis of the output generated in
the SPSS later in this chapter. If sphericity assumption is violated correction
shall be made depending on the severity of the sphericity.

6.5.2.2 OQutputs Selected The following outputs have been selected for the
discussion of findings:

* Descriptive statistics (Table 6.10)

* Mauchly’s test of sphericity (Table 6.11)

 F-table for testing within-subjects effects (Table 6.12)

* Estimates of marginal means of Environment (Table 6.13)

* Pair-wise comparison of marginal means of Environment (Table 6.14)
» Estimates of marginal means of Intervention (Table 6.15)
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TABLE 6.10 Descriptive Statistics

Mean SD N
Hot_Aqua_Score 6.0000 0.79057 5
Hot_Relaxation_Score 8.6000 1.14018 5
Hot_Massage_Score 5.9000 0.65192 5
Cold_Aqua_Score 6.9000 0.65192 5
Cold_Relaxation_Score 11.2000 1.03682 5
Cold_Massage_Score 7.1000 0.82158 5
TABLE 6.11 Mauchly’s Test of Sphericity”
Measure: Recovery Time
Epsilon®
Within-Subjects Approx. Sig. Greenhouse- Lower
Effect Mauchly’s W Chi-Square df (p Value) Geisser Huynh-Feldt Bound
Environment  1.000 0.000 0 - 1.000 1.000 1.000
Intervention 0412 2.659 2 0.265 0.630 0.784 0.500
Environment * 0.429 2.542 2 0.281 0.636 0.800 0.500

Intervention

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent
variables is proportional to an identity matrix.

“Design: intercept.

Within-subjects design: Environment + Intervention+ Environment * Intervention.

bMay be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are
displayed in the Tests of Within-Subjects Effects table.

* Pair-wise comparison of marginal means of Intervention (Table 6.16)

» Estimates of mean recovery time in each cell (Environmentx Intervention)
(Table 6.17)

* Marginal mean plots of Environment (Fig. 6.13)
* Marginal means plots of Intervention (Fig. 6.14)
* Marginal means plots of Intervention x Environment (Fig. 6.15)
» Marginal means plots of Environment x Intervention (Fig. 6.16)

6.5.2.3 Descriptive Statistics Table 6.10 shows the descriptive statistics for the
data on recovery time in each treatment condition. These means are used to draw
inferences about the effect of different treatment conditions on the recovery time.
In fact, marginal means for Environment and Intervention are computed on the basis
of these means.

6.5.2.4 Testing Sphericity Since both the independent variables are within-subjects,
sphericity of Environment, Intervention, and the Interaction (Environment x Intervention)
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TABLE 6.13 Estimates of Marginal Mean Recovery Time in Different Environment

Measure: Recovery Time

95% CI
Environment Mean Std. Error Lower Bound Upper Bound
Hot 6.833 0.247 6.147 7.520
Cold 8.400 0.155 7.971 8.829

TABLE 6.14 Pair-Wise Comparison of Marginal Means of Recovery Time in Each

Environmental Group

Measure: Recovery Time

95% CI for
Mean Difference
Difference Lower  Upper
(D Environment  (J) Environment  (I-J) Std. Error  Sig® Bound Bound
Hot Cold -1.567* 0.379 0.014 -2.618 -0.516
Cold Hot 1.567* 0.379 0.014 0.516 2.618

Based on estimated marginal means.
“Adjustment for multiple comparisons: Bonferroni.
*The mean difference is significant at the 0.05 level.

TABLE 6.15 Estimates of Marginal Mean Recovery Time in Each Intervention Group

Measure: Recovery Time

95% CI
Intervention Mean Std. Error Lower Bound Upper Bound
Aqua 6.450 0.289 5.647 7.253
Relaxation 9.900 0.203 9.336 10.464
Massage 6.500 0.079 6.281 6.719

TABLE 6.16 Pair-Wise Comparison of Marginal Mean Recovery Time in Different

Intervention Groups

Measure: Recovery Time

95% CI for
Mean Difference”
Difference Lower  Upper

(D) Intervention (J) Intervention a-Jn Std. Error  Sig.® Bound Bound
Aqua Relaxation -3.450% 0414 0.003 -5.089 -1.811
Massage —-0.050 0.366 1.000 -1.499 1.399
Relaxation Aqua 3.450* 0414 0.003 1.811 5.089
Massage 3.400* 0.170 0.000  2.728 4.072
Massage Aqua 0.050 0.366 1.000 -1.399 1.499
Relaxation -3.400* 0.170 0.000 -4.072 -2.728

Based on estimated marginal means.
“ Adjustment for multiple comparisons: Bonferroni.
*The mean difference is significant at the 0.05 level.
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TABLE 6.17 Estimates of Mean Recovery Time in Each Cell (Environment x Intervention)

Measure: Recovery Time

95% CI
Environment  Intervention = Mean Std. Error  Lower Bound ~ Upper Bound
Hot Aqua 6.000 0.354 5.018 6.982
Relaxation 8.600 0.510 7.184 10.016
Massage 5.900 0.292 5.091 6.709
Cold Aqua 6.900 0.292 6.091 7.709
Relaxation 11.200  0.464 9.913 12.487
Massage 7.100 0.367 6.080 8.120
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FIGURE 6.16 Means plot in Environment x Intervention.

needs to be checked. Table 6.11 shows the Mauchly’s test of sphericity for within-
subjects effects. It can be seen from the table that Mauchly’s test is not significant for
Intervention and Environment X Intervention because none of the significance value
(p value) is less than 0.05. Readers please note that significance value of Mauchly’s
W statistic for Environment has not been computed as there is no question of sphericity
if the factor has only two levels. Since sphericity assumption is not violated in any of
these effects, no correction is required in the degrees of freedom for any of the effect.

6.5.2.5 F-Table for Testing Within-Subjects Effects Since sphericity assumption
is not violated in any of the three effects, F value for each effect would be tested for
their significance without making any correction. From Table 6.12, it can be seen that
the F values for the two main effects, Environment and Interaction, are significant as
p values associated with them are 0.014 and 0.000, respectively, which are less than 0.05.
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On the other hand, F value for the Interaction effect is not significant because its
associated p value is 0.208 which is more than 0.05.

Since the main effects of Environment and Intervention are significant, pair-wise
comparison of means shall be made for these effects to get the clear picture about the
group difference. Readers should note that in case of repeated measures design, no
post hoc test is applicable because the data is obtained by repeated measures. It is
because of this reason that SPSS does not show the option for post hoc when variable
is within-subjects. Thus, in case of within-subjects variables pair-wise comparison of
means is done by applying the paired t-test and using the Bonferroni correction. Due
to multiple comparisons of paired group means, the value of o gets inflated and to
correct this error the Bonferroni correction is applied. By choosing the option for
Bonferroni as shown in Figure 6.12, the SPSS automatically makes the correction
and enhances the value of p associated with each pair mean difference. Since SPSS
does this correction automatically, you need not worry and test the significance of the
mean difference as usual at 0.05 level if that is the level of significance at which you
want to test the results.

Since Interaction effect is not significant, no action is taken further in testing the
simple effects.

6.5.2.6 Main Effect of Environment Since main effect of Environment is
significant, it may be concluded that Environment affects the recovery time. To
further know as to which environment is better for recovery, the marginal means
must be compared. Since environment has only two levels (hot and cold), only one
pair of marginal means is required to be compared. Table 6.13 shows the descriptive
statistics.

Table 6.14 shows that the mean difference is significant for hot and cold groups
as the p value for the difference is 0.014 which is less than 0.05. Since there are only
two levels of environment, once the F value is significant you can directly draw the
conclusion as to which marginal mean is higher by looking to the magnitude. Since
marginal mean for hot environmental group is less than that of Cold group, it may
be concluded that the recovery time is less in hot climate in comparison to that of
cold. Comparison of marginal means for Environment is shown graphically in
Figure 6.13.

6.5.2.7 Main Effect for Intervention Like Environment, the Intervention is also
a within-subjects variable; hence, no post hoc comparison is possible in SPSS.
Therefore, comparison of paired marginal means is done by means of paired t-test
using the Bonferroni correction. Table 6.15 shows the descriptive means for
Intervention. These marginal means are used to obtain the mean plots for the main
effect of Intervention.

Table 6.16 shows that the mean difference between aqua and relaxation groups
and that of relaxation and massage groups are significant as their associated p values
are 0.003 and 0.000, respectively, which are less than 0.05. However, no difference
exists between aqua and massage groups. The means plot for the main effect of
Intervention has been shown in Figure 6.14.
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From Figure 6.14, it may be concluded that the recovery time in aqua and massage
is significantly lower in comparison to that of relaxation Intervention.

6.5.2.8 Interaction If Interaction effect is not significant, then simple effects are
not tested and in that case no outputs related to it should be reported in the findings.
However, just for the sake of understanding, the outputs in Table 6.17 and two plots
for simple effects have been shown in Figures 6.15 and 6.16. No conclusion should
be drawn based on these plots because Intervention effect is not significant. The
mean recovery time in each cell shown in Table 6.17 is used to obtain the means plots
in Intervention x Environment as well as Environment x Intervention plot.

6.5.2.8.1 Intervention x Environment It can be seen from Figure 6.15 that in the
Aqua group, the recovery time for the basketball players is high in cold group in
comparison to that of hot group. Similar trend exists in relaxation and massage
groups. The most interesting feature is that the largest difference in the recovery time
exists in the relaxation group in comparison to that of other two intervention groups.

6.5.2.8.2 Environment x Intervention Plot Figure 6.16 shows the means plots for
the simple effects of intervention in each of the environment group. In hot environ-
ment, the recovery time for the relaxation group is higher than that of massage and
aqua groups. Similar trend is observed in cold climate. However, massage and aqua
intervention have an equal effect on the recovery time of the basketballers both in hot
and in cold environment.

6.5.3 Findings of the Study

Since Mauchly’s test is not significant for Intervention, and the Interaction
(Environment x Intervention) in Table 6.11, sphericity assumption is not violated for
any of these effects; hence, no correction in the degrees of freedom has been made
for investigating the significance of F values. The main effects of Environment and
Interaction are significant as shown in Table 6.12, whereas Interaction effect is not
significant.

While investigating marginal means plot of the main effect of Environment, it
may be concluded that the recovery is fast in sot climate in comparison to that of
cold (Fig. 6.13).

Means plot for the main effect Intervention shows that the recovery in aqua and
massage groups is fast in comparison to that of relaxation group.

6.5.4 Inference

On the basis of the sampled data, it may be concluded that the recovery of basket-
ballers is fast in hot climate in comparison to that of cold climate irrespective of the
intervention. Further, the aqua and massage intervention are more effective in
recovery of the basketballers after the treadmill run irrespective of the climatic
conditions.
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6.6 SUMMARY OF THE SPSS COMMANDS FOR ONE-WAY
REPEATED MEASURES ANOVA

1. After preparing the data file, change the within-subject factor name as Time
and write the number of levels as 4. Write the Measure Name as ‘VO, max’.
Click Add.

2. Click Define command and select all the four variables from the left panel and
bring them to the “Within-Subjects Variables” section of the screen.

3. Click Plots command and transfer Time variable from the “Factor” section into
the “Horizontal Axis” area. Click Add command and Continue.

4. Click Option command and transfer the 7ime variable from left panel to the
“Display Means for” section. Check ‘Compare main effects’ option.

5. Select Bonferroni correction and check ‘Descriptive statistics’ option and click
Continue and OK commands for generating outputs.

6.7 SUMMARY OF THE SPSS COMMANDS FOR TWO-WAY
REPEATED MEASURES ANOVA

1. Prepare the data file by defining six variables: Hot_Aqua, Hot_Relaxation,
Hot_Massage, Cold_Aqua, Cold_Relaxation, and Cold_Massage

2. After preparing the data file, in the Data View click the following commands
in sequence.

Analyze — General Linear Model — Repeated Measures

3. Change “Within-Subject Factor” name by the first independent variable
Environment and write the number of levels as 2. Click Add to move this
information into the box. In the same box again, write the name of the
second independent variable Intervention and write the number of levels as
3. Click Add.

4. In the “Measure Name” area, type ‘Recovery_time’ and click Add.

5. Click Define command and select all six variables from the left panel to the

“Within-Subjects Variables” section of the screen.

6. Click Plots command and do the following:

(a) Transferthe Environment variable from the “Factors” section to the “Horizontal
Axis” and click Add.

(b) Transfer Intervention variable from the “Factors” section to the “Horizontal
Axis” area and click Add.

(c) Transfer Intervention and Environment variables from the “Factors” section
to the “Separate Lines” and “Horizontal Axis” areas, respectively, for
generating mean plots to compare simple effects of intervention in each
level of the environment and click Add.
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(d) Transfer Environment and Intervention variables from the “Factors” section
to the “Separate Lines” and “Horizontal Axis” areas, respectively, for
generating mean plots to compare simple effects of environment in each
level of the intervention. Click Add and Continue.

7. Click Options command and transfer the variables Environment, Interaction,

and Environment*Interaction from the “Factor(s) and Factor Interactions” sec-
tion to the “Display Means for” section.

8. Check ‘Compare main effects’ option and select Bonferroni correction.

9. Check ‘Descriptive statistics’ and ‘Estimates of effect size’ options. Click

6.8

6.8.

Continue and OK commands to generate outputs.

EXERCISE

1 Short Answer Questions

Note: Write answer to each of the following questions in not more than 200 words.

Q.1

Q2
Q3

Q4

Q5

Q6

Q.7

6.8.

What assumptions are required for repeated measures design? Explain the
method for testing them.

Explain the procedure of solving one-way repeated measures ANOVA design.

What do you mean by the main effects and simple effects? Explain by means of
an example.

Discuss an example where two-way repeated measures design can be applied.
Explain the hypotheses which you would like to test in the design.

Discuss the method used in solving one-way repeated measures ANOVA
design.

What do you mean by Bonferroni correction? In what situation it is used and
why.

What is sphericity? What correction is made if sphericity assumption is
violated?

2 Multiple Choice Questions

Note: Questions 1-10 have four alternative answers for each question. Tick mark the

one

1

that you consider the closest to the correct answer.

Choose the correct sequence of SPSS commands for two-way repeated measures

ANOVA

(a) Analyze — Linear Model — Repeated Measures
(b) Analyze — Repeated Measures — Linear Model
(¢) Analyze — General Linear Model — Repeated Measures
(d) Analyze — Repeated Measures — General Linear Model
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2 Inrepeated measures design,
(a) Data in each treatment conditions are independent
(b) Data in each treatment condition come from same population
(c) Data in each treatment condition are highly related
(d) Data in each treatment conditions are dependent

3 Main effects are interpreted when
(a) Interaction effect is not significant
(b) Main effect is significant
(c) Interaction effect is significant
(d) Main effect is not significant

4 Choose the correct statement

(a) Between-subjects factor refers to the same subjects being tested in all the
treatment conditions.

(b) Between-subjects factor is a dependent variable.

(c) Within-subjects factor refers to the same subjects being tested in all the
treatment conditions.

(d) Within-subjects factor is a dependent variable.

5 Mauchly’s test is significant
(a) If p<0.05
(b) If p<0.05
(c) If p>0.05
(d) If p=0.05

6 If sphericity is violated, then apply

(a) Greenhouse-Geisser correction if €<0.75 and Huynh-Feldt correction if
€>0.75

(b) Huynh-Feldt correction if €<0.75 and Greenhouse-Geisser correction if
€>0.75

(c) Greenhouse-Geisser correction if £€>0.75 and Huynh-Feldt correction if £<0.75

(d) Huynh-Feldt correction if €>0.75 and Greenhouse-Geisser correction if
€<0.75

7 Bonferroni correction is used when
(a) Factor is a between-subjects
(b) Factor is a within-subjects
(c) Post hoc test is applied
(d) Post hoc test is not possible

8 If interaction effect is significant, then
(a) Both the factors are not correlated
(b) Trends in all the levels of one factor is same in all the levels of the other factor
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(c) Both the factors are correlated

(d) None of the above is true

185

9 Ifeis 0.7 and degrees of freedom attached to F are (3,15), then corrected values
of the degrees of freedom would be

(@) (3.7,15.7)
(b) (2.3,14.3)
) (4.321.4)
d) (2.1,10.5)

10 In AxB factorial design marginal mean of factor A denotes

(a) Mean of the dependent variable in each level of the factor A across the

level B

(b) Mean of the dependent variable in each level of the factor B across the

level A

(c) Mean of the dependent variable in each cell
(d) None of the above is true

6.8.3 Assignment

A sport scientist was interested in investigating the effect of different types of
drinks used by tennis players on their body weight in a set of five matches. Three
teams were randomly made with equal-level tennis players and they were asked
to consume three different types of drinks (mineral water, lemon water, and
vitamin water) in equal amount during three different matches played against
their opponents. Before and after the match, their body weights were measured
and the loss of weight in lbs was recorded (see Table 6.18). Apply one-way
repeated measures ANOVA to investigate the effect of drinks on the reduction of

weights during play.

TABLE 6.18 Data on Weight Reduction (in 1b) During Tennis
Match While Consuming Different Types of Drinks

Mineral Water Lemon Water Vitamin Water
8.8 7.1 7.9
6.7 6.0 6.4
6.0 5.6 6.4
7.8 6.7 7.1
9.2 9.5 8.5
8.1 7.4 7.1
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6.9 CASE STUDY ON REPEATED MEASURES DESIGN

Objective

A sports psychologist was interested to investigate the effect of cognitive therapy
on the stress level of sports persons during competition. He conducted a study on
randomly selected six male sports persons. All subjects were tested for their stress
level under each of the three treatment conditions (individual counseling, group
counseling, and audiovisual counseling) before the tournament. The data so obtained
is shown in Table 6.19.

Research Questions

Following research questions were investigated:

1. Whether cognitive therapy affects stress of the sports persons?

2. Whether stress score differs if therapy is given individually, in group, or by
using audiovisual method.

3. Which therapy is better in improving the stress of the sports persons?

Data Format

The format used for preparing data file in SPSS is shown in the Table 6.19.

Analyzing Data

Since in this study subjects were repeatedly measured and there is only one within-
subject factor, one-way repeated measures ANOVA design was used. Before ana-
lyzing the data, it is required to test the assumptions of normality and sphericity.

Testing Assumption

1. Normality assumption can be tested in SPSS by using the commands Analyze,
Descriptive Statistics, and Explore in sequence. By selecting variables and
checking the option ‘Normality plots with test’; output for testing normality

TABLE 6.19 Data on Stress Under All the Treatment Conditions

Cognitive Therapy
Individual Group Audiovisual
35 36 38
32 28 41
29 31 40
28 34 42

30 33 39
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TABLE 6.20 Test of Normality

Treatment Groups Shapiro-Wilk Statistic df Sig.

Individual 0.939 5 0.656
Group 0.981 5 0.940
Audiovisual 0.987 5 0.967

TABLE 6.21 Descriptive Statistics

Mean Std. Deviation N
Individual 30.8000 2.77489 5
Group 32.4000 3.04959 5
Audiovisual 40.0000 1.58114 5

can be generated. Table 6.20 shows the Shapiro—Wilk statistic which tests the
normality of data for each group. In this table, it can be seen that the Shapiro—
Wilk statistic is not significant for any of the group data, hence the assumption
of normality holds.

2. Assumption about the sphericity shall be tested on the basis of the output
generated in the SPSS later.

Testing the Significance of Effect

For investigating research questions, one-way repeated measures ANOVA was carried
out by using SPSS. Before testing the significance of F value assumption of sphericity
was tested. Looking to the status of sphericity, the corrections were made in the degrees
of freedom and accordingly the significance of F value was tested. By using the sequence
of commands Analyze, General Linear Model, and Repeated measures in SPSS,
defining the variables, selecting the Bonferroni correction, and checking the options
‘Descriptive statistics’ and ‘Estimates of effect size’ the outputs were generated, which
are shown in Tables 6.21, 6.22, 6.23, and 6.24 and Figure 6.17.

Since Mauchly’s test of sphericity in Table 6.22 is not significant (p=0.138), the
assumption of sphericity is not violated; hence, no correction was required in the
degrees freedom

Table 6.23 shows that the F ratio for the cognitive therapy is significant (p=0.002);
hence, it may be concluded that the cognitive therapy effects stress level of the sports
persons. In order to know as to which therapy is more useful, a post hoc test was car-
ried out by using the Bonferroni correction.

Marginal Means Plot

The means plot is shown in Figure 6.17. This plot indicates that the individual
counseling is the best in reducing stress level of the sports person. However,



TABLE 6.22 Mauchly’s Test of Sphericity”

Measure: Stress score

Epsilon®
Within-Subjects Approx. Greenhouse- Lower
Effect Mauchly’s W Chi-Square df Sig. Geisser Huynh-Feldt Bound
Factor 1 0.983 0.050 2 0.975 0.984 1.000 0.500

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed
dependent variables is proportional to an identity matrix.

“Design: Intercept.

Within Subjects Design: Counseling.

®May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests
are displayed in the Tests of Within-Subjects Effects table.

TABLE 6.23 Tests of within-subjects effects

Measure: Stress score

Type III Partial
Sum of Mean Eta
Source Squares df  Square F Sig.  Squared
Cognitive_Therapy  Sphericity 241.600 2.000 120.800 15.825 0.002 0.798
assumed
Greenhouse- 241.600 1.967 122.806 15.825 0.002 0.798
Geisser

Huynh-Feldt 241.600 2.000 120.800 15.825 0.002 0.798

Lower bound 241.600 1.000 241.600 15.825 0.016 0.798
Error Sphericity 61.067 8.000 7.633
(Cognitive_Therapy) assumed

Greenhouse- 61.067 7.869 7.760

Geisser

Huynh-Feldt 61.067 8.000 7.633

Lower bound 61.067 4.000 15.267

TABLE 6.24 Pairwise Comparisons

Measure: Stress score

95% CI for
Difference®
(D) Cognitive  (J) Cognitive ~ Mean Difference  Std. Lower Upper
Therapy Therapy a-n Error  Sig® Bound Bound
Individual Group —-1.600 1.631 1.000 -8.060  4.860
Audiovisual -9.200* 1.800 0.021 -16.329 -2.071
Group Individual 1.600 1.631 1.000 -4.860  8.060
Audiovisual —7.600* 1.806 0.041 -14.751 -0.449
Audiovisual  Individual 9.200%* 1.800 0.021 2.071 16.329
Group 7.600%* 1.806  0.041 0.449 14.751

Based on estimated marginal means.
“ Adjustment for multiple comparisons: Bonferroni.
*The mean difference is significant at the 0.05 level.
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FIGURE 6.17 Means plot.

pair-wise comparison shown in Table 6.24 also suggests that on the basis of the
sampled data, individual and group counseling is equally effective.

Reporting

Since Mauchly’s test was not significant, sphericity assumption was not
violated; hence, no correction was required in the degrees of freedom.

Since F ratio was significant, it may be concluded on the basis of the sampled
data that the cognitive therapy affects stress level of sports persons.

Paired mean comparison revealed that a significant difference existed between
individual therapy and audiovisual therapy (p=0.021) and that of between
group therapy and audiovisual therapy (p=0.041).

Means plot indicated that the individual counseling is most effective in reducing
stress among sports persons.



ANALYSIS OF COVARIANCE

LEARNING OBJECTIVES
After completing this chapter, you should be able to do the following:

e Understand the use of analysis of covariance in analyzing comparative
effectiveness of treatments

* Know the importance of controlling covariate

» Formulate the hypotheses in analysis of covariance

* Describe the situations where analysis of covariance should be used

* Prepare data file in SPSS

* Understand the steps involved in using SPSS for analysis of covariance
* Interpret the output obtained in analysis of covariance

 Learn to write the results of analysis in a model way

7.1 INTRODUCTION

In homogeneous population, treatments are randomly allocated to the subjects in
an experimental research. If we know that a particular variable influences the
effectiveness of treatments, experimental groups may be formed by matching
the subjects on that variable. On many occasions using randomization and

Sports Research with Analytical Solution using SPSS®, First Edition. J. P. Verma.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Verma/Sportsresearch
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matching methods may not be feasible for the researchers. Sometimes, a
researcher may not have a choice to assign treatments randomly and may be com-
pelled to administer treatments to intact groups that are not homogeneous. The
subjects in these intact groups may differ initially on many parameters, and
therefore statistical control is necessary to reduce the experimental error due to
such initial differences in groups.

Thus, in experimental research, the individual variations that appear within the
measures on the dependent variable (DV) are potentially correlated with something
else. If the dependent variable is a measure of how well the subjects learn swimming
under one or the other of the two methods of instructions, the potential correlates are
likely to include such parameters as prior relevant learning, endurance, strength,
motivation, self-discipline, intelligence, etc. These potential correlates are known as
covariates. Analysis of covariance (ANCOVA) can be used to compare the effective-
ness of these instructional methods on learning swimming after removing the effect
of the identified covariates.

7.2 CONCEPTUAL FRAMEWORK OF ANALYSIS OF COVARIANCE

In analysis of covariance, the aim of the analysis is to compare the post-treatment
means of different groups by adjusting initial variations in the groups. The
statistical control is achieved by including measures on concomitant variable (X)
in addition to the variable of primary interest (Y) after implementing the treat-
ments. The concomitant variable that may not be of experimental interest is called
“covariate” and is denoted by X. Let us denote the variable which is of interest in
the experiment by Y, also known as dependent variable. Thus, in ANCOVA design,
two observations (X and Y) are obtained on each subject. Measurements on X
(covariate) are obtained prior to the administration of treatments and is mainly
used to adjust the measurements on Y (DV). Covariate is the variable that is
assumed to be associated with the dependent variable. When X and Y are associ-
ated, a part of the variability of Y is due to the variation in X. If the value of
covariate X is constant over the experimental units, there would be corresponding
reduction in the variance of Y.

Let us consider an example in which the ANCOVA can be applied to reduce
the experimental error. Suppose an experiment is conducted to study the effect
of two different types of pranayama, that is, Bhastrika and Ujjayi on the cardio-
vascular efficiency of the subjects. Further, an experimenter is forced to use
three intact groups of subjects from three different colleges. However, there is
a freedom to assign treatments (types of pranayama) randomly to the groups.
Out of the three groups, one may serve as control. Since the treatments cannot
be randomly assigned to the subjects, the possibility of initial differences
(before administration of treatment) among the groups on their cardiovascular
efficiency exists. Thus, one may decide to have initial measurement (X) of car-
diovascular efficiency on each subject before applying treatment. This measure
of covariate, to be measured before implementing the pranayama, is used to
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adjust measurements on the cardiovascular efficiency (Y) obtained after the
treatment.
Thus, the variables X and Y can be defined as follows:

X = Pre-treatment scores of the cardiovascular efficiency in each of the three
treatment groups

Y = Post-treatment scores of the cardiovascular efficiency in each of the three
treatment groups

In ANCOVA, the means of the dependent variable Y in different treatment groups
are adjusted to compensate the variation in the covariate X in the treatment groups.
For mathematical details on covariance analysis, readers are advised to read the
book titled Statistics for Exercise Science and Health with Microsoft Office Excel
(Verma, 2014).

Thus, in ANCOVA the following null hypothesis is tested:

H

0 * Hadi_po_Bastrika — HMadj_po_Uijai — Hadj_Po_Control

Against the alternative hypothesis that at least one adjusted post-treatment group
mean differs.

ANCOVA table generated in SPSS output contains the value of F-statistic along
with significance value. Thus, if F is significant, the null hypothesis is rejected and in
that case post hoc test is used to compare the adjusted post-treatment means of dif-
ferent groups in pairs.

7.3 APPLICATION OF ANCOVA

Consider a situation where it is decided to start a conditioning program for the stu-
dents to improve their physical efficiency. Three conditioning programs (C1, C2, and
C3) having different intensities and durations have been suggested by the experts.
A researcher needs to decide as to which program should be implemented. For this,
he conducts an experiment on college students in which he allocates C1 treatment on
the undergraduate, C2 on the graduate, and C3 on the research students. Since these
groups differ in their age, variation in their post-treatment performance on the
physical efficiency may be partly due to variation in their age. Here age (X) is a
covariate and post-treatment data on PFI (Y) is a dependent variable. The ANCOVA
design may be used to compare the effectiveness of these conditioning programs by
compensating the variation in age.

Note of Caution

Applying one-way ANOVA on the data obtained by taking the difference of post- and
pre-testing in all the treatment groups results in wrong conclusion. This is because
treatment effect is not compensated due to initial variations among the groups.
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7.4 ANCOVA WITH SPSS

Example 7.1

An experiment was conducted to study the effect of 4-week Bhastrika and Ujjayi
pranayama on resting pulse rate. Three groups of subjects were selected for the study.
Each group consisted of 15 subjects. The first group was given Bhastrika pranayama,
the second, the Ujjayi pranayama, and the third served as Control group. Resting
pulse rate was measured before and after the treatment in all the three groups. The
data so obtained are shown in Table 7.1.

Solution: Here it is required to compare the adjusted post-treatment means of resting
pulse rate among Bhastrika, Ujjayi, and Control groups. Thus, the following null
hypothesis needs to be tested against the alternative hypothesis that at least one post
treatment adjusted group mean differs.

H,

0 M adi_po_Bhastrika — M adi_po_jjai — Hadj_po_Control”
where
Hadi o Bhastrike’ Adjusted post-treatment mean of resting pulse rate in Bhastrika
group
Hadi po Ujjai* Adjusted post-treatment mean of resting pulse rate in Ujjayi group
Hoadi po Control’ Adjusted post-treatment mean of resting pulse rate in Control group

TABLE 7.1 Data on Resting Pulse Rate (Beat/min) Before and After the Treatment

Bhastrika Pranayama Ujjayi Pranayama Control Group
S.N. Pre Post Pre Post Pre Post
1 70 68 69 67 71 71
2 73 72 72 71 72 73
3 69 67 70 70 80 79
4 71 70 68 66 78 78
5 80 78 82 81 69 70
6 69 69 68 67 68 66
7 78 77 72 69 75 73
8 73 73 76 74 73 74
9 68 67 69 68 79 78
10 80 77 80 78 68 68
11 74 73 72 72 74 75
12 69 68 75 74 87 85
13 67 67 67 67 69 68
14 72 71 74 73 73 73
15 70 69 76 75 82 81
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The SPSS output provides ANCOVA table along with pair-wise comparison of adjusted
post-treatment means of different treatment groups. The pair-wise comparison of means
provided in the output should be used only when the F-ratio is significant.

The ANCOVA table generated in the SPSS output looks similar to that of one-way
ANOVA table as only the adjusted post-treatment group means are compared here.
The F value is shown along with its significance value (p value). The F value would
be significant at 5% level. If the value of p associated with it is less than 0.05. Once
the F value is found to be significant, a pair-wise comparison of means is done by
using the Bonferroni correction. The SPSS output provides the significance value for
each pair of group means difference. Thus, by looking at the values of means, the
best treatment may be identified.

7.4.1 Computation in ANCOVA

7.4.1.1 Preparation of Data File After preparing the data file, the SPSS com-
mands can be used for getting the output in ANCOVA. After starting the SPSS as
discussed in Chapter 1, select the option “Type in data.” The sequence of commands
for starting SPSS on your computer is as follows:

Start — All Programs — SPSS Inc — SPSS 20.0 — Type in Data

7.4.1.2 Defining Variables Here three variables, namely Pre_Resting, Post_Resting,
and Treatment, need to be defined along with their properties. Pre_Resting and Post_
Resting are the scale variables, whereas Treatment is a nominal variable. These variables
along with their characteristics can be defined in the Variable View as follows:

* Click Variable View on the left corner at the bottom of the screen as shown in
Figure 7.1 to define variables and their properties.

* Write short name of the variables as Pre_Resting, Post_Resting, and Treatment
under the column heading ‘“Name.”

* Under the column heading “Label,” define full name of these variables as Pre_
resting pulse rate, Post_resting pulse rate, and Treatment. Other names may
also be chosen for describing these variables.

* Under the column heading “Measure,” select the ‘Scale’ option for the Pre_
Resting and Post_Resting variables and ‘Nominal’ for the Treatment variable.

¢ For the variable Treatment, double click the cell under the column “Values” and
add the following values to different labels:

Value Label

1 Bhastrika
Ujjayi

3 Control

¢ Use default entries in rest of the columns.

After defining variables in Variable View, the screen shall look like as shown in
Figure 7.1.
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FIGURE 7.2 Data file of resting pulse rate for analysis of covariance.

7.4.1.3 Entering Data After defining the variables in the Variable View, click on
Data View on the screen shown in Figure 7.1 to open the format for entering the data
column-wise. After entering data, the screen will look like as shown in Figure 7.2.
Save the data file in the desired location before further processing.
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7.4.1.4 SPSS Commands While being in the Data View, follow the below
mentioned steps for generating outputs in the ANCOVA:

1. Initiating SPSS: In Data View, click on the following commands in sequence:
Analyze — General Linear Model — Univariate

The screen shall look like as shown in Figure 7.3.

2. Selecting variables: After clicking the Univariate option, you will be directed
to the next screen for selecting variables. Do the following:

(a) Select Post_Resting variable from left panel and bring it to the “Dependent
variable” section in the right panel.

(b) Select Treatment variable from left panel and bring it to the “Fixed
Factor(s)” section in the right panel.

(c) Select Pre_Resting variable from the left panel and bring it to the
“Covariate(s)” section in the right panel.

The screen will look like as shown in Figure 7.4 as shown below.

3. Selecting options for computation: After selecting variables, option needs to be
defined for generating the output in ANCOVA. Do the following:

(a) Click Model command in the screen shown in Figure 7.4 and select the
‘Sum of squares’ option as “Type I.” The screen will look like as shown in
Figure 7.5. Click Continue to go back to the screen shown in Figure 7.4.

(b) Click Options command to get the screen as shown in Figure 7.6. Do the
following:

(i) Select Treatment variable from the left panel and bring it to the
“Display Means for” section in the right panel.
(i1)) Check ‘Compare main effects’ option and select ‘Bonferroni’ correction.
(iii) Check ‘Descriptive statistics’ and ‘Estimates of effect size’ options.
(iv) Ensure ‘Significance level” as 0.05. This value is written by default.
(c) Click Continue and OK for generating outputs.

i Ex9.sav [DataSet1] - SPSS Data Editor

fle Bk Vew QRela  Trensform | Aefyze  Grephs  \Mites  Addgns  Window  Hep

EHS T O B Reports ' Bo®
Js0: | Discricthve Stabietios »
| T:
Pre_Resting " o

25 800p | MmN

26 T200 [

27 7600 | Coreise

28 67.00 | megression
[ 7400 | Logiees

30 7600 | NesMetworis

a | 7100 | Cesity

FIGURE 7.3 Command sequence for analysis of covariance.
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FIGURE 7.4 Selection of variables for ANCOVA.
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~Specify Model
| © Ful factorisi O Gustom |
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FIGURE 7.5 Option for selecting model.

4. Getting the output: After clicking OK in the screen shown in Figure 7.4, var-
ious results shall be generated in the output window. The following relevant
outputs shall be selected for discussion:

(a) Descriptive statistics
(b) ANCOVA table
(c) Post hoc comparison table
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FIGURE 7.6 Options for various outputs in ANCOVA.

7.4.1.5 Interpretation of Findings The outputs of the ANCOVA produced by the
SPSS are shown in Tables 7.2, 7.3, 7.4, 7.5, and 7.6.

TABLE 7.2 Mean and Standard Deviation of Different Post-treatment Groups

Treatment Mean Std. Deviation N
Bhastrika 71.0667 3.82598 15
Ujjayi 71.4667 4.40562 15
Control 74.1333 5.28970 15
Total 72.2222 4.65095 45

TABLE 7.3 Adjusted Mean and Standard Error of Different Post-treatment Groups

95% Confidence Interval

Treatment Mean Std. Error Lower Bound Upper Bound
Bhastrika 71.932¢ 0.232 71.464 72.401
Ujjayi 71.900¢ 0.231 71.434 72.365
Control 72.835¢ 0.234 72.363 73.307

“ Covariates appearing in the model are evaluated at the following values: Pre-treatment score of
resting pulse rate=73.1333.
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TABLE 7.4 Tests “Between-Subjects” Effects
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Dependent Variable: Post-treatment Score of Resting Pulse Rate

Type I Sum of

Partial Eta

Source Squares df Mean Square F Sig. Square
Corrected model 919.146¢ 3 306.382 384.954 0.000 0.966

Intercept 234722222 1 234722222 2.949E5  0.000 1.000

Pre_Resting 911.057 1 911.057 1.145E3  0.000 0.965

Treatment 8.089 2 4.045 5.082 0.011 0.199

Error 32.632 41 0.796

Total 235674.000 45

Corrected total 951.778 44

“R?=0.966 (Adjusted R?=0.963).

TABLE 7.5 ANCOVA Table for the Post-treatment Data on Resting Pulse Rate

Type I Sum of Partial Eta
Source Squares df  Mean Square F Sig. Square
Pre_Resting 911.057 1 911.057 1.145E3  0.000 0.965
Treatment 8.089 2 4.045 5.082 0.011 0.199
Error 32.632 41 0.796
Corrected total ~ 951.778 44

TABLE 7.6 Pair-Wise Comparisons

Dependent Variable: Post-treatment Resting Pulse Rate

95% Confidence Interval
for Difference*

(I) Treatment  (J) Treatment Mean Diff.

Group Group a-J SE Sig.* Lower Bound Upper Bound

Bhastrika Ujjayi 0.033 0.326  1.000 —-0.781 0.847
Control -0.902*  0.333 0.029 -1.732 -0.072

Ujjayi Bhastrika —-0.033 0.326  1.000 —-0.847 0.781
Control -0.935*  0.330 0.021 -1.759 -0.111

Control Bhastrika 0.902*  0.333  0.029 0.072 1.732
Ujjayi 0.935* 0330 0.021 0.111 1.759

Based on estimated marginal means.

¢ Adjustment for multiple comparisons: Bonferroni.
* The mean difference is significant at the 0.05 level.
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7.4.1.5.1 Descriptive Statistics of the Post-treatment Group The value of mean
and standard deviation for the data on resting pulse rate in different post-treatment
groups are shown in Table 7.2. If readers are interested to compute different descrip-
tive statistics for pre-treatment measurements on resting pulse rate in different
groups, the procedure discussed in Chapter 2 may be used. The SPSS does not gen-
erate these statistics during ANCOVA analysis.

7.4.1.5.2 Descriptive Statistics of the Post-treatment Groups after Adjustment
Further, post-treatment adjusted means and standard deviation for the data on resting
pulse rate of different groups have been shown in Table 7.3. Readers may note that
these values are different from that of the unadjusted values shown in Table 7.2. The
advantage of using the ANCOVA is that the differences in the post-treatment means are
compensated for the initial differences in the scores. In other words, it may be said that
the effect of covariate is eliminated in comparing the effectiveness of the treatment in
post-treatment testing.

7.4.1.5.3 ANCOVA Table for the Post-treatment Data on Resting Pulse Rate
Table 7.4 is the main result of the ANCOVA analysis. By deleting some of the contents
that are not required, the final table can be obtained as shown in Table 7.5 for discuss-
ing the findings.

Table 7.5 shows the F value for comparing the post-treatment adjusted means of
the three groups (Bhastrika, Ujjayi, and Control). Since p value associated with F is
0.011 which is less than 0.05; hence, F is significant. Thus, the null hypothesis of no
difference among the adjusted post-treatment group means for the data on resting
pulse rate may be rejected at 5% level.

7.4.1.5.4  Pair-wise Comparison of Post-treatment Adjusted Group Means Since
the F value in Table 7.5 is significant, a pair-wise comparison has been made in
Table 7.6. The post hoc comparison of means for the post-treatment measurements
can be shown graphically by using the values of different adjusted post-group means
in Table 7.3 and using p values of mean differences in Table 7.6. These comparisons
are shown in Table 7.7.

Since F value is significant, pair-wise comparison of means has been made by using
the Bonferroni correction which is shown in Table 7.6. It may be noted that the p value
associated with the mean difference between Bhastrika and Control is 0.029 and
between Ujjayi and Control is 0.021. Both these p values are less than 0.05 and the
differences are significant at 5% level. Thus, the following conclusions can be drawn:

1. There is a significant difference in the adjusted means resting pulse rate of the
Bhastrika and Control groups.

2. There is a significant difference in the adjusted means resting pulse rate of the
Ujjayi and Control groups.

3. There is no significant difference in the adjusted means resting pulse rate of
the Bhastrika and Ujjayi groups.
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TABLE 7.7 Pair-Wise Comparisons of Post-treatment Group Means
of the Data on Resting Pulse Rate Shown with Graphics

Control Bhastrika Ujjayi

72.835 71.932 71.900
L J

L N b represents no significant difference between the means at 5% level.

In order to find as to which treatment is the best, one can see the adjusted mean
values of different treatment groups during post-treatment testing given in Table 7.3.
Clubbing these adjusted means with the three results of the Table 7.6, one may get
the answer. However, this task becomes much easier if Table 7.7 is created. In this
table, the adjusted post-means of different groups have been shown in descending
order. If the difference between any two group means is significant (which can be
seen from Table 7.6), nothing is done and if the mean difference is not significant, a
line is drawn covering the two groups. Thus, it may be concluded that the resting
pulse rate of the Bhastrika and Ujjayi groups are equal and is significantly less than
that of the Control group.

Hence, it may be inferred that Bhastrika and Ujjayi pranayamas are equally effec-
tive in reducing the resting pulse rate among the subjects in comparison to that of the
Control group.

7.5 SUMMARY OF THE SPSS COMMANDS

1. Start SPSS by using the following sequence of commands

Start — All Programs — SPSS Inc — SPSS 20.0

2. Click Variable View and define Pre_Resting and Post_Resting as a scale vari-
ables and Treatment as nominal.

3. Under the column heading “Values” define ‘1’ for Bhastrika; ‘2’ for Ujjayi,
and ‘3’ for Control.

4. Type data for these variables by clicking Data View.
5. In the Data View, follow the below-mentioned command sequence:

Analyze — General Linear Model — Univariate

6. Select Post_Resting, Treatment, and Pre_Resting variables from left panel and
bring them to the “Dependent variable” section, “Fixed Factor(s)” section, and
“Covariate(s)” section, respectively, in the right panel.

7. Click Model command and select the ‘Type I’ as an option in ‘Sum of Squares.’
Click Continue.
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8. Click Options command and select Treatment variable from the left panel and
bring it into the “Display Means for” section of the right panel. Check
‘Compare main effects’ and select ‘Bonferroni’ correction.

9. Check ‘Descriptive statistics’ and ‘Estimates of effect size’ options. Keep sig-
nificance value as 0.05 or 0.01 as the case may be. Click Continue and OK for
getting outputs.

7.6 EXERCISE

7.6.1 Short Answer Questions
Note: Write answers to each of the following questions in not more than 200 words.

Q.1 What do you mean by covariate? How is it controlled in ANCOVA? Give a
specific example.

Q.2 Describe an experimental situation where ANCOVA can be applied. Construct
null hypothesis and all alternative hypotheses.

Q.3 Thirty boys in the age category of 7-9 years were selected for swimming
classes. They did not have any prior exposure in swimming. In order to com-
pare the effectiveness of three swimming techniques, namely Breast stroke,
Butterfly stroke, and Freestyle stroke in learning swimming which statistical
analysis would you suggest and why?

Q.4 How ANOVA and ANCOVA differs from one another? Discuss briefly.

7.6.2 Multiple Choice Questions

Note: Questions 1-10 have four alternative answers for each question. Tick mark the
one that you consider the closest to the correct answer.

1 One of the methods of having control in an experiment is to match the groups
initially. This matching is done on the variable which is

(a) Independent
(b) Extraneous
(c) Dependent
(d) Any variable found suitable

2 Covariate is a variable which is supposed to be correlated with
(a) Independent variable
(b) Moderating variable
(c) Dependent variable
(d) None of the above
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3 In ANCOVA while doing post hoc analysis, which group means are compared?
(a) Pre-treatment group means
(b) Post-treatment group means
(c) Pre-treatment adjusted group means
(d) Post-treatment adjusted group means

4 In order to compare the effectiveness of three training programs on dribbling
accuracy in basketball, an experiment was planned. Three treatment groups were
tested for their performance in pre- and post-training. While using SPSS for
ANCOVA, three variables, namely Pre_Drib, Post_Drib, and Treatment_Group
need to be defined. Choose the correct statement.

(a) Pre_Drib and Post_Drib are Scale and Treatment_Group is Ordinal.

(b) Pre_Drib and Post_Drib are Nominal and Treatment_Group is Scale.
(c) Pre_Drib and Treatment_Group are Scale and Post_Drib is Nominal.
(d) Pre_Drib and Post_Drib are Scale and Treatment_Group is Nominal.

5 While using SPSS for ANCOVA, the three variables, namely Pre_Test, Post_Test,
and Treatment_Group are classified as

(a) Post_Test as Dependent variable, whereas Pre_Test and Treatment_Group as
Fixed Factors

(b) Post_Test as Dependent variable, Pre_Test as Covariate and Treatment_
Group as Fixed Factors

(c) Treatment_Group as Dependent variable, Pre_Test and Post_Test as Fixed
Factors

(d) Treatment_Group as Dependent variable, Post_Test as Covariate, and Pre_
Test as Fixed Factor.

6 Choose the correct sequence of commands in SPSS for starting ANCOVA
(a) Analyze — Univariate — General Linear Model
(b) Analyze — General Linear Model — Multivariate
(c) Analyze — General Linear Model — Univariate
(d) Analyze — General Linear Model — Repeated Measures

7.6.3 Assignment

In an experiment, three groups of basketballers were given three different heights of
depth jump training for 6 weeks to see their effectiveness on vertical jump performance.
Three depth jump heights were 30, 25, and 20 inches. A control group was also taken
in the study on which no training was imparted. The vertical jump performance was
measured before and after the treatment for 6 weeks, and the data so obtained is shown
in Table 7.8. Apply ANCOVA to find as to which depth jump height is the best in
improving vertical jump performance among the basketballers. Test your hypothesis at
0.05 and 0.01 level of significance.
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TABLE 7.8 Data on Vertical Jump Performance (in Inches) in Different Depth Jump
Height Group During Pre- and Post-treatment Testing

Depth Jump 30 Inches  Depth Jump 25 Inches  Depth Jump 20 Inches ~ Control
S.N. Pre Post Pre Post Pre Post Pre Post
1 45 47 45 47 53 56 53 52
2 38 40 43 45 52 55 45 44
3 60 63 44 48 36 40 47 48
4 41 43 47 49 43 48 54 54
5 46 48 43 46 49 53 40 40
6 49 51 40 41 51 54 39 43
7 40 41 49 52 45 50 45 48
8 44 46 46 48 54 57 54 55
9 61 64 44 46 53 56 46 48
10 47 49 41 44 48 52 40 44

7.7 CASE STUDY ON ANCOVA DESIGN

Objective

A sports scientist conducted a study to test the effectiveness of Uchikomi, Randori,
and Kata practices of Judo on strength index. These Judo practices were adminis-
tered on the three intact groups of athletes for 4 weeks and their strength was
measured before and after treatments. A control group was also taken in the study.

The data so obtained from the study is shown in Table 7.9.

TABLE 7.9 Data on Strength Index in Different Judo Practice Groups Before and

After Treatment
Uchikomi Randori Control

S.N. Pre Post Pre Post Pre Post Pre Post
1 211 240 211 244 208 236 207 210
2 209 241 208 249 210 241 209 221
3 202 220 205 258 198 222 210 213
4 208 221 212 227 195 230 202 205
5 201 239 221 243 202 232 219 217
6 200 237 210 242 208 235 215 218
7 207 221 209 247 212 242 206 208
8 210 219 205 256 195 220 209 215
9 210 240 210 226 195 128 215 220
10 212 242 221 245 201 230 217 215
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Research Questions

The following research questions were investigated:

1. Does Judo training affect the strength index?

2. Whether any one technique is more effective than others?

Data Format

The format used for preparing data file in SPSS is shown in Table 7.10.

TABLE 7.10 Data Format Used in SPSS for Strength Index

Pre_Testing

Post_Testing

Group

211
209
202
208
201
200
207
210
210
212
211
208
205
212
221
210
209
205
210
221
208
210
198
195
202
208
212
195
195
201
207

240
241
220
221
239
237
221
219
240
242
244
249
258
227
243
242
247
256
226
245
236
241
222
230
232
235
242
220
128
230
210
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(continued)
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TABLE 7.10 (continued)

Pre_Testing Post_Testing Group
209 221 4
210 213 4
202 205 4
219 217 4
215 218 4
206 208 4
209 215 4
215 220 4
217 215 4

Group code: 1, Uchikomi; 2, Randori; 3, Kata; 4, Control.

TABLE 7.11 Tests of Between-Subjects Effects

Dependent Variable: Post_Testing

Source Type I Sum of Squares df Mean Square F Sig.
Corrected model 6198.113¢ 4 1549.528 4.882 0.003
Intercept 2077080.625 1 2077080.625 6.544E3 0.000
Pre_testing 1586.699 1 1586.699 4.999 0.032
Group 4611.414 3 1537.138 4.843 0.006
Error 11108.262 35 317.379

Total 2094387.000 40

Corrected total 17306.375 39

*R?*=0.358 (Adjusted R*=0.285).

Analyzing Data

Since the experimental groups were intact and were not drawn randomly, there is a
possibility that their initial conditions might have been different. Thus, to control the
effect of extraneous variance, ANCOVA was used in this study to address the research
issues. The researcher was interested to test the null hypothesis that all the three judo
techniques are equally effective in increasing the strength index against the alternative
hypothesis that at least one technique is more effective than others. The F value
obtained in the ANCOVA design was tested for its significance and the pair-wise
comparison was done by using the Bonferroni test.

The one-way ANCOVA design was applied in SPSS by using the following
commands in sequence: Analyze, General Linear Model, and Univariate. The
dependent variable, group variable, and covariate were placed in the appropriate
locations in the dialogue box. The output in the analysis was obtained by selecting
‘mean plot’, ‘comparing mean effect’, and ‘descriptive statistics’ options that are
shown in Tables 7.11, 7.12, and 7.13 and in Figure 7.7
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TABLE 7.12 Pair-Wise Comparisons
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Dependent Variable: Post_Testing

95% Confidence Interval

Di?;[eii‘:we for Difference*
(I) Group  (J) Group I-J) Std. Error ~ Sig.® Lower Bound Upper Bound
Uchikomi  Randori -7.251 8.274 1.000 -30.391 15.888
Kata 5.528 8.334 1.000 -17.779 28.835
Control 21.931 8.233 0.070 -1.092 44.954
Randori Uchikomi 7.251 8.274 1.000 —15.888 30.391
Kata 12.779 9.239 1.000 —-13.060 38.617
Control 29.182% 7.969 0.005 6.897 51.468
Kata Uchikomi -5.528 8.334 1.000 —-28.835 17.779
Randori -12.779 9.239 1.000 -38.617 13.060
Control 16.403 9.160 0.492 -9.212 42.019
Control Uchikomi  -21.931 8.233 0.070 —44.954 1.092
Randori -29.182% 7.969 0.005 —51.468 —6.897
Kata -16.403 9.160 0.492 -42.019 9.212

Based on estimated marginal means.
“ Adjustment for multiple comparisons: Bonferroni.
* The mean difference is significant at the 0.05 level.

TABLE 7.13 Estimates: Adjusted Mean and Standard Error of Different Groups
After Post-treatment

Dependent Variable: Post_Testing

95% Confidence Interval

Group Mean Std. Error Lower Bound Upper Bound
Uchikomi 2.329E2 5.653 221.451 244.403
Randori 2.402E2 5.904 228.191 252.165
Kata 2.274E2 6.341 214.526 240.272
Control 2.110E2 5.859 199.102 222.890

E2 means 10%

Interpreting Findings

Table 7.11 shows that the F value is significant (p=0.006) beyond 0.05 level; hence,
the null hypothesis was rejected. Since null hypothesis was rejected, pair-wise com-
parisons of mean were done by using the Bonferroni test on the adjusted post means
among all the four treatment groups. Table 7.12 shows the pair-wise comparisons of
mean. The table reveals that only Randori technique is significantly different than the
Control group.
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Estimated marginal means of Post_testing

250.00
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230.00 -

220.00 -
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FIGURE 7.7 Means plot.

Means Plot

Figure 7.7 shows the means plot of the adjusted mean of all the four treatment groups.
Based on the sampled data mean plot reveals that mean strength index of the Randori
group was significantly higher than that of the Control group.

Reporting

* Since the F ratio (=4.843) was significant (p=0.006), the null hypothesis that all
the three techniques are equally effective in improving the strength index was
rejected. Thus, based on the sampled data, it can be concluded that the Judo
training was effective in improving the strength index.

* Pair-wise comparison of means suggests that the Randori treatment was signif-
icantly better in improving the strength in comparison to those where no training
was given.

* The means plot suggested that the Randori treatment was the best in improving
the strength index.
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RESEARCH

LEARNING OBJECTIVES

After completing this chapter, you should be able to do the following:

* Understand the research situations in which the nonparametric tests can be used

* Learn to construct hypothesis in using each test

* Understand the procedure of making data file in applying different nonpara-
metric tests in SPSS

* Know the procedure of testing goodness of fit and association between two
attributes

* Interpret the outputs generated in SPSS for hypothesis testing in different
nonparametric tests

8.1 INTRODUCTION

Nonparametric tests are used in a situation when data is measured on nonmetric
scale. In other words if the measurements are categorical in nature, these tests are
used in hypothesis testing experiment. Nonparametric tests can also be used for
metric data if assumptions of parametric tests are severely violated. This makes
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these tests even more useful. In research studies, quite often distribution of the
population from which the sample is drawn is unknown, and therefore in such
situations nonparametric tests are the best option. In using nonparametric tests,
no assumption is made about the distribution of the population from which the
samples are obtained; hence, these tests are also known as distribution-free test.
Not many assumptions are required for using nonparametric tests; hence, it can
be easily used by the researchers. On the other hand, all parametric tests are
based on the assumption that the distribution of the population from which the
samples are drawn is normal. Besides this, each parametric test requires certain
assumptions to be made. Thus, in all those situations where normality assump-
tion violated, required assumptions of the parametric test breaks down, or if the
data is measured on nominal or ordinal scales, nonparametric tests are used in
hypothesis testing.

In parametric tests, hypothesis concerning proportion, mean, or variance is
usually tested; whereas in nonparametric tests, hypothesis concerning median
is tested for its significance. In parametric tests, parent population is assumed to
be normally distributed. All tests that we have read so far in this book like z, t, and
F are known as parametric tests. Since these tests investigate the hypothesis
concerning parameters, they are known as parametric tests. On the other hand in
nonparametric tests distribution of the population need not to be normally distrib-
uted. Since hypothesis testing does not involve any parameter, these tests are
known as nonparametric tests. Nonparametric tests are simple to understand and
easy to use.

In nonparametric tests, a test statistic is computed on the basis of ranks, signs,
order relations or category frequencies. Because of this reason, these tests are useful
if subjectivity in the measurement is an issue.

Many situations arise in sports research where the data is obtained either on
ordinal or nominal scale. For example, assessment of playing ability, quality of
cricket shot, and performance in soccer produce data on ordinal scale. On the other
hand performance on minimum muscular fitness test and match result in hockey
results in nominal data as these performances are assessed on pass/fail or winning/
loosing format, respectively. In all such situations, nonparametric tests are well
suited for hypothesis testing.

The procedure of testing hypothesis is similar in nonparametric and parametric
tests. The only difference is in terms of constructing hypothesis and computing test
statistic. In most of the commonly used parametric tests, there is an alternative test
available in nonparametric. For example, chi-square and Mann—Whitney U tests
are alternative tests to the two sample t-test, and Wilcoxon signed-rank test is an
alternative to the paired t-test. Similarly, nonparametric tests such as Kruskal—
Wallis and Friedman can be used as an alternative to the one-way ANOVA and
repeated measures ANOVA, respectively. In this chapter, some of the most widely
used nonparametric tests including chi-square shall be discussed in detail. The
readers will learn to use SPSS in solving their problems based on these tests
discussed in this chapter.
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8.2 CHI-SQUARE TEST

Chi-square test is used in investigating nature of categorical data in many of the inferential
studies. This test is widely used by the researchers in survey studies. It can be used to
investigate whether a sample has been drawn from a population having specific distri-
bution. For example if preferences toward specialization like sports biomechanics,
sports psychology, and exercise physiology had been in the proportion of 2:4:5 in a
college, the authority may wish to know whether this distribution still holds true on the
basis of the response obtained from the sample of students selected randomly.

The chi-square is pronounced as “Kye” square and is denoted by the Greek
letter y2. It is computed by the following formula:

(f,-£)
f

€

=2

Where f and f represent observed and expected frequencies, respectively. This X
statistic follows a chi-square distribution with (r—1) degrees of freedom, where r is the
number of categories. The chi-square statistic requires data to be measured on nominal
scale and is computed on the basis of frequencies instead of scores. The chi-square test
is easy to apply and requires fewer assumptions. It is not affected by the outliers. One
of the essential conditions in computing the chi-square is that none of the cell frequency
should be less than 5, otherwise Yates’ correction needs to be applied.

Chi-square test is mainly used for the two applications given in the following text.
These applications shall be discussed in detail by using the SPSS software.

1. Testing goodness of fit
2. Testing independence of attributes

8.2.1 Testing Goodness of Fit

In testing goodness of fit, we intend to test whether the sample has been obtained
from a population that follows a particular frequency distribution. For instance, to
know whether all three shoe brands like Nike, Adidas, and Reebok are equally
popular among athletes, an equal occurrence hypothesis can be tested. Here, null and
alternative hypothesis can be written as follows:

H,: All three sports shoe brands are equally popular.
H,: All three sports shoe brands differ in their popularity.

To test the null hypothesis, degree of freedom is taken as r— 1, where r is the number
of groups.

If calculated X* > tabulated xé_os (r—1), H, is rejected at the significance level 0.05
and if calculated X* < tabulated %éos (r—1 df), we fail to reject H
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If null hypothesis is not rejected, it is interpreted that the fit is good and all three
brands of sports shoes are equally popular. Thus, in testing goodness of fit, an experi-
menter’s interest is not to reject the null hypothesis so as to say that the fit is good.
Another useful application of goodness of fit is to test the normality of data, which is
one of the main assumptions in using parametric test for testing a hypothesis.

8.2.2 Yates’ Correction

If any of the cell frequency is 5 or less, then Yates’ correction needs to be applied
while calculating chi-square. This correction was suggested by F. Yates (1934) and is
known as Yates’ correction for continuity. Normally in such situations, the cell hav-
ing frequency 5 or less is merged with the nearby cell so as to make the expected
frequency more than 5 and then the analysis is done as usual. But if the cells are
merged in a 2x2 contingency table, then the chi-square will have zero degree of
freedom which is meaningless. In applying this correction, 0.5 is subtracted from
each difference of the observed and expected cell frequencies. Thus, the formula for
chi-square (¥?) with Yates’ correction is given by

(f, —f. -0.5)’
f

e

=X

8.2.3 Contingency Coefficient

Contingency coefficient (C) provides magnitude of association between any two attrib-
utes. Its value can range from 0 (no association) to 1 (the theoretical maximum possible
association). Chi-square simply tests whether an association between the two attributes
is significant or not. But it does not give the magnitude of association. Thus, if X is
significant, one must compute the contingency coefficient (C) to know the extent of
association between the two attributes. It is computed using the following formula:

2
c= |-Z
x +N

Where, “N” is the sum of all frequencies in the contingency table.

8.3 GOODNESS OF FIT WITH SPSS

Example 8.1

Consider a study in which response of 110 students were taken to compare the
popularity of three different brands of tracksuits among them. The responses of
the students so obtained are shown in Table 8.1. Let us compute chi-square for
investigating the issue.
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Solution: Here, the hypotheses that are required to be tested are as follows:

H,: All three brands are equally popular.
H,: All three brands are not equally popular.

We shall use SPSS to compute chi-square for testing the null hypothesis.

TABLE 8.1 Summary of Student’s Response About Their Preferences

Brand A Brand B Brand C

Q. Which brand of tracksuits do you like? 50 20 40

8.3.1 Computation in Goodness of Fit

8.3.1.1 Preparation of Data File After starting SPSS, select the option “Type in
data’ to define variables. There are two variables, Brand and Frequency, which need
to be defined. Do the following:

1. Click on Variable View to define variables and their properties.
2. Write Brand, short name of the variable under the column heading “Name.”

3. For this variable, define full name, that is, Brand of Track Suit under the column
heading “Label.”

4. Under the column heading “Values” define ‘1’ for Brand A, ‘2’ for Brand B, and
‘3’ for Brand C.

5. Under the column heading “Measure,” select the ‘Nominal’ option because
Brand is a nominal variable.

6. Similarly, define another variable Frequency in the next row as scale variable.
7. Use default entries in rest of the columns.

After defining variables in the Variable View, the screen shall look like as shown in
Figure 8.1.

8.3.1.2 Entering Data Once the variable Brand and Frequency have been defined,
click Data View on the left bottom of the screen to open the format for data entry
column-wise as shown in Figure 8.2.

i *Chi_Square_Goodness_of_fil,sav [DataSet1] - SPSS Data Editor

Ede  Eot Yew [Deta  Iranstorm  Anslyze  Graphs  LRMes  Addgns  Window  Hep

cHa F 00 =Rk A Ad E0E ¥ 0]

] Neme [ Type | Wi [Decimals|  Label | Vaues | Missing | Coumns|  Akn | Measure
1 Brand MNumeric 8 2 Erand of fracksuit (1.00, Brand,.. None -] = Right & Nominal
2 Frequency  Numarc B 2 Fregquency None None 8 3 Right & Scale

FIGURE 8.1 Defining variable along with their characteristics.
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8.3.1.3 Define Weights After entering the data, identify the variable for ‘Weight
cases by’ option by doing the following:

1. Click on Data command in the header of the data file and click on Weight
Cases ... option to get the screen as shown in Figure 8.3.

2. Select the option Weight cases by

3. Select variable Frequency from the left panel and bring it into “Frequency
Variable” section in the right panel.

4. Click on OK and go back to the data file.

8.3.1.4 SPSS Commands After entering data and defining ‘Weight cases by’
option, follow the steps for computing chi-square as follows:

1. In Data View, click on the following commands in sequence:

Analyze — Nonparametric Tests — Chi-Square

& Chi_Square_Goodness_of_fit.sav [DataSet1] - SPSS Data Editor,
Fle Edt View Data Transform Analyze Graphs LUiities Add-gr

CHE F 60 82 F A B SHH <

ifats

Brand Frequency | vat | var |
1 1.00 50.00
2 2,00 2000
3] 3.00 40.00
4

FIGURE 8.2 Data file of brand response for goodness of fit.

&£: Weight Cases

&) Brand of tracksut (Brang)| | & B9 ot weight cases
@ ‘Weight cases by

Frequency Variable:
{¢” Frequency [Fregusncy]

Current Status: Weight cases by Frequency

(o J[ oste J[ zesst ][ camcs J[ ree ]

FIGURE 8.3 Selecting variable for “Weight cases by’ option.
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2. After clicking ‘Chi-Square’ option, you will be taken to the next screen for
selecting variable. Select Brand variable from the left panel and bring it to the
“Test Variable List” section in the right panel. The screen shall look like as
shown in Figure 8.4.

3. Click on Option command and check ‘Descriptive’ option to generate descriptive
statistics as shown in Figure 8.5.

4. Click on Continue and OK to get the output.

5. The output panel shall have two results that are shown in Tables 8.2 and 8.3.
These outputs can be selected by using the right click of the mouse and may be
pasted in the word file.

i Chi-Square Test

& Frequency [Frequency) Brand of tracksuit [Brand)] |

Expected Range Expected Values
(3) Get from data (3) Al categories equal
O Uss specified range O Yaues: |

Lovver: |

Upper |

o J[_peste || meset J[ concei J| rvew ]

FIGURE 8.4 Option for selecting variable.

<2 Chi-Square Test: Options @

Statistics
{ [ quarties

Missing Values

(®) Exclude cases test-by-test

O Exclude cases listwise

I Continue ” Cancel ” Help ‘

FIGURE 8.5 Option for descriptive statistics.
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TABLE 8.2 Observed and Expected Frequencies of the Response for Different Track
Suit Brands

Frequencies of the Response

Observed N Expected N Residual
Brand A 50 36.7 13.3
Brand B 20 36.7 -16.7
Brand C 40 36.7 33
Total 110

TABLE 8.3 Chi-Square for the Data On Brand Option

Brand of Track Suit
Chi-square 12.727¢
df 2
Asymp. sig. 0.002

The minimum expected cell frequency is 36.7.
20 cells (0%) have expected frequencies less than 5.

8.3.2 Interpretation of Findings

Table 8.2 shows the observed and expected frequencies of different brands. No cell
frequency is less than 5; and therefore, no correction has been made by the SPSS in
computing chi-square. In Table 8.3, the value of y? is 12.727 which is significant at
5% level, as the p value is 0.002 which is less than 0.05. Thus, we may reject the
null hypothesis.

In other words, it can be interpreted that all the three responses are not equally
distributed and the fit is not good. So long the value of p is less than 0.05, the value
of chi-square is significant at 5% level; and if it exceeds 0.05, the chi-square becomes
insignificant.

8.4 TESTING INDEPENDENCE OF TWO ATTRIBUTES

Chi-square is used for testing the independence of two attributes. For instance, it may
be interesting to test whether there is any association between 1Q and minimum
muscular fitness test. A subject may be categorized into high or low IQ as well as into
pass or fail category based on minimum muscular fitness test. Thus, all subjects in
the sample can be classified into 2x2 table, known as contingency table. The chi-
square test can also be applied if frequencies are classified into mxn table as well,
where m and n are integers, but it is more efficient in a 2x 2 contingency table.

Let us consider that the two attributes A and B represent IQ and performance (on
minimum muscular fitness test), respectively, and are dichotomous in nature.
Frequencies of the subjects possessing these attributes can be shown in a 2x2
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TABLE 8.4 Observed Frequencies (f)

Minimum Muscular Fitness Test (B)

Pass Fail Total
1Q (A) High a b a+b
Low ¢ d c+d

Total a+c b+d N

contingency table (Table 8.4). The symbol “a” represents the frequency of subjects
having high IQ and has passed the minimum muscular fitness test, whereas “d” rep-
resents the frequency of subjects having low IQ and fail to qualify the minimum
muscular fitness test. On the other hand, the symbol “b” represents the frequency of
those subjects having high IQ but fail to qualify the test, whereas symbol “c” represents
the frequency of those who qualify the test and has low IQ. Here, the null hypothesis
of no association between the two attributes A and B is tested.

Under the null hypothesis that the attributes are independent, the expected cell

frequency for each cell is calculated as follows:

(a+b)x(a+c) b _(a+b)x(b+d)

e N ’ e N
(c+d)x(a+c) q (c+d)x(b+d)
C :—’ i ————
¢ N ¢ N

The chi-square (i¥?) statistic can be calculated using the following formula:

(f,-f)
f

€

=2

Where f_and f, are the observed and expected frequencies as shown in Tables 8.4
and 8.5, respectively. The distribution of this statistic follows chi-square distribution
with (r—1)x(c—1) degrees of freedom.

The chi-square statistic can also be computed directly without computing the
expected frequencies using the following formula:

N(ad—bc)2
(a+b)(c+d)(a+c)(b+d)

2

The critical value of chi-square with (r—1)x(c—1) degrees of freedom and at o
significance level can be seen in Table A.5. The procedure in testing the independence
of attributes has been shown by using SPSS in the following example.

Let us understand the procedure used in testing the independence of attributes by
using the chi-square test through an example. Consider a situation in which we wish
to test the independence of gender and smoking knowledge. Responses in Table 8.6
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TABLE 8.5 Expected Frequencies (f)

Minimum Muscular

Fitness Test (B)
Pass Fail
1Q (A) High a, b,
Low c, d,
TABLE 8.6 Statement: Cigarette Contains Nicotine
Response
Correct Do not Know Incorrect

Gender Male 30 4 10
Female 10 5 25

have been obtained from the subjects on the statement “Cigarette contains nicotine.”
Subjects were asked to respond by choosing any one of the following options: correct,
do not know, and incorrect.

To test the independence of Gender and Response, the hypotheses may be written
as follows:

H,: Gender and Response are independent.
H,: Gender and Response are associated.

After computing chi-square, it needs to be tested for its significance at certain level
of significance and (r—1)(c—1) degrees of freedom. Significance of y? is tested by
using the following criteria:

If calculated 2 > tabulated ;(&05 ((r=1)(c-1)), H is rejected at the significance
level 0.05 (r is the number of row and c is the number column. Here r=2 and
c=2)

and if, calculated y? < tabulated xéos ((r=1)(c—1)), we fail to reject H

8.4.1 Interpretation

If H, is rejected, we interpret that there is a significant association between the gender
and their response toward the knowledge about smoking. Here significant association
simply means that the response pattern of male and female differs. Thus, readers may
note that chi-square statistic is used to test the significance of association, but ulti-
mately we get the comparison between the levels of one attribute across the levels of
other attribute.
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8.5 TESTING ASSOCIATION WITH SPSS

Example 8.2

A survey was conducted in which college men and women were asked to give their
opinion on drinking coffee for relaxation. The responses so obtained are shown in
Table 8.7.

Let us compute chi-square to test the significance of association between Gender
and Response.

Solution: Here, the hypotheses that are required to be tested are as follows:

H,: Gender and Response are independent.

H,: There is an association between Gender and Response.

Chi-square for two samples shall be computed by using SPSS software. The chi-square
so obtained shall be used for testing the null hypothesis.

TABLE 8.7 Response on Drinking Coffee for Relaxation

Q. Drinking Coffee Is a Response

Healthy Way of Relieving

Fatigue Never Sometimes Always

Gender Men 10 6 20
Women 18 6 7

8.5.1 Computation in Chi-Square

8.5.1.1 Preparation of Data File After starting SPSS, select the option ‘Type in
data’ to define variables for computing chi-square. There are three variables, Gender,
Response, and Frequency, which need to be defined. Do the following:

1. Click on Variable View to define all three variables and their properties.

2. Write short name of the variables Gender, Response, and Frequency under the
column heading “Name.”

3. Under the column heading “Label,” full name of the variables Gender,
Response, and Frequency may be defined.

4. For the variable Gender, double click the cell under the column “Values™ and add
the following values to different labels:

Value Label

1 Men
‘Women
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5. Similarly for the variable Response, double click the cell under the column
“Values” and add the following values to different labels:

Value Label

1 Never
Sometimes

3 Always

There is no specific rule of defining the code of these variables. Even “Never,”
“Sometimes,” and “Always” may be defined as 3, 4, and 5, respectively.

6. Under the column “Measure,” select the option ‘Nominal’ for the variables
Gender and Response and scale for Frequency.

7. Use default entries in rest of the columns.

After defining variables in the Variable View, the screen shall look like as shown in
Figure 8.6.

8.5.1.2 Entering Data Once the variables Gender, Response, and Frequency are
defined, click Data View to open the format for entering data column-wise as shown
in Figure 8.7.

¥ *Untitled 3 [DataSet 3] - 5PSS Data Editor

Bl B Mew Ddo Insfom  Anshae Graphs  (Bites  Addgas  Window  Hep

CHE @ 00 LRk A IS S0H 29

Name | Type | Width | Decimals| Label | Values Missing | Columns Align | Measure
1 Gender HNumeric ] 2 Gender {100, Men)... None L] 3 Right & Nominal
2 L] 2 Response {100, Neve... None L = Right & Nominal
3 L] 2 Frequency None None L = Right & Scale
]

FIGURE 8.6 Defining variables along with their characteristics.

5 Chi_Square_Testing_Independence.sav [DataSet0] - SPS
Fle FEdit Wiew Data Iransform  Analyze Graphs  Liilties

CHS [ &0 =0 A HE S&

[17: |

Gender | Response [ Frequancyl
1 1.00 1.00 10,00
2 1.00 200 6.00
3 1.00 3.00 20.00
4 2.00 1.00 18.00
5 200 2.00 6.00
(5 200 3.00 7.00

FIGURE 8.7 Data file of coffee data for chi-square.
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8.5.1.3 Define Weights After entering data, identify the variable for ‘Weight
cases by’ option by doing the following:

1. Click on Data command in the header of the data file and select Weight Cases ...
option to get the screen as shown in Figure 8.8.

2. Select the option Weight cases by.

3. Select variable Frequency from the left panel and bring it into “Frequency
Variable” section in the right panel.

4. Click on OK and go back to the data file.

8.5.1.4 SPSS Commands After entering data and defining ‘Weight cases by’
option, follow the steps listed down for computing chi-square:

1. In Data View, click on the following commands in sequence:

Analyze — Descriptive Statistics — Crosstabs

2. After clicking ‘Crosstabs’ option, you shall be directed to the next screen for
selecting variables. Select variables Gender and Response from the left panel
and bring them into the “Row(s)” and “Column(s)” sections in the right panel.
The screen shall look like as shown in Figure 8.9.

3. Selecting options for computation: After selecting variables, option need to be
defined for generating outputs. Do the following:

(a) Click on Statistics command and check the options ‘Chi-Square’ and
‘Contingency Coefficient’ as shown in Figure 8.10. Click Continue.

(b) Click on Cell command and check ‘Expected,” ‘Row, ‘Column,” and
‘Total’ options as shown in Figure 8.11.

(c) Click on Continue and OK options to get the output.

(d) Select outputs from the output window of SPSS as shown in Tables 8.8,
8.9, and 8.10 for discussion.

& Weight Cases
[&5 Gender [Gender] | () Do nol weight cases
&> Response [Response] (®) Weight cases by

Erequency Variable:
l » |é9 Frequency [Frequency]

Current Status: Whaight cases by Frequency

o (e [ som ][ conn J[_rov ]

FIGURE 8.8 Selecting variable for “Weight cases by’ option.
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FIGURE 8.9 Option for selecting variables for chi-square.

v«: Crosstabs: Statistics El
[¥] chi-stuare [ cotreiations
HNominal - 1 Ordinal -

) gonma
[] ehi and Cramer's Vv []somers'd
[] Lambda [ Kencial's tau-p
[ Uncertainty coetficient [ Kendall's tau-g.
rNominal by Inferval —— [ Happa
Oea [ Risk
J D MicMemar
[:l Cochran's and Mantel-Hasnszel statistics
Test common odds ratio aquals: |1 |
[Ccomime [ concei |[ hew |

i£2 Crosstabs: Cell Display

FIGURE 8.10 Option for computing chi-square and contingency coefficient.

(3) Roupd cell counts

O Mo adusiments

-Percentages R

[v] Row [ unstanciardized

[#] cowmn [ tandardized

Totel [[] Adpusted standardized
Noninteger Weights

() Round case weights
() Truncate cell counts () Truncate case weights

[contrwe || concel ||

Hep |

FIGURE 8.11 Option for computing observed and expected frequencies.



TESTING ASSOCIATION WITH SPSS 223

TABLE 8.8 Gender * Response Cross Tabulation

Response

Never Sometimes Always Total

Gender Men Count 10 6 20 36
Expected count 15.0 6.4 14.5 36.0
% within-gender 27.8 16.7 55.6 100.0
% within-response 35.7 50.0 74.1 53.7
% of total 14.9 9.0 29.9 53.7

Women Count 18 6 7 31
Expected count 13.0 5.6 12.5 31.0
% within-gender 58.1 19.4 22.6 100.0
% within-response 64.3 50.0 25.9 46.3
% of total 26.9 9.0 104 46.3

Total Count 28 12 27 67
Expected count 28.0 12.0 27.0 67.0
% within gender 41.8 17.9 40.3 100.0
% within LOC 100.0 100.0 100.0 100.0
% of total 41.8 17.9 40.3 100.0

TABLE 8.9 Chi-Square for the Data On Gender * Options

Asymp. Sig.

Value df (Two-Sided)
Pearson chi-square 8.218¢ 2 0.016
Likelihood ratio 8.471 2 0.014
Linear-by-linear association 8.001 1 0.005

Number of valid cases 67

The minimum expected count is 5.55.
<0 cells (0.0%) have expected count less than 5.

TABLE 8.10 Contingency Coefficient for the Data On Gender * Options

Value Approx. Sig. (p Value)

Nominal by nominal Contingency coefficient 0.331 0.016
Number of valid cases 67

8.5.2 Interpretation of Findings

Table 8.8 shows the observed and expected frequencies of the Gender x Response.
No cell frequency is less than 5; hence, no correction was made by the SPSS while
computing chi-square. If any of the cell frequency had value 5 or less, then SPSS
would have computed the chi-square after applying Yates’ correction.
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In Table 8.9, the value of chi-square (X°) is 8.218, which is significant (p<0.05).
Thus, we may reject the null hypothesis that the gender and response are independent.
It may be concluded that there is a significant association between gender and their
responses on the issue of “Drinking coffee is a healthy way of relieving fatigue.”

In other words, it may be interpreted that the response pattern of the male and
female on the issue differs significantly.

In Table 8.10, the value of contingency coefficient is 0.331. This is a measure of
association between gender and response. Further, the value of contingency coeffi-
cient is significant as its p value is 0.016 which is less than 0.05.

8.6 MANN-WHITNEY U TEST: COMPARING
TWO INDEPENDENT SAMPLES

If assumptions of t-test are seriously violated, then the Mann—Whitney U test may be
used to compare two independent groups. In this test, no assumption is required
about the distribution of population from which the samples have been drawn. In
using Mann—Whitney U test we intend to test whether the two samples come from
the same population or not. Since this test can be used both for parametric and non-
parametric data, it is considered to be the most powerful nonparametric test. The
Mann—-Whitney U test can be used more efficiently as an alternative to the t-test if we
wish to avoid the assumptions like equality of variance and normality of the
population distribution. The only assumption in using this test is that the data must
be measured at least on the ordinal scale and samples must be randomly drawn.

Example 8.3

In physical education colleges postgraduate students are considered to be less active
than the undergraduates due to the nature of their curriculum. To investigate this fact,
a study was planned in which 10 students were randomly chosen from the undergrad-
uate as well as from the postgraduate classes. These subjects were tested for their
cardio-respiratory endurance by means of VO, max. The data so obtained are shown
in Table 8.11. The assumptions of t-test are seriously violated; hence, let us see how
to apply Mann—Whitney U test to investigate the research question.

Solution: We need to test the following hypotheses:

H,: VO, max is similar in both the groups.

H,: VO, max is not similar in both the groups.

8.6.1 Computation in Mann—Whitney U Statistic Using SPSS

8.6.1.1 Preparation of Data File To prepare data file, define Course as a nominal and
VO, max as scale variables in the Variable View. For Course variable, give code 1 to
undergraduate and code 2 to postgraduate by clicking the cell under the column heading
“Values.” After defining variables, the screen shall look like as shown in Figure 8.12.
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8.6.1.2 Entering Data After defining variables, click on Data View to open the
format for entering data column-wise. Enter the data as shown in Figure 8.13.

8.6.1.3 SPSS Commands After entering data in the Data View, do the following steps:

1. Initiating SPSS commands: In Data View, click on the following commands in
sequence:

Analyze — Nonparametric Tests — 2 Independent Samples....

2. Selecting variable: After clicking 2 Independent Samples option, you will be
taken to the screen as shown in Figure 8.14 for selecting variables and defining
other options. Do the following:

(@) Select VO, max and Course variables from the left panel and bring them into
the “Test Variable List” and “Grouping Variable” sections in the right panel.

(b) Enter 1 and 2 in Group 1 and Group 2, respectively, as shown in Figure 8.14.
(c) Ensure that the ‘Mann—Whitney U’ option is checked.

(d) Click on Options command and check ‘Descriptive’ (Fig. 8.15).

(e) Click on Continue and OK options to get the outputs.

3. Getting the output: The outputs generated by the SPSS are shown in Tables 8.12
and 8.13.

TABLE 8.11 Data On VO, Max (in MLkg.min™)

Undergraduate Postgraduate
66 60
68 60
62 58
64 65
60 62
63 55
54 53
55 57
59 48
65 49
59 55
69 61

= *Untitled3 [DataSet3] - SPSS Data Editor

Fle E® Mew Deis Tronsform  fnshyze  Graphs  Ubes  Addgrs  Window el
CHE [ 00 wwk A At S0H v29) , ,
Hame | Type Width [ Decimals Label ] Values | Missing Columns Align
1 Course Numeric B 4 Course {100, Unde... None ] 3 Right & Nominal
2 VOZmax MNumeric 8 2 Cardio efficiency Mone None B == Right & Scale

(1

% FoalBoo.. | g Output.. | 22 *Chapts porosolt,.. | 132 Untkledz... ||| Wekome...

FIGURE 8.12 Defining independent and dependent variables.



226 NONPARAMETRIC TESTS IN SPORTS RESEARCH

5 Mann_Whitney.sav [DataSct41] - SPS5 Data Editor

Ene Eciit ol Coata Transform Anolyzo Sraphs
= | ey e T R W

19 |
Course | voamax | var |
1 1.00 66,00
= 1.00 &8.00
5 1.00 &2.00
a 1.00 54.00
s 1.00 0,00
& 1.00 3.00
7 1.00 54,00
8 1.00 55,00
a 1.00 59.00
10 1.00 65.00
11 1.00 59.00
12 1.00 B59.00
13 2. 00 B50.00
14 2.00 B0.00
15 = 00 s58.00
18 =.00 &5.00
17 = 00 &2.00
18 =.00 55.00
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FIGURE 8.14 Selecting independent and dependent variables.

8.6.2 Interpretation of Findings

Table 8.12 shows the mean rank in both the groups, whereas Table 8.13 shows the
Mann—Whitney U statistic and other results. To interpret the findings, we need to
consider the z statistic and two tailed p value, corrected for ties.

The output indicates that the z statistic is significant, | z | = 2.141, p<0.05; hence,
significant differences in cardio-respiratory endurance exists between undergraduate
and postgraduate students.
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FIGURE 8.15 Selecting option for descriptive statistics.

TABLE 8.12 Ranks

Course N Mean Rank Sum of Ranks

Cardio efficiency Undergraduate 12 15.58 187.00
Postgraduate 12 9.42 113.00
Total 24

TABLE 8.13 Test Statistics®

Cardio Efficiency
Mann—Whitney U 35.000
Wilcoxon W 113.000
zZ -2.141
Asymp. sig. (two-tailed) 0.032
Exact sig. [2*(one-tailed sig.)] 0.033°

“ Grouping variable: Course.
b Not corrected for ties.

8.7 WILCOXON SIGNED-RANK TEST: FOR COMPARING
TWO RELATED GROUPS

The Wilcoxon signed-rank test is a nonparametric alternative to the paired t-test.
This test is used to compare two groups when the data in both groups is related in
some sense and we wish to test whether the members of a pair differ. For large
sample, this test is almost as sensitive as the paired t-test, and for small sample with
unknown distributions this test is even more sensitive. Mostly researchers are not
sure that the scores are normally distributed hence this test may be preferred over
the paired t-test.
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Example 8.4

A 4-week health awareness program was launched in which 12 housewives participated.
Their weights were measured before and after the program. The data obtained in
the study is shown in Table 8.14. The data violates the assumption of paired t-test.
Let us investigate whether the program was effective in reducing participant’s weight
at 5% level.

Solution: In this example, we need to test the following hypotheses:

H,: No difference between pre- and post-program testing data on weight exists.

H,: Significant difference exists between pre- and post-program testing data on weight.

8.7.1 Computation in Wilcoxon Signed-Rank Test Using SPSS

8.7.1.1 Preparation of Data File Before applying Wilcoxon signed-rank test, a
data file needs to be prepared. This can be done by defining the variables Pre_test
and Post_test as Scale in Variable View. Under the heading “Label,” expanded name
of the variables can be defined. Leave other entries as selected by default. After
defining the variables, the screen shall look like as shown in Figure 8.16.

8.7.1.2 Entering Data After defining variables, click on Data View to open the
format for entering the data column-wise. Kindly note the difference of data feeding
layout which is different than the one we used in case of Mann—Whitney U test. After
data entry, the screen shall look like as shown in Figure 8.17.

8.7.1.3 SPSS Commands After entering data in the Data View, do the following steps:

TABLE 8.14 Data On Weight
Obtained On Housewives

Pre Test Post Test
87 85
85 80
94 88
65 64
56 57
72 70
70 69
68 68
57 58
90 79
61 59

74 72
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FIGURE 8.16 Defining variables.

vt Wilcoxon.sav [DataSet5] - SPSS Data Editor
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12 74.00 72.00

FIGURE 8.17 Data file for Wilcoxon signed-rank test.

1. Initiating SPSS commands: In Data View, click on the following commands in
sequence:

Analyze — Nonparametric Tests — 2 Related Samples....

2. Selecting variable: After clicking 2 Related Samples option, you will be taken
to the screen as shown in Figure 8.18 for selecting variables and selecting
option. Do the following:

(a) Select Pre_test and Post_test variables from the left panel and bring them
into the “Test Pairs” section in the right panel.

(b) Ensure that the “Wilcoxon’ option is checked.
(c) Click on Options command and check ‘Descriptive’ (Fig. 8.19).
(d) Click on Continue and OK options to get the outputs.

3. Getting the output: The outputs generated by the SPSS are shown in Tables 8.15,
8.16, and 8.17.
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FIGURE 8.18 Selecting pre- and post-test variables.
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FIGURE 8.19 Selecting option for descriptive statistics.

TABLE 8.15 Descriptive Statistics

N Mean Std. Deviation Minimum Maximum
Weight in pre testing 12 73.2500 12.99738 56.00 94.00
Weight in post testing 12 70.7500 10.45445 57.00 88.00

8.7.2 Interpretation of Findings

Table 8.16 shows the summary of negative and positive ranks in both the groups,
whereas Table 8.17 shows z statistic and p value. To interpret the Wilcoxon signed-
rank test, z statistic needs to be examined for testing two-tailed hypothesis.

The output indicates that the z statistic is significant, z| =2.514, p<0.05; hence,
health awareness program was effective in reducing weight of the participants.
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TABLE 8.16 Ranks

N Mean Rank Sum of Ranks
Weight in post testing — Negative ranks 9¢ 6.78 61.00
Weight in pre testing Positive ranks 206 2.50 5.00
Ties 1€
Total 12

“Weight in post testing < Weight in pre testing.
> Weight in post testing > Weight in pre testing.
“ Weight in post testing = Weight in pre testing.

TABLE 8.17 Test Statistics®

Weight in Post Testing — Weight in Pre Testing

zZ —2.514*
Asymp. sig. (2-tailed) 0.012

“ Wilcoxon signed-rank test.
b Based on positive ranks.

8.8 KRUSKAL-WALLIS TEST

The Kruskal-Wallis test is a nonparametric alternative to the one-way ANOVA. It is
used to compare three or more samples simultaneously and decide whether they
belong to the same population or not. This test is used when the data obtained are
measured at least on ordinal scale. The Kruskal-Wallis test can be used for parametric
data if the assumption of normality does not hold or other assumptions required for
one-way ANOVA violates.

Example 8.5

A gymnastic coach wanted to improve flexibility for her gymnasts. She was
offered three circuit training programs with different intensities to choose from.
In order to take decision, she conducted a study in which these programs were
randomly allocated to the subjects in the sample for 6 weeks. After the treatment was
over, flexibility of the subjects was measured in three groups, which are shown in

Table 8.18.
Solution: We need to test the following hypotheses:

H,: All three groups are equal.
H,: All three groups differ.
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TABLE 8.18 Data On Flexibility (in Inches)

Program Intensity

Low Medium High
11 12 10
10 8
7 9
10 11 9
10 9
10 11
10 12 9
12 10 11
7 9 10
8 10 9

8.8.1 Computation in Kruskal-Wallis Test Using SPSS

8.8.1.1 Preparation of Data File To prepare data file, define Circuit_training as
anominal and Flexibility as scale variables in the Variable View. For Circuit_training
variable, define code 1 for Low intensity, 2 for Medium intensity, and 3 for High
intensity by clicking cell under the column heading “Values.” After defining variables,
the screen shall look like as shown in Figure 8.20.

8.8.1.2 Entering Data After defining variables, click on Data View to open the
format for entering data column-wise. Enter the data as shown in Figure 8.21.

8.8.1.3 SPSS Commands After entering data in the Data View, do the following steps:

1. Initiating SPSS commands: In Data View, go to the following commands in
sequence:

Analyze — Nonparametric Tests — K Independent Samples....

2. Selecting variables: After clicking K Independent Samples option, you will
be directed to the screen as shown in Figure 8.22 for selecting variables and
defining other options. Do the following:

(a) Select Flexibility and Circuit_training variables from the left panel and
bring them into the “Test Variable List” and “Grouping Variable” sections
in the right panel.

(b) Enter 1 in the box labeled “Minimum” and 3 in the “Maximum’” as shown
in Figure 8.22.

(c) Ensure that the ‘Kruskal-Wallis H* option is checked.

(d) Click on Options command and check ‘Descriptive’ (Fig. 8.23).

(e) Click on Continue and OK options to get the output.

3. Getting the output: The outputs generated by the SPSS are shown in Tables 8.19
and 8.20.
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FIGURE 8.22 Selecting independent and dependent variables and option for descriptive
statistics.
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FIGURE 8.23 Option for descriptive statistics.

TABLE 8.19 Ranks of Different Groups

Circuit Training Intensity N Mean Rank

Flexibility Low intensity 10 12.85
Medium intensity 10 19.05
High intensity 10 14.60
Total 30

TABLE 8.20 Test Statistics**

Flexibility
Chi-square 2.778
df 2
Asymp. sig. 0.249

@ Kruskal-Wallis test.
b Grouping variable: circuit training intensity.

8.8.2 Interpretation of Findings

The results of the Kruskal-Wallis test can be interpreted by looking to the value of
chi-square, degrees of freedom, and significance value (p), which has been corrected
for ties. Since y’(=2.778) is not significant (p>0.05), it may be concluded that the
flexibility did not differ in the three treatment groups.

8.9 FRIEDMAN TEST

The Friedman test is a nonparametric test and can be used in place of one-way
ANOVA with repeated measures if its assumptions violate. This test is used in a
situation when repeated measures are obtained on the same set of subjects. In using
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this test, we try to detect differences in treatments across multiple test attempts. This
test can be used if the following assumptions are satisfied:

1. Sample is randomly drawn
2. Three or more repeated measures have been obtained on the same subjects
3. Dependent variable is measured at least on ordinal scale.

Example 8.6

A sports scientist wanted to investigate the progress of his athlete on muscular
strength during his 4-week weight training program. Eight athletes participated in the
program. These athletes were tested for their strength before starting the training and
after 2 and 4 weeks in the experiment. The data so obtained is shown in Table 8.21.
Since data violated the stringent assumptions of repeated measures ANOVA, it was
decided to apply Friedman test.

Solution: We need to test the following hypotheses:

H,: All three samples are from the same population or from populations with equal
medians.

H,: All three samples are not from the same populations. They differ in their median
values.

TABLE 8.21 Data On Strength (in Lb)

Time
0 Day 2 Weeks 4 Weeks
150 145 165
180 210 265
220 210 280
140 150 190
150 190 195
160 165 180
170 175 170
180 190 195

8.9.1 Computation in Friedman Test Using SPSS

8.9.1.1 Preparation of Data File To prepare data file, define Zero_day, Two_
week, and Four_week as scale variables in the Variable View as shown in Figure 8.24.

8.9.1.2 Entering Data After defining variables, click on Data View to open the
format for entering the data column-wise. Enter the data as shown in Figure 8.25.
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FIGURE 8.24 Defining variables.
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FIGURE 8.25 Data file of strength scores for Friedman test.

8.9.1.3 SPSS Commands After entering data in the Data View, do the following
steps:

1. Initiating SPSS commands: In Data View, go to the following commands in
sequence:

Analyze — Nonparametric Tests — K Related Samples....

2. Selecting variable: After clicking K Related Samples option, you will be
taken to the screen as shown in Figure 8.26 for selecting variables and defining
other options. Do the following:

(a) Select Zero_day, Two_week and Four_week variables from the left panel
and bring them into the “Test Variables” section in the right panel.

(b) Ensure that the ‘Friedman’ option is checked.
(c) Click on Statistics command and check ‘Descriptive.’
(d) Click on Continue and OK options to get the outputs.

3. Getting the output: The outputs generated by the SPSS are shown in Tables 8.22
and 8.23.
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FIGURE 8.26 Selecting variables and defining option for descriptive statistics.

TABLE 8.22 Descriptive Statistic

N Mean Std. Deviation Minimum Maximum
Strength initially 8 1.6875E2 25.31939 140.00 220.00
Strength after 2 weeks 8 1.7938E2 24.99107 145.00 210.00
Strength after 4 weeks 8 2.0500E2 43.26001 165.00 280.00

TABLE 8.23 Test Statistics®

N
Chi-square
df

Asymp. sig.

8
9.484
2
0.009

4 Friedman test.

8.9.2 Interpretation of Findings

In Friedman test, hypothesis is tested by using the chi-square statistic. Table 8.23
indicates that X ? (2,n = 8) =9.484 is significant (p<0.05); hence, it may be concluded
that the significant differences do exist in strength across duration and that duration
appears to increase strength of the subjects considerably.

8.10 SUMMARY OF THE SPSS COMMANDS

8.10.1 Computing Chi-Square Statistic (for Testing Goodness of Fit)

1. Create data file by choosing the option ‘Type in data.’

2. In Variable View, define Brand as a nominal and Frequency as a scale

variable.
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. For the variable Brand, define “1” for Brand A, “2” for Brand B, and “3” for

Brand C under the column heading “Values.”

4. Enter the data column-wise for all three categories of Brand.

8.

Click on Data command in the header of the data file and select the Frequency
variable for the Weight Cases ... option. Click OK.

Click on the following commands in sequence:

Analyze — Nonparametric Tests — Chi-Square

. After selecting variable, click the Option command and check the ‘Descriptive’

option.
Click on Continue and OK options to get the outputs.

8.10.2 Computing Chi-Square Statistic (for Testing Independence)

1.

Prepare data file by defining Gender and Response variables as nominal and
Frequency as scale.

For Gender variable, define “1” for Male and “2” for Female under the column
heading “Values.”

. Similarly, define the code for Response variable as “1” for Never, “2” for

Sometimes, and “3” for Always.

4. Enter the data column-wise.

9.

. Click on Data command in the header of the data file and select the Frequency

variable for the Weight Cases ... option. Click OK.
Click on the following commands in sequence:

Analyze — Descriptive Statistics — Crosstabs

. Click on Statistics command and check the options °‘Chi-Square’ and

‘Contingency Coefficient’. Click on Continue button.

. Click on Cell command and check the options ‘Expected,” ‘Row,” ‘Column,’

and ‘Total.’
Click on Continue and then OK to get the outputs.

8.10.3 Computation in Mann—Whitney U Test

Create data file by defining Course as nominal and VO, max as scale variable.

For Course variable, define “1” for Undergraduate and “2” for Postgraduate
under the column heading “Values.”

. Enter the data column-wise.
. Click on the following commands in sequence:

Analyze — Nonparametric Tests — 2 Independent Samples....

Select VO, max and Course variables from the left panel and bring them in
the “Test Variable List” and “Grouping Variable” sections in the right panel.
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6.
7.
8.
9.

Enter 1 and 2 in Group 1 and Group 2, respectively.

Ensure that the ‘Mann—Whitney U’ option is checked.
Click on Options command and check ‘Descriptive’ option.
Click on Continue and OK options to get the outputs.

8.10.4 Computation in Wilcoxon Signed-Rank Test

L.
2.

Create data file by defining Pre_test and Post_test as scale variables.

For Course variable, define “1” for Undergraduate and ‘“2” for Postgraduate
under the column heading “Values.”

Enter the data column-wise for both the variables.

. Click on the following commands in sequence:

Analyze — Nonparametric Tests — 2 Related Samples....

. Select Pre_test and Post_test variables from the left panel and bring them in

the “Test Pairs” section in the right panel.

Ensure that the ‘Wilcoxon’ option is checked.

Click on Options command and check ‘Descriptive’ option.
Click on Continue and OK options to get the outputs.

8.10.5 Computation in Kruskal-Wallis Test

1.

el e )

Create data file by defining Circuit_training as a nominal and Flexibility as
scale variables.

For Circuit_training variable, define “1” for Low intensity, “2” for Medium
intensity, and “3” for High intensity.
Enter the data column-wise.

. Click on the following commands in sequence:

Analyze — Nonparametric Tests — K Independent Samples....

Select Flexibility and Circuit_training variables from the left panel and bring them
into the “Test Variable List” and “Grouping Variable” sections in the right panel.

Enter 1 in the box labeled “Minimum” and 3 in the “Maximum.”
Ensure that the ‘Kruskal-Wallis H” option is checked.

Click on Options command and check ‘Descriptive’ option.
Click on Continue and OK options to get the outputs.

8.10.6 Computation in Friedman Test

L.
2.
3.

Create data file by defining Zero_day, Two_week and Four_week as scale variables.
Enter the data column wise.
Click on the following commands in sequence:

Analyze — Nonparametric Tests — K Related Samples....
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Select Zero_day, Two_week and Four_week variables from the left panel and
bring them in the “Test Variables™ section in the right panel.

Ensure that the ‘Friedman option’ is checked.

. Click on Statistics command and check ‘Descriptive’ option.
. Click on Continue and OK options to get the outputs.

EXERCISE

8.11.1 Short Answer Questions

Note: Write answer to each question in not more than 200 words.

Q.1

Q.2
Q.3
Q4
QS5

Q6

Q.7

Q38

Q.9

Responses were obtained from male and female on different questions related
to their knowledge about smoking. There were three possible responses for
each question: Agree, Undecided, and Disagree. How will you compare the
knowledge of male and female about smoking?

Explain two important applications of chi-square.
Discuss the assumptions of nonparametric tests.
Explain a situation where Friedman test can be applied.

Is there any similarity between z-test and chi-square test? Explain in detail by
means of an example.

How will you frame a null hypothesis in testing the significance of an
association between gender and 1Q where IQ is classified into high and low
category? Write decision criteria in testing this hypothesis.

Can the chi-square be used for comparing the attitude of men and women on
the issue of “Coach uses innovative practices,” if the 2 X 5 frequencies are
given in Table 8.24. Under what situation chi-square becomes the most robust
test?

If chi-square comes out to be significant, then it indicates that the association
between the two attributes exists. How would you find the magnitude of an
association?

What is Phi coefficient? In what situation it is used? Explain by means of an
example.

TABLE 8.24 Responses On “Coach Uses Innovative Practices”

Strongly Agree Agree Undecided Disagree Strongly Disagree

Gender Men 30 15 10 10 15
Women 40 10 5 15 10
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8.11.2 Multiple Choice Questions

Note: Questions 1-10 have four alternative answers for each question. Tick marks
the one that you consider the closest to the correct answer.

1 In computing chi-square with SPSS, the sequence of commands is
(a) Analyze — Nonparametric Tests — Chi-Square
(b) Analyze — Descriptive — Crosstabs
(c) Analyze — Chi-Square — Nonparametric Tests
(d) Analyze — Crosstabs — Chi-Square

2 Choose the most appropriate statement about the null hypothesis in chi-square
(a) There is an association between gender and response.
(b) There is no association between gender and response.
(c) There are 50-50% chances of significant and insignificant association.
(d) None of the above is correct.

3 Student’s response on their preference toward optional paper is as follows:

Response of the Students

Subjects Psychology Biomechanics Exercise Physiology

No. of students 15 20 25

The value of chi-square is
(a) 2

(b) 2.5

(c) 50

(d) 25

4 The value of chi-square for the given data is

Gender
Male Female

Level State 15 5

National 15 25
(a) 7.5
(b) 75
(c) 12.5
(d) 750

5 Chi-square is used for
(a) Finding magnitude of an association between two attributes.
(b) Finding significance of an association between two attributes.
(c) Comparing the variation between two attributes.
(d) Comparing median of two attributes.
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Chi-Square is the most robust test if the frequency table is
(a) 2x2

(b) 2x3

(c) 3x3

(d) mxn

While using chi-square for testing an association between two attributes, SPSS
provides Crosstabs option. Choose the most appropriate statement.

(a) Crosstabs treat all data as nominal.

(b) Crosstabs treat all data as ordinal.

(c) Crosstabs treat some data as nominal and some data as ordinal.

(d) Crosstabs treat data as per the problem.

If responses are obtained in the form of the frequency on a five-point scale and
it is required to compare the responses of male and female on a specific issue
“Yoga is good for children,” then which statistical test you would prefer?

(a) Two sample t-test

(b) Paired t-test

(c) One-way ANOVA

(d) Chi-square test

If p value for a chi-square is 0.02, what conclusion can you draw?
(a) Chi-square is significant at 99% confidence interval.

(b) Chi-square is not significant at 95% confidence interval.

(c) Chi-square is significant at 0.01 levels.

(d) Chi-square is significant at 0.05 levels.

The degrees of freedom of chi-square in an rxc table can be calculated by the
formula

(a) r+c

(b) r+c-1

(c) rc

(d) =1)(c-1)

In Mann—Whitney U test, hypothesis is tested by using
(a) z-test

(b) Chi-square test

(c) F-test

(d) t-test

In Kruskal-Wallis test, null hypothesis is tested by using
(a) t-test

(b) F-test

(c) Chi-square test

(d) z-test

In a 6-week fitness program if 15 subjects are tested for their cardio-respiratory
endurance before starting the program and after 2, 4, and 6 weeks during the
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TABLE 8.25 Responses of the Students About Their Subject Preferences

Subjects Biomechanics Sports Psychology Sport Physiology

Frequency 20 40 30

program and if the assumption of normality is seriously violated, which test
would you prefer to compare the three groups?

(a) t-test

(b) Mann—Whitney U test

(c) Chi-square test

(d) Friedman test

14 In testing the effectiveness of an exercise program, which test should be used if
the assumption of parametric test fails?
(a) Chi-square test
(b) Wilcoxon signed-rank test
(c) Mann—Whitney U test
(d) Friedman test

8.11.3 Assignment

1. In a study, 90 students were asked to give their preference about one of the
three specialization papers namely biomechanics, sports psychology, and
sports physiology in their master’s program. Compute chi-square using SPSS
for testing whether all the three subjects are equally popular on the basis of
the data given in Table 8.25.

8.12 CASE STUDY ON TESTING INDEPENDENCE OF ATTRIBUTES

Objective

A coach wanted to investigate whether minimum muscular fitness is gender specific.
He conducted a study on a randomly selected sample of the university students
including both male and female. These subjects were tested for their performance
on minimum muscular fitness test, and the results so obtained are shown in
Table 8.26.

Research Questions
The following research questions were investigated:

1. Is there any association between minimum muscular fitness and gender?
2. Does minimum muscular fitness for male and female differ?
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Analyzing Data

The two research questions were investigated in this study. First, whether association
between gender and minimum muscular fitness exists and second, whether
performance of the male and female differs on this test. In fact, the second research
question can be derived using the result obtained from the first. For addressing these
two issues, chi-square and contingency coefficient were computed by using SPSS,
which are shown in Tables 8.28 and 8.29, respectively.

The chi-square and contingency coefficient were obtained by using the commands
Analyze, Descriptive Statistics, and Crosstabs in sequence. Frequency variable
was selected for “Weight cases by’ option. After clicking on Statistics option, ‘Chi-
square’ and ‘Contingency coefficient’ were selected. Further, after selecting options
for ‘Expected, ‘Row,” ‘Column,” and ‘Total’ by clicking on the Cell command,
results were obtained as shown in Tables 8.27, 8.28, and 8.29.

TABLE 8.26 Performance of the Students On Fitness Test

Minimum Muscular Test

Pass Fail
Gender Male 15 5
Female 7 18
TABLE 8.27 Gender * Min_Mus_Fit Cross Tabulation
Min_Mus_Fit
Pass Fail Total
Gender Male Count 15 5 20
Expected count 9.8 10.2 20.0
Female Count 7 18 25
Expected count 12.2 12.8 25.0
Total Count 22 23 45
Expected count 22.0 23.0 45.0

TABLE 8.28 Chi-Square for the Data On Gender * Min_Mus_Fit

Asymp. Sig.

Value df (Two-Sided)
Pearson chi-square 9.823¢ 1 0.002
Continuity correction? 8.032 1 0.005
Likelihood ratio 10.220 1 0.001
Fisher’s exact test
Linear-by-linear association 9.604 1 0.002
Number of valid cases” 45

“Significant at 5% level.
®Computed only for a 2x2 table.
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TABLE 8.29 Contingency Coefficient for the Data On Gender * Min_Mus_Fit

Approx. Sig.
Value (p Value)
Nominal by nominal Contingency coefficient 0.423 0.002
Number of valid cases 45
Testing Association

Table 8.28 shows that the chi-square value is 9.823 which is significant as its associated
p value is 0.002 which is less than 0.05. Thus, on the basis of the sample observation,
it may be inferred that the association between gender and minimum muscular fitness
is significant. Table 8.29 shows that the contingency coefficient is 0.423. This shows
the strength of the association between the two attribute gender and minimum
muscular fitness test.

Since the association between gender and minimum muscular fitness is signifi-
cantly associated, it may be concluded that the performance of male and female on
this test differs significantly.

Reporting

* Since chi-square was significant (p < 0.01), it may be inferred that the association
between gender and minimum muscular fitness was significant. The strength of
the association was 0.423

* Significance of association between gender and minimum muscular fitness
indicates that the performance of male and female differs on this test.



REGRESSION ANALYSIS AND
MULTIPLE CORRELATIONS

LEARNING OBJECTIVES
After completing this chapter, you should be able to do the following:

» Explain the use of regression analysis and multiple correlation in research

* Interpret various terms involved in regression analysis

* Learn to use SPSS for doing regression analysis

» Understand the procedure of identifying the most efficient regression model

* Know the method of constructing the regression equation based on the SPSS
output.

9.1 INTRODUCTION

The purpose of regression analysis is to explain the variation in a dependent variable on
the basis of variation in one or more independent variables. A dependent variable is also
termed “criterion variable.” Correlation coefficient may be used to know as to how an
athlete’s performance on 400-meter event is affected by the variation in his height, leg
length, leg strength, stride length, etc. If variability in a dependent variable is explained
by only one independent variable, the model is known as simple regression. If it is
explained by more than one independent variable, it is known as multiple regression.
The regression equation can either be linear or curvilinear, but our discussion shall be
limited to linear regression only.

Sports Research with Analytical Solution using SPSS®, First Edition. J. P. Verma.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Verma/Sportsresearch
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A lot of studies have been conducted on regression analysis in forecasting human
performance in the area of sports. Besides regression analysis, there are other
quantitative and qualitative methods used in performance forecasting. But the
regression analysis is one of the most popularly used quantitative techniques.

Higher multiple correlation ensures greater accuracy in estimating the value of
dependent variable on the basis of predictor variables in the regression model var-
iables. Due to this reason multiple correlation is computed in regression analysis
to indicate the efficiency of regression model. It is customary to show the value of
multiple correlation along with regression equation. One can see that many
researchers, while suggesting a regression model for estimating fat% on the basis
of skin fold measurement, do show the value of multiple correlation. Any regres-
sion model having higher multiple correlation gives better estimate in comparison
to that of other models. We will see an explanation of multiple correlation while
discussing a solved example later in this chapter.

9.2 UNDERSTANDING REGRESSION EQUATION

Regression equation is a linear equation developed for estimating the value of
dependent variable on the basis of some independent variables. The regression
equation is of the form

Y=a+bX, +b,X, +b.X, +b,X,

where

Y is a dependent variable
X, X,, X,, and X, are the independent variables, and
a, b, b,, b, and b, are the regression coefficients

While doing regression analysis using SPSS, regression coefficients are generated
along with other statistics in the output. Significance of these regression coefficients
is tested by means of t-test. A regression coefficient is significant at 5% level if its
significance value (p value) provided in the output is less than 0.05. Significance of
regression coefficient indicates that the corresponding variable significantly explains
variation in the dependent variable and contributes to the regression model.

9.2.1 Methods of Regression Analysis

In a study based on regression analysis, independent variables are selected on the
basis of either literature or some known information. In doing so, a large number of
independent variables are studied; and therefore, there is a need to identify only those
independent variables that explain maximum variation in the dependent variable.
This can be done by using any of the following two methods: “stepwise regression”
or “backward regression.”
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9.2.1.1 Stepwise Regression In stepwise regression analysis, independent variables
are selected one by one depending upon relative importance in the regression model.
In other words, the first entered variable in the model is the one that has largest con-
tribution in explaining variation in the dependent variable. A variable is included in
the model only if its regression coefficient is significant at 5% level. Thus, if the
stepwise regression method is used for regression analysis, the variables are selected
one by one, and finally the regression coefficients of the retained variables are gen-
erated in the output. These regression coefficients are used in developing the required
regression equation.

9.2.1.2 Backward Regression In this method, a regression model is developed
by including all the independent variables taken in the study, and then these vari-
ables are dropped one by one on the basis of their least contribution in the model.
A variable is dropped if its regression coefficient is not significant at 10% level.
Thus, we get several models having different number of independent variables.
Robustness of these models is determined on the basis of R?, where R is the mul-
tiple correlation.

9.2.2 Multiple Correlation

Multiple correlation determines the strength of relationship between dependent
variable and a group of independent variables. Thus, it is an indicator of robustness
of a regression model. The multiple correlation is represented by “R,” and the gener-
alized formula is given as follows:

Ripausn = \/1 - (1 ~1p )(1 ~ I, )(1 ~Tx ) '(1 _1]211.23...(n-1))

The limits of multiple correlation are O to +1. It is computed with the help of
product moment correlation coefficients; and therefore, it also measures linear rela-
tionship only.

In regression analysis, another statistic R? is also computed for assessing the
validity of a model. R? can be defined as the variance explained in the dependent
variable by the independent variables in a model. If in the regression model R?is 0.6,
it means that all independent variables together in the model explain 60% of the
variability in the dependent variable.

9.3 APPLICATION OF REGRESSION ANALYSIS

Researchers are constantly engaged in finding ways and means to improve
performance in sports. This is done by conducting an exploratory study where the
performance is estimated on the basis of certain independent parameters. For
instance, to identify parameters that are required in estimating high jump
performance of an athlete, a regression study may be planned. Similarly, in
estimating fat% on the basis of body girths, one may opt for regression analysis.
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Regression analysis may provide knowledge about the independent variables,
which may be used for developing training schedule. Further, it may be used to
estimate the value of dependent variable at some point of time if the values of
independent variables are known. This is more relevant in a situation where the
dependent variable is difficult to measure. For instance, fat% of the subjects in field
situation cannot be assessed by underwater weighing, and therefore regression
analysis may be useful in this situation in developing an appropriate model for esti-
mating fat% on the basis of some parameters of body girths and skin fold
measurements.

9.4 MULTIPLE REGRESSION ANALYSIS WITH SPSS

Example 9.1

Consider a study on badminton players in which a regression model was devel-
oped for estimating playing ability on the basis of physical and anthropometric
variables. The data on 25 badminton players were recorded, which is shown in
Table 9.1. Let us see how the regression equation can be developed for estimating
the playing ability.

Solution: In order to get the solution, the following needs to be done:

1. Use “stepwise regression” method in SPSS to get the regression coefficients of
the retained independent variables in the model for developing regression
equation.

2. Test the significance of regression coefficients using t-test and significance
value (p) in the output.

3. Test the regression model for its significance through the F-test using its
significance value (p) in the output.

4. Use the value of R? in output for testing robustness of the model.

The steps involved in regression analysis with SPSS have been explained in the
sections that follow.

9.4.1 Computation in Regression Analysis

9.4.1.1 Preparations of Data File Data file needs to be prepared before using
SPSS commands for the computation of regression coefficients. After starting the
SPSS as discussed in Chapter 1, select the ‘“Type in data’ option.

9.4.1.2 Defining Variables There are 14 variables in this example which need to
be defined along with their properties. Since all the variables are quantitative in
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nature, they are treated as scale variables. The procedure of defining the variables
and their characteristics in SPSS is as follows:

1. Click on Variable View to define variables and their properties.

2. Write short name of the variables as PlaAbl, Age, Ht, Wt, ArmLength,
LegLength, TrunkLength, HandGirth, ThighGirth, CalfGirth, ShoulderWidth,
HipWidth, FiftyMt and ExploStren under the column heading “Name.”

3. Under the column heading “Label,” full name of these variables may be defined
as Playing Ability, Age, Height, Weight, Arm Length, Leg Length, Trunk
Length, Hand Girth, Thigh Girth, Calf Girth, Shoulder Width, Hip Width, 50
meter, and Explosive Strength, respectively. Readers have the liberty to choose
some other names of these variables as well.

4. Under the column heading “Measure,” select the ‘Scale’ option for all the
variables as all these variables are quantitative in nature.
5. Use default entries in rest of the columns.

After defining variables in the Variable View, the screen shall look like as shown
in Figure 9.1.

9.4.1.3 Entering Data Once all the 14 variables are defined in the Variable
View, click on Data View on the left corner at the bottom of the screen, shown in
Figure 9.1, to open the format for entering data. For each variable, data can be entered
column-wise. After data entry the screen will look like as shown in Figure 9.2.
Save this data file in the desired location before further processing.

i *Ext_New,sav [DataSet1] - PSS Data Editar

Neme | Type Width | D Label | vaes | Missing |C | angn |
1 PlaAbl Numeric 2 0 Playing Ablity  None None 2 B Left & Scale
2 Age Numeric 8 2 Age Mone None 4 3= Right & Scale
3 Ht Mumeric 8 2 Height MNeone Neone 5 H Right & Scale
4 Wt Mumeric 8 2 Weight MNone MNeone 4 3 Right & Scale
5  ArmLength Numeric 8 2 ArmLength  None Nene 5 = Right & Scale
6 Leglength Numeric & 2 LegLength None None 4 = Right & Scale
T TrunkLength Numeric 8 2 Trunk Length  None MNone 5 H Right & Scale
8 HandGirth  Numerie 8 2 Hand Girth None Nene 4 = Right & Scale
9 ThighGith Numeric 8 2 Thigh Girth None None 4 = Right & Scale
10 CalfGirth Numeric 8 2 Culf Girth None None 5 = Right & Scale
__ 11 ShoulderW... Numeric 8 2 Shoulder Width None None 5 H Right & Scale
12 HipWidth Numeric 8 2 Hip Width None MNene 4 = Right & Scale
13 FiftyMt Numeric 8 2 50 meter MNone MNene 3 H Right & Scale
14 Explo$ N i 8 2 Explosive Stre... None None 4 = Right & Scale

o "Ouput [Oec. | [0 Lrktled - hete. .

FIGURE 9.1 Defining variables along with their characteristics.
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§ii *Ex5_Hew.sav [Datase! 1] - 5755 Duta Editer

O 0N Yew (ws [awtas  AredTe  Grare  Ues  Asdgns  Yedow g
CHS E b0 Lk A Ad B4E %29

1 : Pradid =

Plaf e | he | - ArmLen| LegLe| TrunkL H-nd|'rh|gh CalfGirt Should| HipWi| Fifty| Explo
Abl ath ]nﬁh| ength | Girth | Girth h  |e'Width dth | Mt  Stren

3200 18000 6650 7200 91.00 6300 3100 5200 3500 4300 3600 730 4100
18400 6450 7600 9000 2700 6400 3500 4300 31.00 690 6000
2600 17600 6660 7800 8500 3100 5300 3400 4400 3100 682 4500
2000 16800 7680 7800 8000 2800 6300 3500 4200 3500 7.14 3600
2300 17700 7650 7900 8700 3000 5500 4000 4500 3300 675 5300
3800 18000 97.00 7700 9100 3700 6400 4100 4800 3600 690 60.00
1900 171.00 6530 76,00 8500 2700 5400 3400 4200 3400 7.10 3300
1800 16300 6100 7600 7900 2800 5600 3500 4200 3200 7.18 3300
2200 168.00 6550 8100 7800 3300 5200 3700 4300 30.00 701 3500
2100 16300 7400 7000 4200 3600 729 3300
16200 7420 7200 7800 2700 6000 3500 4300 3400 732 3400
2200 16700 5970 7500 8300 2800 6100 3500 4300 3200 708 3300
2400 17300 6950 8000 8700 2900 5400 3600 3800 31.00 700 3300
2300 17700 6730 8400 8900 2500 5200 3500 3500 3500 692 3800
2700 17200 7820 7300 6000 3200 6300 3600 4200 3600 700 4200
1900 180.00 6780 8500 9200 2700 6000 3400 4300 36.00 690 3300
3100 18800 7880 8100 9200 2800 5400 3600 4800 I600 680 4500
1800 18100 5200 7400 B500 2400 4600 3300 3800 31.00 790 4700
2500 17600 7280 8200 BS00 2800 5100 3400 4400 3700 676 3800

8
g

@ |~ o A (ke

EEREEREEEE EEEELEE
8
g

§8sEEEEEREREEEREE
ggﬂg 3822582883832
@

8
B
8
8
8
8

20 91 2400 187.00 7350 8500 9400 05200 2900 5000 3400 4300 3500 680 6500
21 (792300 181.00 B8.70 7300 96.00 B400 2600 5400 3300 4100 3400 720 5500
(]

FIGURE 9.2 Screen showing data entered for all the variables in the data view.

9.4.1.4 SPSS Commands After entering all data in the Data View, do the follow-
ing steps for regression analysis:

1. Initiating SPSS commands for regression analysis: In Data View, click on the

following commands in sequence:
Analyze — Regression — Linear

The screen shall look like as shown in Figure 9.3.

. Selecting variables: After clicking on Linear option, you will be directed to the

next screen as shown in Figure 9.4 for selecting variables for the regression anal-
ysis. Select Playing Ability (dependent variable) from left panel and bring it to
the “Dependent” section in the right panel. Select all independent variables from
left panel and bring them to the “Independent(s)” section on the right panel.

Either the variable selection is made one by one or all at once. The arrow tag
is used to transfer the variable from left to right panel. After selection of vari-
ables, the screen shall look like as shown in Figure 9.4.

. Selecting options for computation: After selecting the variables, option needs

to be defined for the regression analysis. Do the following on the screen shown

in Figure 9.4:

(a) Click on Statistics command for getting the screen shown in Figure 9.5. Check
‘R squared change,” ‘Descriptive,” and ‘Part and partial correlations’ options.

(b) By default, the options “Estimates” and “Model fit” are checked. Ensure
that they remain checked.
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(c) Click on Continue, you will be taken back to the screen shown in Figure 9.4.

Checking ‘R squared change’ option shall provide the values of R* and
adjusted R* in the output. Similarly, checking the option ‘Descriptive’ shall
provide the values of mean and standard deviations along with correlation
matrix of all the variables. Whereas checking the option ‘Part and partial
correlations’ shall provide partial correlations of various orders between

31 *Ex5_New.say [DataSet1] - SPSS Data Editor

Ele Edt View [Data  Transform _m Graghs  LRities Add-gns  Window  Help
EHA B o B[] g v BD>%
AoPaad 0 [@ Descriptive Statistics: »
Pla - Tebde: * | TrunkL| Hand| Thigh|C
Al Age ComsereMoms * | ength | Girth | Girth
1 83 3200 1804 ‘:::'m':""m : $300 3100 5200
2 |e7 3000 1eag T , | 9000 2700 5400
3 |87 2600 1764 rpruus , | 8800 31.00 8300
4 79 2000 1681 gegessen ¥ | B Lnear_
5 |86 2300 1774 Logines + | 7] Curve Estimstion...
6 87 3600 180 Neusremns »| B Portet Loogt Sauares...
7|73 1900 171( el " B, By Logieic .
8 [72 1800 163( Cxefewsn " | B, MutnomalLogstc...
9 |75 2200 1684 ::mtm : & ongnal..
10 66 2100 1634 . j [ B Brome—
1 60 2000 1620 suw | B ortnesr..
12 |72 2200 1B7AES MosigVaue Anatymis . | Wert Estimation...
13 [79 2400 173( sceRessonse b |l 2S00 Lonst Suares
14 85 2300 1774 Comkxsampks [ ——
15 |75 2700 1724 Severd "' 8000 3200 53.00
16 85 1900 180l "oCome- 9200 27.00 50.00

FIGURE 9.3 Command sequence for regression analysis.

it Linear Regression

- e
& Height (M) Block 1 0f 1 pots.. |

& Weight W)

& armLength [ArmLength] Previous

& LegLength (LegLength) independent(s)
& Trunk Length [TrunkLen... & Age [Age]

& Trigh Girth [ThighGirth]
& Calf Girth [CalfGirth]

& Shoulder Wieth [Should... Method: | Stepwise
& tip Wicth [Hipnidth]

& s0metre (Fiftyl) Selection Variable:
& Explosive Strenth [Exp... - Rule

o R |
[re-]

‘E %euhdsc |
C

(o J[ peste ][ meset J[ concet [[ rew ]

FIGURE 9.4 Selection of variables in regression analysis.
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&t Linear Regression: Statistics

-Regression Coefficient Model it
[v] Estimates [¥] R sqquared change
[] confidence intervals Descriptives
[] Covariance matrix [_] part and partial correlations

O Collinearity diagnostics
-Residuals —————————————————————

[ urbin-watson
[] casewise diagnostics

(® Outliers outside § standard deviations

| contiue || concel || Hew

FIGURE 9.5 Selection of options in computing different outputs in regression analysis.

playing ability and other variables. Readers are advised to try other
options and see what changes they get in their output.

(d) In the option “Method” shown in Figure 9.4, select ‘Stepwise’ and click
on OK. This will generate the required results.

4. Getting output: Results will be generated in a separate window of the SPSS
from which the relevant output can be copied by using right click of the mouse
and pasted in the word file. The output panel shall have the following results:
(a) Descriptive statistics
(b) Correlation matrix along with significance level
(c) Model summary along with the values of R and R?

(d) ANOVA table showing F values for all the models

(e) Regression coefficients of selected variables in different models along
with their t values and partial correlations

In this example, all the outputs so generated by the SPSS have been shown in
Tables 9.2,9.3,9.4, 9.5, and 9.6.

9.4.2 Interpretation of Findings

From the outputs obtained, the following conclusions can be drawn:

1. The values of mean and standard deviation for all the variables are shown in
Table 9.2. These values can be used for further analysis in the study.

2. In Table 9.3, correlation matrix including significance level (p value) for each
correlation coefficient at 0.05 level has been shown. Significance has been
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TABLE 9.2 Descriptive Statistics for Different Variables of Badminton

Players

Variables Mean SD N
Playing ability 79.00 9.170 25
Age 23.68 4.598 25
Height 174.80 7.371 25
Weight 69.58 8.495 25
Arm length 77.12 4.484 25
Leg length 89.44 3.863 25
Trunk length 85.08 4.890 25
Hand girth 28.52 3.016 25
Thigh girth 52.40 2.500 25
Calf girth 35.64 2.099 25
Shoulder width 42.40 2.799 25
Hip width 33.52 2.104 25
50 meter 7.04 0.3172 25
Explosive strength 40.24 8.192 25

tested for one-tailed test. Correlation coefficient with asterisk mark (*) indi-
cates that it is significant at 5% level.

For one-tail test, value of correlation coefficient required for its significance at
0.01 level and 23 (N -2) df is 0.462 and at 0.05 level is 0.337. These values can
be obtained by using Table A.6. Thus, all those correlation coefficients having
values more than 0.462 are significant at 1% level. Such correlation coeffi-
cients have been shown with two asterisks (**). Readers may also show the
correlation matrix by writing the upper diagonal values only.

3. It can be seen in Table 9.3 that playing ability is significantly related with
height, arm length, leg length, trunk length, and 50-meter at 1% level, whereas
with age and explosive strength at 5% level.

4. Five regression models have been presented in Table 9.4. For the fifth model, the
value of R?is 0.859, which is maximum; hence, this model shall be used to develop
the regression equation. It can be seen from Table 9.6 that in the fifth model, three
independent variables, namely, 50-meter distance, height, and arm length have
been identified; and therefore, the regression equation shall be developed by using
these three variables only. Since R? for this model is 0.859, these three independent
variables explain 85.9% variability in the playing ability of badminton players.
Thus, this model is quite appropriate to estimate playing ability.

5. In Table 9.5, F values for all the models have been shown. Since F value for the
fifth model is quite high and significant, it may be concluded that the model
selected is highly efficient.

6. Regression coefficients in all the models have been shown in Table 9.6. In the
fifth model, t values for all the three regression coefficients are significant as
the significance value (p value) associated with them is less than 0.05. Thus, it
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TABLE 9.4 Model Summary Along with the Values of R and R?

257

Change Statistics

Std. Error of R Square Sig. F
Model R R? Adjusted R? the Estimate Change F Change dfl df2 Change
1 0.826* 0.682 0.669 5.278 0.682 49.437 1 23 0.000
2 0.870° 0.757 0.735 4.721 0.075 6.748 1 22 0.016
3 0.909¢ 0.826 0.801 4.086 0.069 8.372 1 21 0.009
4 0.9067 0.820 0.804 4.062 —0.006 0.742 1 21 0.399
5 0.927¢ 0.859 0.839 3.678 0.039 5.829 1 21 0.025
“ Predictors: (Constant), Trunk length.
b Predictors: (Constant), Trunk length, 50 meter.
¢ Predictors: (Constant), Trunk length, 50 meter, height.
4 Predictors: (Constant), 50 meter, height.
¢ Predictors: (Constant), 50 meter, height, arm length.
TABLE 9.5 ANOVA Table Showing F Values for All the Models
Model Sum of Squares df Mean Square F Sig.
1 Regression 1377.250 1 1377.250 49.437 0.000¢
Residual 640.750 23 27.859
Total 2018.000 24
2 Regression 1527.649 2 763.825 34.270 0.000%
Residual 490.351 22 22.289
Total 2018.000 24
3 Regression 1667.419 3 555.806 33.293 0.000¢
Residual 350.581 21 16.694
Total 2018.000 24
4 Regression 1655.036 2 827.518 50.158 0.000¢
Residual 362.964 22 16.498
Total 2018.000 24
5 Regression 1733.891 3 577.964 42.720 0.000¢
Residual 284.109 21 13.529
Total 2018.000 24

“ Predictors: (Constant), Trunk length.
b Predictors: (Constant), Trunk length, 50 meter.

¢ Predictors: (Constant), Trunk length, 50 meter, height.
4 Predictors: (Constant), 50 meter, height.

¢ Predictors: (Constant), 50 meter, height, arm length.

may be concluded that the variables 50-meter, height, and arm length signifi-
cantly explain the variations in the playing ability. In order to know which is
the most contributing predictor in the model out of these three variables one
should look for the Beta coefficients in Table 9.6. Larger the absolute value of
Beta coefficient more is the contribution of that variable in the model. Thus,
height is the most contributory predictor and 50 meter performance is the
second most important predictor in the model.
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EXERCISE 259

Regression equation: Using regression coefficients (B) of the fifth model shown
in the Table 9.6, the regression equation can be developed which is as follows:

Playing ability =—18.532-9.604 x (50-meter timing) +0.710 x (Height) + 0.532 x
(Arm length)

To conclude, it may be interpreted that the above regression equation is quite
reliable as the value of R?is 0.859. In other words, the three variables selected in the
regression equation explain 85.9% of the total variability in the playing ability which
is quite good. Since F value for this regression model is highly significant, the model
is reliable. At the same time, all the regression coefficients in this model are highly
significant; and therefore, it may be interpreted that all the three variables selected in
the model, namely, 50 meter timing, height, and arm length are quite appropriate in
estimating the playing ability of a badminton player.

9.5 SUMMARY OF SPSS COMMANDS FOR REGRESSION ANALYSIS

1. Start SPSS by using the following commands:
Start — All Programs — SPSS Inc — SPSS 20.0

2. Create data file by choosing the ‘Type in data’ option. Define variables and
their characteristics by clicking on the Variable View. Once the variables are
defined, type data for these variables by clicking on Data View.

3. Use the following command sequence for selecting variables from left panel
and bring them to the right panel by clicking the arrow.

Analyze — Regression — Linear

4. Select the dependent variable from left panel and bring it to the “Dependent”
section of the right panel. Select all other independent variables from left panel
to the “Independent(s)” section of the right panel.

5. After selecting variables for regression analysis click on the Statistics option.
Check ‘R squared change,” ‘Descriptive,” and ‘Part and partial correlations’
options. Click on Continue.

6. In the “Method” option, select ‘Stepwise’ and then click on OK to get the dif-
ferent outputs for regression analysis.

9.6 EXERCISE

9.6.1 Short Answer Questions
Note: Write answer to each question in not more than 200 words.

Q.1 What do you mean by regression analysis? Explain the difference between
simple regression and multiple regression models.
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Q.2 Differentiate between stepwise regression and backward regression.

Q.3

What is the role of R? in regression analysis? Explain multiple correlation and
its order.

Q.4 Explain a situation where regression analysis can be used.

Q.5

How will you know that the variables that are selected in the regression analysis
are valid?

Q.6 What strategy is adopted in dropping variables in backward regression method?

9.6.2 Multiple Choice Questions

Note: Questions 1-10 have four alternative answers for each question. Tick mark the
one that you consider the closest to the correct answer.

1

The range of multiple correlation, R is

(a) -1to+1
(b) -1t 0
(c¢) Oto+1

(d) None of the above

SPSS commands for multiple regression analysis is
(a) Analyze — Linear — Regression

(b) Analyze — Regression — Linear

(c) Analyze — Linear

(d) Analyze — Regression

Choose the most appropriate statement
(a) R?is a measure of multiple correlation.
(b) R?is used for selecting variables in the regression model.

(c) R?indicates the amount of variability explained in the dependent variable by
the independent variables.

(d) All of the above are correct.

If p value for the correlation between playing ability and explosive strength is
0.019, what conclusion can be drawn?

(a) Correlation is significant at 1% level.

(b) Correlation is significant at 5% level.

(c) Correlation is not significant at 5% level.
(d) All above statements are wrong.

Regression analysis
(a) Measures improvement
(b) Establishes cause and effect
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(c) Estimates any independent variable
(d) Establishes a relationship between two variables

6 In regression analysis, four models have been developed. Which model in your
opinion is the most appropriate?

Models No. of Independent Variables R?
(a) Model I 5 0.88
(b) Model II 4 0.87
(c) Model III 3 0.86
(d) Model IV 2 0.65

7 In aregression analysis, the following results were obtained:

Independent Variables B Coefficient p Value

Agility 1.5 0.04
Reaction time 0.2 0.10
Heart rate 3.1 0.41
Fat% 1.2 0.03

Choose the most appropriate statement

(a) Both Agility and Reaction time are significant at 0.05 level in the model.
(b) Both Agility and Heart rate are significant at 0.05 level in the model.

(c) Both Reaction time and Heart rate are significant at 0.05 level in the model.
(d) Both Agility and Fat% are significant at 0.05 level in the model.

8 Choose the correct statement about B and p coefficients
(a) “B” is a unstandardized coefficient and “f” is a standardized coefficient.
(b) “P”is a unstandardized coefficient and “B” is a standardized coefficient.
(c) Both “B” and “P” are standardized coefficients.
(d) Both “B” and “p” are unstandardized coefficients.

9.6.3 Assignment

1. The data in Table 9.7 shows the measurements on physical and physiological
parameters along with the playing ability of badminton players. Develop a
regression equation and explain its significance and validity.
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9.7 CASE STUDY ON REGRESSION ANALYSIS

Objective

A sport scientist was interested to develop a model through which playing ability
of basketball players could be estimated on the basis of some skill parameters.
A sample of 30 national basketball players was chosen and the data on five skill tests
was collected on them. Their playing ability was measured during a tournament.
The data so obtained is shown in Table 9.8. Let us see how this analysis can be
carried out.

Research Questions

The following research questions were investigated:

1. Whether regression model developed for estimating the playing ability would
be significant.

2. Whether independent variables selected in the model significantly contribute
to the model.

3. Whether any particular skill could be identified which is the most contributing
predictor in the model.

Data Format

The format used for preparing data file in SPSS is shown in the Table 9.8.

Analyzing Data

In order to investigate the three research issues, regression analysis was done in
SPSS. A regression model was developed by using the unstandardized regression
coefficients obtained in the output. The developed model was tested for its
significance. The regression coefficients were tested for its significance in order
to ensure the contribution of the independent variables in the model. Since this
was the exploratory study, ‘Stepwise’ method was chosen for identifying the
independent variables in the model. The outputs are shown in Tables 9.9 and 9.11.
Finally, adjusted R? was reported to explain the worth of the developed regression
model.

The regression analysis was done by using the commands; Analyze, Regression,
and Linear in sequence in SPSS. By selecting the dependent and independent var-
iables and choosing the Stepwise procedure the output of the regression analysis
was generated. Further by checking the option ‘R Squared Changed’ in Statistics
command the value of R? as generated is shown in Table 9.10.



TABLE 9.8 Data Format Used in SPSS

Playing_ Accuracy_ Dribbling_ Dribble_ Distance_ Wall_

S.N. Abl_X1 X2 X3 X4 Throw_X5 Bounce_X6
1 9 9 10.75 19 42 67
2 7 6 10.05 17 45 68
3 6 8 11.47 16 39 60
4 6 7 9.54 18 38 68
5 4 6 11.31 21 34 70
6 7 8 10.62 19 38 71
7 7 5 12.05 16 42 72
8 8 6 10.11 16 41 71
9 5 4 11.00 18 39 65
10 5 6 10.82 17 40 70
11 7 7 9.81 17 42 66
12 5 5 12.20 19 41 61
13 8 7 11.63 21 38 63
14 5 4 10.60 20 41 64
15 5 8 10.73 20 38 64
16 5 5 11.25 17 42 57
17 5 4 11.38 19 39 67
18 6 5 10.61 21 42 63
19 8 7 9.60 16 39 62
20 4 7 10.60 22 39 62
21 5 6 11.42 17 37 50
22 6 4 10.51 18 38 59
23 5 4 10.41 19 37 64
24 6 6 12.03 22 36 70
25 8 8 11.71 17 37 72
26 7 7 9.65 15 42 77
27 7 8 10.30 17 40 65
28 9 6 10.01 16 38 60
29 6 6 10.72 19 35 58
30 8 4 10.56 16 36 65

Playing_Abl: Playing ability (in score).
Accuracy: Accuracy in throws (in scores).
Dribbling: Dribbling speed (in sec).
Dribble: Dribble and Shoot test (in counts).
Distance_Throw: in mts.

Wall_Bounce: in sec.

TABLE 9.9 Regression Coefficients®

Unstandardized Standardized

Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 12.374 2.205 5.611 0.000
Dribble-and-Shoot test —-0.334 0.121 —0.464 -2.770 0.010
2 (Constant) 10.038 2.280 4.403 0.000
Dribble-and-Shoot test -0.323 0.112 -0.449 -2.882 0.008
Accuracy in throws 0.350 0.150 0.363 2.334 0.027

“ Dependent variable: Playing ability.
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TABLE 9.10 Model Summary

Change Statistics

Std. Error of R Square F Sig. F
Model R R? Adjusted R? the Estimate Change Change dfl df2 Change
1 0.464* 0.215 0.187 1.27843 0.215 7.671 1 28 0.010
2 0.589* 0.347 0.298 1.18758 0.132 5443 1 27 0.027

4 Predictors: (constant), Dribble-and-Shoot test.
b Predictors: (constant), Dribble-and-Shoot test, accuracy in throws.

TABLE 9.11 ANOVA¢

Model Sum of Squares df Mean Square F Sig.
1 Regression 12.537 1 12.537 7.671 0.010°
Residual 45.763 28 1.634
Total 58.300 29
2 Regression 20.221 2 10.110 7.169 0.003¢
Residual 38.079 27 1.410
Total 58.300 29

“Dependent variable: Playing ability.
b Predictors: (constant), Dribble-and-Shoot test.
“Predictors: (constant), Dribble-and-Shoot test, accuracy in throws.

Developing Regression Model

Table 9.9 shows the unstandardized (B) and standardized regression coeffi-
cients (Beta). By using the B coefficients, the following regression equation was
developed:

Playing ability=10.038 —0.323 x (dribble-and-Shoot test)+0.350x (Accuracy in
throws)

It can be seen from the Table 9.9 that the regression coefficients for both the vari-
ables, that is, Dribble-and-Shoot (p=0.008) and Accuracy in throws (p=0.027)
selected in the second model are significant. Thus, it may be concluded that these two
variables contribute significantly to the developed model.

Testing Efficiency of the Model

Since ‘Stepwise’ command was chosen in the analysis, two models were devel-
oped in the analysis. Since the value of R? for the second model is 0.589 which is
higher than that of the first, that is, 0.464, the second model was chosen for devel-
oping the regression equation. Since adjusted R? for the model is 0.298, 29.8%
variability of the Playing ability can be explained by the two independent variables
selected in the model. F value for the regression of the second model in Table 9.11
is significant (0.003); therefore, it may be concluded that the developed model is
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significant. Further, the absolute value of beta coefficient for the Dribble-and-
Shoot test (0.499) is higher than that of Accuracy in throws (0.363); hence, it is
more useful in the model.

Reporting
* Only two independent variables Dribble and shoot and Accuracy in throws were
found to be contributing to the model; hence, they were included in the model.
* The model is significant because F value for the model as shown in Table 9.11
is significant (p=0.003)

* Since R? adjusted for the model is 0.298, only 29.8% variability of the Playing
ability in basketball can be explained by this model.

Finally since the beta coefficient for the variable Dribble and shoot was higher, it
was more useful in comparison to the Accuracy in throws in the model.
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APPLICATION OF DISCRIMINANT
FUNCTION ANALYSIS

LEARNING OBJECTIVES
After completing this chapter, you should be able to do the following:

* Learn the use of discriminant analysis (DA) in developing classification model
in two groups

* Know the situation where DA can be used

* List the assumptions used in DA

* Understand different terms used in DA

* Learn the steps involved in using SPSS for DA

* Learn to apply discriminant analysis in explorative studies

* Understand to interpret the output obtained in DA

» Explain relative importance of variables in the model

* Know the procedure of developing discriminant function

* Explain the power of discriminant model in a study

* Learn to write the results of DA in standard format

Sports Research with Analytical Solution using SPSS®, First Edition. J. P. Verma.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Verma/Sportsresearch
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10.1 INTRODUCTION

Discriminant function analysis, also known as discriminant analysis (DA), is used to
classify a subject into one of the two groups on the basis of some independent traits.
For instance, based on the maturity parameters, an individual may be classified in
either junior or senior category. We often come across situations where classification
strategy is required to be made. Many times, controversy arises during national and
international tournaments regarding senior athletes playing in junior category on the
basis of false testimony. Similarly, a coach may use his judgment to advice an athlete
in opting for track or field event. During the match practice, one chooses a sport
activity out of interest only and not because it suits them. In all these situations, DA
can provide decision-making criteria.

DA is similar to the multiple regression analysis. The only difference is in
the nature of dependent variable. In DA, the dependent variable is a dichotomous
variable; whereas in multiple regression, it is a continuous variable.

In DA, only those independent variables that are found to have significant dis-
criminating power in classifying a subject into any of the two groups are picked up.
These identified independent variables are used to develop a discriminating function.
On the basis of discriminant function so obtained, a criterion for classification is
developed. The details of DA and the procedure of using SPSS in getting the solution
have been discussed in the following sections.

10.2 BASICS OF DISCRIMINANT FUNCTION ANALYSIS

In discriminant analysis, a discriminant function is used to classify an individual or
cases into two categories. If the function is effective for a set of data, the percentage
of correct classification of cases in the classification table increases. Before discuss-
ing the procedure of this analysis we shall discuss the terminologies involved in it.

10.2.1 Discriminating Variables

These are the independent variables that construct a discriminant function. These
variables are also known as predictors.

10.2.2 Dependent Variable

Dependent variable is also known as criterion variable. In SPSS, the dependent vari-
able is known as grouping variable. It is the object of classification on the basis of
independent variables. The dependent variable needs to be dichotomous.

10.2.3 Discriminant Function

A discriminant function is a latent variable, which is constructed as a linear
combination of independent variables, such that
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Z=a+bX, +b,X, +---+b X,

where

bl, b2, ey bn are discriminant coefficients,
X, X, ...,X are discriminating variables, and

[TP%1]

a” is a constant.

The discriminant function is also known as canonical root.

10.2.4 Classification Matrix

A classification matrix is also known as confusion matrix, assignment matrix, or
prediction matrix. It is used to assess the efficiency of DA. It tells us as to what
percentage of the existing data points is correctly classified by the model developed
in DA. This percentage is somewhat similar to R* (percentage of variation in the
dependent variable explained by the model).

10.2.5 Stepwise Method of Discriminant Analysis

Discriminant function is developed either by using all independent variables or by
identifying a few from a large set of independent variables. The choice of method
depends upon whether the study is confirmatory or exploratory in nature. In explor-
atory study the independent variables are selected one by one in the model, depend-
ing upon its magnitude of contribution in the model. This method of identifying
independent variables is known as stepwise method.

10.2.6 Power of Discriminating Variable

Power of discriminating variable (independent variable) refers to the capacity of
the variable to discriminate cases into any of the two groups in the model. It can be
determined by the coefficient of the discriminating variable in the model. SPSS
provides these coefficients in the output and are named as standardized canonical
discriminant function coefficients. The higher the value of coefficient, the better
the discriminating power. Since these standardized coefficients are nothing but
partial correlations that are free from units, a direct comparison of the coefficients
can be made.

10.2.7 Canonical Correlation

The canonical correlation can be defined as the multiple correlation between the
predictor variables and the discriminant function. In DA, it provides an index of
overall model fit, which explains the proportion of variance explained (R?).
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10.2.8 Wilks’ Lambda

The value of Wilks’ lambda is the estimate of the variance of the dependent
variable not explained by the independent variables in the model. Subtracting its
value from 1 gives the value of eta square, which is the sign of robustness of the
model. The value of Wilks’ lambda lies in between O and 1, lesser its value,
better is the model. If its value is less than 0.5, the discriminant model is consid-
ered to be good. Significance of Wilk’s lambda is tested by the chi-square
statistic.

10.3 ASSUMPTIONS IN DISCRIMINANT ANALYSIS
The following assumptions are made while using DA:

1. All variables have linear and homoscedastic relationships.
2. Dependent variable is a dichotomous variable.

3. The groups must be mutually exclusive, with every subject or case belonging
to only one group.

4. All cases must be independent. One should not use correlated data like before—
after, matched pairs data, etc.

5. Sample sizes of both the groups should not differ to a great extent. If the
sample sizes are in the proportion 80:20, logistic regression may be
preferred.

6. Sample size should be sufficient. As a guideline, there should be at least five to
six times as many cases as independent variables.

7. No independent variable should have a zero variability in either of the groups
formed by the dependent variable.

104 WHY TO USE DISCRIMINANT ANALYSIS

One may use DA for achieving one or more of the following objectives in a
study:

1. Classifying subjects into groups
2. Testing a theory by observing whether cases are classified as predicted

3. Determining the percentage of variance in the dependent variable explained by
the predictors

4. Assessing predictor’s relative importance in discriminant model

5. Identifying and discarding those independent variables that do not have
discriminating power in classification
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10.5 STEPS IN DISCRIMINANT ANALYSIS
Applying DA requires the following steps:

1. The first step in the DA is to choose the independent variables having significant
discriminant power. This is done either by taking all independent variables
together or one by one in the analysis, and these can be done by choosing the
option “Enter independents together” and “Use stepwise method,” respectively
in SPSS.

In stepwise method, an independent variable is entered in the model if its
corresponding regression coefficient is significant at 0.05 level. Thus, in
developing discriminant function the model will enter only significant
independent variables. The model so developed is required to be tested for its
robustness.

2. In the second step, discriminant function model is developed by using the
coefficients of independent variables and the value of constant in the “unstan-
dardized canonical discriminant function coefficients” table generated in the
SPSS output. This is similar to developing regression equation. This way the
function so generated may be used to classify an individual into any of the two
groups. The discriminant function shall look like as follows:

Z=a+bX, +b,X, +---+b X,

where
“Z” is a discriminant function,
X’s are selected independent variables in the model,

[TP%1]

a” is a constant, and
b’s are the discriminant coefficients.

3. The third step involves computing Wilks’ lambda for testing the significance
of discriminant function developed in the model. This acts as a sign of robust-
ness of the discriminant model. The range of Wilk’s lambda is from 0 and 1,
and the lower value of it close to 0 indicates better discriminating power of the
model. Further, significant value of chi-square indicates that the discrimination
between two groups is highly significant.

After selecting independent variables, the discriminant model is tested for
its significance in classifying the subjects/cases correctly into groups. For this,
SPSS generates a classification matrix. This is also known as confusion matrix.
The matrix shows the number of correct and wrong classification of subjects in
both the groups. High percentage of correct classification indicates the validity
of the model. The level of accuracy shown in the classification matrix may not
hold for all future classification of new subjects/cases.

4. In the fourth step, relative importance of independent variables selected
in the model is reported. The SPSS generates the “standardized canonical
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discriminant function coefficients”. A variable having higher coefficient is
more powerful in comparison to those having lesser value.

. In fifth step, a criterion for classification is made by using the group centroids of

both groups. The SPSS output provides the mean discriminant score (group
centroid) in each group. The subject whose Z score is closer to the group centroid
belongs to that group. In fact, a strategy can be developed for defining the
group membership on the basis of the weighted means of the two group cen-
troids. If equal number of cases is taken in both the groups of the dependent
variable, then the weighted average of the group centroids will be just the
average of the two. But in case the number of cases differs in both the groups,
the weighted average can be computed using the following formula:

n, x(Centroid _1)+n, x(Centroid _2)

n, -i-Il2

7 =

Here, n, and n, are the number of cases in the two groups, and Centroid_1 and
Centroid_2 are the group centroids of the two groups.

10.6 APPLICATION OF DISCRIMINANT FUNCTION ANALYSIS

Consider an experiment in which a researcher is interested in identifying the discrim-
inatory power of performance indicators between the players at guard and forward
positions among national basketball players.

Sample consisting basketball players in the top performing teams during national
championships may be drawn for the study. Further, only those players who play at
guard and forward positions may be selected from the teams.

The data may be collected from each player by a trained group of observers on the
parameters shown below:

Parameters of Study

—_—

_
e

e

Percent of success of three-point shots
Percent of success of free-throw shots
Percent of success of fast-break
Number of fouls made by

Number of fouls made on

Number of defensive rebounds
Number of offensive rebounds
Number of turn-over

Number of steals

Number of assists
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11. Number of interceptions
12. Number of minutes played

Objectives

The objectives of this study may be described as follows:

* To identify independent variables having significant discriminating power in
classifying a basketballer into guard or forward position specialist

* To develop a discriminant model for classifying a player into guard and forward
position

* To test the validity of the model

Test

Discriminant function may be developed to solve the problem for discriminating
players by game position.

Output in SPSS

The aforementioned objectives of the study can be achieved by using the five outputs
generated in the SPSS as follows:

Box’s M test

Standardized canonical discriminant function coefficients table
Unstandardized canonical discriminant function coefficients table
Functions at group centroids

Canonical correlation

Table of Wilks’ lambda and chi-square test

Classification matrix.

NNk Wb =

The first output is used to test the assumption of variance—covariance matrix to be
same in each group of the dependent variable. For this assumption to be true, Box’s
M test should not be significant. The second output provides the standardized
coefficients of each variable. The variable having larger coefficient indicates more
discriminating power. Thus, this output can be used to show the relative importance
of variables in developing discriminant function.

The third output contains unstandardized coefficients of the variables selected in
the model and are used to build the discriminant function for classifying subjects into
groups.

The fourth output provides the group centroid of each group, which is used for
developing criteria for defining the group membership.

The fifth output provides the canonical correlation which is an index of overall
model fit. The value of Wilks’ lambda in the sixth output explains the percentage
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variability of the dependent variable not explained by the predictor variables in the

model, whereas its significance is tested by chi-square statistic. The seventh output
provides the number of subjects classified correctly into groups by the model.

10.7 DISCRIMINANT ANALYSIS USING SPSS

Example 10.1

The data shown in Table 10.1 were obtained on 10 sub-junior and 10 junior male
basketball players. Let us develop a discriminant function for classifying an individual
into sub-junior or junior category. We shall test the significance of the model and
discuss the efficiency of classification and relative importance of the independent
variables retained in the model.

Solution: In this example, four things need to be done:

1. To develop a discriminant function for classifying an individual into sub-junior
or junior category

2. To test the significance of the model

3. To find the efficiency of the model

4. To investigate the relative importance of the predictors retained in the model.

These issues shall be discussed using the outputs generated in the analysis. We shall
first discuss the procedure of DA in SPSS.

10.7.1 Computation in Discriminant Analysis

10.7.1.1 Preparation of Data File After starting the SPSS as discussed in
Chapter 1, select the option ‘Type in data.” The sequence of commands for starting
SPSS on your computer is as follows:

Start — All Programs — SPSS Inc — SPSS 20.0 — Type in Data

Now you are ready for defining the variables row-wise.

10.7.1.2  Defining Variables In this example, 12 variables need to be defined.
Except Category that is nominal, all others variables are scale. Do the following:

1. Click Variable View in the left-hand bottom of the screen to define variables
and their properties.

2. Write short name of these variables as SBJ, Shut_run, Fifty_mt, Twelve_
min_R/W, Aner_cap, Wt, Ht, Leg_length, Calf_girth, Thigh_girth, Shi_width,
and Category under the column heading “Name.”
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3. Under the column heading “Label,” full name of these variables may be defined

as Standing broad jump, 4 x 10 Shuttle run, 50 Mt. timings, 12 min R/W,
Anaerobic capacity, Weight, Height, Leg length, Calf girth, Thigh girth,
Shoulder width, and Category of athlete.

. Under the column heading “Measure,” select data type as ‘Scale’ for all the

variables, except Category for which it is ‘Nominal’.

. For the variable Category, under the column heading “Values” enter 1 for sub-

junior and 2 for junior by double clicking the cell, that is,
1 =sub-junior
2 =junior

6. Use default entries in rest of the columns.

After defining variables in the Variable View, the screen shall look like as shown
in Figure 10.1.

10.7.1.3 Entering Data After defining variables in the Variable View, click on
Data View to open the data entry format. After entering the data column-wise, the
screen will look like as shown in Figure 10.2. Save the data file in the desired location
before further processing.

10.7.1.4 SPSS Commands After entering data do the following steps:

1. Initiating SPSS commands: While being in the Data View, click the following

commands in sequence:

Analyze — Classify — Discriminant

The screen shall look like as shown in Figure 10.3.

. Selecting variables: After clicking “Discriminant” option, the SPSS will ask

you to select the variables for analysis.

(a) Select Category variable from left panel and bring it to the “Grouping
Variable” section in the right panel. Define minimum and maximum range
of the grouping variable as “1” and “2.”

(b) Select all independent variables from the left panel and bring them into
“Independents” section in the right panel.

(c) Check “Use stepwise method” option. The screen will look like as shown
in Figure 10.4.

. Selecting options for computation: After selecting variables, different option

needs to be defined for generating the output in DA. Do the following:
(a) Click on the Statistics command on the screen shown in Figure 10.4.
(b) Check ‘Means’ option in the “Descriptive” section.

(c) Check ‘Box’s M’ option.
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FIGURE 10.1 Defining variables in discriminant analysis.
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FIGURE 10.2 Screen showing data in the data view.

(d) Check ‘Fisher’s’ and ‘Unstandardized’ options in the “Function Coeffi-
cients” section. The screen showing these options shall look like as shown
in Figure 10.5.

(e) Click on Continue. This will take you back to the screen shown in
Figure 10.4.
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FIGURE 10.4 Screen showing selection of variables for discriminant analysis.
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FIGURE 10.5 Screen showing the options for statistics and discriminant coefficients.
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FIGURE 10.6 Screen showing the options for classification matrix.

Click on Classify command and check the option ‘Summary table’ in the
“Display” section. The screen for this option shall look like as shown in
Figure 10.6.

Click on the Continue and OK commands for generating outputs.

4. Getting the output: Select relevant outputs from the output window and copy
them into word file for interpretation. We have selected the following outputs
for discussion:

(a)
(b)
(©)
(d
(e
()
(&)
(h)

Group statistics including mean and standard deviation
Box’s M test

Unstandardized canonical discriminant function coefficients
Canonical correlation

Wilks’ lambda and chi-square test

Classification matrix

Standardized canonical discriminant function coefficients
Functions at group centroids.

10.7.2 Interpretation of Findings
The outputs picked up in DA are shown in Tables 10.2, 10.3, 10.4, 10.5, 10.6, 10.7,

and 10.8.

1. Table 10.2 shows descriptive statistics containing mean and standard deviation
for all the variables in sub-junior, junior, and overall categories. You may show
this table in your analysis.
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TABLE 10.2 Group Statistics: Mean and Standard Deviation of All Parameters in

Different Groups

Category Mean Std. Deviation

Sub-junior Standing broad jump 210.90 12.37
4% 10 Shuttle run 10.36 0.50
50 Mt. timings 7.81 0.50
12 min R/W 252270 212.44
Anaerobic capacity 41.20 9.27
Weight 34.30 4.03
Height 141.20 9.41
Leg length 74.10 3.03
Calf girth 27.30 1.34
Thigh girth 38.00 2.67
Shoulder width 35.40 3.06

Junior Standing broad jump 219.60 14.59
4 %10 Shuttle run 9.56 0.38
50 Mt. timings 7.43 0.40
12 min R/W 2506.10 104.29
Anaerobic capacity 44.32 10.23
Weight 45.00 5.23
Height 153.50 6.40
Leg length 78.40 5.44
Calf girth 29.50 1.96
Thigh girth 42.70 3.34
Shoulder width 41.20 3.16

Total Standing broad jump 215.25 13.90
4 %10 Shuttle run 9.96 0.59
50 Mt. timings 7.62 0.48
12 min R/W 2514.40 163.10
Anaerobic capacity 42.76 9.64
Weight 39.65 7.13
Height 147.35 10.06
Leg length 76.25 4.82
Calf girth 28.40 1.98
Thigh girth 40.35 3.80
Shoulder width 38.30 4.24

2. In order to use DA, the variance—covariance matrix must be same in each cat-
egories of the dependent variable. This can be tested by Box’s M test as shown
in Table 10.3. Since Box’s M test is not significant (p=0.586), it may be con-
cluded that the variance—covariance matrices in both categories of the
dependent variable are same.

3. The unstandardized discriminant coefficients shown in Table 10.4 are used for
constructing discriminant function. The stepwise method was used in this
analysis, and only two variables, namely, 4 x 10 shuttle run and weight could
be retained in the model due to its significant discriminating power. The remaining
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TABLE 10.3 Box’s M Test

Box’s M 2.201

F Approx. 0.645
df1 3
df2 5.832E4
Sig. 0.586

Tests null hypothesis of equal population covariance matrices.

TABLE 10.4 Unstandardized Canonical Discriminant
Function Coefficients

Variables Selected Function 1
4 x 10 shuttle run -1.269
Weight 0.164
(Constant) 6.125

TABLE 10.5 Eigenvalues Table

Function Eigenvalue % of Variance Cumulative % Canonical Correlation

1 2.126° 100.0 100.0 0.825

“First 1 canonical discriminant functions were used in the analysis.

TABLE 10.6 Wilks’ Lambda and Chi-Square Test

Test of Function(s) Wilks’ Lambda Chi-Square df Sig.
1 0.320 19.374 2 0.000

TABLE 10.7 Classification Matrix®

Predicted Group Membership

Category of Athlete Sub-Junior Junior Total
Original count Sub-junior 10 0 10

Junior 1 9 10
% Sub-junior 100.0 0.0 100.0

Junior 10.0 90.0 100.0

“95.0% of original grouped cases correctly classified.

nine variables did not get selected in the model as they were not found to have
sufficient discriminating power. Thus, discriminant function can be constructed
by using the values of constant and coefficients of these two selected variables
as shown below:

7=6.125-1.269 x (4 x 10 Shuttle run) +0.164 x (Weight)
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TABLE 10.8 Standardized Canonical
Discriminant Function Coefficients

Variables Selected Function 1
4% 10 shuttle run -0.563
Weight 0.766

4. The canonical correlation provides an index of overall model fit. In Table 10.5,

a canonical correlation of 0.825 suggests that the model explains 68.06%
(square of canonical correlation) of the variation in the grouping variable by
the predictor variables.

. The value of Wilks’ lambda shown in Table 10.6 is the estimate of variance of the

dependent variable not explained by the predictor variables in the model. The eta
square can be obtained by subtracting the value of Wilks’ lambda from 1. This is
a sign of robustness of the discriminant model. Since in this example the value of
eta square is 0.68 (1.00—0.32), it can be interpreted that the model explains 68%
variation in the grouping variable. The readers can note that this is same as what
we have interpreted using the canonical correlation in Table 10.5.

The significance of Wilks’ lambda is tested by chi-square statistic. It can be
seen from the Table 10.6 that the chi-square is significant as its p value is equal
to 0.000, which is less than 0.05, hence it may be inferred that the discriminant
model is significant as well.

. Table 10.7 is a classification matrix that shows the summary of correct and

wrong classification of subjects in both the groups on the basis of the devel-
oped discriminant model. It can be seen that out of 10 subjects belonging to
subjunior category all were correctly classified in the same category, whereas
out of 10 subjects in the junior category nine were classified in the same cate-
gory. Thus, out of 20 cases 19 (95%) were correctly classified by the model,
which is quite high, hence the model can be considered valid. Since this model
is developed on the basis of a small sample, the level of accuracy shown in the
classification matrix may not be true for all future classification of new cases.

. Table 10.8 shows the discriminating power of the variables selected in the

model. The variable having higher magnitude of the absolute function value is
more powerful in discriminating the two groups. Since absolute function value
of the weight is 0.766, which is higher than that of 4 x 10 shuttle run (0.563),
weight is more powerful predictor in this model in comparison to 4 x 10 shuttle
run in discriminating the two groups.

The purpose of using DA is to have a decision model for classifying a basketballer
into any of the two categories: sub-junior and junior. Table 10.9 shows the
means for the transformed group centroids. Thus, the new mean for group 1
(sub-junior basketballer) is —1.383, and for group 2 (junior basketballer) it is
+1.383. This indicates that the midpoint of these two is 0.

These two means can be plotted on a straight line by locating the midpoint
as shown in Figure 10.7.
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TABLE 10.9 Functions at Group Centroids

Category of Athlete Function 1
Sub-junior —-1.383
Junior 1.383
Unstandardized canonical discriminant functions evaluated
at group means.
Mean of group 1 Mean of group 2
(sub-junior) (junior)
-1.383 0 +1.383
sub-junior category junior category

FIGURE 10.7 Means of the transformed group centroids.

The figure gives the decision rule for classifying any new subject into any of the two
categories. If the discriminant score of any male basketballer falls to the right of the
midpoint (Z>0), he is classified into the junior category, and if it falls to the left of
the midpoint (Z<0), he is classified into sub-junior category.

The procedure of classification on the basis of discriminant score for a basketballer
can be seen in the following example.

Example 10.2

Performance of the two basketballers on 4 x 10 meter shuttle run and their weights are
given as follows:

Subjects 4 x 10 meter shuttle run (sec) Weight (kg)

A 10.42 36
B 9.50 42

Using the discriminant model developed earlier, classify these two individuals into
any of the two categories: sub-junior and junior.

Solution: The discriminant score for each subject on the basis of the developed
regression equation can be computed as follows:
Since the discriminant model here is

7=6.125-1.269 x (4 x 10 shuttle run)+0.164 x (weight)
For subject A
7=6.125-1.269%x10.42+0.164x36=-1.19398

Since the value of Z is —1.19398, which is less than 0, the subject A is classified in
the sub-junior category.
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Similarly, for subject B
7=6.125-1.269x9.50+0.164x42=0.9575

Since the value of Z is 0.9575, which is greater than 0, the subject B may be classified
in the junior category.

10.8 SUMMARY OF THE SPSS COMMANDS FOR DISCRIMINANT
ANALYSIS

1. Start SPSS by using the following sequence of commands:

Start — All Programs — SPSS Inc — SPSS 20.0

2. Click on Variable View and define SBJ, Shut_run, Fifty_mt, Twelve_min_R_W,
Aner_cap, Wt, Ht, Leg_length, Calf girth, Thigh_girth, and Shi_width as scale
variables and Category as nominal.

3. For the dependent variable Category under the column heading “Values,”
define ‘1’ for sub junior and ‘2’ for junior.

4. After defining variables, type data column-wise for these variables by clicking
on “Data View.”

5. In the Data View, follow the command sequence as shown below:

Analyze — Classify — Discriminant

6. Select Category from left panel, and bring it to the “Grouping Variables” section
in the right panel and define its minimum and maximum range as ‘1’ and ‘2.
Further, select all independent variables from the left panel and bring them
to the “Independents” section of the right panel. Check “Use stepwise
method” option.

7. Click on Statistics command and check ‘Means’, ‘Fisher’s,” and ‘Unstandardized’
options in it. Click on Continue.

8. Click on the Classify command and check ‘Summary table’ option.
9. Click on the Continue and OK for generating outputs.

10.9 EXERCISE

10.9.1 Short Answer Questions
Note: Write answers to each of the following questions in not more than 200 words.

Q.1 What do you mean by discriminating variable? What is its significance in
discriminant analysis?

Q.2 In discriminant analysis what does dependent variable refers to? What is the
data type of dependent variable in SPSS?
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Q.3 What is discriminant function, and how is it developed? How is this function
used in decision-making?

Q.4 What is the role of classification matrix in discriminant analysis? How is the
percentage of correct classification similar to R*?

Q.5 In SPSS what happens if stepwise method is selected for discriminant analysis?
What criteria are adopted by SPSS in selecting and dropping variable in the
model?

Q.6 What do you mean by discriminating power of a variable?

10.9.2 Multiple Choice Questions

Note: Questions 1-10 have four alternative answers for each question. Tick mark the
one which is closest to the correct answer.

1 In discriminant analysis, dependent variables are defined as
(a) Scale
(b) Nominal
(c) Ordinal
(d) Ratio

2 Ceriterion for classifying discriminant analysis is as follows:
Classify in group I if Z<0
Classify in group ITif Z>0
The above criteria holds true
(a) If size of the samples in both the groups is equal
(b) If size of the samples in both the groups is nearly equal
(c) If size of the samples in both the groups is in the proportion of 4: 1
(d) In all the situations

3 Dependent variable in SPSS is denoted as
(a) Scale variable
(b) Grouping variable
(c) Ordinal variable
(d) Criterion variable

4 Discriminant function is also known as
(a) Eigenvalue
(b) Regression coefficient
(c) Canonical root
(d) Discriminant coefficient

5 Confusion matrix is used to denote
(a) Correctly classified cases
(b) Discriminant coefficients
(c) F values
(d) Robustness of different models
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In stepwise method of discriminant analysis, a variable is included in the model
if it is found significant at

(a) 2% level

(b) 1% level

(c) 10% level

(d) 5% level

Value of Wilks’ lambda ranges from

(a) —1to+1
(b) Oto 1

(c) -1t00
(d) 2to2

Wilks’ lambda is a measure of significance of
(a) Discriminant function

(b) Regression coefficient

(c) Discriminant coefficient

(d) Means of group

One of the assumptions in discriminant analysis is

(a) All variables have curvilinear and homoscedastic relationships.

(b) All variables have linear and non-homoscedastic relationships.

(c) All variables have curvilinear and non-homoscedastic relationships.
(d) All variables have linear and homoscedastic relationships.

Choose the correct statement about the assumption in discriminant analysis

(a) Dependent variable is an ordinal variable.

(b) The groups should not be mutually exclusive.

(c) Sample sizes should differ to a great extent.

(d) No independent variables should have a zero variability in either of the
groups formed by the dependent variable.

Correct sequence of commands in SPSS for discriminant analysis is
(a) Analyze — Discriminant — Classify
(b) Analyze — Classify — Discriminant
(c) Discriminant — Analyze — Classify
(d) Discriminant — Classify — Analyze

Discriminant function is developed on the basis of the
(a) Standardized coefficients

(b) Unstandardized coefficients

(c) Classification matrix

(d) Functions at group centroids

10.9.3 Assignment

In a senior national volleyball championship for men, a group cohesion questionnaire
was administered on 48 high and low-performing players. The data on four parame-
ters of a group cohesion questionnaire along with their performance category so
obtained is shown in Table 10.10.



TABLE 10.10 Data on the Group Cohesion Parameters Obtained on the High-Performer
and Low-Performer Volleyballers

Individual Individual

Performance Group Integration- Group Integration-  Attraction to the  Attraction to the
category Task Social Group-Task Group-Social
1 20 14 24 13
1 20 14 24 13
1 20 14 24 13
1 20 14 19 13
2 18 26 29 15
1 13 19 13 16
2 18 26 29 19
2 18 26 29 19
1 20 14 13 12
1 20 14 23 15
2 11 26 29 19
2 26 26 22 14
2 12 15 28 23
1 8 11 21 20
1 10 12 19 13
1 12 13 19 16
1 15 13 20 16
1 12 14 22 18
1 13 18 16 13
1 12 12 22 14
1 12 22 13 14
1 9 14 20 16
2 16 16 26 22
1 7 11 23 18
2 22 27 24 17
2 23 22 32 25
2 17 21 32 14
2 20 25 20 23
1 14 16 26 20
2 16 33 27 25
2 22 25 18 17
2 19 28 27 25
2 23 21 24 18
1 18 20 16 18
2 16 33 27 24
2 19 24 18 18
2 15 16 22 25
1 16 20 18 14
1 11 24 15 23
1 15 21 28 11
2 17 27 30 13
2 17 30 17 17
1 18 19 21 17
2 17 22 17 26
1 19 16 20 19
2 26 27 27 16
2 21 23 32 32
2 18 16 19 26

Performance category: 1 - Low, 2 - High.
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Apply discriminant analysis and

(a) Develop a discriminant function and the decision rule for classifying a
volleyballer into high- and low-performer groups.

(b) Test the significance of discriminant model so developed.

(c) Comment on the efficiency of the model.

(d) Find the relative importance of independent variables in the model.

10.10 CASE STUDY ON DISCRIMINANT ANALYSIS

Objective

A badminton coach organized an experiment to develop a model for classifying
badminton players into high- and low-performance groups on the basis of their
physical and anthropometric variables. He selected 12 players randomly from the
first six best teams in a tournament and 12 from the low-performing teams. Different
physical and anthropometric measurements were obtained on them. The data so
obtained is shown in Table 10.11.

Research Issues

The following research issues were investigated:

1. Can an efficient discriminant model be developed for classifying a badminton
player into high- or low-performance categories?

2. Will the developed model be significant and efficient?

Data Format

The format used for preparing data file in SPSS is shown in Table 10.11.

Analyzing Data

In this study the dependent variable was categorical and independent variables
were numerical, hence the discriminant model was developed for classifying the
subjects into any one of the two categories on the basis of identified discrimi-
nating variables. This model was developed by using the discriminant coeffi-
cients generated by the SPSS in its output. SPSS identifies those independent
variables that have significant discriminating power in classifying subjects into
two categories.

The DA was carried out in SPSS by using the commands: Analyze, Classify, and
Discriminant in sequence. Independent variables and group variables were placed in
the appropriate locations in the dialog box. The option for ‘Means’, ‘Box’s M,” and
‘Unstandardized’ coefficient were checked by clicking on the Statistics command
and ‘Summary table’ by clicking on the Classify command. Outputs in the analysis
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were obtained by selecting stepwise method. The outputs so obtained are shown in
Tables 10.12, 10.13, 10.14, 10.15, 10.16, and 10.17 and in Figure 10.8.

Testing Assumption

One of the main assumptions in the discriminant analysis is that the variance—covariance
matrix must be same in each categories of the dependent variable. This is tested by
means of Box’s M test as shown in Table 10.12. Since Box’s M test is not significant

TABLE 10.12 Box’s M Test

Box’s M 9.710

F Approx. 1.376
df1 6
df2 3.507E3
Sig. 0.220

Tests null hypothesis of equal population covariance matrices.

TABLE 10.13 Canonical Discriminant Function Coefficients

Function
1
Ht 0.130
Shoul_width 0.231
Explo_stren 0.175
(Constant) -40.201

Unstandardized coefficients.

TABLE 10.14 Standardized Canonical Discriminant
Function Coefficients

Function
1

Ht 0.575
Shoul_width 0.471
Explo_stren 0.826
TABLE 10.15 Functions at Group Centroids

Function
Pla_Abl 1
Low -2.816
High 2.816

Unstandardized canonical discriminant functions evaluated at group means.
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TABLE 10.16 Wilks’ Lambda

Test of Function(s) Wilks’ Lambda Chi-Square df Sig.

1 0.104 46.477 3 0.000

TABLE 10.17 Classification Results®

Predicted Group
Membership
Pla_Abl Low High Total
Original Count Low 12 0 12
High 1 11 12
% Low 100.0 0.0 100.0
High 8.3 91.7 100.0
“95.8% of original grouped cases correctly classified.
Mean of group 1 Mean of group 2
(low performance) (high performance)
-2.816 0 +2.816
low-performance category high-performance category

FIGURE 10.8 Means of the transformed group centroids.

(p>0.05); hence, it may be concluded that the variance—covariance matrices in both
the categories of the dependent variable are same.

Developing Discriminant Model

The unstandardized discriminant coefficients shown in Table 10.13 were used for
constructing discriminant function. The stepwise method used in this analysis
identified only three variables, namely, height, shoulder width, and explosive strength
that were retained in the model due to its significant discriminating power. Thus,
discriminant function, Z, was constructed by using the values of constant and
coefficients of these three selected variables.

Z=-40.201+0.130x (height) + 0.231 x (shoulder width) +
0.175 x (explosive strength)

Table 10.14 shows discriminating power of the variables selected in the model. The
higher the magnitude of the absolute function, the more powerful the variable in
defining group membership. Since absolute function value of the explosive strength
is 0.826, which is higher than the other two variables in the model, it is the most
contributing predictor in the model.
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A decision model was developed for classifying a badminton player into any of
the two low- and high-performance categories. Table 10.15 shows the means for the
transformed group centroids. Thus, the new mean for group 1 (low performance)
is —2.816, and for group 2 (high performance) it is +2.816. This indicates that average
of these two is 0. These two means were plotted on a straight line by locating this
average value as shown in Figure 10.8.

Figure 10.8 shows the decision rule for classifying any new subject into any of the
two categories. A badminton player is classified into high performance category if
his discriminant score is more than zero (Z>0) and in low performance if it is less
than zero (Z<0).

Testing Efficiency of the Model

Wilks’ lambda in Table 10.16 is 0.104. This indicates the percentage variability in the
dependent variable not explained by the independent variables in the model. Thus,
only 10.4% of the variability in dependent variable was not explained by the devel-
oped model. Since the value of chi-square associated with the Wilks’ lambda is
significant, the model was significant.

Table 10.17 is a classification matrix, which shows the summary of correct and
wrong classification of subjects in both the groups on the basis of the developed
discriminant model. It can be seen from the table that out of 12 subjects belonging to
the low-performance category, all were correctly classified; whereas out of 12 sub-
jects in the high-performance category, only 11 were correctly classified. Thus, out
of 24 cases, 95.8% cases were correctly classified.

Reporting
* The discriminant model was developed on the basis of only three independent
variables: height, shoulder width, and explosive strength.

e Out of these three variables, explosive strength was found to have maximum
discriminating power.

* Since chi-square was significant, the model was efficient. Wilks’ lambda sug-
gested that only 10.4% of the variability in dependent variable could not be
explained by the developed model.

* In sampled data model, 95.8% cases were classified correctly.
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LOGISTIC REGRESSION FOR
DEVELOPING LOGIT MODEL
IN SPORT

LEARNING OBJECTIVE
After completing this chapter, you should be able to do the following:

* Understand the situation where the logistic regression can be used

* Know the difference between the logistic regression and the ordinary least
square regression

* Understand the procedure involved in developing logit model in sport
* Learn to apply SPSS for developing logit model

* Understand the assumptions used in logistic regression

* Learn to interpret the outputs generated by SPSS in logistic regression

11.1 INTRODUCTION

Sports scientists always aspire for researching those parameters that can help
sportspersons to win their game. Parameters that can influence the performance may
be identified by analyzing data using different statistical techniques. If player’s
performance can be measured quantitatively, the technique like regression analysis

Sports Research with Analytical Solution using SPSS®, First Edition. J. P. Verma.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Verma/Sportsresearch
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discussed in Chapter 9 can be used to identify such parameters that are responsible
for performance provided assumptions used in the analysis are satisfied. But if the
measure of performance is categorical in nature say win/loss or success/failure, then
the regression technique fails to provide solution. In such situations, discriminant
analysis discussed in Chapter 10 may be used to identify parameters that can dis-
criminate such performance parameters. Discriminant analysis provides efficient
results only if the independent variables are measured either on interval or ratio
scale. Further, independent variables need to be normally distributed, linearly
related, and should have equal variance within each group of dependent variable
(Tabachnick and Fidell, 2001). In a situation where independent variables are measured
either on nominal, interval, ratio, or a mix of these scales, then the discriminant analysis
cannot be used to predict group membership in dependent variable. In such situations,
another statistical technique known as logistic regression is used to develop a model for
predicting a group membership of a dichotomous dependent variable. Another advantage
of using logistic regression is that it does not require independent variables to follow
the assumptions of normality, linearity, and equal variance within each group of the
dependent variable. Thus, the logistic regression is the most efficient technique of pre-
dicting group membership of a dichotomous dependent variable if the independent
variables are metric, nominal, or a mix of both, and the assumptions about the
distribution of independent variables are not satisfied. This chapter discusses the logistic
regression in detail and its application in developing the model in sports research.

11.2 UNDERSTANDING LOGISTIC REGRESSION

Logistic regression is used to develop a predictive model when the dependent variable
is dichotomous and independent variables are categorical. This analysis can also be used
if the independent variables are a mix of both categorical and numerical. Here dependent
variable takes value 1 or O where 1 represents occurrence of phenomenon and 0 indi-
cates its nonoccurrence. For instance, dependent variable may be success/failure in field
goal, winning/losing in a tennis match, injury/no injury in a football match, etc.

In logistic regression, we are interested in predicting the probability p that the
dependent variable takes value 1 rather than O on the basis of the independent vari-
ables, rather than predicting precise value of the dependent variable as is done in case
of least square regression analysis. We wish that we could use this probability as the
dependent variable in an ordinary regression, that is, as a simple linear function of
independent variables. But it is not possible because by including large number of
independent variables the value of p may exceed 1, which is not permissible. Due to
this reason in logistic regression, instead of predicting the probability p (that the
dependent variable will take value 1 rather 0), log of odds that the dependent variable
takes value 1 is estimated by the predictor variables in the model. The model in
logistic regression looks like as follows:

A

log(Odds) = log[l P j =b, +bX, +b,x, +++b x
-p
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Thus in logistic regression instead of estimating the probability p (that Y=1), log
of odds is estimated. This log(Odds) is also known as logit, hence the name logistic
regression.

Here b0 isaconstantand b, b,, ..., b_are the regression coefficients of X , X, ..., X
respectively.

Since in logistic regression log of Odds acts as a dependent variable which is regressed
on the basis of the independent variables, the interpretation of regression coefficients is
not straightforward as in the case of multiple regression. In simple regression, the regres-
sion coefficient b represents the amount of change in Y with 1 unit change in X, but this
concept is not valid in case of logistic regression; instead, the regression coefficient b is
converted into odds ratio to interpret the happening of outcome variable. If a logistic
model has only one independent variable, then the model will look like as follows:

log[1 ij:bO +bx,

n°

= p :eb0+b1x,
1-p
ebﬂ+b,x, ez
= p= by+b;x = z
I+e™™™  l1+e

Where z=b +b x,. In case of more than one independent variables in the model, the
z can be obtained by using the linear function of the independent variables as z=b +
b x,+bx,+---+b x . Thus, the probability p(y=1) is a function of z and it can be
represented as follows:

z

e
1+e*

p=f(z)

This function f is known as logistic function and the curve so obtained is known
as logistic curve. The logistic curve is a sigmoid curve having shape just like letter
“S” as shown in Figure 11.1. In logistic curve, the argument z is marked along
the horizontal axis and value of the function f(z) along the vertical axis.

The advantage of using the logit function is that the variable z can assume any
value from minus —oo to +oo, but the outcome variable p will always have values in the
range 0—1. This function is used to find the probability p that the target variable occurs
for a given set of values of the independent variables in the logistic regression model.

11.3 APPLICATION OF LOGISTIC REGRESSION
IN SPORTS RESEARCH

Logistic regression is useful in a situation where the researcher is interested in
predicting the occurrence of any happening. In order to get the reliable findings, a
minimum of 10 cases per independent variable need to be taken in the study. Several
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0.5

FIGURE 11.1 Logistic function.

situations may arise in sports research where this technique may be used. Some of
these are mentioned in the following text:

1. Inhockey, the success of penalty kick depends upon different factors say speed

of the hit, height of the players, accuracy, arm strength, and eye—hand coordi-
nation. In this case, penalty kick is a dependent variable which is binary in
nature. Converting penalty kick into goal is a success and missing is a failure.
Here logistic model may be used to identify the significant variables that can
be used to predict the success in the penalty kick. Here the likelihood of suc-
cess may be determined by each of the independent variable in the model. The
advantage of using this model is that independent variables can be categorical
as well as quantitative. For instance, the subject’s height may be classified as
tall versus short, and eye—hand coordination may be classified into excellent,
good, and average.

Since victory in football match depends upon the parameters like number of
passes, number of turnovers, penalty yardage, number of fouls committed
by the team. One may like to identify as to what independent parameters
may be useful for winning in a football match. The obvious advantage in
using this model is that the researcher is not required to ascertain the
assumptions of normality, linearity, and equal variance within each group of
the dependent variable.

. In horse racing, a logistic regression model may be used to determine the

likelihood of a particular horse finishing first in a specific race.

. This technique can be used to classify field goal attempts as either makes or

misses based upon the independent variables identified in the model.
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11.4 ASSUMPTIONS IN LOGISTIC REGRESSION

The following assumptions are made in using logistic regression:

1.

The dependent variable is binary. However, if it is continuous, one may decide
criterion to convert it into binary.

The independent variables can either be categorical, numerical, or a mix of
both. If categorical variable has more than two categories, a dummy variable
may be defined to make it dichotomous.

. Logit transformation of the dependent variable has a linear relationship with

the independent variables.

11.5 STEPS IN DEVELOPING LOGISTIC MODEL

Following steps are involved in logistic regression:

1.
2.

11.6

Define coding of the dependent variable, 1 for the event to occur and O otherwise.
If independent variable is categorical having more than two categories, define
the coding as 1, 2, 3, etc. The highest code needs to be given to the reference
category.

. Use SPSS to generate the following outputs:

(a) Coding of dependent and independent variables
(b) Omnibus tests of model coefficients

(c) Model summary

(d) Hosmer-Lemeshow test

(e) Classification table

(f) Variables in the equation

(g) Variables not in the equation

Develop logistic regression equation by using regression coefficient of the
variables selected in the model for predicting log of odds for the dependent
variable to occur against its nonoccurrence.

Report the findings on the basis of Exp(B) for each variable.

LOGISTIC ANALYSIS USING SPSS

Example 11.1

A basketball coach wanted to investigate the factors that are responsible for winning a
match. During a tournament, he collected the data on average height, number of pass,
offensive rebound, free throws, and blocks for each team. In every match, performance
(1 for winning and 0 for losing) of both the teams was noted. The score for each team
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on the “number of pass” was obtained as either 1 or O (If team’s total number of pass
was higher than that of the opponent, the score was noted as 0, otherwise 1). Similarly,
scores on other independent variables such as offensive rebound, free throws, and
blocks were obtained for each team as either O or 1. The data so obtained are shown in
Table 11.1. Let us develop a logistic model for estimating the probability of winning in
a basketball match on the basis of team statistics using SPSS. We shall also discuss the
comparative importance of the independent variables in winning basketball match.

Solution

In this problem, it is required to develop a logistic model for estimating the likelihood
of winning a basketball match on the basis of the identified independent variables.
This shall be done by using the SPSS. Step-by-step procedure shall be shown for
developing the logistic model. Once the outputs are generated, it will then be dis-
cussed to achieve the objectives. The SPSS provides findings of the logistic regression
in two blocks: “Block 0” and “Block 1.” In “Block 0,” a logistic model is developed
without using any of the explanatory variables. The model so obtained is based
on only regression constant. In “Block 1,” the regression model is developed
using predictor variables. The model with constant only is used as a reference for

TABLE 11.1 Result of Different Basketball Matches in a Tournament Along with
Selected Match Statistics

Match Result Number of Pass Offensive Rebound Free Throws Blocks

1 1 0 0 1 0
2 0 1 1 1 1
3 1 0 0 1 1
4 1 1 1 1 0
5 0 1 0 1 1
6 0 0 1 0 0
7 1 1 0 0 1
8 0 0 1 1 0
9 1 1 0 0 0
10 0 1 1 1 1
11 1 0 0 0 1
12 0 1 1 0 0
13 1 1 0 1 1
14 0 0 1 0 0
15 1 1 0 1 0
16 0 0 0 0 0
17 0 1 1 1 1
18 1 0 0 0 0
19 0 1 1 1 1
20 1 0 0 0 1
21 0 1 1 1 0
22 1 0 0 0 0

Number of pass: 1=lower, O=higher; Offensive rebound: 1=1lower, O=higher; Free throws: 1=lower,
O=higher; Blocks: 1=1ower, 0=higher; Result: 0=loser, | =winner.
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checking improvement in the model having predictor variables. The entire procedure
used in the logistic regression shall be discussed in a sequential manner in this
example for easy understanding of readers.

11.6.1 Block 0

In this block, since logistic model is developed with no predictors and just the
intercept, this is known as null model. Along with the model, its efficiency is also
shown by means of classification table. The percentage of correct classification is
then compared with the model developed by using the predictors in “Block 1.” The
relevant outputs of the first step are shown under the heading “Block 0” in SPSS
output window.

11.6.2 Block 1

In “Block 1,” a logistic model is developed by using the predictor variables along
with the intercept. The SPSS provides different options for developing this model,
which depends upon the nature of the research problem. If the study is exploratory
in nature where it is desired to identify the predictor variables out of large number
of independent variables, then the option “Forward:LR” is used. On the other
hand, if the study is confirmatory type where all the predictors identified by the
researcher are used to test the model, then ‘Enter’ method is used. In this study, we
shall use ‘Enter’ method for the logistic regression model. The relevant outputs
generated in the second step are shown under the heading “Block 1” in the SPSS
output window.

These outputs include the knowledge about the variables that are included and
excluded from the analysis and coding of the dependent and independent variables.
The output generated in this section is used to test the significance of the model,
regression coefficients, and odds ratios.

11.6.3 Computation in Logistic Regression with SPSS

11.6.3.1 Preparation of Data File In order to generate the outputs in logistic
regression, the first step is to prepare a data file. The readers who are using SPSS for
the first time are advised to refer to Chapter 1 for detail procedure in preparing the
data file. The data file will look like as shown in Figure 11.2.

11.6.3.2 SPSS Commands After saving the data file, perform the following steps:

1. Initiating SPSS commands: While being in the data view, click on the following
commands in sequence.

Analyze — Regression — Binary Logistic

The screen shall look like as shown in Figure 11.3.
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iw Chapter_13_1.sav [DalaSe11] - 5P55 Data Editor

Fle Edd View [sls Transfom Andyze OGraphs Ribes Addgns  Window He

CHA T 60 LEF A Gd BDE %09

[1:Resa [

| Result No_ef_Paﬁl o“:::“"ﬂ Fme_u-m[ Blocks |
1 | IQ 0.0 000 1.00 000
2 0.00 100 1.00 1.00 100
3 1.00 000 0.00 1.00 1.00
4 1.00 1.0 1.0 1.00 0o
5 0.00 1.00 0.00 1.00 100
6 0.00 0.00 1.00 0.00 000
T 1.00 1.00 0.00 0.00 1.00
8 0.00 0.00 1.00 1.00 000
) 1.00 1.00 0.00 000 000
10 0.0 1.0 1.00 1.00 100
" 1.00 0w 000 000 100
12 0.00 1.00 1.00 0.00 0.00
13 1.00 1.0 00 1.00 100
14 0.00 0.00 1.00 0.00 000
15 1.00 1.00 0,00 1.00 000
16 000 000 0.00 000 000
17 0.00 1.00 1.00 1.00 100
18 1.00 0.00 0.00 0.00 0.00
19 000 1.0 100 1.00 100
2 1.00 0.0 0.00 000 100
21 0.00 1.00 1.00 1.00 000
72 1.00 0o 00a 0.00 000

FIGURE 11.2 Data file of match statistics in basketball for logistic regression analysis.

t: *Chapter_13_1.sav [DataSet1] - SPSS Data Editor

Bl Est Vew Dsta [ranstom |dnalyze Grapns Lmmes Adigns  Wndow  Hep
CHE B 00 B[ rews L
[1: Resur [ Dyscrigtive Statistics »
Tables »
| Result ‘No_of_ Compare Means > Blocks ‘ =
4 1.00 General Linear Model » 0.00
5 0.00 Generaiged Linaar Modsls b 1.00
6 0.00 Miged Models » 0.00
4 1.00 Correlate » 1.00
8 000 | Begessin b B tnew..
) 1.00 Loginear » | [7] gurve Estimation...
10 0.00 Neural Networks »| R PortiuLeagt Squares
:1 1.00 Classify | sy UogeioL]
2 0.00 Data Reduction » T
13 1.00 Scale » B comt.
14 0.00 Nonparametric Tests » N
15 1.00 Time Series »
16 0.00 Survival » [of Noninear..
17 0.00 BBl Miscing Vakue Anlysis .. £ Weight Estimation...
18 1.00 Wuliple Response » . 2-Stage Least Squares...
19 0.00 Complex Sampies M| oplimal Scaing..
20 1.00 Qualty Control 3 T.00
21 0.00 EJROCW 0.00

FIGURE 11.3 Command sequence for logistic regression.
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Bl Edt Wiew Dofn  Jransform  AnafyTe  Graphs  MRles  ASdons  Window  Hep

CEE T 05 LBF A AG BOE 598

[Casaanmf
Resul Mo_of Pass mmm e Free_throws Blocks ‘ | |
—l1 : 108 | : I L J
! Lulll.i: Ibumlon
2 000"
3 1,00 e ——
: | e | [ e _
&5 Ottenve_rebound 10| _giack 1 of 1
§ Q.00f |2, Fres shrows fFree shvs. -
& 0.00) |& ] Previous | =
7 1,00 Sovarat gork
] 000 i
] 100 | ) Covmintes Calegurical Covarines:
i 0.00 - No.of_pasetrcicsion)
1 1.00 = Offensve,
12 0.00 +
— - e .
14 000 [ ‘]
15 100 [Re2a])
16 000 - Change Contrast
= e [on ][ ese ][ emed S |
18 100 000 000 0.00 Reterenca Categery @t Ofrst
19 0 100 100 1.00
20 1.00 000 000 0.0 [cortme J[comcwt ][ vee ]

FIGURE 11.4 Selecting dependent and independent variables in logistic regression.

2. Selecting variables: After clicking the ‘Binary Logistic’ option, next screen
shall be obtained for selecting dependent and independent variables. After
selecting all the independent variables, you need to identify categorical
independent variables included in it. Identify the variables by doing the
following:

(a) Selectdependent variable from the left panel and bring it to the “Dependent”
section in the right panel.

(b) Select all independent variables from left panel and bring them to the
“Covariates” section in the right panel.

(c) Click on Categorical command and select the categorical variables from
the “Covariates” section, and bring them to the “Categorical Covariates”
section in the right panel. The screen will look like as shown in Figure 11.4.

(d) Click on Continue.

3. Selecting options for computation: Once variables are selected, different
options need to be defined for generating outputs. Do the following:

(a) Click on Options command in the screen shown in Figure 11.4, which will
take you to the screen shown in Figure 11.5 for generating the required
outputs. Do the following:

(i) Check ‘Hosmer—Lemeshow goodness-of-fit’ option.
(i1) Let all other options be selected by default.
(iii) Click on Continue.
4. Selecting option for method to be used in the logistic regression: Depending on

whether the study is exploratory or confirmatory, option needs to be defined
for the method to be used in SPSS. For confirmatory study, ‘Enter’ option has
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i Logistic Regression: Options
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FIGURE 11.5 Option for generating Hosmer-Lemeshow goodness-of-fit and confidence
intervals.

TABLE 11.2 Case Processing Summary

Unweighted Cases* N Percent
Selected cases Included in analysis 22 100.0
Missing cases 0 0.0
Total 22 100.0
Unselected cases 0 0.0
Total 22 100.0

« If weight is in effect, see classification table for the total number of cases.

been provided by the SPSS; whereas for exploratory study one can choose any
one of the option from the following: Forward: LR, Forward: Wald, Backward:
LR, or Backward: Wald. The Forward: LR option is mostly used by the
researchers in case the study is exploratory in nature. Since in this study all
predictor variables shall be used in the model, the Enter method has been used
in the screen shown in Figure 11.4. In fact, this option is selected by default.
Click on OK to get the outputs.

11.6.3.3 SPSS Output In SPSS, lots of outputs are generated in the output
window. Relevant outputs selected from the output window are shown in Tables 11.2,
11.3,11.4,11.5,11.6, 11.7, 11.8, and 11.9. Understanding the interpretation of these
outputs shall facilitate you to report the findings of logistic regression in an appro-
priate manner. While reporting the findings in a research paper, it would be sufficient
to mention the outputs shown in Tables 11.6, 11.7, 11.8, and 11.9 only.
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TABLE 11.3 Dependent Variable Encoding
Original Value Internal Value
Losing 0
Winning 1
TABLE 11.4 Categorical Variables Coding
Parameter Coding
Frequency (D
Blocks Lower 12 0.000
Higher 10 1.000
Offensive_rebound Lower 12 0.000
Higher 10 1.000
Free_throws Lower 10 0.000
Higher 12 1.000
Number of pass Lower 10 0.000
Higher 12 1.000
TABLE 11.5 Classification Table** (Model without Predictors)
Predicted
Match Result
Observed Losing Winning Percentage Correct
Step O Match result Losing 0 0.0
Winning 0 100.0
Overall percentage 50.0
@ Constant is included in the model.
> The cut value is 0.500.
TABLE 11.6 Variables in the Equation
B S.E. Wald df Sig. Exp(B)
Step 0 Constant 0.000 0.426 0.000 1 1.000 1.000
TABLE 11.7 Variables Not in the Equation
Score df Sig.
Step 0 Variables No_of_Pass(1) 0.733 1 0.392
Offensive_rebound(1) 11.733 1 0.001
Free_throws(1) 0.733 1 0.392
Blocks(1) 0.000 1 1.000
Overall statistics 11.942 4 0.018
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TABLE 11.8 Omnibus Tests of Model Coefficients

Chi-Square df Sig.
Step 1 Step 13.604 4 0.009
Block 13.604 4 0.009
Model 13.604 4 0.009
TABLE 11.9 Model Summary
Step -2 Log Likelihood Cox and Snell R? Nagelkerke R?
1 16.895¢ 0.461 0.615

« Estimation terminated at iteration number 5 because parameter estimates changed
by less than 0.001.

11.7 INTERPRETATION OF FINDINGS

The following outputs have been selected from the output window of SPSS for
interpretation:

Case processing summary (Table 11.2)

Dependent variable encoding (Table 11.3)

Categorical variables coding (Table 11.4)

Classification table (model without predictors) (Table 11.5)
Variables in the equation (Table 11.6)

Variables not in the equation (Table 11.7)

Omnibus tests of model coefficients (Table 11.8)

Model summary (Table 11.9)

Hosmer-Lemeshow test (Table 11.10)

Classification table (model with predictors) (Table 11.11)
Variables in the equation (with predictors) (Table 11.12)

11.7.1 Case Processing and Coding Summary

Table 11.2 shows the number of cases (N) in each category (e.g., included in the
analysis, missing, and total) and their percentage. SPSS does the list-wise deletion of
missing data. Since there is no missing data, the number of missing cases is shown as 0.
The coding of the dependent variable has been shown in Table 11.3.

In Table 11.4, coding of all the categorical independent variables and their
frequencies has been shown. In coding categorical variable, highest number should
be allotted to the reference category because by default SPSS considers the category
with the highest coding as the reference category and gives the code as 0. For instance,
if you define the coding of the variable “Block™ as 1 for “Lower” and O for “Higher,”
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TABLE 11.10 Hosmer—Lemeshow Test

Step Chi-Square df Sig.
1 6.834 8 0.555

TABLE 11.11 Classification Table”

Predicted
Match Result
Observed Losing Winning Percentage Correct
Step 1 Match result Losing 9 2 81.8
Winning 1 10 90.9
Overall percentage 86.4
¢ The cut value is 0.500.
TABLE 11.12 Variables in the Equation
B S.E. Wald df Sig. Exp(B)
Step 1 No_of_pass(1) —-0.337 1452  0.054 1 0.817 0.714
Offensive_rebound(1) 4.190 1.556 7.249 1 0.007 65.990
Free_throws(1) -0.337 1452 0.054 1 0.817 0.714
Blocks(1) 0.834 1.390  0.360 1 0.548 2.303
Constant -2.539 1.416  3.213 1 0.073 0.079

“ Variable(s) entered on step 1: No_of_Pass, Offensive_rebound, Free_throws, Blocks.

then the SPSS will consider Lower as the reference category and convert its code to
0 and the other category Higher as 1.

This fact can be easily verified by looking to the coding of the independent
categorical variables in Table 11.1, that is, number of pass (1:lower, 0:higher), free
throws (1:lower, O:higher), offensive rebound (1:lower, 0:higher), and blocks
(1:lower, 0:higher). These coding have been reversed by the SPSS as shown in
Table 11.4. The SPSS also provides you the facility of changing the reference cate-
gory as the lowest coding as shown in Figure 11.4.

11.7.2 Analyzing Logistic Models

Results of the logistic regression have been obtained in two blocks: Block 0 and Block 1.
In Block 0, the logistic model has been developed using only intercept and no predictive
variable; whereas in Block 1, the model with predictive variables has been developed.

11.7.2.1 Block 0: Logistic Model without Predictors Results of the logistic
regression with intercept only are shown in Tables 11.5, 11.6, and 11.7. This model
developed in Block 0 is used to compare the efficiency of the model developed in
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Block 1 with one or more predictors. Table 11.5 indicates that if nothing is known
about the independent variables and one simply guesses that a particular team would
win in the match, he would be correct 50% of the time. Table 11.6 shows that the
Wald statistics is not significant as its significance value is 1.00, which is more than
0.05. Thus, it may be concluded that the model with constant is not worth and is
equivalent to simply guessing about the winning of a particular team in the match
without having the knowledge about any predictor variable.

Table 11.7 indicates whether each independent variable may improve the model
or not. Here only offensive rebound variable is significant; hence it may improve the
model if included. If none of the variables had been significant the analysis would
have been terminated at this stage.

Since the model with intercept only has no practical utility, this may be ignored in
reporting the findings.

11.7.2.2 Block 1: Logistic Model with Predictors 1In Block 1, the logistic model
is developed by the SPSS using all the four predictive variables: number of pass,
free throws, offensive rebound, and blocks. This is the actual model in which we are
interested. The results of this model are shown in Tables 11.8, 11.9, 11.10, 11.11,
and 11.12.

11.7.2.2.1 Testing Significance of the Model Omnibus tests for the model
coefficients in Table 11.8 give us a chi-square of 13.604 with 4 df, which is significant
beyond 0.01. This is the test of the null hypothesis that adding these four variables
in the model will not be significant predictors if included.

The model summary in Table 11.9 shows that the —2 Log Likelihood statistic is
16.895. This statistic indicates how poorly the model predicts the decisions about
winning a team. The smaller the value of -2 Log Likelihood statistic, the better the
model. The SPSS does not give the value of this statistic for the model that has
only the intercept, but we know that it is equal to 30.499. Adding all the four vari-
ables, that is, number of pass, free throws, offensive rebound, and blocks, the value
of the -2 Log Likelihood statistic has reduced by 13.604(=30.499 —16.895). This
is equal to y? statistic we just discussed in the previous paragraph. In Table 11.9,
the Cox and Snell R Square and Nagelkerke R Square can be interpreted like R? in
a multiple regression. The value of Cox and Snell R? cannot reach maximum value
of 1, but the Nagelkerke R? can reach a maximum of 1. The reader should report
the value of Nagelkerke R? as a measure of efficiency of the model. Thus, 61.5%
variability of the dependent variable can be explained by all the four predictors
together.

11.7.2.2.2 Testing Goodness of Fit of the Model In order to know whether the
developed logistic model is efficient in predicting the happening of the event (dependent
variable taking value 1), a Hosmer—Lemeshow test is used. This test is used for
assessing the goodness of fit of the logistic model. The Hosmer-Lemeshow test sta-
tistic follows a chi-square distribution. Since the value of chi-square is not significant
as shown in Table 11.10, the logistic model is good in estimating the happening of the
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event (dependent variable taking value 1). In other words, the Hosmer—Lemeshow test
(p=0.555) indicates that the numbers of winning are not significantly different from
those predicted by the model, and that the overall model fit is good.

11.7.2.2.3 Model Accuracy Table 11.11 is a classification table that shows the
observed and predicted values of the dependent variable. Out of 22 matches, two
teams have been wrongly predicted to be the winner and only one team has been
wrongly classified as loser by the developed model. However, nine teams have been
correctly predicted as loser and ten have been correctly predicted as winner. Thus, the
model correctly classified 86.4% cases. In comparing results with that of Table 11.5,
it can be seen that when no predictor was used the model correctly classified 50%
cases; whereas by including four independent variables in the model, the percentage
of correct classification has increased to 86.4%. Thus, it may be inferred that
introducing these independent variables has definitely improved the model efficiency.

11.7.2.2.4  Developing Logistic Model Table 11.12 is the main result in logistic
regression. It includes regression coefficients (B) and odds ratios (Exp(B)). It also
includes Wald chi-square statistic that tests the unique contribution of each predictor. You
can notice that only offensive rebound predictor is significant (p<0.05). Since we are
developing the logistic model by including all the four independent variables, by using
the coefficients shown in the table, the following logistic model can be developed:

1og1L = —2.539+0.834 x Blocks — 0.337 x Free throws
Y
+4.190 x Offensive _rebound —0.337 xNo._of _pass  (11.1)

where p is the probability of winning the match. The dependent variable in the
logistic regression is known as logit (p) which is equal to log(p/(1 —p)).

Only those variables that are found to be significant should be included in the
logistic model but for describing the results comprehensively, other variables have
been included in this model.

The estimates of regression coefficients provided by the Equation 11.1 explain the
relationship between the independent and dependent variables, where the dependent
variable is on the logit scale. These estimates show the amount of increase (or
decrease, if the sign of the coefficient is negative) in the estimated log odds (“Match
result’=1) that would be predicted by a 1 unit increase (or decrease) in the
independent variable, holding all other variables constant.

Since regression coefficients (B) are in log odds unit, they are often difficult to
interpret, and thus they are converted into odds ratios that are equal to Exp(B). These
odds ratios are shown in Table 11.12.

Significance of the Wald statistic indicates that the variable significantly predicts the
winning of a team. The logistic regression should be used if the sample size is quite large,
preferably more than 500 (or at least 10 cases per independent variable). In case of small
sample due to inflating the level of significance, it does not give the correct picture.
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11.7.2.2.5 Explanation of Odds Ratios and Logistic Model 1In Table 11.12,
the odds ratio Exp(B) for all the predictors has been shown. The larger the value
of odds ratio, the more the predictive value of the independent variable. In this
example, the offensive rebound has a larger odds ratio 65.99, and hence this
is the most important predictor in predicting the win in the match. It may be
interpreted that the odds for the team to win are increased by a factor 65.99 if
the average offensive rebounds of a team are higher in comparison with the
other team provided other independent variables are constants. Let us understand
this fact.

. . odds ratio
Since odds ratio = P =

1-p P= 1+ odds ratio

For offensive rebound, p = 6599 =0.985

1+65.99

This indicates that if a team’s average offensive rebound is more than that of the
opponent team, his probability of winning would be 0.985 provided other variables
remain constant.

Since the odds ratio for the Blocks is 2.303, it indicates that if the average number
of blocks of a team is more in comparison with that of the opponent, its odds for
winning would increase by a factor 2.303 provided other variables remain constant.

For Block, p = & =0.697
1+2.303

Thus, if a team’s average number of blocks is more than that of the opponent,
its probability of winning would be 0.697 provided other variables remain
constant.

Similarly for the number of pass, the 0.714 odds ratio means that the odds of
winning for a team are only 0.714 times in comparison with the team whose average
number of pass is lower.

Let us now understand the interpretation of the logistic regression model that we
developed in Equation 11.1. If two teams A and B are playing a basketball match and
the value of all the independent variables for the team A is as follows:

Blocks=1 (average number of block of the team A is higher than that of team B)

Free throws=1 (average number of free throws of the team A is higher than that
of team B)

Offensive rebound=1 (average number of offensive rebound of the team A is
higher than that of team B)

Number of pass=0 (average number of pass of the team A is lower than that of
team B)
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Then by substituting these values in Equation 11.1, we obtain the following:

1og1L = 25394 0.834x1-0.337x1+4.190x1—0.337x0 = 2.148
-p

N Odds ratio = IL — e Z§ 5677
-p
> p= _8.5677 _ 0.8955
1+8.5677

309

Thus, it may be inferred that the probability of the team A to win in the match would
be 0.8955. One of the main features of the logistic regression equation is that no
matter how many variables are included in the model, the probability of the dependent

variable to occur cannot exceed 1.
Remark: You can compute the value of e*!*® in Excel.

11.7.2.3 Reporting in Logistic Regression Let us see how to report the findings

in the logistic regression by means of the results obtained in this example.

The logistic model developed using only intercept and without any predictor in
Block O classifies only 50% cases correctly (Table 11.5) about the match results
in a basketball tournament. However, if all the four predictors (number of pass,
offensive rebound, free throws, and blocks) were included in the model shown
in Block 1, the efficiency increased because the number of cases classified
correctly by this model was 86.4% (Table 11.11).

Since the value of chi-square in omnibus test (Table 11.8) is significant, it may
be concluded that the model with all the four independent variables has signifi-
cantly increased our ability to predict the match results.

The Nagelkerke R? statistic is reported as 0.615 (Table 11.9); hence, 61.5%
variability in predicting the match result can be explained by all the four predic-
tors in the model.

Since Hosmer—Lemeshow test is not significant (Table 11.10), it may be concluded
that the fit is good and the developed logistic model is good in estimating the result.

Among all the four independent variables only for offensive rebound, the Wald
statistic is significant (p=0.007); hence, it may be concluded that the offensive
rebound is the most important variable for estimating the result (Table 11.12).
Further, odds ratio for the blocks is the second highest, that is, 2.303, and
hence this is the second important variable in the model. It may be concluded
that the probability of winning a team is 0.985 if its average offensive rebound is
higher than that of the opponent team provided other variables are held
constants.

Finally, the logistic regression model developed in (Eq. 11.1) can be used to
predict the match result if the values of all four independent variables are known.
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11.8 SUMMARY OF THE SPSS COMMANDS FOR
LOGISTIC REGRESSION

1. After preparing the data file, follow the command sequence as given in the text

while being in the data view for logistic regression:

Analyze — Regression — Binary Logistic

. Select the dependent variables from the left panel, and bring them to the

“Dependent” section in the right panel, and select all independent variables
including categorical variables from left panel to the “Covariates” section in
the right panel.

. By clicking on the Categorical command, select the categorical variables from

the “Covariates” section and bring them to the “Categorical Covariates” in the
right panel and click on Continue.

. Click on the Options command and check ‘Hosmer—Lemeshow goodness-of-fit’

option and click on Continue.

. Ensure that the ‘Enter’ option is chosen by default and then click on OK for

output.

11.9 EXERCISE

11.9.1 Short Answer Questions

Q.1

Q.2

Q3
Q.4
Q5

Q6

Q7

How would you interpret the logistic regression equation? Describe the
procedure of computing probability of dependent variable to happen if log
odds is known.

Discuss the meaning of odds ratio and explain the logistic curve. Why the
probability of dependent variable to happen cannot exceed 1.

Discuss the assumptions used in logistic regression.
Discuss two situations in sports where logistic regression can be used.

Discuss the procedure in logistic regression. What outputs are generated in
SPSS?

What is the difference in outputs generated by the SPSS in Block 0 and Block
1? What is the utility of the model developed in Block 0?

Explain the following terms:
(a) -2 Log Likelihood

(b) Hosmer-Lemeshow Test
(c) Nagelkerke R?

(d) Classification table

(e) Logit



EXERCISE 311

11.9.2 Multiple Choice Questions

Note: Questions 1-10 have four alternative answers for each question. Tick mark the
one that you consider the closest to the correct answer.

1

With the help of logistic regression equation, the value of the
(a) Dependent variable is estimated

(b) Probability that the dependent variable y=1 is estimated
(c) Logit is estimated

(d) Odds for the dependent variable Y to assume 1 is estimated

In binary logistic regression which of the following statement is true?

(a) The dependent variable is categorical and independent variables should be
numerical.

(b) The dependent variable is dichotomous and independent variables should be
ordinal.

(c) The dependent variable is categorical and independent variables should be
nonparametric.

(d) The dependent variable is dichotomous and independent variables can be
either numerical, categorical, or a mix of both.

If Exp(4)=54.6, then Log(54.6) is
(a) 58.6

(b) 4

(c) 54.6

(d) 2184

If the probability of success is 0.4, then the odds ratio for the success is
(a) 0.67

(b) 0.6

(c) 0.24

(d) 0.20

If odds ratio for the happening of an event is 3, then the probability of the
happening of the event is

(a) 0.70

(b) 0.43

(c) 0.30

(d) 0.75

In a logistic regression if the odds ratio for an independent variable is 4.6, then

the true statement is:

(a) The probability of the happening of the dependent variable is 0.46.

(b) The odds for the happening of the dependent variable is increased by a
factor of 4.6 against 1 unit increase in the independent variable provided
other independent variables are held constant.

(c) The odds against the happening of the dependent variable is 4.6.

(d) The odds for the happening of the dependent variable is 4.6.
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If p is the probability of the happening of a dependent variable, then logit is
computed by

(a) lnl_—p
p

(b) IntP
p

(c) logL
1-p

(d) log——
1+p

Iflog odds is represented by L, then the probability of the happening of a dependent
variable is obtained by

L
(@) P—E

1+L
b) p=——
() p L

(c) log

L
d) p=—-
@ I1+L
In the output of logistic regression, Odds ratio is denoted by
(a) Log(B)
(b) Exp(B)
(c) B coefficient

P
@

The Hosmer—Lemeshow test is used to test

(a) Whether the model fit is good or not

(b) Whether the model with predictors and without predictors gives the same results
(c) Whether the predictors included in the model are worth including

(d) Whether model with constant only and no predictors is significant

11.9.3 Assignment

1. An exercise scientist wanted to investigate the likelihood for the men cricketer
to be obese on the basis of different lifestyle parameters. A cricketer was iden-
tified as obese if his fat% was 20 or more. The data so obtained are shown in
Table 11.13. Develop logistic regression and explain your findings. Discuss the
likelihood of cricketer being obese due to change of each independent variable
separately in the model.
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TABLE 11.13 Data of the National-Level Men Cricketers

Obesity Smoking Alcohol Fat
SN Status Status Consumption Consumption Sleep Hour
1 1 1 1 2 4
2 1 0 1 1 5
3 0 0 0 1 6
4 1 1 1 0 4
5 0 1 0 0 5
6 0 0 1 1 7
7 1 1 1 2 6
8 0 0 0 0 4
9 1 1 1 2 8
10 1 1 1 1 7
11 0 0 0 0 8
12 0 1 1 1 5
13 0 1 0 0 6
14 1 0 1 0 7
15 0 0 0 2 4
16 1 1 0 1 5
17 1 1 1 1 7
18 0 0 0 2 6

Coding: 0, nonobese; 1, nonsmoker; 1, nonalcoholic; 2, less fatty diet.
1, obese; 0, smoker; 0, alcoholic; 1, medium fatty diet.
0, high fatty diet.

11.10 CASE STUDY ON LOGISTIC REGRESSION

Objective

A sports scientist wanted to develop a strategy for winning in women soccer match.
During a soccer championship, she obtained the data on height, dietary habit (veg/
nonveg), VO, max, body fat%, and 40 yrd dash timings on the players of each team. For
each team, average score of height, VO, max, Fat%, and 40 yrd timings was computed.
A team’s diet score was noted as 1 if more number of players were nonveg in comparison
with that of the opponent team; whereas, the other team’s score was noted as O (repre-
senting veg). The data so obtained for the teams in 12 matches are shown in Table 11.14.

Research Issues

The following research questions were investigated:

1. Whether an efficient logistic model be developed for finding the likelihood of
winning in soccer match on the basis of some predictor variables.

2. Whether the developed model would be significant and efficient.

3. Whether few independent variables will have better contribution in the model
over others.
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Data Format

The format used for preparing data file in SPSS is shown in Table 11.14.

Analyzing Data

In this study, it was required to develop a model for estimating the likelihood of win-
ning in women soccer match on the basis of the identified predictor variables. Since
the dependent variable was categorical and independent variables were a mix of both
categorical and numerical, the logistic regression was used. The analysis was carried
out in SPSS by using the following commands: Analyze, Regression, and Binary
Logistic in sequence. The dependent variable and covariates were placed in the
appropriate locations in the dialog box by identifying the categorical variable. By
choosing the option ‘Hosmer-Lemeshow goodness-of-fit’ and ‘Enter,” the output
was generated in two sections: Blocks 0 and Block 1. Since ‘Enter’ method was
chosen, the model was developed by taking all the predictor variables in the model.
The output in Block 0 shows a logistic model without using any of the explanatory
variables. In Block 1, the logistic model was developed using all the explanatory var-
iables in the study. The outputs generated by the SPSS are shown in Tables 11.15,
11.16,11.17,11.18, 11.19, 11.20, and 11.21. Findings of the logistic regression shall
be discussed in two blocks.

TABLE 11.15 Classification Table*”

Predicted
Team_Result
Percentage
Observed Loser Winner Correct
Step 0 Team_result Loser 0 11 0.0
Winner 0 13 100.0
Overall percentage 54.2
¢ Constant is included in the model.
 The cut value is 0.500.
TABLE 11.16 Variables Not in the Equation
Score df Sig.
Step 0 Variables Height 2.018 1 0.155
VO, max 0.321 1 0.571
Diet(1) 5.916 1 0.015
Fat 8.771 1 0.003
Forty_Yrd 2.615 1 0.106
Overall statistics 14.965 5 0.011
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TABLE 11.17 Omnibus Tests of Model Coefficients

Chi-Square df Sig.
Step 1 Step 20.243 5 0.001
Block 20.243 5 0.001
Model 20.243 5 0.001
TABLE 11.18 Model Summary
Step -2 Log Likelihood Cox and Snell R? Nagelkerke R?
1 12.862¢ 0.570 0.761

« Estimation terminated at iteration number 7 because parameter estimates changed by less than 0.001.

TABLE 11.19 Hosmer-Lemeshow Test

Step Chi-Square df Sig.
1 6.711 8 0.568

TABLE 11.20 Classification Table®

Predicted

Team_Result

Observed Loser Winner Percentage Correct
Step 1 Team_result Loser 9 2 81.8
Winner 0 13 100.0
Overall percentage 91.7

“ The cut value is 0.500.

TABLE 11.21 Variables in the Equation

B SE. Wald  df Sig. Exp(B)

Step 1°  Height 0.161 0.138 1355 1 0.244 1.175
VO, max 0.430 0478  0.807 1 0.369 1.537

Diet(1) -3.663 1.889  3.762 1 0.052 0.026

Fat -1.076 0589  3.333 1 0.068 0.341

Forty_yrd -0.275 2772 0.010 1 0.921 0.759

Constant ~18.660 37766  0.244 1 0.621 0.000

“ Variable(s) entered on step 1: Height, VO2 max, Diet, Fat, Forty_Yrd.
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Block 0: Logistic Model without Predictors

Table 11.15 indicates that if nothing is known about the independent variables and
one simply guesses about the match result, he would be correct 54.2% of the time.

Table 11.16 indicates whether each independent variable may improve the model
or not if included. Here only diet and fat% variables seem to be significant; hence
they may improve the model if included.

Block 1: Logistic Model with Predictors

In Block 1, the logistic model was developed by the SPSS using all the five predic-
tors. This is the actual model of interest.

Testing significance of the model: Omnibus test of model coefficients in
Table 11.17 shows that a chi-square value 20.243 is significant (p=0.001). This indicates
that after adding the predictor variables, the ability of predicting match result in a
women soccer match would significantly improve.

In Table 11.18, the Nagelkerke R? is 0.761. This indicates that 76.1% variability
of the dependent variable can be explained by all the five predictors together.

Testing goodness of fit of the model: The Hosmer—Lemeshow test was used to
test whether the developed logistic model is efficient in predicting the happening of
the dependent variable. Since the value of chi-square is not significant (p=0.568) as
shown in Table 11.19, the developed model is good in estimating the match result
(a dependent variable).

Model accuracy: Table 11.20 shows that the model correctly classified 91.7%
cases. In comparing the result of Table 11.15, it can be seen that when no predictor
was used, model correctly classified 54.2% cases; whereas by including five
independent variables in the model, the percentage of correct classification has
increased to 91.7%. It may therefore be concluded that introducing these independent
variables has definitely improved the model efficiency.

Developing logistic model: Table 11.21 is the main result in logistic regression. It
includes regression coefficients (B) and odds ratios (Exp(B)). It also includes Wald
chi-square statistic that tests the unique contribution of each predictor. It can be seen
that no variable is significant independently. Since the logistic model was developed
by including all the five independent variables, hence using the coefficients shown in
the table the following logistic model was developed.

1og1L =—18.660+0.161x Height +0.430 x VO, max—3.663
-p
x Diet —1.076 x Fat —0.275x Forty_yrd

where p is the probability of winning the match. The dependent variable in the
logistic regression is known as logit (p), which is equal to log(p/(1—p)).
Explanation of odds ratios and logistic model: In Table 11.21, the odds ratio
Exp(B) for all the predictors has been shown. The larger the value of odds ratio, the
more the predictive value of the independent variable. In this study, the VO, max has
a larger odds ratio 1.537; hence, this is the most important predictor in predicting the
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win in the match. It may be interpreted that the odds for the team to win are increased
by a factor 1.537 if the average VO, max of a team is increased by 1 unit provided
other independent variables are constants. This fact can be understood like this

Since odds ratio= —2— = p= M
I-p 1+ odds ratio
ForVO, max, p= ﬂ =0.61
1+1.537

This indicates that if a team’s average VO, max is increased by one unit the log odds
of the team will increase by 1.537 and in that case probability of winning the match
will become 0.61 in comparison to opponent, then the probability of winning would
be 0.61 provided other variables remain constant.

Since the odds ratio for the height is 1.175, it indicates that if the average height
of the team players is increased by 1 unit, its log odds of winning would increase by
1.175 times provided other variables remain constant.

1.175

——2 054
1+1.175

For Height, p=
Thus, if the average height of a team’s player is increased by 1 unit, its probability of
winning would be 0.54 provided other variables remain constant.

Reporting in Logistic Regression

* The logistic model developed using only intercept and without any predictor in
Block 0 classified only 54.2% cases correctly about the team result in soccer
tournament. But after including all the five predictors (height, VO, max, diet,
fat, and 40 yrd) in the model, the efficiency has increased because the number
of cases classified correctly by this model became 91.7%.

* Since the chi-square in omnibus test is significant, it may be concluded that the
model with all the five independent variables has significantly increased our
ability to predict the decision about the team result.

» The Nagelkerke R? statistic is reported as 0.761; hence, 76.1% variability in
predicting the winning of a team can be explained by all the five predictors in
the model.

 Since Hosmer-Lemeshow test was not significant, it may be concluded that the
fit is good and the developed logistic model is good in estimating the happening
of winning in a match.

» The Wald statistic was not significant for any of the variable; hence, no variable
was found to be independently significant in the model.

* If the mean score of VO, max and height of a team are increased by 1 unit, then
its chances of winning would be marginally higher than that of the opponent.
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APPLICATION OF FACTOR ANALYSIS

LEARNING OBJECTIVES
After completing this chapter, you should be able to do the following:

* Know the use of factor analysis in developing test battery

* Interpret various terms involved in factor analysis

* Identify the situation where factor analysis can be used

» Explain the procedure of retaining factors and identifying variables in it
* Understand the steps involved in factor analysis

* Learn the steps involved in using SPSS for factor analysis

* Describe the output obtained in factor analysis

* Learn to write the results of factor analysis in standard format.

12.1 INTRODUCTION

Talent identification is one of the thrust areas of research in sports. Different
approaches are used in developing criteria for talent identification. Coaches and sport
scientists use their knowledge to identify parameters for developing such criteria.
The factor analysis approach provides a solution in this regard by reducing a large
number of variables, considered to be associated with performance, into a few latent
factors that can be more easily studied. For example, in studying a group of bad-
minton players, their measures on height, weight, arm length, leg length, agility,
speed, upper body flexibility, lower body flexibility, and knee flexibility might be
summarized using factor analysis as anthropometric (height, weight, arm length, and

Sports Research with Analytical Solution using SPSS®, First Edition. J. P. Verma.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Verma/Sportsresearch
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leg length), flexibility (upper body flexibility, lower body flexibility, sit and reach),
and speedo-agility (agility, speed) factors. In this way, nine variables can be grouped
into three different latent factors.

Thus, in factor analysis, a few factors are extracted out of the large set of variables.
Since variables in each factor are associated among themselves, they represent the
same phenomenon. In this way, instead of studying all the parameters, a few extracted
factors are studied. These factors so extracted explain much of the variations of the
group characteristics.

The factor analysis may be used for developing a test battery. For example, to
assess fitness status of an individual, several parameters may be tested. But using a
large number of variables is neither feasible nor advisable. Thus, these variables may
be reduced to a few significant factors that may be used for developing a test battery
for assessing fitness. These factors so extracted by the factor analysis technique
explain much of the variation of an individual’s fitness.

Consider another situation where flexibility of an individual needs to be assessed.
This can be done by obtaining 20 measures of different joints flexibility using
flexometer and goniometer. Since many of these measures of the flexibility may be
associated among themselves, by using factor analysis these variables may be reduced
to few factors that can explain the total flexibility of an individual. In each factor,
the most dominant variable may be selected for inclusion in the test battery. Thus, a
battery of few variables may explain most of the subject’s flexibility.

12.2 TERMINOLOGIES USED IN FACTOR ANALYSIS

We have seen that a factor analysis is a data reduction technique that aims at reducing
a large number of variables into fewer factors to study the variability of a group. It can
also be used to study the structure of factors present in a data set. Before discussing the
procedure involved in factor analysis, let us first discuss the terminologies involved in it.
It is assumed that the readers are familiar with the basic logic of statistical reasoning
and the concepts of variance and correlation; if not, it is advised that they should read
the basic statistics topic at this point from some other standard texts of statistics.

12.2.1 Principal Component Analysis

Principal component analysis is the most widely used method of factor analysis.
In this method, the factor explaining the maximum variance is extracted first. After
that, it removes the variance explained by the first factor and then starts extracting
maximum variance for the second factor. This process goes on to the last factor.

12.2.2 Eigenvalue

The eigenvalue is the variance explained by a factor. It is also known as characteris-
tics root. The sum of all the eigenvalues is equal to the number of variables. The
decision about the number of factors to be retained in the factor analysis is taken on
the basis of eigenvalue.
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12.2.3 Kaiser Criterion

In factor analysis, one needs to decide the number of factors to be selected. As per the
Kaiser’s criteria, only those factors having eigenvalues greater than 1 should be
retained. Initially, each variable is supposed to have its eigenvalue 1. Thus, it may be
said that unless a factor extracts at least as much as the equivalent of one original
variable, it is dropped. This criterion was proposed by Kaiser (1960) and is widely
used by the researchers.

12.2.4 The Scree Test

It is a graphical method of identifying the point where important factors stop and
unimportant ones start. The scree test was developed by Cattell. “Scree” is a term
used in geology. The scree is the rubble at the bottom of a cliff. A correlation matrix
can be decomposed into independent weighted combinations of the original vari-
ables. Each set will have some variance associated with it. In scree test if a factor is
important, it will have a large variance. Here eigenvalues are plotted against the
factors. Then the factors above the elbow in the plot are retained. These are the
important factors that account for the bulk of the correlations in the matrix. The scree
test graph may look like as shown in Figure 12.1.

12.2.5 Communality

The communality is the amount of variance each variable in the analysis shares with
other variables. More specifically, it is the squared multiple correlation for the variable as
dependent using the factors as predictors and is denoted by h2 The value of communality
may be considered as an indicator of the usefulness of a variable in the factor analysis.
If a variable has a low communality, the factor model is not working well for that
variable, and possibly it should be removed from the model. Low communalities

4

S} W
| |

Eigen value

Ju—
|

o
|

1 2 3 4 5 6 7
Component number

FIGURE 12.1 Scree plot.
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across the set of variables indicate the variables are little related to each other. The
communalities must be interpreted in relation to the interpretability of the factors.
A communality of 0.80 may seem to be high but is meaningless unless the factor
on which the variable is loaded is interpretable, though it usually will be. A com-
munality of 0.30 may seem to be low but may be meaningful if the item is contrib-
uting to a well-defined factor.

Thus, it is not that only the value of communality coefficient is important, but the
important consideration is the extent to which the item plays a role in the interpreta-
tion of the factor. Often the item would contribute more in explaining the factor if its
communality is high.

12.2.6 Factor Loading

Factor loading can be defined as the correlation coefficient between the variable and
the factor. It shows the variance explained by the variable on that particular factor.
As a rule of thumb, 0.7 or higher factor loading represents that the factor extracts
sufficient variance from that variable.

12.2.7 Varimax Rotation

In factor analysis, the factor loadings are plotted as a scatter plot. In the scatter plot,
each variable is represented as a point. In this plot, one can rotate the axes in any
direction without changing the relative locations of the points to each other. However,
the actual coordinates of the points, that is, the factor loadings would of course
change. Thus, if the axes are rotated by some degree, say 30° or 45°, one might attain
a clear pattern of loadings in each factor. Varimax rotation is the most widely used
method of rotating the axes in the scatter plot. Other rotational strategies are
Quartimax, Equamax, Direct oblimin, and Promax methods.

12.3 ASSUMPTIONS IN FACTOR ANALYSIS
The following assumptions are made in applying factor analysis:

1. Data used in the factor analysis is based on an interval scale or a ratio scale
2. Variables are normally distributed.

3. Relevant variables are included in the analysis. In other words, variables that
theoretically go together have been included in the study.

4. Sufficient sample size has been taken for factor analysis. At least five cases per
variable should be taken.

5. No outlier is present in the data.
6. Variables are linearly related with each other reasonably.
7. The spread about the line of best fit is homoscedastic.
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12.4 STEPS IN FACTOR ANALYSIS

1. The first step in the factor analysis is to get unrotated factor solution by using the
principal component method. This solution is obtained on the basis of the corre-
lation matrix developed among the variables. This solution contains the factors
extracted and loadings of all the variables on these factors. Factors are retained
in the primary solution on the basis of their eigenvalues. Only those variables
that have eigenvalues more than 1 are retained. The scree plot can be used to
identify the factors to be retained.

2. The second phase of the analysis provides the final solution after rotating the
factors. The researchers usually employ the varimax rotation. After the rota-
tion, each variable can be exclusively classified in one or the other factors.
Variables in each factor are identified on the basis of its factor loadings. As per
the convention, in each factor only those variables that have factor loadings
more than 0.7 are identified. After identifying variables in each factor, factors
are named on the basis of the variable’s characteristics identified in it.

3. Finally, one or two variables from each factor may be selected on the basis of
highest loadings to develop a test battery. Usually, the first factor explains the
maximum variance of the group and, therefore, two or three variables may be
kept from it depending upon the nature of the variables and its explainability.
From the rest of the factors, normally one variable per factor is selected as the
sole purpose of the factor analysis is to reduce the variables so that the maximum
variance in the group may be explained.

12.5 APPLICATION OF FACTOR ANALYSIS

Consider a situation where it is desired to develop an instrument in the form of question-
naire to assess the lifestyle of an individual. To do so, one must determine the parame-
ters based on which the lifestyle can be assessed. On the basis of literature review, one
may decide to identify 10 parameters. Now the two main issues of investigation are as
follows: firstly, whether these parameters explain different dimensions of lifestyle and,
secondly, if we could develop the lifestyle assessment instrument on less than 10 param-
eters. To address these two issues, factor analysis technique can be used. By using this
technique, all these 10 parameters can be reduced to few factors. By selecting variables
from these factors on the basis of their higher loadings, a questionnaire may be devel-
oped for assessing the lifestyle of an individual. This way, only relevant parameters
would be used for assessment; and instead of 10 parameters, fewer numbers of variables
may be required for developing the questionnaire.

Procedure Involved

After identifying the parameters responsible for the lifestyle as mentioned below,
a questionnaire can be framed, where the respondent can get scores in between
1 and 5 depending upon the type of response selected for each question.
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Parameters responsible for the lifestyle

Alcohol use
Tobacco use
Blood pressure
Body weight
Activity level
Stress level
Car safety
Relationships

A S I Al o e

Rest/sleep

#
e

Life satisfaction

After getting the scores on each of these 10 parameters, a data file can be pre-
pared for using in the SPSS analysis. By using SPSS output, these parameters can
be reduced to a few significant factors. From these factors, variables having
higher loadings may be selected to form the final instrument for lifestyle
assessment. Thus, the questionnaire so obtained shall be more reliable and will
include less number of variables. The detailed procedure can be seen in the solved
Example 12.1.

12.6 FACTOR ANALYSIS WITH SPSS

Example 12.1

In a study on swimmers, 11 physical and physiological parameters were mea-
sured and the data so obtained is shown in Table 12.1. Apply factor analysis
technique to study the factor structure and suggest the test battery that can be
used for screening the talents in swimming. Also apply the scree test for retaining
factors graphically and Kaiser-Meyer-Olkin (KMO) test for testing the adequacy
of data.

Solution: In this example, the following things are required to be done:

1. To decide the number of factors to be retained and the total variance explained
by these factors

2. To identify the variables in each factor retained in the final solution on the
basis of their factor loadings

3. To give a name to each factor on the basis of the nature of variables included in it
4. To suggest the test battery for screening talents in swimming
5. To test the adequacy of sample size used in factor analysis
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These objectives shall be achieved by generating the outputs in SPSS. Thus, the
procedure of using SPSS for factor analysis in the given example shall be discussed
first, and thereafter the output shall be explained in light of the objectives to be
fulfilled in this study.

12.6.1 Computation in Factor Analysis Using SPSS

12.6.1.1 Preparation of Data File To prepare data file, all the variables need to
be defined first. This can be done by using the following sequence of commands:

Start — All Programs — SPSS Inc — SPSS 20.0 — Type in Data

This will open a window for defining variables row-wise.

12.6.1.2 Defining Variables There are 11 variables in this example, which need
to be defined along with their properties. All these variables are scale variables. The
procedure of defining these variables and their characteristics is as follows:

1. Click on Variable View to define variables and their properties.

2. Write short name of the variables as SBJ, Shut_Run, 50_Mt, 12_min_R/W,
Aner_Cap, Wt, Ht, Leg_Length, Calf_Girth, Thigh_Girth, and Shl_Width
under the column heading “Name.”

3. Under the column heading “Label,” full name of these variables may be defined
as Standing Broad Jump, 4 x 10 Shuttle Run, 50 Mt. Timings, 12 min R/W,
Anaerobic Capacity, Weight, Height, Leg Length, Calf Girth, Thigh Girth, and
Shoulder Width. Other names may be chosen for describing these variables.

4. Under the column heading “Measure,” select ‘Scale’ option for all the
variables.

5. Use default entries in rest of the columns.

After defining all the variables in Variable View, the screen shall look like as
shown in Figure 12.2.

12.6.1.3 Entering Data After defining the variables click on Data View on the
screen shown in Figure 12.2 to open the format for entering the data column-wise.

After entering the data, the screen will look like as shown in Figure 12.3. Save the
data file in the desired location before further processing.

12.6.1.4 SPSS Commands While being in the Data View, do the following steps:

1. Initiating SPSS commands: Click the following commands in sequence:
Analyze — Data Reduction — Factor

The screen shall look like as shown in Figure 12.4.
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Elz EM Yew [Dets  [renslom  fnebe  Qrach:  Wies Addgre  Wedew  Heb
CES E o0 Rk A Ah BaE 929

_ MName | Type | Width |Decimals]  Label | Values | Missing |Columns|  Align | Measure
1 SBJ MNumeric a 2 Standing Brea.. None Nene 8 = Right & Scale
2 Shut_Run  Numeric 8 2 4x10 Shuttle R... None None 8 = Right & Scale
3 Fifty_Mt Numeric 8 2 50 Mt Timings  None Neone 8  Right & Scale
4 Twelve_Mi. Mumeric a8 2 12 min RAW None None 8 = Right & Scale
5 Aner_Cap  Mumeric a 2 Anaerobic Ca._. None None 8 = Right & Scale
[ Wt Mumveric g 2 Weight Nene Mene g = Right & Scale
it Ht Numeric 8 2 Height Neone Nene 8 H Right & Scale
8 Leg_Length Numeric 8 2 Leg Length None None 8 = Right & Scale
9 Calf_Girth  MNumeric ] 2 Calf Girth None MNeone 8 = Right & Scale
10 [Thigh_Gith Mumeric 8 2 Thigh Girth None None 8 = Right & Scale
1 Shi_Width  Numeric 8 2 Shoulder Width None Nene 2 = Right # Scale

FIGURE 12.2 Defining variables along with their characteristics.
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1 200,00 970 773 251800 53.40 3200 145.00 76.00 31.00 4500 30,00
12 21000 ase 780 250800 4930 3400 141.00 76.00 20.00 4000 3200
1 201.00 984 798 251600 4430 3100 133.00 7400 29.00 4200 3800
14 22600 10.00 738 261000 50.20 4100 164.00 8200 30.00 4300 4100
18 20000 1.15 815 242000 3464 4600 167.00 T6.00 00 4100 3500
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FIGURE 12.3 Data file of physical and physiological variables for factor analysis.

File Edit VYiew Dsta Transform | Analyze Graphs Utities Add-ons Window Help
CEHE E O SE[  reos » B W
[1:s8s [218 Descriptive Statistics 3
Tables » -
sBY [ sh cogperomeans ’ aIRveFva Aner_Cap
1 21800 ka1 2710.00 4750
B Generalized Linear Models
2 200.00 Mied Models , |2410.00 20.60
3 195.00 e » | 2655.00 45.20
4 212.00 Regression 13 2510.00 3267
5 185.00 Loginear » | 2105.00 15.84
6 206.00 Neural Networks * |2615.00 50.20
7 235.00 Classify * l2an200 &R 30
. o
8 205.00 Data Reduction 13 o) Eactor...
Scale » E Correspondence Analysis...
9 213.00 ; ! :
Nonparametric Tests » !ﬁ Optimal Scaling...
10 220.00 Time Series » ELuuu.uv U

FIGURE 12.4 Command sequence for factor analysis.
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"fii Ex10.sav [DataSet1] - SPSS Data Editor

File Edit View Data Transform Analyze Graphs Uliities Add-ons Wndow  Help
CHS B b0 SB[k & Ah ZhE 09

[1:sBy [18

SBJ | Shut_Run| Fifty_Mt Twe:_:e;vw" Aner_Cap Wt
1 218.00 e Analysis
2 200.04 Variables:
3 195.0¢ & Standing Broad Jump...
4 212.0( idsthuﬂleﬁun ish..| |
S0 M. Timings [Fifty_...| =
5 185.0¢ & 12 min RAN [Twelve _...
6 206.04 & Anserobic Capacity ...
7 235.0 f; iy
8 205.04 Selection Variable:
5 21304 ——
0| 20
L L [ok J[ easte |[ meset ][ concer ][ rew |
12 210.04 —

FIGURE 12.5 Selection of variables in factor analysis.

2. Selecting variables for factor analysis: Clicking the “Factor” option will take

you to the next screen for selecting variables. Select all the variables from left
panel and bring them to the “Variables” section in the right panel. The screen
will look like as shown in Figure 12.5.

. Selecting option for computation: After selecting the variables, various options

need to be defined for generating the outputs in factor analysis. Do the

following:

(a) Click on Descriptives command on the screen shown in Figure 12.5.

(b) Check ‘Univariate descriptives’ and ‘Initial solution’ options in “Statistics”
section.

(c) Check ‘Coefficients,” ‘Significance levels,” and ‘KMO and Bartlett’s test
of sphericity’ options in “Correlation Matrix” section. The screen will
look like as shown in Figure 12.6.

(d) Click on Continue. This will again take you back to the screen shown in
Figure 12.5.

(e) Now click on Extraction command and check ‘Scree plot’ option. Let
other options remain as it is by default. The screen shall look like as shown
in Figure 12.7.

(f) Click on Continue. This will again take you back to the screen shown in
Figure 12.5.

(g) Now click on Rotation command and then check ‘Varimax’ rotation
option. Let other options remain as it is by default. The screen shall look
like as shown in Figure 12.8.

(h) Click on Continue and OK to get the outputs.

. Getting the output: After clicking on OK on in the screen shown in Figure 12.5,

various outputs shall be generated in the output window. The SPSS shall
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FIGURE 12.6 Selection of options for correlation matrix and initial factor solution.

10.sav [DataSet1] - SPSS Data Editor
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FIGURE 12.7 Option for scree plot.

generate many outputs, but the following relevant outputs have been picked up
for the discussion:

(a) Descriptive statistics
(b) Correlation matrix

(c) KMO and Bartlett’s test
(d) Total variance explained



330

1;\ Ex10.sav [DataSet1] - SPSS Data Editor

APPLICATION OF FACTOR ANALYSIS

File Edit View Data Transform Analyze Graphs Uilties Add-ons Window Help
CHE @ 60 8k & Ah ShE S0
1:5B4 |18
SBJ | Shut_Run | Fifty_Mt Twegfng" Aner_Cap wt
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2 200.0( )
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6 206.0( Factor Analysis: Rotation
7 235.0( ——
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17 215.00 973 750 o —rorro
FIGURE 12.8 Option for factor rotation.
TABLE 12.2 Descriptive Statistics
Mean Std. Deviation N
Standing broad jump 212.38 15.45793 21
4% 10 shuttle run 10.2514 0.51167 21
50 mt. timings 7.8367 0.53814 21
12 min R/W 2489.0 222.46696 21
Anaerobic capacity 39.9071 12.70207 21
Weight 37.8095 7.67215 21
Height 148.43 10.23509 21
Leg length 76.3333 5.18009 21
Calf girth 28.5238 1.99045 21
Thigh girth 40.5238 3.51595 21
Shoulder width 38.1429 4.43041 21

(e) Scree plot

(f) Component matrix: unrotated factor solution

(g) Rotated component matrix: varimax rotated solution

12.6.1.5 Interpretation of Findings The outputs generated in this example by the
SPSS have been shown in Tables 12.2, 12.3,12.4, 12.5, 12.6, and 12.7 and in Figure 12.9.

1. Table 12.2 shows the descriptive statistics that consists of mean and SD for all
the variables. The researcher may select this table of descriptive statistics from
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TABLE 12.4 KMO and Bartlett’s Test

Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy 0.714
Bartlett’s test of sphericity Approx. chi-square 183.682
df 55
Sig. 0.000

the output. The readers may draw the conclusions as per their requirements
from this table.

2. The first result in the factor analysis is the correlation matrix shown in
Table 12.3. The SPSS provides significance value (p value) for each correla-
tion coefficient. However, significant value of the correlation coefficients at
0.01 and at 0.05 level can be seen from any standard book of statistics.
Meaningful conclusions can be drawn from this table about the relationships
among the variables.

3. Table 12.4 is the output for KMO test. This test indicates whether the sample
size is adequate or not for applying the exploratory factor analysis. The value
of KMO should be at least 0.5 for adequacy of the sample.

The Bartlett’s test of sphericity is used to test whether the correlation matrix is an
identity matrix, and if so in that case the factor model is inappropriate. Since chi-
square associated with Bartlett’s test is significant (p=0.000), correlation matrix
is not an identity matrix; hence, the exploratory factor analysis can be applied.

4. Table 12.5 shows the factors that have been extracted and the variance explained
by these factors. It can be seen that after rotating the factors, the first factor
explains 39.091% of the total variance, whereas the second factor explains
35.337% of the total variance. Thus, both the factors together explain 74.428%
of the total variance.

The eigenvalues for each factor are given in Table 12.5. Only those factors
have been retained whose eigenvalue is 1 or more than 1. Here you can see that
the eigenvalue for the first factor is 5.820 and the second is 2.367, whereas all
other factors have less than one eigenvalue. Thus, only two factors have been
retained here.

5. Figure 12.9 shows the scree plot that is obtained by plotting the factors against
their eigenvalues. This plot shows that only two factors have eigenvalues more
than 1, whereas others have less than 1.

6. The first initial unrotated solution of the factor analysis is given in Table 12.6.
Two factors have been extracted in this example. Factor loadings of all the
variables on each of the two factors have been shown here. Since this is an
unrotated factor solution, some of the variables may show their contribution in
both the factors. In order to avoid this situation, the factors are rotated. Varimax
rotation has been used in this example to rotate the factors as this is the most
popular method used by the researchers due to its efficiency.



‘stsATeue Juouodwod [edrourid :poyiow uondeNXH

000001 Yero 100 I

9L8°66 €590 L0 01

€066 LTS'T 891°0 6

S69°L6 LL9'T ¥81°0 8

81096 wCTe LvyCT0 L

CLL'E6 geee L9€°0 9

LEV06 €v6'c 12340 S

Y6798 06T'S 8¢°0 14

Y018 9LL'9 SvL0 €

8Tr'vL LEESE L88'E 8CrvL YISIC L9EC 8CrvL YISIC L9€C (4
160°6€ 160°6¢ 00€¥y v167CS Y16°CS 028's v167CS Y16°CS 0Z8's I
9, 9ATIE[NWIND) QUBLIEA JO 95  [BIO], 9 9ATR[NWND)  QJUBLIBA JO 9  [BIOL 9 9ATIBINWIND)  QOUBLIBA JO 9,  [ej0l,  Juouodwo)

s3urpeo] parenbg jo swng uonejoy

s3urpeoT parenbg jo swng uonoenxg

son[eAua3Iyg [enuy

poure[dxj JdueLIeA [8)0L, STI A TAVL



334

APPLICATION OF FACTOR ANALYSIS

TABLE 12.6 Component Matrix: Unrotated Factor Solution

Component
1 2
Standing broad jump 0.826 -0.096
4x 10 shuttle run —-0.735 0.506
50 mt. timings —0.798 0.451
12 min R/'W 0.612 —-0.654
Anaerobic capacity 0.769 —-0.398
Weight 0.635 0.714
Height 0.574 0.713
Leg length 0.725 0.452
Calf girth 0.837 0.185
Thigh girth 0.822 0.232
Shoulder width 0.600 —-0.034

Extraction method: principal component analysis.
“Two components extracted.

TABLE 12.7 Rotated Component Matrix*: Varimax Rotated Solution

Component”
1 2
Standing broad jump 0.681 0.476
4 x 10 shuttle run —0.885 -0.109
50 mt. timings -0.896 -0.192
12 min R/'W 0.892 —-0.084
Anaerobic capacity 0.839 0.213
Weight 0.001 0.956
Height —-0.044 0914
Leg length 0.242 0.819
Calf girth 0.504 0.694
Thigh girth 0.461 0.719
Shoulder width 0.472 0.373

Extraction method: principal component analysis.
Rotation method: varimax with kaiser normalization.
“ Rotation converged in three iterations.

The final solution of the factor analysis after the varimax rotation has been
shown in Table 12.7. A clear picture emerges in this final solution about the
variables, explaining the factors correctly as factors will have nonoverlapping
variables in this final solution. If the variable has factor loadings more than 0.7,
it indicates that the factor extracts sufficient variance from that variable. Thus,
all those variables having loadings more than 0.7 or more on a particular factor
are identified in that factor. However, a researcher may choose this threshold
value anything more than 0.4. Owing to this criterion, the following variables
have been grouped in each of the two factors shown in Tables 12.8 and 12.9.
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Eigen value
(O8]

Component number

FIGURE 12.9 Scree plot for the data obtained on swimmers.

TABLE 12.8 Factor 1: Physical Factor

4 x 10 shuttle run —0.885
50 mt. timings -0.896
12 min R/W 0.892
Anaerobic capacity 0.839

TABLE 12.9 Factor 2: Growth Factor

Weight 0.956
Height 0.914
Leg length 0.819
Thigh girth 0.719

Factor 1 contains variables that define the physical performances of swimmers
and, therefore, it may be termed Physical Factor. On the other hand, Factor 2
consists of those variables that define the growth dimension of the swimmers
and, therefore, this factor may be termed Growth Factor. Thus, based on the
data of Example 12.1, it may be concluded that the two factors, that is,
“Physical” and “Growth” exist among the swimmers.

7. In order to develop the test battery, readers have a choice to select a few
variables from each of the two factors retained. One such choice of the test
battery for screening the swimmers may be like as shown in Table 12.10.
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TABLE 12.10 Test Battery for Screening the Swimmers

50 mt. timings —0.896
12 min R/'W 0.892
Weight 0.956
Height 0.914

SUMMARY OF THE SPSS COMMANDS FOR FACTOR ANALYSIS

. Start the SPSS by using the following sequence of commands:

Start — All Programs — SPSS Inc — SPSS 20.0

. Click on Variable View and define SBJ, Shut_Run, 50_Mt, 12_min_R/W,

Aner_Cap, Wt, Ht, Leg_Length, Calf Girth, Thigh_Girth, and Shl_Width as
scale variables.

. Once the variables are defined, type the data for these variables by clicking on

Data View.

. In the Data View, follow the command sequence for factor analysis as follows:

Analyze — Data Reduction — Factor

. Select all the variables from the left panel, and bring them into the “Variables”

section in the right panel.

. Click Descriptives command and check ‘Univariate descriptives,” ‘Initial

Solution,” ‘Coefficients,” ‘Significance levels,” and ‘KMO and Bartlett’s test of
sphericity’ options. Click on Continue.

. Click on Extraction command and then check ‘Scree plot’ option. Let other

options remain by default. Click on Continue.

. Click on Rotation command, and then check ‘Varimax’ rotation option. Let

other options remain as they are by default. Click on Continue and OK
commands for generating the outputs.

EXERCISE

12.8.1 Short Answer Questions

Note: Write answers to each of the following questions in not more than 200 words.

Q.1

Q.2

Q.3

How can the factor analysis be used in talent identification in sport? Discuss
with a specific example.

Can the factor analysis be used in developing a fitness index for assessing
health status of an individual? If so, explain the procedure briefly.

Why principal component analysis is mostly used in factor analysis?
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Q4

Q5

Q6

Q.7

Q8

What do you mean by eigenvalue? How does the Kaiser’s criterion work in
retaining factors in the model?

What do you mean by scree test? How is it useful in identifying the factors to
be retained through graph?

What is communality? How is it used to decide the reliability of variables in
the factor model?

What is the significance of factor loadings? How is it used to identify the vari-
ables to be retained in the factors?

Why are the factors rotated to get the final solution in factor analysis? Which
is the most popular rotation method and why?

12.8.2 Multiple Choice Questions

Note: Questions 1-10 have four alternative answers for each question. Tick mark the

one

1

that you consider the closest to the correct answer.

Choose the correct sequence of SPSS commands for factor analysis
(a) Analyze — Data Reduction — Factor
(b) Analyze — Factor — Data Reduction
(c) Factor — Data Reduction — Analyze
(d) Data Reduction — Factor — Analyze

Factor analysis is a technique for

(a) Correlation analysis

(b) Data reduction

(c) Finding the most important variable
(d) Comparing factors

Principal component analysis extracts the maximum variance in the
(a) Last extracted factor

(b) Second extracted factor

(c) First extracted factor

(d) Any extracted factor

Owing to Kaiser’s criteria, the factor is retained if its eigenvalue is
(a) Lessthan 1

(b) Equaltol

(c) More than 2

(d) More than 1

Scree test is the graph between

(a) Eigenvalues and factors

(b) Percentage variance explained and factors

(c) Maximum factor loadings in the factors and factors
(d) Communality and factor
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Conventionally, a variable is retained in a factor if its loading is greater than or
equal to
(a) 04
(b) 0.5
(c) 0.7
(d 0.2

Varimax rotation is used to get the final solution. After rotation
(a) Factor explaining maximum variance is extracted first.

(b) All factors whose eigenvalues are more than 1 are extracted.
(c) Three best factors are extracted.

(d) Nonoverlapping of variables in the factors emerges.

Eigenvalue is also known as
(a) Characteristics root

(b) Factor loading

(¢) Communality

(d) None of the above

KMO test in factor analysis is used to test whether

(a) Factors extracted are valid or not?

(b) Variables identified in each factor are valid or not?

(c) Sample size taken for the factor analysis was adequate or not?
(d) Multicollinearity among the variables exists or not?

While using factor analysis, certain assumptions need to be satisfied. Choose
the most appropriate assumption.

(a) Data used in the factor analysis is based on an interval scale or ratio scale
(b) Multicollinearity among the variables exists.

(c) Outlier is present in the data.

(d) Size of the sample does not affect the analysis.

.3 Assignment

Apply factor analysis on the data of physical characteristics obtained on the hockey
players as shown in Table 12.11. Use varimax rotation method for final solution.
Discuss your findings and answer the following questions:

AN L W=

. Is data adequate for factor analysis?

. Is sphericity significant?

. How many factors have been extracted?

. In your opinion what should be the name of the factors?

. What factor loadings do you suggest for a variable to qualify in a factor?

. Can you suggest the test battery for screening the hockey players on the basis

of the data?
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TABLE 12.11 Data on Physical Parameters of the College Hockey Players

Explosive Body
Height Weight Pulse Rate Power 9 Min. Density LBW
(cm) (kg) (beat/min) (kg.cm) R/W (mt)  (g/cc) Fat% (kg)

S.N. X, X, X, X, X X, X, X,
1 161 50 80 698.36 2800 1.05 21.23  47.26
2 174 60 80 937.83 3000 1.07 13.06 48.69
3 167 56 92 678.2 2000 1.05 21.76  43.81
4 165 55 96 697.7 2200 1.05 19.3 4439
5 169 49 80 750.45 2400 1.07 11.66 43.28
6 154 48 88 754.61 2400 1.05 18.08  40.15
7 170 59 84 824.05 2400 1.06 193 49.65
8 163 49 80 726.5 1800 1.05 19.35 395
9 160 48 81 887.5 2400 1.06 12.58 41.95
10 158 50 84 924.85 2800 1.06 12.71  43.63
11 160 43 60 786.0 2000 1.07 11.92  37.84
12 157 57 100 678.0 3000 1.05 27.81 4044
13 151 51 84 637.5 2600 1.06 17.46 426
14 161 57 92 744.45 2400 1.06 19.23  46.65
15 163 66 92 1220.85 2000 1.05 227 56.96

12.9 CASE STUDY ON FACTOR ANALYSIS

Objective

In a research study, yoga practitioners were studied for the latent profile characteris-
tics possessed by them. Twenty-four practitioners of yoga were randomly selected in
a college and were tested for their different physical and physiological parameters.
The data so obtained are shown in Table 12.12.

Research Issues

The following research issues were investigated:

1. Whether any specific factor structure exists among yoga practitioners which
explain the most of the variations about their physical and physiological
profiles.

2. Whether the data was adequate to run the factor analysis.
How many factors would describe the characteristics of yoga practitioners?

~ow

. How much variability would be measured by each factor?
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Data Format

The format used for preparing the data file in SPSS is shown in the Table 12.12.

Analyzing Data

In understanding the latent structure of the profile of yoga practitioners a factor anal-
ysis was carried out to classify the variables into meaningful factors. Before applying
the factor analysis, adequacy of the data was tested by means of KMO test generated
in the output by the SPSS. Factors were extracted by using the principal component
analysis in the initial solution. The factors extracted in the initial solution were sub-
jected to varimax rotation for getting the nonoverlapping factors. The variables hav-
ing high factor loadings in each factor were identified, and the nomenclature of the
factors was done on the basis of the nature of the variables retained in that factor.

The factor analysis was carried out in SPSS by using the commands: Analyze,
Data Reduction, and Factor in sequence. All the variables were selected for the
analysis and placed in the appropriate location in the dialog box. The option for
‘Initial solution’ and ‘KMO and Bartlett’s test of sphericity’ was selected in
Descriptive command, ‘Scree plot’ in extraction, and ‘Varimax’ in rotation. The out-
puts so generated in SPSS are shown in Tables 12.13, 12.14, 12.15, and 12.16 and in
Figure 12.10.

Testing Assumptions

The KMO test is shown in Table 12.13. This test indicates the adequacy of the
sample size for running the factor analysis. Since KMO is more than 0.5, the data
was adequate for running the factor analysis. Further Bartlett’s test is significant
(p=0.000), hence the correlation matrix is not an identity matrix. And the factor
analysis can be done.

Factors Extraction

Table 12.14 shows the factors that were extracted and the variance explained by these
factors. In all, four factors were extracted, which together explained 78.461% of the
total variability. The eigenvalues for each of the factors are given in Table 12.14.
Only those factors were retained whose eigenvalues were 1 or more than 1. It can be
seen from this table that the eigenvalues for the first four factors are 3.041, 1.798,
1.664, and 1.344, respectively; whereas for others, it is less than 1. Thus, only four
factors were retained.

TABLE 12.13 KMO and Bartlett’s Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.581
Bartlett’s test of sphericity Approx. chi-square 85.427
df 45

Sig. 0.000
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TABLE 12.15 Component Matrix*

Component

1 2 3 4
Flex_X1 0.096 0.744 0.137 0.299
Max_end_X2 0.746 0.165 0.312 0.400
BP_dia_X3 0.230 -0.516 —-0.183 0.714
BP_syS_X4 -0.123 —-0.832 0.119 0.219
Res_rate_X5 -0.722 0.218 0.414 0.125
Pulse_Rate_X6 -0.823 0.178 -0.021 0.254
BHT_X7 0.567 0.007 0.590 0.210
Vit_cap_X8 0.703 -0.162 0.001 -0.586
Age_X9 -0.007 0.097 —-0.906 0.165
WT_X10 0.626 0.378 -0.399 0.205
Extraction method: principal component analysis.
@ Four components extracted.
TABLE 12.16 Rotated Component Matrix*

Component

1 2 3 4
Flex_X1 -0.237 0.758 0.174 -0.104
Max_end_X2 0.349 0.499 0.576 0.373
BP_dia_X3 0.043 -0.087 -0.002 0.924
BP_syS_X4 -0.051 -0.697 0.120 0.517
Res_rate_X5 -0.810 -0.079 0.164 -0.256
Pulse_rate_X6 -0.836 —-0.045 -0.261 -0.070
BHT_X7 0.244 0.196 0.762 0.192
Vit_cap_X8 0.878 -0.097 0.165 -0.238
Age_X9 0.125 0.264 -0.836 0.268
WT_X10 0.459 0.670 -0.159 0.224

Extraction method: principal component analysis.

Rotation method: varimax with Kaiser normalization.

Bold face indicates that the variable has been identified in that factor.
“ Rotation converged in six iterations.

Figure 12.10 is a scree plot that is obtained by plotting the factors against their
eigenvalues. This plot shows that only four factors have eigenvalues more than 1,
whereas others have less than 1.

Identification of Factors

The factor loadings of all the variables on each of the four factors have been shown in the
Table 12.15. Since this is an unrotated factor solution, some of the variables show their
contribution in more than one factor. In order to avoid this situation, the factors were
rotated by using the varimax rotation. The final solution has been shown in the Table 12.16.
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Scree plot

1 2 3 4 5 6 7 8 9 10
Component number

FIGURE 12.10 Scree plot for the data obtained on yoga practitioners.

TABLE 12.17 Factor 1

Cardio Health

Variables Loading
Respiratory rate -0.810
Pulse rate —0.836
Vital capacity 0.878

TABLE 12.18 Factor 2

Flexibility

Variables Loading
Flexibility 0.758
BP systolic -0.697
Weight 0.670

A clear picture emerged in this final solution about the variables, explaining the
factors correctly as shown in Table 12.16. Variables were retained in the factor if the
factor loading was 0.6 or more. Owing to this criterion, the variables have been
grouped in each of the four factors as shown in Tables 12.17, 12.18, 12.19, and 12.20.
On the basis of the variable’s characteristics identified in the factors, all the four factors
were named as cardio health, flexibility, lungs health, and blood pressure, which
explained 30.406, 17.977, 16.638, and 13.441% of the total variability, respectively.
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TABLE 12.19 Factor 3

Lungs Health

Variables Loading
Breath holding time 0.762
Age —-0.836

TABLE 12.20 Factor 4

Blood Pressure

Variables Loading

BP diastolic 0.924

Reporting

* Since KMO value is 0.581, which is more than 0.5, the data was adequate to run
the factor analysis.

* The four factors were extracted that together explained 78.461% of the total
variability.

* Identified factors were named as cardio, health, flexibility, lungs health, and
blood pressure, which explained 30.406, 17.977, 16.638, and 13.441% of the
total variability, respectively.
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TABLE A.1 The Normal Curve Area Between the Mean and a Given z Value

zZ

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
2.0
2.1
22
23
2.4
2.5
2.6
2.7
2.8
29
3.0

0.0000
0.0398
0.0793
0.1179
0.1554
0.1915
0.2257
0.2580
0.2881
0.3159
0.3413
0.3643
0.3849
0.4032
0.4192
0.4332
0.4452
0.4554
0.4641
0.4713
0.4772
0.4821
0.4861
0.4893
0.4918
0.4938
0.4953
0.4965
0.4974
0.4981
0.4987

0.0040
0.0438
0.0832
0.1217
0.1591
0.1950
0.2291
0.2611
0.2910
0.3186
0.3438
0.3665
0.3869
0.4049
0.4207
0.4345
0.4463
0.4564
0.4649
0.4719
0.4778
0.4826
0.4864
0.4896
0.4920
0.4940
0.4955
0.4966
0.4975
0.4982
0.4987

0.0080
0.0478
0.0871
0.1255
0.1628
0.1985
0.2324
0.2642
0.2939
0.3212
0.3461
0.3686
0.3888
0.4066
0.4222
0.4357
0.4474
0.4573
0.4656
0.4726
0.4783
0.4830
0.4868
0.4898
0.4922
0.4941
0.4956
0.4967
0.4976
0.4982
0.4987

0.0120
0.0517
0.0910
0.1293
0.1664
0.2019
0.2357
0.2673
0.2967
0.3238
0.3485
0.3708
0.3907
0.4082
0.4236
0.4370
0.4484
0.4582
0.4664
0.4732
0.4788
0.4834
0.4871
0.4901
0.4925
0.4943
0.4957
0.4968
0.4977
0.4983
0.4988

0.0160
0.0557
0.0948
0.1331
0.1700
0.2054
0.2389
0.2704
0.2995
0.3264
0.3508
0.3729
0.3925
0.4099
0.4251
0.4382
0.4495
0.4591
0.4671

0.4738
0.4793
0.4838
0.4875
0.4904
0.4927
0.4945
0.4959
0.4969
0.4977
0.4984
0.4988

0.0199
0.0596
0.0987
0.1368
0.1736
0.2088
0.2422
0.2734
0.3023
0.3289
0.3531
0.3749
0.3944
0.4115
0.4265
0.4394
0.4505
0.4599
0.4678

0.4744
0.4798
0.4842
0.4878
0.4906
0.4929
0.4946
0.4960
0.4970
0.4978
0.4984
0.4989

0.0239
0.0636
0.1026
0.1406
0.1772
0.2123
0.2454
0.2764
0.3051
0.3315
0.3554
0.3770
0.3962
0.4131
0.4279
0.4406
0.4515
0.4608
0.4686
0.4750
0.4803
0.4846
0.4881
0.4909
0.4931
0.4948
0.4961
0.4971
0.4979
0.4985
0.4989

0.0279
0.0675
0.1064
0.1443
0.1808
0.2157
0.2486
0.2794
0.3078
0.3340
0.3577
0.3790
0.3980
0.4147
0.4292
0.4418
0.4525
0.4616
0.4693
0.4756
0.4808
0.4850
0.4884
0.4911
0.4932
0.4949
0.4962
0.4972
0.4979
0.4985
0.4989

0.0319
0.0714
0.1103
0.1480
0.1844
0.2190
0.2517
0.2823
0.3106
0.3365
0.3599
0.3810
0.3997
0.4162
0.4306
0.4429
0.4535
0.4625
0.4699
0.4761
0.4812
0.4854
0.4887
0.4913
0.4934
0.4951
0.4963
0.4973
0.4980
0.4986
0.4990

0.0359
0.0753
0.1141
0.1517
0.1879
0.2224
0.2549
0.2852
0.3133
0.3389
0.3621
0.3830
0.4015
0.4177
0.4319
0.4441
0.4545
0.4633
0.4706
0.4767
0.4817
0.4857
0.4890
0.4916
0.4936
0.4952
0.4964
0.4974
0.4981
0.4986
0.4990
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TABLE A.2 Critical Values of “t”

347

Level of Significance for Two-Tailed Test

df 1.00 050 040 030 020 0.10 0.05 0.02 0.01 0.002 0.001
1 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62
2 0.000 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 22.327 31.599
3 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 10.215 12.924
4 0.000 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 0.000 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 0.000 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5208 5.959
7 0.000 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4785 5.408
8 0.000 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 0.000 0.703 0.883 1.100 1.383 1.833 2262 2.821 3.250 4.297 4.781
10 0.000 0.700 0.879 1.093 1.372 1.812 2228 2.764 3.169 4.144  4.587
11 0.000 0.697 0.876 1.088 1.363 1.796 2201 2.718 3.106 4.025 4.437
12 0.000 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 0.000 0.694 0.870 1.079 1350 1.771 2.160 2.650 3.012 3.852 4.221
14 0.000 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2977 3.787 4.140
15 0.000 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733  4.073
16  0.000 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2921 3.686 4.015
17 0.000 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.646  3.965
18 0.000 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19  0.000 0.688 0.861 1.066 1.328 1.729 2.093 2539 2.861 3.579 3.883
20  0.000 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.552  3.850
21 0.000 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 0.000 0.686 0.858 1.061 1.321 1.717 2.074 2508 2.819 3.505 3.792
23 0.000 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 0.000 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2797 3.467 3.745
25 0.000 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 0.000 0.684 0.856 1.058 1.315 1.706 2.056 2479 2.779 3435 3.707
27 0.000 0.684 0.855 1.057 1.314 1.703 2.052 2473 2.771 3.421 3.690
28  0.000 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29  0.000 0.683 0.854 1.055 1.311 1.699 2.045 2462 2.756 3.396 3.659
30  0.000 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2750 3.385 3.646
40  0.000 0.681 0.851 1.050 1.303 1.684 2.021 2423 2704 3307 3.551
60 0.000 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 3.232  3.460
80 0.000 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 3.195 3.416
100 0.000 0.677 0.845 1.042 1.290 1.660 1.984 2364 2.626 3.174  3.390
1000 0.000 0.675 0.842 1.037 1.282 1.646 1.962 2330 2.581 3.098  3.300

0.000 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2576 3.090 3.291

0.50 025 020 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005

Level of significance for one-tailed test
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TABLE A.3 F-Table: Critical Values at 0.05 Level of Significance

nm, 1 2 3 4 5 6 7 8 9 0 11 12/,

3 10.13 955 928 912 901 894 88 885 881 879 876 874 3
4 771 694 659 639 626 616 609 604 600 59 594 591 4
5 661 579 541 519 505 495 483 482 477 474 470 4.68 5
6 599 514 476 453 439 428 421 415 410 406 403 4.00 6
7 559 474 435 412 397 387 379 373 368 3.64 360 357 7
8 532 446 407 384 369 358 350 344 339 335 331 328 8

9 512 426 386 363 348 337 329 323 318 314 310 3.07 9
10 496 410 371 348 333 322 314 307 3.02 298 294 291 10
11 484 398 359 336 320 3.09 301 295 290 285 282 279 11
12 475 389 349 326 311 3.00 291 28 280 275 272 269 12
13 4.67 3.81 3.41 318 303 292 283 277 271 2,67 263 260 13
14 460 374 334 311 29 285 276 270 265 260 257 253 14
15 454 368 329 306 290 279 271 264 259 254 251 2.48 15
16 449 3.63 324 301 285 274 266 259 254 249 246 242 16
17 445 359 320 296 281 270 261 255 249 245 241 238 17
18 441 355 316 293 277 266 258 251 246 241 237 234 18
19 438 352 313 290 274 263 254 248 242 238 234 231 19
20 435 349 310 287 271 260 251 245 239 235 231 228 20
22 430 344 305 282 266 255 246 240 234 230 226 223 22
24 426 340 301 278 262 251 242 236 230 225 222 218 24
26 423 337 298 274 259 247 239 232 227 222 218 215 26
28 420 334 295 271 256 245 236 229 224 219 215 212 28
30 417 332 292 269 253 242 233 227 221 216 213  2.09 30
35 412 327 287 264 249 237 229 222 216 211 208 204 35
40 408 323 284 261 245 234 225 218 212 208 204 200 40
45 406 320 281 258 242 231 222 215 210 205 201 1.97 45
50 403 318 279 256 240 229 220 213 207 203 1.99 1.95 50
60 4.00 315 276 253 237 225 217 210 204 199 195 1.92 60
70 398 313 274 250 235 223 214 207 202 197 193 1.89 70
80 396 3.1 272 249 233 221 213 206 200 195 1.91 1.88 80

100 394 309 270 246 231 219 210 203 197 193 189 185 100
200 3.89  3.04 265 242 226 214 206 198 193 188 184 180 200
500 386 301 262 239 223 212 203 196 190 185 181 177 500
1000 385 300 261 238 222 211 202 195 18 184 180 176 1000
>1000 1.04 300 261 237 221 210 201 194 18 18 179 175 >1000
o/, 1 2 3 4 5 6 7 8 9 10 1 12 n/n,
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n/n, 13 14 15 16 17 18 19 20 22 24 26 28 n/n,
3 873 871 870 869 868 8.67 867 866 865 864 863 8.62 3
4 580 587 586 584 583 582 581 580 579 577 576 575 4
5 466 464 462 460 459 458 457 456 454 453 452 450 5
6 398 396 394 392 391 390 388 387 386 384 383 3.82 6
7 355 353 351 349 348 347 346 344 343 341 340 339 7
8 326 324 322 320 319 317 316 315 313 312 310 3.09 8
9 305 303 301 299 297 296 295 294 292 290 289 287 9
10 289 286 285 283 281 280 279 277 275 274 272 271 10
11 276 274 272 270 269 267 266 265 263 261 259 258 11
12 266 264 262 260 258 257 256 254 252 251 249 248 12
13 258 255 253 251 250 248 247 246 244 242 241 239 13
14 251 248 246 244 243 241 240 239 237 235 233 232 14
15 245 242 240 238 237 235 234 233 231 229 227 226 15
16 240 237 235 233 232 230 229 228 225 224 222 221 16
17 235 233 231 229 227 226 224 223 221 219 217 216 17
18 2.31 229 227 225 223 222 220 219 217 215 213 212 18
19 228 226 223 221 220 218 217 216 213 211 210 208 19
20 225 223 220 218 217 215 214 212 210 208 207 205 20
22 220 217 215 213 211 210 208 207 205 203 201 200 22
24 215 213 211 209 207 205 204 203 200 198 197 195 24
26 212 209 207 205 203 202 200 199 197 195 1.93 1.91 26
28 209 206 204 202 200 199 1.97 1.96 1.93 1.91 1.90 1.88 28
30 206 204 201 199 198 196 195 1.93 1.91 1.89 1.87 1.85 30
35 2.01 1.99 1.96 194 192 191 1.89 1.88 1.85 1.83 1.82  1.80 35
40 197 195 192 19 18 187 185 184 181 1.79 177 176 40
45 194 192 189 1.87 1.86 184 1.82 181 1.78 1.76 174 173 45
50 192 189 187 185 183 181 1.80 178 .76 174 172 1.70 50
60 1.89 186 1.84 1.82 180 1.78 .76 175 172 170  1.68 1.66 60
70 1.86 1.84 181 .79 177 1.75 .74 172 170 1.67 1.65 1.64 70
80 1.84 182 179 177 175 1.73 172 170 1.68  1.65 1.63 1.62 80
100 182 179 177 175 1.73 1.71 1.69 1.68  1.65 1.63 1.61 1.59 100
200 177 174 172 169 167 166 164 162 1.60 157 155 1.53 200
500 1.74 171 1.69 166 1.64 162 161 159 156 154 152 150 500
1000 1.73 1.70  1.68 1.65 1.63 1.61 1.60  1.58 1.55 1.53 1.51 1.49 1000
>1000 1.72  1.69 167 1.64 1.62 1.6l 159 157 154 152 150 148 >1000
n/n, 13 14 15 16 17 18 19 20 22 24 26 28 n/n,

(Continued)
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TABLE A.3 (continued)

n/n, 30 35 40 45 50 60 70 80 100 200 500 1000 >1000 n/n,

3 862 860 859 859 858 857 857 856 855 854 853 853 854 3
4 575 573 572 571 570 569 568 567 566 565 564 563 563 4
5 450 448 446 445 444 443 442 442 441 439 437 437 436 5
6 381 379 377 376 375 374 373 372 371 369 368 367 3.67 6
7 338 336 334 333 332 330 329 329 327 325 324 323 323 7
8 3.08 306 3.04 303 302 301 299 299 297 295 294 293 293 8
9 286 284 283 281 280 279 278 277 276 273 272 271 271 9
10 270 268 266 265 264 262 261 260 259 256 255 254 254 10
11 257 255 253 252 251 249 248 247 246 243 242 241 241 11
12 247 244 243 241 240 238 237 236 235 232 231 230 230 12
13 238 236 234 233 231 230 228 227 226 223 222 221 221 13
14 231 228 227 225 224 222 221 220 219 216 214 214 213 14
15 225 222 220 219 218 216 215 214 212 210 208 207 207 15
16 219 217 215 214 212 211 209 208 207 204 202 202 201 16
17 215 212 210 209 208 206 205 203 202 199 197 197 1.9 17
18 211 208 206 205 204 202 200 199 198 195 193 192 192 18
19 207 205 203 201 200 198 197 196 194 191 189 188 188 19
20 204 201 199 198 197 195 193 192 191 188 18 185 1.84 20
22 198 196 194 192 191 18 188 1.8 185 1.8 180 179 1.78 22
24 194 191 1.89 188 18 1.84 183 18 180 177 175 174 173 24
26 190 1.87 185 184 1.8 18 179 178 176 173 171 170 1.69 26
28 187 1.84 182 180 179 177 175 174 173 169 167 166 1.66 28
30 184 181 179 177 176 174 172 171 170 166 164 163 1.62 30
35 179 176 174 172 170 168 166 165 1.63 160 157 157 1.56 35
40 174 172 169 167 166 164 162 161 159 155 153 152 151 40
45 171 1.68 166 164 163 1.60 159 157 155 151 149 148 147 45
50 169 166 1.63 161 1.60 158 156 154 152 148 146 145 144 50
60 165 1.62 159 157 156 153 152 150 148 144 141 140 139 60
70 1.62 159 157 155 153 150 149 147 145 140 137 136 135 70
80 1.60 157 154 152 151 148 146 145 143 138 135 134 133 80
100 157 154 152 149 148 145 143 141 139 134 131 130 1.28 100
200 152 148 146 143 141 139 136 135 132 126 122 121 119 200
500 148 145 142 140 138 135 132 130 128 121 116 114 1.12 500
1000 147 143 141 138 136 133 131 129 126 119 113 111 1.08 1000
>1000 146 142 140 137 135 132 130 128 125 117 111 108 1.03 >1000
n/, 30 35 40 45 50 60 70 80 100 200 500 1000 >1000 n/n,
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TABLE A.4 F-Table: Critical Values at 0.01 Level of Significance

n/n, 1 2 3 4 5 6 7 8 9 10 11 12 n/n,

3 3412 3082 2946 2871 2824 2791 27.67 2749 2735 2723 27.13 27.05 3
4 2120 18.00 1669 1598 1552 1521 1498 1480 14.66 14.55 1445 14.37 4
5 1626 1327 12.06 1139 1097 10.67 1046 1029 10.16 1005 996  9.89 5
6 1375 1092 978 9.5 875 847 826 810 798 787 7179 172 6
7 1225 955 845 785 746 719 699 684 672 662 654 647 7
8 1126 865 759 7.01 6.63 637 6.18 6.03 591 5.81 573  5.67 8
9 1056 802 699 642 606 580 561 547 535 526 518 5.1 9
10 1004 756 655 599 564 539 520 506 494 485 477 471 10
11 9.65 721 622 567 532 507 489 474 463 454 446 440 11
12 933 693 595 541 506 482 464 450 439 430 422 416 12
13 9.07 670 574 521 486 462 444 430 419 410 402 396 13
14 8.86 651 556 504 470 446 428 414 403 394 386 3.80 14
15 8.68 636 542 489 456 432 414 400 389 380 373 3.67 15
16 853 6.23 529 477 444 420 403 389  3.78 3.69  3.62 355 16
17 840 611 519 467 434 410 393 379 368 359 352 346 17
18 829  6.01 5.09 458 425 401 384 371 3.60 351 3.43 3.37 18
19 819 593 501 450 417 394 377 363 352 343 336 330 19
20 810 585 494 443 410 387 370 356 346 337 329 323 20
22 795 572 482 431 399 376 359 345 335 326 318 312 22
24 7.82  5.61 472 422 390 367 350 336 326 3.17 3.09 3.03 24
26 772 553 464 414 382 359 342 329 318 3.09 302 296 26
28 7.64 545 457 407 375 3.53 336 3.23 312 3.03 296 290 28
30 756 539 451 402 370 347 330 317 307 298 291 284 30
35 742 527 440 391 3.59 3.37 320 3.07 296 288 280 274 35
40 731 518 431 383 351 329 312 299 289 280 273 266 40
45 723 511 4.25 3.77 3.45 3.23 3.07 294 283 274 267 2.6l 45
50 717 506 420 372 341 319 302 289 279 270 263 256 50
60 7.08 498 413 365 334 312 295 282 272 263 256 250 60
70 701 492 407 360 329 307 291 278 267 259 251 245 70
80 6.96 488 404 356 326 304 287 274 264 255 248 242 80
100 690 48 398 351 321 299 28 269 259 250 243 237 100
200 676 471 388 341 311 289 273 260 250 241 234 227 200
500  6.69 465 382 336 305 284 268 255 244 236 228 222 500
1000 666 463 380 334 304 2.8 266 253 243 234 227 220 1000
>1000 1.04 461 378 332 302 280 264 251 241 232 225 219 >1000
n/n, 1 2 3 4 5 6 7 8 9 10 11 12 n/n,

(Continued)
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TABLE A.4 (continued)

n/n 13 14 15 16 17 18 19 20 22 24 26 28 30 n/n

3 2698 2692 26.87 26.83 26.79 26.75 26.72 26.69 26.64 26.60 26.56 26.53 26.50 3
4 1431 1425 1420 14.15 14.11 14.08 14.05 14.02 1397 1393 13.89 13.86 13.84 4
5 982 977 972 968 9.64 961 958 955 951 947 943 940 938 5
6 766 761 756 752 748 745 742 740 735 731 728 725 723 6
7 641 636 631 628 624 621 618 6.16 6.11 607 6.04 602 599 7
8 561 556 552 548 544 541 538 536 532 528 525 522 520 8
9 505 501 496 492 489 486 483 481 477 473 470 467 4.65 9
10 465 460 456 452 449 446 443 441 436 433 430 427 425 10
11 434 429 425 421 418 415 412 410 406 402 399 396 394 11
12 410 405 401 397 394 391 388 38 382 378 375 372 3.0 12
13 391 386 382 378 375 372 3.69 366 362 359 356 353 351 13
14 375 370 366 3.62 359 356 353 351 346 343 340 337 335 14
15 361 356 352 349 345 342 340 337 333 329 326 324 321 15
16 350 345 341 337 334 331 328 326 322 318 315 312 310 16
17 340 335 331 327 324 321 319 316 312 308 3.05 303 3.00 17
18 332 327 323 319 316 313 310 308 3.03 300 297 294 292 18
19 324 319 315 312 3.08 305 303 300 296 292 289 287 284 19
20 318 313 309 3.05 302 299 29 294 290 286 283 280 278 20
22 307 3.02 298 294 291 288 285 283 278 275 272 269 267 22
24 298 293 289 285 282 279 276 274 270 266 263 260 258 24
26 290 286 282 278 275 272 269 266 262 258 255 253 250 26
28 284 279 275 272 268 265 263 260 256 252 249 246 244 28
30 279 274 270 266 263 260 257 255 251 247 244 241 239 30
35 269 264 260 256 253 250 247 244 240 236 233 231 228 35
40 261 256 252 248 245 242 239 237 233 229 226 223 220 40
45 255 251 246 243 239 236 234 231 227 223 220 217 214 45
50 251 246 242 238 235 232 229 227 222 218 215 212 210 50
60 244 239 235 231 228 225 222 220 215 212 208 205 203 60
70 240 235 231 227 223 220 218 215 211 207 203 201 198 70
80 236 231 227 223 220 217 214 212 207 203 200 197 194 80
100 231 227 222 219 215 212 209 207 202 198 195 192 189 100
200 222 217 213 209 206 203 200 197 193 18 185 182 179 200
500 217 212 207 204 200 197 194 192 187 183 179 176 174 500
1000 2.15 210 206 202 198 195 192 19 185 181 177 174 1.72 1000
>1000 2.13 2,08 204 200 197 194 191 188 183 179 176 173 170 >1000
n/n, 13 14 15 16 17 18 19 20 22 24 26 28 30 n/n,
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n/n 35 40 45 50 60 70 80 100 200 500 1000 >1000 n/n

3 2645 2641 2638 2635 2632 2629 2627 2624 26.18 26.15 26.13 26.15 3
4 1379 1375 13.71 13.69 13.65 13.63 13.61 13.58 13.52 1349 1347 1347 4
5 933 929 926 924 920 9.8 916 9.3 9.08 9.04 903 9.02 5
6 718 714 711 7.09 706 7.03 7.01 699 693 690 689 6.89 6
7 594 591 588 586 582 580 578 575 570 567 566 565 7
8 515 512 509 507 503 501 499 496 491 488 487 486 8
9 460 457 454 452 448 446 444 442 436 433 432 432 9
10 420 417 414 412 408 406 404 401 396 393 392 391 10
11 389 386 383 381 378 375 373 371 366 362 361 3.60 11
12 365 362 359 357 354 351 349 347 341 338 337 336 12
13 346 343 340 338 334 332 330 327 322 319 318 3.7 13
14 330 327 324 322 318 316 314 311 3.06 3.03 301 301 14
15 317 313 310 3.08 305 302 300 298 292 28 283 287 15
16 305 302 299 297 293 291 289 286 281 278 276 275 16
17 296 292 289 287 283 281 279 276 271 268 266 265 17
18 287 284 281 278 275 272 271 268 262 259 258 257 18
19 280 276 273 271 267 265 263 260 255 251 250 249 19
20 273 269 267 264 261 258 256 254 248 244 243 242 20
22 262 258 255 253 250 247 245 242 236 233 232 231 22
24 253 249 246 244 240 238 236 233 227 224 222 221 24
26 245 242 239 236 233 230 228 225 219 216 214 213 26
28 239 235 232 230 226 224 222 219 213 209 208 207 28
30 234 230 227 225 221 218 216 213 207 203 202 201 30
35 223 219 216 214 210 207 205 202 19 192 190 1.89 35
40 215 211 208 206 202 199 197 194 187 183 1.82 1.81 40
45 209 205 202 200 196 1.93 1.91 1.88 1.81 1.77 1.75 1.74 45
50 205 201 1.97 195 1.91 188 186 182 176 1.71 1.70  1.69 50
60 198 194 190 188 1.84 181 1.78 1.75 1.68 1.63 1.62  1.60 60
70 193 189 1.85 1.83 1.78 1.75 1.73 170 1.62 157 1.56 154 70
80 1.89 185 .82 179 175 1.71 1.69  1.65 1.58 1.53 1.51 1.50 80

100 184 180 176 174 169 166 1.63 1.60 152 147 145 1.43 100
200 1.74 169 1.66 1.63 1.58 155 152 148 139 133 130  1.28 200
500 1.68  1.63 1.60 157 152 148 145 1.41 1.31 1.23 120 1.17 500
1000 1.66  1.61 158 154 150 146 143 138 128 1.19 116 1.12 1000
>1000 1.64 159 156 153 148 144 141 136 125 116 111 1.05 >1000
n/n 35 40 45 50 60 70 80 100 200 500 1000 >1000 n/n,
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TABLE A.6 Critical Values of the Correlation Coefficient

Level of Significance for Two-Tailed Test

df (n-2) 0.10 0.05 0.02 0.01
1 0.988 0.997 0.9995 0.9999
2 0.900 0.950 0.980 0.990
3 0.805 0.878 0.934 0.959
4 0.729 0.811 0.882 0.917
5 0.669 0.754 0.833 0.874
6 0.622 0.707 0.789 0.834
7 0.582 0.666 0.750 0.798
8 0.549 0.632 0.716 0.765
9 0.521 0.602 0.685 0.735
10 0.497 0.576 0.658 0.708
11 0.476 0.553 0.634 0.684
12 0.458 0.532 0.612 0.661
13 0.441 0.514 0.592 0.641
14 0.426 0.497 0.574 0.623
15 0.412 0.482 0.558 0.606
16 0.400 0.468 0.542 0.590
17 0.389 0.456 0.528 0.575
18 0.378 0.444 0.516 0.561
19 0.369 0.433 0.503 0.549
20 0.36 0.423 0.492 0.537
21 0.352 0.413 0.482 0.526
22 0.344 0.404 0.472 0.515
23 0.337 0.396 0.462 0.505
24 0.33 0.388 0.453 0.496
25 0.323 0.381 0.445 0.487
26 0.317 0.374 0.437 0.479
27 0.311 0.367 0.430 0.471
28 0.306 0.361 0.423 0.463
29 0.301 0.355 0.416 0.456
30 0.296 0.349 0.409 0.449
35 0.275 0.325 0.381 0.418
40 0.257 0.304 0.358 0.393
45 0.243 0.288 0.338 0.372
50 0.231 0.273 0.322 0.354
60 0.211 0.25 0.295 0.325
70 0.195 0.232 0.274 0.303
80 0.183 0.217 0.256 0.283
90 0.173 0.205 0.242 0.267
100 0.164 0.195 0.230 0.254
df (n-2) 0.050 0.250 0.010 0.005

Level of significance for one-tailed test
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TABLE A.7 Ciritical Values of Studentized Range Distribution (q) for Family-wise

ALPHA =0.05

Denominator Number of Groups (Treatments)

DF 3 4 5 6 7 8 9 10
1 26.98 32.82 37.08 40.41 43.12 4540 4736  49.07
2 8.33 9.80 10.88 11.73 12.43 13.03 13.54 13.99
3 591 6.83 7.50 8.04 8.48 8.85 9.18 9.46
4 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83
5 4.60 5.22 5.67 6.03 6.33 6.58 6.80 7.00
6 4.34 4.90 5.31 5.63 5.90 6.12 6.32 6.49
7 4.17 4.68 0.06 5.36 5.61 5.82 6.00 6.16
8 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92
9 3.95 4.42 4.76 5.02 5.24 5.43 5.60 5.74
10 3.88 4.33 4.65 491 5.12 5.30 5.46 5.60
11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49
12 3.77 4.20 4.51 4.75 4.95 5.12 5.26 5.40
13 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32
14 3.70 4.11 441 4.64 4.83 4.99 5.13 5.25
15 3.67 4.08 4.37 4.60 4.78 4.94 5.08 5.20
16 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15
17 3.63 4.02 4.30 4.52 4.71 4.86 4.99 5.11
18 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07
19 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04
20 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01
21 3.57 3.94 4.21 4.42 4.60 4.74 4.87 4.98
22 3.55 3.93 4.20 4.41 4.58 472 4.85 4.96
23 3.54 391 4.18 4.39 4.56 4.70 4.83 4.94
24 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92
25 3.52 3.89 4.15 4.36 4.53 4.67 4.79 4.90
26 3.51 3.88 4.14 4.35 4.51 4.65 4.77 4.88
27 3.51 3.87 4.13 4.33 4.50 4.64 4.76 4.86
28 3.50 3.86 4.12 4.32 4.49 4.63 4.75 4.85
29 3.49 3.85 4.11 4.31 4.48 4.61 4.73 4.84
30 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82
31 348 3.84 4.09 4.29 4.45 4.59 4.71 4.81
32 348 3.83 4.09 4.28 4.45 4.58 4.70 4.80
33 3.47 3.83 4.08 4.28 4.44 4.57 4.69 4.79
34 3.47 3.82 4.07 4.27 443 4.56 4.68 4.78
35 3.46 3.81 4.07 4.26 4.42 4.56 4.67 4.77
36 3.46 3.81 4.06 4.26 4.41 4.55 4.66 4.76
37 345 3.80 4.05 4.25 441 4.54 4.66 4.76
38 345 3.80 4.05 4.24 4.40 4.53 4.65 4.75
39 345 3.80 4.04 4.24 4.39 4.53 4.64 4.74
40 344 3.79 4.04 4.23 4.39 4.52 4.63 4.74
41 344 3.79 4.04 4.23 4.38 4.52 4.63 4.73
42 344 3.78 4.03 4.22 4.38 4.51 4.62 4.72

(Continued)
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TABLE A.7 (continued)

Denominator Number of Groups (Treatments)

DF 3 4 5 6 7 8 9 10
43 343 3.78 4.03 4.22 4.37 4.50 4.62 4.72
44 343 3.78 4.02 4.21 4.37 4.50 4.61 4.71
45 343 3.77 4.02 4.21 4.36 4.49 4.61 4.71
46 343 3.77 4.02 4.21 4.36 4.49 4.60 4.70
47 342 3.77 4.01 4.20 4.36 4.49 4.60 4.70
48 342 3.76 4.01 4.20 4.35 4.48 4.59 4.69
49 342 3.76 4.01 4.19 4.35 4.48 4.59 4.69
50 342 3.76 4.00 4.19 4.34 4.47 4.58 4.68
51 3.41 3.76 4.00 4.19 4.34 4.47 4.58 4.68
52 3.41 3.75 4.00 4.18 4.34 4.47 4.58 4.67
53 341 3.75 3.99 4.18 4.33 4.46 4.57 4.67
54 341 3.75 3.99 4.18 4.33 4.46 4.57 4.67
55 341 3.75 3.99 4.18 4.33 4.46 4.57 4.66
56 341 3.75 3.99 4.17 4.33 4.45 4.56 4.66
57 3.40 3.74 3.98 4.17 4.32 4.45 4.56 4.66
58 3.40 3.74 3.98 4.17 4.32 4.45 4.56 4.65
59 3.40 3.74 3.98 4.17 4.32 4.44 4.55 4.65
60 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65
61 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.64
62 3.40 3.73 397 4.16 4.31 4.44 4.55 4.64
63 3.40 3.73 3.97 4.16 4.31 4.43 4.54 4.64
64 3.39 3.73 3.97 4.16 4.31 4.43 4.54 4.64
65 3.39 3.73 3.97 4.15 4.30 4.43 4.54 4.63
66 3.39 3.73 397 4.15 4.30 4.43 4.54 4.63
67 3.39 3.73 397 4.15 4.30 4.43 4.53 4.63
68 3.39 3.73 3.96 4.15 4.30 4.42 4.53 4.63
69 3.39 3.72 3.96 4.15 4.30 4.42 4.53 4.62
70 3.39 3.72 3.96 4.14 4.29 4.42 4.53 4.62
71 3.39 3.72 3.96 4.14 4.29 4.42 4.53 4.62
72 3.38 3.72 3.96 4.14 4.29 4.42 4.52 4.62
73 3.38 3.72 3.96 4.14 4.29 441 4.52 4.62
74 3.38 3.72 3.95 4.14 4.29 4.41 4.52 4.61
75 3.38 3.72 3.95 4.14 4.29 4.41 4.52 4.61
76 3.38 3.72 3.95 4.14 4.28 4.41 4.52 4.61
77 3.38 371 3.95 4.13 4.28 4.41 4.51 4.61
78 3.38 371 3.95 4.13 4.28 4.41 4.51 4.61
79 3.38 371 3.95 4.13 4.28 4.40 4.51 4.60
80 3.38 3.71 3.95 4.13 4.28 4.40 4.51 4.60
81 3.38 3.71 3.95 4.13 4.28 4.40 4.51 4.60
82 3.38 3.71 3.95 4.13 4.28 4.40 4.51 4.60
83 3.38 371 3.94 4.13 4.27 4.40 4.50 4.60
84 3.37 371 3.94 4.13 4.27 4.40 4.50 4.60
85 3.37 371 3.94 4.12 4.27 4.40 4.50 4.60

86 3.37 3.71 3.94 4.12 4.27 4.39 4.50 4.59
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TABLE A.7 (continued)

359

Denominator Number of Groups (Treatments)

DF 3 4 5 6 7 8 9 10
87 3.37 3.70 3.94 4.12 4.27 4.39 4.50 4.59
88 3.37 3.70 3.94 4.12 4.27 4.39 4.50 4.59
89 3.37 3.70 3.94 4.12 4.27 4.39 4.50 4.59
90 3.37 3.70 3.94 4.12 4.27 4.39 4.50 4.59
91 3.37 3.70 3.94 4.12 4.26 4.39 4.49 4.59
92 3.37 3.70 3.94 4.12 4.26 4.39 4.49 4.59
93 3.37 3.70 3.93 4.12 4.26 4.39 4.49 4.59
94 3.37 3.70 3.93 4.11 4.26 4.38 4.49 4.58
95 3.37 3.70 3.93 4.11 4.26 4.38 4.49 4.58
96 3.37 3.70 3.93 4.11 4.26 4.38 4.49 4.58
97 3.37 3.70 3.93 4.11 4.26 4.38 4.49 4.58
98 3.37 3.70 3.93 4.11 4.26 4.38 4.49 4.58
99 3.37 3.70 3.93 4.11 4.26 4.38 4.49 4.58
100 3.37 3.70 3.93 4.11 4.26 4.38 4.48 4.58

Adapted and abridged from Pearson, E. S. and Hartley, H. O. (1966). Tables for statisticians, Vol. 1, 3rd

ed. London: Biometrika Trustee. pp. 176—177. Copyright © 1966, Biometrika Trustees.
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