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Preface

Face recognition has been studied for many years in the context of biometrics. The human 
face belongs to the most common biometrics, since humans recognize faces throughout their 
whole lives; at the same time face recognition is not intrusive. Face recognition systems show 
many advantages, among others easy implementation, easy cooperation with other biometric 
systems, availability of face databases.

Nowadays, automatic methods of face recognition in ideal conditions (for two-dimensional 
face images) are generally considered to be solved. This is confirmed by many recognition 
results and reports from tests running on standard large face databases. Nevertheless, the 
design of a face recognition system is still a complex task which requires thorough choice 
and proposal of preprocessing, feature extraction and classification methods. Many tasks are 
still to be solved, e.g. face recognition in an unconstrained and uncontrolled environment 
(varying pose, illumination and expression, a cluttered background, occlusion), recognition 
of non-frontal facial images, the role of the face in multimodal biometric systems, real-time 
operation, one sample problem, 3D recognition, face recognition in video; that is why many 
researchers study face biometric extensively.

This book aims to bring together selected recent advances, applications and original results in 
the area of biometric face recognition. They can be useful for researchers, engineers, graduate 
and postgraduate students, experts in this area and hopefully also for people interested 
generally in computer science, security, machine learning and artificial intelligence.

Various methods, approaches and algorithms for recognition of human faces are used by 
authors of the chapters of this book, e.g. PCA, LDA, artificial neural networks, wavelets, 
curvelets, kernel methods, Gabor filters, active appearance models, 2D and 3D representations, 
optical correlation, hidden Markov models and others. Also a broad range of problems is 
covered: feature extraction and dimensionality reduction (chapters 1-4), 2D face recognition 
from the point of view of full system proposal (chapters 5-10), illumination and pose 
problems (chapters 11-13), eye movement (chapter 14), 3D face recognition (chapters 15-19) 
and hardware issues (chapters 19-20). 

Chapter 1 reviews the most relevant feature extraction techniques (both holistic and local 
feature) used in 2D face recognition and also introduces a new feature extraction technique. 
Chapter 2 presents the n-dimensional extension of PCA, which solves numerical difficulties 
and provides near optimal linear classification property. Chapter 3 is devoted to curvelets; 
authors concentrate on fast digital curvelet transform. In chapter 4, a dimensionality reduction 
method based on random projection is proposed and compressive classification algorithms 
that are robust to random projection dimensionality reduction are reviewed.



VI

In chapter 5, the author presents a modular system for face recognition including a method 
that can suppress unwanted features and make useful decisions on similarity irrespective 
of the complex nature of the underlying data. Chapter 6 presents discussion of appearance-
based methods vs. local description methods and the proposal of a novel face recognition 
system based on the use of interest point detectors and local descriptors. Chapter 7 focuses 
on wavelet-based face recognition schemes and presents their performance using a number 
of benchmark databases of face images and videos. Chapter 8 presents a complex view on the 
proposal of a biometric face recognition system including methodology, settings of parameters 
and the influence of input image quality on face recognition accuracy. In chapter 9, authors 
propose a face recognition system built as a cascade connection of an artificial neural network 
and pseudo 2D hidden Markov models. In chapter 10, an experimental evaluation of the 
performance of VG-RAM weightless neural networks for face recognition using well-known 
face databases is presented.

Chapter 11 addresses the problem of illumination in face recognition including mathematical 
illumination modeling, influence of illumination on recognition results and the current 
state-of-art of illumination processing and its future trends. Chapter 12 brings the proposal 
of a novel face representation based on phase responses of the Gabor filter bank which is 
characterized by its robustness to illumination changes. Chapter 13 presents illumination and 
pose-invariant face alignment based on an active appearance model.

Chapter 14 reviews current literature about eye movements in face recognition and provides 
answers to several questions relevant to this topic.

Chapter 15 gives an overview of surface representations for 3D face recognition; also surface 
representations promising in terms of future research that have not yet been reported in 
current face recognition literature are discussed. Chapter 16 presents framework for 3D face 
and expression recognition taking into account the fact that the deformation of the face surface 
is always related to different expressions. Chapter 17 addresses security leakages and privacy 
protection issues in biometric systems and presents latest results of template protection 
techniques in 3D face recognition systems. Chapter 18 presents a 3D face recognition system 
based on pseudo 2D hidden Markov models using an expression-invariant representation of 
faces. Chapter 19 covers some of the latest developments in optical correlation techniques for 
face recognition using the concept of spectral fusion; also a new concept of correlation filter 
called segmented composite filter is employed that is suitable for 3D face recognition.

Chapter 20 presents an implementation of the Neocognitron neural network using a high-
performance computing architecture based on a graphics processing unit.

The editor owes special thanks to authors of all included chapters for their valuable work.
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1. Introduction 

Over the past two decades several attempts have been made to address the problem of face 
recognition and a voluminous literature has been produced. Current face recognition 
systems are able to perform very well in controlled environments e.g. frontal face 
recognition, where face images are acquired under frontal pose with strict constraints as 
defined in related face recognition standards. However, in unconstrained situations where a 
face may be captured in outdoor environments, under arbitrary illumination and large pose 
variations these systems fail to work. With the current focus of research to deal with these 
problems, much attention has been devoted in the facial feature extraction stage. Facial 
feature extraction is the most important step in face recognition. Several studies have been 
made to answer the questions like what features to use, how to describe them and several 
feature extraction techniques have been proposed. While many comprehensive literature 
reviews exist for face recognition a complete reference for different feature extraction 
techniques and their advantages/disadvantages with regards to a typical face recognition 
task in unconstrained scenarios is much needed. 
In this chapter we present a comprehensive review of the most relevant feature extraction 
techniques used in 2D face recognition and introduce a new feature extraction technique 
termed as Face-GLOH-signature to be used in face recognition for the first time (Sarfraz and 
Hellwich, 2008), which has a number of advantages over the commonly used feature 
descriptions in the context of unconstrained face recognition. 
The goal of feature extraction is to find a specific representation of the data that can 
highlight relevant information. This representation can be found by maximizing a criterion 
or can be a pre-defined representation. Usually, a face image is represented by a high 
dimensional vector containing pixel values (holistic representation) or a set of vectors where 
each vector summarizes the underlying content of a local region by using a high level 
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transformation (local representation). In this chapter we made distinction in the holistic and 
local feature extraction and differentiate them qualitatively as opposed to quantitatively. It 
is argued that a global feature representation based on local feature analysis should be 
preferred over a bag-of-feature approach. The problems in current feature extraction 
techniques and their reliance on a strict alignment is discussed. Finally we introduce to use 
face-GLOH signatures that are invariant with respect to scale, translation and rotation and 
therefore do not require properly aligned images. The resulting dimensionality of the vector 
is also low as compared to other commonly used local features such as Gabor, Local Binary 
Pattern Histogram ‘LBP’ etc. and therefore learning based methods can also benefit from it.  
A performance comparison of face-GLOH-Signature with different feature extraction 
techniques in a typical face recognition task is presented using FERET database. To 
highlight the usefulness of the proposed features in unconstrained scenarios, we study and 
compare the performance both under a typical template matching scheme and learning 
based methods (using different classifiers) with respect to the factors like, large number of 
subjects, large pose variations and misalignments due to detection errors. The results 
demonstrate the effectiveness and weakness of proposed and existing feature extraction 
techniques. 

 
2. Holistic Vs Local Features-What Features to Use? 

Holistic representation is the most typical to be used in face recognition. It is based on 
lexicographic ordering of raw pixel values to yield one vector per image. An image can now 
be seen as a point in a high dimensional feature space. The dimensionality corresponds 
directly to the size of the image in terms of pixels. Therefore, an image of size 100x100 pixels 
can be seen as a point in a 10,000 dimensional feature space. This large dimensionality of the 
problem prohibits the use of any learning to be carried out in such a high dimensional 
feature space. This is called the curse of dimensionality in the pattern recognition literature 
(Duda et al, 2001). A common way of dealing with it is to employ a dimensionality 
reduction technique such as Principal Component Analysis ‘PCA’ to pose the problem into a 
low-dimensional feature space such that the major modes of variation of the data are still 
preserved.  
Local feature extraction refers to describing only a local region/part of the image by using 
some transformation rule or specific measurements such that the final result describes the 
underlying image content in a manner that should yield a unique solution whenever the 
same content is encountered. In doing so, however it is also required to have some degree of 
invariance with respect to commonly encountered variations such as translation, scale and 
rotations. A number of authors (Pentland et al, 1994; Cardinaux et al, 2006; Zou et al, 2007) 
do not differentiate the holistic and local approaches according to the very nature they are 
obtained, but rather use the terms in lieu of global (having one feature vector per image) and 
a bag-of-feature (having several feature vectors per image) respectively. Here we want to 
put the both terms into their right context, and hence a holistic representation can be 
obtained for several local regions of the image and similarly a local representation can still 
be obtained by concatenating several locally processed regions of the image into one global 
vector, see figure 1 for an illustration. An example of the first usage is local-PCA or 
modular- PCA (Gottumukkal and Asari, 2004; Tan and Chen, 2005), where an image is 
divided into several parts or regions, and each region is then described by a vector 
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comprising underlying raw-pixel values, PCA is then employed to reduce the 
dimensionality. Note that it is called local since it uses several local patches of the same 
image but it is still holistic in nature. An example of the second is what usually found in the 
literature, e.g. Gabor filtering, Discrete Cosine Transform ‘DCT’, Local Binary Pattern ‘LBP’ 
etc where each pixel or local region of the image is described by a vector and concatenated 
into a global description (Zou et al, 2007), note that they still give rise to one vector per 
image but they are called local in the literature because they summarize the local content of 
the image at a location in a way that is invariant with respect to some intrinsic image 
properties e.g. scale, translation and/or rotation. 
Keeping in view the above discussion it is common in face recognition to either follow a 
global feature extraction or a bag-of-features approach. The choice, of what is optimal, 
depends on the final application in mind and hence is not trivial. However, there are a 
number of advantages and disadvantages with both the approaches. For instance, a global 
description is generally preferred for face recognition since it preserves the configural (i.e., 
the interrelations between facial parts) information of the face, which is very important for 
preserving the identity of the individual as have been evidenced both from psychological 
(Marta et al, 2006), neurobiological (Schwaninger et al, 2006; Hayward et al, 2008) and 
computer vision ( Belhumeur et al, 1997; Chen et al, 2001) communities. On the other hand, 
a bag-of-features approach has been taken by a number of authors (Brunelli and Poggio, 
1993; Martnez, 2002; Kanade and Yamada, 2003) and shown improved recognition results 

1 2  N

One global vector per image 
obtained by concatenating pixels 

(holistic) or processed local 
regions/patches (local). 

A “bag-of-features” 
approach, where N vectors 

are obtained for N local 
patches/regions. Each 
feature vector may be 

obtained by holistic or local 
feature extraction. 

N 1 

Fig. 1. Global and bag-of-feature representation for a facial image 
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in the presence of occlusion etc., nonetheless, in doing so, these approaches are bound to 
preserve the configural information of the facial parts either implicitly or explicitly by 
comparing only the corresponding parts in two images and hence puts a hard demand on 
the requirement of proper and precise alignment of facial images.  
Note that while occlusion may be the one strong reason to consider a bag-of-features 
approach, the tendency of preserving the spatial arrangement of different facial parts 
(configural information) is largely compromised. As evidenced from the many studies from 
interdisciplinary fields that this spatial arrangement is in fact quite crucial in order to 
preserve the identity of an individual, we therefore, advocate the use of a global 
representation for a face image in this dissertation, as has also been used by many others.  
One may, however, note that a global representation does not necessarily mean a holistic 
representation, as described before. In fact, for the automatic unconstrained face recognition, 
where there may be much variation in terms of scale, lighting, misalignments etc, the choice 
of using local feature extraction becomes imperative since holistic representation cannot 
generalize in these scenarios and is known to be highly affected by these in-class variations. 

 
3. Holistic Feature Extraction 

Holistic feature extraction is the most widely used feature description technique in 
appearance based face recognition methods. Despite its poor generalization abilities in 
unconstrained scenarios, it is being used for the main reason that any local extraction 
technique is a form of information reduction in that it typically finds a transformation that 
describes a large data by few numbers. Since from a strict general object recognition stand 
point, face is one class of objects, and thus discriminating within this class puts very high 
demands in finding subtle details of an image that discriminates among different faces. 
Therefore each pixel of an image is considered valuable information and holistic processing 
develops. However, a holistic-based global representation as been used classically (Turk and 
Pentland, 1991) cannot perform well and therefore more recently many researchers used a 
bag-of-features approach, where each block or image patch is described by holistic 
representation and the deformation of each patch is modeled for each face class (Kanade 
and Yamada, 2003; Lucey and Chen, 2006; Ashraf et al, 2008). 

 
3.1 Eigenface- A global representation 
Given a face image matrix F of size Y x X, a vector representation is constructed by 
concatenating all the columns of F to form a column vector f


of dimensionality YX. Given a 

set of training vectors 1{ }Np
i if 


 for all persons, a new set of mean subtracted vectors is formed 

using: 
 

, 1,2,....,i i pg f f i N  
 

 (1) 
 
The mean subtracted training set is represented as a matrix 1 2[ , ,..., ]NpG g g g

   . The 

covariance matrix is then calculated using, TGG  . Due to the size of  , calculation of the 
eigenvectors of   can be computationally infeasible. However, if the number of training 
vectors (Np) is less than their dimensionality (YX), there will be only Np-1 meaningful 
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eigenvectors. (Turk and Pentland, 91) exploit this fact to determine the eigenvectors using 
an alternative method summarized as follows. Let us denote the eigenvectors of matrix GTG 
as jv  with corresponding eigenvalues j : 

T
j j jG Gv v 
   (2) 

 
Pre-multiplying both sides by G gives us: T

j j jGG Gv Gv 
  , Letting je Gv

   and substituting 
for   from equation 1: 
 

j j je e  
   (3) 

 
Hence the eigenvectors of   can be found by pre-multiplying the eigenvectors of GTG by G. 
To achieve dimensionality reduction, let us construct matrix 1 1[ , ,..., ]DE e e e

   , containing D 

eigenvectors of  with largest corresponding eigenvalues. Here, D<Np, a feature vector x  

of dimensionality D is then derived from a face vector f


  using: 
 

( )Tx E f f 
   (4) 

 
Therefore, a face vector f


 is decomposed into D eigenvectors, known as eigenfaces. 

Similarly, employing the above mentioned Eigen analysis to each local patch of the image 
results into a bag-of-features approach. Pentland et al. extended the eigenface technique to a 
layered representation by combining eigenfaces and other eigenmodules, such as eigeneyes, 
eigennoses, and eigenmouths(Pentland et al, 1994). Recognition is then performed by 
finding a projection of the test image patch to each of the learned local Eigen subspaces for 
every individual. 

 
4. Local Feature Extraction 

(Gottumukkal and Asari, 2004) argued that some of the local facial features did not vary 
with pose, direction of lighting and facial expression and, therefore, suggested dividing the 
face region into smaller sub images. The goal of local feature extraction thus becomes to 
represent these local regions effectively and comprehensively. Here we review the most 
commonly used local feature extraction techniques in face recognition namely the Gabor 
wavelet transform based features , discrete cosine transform DCT-based features and more 
recently proposed Local binary pattern LBP features.  

 
4.1 2D Gabor wavelets 
The 2D Gabor elementary function was first introduced by Granlund (Granlund, 1978). 
Gabor wavelets demonstrate two desirable characteristic: spatial locality and orientation 
selectivity. The structure and functions of Gabor kernels are similar to the two-dimensional 
receptive fields of the mammalian cortical simple cells (Hubel and Wiesel, 1978). (Olshausen 
and Field, 1996; Rao and Ballard, 1995; Schiele and Crowley, 2000) indicates that the Gabor 
wavelet representation of face images should be robust to variations due to illumination and 
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facial expression changes. Two-dimensional Gabor wavelets were first introduced into 
biometric research by Daugman (Daugman, 1993) for human iris recognition. Lades et al. 
(Lades et al, 1993) first apply Gabor wavelets for face recognition using the Dynamic Link 
Architecture framework. 
A Gabor wavelet kernel can be thought of a product of a complex sinusoid plane wave with 
a Gaussian envelop. A Gabor wavelet generally used in face recognition is defined as (Liu, 
2004): 
 

2 2
2,

2 ,

2
, 2 2

, 2( ) [ ]
u

u

k z
u ik z

u

k
z e e e






 




 
   (5) 

 
where z = (x, y) is the point with the horizontal coordinate x and the vertical coordinate y in 
the image plane. The parameters u and v define the orientation and frequency of the Gabor 

kernel, . denotes the norm operator, and   is related to the standard derivation of the 

Gaussian window in the kernel and determines the ratio of the Gaussian window width to 
the wavelength. The wave vector ,k  is defined as ,

ui
uk k e 
  . 

Following the parameters suggested in (Lades et al, 1993) and used widely in prior works 

(Liu, 2004) (Liu and Wechsler, 2002)  max
v v

kk
f

  and 
8u
u  . kmax is the maximum frequency, 

and fv is the spatial frequency between kernels in the frequency domain. {0,...,4}v and 
{0,...,7}u  in order to have a Gabor kernel tuned to 5 scales and 8 orientations. Gabor 

wavelets are chosen relative to 2   , max 2
k 

  and 2f  . The parameters ensures that 

frequencies are spaced in octave steps from 0 to  , typically each Gabor wavelet has a 
frequency bandwidth of one octave that is sufficient to have less overlap and cover the 
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The Gabor wavelet representation of an image is the convolution of the image with a family 
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where ( , )z x y denotes the image position, the symbol ‘ ’ denotes the convolution 
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and ,u v  is the phase of Gabor kernel at each image position. It is known that the magnitude 
varies slowly with the spatial position, while the phases rotate in some rate with positions, 
as can be seen from the example in figure 2. Due to this rotation, the phases taken from 
image points only a few pixels apart have very different values, although representing 
almost the same local feature (Wiskott et al, 1997). This can cause severe problems for face 
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(a) (b) 
Fig. 2. Visualization of (a) Gabor magnitude (b) Gabor phase response, for a face image with
40 Gabor wavelets (5 scales and 8 orientations). 

matching, and it is just the reason that all most all of the previous works make use of only 
the magnitude part for face recognition. Note that, convolving an image with a bank of 
Gabor kernel tuned to 5 scales and 8 orientations results in 40 magnitude and phase 
response maps of the same size as image. Therefore, considering only the magnitude 
response for the purpose of feature description, each pixel can be now described by a 40 
dimensional feature vector (by concatenating all the response values at each scale and 
orientation) describing the response of Gabor filtering at that location.  
Note that Gabor feature extraction results in a highly localized and over complete response 
at each image location. In order to describe a whole face image by Gabor feature description 
the earlier methods take into account the response only at certain image locations, e.g. by 
placing a coarse rectangular grid over the image and taking the response only at the nodes 
of the grid (Lades et al, 1993) or just considering the points at important facial landmarks as 
in (Wiskott et al, 1997). The recognition is then performed by directly comparing the 
corresponding points in two images. This is done for the main reason of putting an upper 
limit on the dimensionality of the problem. However, in doing so they implicitly assume a 
perfect alignment between all the facial images, and moreover the selected points that needs 
to be compared have to be detected with pixel accuracy.  
One way of relaxing the constraint of detecting landmarks with pixel accuracy is to describe 
the image by a global feature vector either by concatenating all the pixel responses into one 
long vector or employ a feature selection mechanism to only include significant points (Wu 
and Yoshida, 2002) (Liu et al, 2004). One global vector per image results in a very high and 
prohibitive dimensional problem, since e.g. a 100x100 image would result in a 
40x100x100=400000 dimensional feature vector. Some authors used Kernel PCA to reduce 
this dimensionality termed as Gabor-KPCA (Liu, 2004), and others (Wu and Yoshida, 2002; 
Liu et al, 2004; Wang et al, 2002) employ a feature selection mechanism for selecting only the 
important points by using some automated methods such as Adaboost etc. Nonetheless, a 
global description in this case still results in a very high dimensional feature vector, e.g. in 
(Wang et al, 2002) authors selected only 32 points in an image of size 64x64, which results in 
32x40=1280 dimensional vector, due to this high dimensionality the recognition is usually 
performed by computing directly a distance measure or similarity metric between two 
images. The other way can be of taking a bag-of-feature approach where each selected point 
is considered an independent feature, but in this case the configural information of the face 
is effectively lost and as such it cannot be applied directly in situations where a large pose 
variations and other appearance variations are expected. 
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The Gabor based feature description of faces although have shown superior results in terms 
of recognition, however we note that this is only the case when frontal or near frontal facial 
images are considered. Due to the problems associated with the large dimensionality, and 
thus the requirement of feature selection, it cannot be applied directly in scenarios where 
large pose variations are present. 

 
4.2 2D Discrete Cosine Transform 
Another popular feature extraction technique has been to decompose the image on block by 
block basis and describe each block by 2D Discrete Cosine Transform ‘DCT’ coefficients. An 
image block ( , )f p q , where ,  {0,1.., N 1}p q   (typically N=8), is decomposed terms of 
orthogonal 2D DCT basis functions. The result is a NxN matrix C(v,u) containing 2D DCT 
coefficients: 
 

1 1

0 0
( , ) ( ) ( ) ( , ) ( , , , )

N N

y x
C v u v u f p q p q v u  

 

 

   (7) 

 
where , 0,1,2,..., 1v u N  , 1( ) Nv  for v=0, and 2( ) Nv  for v=1,2,…,N-1  and  
 

(2 1) (2 1)( , , , ) cos cos
2 2

p v q up q v u
N N

             
 (8) 

 
The coefficients are ordered according to a zig-zag pattern, reflecting the amount of 
information stored (Gonzales and Woods, 1993). For a block located at image position (x,y), 
the baseline 2D DCT feature vector is composed of: 
 

( , ) ( , ) ( , )
1 1[ ... ]x y x y x y T

o Mx c c c   (9) 
 
Where ( , )x y

nc  denotes the n-th 2D DCT coefficient and M is the number of retained 
coefficients3. To ensure adequate representation of the image, each block overlaps its 
horizontally and vertically neighbouring blocks by 50% (Eickeler et al, 2000). M is typically 
set to 15 therefore each block yields a 15 dimensional feature vector. Thus for an image 
which has Y rows and X columns, there are (2 1) (2 1)Y X

D N NN     blocks. 
DCT based features have mainly been used in Hidden Markov Models HMM based 
methods in frontal scenarios. More recently (Cardinaux et al, 2006) proposed an extension of 
conventional DCT based features by replacing the first 3 coefficients with their 
corresponding horizontal and vertical deltas termed as DCTmod2, resulting into an 18-
dimensional feature vector for each block. The authors claimed that this way the feature 
vectors are less affected by illumination change. They then use a bag-of-feature approach to 
derive person specific face models by using Gaussian mixture models.  

 
4.2 Local Binary Pattern Histogram LBPH and its variants  

Local binary pattern (LBP) was originally designed for texture classification (Ojala et al, 
2002), and was introduced in face recognition in (Ahonen et al, 2004). As mentioned in 
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(Ahonen et al, 2004) the operator labels the pixels of an image by thresholding some 
neighbourhood of each pixel with the centre value and considering the result as a binary 
number. Then the histogram of the labels can be used as a texture descriptor. See figure 3 for 
an illustration of the basic 2

,
U
P RLBP  operator. The face area is divided into several small 

windows. Several LBP operators are compared and 2
8,2
ULBP  the operator in 18x21 pixel 

windows is recommended because it is a good trade-off between recognition performance 
and feature vector length. The subscript represents using the operator in a (P, R) 
neighbourhood. Superscript U2 represent using only uniform patterns and labelling all 
remaining patterns with a single label, see (Ahonen et al, 2004) for details. The 2  statistic 
and the weighted 2 statistic were adopted to compare local binary pattern histograms.  

 
Recently (Zhang et al, 2005) proposed local Gabor binary pattern histogram sequence 
(LGBPHS) by combining Gabor filters and the local binary operator. (Baochang et al, 2007) 
further used LBP to encode Gabor filter phase response into an image histogram termed as 
Histogram of Gabor Phase Patterns (HGPP).  

 
5. Face-GLOH-Signatures –introduced feature representation 

The mostly used local feature extraction and representation schemes presented in previous 
section have mainly been employed in a frontal face recognition task. Their ability to 
perform equally well when a significant pose variation is present among images of the same 
person cannot be guaranteed, especially when no alignment is assumed among facial 
images. This is because when these feature representations are used as a global description 
the necessity of having a precise alignment becomes unavoidable. While representations like 
2D-DCT or LBP are much more susceptible to noise, e.g. due to illumination change as 
noted in (Zou et al, 2007) or pose variations, Gabor based features are considered to be more 
invariant with respect to these variations. However, as discussed earlier the global Gabor 
representation results in a prohibitively high dimensional problem and as such cannot be 
directly used in statistical based methods to model these in-class variations due to pose for 
instance. Moreover the effect of misalignments on Gabor features has been studied 

(a) 

(b) 

Fig. 3. (a) the basic LBP operator. (b) The circular (8,2) neighbourhood. The pixel values are
bilinearly interpolated whenever the sampling point is not in the centre of a pixel (Ahonen
et al, 2004) 
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(Shiguang et al, 2004), where strong performance degradation is observed for different face 
recognition systems. 
As to the question, what description to use, there are some guidelines one can benefit from. 
For example, as discussed in section 3.1 the configural relationship of the face has to be 
preserved. Therefore a global representation as opposed to a bag-of-features approach 
should be preferred. Further in order to account for the in-class variations the local regions 
of the image should be processed in a scale, rotation and translation invariant manner. 
Another important consideration should be with respect to the size of the local region used. 
Some recent studies (Martnez, 2002; Ullman et al, 2002; Zhang et al, 2005) show that large 
areas should be preferred in order to preserve the identity in face identification scenarios.  
Keeping in view the preceding discussion we use features proposed in (Mikolajczyk and 
Schmid, 2005), used in other object recognition tasks, and introduce to employ these for the 
task of face recognition for the first time (Sarfraz, 2008; Sarfraz and Hellwich, 2008) Our 
approach is to extract whole appearance of the face in a manner which is robust against 
misalignments. For this the feature description is specifically adapted for the purpose of face 
recognition. It models the local parts of the face and combines them into a global description 
We use a representation based on gradient location-orientation histogram (GLOH) 
(Mikolajczyk and Schmid, 2005), which is more sophisticated and is specifically designed to 
reduce in-class variance by providing some degree of invariance to the aforementioned 
transformations. 
GLOH features are an extension to the descriptors used in the scale invariant feature 
transform (SIFT) (Lowe, 2004), and have been reported to outperform other types of 
descriptors in object recognition tasks (Mikolajczyk and Schmid, 2005). Like SIFT the GLOH 
descriptor is a 3D histogram of gradient location and orientation, where location is 
quantized into a log-polar location grid and the gradient angle is quantized into eight 
orientations. Each orientation plane represents the gradient magnitude corresponding to a 
given orientation. To obtain illumination invariance, the descriptor is normalized by the 
square root of the sum of squared components.  
Originally (Mikolajczyk and Schmid, 2005) used the log-polar location grid with three bins 
in radial direction (the radius set to 6, 11, and 15) and 8 in angular direction, which results in 
17 location bins. The gradient orientations are quantized in 16 bins. This gives a 272 bin 
histogram. The size of this descriptor is reduced with PCA. While here the extraction 
procedure has been specifically adapted to the task of face recognition and is described in 
the remainder of this section. 
The extraction process begins with the computation of scale adaptive spatial gradients for a 
given image I(x,y). These gradients are given by: 
 

( , , ) ( , ; )tw x y t t L x y txy xyt
    (10) 

 
where L(x,y; t) denotes the linear Gaussian scale space of I(x,y) (Lindeberg, 1998) and w(x,y,t) 
is a weighting, as given in equation 11. 
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The gradient magnitudes obtained for an example face image (Figure 5 e) are shown in 
Figure 5 b. The gradient image is then partitioned on a grid in polar coordinates, as 
illustrated in Figure 5 c. As opposed to the original descriptor the partitions include a 
central region and seven radial sectors. The radius of the central region is chosen to make 
the areas of all partitions equal. Each partition is then processed to yield a histogram of 
gradient magnitude over gradient orientations. The histogram for each partition has 16 bins 
corresponding to orientations between 0 and 2π, and all histograms are concatenated to give 
the final 128 dimensional feature vector, that we term as face-GLOH-signature, see Figure 5 
d. No PCA is performed in order to reduce the dimensionality.  
The dimensionality of the feature vector depends on the number of partitions used. A 
higher number of partitions results in a longer vector and vice versa. The choice has to be 
made with respect to some experimental evidence and the effect on the recognition 
performance. We have assessed the recognition performance on a validation set by using 
ORL face database. By varying the partitions sizes from 3 (1 central region and 2 sectors), 5, 
8, 12 and 17, we found that increasing number of partitions results in degrading 
performance especially with respect to misalignments while using coarse partitions also 
affects recognition performance with more pose variations. Based on the results, 8 partitions 
seem to be the optimal choice and a good trade off between achieving better recognition 
performance and minimizing the effect of misalignment. The efficacy of the descriptor is 
demonstrated in the presence of pose variations and misalignments, in the next section. It 

Fig. 5. Face-GLOH-Signature extraction (a-b) Gradient magnitudes (c) polar-grid partitions
(d) 128-dimentional feature vector (e) Example image of a subject. 
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should be noted that, in practice, the quality of the descriptor improves when care is taken 
to minimize aliasing artefacts. The recommended measures include the use of smooth 
partition boundaries as well as a soft assignment of gradient vectors to orientation 
histogram bins.  

 
6. Performance Analysis 

In order to assess the performance of introduced face-GLOH-signature with that of various 
feature representations, we perform experiments in two settings. In the first setting, the 
problem is posed as a typical multi-view recognition scenario, where we assume that few 
number of example images of each subject are available for training. Note that, global 
feature representations based on Gabor, LBP and DCT cannot be directly evaluated in this 
setting because of the associated very high dimensional feature space. These representations 
are, therefore, evaluated in a typical template matching fashion in the second experimental 
setting, where we assess the performance of each representation across a number of pose 
mismatches by using a simple similarity metric. Experiments are performed on two of the 
well-known face databases i.e. FERET (Philips et al, 2000) and ORL face database 
(http://www.cam-orl.co.uk). 

 
6.1 Multi-view Face recognition 
In order to perform multi-view face recognition (recognizing faces under different poses) it 
is generally assumed to have examples of each person in different poses available for 
training. The problem is solved form a typical machine learning point of view where each 
person defines one class. A classifier is then trained that seek to separate each class by a 
decision boundary. Multi-view face recognition can be seen as a direct extension of frontal 
face recognition in which the algorithms require gallery images of every subject at every 
pose (Beymer, 1996). In this context, to handle the problem of one training example, recent 
research direction has been to use specialized synthesis techniques to generate a given face 
at all other views and then perform conventional multi-view recognition (Lee and Kim, 
2006; Gross et al, 2004). Here we focus on studying the effects on classification performance 
when a proper alignment is not assumed and there exist large pose differences. With these 
goals in mind, the generalization ability of different conventional classifiers is evaluated 
with respect to the small sample size problem. Small sample size problem stems from the 
fact that face recognition typically involves thousands of persons in the database to be 
recognized. Since multi-view recognition treats each person as a separate class and tends to 
solve the problem as a multi-class problem, it typically has thousands of classes. From a 
machine learning point of view any classifier trying to learn thousands of classes requires a 
good amount of training data available for each class in order to generalize well. Practically, 
we have only a small number of examples per subject available for training and therefore 
more and more emphasis is given on choosing a classifier that has good generalization 
ability in such sparse domain. 
The other major issue that affects the classification is the representation of the data. The 
most commonly used feature representations in face recognition have been introduced in 
previous sections. Among these the Eigenface by using PCA is the most common to be used 
in multi-view face recognition. The reason for that is the associated high dimensionality of 
other feature descriptions such as Gabor, LBPH etc. that prohibits the use of any learning to 
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be done. This is the well known curse of dimensionality issue in pattern recognition (Duda 
et al, 2001) literature and this is just the reason that methods using such over complete 
representations normally resort to performing a simple similarity search by computing 
distances of a probe image to each of the gallery image in a typical template matching 
manner. While by using PCA on image pixels an upper bound on the dimensionality can be 
achieved.  
In line with the above discussion, we therefore demonstrate the effectiveness of the 
proposed face-GLOH signatures with that of using conventional PCA based features in 
multi-view face recognition scenarios with respect to the following factors. 
When facial images are not artificially aligned 
When there are large pose differences 
Large number of subjects 
Number of examples available in each class (subject) for training. 
In order to show the effectiveness of face-GLOH signature feature representation against 
misalignments, we use ORL face database. ORL face database has 400 images of 40 subjects 
(10 images per subject) depicting moderate variations among images of same person due to 
expression and some limited pose. Each image in ORL has the dimension of 192x112 pixels. 

Fig. 6. An example of a subject from O-ORL and its scale and shifted examples from SS-ORL 
 

+15

+60o +45o +25

0o -15o 

-25o -45o -60o 

Fig. 7. Cropped faces of a FERET subject depicting all the 9 pose variations. 
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All the images are depicted in approximately the same scale and thus have a strong 
correspondence among facial regions across images of the same subject. We therefore 
generate a scaled and shifted ORL dataset by introducing an arbitrary scale change between 
0.7 and 1.2 of the original scale as well as an arbitrary shift of 3 pixels in random direction in 
each example image of each subject. This has been done to ensure having no artificial 
alignment between corresponding facial parts. This new misaligned dataset is denoted 
scaled-shifted SS-ORL (see Figure 6). The experiments are performed on both the original 
ORL denoted O-ORL and SS-ORL using PCA based features and face-GLOH signatures. 
ORL face database is mainly used to study the effects on classification performance due to 
misalignments since variations due to pose are rather restricted (not more than 20o). To 
study the effects of large pose variations and a large number of subjects, we therefore repeat 
our experiments on FERET database pose subset. The FERET pose subset contains 200 
subjects, where each subject has nine images corresponding to different pose angles 
(varying from  0o  frontal to left/right profile 60o ) with an average pose difference of o15 . 
All the images are cropped from the database by using standard normalization methods i.e. 
by manually locating eyes position and warping the image onto a plane where these points 
are in a fixed location. The FERET images are therefore aligned with respect to these points. 
This is done in order to only study the effects on classifier performance due to large pose 
deviations. All the images are then resized to 92x112 pixels in order to have the same size as 
that of ORL faces. An example of the processed images of a FERET subject depicting all the 9 
pose variations is shown in Figure 7. 
We evaluate eight different conventional classifiers. These include nearest mean classifier 
‘NMC’, linear discriminant classifier ‘LDC’, quadratic ‘QDC’, fisher discriminant, parzen 
classifier, k-nearest neighbour ‘KNN’, Decision tree and support vector machine ‘SVM’, see 
(Webb, 2002) for a review of these classifiers.  

 
6.1.1 Experiments on ORL database 
We extract one global feature vector per face image by using lexicographic ordering of all 
the pixel grey values. Thus, for each 92 x 112 ORL image, one obtains a 10384 dimensional 
feature vector per face. We then reduce this dimensionality by using unsupervised PCA. 
Where the covariance matrix is trained using 450 images of 50 subjects from FERET set. The 
number of projection Eigen-vectors are found by analysing the relative cumulative ordered 
eigenvalues (sum of normalized variance) of the covariance matrix. We choose first 50 
largest Eigen vectors that explain around 80% of the variance as shown in figure 4-3. By 
projecting the images on these, we therefore obtain a 50-dimentional feature vector for each 
image. We call this representation the PCA-set.  
The second representation of all the images is found by using face-GLOH-signature 
extraction, as detailed in section 5.  
In all of our experiments we assume equal priors for training, SVM experiments on O-ORL 
use a polynomial kernel of degree 2, to reduce the computational effort, since using RBF 
kernel with optimized parameters C and kernel width σ did not improve performance. For 
SS-ORL a RBF kernel is used with parameter C=500 and σ = 10, these values were 
determined using 5-fold cross validation and varying sigma between 0.1 and 50 and C 
between 1 and 1000. All the experiments are carried out for classifiers on each of two 
representations for both O-ORL and SS-ORL. 
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We use a 10-fold cross validation procedure to produces 10 sets of the same size as original 
dataset each with a different 10% of objects being used for testing. All classifiers are 
evaluated on each set and the classification errors are averaged. The results from this 
experiment on both O- ORL and SS-ORL for both feature representations are reported in 
table 1. 
 

Classifiers 
O-ORL  Representation sets SS-ORL Representation sets 

PCA face-GLO H PCA face-GLOH 

NMC 0.137 0.152 0.375 0.305 
LDC 0.065 0.020 0.257 0.125 
Fisher 0.267 0.045 0.587 0.115 
Parzen 0.037 0.030 0.292 0.162 
3-NN 0.097 0.062 0.357 0.255 
Decision Tree 0.577 0.787 0.915 0.822 
QDC 0.64 0.925 0.760 0.986 
SVM 0.047 0.037 0.242 0.105 

Table 1. Classification errors in 10-fold cross validation tests on ORL 
 
Table 1 shows how classification performance degrades, when the faces are not aligned i.e. 
arbitrarily scaled and shifted, on PCA based feature representation. The robustness of the 
face-GLOH-signature representation against misalignments can be seen by comparing the 
results on O-ORL and SS-ORL, where it still gives comparable performance in terms of 
classification accuracy. Best results are achieved by using LDC or SVM in both cases. 

 
6.1.2 Experiments on FERET database 
As stated earlier, FERET database pose subset is used to assess the performance with 
regards to large pose variations and large number of subjects. 50 out of 200 FERET subjects 
are used for training the covariance matrix for PCA. The remaining 1350 images of 150 
subjects are used to evaluate classifier performance with respect to large pose differences. In 
order to assess the small sample size problem (i.e. number of raining examples available per 
subject), experiments on FERET are performed with respect to varying training/test sizes by 
using 2, 4, 6, and 8 examples per subject and testing on the remaining. Similarly, tests at each 
size are repeated 5 times, with different training/test partitioning, and the errors are 
averaged. Figure 8 shows the averaged classification errors for all the classifiers on FERET 
set for both the feature representations with respect to varying training and test sizes. As 
shown in figure 8, increasing number of subjects and pose differences has an adverse affect 
on the performance of all the classifiers on PCA-representation set while face-GLOH-
Signature representation provides relatively better performance. 

 
6.2 Template matching Setting 
As stated earlier, due to the associated high dimensionality of the extracted features of 
GABOR, LBP, DCT etc, we assess the performance of these feature descriptions with that of 
face-GLOH signature across a number of pose mismatches in a typical template matching 
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setting. Frontal images of 200 FERET subjects are used as gallery while images for the 
remaining eight poses of each subject are used as test probes. Each probe is matched with 
each of the gallery images by using the cosine similarity metric. Probe is assigned the 
identity of the gallery subject for which it has the maximum similarity.  

 
6.2.1 Test Results 
We obtain each of the three feature descriptions as described in section 4. Gabor features are 
obtained by considering real part of the bank of Gabor filter kernel response tuned to 8 
orientations and 5 scales, at each pixel location. This resulted in 40x92x112=412160 
dimensional feature vector for each image. Due to memory constraints we used PCA to 
reduce the dimensionality to 16000-dimensional vector. For the LBPH feature 
representation, we use 2

8,2
ULBP  operator in 18x21 window as described in (Ahonen et al, 

2004) which resulted in a 2124 dimensional feature vector. The recognition scores in each 
pose are averaged. Table 2 depicts the performance comparison of different feature 
representations with that of Face-GLOH-Signature across a number of pose mismatches. 

Feature 
Description 

Average Recognition across each FERET Probe Pose 
15o  25o  45o  60o  

Eigenface 70.1% 56.2% 31.1% 13.4% 
Gabor 91.4% 81.2% 68.5% 32.1% 
LBPH 87.3 % 71.4% 56% 18.3% 

Face-GLOH-
Signature 

100% 94.5% 81.1% 53.8% 

Table 2. Comparison of face identification performance across pose of different feature 
representations  

Fig. 8. Classifiers evaluation On FERET by varying training/test sizes (a) Using PCA-set (b) 
Using face-GLOH-signature set 
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7. Conclusion 

A comprehensive account of almost all the feature extraction methods used in current face 
recognition systems is presented. Specifically we have made distinction in the holistic and 
local feature extraction and differentiate them qualitatively as opposed to quantitatively. It 
is argued that a global feature representation should be preferred over a bag-of-feature 
approach. The problems in current feature extraction techniques and their reliance on a 
strict alignment is discussed. Finally we have introduced to use face-GLOH signatures that 
are invariant with respect to scale, translation and rotation and therefore do not require 
properly aligned images. The resulting dimensionality of the vector is also low as compared 
to other commonly used local features such as Gabor, LBP etc. and therefore learning based 
methods can also benefit from it. 
In a typical multi-view face recognition task, where it is assumed to have several examples 
of a subject available for training, we have shown in an extensive experimental setting the 
advantages and weaknesses of commonly used feature descriptions. Our results show that 
under more realistic assumptions, most of the classifiers failed on conventional features. 
While using the introduced face-GLOH-signature representation is relatively less affected 
by large in-class variations. This has been demonstrated by providing a fair performance 
comparison of several classifiers under more practical conditions such as misalignments, 
large number of subjects and large pose variations. An important conclusion is to be drawn 
from the results on FERET is that conventional multi-view face recognition cannot cope well 
with regards to large pose variations. Even using a large number of training examples in 
different poses for a subject do not suffice for a satisfactory recognition. In order to solve the 
problem where only one training example per subject is available, many recent methods 
propose to use image synthesis to generate a given subject at all other views and then 
perform a conventional multi-view recognition (Beymer and Poggio, 1995; Gross et al, 2004). 
Besides the fact that such synthesis techniques cause severe artefacts and thus cannot 
preserve the identity of an individual, a conventional classification cannot yield good 
recognition results, as has been shown in an extensive experimental setting. More 
sophisticated methods are therefore needed in order to address pose invariant face 
recognition. Large pose differences cause significant appearance variations that in general 
are larger than the appearance variation due to identity. One possible way of addressing this 
is to learn these variations across each pose, more specifically by fixing the pose and 
establishing a correspondence on how a person’s appearance changes under this pose one 
could reduce the in-class appearance variation significantly. In our very recent work 
(Sarfraz and Hellwich, 2009), we demonstrate the usefulness of face-GLOH signature in this 
direction. 
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1. Introduction 

Principal component analysis (PCA), which is also known as Karhunen-Loeve (KL) 
transform, is a classical statistic technique that has been applied to many fields, such as 
knowledge representation, pattern recognition and image compression. The objective of 
PCA is to reduce the dimensionality of dataset and identify new meaningful underlying 
variables. The key idea is to project the objects to an orthogonal subspace for their compact 
representations. It usually involves a mathematical procedure that transforms a number of 
correlated variables into a smaller number of uncorrelated variables, which are called 
principal components. The first principal component accounts for as much of the variability 
in the dataset as possible, and each succeeding component accounts for as much of the 
remaining variability as possible. In pattern recognition, PCA technique was first applied to 
the representation of human face images by Sirovich and Kirby in [1,2]. This then led to the 
well-known Eigenfaces method for face recognition proposed by Turk and Penland in [3]. 
Since then, there has been an extensive literature that addresses both the theoretical aspect 
of the Eigenfaces method and its application aspect [4-6]. In image compression, PCA 
technique has also been widely applied to the remote hyperspectral imagery for 
classification and compression [7,8]. Nevertheless, it can be noted that in the classical 1D-
PCA scheme the 2D data sample (e.g. image) must be initially converted to a 1D vector 
form. The resulting sample vector will lead to a high dimensional vector space. It is 
consequently difficult to evaluate the covariance matrix accurately when the sample vector 
is very long and the number of training samples is small. Furthermore, it can also be noted 
that the projection of a sample on each principal orthogonal vector is a scale. Obviously, this 
will cause the sample data to be over-compressed. In order to solve this kind of 
dimensionality problem, Yang et al. [9,10] proposed the 2D-PCA approach. The basic idea is 
to directly use a set of matrices to construct the corresponding covariance matrix instead of a 
set of vectors. Compared with the covariance matrix of 1D-PCA, one can note that the size of 
the covariance matrix using 2D-PCA is much smaller. This improves the computational 
efficiency. Furthermore, it can be noted that the projection of a sample on each principal 
orthogonal vector is a vector. Thus, the problem of over-compression is alleviated in the 2D-
PCA scheme. In addition, Wang et al. [11] proposed that the 2D-PCA was equivalent to a 
special case of the block-based PCA, and emphasized that this kind of block-based methods 
had been used for face recognition in a number of systems. 
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For the multidimensional array cases, the higher order SVD (HO-SVD) has been applied to 
face recognition in [12,13]. They both employed a higher order tensor form associated with 
people, view, illumination, and expression dimensions and applied the HO-SVD to it for 
face recognition. We formulated them into the N-Dimensional PCA scheme in [14]. 
However, the presented ND-PCA scheme still adopted the classical single directional 
decomposition. Besides, due to the size of tensor, HO-SVD implementation usually leads to 
a huge matrix along some dimension of tensor, which is always beyond the capacity of an 
ordinary PC. In [12,13], they all employed small sized intensity images or feature vectors 
and a limited number of viewpoints, facial expressions and illumination changes in their 
“tensorface”, so as to avoid this numerical challenge in HO-SVD computation. 
Motivated by the above-mentioned works, in this chapter, we will reformulate our ND-PCA 
scheme presented in [14] by introducing the multidirectional decomposition technique for a 
near optimal solution of the low rank approximation, and overcome the above-mentioned 
numerical problems. However, we also noted the latest progress – Generalized PCA 
(GPCA), proposed in [15]. Unlike the classical PCA techniques (i.e. SVD-based PCA 
approaches), it utilizes the polynomial factorization techniques to subspace clustering 
instead of the usual Singular Value Decomposition approach. The deficiency is that the 
polynomial factorization usually yields an overabundance of monomials, which are used to 
span a high-dimensional subspace in GPAC scheme. Thus, the dimensionality problem is 
still a challenge in the implementation of GPCA. We will focus on the classical PCA 
techniques in this chapter. 
The remainder of this chapter is organized as follows: In Section 2, the classical 1D-PCA and 
2D-PCA are briefly revisited. The ND-PCA scheme is then formulated by using the 
multidirectional decomposition technique in Section 3, and the error estimation is also 
given. To evaluate the ND-PCA, it is performed on the FRGC 3D scan facial database [16] 
for multi-model face recognition in Section 4. Finally, some conclusions are given in 
Section 5. 

 
2. 1D- AND 2D-PCA, AN OVERVIEW 

1D-PCA 
Let a sample nX R . This sample is usually expressed in a vector form in the case of 1D-
PCA. Traditionally, principal component analysis is performed on a square symmetric 
matrix of the cross product sums, such as the Covariance and Correlation matrices (i.e. cross 
products from a standardized dataset), i.e. 
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where, X  is the mean of the training set, while 0 0,X Y  are standard forms. Indeed, the 
analysis of the Correlation and Covariance are different, since covariance is performed 
within the dataset, while correlation is used between different datasets. A correlation object 
has to be used if the variances of the individual samples differ much, or if the units of 
measurement of the individual samples differ. However, correlation can be considered as a 
special case of covariance. Thus, we will only pay attention to the covariance in the rest of 
this chapter. 

 

After the construction of the covariance matrix, Eigen Value Analysis is applied to Cov of 
Eq.(1), i.e. TCov U U  . Herein, the first k eigenvectors in the orthogonal matrix U 
corresponding to the first k largest eigenvalues span an orthogonal subspace, where the 
major energy of the sample is concentrated. A new sample of the same object is projected in 
this subspace for its compact form (or PCA representation) as follows, 
 ( )T

kU X X   ,           (2) 
where, kU  is a matrix consisting of the first k eigenvectors of U, the projection α is a k-
dimensional vector, which calls the k principal components of the sample X. The estimate of 
a novel representation of X can be described as, 
 kX U X  .       (3) 
It is clearly seen that the size of the covariance matrix of Eq.(1) is very large when the 
sample vectors are very long. Due to the large size of the covariance matrix and the 
relatively small number of training samples, it is difficult to estimate the covariance matrix 
of Eq.(1) accurately. Furthermore, a sample is projected on a principal vector as follows, 

( ), , , 1...T
i i i i ku X X u U i k       . 

It can be noted that the projection i  is a scale. Thus, this usually causes over-compression, 
i.e. we will have to use many principal components to approximate the original sample X 
for a desired quality. We call these above-mentioned numerical problems as “curse of 
dimensionality”. 
 
2D-PCA 
In order to avoid the above mentioned problem, Yang et al. in [10] firstly presented a 2D-
PCA scheme for 2D array cases in order to improve the performance of the PCA-style 
classifiers, that is, SVD is applied to the covariance matrix of, ( ) ( )T
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get TG V V  , where n m
iX R   denotes a sample, X  denotes the mean of a set of 

samples, and V is the matrix of the eigenvectors and Λ is the matrix of the eigenvalues. The 
low-rank approximation of sample X is described as, 

 
( )

T
k

k

X YV X
Y X X V

  


 


,    (4) 

where kV  contains the first k principal eigenvectors of G. It has been noted that 2D-PCA 
only considers between column (or row) correlations [11]. 
In order to improve the accuracy of the low rank approximation, Ding et al. in [17] 
presented a 2D-SVD scheme for 2D cases. The key idea is to employ the 2-directional 
decomposition to the 2D-SVD scheme, that is, two covariance matrices of, 
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are considered together. Let kU  contain the first k principal eigenvectors of F and sV  contain 
the first s principal eigenvectors of G. The low-rank approximation of X can be expressed as,  
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For the multidimensional array cases, the higher order SVD (HO-SVD) has been applied to 
face recognition in [12,13]. They both employed a higher order tensor form associated with 
people, view, illumination, and expression dimensions and applied the HO-SVD to it for 
face recognition. We formulated them into the N-Dimensional PCA scheme in [14]. 
However, the presented ND-PCA scheme still adopted the classical single directional 
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Motivated by the above-mentioned works, in this chapter, we will reformulate our ND-PCA 
scheme presented in [14] by introducing the multidirectional decomposition technique for a 
near optimal solution of the low rank approximation, and overcome the above-mentioned 
numerical problems. However, we also noted the latest progress – Generalized PCA 
(GPCA), proposed in [15]. Unlike the classical PCA techniques (i.e. SVD-based PCA 
approaches), it utilizes the polynomial factorization techniques to subspace clustering 
instead of the usual Singular Value Decomposition approach. The deficiency is that the 
polynomial factorization usually yields an overabundance of monomials, which are used to 
span a high-dimensional subspace in GPAC scheme. Thus, the dimensionality problem is 
still a challenge in the implementation of GPCA. We will focus on the classical PCA 
techniques in this chapter. 
The remainder of this chapter is organized as follows: In Section 2, the classical 1D-PCA and 
2D-PCA are briefly revisited. The ND-PCA scheme is then formulated by using the 
multidirectional decomposition technique in Section 3, and the error estimation is also 
given. To evaluate the ND-PCA, it is performed on the FRGC 3D scan facial database [16] 
for multi-model face recognition in Section 4. Finally, some conclusions are given in 
Section 5. 
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Let a sample nX R . This sample is usually expressed in a vector form in the case of 1D-
PCA. Traditionally, principal component analysis is performed on a square symmetric 
matrix of the cross product sums, such as the Covariance and Correlation matrices (i.e. cross 
products from a standardized dataset), i.e. 
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where, X  is the mean of the training set, while 0 0,X Y  are standard forms. Indeed, the 
analysis of the Correlation and Covariance are different, since covariance is performed 
within the dataset, while correlation is used between different datasets. A correlation object 
has to be used if the variances of the individual samples differ much, or if the units of 
measurement of the individual samples differ. However, correlation can be considered as a 
special case of covariance. Thus, we will only pay attention to the covariance in the rest of 
this chapter. 

 

After the construction of the covariance matrix, Eigen Value Analysis is applied to Cov of 
Eq.(1), i.e. TCov U U  . Herein, the first k eigenvectors in the orthogonal matrix U 
corresponding to the first k largest eigenvalues span an orthogonal subspace, where the 
major energy of the sample is concentrated. A new sample of the same object is projected in 
this subspace for its compact form (or PCA representation) as follows, 
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where, kU  is a matrix consisting of the first k eigenvectors of U, the projection α is a k-
dimensional vector, which calls the k principal components of the sample X. The estimate of 
a novel representation of X can be described as, 
 kX U X  .       (3) 
It is clearly seen that the size of the covariance matrix of Eq.(1) is very large when the 
sample vectors are very long. Due to the large size of the covariance matrix and the 
relatively small number of training samples, it is difficult to estimate the covariance matrix 
of Eq.(1) accurately. Furthermore, a sample is projected on a principal vector as follows, 
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i.e. we will have to use many principal components to approximate the original sample X 
for a desired quality. We call these above-mentioned numerical problems as “curse of 
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In order to avoid the above mentioned problem, Yang et al. in [10] firstly presented a 2D-
PCA scheme for 2D array cases in order to improve the performance of the PCA-style 
classifiers, that is, SVD is applied to the covariance matrix of, ( ) ( )T

i ii
G X X X X   , to 

get TG V V  , where n m
iX R   denotes a sample, X  denotes the mean of a set of 

samples, and V is the matrix of the eigenvectors and Λ is the matrix of the eigenvalues. The 
low-rank approximation of sample X is described as, 
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where kV  contains the first k principal eigenvectors of G. It has been noted that 2D-PCA 
only considers between column (or row) correlations [11]. 
In order to improve the accuracy of the low rank approximation, Ding et al. in [17] 
presented a 2D-SVD scheme for 2D cases. The key idea is to employ the 2-directional 
decomposition to the 2D-SVD scheme, that is, two covariance matrices of, 
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are considered together. Let kU  contain the first k principal eigenvectors of F and sV  contain 
the first s principal eigenvectors of G. The low-rank approximation of X can be expressed as,  
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Compared to the scheme Eq.(5), the scheme Eq.(4) of 2D-PCA only employs the classical 
single directional decomposition. It is proved that the scheme Eq.(5) of 2D-SVD can obtain a 
near-optimal solution compared to 2D-PCA in [17]. While, in the dyadic SVD algorithm [18], 
the sample set is viewed as a 3 order tensor and the HO-SVD technique is applied to each 
dimension of this tensor except the dimension of sample number, so as to generate the 
principal eigenvector matrices kU  and sV  as in the 2D-SVD. 

 
3. N-DIMENSIONAL PCA 

For clarity, we first introduce Higher Order SVD [19] briefly, and then formulate the N-
dimensional PCA scheme. 

 
3.1 Higher Order SVD 
A higher order tensor is usually defined as 1 ... NI IA R   , where N is the order of A, and 1 ≤ 
in ≤ In, 1 ≤ n ≤ N. In accordance with the terminology of tensors, the column vectors of a 2-
order tensor (matrix) are referred to as 1-mode vectors and row vectors as 2-mode vectors. 
The n-mode vectors of an N-order tensor A are defined as the In-dimensional vectors 
obtained from A by varying the index in and keeping the other indices fixed. In addition, a 
tensor can be expressed in a matrix form, which is called matrix unfolding (refer to [19] for 
details). 
Furthermore, the n-mode product, ×n, of a tensor 1 ... ...n NI I IA R     by a matrix n nJ IU R   
along the n-th dimension is defined as, 
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In practice, n-mode multiplication is implemented first by matrix unfolding the tensor A 
along the given n-mode to generate its n-mode matrix form ( )nA , and then performing the 
matrix multiplication as follows, 

( ) ( )n nB UA . 
After that, the resulting matrix B(n) is folded back to the tensor form, i.e. 

 fold unfold ( )n n nA U U A  . In terms of n-mode multiplication, Higher Order SVD of a 
tensor A can be expressed as, 
 (1) ( )
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N

NA S U U    , (6) 

where, ( )nU  is a unitary matrix of size In × In, which contains n-mode singular vectors. 
Instead of being pseudo-diagonal (nonzero elements only occur when the indices 
1 ... Ni i  ), the tensor S (called the core tensor) is all-orthogonal, that is, two subtensors 

ni aS   and 
ni bS   are orthogonal for all possible values of n, a and b subject to a ≠ b. In 

addition, the Frobenius-norms ( )
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s S   are n-mode singular values of A and are in 
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Is s   , which correspond to n-mode singular vectors 
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niu U i I   respectively. The numerical procedure of HO-SVD can be simply 

described as, 
( ) ( ) ( )unfold ( ) , 1,...,n n n T

n A U V n N   , 

where,  ( ) ( )( )
1 ,...,

n

n nn
Idiag s s   and ( )nV  is another orthogonal matrix of SVD. 

 
3.2 Formulating N-dimensional PCA 
For the multidimensional array case, we first employ a difference tensor instead of the 
covariance tensor as follows, 
  1( ),...,( )MD X X X X   , (7) 

where 1 ... ...i NI I I
iX R     and 1 ... ...i NI MI ID R    , i.e. N-order tensors ( ), 1,...,nX X n M   are 

stacked along the ith dimension in the tensor D. Then, applying HO-SVD of Eq.(6) to D will 
generate n-mode singular vectors contained in ( ) , 1,...,nU n N . According to the n-mode 
singular values, one can determine the desired principal orthogonal vectors for each mode 
of the tensor D respectively. Introducing the multidirectional decomposition to Eq.(7) will 
yield the desired N-dimensional PCA scheme as follows, 
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where ( )
i

i
kU  denotes the matrix of i-mode ik  principal vectors, i = 1,…N. The main challenge 

is that unfolding the tensor D in HO-SVD usually generates an overly large matrix. 
First, we consider the case of unfolding D along the ith dimension, which generates a matrix 
of size 1 1 1( ... ... )i i N iMI I I I I       . We prefer a unitary matrix ( )iU  of size i iI I  to one of 
the sizes i iMI MI . This can be achieved by reshaping the unfolded matrix as follows. 
Let jA  be a 1 1 1( ... ... )i i N iI I I I I        matrix and j = 1,…M. The unfolded matrix is 

expressed as 
1
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A
A
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. Reshaping A into a 1 1 1( ... ... )i i N iI M I I I I        matrix 

 1,..., MA A A , we can obtain an unitary matrix ( )iU  of size i iI I  by SVD. 
Then, consider the generic case. Since the sizes of dimensions 1,..., NI I  may be very large, 
this still leads to an overly large matrix along some dimension of sample X. Without loss of 
generality, we assume that the sizes of dimensions of sample X are independent of each 
other. 
Now, this numerical problem can be rephrased as follows, for a large sized matrix, how to 
carry out SVD decomposition. It is straightforward to apply matrix partitioning approach to 
the large matrix. As a start point, we first provide the following lemma. 
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Compared to the scheme Eq.(5), the scheme Eq.(4) of 2D-PCA only employs the classical 
single directional decomposition. It is proved that the scheme Eq.(5) of 2D-SVD can obtain a 
near-optimal solution compared to 2D-PCA in [17]. While, in the dyadic SVD algorithm [18], 
the sample set is viewed as a 3 order tensor and the HO-SVD technique is applied to each 
dimension of this tensor except the dimension of sample number, so as to generate the 
principal eigenvector matrices kU  and sV  as in the 2D-SVD. 
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Lemma: 
For any matrix n mM R  , if each column iM  of M, 1( ,..., )mM M M , maintain its own 

singular value i , i.e. 2( ,0,...,0)T T
i i i i iM M U diag U , while the singular values of M are 

1 min( , ),..., m ns s , i.e. 1 min( , )( ,..., ) T
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Proof: 
Let n > m. Because, 
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where iu  is the first column of each iU , while the SVD of TMM , 
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where iv  is the ith column of V. We have, 

2 2( )
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tr MM s   ,            End of proof. 

 
This lemma implies that each column of M corresponds to its own singular value. Moreover, 
let Mi be a submatrix instead of column vector, n r

iM R  . We have, 
2 2
1( ,... ,...,0)T T

i i i i ri iM M U diag s s U . 
It can be noted that there are more than one non-zero singular values 1 ... 0i ris s   . If we 
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i iM M  can be written as 
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i i i i i i iM M M M u u  , where 1iM  is a column of Mi corresponding to the biggest 
singular value 1i  of column vector. On this basis, 1iM  is regarded as the principal column 
vector of the submatrix Mi. 
We can rearrange the matrix n mM R   by sorting these singular values { }i  and partition it 

into t block submatrices, 1( ,..., )tM M M , where , 1,..., ,i

t
n m

i i
i

M R i t m m   . Indeed, the 

principal eigenvectors are derived only from some particular submatrices rather than the 
others as the following analysis. (For computational convenience, we assume m ≥ n below.) 
In the context of PCA, the matrix of the first k principal eigenvectors is preferred to a whole 
orthogonal matrix. Thus, we partition M into 2 block submatrices 1 2( , )M M M  in terms of 
the sorted singular values { }i , so that 1M  contains the columns corresponding to the first k 

biggest singular values while 2M  contains the others. Note that M  is different from the 
original M because of a column permutation (denoted as Permute). Applying SVD to each 
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Thus, matrix M  can be approximated as follows, 
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In order to obtain the approximation of M, the inverse permutation of Permute needs to be 

carried out on the row-wise orthogonal matrix of 1
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 given in Eq.(10). The resulting 

matrix is the approximation of the original matrix M. The desired principal eigenvectors are 
therefore included in the matrix of 1U . 
Now, we can re-write our ND-PCA scheme as, 
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For comparison, the similarity metric can adopt the Frobenius-norms between the 
reconstructions of two samples X and X   as follows, 
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Furthermore, we can provide the following proposition, 
 
Proposition: 
X  of Eq.(11) is a near optimal approximation to sample X in a least-square sense. 

Proof. 
According to the property 10 of HO-SVD in [19], we assume that the n-mode rank of 
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This means that the tensor ( )X X  is in general not the best possible approximation under 
the given n-mode rank constraints. But under the error upper-bound of Eq.(13), X  is a near 
optimal approximation of sample X. 
Unfolding ( )X X  along ith dimension yields a large matrix which can be partitioned into 
two submatrices as shown in Eq.(9), i.e. 
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This lemma implies that each column of M corresponds to its own singular value. Moreover, 
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Thus, matrix M  can be approximated as follows, 
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This means that the tensor ( )X X  is in general not the best possible approximation under 
the given n-mode rank constraints. But under the error upper-bound of Eq.(13), X  is a near 
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that of  ,n n n nI I   is 2  because of identity matrix n nI  . Therefore, we have, 
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in a 2-norm sense. 
Substituting Eq.(14) into Eq.(13) yields the error upper-bound of X  as follows, 

    2 2 (1) (1) (1) 2 ( ) ( ) ( )
2 22 max : ... max :N N N

F
X X          . (15) 

This implies that the approximation X  of Eq.(11) is a near optimal approximation of sample 
X under this error upper bound.               End of proof. 
 
Remark: So far, we formulated the ND-PCA scheme, which can deal with overly large 
matrix. The basic idea is to partition the large matrix and discard non-principal submatrices. 
In general, the dimensionality of eigen-subspace is determined by the ratio of sum of 
singular values in the subspace to the one of the whole space  for solving the dimensionality 
reduction problems [20]. But, for an overly large matrix, we cannot get all the singular 
values of the whole matrix here, because of discarding the non-principal submatrices. An 
alternative is to iteratively determine the dimensionality of eigen-subspace by using 
reconstruction error threshold. 

 
4. EXPERIMENTS AND ANALYSIS 

The proposed ND-PCA approach was performed on a 3D range database of human faces 
used for the Face Recognition Grand Challenge [16]. In order to establish an analogy with a 
3D volume dataset or multidimensional solid array, each 3D range dataset was first mapped 
to a 3D array and the intensities of the corresponding pixels in the still face image were 
regarded as the voxel values of the 3D array. For the sake of memory size, the reconstructed 
volume dataset was then re-sampled to the size of 180×180×90. Figure 1 shows an example 
of the still face image, corresponding range data and the reconstructed 3D model. 

 

Experiment 1. This experiment is to test the rank of the singular values. In our gallery, eight 
samples of each person are available for training. Their mean-offset tensors are aligned 
together along the second index (x axis) to construct a difference tensor 180 1440 90D R   . We 
applied HO-SVD of Eq.(6) to D to get the 1-mode and 3-mode singular values of D, which 
are depicted in Fig.2. One can note that the numbers of 1-mode and 3-mode singular values 
are different, and they are equal to the dimensionalities of indices 1 and 3 of D respectively 
(i.e. 180 for 1-mode and 90 for 3-mode). This is a particular property of higher order tensors, 
namely the N-order tensor A can have N different n-mode ranks but all of them are less than 
the rank of A, ( ) ( )nrank A rank A . Furthermore, the corresponding n-mode singular vectors 
constitutes orthonormal basis which can span independent n-mode orthogonal subspaces 
respectively. Therefore, we can project a sample to an arbitrary n-mode orthogonal subspace 
accordingly. In addition, one can also note that the magnitude of the singular values 
declines very quickly. This indicates that the energy of a sample is only concentrated on a 
small number of singular vectors as expected. 
 

a.   b.   c.  
Fig. 1. The original 2D still face image (a), range data (b) and reconstructed 3D model (c) of a 
face sample. 
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Fig. 3. Comparison of the reconstruction 
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are different, and they are equal to the dimensionalities of indices 1 and 3 of D respectively 
(i.e. 180 for 1-mode and 90 for 3-mode). This is a particular property of higher order tensors, 
namely the N-order tensor A can have N different n-mode ranks but all of them are less than 
the rank of A, ( ) ( )nrank A rank A . Furthermore, the corresponding n-mode singular vectors 
constitutes orthonormal basis which can span independent n-mode orthogonal subspaces 
respectively. Therefore, we can project a sample to an arbitrary n-mode orthogonal subspace 
accordingly. In addition, one can also note that the magnitude of the singular values 
declines very quickly. This indicates that the energy of a sample is only concentrated on a 
small number of singular vectors as expected. 
 

a.   b.   c.  
Fig. 1. The original 2D still face image (a), range data (b) and reconstructed 3D model (c) of a 
face sample. 
 

 

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

3
x 10

4

Number of Principal Components

R
es

id
ua

l E
rr

or

 

 

1−Mode
3−Mode
1−Mode+2−Mode+3−Mode

 
Fig. 3. Comparison of the reconstruction 
through 1-mode, 3-mode and 1-mode+2-
mode+3-mode principal subspace 
respectively. ND-PCA with multidirectional 
decomposition converges quicker than ND-
PCA with single directional decomposition. 

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Number of Singular Values

S
in

gu
la

r V
al

ue
s

Mode 1
Mode 3

 
Fig. 2. The singular values in decreasing 
order. 



Face	Recognition30

 

Experiment 2. This experiment is to test the quality of the reconstructed sample. Within our 
3D volume dataset, we have 1-mode, 2-mode and 3-mode singular vectors, which could 
span three independent orthogonal subspaces respectively. The sample could be 
approximated by using the projections from one orthogonal subspace, two ones or three 
ones. Our objective is to test which combination leads to the best reconstruction quality. We 
designed a series of tests for this purpose. The reconstructed sample using the scheme of 
Eq.(11) was performed on 1-mode, 3-mode and 1-mode+2-mode+3-mode principal 
subspaces respectively with a varying number of principal components k. (Note that 1-mode 
or 3-mode based ND-PCA adopted the single directional decomposition, while 1-mode+2-
mode+3-mode based ND-PCA adopted the multidirectional decomposition.) The residual 
errors of reconstruction are plotted in Fig.3. Since the sizes of dimensions of (1)U  and (3)U  
are different, the ranges of the corresponding number of principal components k are also 
different. However, k must be less than the size of dimension of the corresponding 
orthogonal matrix (1)U  or (3)U . As a result of the differing dimensionalities, the residual 
error of reconstruction in 3-mode principal subspace converges to zero faster than in 1-mode 
or 1-mode+2-mode+3-mode principal subspaces. Indeed, if the curve of 3-mode (solid 
curve) is quantified to the same length of row coordinate as the curve of 1-mode (dashed 
line) in Fig.3, there is no substantial difference compared to the 1-mode test. This indicates 
that the reconstructed results are not affected by the difference between the different n-
mode principal subspaces. Furthermore, in the test of 1-mode+2-mode+3-mode principal 
subspaces, the number of principal components k was set to 180 for both (1)U  and (2)U  
while it was set to 90 for (3)U . Comparing the curve of 1-mode+2-mode+3-mode (dot line) 
with that of 1-mode (dashed line) and 3-mode (solid line), one can note that the 
approximation of 1-mode+2-mode+3-mode principal subspace converges to the final 
optimal solution more rapidly. 
――― 
Remark: In [9,10], the over-compressed problem was addressed repeatedly. [10] gave a 
comparison of the reconstruction results between the 1D-PCA case and the 2D-PCA case, 
which is reproduced in Fig.4 for the sake of completeness. It can be noted that the small 
number of principal components of the 2D-PCA can perform well compared with the large 
number of principal components of the 1D-PCA. Moreover, consider the cases of single 
directional decomposition, i.e. 2D-PCA and 1-mode based ND-PCA scheme, and 
multidirectional decomposition, i.e. 2D-SVD and 1-mode+2-mode+3-mode based ND-PCA. 
We respectively compared the reconstructed results of the single directional decomposition 
and the multidirectional decomposition with a varying number of principal components k 
(i.e. the reconstruction of the volume dataset by using the ND-PCA of Eq.(11) while the 
reconstruction of the corresponding 2D image respectively by using 2D-PCA of Eq.(4) and 
2D-SVD of Eq.(5)). The training set is the same as in the first experiment. The residual errors 
of reconstruction are normalized to the range of [0,1], and are plotted in Fig.5. One can note 
that the multidirectional decomposition performs better than the single directional 
decomposition in the case of a small number of principal components (i.e. comparing Fig.5a 
with Fig.5b). But then comparing the 2D-PCA with ND-PCA scheme shown in Fig.5a (or 2D-
SVD with ND-PCA scheme shown in Fig.5b), one can also note that 2D-PCA (or 2D-SVD) 
performs a little better than ND-PCA scheme when only a small number of principal 
components are used. In our opinion, there is no visible difference in the reconstruction 
quality between 2D-PCA (or 2D-SVD) and ND-PCA scheme with a small number of 

 

singular values. This is because the reconstructed 3D volume dataset is a sparse 3D array 
(i.e. all voxel values are set to zero except the voxels on the face surface), it is therefore more 
sensitive to computational errors compared to a 2D still image. If the 3D volume datasets 
were solid, e.g. CT or MRI volume datasets, this difference between the two curves of Fig.5a 
or Fig.5b would not noticeably appear. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Comparison of the reconstructed images using 2D-PCA (upper) and 1D-PCA (lower) 
from [10]. 
 

 
Experiment 3. In this experiment, we compared the 1-mode based ND-PCA scheme with the 
1-mode+2-mode+3-mode based ND-PCA scheme on the performance of the face verification 
using the Receiver Operating Characteristic (ROC) curves [21]. Our objective is to reveal the 
recognition performance between these two ND-PCA schemes respectively by using the 
single directional decomposition and the multidirectional decomposition. The whole test set 
includes 270 samples (i.e. range datasets and corresponding still images), in which there are 
6 to 8 samples for one person. All these samples are from the FRGC database and are re-
sampled. Two ND-PCA schemes were carried out directly on the reconstructed volume 

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Principal Components

N
or

m
al

iz
ed

 R
es

id
ua

l E
rr

or

 

 

Eq.(7)
2D−SVD

 
b. multiple direction decomposition 

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Principal Components

N
or

m
al

iz
ed

 R
es

id
ua

l E
rr

or

2D−PCA
nD−PCA

 
a. single direction decomposition. 

nD-PCA 
……2D-SVD 

Fig. 5. Comparison of the reconstruction by using single directional decomposition (a), i.e.
2D-PCA and 1-mode based ND-PCA scheme, and multidirectional composition (b), i.e. 2D-
SVD and ND-PCA, in terms of the normalized residual errors. 

 
k = 2         k = 4         k = 6         k = 8        k = 10 

 
k = 5        k = 10       k = 20        k = 30      k = 40 

 



An	Extension	of	Principal	Component	Analysis 31

 

Experiment 2. This experiment is to test the quality of the reconstructed sample. Within our 
3D volume dataset, we have 1-mode, 2-mode and 3-mode singular vectors, which could 
span three independent orthogonal subspaces respectively. The sample could be 
approximated by using the projections from one orthogonal subspace, two ones or three 
ones. Our objective is to test which combination leads to the best reconstruction quality. We 
designed a series of tests for this purpose. The reconstructed sample using the scheme of 
Eq.(11) was performed on 1-mode, 3-mode and 1-mode+2-mode+3-mode principal 
subspaces respectively with a varying number of principal components k. (Note that 1-mode 
or 3-mode based ND-PCA adopted the single directional decomposition, while 1-mode+2-
mode+3-mode based ND-PCA adopted the multidirectional decomposition.) The residual 
errors of reconstruction are plotted in Fig.3. Since the sizes of dimensions of (1)U  and (3)U  
are different, the ranges of the corresponding number of principal components k are also 
different. However, k must be less than the size of dimension of the corresponding 
orthogonal matrix (1)U  or (3)U . As a result of the differing dimensionalities, the residual 
error of reconstruction in 3-mode principal subspace converges to zero faster than in 1-mode 
or 1-mode+2-mode+3-mode principal subspaces. Indeed, if the curve of 3-mode (solid 
curve) is quantified to the same length of row coordinate as the curve of 1-mode (dashed 
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directional decomposition, i.e. 2D-PCA and 1-mode based ND-PCA scheme, and 
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2D-SVD of Eq.(5)). The training set is the same as in the first experiment. The residual errors 
of reconstruction are normalized to the range of [0,1], and are plotted in Fig.5. One can note 
that the multidirectional decomposition performs better than the single directional 
decomposition in the case of a small number of principal components (i.e. comparing Fig.5a 
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(i.e. all voxel values are set to zero except the voxels on the face surface), it is therefore more 
sensitive to computational errors compared to a 2D still image. If the 3D volume datasets 
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Fig. 4. Comparison of the reconstructed images using 2D-PCA (upper) and 1D-PCA (lower) 
from [10]. 
 

 
Experiment 3. In this experiment, we compared the 1-mode based ND-PCA scheme with the 
1-mode+2-mode+3-mode based ND-PCA scheme on the performance of the face verification 
using the Receiver Operating Characteristic (ROC) curves [21]. Our objective is to reveal the 
recognition performance between these two ND-PCA schemes respectively by using the 
single directional decomposition and the multidirectional decomposition. The whole test set 
includes 270 samples (i.e. range datasets and corresponding still images), in which there are 
6 to 8 samples for one person. All these samples are from the FRGC database and are re-
sampled. Two ND-PCA schemes were carried out directly on the reconstructed volume 

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Principal Components

N
or

m
al

iz
ed

 R
es

id
ua

l E
rr

or

 

 

Eq.(7)
2D−SVD

 
b. multiple direction decomposition 

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Principal Components

N
or

m
al

iz
ed

 R
es

id
ua

l E
rr

or

2D−PCA
nD−PCA

 
a. single direction decomposition. 

nD-PCA 
……2D-SVD 

Fig. 5. Comparison of the reconstruction by using single directional decomposition (a), i.e.
2D-PCA and 1-mode based ND-PCA scheme, and multidirectional composition (b), i.e. 2D-
SVD and ND-PCA, in terms of the normalized residual errors. 

 
k = 2         k = 4         k = 6         k = 8        k = 10 

 
k = 5        k = 10       k = 20        k = 30      k = 40 

 



Face	Recognition32

 

datasets. Their corresponding ROC curves are shown respectively in Fig.6. It can be noted 
that the overlapping area of the genuine and impostor distributions (i.e. false probability) in 
Fig.(6a) is smaller than that in Fig.(6b). Furthermore, their corresponding ROC curves 
relating to the False Acceptance Rate (FAR) and the False Rejection Rate (FRR) are depicted 
by changing the threshold as shown in Fig.(6c). At some threshold, the false probability of 
recognition corresponds to some rectangular area under the ROC curve. The smaller the 
area under the ROC curve, the higher is the rising of the accuracy of the recognition. For 
quantitative comparison, we could employ the Equal Error Rate (EER), which is defined as 
the error rate at the point on ROC curve where the FAR is equal to the FRR. The EER is often 
used for comparisons because it is simpler to obtain and compare a single value 
characterizing the system performance. In Fig.(6c), the EER of Fig.(6a) is 0.152 while the EER 
of Fig.(6b) is 0.224. Obviously, the ND-PCA scheme with multidirectional decomposition 
can improve the accuracy of face recognition. Of course, since the EERs only give 
comparable information between the different systems that are useful for a single 
application requirement, the full ROC curve is still necessary for other potentially different 
application requirements. 

600 700 800 900 1000 1100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Residual Error

P
ro

ba
bi

lit
y

 

 

genuine distribution
impostor distribution

150 200 250 300 350 400 450 500 550 600 650
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Residual Error

P
ro

ba
bi

lit
y

 

 

genuine distribution
impostor distribution

 
a.                                                        b.                                                        c. 

Fig. 6. Comparison of the recognition performance. a) are the genuine and impostor 
distribution curves of ND-PCA with multidirectional decomposition; b) are the genuine and 
impostor distribution curves of ND-PCA with single directional decomposition; c) are the 
ROC curves relating to the False acceptance rate and False rejection rate. 

 
5. CONCLUSION 

In this chapter, we formulated the ND-PCA approach, that is, to extend the PCA technique 
to the multidimensional array cases through the use of tensors and Higher Order Singular 
Value Decomposition technique. The novelties of this chapter include, 1) introducing the 
multidirectional decomposition into ND-PCA scheme and overcoming the numerical 
difficulty of overly large matrix SVD decomposition; 2) providing the proof of the ND-PCA 
scheme as a near optimal linear classification approach. We performed the ND-PCA scheme 
on 3D volume datasets to test the singular value distribution, and the error estimation. The 
results indicated that the proposed ND-PCA scheme performed as well as we desired. 
Moreover, we also performed the ND-PCA scheme on the face verification for the 
comparison of single directional decomposition and multidirectional decomposition. The 
experimental results indicated that the ND-PCA scheme with multidirectional 
decomposition could effectively improve the accuracy of face recognition. 
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Fig. 6. Comparison of the recognition performance. a) are the genuine and impostor 
distribution curves of ND-PCA with multidirectional decomposition; b) are the genuine and 
impostor distribution curves of ND-PCA with single directional decomposition; c) are the 
ROC curves relating to the False acceptance rate and False rejection rate. 
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1. Introduction 
 

Designing a completely automatic and efficient face recognition system is a grand challenge 
for biometrics, computer vision and pattern recognition researchers. Generally, such a 
recognition system is able to perform three subtasks: face detection, feature extraction and 
classification. We’ll put our focus on feature extraction, the crucial step prior to 
classification. The key issue here is to construct a representative feature set that can enhance 
system-performance both in terms of accuracy and speed.  
At the core of machine recognition of human faces is the extraction of proper features. Direct 
use of pixel values as features is not possible due to huge dimensionality of the faces. 
Traditionally, Principal Component Analysis (PCA) is employed to obtain a lower 
dimensional representation of the data in the standard eigenface based methods [Turk and 
Pentland 1991]. Though this approach is useful, it suffers from high computational load and 
fails to well-reflect the correlation of facial features. The modern trend is to perform 
multiresolution analysis of images. This way, several problems like, deformation of images 
due to in-plane rotation, illumination variation and expression changes can be handled with 
less difficulty. 
Multiresolution ideas have been widely used in the field of face recognition. The most 
popular multiresolution analysis tool is the Wavelet Transform. In wavelet analysis an 
image is usually decomposed at different scales and orientations using a wavelet basis 
vector. Thereafter, the component corresponding to maximum variance is subjected to 
‘further operation’. Often this ‘further operation’ includes some dimension reduction before 
feeding the coefficients to classifiers like Support Vector Machine (SVM), Neural Network 
(NN) and Nearest Neighbor. This way, a compact representation of the facial images can be 
achieved and the effect of variable facial appearances on the classification systems can also 
be reduced. The wide-spread popularity of wavelets has stirred researchers’ interest in 
multiresolution and harmonic analysis. Following the success of wavelets, a series of 
multiresolution, multidimensional tools, namely contourlet, curvelet, ridgelet have been 
developed in the past few years. In this chapter, we’ll concentrate on Digital Curvelet 
Transform. First, the theory of curvelet transform will be discussed in brief. Then we'll talk 
about the potential of curvelets as a feature descriptor, looking particularly into the problem 
of image-based face recognition. Some experimental results from recent scientific works will 
be provided for ready reference. 

3
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2. Curvelet Transform 

Before getting started with curvelet transform, the reader is suggested to go through the 
theory of multiresolution analysis, especially wavelet transform. Once the basic idea of 
wavelets and multiresolution analysis is understood, curvelets will be easier to comprehend.  

 
2.1 Theory and Implementation 
Motivated by the need of image analysis, Candes and Donoho developed curvelet transform 
in 2000 [Candes and Donoho 2000]. Curvelet transform has a highly redundant dictionary 
which can provide sparse representation of signals that have edges along regular curve. 
Initial construction of curvelet was redesigned later and was re-introduced as Fast Digital 
Curvelet Transform (FDCT) [Candes et al. 2006]. This second generation curvelet transform 
is meant to be simpler to understand and use. It is also faster and less redundant compared 
to its first generation version. Curvelet transform is defined in both continuous and digital 
domain and for higher dimensions. Since image-based feature extraction requires only 2D 
FDCT, we’ll restrict our discussion to the same.  
 

 
Fig. 1. Curvelets in Fourier frequency (left) and spatial domain (right) [Candes et al. 2006]. 
 
In order to implement curvelet transform, first 2D Fast Fourier Transform (FFT) of the image 
is taken. Then the 2D Fourier frequency plane is divided into wedges (like the shaded region 
in fig. 1). The parabolic shape of wedges is the result of partitioning the Fourier plane into 
radial (concentric circles) and angular divisions. The concentric circles are responsible for 
the decomposition of an image into multiple scales (used for bandpassing the image at 
different scale) and the angular divisions partition the bandpassed image into different 
angles or orientations. Thus if we want to deal with a particular wedge we’ll need to define 
its scale j and angle  . Now let’s have a look at the spatial domain (fig. 1 right). Each of the 
wedges here corresponds to a particular curvelet (shown as ellipses) at a given scale and 
angle. This indicates that the inverse FFT of a particular wedge if taken, will determine the 
curvelet coefficients for that scale and angle. This is the main idea behind the 
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implementation of curvelet transform. Figure 1 (right) represents curvelets in spatial 
Cartesian grid associated with a given scale and angle.  
 

 
(a) (b) (c) (d) 

Fig. 2. (a) a real wedge in frequency domain, (b) corresponding curvelet in spatial domain 
[Candes et al. 2006], (c) curvelets aligned along a curve at a particular scale, (d) curvelets at a 
finer scale [Starck et al. 2002]. 
 
There are two different digital implementations of FDCT: Curvelets via USFFT (Unequally 
Spaced Fast Fourier Transform) and Curvelets via Wrapping. Both the variants are linear 
and take as input a Cartesian array to provide an output of discrete coefficients. Two 
implementations only differ in the choice of spatial grid to translate curvelets at each scale 
and angle. FDCT wrapping is the fastest curvelet transform currently available [Candes et 
al. 2006]. 
Though curvelets are shown to form the shape of an ellipse in fig. 1, looking at fig. 2 (b-d), 
we can understand that actually it looks more like elongated needles. This follows from the 
parabolic scaling law (length width2) that curvelets obey. The values of curvelet 
coefficients are determined by how they are aligned in the real image. The more accurately a 
curvelet is aligned with a given curve in an image, the higher is its coefficient value. A very 
clear explanation is provided in figure 3. The curvelet named ‘c’ in the figure is almost 
perfectly aligned with the curved edge and therefore has a high coefficient value. Curvelets 
‘a’ and ‘b’ will have coefficients close to zero as they are quite far from alignment. It is well-
known that a signal localized in frequency domain is spread out in the spatial domain or 
vice-versa. A notable point regarding curvelets is that, they are better localized in both 
frequency and spatial domain compared to other transforms. This is because the wedge 
boundary is smoothly tapered to avoid abrupt discontinuity. 

 
2.2 Comparison with wavelets 
Fourier series requires a large number of terms to reconstruct a discontinuity within good 
accuracy. This is the well-known Gibbs phenomenon. Wavelets have the ability to solve this 
problem of Fourier series, as they are localized and multiscale. However, though wavelets 
do work well in one-dimension, they fail to represent higher dimensional singularities 
(especially curved singularities, wavelets can handle point singularities quite well) 
effectively due to limited orientation selectivity and isotropic scaling. Standard orthogonal 
wavelet transform has wavelets with primarily vertical, horizontal and diagonal 
orientations independent of scale. 
Curvelet transform has drawn much attention lately because it can efficiently handle several 
important problems, where traditional multiscale transforms like wavelet fait to act. Firstly, 
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Curvelets can provide a sparse representation of the objects that exhibit ‘curve punctuated 
smoothness’ [Candes, 2003], i.e. objects those are smooth except along a general curve with 
bounded curvature. Curvelets can model such curved discontinuities so well that the 
representation becomes as sparse as if the object were not singular. From figure 4, we can 
have an idea about the sparsity and efficiency of curvelet representation of curved 
singularities compared to wavelets. At any scale j , curvelets provide a sparse 

representation )2( 2/jO of the images compared to wavelets’ )2( jO . If an image 

function f is approximated by largest m coefficients as mf̂ , then the approximation errors 
are given by: 
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Fig. 3. Alignment of curvelets along curved edges [R] 
 
The main idea here is that the edge discontinuity is better approximated by curvelets than 
wavelets. Curvelets can provide solutions for the limitations (curved singularity 
representation, limited orientation and absence of anisotropic element) the wavelet 
transform suffers from. It can be considered as a higher dimensional generalization of 
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The main idea here is that the edge discontinuity is better approximated by curvelets than 
wavelets. Curvelets can provide solutions for the limitations (curved singularity 
representation, limited orientation and absence of anisotropic element) the wavelet 
transform suffers from. It can be considered as a higher dimensional generalization of 

 

wavelets which have the unique mathematical property to represent curved singularities 
effectively in a non-adaptive manner. 
 

 
Fig. 4. Representation of curved sigularities using wavelets (left) and curvelets (right) 
[Starck, 2003]. 

 
2.3 Applications 
Curvelet transform is gaining popularity in different research areas, like signal processing, 
image analysis, seismic imaging since the development of FDCT in 2006. It has been 
successfully applied in image denoising [Starck et al. 2002], image compression, image 
fusion [Choi et al., 2004], contrast enhancement [Starck et al., 2003], image deconvolution 
[Starck et al., 2003], high quality image restoration [Starck et al., 2003], astronomical image 
representation [Starck et al., 2002] etc. Examples of two applications, contrast enhancement 
and denoising are presented in figures 5 and 6. Readers are suggested to go through the 
referred works for further information on various applications of the curvelet transform. 
Recently, curvelets have also been employed to address several pattern recognition 
problems, such as face recognition [Mandal et al., 2007; Zhang et al., 2007] (discussed in 
detail in section 3), optical character recognition [Majumdar, 2007], finger-vein pattern 
recognition [Zhang et al., 2006] and palmprint recognition [Dong et al. 2005].  
 

   
Fig. 5. Contrast enhancement by curvelets [Starck et al., 2003]. 
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Fig. 6. Image denoising by curvelet [Starck et al. 2002]. 

 
3. Curvelet Based Feature Extraction for Faces 

In the previous section, we have presented a theoritical overview of curvelet transform and 
explained why it can be expected to work better than the traditional wavelet transform. 
Facial images are generally 8 bit i.e. they have 256 graylevels. In such images two very close 
regions that have differing pixel values will give rise to edges; and these edges are typically 
curved for faces. As curvelets are good at approximating  curved singularities, they are fit 
for extracting crucial edge-based features from facial images more efficiently than that 
compared to wavelet transform. We will now describe different face recognition 
methodologies that employ curvelet transform for feature extraction. 
Typically, a face recognition system is divided into two stages: a training stage and a 
classification stage. In the training stage, a set of known faces (labeled data) are used to 
create a representative feature-set or template. In the classification stage, a unknown facial 
image is matched against the previously seen faces by comparing the features. Curvelet 
based feature extraction takes the raw or the preprocessed facial images as input. The 
images are then decomposed into curvelet subbands in different scales and orientations. 
Figure 7 shows the decomposition of a face image of size 11292 (taken from ORL 
database) by curvelets at scale 2 (coarse and fine) and angle 8. This produces one 
approximate (7561) and eight detailed coefficients (four of those are of size 66123 and 
rest are of size 14954). These curvelet decomposed images are called ‘Curveletfaces’. The 
approximate curveletface contains the low-frequency components and the rest captures the 
high-frequency details along different orientations. It is sufficient to decompose faces using 
curvelet transform at scale 3 and angle 8 or 16. Increasing scales and/or orientations does 
not necessarily lead to significant improvement in recognition accuracy. If required, images 
can be reduced in size before subjecting them to feature extraction. 

 
3.1 Curvelets and SVM 
The first works on curvelet-based face recognition are [Zhang et al., 2007; Mandal et al. 
2007]. A simple application of curvelet transform in facial feature extraction can be found in 
[Zhang et al., 2007]. The authors have used SVM classifier directly on the curvelet 
decomposed faces. The curvelet based results have been compared with that of wavelets. 
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Fig. 6. Image denoising by curvelet [Starck et al. 2002]. 
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Mandal et al. have performed ‘bit quantization’ before extracting curvelet features. The 
original 8 bit images are quantized to their 4 bit and 2 bit versions, as shown in figure 8. This 
is based on the belief that on bit quantizing an image, only bolder curves will remain in the 
lower bit representations, and curvelet transform will be able to make the most out of this 
curved edge information. During training, all the original 8 bit gallery images and their two 
bit-quantized versions are decomposed into curvelet subbands. Selected curvelet coefficients 
are then separately fed to three different Support Vector Machine (SVM) classifiers. Final 
decision is achieved by fusing results of all SVMs. The selection of the curvelet coefficients is 
done on the basis of their variance. The recognition results for these two methods are shown 
below. 
 

Average Recognition 
Accuracy 

Curvelet + SVM Wavelet + SVM 
90.44 % 82.57% 

Table 1. Face recognition results for ORL database [Zhang et al., 2007] 
 

 
Fig. 7. Curvelet decomposition of a facial image - 1st image in the first row is the original 
image, 2nd image in the first row is the approximate coefficients and others are detailed 
coefficients at eight angles (all the images are resized to same dimension for the purpose of 
illustration only) [Mandal et al., 2009]. 
 

 
Fig. 8. Bit quantization: left most is the original 8 bit image (from ORL database), next two 
are 4 bit and 2 bit representations respectively [Mandal et al., 2007]. 
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No. of Bits 
in Image 

Accuracy of 
each Classifier 

Accuracy after 
majority Voting 

Rejection 
Rate 

Incorrect 
Classification rate 

8 96.9 

98.8 1.2 0 4 95.6 

2 93.7 
Table 2. Recognition result for bit-quantized, curvelet decomposed images for ORL database 
[Mandal et al., 2007]. 

 
3.1 Curvelets and dimensionality reduction 
However, even an image of size 6464 when decomposed using curvelet transform at scale 
3 (coarse, fine, finest) and angle 8 will produce the coarse subband of size 2121 and 24 
detailed coefficients of slightly larger size. Working with such large number of features is 
extremely expensive. Hence it is important to find a representative feature set. Only 
important curvelet subbands are selected depending on the amount of total variance they 
account for. Then dimensionality reduction methods like PCA, LDA and a combined PCA-
LDA framework have been applied on those selected subbands to get an even lower 
dimensional representation [Mandal et al., 2009]. This not only reduces computational load, 
but also increases recognition accuracy. 
The theory of PCA/LDA and will not be discussed here. Readers are requested to consult 
any standard book and the classical papers of Cootes et al. and Belhumeur et al. to 
understand the application of PCA and LDA in face recognition. PCA has been successfully 
applied on wavelet domain for face recognition by Feng et al. PCA has been employed on 
curvelet  decomposed gallery images to form a representational basis. In the classification 
phase, the query images are subjected to similar treatment and transformed to the same 
representational basis. However, researchers argue that PCA, though is able to provide an 
efficient lower dimensional representation of the data, suffers from higher dimensional load 
and poor discriminative power. This issue can be resolved by the application of LDA that 
can maximize the within-class dissimilarity, simultaneously increasing the between-class 
similarity. This efficient dimensionality reduction tool is also applied on curvelet coefficients 
to achieve even higher accuracy and lower computational load. Often, the size of the 
training set is less than the dimensionality of the images. In such cases LDA fails to work, 
since the within-class scatter matrix become singular. Computational difficulty also arises 
while working with high-dimensional image vectors. In such high-dimensional and singular 
cases PCA is performed prior to LDA. Curvelet subimages are projected onto PCA-space 
and then LDA is performed on this PCA-transformed space. Curvelet features thus 
extracted are also robust against noise. These curvelet-based methods are compared to 
several existing techniques in terms of recognition accuracy in table 3. Though LDA is 
expected to work better than PCA that is not reflected in figures 9 and 10. This is because 
ORL is a small database and PCA can outperform LDA in such cases. In a recent work 
[Mohammed et al., 2009] Kernal PCA has been used for dimensionality reduction of curvelet 
features and even higher accuracy is achieved. 
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Fig. 9. Curvelet –based recognition accuracy for ORL database [Mandal et al., 2009] 
 
 

 
Fig. 10. Performance of curvelet-based methods against noise [Mandal et al, 2009] 
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Method Recognition 
Accuracy (%) 

Standard eigenface [Turk et al., 1991] 92.2 

Waveletface [Feng et al.] 92.5 

Curveletface 94.5 

Waveletface + PCA [Feng et al., 2000] 94.5 

Waveletface + LDA [Chien and Wu, 2002] 94.7 

Waveletface + weighted modular PCA  
[Zhao et al., 2008] 95.0 

Waveletface + LDA + NFL [Chien and Wu, 2002] 95.2 

Curveletface + LDA 95.6 

Waveletface + kAM [Zhang et al. 2004] 96.6 

Curveletface + PCA 96.6 

Curveletface + PCA + LDA 97.7 

Table 3. Comparative study [Mandal et al., 2009] 

 
4. Conclusion 

In this chapter, newly developed curvelet transform has been presented as a new tool for 
feature extraction from facial images. Various algorithms are discussed along with relevant 
experimental results as reported in some recent works on face recognition. Looking at the 
results presented in tables 1, 2 and 3, we can infer that curvelet is not only a successful 
feature descriptor, but is superior to many existing wavelet-based techniques. Results for 
only one standard database (ORL) are listed here; nevertheless, work has been done on 
other standard databases like, FERET, YALE, Essex Grimace, Georgia-Tech and Japanese 
facial expression datasets. From the results presented in all these datasets prove the 
superiority of curvelets over wavelets for the application of face recognition. Curvelet 
features thus extracted from faces are also found to be robust against noise, significant 
amount of illumination variation, facial details variation and extreme expression changes.  
The works on face recognition using curvelet transform that exist in literature are not yet 
complete and do not fully understand the capability of curvelet transform for face 
recognition; hence, there is much scope of improvement in terms of both recognition 
accuracy and curvelet-based methodology. 

 
5. References 
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1. INTRODUCTION 

Face images (with column/row concatenation) form very high dimensional vectors, e.g. a 
standard webcam takes images of size 320x240 pixels, which leads to a vector of length 
76,800. The computational complexity of most classifiers is dependent on the dimensionality 
of the input features, therefore if all the pixel values of the face image are used as features 
for classification the time required to finish the task will be excessively large. This prohibits 
direct usage of pixel values as features for face recognition. 
To overcome this problem, different dimensionality reduction techniques has been proposed 
over the last two decades – starting from Principal Component Analysis and Fisher Linear 
Discriminant. Such dimensionality reduction techniques have a basic problem – they are 
data-dependent adaptive techniques, i.e. the projection function from the higher to lower 
dimension cannot be computed unless all the training samples are available. Thus the 
system cannot be updated efficiently when new data needs to be added. 
Data dependency is the major computational bottleneck of such adaptive dimensionality 
reduction methods. Consider a situation where a bank intends to authenticate a person at 
the ATM, based on face recognition. So, when a new client is added to its customer base, a 
training image of the person is acquired. When that person goes to an ATM, another image 
is acquired by a camera at the ATM and the new image is compared against the old one for 
identification. Suppose that at a certain time the bank has 200 customers, and is employing a 
data-dependent dimensionality reduction method. At that point of time it has computed the 
projection function from higher to lower dimension for the current set of images. Assume 
that at a later time, the bank has 10 more clients, then with the data-dependent 
dimensionality reduction technique, the projection function for all the 210 samples must be 
recomputed from scratch; in general there is no way the previous projection function can be 
updated with results of the 10 new samples only. This is a major computational bottleneck 
for the practical application of current face recognition research. 
For an organization such as a bank, where new customers are added regularly, it means that 
the projection function from higher to lower dimension will have to be updated regularly. 
The cost of computing the projection function is intensive and is dependent on the number 
of samples. As the number of samples keeps on increasing, the computational cost keeps on 
increasing as well (as every time new customers are added to the training dataset, the 
projection function has to be recalculated from scratch). This becomes a major issue for any 
practical face recognition system.  

4
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One way to work around this problem is to skip the dimensionality reduction step. But as 
mentioned earlier this increases the classification time. With the ATM scenario there is 
another problem as well. This is from the perspective of communication cost. There are two 
possible scenarios in terms of transmission of information – 1) the ATM sends the image to 
some central station where dimensionality reduction and classification are carried out or 2) 
the dimensionality reduction is carried out at the ATM so that the dimensionality reduced 
feature vector is sent instead. The latter reduces the volume of data to be sent over the 
internet but requires that the dimensionality reduction function is available at the ATM. 
With the first scenario, the communication cost arises from sending the whole image over 
the communication channel. In the second scenario, the dimensionality reduction function is 
available at the ATM. As this function is data-dependent it needs to be updated every time 
new samples are added. Periodically updating the function increases the communication 
cost as well. 
In this work we propose a dimensionality reduction method that is independent of the data. 
Practically this implies that the dimensionality reduction function is computed once and for 
all and is available at all the ATMs. There is no need to update it, and the ATM can send the 
dimensionality reduced features of the image. Thus both the computational cost of 
calculating the projection function and the communication cost of updating it are reduced 
simultaneously. 
Our dimensionality reduction is based on Random Projection (RP). Dimensionality 
reduction by random projection is not a well researched topic. Of the known classifiers only 
the K Nearest Neighbor (KNN) is robust to such dimensionality reduction [1]. By robust, it 
is meant that the classification accuracy does not vary much when the RP dimensionality 
reduced samples are used in classification instead of the original samples (without 
dimensionality reduction). Although the KNN is robust, its recognition accuracy is not high. 
This shortcoming has motivated researchers in recent times to look for more sophisticated 
classification algorithms that will be robust to RP dimensionality reduction [2, 3]. 
In this chapter we will review the different compressive classification algorithms that are 
robust to RP dimensionality reduction. However, it should be remembered that these 
classifiers can also be used with standard dimensionality reduction techniques like Principal 
Component Analysis. 
In signal processing literature random projection of data are called ‘Compressive Samples’. 
Therefore the classifiers which can classify such RP dimensionality reduced data are called 
‘Compressive Classifiers’. In this chapter we will theoretically prove the robustness of 
compressive classifiers to RP dimensionality reduction. The theoretical proofs will be 
validated by thorough experimentation. Rest of the chapter will be segregated into several 
sections. In section 2, the different compressive classification algorithms will be discussed. 
The theoretical proofs regarding their robustness will be provided in section 3. The 
experimental evaluation will be carried out in section 4. Finally in section 5, conclusions of 
this work will be discussed. 
 
2. CLASSIFICATION ALGORITHMS 

The classification problem is that of finding the identity of an unknown test sample given a 
set of training samples and their class labels. Compressive Classification addresses the case 
where compressive samples (random projections) of the original signals are available 
instead of the signal itself.  
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instead of the signal itself.  

If the original high dimensional signal is ‘x’, then its dimensionality is reduced by 
 

y Ax  
 
where A is a random projection matrix formed by normalizing the columns of an i.i.d. 
Gaussian matrix and y is the dimensionality reduced compressive sample. The compressive 
classifier has access to the compressive samples and must decide the class based on them. 
Compressive Classifiers have two challenges to meet: 
The classification accuracy of CC on the original signals should be at par with classification 
accuracy from traditional classifiers (SVM or ANN or KNN). 
The classification accuracy from CC should not degrade much when compressed samples 
are used instead of the original signals. 
Recently some classifiers have been proposed which can be employed as compressive 
classifiers. We discuss those classification algorithms in this section. 

 
2.1 The Sparse Classifier 
The Sparse Classifier (SC) is proposed in [2]. It is based on the assumption that the training 
samples of a particular class approximately form a linear basis for a new test sample 
belonging to the same class. If  vk,test is the test sample belonging to the kth class then, 
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where vk,i’s are the training samples of the kth class and εk is the approximation error 
(assumed to be Normally distributed). 
Equation (1) expresses the assumption in terms of the training samples of a single class. 
Alternatively, it can be expressed in terms of all the training samples such that 
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where C is the total number of classes.  
In matrix vector notation, equation (2) can be expressed as 
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The linearity assumption in [2] coupled with the formulation (3) implies that the coefficients 
vector α should be non-zero only when they correspond to the correct class of the test 
sample. 
 
Based on this assumption the following sparse optimization problem was proposed in [2] 
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As it has already been mentioned, (4) is an NP hard problem. Consequently in [2] a convex 
relaxation to the NP hard problem was made and the following problem was solved instead 
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v V     (5) 

 
The formulation of the sparse optimization problem as in (5) is not ideal for this scenario as 
it does not impose sparsity on the entire class as the assumption implies. The proponents of 
Sparse Classifier [2] ‘hope’ that the l1-norm minimization will find the correct solution even 
though it is not imposed in the optimization problem explicitly. We will speak more about 
group sparse classification later. 
The sparse classification (SC) algorithm proposed in [2] is the following: 
 
Sparse Classifier Algorithm 
1. Solve the optimization problem expressed in (5). 
2. For each class (i) repeat the following two steps: 
3. Reconstruct a sample for each class by a linear combination of the training samples  

, ,
1

( )
in

recon i j i j
j

v i v


  

belonging to that class using. 
 
4. Find the error between the reconstructed sample and the given test sample by 

, ( ) 2( , ) || ||test k test recon ierror v i v v  .  

5. Once the error for every class is obtained, choose the class having the minimum error as 
the class of the given test sample. 
The main workhorse behind the SC algorithm is the optimization problem (5). The rest of 
the steps are straightforward. We give a very simple algorithm to solve this optimization 
problem. 
 
IRLS algorithm for l1 minimization 

Initialization – set δ(0) = 0 and find the initial 
2
2ˆ(0) min || ||x y Ax  by conjugate 

gradient method. 
At iteration t – continue the following steps till convergence (i.e. either δ is less than 10-6 
or the number of iterations has reached maximum limit) 
1. Find the current weight matricex as 1/2( ) (2 | ( 1) ( ) | )mW t diag x t t     
2. Form a new matrix, mL AW . 

3. Solve 2
2ˆ( ) min || ||u t y Lu  by conjugate gradient method. 

4. Find x by rescaling u, ( ) ( )mx t W u t . 
5. Reduce δ by a factor of 10 if ||y-Ax||q has reduced. 

This algorithm is called the Iterated Reweighted Least Squares (IRLS) algorithm [4] and falls 
under the general category of FOCUSS algorithms [5]. 
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This algorithm is called the Iterated Reweighted Least Squares (IRLS) algorithm [4] and falls 
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2.2 Fast Sparse Classifiers 
The above sparse classification (SC) algorithm yields good classification results, but it is 
slow. This is because of the convex optimization (l1 minimization). It is possible to create 
faster versions of the SC by replacing the optimization step (step 1 of the above algorithm) 
by a fast greedy (suboptimal) alternative that approximates the original l0 minimization 
problem (4). Such greedy algorithms serve as a fast alternative to convex-optimization for 
sparse signal estimation problems. In this work, we apply these algorithms in a new 
perspective (classification).  
We will discuss a basic greedy algorithm that can be employed to speed-up the SC [2]. The 
greedy algorithm is called the Orthogonal Matching Pursuit (OMP) [6]. We repeat the OMP 
algorithms here for the sake of completeness. This algorithm approximates the NP hard 
problem, 0 2min || ||  subject to || ||x y Ax   . 
 
OMP Algorithm 
 

Inputs: measurement vector y (mX1), measurement matrix A (mXn) and error tolerance 
η.  
Output: estimated sparse signal x. 
Initialize: residual r0=y, the index set 0=, the matrix of chosen atoms 0=, and the 
iteration counter t = 1. 
1. At the iteration = t, find 1

1...
arg max | , |t t j

j n
r 


     

2. Augment the index set 1t t t     and the matrix of chosen atoms 

1 tt t A     .  

3. Get the new signal estimate 2
2min || ||t tx

x y . 

4. Calculate the new approximation and the residual t t ta x   and t tr y a  . 

Increment t and return to step 1 if || ||tr  . 

 
The problem is to estimate the sparse signal. Initially the residual is initialized to the 
measurement vector. The index set and the matrix of chosen atoms (columns from the 
measurement matrix) are empty. The first step of each iteration is to select a non-zero index 
of the sparse signal. In OMP, the current residual is correlated with the measurement matrix 
and the index of the highest correlation is selected. In the second step of the iteration, the 
selected index is added to the set of current index and the set of selected atoms (columns 
from the measurement matrix) is also updated from the current index set. In the third step 
the estimates of the signal at the given indices are obtained via least squares. In step 4, the 
residual is updated. Once all the steps are performed for the iteration, a check is done to see 
if the norm of the residual falls below the error estimate. If it does, the algorithm terminates 
otherwise it repeats steps 2 to 4. 
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The Fast Sparse Classification algorithm differs from the Sparse Classification algorithm 
only in step 1. Instead of solving the l1 minimization problem, FSC uses OMP for a greedy 
approximation of the original l0 minimization problem.  

 
2.3 Group Sparse Classifier 
As mentioned in subsection 2.1, the optimization algorithm formulated in [2] does not 
exactly address the desired aim. A sparse optimization problem was formulated in the hope 
of selecting training samples of a particular (correct) class. It has been shown in [7] that l1 
minimization cannot select a sparse group of correlated samples (in the limiting case it selects 
only a single sample from all the correlated samples). In classification problems, the training 
samples from each class are highly correlated, therefore l1 minimization is not an ideal choice 
for ensuring selection of all the training samples from a group. To overcome this problem of 
[2] the Group Sparse Classifier was proposed in [3]. It has the same basic assumption as [2] 
but the optimization criterion is formulated so that it promotes selection of the entire class of 
training samples.  
The basic assumption of expressing the test sample as a linear combination of training 
samples is formulated in (3) as ,k testv V    

where
11,1 1, ,1 , ,1 ,[ | ... | | ... | | ... | | ... | ... | ]

k Cn k k n C C nV v v v v v v and 

 

1 2

1 2

1,1 1, 2,1 2, ,1 ,[ ,..., , ,..., ,... ,..., ]
C

C

T
n n C C n

  

      
 

. 
The above formulation demand that α should be ‘group sparse’ - meaning that the solution 
of the inverse problem (3) should have non-zero coefficients corresponding to a particular 
group of training samples and zero elsewhere (i.e. 0i  for only one of the αi’s, i=1,…,C). 
This requires the solution of 
 
 2,0 2min || ||  such that ||v ||test V


     (6) 

The mixed norm 2,0|| || is defined for 
1 2

1 2

1,1 1, 2,1 2, ,1 ,[ ,..., , ,..., ,... ,..., ]
k

k

T
n n k k n

  

      
 

 as 

2,0 2
1

|| || (|| || 0)
k

l
l

I 


  , where 2(|| || 0) 1lI    if 2|| || 0l  . 

 
Solving the l2,0 minimization problem is NP hard. We proposed a convex relaxation in [3], so 
that the optimization takes the form 
 2,1 2min || ||  such that ||v ||test V


     (7) 

where 2,1 1 2 2 2 2|| || || || || || ... || ||k       . 

Solving the l2,1 minimization problem is the core behind the GSC. Once the optimization 
problem (7) is solved, the classification algorithm is straight forward. 
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that the optimization takes the form 
 2,1 2min || ||  such that ||v ||test V


     (7) 

where 2,1 1 2 2 2 2|| || || || || || ... || ||k       . 

Solving the l2,1 minimization problem is the core behind the GSC. Once the optimization 
problem (7) is solved, the classification algorithm is straight forward. 
 
 

Group Sparse Classification Algorithm 
1. Solve the optimization problem expressed in (13). 
2. Find those i’s for which ||αi||2 > 0.  
3. For those classes (i) satisfying the condition in step 2, repeat the following two steps: 

 a. Reconstruct a sample for each class by a linear combination of the training samples 

in that class via the equation 
, ,

1

( )  
in

recon i j i j
j

v i v



. 

 b. Find the error between the reconstructed sample and the given test sample by 

, ( ) 2( , ) || ||test k test recon ierror v i v v  . 

4. Once the error for every class is obtained, choose the class having the minimum error as 
the class of the given test sample. 
As said earlier the work horse behind the GSC is the optimization problem (7). We propose 
a solution to this problem via an IRLS method.  
 
IRLS algorithm for l2,1 minimization 

Initialization – set δ(0) = 0 and find the initial 2
2ˆ(0) min || ||x y Ax  by conjugate 

gradient method. 
At iteration t – continue the following steps till convergence (i.e. either δ is less than 10-6 
or the number of iterations has reached maximum limit) 
1. Find the weights for each group (i) ( 1) 2 1/2

2(|| || ( ))k
i iw x t   . 

2. Form a diagonal weight matrix Wm having weights wi corresponding to each coefficient 
of the group xi.  
3. Form a new matrix, mL AW . 

4. Solve 2
2ˆ( ) min || ||u t y Lu  . 

5. Find x by rescaling u, ( ) ( )mx t W u t . 
6. Reduce δ by a factor of 10 if ||y-Ax||q has reduced. 

 
This algorithm is similar to the one in section 2.1 used for solving the sparse optimization 
problem except that the weight matrix is different. 

 
2.4 Fast Group Sparse Classification 
The Group Sparse Classifier [3] gives better results than the Sparse Classifier [2] but is 
slower. In a very recent work [8] we proposed alternate greedy algorithms for group sparse 
classification and were able to increase the operating speed by two orders of magnitude. 
These classifiers were named Fast Group Sparse Classifiers (FGSC).  
FSC is built upon greedy approximation algorithms of the NP hard sparse optimization 
problem (10). Such greedy algorithms form a well studied topic in signal processing. 
Therefore it was straightforward to apply known greedy algorithms (such as OMP) to the 
sparse classification problem. Group sparsity promoting optimization however is not a 
vastly researched topic like sparse optimization. As previous work in group sparsity solely 
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rely on convex optimization. We had to develop a number of greedy algorithms as (fast and 
accurate) alternatives to convex group sparse optimization [8].  
All greedy group sparse algorithms approximate the problem 

2,0 2min || ||  subject to || ||x y Ax   . They work in a very intuitive way – first they try 

to identify the group which has non-zero coefficients. Once the group is identified, the 
coefficients for the group indices are estimated by some simple means. There are several 
ways to approximate the NP hard problem. It is not possible to discuss all of them in this 
chapter. We discuss the Group Orthogonal Matching Pursuit (GOMP) algorithm. The 
interested reader can peruse [8] for other methods to solve this problem. 
 
GOMP Algorithm 

Inputs: the measurement vector y (mX1), the measurement matrix A (mXn), the group 
labels and the error tolerance η.  
Output: the estimated sparse signal x. 
Initialize: the residual 0r y , the index set 0  , the matrix of chosen atoms 

0  , and the iteration counter t = 1. 

1. At iteration t, compute 1( ) | , |, 1...t jj r j n      

2. Group selection – select the class with the maximum average correlation 

1... 1

1arg max( ( ))
in

t
i C i j

j
n

 
 

  , denote it by ( )tclass  . 

3. Augment the index set 1 ( )t t tclass     and the matrix of the chosen atoms 

1 ( )[  ]
tt t classA    .  

4. Get the new signal estimate using 2
2min || ||t tx

x y . 

5. Calculate the new approximation and the residual t t ta x  and t tr y a  . 

Increment t and return to step 1 if || ||tr  . 

 
The classification method for the GSC and the FGSC are the same. Only the convex 
optimization of step of the former is replaced by a greedy algorithm in the latter. 

 
2.5 Nearest Subspace Classifier 
The Nearest Subspace Classifier (NSC) [9] makes a novel classification assumption – 
samples from each class lie on a hyper-plane specific to that class. According to this 
assumption, the training samples of a particular class span a subspace. Thus the problem of 
classification is to find the correct hyperplane for the test sample. According to this 
assumption, any new test sample belonging to that class can thus be represented as a linear 
combination of the test samples, i.e.  
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The Nearest Subspace Classifier (NSC) [9] makes a novel classification assumption – 
samples from each class lie on a hyper-plane specific to that class. According to this 
assumption, the training samples of a particular class span a subspace. Thus the problem of 
classification is to find the correct hyperplane for the test sample. According to this 
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 , , ,
1

kn

k test k i k i k
i

v v 


    (8) 

where ,k testv is the test sample (i.e. the vector of features) assumed to belong to the kth class, 

,k iv is the ith training sample of the kth class, and k is the approximation error for the kth 
class.  
Owing to the error term in equation (8), the relation holds for all the classes k=1…C. In such 
a situation, it is reasonable to assume that for the correct class the test sample has the 
minimum error k .  
To find the class that has the minimum error in equation (8), the coefficients ,k i  k=1…C 
must be estimated first. This can be performed by rewriting (8) in matrix-vector notation 
 
 ,k test k k kv V     (9) 

where ,1 ,2 ,[ | | ... | ]
kk k k k nV v v v and ,1 ,2 ,[ , ... ]

k

T
k k k k n    . 

The solution to (9) can be obtained by minimizing 
 

 2
, 2ˆ argmin || ||k k test kv V


    (10) 

 

The previous work on NSC [9] directly solves (10). However, the matrix Vk may be under-
determined, i.e. the number the number of samples may be greater than the dimensionality 
of the inputs. In such a case, instead of solving (10), Tikhonov regularization is employed so 
that the following is minimized 
 

 2 2
, 2 2ˆ argmin || || || ||k k test kv V


       (11) 

The analytical solution of (11) is 

 1
,ˆ ( )T T

k k k k k testV V I V v     (12) 

Plugging this expression in (9), and solving for the error term, we get 

 1
,( ( ) )T T

k k k k k k testV V V I V I v      (13) 

Based on equations (9-13) the Nearest Subspace Classifier algorithm has the following steps. 
 
NSC Algorithm 

Training 
1. For each class ‘k’, by computing the orthoprojector (the term in brackets in equation 
(13)). 
 
Testing 
2. Calculate the error for each class ‘k’ by computing the matrix vector product between 
the orthoprojector and vk,test. 
3. Classify the test sample as the class having the minimum error ( || ||k ). 
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3. CLASSIFICATION ROBUSTNESS TO DATA ACQUIRED BY CS 

The idea of using random projection for dimensionality reduction of face images was 
proposed in [1, 2]. It was experimentally shown that the Nearest Neighbor (NN) and the 
Sparse Classifier (SC) are robust to such dimensionality reduction. However the theoretical 
understanding behind the robustness to such dimensionality reduction was lacking there in. 
In this section, we will prove why all classifiers discussed in the previous section can be 
categorized as Compressive Classifiers. The two conditions that guarantee the robustness of 
CC under random projection are the following: 
Restricted Isometric Property (RIP) [10] – The l2-norm of a sparse vector is approximately 
preserved under a random lower dimensional projection, i.e. when a sparse vector x is 
projected by a random projection matrix A, then 2 2 2(1 ) || || || || (1 ) || ||x Ax x    . The 
constant δ is a RIP constant whose value depends on the type of the matrix A and the 
number of rows and columns of A and the nature of x. An approximate form (without 
upper and lower bounds) of RIP states 2 2|| || || ||Ax x . 
Generalized Restricted Isometric Property (GRIP) [11] – For a matrix A which satisfies RIP 

for inputs ix , the inner product of two vectors ( 2 2, || || || || cosw v w v    ) is 
approximately maintained under the random projection A, i.e. for two vectors x1 and x2 
(which satisfies RIP with matrix A), the following inequality is satisfied:  
 

1 2 2 2 1 2 1 2 2 2(1 ) || || || || cos[(1 3 ) ] , (1 ) || || || || cos[(1 3 ) ]m mx x Ax Ax x x            
 
The constants δ and δm depend on the dimensionality and the type of matrix A and also on 
the nature of the vectors. Even though the expression seems overwhelming, it can be simply 
stated as: the angle between two sparse vectors (θ) is approximately preserved under 
random projections. An approximate form of GRIP is 1 2 1 2, ,Ax Ax x x . 
RIP and the GRIP were originally proven for sparse vectors, but natural images are in 
general dense. We will show why these two properties are satisfied by natural images as 
well. Images are sparse in several orthogonal transform domains like DCT and wavelets. If I 
is the image and x is the transform domain representation, then 

     synthesis equation
       analysis equation

TI x
x I
 
  

where Φ is the sparsifying transform and x is sparse. 
Now if the sparse vector x is randomly projected by a Gaussian matrix A following RIP, 
then 

2 2

2 2

2 2

2 2

|| || || ||
|| || || ||   (by anaslysis equation)
|| || || ||   (   is orthogonal)
|| || || || ,   B = A

Ax x
A I I
A I I
BI I


   
   
  



 
Since Φ is an orthogonal matrix, the matrix AΦ (=B) is also Gaussian, being formed by a 
linear combination of i.i.d. Gaussian columns. Thus it is seen how the RIP condition holds 
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Since Φ is an orthogonal matrix, the matrix AΦ (=B) is also Gaussian, being formed by a 
linear combination of i.i.d. Gaussian columns. Thus it is seen how the RIP condition holds 

for dense natural images. This fact is the main cornerstone of all compressed sensing 
imaging applications. In a similar manner it can be also shown that the GRIP is satisfied by 
natural images as well. 

 
3.1 The Nearest Neighbor Classifier 
The Nearest Neighbor (NN) is a compressive classifier. It was used for classification under 
RP dimensionality reduction in [1]. The criterion for NN classification depends on the 
magnitude of the distance between the test sample and each training sample. There are two 
popular distance measures –  
Euclidean distance ( , 2|| || , 1...  and 1...test i j iv v i C j n   )  

Cosine distance ( ,, , 1...  and 1...test i j iv v i C j n  ) 

It is easy to show that both these distance measures are approximately preserved under 
random dimensionality reduction, assuming that the random dimensionality reduction 
matrix A follows RIP with the samples v. Then following the RIP approximation, the 
Euclidean distance between samples is approximately preserved, i.e. 

, 2 , 2 , 2|| || || ( ) || || ( ) ||test i j test i j test i jAv Av A v v v v    
 

The fact that the Cosine distance is approximately preserved follows directly from the GRIP 
assumption 

, ,, ,test i j test i jAv Av v v . 

 
3.2 The Sparse and the Group Sparse Classifier 
In this subsection it will be shown why the Sparse Classifier and the Group Sparse Classifier 
can act as compressive classifiers. At the core of SC and GSC classifiers are the l1 
minimization and the l2,1 minimization optimization problems respectively 

 
1 , 2

2,1 , 2

SC-min || ||  subject to || ||
GSC-min || ||  subject to || ||
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k test

v V
v V

  

  

 

 
 (14) 

In compressive classification, all the samples are projected from a higher to a lower 
dimension by a random matrix A. Therefore the optimization is the following: 
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SC-min || ||  subject to || ||
GSC-min || ||  subject to || ||
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 (15) 

The objective function does not change before and after projection, but the constraints do. 
We will show that the constraints of (14) and (15) are approximately the same; therefore the 
optimization problems are the same as well. The constraint in (15) can be represented as: 

 

, 2
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|| ||
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Since the constraints are approximately preserved and the objective function remains the 
same, the solution to the two optimization problems (14) and (15) will be approximately the 
same, i.e.   . 
In the classification algorithm for SC and GSC (this is also true for both the FSC, FGSC and 
NSC), the deciding factor behind the class of the test sample is the class-wise error  
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As the class-wise error is approximately preserved under random projections, the 
recognition results too will be approximately the same. 
 
Fast Sparse and Fast Group Sparse Classifiers 
In the FSC and the FGSC classifiers, the NP hard optimization problem (14) is solved 
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The problem (14) pertains to the case of original data. When the samples are randomly 
projected, the problem has the following form: 
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We need to show that the results of greedy approximation to the above problems 
yields   . 
There are two main computational steps in the OMP/GOMP algorithms – i) the selection 
step, i.e the criterion for choosing the indices, and ii) the least squares signal estimation step. 
In order to prove the robustness of the OMP/GOMP algorithm to random projection, it is 
sufficient to show that the results from the aforesaid steps are approximately preserved. 
In OMP/GOMP, the selection is based on the correlation between the measurement matrix 

Φ and the observations y, i.e. T y . If we have 1and m n my  , then the correlation can be 

written as inner products between the columns of Φ and the vector y i.e. , , 1...i y i n  . 
After random projection, both columns of Φ and the measurement y are randomly sub-
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written as inner products between the columns of Φ and the vector y i.e. , , 1...i y i n  . 
After random projection, both columns of Φ and the measurement y are randomly sub-

sampled by a random projection matrix A. The correlation can be calculated as 
, , 1...iA Ay i n  , which by GRIP can be approximated as , , 1...i y i n  .n Since the 

correlations are approximately preserved before and after the random projection, the 
OMP/GOMP selection is also robust under such random sub-sampling. 
The signal estimation step is also robust to random projection. The least squares estimation 
is performed as: 
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Thus the signal estimate x, obtained by solving the original least squares problem (22) and 
the randomly sub-sampled problem are approximately the same. 
The main criterion of the FSC and the FGSC classification algorithms is the class-wise error. 
It has already been shown that the class-wise error is approximately preserved after random 
projection. Therefore the classification results before and after projection will remain 
approximately the same. 
3.3 Nearest Subspace Classifier 
The classification criterion for the NSC is the norm of the class-wise error expressed as 
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Since the norm of the class-wise error is approximately preserved under random 
dimensionality reduction, the classification results will also remain approximately the same. 
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4. EXPERIMENTAL RESULTS 

As mentioned in section 2, compressive classifiers should meet two challenges. First and 
foremost it should have classification accuracy comparable to traditional classifiers. 
Experiments for general purpose classification are carried out on some benchmark databases 
from the University of California Irvine Machine Learning (UCI ML) repository [12] to 
compare the new classifiers (SC, FSC, GSC, FGSC and NSC) with the well known NN. We 
chose those databases that do not have missing values in feature vectors or unlabeled 
training data. The results are tabulated in Table 1. The results show that the classification 
accuracy from the new classifiers are better than NN. 
 

Dataset SC FSC GSC FGSC NSC NN-
Euclid 

NN-
Cosine 

Page Block 94.78 94.64 95.66 95.66 95.01 93.34 93.27 
Abalone 27.17 27.29 27.17 26.98 27.05 26.67 25.99 
Segmentation 96.31 96.10 94.09 94.09 94.85 96.31 95.58 
Yeast 57.75 57.54 58.94 58.36 59.57 57.71 57.54 
German Credit 69.30 70.00 74.50 74.50 72.6 74.50 74.50 
Tic-Tac-Toe 78.89 78.28 84.41 84.41 81.00 83.28 82.98 
Vehicle 65.58 66.49 73.86 71.98 74.84 73.86 71.98 
Australian Cr. 85.94 85.94 86.66 86.66 86.66 86.66 86.66 
Balance Scale 93.33 93.33 95.08 95.08 95.08 93.33 93.33 
Ionosphere 86.94 86.94 90.32 90.32 90.32 90.32 90.32 
Liver 66.68 65.79 70.21 70.21 70.21 69.04 69.04 
Ecoli 81.53 81.53 82.88 82.88 82.88 80.98 81.54 
Glass 68.43 69.62 70.19 71.02 69.62 68.43 69.62 
Wine 85.62 85.62 85.62 85.95 82.58 82.21 82.21 
Iris 96.00 96.00 96.00 96.00 96.00 96.00 96.00 
Lymphography 85.81 85.81 86.42 86.42 86.42 85.32 85.81 
Hayes Roth 40.23 43.12 41.01 43.12 43.12 33.33 33.33 
Satellite 80.30 80.30 82.37 82.37 80.30 77.00 77.08 
Haberman 40.52 40.85 43.28 43.28 46.07 57.40 56.20 

Table 1. Recognition Accuracy (%age) 
 
The second challenge the Compressive Classifiers should meet is that their classification 
accuracy should approximately be the same, when sparsifiable data is randomly sub-
sampled by RIP matrices. In section 3 we have already proved the robustness of these 
classifiers. The experimental verification of this claim is shown in table 2. It has already been 
mentioned (section 3) that images follow RIP with random matrices having i.i.d Gaussian 
columns normalized to unity.  
The face recognition experiments were carried out on the Yale B face database. The images 
are stored as 192X168 pixel grayscale images. We followed the same methodology as in [2]. 
Only the frontal faces were chosen for recognition. Half of the images (for each individual) 
were selected for training and the other half for testing. The experiments were repeated 5 
times with 5 sets of random splits. The average results of 5 sets of experiments are shown in 
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table 2. The first column of the following table indicates the number of lower dimensional 
projections (1/32, 1/24, 1/16 and 1/8 of original dimension). 

Dimensionality SC FSC GSC FGSC NSC NN-
Euclid 

NN-
Cosine 

30 82.73 82.08 85.57 83.18 87.68 70.39 70.16 
56 92.60 92.34 92.60 91.83 91.83 75.45 75.09 
120 95.29 95.04 95.68 95.06 93.74 78.62 78.37 
504 98.09 97.57 98.09 97.21 94.42 79.13 78.51 
Full 98.09 98.09 98.09 98.09 95.05 82.08 82.08 

Table 2. Recognition Results (%) on Yale B (RP) 
 
Table 2 shows that the new compressive classifiers are way better than the NN classifiers in 
terms of recognition accuracy. The Group Sparse Classifier gives by far the best results. All 
the classifiers are relatively robust to random sub-sampling. The results are at par with the 
ones obtained from the previous study on Sparse Classification [2]. 
The compressive classifiers have the special advantage of being robust to dimensionality 
reduction via random projection. However, they can be used for any other dimensionality 
reduction as well. In Table 3, the results of compressive classification on PCA 
dimensionality reduced data is shown for the Yale B database. 

Dimensionality SC FSC GSC FGSC NSC NN-
Euclid 

NN-
Cosine 

30 83.10 82.87 86.61 84.10 88.92 72.50 71.79 
56 92.83 92.55 93.40 92.57 92.74 78.82 77.40 
120 95.92 95.60 96.15 95.81 94.98 84.67 82.35 
504 98.09 97.33 98.09 98.09 95.66 88.95 86.08 
Full 98.09 98.09 98.09 98.09 96.28 89.50 88.00 

Table 3. Recognition Results (%) on Yale B (PCA) 
 
Experimental results corroborate our claim regarding the efficacy of compressive classifiers. 
Results for Table 1 indicate that they can be used for general purpose classification. Table 2 
successfully verifies the main claim of this chapter, i.e. the compressive classifiers are robust 
to dimensionality reduction via random projection. In Table 3, we show that the 
compressive classifiers are also applicable to data whose dimensionality has been reduced 
by standard techniques like PCA. 

 
5. CONCLUSION 

This chapter reviews an alternate face recognition method than those provided by 
traditional machine learning tools. Conventional machine learning solutions to 
dimensionality reduction and classification require all the data to be present beforehand, i.e. 
whenever new data is added, the system cannot be updated in online fashion, rather all the 
calculations need to be re-done from scratch. This creates a computational bottleneck for 
large scale implementation of face recognition systems.  



Face	Recognition62

The face recognition community has started to appreciate this problem in the recent past 
and there have been some studies that modified the existing dimensionality reduction 
methods for online training [13, 14]. The classifier employed along with such online 
dimensionality reduction methods has been the traditional Nearest Neighbour. 
This work addresses the aforesaid problem from a completely different perspective. It is 
based on recent theoretical breakthroughs in signal processing [15, 16]. It advocates 
applying random projection for dimensionality reduction. Such dimensionality reduction 
necessitates new classification algorithms. This chapter assimilates some recent studies in 
classification within the unifying framework of compressive classification. The Sparse 
Classifier [2] is the first of these. The latter ones like the Group Sparse Classifier [3], Fast 
Group Sparse Classifier [8] and Nearest Subspace Classifier [9] were proposed by us. The 
Fast Sparse Classifier has been proposed for the first time in this chapter.  
For each of the classifiers, their classification algorithms have been written concisely in the 
corresponding sub-sections. Solutions to different optimization problems required by the 
classifiers are presented in a fashion that can be implemented by non-experts. Moreover the 
theoretical understanding behind the different classifiers is also provided in this chapter. 
These theoretical proofs are thoroughly validated by experimental results. 
It should be remembered that the classifiers discussed in this chapter can be used with other 
dimensionality reduction techniques as well such as – Principal Component Analysis, 
Linear Discriminant Analysis and the likes. In principle the compressive classifiers can be 
employed in any classification task as better substitutes for the Nearest Neighbour classifier. 
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1. Introduction

Face recognition is a special topic in visual information processing that has grown to be of
tremendous interest to pattern recognition researchers for the past couple of decades (Delac
& Grgic, 2007; Hallinan et al., 1999; Li & Jain, 2005; Wechsler, 2006; Zhao & Chellappa, 2005).
However, the methods in general faces the problem of poor recognition rates under the con-
ditions of: (1) large changes in natural variability, and (2) limitations in training data such as
single gallery per person problem. Such conditions are undesirable for face recognition as the
inter-class and intra-class variability between faces become high, and the room for discrimi-
nation between the features become less.
Major methods that are employed to reduce this problem can be classified into three groups:
(1) methods whose so-called gallery set consists of multiple training images per person (e.g.
Etemad & Chellappa (1997); Jenkins & Burton (2008)) (2) image preprocessing techniques that
aim at feature restoration (e.g. Ahlberg & Dornaika (2004)), and (3) use of geometrical trans-
forms to form face models (e.g. Ahlberg & Dornaika (2004)). Even though they show high
performance under specific conditions they lack robust performance and in many cases have
proved to be computationally expensive. Being distinct from these computational schemes,
the human visual system, which is the best available natural model for face recognition, uses
modular approach for classification of faces (Moeller et al., 2008).
This chapter presents a method (James, 2008; James & Dimitrijev, 2008) that implements the
concept of local binary decisions to form a modular unit and a modular system for face recog-
nition. This method is applied to formulate a simple algorithm and its robustness verified
against various natural variabilities occurring in face images. Being distinct from a traditional
approach of space reduction at feature level or automatic learning, we propose a method that
can suppress unwanted features and make useful decisions on similarity irrespective of the
complex nature of underlying data. The proposed method in the process do not require di-
mensionality reduction or use of complex feature extraction or classifier training to achieve
robust recognition performance.

2. Proposed method

Understanding vision in humans at the level of forming a theoretical framework suitable for
computational theory, has opened up various disagreements about the goals of cortical pro-
cessing. The works of David Marr and James Gibson are perhaps the only two major attempts

5
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to provide deeper insight. In majority of Marr’s work (Marr, 1982), he assumed and believed
vision in humans to be nothing more that a natural information processing mechanism, that
can be modelled in a computer. The various levels for such a task would be: (1) computa-
tional model, (2) a specific algorithm for that model, and (3) a physical implementation. It is
logical in this method to treat each of these level as independent components and is a way to
mimic the biological vision in robots. Marr attempted to set out a computational theory for
vision in a complete holistic approach. He applied the principle of modularity to argue visual
processing stages, with every module having a function. Philosophically, this is one of the
most elegant approach proposed in the last century that can suit both the paradigms of soft-
ware and hardware implementations. Gibson on the other hand had an “ecological” approach
to studying vision. His view was that vision should be understood as a tool that enables an-
imals to achieve the basic tasks required for life: avoid obstacles, identify food or predators,
approach a goal and so on. Although his explanations on brain perception were unclear and
seemed very similar to what Marr explained as algorithmic level, there has been a continued
interest in the rule-based modeling which advocates knowledge as a prime requirement for
visual processing and perception.
Both these approaches have a significant impact in the way in which we understand the visual
systems today. We use this understanding by applying the principles of modularity and hier-
archy to focus on three major concepts: (1) spatial intensity changes in images, (2) similarity
measures for comparison, and (3) decision making using thresholds. We use the following
steps as essential for forming a baseline framework for the method presented in this chapter:

Step 1 Feature selection of the image data: In this step the faces are detected and localized.
Spatial change detection is applied as a way to normalize the intensity features without
reducing the image dimensionality.

Step 2 Local similarity calculation and Local binary decisions: The distance or similarity be-
tween the localized pixels from image to another image is determined. This results in a
pixel-to-pixel similarity matrix having same size as that of the original image. Inspired
from the binary nature of the neuron output we make local decisions at pixel level by
using a threshold θ on the similarity matrix.

Step 3 Global similarity and decision: Aggregating all the local decisions, a global similarity
score is obtained for the comparisons between a test image with different images. Based
on the global similarity scores, they are ranked and the one with the highest similarity
score selected as the best match.

These steps are summarised graphically in Fig. 1.

2.1 Feature Selection
The visual features mapped by the colour models used in the camera device are influenced
by variations in illumination, spatial motions and spatial noise. Although noise and motion
errors can be corrected at the camera itself, illumination correction or normalization is seldom
done. The human eye on the other hand has inherent mechanical and functional mechanisms
to form illumination invariant face images under a wide range of lighting conditions. Feature
localization in humans is handled by feedback mechanisms linked to human eye and brain.
However, in the case of automatic face image recognition, a perfect spatial localization of fea-
tures is not possible using existing methods. Face detection methods are used to detect the
face images and localize the feature with some degree of accuracy. Even after features are
localised by any automatic detection methods, it is practically impossible to attain a perfect

Fig. 1. An illustration of various steps in the baseline algorithm. The images labeled (a),(b),
and (c) show the raw images, where (a) and (c) form the gallery images and (b) is a test image,
all taken from the AR database (Martinez & Benavente, 1998). The images labeled (d), (e), and
(f) show the output of a feature selection process, which corresponds to the raw images (a),
(b), and (c), respectively. The normalized feature vectors are shown as the images labeled (g),
(h), and (i), and are calculated from (d), (e), and (f), respectively. This is followed by com-
parisons of test image with gallery images. The normalized similarity measure when applied
for comparing (h) with (g) and (h) with (i) results in images labeled (j) and (k), respectively.
Finally, the local binary decisions when applied on (j) and (k) result in binary vectors labeled
(l) and (m), respectively. Clearly, in this example, (b) is a best match to (a) due to more white
areas (more similarity decisions) in (l) than in (m).
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to provide deeper insight. In majority of Marr’s work (Marr, 1982), he assumed and believed
vision in humans to be nothing more that a natural information processing mechanism, that
can be modelled in a computer. The various levels for such a task would be: (1) computa-
tional model, (2) a specific algorithm for that model, and (3) a physical implementation. It is
logical in this method to treat each of these level as independent components and is a way to
mimic the biological vision in robots. Marr attempted to set out a computational theory for
vision in a complete holistic approach. He applied the principle of modularity to argue visual
processing stages, with every module having a function. Philosophically, this is one of the
most elegant approach proposed in the last century that can suit both the paradigms of soft-
ware and hardware implementations. Gibson on the other hand had an “ecological” approach
to studying vision. His view was that vision should be understood as a tool that enables an-
imals to achieve the basic tasks required for life: avoid obstacles, identify food or predators,
approach a goal and so on. Although his explanations on brain perception were unclear and
seemed very similar to what Marr explained as algorithmic level, there has been a continued
interest in the rule-based modeling which advocates knowledge as a prime requirement for
visual processing and perception.
Both these approaches have a significant impact in the way in which we understand the visual
systems today. We use this understanding by applying the principles of modularity and hier-
archy to focus on three major concepts: (1) spatial intensity changes in images, (2) similarity
measures for comparison, and (3) decision making using thresholds. We use the following
steps as essential for forming a baseline framework for the method presented in this chapter:

Step 1 Feature selection of the image data: In this step the faces are detected and localized.
Spatial change detection is applied as a way to normalize the intensity features without
reducing the image dimensionality.

Step 2 Local similarity calculation and Local binary decisions: The distance or similarity be-
tween the localized pixels from image to another image is determined. This results in a
pixel-to-pixel similarity matrix having same size as that of the original image. Inspired
from the binary nature of the neuron output we make local decisions at pixel level by
using a threshold θ on the similarity matrix.

Step 3 Global similarity and decision: Aggregating all the local decisions, a global similarity
score is obtained for the comparisons between a test image with different images. Based
on the global similarity scores, they are ranked and the one with the highest similarity
score selected as the best match.

These steps are summarised graphically in Fig. 1.

2.1 Feature Selection
The visual features mapped by the colour models used in the camera device are influenced
by variations in illumination, spatial motions and spatial noise. Although noise and motion
errors can be corrected at the camera itself, illumination correction or normalization is seldom
done. The human eye on the other hand has inherent mechanical and functional mechanisms
to form illumination invariant face images under a wide range of lighting conditions. Feature
localization in humans is handled by feedback mechanisms linked to human eye and brain.
However, in the case of automatic face image recognition, a perfect spatial localization of fea-
tures is not possible using existing methods. Face detection methods are used to detect the
face images and localize the feature with some degree of accuracy. Even after features are
localised by any automatic detection methods, it is practically impossible to attain a perfect

Fig. 1. An illustration of various steps in the baseline algorithm. The images labeled (a),(b),
and (c) show the raw images, where (a) and (c) form the gallery images and (b) is a test image,
all taken from the AR database (Martinez & Benavente, 1998). The images labeled (d), (e), and
(f) show the output of a feature selection process, which corresponds to the raw images (a),
(b), and (c), respectively. The normalized feature vectors are shown as the images labeled (g),
(h), and (i), and are calculated from (d), (e), and (f), respectively. This is followed by com-
parisons of test image with gallery images. The normalized similarity measure when applied
for comparing (h) with (g) and (h) with (i) results in images labeled (j) and (k), respectively.
Finally, the local binary decisions when applied on (j) and (k) result in binary vectors labeled
(l) and (m), respectively. Clearly, in this example, (b) is a best match to (a) due to more white
areas (more similarity decisions) in (l) than in (m).
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alignment due to random occlusions and natural variations that depend on environment. As
a result, we need to integrate an error correction mechanism to reduce the impact of localiza-
tion error by applying image perturbations. The perturbations can be applied with respect to
an expected spatial coordinate such as eye coordinates. Ideally, any pixel shift from these ex-
pected coordinates results in rotation, scale or shift error. So to undo such errors, by the idea
of reverse engineering, pixel shifts are applied to the expected coordinate to detect the face
images. In this way any arbitrary N number of pixel shifts on an image results in N number
of perturbed images, one of which will be localised the best.
After the raw features are localized, they are processed further to extract features through
the detection of spatial change as an essential visual cue for recognition. Spatial change in
images can be detected using spatial filtering and normalization mechanisms such as local
range filtering, local standard deviation filtering, gradient filtering or gabor filtering.
The relative change of spatial intensity of a pixel in a raw image with respect to the corre-
sponding pixels in its neighbourhood can be used to form features useful for recognition. In
the baseline algorithm we can detect such features by calculating the local standard devia-
tion on the image pixels encompassed by a window w of pixels of size m × n pixels. This
type of spatial operation is known as a kernel based local spatial filtering. The local standard
deviation filter is given by the following equation:
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where a = (m − 1)/2 and b = (n − 1)/2. The local mean I(i, j) used in (1) is calculated by the
following equation:
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In Fig. 1, the images labeled (a), (b), and (c) show the raw images, whereas the images labeled
(d), (e), and (f) show the corresponding spatial change features [using Eq. (1)] respectively.
The normalized spatial change features x̂ are calculated using the following equation:

x(i, j) =
σ(i, j)

σ̂
(3)

where the spatial change features σ are normalized using the global mean σ̂. The global mean
is calculated by the following equation:
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In Fig. 1, the images labeled (g), (h), and (i) show the normalized spatial change features
which is obtained by applying global-mean normalization on spatial change features images
labeled (d), (e), and (f), respectively.
An extension to this class of filters is the V1-like features generated from Gabor filters that
detect different types of spatial variations in the images. The advantage of Gabor filters for
feature extraction in face recognition was evident through the works of (Zhang et al., 2005).

These suggest that like the Gradient filters Gabor filters can be used for preprocessing the
images. Formally, Gabor filters are defined as:

ψµ,υ(z) =
‖ kµ,υ ‖2

σ2
e(−‖kµ,υ‖2‖z‖2/2σ2)[eikµ,υz − e−σ2/2] (5)

where µ defines the orientation, υ defines the scale of the Gabor filters, kµ,υ = kmax
λv ei πµ

8 , λ is
the spacing between the filters in frequency domain and ‖ . ‖ denotes the norm operator. The
phase information from these filters is not considered, and only its magnitude explored. For

the experiments, we set the value of parameters as follows: λ =
√

2, σ = 2π and kmax = π/2.
Further by considering five scales υ ∈ {0, . . . 4} and eight orientations µ ∈ {0, . . . , 7} which
on convolution result in 40 filters. Again, these class of filters work on the primary principle
of local feature normalization through spatial change detection and provide a way to reduce
natural variability present in intensity raw image. Following these filtering operations, the
images are normalized using local mean filtering to readjust the signal strength locally.

2.2 Local similarity calculation and binary decisions
What is similarity? This question has eluded researchers from various fields for over a cen-
tury. Although the idea of similarity seem simple, yet it is very different from the idea of
difference. The difficulty lie in the idea of expressing similarity as a quantitative measure, for
example, unlike a difference measure such as Euclidean distance there is no physical basis to
similarity that can be explained. Although, perception favours similarity, the use of an exact
mathematical equation dose not properly justify meaning of similarity.

Type Equation
Min-max ratio min[xg, xt]/max[xg, xt]
Difference
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∣xg − xt)
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∣ /γ

Exponential difference e−|xg−xt|/γ

where γ is max[xg, xt] or
[xg + xt]/2 or min[xg, xt]

Table 1. Normalized similarity measures

The absolute difference between pixels is a well known distance measure used for the com-
parison of features and can be used to find the similarity. Further, element wise normalization
of this similarity measure is done by taking the minimum of each feature within test image
xt and gallery image xg under comparison. This feature by feature comparison results in a
normalized similarity measure δ, which is given by:

δ(i, j) =
|xg(i, j)− xt(i, j)|

min(xg(i, j), xt(i, j))
(6)

Similarity measures based on this idea of measurement are shown in Table 1. However, they
suffer from the inter-feature similarities being detected as true similarities from patterns in-
volving natural variability. We find a way to get around this problem by reducing the inter-
feature similarity and maintain only relevant differences through a combination of steps in-
volving local similarity calculation and pixel-level binary decision. Inspired from the idea of
ability of neurons to compare and make a binary decision at local level, we apply local simi-
larity measures followed by a local binary decision (see Table 1). In the comparison of images
this translates into pixel to pixel local similarity calculation followed by an application of a
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alignment due to random occlusions and natural variations that depend on environment. As
a result, we need to integrate an error correction mechanism to reduce the impact of localiza-
tion error by applying image perturbations. The perturbations can be applied with respect to
an expected spatial coordinate such as eye coordinates. Ideally, any pixel shift from these ex-
pected coordinates results in rotation, scale or shift error. So to undo such errors, by the idea
of reverse engineering, pixel shifts are applied to the expected coordinate to detect the face
images. In this way any arbitrary N number of pixel shifts on an image results in N number
of perturbed images, one of which will be localised the best.
After the raw features are localized, they are processed further to extract features through
the detection of spatial change as an essential visual cue for recognition. Spatial change in
images can be detected using spatial filtering and normalization mechanisms such as local
range filtering, local standard deviation filtering, gradient filtering or gabor filtering.
The relative change of spatial intensity of a pixel in a raw image with respect to the corre-
sponding pixels in its neighbourhood can be used to form features useful for recognition. In
the baseline algorithm we can detect such features by calculating the local standard devia-
tion on the image pixels encompassed by a window w of pixels of size m × n pixels. This
type of spatial operation is known as a kernel based local spatial filtering. The local standard
deviation filter is given by the following equation:
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where a = (m − 1)/2 and b = (n − 1)/2. The local mean I(i, j) used in (1) is calculated by the
following equation:
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In Fig. 1, the images labeled (a), (b), and (c) show the raw images, whereas the images labeled
(d), (e), and (f) show the corresponding spatial change features [using Eq. (1)] respectively.
The normalized spatial change features x̂ are calculated using the following equation:

x(i, j) =
σ(i, j)

σ̂
(3)

where the spatial change features σ are normalized using the global mean σ̂. The global mean
is calculated by the following equation:

σ̂ =
1
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In Fig. 1, the images labeled (g), (h), and (i) show the normalized spatial change features
which is obtained by applying global-mean normalization on spatial change features images
labeled (d), (e), and (f), respectively.
An extension to this class of filters is the V1-like features generated from Gabor filters that
detect different types of spatial variations in the images. The advantage of Gabor filters for
feature extraction in face recognition was evident through the works of (Zhang et al., 2005).

These suggest that like the Gradient filters Gabor filters can be used for preprocessing the
images. Formally, Gabor filters are defined as:

ψµ,υ(z) =
‖ kµ,υ ‖2

σ2
e(−‖kµ,υ‖2‖z‖2/2σ2)[eikµ,υz − e−σ2/2] (5)

where µ defines the orientation, υ defines the scale of the Gabor filters, kµ,υ = kmax
λv ei πµ

8 , λ is
the spacing between the filters in frequency domain and ‖ . ‖ denotes the norm operator. The
phase information from these filters is not considered, and only its magnitude explored. For

the experiments, we set the value of parameters as follows: λ =
√

2, σ = 2π and kmax = π/2.
Further by considering five scales υ ∈ {0, . . . 4} and eight orientations µ ∈ {0, . . . , 7} which
on convolution result in 40 filters. Again, these class of filters work on the primary principle
of local feature normalization through spatial change detection and provide a way to reduce
natural variability present in intensity raw image. Following these filtering operations, the
images are normalized using local mean filtering to readjust the signal strength locally.

2.2 Local similarity calculation and binary decisions
What is similarity? This question has eluded researchers from various fields for over a cen-
tury. Although the idea of similarity seem simple, yet it is very different from the idea of
difference. The difficulty lie in the idea of expressing similarity as a quantitative measure, for
example, unlike a difference measure such as Euclidean distance there is no physical basis to
similarity that can be explained. Although, perception favours similarity, the use of an exact
mathematical equation dose not properly justify meaning of similarity.

Type Equation
Min-max ratio min[xg, xt]/max[xg, xt]
Difference
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Exponential difference e−|xg−xt|/γ

where γ is max[xg, xt] or
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Table 1. Normalized similarity measures

The absolute difference between pixels is a well known distance measure used for the com-
parison of features and can be used to find the similarity. Further, element wise normalization
of this similarity measure is done by taking the minimum of each feature within test image
xt and gallery image xg under comparison. This feature by feature comparison results in a
normalized similarity measure δ, which is given by:

δ(i, j) =
|xg(i, j)− xt(i, j)|

min(xg(i, j), xt(i, j))
(6)

Similarity measures based on this idea of measurement are shown in Table 1. However, they
suffer from the inter-feature similarities being detected as true similarities from patterns in-
volving natural variability. We find a way to get around this problem by reducing the inter-
feature similarity and maintain only relevant differences through a combination of steps in-
volving local similarity calculation and pixel-level binary decision. Inspired from the idea of
ability of neurons to compare and make a binary decision at local level, we apply local simi-
larity measures followed by a local binary decision (see Table 1). In the comparison of images
this translates into pixel to pixel local similarity calculation followed by an application of a
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Fig. 2. The illustration shows the images of a person in the AR database (Martinez & Be-
navente, 1998; 2000) and its organization for the single training sample per person problem
depicted in this article. The session 1 image having a neutral facial expression is selected as the
gallery image. The remaining 25 images from session 1 and session 2 are used as test images.

binary decision using a threshold. The inherent ability of neurons to exhibit a logic high or
logic low state based on the ionic changes occurring due to the presumably threshold limited
variations in input connections inspires this idea of local decision. The resulting output for the
local similarity measure Sl(i, j) that is defined as to represent Sl(i, j) = 0 as least similar and
Sl(i, j) = 1 as most similar, when applied on a threshold θ to form the binary decision B(i, j)
takes the form B(i, j) = 1 if Sl(i, j) <= θ and B(i, j) = 0 if Sl(i, j) > θ. The values generated
by B represents the local decision space of the image comparison.

2.3 Global similarity and decision
Local decisions on similarity give the similarity match at pixel level, this however is only use-
ful if it can be used at a higher level of decision level abstraction. A reduction of the decision
space is necessary to obtain a global value of the image comparison between a test and the
gallery image. The simplest possible way to achieve this is by aggregating the local decisions
to form a global score which we refer to as global similarity score Sg. The comparison of a
test image with any arbitrary M number of gallery images results in M global similarity score
Sg. Including the N perturbations done on the test image, this number increases to M × N.
These generated similarity scores are then ranked and the top rank is selected to represent the
best match. This idea of ranking top rank is no different from threshold logic based decisions
at global level (wherein threshold can be thought of being applied between the top rank and
second most top rank). Overall, this process represents the global decision making process
through a simple approach of global similarity calculation and selection.

3. Experimental Analysis

Unless specified otherwise, all the experiments presented in this section are conducted using
the AR face database (See Fig. 2) with the following numerical values: 0.25 for θ, 160 × 120
pixels for the image size, and 7× 5 pixels for the kernel window size of the standard deviation
filter.

3.1 Effect of Spatial Intensity Change Used as Features
An analysis using spatial change features and raw features suggest that inter-pixel spatial
change within an image is the essential photometric or geometric visual cue that contributes to
the recognition of the objects in it. This can be observed from the results presented in Table 2.

The performance analysis using various features with and without mean normalization is
shown in Table 2. The importance of spatial change as features for face recognition is analysed
by comparing its performance with raw and edge features. For this comparison the standard
nearest neighbour (NN) classifier (Cover, 1968; Cover & Hart, 1967; Gates, 1972; Hart, 1968)
and the proposed classifier are used.
A raw face image in itself contains all the identity information required for face recognition.
However, occurrence of external occlusions, expressions, and illumination in face images can
result in loss of such identity information. Further, raw image intensities are highly sensi-
tive to variations in illumination, which make recognition on raw images a difficult task. The
comparison shown in Table 2 between spatial change features and raw image features clearly
shows that spatial change features outperform the raw features significantly. This superior
performance of spatial change features over raw features can be attributed to the facts that
spatial change features (1) show lower local variability in the face images under various con-
ditions such as expression, illumination, and occlusion, and (2) preserve the identity informa-
tion of a face.
Most edge detection techniques are inaccurate approximations of image gradients. Spatial
change detection techniques are different from standard edge detection techniques. Majority
of the edge detection techniques result in the removal of medium to small texture variations
and are distinct from spatial change detection techniques that preserve most of the texture
details. Such variations however contain useful information for identification and show in-
creased recognition performance. These observations are shown in Table 2. They further
confirm the usefulness of spatial change features in face recognition and show the relative
difference of spatial change features as opposed to the edge features.
Figure 3 is a graphical illustration of the overall impact of using spatial change features. The
plot shows a normalized histogram of similarity scores Sg resulting from inter-class and intra-
class comparisons. The 100 gallery images from the AR database described in the Section
3 form the 100 classes and are compared against 2500 test images in the AR database. The
inter-class plots are obtained by comparing each of these test images with the gallery images
belonging to a different class, whereas intra-class plots are obtained by the comparison of each
test image against a gallery image belonging to its own class. Further, a comparison is done
between spatial change features (Fig. 3a) and raw image features (Fig. 3b). The overlapping
region of the two distributions indicates the maximum overall probability of error when using
the proposed classifier. This region also shows the maximum overall false acceptance and false
rejection that can occur in the system. A smaller area of overlap implies better recognition
performance. Clearly, it can be seen that the use of feature vectors in Fig. 3a as opposed
to the raw-image features in Fig. 3b results in a smaller region of overlap and hence better
recognition performance.
An analysis is done to study the effect of using a spatial change filter window w of various
sizes [w is described in Section (2.1)]. It can be observed from Fig. 4 that with an increase
in resolution of the spatial change features (or the raw image) the recognition performance
shows increased stability against variation in spatial change filter window size. Further, it can
also be seen that higher resolution images show better recognition accuracies.

3.2 Normalization
The baseline algorithm contains two different types of normalization. They are: (1) global
mean normalization of the feature vectors and (2) similarity measure normalization employed
in the classifier. The relative importance of using these normalization methods is presented
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Fig. 2. The illustration shows the images of a person in the AR database (Martinez & Be-
navente, 1998; 2000) and its organization for the single training sample per person problem
depicted in this article. The session 1 image having a neutral facial expression is selected as the
gallery image. The remaining 25 images from session 1 and session 2 are used as test images.

binary decision using a threshold. The inherent ability of neurons to exhibit a logic high or
logic low state based on the ionic changes occurring due to the presumably threshold limited
variations in input connections inspires this idea of local decision. The resulting output for the
local similarity measure Sl(i, j) that is defined as to represent Sl(i, j) = 0 as least similar and
Sl(i, j) = 1 as most similar, when applied on a threshold θ to form the binary decision B(i, j)
takes the form B(i, j) = 1 if Sl(i, j) <= θ and B(i, j) = 0 if Sl(i, j) > θ. The values generated
by B represents the local decision space of the image comparison.

2.3 Global similarity and decision
Local decisions on similarity give the similarity match at pixel level, this however is only use-
ful if it can be used at a higher level of decision level abstraction. A reduction of the decision
space is necessary to obtain a global value of the image comparison between a test and the
gallery image. The simplest possible way to achieve this is by aggregating the local decisions
to form a global score which we refer to as global similarity score Sg. The comparison of a
test image with any arbitrary M number of gallery images results in M global similarity score
Sg. Including the N perturbations done on the test image, this number increases to M × N.
These generated similarity scores are then ranked and the top rank is selected to represent the
best match. This idea of ranking top rank is no different from threshold logic based decisions
at global level (wherein threshold can be thought of being applied between the top rank and
second most top rank). Overall, this process represents the global decision making process
through a simple approach of global similarity calculation and selection.

3. Experimental Analysis

Unless specified otherwise, all the experiments presented in this section are conducted using
the AR face database (See Fig. 2) with the following numerical values: 0.25 for θ, 160 × 120
pixels for the image size, and 7× 5 pixels for the kernel window size of the standard deviation
filter.

3.1 Effect of Spatial Intensity Change Used as Features
An analysis using spatial change features and raw features suggest that inter-pixel spatial
change within an image is the essential photometric or geometric visual cue that contributes to
the recognition of the objects in it. This can be observed from the results presented in Table 2.

The performance analysis using various features with and without mean normalization is
shown in Table 2. The importance of spatial change as features for face recognition is analysed
by comparing its performance with raw and edge features. For this comparison the standard
nearest neighbour (NN) classifier (Cover, 1968; Cover & Hart, 1967; Gates, 1972; Hart, 1968)
and the proposed classifier are used.
A raw face image in itself contains all the identity information required for face recognition.
However, occurrence of external occlusions, expressions, and illumination in face images can
result in loss of such identity information. Further, raw image intensities are highly sensi-
tive to variations in illumination, which make recognition on raw images a difficult task. The
comparison shown in Table 2 between spatial change features and raw image features clearly
shows that spatial change features outperform the raw features significantly. This superior
performance of spatial change features over raw features can be attributed to the facts that
spatial change features (1) show lower local variability in the face images under various con-
ditions such as expression, illumination, and occlusion, and (2) preserve the identity informa-
tion of a face.
Most edge detection techniques are inaccurate approximations of image gradients. Spatial
change detection techniques are different from standard edge detection techniques. Majority
of the edge detection techniques result in the removal of medium to small texture variations
and are distinct from spatial change detection techniques that preserve most of the texture
details. Such variations however contain useful information for identification and show in-
creased recognition performance. These observations are shown in Table 2. They further
confirm the usefulness of spatial change features in face recognition and show the relative
difference of spatial change features as opposed to the edge features.
Figure 3 is a graphical illustration of the overall impact of using spatial change features. The
plot shows a normalized histogram of similarity scores Sg resulting from inter-class and intra-
class comparisons. The 100 gallery images from the AR database described in the Section
3 form the 100 classes and are compared against 2500 test images in the AR database. The
inter-class plots are obtained by comparing each of these test images with the gallery images
belonging to a different class, whereas intra-class plots are obtained by the comparison of each
test image against a gallery image belonging to its own class. Further, a comparison is done
between spatial change features (Fig. 3a) and raw image features (Fig. 3b). The overlapping
region of the two distributions indicates the maximum overall probability of error when using
the proposed classifier. This region also shows the maximum overall false acceptance and false
rejection that can occur in the system. A smaller area of overlap implies better recognition
performance. Clearly, it can be seen that the use of feature vectors in Fig. 3a as opposed
to the raw-image features in Fig. 3b results in a smaller region of overlap and hence better
recognition performance.
An analysis is done to study the effect of using a spatial change filter window w of various
sizes [w is described in Section (2.1)]. It can be observed from Fig. 4 that with an increase
in resolution of the spatial change features (or the raw image) the recognition performance
shows increased stability against variation in spatial change filter window size. Further, it can
also be seen that higher resolution images show better recognition accuracies.

3.2 Normalization
The baseline algorithm contains two different types of normalization. They are: (1) global
mean normalization of the feature vectors and (2) similarity measure normalization employed
in the classifier. The relative importance of using these normalization methods is presented
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Recognition accuracy (%)a

Index Feature Type NN Classifier proposed Classifier

With global mean normalizationa

Raw features

r1 Raw 46.0 63.8

Spatial change features

s1 Local Standard Deviation 67.6 84.9b

s2 Local Range 68.6 84.4

Edge

e1 Sobel edges 69.0 80.3

e2 Prewitt edges 69.2 80.4

Without global mean normalization

Raw features

r2 Raw 38.5 50.8

Spatial change features

s1 Local Standard Deviation 59.3 84.7

s2 Local Range 63.0 83.4

Edge

e1 Sobel edges 50.4 80.8

e2 Prewitt edges 49.4 80.8
a Global mean normalization is achieved using Eq. (3) and Eq. (4). While for raw features

normalization is done by replacing σ(i, j) with I(i, j) in Eq. (3) and Eq. (4).
b proposed baseline algorithm with global mean normalization.

Table 2. Effect of global mean normalization and feature type

in Table 3. It is observed that normalization of the distance measures results in higher recog-
nition accuracies. It can also be observed that global mean normalization shows improved
recognition accuracy only when similarity measure normalization is used, which also shows
that global mean normalization in isolation does not improve the recognition performance. In
the following sections the effect of these two normalization is further studied and alternative
methods are attempted. This is done to provide a better technical insight into the normal-
ization methods. This also helps in understanding the unique features that contribute to the
overall recognition performance.

3.3 Effect of Mean Normalization and Study of Alternative Normalization
From the experimental results obtained in Table 3, it is found that the normalization of spatial
change features by a global mean is not robust against the recognition performance. Clearly,
the feature normalization performed by Eq. (3) does not improve the performance consider-
ably, which leads us to investigate alternative local mean normalization techniques. Equation
(4) is now replaced by the following equation to calculate the local mean of spatial change

Fig. 3. Graphical illustrations showing the overall influence of using spatial change features.
The graphs show a normalized frequency distribution of similarity scores Sg when using (a)
spatial intensity change features (b) raw image features.

features:

σ(i, j) =
1

kl

a1

∑
s=−a1

b1

∑
t=−b1

σ(i + s, j + t) (7)

where the moving window of pixels is of size k × l pixels, a1 = (k − 1)/2 and b1 = (l − 1)/2.
Local mean normalization is applied on spatial change features by using Eq. (7) followed by
Eq. (3).
An investigation on the performance of using local mean normalization with local mean win-
dows of different sizes is done. Figure 5 shows the effect of variation in local mean window
on the recognition performance when using spatial change features and raw features. Further,
the same graph shows a comparison of its performance with global mean normalization. It
is observed that recognition performance increases when features are normalized using the
local mean normalization described by Eq. (7) and Eq. (3). The improvement in recognition
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Without global mean normalization

Raw features
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s1 Local Standard Deviation 59.3 84.7

s2 Local Range 63.0 83.4
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e1 Sobel edges 50.4 80.8

e2 Prewitt edges 49.4 80.8
a Global mean normalization is achieved using Eq. (3) and Eq. (4). While for raw features

normalization is done by replacing σ(i, j) with I(i, j) in Eq. (3) and Eq. (4).
b proposed baseline algorithm with global mean normalization.

Table 2. Effect of global mean normalization and feature type

in Table 3. It is observed that normalization of the distance measures results in higher recog-
nition accuracies. It can also be observed that global mean normalization shows improved
recognition accuracy only when similarity measure normalization is used, which also shows
that global mean normalization in isolation does not improve the recognition performance. In
the following sections the effect of these two normalization is further studied and alternative
methods are attempted. This is done to provide a better technical insight into the normal-
ization methods. This also helps in understanding the unique features that contribute to the
overall recognition performance.

3.3 Effect of Mean Normalization and Study of Alternative Normalization
From the experimental results obtained in Table 3, it is found that the normalization of spatial
change features by a global mean is not robust against the recognition performance. Clearly,
the feature normalization performed by Eq. (3) does not improve the performance consider-
ably, which leads us to investigate alternative local mean normalization techniques. Equation
(4) is now replaced by the following equation to calculate the local mean of spatial change

Fig. 3. Graphical illustrations showing the overall influence of using spatial change features.
The graphs show a normalized frequency distribution of similarity scores Sg when using (a)
spatial intensity change features (b) raw image features.

features:

σ(i, j) =
1

kl

a1

∑
s=−a1

b1

∑
t=−b1

σ(i + s, j + t) (7)

where the moving window of pixels is of size k × l pixels, a1 = (k − 1)/2 and b1 = (l − 1)/2.
Local mean normalization is applied on spatial change features by using Eq. (7) followed by
Eq. (3).
An investigation on the performance of using local mean normalization with local mean win-
dows of different sizes is done. Figure 5 shows the effect of variation in local mean window
on the recognition performance when using spatial change features and raw features. Further,
the same graph shows a comparison of its performance with global mean normalization. It
is observed that recognition performance increases when features are normalized using the
local mean normalization described by Eq. (7) and Eq. (3). The improvement in recognition
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Fig. 4. A graphical illustration showing the recognition performance of the proposed algo-
rithm under the variation of spatial change features filter window size at various image reso-
lutions.

accuracy while using local mean normalization compared to global mean normalization is rel-
atively large in the case of the raw features while having very little impact on spatial change
features. Further, in comparison with the raw features, the spatial change features is stable
for a broader range of local mean normalization filter window size. The algorithm using spa-
tial change features provides robust performance within the local mean normalization filter
window range of 80 × 60 pixels to 40 × 30 pixels as shown in Fig. 4.
Table 4 shows the effect of using local mean normalization on spatial change features. Clearly,
in comparison with Table 3, the local mean normalization on spatial change features shows
an increase in recognition performance when using the proposed classifier. However, the
recognition performance shows no improvement when using an NN classifier. Further, Fig.
5 shows that local mean normalization improves the overall recognition performance and
provides a wider stable range of threshold than when using global mean normalization [see
Fig. 6 and Fig. 7]. It can be observed that in comparison with global mean normalization
on similarity measure, the local mean normalization on similarity measure shows increased
stability in recognition accuracy with respect to a varying threshold. All these effects make
local mean normalization the preferred choice for use in a feature normalization process.

3.3.1 Effect of Similarity Measure Normalization and Study of Alternative Normalization
Normalization of the similarity measures also helps in increasing the recognition accuracy
of the proposed algorithm and enables a stable threshold. This is evident from: (1) Table 3
and Table 4, showing the superiority of similarity measure normalization over mean normal-
ization techniques and (2) Fig. 6 and Fig. 7 showing the relative importance of similarity
measure normalization in stabilizing the threshold range and increasing the recognition per-
formance. Further, the improvement of recognition performance provided by normalizing the
similarity measure can be observed from Table 5. It can be observed that all of the normalized
similarity measures outperform the corresponding direct similarity measures in the recogni-

Normalizationa Recognition accuracy (%)

Condition Features Similarity measure NN Classifier proposed Classifierb

(a) Yes Yes 67.6 84.9

(b) Yes No 67.6 76.0

(c) No Yes 59.3 84.7

(d) No No 59.3 78.4
a Feature extraction filter window used in Eq. (2) has a size of 7 × 5 pixels for a raw image I

with a size of 160 × 120 pixels. Normalized similarity measure described using Eq. (6) is used
for these simulations.

b The results are shown for the best accuracies by optimizing the threshold θ. The optimized
values of the threshold for the condition indexes (a), (b), (c) and (d) are 0.5, 0.25, 0.35 and 0.85
respectively.

Table 3. Effect of Global Mean Normalization of Features and Similarity Measure Normaliza-
tion

Normalizationa Recognition accuracy (%)

Condition Features Similarity measure NN Classifier proposed Classifierb

(a) Yes Yes 62.0 86.2

(b) Yes No 62.0 81.9

(c) No Yes 59.3 84.7

(d) No No 59.3 78.4
a Feature extraction filter window used in Eq. (2) has a size of 7 × 5 pixels for a raw image I

with a size of 160 × 120 pixels. The size of local mean normalization window w1 used in Eq.
(7) is set to 80 × 60 pixels. Normalized similarity measure described using Eq. (6) is used for
these simulations.

b The results are shown for the best accuracies by optimizing the threshold θ. The optimized
values of the threshold for the normalization conditions (a),(b),(c) and (d) are 0.5, 0.25, 0.35
and 0.85 respectively.

Table 4. Effect of Local Mean Normalization and Distance Normalization

tion accuracy. Fig. 8 shows the influence of variable threshold on the normalized and direct
similarity measures. Clearly, for every threshold the normalized similarity measures show
better recognition performance than those without similarity measure normalization. These
results suggest that normalization of similarity measures is an important factor that helps in
improving the recognition performance of the proposed algorithm.

3.3.2 Effect of Local Binary Decisions and Threshold
Binary decisions are made by transforming the normalized similarity measure to a binary
decision vector by using a predefined global threshold. A threshold θ is used to set similar
features to a value of one, whereas dissimilar features are set to a value of zero. The proposed
classifier applies the binary decisions to individual pixels, which means that it can utilize the
maximum available spatial change features in the image.
The importance of local binary decisions in the proposed classifier is shown in Fig. 9. The
comparison of recognition performance with thresholding and without thresholding shows
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Fig. 4. A graphical illustration showing the recognition performance of the proposed algo-
rithm under the variation of spatial change features filter window size at various image reso-
lutions.

accuracy while using local mean normalization compared to global mean normalization is rel-
atively large in the case of the raw features while having very little impact on spatial change
features. Further, in comparison with the raw features, the spatial change features is stable
for a broader range of local mean normalization filter window size. The algorithm using spa-
tial change features provides robust performance within the local mean normalization filter
window range of 80 × 60 pixels to 40 × 30 pixels as shown in Fig. 4.
Table 4 shows the effect of using local mean normalization on spatial change features. Clearly,
in comparison with Table 3, the local mean normalization on spatial change features shows
an increase in recognition performance when using the proposed classifier. However, the
recognition performance shows no improvement when using an NN classifier. Further, Fig.
5 shows that local mean normalization improves the overall recognition performance and
provides a wider stable range of threshold than when using global mean normalization [see
Fig. 6 and Fig. 7]. It can be observed that in comparison with global mean normalization
on similarity measure, the local mean normalization on similarity measure shows increased
stability in recognition accuracy with respect to a varying threshold. All these effects make
local mean normalization the preferred choice for use in a feature normalization process.

3.3.1 Effect of Similarity Measure Normalization and Study of Alternative Normalization
Normalization of the similarity measures also helps in increasing the recognition accuracy
of the proposed algorithm and enables a stable threshold. This is evident from: (1) Table 3
and Table 4, showing the superiority of similarity measure normalization over mean normal-
ization techniques and (2) Fig. 6 and Fig. 7 showing the relative importance of similarity
measure normalization in stabilizing the threshold range and increasing the recognition per-
formance. Further, the improvement of recognition performance provided by normalizing the
similarity measure can be observed from Table 5. It can be observed that all of the normalized
similarity measures outperform the corresponding direct similarity measures in the recogni-

Normalizationa Recognition accuracy (%)

Condition Features Similarity measure NN Classifier proposed Classifierb

(a) Yes Yes 67.6 84.9

(b) Yes No 67.6 76.0

(c) No Yes 59.3 84.7

(d) No No 59.3 78.4
a Feature extraction filter window used in Eq. (2) has a size of 7 × 5 pixels for a raw image I

with a size of 160 × 120 pixels. Normalized similarity measure described using Eq. (6) is used
for these simulations.

b The results are shown for the best accuracies by optimizing the threshold θ. The optimized
values of the threshold for the condition indexes (a), (b), (c) and (d) are 0.5, 0.25, 0.35 and 0.85
respectively.

Table 3. Effect of Global Mean Normalization of Features and Similarity Measure Normaliza-
tion

Normalizationa Recognition accuracy (%)

Condition Features Similarity measure NN Classifier proposed Classifierb

(a) Yes Yes 62.0 86.2

(b) Yes No 62.0 81.9

(c) No Yes 59.3 84.7

(d) No No 59.3 78.4
a Feature extraction filter window used in Eq. (2) has a size of 7 × 5 pixels for a raw image I

with a size of 160 × 120 pixels. The size of local mean normalization window w1 used in Eq.
(7) is set to 80 × 60 pixels. Normalized similarity measure described using Eq. (6) is used for
these simulations.

b The results are shown for the best accuracies by optimizing the threshold θ. The optimized
values of the threshold for the normalization conditions (a),(b),(c) and (d) are 0.5, 0.25, 0.35
and 0.85 respectively.

Table 4. Effect of Local Mean Normalization and Distance Normalization

tion accuracy. Fig. 8 shows the influence of variable threshold on the normalized and direct
similarity measures. Clearly, for every threshold the normalized similarity measures show
better recognition performance than those without similarity measure normalization. These
results suggest that normalization of similarity measures is an important factor that helps in
improving the recognition performance of the proposed algorithm.

3.3.2 Effect of Local Binary Decisions and Threshold
Binary decisions are made by transforming the normalized similarity measure to a binary
decision vector by using a predefined global threshold. A threshold θ is used to set similar
features to a value of one, whereas dissimilar features are set to a value of zero. The proposed
classifier applies the binary decisions to individual pixels, which means that it can utilize the
maximum available spatial change features in the image.
The importance of local binary decisions in the proposed classifier is shown in Fig. 9. The
comparison of recognition performance with thresholding and without thresholding shows
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Fig. 5. Graphical illustration showing improved performance of local mean normalization
compared to global mean normalization. The graph show the following conditions: (a) local
mean normalization applied to raw features, (b) local mean normalization applied to spatial
change features, (c) global mean normalization applied to raw features, and (d) global mean
normalization applied to spatial change features. The image size is 160 × 120 pixels; w is of
size 7 × 5 pixels; the local mean filter window size is varied from 10 × 7 pixels to 160 × 120
pixels; for each local mean filter window size the best recognition accuracy is selected by
optimizing the threshold. Normalized similarity measure given by Eq. (6) is used for these
simulations.

a very large change from 86.2% to 13.8% respectively. This shows the relative importance of
local binary decisions, confirming it as the essential component of the algorithm. The local
binary decisions result in the removal of noisy information associated with the natural vari-
ability. Although, it can be argued that such thresholding results in loss of information, but
we find that for natural recognition problems it is the relative number of pixel information
in intra-class and inter-class features that would effect the overall performance, and not the
individual loss of information due threshold. For example, occlusions and facial expressions
remove identity information from the face and can also add information that may seem to
be relevant (false similarity) to a non-binary classifier such as the NN classifier. Without the
binary decisions, the noisy information gets accumulated when forming a global similarity
score (note that similarity scores are formed by adding the values of the elements in the sim-
ilarity measure vector). Since the global similarity score has significant contribution of such
noisy information (or false similarity), the result is a reduced recognition performance. As
opposed to this, every feature is used for making local decisions in the case of the proposed
classifier. In this case, the global similarity score does not accumulate the effect of less similar
features, resulting in a better recognition performance.
Figure 10 shows the performance of the proposed algorithm with a change in threshold when
using various normalized similarity measures. We can observe that the recognition accuracy
is stable over a broad range of threshold values irrespective of the normalized similarity mea-
sures employed. The stability of the threshold and increased recognition performance can be
attributed to the use of normalized similarity measures [see Fig. 8]. Further, the stability of
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Fig. 6. Graphical illustration showing the effect of local mean normalization and similarity
measure normalization on the performance of the proposed algorithm. The graph show the
following conditions: (a) local mean normalization applied to spatial change features and
with normalization similarity measure for comparison, (b) local mean normalization applied
to spatial change features and with similarity measure without normalization for comparison,
(c) spatial change features without normalization and with normalized similarity measure
comparison, and (d) spatial change features without normalization and with similarity mea-
sure without normalization for comparison. Normalization of features is performed using
global mean normalization of spatial change features using Eq. (4) and Eq. (3). This feature
normalization is tried in combination with normalized similarity measure and the perfor-
mances are compared.

the threshold enables the use of any of the possible similarity measures to form the proposed
classifier. A stable threshold in turn implies that the recognition performance of the algo-
rithm is least sensitive to threshold variation. Further, this allows for the use of a single global
threshold across different databases containing images of various types of natural variability.

3.3.3 Effect of Resolution
The recognition performance with respect to variation in resolution can be studied by (1) vary-
ing the raw image resolution and (2) increasing the decision block size. In the first case, reduc-
ing the image resolution from a higher resolution will result in a smaller number of normal-
ized spatial change features. The reduction of a higher resolution image to a lower resolution
image can be achieved by averaging a block of pixels to form a single pixel. This averaging
results in a loss of features and hence it is natural to expect that recognition performance will
drop with lower resolution images which tends to have fewer features. We can observe from
Fig. 11 that with lower resolution images the recognition performance drops considerably
(this situation is labeled as average before).
In the second case, the resolution of spatial change features are kept to a maximum of
160 × 120 pixels, followed by the calculation of δ. The reduction in resolution is achieved
by averaging on a block of elements in δ. Block by block reduction across the entire δ results
in a lower resolution of δ. This situation is labeled as average after in Fig. 11. We can observe
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Fig. 5. Graphical illustration showing improved performance of local mean normalization
compared to global mean normalization. The graph show the following conditions: (a) local
mean normalization applied to raw features, (b) local mean normalization applied to spatial
change features, (c) global mean normalization applied to raw features, and (d) global mean
normalization applied to spatial change features. The image size is 160 × 120 pixels; w is of
size 7 × 5 pixels; the local mean filter window size is varied from 10 × 7 pixels to 160 × 120
pixels; for each local mean filter window size the best recognition accuracy is selected by
optimizing the threshold. Normalized similarity measure given by Eq. (6) is used for these
simulations.

a very large change from 86.2% to 13.8% respectively. This shows the relative importance of
local binary decisions, confirming it as the essential component of the algorithm. The local
binary decisions result in the removal of noisy information associated with the natural vari-
ability. Although, it can be argued that such thresholding results in loss of information, but
we find that for natural recognition problems it is the relative number of pixel information
in intra-class and inter-class features that would effect the overall performance, and not the
individual loss of information due threshold. For example, occlusions and facial expressions
remove identity information from the face and can also add information that may seem to
be relevant (false similarity) to a non-binary classifier such as the NN classifier. Without the
binary decisions, the noisy information gets accumulated when forming a global similarity
score (note that similarity scores are formed by adding the values of the elements in the sim-
ilarity measure vector). Since the global similarity score has significant contribution of such
noisy information (or false similarity), the result is a reduced recognition performance. As
opposed to this, every feature is used for making local decisions in the case of the proposed
classifier. In this case, the global similarity score does not accumulate the effect of less similar
features, resulting in a better recognition performance.
Figure 10 shows the performance of the proposed algorithm with a change in threshold when
using various normalized similarity measures. We can observe that the recognition accuracy
is stable over a broad range of threshold values irrespective of the normalized similarity mea-
sures employed. The stability of the threshold and increased recognition performance can be
attributed to the use of normalized similarity measures [see Fig. 8]. Further, the stability of
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Fig. 6. Graphical illustration showing the effect of local mean normalization and similarity
measure normalization on the performance of the proposed algorithm. The graph show the
following conditions: (a) local mean normalization applied to spatial change features and
with normalization similarity measure for comparison, (b) local mean normalization applied
to spatial change features and with similarity measure without normalization for comparison,
(c) spatial change features without normalization and with normalized similarity measure
comparison, and (d) spatial change features without normalization and with similarity mea-
sure without normalization for comparison. Normalization of features is performed using
global mean normalization of spatial change features using Eq. (4) and Eq. (3). This feature
normalization is tried in combination with normalized similarity measure and the perfor-
mances are compared.

the threshold enables the use of any of the possible similarity measures to form the proposed
classifier. A stable threshold in turn implies that the recognition performance of the algo-
rithm is least sensitive to threshold variation. Further, this allows for the use of a single global
threshold across different databases containing images of various types of natural variability.

3.3.3 Effect of Resolution
The recognition performance with respect to variation in resolution can be studied by (1) vary-
ing the raw image resolution and (2) increasing the decision block size. In the first case, reduc-
ing the image resolution from a higher resolution will result in a smaller number of normal-
ized spatial change features. The reduction of a higher resolution image to a lower resolution
image can be achieved by averaging a block of pixels to form a single pixel. This averaging
results in a loss of features and hence it is natural to expect that recognition performance will
drop with lower resolution images which tends to have fewer features. We can observe from
Fig. 11 that with lower resolution images the recognition performance drops considerably
(this situation is labeled as average before).
In the second case, the resolution of spatial change features are kept to a maximum of
160 × 120 pixels, followed by the calculation of δ. The reduction in resolution is achieved
by averaging on a block of elements in δ. Block by block reduction across the entire δ results
in a lower resolution of δ. This situation is labeled as average after in Fig. 11. We can observe
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Fig. 7. Graphical illustration showing the effect of global mean normalization and similarity
measure normalization on the performance of the proposed algorithm. The graph show the
following conditions: (a) global mean normalization applied to spatial change features and
with normalization similarity measure for comparison, (b) global mean normalization ap-
plied to spatial change features and with similarity measure without normalization for com-
parison, (c) spatial change features without normalization and with normalized similarity
measure comparison, and (d) spatial change features without normalization and with simi-
larity measure without normalization for comparison.Normalization of features is performed
using global mean normalization of spatial change features using Eq. (4) and Eq. (3). This
feature normalization is tried in combination with normalized similarity measure and the
performances are compared.

from Fig. 11 that in the case of average after, the reduction in resolution results in a slight re-
duction of the recognition performance, which however, again shows that a larger number of
features helps to increase the recognition performance. Further to this, Figure 11 also shows
the importance of having a larger number of features irrespective of the decision block size.
A larger number of features and a smaller decision block size results in increased recognition
performance. Further, as observed from Fig. 4, an increased resolution of features extends the
stable range of spatial change filter window size.

3.3.4 Effect of Color
Color images are formed of three channels, namely, red, green, and blue. Table 6 shows that
the use of color images also helps to improve the recognition performance. Similarity scores
for a comparison between a color test image and a color gallery image can be obtained by
one-to-one comparison of red, green, and blue channels of one image to the other. To ob-
tain an overall similarity score, an additive combination of the independent similarity scores
observed across the red, green, and blue channels are taken. Table 6 lists some of the combi-
nations that are used in our analysis. Table 6 further illustrates that the use of independent
channels alone are not sufficient for robust performance. It can be also observed that utilizing
the additive combination of similarity scores obtained from the channels of color images pro-
vides a higher recognition accuracy than when using gray images. This can be seen from the

Fig. 8. Graphical illustration showing a comparison of normalized similarity measure with a
direct similarity measure. The image size is 160 × 120 pixels; the size of w is 7 × 5 pixels; the
size of local mean filter window w1 is set to 80 × 60 pixels.

recognition performance of the proposed algorithm when using the combination of the color
channels (see c8 listed in Table 6). Although several other combinations can also be tried,
analysis is limited to the extend to form a simple model for color, which is achieved through
c8 listed in Table 6.

3.3.5 Effect of Localization
Automatic face detection and alignment is a difficult problem when natural variability in im-
ages is high. In any method that is based on pixel-by-pixel comparisons, it is essential that the
features of the compared images are well aligned. Irrespective of the face detection method
employed, natural variability can cause pixel-level misalignments. To compensate for the lo-
calization errors that occur after an automatic or manual alignment, we apply either test or
gallery image shifts with respect to a set of registration points in the feature vectors. For
example, the localization of face images can be achieved by detecting the location of eye co-
ordinates. An error in localization means the eye coordinates are shifted. A scale error means
that the eye coordinates are shifted towards each other or away from each other. A rotation
error causes shifts of the two eye coordinates in opposite vertical directions. We pertubate
the reference eye coordinates by applying such shifts and re-localize the face images using the
shifted eye coordinates.
Using the above mentioned idea, two techniques that can be employed to reduce localization
errors in the proposed algorithm are (a) application of modifications such as shift, rotation,
and scaling on the test image, followed by comparison with gallery, and (b) perturbation of
the eye-coordinates of the gallery images to form several sets of synthetic gallery images.
In both cases, each comparison of a test image with a gallery image, results in a similarity
score S∗

g for the baseline algorithm. The final similarity score Sg for the test image with a
compared gallery image is found by selecting the maximum S∗

g . Table 7 shows the recognition
performance using both techniques using color and gray scale images. For these simulations
the values of number of perturbations is set to 15, composed of 5 horizontal, 5 vertical and 5
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Fig. 7. Graphical illustration showing the effect of global mean normalization and similarity
measure normalization on the performance of the proposed algorithm. The graph show the
following conditions: (a) global mean normalization applied to spatial change features and
with normalization similarity measure for comparison, (b) global mean normalization ap-
plied to spatial change features and with similarity measure without normalization for com-
parison, (c) spatial change features without normalization and with normalized similarity
measure comparison, and (d) spatial change features without normalization and with simi-
larity measure without normalization for comparison.Normalization of features is performed
using global mean normalization of spatial change features using Eq. (4) and Eq. (3). This
feature normalization is tried in combination with normalized similarity measure and the
performances are compared.

from Fig. 11 that in the case of average after, the reduction in resolution results in a slight re-
duction of the recognition performance, which however, again shows that a larger number of
features helps to increase the recognition performance. Further to this, Figure 11 also shows
the importance of having a larger number of features irrespective of the decision block size.
A larger number of features and a smaller decision block size results in increased recognition
performance. Further, as observed from Fig. 4, an increased resolution of features extends the
stable range of spatial change filter window size.

3.3.4 Effect of Color
Color images are formed of three channels, namely, red, green, and blue. Table 6 shows that
the use of color images also helps to improve the recognition performance. Similarity scores
for a comparison between a color test image and a color gallery image can be obtained by
one-to-one comparison of red, green, and blue channels of one image to the other. To ob-
tain an overall similarity score, an additive combination of the independent similarity scores
observed across the red, green, and blue channels are taken. Table 6 lists some of the combi-
nations that are used in our analysis. Table 6 further illustrates that the use of independent
channels alone are not sufficient for robust performance. It can be also observed that utilizing
the additive combination of similarity scores obtained from the channels of color images pro-
vides a higher recognition accuracy than when using gray images. This can be seen from the

Fig. 8. Graphical illustration showing a comparison of normalized similarity measure with a
direct similarity measure. The image size is 160 × 120 pixels; the size of w is 7 × 5 pixels; the
size of local mean filter window w1 is set to 80 × 60 pixels.

recognition performance of the proposed algorithm when using the combination of the color
channels (see c8 listed in Table 6). Although several other combinations can also be tried,
analysis is limited to the extend to form a simple model for color, which is achieved through
c8 listed in Table 6.

3.3.5 Effect of Localization
Automatic face detection and alignment is a difficult problem when natural variability in im-
ages is high. In any method that is based on pixel-by-pixel comparisons, it is essential that the
features of the compared images are well aligned. Irrespective of the face detection method
employed, natural variability can cause pixel-level misalignments. To compensate for the lo-
calization errors that occur after an automatic or manual alignment, we apply either test or
gallery image shifts with respect to a set of registration points in the feature vectors. For
example, the localization of face images can be achieved by detecting the location of eye co-
ordinates. An error in localization means the eye coordinates are shifted. A scale error means
that the eye coordinates are shifted towards each other or away from each other. A rotation
error causes shifts of the two eye coordinates in opposite vertical directions. We pertubate
the reference eye coordinates by applying such shifts and re-localize the face images using the
shifted eye coordinates.
Using the above mentioned idea, two techniques that can be employed to reduce localization
errors in the proposed algorithm are (a) application of modifications such as shift, rotation,
and scaling on the test image, followed by comparison with gallery, and (b) perturbation of
the eye-coordinates of the gallery images to form several sets of synthetic gallery images.
In both cases, each comparison of a test image with a gallery image, results in a similarity
score S∗

g for the baseline algorithm. The final similarity score Sg for the test image with a
compared gallery image is found by selecting the maximum S∗

g . Table 7 shows the recognition
performance using both techniques using color and gray scale images. For these simulations
the values of number of perturbations is set to 15, composed of 5 horizontal, 5 vertical and 5
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Index Similarity measurea Recognition accuracy (%)b

Normalized

n1
min[xg,xt]
max[xg,xt]

85.9

n2
|xg−xt|

max(xg,xt)
86.1

n3
|xg−xt|

min(xg,xt)
86.2

n4
|xg−xt|

mean(xg,xt)
86.1

n5 e
−|xg−xt |

max(xg,xt ) 86.0

n6 e
−|xg−xt |
min(xg,xt ) 86.1

n7 e
−|xg−xt |

mean(xg,xt ) 86.1

Direct

d1
∣

∣xg − xt
∣

∣ 81.9

d2 e−|xg−xt| 81.6
a Feature extraction filter window used in Eq. (2) has a size of

7 × 5 pixels for a raw image I with a size of 160 × 120 pixels.
The size of local mean normalization window w1 used in Eq.
(7) is set to 80 × 60 pixels.

b θ is optimised for highest accuracies on each similarity measure
under consideration.

Table 5. Direct and Normalized Similarity Measures

diagonal perturbations. This performance difference is due to the fact that modification of test
images is performed after cropping and results in loss of useful spatial information during
comparison. This is different from the perturbation of the gallery images that preserves all the
information from the original image.

4. Experimental Details

The algorithm is applied to AR (Martinez & Benavente, 1998), ORL(Samaria, 1994), YALE
(Belhumeur et al., 1997), CALTECH (Lab, 1999), and FERET (Phillips et al., 2000) standard
face image databases. At any specific time, illumination, occlusions, face expressions, and
time gap between the gallery and test images form variabilities that make the face recognition
difficult. A difficult and practically important face-recognition task is created by limiting the
gallery to a single image per person. Unless otherwise specified, the results presented in this
chapter are obtained by this kind of open-set testing.
For each image in the AR, YALE, and CALTECH databases, the eye coordinates of the face im-
ages are registered manually. For FERET database, the eye coordinates provided in the FERET
distribution DVD is used for face alignment. The face alignment is done by rotating, shifting,
and scaling the faces so that for all the faces the distance between the eyes remains constant
and in fixed spatial coordinates. All the images were aligned and cropped to image size of

Fig. 9. Graphical illustration showing the effect of local binary decisions. “Without threshold-
ing" is the situation when no threshold is used, which means that no local binary decisions
being made. “Zero thresholding" is the situation when the threshold value is set to zero.

160×120.1 However, as ORL images are approximately localized images, manual alignment
are not done on it and are resized to 40 × 32 pixels.
Since the eye coordinates of the faces in AR, Yale, and Caltech databases are detected manually
they show shift errors after processing. The eye coordinates of the faces in the gray FERET
database are provided within the FERET distribution DVD, and when used, show rotation and
scaling errors. Perturbation to eye coordinates are done to compensate for these localization
errors. These modifications are in the range of 1 to 6 pixels.
Unless otherwise specified, the following global settings are used for the set of proposed pa-
rameters. To calculate spatial intensity change, the local standard deviation filter [see Eq. (1)]
is used with optimal window size of 7 × 5 and 3 × 3 pixels when image size is 160 × 120 and
40 × 30 pixels respectively. The min-max similarity ratio shown in Table 1 is used. Finally,
the value of the global threshold θ is set to 0.7 which is selected empirically. The number of
perturbation used for compensating localization errors in every case is set to a value of 15.

5. Results and Discussion

The overall recognition accuracy for the 2500 gray scale test images and the gallery size of
100 in the AR database is 91%. This very high accuracy level is possible due to the consistent
performance over the large number of variable conditions that are individually listed in Table
8. Similar accuracy levels are obtained for YALE, ORL and CALTECH databases as shown in
Table 9. As expected, increased variations correspond to decreased recognition accuracies in
all databases. The demonstrated robustness of the algorithm is consistent with the fact that the
baseline algorithm does not require any prior knowledge of the specific condition that causes
the dominant variations. To substantiate the claim of robustness, it is important to report the
performance for a large gallery set. In practice, an increased gallery size decreases the overall

1 This is done using the Unix script provided for face normalization in the CSU Face Identification Eval-
uation System, Version 5.0 (Beveridge et al. (2003)).
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Table 5. Direct and Normalized Similarity Measures

diagonal perturbations. This performance difference is due to the fact that modification of test
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comparison. This is different from the perturbation of the gallery images that preserves all the
information from the original image.
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The algorithm is applied to AR (Martinez & Benavente, 1998), ORL(Samaria, 1994), YALE
(Belhumeur et al., 1997), CALTECH (Lab, 1999), and FERET (Phillips et al., 2000) standard
face image databases. At any specific time, illumination, occlusions, face expressions, and
time gap between the gallery and test images form variabilities that make the face recognition
difficult. A difficult and practically important face-recognition task is created by limiting the
gallery to a single image per person. Unless otherwise specified, the results presented in this
chapter are obtained by this kind of open-set testing.
For each image in the AR, YALE, and CALTECH databases, the eye coordinates of the face im-
ages are registered manually. For FERET database, the eye coordinates provided in the FERET
distribution DVD is used for face alignment. The face alignment is done by rotating, shifting,
and scaling the faces so that for all the faces the distance between the eyes remains constant
and in fixed spatial coordinates. All the images were aligned and cropped to image size of
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160×120.1 However, as ORL images are approximately localized images, manual alignment
are not done on it and are resized to 40 × 32 pixels.
Since the eye coordinates of the faces in AR, Yale, and Caltech databases are detected manually
they show shift errors after processing. The eye coordinates of the faces in the gray FERET
database are provided within the FERET distribution DVD, and when used, show rotation and
scaling errors. Perturbation to eye coordinates are done to compensate for these localization
errors. These modifications are in the range of 1 to 6 pixels.
Unless otherwise specified, the following global settings are used for the set of proposed pa-
rameters. To calculate spatial intensity change, the local standard deviation filter [see Eq. (1)]
is used with optimal window size of 7 × 5 and 3 × 3 pixels when image size is 160 × 120 and
40 × 30 pixels respectively. The min-max similarity ratio shown in Table 1 is used. Finally,
the value of the global threshold θ is set to 0.7 which is selected empirically. The number of
perturbation used for compensating localization errors in every case is set to a value of 15.

5. Results and Discussion

The overall recognition accuracy for the 2500 gray scale test images and the gallery size of
100 in the AR database is 91%. This very high accuracy level is possible due to the consistent
performance over the large number of variable conditions that are individually listed in Table
8. Similar accuracy levels are obtained for YALE, ORL and CALTECH databases as shown in
Table 9. As expected, increased variations correspond to decreased recognition accuracies in
all databases. The demonstrated robustness of the algorithm is consistent with the fact that the
baseline algorithm does not require any prior knowledge of the specific condition that causes
the dominant variations. To substantiate the claim of robustness, it is important to report the
performance for a large gallery set. In practice, an increased gallery size decreases the overall

1 This is done using the Unix script provided for face normalization in the CSU Face Identification Eval-
uation System, Version 5.0 (Beveridge et al. (2003)).
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Fig. 10. Graphical illustration showing the stability of the threshold against various normal-
ized similarity measures. The image size is 160 × 120 pixels, the size of the standard deviation
filter is 7 × 5 pixels, and the value of the global threshold θ is varied from 0.1 to 0.9.

Fig. 11. Graphical illustration showing the recognition performance of the proposed algo-
rithm with variation in resolution of the normalized similarity measure δ under comparison.
Averaging is performed to reduce the resolution of δ. Average before shows the case when
raw images at various resolutions are used, whereas average after shows the case when spatial
change features at various resolutions are formed from a 160 × 120 pixels raw image.

Color Recognition accuracy (%)

Indexa combination AR (b)-(z) AR (b)-(m) AR (n)-(z)

c1 Gray 86.16 94.75 78.23

c2 Red 68.86 76.29 62.00

c3 Green 86.00 95.00 77.69

c4 Blue 87.64 96.33 79.61

c5 Red+Green 81.55 90.16 73.61

c6 Blue+Green 88.96 97.00 81.54

c7 Red+Blue 85.84 95.00 77.38

c8 max(c5,c6,c7) 89.60 97.00 82.76
a Similarity score calculated from (c1) gray images, (c2) red channel

alone, (c3) green channel alone, (c4) blue channel alone, (c5) combina-
tion of scores from red and green channels, (c6) combination of scores
from blue and green channels, (c7) combination of scores from red and
blue channels, and (c8) the maximum of scores obtained as a result of
operations c5 to c7

Table 6. Effect of color on single training samples per person scheme

Recognition Accuracy (%)

Color image Perturbation

No Yes

Test image Gallery image

Yes 89.6 94.0 94.8

No 86.2 91.0 92.0

Table 7. Effect of Localization Error Compensation

recognition accuracy of any face recognition system. The results of testing with the FERET
database, also shown in Table 9, demonstrate that the robustness is maintained under this
condition.
Using the AR database, the effects of block size used to make the local binary decisions is
analyzed and the results are shown in Fig. 12. The maximum recognition accuracy is achieved
when the local binary decisions are made at the level of individual pixels (block size of one
pixel) with a steep drop in the recognition accuracy as the block size is increased. This directly
implies that larger image resolutions could further improve the recognition accuracy.
The impact of different implementations of the similarity measure is also analyzed. Using the
implementations listed in Table 1, the change observed in the recognition accuracy is within
1%. Furthermore, the global threshold θ for making the local decisions is not a sensitive pa-
rameter. It is found that the recognition accuracy remains within 1% across various databases
for a range of threshold values from 0.6 to 0.8. This confirms the general applicability of lo-
calised decisions on similarity as a concept.
The impact of the spatial change as features in the baseline algorithm are studied by using raw
images as the feature vectors instead of spatial change feature vectors. The recognition accu-
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Color image Perturbation

No Yes

Test image Gallery image

Yes 89.6 94.0 94.8

No 86.2 91.0 92.0

Table 7. Effect of Localization Error Compensation

recognition accuracy of any face recognition system. The results of testing with the FERET
database, also shown in Table 9, demonstrate that the robustness is maintained under this
condition.
Using the AR database, the effects of block size used to make the local binary decisions is
analyzed and the results are shown in Fig. 12. The maximum recognition accuracy is achieved
when the local binary decisions are made at the level of individual pixels (block size of one
pixel) with a steep drop in the recognition accuracy as the block size is increased. This directly
implies that larger image resolutions could further improve the recognition accuracy.
The impact of different implementations of the similarity measure is also analyzed. Using the
implementations listed in Table 1, the change observed in the recognition accuracy is within
1%. Furthermore, the global threshold θ for making the local decisions is not a sensitive pa-
rameter. It is found that the recognition accuracy remains within 1% across various databases
for a range of threshold values from 0.6 to 0.8. This confirms the general applicability of lo-
calised decisions on similarity as a concept.
The impact of the spatial change as features in the baseline algorithm are studied by using raw
images as the feature vectors instead of spatial change feature vectors. The recognition accu-
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Recognition accuracy on AR database (%)

Localization error compensation

Test conditions Yesa No

Session 1 images

Expression 99 98

Illumination 97 94

Eye occlusion 100 100

Eye occlusion, Illumination 95 80

Mouth occlusion 97 93

Mouth occlusion, Illumination 93 86

Neutral 99 96

Expression 86 80

Illumination 85 80

Eye occlusion 90 83

Eye occlusion, Illumination 77 62

Mouth occlusion 89 74

Mouth occlusion, Illumination 78 60

Overall accuracy 91 84

a Proposed algorithm depicted here uses test image perturbations of ±5 pixels.
b Results not available from the literature.

Table 8. Recognition performance of the proposed algorithm (Single training sample per per-
son problem) on gray scale images

Fig. 12. The dependence of the overall recognition accuracy on the block size used to make
the local binary decisions. The resolution of the images is 160×120 pixels. The window size of
the standard-deviation filter is 7×5 pixels and the size of the normalization window is 80×60
pixels.

Top rank recognition accuracy (%)

Condition index a Database b Localization error compensation
No Yes

(a) CALTECH 89 95
(a) YALE 93 95
(b) ORL 72 84
(c) FERET:Fb 85 96
(d) FERET:Fc 71 90
(e) FERET:Dup I 50 68
(f) FERET:Dup II 40 65

a (a) Expression and illumination with a small gallery; (b) Small pose vari-
ation on small gallery (c) Expression on large gallery (Fb); (d) Illumina-
tion on large gallery (Fc); (e) Large gallery with mean time gap of 251
days (Dup I); (f) Large gallery with mean time gap of 627 days (Dup II).

b Single training image per person is used to form the gallery set. The
sizes of the gallery sets are 28 in CALTECH, 15 in YALE, 40 in ORL and
1196 in FERET databases; the sizes of the test sets are 150 in the YALE
database, 406 in the CALTECH database, 360 in the ORL database, 1194
in set Fb, 194 in set Fc, 722 in Dup I, and 234 in Dup II of the FERET
database.

Table 9. Summary of the results on different databases

racy for the AR database dropped from 91% to 63%. Furthermore, investigation on different
filters for calculating the spatial intensity changes shows that the variation of the recognition
accuracy with the standard local spatial filters: standard deviation, range and gradient, is
within 1%. Based on this and the clear performance difference between the use of raw im-
ages and the spatial intensity changes as the feature vectors, it is concluded that the spatial
intensity change is the visual cue for face recognition.
Increased number of filters to form feature vectors can further improve the recognition accu-
racy. As an example, using 40 Gabor filters, the recognition performance on color images in
AR database reaches around 97% from a baseline value of 91% on gray images in AR database.

6. Conclusions

In this chapter, the local binary decisions is identified an important concept that is required for
recognition of faces under difficult conditions. In addition, spatial intensity changes is identi-
fied as the visual cue for face recognition. A baseline algorithm, formed by implementing the
local binary decisions based classifier and the spatial intensity changes based feature extractor,
shows a robust performance under difficult testing conditions. To increase the recognition per-
formance, a baseline system is formed by including perturbation scheme for localization error
compensation. Using this baseline system the effect of localization errors is analysed. Further,
the analysis shows that the application of the principles of local binary decisions and modu-
larity results in a highly accurate face recognition system. The presented algorithm does not
use any known configurational information from the face images, which makes it applicable
to any visual pattern classification and recognition problem. Furthermore, classifiers based on
the local binary decisions on similarity can be used in other pattern recognition applications.
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racy for the AR database dropped from 91% to 63%. Furthermore, investigation on different
filters for calculating the spatial intensity changes shows that the variation of the recognition
accuracy with the standard local spatial filters: standard deviation, range and gradient, is
within 1%. Based on this and the clear performance difference between the use of raw im-
ages and the spatial intensity changes as the feature vectors, it is concluded that the spatial
intensity change is the visual cue for face recognition.
Increased number of filters to form feature vectors can further improve the recognition accu-
racy. As an example, using 40 Gabor filters, the recognition performance on color images in
AR database reaches around 97% from a baseline value of 91% on gray images in AR database.

6. Conclusions

In this chapter, the local binary decisions is identified an important concept that is required for
recognition of faces under difficult conditions. In addition, spatial intensity changes is identi-
fied as the visual cue for face recognition. A baseline algorithm, formed by implementing the
local binary decisions based classifier and the spatial intensity changes based feature extractor,
shows a robust performance under difficult testing conditions. To increase the recognition per-
formance, a baseline system is formed by including perturbation scheme for localization error
compensation. Using this baseline system the effect of localization errors is analysed. Further,
the analysis shows that the application of the principles of local binary decisions and modu-
larity results in a highly accurate face recognition system. The presented algorithm does not
use any known configurational information from the face images, which makes it applicable
to any visual pattern classification and recognition problem. Furthermore, classifiers based on
the local binary decisions on similarity can be used in other pattern recognition applications.
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1. Introduction 

Among all applications of face recognition systems, surveillance is one of the most 
challenging ones. In such an application, the goal is to detect known criminals in crowded 
environments, like airports or train stations. Some attempts have been made, like those of 
Tokio (Engadget, 2006) or Mainz (Deutsche Welle, 2006), with limited success. 
 
The first task to be carried out in an automatic surveillance system involves the detection of 
all the faces in the images taken by the video cameras. Current face detection algorithms are 
highly reliable and thus, they will not be the focus of our work. Some of the best performing 
examples are the Viola-Jones algorithm (Viola & Jones, 2004) or the Schneiderman-Kanade 
algorithm (Schneiderman & Kanade, 2000). 
 
The second task to be carried out involves the comparison of all detected faces among the 
database of known criminals. The ideal behaviour of an automatic system performing this 
task would be to get a 100% correct identification rate, but this behaviour is far from the 
capabilities of current face recognition algorithms. Assuming that there will be false 
identifications, supervised surveillance systems seem to be the most realistic option: the 
automatic system issues an alarm whenever it detects a possible match with a criminal, and 
a human decides whether it is a false alarm or not. Figure 1 shows an example. 
 
However, even in a supervised scenario the requirements for the face recognition algorithm 
are extremely high: the false alarm rate must be low enough as to allow the human operator 
to cope with it; and the percentage of undetected criminals must be kept to a minimum in 
order to ensure security. Fulfilling both requirements at the same time is the main challenge, 
as a reduction in false alarm rate usually implies an increase of the percentage of undetected 
criminals. 
 
We propose a novel face recognition system based in the use of interest point detectors and 
local descriptors. In order to check the performances of our system, and particularly its 
performances in a surveillance application, we present experimental results in terms of 
Receiver Operating Characteristic curves or ROC curves. From the experimental results, it 
becomes clear that our system outperforms classical appearance based approaches. 
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Fig. 1. Example of a supervised surveillance system. 

 
2. Previous approaches 

Classical face recognition systems are based on global appearance-based methods: PCA or 
Principal Component Analysis has been used by (Kirby & Sirovich, 1990) and (Turk & 
Pentland, 1991); ICA, or Independent Component Analysis has been used by (Bartlett et al., 
2002), (Draper et al., 2003) and (Liu, 2004). Finally, LDA or Linear Discriminant Analysis has 
been used by (Belhumeur et al., 2002). 
 
As an alternative to appearance-based methods, local description methods are currently an 
area of active research in the face recognition field. From Lowe’s work on object recognition 
using SIFT (Scale Invariant Feature Transform) descriptors (Lowe, 2004), multiple authors 
have applied such descriptors in other fields, like robot navigation (Se et al., 2001), scene 
classification (Pham et al., 2007), and also face recognition. 
 
Some of the main contributions using SIFT descriptors for face recognition will be briefly 
described: Lowe (Lowe, 2000) presents a similar scheme to that of object recognition, but 
does not address the problem of face authentication. Sivic (Sivic et al., 2005) combines PCA 
and SIFT: PCA is used to locate eyes, nose and mouth; while SIFT descriptors are used to 
describe fixed-sized areas around such points. Finally, Bicego (Bicego et al., 2006) measures 
the distance between two faces as the distance of the best matching pair of descriptors, in 
some cases using previous knowledge about the location of eyes and mouth. 
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describe fixed-sized areas around such points. Finally, Bicego (Bicego et al., 2006) measures 
the distance between two faces as the distance of the best matching pair of descriptors, in 
some cases using previous knowledge about the location of eyes and mouth. 
 

 

The goal of our work is to propose a new distance measure in order to exploit the potential 
of SIFT descriptors in the face recognition field. 

 
3. Interest point detection 

Interest point detectors try to select the most descriptive areas of a given image. Ideally, 
given multiple images of the same object or person, under different lighting, scale, 
orientation, view angle, etc., a perfect algorithm would find exactly the same interest points 
across all images. 
 
In the field of face recognition, although invariance to orientation and view angle are 
necessary, images that are useful for face recognition always present the user from the 
similar angles (usually, facing the camera) and orientations (standing up). Possible view 
angles and orientations are expected to be within a 30 degree range, approximately. Interest 
point detectors that allow much higher ranges of variation are not necessary and more 
simple, faster detectors would be preferred instead. 
 
In that sense, affine invariant detectors, like those detailed in (Alvarez & Morales, 1997), 
(Baumberg, 2000) or (Mikolajczyk & Schmid, 2004) are not considered for our work. We 
have made experiments with two more simple detectors: Harris-Laplace (Mikolajczyk & 
Schmid, 2004) and Difference of Gaussian (Lowe, 2004). 
 
The Harris-Laplace detector is a scale-invariant version of the well-known Harris corner 
detector (Harris & Stephens, 1988) and looks for corners or junctions in the images. On the 
other side, the Difference of Gaussian detector (DoG) is an approximation to the Laplacian 
of Gaussian operator, and looks for blob-like areas in images. Both detectors have been 
widely used in the object recognition field and they are highly reliable. In figure 2 we show 
the interest points found by each of these detectors over the same image (the diameter of the 
circle is represents the scale of the detected interest area). 
 

    DoG detector                            Harris−Laplace detector

 
Fig. 2. Output of Harris-Laplace and DoG interest point detectors. 
 
It becomes clear that each detector looks for specific image areas, and that, depending on the 
particular application, one of them should be preferred. In the case of face recognition, both 
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sets of interest points seem to be relevant for describing faces, so our option has been to 
keep all interest points found by both detectors. The goal is to obtain as much information as 
possible from each image. 

 
4. Interest point description 

Once interest points are detected, their surrounding area must be encoded or described by a 
distinctive feature. Ideally, features should be invariant to lighting, scale, orientation, view 
angle, etc. At the same time, those features should be unique, in the sense that a different 
area of the object (or face), a different object, or a different person would be distinguishable. 
 
In (Mikolajczyk & Schmid, 2005) a detailed comparison of local descriptors is carried out. 
The conclusion is that  SIFT (Lowe, 2004) and other SIFT-like descriptors, like PCA-SIFT (Ke 
& Sukthankar, 2004) or GLOH (Mikolajczyk & Schmid, 2005) give the best results 
throughout all tests. We will briefly describe some of these descriptors. 
 
Basically, in SIFT descriptors, the neighbourhood of the interest point, scaled accordingly to 
the detector information, is described as a set of orientation histograms computed from the 
gradient image. SIFT descriptors are invariant to scale, rotation, lighting and viewpoint 
change (in a narrow range). The most common implementation uses 16 histograms of 8 bins 
(8 orientations), which gives a 128 dimensional descriptor. 
 
PCA-SIFT descriptor is also based on the gradient image, the main difference with SIFT 
being the further compression using PCA. The uncompressed dimension of the descriptor is 
3042 (39x39), which is reduced to 36 after applying PCA. The authors claim improved 
accuracy and faster matching, but these performance improvements are not consistent 
throughout all tests, as it is shown in (Mikolajczyk & Schmid, 2005). 
 
GLOH stands for Gradient Location-Orientation Histogram. It is also a SIFT-based 
descriptor, with modified location grids (both polar and Cartesian location grids are 
considered) and a further PCA compression of the information, which keeps the 128 largest 
eigenvectors (the dimension of the uncompressed descriptor is 272). GLOH outperforms 
SIFT in certain situations, with structured scenes and high viewpoint changes. However, 
such situations are not common in a face recognition scenario. 
 
Recently, the SURF or Speeded Up Robust Features descriptor (Bay et al., 2006) has 
appeared as an alternative to SIFT. Its main advantage is its fastest computation, while 
keeping a high descriptive power. It is partially inspired by SIFT, but instead of using the 
gradient image, it computes first order Haar wavelet responses. Additionally, the use of 
integral images is the key factor for fast computation. So far, we have not performed tests 
with the SURF descriptor, so we cannot affirm its validity for face recognition applications.  
 
Finally, LESH or Local Energy based Shape Histogram descriptor (Sarfraz & Hellwich, 
2008), has been specifically designed for face recognition applications. Its goal is to encode 
the underlying shape present in the image. Basically, the descriptor is a concatenation of 
histograms obtained by accumulating local energy along several filter orientations. 
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integral images is the key factor for fast computation. So far, we have not performed tests 
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Finally, LESH or Local Energy based Shape Histogram descriptor (Sarfraz & Hellwich, 
2008), has been specifically designed for face recognition applications. Its goal is to encode 
the underlying shape present in the image. Basically, the descriptor is a concatenation of 
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However, it is focused in pose estimation, so it addresses a different problem to that of our 
work. 
 
In conclusion, we decided to describe each face image with SIFT descriptors computed at all 
the interest points found by the Harris-Laplace and the DoG detectors.  

 
5. Similarity between two face images 

Once we have represented all face images as a set of interest points and their corresponding 
descriptions, the next step to be carried out is the definition of a similarity measure between 
two face images, in order to be able to decide whether such images correspond to the same 
person or not. 
 
The simplest approach is to obtain the best possible correspondence between the interest 
points of both images (according to the values of their SIFT descriptors) and to compute 
Euclidean distances between each pair of corresponding points. However, according to 
Lowe’s work (Lowe, 2004), SIFT descriptors must be used in a slightly different way: in 
order to decide whether two points in two different images correspond or not, the absolute 
value of the Euclidean distance is not reliable; what should be used instead is the ratio 
between the best match and the second best match. Briefly, for each point of the first image, 
the best and second best matching points of the second image must be found: if the first 
match is much better than the second one (as measured by the ratio between SIFT 
differences) the points are likely to correspond. Eq. 1 shows how to apply such condition, 
where points B and C in image2 are the best and second best matches, respectively, for point 
A in image1. 
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We have used such approach in order to compute the number of corresponding points 
between two images, such a number being our first measure of similarity between the 
images. In our notation, the number of matching points between images A and B, according 
to the descriptor values is MDAB. 
 
Even though we compute similarity according to Lowe’s recommendations, the number of 
correct matches is not completely reliable as a measure of similarity. We have added two 
extra measures in order to increase the robustness of our system. 
 
The first extra measure is obtained by computing the number of corresponding points that 
are coherent in terms of scale and orientation: every detected point output by the Harris-
Laplace of DoG detectors has an associated scale and orientation. Scale and orientation may 
be different between images, even if they belong to the same person, but such difference 
must be coherent across all matching points. Our second measure of similarity is the 
number of matching points coherent in terms of scale and orientation (a simple Hough 
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transform is used to obtain the maximum number of points fulfilling this condition). We will 
refer to this extra measure as MSOAB. 
 
The second extra measure is obtained by imposing an additional restriction: the coherence in 
terms of relative location of corresponding points. Theoretically, the relative location of all 
matching points must be similar between two images, even if there are scale, rotation and 
viewpoint changes between them. We will consider a general affine transformation between 
images for the sake of simplicity (since faces are not planar, high viewpoint changes cannot 
be represented by affine transformations). The number of points coherent in the parameters 
of the transformation will be our third measure of similarity. We will use MRLAB to refer to 
this measure. 
 
Obviously, whenever an additional restriction is imposed, the robustness of the measure is 
increased, so the second extra measure is the most robust one, followed by the first extra 
measure and by the original one. In order to compare whether a certain image A is more 
similar to image B or to image C (i.e., we are trying to classify image A as belonging to 
subject B or subject C), the decision tree of Fig. 3 should be used: 

 
Fig. 3. Decision tree for the classification of image A as belonging to subjects B or C. 
 
Even though a decision tree representation is valid for a classification problem, it cannot be 
used in an authentication application, where a threshold must be fixed. In order to cope also 
with such applications, we propose a simple distance measure M (see eq. 2) that combines 
MRL, MSO and MD, giving MRL a weight one order of magnitude above MSO and two 
orders of magnitude above MD. 
 

MAB = MDAB + 10MSOAB +100MRLAB (2) 
In our experiments, such simple distance measure has shown to give the same results as the 
decision tree of Fig. 3. 
 

 

MRLAB - MRLAC 

MSOAB - MSOAC 

MDAB - MDAC 

B C 
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B C 
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B C 
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6. Experimental results 

6.1 Databases and baseline used for the evaluation 
We have selected two different databases for the evaluation of our face recognition 
algorithm. The first one is the well-known AT&T database (Samaria, 1994)(AT&T, 2002); and 
the second one the LFW or Labelled Faces in the Wild database (Huang et al., 
2007)(University of Massachusetts, 2007). 
 
The AT&T database contains 40 subjects, each of one described by 10 frontal face images. All 
images were taken under controlled conditions of lighting, distance to the camera, etc. The 
main differences between shots are facial expression, and slight orientation and viewpoint 
changes. 
 
The LFW database contains 5749 subjects, described by a number of images that ranges from 
1 to 530. All images have been obtained from the World Wide Web, manually labelled and 
cropped using the Viola-Jones face detector. Variability between images of the same subject 
is much higher than that of the AT&T database, thus making LFW more challenging for a 
face recognition application. For our tests, we have selected a subset containing the 158 
subjects described by at least 10 images, and we have kept only the first 10 images of each 
subject. 
 
As the baseline for our evaluation, we have selected the classic PCA approach to face 
recognition. We have decided to use PCA because other similar approaches like ICA or LDA 
have not proved to perform better. In particular in one of our previous papers (Vicente et al., 
2007) we showed the equivalence of PCA and ICA under restrictions such as the use of 
rotational invariant classifiers. 

 
6.2 Results 
As the goal of our paper is to evaluate our face recognition method for surveillance 
applications, we have decided to use ROC curves for showing our experimental results. The 
main idea is to express the relationship between false alarm rates and percentage of 
undetected criminals. As both databases (AT&T and the LFW subset we are using) share the 
same structure of 10 images per subject, in both cases we used 4 subjects for training and the 
remaining 6 subjects for testing. Every test image was compared to all training images of all 
subjects, the global distance to a subject being computed as the minimum across the 4 
training images of such subject (we performed some tests using the mean distance for all 
training images of the subject, but the results were worse). 
 
First, we performed some experiments in order to adjust our algorithm for the best overall 
results. The main parameter to tune was the threshold for accepting or rejecting matches 
between interest points of two different images (see Eq. 1). We carried out tests with both 
databases (AT&T and LFW) and with thresholds ranging from 0.60 (the most restrictive) to 
1.00 (the less restrictive, all matches are accepted). 
 
Figure 4 shows the results obtained with the AT&T database. The left plot shows the full 
ROC curve, where the different experiments are almost indistinguishable. All of them show 
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close to ideal behaviours, as it was expected for such database, were all images were taken 
under controlled conditions. In order to show the differences between the experiments, the 
right plot shows a scaled detail of the upper left area of the ROC curve. However, all values 
of the threshold seem to perform similarly and no conclusions can be drawn. 
Figure 5 shows the results obtained for the LFW database. In this case, we performed two 
different experiments. For the first one (left plot), we used the first four images of each 
subject as training images, keeping the original image order of the database. The results 
show clearly that the LFW database is much more challenging for a face recognition 
algorithm, with ROC curves far from the ideal ones. The main reason is the high variability 
between images of the same subject. For the second experiment (right plot) we decided to 
rearrange the database, so that the best four images of each subject were selected as training 
data. Such rearrangement makes the experiment more realistic, since in a real surveillance 
application training images (taken under controlled conditions) usually have higher quality 
than test images (taken under uncontrolled conditions, in real time). Anyway, the results are 
similar in both experiments. 
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Fig. 4. AT&T database: experiments with different thresholds 
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Fig. 5. LFW database: experiments with different thresholds 
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Fig. 4. AT&T database: experiments with different thresholds 
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Fig. 5. LFW database: experiments with different thresholds 

 

Concerning the threshold values, both plots of figure 5 show similar behaviours: the results 
improve as the threshold is reduced, up to a certain point where differences are small (in the 
range from 0.8 to 0.6). A threshold value of 0.6 seems to perform slightly better than the 
other settings, so we kept this value for further experiments. 
 
Once the threshold was fixed, we performed several comparisons between our algorithm 
and the PCA baseline, working with the same databases. Figure 6 shows the results 
obtained for the AT&T database (left plot) and the LFW database (right plot). Our method 
clearly outperforms PCA throughout the ROC curve for both databases. 
 
The left plot of figure 7 shows the comparison between PCA and our method for the 
rearranged version of LFW database (the 4 best images are used for training). There is a 
slight increase in the performances of both PCA and SIFT, but our method is still clearly 
superior. Finally, the right plot of figure 7 shows a further experiment: we sorted the 6 test 
images of LFW for each subject, so that the first 3 images were the best, easier to classify and 
the last 3 images were the worst, more difficult to classify, according to our opinion. The 
goal was to check to what extent the performances of both methods were affected by the 
(subjective) quality of the images: although there are not big differences, it seems that our 
method is more robust than the PCA approach. 
 
Concerning the feasibility of the proposed approach for a surveillance application, our 
experimental results show the importance of image quality. The ROC curves obtained for 
the AT&T database (figure 6, left plot) are close to ideal: at a false alarm rate of 1%, it is 
expected that 94% of the criminals would be correctly identified (88% at a 0.5% false alarm 
rate). Such performances would allow us to implement the system in a real scenario. 
However, the ROC curves obtained for the LFW database, even if the best images are 
selected for training, are far from ideal: at a false alarm rate of 1%, it is expected that only 
35% of the criminals would be correctly identified (32% at a false alarm rate of 0.5%). Such a 
system would be of little help as a surveillance tool. 
 
As image quality is a key factor for the feasibility of the system, our recommendation is to 
study properly the location of the video cameras. In our opinion, if video cameras are 
located in relatively controlled places like walkthrough detectors, the image quality may be 
enough as for a successful implementation of a supervised surveillance system. 

 
7. Conclusion 

Automatic or supervised surveillance applications impose strict requirements in face 
recognition algorithms, in terms of false alarm rate and percentage of undetected criminals. 
We present a novel method, based on interest point detectors (namely, Harris-Laplace and 
DoG) and SIFT descriptors. 
 
Our measure of similarity between images is based on computing the number of 
corresponding points that, apart from having similar values for their SIFT descriptors, fulfil 
scale, orientation and relative location coherence. Images with a higher number of 
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corresponding points are likely to belong to the same subject. Such a simple similarity 
measure has proven to perform consistently in our tests. 
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Fig. 6. AT&T and LFW databases: comparison with PCA baseline 
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Fig. 7. LFW database reordered and sorted: comparison with PCA baseline 
 
The results in terms of ROC curves show that our approach clearly outperforms the PCA 
baseline in all conditions. We have performed tests with two different databases: AT&T (not 
very demanding for a face recognition algorithm) and LFW (extremely demanding); and in 
both cases our algorithm gave much higher recognition rates than PCA. 
 
Concerning the feasibility of a supervised surveillance system based on our face recognition 
algorithm, the experimental results show that the quality of the images should be 
comparable to that of the AT&T database. For lower quality images like those of the LFW 
database, high recognition rates cannot be expected. 
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corresponding points are likely to belong to the same subject. Such a simple similarity 
measure has proven to perform consistently in our tests. 
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Fig. 6. AT&T and LFW databases: comparison with PCA baseline 
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Fig. 7. LFW database reordered and sorted: comparison with PCA baseline 
 
The results in terms of ROC curves show that our approach clearly outperforms the PCA 
baseline in all conditions. We have performed tests with two different databases: AT&T (not 
very demanding for a face recognition algorithm) and LFW (extremely demanding); and in 
both cases our algorithm gave much higher recognition rates than PCA. 
 
Concerning the feasibility of a supervised surveillance system based on our face recognition 
algorithm, the experimental results show that the quality of the images should be 
comparable to that of the AT&T database. For lower quality images like those of the LFW 
database, high recognition rates cannot be expected. 
 

 

Future work to be carried out includes the comparison of our proposal against other 
approaches like AAM (active appearance models) and the use of a different interest point 
descriptor (namely, the SURF descriptor). Another important topic for future research is an 
evaluation of the possible placements for surveillance cameras; such a research could give 
us realistic information about the feasibility of a supervised surveillance system. 
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Abstract. The growth in direct threats to people’s safety in recent years and the rapid 
increase in fraud and identity theft has increased the awareness of security requirements in 
society and added urgency to the task of developing biometric-based person identification 
as a reliable alternative to conventional authentication methods. In this Chapter we describe 
various approaches to face recognition with focus on wavelet-based schemes and present 
their performance using a number of benchmark databases of face images and videos. These 
schemes include single-stream (i.e. those using single-subband representations of face) as 
well as multi-stream schemes (i.e. those based on fusing a number of wavelet subband 
representations of face). We shall also discuss the various factors and quality measures that 
influence the performance of face recognition schemes including extreme variation in 
lighting conditions and facial expressions together with measures to reduce the adverse 
impact of such variations. These discussions will lead to the introduction of new innovative 
adaptive face recognition schemes. We shall present arguments in support of the suitability 
of such schemes for implementation on mobile phones and PDA’s. 

 
1. Introduction  

The early part of the 21st century has ushered the shaping of a new global communication 
infrastructure that is increasingly dominated by new generations of mobile phones/devices 
including 3G and beyond devices resulting in the emergence of pervasive computing 
environment with less reliance on presence in specific locations or at specific times. The 
characteristics of such a ubiquitous environment create new security threats and the various 
mobile devices/nodes are expected to provide additional layers of security for online 
transactions and real-time surveillance. Cryptography can provide confidentiality protection 
mechanisms for online and mobile transactions, but authenticating/identifying the 
principal(s) in such virtual transactions is of utmost importance to fight crime and fraud and 
to establish trust between parties taking part in such transactions. Traditional authentication 
mechanisms are based on “something you know” (e.g. a password/PIN) or “something you 
own/hold” (e.g. a token/smartcard). Such authentication schemes have shown to be prone 
to serious threats that could have detrimental effects on global economic activities. In recent 
years, biometric-based authentication has provided a new approach of access control that is 
aimed at establishing “who you are”, and research in the field of biometrics has grown 
rapidly. The scope of active research into biometrics has gone beyond the traditional list of 
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single traits of fingerprint, retina, iris, voice, and face into newly proposed traits such as 
handwritten signature, gait, hand geometry, and scent. Moreover, the need for improved 
performance has lead to active research into multimodal biometrics based on fusing a 
number of biometrics traits at different levels of fusion including feature level, score level, 
and decision level. Over the past two decades significant progress has been made in 
developing robust biometrics that helped realising large-scale automated identification 
systems.  
Advances in mobile communication systems and the availability of cheap cameras and other 
sensors on mobile devices (3G smart phones) further motivate the need to develop reliable, 
and unobtrusive biometrics that are suitable for implementation on mobile and constrained 
devices. Non-intrusive biometrics, such as face and voice are more naturally acceptable as 
the person’s public identity. Unfortunately the performance of known face and voice 
biometric schemes are lower than those of the Iris or the fingerprint schemes. The processing 
and analysis of face image suffer from the curse of dimension problem, and various 
dimension reduction schemes have been proposed including PCA (principal Component 
analysis). In recent years a number of wavelet-based face verification schemes have been 
proposed as an efficient alternative to traditional dimension reduction procedures.  
The Wavelet Transform is a technique for analyzing finite-energy signals at multi-
resolutions. It provides an alternative tool for short time analysis of quasi-stationary signals, 
such as speech and image signals, in contrast to the traditional short-time Fourier transform. 
A wavelet-transformed image analyses the signal into a set of subbands at different 
resolutions each represented by a different frequency band. Each wavelet subband 
encapsulates a representation of the transformed images object(s), which differ from the 
others in scale and/or frequency content. Each wavelet subband of transformed face images 
can be used as a face biometric template for a face recognition scheme, and the fusion of a 
multiple of such schemes associated with different wavelet subbands will be termed as 
multi-stream face recognition scheme.  

 
2. Face Recognition - A brief review 

Automatic face based human Identification is a particularly tough challenge in comparison 
to identification based on other biometric features such as iris, fingerprints, or palm prints. 
Yet, due to its unobtrusive nature, together with voice, the face is naturally the most suitable 
method of identification for security related applications, ([1], [2], [3]). Recent growth in 
identity theft and the rise of international terrorism on one hand and the availability of high-
resolution digital video-cameras at a relatively low cost is a major driving force in the surge 
of interest for efficient and accurate enrolment, verification schemes of face-based 
authentication. Moreover, there are now new opportunities, as well as tough challenges, for 
mass deployments of biometric-based authentications in a range of civilian and military 
applications. In the rest of this section we shall briefly review the main approaches to face 
recognition with focus on 2D schemes directly related to this chapter’s aim.  

 
2.1 Dimension reduction approach 
An important part of a face recognition process is the feature extraction of a given facial 
image. Two current approaches to feature extraction are the geometry feature-based 
methods and the more common template-based methods. In the latter, sets of face images 

are statistically analysed to obtain a set of feature vectors that best describe face image. A 
typical face images is represented by a high dimensional array (e.g. 12000=120×100 pixels), 
the processing/analysis of which is a computationally demanding task, referred to in the 
literature as the “curse of dimensionality”, well beyond most commercially available mobile 
devices. It is therefore essential to apply dimension reduction procedures that reduce 
redundant data without losing significant features. A common feature of dimension 
reducing procedures is a linear transformation of the face image into a “significantly” lower 
dimensional subspace from which a feature vector is extracted. The first and by far the most 
commonly used dimension reduction method is the Principal Component Analysis (PCA), 
also known as Karhunen-Love (KL) transform, [4]. In [5], M. Turk and Pentland used the 
PCA technique to develop the first successful and well known Eigenface scheme for face 
recognition. PCA requires the use of a sufficiently large training set of multiple face images 
of the enrolled persons, and attempts to model their significant variation from their average 
image, by taking a number of unit eigenvectors corresponding to the “most significant” 
eigenvalues (i.e. of largest absolute values). Essentially, the selected eigenvectors are used as 
the basis for a linear transformation that maps the original training set of face images 
around their mean in order to align with the directions the first few principal components 
which maximizes the variance as much of the as possible. The values in the remaining 
dimensions (corresponding to the non-significant eigenvalues), tend to be highly correlated 
and dropped with minimal loss of information.  
Despite its success in reducing false acceptances, the PCA/Eigenface scheme is known to 
retain within-class variations due to many factors including illumination and pose. 
Moghaddam et al. [6] have demonstrated that the largest three eigen coefficients of each 
class overlap each other. While this shows that PCA has poor discriminatory power, it has 
been demonstrated that leaving out the first 3 eigenfaces (corresponding to the 3 largest 
eigenvalues) could reduce the effect of variations in illumination [6]. But this may also lead 
to loss of information that is useful for accurate identification.  
An alternative approach to PCA based linear projection is Fisher’s Linear Discriminant 
(FLD), or the Linear Discriminant Analysis (LDA) which is used to maximize the ratio of the 
determinant of the between class scatter to that of within-class scatter [7], [8]. The downside 
of these approaches is that a number of training samples from different conditions are 
required in order to identify faces in uncontrolled environments. 
Other schemes that deal with the curse of dimension include Independent Component 
Analysis (ICA), or a combination of ICA and LDA/FLD, (see [1], [7], and [9]). Lack of 
within-class (variations in appearance of the same individual due to expression and/or 
lighting) information is known to hinder the performance of both PCA and ICA based face 
recognition schemes. Cappelli et al., [9], proposed a multi-space generalization of KL-
transformation (MKL) for face recognition, in which a PCA-subspace is created for each 
enrolled classes. The downside of this approach is that a large number of images are 
required to create a subspace for each class.  
All the statistical approaches above require a large number of training images to create a 
subspace, which in turn requires extra storage space (for the subspace and enrolled 
template/features), [10]. Current mobile devices (3G smart phones) and smartcards, which 
are widely used in commercial and military applications, have limited computing resources 
and it is difficult to implement complex algorithms, especially for face verification. Bicego et 
al. presented a face verification scheme based on Hidden Markov Models (HMM). Statistical 
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single traits of fingerprint, retina, iris, voice, and face into newly proposed traits such as 
handwritten signature, gait, hand geometry, and scent. Moreover, the need for improved 
performance has lead to active research into multimodal biometrics based on fusing a 
number of biometrics traits at different levels of fusion including feature level, score level, 
and decision level. Over the past two decades significant progress has been made in 
developing robust biometrics that helped realising large-scale automated identification 
systems.  
Advances in mobile communication systems and the availability of cheap cameras and other 
sensors on mobile devices (3G smart phones) further motivate the need to develop reliable, 
and unobtrusive biometrics that are suitable for implementation on mobile and constrained 
devices. Non-intrusive biometrics, such as face and voice are more naturally acceptable as 
the person’s public identity. Unfortunately the performance of known face and voice 
biometric schemes are lower than those of the Iris or the fingerprint schemes. The processing 
and analysis of face image suffer from the curse of dimension problem, and various 
dimension reduction schemes have been proposed including PCA (principal Component 
analysis). In recent years a number of wavelet-based face verification schemes have been 
proposed as an efficient alternative to traditional dimension reduction procedures.  
The Wavelet Transform is a technique for analyzing finite-energy signals at multi-
resolutions. It provides an alternative tool for short time analysis of quasi-stationary signals, 
such as speech and image signals, in contrast to the traditional short-time Fourier transform. 
A wavelet-transformed image analyses the signal into a set of subbands at different 
resolutions each represented by a different frequency band. Each wavelet subband 
encapsulates a representation of the transformed images object(s), which differ from the 
others in scale and/or frequency content. Each wavelet subband of transformed face images 
can be used as a face biometric template for a face recognition scheme, and the fusion of a 
multiple of such schemes associated with different wavelet subbands will be termed as 
multi-stream face recognition scheme.  

 
2. Face Recognition - A brief review 

Automatic face based human Identification is a particularly tough challenge in comparison 
to identification based on other biometric features such as iris, fingerprints, or palm prints. 
Yet, due to its unobtrusive nature, together with voice, the face is naturally the most suitable 
method of identification for security related applications, ([1], [2], [3]). Recent growth in 
identity theft and the rise of international terrorism on one hand and the availability of high-
resolution digital video-cameras at a relatively low cost is a major driving force in the surge 
of interest for efficient and accurate enrolment, verification schemes of face-based 
authentication. Moreover, there are now new opportunities, as well as tough challenges, for 
mass deployments of biometric-based authentications in a range of civilian and military 
applications. In the rest of this section we shall briefly review the main approaches to face 
recognition with focus on 2D schemes directly related to this chapter’s aim.  

 
2.1 Dimension reduction approach 
An important part of a face recognition process is the feature extraction of a given facial 
image. Two current approaches to feature extraction are the geometry feature-based 
methods and the more common template-based methods. In the latter, sets of face images 

are statistically analysed to obtain a set of feature vectors that best describe face image. A 
typical face images is represented by a high dimensional array (e.g. 12000=120×100 pixels), 
the processing/analysis of which is a computationally demanding task, referred to in the 
literature as the “curse of dimensionality”, well beyond most commercially available mobile 
devices. It is therefore essential to apply dimension reduction procedures that reduce 
redundant data without losing significant features. A common feature of dimension 
reducing procedures is a linear transformation of the face image into a “significantly” lower 
dimensional subspace from which a feature vector is extracted. The first and by far the most 
commonly used dimension reduction method is the Principal Component Analysis (PCA), 
also known as Karhunen-Love (KL) transform, [4]. In [5], M. Turk and Pentland used the 
PCA technique to develop the first successful and well known Eigenface scheme for face 
recognition. PCA requires the use of a sufficiently large training set of multiple face images 
of the enrolled persons, and attempts to model their significant variation from their average 
image, by taking a number of unit eigenvectors corresponding to the “most significant” 
eigenvalues (i.e. of largest absolute values). Essentially, the selected eigenvectors are used as 
the basis for a linear transformation that maps the original training set of face images 
around their mean in order to align with the directions the first few principal components 
which maximizes the variance as much of the as possible. The values in the remaining 
dimensions (corresponding to the non-significant eigenvalues), tend to be highly correlated 
and dropped with minimal loss of information.  
Despite its success in reducing false acceptances, the PCA/Eigenface scheme is known to 
retain within-class variations due to many factors including illumination and pose. 
Moghaddam et al. [6] have demonstrated that the largest three eigen coefficients of each 
class overlap each other. While this shows that PCA has poor discriminatory power, it has 
been demonstrated that leaving out the first 3 eigenfaces (corresponding to the 3 largest 
eigenvalues) could reduce the effect of variations in illumination [6]. But this may also lead 
to loss of information that is useful for accurate identification.  
An alternative approach to PCA based linear projection is Fisher’s Linear Discriminant 
(FLD), or the Linear Discriminant Analysis (LDA) which is used to maximize the ratio of the 
determinant of the between class scatter to that of within-class scatter [7], [8]. The downside 
of these approaches is that a number of training samples from different conditions are 
required in order to identify faces in uncontrolled environments. 
Other schemes that deal with the curse of dimension include Independent Component 
Analysis (ICA), or a combination of ICA and LDA/FLD, (see [1], [7], and [9]). Lack of 
within-class (variations in appearance of the same individual due to expression and/or 
lighting) information is known to hinder the performance of both PCA and ICA based face 
recognition schemes. Cappelli et al., [9], proposed a multi-space generalization of KL-
transformation (MKL) for face recognition, in which a PCA-subspace is created for each 
enrolled classes. The downside of this approach is that a large number of images are 
required to create a subspace for each class.  
All the statistical approaches above require a large number of training images to create a 
subspace, which in turn requires extra storage space (for the subspace and enrolled 
template/features), [10]. Current mobile devices (3G smart phones) and smartcards, which 
are widely used in commercial and military applications, have limited computing resources 
and it is difficult to implement complex algorithms, especially for face verification. Bicego et 
al. presented a face verification scheme based on Hidden Markov Models (HMM). Statistical 
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features such as the mean and variance are obtained by overlapping sub images (of a given 
original face image). These features are used to compose the HMM sequence and results 
show that the HMM-based face verification scheme, proposed by Bicego et al., outperforms 
other published results, [11].  

 
2.2 Frequency transforms based approaches 
Frequency transforms provide valuable tools for signal processing and analysis. Frequency 
information content conveys richer knowledge about features in signals/images that should 
be exploited to complement the spatial information. Fourier and wavelet transforms are two 
examples that have been used with significant success in image processing and analysis 
tasks including face recognition. To some extent, such transforms reduce dimension with no 
or little loss of information.  
The work of John Daugman, ([12], [13]) and others on generalisation of Gabor functions has 
led to a general compact image representation in terms of Gabor wavelets. The Gabor 
wavelets, whose kernels are similar to the 2D receptive field profiles of the mammalian 
cortical simple cells, exhibit strong characteristics of spatial locality and orientation 
selectivity, and are optimally localized in the space and frequency domains. The Gabor 
wavelet model was eventually exploited to develop new approaches to face recognition. 
Taking into account the link between the Gabor wavelet kernels and the receptive field 
profiles of the mammalian cortical simple cells, it is not unreasonable to argue that Gabor 
wavelet based face recognition schemes mimics the way humans recognise each others. 
Lades et al. [14] demonstrated the use of Gabor wavelets for face recognition using the 
Dynamic Link Architecture (DLA) framework. The DLA starts by computing the Gabor jets, 
and then it performs a flexible template comparison between the resulting image 
decompositions using graph-matching. L Wiskott et al, [15], have expanded on the DLA, 
and developed the Elastic Bunch Graph Matching (EBGM) face recognition system, whereby 
individual faces were represented by a graph, each node labelled with a set of complex 
Gabor wavelet coefficients, called a jet. The magnitudes of the coefficients label the nodes for 
matching and recognition, the phase of the complex Gabor wavelet coefficients is used for 
location of the nodes. The nodes refer to specific facial landmarks, called fiducial points. A 
data structure, called the bunch graph, to represent faces by combining jets of a small set of 
individual faces. Originally many steps (e.g. selecting the Fiducial points) were carried out 
manually, but gradually these would have been replaced with a automated procedures.  
Z. Zhang et al, [16], compared the performance of a Geometry-based and a Gabor wavlet-
based facial expression recognition using a two-layer perceptron. The first uses the 
geometric positions of a set of fiducial points on a face, while the second type is a set of 
multi-scale and multi-orientation Gabor wavelet coefficients extracted from the face image 
at the fiducial points. For the comparison they used a database of 213 images of female facial 
expressions and their results show that the Gabor wavelet –based scheme outperforms the 
geometric based system.  
C. Lui and H. Wechsler, [17], developed and tested an Independent Gabor Features (IGF) 
method for face recognition. The IGF first derives a Gabor feature vector from a set of 
downsampled Gabor wavelet representations of face images, then reduces the 
dimensionality of the vector by means of Principal Component Analysis (PCA), and finally 
defines the independent Gabor features based on the Independent Component Analysis 
(ICA). The independence property of these Gabor features facilitates the application of the 

Probabilistic Reasoning Model (PRM) method for classification. The Gabor transformed face 
images exhibit strong characteristics of spatial locality, scale and orientation selectivity, 
while ICA further reduce redundancy and represent independent features explicitly.  
The development of the discrete wavelet transforms (DWT), especially after the work of I. 
Daubechies (see e.g. [18]), and their multi-resolution properties have naturally led to 
increased interest in their use for image analysis as an efficient alternative to the use of 
Fourier transforms. DWT’s have been successfully used in a variety of face recognition 
schemes (e.g. [10], [19], [20], [21], [22]). However, in many cases, only the approximation 
components (i.e. the low frequency subbands) at different scales are used either as a feature 
vector representation of the faces perhaps after some normalisation procedures or to be fed 
into traditional face recognition schemes such as the PCA as replacement of the original 
images in the spatial domain.  
J. H. Lai et al, [23], developed a holistic face representation, called spectroface, that is based 
on an elaborate combination of the (DWT) wavelet transform and the Fourier transform. To 
make the spectroface invariant to translation, scale and on-the-plane rotation, the LL 
wavelet subband of the face image is subjected to two rounds of transformations. The LL 
wavelet subband is less sensitive to the facial expression variations while the first FFT 
coefficients are invariant to the spatial translation. The second round of FFT is applied after 
the centralised FFT in the first round is represented by polar coordinates. Based on the 
spectroface representation, their proposed face recognition system is tested on the Yale and 
Olivetti face databases. They report recognition accuracy of over 94% for rank1 matching, 
and over 98% for rank 3 matching.  
Another wavelet-based approach for face recognition has been investigated in terms of dual-
tree complex wavelets (DT-CW) techniques developed by N. G. Kingsbury, (see e.g. [24]). Y. 
Peng et al, [25], propose face recognition algorithm that is based on the use of an anisotropic 
dual-tree complex wavelet packets (ADT-CWP) for face representation. The ADT-CWP 
differs from the traditional DT-CW in that the decomposition structure is determined first 
by an average face, which is then applied to extracting feature of each face image. The 
performance of their scheme is compared with the traditional Gabor-based methods using a 
number of different benchmark databases. The AD-CWP method seems to outperform the 
Gabor-based schemes and it is computationally more efficient.  
The rest of the chapter is devoted to DWT-based face recognition tasks. We shall first give a 
short description of the DWT as a signal processing and analysis tool. We then describe the 
most common approaches to wavelet-based multi-stream face recognition.  

 
3. Wavelet Transforms 

The Wavelet Transform is a technique for analyzing finite-energy signals at multi-
resolutions. It provides an alternative tool for short time analysis of quasi-stationary signals, 
such as speech and image signals, in contrast to the traditional short-time Fourier transform. 
The one dimensional Continuous Wavelet Transform CWT of f(x) with respect to the 
wavelet (x) is defined as follows: 
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features such as the mean and variance are obtained by overlapping sub images (of a given 
original face image). These features are used to compose the HMM sequence and results 
show that the HMM-based face verification scheme, proposed by Bicego et al., outperforms 
other published results, [11].  
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Probabilistic Reasoning Model (PRM) method for classification. The Gabor transformed face 
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spectroface representation, their proposed face recognition system is tested on the Yale and 
Olivetti face databases. They report recognition accuracy of over 94% for rank1 matching, 
and over 98% for rank 3 matching.  
Another wavelet-based approach for face recognition has been investigated in terms of dual-
tree complex wavelets (DT-CW) techniques developed by N. G. Kingsbury, (see e.g. [24]). Y. 
Peng et al, [25], propose face recognition algorithm that is based on the use of an anisotropic 
dual-tree complex wavelet packets (ADT-CWP) for face representation. The ADT-CWP 
differs from the traditional DT-CW in that the decomposition structure is determined first 
by an average face, which is then applied to extracting feature of each face image. The 
performance of their scheme is compared with the traditional Gabor-based methods using a 
number of different benchmark databases. The AD-CWP method seems to outperform the 
Gabor-based schemes and it is computationally more efficient.  
The rest of the chapter is devoted to DWT-based face recognition tasks. We shall first give a 
short description of the DWT as a signal processing and analysis tool. We then describe the 
most common approaches to wavelet-based multi-stream face recognition.  

 
3. Wavelet Transforms 

The Wavelet Transform is a technique for analyzing finite-energy signals at multi-
resolutions. It provides an alternative tool for short time analysis of quasi-stationary signals, 
such as speech and image signals, in contrast to the traditional short-time Fourier transform. 
The one dimensional Continuous Wavelet Transform CWT of f(x) with respect to the 
wavelet (x) is defined as follows: 
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i.e. wavelet transform coefficients are defined as inner products of the function being 
transformed with each of the base functions j,k. The base functions are all obtained from a 
single wavelet function (x), called the mother wavelet, through an iterative process of 
scaling and shifting, i.e. 

).2(2)( 2
, ktt j

j

kj    

 
A wavelet function is a wave function that has a finite support and rapidly diminishes 
outside a small interval, i.e. its energy is concentrated in time. The computation of the DWT 
coefficients of a signal k does not require the use of the wavelet function, but by applying 
two Finite Impulse Response (FIR) filters, a high-pass filter h, and a low-pass filter g. This is 
known as the Mallat’s Algorithm. The output will be in two parts, the first of which is the 
detail coefficients (from the high-pass filter), and the second part is the approximation 
coefficients (from the low-pass filter). For more details see [26]. 
The Discrete Wavelet Transform (DWT) is a special case of the WT that provides a compact 
representation of a signal in time and frequency that can be computed very efficiently. The 
DWT is used to decompose a signal into frequency subbands at different scales. The signal 
can be perfectly reconstructed from these subband coefficients. Just as in the case of 
continuous wavelets, the DWT can be shown to be equivalent to filtering the input image 
with a bank of bandpass filters whose impulse responses are approximated by different 
scales of the same mother wavelet. It allows the decomposition of a signal by successive 
highpass and lowpass filtering of the time domain signal respectively, after sub-sampling by 
2. Consequently, a wavelet-transformed image is decomposed into a set of subbands with 
different resolutions each represented by a different frequency band. There are a number of 
different ways of doing that (i.e. applying a 2D-wavelet transform to an image). The most 
commonly used decomposition scheme is the pyramid scheme. At a resolution depth of k, 
the pyramidal scheme decomposes an image I into 3k +1 subbands, {LLk, LHk, HLk, HHk, 
LHk-1, HLk-1,…, LH1, HL1}, with LLk, being the lowest-pass subband, (see figure 3.1(a)).  
There are ample of wavelet filters that have been designed and used in the literature for 
various signal and image processing/analysis. However, for any wavelet filter, the LL 
subband is a smoothed version of original image and the best approximation to the original 
image with lower-dimensional space. It also contains highest-energy content within the four 
subbands. The subbands LH1, HL1, and HH1, contain finest scale wavelet coefficients, and 
the coefficients LLk get coarser as k increases. In fact, the histogram of the LL1-subband 
coefficients approximates the histogram of the original image in the spatial domain, while 
the wavelet coefficients in every other subband has a Laplace (also known as generalised 
Gaussian) distribution with  0 mean, see Figure 3.1(b). This property remains valid at all 
decomposition depth. Moreover, the furthest away a non-LL coefficient is from the mean in 
that subband, the more probable the corresponding position(s) in the original image have a 
significant feature, [27]. In fact the statistical properties of DWT non-LL subbands can be 
exploited for many image processing applications, including image/video compression, 
watermarking, content-based video indexing, and feature extraction.  
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Fig. 3.1. (a) The Multi-resolution Pyramid (b) An image, its WT to level 2 and subbands 
histograms. 

 
4. DWT – based Face recognition 

The LL subband of a wavelet transformed image corresponds to the low frequency 
components in both vertical and horizontal directions of the original image. Therefore, it is 
the low frequency subband of the original image. The subband LH corresponds to the low-
frequency component in the horizontal direction and high-frequency components in vertical 
direction. Therefore it holds the vertical edge details. Similar interpretation is made on the 
subbands HL and HH. These remarks together with our knowledge of structure of facial 
features provide a strong motivation and justification for investigating wavelet-based 
approaches to face recognition. In fact the variety of wavelet decomposition schemes and 
filter banks provide a very rich and a complex source of information that could be exploited 
to deal with the tough challenges and difficulties associated with face recognition in the 
presence of expression and extreme variations in lighting conditions.  
With appropriate pixel value scaling the low LL subband, displayed as an image, looks like 
a smoothing of the original image in the spatial domain (see Figure 3.1(b)). For efficiency 
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i.e. wavelet transform coefficients are defined as inner products of the function being 
transformed with each of the base functions j,k. The base functions are all obtained from a 
single wavelet function (x), called the mother wavelet, through an iterative process of 
scaling and shifting, i.e. 
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highpass and lowpass filtering of the time domain signal respectively, after sub-sampling by 
2. Consequently, a wavelet-transformed image is decomposed into a set of subbands with 
different resolutions each represented by a different frequency band. There are a number of 
different ways of doing that (i.e. applying a 2D-wavelet transform to an image). The most 
commonly used decomposition scheme is the pyramid scheme. At a resolution depth of k, 
the pyramidal scheme decomposes an image I into 3k +1 subbands, {LLk, LHk, HLk, HHk, 
LHk-1, HLk-1,…, LH1, HL1}, with LLk, being the lowest-pass subband, (see figure 3.1(a)).  
There are ample of wavelet filters that have been designed and used in the literature for 
various signal and image processing/analysis. However, for any wavelet filter, the LL 
subband is a smoothed version of original image and the best approximation to the original 
image with lower-dimensional space. It also contains highest-energy content within the four 
subbands. The subbands LH1, HL1, and HH1, contain finest scale wavelet coefficients, and 
the coefficients LLk get coarser as k increases. In fact, the histogram of the LL1-subband 
coefficients approximates the histogram of the original image in the spatial domain, while 
the wavelet coefficients in every other subband has a Laplace (also known as generalised 
Gaussian) distribution with  0 mean, see Figure 3.1(b). This property remains valid at all 
decomposition depth. Moreover, the furthest away a non-LL coefficient is from the mean in 
that subband, the more probable the corresponding position(s) in the original image have a 
significant feature, [27]. In fact the statistical properties of DWT non-LL subbands can be 
exploited for many image processing applications, including image/video compression, 
watermarking, content-based video indexing, and feature extraction.  
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features provide a strong motivation and justification for investigating wavelet-based 
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purposes and for reason of normalising image sizes, non-DWT based face recognition 
schemes such as PCA pre-process face images first by resizing/downsampling the images. 
In such cases, matching accuracy may suffer as a result of loss of information. The LL 
subbands of the face image, does provide a natural alternative to these pre-processing 
procedures and this has been the motivation for the earlier work on wavelet-based face 
recognition schemes that have mostly combined with LDA and PCA schemes (e.g. [10], [28], 
[29], [30], [31]). Below, we shall describe face recognition schemes, developed by our team, 
that are based on the PCA in a single wavelet subband and summarise the results of 
performance tests by such schemes for some benchmark face databases. We will also 
demonstrate that the use of the LL-subband itself as the face feature vector results in 
comparable or even higher accuracy rate. These investigations together with the success of 
biometric systems that are based on fusing multiple biometrics (otherwise known as multi-
modal biometrics) have motivated our work on multi-stream face recognition. This will be 
discussed in section 5.  

 
4.1 PCA in the Wavelet Domain 
Given the training set  of images, applying a wavelet transform on all images results in a 
set Wk() of multi-resolution decomposed images. Let Lk() be the set of all level-k low 
subbands corresponding to the set Wk(). Apply PCA on the set Lk() whose elements are 
the training vectors in the wavelet domain (i.e. LLk subbands). Note that each wavelet 
coefficient in the LLk subband is a function of 2kx2k pixels in the original image 
representing a scaled total energy in the block. Figure 3.2, below, shows the first 4 eigenfaces 
obtained from a dataset of images in the spatial domain as well as in the low subbands at 
levels 1 and 2 using the Haar wavelet filter. There are no apparent differences between the 
eigenfaces in the spatial domain and those in the wavelet domain. 

 

 

 

 

 
Fig. 3.2. Eigenfaces in (a) spatial domain, (b) LL1, and (c) LL2 
 
Diagram1, below, illustrates the enrolment and matching steps which will cover face 
recognition in the wavelet domain with and without the application of PCA. The diagram 
applies equally to any wavelet subband including the high frequency ones.  
There are many different wavelet filters to use in the transformation stage, and the choice of 
the filter would have some influence on the accuracy rate of the PCA in the wavelet domain. 
The experiments are designed to test the effect of the choice of using PCA or not, the choice 
of wavelet filter, and the depth of decomposition. The performance of the various possible 
schemes have been tested for a number of benchmark databases including ORL (also known 
as AT&T see http://www.uk.research.att.com/facedatabase.html), and the controlled 

section of the BANCA, [32]. These datasets of face images do not involve significant 
variation in illumination. The problem of image quality is investigated in section 6. Next we 
present a small, but representative, sample of the experimental results for few wavelet 
filters.  

 

  
 

 

 

 

 

 

 

 

 

 
Diagram 3.1 Verification scheme. 
 
The ORL Experiments.  

 Enrolment/Training module There are 40 subjects in ORL. In the first instance, we 
split the subjects into two equal groups: Group1 and Group2. For each group we 
trained the system with 4 different sets of five images for each subject. These sets 
were, respectively, frames 1-5, frames 6-10, even indexed frames and odd indexed 
frames. In total, we conducted 8 different training sessions for these groups.  

 The Testing Module. In each of the training sessions that consisted of 20 subjects, the 
remaining 100 images of the trained subjects as well as 100 impostor images (5 
images per subject, selected in the same way as in the training scheme) were used to 
test the many-to-one identification schemes.  

Chart 3.1, below, contains the test results of experiments that were designed to test the 
verification accuracy when the Haar wavelet filter is used to different level of 
decompositions. It shows the average accuracy rates for the various identification schemes 
measured using different number of eigenfaces (20, 30, 40 and 50) for the schemes that 
involve the use of PCA. The results indicate that regardless of the number of eigenvalues 
chosen, PCA in the LL subbands outperform the PCA in the spatial domain, and LL3 is the 
best performing subband in this case. Moreover, the wavelet LL3 scheme without the PCA 
achieves the best performance. Another interesting observation, not explicit in this chart, is 
that the accuracy rates for the various training schemes vary widely around the stated 
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purposes and for reason of normalising image sizes, non-DWT based face recognition 
schemes such as PCA pre-process face images first by resizing/downsampling the images. 
In such cases, matching accuracy may suffer as a result of loss of information. The LL 
subbands of the face image, does provide a natural alternative to these pre-processing 
procedures and this has been the motivation for the earlier work on wavelet-based face 
recognition schemes that have mostly combined with LDA and PCA schemes (e.g. [10], [28], 
[29], [30], [31]). Below, we shall describe face recognition schemes, developed by our team, 
that are based on the PCA in a single wavelet subband and summarise the results of 
performance tests by such schemes for some benchmark face databases. We will also 
demonstrate that the use of the LL-subband itself as the face feature vector results in 
comparable or even higher accuracy rate. These investigations together with the success of 
biometric systems that are based on fusing multiple biometrics (otherwise known as multi-
modal biometrics) have motivated our work on multi-stream face recognition. This will be 
discussed in section 5.  

 
4.1 PCA in the Wavelet Domain 
Given the training set  of images, applying a wavelet transform on all images results in a 
set Wk() of multi-resolution decomposed images. Let Lk() be the set of all level-k low 
subbands corresponding to the set Wk(). Apply PCA on the set Lk() whose elements are 
the training vectors in the wavelet domain (i.e. LLk subbands). Note that each wavelet 
coefficient in the LLk subband is a function of 2kx2k pixels in the original image 
representing a scaled total energy in the block. Figure 3.2, below, shows the first 4 eigenfaces 
obtained from a dataset of images in the spatial domain as well as in the low subbands at 
levels 1 and 2 using the Haar wavelet filter. There are no apparent differences between the 
eigenfaces in the spatial domain and those in the wavelet domain. 
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Diagram1, below, illustrates the enrolment and matching steps which will cover face 
recognition in the wavelet domain with and without the application of PCA. The diagram 
applies equally to any wavelet subband including the high frequency ones.  
There are many different wavelet filters to use in the transformation stage, and the choice of 
the filter would have some influence on the accuracy rate of the PCA in the wavelet domain. 
The experiments are designed to test the effect of the choice of using PCA or not, the choice 
of wavelet filter, and the depth of decomposition. The performance of the various possible 
schemes have been tested for a number of benchmark databases including ORL (also known 
as AT&T see http://www.uk.research.att.com/facedatabase.html), and the controlled 

section of the BANCA, [32]. These datasets of face images do not involve significant 
variation in illumination. The problem of image quality is investigated in section 6. Next we 
present a small, but representative, sample of the experimental results for few wavelet 
filters.  
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split the subjects into two equal groups: Group1 and Group2. For each group we 
trained the system with 4 different sets of five images for each subject. These sets 
were, respectively, frames 1-5, frames 6-10, even indexed frames and odd indexed 
frames. In total, we conducted 8 different training sessions for these groups.  

 The Testing Module. In each of the training sessions that consisted of 20 subjects, the 
remaining 100 images of the trained subjects as well as 100 impostor images (5 
images per subject, selected in the same way as in the training scheme) were used to 
test the many-to-one identification schemes.  

Chart 3.1, below, contains the test results of experiments that were designed to test the 
verification accuracy when the Haar wavelet filter is used to different level of 
decompositions. It shows the average accuracy rates for the various identification schemes 
measured using different number of eigenfaces (20, 30, 40 and 50) for the schemes that 
involve the use of PCA. The results indicate that regardless of the number of eigenvalues 
chosen, PCA in the LL subbands outperform the PCA in the spatial domain, and LL3 is the 
best performing subband in this case. Moreover, the wavelet LL3 scheme without the PCA 
achieves the best performance. Another interesting observation, not explicit in this chart, is 
that the accuracy rates for the various training schemes vary widely around the stated 

Verification stage

com
pare using a 

sim
ilarity m

easure 

new  
face image 

projection onto 
Eigenspace 

k training face 
images 

multi-stage 
DWT  

PCA  

set of 
feature vectors  

set of 
Eigenfaces 

Enrolment stage

multi-stage 
DWT  feature vector 



Face	Recognition108

averages, indicating that accuracy can be improved further by making a careful choice of the 
training images for the enrolled subjects.  

 

 

 

 

 

 

 

 
Chart 3.1. Identification accuracy for Spatial PCA, Wavelet PCA, and Wavelet-only features 
 
The superior performance of the wavelet-only scheme compared to the other schemes, has 
desirable implication beyond the computational efficiency. While most conventional face 
recognition schemes require model/subspace training, wavelet-based recognition schemes 
can be developed without the need for training, i.e. adding/removing classes do not require 
rebuilding the model from scratch. 
Jen-Tzung Chien etal ([10]) who used all the 40 subjects of ORL to test the performance of a 
number of recognition schemes including some of the wavelet-based ones investigated here. 
In those experiments, there were no impostors, i.e. untrained subjects. Thus we conducted 
experiments where all the 40 subjects were used for training. We trained the system 4 times 
each with a set of 5 different frames and in each case the remaining 200 images (5 frames for 
each subject) in the database were used for testing.. On average, all schemes have more or 
less achieved similar accuracy rate of approximately 89%. Similar experiments with 35 
trained subjects, the rest being impostors, have been conducted but in all cases the results 
were similar to those shown above.  
Chart 3.2 contains the results of verifications rather identifications. The experiments were 
carried out to test the performance of wavelet-based verification schemes, again with and 
without PCA. Here, two filters were used, the Haar as well as the Daubechies 4 wavelets, 
and in the case of Daubechies 4 we used two versions whereby the coefficients are scaled for 
normalisation in the so called Scaled D3/d4. The results confirmed again the superiority of 
PCA in the wavelet domain over PCA in the spatial, and the best performance was obtained 
when no PCA was applied. The choice of filter does not seem to make much difference at 
level 3, but Haar outperforms both versions of Daubechies 4.  
The superiority of the PCA in the wavelet domain over the PCA in the spatial domain can 
be explained in terms of the poor within class variation of PCA and the properties of the 
linear transform defined by the low-pass wavelet filter. The low-pass filter defines a 
contraction mapping of the linear space of the spatial domain into the space where LL 
subbands resides (i.e. for any two images the distance between the LL-subbands of two 
images is less than that between the original images). This can easily be proven for the Haar 
filter. This will help reduce the within class variation. 
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Chart 3.2.Verification accuracy for Spatial PCA, Wavelet PCA, and Wavelet-only features 
 
The trend in, and the conclusions from these experiments are confirmed by other published 
data. For example, C.G.Feng et al, [33] have tested and compared the performance of PCA in 
the spatial domain and in wavelet subbands at different levels for the Yale database. Table 
3.2, below, reports the recognition accuracy for the Daubechies 4 filter and confirms our 
conclusions. Note that the inter-class separation experiment in [33] can be seen to 
demonstrate that the contraction mapping nature of the low-pass filter transformation does 
not have adverse impact on the inter-class separation.  

Method 
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PCA on 
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Image 

PCA on WT 
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Image 

Proposed 
Method 

(PCA on WT 
subband 4 

image) 

Accuracy 78.78% 75.75% 83.03% 81.18% 85.45% 

Table 3.2 ¥. Performance comparison using Yale database 

 
5. Multi-stream face Recognition 

A wavelet transformed image is decomposed into a set of frequency subbands with different 
resolutions. Each frequency subband gives rise to a different feature vector representation of 
the face and has the potential to be used for recognition. The performances of such schemes 
vary significantly depending on many factors including the chosen wavelet filter, the depth 
of decomposition, the similarity measure, the sort of processing that the corresponding 
coefficients are subjected to, and the properties of subband as described at the end of section 
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averages, indicating that accuracy can be improved further by making a careful choice of the 
training images for the enrolled subjects.  

 

 

 

 

 

 

 

 
Chart 3.1. Identification accuracy for Spatial PCA, Wavelet PCA, and Wavelet-only features 
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face in different way, makes them perfect candidates for fusion without costly procedures. 
Diagram 2, below, depicts the stages of the wavelet based multi-stream face recognition for 
3 subbands at level 1, but this could be adopted for any set of subbands at any level of 
decomposition.  

 

Diagram 2. Multi-stream Wavelet face recognition scheme 
 
In this section we shall investigate the viability of fusing these streams as a way of 
improving the accuracy of wavelet-based face recognition. We shall establish that the fusion 
of multiple streams of wavelet-based face schemes does indeed help significantly improve 
single stream face recognition. We have mainly experimented with the score fusion of 
wavelet subbands at one decomposition depth. Limited experiments with other level of 
fusion did not achieve encouraging results.  
The experiments reported here are based on the performance of the multi-stream face 
wavelet recognition for databases that involve face images/videos captured under varying 
recording conditions and by cameras of different qualities. These databases are the Yale 
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conducted on the PDAtabase audio-visual database of videos recorded on a PDA within the 
SecurePhone EU-funded project (www.secure-phone.info).  
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the best performing face recognition schemes reported in Yang, [34], and Belhuemer et al, 
[35]. These results demonstrate that among the single subband streams, the LH3 is the best 
performing one. The multi-stream fusion of the three subbands for all but one weight 
configuration outperform the best single stream scheme, illustrating the conclusion that the 
multi-stream approach yields improved performance. Comparing the results with those 
from the state of the art schemes reported in [14] and [26] shows that the multi-steam fusion 
of the two single streams LH3 and HL3 subbands outperform all but 3 of the SOTA 
schemes. One can predict with confidence that the multi-stream fusing of several subbands 
at different level of decomposition would result in significantly improved performance.  
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Table 5.1. Fusion Experiments – Yale database 
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face in different way, makes them perfect candidates for fusion without costly procedures. 
Diagram 2, below, depicts the stages of the wavelet based multi-stream face recognition for 
3 subbands at level 1, but this could be adopted for any set of subbands at any level of 
decomposition.  
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uttering a true-client text while in the second clip he/she acts as an impostor uttering a text 
belonging to another subject. The 12 sessions are divided into 3 groups:  

 the controlled group – sessions 1-4 (high quality camera, controlled environment 
and a uniform background) 

 the degraded group – sessions 5-8 (in an office using a low quality web camera in 
uncontrolled environment). 

 the adverse group – sessions 9-12 (high quality camera, uncontrolled environment) 

For the G evaluation protocol, the true client recordings from session 1, 5, and 9 were used 
for enrolment and from each clip 7 random frames were selected to generate the client 
templates. True-client recordings from sessions 2, 3, 4, 6, 7, 8, 10, 11, and 12 (9 videos) were 
used for testing the identification accuracy. From each test video, we selected 3 frames and 
the minimum score for these frames in each stream was taken as the score of the tested 
video in the respective stream. In total, 468 tests were conducted. Identification accuracies of 
single streams (first 3 rows) and multi-stream approaches for the G protocol are shown in 
Table 5.2. Across all ranks the LH-subband scheme significantly outperformed all other 
single streams. The multi-stream fusion of the 3 streams outperformed the best single stream 
(i.e. the LH subband) by a noticeable percentage. The best performing multi-stream schemes 
are mainly the ones that give >0.5 weight to the LH subband and lower weight to the LL-
subband. Again these experiments confirm the success of the multi-stream approach.  
 

Weights Identification Accuracy for Rank n for G test configuration 
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84.62 
84.83 
93.38 

85.47 
85.68 
94.44 

86.54 
87.18 
95.09 

87.61 
87.82 
95.94 

0.20 
0.20 
0.25 
0.10 
0.10 

0.20 
0.30 
0.35 
0.30 
0.20 

0.60 
0.50 
0.40 
0.60 
0.70 

76.28 
76.07 
74.15 
76.71 
75.00 

85.47 
83.12 
81.62 
85.90 
85.68 

88.89 
88.46 
87.61 
89.32 
88.89 

90.81 
91.45 
89.74 
92.09 
92.74 

92.74 
93.38 
91.24 
93.16 
94.02 

93.38 
93.80 
92.31 
93.80 
94.23 

94.44 
95.09 
92.95 
94.87 
94.44 

95.73 
95.30 
94.66 
95.51 
95.09 

96.37 
95.73 
95.30 
96.37 
96.15 

96.79 
96.15 
95.30 
96.79 
96.58 

Table 5.2 Rank based results for single and multi-stream identification using test protocol G 

 
6. Quality-based Adaptive face Recognition 

The performance of most face recognition schemes including those mentioned earlier 
deteriorates when tested in uncontrolled conditions when compared to their performance 
under normal recording conditions. These effects are often the result of external factors such 
as extreme variations in illumination, expression, and occlusion. To deal with varying 
recording conditions, most existing schemes adopt normalization procedures that are 
applied irrespective of the recording conditions at the time of recording. Such strategies are 
known to improve accuracy in adverse conditions at the expense of deteriorated 
performance in somewhat normal recording conditions that generate well/reasonably lit 
images, and thereby yielding little or no improved overall accuracy. This section focuses on 

the development of adaptive approaches to deal with such variations, whereby the 
application of normalisation procedures will be based on certain criteria on image quality 
that are detected automatically at the time of recording. We shall describe some quantitative 
quality measures that have been incorporated in adaptive face recognition systems in the 
presence of extreme variation in illumination. We shall present experimental results in 
support of using these measures to control the application of light normalisation procedures 
as well as dynamic fusion of multi-stream wavelet face recognition whereby the fusion 
weighting become dependent on quality measures. 

 
6.1. QUALITY ASESSMENT MEASURES 
Quality measures play an important role in improving the performance of biometric 
systems. There has been increasing interest by researchers in using quality information to 
make more robust and reliable recognition systems (e.g. [36], [37], [38], [39], [40]). Quality 
measures can be classified as modality-dependent and modality-independent. Modality 
dependent measures (such as pose or expression) can be used for face biometric only, while 
modality-independent measures such as (contrast and sharpness) can be used for any 
modality because they do not need any knowledge about the specific biometric. For multi-
modal and multi-streams biometrics, there is a need to combine the various trait/stream 
quality measures to build adaptive weighting associated with the matching scores produced 
by their individual matchers, ([41], [42]). Quality measures can also be classified in terms of 
the availability of reference information: full reference, reduced reference, and no reference 
quality assessment approaches, ([43]). 
Face image quality measures must reflect some or all aspects variation from a “norm” in 
terms of lighting, expression, pose, contrast, eyes location, mouth location, ears location, 
blur and so forth, ([44], [45]). New quality measures based on wavelets have been developed 
for different biometrics, [46]. Here, we will focus on image quality measures as a result of 
variation in lighting conditions and its use for improving performance of face recognition 
and dynamic fusion of multi-streams.  
 
UNIVERSAL IMAGE QUALITY INDEX 
Illumination image quality measures must either reflect luminance distortion of any image 
in comparison to a known reference image, or regional variation within the image itself. The 
universal image quality index (Q) proposed by Wand and Bovik,[47] incorporates a 
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uttering a true-client text while in the second clip he/she acts as an impostor uttering a text 
belonging to another subject. The 12 sessions are divided into 3 groups:  

 the controlled group – sessions 1-4 (high quality camera, controlled environment 
and a uniform background) 

 the degraded group – sessions 5-8 (in an office using a low quality web camera in 
uncontrolled environment). 

 the adverse group – sessions 9-12 (high quality camera, uncontrolled environment) 

For the G evaluation protocol, the true client recordings from session 1, 5, and 9 were used 
for enrolment and from each clip 7 random frames were selected to generate the client 
templates. True-client recordings from sessions 2, 3, 4, 6, 7, 8, 10, 11, and 12 (9 videos) were 
used for testing the identification accuracy. From each test video, we selected 3 frames and 
the minimum score for these frames in each stream was taken as the score of the tested 
video in the respective stream. In total, 468 tests were conducted. Identification accuracies of 
single streams (first 3 rows) and multi-stream approaches for the G protocol are shown in 
Table 5.2. Across all ranks the LH-subband scheme significantly outperformed all other 
single streams. The multi-stream fusion of the 3 streams outperformed the best single stream 
(i.e. the LH subband) by a noticeable percentage. The best performing multi-stream schemes 
are mainly the ones that give >0.5 weight to the LH subband and lower weight to the LL-
subband. Again these experiments confirm the success of the multi-stream approach.  
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It models any distortion as a combination of three components: loss of correlation, 
luminance distortion, and contrast distortion. In fact, Q is the product of three quality 
measures reflecting these three components:  
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The luminance quality index is defined as the distortion component:   
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In practice, the LQI of an image with respect to another reference image is calculated for 
each window of size 8x8 pixels in the two images, and the average of the calculated values 
defines the LQI of the entire image. The LQI is also referred to as the Global LQI as opposed 
to regional LQI, when the image is divided into regions and the LQI is calculated for each 
region separately, [48]. 
The distribution of LQI values for the images in the different subsets of the Extended Yale B 
database reveal an interesting, though not surprising, pattern. There is a clear separation 
between the images in sets 1 and 2, where all images have LQI values > 0.84, and those in 
sets 4 and 5 where all LQI vales < 0.78. Images in set 3 of the database have LQI values in 
the range 0.5 to 0.95.  
The use of LQI with a fixed reference image that has a perceptually good illumination 
quality investigated as a pre-processing procedure prior to single-stream and multi-streams 
wavelet-based face recognition schemes, for adaptive face recognition schemes with 
improved performance over the non-adaptive schemes.  
In the case of multi-streams schemes, a regional version of LQI index is used to adapt the 
fusion weights, [48]. A. Aboud et al, [37], have further developed this approach and 
designed adaptive illumination normalization without a reference image. We shall now 
discuss these approaches in more details and present experimental evidences on their 
success. 
In order to test the performance of the developed adaptive schemes, the relevant 
experiments were conducted on the Extended Yale database, [49], which incorporates 
extreme variations in illumination recording condition. The cropped frontal face images of 
the extended Yale B database provide a perfect testing platform and framework for 
illumination based image quality analysis and for testing the viability of adaptive face 
recognition scheme. The database includes 38 subjects each having 64 images, in frontal 
pose, captured under different illumination conditions. In total number there are 2414 
images. The images in the database are divided into five subsets according to the direction 
of the light-source from the camera axis as shown in Table 6.1.  

Subsets Angles Image Numbers 
1  < 12 263 
2 20 <  < 25  456 
3 35 <  < 50 455 
4 60 <  < 77 526 
5 85 <  < 130 714 

Table 6.1 Different illumination sets in the extended Yale B database 
 
Samples of images for the same subject taken from different subsets of the Extended Yale B 
database are shown in Figure 6.1. LQI values are respectively 1, 0.9838, 0.8090, 0.4306, and 
0.2213. 

 
(a) Subset 1                (b) Subset 2                  (c) Subset 3 

 
(d) Subset 4            (e) Subset 5 

Fig. 6.1. Sample images from different subsets in the Extended Yale B. 

 
6.2. LQI–based Adaptive illumination normalization for face recognition.  
Histogram Equalisation (HE) has been used as a mean to improve face recognition when the 
sample image suffers from poor illumination. In extreme cases when the presented sample 
is poorly illuminated HE improves the chance of recognition, but there are side effects and 
there are evidences that HE does reduce image quality and recognition accuracy in the cases 
of well lit images. An analysis of the effect of HE on the recognition accuracy of the various 
single-subband wavelet face recognition schemes for the different subsets of images in the 
Extended Yale B database has confirmed these conclusions, ([36], [50]). For the three level 2 
wavelet subbands (LL2, LH2, and HL2), applying HE yields a reasonable-to-significant 
improvement in accuracy for sets 4 and 5; while the accuracy dropped as a result of HE 
application for sets 1, 2 and 3. What is also interesting, in this regard, is that as a result of the 
application of HE the values of LQI improved significantly for images in sets 4 and 5 but to 
a much lesser extent in set 3, while the LQI values in sets 1 and 2 has deteriorated greatly. 
The LQI of all images in sets 4 and 5 after HE became > 0.78.  
These observation and the remarks, at the end of the section 6.1 provide the perfect 
threshold adopted by Sellahewa et al, [36], for the first Image quality based adaptive 
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It models any distortion as a combination of three components: loss of correlation, 
luminance distortion, and contrast distortion. In fact, Q is the product of three quality 
measures reflecting these three components:  

         .
22

2

2
)(

2
)(

2
.),(

yx

yx

yx

yx

yx

xy
YXQ















       (2) 

The luminance quality index is defined as the distortion component:   
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In practice, the LQI of an image with respect to another reference image is calculated for 
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application of HE the values of LQI improved significantly for images in sets 4 and 5 but to 
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These observation and the remarks, at the end of the section 6.1 provide the perfect 
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illumination normalisation procedure and the adaptive face recognition. The use of the 
threshold of 0.8 for LQI below which HE is applied, has led to improved face recognition in 
the different single subband streams as well as in the multi-stream cases. The improvement 
was across all subsets but to varying degrees and more significantly in sets 4 and 5, (for 
more details see [36]). The identification error rates for some multi-stream wavelet schemes 
will be presented and discussed in the last subsection. AHE refers to this LQI-based 
adaptive use of HE.  

 
6.3 No-Reference Quality Index 
The choice of reference image for image quality assessment is a factor that may affect the 
adaptive normalisation procedures and it may not be a simple task. Defining image quality 
measures without a reference image is a desirable task and more so for illumination 
assessment in relation to face images. The frontal pose of a human face is more or less 
symmetric; hence it is easy to design a symmetric version of the LQI without the need for a 
reference image. A without a reference luminance quality measure, can be defined in a two 
steps process, where in the first step the LQI for the left half of a face image is measured 
with reference to its right half and the second step uses a form of histogram partitioning that 
aims to measure some aspects of distortion from normal face histogram.  
 
Step 1. The symmetric adaptive local quality index (SALQI). For a face image (I), SALQI is 
defined as follows: 

1. Divide I into left and right half sub-images, IL and IR respectively, and let IFR be the 
horizontal flipping of IR.  

2. Starting from the top left corner, use equation (3), above, to compute LQI of the 8x8 
windows in IFR with respect to the corresponding windows in IL, as indicated 
below 

            
3. After calculating the quality map {mi =LQIi: i=1,….,N}, a pooling strategy as 

indicated in equations (4) and (5) to calculate the final quality-score of the image (I) 
as a weighted average of the mi’s:   

       
 


 N
i iw

N

i iwim
Q

1

1
*

     (4) 

 where, ,),( iyixgiw  and   C
yx

yxg 
22

),(      (5) 

Here, ix = I L,i  and yi  = I FR,i , where  I FR,i is the mirrored block of  I L,i  of a row. The C is a 
constant representing a baseline minimal weight. The value range of SALQI is [0, 1] and its 
equals 1 if and only if the image is perfectly symmetrically illuminated. 
 
Step 2. The Middle Half index (MH). The SALQI provides an indication of how 
symmetrical the light is distributed, but it does not distinguish between a well-lit face 
images from an evenly dark image. SALQI produces high quality scores for such images. To 
overcome this problem we use histogram partitioning: A good quality image normally has a 
dynamic range covering the full grey scale and its histogram covers well the middle part. 
The MH index is thus defined as: 

   
DarkBright

Middle
MH


    (6) 

Where, Middle = No. of pixels in the middle range between a Lower bound LB 
and an Upper bound UB, 

Bright = No. of pixels in the bright region of the histogram greater than 
UB,  
Dark = No. of pixels in the dark region of the histogram less than LB, 

Examining a number of so-called normal images, the LB and UB are set at 63 and 243, 
respectively. The MH value ranges from 0 to Max = (M/2), where M is the size of the image. 
The larger MH is, the better the quality is. Its maximum value depends on the image 
dataset.  

 
6.4 The Symmetric Adaptive Histogram Equalisation (SAHE) 
This is another adaptive scheme that uses both the SALQI and MH values to control the use 
of HE. Chart 6.1 displays the distribution of image LQI, SALQI and MH indices in the 
various subsets of the extended Yale B data base before and after the application of HE, 
AHE, SALQI version of AHE, and the full SAHE. For subset 1 and subset 2, we see that the 
application of HE results in deterioration in quality, and both AHE and MH maintain the 
same original quality. This confirms that for well lit images that exhibit similar illumination 
characteristics to those in subsets 1 and 2 (i.e. SALQI > 0.65) no normalisation is needed. The 
other 3 subsets benefit, to varying degrees, from pre-processing. But they benefit more from 
the full version of SAHE which includes the use of MH.  
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illumination normalisation procedure and the adaptive face recognition. The use of the 
threshold of 0.8 for LQI below which HE is applied, has led to improved face recognition in 
the different single subband streams as well as in the multi-stream cases. The improvement 
was across all subsets but to varying degrees and more significantly in sets 4 and 5, (for 
more details see [36]). The identification error rates for some multi-stream wavelet schemes 
will be presented and discussed in the last subsection. AHE refers to this LQI-based 
adaptive use of HE.  

 
6.3 No-Reference Quality Index 
The choice of reference image for image quality assessment is a factor that may affect the 
adaptive normalisation procedures and it may not be a simple task. Defining image quality 
measures without a reference image is a desirable task and more so for illumination 
assessment in relation to face images. The frontal pose of a human face is more or less 
symmetric; hence it is easy to design a symmetric version of the LQI without the need for a 
reference image. A without a reference luminance quality measure, can be defined in a two 
steps process, where in the first step the LQI for the left half of a face image is measured 
with reference to its right half and the second step uses a form of histogram partitioning that 
aims to measure some aspects of distortion from normal face histogram.  
 
Step 1. The symmetric adaptive local quality index (SALQI). For a face image (I), SALQI is 
defined as follows: 

1. Divide I into left and right half sub-images, IL and IR respectively, and let IFR be the 
horizontal flipping of IR.  

2. Starting from the top left corner, use equation (3), above, to compute LQI of the 8x8 
windows in IFR with respect to the corresponding windows in IL, as indicated 
below 

            
3. After calculating the quality map {mi =LQIi: i=1,….,N}, a pooling strategy as 

indicated in equations (4) and (5) to calculate the final quality-score of the image (I) 
as a weighted average of the mi’s:   
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Here, ix = I L,i  and yi  = I FR,i , where  I FR,i is the mirrored block of  I L,i  of a row. The C is a 
constant representing a baseline minimal weight. The value range of SALQI is [0, 1] and its 
equals 1 if and only if the image is perfectly symmetrically illuminated. 
 
Step 2. The Middle Half index (MH). The SALQI provides an indication of how 
symmetrical the light is distributed, but it does not distinguish between a well-lit face 
images from an evenly dark image. SALQI produces high quality scores for such images. To 
overcome this problem we use histogram partitioning: A good quality image normally has a 
dynamic range covering the full grey scale and its histogram covers well the middle part. 
The MH index is thus defined as: 
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Where, Middle = No. of pixels in the middle range between a Lower bound LB 
and an Upper bound UB, 

Bright = No. of pixels in the bright region of the histogram greater than 
UB,  
Dark = No. of pixels in the dark region of the histogram less than LB, 

Examining a number of so-called normal images, the LB and UB are set at 63 and 243, 
respectively. The MH value ranges from 0 to Max = (M/2), where M is the size of the image. 
The larger MH is, the better the quality is. Its maximum value depends on the image 
dataset.  

 
6.4 The Symmetric Adaptive Histogram Equalisation (SAHE) 
This is another adaptive scheme that uses both the SALQI and MH values to control the use 
of HE. Chart 6.1 displays the distribution of image LQI, SALQI and MH indices in the 
various subsets of the extended Yale B data base before and after the application of HE, 
AHE, SALQI version of AHE, and the full SAHE. For subset 1 and subset 2, we see that the 
application of HE results in deterioration in quality, and both AHE and MH maintain the 
same original quality. This confirms that for well lit images that exhibit similar illumination 
characteristics to those in subsets 1 and 2 (i.e. SALQI > 0.65) no normalisation is needed. The 
other 3 subsets benefit, to varying degrees, from pre-processing. But they benefit more from 
the full version of SAHE which includes the use of MH.  
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Charts 6.1. Distribution of for extended Yale B database before and after various 
normalisation. 
 
A. Aboud et al in [37] have tested the performance of an SAHE-adaptive wavelet-based face 
recognition scheme in comparison with the corresponding versions with no normalization, 
and with the LQI-based adaptive which only used a single threshold (approx. 0.8). In the 
corresponding experiments, two different wavelets are used: Daubechie-1 (i.e Haar), and 
Daubechie-2 (also known as Daub 4), at three decomposition levels. Again the testing was 
based on the Extended Yale B database. The dataset are divided into two groups: training 
set and testing set. The training set has (38) images, one image per subject which is chosen to 
be (P00A+000E+00). The testing set consists of all the remaining (2394) images, i.e. 63 images 
per subject. Different values of SALQI and MH quality indices have been used as thresholds 
for SAHE approach. Recognition results, displayed in Figure 6.2, show that the LH2 
subband gives the best results under varying illumination and the error rate for the SAHE 
with SALQI <0.6, is about 0.30% less than what was achieved by the LQI–based AHE 
application. However, SAHE resulted in slightly increased error rates for subset 3 images 
while reduced the errors of subset 4 and subset 5. The results for LL2 features are 
significantly better, although these error rates are much higher than the errors with LH2.  
 
 
 
 
 
 
 
 
 
 

 
 
 
  
 
 
 
      
 
 
 
 
 
Fig. 6.4 Symmetrical Adaptive Histogram Equalization Algorithm 
 
      No  
pre-process 8.89 18.20 83.30 95.82 97.20 70.71 

  No  
pre-process 8.00 0.00 30.55 71.10 95.24 50.97 

 HE, ZN 3.11 25.88 70.99 90.11 85.57 64.52  HE, ZN 7.56 0.44 17.58 26.62 14.15 14.31 
AHE, LQI <      
        0.80 2.67 22.81 69.01 90.11 84.03 63.05 

AHE, LQI <    
      0.80 7.11 0 11.65 20.34 11.76 10.94 

SAHE, SALQI 
<  
        0.60 2.67 7.89 37.8 73.76 76.61 48.36 

SAHE, 
SALQI <    
        0.60 7.11 0 12.97 18.25 11.34 10.61 

SAHE, SALQI 
<  
        0.70 2.67 7.89 38.02 73.76 76.47 48.36 

SAHE, 
SALQI <  
        0.70 7.11 0 12.97 18.63 11.48 10.73 

SAHE, SALQI 
<  
        0.80 2.67 20.83 40 73.76 76.47 51.22 

SAHE, 
SALQI <    
        0.80 7.11 0 12.53 18.44 12.32 10.86 

SAHE, SALQI 
<   
        0.90 2.67 7.89 38.24 75.1 76.05 48.57 

SAHE, 
SALQI <   
        0.90 7.11 0 12.75 18.63 11.34 10.65 

(a) Wavelet Haar, suband: LL2                                (b) Wavelet Haar, suband: LH2 

 Set1 Set2 Set3 Set4 Set5 All   Set1 Set2 Set3 Set4 Set5 All 
      No  
pre-process 8.44 14.25 80.66 95.63 97.20 69.36 

 No  
pre-process 14.67 0 35.60 66.35 89.64 49.83 

 HE, ZN 1.78 20.83 67.47 90.30 85.71 62.84  HE, ZN 13.33 0 24.84 28.33 18.35 17.80 
AHE, LQI <   
        0.80 0.89 17.54 64.84 90.87 84.45 61.36 

AHE, LQI <   
      0.80 13.33 0 21.76 22.24 16.11 15.19 

SAHE, 
SALQI <    
        0.60 0.89 4.61 30.99 72.05 77.03 46 

SAHE, 
SALQI <    
        0.60 13.33 0 20.22 21.48 15.83 14.65 

SAHE, 
SALQI <  
        0.70 0.89 4.61 31.21 71.86 76.89 45.96 

SAHE, 
SALQI <  
        0.70 13.33 0 20.22 21.48 15.83 14.65 

SAHE, 
SALQI <  
        0.80 0.89 15.79 33.19 72.05 77.03 48.57 

SAHE, 
SALQI <    
        0.80 13.33 0 20.66 21.48 16.39 14.90 

SAHE, 
SALQI <   
        0.90 0.89 4.61 31.43 73.38 76.47 46.21 

SAHE, 
SALQI <   
        0.90 13.33 0 20.22 21.29 15.69 14.56 

(c) Wavelet Daub 4, suband: LL2                             (d) Wavelet Daub4, suband: LH2 
Table 6.2 Identification error rates of wavelet-based face recognition system 

1. Calculate the quality scores for the image (I) using ( SALQI ) and ( MH ) 
2. If (SALQI < Thershold1) and (MH < Threshold 2) Then 

       IF (MH < Thershold3) Then  {Apply normalization algorithm on the whole image (I)} 
       Else if  (MH >= Thershold3) Then 

a. Apply HE on the left region of image (I) and compute SALQI 
b. Apply HE on the right region of image (I) and compute SALQI 
c. Apply HE on left and right regions of the image (I) and compute SALQI 
Select the case that has higher SALQI value 

                        End if 
         3.  Else if  ( SALQI >= Thershold1 )  and  ( MH >= Thershold2 ) Then 

{Do not apply histogram normalization algorithm on image (I)} 
     4. End if 
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Fig. 6.4 Symmetrical Adaptive Histogram Equalization Algorithm 
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 HE, ZN 3.11 25.88 70.99 90.11 85.57 64.52  HE, ZN 7.56 0.44 17.58 26.62 14.15 14.31 
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        0.80 2.67 22.81 69.01 90.11 84.03 63.05 
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        0.70 2.67 7.89 38.02 73.76 76.47 48.36 
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        0.70 7.11 0 12.97 18.63 11.48 10.73 

SAHE, SALQI 
<  
        0.80 2.67 20.83 40 73.76 76.47 51.22 

SAHE, 
SALQI <    
        0.80 7.11 0 12.53 18.44 12.32 10.86 

SAHE, SALQI 
<   
        0.90 2.67 7.89 38.24 75.1 76.05 48.57 

SAHE, 
SALQI <   
        0.90 7.11 0 12.75 18.63 11.34 10.65 

(a) Wavelet Haar, suband: LL2                                (b) Wavelet Haar, suband: LH2 

 Set1 Set2 Set3 Set4 Set5 All   Set1 Set2 Set3 Set4 Set5 All 
      No  
pre-process 8.44 14.25 80.66 95.63 97.20 69.36 

 No  
pre-process 14.67 0 35.60 66.35 89.64 49.83 

 HE, ZN 1.78 20.83 67.47 90.30 85.71 62.84  HE, ZN 13.33 0 24.84 28.33 18.35 17.80 
AHE, LQI <   
        0.80 0.89 17.54 64.84 90.87 84.45 61.36 

AHE, LQI <   
      0.80 13.33 0 21.76 22.24 16.11 15.19 

SAHE, 
SALQI <    
        0.60 0.89 4.61 30.99 72.05 77.03 46 

SAHE, 
SALQI <    
        0.60 13.33 0 20.22 21.48 15.83 14.65 

SAHE, 
SALQI <  
        0.70 0.89 4.61 31.21 71.86 76.89 45.96 

SAHE, 
SALQI <  
        0.70 13.33 0 20.22 21.48 15.83 14.65 

SAHE, 
SALQI <  
        0.80 0.89 15.79 33.19 72.05 77.03 48.57 

SAHE, 
SALQI <    
        0.80 13.33 0 20.66 21.48 16.39 14.90 

SAHE, 
SALQI <   
        0.90 0.89 4.61 31.43 73.38 76.47 46.21 

SAHE, 
SALQI <   
        0.90 13.33 0 20.22 21.29 15.69 14.56 

(c) Wavelet Daub 4, suband: LL2                             (d) Wavelet Daub4, suband: LH2 
Table 6.2 Identification error rates of wavelet-based face recognition system 

1. Calculate the quality scores for the image (I) using ( SALQI ) and ( MH ) 
2. If (SALQI < Thershold1) and (MH < Threshold 2) Then 

       IF (MH < Thershold3) Then  {Apply normalization algorithm on the whole image (I)} 
       Else if  (MH >= Thershold3) Then 

a. Apply HE on the left region of image (I) and compute SALQI 
b. Apply HE on the right region of image (I) and compute SALQI 
c. Apply HE on left and right regions of the image (I) and compute SALQI 
Select the case that has higher SALQI value 

                        End if 
         3.  Else if  ( SALQI >= Thershold1 )  and  ( MH >= Thershold2 ) Then 

{Do not apply histogram normalization algorithm on image (I)} 
     4. End if 
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6.5 Regional LQI and Adaptive fusion of multi stream face recognition 
The previous parts of this section demonstrated the suitability of using the AHE and SAHE 
as a mean of controlling the application of illumination normalisation procedure (HE) and 
the benefits that this yields for single and multi-stream face recognition schemes. However, 
in real-life scenarios, variations in illumination between enrolled and test images could be 
confined to a region, rather than the whole, of the face image due to the changes in the 
direction of the light source or pose. Therefore, it is sensible to measure the illumination 
quality on a region-by-region basis. Sellahewa et al, [48], has experimented with a rather 
simple regional modification of the LQI, whereby we split the image into 2x2 regions of 
equal size, and tested the performance of the Regional AHE based adaptive multi-stream 
face recognition. Figure 6.5 and Figure 6.6 present that Identification error rate for the RLQI-
based fusion of (LL2, LH2) and (LH2, HL2), respectively, using 10 different weighting 
configurations.  
 

LL2 + LH2  Identification Error Rates (%) 
WLL WLH Set 1  Set 2 Set 3 Set 4 Set 5 Total 
1.0 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
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0.1 
0.0 

0.0 
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8.80 
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0.00 
0.00 
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38.24 
30.11 
22.64 
18.46 
15.16 
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13.41 
12.97 
14.07 
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14.95 

73.57 
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The use of RLQI has obviously resulted in further improvement in accuracy of multi-stream 
recognition schemes. With best overall error rate of 9.6 for the (LL2, LH2) fused scheme 
achieved when LL2” was given a small weight of 0.1, while best error rate for the (LH2, 
HL2) fused scheme is 8.16 achieved when have nearly equal weights. What is more 
interesting is that the best performance over the different sets is achieved with different 
weighting configurations in both cases. This shows that the wavelet-based multi-stream 
recognition scheme, developed previously, has no objective means of selecting fusion 
parameters and that it performed differently for face images captured with different lighting 
conditions has led to developing of a new adaptive approach to face recognition. This 
suggests a dynamic scheme of weighting that depends on image quality. Figure 6.7, below, 
presents the results obtained for using quality-based adaptive fusion of two or 3 subbands. 
In this case if the LQI of the image is>0.9 then the score for LL2 will be given a 0.7 weighting 
otherwise it is given a 0 weighting. The LH2 and HL2 subbands get equal proportion from 
the left over.  
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It is clear that, this dynamic choice of weighting of the scores has led to further 
improvement over the non-adaptive static selection of weighting.  

 
7. CONCLUSIONS AND FUTURE WORK 

In this chapter we have reviewed face recognition schemes, and in particular we advocated 
the use of wavelet-based face recognition. The fact that a wavelet-transform of face image 
into a number of different subbands representing the face at different frequency range and 
different scales, has been exploited to develope several  single-stream face recognition 
schemes one for each wavelet subband. The performances of several of these were tested 
over a number of benchmark databases, which revealed different error rates, but achieving 
comparable/better results compared to PCA based schemes. This approach has the 
advantage of being very efficient and being scalable.  
We have also shown that one mimicked the success of fusion approach to multi-modal 
biometric-based recognition by using multi-stream face recognition that is based on fusing a 
number of single streams. Even the fusion of a small (<4) number of single streams has led 
to significant improvement in performance.  
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6.5 Regional LQI and Adaptive fusion of multi stream face recognition 
The previous parts of this section demonstrated the suitability of using the AHE and SAHE 
as a mean of controlling the application of illumination normalisation procedure (HE) and 
the benefits that this yields for single and multi-stream face recognition schemes. However, 
in real-life scenarios, variations in illumination between enrolled and test images could be 
confined to a region, rather than the whole, of the face image due to the changes in the 
direction of the light source or pose. Therefore, it is sensible to measure the illumination 
quality on a region-by-region basis. Sellahewa et al, [48], has experimented with a rather 
simple regional modification of the LQI, whereby we split the image into 2x2 regions of 
equal size, and tested the performance of the Regional AHE based adaptive multi-stream 
face recognition. Figure 6.5 and Figure 6.6 present that Identification error rate for the RLQI-
based fusion of (LL2, LH2) and (LH2, HL2), respectively, using 10 different weighting 
configurations.  
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Finally, we have demonstrated with a significant degree of success that the challenge of face 
recognition in the presence of extreme variation illumination can be dealt with using 
adaptive quality –based face recognition. The main advantages of using quality measures 
are the avoidance of excessive unnecessary enhancement procedures that may cause 
undesired artefacts, reduced computational complexity which is essential for real time 
applications, and improved performance.  
The work on quality- based adaptive fusion and adaptive wavelet multi-stream wavelet face 
recognition will be expanded in the future to deal with other quality issues as well as 
efficiency challenges. 
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Finally, we have demonstrated with a significant degree of success that the challenge of face 
recognition in the presence of extreme variation illumination can be dealt with using 
adaptive quality –based face recognition. The main advantages of using quality measures 
are the avoidance of excessive unnecessary enhancement procedures that may cause 
undesired artefacts, reduced computational complexity which is essential for real time 
applications, and improved performance.  
The work on quality- based adaptive fusion and adaptive wavelet multi-stream wavelet face 
recognition will be expanded in the future to deal with other quality issues as well as 
efficiency challenges. 
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1. Introduction 

In this chapter, we consider biometric recognition based on human face. Biometrics became 
frequently used in automated systems for identification of people (Jain et al., 2004) and huge 
interest is devoted to the area of biometrics at present (Jain et al., 2008; Shoniregun & 
Crosier, 2008; Ross et al, 2006).  
Along with well-known methods such as fingerprint or DNA recognition, face image 
already opened new possibilities. Face recognition has been put into real life by many 
companies. It is already implemented in image organizing software (e.g. Google’s Picasa: 
http://www.deondesigns.ca/blog/picasa-3-5-adds-face-recognition/), web applications 
(e.g. web photo albums http://picasa.google.com/intl/en_us/features-nametags.html) and 
even in commercial compact cameras (e.g. Panasonic Lumix). Passports contain face 
biometric data since 2006 (EU – Passport Specification, 2006).  
In the area of face recognition, a class represents all images of the same subject (person). The 
goal is to implement an automated machine supported system that recognizes well the 
identity of a person in the images that were not used in a training phase (an initialization 
and training by representative sample of images precede an evaluation phase). Various 
applications are possible, e.g. automated person identification, recognition of race, gender, 
emotion, age etc. The area of face recognition is well described at present, e.g. starting by 
conventional approaches (PCA, LDA) (Turk & Pentland1991; Marcialis & Roli, 2002; 
Martinez & Kak, 2001), and continuing at present by kernel methods (Wang, et al., 2008; 
Hotta, 2008; Wang et al., 2004; Yang, 2002; Yang et al., 2005). Advances in face recognition 
are summarized also in books (Li & Jain, 2005; Delac et al., 2008) and book chapters (Oravec 
et al., 2008). 
Our aim is to present complex view to biometric face recognition including methodology, 
settings of parameters of selected methods (both conventional and kernel methods), detailed 
recognition results, comparison and discussion of obtained results using large face database. 
The rest of this chapter is organized as follows: In section 2, we present theoretical 
background of methods used for face recognition purposes - PCA (Principal Component 
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Analysis), LDA (Linear Discriminant Analysis) and SVM (Support Vector Machines). 
Section 3 provides information about FERET database (FERET Database, 2001), since large 
image set from this database including total 665 images is used in our experiments. The face 
images are first preprocessed (normalization with respect to size, position and rotation and 
also contrast optimization and face masking). In Section 4, face recognition methods that are 
used in the rest of the chapter are discussed. We also propose methods utilizing PCA and 
LDA for extracting the features that are further classified with SVM and compare them to 
usual approaches with conventional classifiers. Section 5 presents results of recognition 
systems in ideal conditions. We show that proposed methods result in excellent recognition 
rate and robustness. Also behavior of presented methods is analyzed in detail and best 
settings for these methods are proposed. Section 6 is devoted to the influence of input image 
quality to face recognition accuracy. For this purpose, we use best parameter settings we 
obtained running 600 tests in ideal conditions. Gaussian noise, salt & pepper noise and 
speckle noise with various intensities are included. This enables to get insight into face 
recognition system robustness. Also equivalence of different types of noise from the 
recognition point of view is discussed. 

 
2. Face Recognition Methods and Algorithms 

We use different methods in our single-stage and two-stage face recognition systems: PCA 
(Principal Component Analysis), LDA (Linear Discriminant Analysis) and SVM (Support 
Vector Machines). The role of PCA and LDA falls into feature extraction. We use different 
classifiers that are in the form of both simple metrics and more complex SVMs. 

 
2.1 Principal Component Analysis PCA 
This standard statistical method can be used for feature extraction. Principal component 
analysis PCA (Turk & Pentland, 1991; Marcialis & Roli, 2002; Martinez & Kak, 2001; Haykin, 
1994; Bishop, 1995) reduces the dimension of input data by a linear projection that 
maximizes the scatter of all projected samples. Let  Nxxx ,...,, 21  be a set of N sample 
images of dimensionality n belonging to one of c classes  cXXX ,...,, 21 . Its covariance (total 
scatter) matrix is 
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PCA transforms input images to new feature vectors 
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where mnW  is a transform matrix with orthonormal columns and n  is the mean 
image of all sample images. This yields also in dimensionality reduction ( nm  ). The scatter 
of the transformed feature vectors  Nyyy ,...,, 21  is WSW T

T . In PCA, the projection optW  

maximizes the determinant of the total scatter matrix of the projected samples 
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where  Nwww ,...,, 21  is the set of n-dimensional eigenvectors (called eigenfaces when 
applying PCA to face images) of TS  corresponding to the m largest eigenvalues 
 m ,...,, 21 . Thus, PCA maximizes the total scatter - this is the disadvantage of this 
method. 

 
2.2 Fisher’s Linear Discriminant FLD, Linear Discriminant Analysis LDA 
Fisher’s Linear Discriminant (FLD) (Marcialis & Roli, 2002; Martinez & Kak, 2001; Bishop, 
1995; Belhumeur et al., 1997; Oravec & Pavlovičová, 2004; Duda & Hart, 1973) shapes the 
scatter with the aim to make it more suitable for classification. A computation of the 
transform matrix results in maximization of the ratio of the between-class scatter and 
within-class scatter. 
Between-class scatter matrix BS  and within-class scatter matrix WS  are defined by 
 

  Ti

c

i
iiB N   

1
S  (4) 

   
 


c

i

T
ik

iXk
ikw

1
 xxS

x
 (5) 

 
respectively, where iN  is the number of samples in class iX  and i  is the mean image of 
class iX . The transform matrix optW  maximizes the ratio of the determinant of the between-
class scatter matrix of the projected samples to the determinant of the within class scatter 
matrix of the projected samples: 
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where  mwww ,...,, 21  is the set of generalized eigenvectors of BS  and WS  corresponding 
to the m largest generalized eigenvalues  m ,...,, 21 : 
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There are at most 1c  nonzero generalized eigenvalues, i.e. the upper bound of m is 1c
(Belhumeur et al., 1997; Duda & Hart, 1973). 
In (Marcialis & Roli, 2002), the eigenvectors of BW SS 1  are the columns of optW  and the 
authors show that this choice maximizes the ratio    WB SS detdet . 
In face recognition, the number of sample images N is typically much smaller than the 
number of pixels n in each image (so called small sample size problem). This is why 

nn
W

S  can be singular. The rank of WS  is at most cN  . In (Belhumeur et al., 1997), 
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authors solve the problem of singular WS  by proposal of alternative criterion to that of (6). 
At first, sample images are projected into lower dimensional space using PCA. This results 
in nonsingular WS . PCA reduces the dimension of the feature space to cN  , and then 
standard FLD (6) is applied to reduce the dimension to 1c . This method is called 
Fisherfaces. Then optW  can be computed as follows: 
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Optimization for PCAW  is performed over  cNN   matrices and optimization for FLDW  
is performed over   mcN   matrices. The smallest 1c  principal components are 
discarded in PCA computation. 
It is often said that algorithms based of LDA outperform those based on PCA. LDA is 
insensitive to significant variation in lighting direction (Marcialis & Roli, 2002; Belhumeur et 
al., 1997), and facial expression (Belhumeur et al., 1997). However in (Martinez & Kak, 2001), 
authors show that when the training data set is small, PCA achieves better results compared 
to LDA and that PCA is less sensitive to different training data sets. 

 
2.3 Support Vector Machines SVM 
Support vector machines SVM belong to kernel methods (Muller et al., 2001; Hofmann et al., 
2008) and play a major role in present machine learning algorithms. 
Kernel algorithms map data   p

N xxx ,...,, 21 from an original space x into a higher 
dimensional feature space F using a nonlinear mapping Φ (Muller et al., 2001) 
 

 xx   ,: Fp  (11) 
 
An original learning algorithm from original space is used in the feature space. High-
dimensional space increases complexity of a problem; fortunately, it can be solved. 
Computation of a scalar product between two feature space vectors can be done using 
kernel function k 
 

     yxyx ,k  (12) 
 
Thus, using kernel functions, the feature space does not need to be computed explicitly, only 
inner products in the kernel feature space are taken into account. Gaussian radial basis 
function, polynomial, sigmoidal, and inverse multiquadrics function are used in a role of 
kernel functions. Every linear algorithm that uses scalar products only can implicitly be 
executed in high-dimensional feature space by using kernels. Nonlinear versions of linear 
algorithms can be constructed in this way (Muller et al., 2001). 
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PCA feature space and were further normalized by the variance estimates. Let vectors iw  
and jw  be image vectors in the unscaled PCA space (eigenvectors) and vectors s  and t  

their projections in the Mahalinobis space. Using the fact that variance 2
i  of the PCA 

projections of input vectors to vector iw  equals to eigenvalue i  ( 2
ii   , where i  is the 

standard deviation), the relationships between the vectors are then defined as: 
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The Mahalinobis Cosine is 
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(this is the covariance between the images in Mahalinobis space). 
LDASoft (Beveridge et al., 2003) is LDA specific distance metric. It is similar to the Euclidean 
measure computed in Mahalinobis space with each axis weighted by generalized eigenvalue 
  (also used to compute LDA basis vectors) raised to the power 0.2 (Zhao et al., 1999): 
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3. Image database 

For our tests, we used images selected from FERET image database (Phillips et al., 1998; 
Phillips et al., 2000). We worked with grayscale images from Gray FERET (FERET Database, 
2001). FERET face images database is de facto standard database in face recognition 
research. It is a complex and large database which contains more than 14126 images of 1199 
subjects of dimensions 256 x 384 pixels. Images differ in head position, lighting conditions, 
beard, glasses, hairstyle, expression and age of subjects. Fig. 2 shows some example images 
from FERET database. 
We selected image set containing total 665 images from 82 subjects. It consists of all 
available subjects from whole FERET database that have more than 4 frontal images 
containing also corresponding eyes coordinates (i.e. we chose largest possible set fulfilling 
these conditions from FERET database). The used image sets are visualized in Fig. 3.  
Recognition rates are significantly influenced by size of a training set. We used 3 different 
sets of images for training – i.e. two, three and four images per subject in the training set. 
Two, three or four images for training were withdrawn from FERET database according to 
their file name, while all remaining images from the set were used for testing purposes. 
Prior to feature extraction, all images were preprocessed. Preprocessing eliminates 
undesirable recognition based on non-biometric data (e.g. “T-shirts recognition” or “haircut 
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Two, three or four images for training were withdrawn from FERET database according to 
their file name, while all remaining images from the set were used for testing purposes. 
Prior to feature extraction, all images were preprocessed. Preprocessing eliminates 
undesirable recognition based on non-biometric data (e.g. “T-shirts recognition” or “haircut 

 

recognition”). Preprocessing includes following basic steps of converting original FERET 
image to a normalized image:  
 Geometric normalization – aligning image according to available coordinates of eyes. 
 Masking – cropping the image using an elliptical mask and image borders. In our 

experiments we tried two different maskings:  
o “face” - such that only the face from forehead to chin and cheek to cheek 

is visible 
o “BIGface” – leaving more of face surrounding compared to “face” – more 

potentially useful information is kept.  
 Histogram equalization – equalizes the histogram of the unmasked part of the image. 
 

 
Fig. 2. Example of images from FERET database 
 

 
Fig. 3. Visualization of subset of images from FERET database used in our experiments 
 
After preprocessing, the image size was 65x75 pixels. Fig. 4 shows an example of the 
original image, the image after “face” preprocessing and the image after “BIGface” 
preprocessing. All images from Fig. 2 preprocessed by “BIGface” preprocessing are shown 
in Fig. 5. 
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Last two setups (Fig. 6d) and e)) are our proposed combinations of efficient feature 
extraction combined with strong classifier. Fist three setups (Fig. 6a)-c)) are the conventional 
methods, presented for comparison with proposed approaches. 
All five setups are significantly influenced by different settings of parameters of the 
examined methods (i.e. PCA, LDA or SVM). This is the reason we present serious analysis 
and proposal of parameter settings in following chapters. 
We used CSU Face Identification Evaluation System (csuFaceIdEval) (Beveridge et. al., 2003) 
and libsvm - A Library for Support Vector Machines (LIBSVM, web) that implement 
mentioned algorithms. 

 
5. Face Recognition Experiments and Results in Ideal Conditions 

5.1 Single-Stage Recognition 
SVM was directly used for recognizing faces without previous feature extraction from the 
images (see Fig. 6a)). Input images were of size 65x75 pixels. 
In our tests we used SVM with the RBF (radial basis function) kernel 
 

  0,exp,
2

jiji 





   xxxxk  (19) 

 
where ji ,xx  are data points (face images) from original space. 
It is important to find optimal parameters   (gamma) and C , because different parameter 
setups are suitable for solving different problems. 0C  is the penalty parameter of the error 
term used in a determination of a separating hyperplane with the maximal margin in higher 
dimensional space by SVM. We used methodology from (Hsu et al., 2008), i.e. parameters 
search where the best v-fold cross-validation rate performed on training data suggests also 
the best parameter setup. v-fold cross-validation divides the training set into v subsets of 
equal size, and sequentially one subset is tested using the classifier that was trained on the 
remaining v-1 subsets. Fig. 7 shows example of the graph we used for parameter search – 
the dependence of cross validation rate on the parameters C and gamma. The best found 
parameters setups for all training sets and the results are shown in Table 1.  
More images per subject in the training set result in better cross-validation rate and also 
better recognition rate. Difference between face recognition rate using “face” and “BIGface” 
preprocessing is noticeable only with 2 images per subject, where the result with “BIGface” 
preprocessing is approx. 5,6% worse than with “face” preprocessing. 
It is important to point out that it is not possible to find “universal” values of parameters C 
and gamma that would lead to the best recognition rates independent of used training set 
and preprocessing type. 
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Fig. 7. Example of the output graph – dependence of cross validation rate on the parameters 
C and gamma for training set with 3 images per subject 

training set C γ cross-valid. rec. rate 

face, 2img/pers. 0,03125 0,0078125 51,22% 80,04% 
face, 3img/pers. 128 3,05176E-05 78,86% 93,79% 

face, 4img/pers. 128 3,05176E-05 86,59% 96,74% 

BIGface, 2img/pers. 0,03125 0,0078125 64,63% 74,45 % 
BIGface, 3img/pers. 8 0,00012207 83,33% 93,56% 

BIGface, 4img/pers. 128 3,05176E-05 89,63% 96,74% 
Table 1. Recognition rate and optimal SVM parameter setups for used training sets 

 
5.2 Two-Stage Recognition Systems 
PCA and LDA algorithms are used to reduce the dimension and extract the features from 
face images. Using the training set, they produce a transform matrix. For face recognition 
purposes, we do not need the whole transform matrix and therefore we truncate first or last 
vectors from the transform matrix. The results of recognition are significantly influenced by 
parameters “Dropped from front” and “CutOff”. 
 Dropped from front (DPF) – denotes number of eigenvectors cut from the beginning of 

transform matrix (first vectors - vectors belonging to the largest eigenvalues). These 
vectors will not be used by image projection to PCA (or LDA) feature space. Reason to 
truncate these vectors is based on the assumption that these vectors do not correspond 
to useful information such as lighting variations (Beveridge et. al., 2003). Our tests were 
performed for “Dropped from front” values 0, 1, 2, 3, and 4. 

 CutOff (CO) – represents how many vectors remain in the transform matrix. Reason to 
truncate last basis vectors (vectors corresponding to the smallest eigenvalues) is to 
lower the computation requirements and to eliminate unnecessary information that 
correlates with noise – and as such is meaningless for recognizing faces (Beveridge et. 
al., 2003). Our tests were performed for CutOff parameter set to 20%, 40%, 60%, 80% 
and 100%. 
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Table 2. Results of experiments for methods PCA+MahCosine, PCA+SVM, LDA+LDASoft, 
LDA+SVM with “face” preprocessing (total 300 tests) 
 
Methods utilizing PCA or LDA (Fig. 6b - Fig. 6e) were tested using three training sets with 2, 
3 and 4 images per subject. For each method, we tested 25 different parameters DPF and CO 
setups on three different training sets, what gives total 75 tests per each method and per 
each type of preprocessing (600 tests in total). Results of these tests are shown in Table 2 and 
Table 3. The maximal recognition rates are summarized in Fig. 8 and Fig. 9.  
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Table 3. Results of experiments for methods PCA+MahCosine, PCA+SVM, LDA+LDASoft, 
LDA+SVM with “BIGface” preprocessing (total 300 tests) 

 
5.3 Evaluation of Simulation Results 
Based on presented experiments, we can formulate several conclusions: 

1. More images in the training stage cause better performance of all methods. 
2. LDA+LDASoft performs better than PCA+MahCosine, but PCA+SVM is slightly 

better than LDA+SVM. 
3. The best performing setups of parameters CO and DPF differ using different 

preprocessing and number of images per subject in training set. Generally 
PCA+MahCosine and LDA+LDASoft perform better for truncating 0-4 first vectors 
and leaving 20%-60% of the vectors in transform matrix.  
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4. The recognition rate is most significantly affected by setting of the CO parameter – for 
PCA+MahCosine and LDA+LDASoft it is better to truncate vectors from the end of 
the transform matrix leaving only 20% - 60% of the vectors. Methods PCA+SVM and 
LDA+SVM perform better when leaving more (60% - 100%) vectors of the transform 
matrix. 

5. Results of LDA+LDASoft are more influenced by setting the CO parameter compared 
to PCA+MahCosine – especially with only 2 images per subject in the training set, 
where the worst recognition rate is around 30% (see Table 2 and Table 3). 

6. Using SVM for classification (methods PCA+SVM and LDA+SVM) makes the 
recognition rates more stable and less influenced by setting the CO and DPF 
parameters (see Table 2 and Table 3) and these methods perform better compared to 
simple PCA+MahCosine and LDA+LDASoft – see Fig. 8 and Fig. 9. 

 

 
Fig. 8. Graph of maximum recognition rates for methods PCA+MahCosine, PCA+SVM, 
LDA+LDASoft, LDA+SVM, SVM (left to right) with “face” preprocessing 

 
6. Face Recognition Experiments and Results in Noisy Conditions 

In this part of the chapter, we concentrate on the influence of input image quality to face 
recognition accuracy. Noise and distortions in face images can seriously affect the 
performance of face recognition systems. Analog or digital capturing the image, image 
transmission, image copying or scanning can suffer from noise. This is why we study 
behaviour of discussed methods in the presence of noise. 
We include Gaussian noise, salt & pepper noise and speckle noise. Huge effort in removing 
these types of noise from static or dynamic images in the area of face recognition is 
documented in the literature, e.g. (Uglov et al., 2008; Reda, & Aoued, 2004; Wheeler et al., 
2007). We use these types of noise with various intensities (various parameters). 
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6.1 Types of Noises 
Each image capturing generates digital or analog noise of diverse intensity. The noise is also 
generated while transmitting and copying analog images. Noise generation is a natural 
property for image scanning systems. Diverse types of noises exist. Herein we use three 
different types: Gaussian (Truax, 1999), salt & pepper (Chan et al., 2005), and speckle 
(Anderson & Trahey, 2006) noises. 
 

 
 
Fig. 9. Graph of maximum recognition rates for methods PCA+MahCosine, PCA+SVM, 
LDA+LDASoft, LDA+SVM, SVM (left to right) with “BIGface” preprocessing 
 
Gaussian Noise 
Gaussian noise is the most common noise occurring in everyday life. The Gaussian noise can 
be detected in free radio waves or in television receivers. Gaussian noise is produced in 
analog images that are stored for a long time. 
We studied face recognition with different Gaussian noise intensity. Gaussian noise was 
generated with Gaussian normal distribution function which can be written as: 
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where μ is the mean value of the required distribution and σ2 is a variance (Truax, 1999; 
Chiodo, 2006). 
Noise parameters settings for our simulations were determined empirically. The mean of 
Gaussian distribution was set to 0 and we changed the variance. Examples of images 
corrupted by Gaussian noise can be seen in Fig. 10. The label g0.01 means that the Gaussian 



Face	Recognition	in	Ideal	and	Noisy	Conditions	Using	Support	Vector	Machines,	PCA	and	LDA 139

 

6.1 Types of Noises 
Each image capturing generates digital or analog noise of diverse intensity. The noise is also 
generated while transmitting and copying analog images. Noise generation is a natural 
property for image scanning systems. Diverse types of noises exist. Herein we use three 
different types: Gaussian (Truax, 1999), salt & pepper (Chan et al., 2005), and speckle 
(Anderson & Trahey, 2006) noises. 
 

 
 
Fig. 9. Graph of maximum recognition rates for methods PCA+MahCosine, PCA+SVM, 
LDA+LDASoft, LDA+SVM, SVM (left to right) with “BIGface” preprocessing 
 
Gaussian Noise 
Gaussian noise is the most common noise occurring in everyday life. The Gaussian noise can 
be detected in free radio waves or in television receivers. Gaussian noise is produced in 
analog images that are stored for a long time. 
We studied face recognition with different Gaussian noise intensity. Gaussian noise was 
generated with Gaussian normal distribution function which can be written as: 
 

 
 

22

2

22

1 









x

exp  (20) 

 
where μ is the mean value of the required distribution and σ2 is a variance (Truax, 1999; 
Chiodo, 2006). 
Noise parameters settings for our simulations were determined empirically. The mean of 
Gaussian distribution was set to 0 and we changed the variance. Examples of images 
corrupted by Gaussian noise can be seen in Fig. 10. The label g0.01 means that the Gaussian 

 

noise of variance 0.01 was applied on the image. The same notation is used also in presented 
graphs. 

 
         Original              g 0.01  g 0.09 

Fig. 10. Examples of images corrupted by Gaussian noise  
 
Salt & Pepper Noise 
Salt & pepper noise is perceived as a random occurrence of black and white pixels in a 
digital image. It can be caused by incorrect data transmission or by a damage of already 
received data. In CCD and CMOS sensors or LCD displays, the salt & pepper noise can be 
caused by permanently turned-on or turned-off pixels. Remaining pixels are unchanged. 
Usually, the intensity (frequency of the occurrence) of this noise is quantified as a 
percentage of incorrect pixels (Fisher et al., 2003). The median filtering (as a specific case of 
order-statistic filtering) is used as an effective method for elimination of salt & pepper noise 
from digital images (Chan et al., 2005). 
Noise parameter settings for our simulations vary from 4% of noise intensity (0.04) up to the 
30% of damaged pixels. The label sp0.04 means, that the salt & pepper noise of intensity 4% 
was applied on the image. Examples of images corrupted by salt & pepper noise are shown 
in Fig. 11. 
 

 
         Original              sp 0.04  sp 0.3 

Fig. 11. Examples of images corrupted by 4% and 30% salt & pepper noise 
 
Speckle Noise 
This granular noise occurs in ultrasound, radar and X-ray images and images obtained from 
the magnetic resonance (Chaillan et al., 2007). The multiplicative signal dependent noise is 
generated by constructive and destructive interference of detected signals. The wave 



Face	Recognition140

 

interference is a reason of multiplicative noise occurrence in the scanned image. The speckle 
noise is image dependent. Therefore it is very hard (if possible) to find a mathematical 
model that describes the removal of this noise, especially if we expect the randomness of the 
input data (Fisher et al., 2003). 
 

 
         Original               s 0.03  s 0.7 

Fig. 12. Examples of images corrupted by speckle noise 
 
The values which determined intensity of noise in our tests were set empirically. The noise 
was applied according to the following equation 
 

InIS *  (21) 
 
where I is the original human face image and n is the uniform distribution of the noise with 
zero mean value and variance 2 . For our simulations, variance varied from 0.03 to 0.7. The 
label s0.03 means that the speckle noise of variance 0.03 was applied on the image. Presence 
of speckle noise in the face image is illustrated in Fig. 12. 
 
For simulation of methods in presence of noise, we use the best parameter settings we 
obtained running 600 tests in Section 5, i.e. when the methods worked in ideal conditions.  
In order to mimic real-world conditions, we use images not distorted by noise for training 
purposes whilst noisy images are used for testing. Such scenario simulates real-world face 
recognition conditions. 
We concentrate on “BIGface” preprocessed images only, since this preprocessing gives 
better results compared to “face” preprocessing (this can be seen when comparing Tables 2 
and 3). Parameters for settings of the algorithms (CO and DPF) were empirically obtained 
from Table 3. We selected and used only those parameters for which the recognition 
experiments were most successful (they are marked by red in Table 3). This was necessary in 
order to reduce the number of experiments. Using all possible settings from simulations in 
ideal conditions and combining them with three types of noises with all selected parameters 
would lead to total 13500 results. Selecting best parameters only lead us to total 540 results. 
Obtained results are shown in Fig. 13 – 21 along with brief comments.  
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6.2 Simulation Results for Face Images Corrupted by Gaussian Noise 
Simulation results for face images corrupted by Gaussian noise are summarized in Fig. 13 – 
15. PCA-MahCosine method is most influenced by increasing the intensity of Gaussian 
noise. Results for training sets with 2 and 3 img./subj. look alike – recognition rates decrease 
with higher noise. The effect of the noise for training set containing 4 img./subj. is not so 
noticeable. Worst results are achieved by PCA-MahCosine method. For training set with 4 
img./subj., the results of other 3 methods are almost equal and the recognition rates are 
surprisingly high even for higher noise intensities and they do not decrease. For 3 
img./subj., the best results come from LDA-SVM method, followed by LDA-LDASoft (from 
intensity of noise >0.01). For training set containing 2 img./subj. only, both SVM methods 
result in best recognition rates and LDA-SVM is slightly better than PCA-SVM. It is also 
interesting to notice that there are some cases, when consecutive increase of noise levels 
resulted in better recognition rates. 
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Fig. 13. Recognition rates of examined methods, Gaussian noise, training set 2 img./subj. 
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Fig. 14. Recognition rates of examined methods, Gaussian noise, training set 3 img./subj. 
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Fig. 15. Recognition rates of examined methods, Gaussian noise, training set 4 img./subj. 

 
6.3 Simulation Results for Face Images Corrupted by Salt & Pepper Noise 
Fig. 16 – 19 show results for face images corrupted by salt & pepper noise. Increasing the 
noise level does not have significant effect till intensity 0.2. Decrease of the recognition rate 
while increasing the noise intensity is most noticeable for results with 2 img./subj. in the 
training set. PCA-MahCosine is again the worst method. Best recognition rates are achieved 
by the methods that use SVM and they both achieved almost equal results. For 3 img./subj., 
LDA-SVM was slightly better than PCA-SVM. One can again notice, that in some cases 
consecutive increase of noise levels resulted in better recognition rates. 
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Fig. 16. Recognition rates of examined methods, salt &pepper noise, training set 2 img./subj. 
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Fig. 15. Recognition rates of examined methods, Gaussian noise, training set 4 img./subj. 
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Fig. 16. Recognition rates of examined methods, salt &pepper noise, training set 2 img./subj. 
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Fig. 17. Recognition rates of examined methods, salt &pepper noise, training set 3 img./subj. 
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Fig. 18. Recognition rates of examined methods, salt &pepper noise, training set 4 img./subj. 

 
6.4 Simulation Results for Face Images Corrupted by Speckle Noise 
Fig. 19 – 21 contains simulation results for face images corrupted by speckle noise. PCA-
MahCosine method achieves worst results. Best results can be achieved by LDA-SVM; this is 
more noticeable for higher noise intensities. For 4 img./subj., the PCA+SVM, LDA+LDASoft 
and LDA+SVM methods have almost equal recognition rates. For 3img./subj., the 
LDA+LDASoft method is better than PCA+SVM, for 2 img./subj., the PCA+SVM is better 
than LDA+LDASoft. For speckle noise, there are not cases when higher noise levels result in 
better recognition rates. There was an exception for speckle noise of intensity 0.03 for 
training set 3 img./subj., because recognition by PCA-MahCosine method gives better rate 
for corrupted images (84.73%) than recognition using the original images (84.5%).  
 



Face	Recognition144

 

50,00%
55,00%
60,00%
65,00%
70,00%
75,00%
80,00%
85,00%
90,00%
95,00%

100,00%

PCA‐Mahcosine PCA‐SVM LDA‐LdaSoft LDA‐SVM

 
Fig. 19. Recognition rates of examined methods, speckle noise, training set 2 img./subj. 
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Fig. 20. Recognition rates of examined methods, speckle noise, training set 3 img./subj. 
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Fig. 21. Recognition rates of examined methods, speckle noise, training set 4 img./subj. 



Face	Recognition	in	Ideal	and	Noisy	Conditions	Using	Support	Vector	Machines,	PCA	and	LDA 145

 

50,00%
55,00%
60,00%
65,00%
70,00%
75,00%
80,00%
85,00%
90,00%
95,00%

100,00%

PCA‐Mahcosine PCA‐SVM LDA‐LdaSoft LDA‐SVM

 
Fig. 19. Recognition rates of examined methods, speckle noise, training set 2 img./subj. 
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Fig. 20. Recognition rates of examined methods, speckle noise, training set 3 img./subj. 
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Fig. 21. Recognition rates of examined methods, speckle noise, training set 4 img./subj. 

 

6.5 Equivalence of Different Types of Noise from the Recognition Point of View 
After presenting recognition results for different types of noise an interesting question 
arises: What is the relationship among different noise types? The concrete values of noise 
parameters do not give the answer – a comparison cannot be based on non-related 
parameters. 
 

 
PCA-Mahcosine:    g 0.015                sp 0.15            s 0.2 

 
LDA-SVM: g 0.08               sp 0.3            s 0.6 
 
Fig. 22. Example of the subject, for who all the studied methods (here shown PCA-
MahCosine and LDA-SVM) result in recognition accuracy about 85 % (see Table 4 for exact 
noise type and intensity) 
 
One possible solution can be based exactly on results of machine face recognition. This 
approach is illustrated in Fig. 22 and in corresponding Table 4. Fig. 22 shows images of the 
subject corrupted by different types of noises. The noise parameters are chosen in such 
manner that all studied methods (PCA-MahCosine, PCA-SVM, LDA-LDASoft, LDA-SVM) 
result in recognition accuracy near 85 %. Table 4 specifies each noise type and its 
corresponding parameter. PCA-MahCosine and LDA-SVM methods are included in Fig. 22, 
since PCA-SVM and LDA-LDASoft methods are visually similar to LDA-SVM. Fig. 22 thus 
shows equivalence of different types of noise from the face recognition point of view of 
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PCA-MahCosine and LDA-SVM methods. But this is equivalency of noise types from 
machine point of view. It should be even more interesting to compare recognition ability of 
machine learning methods and humans. 
 

method Gaussian 
noise 

Recognition 
rate in % 

Salt&pepper 
noise 

Recognition 
rate in % 

Speckle 
noise 

Recognition 
rate in % 

PCA-
Mahcosine* 

g0.015 85,16% sp0.15 84,87% s0.2 83,38% 

PCA-SVM g0.08 85,76% sp0.3 86,05% s0.6 85,46% 

LDA-
LdaSoft 

g0.09 84,27% sp0.3 86,05% s0.7 85,16% 

LDA-SVM* g0.08 85,16% sp0.3 85,16% s0.6 85,16% 

Table 4. Types and intensity of noise resulting in recognition rate about 85 % (for training set 
4img./subj.). 
* included in Fig. 22 

 
7. Conclusion 

We examined different scenarios of face recognition experiments. They contain both single-
stage and two-stage recognition systems. Single-stage face recognition uses SVM for 
classification directly. Two-stage recognition systems include PCA with MahCosine metric, 
LDA with LDASoft metric and also methods utilizing both PCA and LDA for feature 
extraction followed by SVM for classification. All methods are significantly influenced by 
different settings of parameters that are related to the algorithm used (i.e. PCA, LDA or 
SVM). This is the reason we presented serious analysis and proposal of parameter settings 
for the best performance of discussed methods. 
For methods working in ideal conditions, the conclusions are as follows: When comparing 
non-SVM based methods, higher maximum recognition rate is generally achieved by 
method LDA+LDASoft compared to PCA+MahCosine; on the other hand LDA+LDASoft is 
more sensitive to method settings. Using SVM in classification stage (PCA+SVM and 
LDA+SVM) produced better maximum recognition rate than standard PCA and LDA 
methods. 
Experiments with single-stage SVM show that this method is very efficient for face 
recognition even without previous feature extraction. With 4 images per subject in training 
set, we reached 96.7% recognition rate. 
The experiments were made with complex image set selected from FERET database 
containing 665 images. Such number of face images entitles us to speak about general 
behavior of presented methods. Altogether more than 600 tests were made and maximum 
recognition rates near 100% were achieved. 
It is important to mention that the experiments were made with “closed” image set, so we 
did not have to deal with issues like detecting people who are not in the training set. On the 
other hand, we worked with real-world face images; our database contains images of the 
same subjects that often differ in face expressions (smiling, bored, …), with different 
hairstyles, with or without beard, or wearing glasses and that were taken in different session 
after longer time period (i.e. we did not work with identity card-like images). 
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We also presented recognition results for noisy images and graphically compared them to 
results for non-distorted images. In this way, the insight on face recognition system 
robustness is obtained. 
Independently on noise type or its parameter, the PCA-MahCosine method gives the lowest 
success in face recognition compared to all tested methods. Using other methods, the results 
were significantly better. Methods that use SVM classifier achieve globally better results for 
each training set. On the other hand, SVM-based methods need a lot of time to search for 
optimal parameters, while PCA-MahCosine method is the fastest. 
By our work, we continue in our effort to offer complex view to biometric face recognition. 
In (Oravec et al., 2008) besides detection of faces and facial features, we presented feature 
extraction methods from face images (linear and nonlinear methods, second-order and 
higher-order methods, neural networks and kernel methods) and relevant types of 
classifiers. Face recognition in ideal conditions using FERET database is contained partly in 
(Oravec et al., 2009) and in this chapter. 
Our work on presented methods now further continues in evaluating their sensitivity and 
behavior in non-ideal conditions. First our contribution to this area which includes presence 
of noise is covered in this chapter. Our future work will comprise partially occluded faces 
and also faces extracted from static images and/or video streams transmitted with errors or 
loss of data, where some parts of face image are missing (block or blocks of pixels) or an 
error-concealment mechanism is applied prior to recognition (Pavlovičová et al., 2006; Polec 
et al., 2009; Marchevský & Mochnáč, 2008). 
Our future work will also be focused on a psychological experiment trying to find 
relationship for mentioned types of distortions from the point of view of recognition ability 
of humans and machines (as an extension of the aspect of noise for machine recognition that 
is outlined in section 6.5). 
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1. Personal Identification 

For thousands of years, humans have instinctively used some physical characteristics (such 
as face, voice, posture, etc.) to recognize each other. About half the 800, A. Bertillon, chief of 
criminal identification section of the Paris police, plans to use some measures of the human 
body (height, length of arms, feet, fingers, etc.) to identify those responsible crimes. Towards 
the end of the nineteenth century, this original idea was further developed through the 
discovery (due studies F. Galton and E. Henry) the distinctiveness of fingerprints: they 
uniquely identify a person. Today, in full digital era, huge numbers of people use individual 
recognition techniques based on the identification of human characteristics, not only in 
justice but in civil and military applications. In fact, the only way to conclusively identify an 
individual is to recognize the personal characteristics. These are defined biometric features 
and, the technology behind this identification is called Biometric. The term Biometric, from 
the greek bios (life) and meters (measure), in computer sense, means the automatic 
identification or verification of the identity of a person based on physical characteristics 
and/or behavioral (CNIPA, 2004). 
Biometric feature is described as a physiological or behavioral characteristic that can be 
measured and subsequently identified to confirm the identity of a person. We can then 
divide the biometrics in:  
 physical biometric: it is that based on data derived from measurements made on a 

person's physical characteristics such as iris, fingerprint, facial features, hand or other; 
 behavioral biometric: it is that based on aspects linked to behavioral characteristics 

such as, for example, the issue of voice, dynamic signing, or the type of gait.  
As each biometric process starts with a preliminary phase called "enrollment" in which, 
generally, the person must provide the biometric system, through a sensor, its characteristic 
physical and behavioral, which is then converted into a mathematical model (template), two 
operating modes of biometrics are: 

9
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 1:1 (one-to-one) for which the generated data by the biometric sensor are compared 
with a single template, creating, so, a verification process (Verification);  

 1: N (one-to-many) for which data are compared with a set of templates contained in a 
file, realizing, so, a process of identification (identification). 

It is essential to emphasize that in biometric  field two are terms usually used: 
- Physical access: procedure for establishing ownership of the person entering a room, 

building area or area;  
- Logical access: procedure for establishing ownership of the subject to make use of a 

computer resource.  
For example, an employee of a firm could enter the office (physical access) via a biometric 
check between his physical characteristic (such as a fingerprint) and that deposited on a 
smart-card (process 1:1). To gain access to his computer (logical access) the same employee's 
fingerprint could be compared with that of authorized users, stored in archive (1: N) (Bossi, 
2002; Maio, 2004). 

 
1.1 Biometric Process 
Biometric systems are characterized by a process of using that, in principle, it can be traced 
to the comparison operation of a physical characteristic or behavioral acquired by a person, 
with one or more of the same samples previously recorded. Both the recording that the 
comparison is made according to the following sequence of steps (CNIPA, 2004): 
 Stage of Registration (Enrollment): in the process of enrollment, the user provides the 

biometric system a physical or behavioral feature by a capture device (such as a 
fingerprint scanner or a video camera). The sample is processed to extract the distinctive 
informations, which form the so-called template that can be defined as a mathematical 
representation of biometric data. The template consists essentially of a sequence of 
numbers from which it is generally impractical his reconstruction and it is, theoretically, 
comparable to a user’s “physical password”. 
At the end of the enrollment process, the template is registered. The registration is the 
most difficult step because of the importance of the choices to be made. First is necessary 
to identify as to save the template: because of the sensitivity of data and the possible 
impact on privacy, the information should be encrypted. Second is indispensable 
determined where to store and where to save the model, for example on a chip card in a 
database, a local workstation or directly on the capture device. 
The different possibilities lead to restrictions: if a system that must handle a large 
number of users is used, the latter two types are not applicable to matters concerning the 
physical size and required computing power. By using a database, is important to 
consider that the data could be stolen and used in a manner not acceptable. Saving in a 
chip can be a good solution; however, is necessary to sign digitally the saved template 
and to apply security techniques which take into account the fault-based attacks (Bossi, 
2002); 

 Verification step: During the verification process, the acquisition of the sample and 
extraction of the template are made as before. The latter is compared with that already 
acquired to obtain both an authentication and recognition. 

 Authentication phase: if the objective is the subject's authentication , the biometric system 
attempts to provide an answer to the question "The person is who he claimed to be?", 

 

making a comparison 1 to 1 between the template  of the subject and the reference 
template stored in the archive (or on a smart card). Authentication requires that the 
identity is provided, for example, typing a username or a pin and the output of the 
comparison algorithm is a score, which is positive if it occurs above a certain threshold, 
and negative if below this threshold. The threshold for comparison is an adjustable 
parameter of the system (CNIPA, 2004). 

 Recognition/identification phase: in this case, the system determines the user's identity, or 
attempts to provide an answer to the question "Who is the user?", making a lot of 
confrontations with the biometric data models registered in its archives. When the search 
algorithm produces as output a score higher than the so-called "threshold", is reported a 
match (called "matching" or "hit") (CNIPA, 2004). Authentication is generally a 
cooperative process (ouvert), while identification may also be a poster or even hidden 
from users (covert). While in the cooperative process the subject voluntarily manifest his 
own identity, usually to go to a place (physical access) or use a service (logical access); in 
the case of hidden biometrics, the physical and/or behavioral characteristics are 
matched, without the person knows, with those stored in an archive. 

 Performance Mesurement: in this performance of a biometric system are evaluated 
according to three parameters: size, speed and accuracy (Bossi, 2002). The size of the 
model have relevance to extract device storage used, consider, for example to smart-card 
having a memory limited. The speed with which gives a positive or negative response is 
discriminating about the possible use in identification rather than verification. Accuracy 
is a rather critical parameter to determine because of the approach probabilistic 
biometric systems adopted in the choice. The types of errors that can make a biometric 
system are essentially two: False acceptances, an unauthorized user is authenticated by 
the system because its footprint is quite similar to a model previously filed; False 
discards, an authorized user is rejected by the system because its footprint is not 
sufficiently similar to the model with which it was compared. 

 
1.2 Biometric Tecniques 
Currently the efforts of the scientific community and industrial research are oriented to the 
study of those variables that permit reliable identification of individuals. Biometric 
identification techniques are indeed aimed at identifying a person based on its unique 
physiological or behavioral characteristics, difficult to alter or simulate. The most common 
evaluate the follow features:  
 Fingerprints; 
 Iris 
 Retina vasculature 
 Dynamics of attaching the signature  
 Face 
 Hand geometry 
 Vocal timbre 
 Multiple biometrics 
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1.3 Face Recognition 
The recognition of facial features is perhaps one of biometric technologies  more fascinating 
and that users consider psychologically less repulsive. System for  face recognition is based 
on the physical characteristics of the face and is then the closest, in theory, to the human 
concept of “personal recognition“. The enrollment usually takes a few seconds that are 
required to frame more static images of the face. Some systems can classify the user from 
multiple angles obtaining a three dimensional model of the face. This last, according to the 
different acquisition modes, varying in size from 100 to 3,500 byte (CNIPA, 2004). The user’s 
acceptance of the feature based biometric recognition is generally high, since the natural and 
not invasive nature of the acquisition method. The sensor’s prices may also be in the range 
of the hundreds euro’s for logical access and personal computer systems, but they can 
remarkably increase for more sophisticated systems. Moreover the face recognition 
biometric technique has the advantage to be low invasiveness (no physical contact) and to 
provide the possibility of acquiring a distance a subject to recognize. Usually the first step of 
any fully automatic system that analyzes the information contained in faces, e.g. identity 
verfication, is the Face Detection. Face detection is concerned with finding whether or not 
there are any faces in a given image (usually in gray scale) and, if present, return the image 
location and content of each face. 

 
1.3.1 Face Recognition Phases 
In general, facial recognition can be decomposed into four phases (Medugno et al., 2007):  
 Pre-processing: This means ensuring that the image which is applied to the recognition 

process meets certain required standards: for  such that the face is located in the center 
of the image and provided part of the same; that the background satisfies certain 
constraints, and so on. Usually this phase is done by sampling equipment designed to 
image through mechanisms that tend to prevent the user from providing distorted 
images: an example may be the sensors necessary to capture the image when the 
subject is an acceptable distance.  

 Phase segmentation or localization: is the exact location of the face or certain parts of it. 
This phase arises from the need to characterize, through some characteristic features, 
the face of a subject. 

 Feature Extraction Phase: maybe it is the core of the whole face recognition process. A 
feature it’s a characteristic useful for distinguish a face from another. It can be 
extracted from the image through different kind of processes. Usually, higher is 
amount of extracted features, the higher is the capacity of discrimination between 
similar faces. Some interesting features are, for example, the eyes or hairs color, the 
nose or the mouth shape. Those features are usually referred as locals because they 
refer to a particular and restricted area of the image. 

 Recognition Phase: once the image is associated with an array of values, the recognition 
problem reduces itself to a widely studied problem in the past literature: the main part 
of those is then mainly related to the features extraction. The recognition problem can 
be divided into three phases: deciding over which features the recognition will be 
done; automatic extracting the chosen parameters from the face digitalized image; 
classifying the faces over the acquired parameters base. 

 

 

2 State of art of Two - Dimensional Face Recognition 

The efforts of researchers over the past 30 years have resulted in many sophisticated and 
mature 2D face recognition algorithms. In this section it is represented a brief description 
recurring methods existing in literature for face recognition. 
The Principal Component Analysis (PCA) is one of the most successful techniques that have 
been used in image recognition and compression. PCA is a statistical method under the 
broad title of factor analysis. The purpose of PCA is to reduce the large dimensionality of the 
data space (observed variables) to the smaller intrinsic dimensionality of feature space 
(independent variables), which are needed to describe the data economically. The PCA 
techniques consist of: eigenfaces in which the face images are projected onto a features space 
that best encodes the variation among known faces images, that is use a nearest neighbor 
classifier (Turk & Pentland, 1991), (Craw & Cameron, 1996); feature-line based methods, 
which replace the point-to-point distance with the distance between a point and the feature 
line linking two stored sample points (Li & Lu, 1999); Fisherfaces (Swets & Weng, 1996; 
Belhumeur et al., 1997; Zhao et al., 1998), which use Linearr/Fisher Discriminant Analysis 
(FLD/LDA) (Liu & Wechsler, 2000); Bayesian methods, which use a probabilistic, distance 
metric (Moghaddam & Pentland, 1997); and SVM methods, which use a support vector 
machine as the classifier (Phillips, 1998). Utilizing higher-order statistics, Independent 
Component Analysis (ICA) is argued to have more representative power than PCA, and 
hence may provide better recognition performance than PCA (Bartlett et al., 1998). Being 
able to offer potentially greater generalization through learning, neural networks/learning 
methods have also been applied to face recognition. One example is the Probabilistic 
Decision-Based Neural Network (PDBNN) method (Lin et al., 1997) and the other is the 
evolution pursuit (EP) method (Etemad & Chellappa, 1997).  
The category of feature based (structural) matching methods, using the width of the head, 
the distances between the eyes and from the eyes to the mouth, etc. (Kelly, 1970), or the 
distances and angles between eye corners, mouth extrema, nostrils, and chin top (Kanade, 
1973). More recently, a mixture-distance based approach using manually extracted distances 
was reported (Manjunath et al., 1992; Cox et al., 1996). Without finding the exact locations of 
facial features, Hidden Markov Model (HMM) based methods use strips of pixels that cover 
the forehead, eye, nose, mouth, and chin (Samaria & Young, 1994), (Samaria, 1994; Nefian & 
Hayes III, 1998). (Nefian & Hayes III, 1998) reported better performance than (Samaria, 1994) 
by using the KL projection coefficients instead of the strips of raw pixels. One of the most 
successful systems in this category is the graph matching system (Wiskott et al., 1997), 
(Okada et al., 1998) which is based on the Dynamic Link Architecture (DLA). Using an 
unsupervised learning method based on a Self Organizing Map (SOM), a system based on a 
convolutional neural network (CNN) has been developed (Lawrence et al., 1997). 
Moreover, in the hybrid method category, we will briefly review the modular eigenface 
method (Pentland et al., 1994), an hybrid representation based on PCA and Local Feature 
Analysis (LFA) (Penev & Atick, 1996), a flexible appearance model based method (Lanitis et 
al., 1995), and a recent development (Huang et al., 2003) along this direction. In (Samaria, 
1994), the use of hybrid features by combining eigenfaces and other eigenmodules is 
explored: eigeneyes, eigenmouth, and eigen-nose. Though experiments show slight 
improvements over holistic eigenfaces or eigenmodules based on structural matching, we 
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believe that these types of methods are important and deserve further investigation. Perhaps 
many relevant problems need to be solved before fruitful results can be expected, e.g., how 
to optimally arbitrate the use of holistic and local features. 
Many types of systems have been successfully applied to the task of face recognition, but 
they all have some advantages and disadvantages. Appropriate schemes should be chosen 
starting from the specific requirements of a given task. Most of the systems reviewed here 
focus on the subtask of recognition, but others also include automatic face detection and 
feature extraction, making them fully automatic systems (Moghaddam & Pentland, 1997; 
Wiskott et al., 1997; Lin et al., 1997). 

 
3. Artificial Neural Network 

An artificial neural network is a system that tries to reproduce the operation of biological 
neural networks or, in other words, is an emulation of the biological neural system. This 
approach give the chance of performing tasks that a linear program is not able to do 
exploiting its capability of learning with no needs of writing new code lines. These 
advantages have a cost. They need a good training to operate correctly and their computing 
time can be high for large Neural Networks. According to what has been said, an Artificial 
Neural Network is an adaptive nonlinear system that learns to perform a function from 
data. Adaptive means that the system parameters are changed during operation, normally 
called the training phase. After the training phase the Artificial Neural Network parameters 
are fixed and the system is deployed to solve the problem at hand (the testing phase). The 
Artificial Neural Network is built with a systematic step-by-step procedure to optimize a 
performance criterion or to follow some implicit internal constraint, which is commonly 
referred to as the learning rule. The input/output training data are fundamental in neural 
network technology, because they convey the necessary information to "discover" the 
optimal operating point. The nonlinear nature of the neural network processing elements 
(PEs) provides the system with lots of flexibility to achieve practically any desired 
input/output maps. In the case of supervised Neural Networks, in order to train an ANN, 
an input is presented to the neural network and a corresponding result is set at the output. 
The error is the difference between the desired response and the actual system output. The 
error information is fed back to the system so that it can adjust its parameters in a systematic 
way, following the adopted learning rule. 
The process is repeated until the performance is acceptable. It comes clear that the 
performances of the trained Neural Network would be heavily influenced by the dataset 
that was used for the training phase. If it does not cover a significant portion of the 
operating conditions or if they are ambiguous, then neural network technology is probably 
not the right solution. On the other hand, if there is plenty of data and the problem is poorly 
understood to derive an approximate model, then neural network technology is a good 
choice. This operating procedure should be contrasted with the traditional engineering 
design, made of exhaustive subsystem specifications and intercommunication protocols. In 
artificial neural networks, the designer chooses the network topology, the performance 
function, the learning rule, and the criterion to stop the training phase, while the system 
automatically adjusts the parameters. 
Thus it is difficult to bring a priori information into the design and, when the system does 
not work properly, it is also hard to refine the solution in a following step. At the same time, 

 

ANN-based solutions are extremely efficient in terms of development time and resources, 
and in many difficult problems artificial neural networks provide performance that is 
difficult to match with other technologies. At present, artificial neural networks are 
emerging as the technology of choice for many applications, such as pattern recognition, 
prediction, system identification, and control. 
When creating a functional model of the biological neuron, there are three basic components 
of importance. First, the synapses of the neuron are modelled as weights. Operating in this 
way, the strength of the connection between an input and a neuron is noted by the value of 
the weight. Inhibitory connection will have negative weight values, while positive values 
designate excitatory connections. The next two components model the actual activity within 
the neuron cell. An adder sums up all the inputs modified by their respective weights. This 
activity is referred to as linear combination. Finally, an activation function controls the 
amplitude of the output of the neuron. An acceptable range of output is usually between 0 
and 1, or -1 and 1. 
Mathematically, this process is described in the Fig. 1:  

 

Fig. 1. Artificial Neural Network Process 
 
From this model the interval activity of the neuron can be represented as:  
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The output of the neuron, yk, would therefore be the outcome of some activation function 
on the value of vk. 
The activation function is functions that compel the output of a neuron in a neural network 
inside certain values (usually 0 and 1, or -1 and 1). In general, there are three types of 
activation functions, denoted by Φ(). First, there is the Threshold Function which takes on a 
value of 0 if the summed input is lower than a certain threshold value (v), and the value 1 if 
the summed input is greater than or equal to the threshold value. 
 



Pseudo	2D	Hidden	Markov	Model	and	Neural	Network	Coefficients	in	Face	Recognition 157

 

believe that these types of methods are important and deserve further investigation. Perhaps 
many relevant problems need to be solved before fruitful results can be expected, e.g., how 
to optimally arbitrate the use of holistic and local features. 
Many types of systems have been successfully applied to the task of face recognition, but 
they all have some advantages and disadvantages. Appropriate schemes should be chosen 
starting from the specific requirements of a given task. Most of the systems reviewed here 
focus on the subtask of recognition, but others also include automatic face detection and 
feature extraction, making them fully automatic systems (Moghaddam & Pentland, 1997; 
Wiskott et al., 1997; Lin et al., 1997). 

 
3. Artificial Neural Network 

An artificial neural network is a system that tries to reproduce the operation of biological 
neural networks or, in other words, is an emulation of the biological neural system. This 
approach give the chance of performing tasks that a linear program is not able to do 
exploiting its capability of learning with no needs of writing new code lines. These 
advantages have a cost. They need a good training to operate correctly and their computing 
time can be high for large Neural Networks. According to what has been said, an Artificial 
Neural Network is an adaptive nonlinear system that learns to perform a function from 
data. Adaptive means that the system parameters are changed during operation, normally 
called the training phase. After the training phase the Artificial Neural Network parameters 
are fixed and the system is deployed to solve the problem at hand (the testing phase). The 
Artificial Neural Network is built with a systematic step-by-step procedure to optimize a 
performance criterion or to follow some implicit internal constraint, which is commonly 
referred to as the learning rule. The input/output training data are fundamental in neural 
network technology, because they convey the necessary information to "discover" the 
optimal operating point. The nonlinear nature of the neural network processing elements 
(PEs) provides the system with lots of flexibility to achieve practically any desired 
input/output maps. In the case of supervised Neural Networks, in order to train an ANN, 
an input is presented to the neural network and a corresponding result is set at the output. 
The error is the difference between the desired response and the actual system output. The 
error information is fed back to the system so that it can adjust its parameters in a systematic 
way, following the adopted learning rule. 
The process is repeated until the performance is acceptable. It comes clear that the 
performances of the trained Neural Network would be heavily influenced by the dataset 
that was used for the training phase. If it does not cover a significant portion of the 
operating conditions or if they are ambiguous, then neural network technology is probably 
not the right solution. On the other hand, if there is plenty of data and the problem is poorly 
understood to derive an approximate model, then neural network technology is a good 
choice. This operating procedure should be contrasted with the traditional engineering 
design, made of exhaustive subsystem specifications and intercommunication protocols. In 
artificial neural networks, the designer chooses the network topology, the performance 
function, the learning rule, and the criterion to stop the training phase, while the system 
automatically adjusts the parameters. 
Thus it is difficult to bring a priori information into the design and, when the system does 
not work properly, it is also hard to refine the solution in a following step. At the same time, 

 

ANN-based solutions are extremely efficient in terms of development time and resources, 
and in many difficult problems artificial neural networks provide performance that is 
difficult to match with other technologies. At present, artificial neural networks are 
emerging as the technology of choice for many applications, such as pattern recognition, 
prediction, system identification, and control. 
When creating a functional model of the biological neuron, there are three basic components 
of importance. First, the synapses of the neuron are modelled as weights. Operating in this 
way, the strength of the connection between an input and a neuron is noted by the value of 
the weight. Inhibitory connection will have negative weight values, while positive values 
designate excitatory connections. The next two components model the actual activity within 
the neuron cell. An adder sums up all the inputs modified by their respective weights. This 
activity is referred to as linear combination. Finally, an activation function controls the 
amplitude of the output of the neuron. An acceptable range of output is usually between 0 
and 1, or -1 and 1. 
Mathematically, this process is described in the Fig. 1:  

 

Fig. 1. Artificial Neural Network Process 
 
From this model the interval activity of the neuron can be represented as:  




p

j
jkjk xwv

1
 (1) 

 
The output of the neuron, yk, would therefore be the outcome of some activation function 
on the value of vk. 
The activation function is functions that compel the output of a neuron in a neural network 
inside certain values (usually 0 and 1, or -1 and 1). In general, there are three types of 
activation functions, denoted by Φ(). First, there is the Threshold Function which takes on a 
value of 0 if the summed input is lower than a certain threshold value (v), and the value 1 if 
the summed input is greater than or equal to the threshold value. 
 



Face	Recognition158

 

 








00
01

vif
vif

v  (2) 

 
Secondly, there is the Piecewise-Linear function. This function too admits values of 0 or 1 
as input, but can also take on values belonging to that interval, depending on the 
amplification factor in a certain region of linear operation. 
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Thirdly, there is the sigmoid function. This function can range between 0 and 1, but it is 
also sometimes useful to use the -1 to 1 range. An example of the sigmoid function is the 
hyperbolic tangent function. 
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The pattern of connections between the units and the propagation of data are clustered into 
two main class: 

 Feed-forward neural networks, where the data flow from input to output units is 
strictly feedforward. The data processing can extend over multiple layers of units, 
but no feedback connections are present, that is, connections extending from 
outputs of units to inputs of units in the same layer or previous layers. 

 Recurrent neural networks that do contain feedback connections. Contrary to feed-
forward networks, the dynamical properties of the network are important. In some 
cases, the activation values of the units undergo a relaxation process such that the 
neural network will evolve to a stable state in which these activations do not 
change anymore. In other applications, the change of the activation values of the 
output neurons are significant, such that the dynamical behaviour constitutes the 
output of the neural network. 

 
4. Hidden Markov Models 

The Hidden Markov Models are stochastic models which provide a high level of flexibility 
for modelling the structure of an observation sequence. They allow for recovering the 
(hidden) structure of a sequence of observations by pairing each observation with a (hidden) 
state. Hidden Markov Models (HMMs) represent a most famous statistical pattern 
recognition technique and can be considered as the state-of-the-art in speech recognition. 
This is due to their excellent time warping capabilities, their effective self organizing 
learning capabilities and their ability to perform recognition and segmentation in one single 
step. They are used not only for speech and handwriting recognition but they are involved 
in modelling and processing images too. This is the case of their use in the face recognition 
field. 

 

 
Fig. 2. “Left to Right” Hidden Markov Model – 5 state 

 
4.1 One - Dimensional Hidden Markov Models 
The HMM are characterised by two interrelated processes (Samaria & Young, 1994): 

1. An unobservable Markov chain with a finite number of states, a state transition 
probability matrix and an initial state probability distribution. 

2. A set of probability density functions for each state. 
The elements that characterised a HMMs are: 

 N = |S| which represent the number of states of the model. Where S is the set of 
the states and can be shown as S = {s1,s2,…,sn}, where  si  is one of the states that can 
be employed by the model. To describe the system, T observation sequences are 
used, where T is the number of observations. The state of the model at time t is 
given by qt in S, 1 < t < T; 

 M = |V| is the number of different observation symbols. If V is the set of all 
possible observation symbols (also called the codebook of the model), then V = 
{v1,v2,….,vM}; 

 A = {aij} is the state transition probability matrix, where aij is the probability that the 
state i became the state j: 

 
aij = p(qt = sj | qt-1 = si) (5) 

 
where 1 ≤ i ; j ≤ N, with constraint 0 ≤ ai,j ≤ 1, and  ,1
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 B={bj(k)} the observation symbol probability matrix, bj(k) is the probability to have 
the observation k when the state is j: 

 
bj(k) = p (Ot = vk | qt = Sj) (6) 

 
where 1  ≤  j  ≤  N;  1  ≤ k  ≤ M; and Ot is the observation symbol at time t. 

 
 = {N} is the initial state distribution: 

 
i = p (qj = Si) (7) 

 
where 1 ≤ j ≤ N. 
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Using a shorthand notation, a HMM is defined by the following expression: 
 

 = (A,B,). (8) 
 
The training of the model, given a set of sequences {Oi}, is usually performed by means of 
the standard Baum-Welch re-estimation, which determines the parameters (A, B, ) that 
maximize the probability P({Oi}|). 

 
4.2 Pseudo Two-Dimensional Hidden Markov Models 
Pseudo Two-Dimensional Hidden Markov Models (P2D-HMMs) are an extension of the 
one-dimensional HMMs, applied to two-dimensional data. Fig. 3 shows a general schema of 
P2D-HMMs, which are also known as planar HMMs, that are stochastic automata with a 
two-dimensional arrangement of the states. A planar HMM can be seen as a vertical One-
dimensional HMM that links together an indefinite number of super-states. 

 
Fig. 3. General schema of a Pseudo Two-Dimensional Hidden Markov Model 
 
Considering that a facial image can be subdivided into stripes, thus allowing the 
implementation of P2D-HMMs for modelling this kind of elaboration. Each stripe is aligned 
to one of the super-states of the P2D-HMMs, resulting in a horizontal warping of the 
pattern. Furthermore, the stripes can be vertically disposed, within the super-state, in a 
manner that the pattern related to the stripe result to be aligned to the vertical HMM states. 
In a similar way, it is possible to model any kind of data that can be considered represented 
by means horizontal stripes. The recognition process achieved by means of P2D-HMMs is 
pretty similar to the recognition process made with one-dimensional HMM as it was 
showed by Samaria (Samaria, 1994). The P2D-HMMs can be trained using the standard 
Baum-Welch algorithm and the recognition step can be carried out with the standard Viterbi 
algorithm. 
The super-states is the model of the sequence of rows in the image and the linear 1D-HMMs, 
which are inside the super-states, are used to model each row (Nefian, 1998). The states 
sequence in each rows is independent from the states sequences of neighbouring rows. 

 

Figure 3 shows the particular structure of the P2D-HMM that we use: the schema is 3-6-6-6-
3, where the 1st and the 5th super-states are constituted by a left to right 1D-HMM with 3 
states, while the 2nd, the 3rd and the 4th super-states are constituted by a left to right 1D-
HMM with 6 states. 
The formal representation of a Pseudo Two-Dimensional Hidden Markov Models can be 
given by the expression   ,,, BA  where, 

  )()2()1( ,...,, N   is the set of N possible super-states in the model. 
 i  is a 1DHMM super-state, whose parameters are  )(,,, iiii AVs    

 In different words, 
  iN

ii ssss ,...,, 21  is the set of Ni possible states of super-state i. 
  LVVVV ,...,, 21  is the output alphabet (common to all super-states). In 

other words, for any t, there exist l such that ot = vl. 
   iNkl

i
kl

i aA ...1 is the set of transition probabilities within super-state i. 
   LliNk

i
k

i lbB ...1,...1)(   is the set of output probabilities of super-state i . 
  iN

ii  ,...,, 21 g is the set of initial state probabilities of super-state i . 
   

NijijaA
...1

  is the set of transition probabilities through the states of the 

P2DHMM. 
  N ,...,, 21  is the set of initial super-state probabilities of the 

P2DHMM. 
Similarly to the one-dimensional model, the Pseudo two-dimensional Hidden Markov 
Models will associate a state sequence Q to an observation sequence  

YyXxxyoO
...1,...1 

 . The 

state sequence Q will consist of two levels. Q is primarily a super-state sequence 
 NQQQQ ,...,, 21  indicating the super-state corresponding to the sequence of lines of 

observation  NOOOO ,...,, 21 . Each state line Qy is composed itself of states 
  Xyyyyxy qqqQq ,...,, 21 , each of them indicating the state of the corresponding 1DHMM at a 

position (x; y). 
A formal expression of the parameters of a P2DHMM can be given as follows: 

 Super-state transition probability:  iy
j

yij qqPa   1| . 
 Initial super-state probability:   |1

j
i QP  . 

 State transition probability of super-state  i
kyx

i
lxykl

ii sqsqPa  1|: . 
 State output probability of super-state  i

jxylxyj
ii sqvoPlb  |)(: . 

 Initial state probability:  ii
jy

i
j sqP  |1  . 

 
4.3 Hidden Markov Models applied to Face Recognition  
The HMM can be applied to image processing. In consideration of the fact that the image 
can be seen as a two dimension matrix of data, according to Samaria, space sequences must 
be considered (Samaria, 1992). The idea is again to exploit the vertical sequential structure of 
a human face. A sequence of overlapping horizontal stripes are built on the image and the 
sequence of these stripes is labeled by means of a 1DHMM. Considering frontal face images, 
the facial region can be considered as the sum of 5 regions: forehead, eyes, nose, mouth and 
chin (Nefian & Monson, 1998).  



Pseudo	2D	Hidden	Markov	Model	and	Neural	Network	Coefficients	in	Face	Recognition 161

 

Using a shorthand notation, a HMM is defined by the following expression: 
 

 = (A,B,). (8) 
 
The training of the model, given a set of sequences {Oi}, is usually performed by means of 
the standard Baum-Welch re-estimation, which determines the parameters (A, B, ) that 
maximize the probability P({Oi}|). 

 
4.2 Pseudo Two-Dimensional Hidden Markov Models 
Pseudo Two-Dimensional Hidden Markov Models (P2D-HMMs) are an extension of the 
one-dimensional HMMs, applied to two-dimensional data. Fig. 3 shows a general schema of 
P2D-HMMs, which are also known as planar HMMs, that are stochastic automata with a 
two-dimensional arrangement of the states. A planar HMM can be seen as a vertical One-
dimensional HMM that links together an indefinite number of super-states. 

 
Fig. 3. General schema of a Pseudo Two-Dimensional Hidden Markov Model 
 
Considering that a facial image can be subdivided into stripes, thus allowing the 
implementation of P2D-HMMs for modelling this kind of elaboration. Each stripe is aligned 
to one of the super-states of the P2D-HMMs, resulting in a horizontal warping of the 
pattern. Furthermore, the stripes can be vertically disposed, within the super-state, in a 
manner that the pattern related to the stripe result to be aligned to the vertical HMM states. 
In a similar way, it is possible to model any kind of data that can be considered represented 
by means horizontal stripes. The recognition process achieved by means of P2D-HMMs is 
pretty similar to the recognition process made with one-dimensional HMM as it was 
showed by Samaria (Samaria, 1994). The P2D-HMMs can be trained using the standard 
Baum-Welch algorithm and the recognition step can be carried out with the standard Viterbi 
algorithm. 
The super-states is the model of the sequence of rows in the image and the linear 1D-HMMs, 
which are inside the super-states, are used to model each row (Nefian, 1998). The states 
sequence in each rows is independent from the states sequences of neighbouring rows. 

 

Figure 3 shows the particular structure of the P2D-HMM that we use: the schema is 3-6-6-6-
3, where the 1st and the 5th super-states are constituted by a left to right 1D-HMM with 3 
states, while the 2nd, the 3rd and the 4th super-states are constituted by a left to right 1D-
HMM with 6 states. 
The formal representation of a Pseudo Two-Dimensional Hidden Markov Models can be 
given by the expression   ,,, BA  where, 

  )()2()1( ,...,, N   is the set of N possible super-states in the model. 
 i  is a 1DHMM super-state, whose parameters are  )(,,, iiii AVs    

 In different words, 
  iN

ii ssss ,...,, 21  is the set of Ni possible states of super-state i. 
  LVVVV ,...,, 21  is the output alphabet (common to all super-states). In 

other words, for any t, there exist l such that ot = vl. 
   iNkl

i
kl

i aA ...1 is the set of transition probabilities within super-state i. 
   LliNk

i
k

i lbB ...1,...1)(   is the set of output probabilities of super-state i . 
  iN

ii  ,...,, 21 g is the set of initial state probabilities of super-state i . 
   

NijijaA
...1

  is the set of transition probabilities through the states of the 

P2DHMM. 
  N ,...,, 21  is the set of initial super-state probabilities of the 

P2DHMM. 
Similarly to the one-dimensional model, the Pseudo two-dimensional Hidden Markov 
Models will associate a state sequence Q to an observation sequence  

YyXxxyoO
...1,...1 

 . The 

state sequence Q will consist of two levels. Q is primarily a super-state sequence 
 NQQQQ ,...,, 21  indicating the super-state corresponding to the sequence of lines of 

observation  NOOOO ,...,, 21 . Each state line Qy is composed itself of states 
  Xyyyyxy qqqQq ,...,, 21 , each of them indicating the state of the corresponding 1DHMM at a 

position (x; y). 
A formal expression of the parameters of a P2DHMM can be given as follows: 

 Super-state transition probability:  iy
j

yij qqPa   1| . 
 Initial super-state probability:   |1

j
i QP  . 

 State transition probability of super-state  i
kyx

i
lxykl

ii sqsqPa  1|: . 
 State output probability of super-state  i

jxylxyj
ii sqvoPlb  |)(: . 

 Initial state probability:  ii
jy

i
j sqP  |1  . 

 
4.3 Hidden Markov Models applied to Face Recognition  
The HMM can be applied to image processing. In consideration of the fact that the image 
can be seen as a two dimension matrix of data, according to Samaria, space sequences must 
be considered (Samaria, 1992). The idea is again to exploit the vertical sequential structure of 
a human face. A sequence of overlapping horizontal stripes are built on the image and the 
sequence of these stripes is labeled by means of a 1DHMM. Considering frontal face images, 
the facial region can be considered as the sum of 5 regions: forehead, eyes, nose, mouth and 
chin (Nefian & Monson, 1998).  



Face	Recognition162

 

 
Fig. 4. The significant facial regions 
 
Each of these facial regions (facial band) will correspond to a state in a left to right 1D 
continuous HMM. The Left-to-right HMM used for face recognition is shown in the 
previous figure. To recognize the face k the following HMM has been trained: 
 

λ(k) =(A(k), B(k), p(k)) (9) 
 
The HMM should be trained for each person that we want to recognize subsequently. The 
HMM training, that equals to an enrolment operation for every subject of the database, 
requires a grey scale image of the face of each person. Each image of width X and height Y is 
divided into overlapping blocks of height L and width W. The amount of overlap between 
bounding blocks is M.  
 

 
Fig. 5. Extraction of overlapping blocks from the face 
 
The number of blocks extracted from each face image and the number of observation vectors 
T are the same and are given by: 
 

 (9) 

 

1
)(
)(






ML
LYT

 

The system recognition rate is significantly affected by the parameters M and L that, for this 
reason, should be chosen accurately. Increasing the overlap area M can significantly increase 
the recognition rate because it allows the features to be captured in a manner that is 
independent of their position along the vertical axis. The choice of parameter L is more 
delicate. An insufficient amount of information about the observation vector could arise 
from a small value of the parameter L while, on the contrary, large values of L are 
dangerous as the probability of cutting across the features increase. However, as the system 
recognition rate is more sensitive to the variations in M than in L, M ≤ (L −1) is used. 

 
5. The System Proposed 

The system for face recognition proposed, showed in the figure below, is an hybrid system 
as showed built as a cascade connection of two different systems: an Artificial Neural 
Network, existing in literature (Bevilacqua et al., 2006), and different representation of P2D-
HMMs.  

 
Fig. 6. The proposed hybrid system. 
 
The system’s input is an image of a person that must be recognised and the output is its 
identification with the corresponding rate of recognition. The experiments will be 
performed on a database obtained by the combination of the Olivetti Research Laboratory 
database (Samaria & Harter, 1994), and other profiles photos of persons disguised with dark 
glasses or bandage. These images are ”.bmp” files in grey scales of 92x112 pixels.  
The hybrid schema was built executing the following steps:  
1. Training and saving of Artificial Neural Network; 
2. Transformation of photos in HTK format; 
3. Training of different P2D-HMM structures, and identification of the Validation Set 

subjects, for control a proper training of system; 

 
5.1 Training and Saving of Artificial Neural Network 
The considered faces are sequenced in observation windows, according to the Samaria 
model already described in the previous section, where the number of blocks extracted from 
each face image equals the number of observation vectors T, and is obtained from Eq. 9. 
Table 1 collects the values of the parameters for the observation windows after the 
manipulation operated by this system. 

X = width photo = 92 pixels T = number of blocks for photos = 103 
Y = height photo = 112 pixels XxY = photo dimension =10304 pixels 
L = height block = 10 pixels XxL = block dimension = 920 pixels 
M = blocks overlapping = 9 pixels  XxM = overlapping dimension = 828 pixels 

Table 1. Characteristic parameters of photos and blocks. 
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The Artificial Neural Network utilized in this system uses the EBP (Error Back Propagation) 
algorithm and its task is to extract the main features from the image and then store them in a 
sequence of 50 bits, reducing the complexity of the problem and compressing the bitmap 
images in order to represent them with a number of coefficients smaller than pixels. The 
image is a facial feature of a face image; from this area we consider 103 segments of 920 
pixels that represent the observable states of the model (Bevilacqua et al, 2006).  
Now all of these sections are divided into features of 230 pixels, that are the input of the 
Artificial Neural Network. The ANN is composed of three layers where the first layer is 
formed by 230 neurons, one neuron per each pixel, the hidden layer is composed by 50 units 
and the last layer by 230 neurons. After the training, the ANN is able to work as a pure 
linear function, the input of the first layer must be the same of the output of the last layer. 
The “compressed image” is described by 50 bits that are the outputs of an hidden layer 
consisting of an Heaviside function processing elements. For any window of 230 pixels we 
have an array of 50 elements, this means that a section of 920 pixels is compressed in a 4 
sub-windows of 50 binary values array each. The matrix weights, referred to the connections 
between the inputs and the hidden layer, codifies the image bitmap, while the matrix 
weights associated to the connections between the hidden layer and the outputs, decodes 
the sequence of bits. Each of the 103 blocks of 920 pixels (4x230) gives 103 observation 
vectors with 200 coefficients (4x50) and the compression rate equals to 
 

4,6
(103x200)
(103x920)

  (10) 

 
By observing the schema of Fig. 7 it is possible to note that the ”Training Set” used for ANN 
is composed by 300 photos: 10 face images for each of the first 30 samples of the database. 
The training function is iterated 200 times for each photo and, at the end of the training 
phase, the neuron weights are saved in a ”.bin” file. Finally the ANN is tested with other 
images, of the same size of the training images, representing the same subject used for the 
training, but, of course, different from those belonging to the training set features. 
 

 
Fig. 7. Schema of the ANN training phase 

 

5.2 Transformation of Photos in HTK Format 
After compressing the image containing the face into an observation vector of 103 elements 
of 200 binary (1/0) values, it will be computed by the Pseudo 2D Hidden Markov Models. 
The operations of building and manipulating the Hidden Markov models has been 
computed by the Hidden Markov Model ToolKit (HTK) (Young and Young, 1994). The HTK 
supports HMMs using both continuous density mixture Gaussians and discrete 
distributions and can be used to build complex HMM systems. 
Finally, is necessary to transform the ANN output “.bin” file into another binary file in HTK 
format. The HTK like binary file has got an header, that should accomplish the HTK syntax, 
and 20600 coefficients (103x200), according the “Little Endian” data storage, which is 
commonly used by Motorola processors, IBM and Sun. Little Endian format provides the 
least significant byte is stored in the first memory location while the most significant byte is 
the last memory location. 

 
5.3 Training of Different P2D-HMM Structures and Identification of the Validation Set 
subjects 
Every subject populating the database was used to train the Pseudo 2D Hidden Markov 
Model and a Markov Model was associated to each of them. The different Hidden Markov 
Model structures were then trained. The table below reports the training results of one 
Ergodic HMM with 5 state and four Pseudo 2D Hidden Markov Model structures, that 
differs one by the others for the number of states in a super-state. The Table helps the 
comparison between the different performance and the choice of the structure that gives the 
best recognition rate. In table 2 are represented different Hidden Markov Model structures. 
 

HMM 
5Ergodic 

 
 

Pseudo 
2D HMM 
3-3-3-3-3  

Pseudo 
2D HMM 
3-6-6-6-3 

 

Pseudo 
2D HMM 
6-6-6-6-6 
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between the inputs and the hidden layer, codifies the image bitmap, while the matrix 
weights associated to the connections between the hidden layer and the outputs, decodes 
the sequence of bits. Each of the 103 blocks of 920 pixels (4x230) gives 103 observation 
vectors with 200 coefficients (4x50) and the compression rate equals to 
 

4,6
(103x200)
(103x920)

  (10) 

 
By observing the schema of Fig. 7 it is possible to note that the ”Training Set” used for ANN 
is composed by 300 photos: 10 face images for each of the first 30 samples of the database. 
The training function is iterated 200 times for each photo and, at the end of the training 
phase, the neuron weights are saved in a ”.bin” file. Finally the ANN is tested with other 
images, of the same size of the training images, representing the same subject used for the 
training, but, of course, different from those belonging to the training set features. 
 

 
Fig. 7. Schema of the ANN training phase 

 

5.2 Transformation of Photos in HTK Format 
After compressing the image containing the face into an observation vector of 103 elements 
of 200 binary (1/0) values, it will be computed by the Pseudo 2D Hidden Markov Models. 
The operations of building and manipulating the Hidden Markov models has been 
computed by the Hidden Markov Model ToolKit (HTK) (Young and Young, 1994). The HTK 
supports HMMs using both continuous density mixture Gaussians and discrete 
distributions and can be used to build complex HMM systems. 
Finally, is necessary to transform the ANN output “.bin” file into another binary file in HTK 
format. The HTK like binary file has got an header, that should accomplish the HTK syntax, 
and 20600 coefficients (103x200), according the “Little Endian” data storage, which is 
commonly used by Motorola processors, IBM and Sun. Little Endian format provides the 
least significant byte is stored in the first memory location while the most significant byte is 
the last memory location. 

 
5.3 Training of Different P2D-HMM Structures and Identification of the Validation Set 
subjects 
Every subject populating the database was used to train the Pseudo 2D Hidden Markov 
Model and a Markov Model was associated to each of them. The different Hidden Markov 
Model structures were then trained. The table below reports the training results of one 
Ergodic HMM with 5 state and four Pseudo 2D Hidden Markov Model structures, that 
differs one by the others for the number of states in a super-state. The Table helps the 
comparison between the different performance and the choice of the structure that gives the 
best recognition rate. In table 2 are represented different Hidden Markov Model structures. 
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Pseudo 
2D HMM 
6-6-6-6-6-6 

 
Table 2. Different Hidden Markov Models structures. 
 
After the P2D-HMM training process was completed, it was possible to proceed with the 
recognition phase, according the schema shown in Fig. 8.  
 

 
Fig. 8. Schema of recognition phase. 
 
The Viterbi algorithm is applied to each of the P2D-HMMs, built after the training phase, 
using the same HTK file (26-5.bmp in Fig.9). Each of the P2D-HMMs returns a logarithmic 
probability value. The highest probability value identifies the P2D-HMM and so the 
corresponding recognised sample as showed in Figure 9. 
 

 
Fig. 9. Example of identification by logarithmic probability. 
 

 

At the end of the process the final outcome of the identification is the recognised person and 
the logarithmic probability value of his similarity to the template. 

 
6. Experimental Result 

As said in the preceding paragraphs, different Hidden Markov Model structure was tested 
on a database obtained as a combination of the Olivetti Research Laboratory database 
together with other photos of persons camouflaged wearing dark glasses, scarf or bandage, 
in order to check system reliability. The results are shown in the Table 3, here below. 
 

Hidden Markov 

Models 

The exact identification 

1,5
100 errorsn

  

Pseudo 2D 3-3-3-3-3 99.80 %  (1 error on 510 photo) 

Pseudo 2D 3-6-6-6-3 100 % 

Pseudo 2D 6-6-6-6-6 99.80 % (1 error on 510 photo) 

Pseudo 2D 6-6-6-6-6-6 99.80 % (1 error on 510 photo) 

5-Ergodic 98.82 % (6 error on 510 photo) 

Table 3. Rates of recognition obtained from the different implemented P2D-HMMs 
 
The recognition rate was satisfying for all the HMM tested structures, but the system using 
the HMM structure 3-6-6-6-3 gave a percentage of identification of 100%, that is to say that 
any of the 510 photo tested were properly recognized. 
Subsequently was made an experimental comparison of the results obtained with the hybrid 
system ANN-P2DHMM (using an HMM with structure 3-6-6-6-3) with the most important 
face recognition algorithms proposed in the literature when applied to the ORL images. 
 

Methods Recognition Rate Reference 
Eigenface 90.5% Samaria, 1994 
Pseudo 2D HMM 
feature: gray values 

94.5% Samaria, 1994 

Convolutional 
Neural Network 

96.2% Lawrence et al., 1997 

Pseudo 2D HMM 
feature: DCT  Coefficients 

99.5% Eickeler, 1998 

Ergodic HMM + DCT 99.5% Kohir & Desai, 1998 
Pseudo 2D HMM + 
Neural Network  Coefficients 

100% This work. 

Table 4. Comparative results on ORL database. 
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Table 4 resumes the results obtained and highlights that the hybrid system that combines 
Artificial Neural Networks and Pseudo 2D Hidden Markov Model produced the best 
Recognition Rate. 
This result encourages the prosecution of the research to obtain a fundamental surplus to 
enhance the P2D-HMMs potentiality, allowing an efficient and sure personal identification 
process. 
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1. Introduction

Computerized human face recognition has many practical applications, such as access control,
security monitoring, and surveillance systems, and has been one of the most challenging and
active research areas in computer vision for many decades (Zhao et al., 2003). Even though
current machine recognition systems have reached a certain level of maturity, the recognition
of faces with different facial expressions, occlusions, and changes in illumination and/or pose
is still a hard problem.

A general statement of the problem of machine recognition of faces can be formulated as fol-
lows: given an image of a scene, (i) identify or (ii) verify one or more persons in the scene
using a database of faces. In identification problems, given a face as input, the system reports
back the identity of an individual based on a database of known individuals; whereas in veri-
fication problems, the system confirms or rejects the claimed identity of the input face. In both
cases, the solution typically involves segmentation of faces from scenes (face detection), fea-
ture extraction from the face regions, recognition, or verification. In this chapter, we examine
the recognition of frontal face images required in the context of identification problems.

Many approaches have been proposed to tackle the problem of face recognition. One can
roughly divide these into (i) holistic approaches, (ii) feature-based approaches, and (iii) hybrid
approaches (Zhao et al., 2003). Holistic approaches use the whole face region as the raw input
to a recognition system (a classifier). In feature-based approaches, local features, such as the
eyes, nose, and mouth, are first extracted and their locations and local statistics (geometric
and/or appearance based) are fed into a classifier. Hybrid approaches use both local features
and the whole face region to recognize a face.

Among holistic approaches, eigenfaces (Turk & Pentland, 1991) and fisher-faces (Belhumeur
et al., 1997; Etemad & Chellappa, 1997) have proved to be effective in experiments with large
databases. Feature-based approaches (Gao & Leung, 2002; Lee & Seung, 1999; Li et al., 2001)
have also been quite successful and, compared to holistic approaches, are less sensitive to
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facial expressions, variations in illumination and occlusion. Some of the hybrid approaches
include the modular eigenface approach (Martinez, 2002), the Flexible Appearance Model ap-
proach (Lanitis et al., 1995), an approach that combines component-based recognition with 3D
morphable models (Huang et al., 2003), and an approach that encodes geometric and struc-
tural information extracted from the face image in attributed relational graphs (ARG) and
matches Face-ARG’s for recognition (Park et al., 2005). Experiments with hybrid approaches
showed slight improvements over feature-based approaches.

Recently, Wright et al. (2009) proposed a new approach to face recognition named Sparse
Representation-based Classification (SRC). SRC is based on the compressive sampling the-
ory (Candès & Wakin, 2008) and can use the whole face, a combination of features, or both
features and the whole face for recognition. In SRC, the recognition problem is casted as
one of classifying among multiple linear regression models. Wright et al. (2009) argue that
compressive sampling offers the key to address this problem and, based on a sparse represen-
tation computed by �1-minimization, they propose a general classification algorithm for face
recognition that provides new insights into what kind of transformation one should perform
on face images to extract data to use as the input of the classifier of the recognition system.
They showed that, if sparsity in the recognition problem is properly harnessed, the choice of
transformation is no longer critical. What they found that is critical is whether the size of the
data vector extracted is sufficiently large and whether the sparse representation is properly
selected. They discovered that unconventional image transformations such as downsampling
and random projections perform just as well as conventional ones such as eigenfaces, as long
as the dimension of the data vector extracted surpasses certain threshold, predicted by the
theory of sparse representation (Wright et al., 2009).

Virtual Generalizing Random Access Memory Weightless Neural Networks VG-RAM
WNN (Aleksander, 1998) is an effective machine learning technique that offers simple im-
plementation and fast training and test. In this chapter, we evaluated the performance of
VG-RAM WNN on face recognition using the well known AR Face Database (Martinez &
Benavente, 1998) and Extended Yale Face Database B (Georghiades et al., 2001; Lee et al.,
2005). We examined two VG-RAM WNN architectures, one holistic and the other feature-
based, each implemented with different numbers of neurons and synapses per neuron. Using
the AR Face Database, we compared the best VG-RAM WNN performance with that of: (i) a
holistic approach based on principal component analysis (PCA) (Turk & Pentland, 1991); (ii)
feature-based approaches based on non-negative matrix factorization (NMF) (Lee & Seung,
1999), local non-negative matrix factorization (LNMF) (Li et al., 2001), and line edge maps
(LEM) (Gao & Leung, 2002); and (iii) hybrid approaches based on weighted eigenspace repre-
sentation (WER) (Martinez, 2002) and attributed relational graph (ARG) matching (Park et al.,
2005). In addition, using both the AR Face Database and the Extended Yale Face Database B,
we compared the best VG-RAM WNN performing architecture (feature-based) with that of
SRC. We selected these approaches for comparison because they are representative of some
of the best techniques for face recognition present in the literature. Our results showed that,
even training with a single face image per person, VG-RAM WNN outperformed PCA, NMF,
LNMF, LEM, WER, and ARG approaches under all face conditions tested. Also, training and
testing in the same conditions as those employed by Wright et al. (2009) (downsampled face
images), VG-RAM WNN outperformed SRC. These results show that VG-RAM WNN is a
powerful technique for tackling this and other important problems in the pattern recognition
realm.

This chapter is organized as follows. Section 2 introduces VG-RAM WNN and Section 3 de-
scribes how we have used them for face recognition. Section 4 presents our experimental
methodology and experimental results. Our conclusions follows in Section 5.

2. VG-RAM WNN

RAM-based neural networks, also known as n-tuple classifiers or weightless neural networks,
do not store knowledge in their connections but in Random Access Memories (RAM) inside
the network’s nodes, or neurons. These neurons operate with binary input values and use
RAM as lookup tables: the synapses of each neuron collect a vector of bits from the network’s
inputs that is used as the RAM address, and the value stored at this address is the neuron’s
output. Training can be made in one shot and basically consists of storing the desired output
in the address associated with the input vector of the neuron (Aleksander, 1966) (see Figure 1).

Fig. 1. Weightless neural network.

In spite of their remarkable simplicity, RAM-based neural networks are very effective as pat-
tern recognition tools, offering fast training and test, in addition to easy implementation (Alek-
sander, 1998). However, if the network input is too large, the memory size becomes pro-
hibitive, since it must be equal to 2n, where n is the input size. Virtual Generalizing RAM
(VG-RAM) Weightless Neural Networks (WNN) are RAM-based neural networks that only
require memory capacity to store the data related to the training set (Ludermir et al., 1999). In
the neurons of these networks, the memory stores the input-output pairs shown during train-
ing, instead of only the output. In the test phase, the memory of VG-RAM WNN neurons is
searched associatively by comparing the input presented to the network with all inputs in the
input-output pairs learned. The output of each VG-RAM WNN neuron is taken from the pair
whose input is nearest to the input presented—the distance function employed by VG-RAM
WNN neurons is the hamming distance. If there is more than one pair at the same minimum
distance from the input presented, the neuron’s output is chosen randomly among these pairs.

Figure 2 shows the lookup table of a VG-RAM WNN neuron with three synapses (X1, X2
and X3). This lookup table contains three entries (input-output pairs), which were stored
during the training phase (entry #1, entry #2 and entry #3). During the test phase, when an
input vector (input) is presented to the network, the VG-RAM WNN test algorithm calculates
the distance between this input vector and each input of the input-output pairs stored in the
lookup table. In the example of Figure 2, the hamming distance from the input to entry #1 is
two, because both X2 and X3 bits do not match the input vector. The distance to entry #2 is
one, because X1 is the only non-matching bit. The distance to entry #3 is three, as the reader
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facial expressions, variations in illumination and occlusion. Some of the hybrid approaches
include the modular eigenface approach (Martinez, 2002), the Flexible Appearance Model ap-
proach (Lanitis et al., 1995), an approach that combines component-based recognition with 3D
morphable models (Huang et al., 2003), and an approach that encodes geometric and struc-
tural information extracted from the face image in attributed relational graphs (ARG) and
matches Face-ARG’s for recognition (Park et al., 2005). Experiments with hybrid approaches
showed slight improvements over feature-based approaches.
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Representation-based Classification (SRC). SRC is based on the compressive sampling the-
ory (Candès & Wakin, 2008) and can use the whole face, a combination of features, or both
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on face images to extract data to use as the input of the classifier of the recognition system.
They showed that, if sparsity in the recognition problem is properly harnessed, the choice of
transformation is no longer critical. What they found that is critical is whether the size of the
data vector extracted is sufficiently large and whether the sparse representation is properly
selected. They discovered that unconventional image transformations such as downsampling
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as the dimension of the data vector extracted surpasses certain threshold, predicted by the
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Virtual Generalizing Random Access Memory Weightless Neural Networks VG-RAM
WNN (Aleksander, 1998) is an effective machine learning technique that offers simple im-
plementation and fast training and test. In this chapter, we evaluated the performance of
VG-RAM WNN on face recognition using the well known AR Face Database (Martinez &
Benavente, 1998) and Extended Yale Face Database B (Georghiades et al., 2001; Lee et al.,
2005). We examined two VG-RAM WNN architectures, one holistic and the other feature-
based, each implemented with different numbers of neurons and synapses per neuron. Using
the AR Face Database, we compared the best VG-RAM WNN performance with that of: (i) a
holistic approach based on principal component analysis (PCA) (Turk & Pentland, 1991); (ii)
feature-based approaches based on non-negative matrix factorization (NMF) (Lee & Seung,
1999), local non-negative matrix factorization (LNMF) (Li et al., 2001), and line edge maps
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testing in the same conditions as those employed by Wright et al. (2009) (downsampled face
images), VG-RAM WNN outperformed SRC. These results show that VG-RAM WNN is a
powerful technique for tackling this and other important problems in the pattern recognition
realm.

This chapter is organized as follows. Section 2 introduces VG-RAM WNN and Section 3 de-
scribes how we have used them for face recognition. Section 4 presents our experimental
methodology and experimental results. Our conclusions follows in Section 5.

2. VG-RAM WNN

RAM-based neural networks, also known as n-tuple classifiers or weightless neural networks,
do not store knowledge in their connections but in Random Access Memories (RAM) inside
the network’s nodes, or neurons. These neurons operate with binary input values and use
RAM as lookup tables: the synapses of each neuron collect a vector of bits from the network’s
inputs that is used as the RAM address, and the value stored at this address is the neuron’s
output. Training can be made in one shot and basically consists of storing the desired output
in the address associated with the input vector of the neuron (Aleksander, 1966) (see Figure 1).
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In spite of their remarkable simplicity, RAM-based neural networks are very effective as pat-
tern recognition tools, offering fast training and test, in addition to easy implementation (Alek-
sander, 1998). However, if the network input is too large, the memory size becomes pro-
hibitive, since it must be equal to 2n, where n is the input size. Virtual Generalizing RAM
(VG-RAM) Weightless Neural Networks (WNN) are RAM-based neural networks that only
require memory capacity to store the data related to the training set (Ludermir et al., 1999). In
the neurons of these networks, the memory stores the input-output pairs shown during train-
ing, instead of only the output. In the test phase, the memory of VG-RAM WNN neurons is
searched associatively by comparing the input presented to the network with all inputs in the
input-output pairs learned. The output of each VG-RAM WNN neuron is taken from the pair
whose input is nearest to the input presented—the distance function employed by VG-RAM
WNN neurons is the hamming distance. If there is more than one pair at the same minimum
distance from the input presented, the neuron’s output is chosen randomly among these pairs.

Figure 2 shows the lookup table of a VG-RAM WNN neuron with three synapses (X1, X2
and X3). This lookup table contains three entries (input-output pairs), which were stored
during the training phase (entry #1, entry #2 and entry #3). During the test phase, when an
input vector (input) is presented to the network, the VG-RAM WNN test algorithm calculates
the distance between this input vector and each input of the input-output pairs stored in the
lookup table. In the example of Figure 2, the hamming distance from the input to entry #1 is
two, because both X2 and X3 bits do not match the input vector. The distance to entry #2 is
one, because X1 is the only non-matching bit. The distance to entry #3 is three, as the reader
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Fig. 2. VG-RAM WNN neuron lookup table.

may easily verify. Hence, for this input vector, the algorithm evaluates the neuron’s output,
Y, as class 2, since it is the output value stored in entry #2.

3. Face Recognition with VG-RAM WNN

We examined the recognition part of the face identification problem only. That is, in the ex-
periments described in this chapter, the segmentation of faces from images (face detection)
is performed semi-automatically. Also, thanks to the properties of the VG-RAM WNN archi-
tectures employed, explicit feature extraction (e.g., line edge extraction; eye, nose, or mouth
segmentation; etc.) is not required, even though in one of the two VG-RAM WNN architec-
tures studied some neurons specializes in specific regions of the faces and, because of that, we
say it is feature-based. The other VG-RAM WNN architecture studied is holistic.

3.1 Holistic Architecture

The holistic architecture has a single bidimensional array of m × n VG-RAM WNN neurons,
N, where each neuron, ni,j, has a set of synapses W = {w1, . . . , w|W|}, which are randomly
connected to the network’s bidimensional input, Φ, of u × v inputs, ϕk,l (see Figure 3 and
Figure 4). The random synaptic interconnection pattern of each neuron ni,j, Ωi,j(W), is created
when the network is built and does not change afterwards.

VG-RAM WNN synapses can only get a single bit from the input. Thus, in order to allow our
VG-RAM WNN to deal with images, in which a pixel may assume a range of different values,
we use minchinton cells (Mitchell et al., 1998). In the proposed VG-RAM WNN architectures,
each neuron’s synapse, wt, forms a minchinton cell with the next, wt+1 (w|W| forms a minch-
inton cell with w1). The type of the minchinton cell we have used returns 1 if the synapse wt
of the cell is connected to an input element, ϕk,l , whose value is larger than the value of the
element ϕr,s to which the synapse wt+1 is connected, i.e., ϕk,l > ϕr,s; otherwise, it returns zero
(see the synapses w1 and w2 of the neuron nm,n of Figure 4).

The input face images, I, of ξ × η pixels (Figure 4) must be transformed in order to fit into
the network’s input, Φ. In the case of the AR Face Database, the images are rotated, scaled
and cropped (Figure 5); the rotation, scaling and cropping are performed semi-automatically,
i.e., the position of the eyes are marked manually and, based on this marking, the face in the
image is computationally adjusted to fit into Φ. Before being copied to Φ, the transformed
image is filtered by a Gaussian filter to smooth out artifacts produced by the transformations
(Figure 5(c)). In the case of the Extended Yale Face Database B, only scaling and filtering are

(a) (b)

(c)
Fig. 3. The synaptic interconnection pattern of the holistic architecture. (a) Left, input Φ: in
white, the elements ϕk,l of the input Φ that are connected to neuron n1,1 of N via Ω1,1(W).
Right, neuron array N: in white, the neuron n1,1 of N. (b) Left: in white, the elements ϕk,l of
Φ connected to n m

2 , n
2

via Ω m
2 , n

2
(W). Right: in white, the neuron n m

2 , n
2

of N. (c) Left: in white,
the elements of Φ connected to nm,n via Ωm,n(W). Right: in white, the neuron nm,n.

Fig. 4. Schematic diagram of the holistic and feature-based VG-RAM WNN architectures.
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Fig. 2. VG-RAM WNN neuron lookup table.
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segmentation; etc.) is not required, even though in one of the two VG-RAM WNN architec-
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N, where each neuron, ni,j, has a set of synapses W = {w1, . . . , w|W|}, which are randomly
connected to the network’s bidimensional input, Φ, of u × v inputs, ϕk,l (see Figure 3 and
Figure 4). The random synaptic interconnection pattern of each neuron ni,j, Ωi,j(W), is created
when the network is built and does not change afterwards.

VG-RAM WNN synapses can only get a single bit from the input. Thus, in order to allow our
VG-RAM WNN to deal with images, in which a pixel may assume a range of different values,
we use minchinton cells (Mitchell et al., 1998). In the proposed VG-RAM WNN architectures,
each neuron’s synapse, wt, forms a minchinton cell with the next, wt+1 (w|W| forms a minch-
inton cell with w1). The type of the minchinton cell we have used returns 1 if the synapse wt
of the cell is connected to an input element, ϕk,l , whose value is larger than the value of the
element ϕr,s to which the synapse wt+1 is connected, i.e., ϕk,l > ϕr,s; otherwise, it returns zero
(see the synapses w1 and w2 of the neuron nm,n of Figure 4).

The input face images, I, of ξ × η pixels (Figure 4) must be transformed in order to fit into
the network’s input, Φ. In the case of the AR Face Database, the images are rotated, scaled
and cropped (Figure 5); the rotation, scaling and cropping are performed semi-automatically,
i.e., the position of the eyes are marked manually and, based on this marking, the face in the
image is computationally adjusted to fit into Φ. Before being copied to Φ, the transformed
image is filtered by a Gaussian filter to smooth out artifacts produced by the transformations
(Figure 5(c)). In the case of the Extended Yale Face Database B, only scaling and filtering are
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(a) (b) (c)
Fig. 5. Face image and its preprocessing. (a) Original image; (b) rotated, scaled and cropped
image; and (c) filtered image.

necessary, since this database includes versions of the images already properly cropped (Lee
et al., 2005).

During training, the face image Ix of a person p is transformed and filtered, and its pixels are
copied to the VG-RAM WNN’s input Φ and all ni,j neurons’ outputs are set to the value of the
label lp ∈ L = {l1, . . . , l|L|}, associated with the face of the person p (|L| is equal to the number
of known persons). All neurons are then trained to output this label with this input image.
This procedure is repeated for all images Ix of the person p and, likewise, for all persons in the
training data set. During testing, each face image Iy is also transformed, filtered, and copied to
the VG-RAM WNN’s input Φ. After that, all neurons’ outputs are computed and the number
of neurons outputting each label is counted by a function f (Iy, lp) for all lp ∈ L = {l1, . . . , l|L|}.
The network’s output is the label with the largest count.

3.2 Feature-Based Architecture

As the holistic architecture, the feature-based architecture has a single bidimensional ar-
ray of m × n VG-RAM WNN neurons, N, where each neuron, ni,j, has a set of synapses,
W = {w1, . . . , w|W|}, which are connected to the network’s bidimensional input, Φ, of u × v
inputs. The synaptic interconnection pattern of each neuron ni,j, Ωi,j,σ(W), is, however, dif-
ferent (Figure 6). In the feature-based architecture, Ωi,j,σ(W) follows a bidimensional Normal

distribution with variance σ2 centered at ϕµk ,µl , where µk = i.u
m and µl =

j.v
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where σ is a parameter of the architecture. This synaptic interconnection pattern mimics that
observed in many classes of biological neurons (Kandel et al., 2000), and is also created when
the network is built and does not change afterwards.

A comparison between Figure 3 and Figure 6 illustrates the difference between the intercon-
nection patterns of the holistic and feature-based architectures. In the feature-based architec-
ture (Figure 6), each neuron ni,j monitors a region of the input Φ and, therefore, specializes in
the face features that are mapped to that region. On the other hand, each neuron ni,j of the
holistic architecture monitors the whole face (Figure 3).

(a) (b)

(c)
Fig. 6. The synaptic interconnection pattern of the feature-based architecture. (a) Left, input Φ:
in white, the elements ϕk,l of the input Φ that are connected to neuron n1,1 of N via Ω1,1,σ(W).
Right, neuron array N: in white, the neuron n1,1 of N. (b) Left: in white, the elements ϕk,l of
Φ connected to n m

2 , n
2

via Ω m
2 , n

2 ,σ(W). Right: in white, the neuron n m
2 , n

2
of N. (c) Left: in white,

the elements of Φ connected to nm,n via Ωn,n,σ(W). Right: in white, the neuron nm,n.

As in the holistic architecture, in the feature-based architecture each neuron’s synapse, wt,
forms a minchinton cell with the next, wt+1, and, before training or testing, the input face
images, I, are transformed and only then copied to the VG-RAM WNN input Φ. Training and
testing are performed the same way as in the holistic architecture.

4. Experimental Evaluation

We used the AR Face Database (Martinez & Benavente, 1998) and the Extended Yale Face
Database B (Georghiades et al., 2001; Lee et al., 2005) to evaluate the performance of VG-
RAM WNN on face recognition. The AR Face Database contains over 4,000 color images
corresponding to 135 people’s faces (76 men and 59 women). Images feature frontal view
faces with different facial expressions, illumination conditions, and occlusions (sun glasses
and scarf). Its 768×576 pixels pictures were taken under strictly controlled conditions, but
no restrictions on wear (clothes, glasses, etc.), make-up, hair style, etc. were imposed to par-
ticipants. Each person participated in two sessions, separated by two weeks (14 days) time.
On each of those sessions, thirteen images of each person were taken: four with variations
of expression (neutral expression, smile, anger and scream—first session Figure 7(a) and sec-
ond session Figure 7(e)), three with different illumination conditions (left light on, right light
on, all side lights on—Figure 7(b) and Figure 7(f)), three wearing large sun glasses in differ-
ent illumination conditions (Figure 7(c) and Figure 7(g)), and three wearing scarf in different
illumination conditions (Figure 7(d) and Figure 7(h)).
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Fig. 5. Face image and its preprocessing. (a) Original image; (b) rotated, scaled and cropped
image; and (c) filtered image.

necessary, since this database includes versions of the images already properly cropped (Lee
et al., 2005).

During training, the face image Ix of a person p is transformed and filtered, and its pixels are
copied to the VG-RAM WNN’s input Φ and all ni,j neurons’ outputs are set to the value of the
label lp ∈ L = {l1, . . . , l|L|}, associated with the face of the person p (|L| is equal to the number
of known persons). All neurons are then trained to output this label with this input image.
This procedure is repeated for all images Ix of the person p and, likewise, for all persons in the
training data set. During testing, each face image Iy is also transformed, filtered, and copied to
the VG-RAM WNN’s input Φ. After that, all neurons’ outputs are computed and the number
of neurons outputting each label is counted by a function f (Iy, lp) for all lp ∈ L = {l1, . . . , l|L|}.
The network’s output is the label with the largest count.

3.2 Feature-Based Architecture

As the holistic architecture, the feature-based architecture has a single bidimensional ar-
ray of m × n VG-RAM WNN neurons, N, where each neuron, ni,j, has a set of synapses,
W = {w1, . . . , w|W|}, which are connected to the network’s bidimensional input, Φ, of u × v
inputs. The synaptic interconnection pattern of each neuron ni,j, Ωi,j,σ(W), is, however, dif-
ferent (Figure 6). In the feature-based architecture, Ωi,j,σ(W) follows a bidimensional Normal
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where σ is a parameter of the architecture. This synaptic interconnection pattern mimics that
observed in many classes of biological neurons (Kandel et al., 2000), and is also created when
the network is built and does not change afterwards.

A comparison between Figure 3 and Figure 6 illustrates the difference between the intercon-
nection patterns of the holistic and feature-based architectures. In the feature-based architec-
ture (Figure 6), each neuron ni,j monitors a region of the input Φ and, therefore, specializes in
the face features that are mapped to that region. On the other hand, each neuron ni,j of the
holistic architecture monitors the whole face (Figure 3).
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Fig. 6. The synaptic interconnection pattern of the feature-based architecture. (a) Left, input Φ:
in white, the elements ϕk,l of the input Φ that are connected to neuron n1,1 of N via Ω1,1,σ(W).
Right, neuron array N: in white, the neuron n1,1 of N. (b) Left: in white, the elements ϕk,l of
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the elements of Φ connected to nm,n via Ωn,n,σ(W). Right: in white, the neuron nm,n.

As in the holistic architecture, in the feature-based architecture each neuron’s synapse, wt,
forms a minchinton cell with the next, wt+1, and, before training or testing, the input face
images, I, are transformed and only then copied to the VG-RAM WNN input Φ. Training and
testing are performed the same way as in the holistic architecture.

4. Experimental Evaluation

We used the AR Face Database (Martinez & Benavente, 1998) and the Extended Yale Face
Database B (Georghiades et al., 2001; Lee et al., 2005) to evaluate the performance of VG-
RAM WNN on face recognition. The AR Face Database contains over 4,000 color images
corresponding to 135 people’s faces (76 men and 59 women). Images feature frontal view
faces with different facial expressions, illumination conditions, and occlusions (sun glasses
and scarf). Its 768×576 pixels pictures were taken under strictly controlled conditions, but
no restrictions on wear (clothes, glasses, etc.), make-up, hair style, etc. were imposed to par-
ticipants. Each person participated in two sessions, separated by two weeks (14 days) time.
On each of those sessions, thirteen images of each person were taken: four with variations
of expression (neutral expression, smile, anger and scream—first session Figure 7(a) and sec-
ond session Figure 7(e)), three with different illumination conditions (left light on, right light
on, all side lights on—Figure 7(b) and Figure 7(f)), three wearing large sun glasses in differ-
ent illumination conditions (Figure 7(c) and Figure 7(g)), and three wearing scarf in different
illumination conditions (Figure 7(d) and Figure 7(h)).
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Fig. 7. Rotated, scaled and croped images of one person of the AR Face Database.

The Extended Yale Face Database B consists of 2,414 frontal-face images of 38 individu-
als (Georghiades et al., 2001). The manually cropped and 192 × 168 sized face images were
captured under 64 different laboratory-controlled lighting conditions (Lee et al., 2005). Fig-
ure 7 shows the 64 face images of one person of the Extended Yale Face Database B.

We used these face databases to perform two sets of experiments. In the first set, we used
the AR Face Database to compare the performance of VG-RAM WNN with that of: (i) a
holistic method based on principal component analysis (PCA) (Turk & Pentland, 1991); (ii)
feature-based methods based on non-negative matrix factorization (NMF) (Lee & Seung,
1999), local non-negative matrix factorization (LNMF) (Li et al., 2001), and line edge maps
(LEM) (Gao & Leung, 2002); and (iii) hybrid methods based on weighted eigenspace repre-
sentation (WER) (Martinez, 2002) and attributed relational graph (ARG) matching (Park et al.,
2005). In the second set of experiments, we compared the performance of VG-RAM WNN
with that of Sparse Representation-based Classification (SRC) (Wright et al., 2009) using both

Fig. 8. Images of one person of the Extended Yale Face Database B.

the AR Face Database and the Extended Yale Face Database B. In the following sections we
present these experiments.

4.1 VG-RAM WNN versus PCA, NMF, LNMF, LEM, WER, and ARG

In order to allow the comparison of VG-RAM WNN with that of PCA, NMF, LNMF, LEM,
WER, and ARG, we used an experimental setup equivalent to that of Park et al. (2005). Park
et al. (2005) proposed the ARG approach and compared it with PCA, NMF, LNMF, LEM, and
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the AR Face Database and the Extended Yale Face Database B. In the following sections we
present these experiments.

4.1 VG-RAM WNN versus PCA, NMF, LNMF, LEM, WER, and ARG

In order to allow the comparison of VG-RAM WNN with that of PCA, NMF, LNMF, LEM,
WER, and ARG, we used an experimental setup equivalent to that of Park et al. (2005). Park
et al. (2005) proposed the ARG approach and compared it with PCA, NMF, LNMF, LEM, and
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WER. By using an equivalent experimental setup, we can compare VG-RAM WNN with his
approach and the others mentioned.

As Park et al. (2005), we used only the following subset of image types of the AR Face
Database: neutral expression, smile, anger, scream, left light on, right light on, all side lights
on, wearing sun glasses (with a single illumination condition), and wearing scarf (with a sin-
gle illumination condition). These can be divided into four groups: (i) normal (neutral expres-
sion); (ii) under expression variation (smile, anger, scream); (iii) under illumination changes
(left light on, right light on, all side lights on); and (iv) with occlusion (wearing sun glasses,
wearing scarf). We took these types of 768× 576 sized face image of all persons in the AR Face
Database and rotated, scaled, cropped and filtered them to obtain 128 × 200 face images that
we used as the input Φ of our VG-RAM WNN. Figure 9 shows a set of transformed images of
one subject of the AR Face Database (rotated, scaled and cropped to 128 × 200 sized images).

(a) (b) (c) (d)
Fig. 9. The AR face database: (a) normal (neutral expression); (b) under expression variation
(smile, anger, scream); (c) under illumination changes (left light on, right light on, all side
lights on); and (d) with occlusion (wearing sun glasses, wearing scarf).

We randomly selected 50 people from the database to tune the parameters of the VG-RAM
WNN architectures (25 men and 25 women). We used one normal face image of each person
to train (50 images), and the smile, anger, wearing sun glasses, and wearing scarf to eval-
uate the architectures (200 images) while varying their parameters. Below, we describe the
experiments we performed to tune the parameters of the architectures.

4.1.1 Holistic Architecture Parameter Tunning

The holistic architecture has three parameters: (i) the number of neurons, m × n; (ii) the num-
ber of synapses per neuron, |W|; and (iii) the size of the network input, u × v. We tested
networks with: m × n equal to 2×2, 4×4, 16×16, 32×32 and 64×64; number of synapses per
neuron equal to 32, 64, 128 and 256; and u × v equal to 128×200 (we did not vary u × v to
reduce the parameter search space). Figure 10(a) presents the results of the experiments we
carried out to tune the parameters of the holistic architecture.

As Figure 10(a) shows, the performance, i.e., the percentage of correctly recognized faces
(recognition rate) of the holistic architecture grows with the number of neurons and synapses
per neuron; however, as these numbers increase, the gains in performance decrease forming
a plateau towards the maximum performance. The simplest configuration in the plateau has
around 16×16 neurons and 64 synapses.
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Fig. 10. Performance tunning: (a) holistic architecture and (b) feature-based architecture.

4.1.2 Feature-Based Architecture Parameter Tunning

The feature-based architecture has four parameters: (i) the number of neurons; (ii) the number
of synapses per neuron; (iii) the size of the network input; and (iv) σ (see Section 3.2). We
tested networks with: m× n equal to 2×2, 4×4, 16×16, 32×32 and 64×64; number of synapses
per neuron equal to 32, 64, 128 and 256; u × v equal to 128×200; and σ equal to 10 (we did not
vary u × v and σ to reduce the parameter search space).

Figure 10(b) presents the results of the experiments we conducted to tune the parameters of
the feature-based architecture. As Figure 10(b) shows, the performance of the feature-based ar-
chitecture also grows with the number of neurons and synapses per neuron, and again reaches
a plateau at about 32×32 neurons and 128 synapses. However, it is important to note that, in
this case, the plateau is very close to a recognition rate of 100%—the best performing configu-
ration achieved a recognition rate of 99.5%.

4.1.3 Performance Comparison

We compared the performances of the holistic and feature-based VG-RAM WNN architectures
with that of PCA, NMF, LNMF, LEM, WER, and ARG approaches. For that, we took the
best VG-RAM WNN architectures configurations (holistic: 16×16 neurons and 64 synapses
per neuron; feature-based: 32×32 neurons and 128 synapses per neuron), trained them with
the normal face image of all people in the database (135 images), and tested them with the
remaining face image categories of Figure 9 of all people in the database (135 images of each
face image category). Table 1 summarizes this comparison, showing one technique on each
line, grouped by type, and the corresponding performance for each face image category on
each column.

As the results in Table 1 show, the VG-RAM WNN holistic (VWH) architecture outperformed
all holistic and feature-based techniques examined (except the VG-RAM WNN feature-based
architecture - VWF) in all face image categories. It also performed better than the hybrid
techniques, except for the categories with occlusion and single side illumination. That was
expected, since occlusions and single side illumination compromise eventual similarities be-
tween the input patterns learned by the VWH neurons and those collected by its synapses
from a partially occluded or illuminated face. Nevertheless, it is important to note the overall
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WER. By using an equivalent experimental setup, we can compare VG-RAM WNN with his
approach and the others mentioned.

As Park et al. (2005), we used only the following subset of image types of the AR Face
Database: neutral expression, smile, anger, scream, left light on, right light on, all side lights
on, wearing sun glasses (with a single illumination condition), and wearing scarf (with a sin-
gle illumination condition). These can be divided into four groups: (i) normal (neutral expres-
sion); (ii) under expression variation (smile, anger, scream); (iii) under illumination changes
(left light on, right light on, all side lights on); and (iv) with occlusion (wearing sun glasses,
wearing scarf). We took these types of 768× 576 sized face image of all persons in the AR Face
Database and rotated, scaled, cropped and filtered them to obtain 128 × 200 face images that
we used as the input Φ of our VG-RAM WNN. Figure 9 shows a set of transformed images of
one subject of the AR Face Database (rotated, scaled and cropped to 128 × 200 sized images).

(a) (b) (c) (d)
Fig. 9. The AR face database: (a) normal (neutral expression); (b) under expression variation
(smile, anger, scream); (c) under illumination changes (left light on, right light on, all side
lights on); and (d) with occlusion (wearing sun glasses, wearing scarf).

We randomly selected 50 people from the database to tune the parameters of the VG-RAM
WNN architectures (25 men and 25 women). We used one normal face image of each person
to train (50 images), and the smile, anger, wearing sun glasses, and wearing scarf to eval-
uate the architectures (200 images) while varying their parameters. Below, we describe the
experiments we performed to tune the parameters of the architectures.

4.1.1 Holistic Architecture Parameter Tunning

The holistic architecture has three parameters: (i) the number of neurons, m × n; (ii) the num-
ber of synapses per neuron, |W|; and (iii) the size of the network input, u × v. We tested
networks with: m × n equal to 2×2, 4×4, 16×16, 32×32 and 64×64; number of synapses per
neuron equal to 32, 64, 128 and 256; and u × v equal to 128×200 (we did not vary u × v to
reduce the parameter search space). Figure 10(a) presents the results of the experiments we
carried out to tune the parameters of the holistic architecture.

As Figure 10(a) shows, the performance, i.e., the percentage of correctly recognized faces
(recognition rate) of the holistic architecture grows with the number of neurons and synapses
per neuron; however, as these numbers increase, the gains in performance decrease forming
a plateau towards the maximum performance. The simplest configuration in the plateau has
around 16×16 neurons and 64 synapses.
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Fig. 10. Performance tunning: (a) holistic architecture and (b) feature-based architecture.

4.1.2 Feature-Based Architecture Parameter Tunning

The feature-based architecture has four parameters: (i) the number of neurons; (ii) the number
of synapses per neuron; (iii) the size of the network input; and (iv) σ (see Section 3.2). We
tested networks with: m× n equal to 2×2, 4×4, 16×16, 32×32 and 64×64; number of synapses
per neuron equal to 32, 64, 128 and 256; u × v equal to 128×200; and σ equal to 10 (we did not
vary u × v and σ to reduce the parameter search space).

Figure 10(b) presents the results of the experiments we conducted to tune the parameters of
the feature-based architecture. As Figure 10(b) shows, the performance of the feature-based ar-
chitecture also grows with the number of neurons and synapses per neuron, and again reaches
a plateau at about 32×32 neurons and 128 synapses. However, it is important to note that, in
this case, the plateau is very close to a recognition rate of 100%—the best performing configu-
ration achieved a recognition rate of 99.5%.

4.1.3 Performance Comparison

We compared the performances of the holistic and feature-based VG-RAM WNN architectures
with that of PCA, NMF, LNMF, LEM, WER, and ARG approaches. For that, we took the
best VG-RAM WNN architectures configurations (holistic: 16×16 neurons and 64 synapses
per neuron; feature-based: 32×32 neurons and 128 synapses per neuron), trained them with
the normal face image of all people in the database (135 images), and tested them with the
remaining face image categories of Figure 9 of all people in the database (135 images of each
face image category). Table 1 summarizes this comparison, showing one technique on each
line, grouped by type, and the corresponding performance for each face image category on
each column.

As the results in Table 1 show, the VG-RAM WNN holistic (VWH) architecture outperformed
all holistic and feature-based techniques examined (except the VG-RAM WNN feature-based
architecture - VWF) in all face image categories. It also performed better than the hybrid
techniques, except for the categories with occlusion and single side illumination. That was
expected, since occlusions and single side illumination compromise eventual similarities be-
tween the input patterns learned by the VWH neurons and those collected by its synapses
from a partially occluded or illuminated face. Nevertheless, it is important to note the overall



Face	Recognition182

Table 1. Comparison of the performance on the AR Face Database of the holistic (VWH) and
feature-based (VWF) VG-RAM WNN architectures with that of: (i) PCA: principal compo-
nent analysis (Turk & Pentland, 1991) (results obtained from (Park et al., 2005)); NMF: non-
negative matrix factorization (Lee & Seung, 1999) (results from (Park et al., 2005)); LNMF:
local non-negative matrix factorization (Li et al., 2001) (results from (Park et al., 2005)); LEM:
line edge maps (Gao & Leung, 2002) (results from (Gao & Leung, 2002) with only 112 people
of the AR Face Database); WER: weighted eigenspace representation (Martinez, 2002) (results
from (Martinez, 2002) with only 50 people of the AR Face Database); and ARG: attributed
relational graph matching (Park et al., 2005) (results from (Park et al., 2005)).

Type Technique
Category

Smile Anger Scream Glasses Scarf Left Right All side
light light lights

HOLa PCA 94.1% 79.3% 44.4% 32.9% 2.2% 7.4% 7.4% 2.2%
VWH 98.5% 97.8% 91.1% 66.7% 25.2% 97.8% 95.6% 95.6%

FBAb

NMF 68.1% 50.4% 18.5% 3.7% 0.7% N/Ad N/A N/A
LNMF 94.8% 76.3% 44.4% 18.5% 9.6% N/A N/A N/A
LEM 78.6% 92.9% 31.3% N/A N/A 92.9% 91.1% 74.1%
VWF 99.3% 99.3% 93.3% 85.2% 98.5% 99.3% 98.5% 99.3%

HYBc WER 84.0% 94.0% 32.0% 80.0% 82.0% N/A N/A N/A
ARG 97.8% 96.3% 66.7% 80.7% 85.2% 98.5% 96.3% 91.1%

aHOL: holistic techniques. bFBA: feature-based techniques. cHYB: hybrid techniques. dN/A:
not available.

performance achieved by VWH, which is better than that of several other relevant techniques
from literature.

As Table 1 also shows, the VG-RAM WNN feature-based (VWF) architecture performed better
than all other techniques examined in all categories and, in many cases, by a large margin.

4.2 VG-RAM WNN versus SRC

The central point of the SRC approach is that there are a lot of redundancy of information
in face images, i.e., for the purpose of face recognition, the dimensionality of face images
is typically too large because they are frequently oversampled. One can appreciate this by
reasoning about the fact that images can be compacted; i.e., images sampled (or either over-
sampled) with 8 megapixels—which would result in a file with 8 megapixels × 3 bytes, one
byte for each color, that is, 3 × 8 megabytes—can typically be compacted into a file of about
one megabyte.

In the work of Wright et al. (2009), they studied several methods to reduce the dimensionality
of the information extracted from face images for being used as input of the face recognition
systems’ classifiers. Therefore, in order to allow the comparison of VG-RAM WNN with that
of SRC, we used an experimental setup equivalent to that of Wright et al. (2009).

We compared the best VG-RAM WNN performing architecture (feature-based) with that of
SRC. For the experiments with the AR Face Database, as Wright et al. (2009) did, we rotated,
scaled, and cropped the 768 × 576 sized face images to 120 × 165 sized images and, after that,

downsampled the images at a ratio of 1/6. The downsampled images have size 20 × 27, or
540 dimensions, which was the same used by Wright et al. (2009). After downsampling the
images, we rescaled them back to 120 × 165 to use as the input Φ of the VG-RAM WNN
(about the same size we used in the previous experiments, 128 × 200). Note that this does
not add any information to the images; we did that in order to not change the parameters we
have found in the tuning of the VG-RAM WNN feature-based architecture. After rescaling
the images, we filtered them with a Gaussian filter to smooth out artifacts produced by the
transformations. Again, it is important to note that this does not add any information to the
images; it is required only for the proper work of our VG-RAM WNN. Figure 11(a) shows
a transformed face image (rotated, scaled, and cropped), the downsampled version of this
image, and the filtered version of this same image.

(a) (b)
Fig. 11. Face image subsampling. (a) AR Face Database. (b) Extended Yale Face Database B.

For the experiments with the Extended Yale Face Database B, also used by Wright et al. (2009),
only scaling and filtering were necessary, since this database includes versions of the images
already properly cropped. The image sizes in the Extended Yale Face Database B are different
from those in the AR Face Database; we downsampled the 168 × 192 sized face images to
21× 24 and, as we did with the AR Face Database, we rescaled these images back to 168× 192
and filtered them. Figure 11(b) shows an original face image, the downsampled version of
this image, and the filtered version of this same image.

In the case of the AR Face Database, following the same procedure of Wright et al. (2009), we
randomly selected 50 men and 50 women. For each person, fourteen images with variations
of expression and different illumination conditions were selected; the seven images from the
first session were used for training and the other seven from the second session for testing. In
the case of the Extended Yale Face Database B, for each person, we randomly selected half of
the face images for training (i.e., about 32 images for each of the 38 people) and the other half
for testing.

Table 2 summarizes the comparison of the performance of the VG-RAM WNN feature-based
architecture with that of SRC, following the same format of the Table 1. The kind of face
recognition system of Wright et al. (2009) is a holistic type.

As the results in Table 2 show, VG-RAM WNN feature-based (VWF) architecture outper-
formed SRC for both databases and, in the case of the AR Face Database, by a large margin.
The VWF superior performance, shown in both the Table 1 and Table 2, is the result of two
factors. First, each VWF (or VWH) synapse collects the result of a comparison between two
pixels, executed by its corresponding minchinton cell. Our best VWF has 128 synapses per
neuron and 32×32 neurons. Therefore, during test, 131072 (128×32×32) such comparisons are
executed on an input face image and the results are checked against equivalent results learned
from training images. This amount of pixel comparisons allows not only high discrimination
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Table 1. Comparison of the performance on the AR Face Database of the holistic (VWH) and
feature-based (VWF) VG-RAM WNN architectures with that of: (i) PCA: principal compo-
nent analysis (Turk & Pentland, 1991) (results obtained from (Park et al., 2005)); NMF: non-
negative matrix factorization (Lee & Seung, 1999) (results from (Park et al., 2005)); LNMF:
local non-negative matrix factorization (Li et al., 2001) (results from (Park et al., 2005)); LEM:
line edge maps (Gao & Leung, 2002) (results from (Gao & Leung, 2002) with only 112 people
of the AR Face Database); WER: weighted eigenspace representation (Martinez, 2002) (results
from (Martinez, 2002) with only 50 people of the AR Face Database); and ARG: attributed
relational graph matching (Park et al., 2005) (results from (Park et al., 2005)).

Type Technique
Category

Smile Anger Scream Glasses Scarf Left Right All side
light light lights

HOLa PCA 94.1% 79.3% 44.4% 32.9% 2.2% 7.4% 7.4% 2.2%
VWH 98.5% 97.8% 91.1% 66.7% 25.2% 97.8% 95.6% 95.6%

FBAb

NMF 68.1% 50.4% 18.5% 3.7% 0.7% N/Ad N/A N/A
LNMF 94.8% 76.3% 44.4% 18.5% 9.6% N/A N/A N/A
LEM 78.6% 92.9% 31.3% N/A N/A 92.9% 91.1% 74.1%
VWF 99.3% 99.3% 93.3% 85.2% 98.5% 99.3% 98.5% 99.3%

HYBc WER 84.0% 94.0% 32.0% 80.0% 82.0% N/A N/A N/A
ARG 97.8% 96.3% 66.7% 80.7% 85.2% 98.5% 96.3% 91.1%

aHOL: holistic techniques. bFBA: feature-based techniques. cHYB: hybrid techniques. dN/A:
not available.

performance achieved by VWH, which is better than that of several other relevant techniques
from literature.

As Table 1 also shows, the VG-RAM WNN feature-based (VWF) architecture performed better
than all other techniques examined in all categories and, in many cases, by a large margin.

4.2 VG-RAM WNN versus SRC

The central point of the SRC approach is that there are a lot of redundancy of information
in face images, i.e., for the purpose of face recognition, the dimensionality of face images
is typically too large because they are frequently oversampled. One can appreciate this by
reasoning about the fact that images can be compacted; i.e., images sampled (or either over-
sampled) with 8 megapixels—which would result in a file with 8 megapixels × 3 bytes, one
byte for each color, that is, 3 × 8 megabytes—can typically be compacted into a file of about
one megabyte.

In the work of Wright et al. (2009), they studied several methods to reduce the dimensionality
of the information extracted from face images for being used as input of the face recognition
systems’ classifiers. Therefore, in order to allow the comparison of VG-RAM WNN with that
of SRC, we used an experimental setup equivalent to that of Wright et al. (2009).

We compared the best VG-RAM WNN performing architecture (feature-based) with that of
SRC. For the experiments with the AR Face Database, as Wright et al. (2009) did, we rotated,
scaled, and cropped the 768 × 576 sized face images to 120 × 165 sized images and, after that,

downsampled the images at a ratio of 1/6. The downsampled images have size 20 × 27, or
540 dimensions, which was the same used by Wright et al. (2009). After downsampling the
images, we rescaled them back to 120 × 165 to use as the input Φ of the VG-RAM WNN
(about the same size we used in the previous experiments, 128 × 200). Note that this does
not add any information to the images; we did that in order to not change the parameters we
have found in the tuning of the VG-RAM WNN feature-based architecture. After rescaling
the images, we filtered them with a Gaussian filter to smooth out artifacts produced by the
transformations. Again, it is important to note that this does not add any information to the
images; it is required only for the proper work of our VG-RAM WNN. Figure 11(a) shows
a transformed face image (rotated, scaled, and cropped), the downsampled version of this
image, and the filtered version of this same image.

(a) (b)
Fig. 11. Face image subsampling. (a) AR Face Database. (b) Extended Yale Face Database B.

For the experiments with the Extended Yale Face Database B, also used by Wright et al. (2009),
only scaling and filtering were necessary, since this database includes versions of the images
already properly cropped. The image sizes in the Extended Yale Face Database B are different
from those in the AR Face Database; we downsampled the 168 × 192 sized face images to
21× 24 and, as we did with the AR Face Database, we rescaled these images back to 168× 192
and filtered them. Figure 11(b) shows an original face image, the downsampled version of
this image, and the filtered version of this same image.

In the case of the AR Face Database, following the same procedure of Wright et al. (2009), we
randomly selected 50 men and 50 women. For each person, fourteen images with variations
of expression and different illumination conditions were selected; the seven images from the
first session were used for training and the other seven from the second session for testing. In
the case of the Extended Yale Face Database B, for each person, we randomly selected half of
the face images for training (i.e., about 32 images for each of the 38 people) and the other half
for testing.

Table 2 summarizes the comparison of the performance of the VG-RAM WNN feature-based
architecture with that of SRC, following the same format of the Table 1. The kind of face
recognition system of Wright et al. (2009) is a holistic type.

As the results in Table 2 show, VG-RAM WNN feature-based (VWF) architecture outper-
formed SRC for both databases and, in the case of the AR Face Database, by a large margin.
The VWF superior performance, shown in both the Table 1 and Table 2, is the result of two
factors. First, each VWF (or VWH) synapse collects the result of a comparison between two
pixels, executed by its corresponding minchinton cell. Our best VWF has 128 synapses per
neuron and 32×32 neurons. Therefore, during test, 131072 (128×32×32) such comparisons are
executed on an input face image and the results are checked against equivalent results learned
from training images. This amount of pixel comparisons allows not only high discrimination
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Table 2. Comparison of the performance on the AR Face Database and the Extended Yale Face
Database B of the VG-RAM WNN feature-based (VWF) architecture with that of the Sparse
Representation-based Classification (SRC). Results for SRC were obtained from Wright et al.
(2009).

Type Technique Database
AR Face Database Extended Yale Face Database B

HOLa SRC (Random) 94.70% 98.1%
FBAb VWF 98.86% 99.34%

aHOL: holistic techniques. bFBA: feature-based techniques.

capability but also generalization. Second, thanks to the characteristics of the VWF architec-
ture, i.e., its synaptic interconnection pattern, each VWF neuron monitors a specific region of
the face only, which reduces the overall impact of occlusions and varying illumination condi-
tions on recognition performance.

5. Conclusions and Future Work

In this work, we presented an experimental evaluation of the performance of Virtual Gener-
alizing Random Access Memory Weightless Neural Networks (VG-RAM WNN Aleksander
(1998)) on face recognition. We presented two VG-RAM WNN face recognition architectures,
one holistic and the other feature-based, and examined its performance with two well known
face database: the AR Face Database and the Extended Yale Face Database B. The AR Face
Database is challenging for face recognition systems because it has images with different facial
expressions, occlusions, and varying illumination conditions. The best performing architec-
ture (feature-based) showed robustness in all image conditions and better performance than
many other techniques from literature, even when trained with a single sample per person.

In future works, we will examine the performance of VG-RAM WNN with other databases
and use it to tackle other problems associated with face recognition systems, such as face
detection, face alignment, face recognition in video, etc.
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Table 2. Comparison of the performance on the AR Face Database and the Extended Yale Face
Database B of the VG-RAM WNN feature-based (VWF) architecture with that of the Sparse
Representation-based Classification (SRC). Results for SRC were obtained from Wright et al.
(2009).

Type Technique Database
AR Face Database Extended Yale Face Database B

HOLa SRC (Random) 94.70% 98.1%
FBAb VWF 98.86% 99.34%

aHOL: holistic techniques. bFBA: feature-based techniques.

capability but also generalization. Second, thanks to the characteristics of the VWF architec-
ture, i.e., its synaptic interconnection pattern, each VWF neuron monitors a specific region of
the face only, which reduces the overall impact of occlusions and varying illumination condi-
tions on recognition performance.

5. Conclusions and Future Work

In this work, we presented an experimental evaluation of the performance of Virtual Gener-
alizing Random Access Memory Weightless Neural Networks (VG-RAM WNN Aleksander
(1998)) on face recognition. We presented two VG-RAM WNN face recognition architectures,
one holistic and the other feature-based, and examined its performance with two well known
face database: the AR Face Database and the Extended Yale Face Database B. The AR Face
Database is challenging for face recognition systems because it has images with different facial
expressions, occlusions, and varying illumination conditions. The best performing architec-
ture (feature-based) showed robustness in all image conditions and better performance than
many other techniques from literature, even when trained with a single sample per person.

In future works, we will examine the performance of VG-RAM WNN with other databases
and use it to tackle other problems associated with face recognition systems, such as face
detection, face alignment, face recognition in video, etc.
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1. Introduction 

Driven by the demanding of public security, face recognition has emerged as a viable 
solution and achieved comparable accuracies to fingerprint system under controlled 
lightning environment. In recent years, with wide installing of camera in open area, the 
automatic face recognition in watch-list application is facing a serious problem. Under the 
open environment, lightning changes is unpredictable, and the performance of face 
recognition degrades seriously. 
Illumination processing is a necessary step for face recognition to be useful in the 
uncontrolled environment. NIST has started a test called FRGC to boost the research in 
improving the performance under changing illumination. In this chapter, we will focus on 
the research effort made in this direction and the influence on face recognition caused by 
illumination. 
First of all, we will discuss the quest on the image formation mechanism under various 
illumination situations, and the corresponding mathematical modelling. The Lambertian 
lighting model, bilinear illuminating model and some recent model are reviewed. Secondly, 
under different state of face, like various head pose and different facial expression, how 
illumination influences the recognition result, where the different pose and illuminating will 
be examined carefully. Thirdly, the current methods researcher employ to counter the change 
of illumination to maintain good performance on face recognition are assessed briefly. The 
processing technique in video and how it will improve face recognition on video, where 
Wang’s (Wang & Li, 2009) work will be discussed to give an example on the related 
advancement in the fourth part. And finally, the current state-of-art of illumination 
processing and its future trends will be discussed. 

 
2. The formation of camera imaging and its difference from the human visual 
system 

With the camera invented in 1814 by Joseph N, recording of human face began its new era. 
Since we do not need to hire a painter to draw our figures, as the nobles did in the middle 
age. And the machine recorded our image as it is, if the camera is in good condition.  
Currently, the imaging system is mostly to be digital format. The central part is CCD 
(charge-coupled device) or CMOS (complimentary metal-oxide semiconductor). The 
CCD/CMOS operates just like the human eyes. Both CCD and CMOS image sensors operate 
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in the same manner -- they have to convert light into electrons. One simplified way to think 
about the sensor used in a digital camera is to think of it as having a 2-D array of thousands 
or millions of tiny solar cells, each of which transforms the light from one small portion of the 
image into electrons. The next step is to read the value (accumulated charge) of each cell in 
the image. In a CCD device, the charge is actually transported across the chip and read at one 
corner of the array. An analog-to-digital converter turns each pixel's value into a digital 
value. And the value is mapping to the pixel value in the memory, thus forming the given 
object image. Although they shared lots of similarity as human eyes，however, the 
impression is different. One of the advantage of human visual system is the human eye could 
view color constantly regardless of the luminance value in the surrounding. People with 
normal visual capabilities could recall the leave of tree is always green either in the morning, 
at the noon, or in the dust of sunset. Color constancy is subjective constancy, it remains 
relatively constant under normal variation situation. This phenomena was explained by N. 
Daw (Conway & Livingstone, 2006) using the Double-opponent cells, later E. land developed 
retinex theory to explain it (Am. Sci., 1963). However, for the CCD/CMOS, the formed color 
of the leave of the tree is related to the surrounding luminance value greatly. Thus, the 
difference between them is the reason that there should be some difference in the face 
recognition between human and machine. Machine could not take it for granted the 
appearance has some ignorance of its surrounding luminance value.  
 
Human gets the perception of objects from the radiance reflected by the objects. Usually, the 
reflection from most objects is scattered reflection. Unlike reflected by smooth surface, the 
ray is deflected in random directions by irregularities in the propagation medium.  

Fig. 1. Diagram of diffuse reflection (taken from the wikipedia.org) 
 

If it is captured by eyes of human being, then perception could be fulfilled. Illumination 
independent image representation is an important research topic for face recognition. The 
face images were recorded under tightly controlled condition, where different pose, various 
distance, and different facial expression were presented. The edge maps, Gabor-filtered 
images, and the derivative of gray image were tried, but none of them could achieve the 
goal to be illumination independent, and none of these works provided a good enough 
framework to overcome the influence of various lighting condition. 

 
3. Models for illumination 

To overcome the problem, some mathematical models describing the reflectance of object in 
computer graphics were utilized to recover the facial image under various lighting condition. 
Image of a human face is the projection of its three-dimensional head on a plane, the 
important factors influencing the image representation is the irradiance. In computer 
graphics, Lambertian surface (Angel, 2003) is used to model the object surface’s irradiance. 
The surface is called Lambertian surface if light falling on it is scattered such that the 
apparent brightness of the surface to an observer is the same regardless of the observer's 
angle of view. It could be modeled mathematically as in the following equation (1), where 
I�x, y� is the image irradiance, ρ is the surface reflectance of the object, ��x, y� is the surface 
normal vector of object surface, and s is the incidence ray. 
 

I�x, y� � ρ�x, y���x, y�T · s                          (1) 
 

The Lambertian surface luminance could be called to be isotropic technically. Recently, 
Shashua and Riklin-Raviv (Shashua & Riklin-Raviv, 2001) proposed a method to extract the 
object’s surface reflectance as an illumination invariant description. The method is called 
quotient image, which is extracted from several sample image of the object. The quotient 
image is defined as shown in equation 2, using the quotient image, it could recover image 
under some different lighting condition. It is reported outperformed the PCA. However, it 
works in very limited situation. 
 

Q� � I�
I� �

����,���T�
����,���T� �

����,��
����,��                         (2) 

 
Basri and Jacobs (Basri & Jacobs, 2003) illustrated that the illumination cone of a convex 
Lambertian surface could be represented by a nine-dimensional linear subspaces. In some 
limited environment, it could achieve some good performance. Further, Gross et al. (Gross et 
al., 2002) proposed a similar method called Eigen light-fields. This method claimed to only 
have one gallery and one probe image to estimate the light-field of the subject head, there is 
none further requirement on the subject pose and illumination value. And the authors 
declared that the performance of the proposed method on the CMU PIE database (Sim et al., 
2002) is much better than that of other related algorithm.  
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The assumption of Lambertian model requires perfect situation, E. Nicodemus (Nicodemus, 
1965) put forward a theory called BRDF (bidirectional reflectance distribution function) later. 
The BRDF is a four-dimensional function that defines how light is reflected at an opaque 
surface. The function takes an incoming light direction ω�, and outgoing direction ω�, both 
defined with respect to the surface normal n, and returns the ratio of reflected radiance 
exiting along ω� to the irradiance incident on the surface from direction ω�, Note that each 
direction ω is itself parameterized by azimuth angle φ and zenith angle θ, therefore the 
BRDF as a whole is 4-dimensional. BRDF is used in the field of modelling the reflectance on 
an opaque surface. These parameters could be illustrated in Fig. 2. 
 

Fig. 2. Diagram showing BRDF, ω� points toward the light source. ω� points toward the 
viewer (camera). n is the surface normal 
 
BRDF model is extensively used in the rendering artificial illuminating effects in computer 
graphics. To counter the effect of illumination variation, we could artificial render the 
different lighting situation by using this model. Comparing with Lambertain model, BRDF is 
of 4 dimensions, the complexity of related computation process is very large. Also, inverting 
the rendering situation is an ill posed problem, the equation must try some assumptions in 
serial to solve this problem. Thus, the efforts to employ BRDF model to attack the 
illumination is not successful currently. 
The above models are general approaches to illumination invariant presentation; they have 
no requirement on the content of the image. However, recently years, there is lots of work 
towards to make human face image independent of illuminance, and it will be discussed 
thoroughly in the next section. 

 
4. Current Approaches of Illumination Processing in Face Recognition 

Many papers have been published to study on illumination processing in face recognition in 
the recent years. By now, these approaches can be divided into two categories: passive 
approaches and active approaches (Zou et al., 2007, a). 

4.1 Passive Approaches 
The idea of passive approaches: attempt to overcome illumination variation problem from 
images or video sequences in which face appearance has been altered due to environmental 
illumination change. Furthermore, this category can be subdivided into three classes at least, 
described as follows. 

 
4.1.1 Photometric Normalization 
Illumination variation can be removed: the input face images can be normalized to some 
state where comparisons are more reliable. 
Mauricio and Roberto (Villegas & Paredes, 2005) divided photometric normalization 
algorithms into two types: global normalization methods and local normalization methods. 
The former type includes gamma intensity correction, histogram equalization, histogram 
matching and normal distribution. The latter includes local histogram equalization, local 
histogram matching and local normal distribution. Each method was tested on the same face 
databases: the Yale B (Georghiades et al., 2000) and the extended Yale B (Georghiades et al., 
2001) face database. The results showed that local normal distribution achieves the most 
consistent result. Short. et al. (Short et al., 2004) compared five classic photometric 
normalization methods: a method based on principal component analysis, multiscale retinex 
(Rahman et al., 1997), homomorphic filtering, a method using isotropic smoothing to 
estimate the luminance function and one using anisotropic smoothing (Gross & Brajovic, 
2003). The methods were tested extensively across the Yale B, XM2VTS (Messer et al., 1999) 
and BANCA (Kittler et al., 2000) face databases using numerous protocols. The results 
showed that the anisotropic method yields the best performance across all three databases. 
Some of photometric normalization algorithms are illuminated in detail as follows. 

 
4.1.1.1 Histogram Equalization 
Histogram equalization (HE) is a classic method. It is commonly used to make an image with 
a uniform histogram, which is considered to produce an optimal global contrast in the image. 
However, HE may make an image under uneven illumination turn to be more uneven. 
S.M. Pizer and E.P. Amburn (Pizer & Amburn, 1987) proposed adaptive histogram 
equalization (AHE). It computes the histogram of a local image region centered at a given 
pixel to determine the mapped value for that pixel; this can achieve a local contrast 
enhancement. However, the enhancement often leads to noise amplification in “flat” regions, 
and “ring” artifacts at strong edges. In addition, this technique is computationally intensive. 
Xudong Xie and Kin-Man Lam (Xie & Lam, 2005) proposed another local histogram 
equalization method, which is called block-based histogram equalization (BHE). The face 
image can be divided into several small blocks according to the positions of eyebrows, eyes, 
nose and mouth. Each block is processed by HE. In order to avoid the discontinuity between 
adjacent blocks, they are overlapped by half with each other. BHE is simple so that the 
computation required of BHE is much lower than that of AHE. The noise produced by BHE 
is also very little. 

 
4.1.1.2 Gamma Intensity Correction 
Shan et al. (Shan et al., 2003) proposed Gamma Intensity Correction (GIC) for illumination 
normalisation. The gamma transform of an image is a pixel transform by: 
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G�x, y� � I�x, y�� �⁄                               (3) 
 

where G�x, y� is the output image; I�x, y� is the input image; γ is the Gamma coefficient. 
With the value γ varying, the output image is darker or brighter. In GIC, the image G�x, y� 
is transformed as to best match a canonically illuminated image IC�x, y�. To find the best 
optimal γ, the value should be subject to: 
 

γ � a�g����� ∑ �I�x, y�� ��⁄ � IC�x, y����,�                    (4) 

 
4.1.1.3 LogAbout 
To solve illumination problem, Liu et al. (Liu et al., 2001) proposed the LogAbout method 
which is an improved logarithmic transformations as the following equation: 
 

g�x, y� � a � ������,�����
� �� �                            (5) 

 
where g�x, y� is the output image; f�x, y� is the input image; a, b and c are parameters 
which control the location and shape of the logarithmic distribution. 
Logarithmic transformations enhance low gray levels and compress the high ones. They are 
useful for non-uniform illumination distribution and shadowed images. However, they are 
not effective for high bright images. 

 
4.1.1.4 Sub-Image Homomorphic Filtering 
In Sub-Image Homomorphic filtering method (Delac et al., 2006), the original image is split 
vertically in two halves, generating two sub-images from the original one (see the upper part 
of Fig. 3). Afterwards, a Homomorphic Filtering is applied in each sub-image and the 
resultant sub-images are combined to form the whole image. The filtering is subject to the 
illumination reflectance model as follows: 
 

I�x, y� � R�x, y� · L�x, y�                          (6) 
 

where I�x, y� is the intensity of the image; R�x, y� is the reflectance function, which is the 
intrinsic property of the face; L�x, y� is the luminance function. 
Based on the assumption that the illumination varies slowly across different locations of the 
image and the local reflectance changes quickly across different locations, a high-pass 
filtering can be performed on the logarithm of the image I�x, y� to reduce the luminance 
part, which is the low frequency component of the image, and amplify the reflectance part, 
which corresponds to the high frequency component.  

Similarly, the original image can also be divided horizontally (see the lower part of Fig. 3), 
and the same procedure is applied. But the high pass filter can be different. At last, the two 
resultant images are grouped together in order to obtain the output image. 
 

Fig. 3. Sub-image Homomorphic filtering 

 
4.1.2 Illumination Variation Modeling 
Some papers attempt to model the variation caused by changes in illumination, so as to 
generate a template that encompasses all possible environmental changes. The modeling of 
faces under varying illumination can be based on a statistical model or a physical model. For 
statistical model, no assumption concerning the surface property is needed. Statistical 
analysis techniques, such as PCA and LDA, are applied to the training set which contains 
faces under different illuminations to achieve a subspace which covers the variation of 
possible illumination. For physical model, the model of the process of image formation is 
based on the assumption of certain object surface reflectance properties, such as Lambertian 
reflectance (Basri & Jacobs, 2003). Here we also introduce some classic algorithms on both 
aspects. 

 
4.1.2.1 Illumination Cone 
Belhumeur and Kriegman (Belhumeur & Kriegman, 1998) proposed a property of images 
called the illumination cone. This cone (a convex polyhedral cone in IRn and with a 
dimension equal to the number of surface normals) can be used to generate and recognize 
images with novel illumination conditions. 
This illumination cone can be constructed from as few as three images of the surface, each 
under illumination from an unknown point source. The original concept of the illumination 
cone is based on two major assumptions: a) the surface of objects has Lambertian reflectance 
functions; b) the object's surface is convex in shape. 
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G�x, y� � I�x, y�� �⁄                               (3) 
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which control the location and shape of the logarithmic distribution. 
Logarithmic transformations enhance low gray levels and compress the high ones. They are 
useful for non-uniform illumination distribution and shadowed images. However, they are 
not effective for high bright images. 
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In Sub-Image Homomorphic filtering method (Delac et al., 2006), the original image is split 
vertically in two halves, generating two sub-images from the original one (see the upper part 
of Fig. 3). Afterwards, a Homomorphic Filtering is applied in each sub-image and the 
resultant sub-images are combined to form the whole image. The filtering is subject to the 
illumination reflectance model as follows: 
 

I�x, y� � R�x, y� · L�x, y�                          (6) 
 

where I�x, y� is the intensity of the image; R�x, y� is the reflectance function, which is the 
intrinsic property of the face; L�x, y� is the luminance function. 
Based on the assumption that the illumination varies slowly across different locations of the 
image and the local reflectance changes quickly across different locations, a high-pass 
filtering can be performed on the logarithm of the image I�x, y� to reduce the luminance 
part, which is the low frequency component of the image, and amplify the reflectance part, 
which corresponds to the high frequency component.  

Similarly, the original image can also be divided horizontally (see the lower part of Fig. 3), 
and the same procedure is applied. But the high pass filter can be different. At last, the two 
resultant images are grouped together in order to obtain the output image. 
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4.1.2 Illumination Variation Modeling 
Some papers attempt to model the variation caused by changes in illumination, so as to 
generate a template that encompasses all possible environmental changes. The modeling of 
faces under varying illumination can be based on a statistical model or a physical model. For 
statistical model, no assumption concerning the surface property is needed. Statistical 
analysis techniques, such as PCA and LDA, are applied to the training set which contains 
faces under different illuminations to achieve a subspace which covers the variation of 
possible illumination. For physical model, the model of the process of image formation is 
based on the assumption of certain object surface reflectance properties, such as Lambertian 
reflectance (Basri & Jacobs, 2003). Here we also introduce some classic algorithms on both 
aspects. 

 
4.1.2.1 Illumination Cone 
Belhumeur and Kriegman (Belhumeur & Kriegman, 1998) proposed a property of images 
called the illumination cone. This cone (a convex polyhedral cone in IRn and with a 
dimension equal to the number of surface normals) can be used to generate and recognize 
images with novel illumination conditions. 
This illumination cone can be constructed from as few as three images of the surface, each 
under illumination from an unknown point source. The original concept of the illumination 
cone is based on two major assumptions: a) the surface of objects has Lambertian reflectance 
functions; b) the object's surface is convex in shape. 
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Every object has its own illumination cone, the entirety of which is a set of images of the 
object under all possible lighting conditions, and each point on the cone is an image with a 
unique configuration of illumination conditions. The set of n-pixel images of any object seen 
under all possible lighting conditions is a convex cone in IRn. 
Georghiades et al. (Georghiades et al., 1998; Georghiades et al., 2001) have used the 
illumination cone to further show that, using a small number of training images, the shape 
and albedo of an object can be reconstructed and that this reconstruction can serve as a model 
for recognition or generation of novel images in various illuminations. The illumination cone 
models the complete set of images of an object with Lambertian reflectance under an 
arbitrary combination of point light sources at infinity. So for a fixed pose, an image can be 
generated at any position on the cone which is a superposition of the training data (see Fig. 
4). 
 

Fig. 4. An example of the generation of novel data from an illumination curve 

 
4.1.2.2 3D Linear Subspace 
Belhumeur et al. (Belhumeur et al., 1997) presented 3D linear subspace method for 
illumination invariant face recognition, which is a variant of the photometric alignment 
method. In this linear subspace method, three or more images of the same face under 
different lighting are used to construct a 3D basis for the linear subspace. The recognition 
proceeds by comparing the distance between the test image and each linear subspace of the 
faces belonging to each identity. 
Batur and Hayes (Batur & Hayes, 2001) proposed a segmented linear subspace model to 
generalize the 3D linear subspace model so that it is robust to shadows. Each image in the 
training set is segmented into regions that have similar surface normals by K-Mean 
clustering, then for each region a linear subspace is estimated. Any estimation only relies on 
a specific region, so it is not influenced by the regions in shadow. 
Due to the complexity of illumination cone, Batur and Hayes (Batur & Hayes, 2004) proposed 
a segmented linear subspace model to approximate the cone. The segmentation is based on 
the fact that the success of low dimensional linear subspace approximations of the 
illumination cone increases if the directions of the surface normals get close to each other. 
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The face image pixels are clustered according to the angles between their normals and apply 
the linear subspace approximation to each of these clusters separately. They also presented a 
way of finding the segmentation by running a simple K-means algorithm on a few training 
images, without ever requiring to obtain a 3D model for the face. 

 
4.1.2.3 Spherical Harmonics 
Ravi Ramamoorthi and Pat Hanrahan (Ramamoorthi & Hanrahan, 2001) presented spherical 
harmonics method. Basri and Jacobs (Basri & Jacobs, 2003) showed that, a low-dimensional 
linear subspace can approximate the set of images of a convex Lambertian object obtained 
under a wide variety of lighting conditions which can be represented by Spherical 
Harmonics. 
Zhang and Samaras (Zhang & Samaras, 2004) combined the strengths of Morphable models 
to capture the variability of 3D face shape and a spherical harmonic representation for the 
illumination. The 3D face is reconstructed from one training sample under arbitrary 
illumination conditions. With the spherical harmonics illumination representation, the 
illumination coefficients and texture information can be estimated. Furthermore, in another 
paper (Zhang & Samaras, 2006), 3D shape information is neglected. 

 
4.1.3 Illumination Invariant Features 
Many papers attempt to find some face feature which is insensitive to the change in 
illumination. With the feature, the varying illumination on face cannot influence the 
recognition result. In other words, we can eliminate the illumination factor from the face 
image. The best way is to separate the illumination information from the identity information 
clearly. Here some algorithms are listed as follows. 

 
4.1.3.1 Edge-based Image 
Gao and Leung (Gao & Leung, 2002) proposed the line edge map to represent the face image. 
The edge pixels are grouped into line segments, and a revised Hausdorff Distance is 
designed to measure the similarity between two line segments. In the HMM-based face 
recognition algorithms, 2D discrete cosine transform (DCT) is often used for generating 
feature vectors. For eliminating the varying illumination influence, Suzuki and Shibata 
(Suzuki & Shibata, 2006) presented a directional edge-based feature called averaged 
principal-edge distribution (APED) to replace the DCT feature. APED feature is generated 
from the spatial distributions of the four directional edges (horizontal, +45o, vertical, and 
−45o). 

 
4.1.3.2 Gradient-based Image 
Given two images I  and J  of some plannar Lambertian object taken under the same 
viewpoint, their gradient-based image �I and �J must be parallel at every pixel where they 
are difined. Probabilistically, the distribution of pixel values under varying illumination may 
be random, but the distribution of image gradients is not. 
Chen et al. (Chen et al., Chen) showed that the probability distribution of the image gradient 
is a function of the surface geometry and reflectance, which are the intrinsic properties of the 
face. The direction of image gradient is revealed to be insensitive to illumination change. S. 
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Every object has its own illumination cone, the entirety of which is a set of images of the 
object under all possible lighting conditions, and each point on the cone is an image with a 
unique configuration of illumination conditions. The set of n-pixel images of any object seen 
under all possible lighting conditions is a convex cone in IRn. 
Georghiades et al. (Georghiades et al., 1998; Georghiades et al., 2001) have used the 
illumination cone to further show that, using a small number of training images, the shape 
and albedo of an object can be reconstructed and that this reconstruction can serve as a model 
for recognition or generation of novel images in various illuminations. The illumination cone 
models the complete set of images of an object with Lambertian reflectance under an 
arbitrary combination of point light sources at infinity. So for a fixed pose, an image can be 
generated at any position on the cone which is a superposition of the training data (see Fig. 
4). 
 

Fig. 4. An example of the generation of novel data from an illumination curve 
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Belhumeur et al. (Belhumeur et al., 1997) presented 3D linear subspace method for 
illumination invariant face recognition, which is a variant of the photometric alignment 
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faces belonging to each identity. 
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generalize the 3D linear subspace model so that it is robust to shadows. Each image in the 
training set is segmented into regions that have similar surface normals by K-Mean 
clustering, then for each region a linear subspace is estimated. Any estimation only relies on 
a specific region, so it is not influenced by the regions in shadow. 
Due to the complexity of illumination cone, Batur and Hayes (Batur & Hayes, 2004) proposed 
a segmented linear subspace model to approximate the cone. The segmentation is based on 
the fact that the success of low dimensional linear subspace approximations of the 
illumination cone increases if the directions of the surface normals get close to each other. 
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The face image pixels are clustered according to the angles between their normals and apply 
the linear subspace approximation to each of these clusters separately. They also presented a 
way of finding the segmentation by running a simple K-means algorithm on a few training 
images, without ever requiring to obtain a 3D model for the face. 

 
4.1.2.3 Spherical Harmonics 
Ravi Ramamoorthi and Pat Hanrahan (Ramamoorthi & Hanrahan, 2001) presented spherical 
harmonics method. Basri and Jacobs (Basri & Jacobs, 2003) showed that, a low-dimensional 
linear subspace can approximate the set of images of a convex Lambertian object obtained 
under a wide variety of lighting conditions which can be represented by Spherical 
Harmonics. 
Zhang and Samaras (Zhang & Samaras, 2004) combined the strengths of Morphable models 
to capture the variability of 3D face shape and a spherical harmonic representation for the 
illumination. The 3D face is reconstructed from one training sample under arbitrary 
illumination conditions. With the spherical harmonics illumination representation, the 
illumination coefficients and texture information can be estimated. Furthermore, in another 
paper (Zhang & Samaras, 2006), 3D shape information is neglected. 

 
4.1.3 Illumination Invariant Features 
Many papers attempt to find some face feature which is insensitive to the change in 
illumination. With the feature, the varying illumination on face cannot influence the 
recognition result. In other words, we can eliminate the illumination factor from the face 
image. The best way is to separate the illumination information from the identity information 
clearly. Here some algorithms are listed as follows. 

 
4.1.3.1 Edge-based Image 
Gao and Leung (Gao & Leung, 2002) proposed the line edge map to represent the face image. 
The edge pixels are grouped into line segments, and a revised Hausdorff Distance is 
designed to measure the similarity between two line segments. In the HMM-based face 
recognition algorithms, 2D discrete cosine transform (DCT) is often used for generating 
feature vectors. For eliminating the varying illumination influence, Suzuki and Shibata 
(Suzuki & Shibata, 2006) presented a directional edge-based feature called averaged 
principal-edge distribution (APED) to replace the DCT feature. APED feature is generated 
from the spatial distributions of the four directional edges (horizontal, +45o, vertical, and 
−45o). 

 
4.1.3.2 Gradient-based Image 
Given two images I  and J  of some plannar Lambertian object taken under the same 
viewpoint, their gradient-based image �I and �J must be parallel at every pixel where they 
are difined. Probabilistically, the distribution of pixel values under varying illumination may 
be random, but the distribution of image gradients is not. 
Chen et al. (Chen et al., Chen) showed that the probability distribution of the image gradient 
is a function of the surface geometry and reflectance, which are the intrinsic properties of the 
face. The direction of image gradient is revealed to be insensitive to illumination change. S. 
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Samsung (Samsung, 2005) presented integral normalized gradient image for face recognition. 
The gradient is normalized with a smoothed version of input image and then the result is 
integrated into a new greyscale image. To avoid unwanted smoothing effects on step edge 
region, anisotropic diffusion method is applied. 

 
4.1.3.3 Wavelet-based Image 
Gomez-Moreno et al. (Gomez-Moreno et al., 2001) presented an efficient way to extract the 
illumination from the images by exploring only the low frequencies into them jointly with 
the use of the illumination model from the homomorphic filter. The low frequencies where 
the illumination information exists can be gained by the discrete wavelet transform. In 
another point of view, Du and Ward (Du & Ward, 2005) performed illumination 
normalization in the wavelet domain. Histogram equalization is applied to low-low 
sub-band image of the wavelet decomposition, and simple amplification is performed for 
each element in the other 3 sub-band images to accentuate high frequency components. 
Uneven illumination is removed in the reconstructed image obtained by employing inverse 
wavelet transform on the modified 4 sub-band images. 
Gudur and Asari (Gudur & Asari, 2006) proposed a Gabor wavelet based Modular PCA 
approach for illumination robust face recognition. In this algorithm, the face image is divided 
into smaller sub-images called modules and a series of Gabor wavelets at different scales and 
orientations. They are applied on these localized modules for feature extraction. A modified 
PCA approach is then applied for dimensionality reduction. 

 
4.1.3.4 Quotient Image 
Due to the varying illumination on facial appearance, the appearances can be classified into 
four components: diffuse reflection, specular reflection, attached shadow and cast shadow. 
Shashua et al. (Shashua & Riklin-Raviv, 2001) proposed quotient image (QI), which is the 
ratio of albedo between a face image and linear combination of basis images for each pixel. 
This ratio of albedo is illumination invariant. However, the QI assumes that a facial 
appearance includes only diffuse reflection. Wang et al. (Wang et al., 2004) proposed self 
quotient image (SQI) by using only single image. The SQI was obtained by using the 
Gaussian function as a smoothing kernel function. The SQI however is neither synthesized at 
the boundary between a diffuse reflection region and a shadow region, nor at the boundary 
between a diffuse reflection region and a specular reflection region. Determining the 
reflectance type of an appearance from a single image is an ill-posed problem. 
Chen et al. (Chen et al., 2005) proposed total variation based quotient image (TVQI), in which 
light estimated by solving an optimal problem so-called total variation function. But TVQI 
requires complex calculation. Zhang et al. (Zhang et al., 2007) presented morphological 
quotient image (MQI) based on mathematical morphological theory. It uses close operation, 
which is a kind of morphological approach, for light estimation. 

 
4.1.3.5 Local Binary Pattern 
Local Binary Pattern (LBP) (Ojala et al., 2002) is a local feature which characterizes the 
intensity relationship between a pixel and its neighbors. The face image can be divided into 
some small facets from which LBP features can be extracted. These features are concatenated 
into a single feature histogram efficiently representing the face image. LBP is unaffected by 

any monotonic grayscale transformation in that the pixel intensity order is not changed after 
such a transformation. For example, Li et al. (Li et al., 2007) used LBP features to compensate 
for the monotonic transform, which can generate an illumination invariant face 
representation. 

 
4.1.3.6 3D Morphable Model 
The 3D Morphable model is based on a vector space representation of faces. In this vector 
space, any convex combination of shape and texture vectors of a set of examples describes a 
realistic human face. The shape and texture parameters of the model can be separated from 
the illumination information. 
Blanz and Vetter (Blanz & Vetter, 2003) proposed a method based on fitting a 3D Morphable 
model, which can handle illumination and viewpoint variations, but they rely on manually 
defined landmark points to fit the 3D model to 2D intensity images. 
Weyrauch et al. (Weyrauch et al., 2004) used a 3D Morphable model to generate 3D face 
models from three input images of each person. The 3D models are rendered under varying 
illumination conditions to build a large set of synthetic images. These images are then used to 
train a component-based face recognition system. 

 
4.2 Active Approaches 
The idea of active approaches: apply active sensing techniques to capture images or video 
sequences of face modalities which are invariant to environmental illumination. 
Here we introduce two main classes as follows. 

 
4.2.1 3D Information 
3D face information can be acquired by active sensing devices like 3D laser scanners or stereo 
vision systems. It constitutes a solid basis for face recognition, which is invariant to 
illumination change. Illumination is extrinsic to 3D face intrinsic property. Humans are 
capable to recognize some person in the uncontrolled environment (including the varying 
illumination), precisely because they learn to deal with these variations in the real 3D world. 
3D information can be represented in different ways, such as range image, curvature 
features, surface mesh, point set, and etc. The range image representation is the most 
attractive. Hesher et al. (Hesher et al., 2003) proposed range image to represent 3D face 
information. Range images have the advantage of capturing shape variation irrespective of 
illumination variability. Because the value on each point represents the depth value which 
does not depend on illumination. 
Many surveys (Kittler et al., 2005; Bowyer et al., 2006; Abate et al., 2007) on 3D face 
recognition have been published. However, the challenges of 3D face recognition still exist 
(Kakadiaris et al., 2007): ⑴ 3D capture creates larger data files per subject which implies 
significant storage requirements and slower processing. The conversion of raw 3D data to 
efficient meta-data must thus be addressed. ⑵ A field-deployable system must be able to 
function fully automatically. It is therefore not acceptable to assume user intervention for 
locating key landmarks in a 3D facial scan. ⑶ Actual 3D capture devices have a number of 
drawbacks when applied to face recognition, such as artifacts, small depth of field, long 
acquisition time, multiple types of output, high price, and etc. 
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Samsung (Samsung, 2005) presented integral normalized gradient image for face recognition. 
The gradient is normalized with a smoothed version of input image and then the result is 
integrated into a new greyscale image. To avoid unwanted smoothing effects on step edge 
region, anisotropic diffusion method is applied. 

 
4.1.3.3 Wavelet-based Image 
Gomez-Moreno et al. (Gomez-Moreno et al., 2001) presented an efficient way to extract the 
illumination from the images by exploring only the low frequencies into them jointly with 
the use of the illumination model from the homomorphic filter. The low frequencies where 
the illumination information exists can be gained by the discrete wavelet transform. In 
another point of view, Du and Ward (Du & Ward, 2005) performed illumination 
normalization in the wavelet domain. Histogram equalization is applied to low-low 
sub-band image of the wavelet decomposition, and simple amplification is performed for 
each element in the other 3 sub-band images to accentuate high frequency components. 
Uneven illumination is removed in the reconstructed image obtained by employing inverse 
wavelet transform on the modified 4 sub-band images. 
Gudur and Asari (Gudur & Asari, 2006) proposed a Gabor wavelet based Modular PCA 
approach for illumination robust face recognition. In this algorithm, the face image is divided 
into smaller sub-images called modules and a series of Gabor wavelets at different scales and 
orientations. They are applied on these localized modules for feature extraction. A modified 
PCA approach is then applied for dimensionality reduction. 

 
4.1.3.4 Quotient Image 
Due to the varying illumination on facial appearance, the appearances can be classified into 
four components: diffuse reflection, specular reflection, attached shadow and cast shadow. 
Shashua et al. (Shashua & Riklin-Raviv, 2001) proposed quotient image (QI), which is the 
ratio of albedo between a face image and linear combination of basis images for each pixel. 
This ratio of albedo is illumination invariant. However, the QI assumes that a facial 
appearance includes only diffuse reflection. Wang et al. (Wang et al., 2004) proposed self 
quotient image (SQI) by using only single image. The SQI was obtained by using the 
Gaussian function as a smoothing kernel function. The SQI however is neither synthesized at 
the boundary between a diffuse reflection region and a shadow region, nor at the boundary 
between a diffuse reflection region and a specular reflection region. Determining the 
reflectance type of an appearance from a single image is an ill-posed problem. 
Chen et al. (Chen et al., 2005) proposed total variation based quotient image (TVQI), in which 
light estimated by solving an optimal problem so-called total variation function. But TVQI 
requires complex calculation. Zhang et al. (Zhang et al., 2007) presented morphological 
quotient image (MQI) based on mathematical morphological theory. It uses close operation, 
which is a kind of morphological approach, for light estimation. 

 
4.1.3.5 Local Binary Pattern 
Local Binary Pattern (LBP) (Ojala et al., 2002) is a local feature which characterizes the 
intensity relationship between a pixel and its neighbors. The face image can be divided into 
some small facets from which LBP features can be extracted. These features are concatenated 
into a single feature histogram efficiently representing the face image. LBP is unaffected by 

any monotonic grayscale transformation in that the pixel intensity order is not changed after 
such a transformation. For example, Li et al. (Li et al., 2007) used LBP features to compensate 
for the monotonic transform, which can generate an illumination invariant face 
representation. 

 
4.1.3.6 3D Morphable Model 
The 3D Morphable model is based on a vector space representation of faces. In this vector 
space, any convex combination of shape and texture vectors of a set of examples describes a 
realistic human face. The shape and texture parameters of the model can be separated from 
the illumination information. 
Blanz and Vetter (Blanz & Vetter, 2003) proposed a method based on fitting a 3D Morphable 
model, which can handle illumination and viewpoint variations, but they rely on manually 
defined landmark points to fit the 3D model to 2D intensity images. 
Weyrauch et al. (Weyrauch et al., 2004) used a 3D Morphable model to generate 3D face 
models from three input images of each person. The 3D models are rendered under varying 
illumination conditions to build a large set of synthetic images. These images are then used to 
train a component-based face recognition system. 

 
4.2 Active Approaches 
The idea of active approaches: apply active sensing techniques to capture images or video 
sequences of face modalities which are invariant to environmental illumination. 
Here we introduce two main classes as follows. 

 
4.2.1 3D Information 
3D face information can be acquired by active sensing devices like 3D laser scanners or stereo 
vision systems. It constitutes a solid basis for face recognition, which is invariant to 
illumination change. Illumination is extrinsic to 3D face intrinsic property. Humans are 
capable to recognize some person in the uncontrolled environment (including the varying 
illumination), precisely because they learn to deal with these variations in the real 3D world. 
3D information can be represented in different ways, such as range image, curvature 
features, surface mesh, point set, and etc. The range image representation is the most 
attractive. Hesher et al. (Hesher et al., 2003) proposed range image to represent 3D face 
information. Range images have the advantage of capturing shape variation irrespective of 
illumination variability. Because the value on each point represents the depth value which 
does not depend on illumination. 
Many surveys (Kittler et al., 2005; Bowyer et al., 2006; Abate et al., 2007) on 3D face 
recognition have been published. However, the challenges of 3D face recognition still exist 
(Kakadiaris et al., 2007): ⑴ 3D capture creates larger data files per subject which implies 
significant storage requirements and slower processing. The conversion of raw 3D data to 
efficient meta-data must thus be addressed. ⑵ A field-deployable system must be able to 
function fully automatically. It is therefore not acceptable to assume user intervention for 
locating key landmarks in a 3D facial scan. ⑶ Actual 3D capture devices have a number of 
drawbacks when applied to face recognition, such as artifacts, small depth of field, long 
acquisition time, multiple types of output, high price, and etc. 
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4.2.2 Infrared Spectra Information 
Infrared (IR) image represents a viable alternative to visible imaging in the search for a 
robust and practical face recognition system.  
According to astronomy division scheme, the infrared portion of the electromagnetic 
spectrum can be divided into three regions: near-infrared (Near-IR), mid-infrared (Mid-IR) 
and far-infrared (Far-IR), named for their relation to the visible spectrum. Mid-IR and Far-IR 
belong to Thermal-IR (see Fig. 5). These divisions are not precise. There is another more 
detailed division (James, 2009). 
 

Fig. 5. Infrared as Part of the Electromagnetic Spectrum 
 
Thermal-IR directly relates to the thermal radiation from object, which depends on the 
temperature of the object and emissivity of the material. For Near-IR, the image intensifiers 
are sensitive. 

 
4.2.2.1 Thermal-IR 
Thermal IR imagery has been suggested as an alternative source of information for detection 
and recognition of faces. Thermal-IR cameras can sense temperature variations in the face at 
a distance, and produce thermograms in the form of 2D images. The light in the thermal IR 
range is emitted rather than reflected. Thermal emissions from skin are an intrinsic property, 
independent of illumination. Therefore, the face images captured using Thermal-IR sensors 
will be nearly invariant to changes in ambient illumination (Kong et al., 2005). 
Socolinsky and Selinger (Socolinsky & Selinger, 2004, a) presented a comparative study of 
face recognition performance with visible and thermal infrared imagery, emphasizing the 
influence of time-lapse between enrollment and probe images. They showed that the 
performance difference between visible and thermal face recognition in a time-lapse scenario 
is small. In addition, they affirmed that the fusion of visible and thermal face recognition can 
perform better than that using either alone. Gyaourova et al. (Gyaourova et al., 2004) 
proposed a method to fuse the both modalities of face recognition. Thermal face recognition 
is not perfect enough. For example, it is opaque to glass which can lead to facial occlusion 
caused by eyeglasses. Their fusion rule is based on the fact that the visible-based recognition 
is less sensitive to the presence or absence of eyeglasses. Socolinsky and Selinger (Socolinsky 
& Selinger, 2004, b) presented visible and thermal face recognition results in an operational 
scenario including both indoor and outdoor settings. For indoor settings under controlled 
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However, Outdoor recognition performance is worse for both modalities, with a sharper 
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modalities performance outdoors is nearing the levels of indoor visible face recognition, 
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Near-IR has advantages over both visible light and Thermal-IR (Zou et al., 2005). Firstly, 
since it can be reflected by objects, it can serve as active illumination source, in contrast to 
Thermal-IR. Secondly, it is invisible, making active Near-IR illumination friendly to client. 
Thirdly, unlike Thermal-IR, Near-IR can easily penetrate glasses. 
However, even though we use the Near-IR camera to capture face image, the environmental 
illumination and Near-IR illumination all exist in the face image. Hizem et al. (Hizem et al., 
2006) proposed to maximize the ratio between the active Near-IR and the environmental 
illumination is to apply synchronized flashing imaging. But in outdoor settings, the Near-IR 
energy in environmental illumination is strong. Zou et al. (Zou et al., 2005) employed a light 
emitting diode (LED) to project Near-IR illumination, and then capture two images when the 
LED on and off respectively. The difference between the two images can be independent of 
the environment illumination. But when the face is moving, the effect is not good. To solve 
this problem, Zou et al. (Zou et al., 2007, b) proposed an approach based on motion 
compensation to remove the motion effect in the difference face images. 
Li et al. (Li et al., 2007) presented a novel solution for illumination invariant face recognition 
based on active Near-IR for indoor, cooperative-user applications. They showed that the 
Near-IR face images encode intrinsic information of the face, which is subject to a monotonic 
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for the monotonic transform so as to derive an illumination invariant face representation. 
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samples are captured under Near-IR conditions. However, it is difficult to realize in some 
actual applications, such as passport and driver license photos. In addition, due to the 
distance limitation of Near-IR, many face images can only be captured only under visible 
lights. Chen et al. (Chen et al., 2009) proposed a novel approach, in which the enrollment 
samples are visual light images and probe samples are Near-IR images. Based on learning the 
mappings between images of the both modalities, they synthesis visual light images from 
Near-IR images effectively. 
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Video-based face recognition is being increasingly discussed and occasionally deployed, 
largely as a means for combating terrorism. Unlike face recognition in still, it has its own 
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frames (Zhou et al., 2003). In addition, it requires high real time in contrast to face recognition 
in still. Their differences are compared in Table 1. 
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4.2.2 Infrared Spectra Information 
Infrared (IR) image represents a viable alternative to visible imaging in the search for a 
robust and practical face recognition system.  
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and far-infrared (Far-IR), named for their relation to the visible spectrum. Mid-IR and Far-IR 
belong to Thermal-IR (see Fig. 5). These divisions are not precise. There is another more 
detailed division (James, 2009). 
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Face Recognition in Video Face Recognition in Still 

Low resolution faces High resolution faces 

Varying illumination Even illumination 

Varying pose Frontal pose 

Varying expression Neutral expression 

Video sequences Still image 

Continuous motion Single motion 

Table 1. The comparison between face recognition in video and in still 
 
Most existing video-based face recognition systems (Gorodnichy, 2005) are realized in the 
following scheme: the face is first detected and then tracked over time. Only when a frame 
satisfying certain criteria (frontal pose, neutral expression and even illumination on face) is 
acquired, recognition is performed using the technique of face recognition in still. However, 
maybe the uneven illumination on face always exists, which lead that we cannot find a 
suitable time to recognize the face. 
Using the same algorithms, the recognition result of video-based face recognition is not 
satisfying like face recognition in still. For example, the video-based face recognition 
systems were set up in several airports around the United States, including Logan Airport in 
Boston, Massachusetts; T. F. Green Airport in Providence, Rhode Island; San Francisco 
International Airport and Fresno Airport in California; and Palm Beach International 
Airport in Florida. However, the systems have never correctly identified a single face in its 
database of suspects, let alone resulted in any arrests (Boston Globe, 2002). Some 
illumination processing algorithms mentioned in Section 3 can be applied for video-based 
face recognition, but we encounter three main problems at least: ⑴ Video-based face 
recognition systems require higher real-time performance. Many illumination processing 
algorithms can achieve a very high recognition rate, but some of them take much more 
computational time. 3D face modeling is a classic one. Building a 3D face model is a very 
difficult and complicated task in the literature even though structure from motion has been 
studied for several decades. ⑵ In video sequences, the direction of illumination on face is 
not single. Due to the face moving or the environmental illumination changing, the 
illumination on face is in dynamic change. Unlike illumination processing for face 
recognition in still, the algorithms need more flexible. If the light source direction cannot 
change suddenly, the illumination condition on face only depend on the face motion. The 
motion and illumination are correlative. ⑶ In contrast to general high resolution still 
image, video sequences often have low resolution (less than 80 pixels between two eyes). 
For illumination processing, it would be more difficulty. According to the three problems, 
we introduced some effective algorithms for video-based face recognition. 

 
5.1 Real-time Illumination Processing 
Unlike the still image, the video sequences are displayed at a very high frequency (about 10 – 
30 frames/second). So it’s important to improve the real-time performance of illumination 
processing for video-based face recognition.  

Chen and Wolf (Chen & Wolf, 2005) proposed a real-time pre-processing system to 
compensate illumination for face processing by using scene lighting modeling. Their system 
can be divided into two parts: global illumination compensation and local illumination 
compensation (see Fig. 6). For global illumination compensation, firstly, the input video 
image is divided into four areas so as to save the processing power and memory. And then 
the image histogram is modified to a pre-defined luminance level by a non-linear function. 
After that, the skin-tone detection is performed to determine the region of interest (ROI) and 
the lighting update information for the following local illumination compensation. The 
detection is a watershed between global illumination compensation and local illumination 
compensation. For local illumination compensation, firstly, the local lighting is estimated 
within the ROI determined from the previous stage. After obtaining the lighting information, 
a 3D face model is applied to adjust the luminance of the face candidate. The lighting 
information is not changed if there is no update request sent from the previous steps. 
 

Fig. 6. Global and local illumination compensation 
 
Arandjelović and Cipolla (Arandjelović & Cipolla, 2009) presented a novel and general face 
recognition framework for efficient matching of individual face video sequences. The 
framework is based on simple image processing filters that compete with unprocessed 
greyscale input to yield a single matching score between individuals. It is shown how the 
discrepancy between illumination conditions between novel input and the training data set 
can be estimated and used to weigh the contribution of two competing representations. They 
found that not all the probe video sequences should be processed by the complex algorithms, 
such as a high-pass (HP) filter and SQI (Wang et al., 2004). If the illumination difference 
between training and test samples is small, the recognition rate would decrease with HP or 
SQI in contrast to non-normalization processing. In other words, if the illumination 
difference is large, normalization processing is the dominant factor and recognition 
performance is improved. If this notation is adopted, a dramatic performance improvement 

(a) Global illumination (b) Local illumination 
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would be offered to a wide range of filters and different baseline matching algorithms, 
without sacrificing their online efficiency. Based on that, the goal is to implicitly learn how 
similar the probe and training samples illumination conditions are, to appropriately 
emphasize either the raw input guided face comparisons or of its filtered output. 

 
5.2 Illumination change relating to face motion and light source 
Due to the motion of faces or light sources, the illumination conditions on faces can vary over 
time. The single and changeless illumination processing algorithms can be unmeaning. The 
best way is to design an illumination compensation or normalization for the specific 
illumination situation. There is an implicit problem in this work: how to estimate the 
illumination direction. If the accuracy of the illumination estimation is low, the same to the 
poor face detection, the latter work would be useless. Here we will introduce several 
illumination estimation schemes as follows. 
Huang et al. (Huang et al., 2008) presented a new method to estimate the illumination 
direction on face from one single image. The basic idea is to compare the reconstruction 
residuals between the input image and a small set of reference images under different 
illumination directions. In other words, the illumination orientation is regard as label 
information for training and recognition. The illumination estimation is to find the nearest 
illumination condition in the training samples for the probe. The way to estimate 
illumination of an input image adopted by the authors is to compute residuals for all the 
possible combinations of illumination conditions and the location of the minimal residual is 
the expectation of illumination. 
Wang and Li (Wang & Li, 2008) proposed an illumination estimation approach based on 
plane-fit, in which environmental illumination is classified according to the illumination 
direction. Illumination classification can help to compensate uneven illumination with 
pertinence. Here the face illumination space is expressed well by nine face illumination 
images, as this number of images results in the lowest error rate for face recognition (Lee et 
al., 2005). For more accurate classification, illumination direction map, which abides by 
Lambert’s illumination model, is generated. BHE (Xie & Lam, 2005) can weaken the light 
contrast in the face image, whereas HE can enhance the contrast. The difference between the 
face image processed by HE and the same one processed by BHE, which can reflect the light 
variance efficiently, generates the illumination direction map (see Fig. 7). 
In order to make the direction clearer in the map, the Laplace filter and Gaussian low pass 
filter are also applied. In order to estimate the illumination orientation, a partial least square 
plane-fit is carried out on the current pixel of the illumination direction map. In actual, I�x, y� 
is the fitted value. Suppose f�x, y� is the observed value at �x, y�. Then the least square 
between I�x, y� (I�x, y� � �x � �y � �� and f�x, y� is shown in Eq. (7). 
 

� � ∑ �f�x, y� � ��x � �y � �����,�                       (7) 
 
note: x, y,�f�x, y� are known, so S is the function of a, b and c. 
The illumination orientation can be defined as the value as follows: 
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where β denotes the illumination orientation on the illumination direction map. 
 

Fig. 7. Generation of illumination direction map 
 
For the same person, the value of β  is greatly different with illumination orientation 
variations; for different persons, the value of β  is similar with the same illumination 
orientation. β can be calculated to make the lighting category determined. 
Supposing that the light source direction is fixed, the surface of a moving face cannot change 
suddenly over a short time period. So the illumination varying on face can be regarded as a 
continuous motion. The face motion and illumination are correlative. 
Basri and Jacobs (Basri & Jacobs, 2003) analytically derived a 9D spherical harmonics based 
on linear representation of the images produced by a Lambertian object with attached 
shadows. Their work can be extended from the still image to video sequences, where the 
video sequences can be only regarded as some separate frames, but it is inefficient. Xu and 
Roy-Chowdhury (Xu & Roy-Chowdhury, 2005; Xu & Roy-Chowdhury, 2007) presented a 
theory to characterize the interaction of face motion and illumination in generating video 
sequences of a 3D face. The authors showed that the set of all Lambertian reflectance 
functions of a moving face, illuminated by arbitrarily distant light sources, lies “close” to a 
bilinear subspace consisting of 9 illumination variables and 6 motion variables. The bilinear 
subspace formulation can be used to simultaneously estimate the motion, illumination and 
structure from a video sequence. The problem, how to deal with both motion and 
illumination, can be divided into two stages: � the face motion is considered, and the change 
in its position from one time instance to the other is calculated. The change of position can be 
referenced as the coordinate change of the object. � the effect of the incident illumination ray, 
which is projected onto face, and reflected conform to the Lambert’s cosine law. For the 
second stage, incorporating the effect of the motion, Basri and Jacob’s work is used. 
However, the idea, supposing that the illumination condition is related to the face motion, 
has a certain limitation. If the environment illumination varies suddenly (such as a flash) or 
illumination source occultation, the relation between motion and illumination is not credible. 
All approaches conforming to the supposition would not work. 
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functions of a moving face, illuminated by arbitrarily distant light sources, lies “close” to a 
bilinear subspace consisting of 9 illumination variables and 6 motion variables. The bilinear 
subspace formulation can be used to simultaneously estimate the motion, illumination and 
structure from a video sequence. The problem, how to deal with both motion and 
illumination, can be divided into two stages: � the face motion is considered, and the change 
in its position from one time instance to the other is calculated. The change of position can be 
referenced as the coordinate change of the object. � the effect of the incident illumination ray, 
which is projected onto face, and reflected conform to the Lambert’s cosine law. For the 
second stage, incorporating the effect of the motion, Basri and Jacob’s work is used. 
However, the idea, supposing that the illumination condition is related to the face motion, 
has a certain limitation. If the environment illumination varies suddenly (such as a flash) or 
illumination source occultation, the relation between motion and illumination is not credible. 
All approaches conforming to the supposition would not work. 
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5.3 Illumination Processing for Low Resolution faces 
As a novel input, it is difficult to capture a high resolution face in an arbitrary position of the 
video. But we can obtain a single high quality video of a person of interest, for the purpose of 
database enrolment. This problem is of interest in many applications, such as law 
enforcement. For low resolution faces, it is harder to adopt illumination processing, 
especially pixel-by-pixel algorithms. 
However, it clearly motivates the use of super-resolution techniques in the preprocessing 
stages of recognition. Super-resolution concerns the problem of reconstructing 
high-resolution data from a single or multiple low resolution observations. Formally, the 
process of making a single observation can be written as the following generative model: 
 

x �� �t�x�� � n�                               (9) 
 

where x�  is the high-resolution image; t�·� is an appearance transformation (e.g. due to 
illumination change, in the case of face images); n is additive noise; � is the downsampling 
operator. 
Arandjelović and Cipolla (Arandjelović & Cipolla, 2006) proposed the Generic 
Shape-Illumination (gSIM) algorithm. The authors showed how a photometric model of 
image formation can be combined with a statistical model of generic face appearance 
variation, learnt offline, to generalize in the presence of extreme illumination changes. gSIM 
performs face recognition by extracting and matching sequences of faces from unconstrained 
head motion videos and is robust to changes in illumination, head pose and user motion 
pattern. For the form of gSIM, a learnt prior is applied. The prior takes on the form of an 
estimate of the distribution of non-discriminative, generic, appearance changes caused by 
varying illumination. It means that unnecessary smoothing of person-specific, discriminative 
information is avoided. In the work, they make a very weak assumption on the process of 
image formation: the intensity of each pixel is a linear function of the albedo a�j� of the 
corresponding 3D point: 
 

X�j� � a�j� · s�j�                            (10) 
 

where s  is a function of illumination parameters , which is not modeled explicitly. 
Lambertian reflectance model is a special case. 
Given two images X� and X�, which are both the same person under the same pose, are of 
different illuminations. 
 

∆ log X�j� � log s��j� � log s��j� � d��j�                 (11) 
 
So the difference between these logarithm-transformed images is not relative to the face 
albedo. Under the very general assumption that the mean energy of light incident on the 
camera is proportional to the face albedo at the corresponding point, d� is approximately 
generic i.e. not dependent on the person’s identity. 
However, this is not the case when dealing with real images, as spatial discretization 
differently affects the appearance of a face at different scales. In another paper (Arandjelović 
& Cipolla, 2007) of the authors, they proposed not to explicitly compute super-resolution 
face images from low resolution input; rather, they formulated the image formation model 

in such a way that the effects of illumination and spatial discretization are approximately 
mutually separable. Thus, they showed how the two can be learnt in two stages: ⑴ a 
generic illumination model is estimated from a small training corpus of different individuals 
in varying illumination. ⑵ a low-resolution artifact model is estimated on a person-specific 
basis, from an appearance manifold corresponding to a single sequence compounded with 
synthetically generated samples. 

 
6. Recent State-of-art Methods of Illumination Processing in Face Recognition 

How to compensate or normalize the uneven illumination on faces is still a puzzle and hot 
topic for face recognition researchers. There are about 50 IEEE papers on illumination 
processing for face recognition within past 12 months. Here we illuminated some excellent 
papers published on the important conferences (e.g. CVPR and BTAS) or journals (such as 
IEEE Transactions on Pattern Analysis and Machine Intelligence) since 2008. Many papers, 
which have been introduced in the former sections, are not restated. 

Fig. 8. Illumination Normalization Framework for Large-scale Features 
 
Xie et al. (Xie et al., 2008) proposed a novel illumination normalization approach shown in 
Fig. 8. In the framework, illumination normalization whereas small-scale features (high 
frequency component) are only smoothed. Their framework can be divided into 3 stages: ⑴ 
Adopt an appropriate algorithm to decompose the face image into 2 parts: large-scale 
features and small-scale features. Methods in this category include logarithmic total 
variation (LTV) model (Chen et al., 2006), SQI (Wang et al., 2004) and wavelet transform 
(Gomez-Moreno et al., 2001) based method. However, some of the methods discard the 
large-scale features of face images. In this framework, the authors  
use LTV. ⑵ Eliminate the illumination information from the large-scale features by some 
algorithms, such as HE, BHE (Xie & Lam, 2005) and QI (Shashua & Riklin-Raviv, 2001) etc. 
In addition, these methods also distort the small-scale features simultaneously during the 
normalization process. ⑶ a normalized face image is generated by combination of the 
normalized large-scale feature image and smoothed small-scale feature image. 
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Holappa et al. (Holappa et al., 2008) presented an illumination processing chain and 
optimization method for setting its parameters so that the processing chain explicitly tailors 
for the specific feature extractor. This is done by stochastic optimization of the processing 
parameters using a simple probability value derived from intra- and inter-class differences of 
the extracted features as the cost function. Moreover, due to the general 3D structure of faces, 
illumination changes tend to cause different effects at different parts of the face image (e.g., 
strong shadows on either side of the nose, etc.). This is taken into account in the processing 
chain by making the parameters spatially variant. The processing chain and optimization 
method can be general, not for any specific face descriptor. To illuminate the chain and 
optimization method, the authors take LBP (Ojala et al., 2002) for example. LBP descriptor is 
relatively robust to different illumination conditions but severe changes in lighting still pose 
a problem. To order to solve this problem, they strive for a processing method that explicitly 
reduces such intra-class variations that the LBP description is sensitive to. Unlike other 
slowly processed interactive methods, the authors use only logarithmic transformation of 
pixel values and convolution of the input image region with small sized filter kernels, which 
makes the method very fast. The complete preprocessing and feature extraction chain is 
presented in Fig. 9. For the optimization method, the scheme adopted by the authors is to 
maximize the probability that the features calculated from an image region, that the filter to 
be optimized is applied to, are closer to each other in the intra class case than in the extra 
class case. 
 
Face recognition in uncontrolled illumination experiences significant degradation in 
performance due to changes in illumination directions and skin colors. The conventional 
color CCD cameras are not able to distinguish changes of surface color from color shifts 
caused by varying illumination. However, multispectral imaging in the visible and near 
infrared spectra can help reduce color variations in the face due to changes in illumination 
source types and directions. Chang et al. (Chang et al., 2008) introduced the use of 
multispectral imaging and thermal infrared imaging as alternative means to conventional 
broadband monochrome or color imaging sensors in order to enhance the performance of 
face recognition in uncontrolled illumination conditions. Multispectral imaging collects 
reflectance information at each pixel over contiguous narrow wavelength intervals over a 
wide spectral range, often in the visible and Near-IR spectra. In multispectral imaging, 
narrowband images provide spectral signatures unique to facial skin tissue that may not be 
detected using broadband CCD cameras. Thermal-IR imagery is less sensitive to the 
variations in face appearance caused by illumination changes. Because the Thermal-IR 
sensors only measure the heat energy radiation, which is independent of ambient lighting. 
Fusion techniques have been exploited to improve face recognition performance. 

Fig. 9. Illumination Normalization Framework for Large-scale Features 

The fusion of Thermal-IR and visible sensors is a popular solution to illumination-invariant 
face recognition (Kong et al., 2005). However, face recognition based on multispectral image 
fusion is relatively unexplored. The image based fusion rule can be divided into two kinds: 
pixel-based and feature-based fusion. The former is easy to implement but more sensitive to 
registration errors than the latter. Feature based fusion methods are computationally more 
complex but robust to registration errors. 

Fig. 10. (a) Example de-illumination training data for the Small Faces. Each column 
represents a source training set for a particular illumination model. In this case: illumination 
from the right; illumination from the top; illumination from the left; illumination from the 
bottom. The far right column is the uniformly illuminated target training data from which 
the derivatives are generated. (b) Example re-illumination training data for the Small Faces. 
The far left column is the uniformly illuminated source training data. Each remaining column 
represents the quotient image source training set for a particular illumination model. In this 
case: illumination from the right; illumination from the top; illumination from the left; 
illumination from the bottom. 
 
Moore et al. (Moore et al., 2008) proposed a machine learning approach for estimating 
intrinsic faces and hence de-illuminating and re-illuminating faces directly in the image 
domain. For estimation of an intrinsic component, the local linear constraints on images are 
estimated in terms of derivatives using multi-scale patches of the observed images, 
comprising from a three-level Laplacian Pyramid. The problem of decomposing an observed 
face image into its intrinsic components (i.e. reflectance and albedo) is formulated as a 
nonlinear regression problem. For de-illuminating faces (see Fig. 10(a)), with the non-linear 
regression, the derivatives of the face image are estimated from a given class as it would 
appear with a uniform illumination. The uniformly illuminated image can then be 
reconstructed from these derivatives. So the de-illumination step can be regarded as an 
estimation problem. For re-illuminating faces (see Fig. 10(b)), it is just like an adverse stage of 
de-illuminating faces. The goal has changed from calculating the de-illuminated face to 
calculating new illuminations and the input images are de-illuminated faces. Besides these 
differences, the illumination estimation involves the same basic steps of estimating 
derivative values and integrating them to form re-illuminated images. 
 

(a) (b) 
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makes the method very fast. The complete preprocessing and feature extraction chain is 
presented in Fig. 9. For the optimization method, the scheme adopted by the authors is to 
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broadband monochrome or color imaging sensors in order to enhance the performance of 
face recognition in uncontrolled illumination conditions. Multispectral imaging collects 
reflectance information at each pixel over contiguous narrow wavelength intervals over a 
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narrowband images provide spectral signatures unique to facial skin tissue that may not be 
detected using broadband CCD cameras. Thermal-IR imagery is less sensitive to the 
variations in face appearance caused by illumination changes. Because the Thermal-IR 
sensors only measure the heat energy radiation, which is independent of ambient lighting. 
Fusion techniques have been exploited to improve face recognition performance. 
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intrinsic faces and hence de-illuminating and re-illuminating faces directly in the image 
domain. For estimation of an intrinsic component, the local linear constraints on images are 
estimated in terms of derivatives using multi-scale patches of the observed images, 
comprising from a three-level Laplacian Pyramid. The problem of decomposing an observed 
face image into its intrinsic components (i.e. reflectance and albedo) is formulated as a 
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calculating new illuminations and the input images are de-illuminated faces. Besides these 
differences, the illumination estimation involves the same basic steps of estimating 
derivative values and integrating them to form re-illuminated images. 
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Most public face databases lack images with a component of rear (more than 90 degrees from 
frontal) illumination, either for training or testing. Wagner et al. (Wagner et al., 2009) made 
an experiment (see Fig. 11) which showed that training faces with the rear illumination can 
help to improve the face recognition. The experiment is that the girl should be identified 
among 20 subjects, by computing the sparse representation (Wright et al., 2009) of her input 
face with respect to the entire training set. The absolute sum of the coefficients associated 
with each subject is plotted on the right. The figure also show the faces reconstructed with 
each subject’s training images weighted by the associated sparse coefficients. The red line 
corresponds to her true identity, subject 12. For the upper row of the figure, the input face is 
well-aligned (the white box) but only 24 frontal illuminations are used in the training for 
recognition. For the lower row of the figure, informative representation is obtained by using 
both well-aligned input face and sufficient (all 38) illuminations in the training. A conclusion 
can be drawn that illuminations from behind the face are also needed to sufficiently 
interpolate the illumination of a typical indoor (or outdoor) environment in the training. If 
not have, the representation will not necessarily be sparse or informative. 

Fig. 11. Recognition Performance with and without rear illumination on faces for training 
 
In order to solve the problem, the authors designed a training acquisition system that can 
illuminate the face from all directions above horizontal. The illumination system consists of 
four projectors that display various bright patterns onto the three white walls in the corner of 
a dark room. The light reflects off of the walls and illuminates the user’s head indirectly. 
After taking the frontal illuminations, the chair is rotated by 180 degrees and then pictures 
are taken from the opposite direction. Having two cameras speeds the process since only the 
chair needs to be moved in between frontal and rear illuminations. The experiment results 
are satisfying. However, it is impossible to obtain 
samples of all target persons using the training acquisition system, such as law enforcement 
for terrorists. 
 
Wang et al. (Wang et al., 2008) proposed a new method to modify the appearance of a face 
image by manipulating the illumination condition, even though the face geometry and 
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Most public face databases lack images with a component of rear (more than 90 degrees from 
frontal) illumination, either for training or testing. Wagner et al. (Wagner et al., 2009) made 
an experiment (see Fig. 11) which showed that training faces with the rear illumination can 
help to improve the face recognition. The experiment is that the girl should be identified 
among 20 subjects, by computing the sparse representation (Wright et al., 2009) of her input 
face with respect to the entire training set. The absolute sum of the coefficients associated 
with each subject is plotted on the right. The figure also show the faces reconstructed with 
each subject’s training images weighted by the associated sparse coefficients. The red line 
corresponds to her true identity, subject 12. For the upper row of the figure, the input face is 
well-aligned (the white box) but only 24 frontal illuminations are used in the training for 
recognition. For the lower row of the figure, informative representation is obtained by using 
both well-aligned input face and sufficient (all 38) illuminations in the training. A conclusion 
can be drawn that illuminations from behind the face are also needed to sufficiently 
interpolate the illumination of a typical indoor (or outdoor) environment in the training. If 
not have, the representation will not necessarily be sparse or informative. 

Fig. 11. Recognition Performance with and without rear illumination on faces for training 
 
In order to solve the problem, the authors designed a training acquisition system that can 
illuminate the face from all directions above horizontal. The illumination system consists of 
four projectors that display various bright patterns onto the three white walls in the corner of 
a dark room. The light reflects off of the walls and illuminates the user’s head indirectly. 
After taking the frontal illuminations, the chair is rotated by 180 degrees and then pictures 
are taken from the opposite direction. Having two cameras speeds the process since only the 
chair needs to be moved in between frontal and rear illuminations. The experiment results 
are satisfying. However, it is impossible to obtain 
samples of all target persons using the training acquisition system, such as law enforcement 
for terrorists. 
 
Wang et al. (Wang et al., 2008) proposed a new method to modify the appearance of a face 
image by manipulating the illumination condition, even though the face geometry and 
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Gradient-based image has been proved to insensitive to illumination. Based on that, Zhang et 
al. (Zhang et al., 2009) proposed an illumination insensitive feature called Gradientfaces for 
face recognition. Gradientfaces is derived from the image gradient domain such that it can 
discover underlying inherent structure of face images since the gradient domain explicitly 
considers the relationships between neighboring pixel points. Therefore, Gradientfaces has 
more discriminating power than the illumination insensitive measure extracted from the 
pixel domain. 
Given an arbitrary image I�x, y�  under variable illumination conditions, the ratio of 
y-gradient of I�x, y� (�I��,���� ) to I�x, y� (�I��,���� ) is an illumination insensitive measure. Then 
Gradientfaces (G) of image I can be defined as 
 

G � ������ �I����������I�����������, G� � � �0, 2π�.                   (12) 

 
where I����������  and I����������  are the gradient of image I  in the x , y  direction, 
spectively. 
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Gradient-based image has been proved to insensitive to illumination. Based on that, Zhang et 
al. (Zhang et al., 2009) proposed an illumination insensitive feature called Gradientfaces for 
face recognition. Gradientfaces is derived from the image gradient domain such that it can 
discover underlying inherent structure of face images since the gradient domain explicitly 
considers the relationships between neighboring pixel points. Therefore, Gradientfaces has 
more discriminating power than the illumination insensitive measure extracted from the 
pixel domain. 
Given an arbitrary image I�x, y�  under variable illumination conditions, the ratio of 
y-gradient of I�x, y� (�I��,���� ) to I�x, y� (�I��,���� ) is an illumination insensitive measure. Then 
Gradientfaces (G) of image I can be defined as 
 

G � ������ �I����������I�����������, G� � � �0, 2π�.                   (12) 

 
where I����������  and I����������  are the gradient of image I  in the x , y  direction, 
spectively. 
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1. Introduction 

Among the numerous biometric systems presented in the literature, face recognition 
systems have received a great deal of attention in recent years. The main driving force in the 
development of these systems can be found in the enormous potential face recognition 
technology has in various application domains ranging from access control, human-machine 
interaction and entertainment to homeland security and surveillance (Štruc et al., 2008a).  
While contemporary face recognition techniques have made quite a leap in terms of 
performance over the last two decades, they still struggle with their performance when 
deployed in unconstrained and uncontrolled environments (Gross et al., 2004; Phillips et al., 
2007). In such environments the external conditions present during the image acquisition 
stage heavily influence the appearance of a face in the acquired image and consequently 
affect the performance of the recognition system. It is said that face recognition techniques 
suffer from the so-called PIE problem, which refers to the problem of handling Pose, 
Illumination and Expression variations that are typically encountered in real-life operating 
conditions. In fact, it was emphasized by numerous researchers that the appearance of the 
same face can vary significantly from image to image due to changes of the PIE factors and 
that the variability in the images induced by the these factors can easily surpass the 
variability induced by the subjects’ identity (Gross et al., 2004; Short et al., 2005). To cope 
with image variability induced by the PIE factors, face recognition systems have to utilize 
feature extraction techniques capable of extracting stable and discriminative features from 
facial images regardless of the conditions governing the acquisition procedure. We will 
confine ourselves in this chapter to tackling the problem of illumination changes, as it 
represents the PIE factor which, in our opinion, is the hardest to control when deploying a 
face recognition system, e.g., in access control applications.  
Many feature extraction techniques, among them particularly the appearance based 
methods, have difficulties extracting stable features from images captured under varying 
illumination conditions and, hence, perform poorly when deployed in unconstrained 
environments. Researchers have, therefore, proposed a number of alternatives that should 
compensate for the illumination changes and thus ensure stable face recognition 
performance.  
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Sanderson and Paliwal (Sanderson & Paliwal, 2003), for example, proposed a feature 
extraction technique called DCT-mod2. The DCT-mod2 technique first applies the Discrete 
Cosine Transform (DCT) to sub-regions (or blocks) of facial images to extract several feature 
sets of DCT coefficients, and then compensates for illumination induced appearance 
changes by replacing the coefficients most affected by illumination variations with the 
corresponding vertical and horizontal delta coefficients. The authors assessed the technique 
on images rendered with an artificial illumination model as well as on (real-life) images 
captured under varying illumination conditions. Encouraging results were achieved on both 
image types. 
Another technique was proposed by Gao and Leung in (Gao & Lung, 2002). Here, the 
authors argue that the so-called Line Edge Maps (LEM) represent useful face 
representations for both image coding and recognition and that, moreover, they also exhibit 
insensitiveness to illumination variations. With this technique a given face image is first 
processed to extract edge pixels, which are then combined into line segments that constitute 
the LEMs. The authors showed that their technique successfully outperformed popular 
feature extraction approaches on various databases.        
Liu and Wechsler (Liu & Wechsler, 2002) use the Gabor wavelet (or filter) representation of 
face images to achieve robustness to illumination changes. Their method - the Gabor Fisher 
Classifier (GFC), adopts a filter bank of forty Gabor filters (featuring filters of five scales and 
eight orientations) to derive an augmented feature vector of Gabor magnitude features and 
then applies a variant of the multi-class linear discriminant analysis called the Enhanced 
Fisher discriminant Model (EFM) to the constructed Gabor feature vector to improve the 
vector’s compactness. 
While all of the presented techniques ensure some level of illumination invariance, Gabor 
wavelet based methods received the most attention due to their effectiveness and simplicity.  
The feasibility of Gabor wavelet based methods for robust face recognition is not evidenced 
solely by the large number of papers following up on the work of Liu and Wechsler (e.g., 
Shen et al., 2007; Štruc & Pavešić, 2009b), but also by the results of several independent 
evaluations (and competitions) of face recognition technology, where the techniques 
utilizing Gabor wavelets regularly resulted in the best performance (Messer et al., 2006; Poh 
et al. 2009).        
It has to be noted that the Gabor face representation as proposed by Liu and Wechsler does 
not represent an illumination invariant face representation, but rather exhibits robustness to 
illumination changes due to the properties of the deployed Gabor filter bank. Since Gabor 
filters represent band limited filters, the filter bank is usually constructed in such a way that 
it excludes the frequency bands most affected by illumination variations. Furthermore, the 
Gabor magnitude features that constitute the augmented Gabor feature vector are local in 
nature, which again adds to the illumination insensitiveness of the computed Gabor face 
representation.  
While the existing Gabor based methods are among the most successful techniques for face 
recognition, they still exhibit some shortcomings, which, when properly solved, could result 
in an improved recognition performance. These shortcomings can be summarized into the 
following main points: 
 

 

 most of the existing techniques rely solely on Gabor magnitude information 
while discarding the potentially useful Gabor phase information (e.g., Liu & 
Wechsler, 2002; Liu, 2006; Shen et al., 2007; Štruc & Pavešić, 2009b),  

 the deployment of a large filter bank (usually comprising 40 filters) results in an 
inflation of the data size by a factor equaling the number of filters in the filter 
bank triggering the need for down-sampling strategies, which often discard 
information that could prove useful for the recognition task and 

 Gabor magnitude features ensure only partial insensitiveness to illumination 
changes resulting in the necessity for additional (robust) face descriptors.  

 
To tackle the above issues, we propose in this chapter a novel face representation called the 
oriented Gabor phase congruency pattern (OGPCP), which, as the name suggests, is derived 
from the Gabor phase congruency model presented in (Kovesi, 1999). The proposed face 
representation is based on the phase responses of the Gabor filter bank rather than the 
magnitude responses and as such offers an alternative to the established Gabor magnitude 
based methods. As we will show in this chapter, the feature vector constructed from the 
OGPCPs is more compact (i.e., less dimensional) than the traditional Gabor magnitude 
representation of face images and also exhibits robustness to illumination changes. Thus, it 
represents a novel robust face representation capable of substituting or complementing the 
existing Gabor magnitude based recognition techniques.  
The rest of the chapter is structured as follows: In Section 2, a brief review of the Gabor filter 
based methods is given. In Section 3, the novel face representation, i.e., the oriented Gabor 
phase congruency pattern is presented and the augmented Gabor phase congruency feature 
vector introduced. In Section 4, the classification rule for the experiments is highlighted, 
while the experimental databases are described in Section 5. The feasibility of the proposed 
features is assessed in Section 6. The chapter concludes with some final remarks and 
directions for future work in Section 7. 

 
2. Review of Gabor filters for face recognition 

2.1 Gabor filter construction 
Gabor filters (sometimes also called Gabor wavelets or kernels) have proven to be a 
powerful tool for facial feature extraction. They represent band-limited filters with an 
optimal localization in the spatial and frequency domains. Hence, when used for facial 
feature extraction, they extract multi-resolutional, spatially local features of a confined 
frequency band. In the spatial domain, the family of 2D Gabor filters can be defined as 
follows (Lades et al., 1993; Liu & Wechsler, 2002; Liu, 2006; Shen & Bai, 2006; Štruc & 
Pavešić, 2009b): 
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Each filter represents a Gaussian kernel function modulated by a complex plane wave 
whose centre frequency and orientation are defined by the parameters �� and ��, 
respectively. The parameters � and � determine the ratio between the centre frequency and 
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authors argue that the so-called Line Edge Maps (LEM) represent useful face 
representations for both image coding and recognition and that, moreover, they also exhibit 
insensitiveness to illumination variations. With this technique a given face image is first 
processed to extract edge pixels, which are then combined into line segments that constitute 
the LEMs. The authors showed that their technique successfully outperformed popular 
feature extraction approaches on various databases.        
Liu and Wechsler (Liu & Wechsler, 2002) use the Gabor wavelet (or filter) representation of 
face images to achieve robustness to illumination changes. Their method - the Gabor Fisher 
Classifier (GFC), adopts a filter bank of forty Gabor filters (featuring filters of five scales and 
eight orientations) to derive an augmented feature vector of Gabor magnitude features and 
then applies a variant of the multi-class linear discriminant analysis called the Enhanced 
Fisher discriminant Model (EFM) to the constructed Gabor feature vector to improve the 
vector’s compactness. 
While all of the presented techniques ensure some level of illumination invariance, Gabor 
wavelet based methods received the most attention due to their effectiveness and simplicity.  
The feasibility of Gabor wavelet based methods for robust face recognition is not evidenced 
solely by the large number of papers following up on the work of Liu and Wechsler (e.g., 
Shen et al., 2007; Štruc & Pavešić, 2009b), but also by the results of several independent 
evaluations (and competitions) of face recognition technology, where the techniques 
utilizing Gabor wavelets regularly resulted in the best performance (Messer et al., 2006; Poh 
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It has to be noted that the Gabor face representation as proposed by Liu and Wechsler does 
not represent an illumination invariant face representation, but rather exhibits robustness to 
illumination changes due to the properties of the deployed Gabor filter bank. Since Gabor 
filters represent band limited filters, the filter bank is usually constructed in such a way that 
it excludes the frequency bands most affected by illumination variations. Furthermore, the 
Gabor magnitude features that constitute the augmented Gabor feature vector are local in 
nature, which again adds to the illumination insensitiveness of the computed Gabor face 
representation.  
While the existing Gabor based methods are among the most successful techniques for face 
recognition, they still exhibit some shortcomings, which, when properly solved, could result 
in an improved recognition performance. These shortcomings can be summarized into the 
following main points: 
 

 

 most of the existing techniques rely solely on Gabor magnitude information 
while discarding the potentially useful Gabor phase information (e.g., Liu & 
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To tackle the above issues, we propose in this chapter a novel face representation called the 
oriented Gabor phase congruency pattern (OGPCP), which, as the name suggests, is derived 
from the Gabor phase congruency model presented in (Kovesi, 1999). The proposed face 
representation is based on the phase responses of the Gabor filter bank rather than the 
magnitude responses and as such offers an alternative to the established Gabor magnitude 
based methods. As we will show in this chapter, the feature vector constructed from the 
OGPCPs is more compact (i.e., less dimensional) than the traditional Gabor magnitude 
representation of face images and also exhibits robustness to illumination changes. Thus, it 
represents a novel robust face representation capable of substituting or complementing the 
existing Gabor magnitude based recognition techniques.  
The rest of the chapter is structured as follows: In Section 2, a brief review of the Gabor filter 
based methods is given. In Section 3, the novel face representation, i.e., the oriented Gabor 
phase congruency pattern is presented and the augmented Gabor phase congruency feature 
vector introduced. In Section 4, the classification rule for the experiments is highlighted, 
while the experimental databases are described in Section 5. The feasibility of the proposed 
features is assessed in Section 6. The chapter concludes with some final remarks and 
directions for future work in Section 7. 
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2.1 Gabor filter construction 
Gabor filters (sometimes also called Gabor wavelets or kernels) have proven to be a 
powerful tool for facial feature extraction. They represent band-limited filters with an 
optimal localization in the spatial and frequency domains. Hence, when used for facial 
feature extraction, they extract multi-resolutional, spatially local features of a confined 
frequency band. In the spatial domain, the family of 2D Gabor filters can be defined as 
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the size of the Gaussian envelope and, when set to a fixed value, these parameters ensure 
that Gabor filters of different scales and a given orientation behave as scaled versions of 
each other. It has to be noted at this point that with fixed values of the parameters � and � 
the scale of the given Gabor filter is defined uniquely by its centre frequency ��. Commonly 
the values of the parameters � and � are set to � � � � √2. The last parameter of the Gabor 
filters ���� denotes the maximum frequency of the filters and is commonly set to ���� �
0.25. When employed for facial feature extraction, researchers typically use Gabor filters 
with five scales and eight orientations, i.e., � � 0� �� � � � � � and � � 0� �� � � � � �, where 
� � 5 and � � �, which results in a filter bank of 40 Gabor filters (Liu, 2006; Shen et al. 2007; 
Štruc et al., 2008a). 
It should be noted that Gabor filters represent complex filters which combine an even 
(cosine-type) and odd (sine-type) part (Lades et al., 1993). An example of both filter parts in 
3D is shown on the left side of Fig. 1, while the real parts of the entire filter bank (commonly 
comprising 40 Gabor filters) are presented in 2D on the right hand side of Fig. 1. 
 

     
 

Fig. 1. Examples of Gabor filters: the real and imaginary part of a Gabor filter in 3D (left), the 
real part of the commonly employed Gabor filter bank of 40 Gabor filters in 2D (right)  

 
2.2 Feature extraction with Gabor filters 
Let ���� �� denote a grey-scale face image of size � � � pixels and let ������� �� represent a 
Gabor filter defined by its centre frequency �� and orientation ��. The filtering operation or 
better said the feature extraction procedure can then be written as the convolution of the 
face image ���� �� with the Gabor wavelet (filter, kernel) ������� ��, i.e. (Štruc & Pavešić, 
2009b), 
 

 ������� �� � ���� �� � ������� ��. (2) 
 
In the above expression, ������� �� represents the complex convolution output which can be 
decomposed into its real (or even) and imaginary (or odd) parts as follows: 
 

 ������� �� � ���������� ��� and ������� �� � ���������� ���. (3) 
 
Based on these results, both the phase (������� ��) as well as the magnitude responses 
(������� ��) of the filter can be computed, i.e.: 
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As already stated in the previous section, most of the techniques found in the literature 
discard the phase information of the filtering output and retain only the magnitude 
information for the Gabor face representation. An example of this information (in image 
form) derived from a sample face image is shown in Fig. 2. 
 

 
Fig. 2. An example of the Gabor magnitude output: a sample image (left), the magnitude 
output of the filtering operation with the entire Gabor filter bank of 40 Gabor filters (right) 

 
2.3 The Gabor (magnitude) face representation 
The first step when deriving the Gabor (magnitude) face representation of facial images is 
the construction of the Gabor filter bank. As we have pointed out several times in this 
chapter, most existing techniques adopt a filter bank comprised of 40 Gabor filters, i.e., 
Gabor filters with 5 scales (� � 0� �� � � 4) and 8 orientations (� � 0� �� � � �).  
 

 
Fig. 3. Down-sampling of a magnitude filter response: an example of a magnitude response 
(left), an example of the magnitude response with a superimposed sampling grid (middle), a 
down-sampled magnitude response (right)    
 
To obtain the Gabor (magnitude) face representation, a given face image is filtered with all 
40 filters from the filter. However, even for a small image of ��8 � ��8 pixels, the 
magnitude responses of the filtering outputs comprise a pattern vector with 655360 
elements, which is far too much for efficient processing and storage. To overcome this 
problem, down-sampling strategies are normally exploited. The down-sampling techniques 
reduce the dimensionality of the magnitude responses, unfortunately often at the expense of 
potentially useful discriminatory information. A popular down-sampling strategy is to 
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the size of the Gaussian envelope and, when set to a fixed value, these parameters ensure 
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3D is shown on the left side of Fig. 1, while the real parts of the entire filter bank (commonly 
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To obtain the Gabor (magnitude) face representation, a given face image is filtered with all 
40 filters from the filter. However, even for a small image of ��8 � ��8 pixels, the 
magnitude responses of the filtering outputs comprise a pattern vector with 655360 
elements, which is far too much for efficient processing and storage. To overcome this 
problem, down-sampling strategies are normally exploited. The down-sampling techniques 
reduce the dimensionality of the magnitude responses, unfortunately often at the expense of 
potentially useful discriminatory information. A popular down-sampling strategy is to 
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employ a rectangular sampling grid (as shown in Fig. 3) and retain only the values under 
the grid’s nodes. This down-sampling procedure is applied to all magnitude responses, 
which are then normalized to zero mean and unit variance and ultimately concatenated into 
the final Gabor (magnitude) face representation or, as named by Liu and Wechsler (Liu & 
Wechsler, 2002), into the augmented Gabor feature vector.  
If we denote the down-sampled magnitude response (in column vector form) of the Gabor 
filter of scale � and orientation � as ����, we can define the augmented Gabor (magnitude) 
feature vector � as follows:  
 

 � � ������ � ����� � ����� � � � ����� ��. (5) 
 
It has to be noted that in the experiments presented in Section 6 of this chapter, we use 
images of 12� � 12� pixels and a rectangular down-sampling grid with 16 horizontal and 
16 vertical lines, which corresponds to a down-sampling factor of 64. Nevertheless, even 
after the down-sampling, the augmented Gabor (magnitude) feature vector still resides in a 
very high-dimensional space (Shen et al., 2007) - in our case the dimensionality of the 
vectors still equals 10240. To make the processing more efficient, researchers commonly 
turn to so-called subspace projection techniques, e.g. (Liu, 2006; Shen et al. 2007; Štruc & 
Pavešić, 2009b). Two of these techniques, namely, the Principal Component Analysis (PCA) 
and the Linear Discriminant analysis (LDA), will also be adopted for our experiments. The 
description of these techniques is beyond the scope of this chapter, the reader is, however, 
referred to (Turk & Pentland, 1991) and (Belhumeur et al. 1997) for more information on 
PCA and LDA, respectively.  

 
3. The Gabor (phase) face representation  
 

This section introduces a novel face representation called oriented Gabor phase congruency 
pattern (OGPCP) and, consequently, the augmented Gabor phase congruency feature 
vector.  

 
3.1 Background 
Before we turn our attention to the novel representation of face images, i.e., to the oriented 
Gabor phase congruency pattern, let us take a closer look at why the Gabor phase 
information is commonly discarded when deriving the Gabor face representation. 
Unlike the (Gabor) magnitude, which is known to vary slowly with the spatial position, the 
(Gabor) phase can take very different values even if it is sampled at image locations only a 
few pixels apart. This fact makes it difficult to extract stable and discriminative features 
from the phase responses of Eq. (2) and is the primary reason that most of the existing 
methods use only the (Gabor) magnitude to construct the Gabor feature vector (Zhang et al., 
2007; Štruc et al., 2008a). 
To the best of our knowledge, there are only a few studies in the literature that successfully 
derived useful features from Gabor phase responses for the task of face recognition, e.g., 
(Zhang et al., 2007; Bezalel & Efron, 2005; Gundimada & Asari, 2006; Gundimada et al., 
2009). A common characteristic of these methods is the fact that they use features or face 
representations derived from the Gabor phase information rather than the “raw” phase 

 

responses themselves or combine the phase information with other face descriptors to 
compensate for the variability of the Gabor phase.  
Zhang et al. (Zhang et al., 2007), for example,  adopt local histograms of the phase responses 
encoded via local binary patterns (LBPs) as face image descriptors and show that over small 
image regions the Gabor phase patterns exhibit some kind of regularity (in terms of 
histograms) and, hence, contain useful information for the task of face recognition. Other 
authors (e.g., Bezalel & Efron, 2005; Gundimada & Asari, 2006; Gundimada et al., 2009) 
incorporate the Gabor phase information by adopting the 2D phase congruency model of 
Kovesi (Kovesi, 1999) to detect edges in a given face image and deploy the resulting “edge” 
image for detection of interest points that are used with other image descriptors, such as 
Gabor magnitude features. 
The face representation proposed in this chapter is related to the work of (e.g., Bezalel & 
Efron, 2005; Gundimada & Asari, 2006; Gundimada et al., 2009) only as far as it uses the 
concept of phase congruency for encoding the Gabor phase information. However, unlike 
previous work on this subject it proposes a face representation that is only partially based 
on Kovesi’s 2D phase congruency model and employs the proposed representation for 
recognition rather than solely for feature selection. As will be shown in the next section, the 
proposed face representation exhibits several desirable properties which overcome most of 
the shortcomings of the existing Gabor magnitude based methods. 

 
3.2 The oriented Gabor phase congruency patterns 
The original 2D phase congruency model as proposed by Kovesi in (Kovesi, 1999) was 
developed with the goal of robust edge and corner detection in digital images. However, as 
we will show, it can (though with a few modifications) also be used to encode phase 
information of the Gabor filter responses in a way that is useful for the task of face 
recognition.   
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Kovesi's original phase congruency model searches for points in an image where the log-
Gabor filter responses over several scales and orientations are maximally in phase (Kovesi, 
1999; Štruc & Pavešić, 2009a). Thus, a point in an image is of significance only if the phase 
responses of the log-Gabor filters over a range of scales (i.e., frequencies) display some kind 
of order. In the original approach, phase congruency is first computed for each of the 
employed filter orientations, while the results are then combined to form the final phase 
congruency image (PCI). Some examples of such images obtained with log-Gabor filters 
with  scales and  orientations are shown in Fig. 4. Note that the code used to produce the 
presented phase congruency images was provided by P. Kovesi and can be found at his 
homepage: http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/index.html  
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employ a rectangular sampling grid (as shown in Fig. 3) and retain only the values under 
the grid’s nodes. This down-sampling procedure is applied to all magnitude responses, 
which are then normalized to zero mean and unit variance and ultimately concatenated into 
the final Gabor (magnitude) face representation or, as named by Liu and Wechsler (Liu & 
Wechsler, 2002), into the augmented Gabor feature vector.  
If we denote the down-sampled magnitude response (in column vector form) of the Gabor 
filter of scale � and orientation � as ����, we can define the augmented Gabor (magnitude) 
feature vector � as follows:  
 

 � � ������ � ����� � ����� � � � ����� ��. (5) 
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image for detection of interest points that are used with other image descriptors, such as 
Gabor magnitude features. 
The face representation proposed in this chapter is related to the work of (e.g., Bezalel & 
Efron, 2005; Gundimada & Asari, 2006; Gundimada et al., 2009) only as far as it uses the 
concept of phase congruency for encoding the Gabor phase information. However, unlike 
previous work on this subject it proposes a face representation that is only partially based 
on Kovesi’s 2D phase congruency model and employs the proposed representation for 
recognition rather than solely for feature selection. As will be shown in the next section, the 
proposed face representation exhibits several desirable properties which overcome most of 
the shortcomings of the existing Gabor magnitude based methods. 

 
3.2 The oriented Gabor phase congruency patterns 
The original 2D phase congruency model as proposed by Kovesi in (Kovesi, 1999) was 
developed with the goal of robust edge and corner detection in digital images. However, as 
we will show, it can (though with a few modifications) also be used to encode phase 
information of the Gabor filter responses in a way that is useful for the task of face 
recognition.   
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Kovesi's original phase congruency model searches for points in an image where the log-
Gabor filter responses over several scales and orientations are maximally in phase (Kovesi, 
1999; Štruc & Pavešić, 2009a). Thus, a point in an image is of significance only if the phase 
responses of the log-Gabor filters over a range of scales (i.e., frequencies) display some kind 
of order. In the original approach, phase congruency is first computed for each of the 
employed filter orientations, while the results are then combined to form the final phase 
congruency image (PCI). Some examples of such images obtained with log-Gabor filters 
with  scales and  orientations are shown in Fig. 4. Note that the code used to produce the 
presented phase congruency images was provided by P. Kovesi and can be found at his 
homepage: http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/index.html  
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While the presented approach is suitable for robust (in terms of noise, illumination 
variations and image contrast) edge and corner detection, its usefulness for facial feature 
extraction is questionable. As it was emphasized by Liu in (Liu, 2006), a desirable 
characteristic of any feature extraction procedure is the capability of extracting multi-
orientational features. Rather than combining phase congruency information computed over 
several orientations, and using the result for construction of the facial feature vector, we 
therefore propose to compute an oriented Gabor phase congruency pattern (OGPCP) for 
each of the employed filter orientations and to construct an augmented (Gabor) phase 
congruency feature vector based on the results. Note that, differently from the original 2D 
phase congruency model proposed in (Kovesi, 1999), we use conventional Gabor filters as 
defined by Eq. (1) rather than log-Gabor filters (Štruc et al., 2008a). 
Taking into account the original definition of the phase congruency, we can derive an 
oriented version of the phase congruency, which, when presented in image form, reveals the 
oriented Gabor phase congruency patterns (OGPCPs) for the �-th orientation: 
 

 ��������, �� �
∑ ��,���, �����,���, �����
���
∑ ���,���, �� � �����
���

, (6) 

 
where�� denotes a small constant that prevents division by zero and ���,���, �� stands for 
the phase deviation measure of the following form: 
 

 ���,���, �� � ������,���, �� � �����, ��� � �������,���, �� � �����, ����� (7) 
 
In the above expression ��,���, �� denotes the phase angle of the Gabor filter (with a centre 
frequency �� and orientation ��) at the spatial location ��, ��, while �����, �� represents the 
mean phase angle at the �-th orientation. Several examples of the OGPCPs for a sample 
image are shown in Fig. 5. 
 

 
Fig. 5. Examples of OGPCPs (from left to right): the original image, the OGPCP for �� � �� 
and � � �, the OGPCP for �� � ��  and � � �, the OGPCP for �� � �� and � � �, the OGPCP 
for �� � ��  and � � � 
 
Kovesi showed that the expression given in (6) can be computed directly from the filter 
outputs defined by (3); however, for details on computing the OGPCPs the reader should 
refer to the original paper (Kovesi, 1999).  
It should be noted that the OGPCPs as defined by Eq. (6) represent illumination invariant 
(and contrast independent) face representations, since they do not depend on the overall 
magnitude of the filter responses. This property makes the OGPCPs a very useful image 
representation for face recognition.  

 

 

3.3 The augmented Gabor phase congruency feature vector  
The OGPCPs presented in the previous section form the foundation for the augmented 
Gabor phase congruency feature vector, which is computed from a given face image by the 
following procedure:  
 

 for a given face image all � OGPCPs are computed for the chosen number of filter 
scales � (an example of all OGPCPs for a sample image with � � � and � � � is 
presented in Fig. 6.) 

 the OGPCPs are down-sampled by a down-sampling factor � (in a similar manner 
as shown in Fig. 3), 

 the down-sampled OGPCPs are normalized using the selected normalization 
procedure (zero mean and unit variance, histogram equalization, …), and 

 the down-sampled and normalized OGPCPs in column vector form (denoted as 
��) are concatenated to form the augmented Gabor phase congruency feature 
vector �. 

 
Formally, the augmented Gabor phase congruency feature vector is defined as follows: 
 

 � � ����, ���, ���, � ,����� ��, (8) 
 
where � denotes the transform operator and ��, for � � �, �, �, � , � � �, stands for the vector 
derived from the OGPCP at the �-th orientation. 
 

 
Fig. 6. An example of all OGPCPs: the original image (left), the OGPCPs (for � � �) that 
form the foundation for construction of the augmented Gabor phase congruency feature 
vector 
 
Note that in the experiments presented in Section 6 a down-sampling factor of � � �� was 
used for the OGPCPs, as opposed to the Gabor magnitude responses, where a down-
sampling factor of � � �� was employed. This setup led to similar lengths of the constructed 
(Gabor) feature vectors of both methods and thus enabled a fair comparison of their face 
recognition performances. Furthermore, as the smaller down-sampling factor was used for 
the OGPCPs, less potentially useful information is discarded when oriented Gabor phase 
congruency patterns are employed for the face representation rather than the Gabor 
magnitude features.  
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While the presented approach is suitable for robust (in terms of noise, illumination 
variations and image contrast) edge and corner detection, its usefulness for facial feature 
extraction is questionable. As it was emphasized by Liu in (Liu, 2006), a desirable 
characteristic of any feature extraction procedure is the capability of extracting multi-
orientational features. Rather than combining phase congruency information computed over 
several orientations, and using the result for construction of the facial feature vector, we 
therefore propose to compute an oriented Gabor phase congruency pattern (OGPCP) for 
each of the employed filter orientations and to construct an augmented (Gabor) phase 
congruency feature vector based on the results. Note that, differently from the original 2D 
phase congruency model proposed in (Kovesi, 1999), we use conventional Gabor filters as 
defined by Eq. (1) rather than log-Gabor filters (Štruc et al., 2008a). 
Taking into account the original definition of the phase congruency, we can derive an 
oriented version of the phase congruency, which, when presented in image form, reveals the 
oriented Gabor phase congruency patterns (OGPCPs) for the �-th orientation: 
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where�� denotes a small constant that prevents division by zero and ���,���, �� stands for 
the phase deviation measure of the following form: 
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frequency �� and orientation ��) at the spatial location ��, ��, while �����, �� represents the 
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Kovesi showed that the expression given in (6) can be computed directly from the filter 
outputs defined by (3); however, for details on computing the OGPCPs the reader should 
refer to the original paper (Kovesi, 1999).  
It should be noted that the OGPCPs as defined by Eq. (6) represent illumination invariant 
(and contrast independent) face representations, since they do not depend on the overall 
magnitude of the filter responses. This property makes the OGPCPs a very useful image 
representation for face recognition.  

 

 

3.3 The augmented Gabor phase congruency feature vector  
The OGPCPs presented in the previous section form the foundation for the augmented 
Gabor phase congruency feature vector, which is computed from a given face image by the 
following procedure:  
 

 for a given face image all � OGPCPs are computed for the chosen number of filter 
scales � (an example of all OGPCPs for a sample image with � � � and � � � is 
presented in Fig. 6.) 

 the OGPCPs are down-sampled by a down-sampling factor � (in a similar manner 
as shown in Fig. 3), 

 the down-sampled OGPCPs are normalized using the selected normalization 
procedure (zero mean and unit variance, histogram equalization, …), and 

 the down-sampled and normalized OGPCPs in column vector form (denoted as 
��) are concatenated to form the augmented Gabor phase congruency feature 
vector �. 

 
Formally, the augmented Gabor phase congruency feature vector is defined as follows: 
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Note that in the experiments presented in Section 6 a down-sampling factor of � � �� was 
used for the OGPCPs, as opposed to the Gabor magnitude responses, where a down-
sampling factor of � � �� was employed. This setup led to similar lengths of the constructed 
(Gabor) feature vectors of both methods and thus enabled a fair comparison of their face 
recognition performances. Furthermore, as the smaller down-sampling factor was used for 
the OGPCPs, less potentially useful information is discarded when oriented Gabor phase 
congruency patterns are employed for the face representation rather than the Gabor 
magnitude features.  
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As with the augmented Gabor magnitude feature vector, the Gabor phase congruency 
feature vector also resides in high-dimensional space and, hence, requires additional 
processing with, for example, subspace projection techniques to further reduce its 
dimensionality. In the experimental section, PCA and LDA are evaluated for this purpose.  

 
4. Classification rule 
 

In general, a face recognition system can operate in one of two modes: in the verification or 
identification mode (Štruc et al., 2008b).  
When operating in the verification mode, the goal of the system is to determine the validity 
of the identity claim uttered by the user currently presented to the system. This is achieved 
by comparing the so-called “live” feature vector � extracted from the given face image of the 
user with the template corresponding to the claimed identity. Based on the outcome of the 
comparison, the identity claim is rejected or accepted. The verification procedure can 
formally be written as follows: given the “live” feature vector � and a claimed identity 
�� associated with a user-template ��, where � � ��, �, � , �� and � stands for the number of 
enrolled users, determine the validity of the identity claim by classifying the pair (�, ��) into 
one of two classes �� or �� (Jain et al., 2004):  
 

 ��, ��� � ���, �� ���, ��� � Δ
��, ��������� , (9) 

 
where �� stands for the class of genuine identity claims, �� denotes the class of impostor 
identity claims, ���,�� denotes a function measuring the similarity of its arguments. In our 
case the similarity function takes the form of the cosine similarity measure, i.e.,   
 

 ���, ��� � ����

���������
 (10) 

 
and Δ represents a predefined decision threshold. 
In a face recognition system operating in the identification mode the problem statement is 
different from that presented above. In case of the identification task we are not interested 
whether the similarity of the “live” feature vector with a specific user template is high 
enough; rather, we are looking for the template in the database which best matches the 
“live” feature vector. This can be formalized as follows: given a “live” feature vector � and a 
database containing � templates ��, ��, � , �� of the enrolled users (or identities) 
��, ��, � , ��, determine the most suitable identity, i.e., (Jain et al., 2004): 
    

 � � ���, �� ���� ���, ��� � �, � � �, �, � � , �
����, ���������  , (11) 

 
where ���, ��� again denotes the cosine similarity measure and ���� stands for the case, 
where no appropriate identity from the database can be assigned to the “live” feature vector 
�. The presented expression postulates that, if the similarity of the “live” feature vector and 
the template associated with the �-th identity is the highest among the similarities with all 

 

user templates in the system, then the �-th identity is assigned to the “live” feature vector �. 
It should be noted that, in the experiments presented in the experimental section, the user 
templates are constructed as the mean vectors of the feature vectors extracted from the 
enrollment face images of the users.  

 
5. The databases and experimental configurations 
 

This section presents the experimental databases used to determine the feasibility of the 
proposed augmented phase congruency feature vectors for face recognition. It commences 
by describing the two face databases, namely, the XM2VTS (Messer et al., 1999) and the 
Extended YaleB database (Georghiades et al., 2001; Lee et al., 2005), and proceeds by 
presenting the pre-processing procedure applied to the experimental images prior to the 
actual experiments.  

 
5.1 The XM2VTS database 
The XM2VTS database comprises a total of 2360 facial images that correspond to 295 distinct 
subjects (Messer et al., 1999). The images were recorded in controlled conditions (in front of 
a homogenous background, with artificial illumination, with frontal pose and a neutral 
facial expression, etc.), during four recording sessions and over a period of approximately 
five months. At each of the recording session, two recordings were made resulting in eight 
facial images per subject that are featured in the database. Since the time elapsed between 
two successive sessions was around one month, the variability in the images is mainly 
induced by the temporal factor. Thus, images of the same subject differ in terms of hairstyle, 
presence or absence of glasses, make-up and moustaches, etc. Some examples of the images 
from the XM2VTS database are shown in Fig. 7.   
 

 
Fig. 7. Sample images from the XM2VTS database 
 
The face verification experiments on the XM2VTS were conducted in accordance with the 
first configuration of the experimental protocol associated with the database, known also as 
the Lausanne protocol (Messer et al., 1999). Following the protocol, the subjects of the 
database were divided into groups of 200 clients and 95 impostors. Images corresponding 
to the subjects in these two groups were then partitioned into image sets used for: 
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As with the augmented Gabor magnitude feature vector, the Gabor phase congruency 
feature vector also resides in high-dimensional space and, hence, requires additional 
processing with, for example, subspace projection techniques to further reduce its 
dimensionality. In the experimental section, PCA and LDA are evaluated for this purpose.  

 
4. Classification rule 
 

In general, a face recognition system can operate in one of two modes: in the verification or 
identification mode (Štruc et al., 2008b).  
When operating in the verification mode, the goal of the system is to determine the validity 
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and Δ represents a predefined decision threshold. 
In a face recognition system operating in the identification mode the problem statement is 
different from that presented above. In case of the identification task we are not interested 
whether the similarity of the “live” feature vector with a specific user template is high 
enough; rather, we are looking for the template in the database which best matches the 
“live” feature vector. This can be formalized as follows: given a “live” feature vector � and a 
database containing � templates ��, ��, � , �� of the enrolled users (or identities) 
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where ���, ��� again denotes the cosine similarity measure and ���� stands for the case, 
where no appropriate identity from the database can be assigned to the “live” feature vector 
�. The presented expression postulates that, if the similarity of the “live” feature vector and 
the template associated with the �-th identity is the highest among the similarities with all 

 

user templates in the system, then the �-th identity is assigned to the “live” feature vector �. 
It should be noted that, in the experiments presented in the experimental section, the user 
templates are constructed as the mean vectors of the feature vectors extracted from the 
enrollment face images of the users.  
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This section presents the experimental databases used to determine the feasibility of the 
proposed augmented phase congruency feature vectors for face recognition. It commences 
by describing the two face databases, namely, the XM2VTS (Messer et al., 1999) and the 
Extended YaleB database (Georghiades et al., 2001; Lee et al., 2005), and proceeds by 
presenting the pre-processing procedure applied to the experimental images prior to the 
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5.1 The XM2VTS database 
The XM2VTS database comprises a total of 2360 facial images that correspond to 295 distinct 
subjects (Messer et al., 1999). The images were recorded in controlled conditions (in front of 
a homogenous background, with artificial illumination, with frontal pose and a neutral 
facial expression, etc.), during four recording sessions and over a period of approximately 
five months. At each of the recording session, two recordings were made resulting in eight 
facial images per subject that are featured in the database. Since the time elapsed between 
two successive sessions was around one month, the variability in the images is mainly 
induced by the temporal factor. Thus, images of the same subject differ in terms of hairstyle, 
presence or absence of glasses, make-up and moustaches, etc. Some examples of the images 
from the XM2VTS database are shown in Fig. 7.   
 

 
Fig. 7. Sample images from the XM2VTS database 
 
The face verification experiments on the XM2VTS were conducted in accordance with the 
first configuration of the experimental protocol associated with the database, known also as 
the Lausanne protocol (Messer et al., 1999). Following the protocol, the subjects of the 
database were divided into groups of 200 clients and 95 impostors. Images corresponding 
to the subjects in these two groups were then partitioned into image sets used for: 
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 training and enrolment (3 images for each of the 200 clients) – this image set was 
used for training of the feature extraction techniques and for building client 
models/templates in the form of mean feature vectors,  

 evaluation (3 images for each of the 200 clients and 8 images for each of the 
25 evaluation impostors) – this image set was employed to determine the decision 
threshold for a given operating point of the face verification system and to 
estimate any potential parameters of the feature extraction techniques, and 

 testing (2 images for each of the 200 clients and 8 images for each of the 70 test 
impostors) – this image set was used to determine the verification performance in 
real operating conditions (i.e., with predetermined parameters)   
 

While the first image set featured only images belonging to the client group, the latter two 
image sets comprised images belonging to both the client and the impostor groups. The 
client images were employed to assess the first kind of error a face verification system can 
make, namely, the false rejection error, whereas the impostor images were used to evaluate 
the second type of possible verification error, namely, the false acceptance error. The two 
errors are quantified by two corresponding error rates: the false rejection and false 
acceptance error rates (FRR and FAR), which are defined as the relative frequency with 
which a face verification system falsely rejects a client- and falsely accepts an impostor-
identity-claim, respectively. To estimate these error rates each feature vector extracted from 
an image of the client group was matched against the corresponding client template, while 
each of the feature vectors extracted from an impostor image was matched against all client 
templates in database. The described setup resulted in the following verification 
experiments: 600 client verification attempts in the evaluation stage, 40000 impostor 
verification attempts in the evaluation stage, 400 client verification attempts in the test stage 
and 112000 impostor verification attempts in the test stage (Messer et al., 1999; Štruc et al. 
2008).  
It has to be noted that there is a tradeoff between the FAR and FRR. We can select an 
operating point (determined by the value of the decision threshold) where the FAR is small 
and the FRR is large or vice versa, we can choose an operating point with a small FRR but at 
the expense of a large FAR. To effectively compare two face verification systems, an 
operating point that ensures a predefined ratio of the two error rates has to be selected on 
the evaluation image set or the values of the error rates must be plotted against various 
values of the decision threshold, resulting in the so-called performance curves. In this 
chapter we choose the latter approach and present our results in terms of two kinds of 
performance curves, namely, the Detection Error Tradeoff (DET) curves and the Expected 
Performance Curves (EPC), which plot the FAR against the FRR at different values of the 
decision threshold on the evaluation and test sets, respectively.     

 
5.2 The Extended YaleB database 
The Extended YaleB database was recorded at the Yale University  and comprises 2432 
frontal face images of 38 distinct subjects (Georghiades et al., 2001; Lee et al., 2005). It 
exhibits large variations in illumination, which is also the main source of variability in the 
images of the Extended YaleB database employed in our experiments. Some examples of 
these images are shown in Fig. 8.  
 

 

 
Fig. 8. Sample images from the Extended YaleB database 
 
After removing a number of corrupt images from the database, a total of 2414 frontal face 
images with variable lighting were available for our experiments with each subject of the 
database being accounted for with a little more than 60 images. These images were then 
partitioned into 5 image subsets according to the extremity of illumination in the images, as 
proposed by Georghiades et al. in (Georghiades et al., 2001). The reader is referred to the 
original publication for more information on the partitioning. 
The first image subset (denoted as S1 in the remainder) featured images captured in 
relatively good illumination conditions, while the conditions got more extreme for the 
image subsets two (S2) to five (S5). It should also be noted that the subsets did not contain 
the same number of images. The first subset, for example, contained 263 images, which 
corresponds to approximately 7 images per subject. The second subset contained 456 
images, the third 455 images, the fourth 526 images and finally the fifth subset contained 
714 facial images.  
For our experiments we adopted the first subset for the training of the feature extraction 
techniques as well as for creating the user models/templates, and employed all remaining 
subsets for testing. Such an experimental setup resulted in highly miss-matched conditions 
for the recognition technique, since the test subsets featured images captured under varying 
illumination conditions, while the training images were acquired in controlled illumination 
conditions. Clearly, for a feature extraction technique to be successful, it has to extract stable 
features from the images regardless of the conditions present during the image acquisition 
stage. Furthermore, the experimental configuration is also in accordance with real life 
settings, as the training and enrollment stages are commonly supervised and, hence, the 
training and/or enrollment images are usually of good quality. The actual operational 
conditions, on the other hand, are typically unknown in advance and often induce severe 
illumination variations. 
The results of our experiments on the Extended YaleB database are reported in terms of the 
rank one recognition rate, which corresponds to the relative frequency with which the test 
images from a given subset are recognized correctly. 

 
5.3 Data pre-processing 
Prior to the experiments, we subjected all images from both databases to a pre-processing 
procedure comprised of the following steps: 
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 training and enrolment (3 images for each of the 200 clients) – this image set was 
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and the FRR is large or vice versa, we can choose an operating point with a small FRR but at 
the expense of a large FAR. To effectively compare two face verification systems, an 
operating point that ensures a predefined ratio of the two error rates has to be selected on 
the evaluation image set or the values of the error rates must be plotted against various 
values of the decision threshold, resulting in the so-called performance curves. In this 
chapter we choose the latter approach and present our results in terms of two kinds of 
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Performance Curves (EPC), which plot the FAR against the FRR at different values of the 
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After removing a number of corrupt images from the database, a total of 2414 frontal face 
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database being accounted for with a little more than 60 images. These images were then 
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the same number of images. The first subset, for example, contained 263 images, which 
corresponds to approximately 7 images per subject. The second subset contained 456 
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For our experiments we adopted the first subset for the training of the feature extraction 
techniques as well as for creating the user models/templates, and employed all remaining 
subsets for testing. Such an experimental setup resulted in highly miss-matched conditions 
for the recognition technique, since the test subsets featured images captured under varying 
illumination conditions, while the training images were acquired in controlled illumination 
conditions. Clearly, for a feature extraction technique to be successful, it has to extract stable 
features from the images regardless of the conditions present during the image acquisition 
stage. Furthermore, the experimental configuration is also in accordance with real life 
settings, as the training and enrollment stages are commonly supervised and, hence, the 
training and/or enrollment images are usually of good quality. The actual operational 
conditions, on the other hand, are typically unknown in advance and often induce severe 
illumination variations. 
The results of our experiments on the Extended YaleB database are reported in terms of the 
rank one recognition rate, which corresponds to the relative frequency with which the test 
images from a given subset are recognized correctly. 

 
5.3 Data pre-processing 
Prior to the experiments, we subjected all images from both databases to a pre-processing 
procedure comprised of the following steps: 
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 a conversion of the (colour) face images to 8-bit monochrome (grey-scale) images – 
applicable only for the XM2VTS database, 

 a geometric normalization procedure, which, based on the manually marked eye 
coordinates, rotated and scaled the images in such a way that the centres of the 
eyes were aligned and, thus, located at predefined positions,    

 a cropping procedure that cropped the facial region of the images to a standard 
size of 128 � 128 pixels, 

 a photometric normalization procedure that first equalized the histogram of the 
cropped facial images and then further normalized the results to zero-mean and 
unit-variance.  
 

It should be noted that manual labelling of the facial landmarks is the only way to achieve a 
fair comparison of the recognition techniques, as it ensures that the differences in the 
observed recognition performances are only a consequence of the employed feature 
extraction techniques and not other influencing factors. Some examples of the pre-processed 
images (prior to photometric normalization) from the two databases are shown in Fig. 9.  
 

 
Fig. 9. Examples of pre-processed images from the XM2VTS (left quadruple of images) and 
Extended YaleB (right quadruple of images) databases 

 
6. Experiments, results and discussion 

6.1 Baseline performance 
In the first series of our recognition experiments, we aimed at determining the performance 
of some baseline face recognition techniques on the two test databases. To this end, we 
implement the popular Principal Component Analysis (PCA) (Turk & Pentland, 1991) and 
Linear Discriminant Analysis (LDA) (Belhumeur et al., 1997) techniques, also known as the 
Eigenface and Fisherface methods, and assess the techniques for different lengths (i.e., 
different Number Of Features - NOF) of the PCA and LDA feature vectors. The results of 
this assessment are presented in Fig. 10 for the XM2VTS database in the form of DET curves 
and in Table 1 for the Extended YaleB database (EYB) in the form of rank one recognition 
rates (in %). Considering the number of subjects and images in the databases, the maximum 
length of the feature vector for the PCA technique equals 599 for the XM2VTS database and 
262 for the EYB database, while the maximum length for the LDA technique is 199 for the 
XM2VTS database and 37 for the EYB database.  

 

         
 

Fig. 10. DET curves of the baseline experiments on the evaluation image sets of the XM2VTS 
database: for the PCA technique (left), for the LDA technique (right) 
 

NOF PCA NOF LDA 
S2 S3 S4 S5 S2 S3 S4 S5 

10 56.6 29.5 11.2 15.6 5 98.3 56.9 9.9 13.6 
50 93.4 54.7 16.7 21.9 10 100 85.3 27.2 29.7 
100 93.6 54.9 16.7 22.0 20 100 97.8 47.0 43.7 
150 93.6 55.0 16.7 22.0 30 100 99.3 53.6 47.6 
200 93.6 55.0 16.7 22.0 37 100 99.8 56.3 51.0 

Table 1. Rank one recognition rates (in %) for different lengths of the PCA and LDA feature 
vectors obtained on different subsets of the EYB database 
 
Note that for the PCA technique the performance on the XM2VTS saturates when 200 
features are used in the feature vectors. Similar results are also observed for the EYB 
database, where the performance on all subsets peaks with 150 dimensional feature vectors. 
For the LDA technique the best performance on both databases is achieved with the 
maximum number of features, i.e., 199 for the XM2VTS database and 37 for the EYB 
database. The presented experimental results provide a baseline face recognition 
performance on the two databases for the following comparative studies of the techniques 
using the augmented phase congruency feature vectors.  

  
6.2 Baseline performance with the augmented phase congruency feature vector 
In our second series of face recognition experiments we evaluate the performance of the 
PCA and LDA techniques in conjunction with the augmented phase congruency feature 
vectors and assess the relative usefulness of additional normalization techniques applied to 
the augmented feature vectors prior to the deployment of the subspace projection 
techniques PCA and LDA. We use five filter scales (� � 5) and eight orientations (� � �) to 
construct the oriented phase congruency patterns, which in their down-sampled form 
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Linear Discriminant Analysis (LDA) (Belhumeur et al., 1997) techniques, also known as the 
Eigenface and Fisherface methods, and assess the techniques for different lengths (i.e., 
different Number Of Features - NOF) of the PCA and LDA feature vectors. The results of 
this assessment are presented in Fig. 10 for the XM2VTS database in the form of DET curves 
and in Table 1 for the Extended YaleB database (EYB) in the form of rank one recognition 
rates (in %). Considering the number of subjects and images in the databases, the maximum 
length of the feature vector for the PCA technique equals 599 for the XM2VTS database and 
262 for the EYB database, while the maximum length for the LDA technique is 199 for the 
XM2VTS database and 37 for the EYB database.  

 

         
 

Fig. 10. DET curves of the baseline experiments on the evaluation image sets of the XM2VTS 
database: for the PCA technique (left), for the LDA technique (right) 
 

NOF PCA NOF LDA 
S2 S3 S4 S5 S2 S3 S4 S5 

10 56.6 29.5 11.2 15.6 5 98.3 56.9 9.9 13.6 
50 93.4 54.7 16.7 21.9 10 100 85.3 27.2 29.7 
100 93.6 54.9 16.7 22.0 20 100 97.8 47.0 43.7 
150 93.6 55.0 16.7 22.0 30 100 99.3 53.6 47.6 
200 93.6 55.0 16.7 22.0 37 100 99.8 56.3 51.0 

Table 1. Rank one recognition rates (in %) for different lengths of the PCA and LDA feature 
vectors obtained on different subsets of the EYB database 
 
Note that for the PCA technique the performance on the XM2VTS saturates when 200 
features are used in the feature vectors. Similar results are also observed for the EYB 
database, where the performance on all subsets peaks with 150 dimensional feature vectors. 
For the LDA technique the best performance on both databases is achieved with the 
maximum number of features, i.e., 199 for the XM2VTS database and 37 for the EYB 
database. The presented experimental results provide a baseline face recognition 
performance on the two databases for the following comparative studies of the techniques 
using the augmented phase congruency feature vectors.  

  
6.2 Baseline performance with the augmented phase congruency feature vector 
In our second series of face recognition experiments we evaluate the performance of the 
PCA and LDA techniques in conjunction with the augmented phase congruency feature 
vectors and assess the relative usefulness of additional normalization techniques applied to 
the augmented feature vectors prior to the deployment of the subspace projection 
techniques PCA and LDA. We use five filter scales (� � 5) and eight orientations (� � �) to 
construct the oriented phase congruency patterns, which in their down-sampled form 
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constitute the augmented phase congruency feature vectors, and apply the following 
normalization schemes to these vectors:  
 

 after the down-sampling of the oriented Gabor phase congruency patterns, each 
down-sampled OGPCP is normalized to zero mean and unit variance prior to 
concatenation into the final augmented feature vector (denoted as ZMUV) – Fig. 11 
(upper left corner), 

 after the down-sampling of the oriented Gabor phase congruency patterns, each 
down-sampled OGPCP is first subjected to histogram equalization and then to zero 
mean and unit variance normalization prior to concatenation into the final 
augmented feature vector (denoted as oHQ) - Fig. 11 (upper right corner), and 

 after the down-sampling of the oriented Gabor phase congruency patterns, the 
down-sampled OGPCPs are concatenated into a bigger image, which is subjected 
to the histogram equalization procedure and then to zero mean and unit variance 
normalization (denoted as HQ) - Fig. 11 (lower row). 

 

           
 

 
Fig. 11. Diagrams of the employed normalization procedures: ZMUV (upper left corner), 
oHQ (upper right corner), and HQ (lower row) 
 
It should be noted that the number of scales and orientations that were used in our 
experiments, i.e., � � 5 and � � �, was chosen based on other Gabor filter based methods 
presented in the literature – see, for example, (Liu & Wechsler, 2002; Shen et al., 2007; Štruc 
& Pavešić, 2009b). For the implementation of the subspace projection techniques the 
following feature vector lengths were chosen: 37 for LDA on EYB, 199 for LDA on XM2VTS, 
150 for PCA on EYB and 200 for PCA on XM2VTS. These lengths were selected based on 
the baseline results from the previous series of experiments. However, since the number of 
features in the feature vectors is not the primary concern of this section, it could also be set 
differently. 

 

The results of the experiments are again presented in the form of DET curves for the 
XM2VTS database in Fig. 12 and in the form of rank one recognition rates for the EYB 
database in Table 2.  
 

         
   

Fig. 12. DET curves of the comparative assessment of the normalization techniques on the 
evaluation image sets of the XM2VTS database: for the PCA technique (left), for the LDA 
technique (right) 
 

Norm PCA Norm LDA 
S2 S3 S4 S5 S2 S3 S4 S5 

ZMUV 100 99.1 83.4 92.7 ZMUV 100 99.8 88.8 93.8 
HQ 100 99.1 81.6 89.8 HQ 100 100 86.1 94.8 

oHQ 100 99.3 84.6 92.7 oHQ 100 100 87.1 94.8 
Table 2. Rank one recognition rates (in %) for different normalization schemes of the 
augmented phase congruency vector prior to PCA and/or LDA deployment on different 
subsets of the EYB database 
 
From the experimental results we can see that the traditional ZMUV technique resulted in 
the worst performance, while both the HQ and oHQ techniques achieved similar 
recognition rates on both databases. While the difference in their performance is statistically 
not significant, we nevertheless chose the oHQ technique for our following comparative 
assessments due to better results on the EYB database. Furthermore, if we compare the 
results obtained with the PCA and LDA techniques on the raw pixel data (Table 1) and the 
results obtained with the augmented feature vectors, we can see that the performance has 
improved significantly.  

 
6.3 Impact of filter scales 
In the third series of face recognition experiments, we assess the impact of the number of 
filter scales  in the Gabor filter bank on the performance of the PCA and LDA techniques 
applied to the augmented phase congruency feature vectors. We fix the angular resolution 
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constitute the augmented phase congruency feature vectors, and apply the following 
normalization schemes to these vectors:  
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experiments, i.e., � � 5 and � � �, was chosen based on other Gabor filter based methods 
presented in the literature – see, for example, (Liu & Wechsler, 2002; Shen et al., 2007; Štruc 
& Pavešić, 2009b). For the implementation of the subspace projection techniques the 
following feature vector lengths were chosen: 37 for LDA on EYB, 199 for LDA on XM2VTS, 
150 for PCA on EYB and 200 for PCA on XM2VTS. These lengths were selected based on 
the baseline results from the previous series of experiments. However, since the number of 
features in the feature vectors is not the primary concern of this section, it could also be set 
differently. 

 

The results of the experiments are again presented in the form of DET curves for the 
XM2VTS database in Fig. 12 and in the form of rank one recognition rates for the EYB 
database in Table 2.  
 

         
   

Fig. 12. DET curves of the comparative assessment of the normalization techniques on the 
evaluation image sets of the XM2VTS database: for the PCA technique (left), for the LDA 
technique (right) 
 

Norm PCA Norm LDA 
S2 S3 S4 S5 S2 S3 S4 S5 

ZMUV 100 99.1 83.4 92.7 ZMUV 100 99.8 88.8 93.8 
HQ 100 99.1 81.6 89.8 HQ 100 100 86.1 94.8 

oHQ 100 99.3 84.6 92.7 oHQ 100 100 87.1 94.8 
Table 2. Rank one recognition rates (in %) for different normalization schemes of the 
augmented phase congruency vector prior to PCA and/or LDA deployment on different 
subsets of the EYB database 
 
From the experimental results we can see that the traditional ZMUV technique resulted in 
the worst performance, while both the HQ and oHQ techniques achieved similar 
recognition rates on both databases. While the difference in their performance is statistically 
not significant, we nevertheless chose the oHQ technique for our following comparative 
assessments due to better results on the EYB database. Furthermore, if we compare the 
results obtained with the PCA and LDA techniques on the raw pixel data (Table 1) and the 
results obtained with the augmented feature vectors, we can see that the performance has 
improved significantly.  

 
6.3 Impact of filter scales 
In the third series of face recognition experiments, we assess the impact of the number of 
filter scales  in the Gabor filter bank on the performance of the PCA and LDA techniques 
applied to the augmented phase congruency feature vectors. We fix the angular resolution 



Face	Recognition232

 

of the filter bank to � � � and vary the value of the filter scales from � � 2 to � � 5. In all of 
the performed experiments we use the same dimensionality of the PCA and LDA feature 
vectors as in the previous section and adopt the oHQ technique for the normalization of the 
augmented feature vectors. We once more present the results of the described experiments 
in form of the DET curves for the XM2VTS database (Fig. 13) and in form of rank one 
recognition rates for the EYB database (Table 3).  
   

         
 

Fig. 13. DET curves generated for different numbers of filter scales employed during 
construction of the OGPCPs. The results were obtained on the evaluation image sets of the 
XM2VTS database: for the PCA technique (left), for the LDA technique (right) 
 

p PCA p LDA 
S2 S3 S4 S5 S2 S3 S4 S5 

5 100 99.3 84.6 92.7 5 100 100 87.1 94.8 
4 100 100 91.8 94.8 4 100 100 94.5 94.4 
3 100 100 93.4 95.2 3 100 100 96.4 96.4 
2 100 100 93.0 92.3 2 100 100 94.7 96.6 

Table 3. Rank one recognition rates (in %) on the EYB database for different numbers of 
filter scales employed during construction of the OGPCPs.  
 
We can notice that on the XM2VTS database the verification performance steadily improves 
when the number of filter scales employed for the construction of the augmented phase 
congruency feature vector decreases. Thus, the best performance for the PCA (Fig. 13 left) as 
well as for the LDA (Fig. 13 right) techniques is observed with two filter scales, i.e., � � 2. 
Here, equal error rates of 2.15% and 1.16% are achieved for the PCA and LDA techniques, 
respectively.  
Similar results are obtained on the EYB database. Here, the performance also increases with 
the decrease of used filter scales. However, the performance peaks with � � � filter scales. 
Since the improvements with the EYB database are not as pronounced as with the XM2VTS 
database, we chose to implement the construction procedure of the augmented phase 
congruency feature vector with 2 filter scales for the final comparative assessment.   

 

6.4 Comparative assessment 
In our last series of recognition experiments, we compare the performance of the PCA and 
LDA techniques on the proposed augmented phase congruency feature (PCF) vector with 
that of several established face recognition techniques from the literature. Specifically, we 
implement the following techniques for our comparative assessment: the Eigenface 
technique (PCA) (Turk & Pentland, 1991), The Fisherface technique (LDA) (Belhumeur et al., 
1997), and the LDA and PCA techniques applied to the Gabor face representation (GF) 
proposed in (Liu & Wechsler, 2002).  
All experiments on the XM2VTS database presented so far have been performed on the 
evaluation image sets, while the test image sets were not used. In this series of experiments 
we employ the test image sets for our assessment and implement all recognition techniques 
with all parameters (such as decision thresholds, feature vector lengths, number of 
employed filter scales, etc.) predefined on the evaluation image sets. Differently from the 
experiments presented in the previous sections, we do not present the results in the form of 
DET curves, but rather use the EPC curves. The choice of these performance curves is 
motivated by the work presented in (Bengio & Marithoz, 2004). Here, the authors argue that 
two recognition techniques cannot be compared fairly using DET curves, as in real life 
operating conditions a decision threshold has to be set in advance. In these situations the 
actual operating point may differ from the operating point the threshold was set on. To 
overcome this problem, the authors proposed the EPC curves, which plot the half total error 
rate (HTER=0.5(FAR+FRR)) against the parameter �, which controls the relative importance 
of the two error rates FAR and FRR in the expression: ��FAR + (1 − �)FRR. To produce the 
EPC curves, an evaluation image set and a test image set are required. For each � the 
decision threshold that minimizes the weighted sum of the FAR and FRR is computed on 
the evaluation image set. This threshold is then used on the test images to determine the 
value of the HTER used for the EPC curves. 
 

 
 

Fig. 14. Examples of modified face images (from left to right): the original image, the 
modified image for � � �0, the modified image for � � �0, the modified image for � � ��0, 
the modified image for � � ��0 
 
To make the final assessment more challenging, we introduce an artificial illumination 
change to the test sets of the XM2VTS database. To this end, we adopt the model previously 
employed in (Sanderson & Paliwal, 2003), which simulates different illumination conditions 
during the image acquisition stage by modifying the pre-processed face images ���� ��� i.e., 
 

 ����� �� � ���� �� � �� � �, (12) 
 
where � � 0� ��� � � � �� �� � 0� �� � � � � �� �� � ������ � �� and � denotes the parameter 
that controls the “strength” of the introduced artificial illumination change. Sanderson and 
Paliwal (Sanderson & Paliwal, 2003) emphasized that this model does not cover all 
illumination effects possible in real life settings, but is nevertheless useful for providing 
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of the filter bank to � � � and vary the value of the filter scales from � � 2 to � � 5. In all of 
the performed experiments we use the same dimensionality of the PCA and LDA feature 
vectors as in the previous section and adopt the oHQ technique for the normalization of the 
augmented feature vectors. We once more present the results of the described experiments 
in form of the DET curves for the XM2VTS database (Fig. 13) and in form of rank one 
recognition rates for the EYB database (Table 3).  
   

         
 

Fig. 13. DET curves generated for different numbers of filter scales employed during 
construction of the OGPCPs. The results were obtained on the evaluation image sets of the 
XM2VTS database: for the PCA technique (left), for the LDA technique (right) 
 

p PCA p LDA 
S2 S3 S4 S5 S2 S3 S4 S5 

5 100 99.3 84.6 92.7 5 100 100 87.1 94.8 
4 100 100 91.8 94.8 4 100 100 94.5 94.4 
3 100 100 93.4 95.2 3 100 100 96.4 96.4 
2 100 100 93.0 92.3 2 100 100 94.7 96.6 

Table 3. Rank one recognition rates (in %) on the EYB database for different numbers of 
filter scales employed during construction of the OGPCPs.  
 
We can notice that on the XM2VTS database the verification performance steadily improves 
when the number of filter scales employed for the construction of the augmented phase 
congruency feature vector decreases. Thus, the best performance for the PCA (Fig. 13 left) as 
well as for the LDA (Fig. 13 right) techniques is observed with two filter scales, i.e., � � 2. 
Here, equal error rates of 2.15% and 1.16% are achieved for the PCA and LDA techniques, 
respectively.  
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the decrease of used filter scales. However, the performance peaks with � � � filter scales. 
Since the improvements with the EYB database are not as pronounced as with the XM2VTS 
database, we chose to implement the construction procedure of the augmented phase 
congruency feature vector with 2 filter scales for the final comparative assessment.   

 

6.4 Comparative assessment 
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with all parameters (such as decision thresholds, feature vector lengths, number of 
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rate (HTER=0.5(FAR+FRR)) against the parameter �, which controls the relative importance 
of the two error rates FAR and FRR in the expression: ��FAR + (1 − �)FRR. To produce the 
EPC curves, an evaluation image set and a test image set are required. For each � the 
decision threshold that minimizes the weighted sum of the FAR and FRR is computed on 
the evaluation image set. This threshold is then used on the test images to determine the 
value of the HTER used for the EPC curves. 
 

 
 

Fig. 14. Examples of modified face images (from left to right): the original image, the 
modified image for � � �0, the modified image for � � �0, the modified image for � � ��0, 
the modified image for � � ��0 
 
To make the final assessment more challenging, we introduce an artificial illumination 
change to the test sets of the XM2VTS database. To this end, we adopt the model previously 
employed in (Sanderson & Paliwal, 2003), which simulates different illumination conditions 
during the image acquisition stage by modifying the pre-processed face images ���� ��� i.e., 
 

 ����� �� � ���� �� � �� � �, (12) 
 
where � � 0� ��� � � � �� �� � 0� �� � � � � �� �� � ������ � �� and � denotes the parameter 
that controls the “strength” of the introduced artificial illumination change. Sanderson and 
Paliwal (Sanderson & Paliwal, 2003) emphasized that this model does not cover all 
illumination effects possible in real life settings, but is nevertheless useful for providing 
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suggestive results. Some examples of the modified face images  obtained with the 
presented model for different values of the parameter are shown in Fig. 14.    
The results of the final assessment are presented in Fig. 15 for the XM2VTS database and in 
Table 4 for the EYB database.  
 

   
 

  
 

Fig. 15. EPC curves obtained on the test sets of the XM2VTS database for different values of 
the parameter τ (from left to right starting in the upper left row): with the original images, 
with the modified images with τ = 40, with the modified images with τ = 80, with the 
modified images with τ = 120, with the modified images with τ = 160 
 

Method S2 S3 S4 S5 
PCA 93.6 55.0 16.7 22.0 
LDA 100 99.8 56.3 51.0 

GF+PCA 100 97.8 77.9 85.2 
GF+LDA 100 100 83.2 89.1 
PCF+PCA 100 100 93.0 92.3 
PCF+LDA 100 100 94.5 94.4 

Table 4. Rank one recognition rates (in %) on the EYB for the comparative assessment 
 
The first thing to notice from the presented results is that both the Gabor magnitude as well 
as the Gabor phase congruency features result in a significant improvement in the 
recognition performance when compared to the raw pixel data and, furthermore, that both 
types of features result in a more robust performance in the presence of illumination 

 

changes. This fact is best exemplified by the recognition rates on subsets S4 and S5, where 
the increase in performance from the pixel data to the Gabor-based features is more than 
60% (in absolute terms) for the PCA-based techniques and more than 25% (in absolute 
terms) for the LDA-based techniques.  
In general, the augmented Gabor phase congruency feature vectors resulted in better 
performance in difficult illumination conditions than the Gabor magnitude features. While 
this improvement was only minimal on the XM2VTS database and its synthetically 
degraded versions, the results on the EYB database show improvements (on the image 
subset S4) of around 10% in absolute terms.   

 
6.5 Discussion 
From the experimental results presented in previous sections, we found that amongst the 
tested feature extraction techniques, the LDA technique combined with the Gabor 
magnitude and Gabor phase congruency features ensured the best recognition performance 
on all experimental databases (i.e., on the XM2VTS, the EYB and on the degraded versions 
of the XM2VTS databases). While both feature types significantly improved upon the 
techniques baseline performance with “raw” pixel intensity values, there are several 
differences in both feature types, which affect their usability in real-life face recognition 
systems.  
First of all, as stated in a number of studies from the literature (e.g., Liu & Wechsler, 2002; 
Shen & Bai, 2006; Shen et al. 2007; Štruc & Pavešić, 2009b), the Gabor magnitude based 
methods require 40 Gabor filters, i.e., filters with five scales and eight orientations, to 
achieve their optimal performance. The same number of filters was also used in our 
experiments to obtain the performance presented in previous sections. The Gabor phase 
congruency features based methods presented in this chapter, on the other hand, require 
only 16 Gabor filters,  filters with two scales and eight orientations, for an optimal 
performance. This fact makes the Gabor phase congruency methods significantly faster than 
the Gabor magnitude based methods.  
Second of all, since there is only one output per employed filter orientation for the Gabor 
phase congruency based methods and not five, as it is the case with the Gabor magnitude 
based techniques, the increase in data is not that extreme for the proposed face 
representation.  
Last but not least, we have to emphasize that in its optimized form (with two filter scales 
and eight orientations) the Gabor phase congruency techniques operate on a much narrower 
frequency band than the Gabor magnitude methods. Based on the experimental results 
presented in previous sections, we can in fact conclude that most of the discriminatory 
Gabor-phase information is contained in the OGPCPs obtained with Gabor filters of high 
frequencies (� � 0� 1). In addition to the high frequency filters, the Gabor magnitude 
methods effectively also use the low frequency Gabor filters. This finding suggests that the 
Gabor phase congruency and Gabor magnitude features represent feature types with 
complementary information and could therefore be combined into a unified feature 
extraction technique which uses Gabor magnitude as well as Gabor phase information for 
face recognition. 
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7. Conclusion and future work 

In this chapter we have proposed a novel face representation derived from the Gabor filter 
outputs. Unlike popular Gabor filter based methods, which mainly use only Gabor 
magnitude features for representing facial images, the proposed feature extraction technique 
exploits the Gabor phase information and derives the novel face representation named the 
Oriented Gabor Phase Congruency Pattern or OGPCP. This representation forms the 
foundation for the construction of the augmented Gabor phase congruency feature vector, 
which, similar to the established Gabor magnitude representations, can be combined with 
subspace projection techniques to form powerful and efficient feature extraction approaches. 
The feasibility of the proposed face representation (or features) was assessed on two 
publicly available datasets, namely, on the XM2VTS and on the Extended YaleB dataset. On 
both datasets, the proposed features resulted in a promising face recognition performance 
and outperformed popular face recognition techniques, such as PCA, LDA, the Gabor-Fisher 
classifier and others. The proposed features were shown to ensure robust recognition 
performance in the presence of severe illumination changes as well. 
The future work with respect to the proposed Gabor phase congruency face representation, 
i.e., the OGPCP, will be focused on evaluating different strategies to combine the traditional 
Gabor magnitude face representation with the proposed Gabor phase congruency patterns 
of facial images.   
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1. Introduction 

Face recognition systems have matured from the systems working only in highly controlled 
indoor environments to the systems capable of identifying individuals in indoor or outdoor 
environments under severe conditions though some problems still remain, constraining 
their success to a limited degree. Illumination and pose variations are mostly responsible for 
dramatic changes on the face appearance. They produce such complex effects on the 
appearance of the acquired face that the face image pertains little to the actual identity. So 
any improvement in face appearance will enhance the recognition performance. Face 
recognition systems are usually required to handle highly varying illumination and pose 
conditions and more advanced techniques are needed to eliminate the undesired effects of 
variations from any sources. Research on face recognition has focused on solving issues 
arising from illumination and pose variations in one or more shots.  
Lighting direction changes alter the relative gray scale distribution of face image and those 
changes due to lighting are larger than the one due to different personal identities. 
Consequently, illumination normalization is required to reach acceptable recognition rates. 
Varying illumination is a difficult problem and has received much attention in recent years. 
Several recent studies are centered around this issue: symmetric shape from shading (Zhao 
& Chellappa, 2000), for the illumination cones method (Georghiades & Belhumeur, 2001 ) 
theoretically explained the property of face image variations due to light direction changes. 
In this algorithm, both self shadow and cast-shadow were considered and its experimental 
results outperformed most existing methods. The main drawbacks of the illumination cone 
model are the computational cost and the strict requirement of seven input images per 
person.  
Other directions of the photometric stereo in face recognition include introducing a more 
general illumination model, (Ramamoorthi, 2002) proposed a spherical harmonic 
representation for face images under various lighting conditions. (Basri & Jacobs, 2001) 
represent lighting using a spherical harmonic basis wherein a low-dimensional linear 
subspace is shown to be quite effective for recognition. The harmonic images can easily be 
computed analytically given surface normals and the albedos. (Zhou et al., 2007) extended a 
photometric stereo approach to unknown light sources.  (Lee et al., 2005) empirically found 
a set of universal illumination directions, images under which can be directly used as a basis 
for the 9 dimensional illumination subspaces.  
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(Shashua & Riklin-Raviv, 2001) employ a very simple and practical image ratio method to 
map the face images into different lighting conditions. This method is suitable for modelling 
the variation in facial appearance caused by diffuse reflection and the proposed method is 
simply the ratio of albedo between a face image and linear combination of basis images, for 
each pixel. (Wang et al. , 2004) developed a reflectance estimation methods by using the idea 
of the ratio of the original image and its smooth version. In the same research direction 
(Zhang et al., 2007) and (An et al., 2008) proposed new methods to extract an illumination 
invariant representation of a face images from a raw facial images. Even though the 
proposed photometric normalization based representations increase the recognition 
performance, it is not suitable to say that these representations provide complete invariance 
against illumination. There are many recent works on illumination invariant face 
recognition. An extensive review of illumination invariant face recognition approaches is 
given by (Zou et al., 2007) and (Zhao & Chellappa, 2006). 
There are several recent image-based studies on illumination invariant face recognition. 
Image-based methods are known to be robust to illumination variations. Main drawback of 
the image-based methods is that they always assume the face image is already aligned. 
Usually it is not an easy assumption to be satisfied especially when the input image is 
poorly illuminated. Appearance-based methods require training images of individuals taken 
under different illumination conditions. A method proposed by (Sim & Kanade, 2001) 
overcomes this restriction by using a statistical shape-from-shading model. Using this 
method they generate images for each of the individuals under different lighting conditions 
to serve as database images in a recognizer. 
Face alignment is a crucial step to extracting good facial features and obtaining high 
performance in face recognition, expression analysis and face animation applications. 
Several face alignment methods were proposed by Active Shape Models (ASM) (Cootes et 
al., 1995) and Active Appearance Models (AAM) (Cootes et al., 2001; Stegmann et al., 2003),  
by Cootes et al which are two successful models for object localization. ASM utilizes local 
appearance models to find the candidate shape and global model to constrain the searched 
shape. AAM combines the constraints on both shape and texture variations in its 
characterization of facial appearance. In searching for a solution, it assumes linear 
relationships between appearance variation and texture variation and between texture 
variation and position variation. In this study, we have used AAM to solve the pose-
invariant face alignment problem.  
AAM is known to be very sensitive to illumination, particularly if the lighting conditions 
during testing are significantly different from the lighting conditions during training. 
Several variations of AAM appear in the literature to improve the original algorithm, 
namely Direct Appearance Models (Hou et al., 2001) and view-based AAM (Cootes et al., 
2002). Cootes et al constructed three AAMs which are called as View-based AAMs. These 
models are linear model of frontal, profile and half profile views of faces. They also show 
how to estimate the pose from the model parameters. The approach in this study differs 
from their method in the way that only one AAM is constructed rather than three models. 
The motivation here is to reduce the three separate searching procedures to just one fitting 
procedure based on one linear statistical model. The model has better generalization 
performance in capturing pose variations than the one using three separate linear models. In 
order to construct the one linear model, a training dataset comprised of 8 different poses of 3 
individuals captured under similar illumination conditions is used. Despite the success of 

 

these methods, problems still remain to be solved. Moreover, under the presence of partial 
occlusion, the PCA-based texture model of AAM causes the reconstruction error to be 
globally spread over the image, thus degrading alignment. In this paper, we propose an 
approach based on histogram-fitting to overcome the problem explained above. A detailed 
explanation of the proposed approach is given in Section 2.  
Yet another issue related to face recognition is to recognize different poses of the same 
person. Pose-invariant face recognition requires pose alignment where images are captured 
either by multiple cameras or by a single camera at different time instances. There are 
several works related to pose normalization. (Blanz & Vetter, 2003) use a statistical 3D 
morphable model (3DMM) to tackle with pose and illumination variations. Since their 
method requires textured 3D scans of heads, it is computationally expensive. The vertices in 
a 3DMM shape are much denser than an AAM shape. 3DMM achieved promising results for 
illumination invariant face recognition. However, tting a dense model requires much 
higher computational effort, which is not suitable for real-time face recognition systems.  
In Section 3, we will study the proposed AAM based approach capable of producing 
different poses of unseen person and explain how a non-frontal face is projected to a frontal 
face in detail. In this paper, we have focused on the problems induced by varying 
illumination and poses in face recognition. Our primary goal is to eliminate the negative 
effect of challenging conditions, especially illumination and pose, on the face recognition 
system performance through illumination and pose-invariant face alignment based on 
Active Appearance Model. The rest of the paper is structured as follows: Section 2 
introduces Active Appearance Model (AAM) and Section 3 introduces illumination 
normalization inserted into the searching procedure of AAM. Section 4 is for the proposed 
pose invariant combined active appearance model. The experimental results and the 
conclusion are presented in Section 5 and 6, respectively. 

 
2. Active Appearance Model 

Active Appearance Models are generative models capable of synthesizing images of a given 
object class. By estimating a compact and specific basis from a training set, model 
parameters can be adjusted to fit unseen images and hence perform image interpretation. 
The modeled object properties are usually shape and pixel intensities (here denoted texture). 
AAM aims to find the optimal model parameters to represent the target image that belongs 
to the same object class by using an iterative scheme. 
Training objects are defined by marking up each image with points of correspondence. 
Relying upon the landmarks, a triangulated mesh is produced for the reference position and 
orientation of the object. Before modeling variations, all shape vectors are normalized to a 
common reference shape frame by using Procrustes Analysis (Goodall, 1991). After 
obtaining the reference shape vector, all of the training images are warped to the reference 
shape by using a piecewise affine warping (Glasbey & Mardia, 1998), which is defined 
between corresponding triangles to obtain normalized texture vectors. 
Using prior knowledge of the optimization space, AAMs can rapidly be fitted to unseen 
images with a reasonable initialization given. AAM uses principal component analysis 
(PCA) to model the variations of the shapes and textures of the images. Usage of PCA 
representation allows AAM to model and represent a certain image with a small set of 
parameters. 
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(Shashua & Riklin-Raviv, 2001) employ a very simple and practical image ratio method to 
map the face images into different lighting conditions. This method is suitable for modelling 
the variation in facial appearance caused by diffuse reflection and the proposed method is 
simply the ratio of albedo between a face image and linear combination of basis images, for 
each pixel. (Wang et al. , 2004) developed a reflectance estimation methods by using the idea 
of the ratio of the original image and its smooth version. In the same research direction 
(Zhang et al., 2007) and (An et al., 2008) proposed new methods to extract an illumination 
invariant representation of a face images from a raw facial images. Even though the 
proposed photometric normalization based representations increase the recognition 
performance, it is not suitable to say that these representations provide complete invariance 
against illumination. There are many recent works on illumination invariant face 
recognition. An extensive review of illumination invariant face recognition approaches is 
given by (Zou et al., 2007) and (Zhao & Chellappa, 2006). 
There are several recent image-based studies on illumination invariant face recognition. 
Image-based methods are known to be robust to illumination variations. Main drawback of 
the image-based methods is that they always assume the face image is already aligned. 
Usually it is not an easy assumption to be satisfied especially when the input image is 
poorly illuminated. Appearance-based methods require training images of individuals taken 
under different illumination conditions. A method proposed by (Sim & Kanade, 2001) 
overcomes this restriction by using a statistical shape-from-shading model. Using this 
method they generate images for each of the individuals under different lighting conditions 
to serve as database images in a recognizer. 
Face alignment is a crucial step to extracting good facial features and obtaining high 
performance in face recognition, expression analysis and face animation applications. 
Several face alignment methods were proposed by Active Shape Models (ASM) (Cootes et 
al., 1995) and Active Appearance Models (AAM) (Cootes et al., 2001; Stegmann et al., 2003),  
by Cootes et al which are two successful models for object localization. ASM utilizes local 
appearance models to find the candidate shape and global model to constrain the searched 
shape. AAM combines the constraints on both shape and texture variations in its 
characterization of facial appearance. In searching for a solution, it assumes linear 
relationships between appearance variation and texture variation and between texture 
variation and position variation. In this study, we have used AAM to solve the pose-
invariant face alignment problem.  
AAM is known to be very sensitive to illumination, particularly if the lighting conditions 
during testing are significantly different from the lighting conditions during training. 
Several variations of AAM appear in the literature to improve the original algorithm, 
namely Direct Appearance Models (Hou et al., 2001) and view-based AAM (Cootes et al., 
2002). Cootes et al constructed three AAMs which are called as View-based AAMs. These 
models are linear model of frontal, profile and half profile views of faces. They also show 
how to estimate the pose from the model parameters. The approach in this study differs 
from their method in the way that only one AAM is constructed rather than three models. 
The motivation here is to reduce the three separate searching procedures to just one fitting 
procedure based on one linear statistical model. The model has better generalization 
performance in capturing pose variations than the one using three separate linear models. In 
order to construct the one linear model, a training dataset comprised of 8 different poses of 3 
individuals captured under similar illumination conditions is used. Despite the success of 

 

these methods, problems still remain to be solved. Moreover, under the presence of partial 
occlusion, the PCA-based texture model of AAM causes the reconstruction error to be 
globally spread over the image, thus degrading alignment. In this paper, we propose an 
approach based on histogram-fitting to overcome the problem explained above. A detailed 
explanation of the proposed approach is given in Section 2.  
Yet another issue related to face recognition is to recognize different poses of the same 
person. Pose-invariant face recognition requires pose alignment where images are captured 
either by multiple cameras or by a single camera at different time instances. There are 
several works related to pose normalization. (Blanz & Vetter, 2003) use a statistical 3D 
morphable model (3DMM) to tackle with pose and illumination variations. Since their 
method requires textured 3D scans of heads, it is computationally expensive. The vertices in 
a 3DMM shape are much denser than an AAM shape. 3DMM achieved promising results for 
illumination invariant face recognition. However, tting a dense model requires much 
higher computational effort, which is not suitable for real-time face recognition systems.  
In Section 3, we will study the proposed AAM based approach capable of producing 
different poses of unseen person and explain how a non-frontal face is projected to a frontal 
face in detail. In this paper, we have focused on the problems induced by varying 
illumination and poses in face recognition. Our primary goal is to eliminate the negative 
effect of challenging conditions, especially illumination and pose, on the face recognition 
system performance through illumination and pose-invariant face alignment based on 
Active Appearance Model. The rest of the paper is structured as follows: Section 2 
introduces Active Appearance Model (AAM) and Section 3 introduces illumination 
normalization inserted into the searching procedure of AAM. Section 4 is for the proposed 
pose invariant combined active appearance model. The experimental results and the 
conclusion are presented in Section 5 and 6, respectively. 

 
2. Active Appearance Model 

Active Appearance Models are generative models capable of synthesizing images of a given 
object class. By estimating a compact and specific basis from a training set, model 
parameters can be adjusted to fit unseen images and hence perform image interpretation. 
The modeled object properties are usually shape and pixel intensities (here denoted texture). 
AAM aims to find the optimal model parameters to represent the target image that belongs 
to the same object class by using an iterative scheme. 
Training objects are defined by marking up each image with points of correspondence. 
Relying upon the landmarks, a triangulated mesh is produced for the reference position and 
orientation of the object. Before modeling variations, all shape vectors are normalized to a 
common reference shape frame by using Procrustes Analysis (Goodall, 1991). After 
obtaining the reference shape vector, all of the training images are warped to the reference 
shape by using a piecewise affine warping (Glasbey & Mardia, 1998), which is defined 
between corresponding triangles to obtain normalized texture vectors. 
Using prior knowledge of the optimization space, AAMs can rapidly be fitted to unseen 
images with a reasonable initialization given. AAM uses principal component analysis 
(PCA) to model the variations of the shapes and textures of the images. Usage of PCA 
representation allows AAM to model and represent a certain image with a small set of 
parameters. 
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AAM works according to the following principle: An image is marked with n landmark 
points. The content of the marked object is analyzed based on a Principal Component 
Analysis (PCA) of both texture and shape. The shape is defined by a triangular mesh and 
the vertex locations of the mesh. Mathematically the shape model is represented as follows: 
 

     2
0 1 2 3 1 2 3, , , , , , , , ,   n

n nx x x x x y y y y R  (1) 
 
Shape is reduced to a more compact form through PCA such that, 
 

   .s sx x b  (2) 
 
In this form, x is the synthesized shape in the normalized frame,  s  is a matrix that contains 
the t-eigenvectors corresponding to the largest eigenvalues and sb is a t-dimensional vector 
of shape coefficients. By varying the parameters in sb , the synthesized shape can be varied.  
In the texture case one needs a consistent method for collecting the texture information 
(intensities) between the landmarks, i.e. an image warping function needs to be established. 
This can be done in several ways. Here, we used a piece-wise affine warp (Glasbey & 
Mardia, 1998) based on the Delaunay triangulation (Shewchuk, 1996).  
All training images are warped to the reference shape and are sampled into a vector to 
obtain the texture vectors represented as g. Prior to the PCA modeling of the texture, we 
need to normalize all texture vectors. So, a photometric normalization of the texture vectors 
of the training set is done to avoid the side effects of global linear changes in pixel 
intensities. The aim of this normalization is to obtain texture vectors with zero mean and 
unit variance. Texture model can now be obtained by applying PCA to the normalized 
textures, 

  g gg g b  (3) 
 
where g is the synthesized texture, g  is the mean texture and bg is a k-dimension vector of 
texture parameters. In the linear model of texture, g is a set of orthogonal modes of 
variation.  
To remove the correlation between shape and texture model parameters, a third PCA is 
applied on the combined model parameters, giving a further model, 
 

b=Q c   (4) 
 
where Q is the eigenvectors and c is a vector of appearance parameters controlling both the 
shape and the texture of the model. Note we do not use a mean vector in this model since 
the shape, texture and appearance model parameters need to have zero mean. Due to the 
linear nature of the model, the shape and texture vectors can be expressed in terms of the 
appearance parameters c , 
 

   1
s s sx x W Q c  (5) 

  

 

  ,g gg g Q c  (6) 
 
where b=[Wsbsbg]T and Q=[Qs Qg]T. In this form, Ws is a diagonal matrix of weights for each 
shape parameter, allowing for the difference in units between the shape and the grey 
models. Generally Ws is the square root of the ratio of the total intensity variation to the total 
shape variation. An example image can be synthesized for a given c appearance vector by 
generating the shape normalized image from the vector g and warping it using the control 
points described by x vector. Appearance parameters vector, c, controls both the shape and 
the grey-levels of the model. Qs and Qg are the eigenvectors of the shape and texture models 
respectively. An image can be represented by a vector p which is written in terms of x, g and 
c as p=[x g c]T. It is possible to synthesize a new image by changing the parameter p. 
 

                 (a)                                                              (b) 
Fig. 1. Face alignment using standard AAM under good and extreme illumination.  
(a) Normal illumination, (b) Extreme illumination. 
 
The underlying problem with the classical AAM is demonstrated in Fig.1. In Fig.1 (a) a 
correct AAM search result is shown where the input image contains a frontal face which is 
also illuminated frontally. Since the model is constructed from a database containing 
frontally illuminated faces, the standard AAM searching procedure cannot converge to a 
meaningful solution for an extremely illuminated frontal face given in Fig.1 (b). We propose 
an illumination normalization method explained in Section 3 and insert it into the standard 
AAM searching procedure applied to the faces captured under different illumination 
conditions. The inserted normalization module guides the AAM to converge to a 
meaningful solution and also enhances the accuracy of the solution.  

 
3. Illumination Normalization 

We discuss here two light normalization methods and analyze their behavior in AAM 
searching. The first proposed method is ratio-image face illumination normalization method 
(Liu et al., 2005). Ratio-image is defined as the quotient between an image of a given face 
whose lighting condition is to be normalized and an image of the reference face. These two 
images are blurred using a Gaussian filter, and the reference image is then updated by an 
iterative strategy in order to improve the quality of the restored face. Using this illumination 
restoration method, a face image with arbitrary illumination can be restored to a face having 
frontal illumination.  
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AAM works according to the following principle: An image is marked with n landmark 
points. The content of the marked object is analyzed based on a Principal Component 
Analysis (PCA) of both texture and shape. The shape is defined by a triangular mesh and 
the vertex locations of the mesh. Mathematically the shape model is represented as follows: 
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n nx x x x x y y y y R  (1) 
 
Shape is reduced to a more compact form through PCA such that, 
 

   .s sx x b  (2) 
 
In this form, x is the synthesized shape in the normalized frame,  s  is a matrix that contains 
the t-eigenvectors corresponding to the largest eigenvalues and sb is a t-dimensional vector 
of shape coefficients. By varying the parameters in sb , the synthesized shape can be varied.  
In the texture case one needs a consistent method for collecting the texture information 
(intensities) between the landmarks, i.e. an image warping function needs to be established. 
This can be done in several ways. Here, we used a piece-wise affine warp (Glasbey & 
Mardia, 1998) based on the Delaunay triangulation (Shewchuk, 1996).  
All training images are warped to the reference shape and are sampled into a vector to 
obtain the texture vectors represented as g. Prior to the PCA modeling of the texture, we 
need to normalize all texture vectors. So, a photometric normalization of the texture vectors 
of the training set is done to avoid the side effects of global linear changes in pixel 
intensities. The aim of this normalization is to obtain texture vectors with zero mean and 
unit variance. Texture model can now be obtained by applying PCA to the normalized 
textures, 

  g gg g b  (3) 
 
where g is the synthesized texture, g  is the mean texture and bg is a k-dimension vector of 
texture parameters. In the linear model of texture, g is a set of orthogonal modes of 
variation.  
To remove the correlation between shape and texture model parameters, a third PCA is 
applied on the combined model parameters, giving a further model, 
 

b=Q c   (4) 
 
where Q is the eigenvectors and c is a vector of appearance parameters controlling both the 
shape and the texture of the model. Note we do not use a mean vector in this model since 
the shape, texture and appearance model parameters need to have zero mean. Due to the 
linear nature of the model, the shape and texture vectors can be expressed in terms of the 
appearance parameters c , 
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where b=[Wsbsbg]T and Q=[Qs Qg]T. In this form, Ws is a diagonal matrix of weights for each 
shape parameter, allowing for the difference in units between the shape and the grey 
models. Generally Ws is the square root of the ratio of the total intensity variation to the total 
shape variation. An example image can be synthesized for a given c appearance vector by 
generating the shape normalized image from the vector g and warping it using the control 
points described by x vector. Appearance parameters vector, c, controls both the shape and 
the grey-levels of the model. Qs and Qg are the eigenvectors of the shape and texture models 
respectively. An image can be represented by a vector p which is written in terms of x, g and 
c as p=[x g c]T. It is possible to synthesize a new image by changing the parameter p. 
 

                 (a)                                                              (b) 
Fig. 1. Face alignment using standard AAM under good and extreme illumination.  
(a) Normal illumination, (b) Extreme illumination. 
 
The underlying problem with the classical AAM is demonstrated in Fig.1. In Fig.1 (a) a 
correct AAM search result is shown where the input image contains a frontal face which is 
also illuminated frontally. Since the model is constructed from a database containing 
frontally illuminated faces, the standard AAM searching procedure cannot converge to a 
meaningful solution for an extremely illuminated frontal face given in Fig.1 (b). We propose 
an illumination normalization method explained in Section 3 and insert it into the standard 
AAM searching procedure applied to the faces captured under different illumination 
conditions. The inserted normalization module guides the AAM to converge to a 
meaningful solution and also enhances the accuracy of the solution.  

 
3. Illumination Normalization 

We discuss here two light normalization methods and analyze their behavior in AAM 
searching. The first proposed method is ratio-image face illumination normalization method 
(Liu et al., 2005). Ratio-image is defined as the quotient between an image of a given face 
whose lighting condition is to be normalized and an image of the reference face. These two 
images are blurred using a Gaussian filter, and the reference image is then updated by an 
iterative strategy in order to improve the quality of the restored face. Using this illumination 
restoration method, a face image with arbitrary illumination can be restored to a face having 
frontal illumination.  
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The second normalization method discussed in this study is based on image histogram 
techniques. The global histogram equalization methods used in image processing for 
normalization only transfers the holistic image from one gray scale distribution to another. 
This processing ignores the face-specific information and cannot normalize these gray level 
distribution variations. To deal with this problem, researchers have made several 
improvements in recent years. The underlying problem is that well-lit faces do not have a 
uniform histogram distribution and this process gives rise to an unnatural face illumination. 
As suggested in (Jebara, 1996), it is possible to normalize a poorly illuminated image via 
histogram fitting to a similar, well illuminated image.  
In this study, a new histogram fitting algorithm is designed for face illumination 
normalization taking the structure of the face into account. The algorithm is explained over 
poorly illuminated frontal face image where one side of the face is dark and the other side is 
bright. The main idea here is to fit the histogram of the input face image to the histogram of 
the mean face. The face is first divided into two parts (left/right) and then the histogram of 
each window is independently fitted to the histogram of mean face. For these two 
histograms, namely the histogram of the left window denoted as HLEFT(i) and the histogram 
of the right window denoted as HRIGHT(i), two mapping functions are computed: 

LEFTH Gf   

and 
RIGHTH Gf   corresponding to the left and right windows, respectively. Here G(i) is the 

histogram of the reference image which is also called as mean face in AAM. An artifact 
introduced by this mapping is the sudden discontinuity in illumination as we switch from 
the left side of the face to the right side. The problem is solved by averaging the effects of the 
two mapping functions with a linear weighting that slowly favors one for the other as we 
move from the left side to the right side of the face. This is implemented with the mapping 
function 

TOTALH Gf   defined as bellow: 

 
 

 ( ) ( ) 1 ( )
TOTAL LEFT RIGHTH G H G H Gf i leftness f i leftness f i        (7) 

 
Illumination normalization result is shown in Fig. 2 obtained by using the histogram fitting 
method explained above. As it can be seen from the figure the normalization method can 
produce more suitable images to be used in AAM search mechanism. The classical AAM 
search fails in all images given in the first row of Fig. 2. We will show in the next section that 
AAM search procedure can now converge to the correct shape for the restored image both in 
point-to-point error and point-to-curve error senses.  
Fig. 3 presents several results obtained for Set 4 (left) and Set 3 (right) faces of different 
individuals having extremely dark and bright regions. A significant amount of 
improvement in quality can be easily verified from the experimental results. The dark parts 
now become somehow noisy whereas there are still some very bright areas. 
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The second normalization method discussed in this study is based on image histogram 
techniques. The global histogram equalization methods used in image processing for 
normalization only transfers the holistic image from one gray scale distribution to another. 
This processing ignores the face-specific information and cannot normalize these gray level 
distribution variations. To deal with this problem, researchers have made several 
improvements in recent years. The underlying problem is that well-lit faces do not have a 
uniform histogram distribution and this process gives rise to an unnatural face illumination. 
As suggested in (Jebara, 1996), it is possible to normalize a poorly illuminated image via 
histogram fitting to a similar, well illuminated image.  
In this study, a new histogram fitting algorithm is designed for face illumination 
normalization taking the structure of the face into account. The algorithm is explained over 
poorly illuminated frontal face image where one side of the face is dark and the other side is 
bright. The main idea here is to fit the histogram of the input face image to the histogram of 
the mean face. The face is first divided into two parts (left/right) and then the histogram of 
each window is independently fitted to the histogram of mean face. For these two 
histograms, namely the histogram of the left window denoted as HLEFT(i) and the histogram 
of the right window denoted as HRIGHT(i), two mapping functions are computed: 

LEFTH Gf   

and 
RIGHTH Gf   corresponding to the left and right windows, respectively. Here G(i) is the 

histogram of the reference image which is also called as mean face in AAM. An artifact 
introduced by this mapping is the sudden discontinuity in illumination as we switch from 
the left side of the face to the right side. The problem is solved by averaging the effects of the 
two mapping functions with a linear weighting that slowly favors one for the other as we 
move from the left side to the right side of the face. This is implemented with the mapping 
function 

TOTALH Gf   defined as bellow: 

 
 

 ( ) ( ) 1 ( )
TOTAL LEFT RIGHTH G H G H Gf i leftness f i leftness f i        (7) 

 
Illumination normalization result is shown in Fig. 2 obtained by using the histogram fitting 
method explained above. As it can be seen from the figure the normalization method can 
produce more suitable images to be used in AAM search mechanism. The classical AAM 
search fails in all images given in the first row of Fig. 2. We will show in the next section that 
AAM search procedure can now converge to the correct shape for the restored image both in 
point-to-point error and point-to-curve error senses.  
Fig. 3 presents several results obtained for Set 4 (left) and Set 3 (right) faces of different 
individuals having extremely dark and bright regions. A significant amount of 
improvement in quality can be easily verified from the experimental results. The dark parts 
now become somehow noisy whereas there are still some very bright areas. 
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4.1 Pose Generation from 2D Images 
The same variation in pose imposes similar effect on the face appearance for all individuals. 
Fig.4.a demonstrates how face texture and shape are affected by pose. Deformation mostly 
occurs on the shape whereas the texture is almost constant. Since the number of landmarks 
in AAM is constant, the wireframe triangles are translated or scaled as pose changes. 
Therefore, as we change pose, only wireframe triangles undergo affine transformation but 
the gray level distribution within these translated and rotated triangles remains the same. 
One can easily generate frontal face appearance if AAM is correctly fitted to any given non-
frontal face of the same individual provided that there is no self-occlusion on face. Self-
occlusion usually is not a problem for angles less than ±45. 
For 2D pose generation, we first compute how each landmark point translates and scales 
with respect to the corresponding frontal counterpart landmark point for 8 different poses, 
and obtain a ratio vector for each pose. We use the ratio vector to create the same pose 
variation over the shape of another individual. In Fig.4.b, two examples are given where the 
landmark points of unseen individuals are synthetically generated using the ratio vector 
obtained from that different person. 
Appearances are also obtained through warping in AAM framework, using synthetically 
generated landmarks given in Fig.4.b. These are shown in Fig.5. First column in Fig.5 shows 
the frontal faces and the second column shows appearances for various poses. It is 
important to note that the generated faces contain no information about the individual used 
in building the ratio matrix. 

 
4.2 Training AAM for Pose Normalization  
An AAM model trained by using only frontal faces can only fit into frontal faces well and 
fail to fit into non-frontal faces. Our purpose here is to enrich the training database by 
inserting synthetically generated faces at different poses so that AAM model trained by 
frontal faces can now converge to images at any pose.  
We manually labeled 73 landmarks on 4920 images. Let us denote the landmark points on ith 
frontal image as       0 2

1 1 2 2 , , , , , ,, , , , , , K
i i i i i i K i KS x y x y x y R  where 1 2 , , ,i N . N is 4920 

and K=73 in our database. The shape-ratio vector explained in the previous subsection (3.1) 
is defined between the p-posed shape and the frontal shape as 
 

,1 ,1 , ,0

0,1 0,1 0, 0,

( , ) , , , ,
    

             
p p p K p Kp

p
K K

x y x y
r S S

x y x y
 (8) 

 
Shape of any unseen individual at pose p can now be easily obtained from frontal shape 
using shape-ratio vector rp as 
 

0ˆ .p
unseen p unseenS r S  (9) 

 

 

(a) (b) 
Fig. 4. Pose variations and synthetically generated landmarks. a) Texture and shape 
triangles variations due to pose variations, b) Synthetically generated landmark points given 
in the first and the second rows are generated by using the ratio matrix obtained from the 
landmarks in the database. 
 

  
 

  
(a) (b) 

Fig. 5. Synthetic pose generation from frontal face:  a) Frontal face, b) Synthetically 
generated non-frontal faces. 
 
Shapes in the database for 8p  different poses can be synthesized from frontal-view 
images  as, 
 

0ˆ p
i p iS r S , i=1,2,…,10, and p=1,2,..,8. (10) 

 
AAM shape component is constructed from these aggregated shapes, ˆ p

iS and 0
iS , by 

applying principal component analysis as sS S Q s  where S  is the mean shape, sQ
contains k eigenvector of the covariance matrix corresponding to the highest k eigenvalues. 
Next step is to wrap each face in the training database to mean shape ( S ) and apply the 
principal component analysis to the texture, this time as tT T Q t   where T  is called as 
mean face. Any shape (S) and texture (T) can be steadily mapped to the AAM subspace as 

 T
ss Q S S   and  T

tt Q T T  . 
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AAM is comprised of both shape (Qs) and texture (Qt) subspaces. Any change in face shape 
leads to a change in face texture and vice versa. Face appearance (A) is dependent on shape 
and textures. This dependency is expressed as A=[s t]T. In order to exploit the dependency 
between shape and texture modeled by the diagonal matrix (), one further PCA is applied 
to the shape and texture components collectively and we obtained the combined model 
called appearance model as A=QaA. Any appearance is obtained by a simple multiplication 
as T

aa Q A .  
In order to show how rich representation AAM provides us, we used the first 5 coefficients 
and select random points in 5-dimensional space. The corresponding faces are plotted in 
Fig.6. Even this simple experiment proves that AAM trained as explained above can 
generate pose variations not governed by any shape ratio vector (rp).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Randomly synthesized faces from leading 5 AAM parameters. 

 
5. Experimental Results 

AAM combines the shape and texture model in one single model. The alignment algorithm 
(also called AAM searching) optimizes the model in the context of a test image of a face. The 
optimization criterion is the error occurring between a synthesized face texture and the 
corresponding texture of the test image.  
Due to the illumination problems the error can be high and the classic searching algorithm 
fails. In the proposed approach, we normalize the corresponding texture in the test image 
just before we compute the error. We tested the proposed method on the Yale-B face dataset 
(Georghiades et al., 2001). The total number of images under different lighting conditions for 
each individual is 64. The database is portioned into four sets identified as Set 1-4. Set 1 

 

 

 

 

 

contains face images whose light direction is less than ±20 degrees. Set 2 contains face 
images whose light directions are between ±20 and ±50 degrees. Set 3 contains face images 
whose light directions are between ±50 and ±70 degrees. Set 4 contains face images whose 
light directions are greater than ±70 degrees. All details about the Yale B dataset are given in 
(Georghiades et al., 2001). We manually labeled 4920 images. To establish the models, 73 
landmarks were placed on each face image; 14 points for mouth, 12 points for nose, 9 points 
for left eye, 9 points for right eye, 8 points for left eyebrow, 8 points for right eyebrow and 
11 points for chin. The warped images have approximately 32533 pixels inside the facial 
mask. We constructed a shape space to represent 95% of observed variation. Then we 
warped all images into the mean shape using triangulation. Using normalized textures, we 
constructed a 21-dimensional texture space to represent 95% of the observed variation in 
textures and for shapes we constructed a 12-dimensional shape space to represent 95% of 
the observed variation in shapes. Finally, we constructed a 15-dimensional appearance 
space to represent 95% of the total variation observed in the combined (shape and texture) 
coefficients. 
Using a ground truth given by a finite set of landmarks for each example, performance can 
be easily calculated. A distance measure ( , )gtD x x is computed in a leave-one-out setting, 
and it gives a scalar interpretation of the fit between the two shapes, i.e. the ground truth (
gtx ) and the optimized shape ( x ). Two distance measures defined over landmarks are used 

to obtain the convergence performance. The first one is called point-to-point error, defined 
as the Euclidean distance between each corresponding landmark: 
 

   2 2
   . . , ,pt pt i gt i i gt iD x x y y  (11) 

 
The other distance measure is called point-to-curve error, defined as the Euclidean distance 
between a landmark of the fitted shape (x) and the closest point on the border given as the 
linear spline, r(t)=(rx(t),ry(t)),t[0,1], of the landmarks from the ground truth (xgt): 
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We calculated these errors on all images in the datasets (from Set 1 to Set 4). We conducted 
an experiment to see how close we fit into unseen faces at different poses.  
To match a given face image with the model, an optimal vector of parameters are searched 
by minimizing the difference between synthetic model image and input image. Fig.7 
illustrates the optimization and search procedures for fitting the model to input image. The 
first column of the figure is the arbitrarily illuminated unseen image from test dataset and 
the remaining images (columns) are the steps of the optimization. The fitting results are 
rendered at each iteration for classical AAM (the first row) and the proposed method (the 
second row).   
The AAM searching is known to be very sensitive to the selection of initial configuration. 
We tested the proposed method against the selection of initial configuration. We translate, 
rotate and scale initial configurations and see how the proposed method can handle the 
poor initialization. We made 10 experiments for each test image with different initializations  
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(a) (b) (c) (d) 

Fig. 7. Searching results: The first row is the classical AAM searching results and the second 
row is the proposed method. (a) Initial configuration (b) Mean face (c) Searching result 
obtained in the third iteration (d) Searching result obtained in the sixth iteration. 
 
and took the average error. These experiments include mean-shape configuration, ±5 
degrees rotation, scaling by 0.85 and 0.95, translation by 10% in x and y directions.  
Table.1 summarizes the averages of point-to-point and point-to-curve errors when classical 
AAM search is used without any illumination normalization. Point-to-point and point-to-
curve errors obtained by the proposed illumination normalization method are much less 
than the errors obtained by the classical AAM (Table.2).  
 

 Yale B face database subsets 
 Subset1 Subset2 Subset3 Subset4 

Pt.-pt.  4.9±0.2 11.4±0.5 19.4±0.58 36.6±1.6 
Pt.-crv.  2.9±0.1 6.8±0.33 12.9±0.36 33.2±1.4 

Table 1. Standard AAM fitting performance. 
 
 

 Yale B face database subsets 
 Subset1 Subset2 Subset3 Subset4 

Pt.-pt.  4.1±0.12 8.06±0.3 13.03±0.4 21.3±0.5 
Pt.-crv.  2.4±0.08 5.24±0.23 8.76±0.3 14.7±0.4 

Table.2 Proposed AAM fitting performance. 
 
Ratio-image method is not suitable for AAM searching, at least for the first iterations of the 
algorithm. Let’s suppose that we start searching in a position far away from the ground 
truth location. The model synthesizes a face that best fits the current location. Then the 
textures of the synthesized face and corresponding part in the test image are analyzed and 
an error coefficient is computed, reflecting the similarity degree of the two textures. We 
normalize the corresponding texture in the test image before computing the error. The main 

 

problem with the ratio-image method is that when it is applied to a region of an image that 
is not face-like, the normalization result will include a lot of information of the mean face, in 
other words, it will be mean-face-like. Thus the error will be much smaller than the real one, 
and it will introduce false alarm in the searching process creating additional local minima. 
On the other hand, the histogram based normalization method will never change the 
general aspect of an image, only the pixel intensities follow a different distribution. Thus the 
chances of introducing false alarms are reduced using this normalization method. The ratio-
image can produce very good results provided that the shape is already aligned. But this is 
not the case in AAM searching. We assume that the best fit returned by the searching 
algorithm using histogram-based normalization is a good approximation of the real face, 
and thus the alignment requirement is satisfied. Fig.8 summarizes the alignment results for 
these unseen faces. 
We also analyze how the proposed alignment method affects the recognition performance. 
We used the following feature spaces in our experiments: PCA and LDA. Randomly 
selected 25 images of each person from Set 1 dataset are used in training. All datasets (Set 1 
through Set 4) contain faces of all poses. The remaining faces in Set 1 dataset are used as test 
data. Recognition rates for two feature spaces (i.e. PCA and LDA) in Set 1-4 are plotted in 
Fig.10 for increasing dimensions. The recognition rates obtained when the original images 
are used as input to the classifier are denoted as ORG-PCA and ORG-LDA. The recognition 
rates obtained when the images restored by RI are used as input and are denoted as RI-PCA 
and RI-LDA. Finally, the recognition rates obtained when the images restored by HF are 
used as input and are denoted as HF-PCA and HF-LDA. PCA is known to be very sensitive 
to misalignment in faces. Our experimental studies also verify this behavior. When the 
original images are used, the PCA recognition rates for all sets are poor. LDA is more 
successful if dimension is closer to 9. ORG-PCA reaches to 74.36% at most, while ORG-LDA 
reaches to 91.26% at most in Set 1. This performance drops to 30.99% for ORG-PCA and to 
41.13% for ORG-LDA in Set 4. 
One important observation is that AAM alignment with histogram fitting always leads to 
better recognition rates in all test sets (Set 1- 4) compared to the case where original faces are 
used and ratio-image normalization is used right after the AAM alignment. Another 
advantage of the proposed method is that similar recognition performance is obtained at 
lower dimensions. Recognition rate for ORG-LDA is just 32.81% while LDA performance for 
the proposed approach (called HF-LDA) is 83.38% when the dimension is set to 3. ORG-
LDA catches this rate when the dimension is set to 5. 
For the challenging test set, i.e. Set 4, both ORG-LDA and ORG-PCA fail. The recognition 
rate is at most 30.99% for ORG-PCA and 41.13% for ORG-LDA. On the other hand, HF-PCA 
reaches to 76.20% at most and HF-LDA reaches to 82.68% at most. This is a significant 
improvement when compared to the results obtained without applying any preprocessing 
(41%). Note that all test sets include faces of 8 different poses selected from Yale B dataset.  

 
6. Conclusion 

In this study we developed AAM based on face alignment method which handles 
illumination and pose variations. The classical AAM fails to model the appearances of the 
same identity under different illuminations and poses. We solved this problem by inserting 
histogram fitting into the searching mechanism and inserting synthetically generated poses 
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Fig. 7. Searching results: The first row is the classical AAM searching results and the second 
row is the proposed method. (a) Initial configuration (b) Mean face (c) Searching result 
obtained in the third iteration (d) Searching result obtained in the sixth iteration. 
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used as input and are denoted as HF-PCA and HF-LDA. PCA is known to be very sensitive 
to misalignment in faces. Our experimental studies also verify this behavior. When the 
original images are used, the PCA recognition rates for all sets are poor. LDA is more 
successful if dimension is closer to 9. ORG-PCA reaches to 74.36% at most, while ORG-LDA 
reaches to 91.26% at most in Set 1. This performance drops to 30.99% for ORG-PCA and to 
41.13% for ORG-LDA in Set 4. 
One important observation is that AAM alignment with histogram fitting always leads to 
better recognition rates in all test sets (Set 1- 4) compared to the case where original faces are 
used and ratio-image normalization is used right after the AAM alignment. Another 
advantage of the proposed method is that similar recognition performance is obtained at 
lower dimensions. Recognition rate for ORG-LDA is just 32.81% while LDA performance for 
the proposed approach (called HF-LDA) is 83.38% when the dimension is set to 3. ORG-
LDA catches this rate when the dimension is set to 5. 
For the challenging test set, i.e. Set 4, both ORG-LDA and ORG-PCA fail. The recognition 
rate is at most 30.99% for ORG-PCA and 41.13% for ORG-LDA. On the other hand, HF-PCA 
reaches to 76.20% at most and HF-LDA reaches to 82.68% at most. This is a significant 
improvement when compared to the results obtained without applying any preprocessing 
(41%). Note that all test sets include faces of 8 different poses selected from Yale B dataset.  

 
6. Conclusion 

In this study we developed AAM based on face alignment method which handles 
illumination and pose variations. The classical AAM fails to model the appearances of the 
same identity under different illuminations and poses. We solved this problem by inserting 
histogram fitting into the searching mechanism and inserting synthetically generated poses 
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of the same identity into the training set. From the experimental results, we showed that the 
proposed face restoration scheme for AAM provides higher accuracy for face alignment in 
point-to-point error sense. Recognition results based on PCA and LDA feature spaces 
showed that the proposed illumination and pose normalization outperforms the standard 
AAM. 
 

 

 
Fig. 8. Face alignment results for unseen faces. 
 

   

   
Fig. 9. Initialization (the first row) and alignment/restoration results of the proposed 
method (the second row) for different pose and illumination variations. 
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of the same identity into the training set. From the experimental results, we showed that the 
proposed face restoration scheme for AAM provides higher accuracy for face alignment in 
point-to-point error sense. Recognition results based on PCA and LDA feature spaces 
showed that the proposed illumination and pose normalization outperforms the standard 
AAM. 
 

 

 
Fig. 8. Face alignment results for unseen faces. 
 

   

   
Fig. 9. Initialization (the first row) and alignment/restoration results of the proposed 
method (the second row) for different pose and illumination variations. 

 
7. Acknowledgement 

This work was partly supported by the National Scientific and Research Council of Turkey; 
project no: EEEAG-104E121 and the State Planning Agency (DPT) of Turkey. We would like 
to thank Florin S. Telcean for his initial contributions to this work. 

Fig
ori

 
8. 

Zh

Ge

Ra

Ba

Zh

 

g. 10. PCA and L
iginal face (ORG)

 References 

hao, W. & Chella
Proc. 4th C

eorghiades, A.S.;
Illuminatio
IEEE Trans
660, 2001. 

amamoorthi R. (2
Variability
and Machin

asri, R. & Jacob
Proceedings
pp. 374-381

hou S.; Aggarwa
linear lam
invariant 
Intelligence

(a) 

(c) 
LDA recognition r
), Ratio Image (RI

appa R. (2000). S
Conf. on Automatic 
; Belhumeur, P. 
on cone models 
sactions on Pattern

2002). Analytic P
y in Images of a L
ne Intelligence, vol
bs, D. (2001). Ph
s of IEEE Conf. on
1, 2001.  
l G.; Chellappa 

mbertian objects
face recognition

e, vol. 29, pp. 230-

 

 

rates for Set 1 (a)
I) and the propos

SFS Based View S
 Face and Gesture 
 N., & Kriegma
for face recogni

n Analysis and M

PCA Constructio
Lambertian Objec
l. 24, no. 10, 2002.
hotometric Stere
n Computer Vision

R. & Jacobs D. 
s, generalized p
n”, IEEE Transac
-245, 2007. 

(b)

(d)
), Set 2 (b), Set 3 
ed restoration (H

Synthesis for Ro
 Recognition, 2000
an, D. J. (2001).
tion under varia

Machine Intelligence

on for Theoretica
ct”, IEEE Transact
. 
eo with General
n and Pattern Reco

(2007). Appearan
photometric ster
ctions on Pattern 

) 

) 
(c), and Set 4 (d)

HF) are used. 

bust Face Recog
.  
. From few to 
able lighting and
e, vol. 23, no.6, p

al Analysis of Li
tions on Pattern A

l, Unknown Lig
ognition (CVPR), 

nce characterizat
reo, and illumi
 Analysis and M

 

 

) when 

gnition. 

many: 
d pose. 
pp.643–

ghting 
Analysis 

ghting. 
 vol. 2, 

tion of 
ination 

Machine 



Face	Recognition254

 

Lee J.; Moghaddam B.; Pster H. & Machiraju R. (2005). A bilinear illumination model for 
robust face recognition. IEEE Conf. on ICCV, pp. 1177-1184, 2005. 

Shashua A. & Riklin-Raviv T. (2001). The Quotient Image: Class-Based Re-Rendering and 
Recognition With Varying Illuminations. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, pp. 129-139, 2001. 

Wang H.; Li S. Z & Wang Y (2004). Generalized quotient image, IEEE Proceeding Conference 
on Computer Vision and Pattern Recognition, vol. 2, pp. 498-505, 2004. 

Zhang Y.; Tian J.; He X. & Yang X. (2007). MQI Based Face Recognition Under Uneven 
Illumination, Advances in Biometrics, vol. 4642, pp. 290-298, 2007. 

An G.; Wu J. & Ruan Q. (2008). Kernel TV-Based Quotient Image Employing Gabor Analysis 
and Its Application to Face Recognition”, IEICE Transactions on Information and 
Systems, vol. E91-D, no. 5, pp. 1573-1576, 2008. 

Sim T. & Kanade T. (2001). Combining models and exemplars for face recognition: An 
illuminating example, IEEE Proceeding Conference on Computer Vision and Pattern 
Recognition, Workshop on Models versus Exemplars in Computer Vision, 2001. 

Cootes, T.F.; Taylor, C.J.; Cooper, D.H. & Graham, J. (1995). Active Shape Models-their 
training and application. Computer Vision and Image Understanding, 61(1), pp. 38-59, 
1995. 

Cootes, T.F.; Edwards, G. & Taylor, C.J. (2001). Active appearance models. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 681-685, 2001. 

Stegmann, M.B.; Ersboll, B.K. & Larsen, R. (2003). FAME - A Flexible Appearance Modeling 
Environment. IEEE Trans. on Medical Imaging, vol. 22, no.10, pp.1319-1331, 2003. 

Hou, X.; Li, S.; Zhang, H. & Cheng, Q. (2001). Direct appearance models. Proceedings of IEEE 
Conf. on Computer Vision and Pattern Recognition, pp. 828–833, 2001. 

Cootes, T.F.; Wheeler G.; Walker, K. & Taylor, C. (2002). View based active appearance 
models. Image and Vision Computing, vol. 20, pp.657–664, 2002. 

Blanz V. & Vetter T. (2003). Face recognition based on tting a 3D morphable model. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 25, vo.9, pp. 1063-1074, 
2003. 

Goodall, C. (1991). Procrustes methods in the statistical analysis of shape. Journal of the Royal 
Statistical Society, vol.B53, no.2, pp. 285-339, 1991. 

Glasbey, C.A. & Mardia, K.V. (1998). A review of image warping methods. Journal of 
Applied Statistics, Vol. 25 (2), 155-171, 1998.  

Jebara, T. (1996). 3D Pose Estimation and Normalization for Face Recognition, B. Thesis, 
McGill Centre for Intelligent Machines, 1996. 

Shewchuk J.R. (1996). Triangle: engineering a 2D quality mesh generator and Delaunay 
triangulator. Workshop on Applied Computational Geometry. Toward Geometric 
Engineering., 203–222. Springer-Verlag, 1996. 

Zhao, W. & Chellappa R. (2006). Face Processing: Advanced Modeling and Methods. Academic 
Press, Elsevier, 2006. 

Liu, D.H.; Lam, K.M. & Shen, L.S. (2005). Illumination invariant face recognition. Pattern 
Recognition, vol. 38, no.10, pp. 1705-1716, 2005. 



Eye	Movements	in	Face	Recognition 255

Eye	Movements	in	Face	Recognition

Janet	H.	Hsiao

X 
 

Eye Movements in Face Recognition 
 

Janet H. Hsiao 
University of Hong Kong 

Hong Kong 

 
1. Introduction 
 

In human vision, visual acuity falls off rapidly from the center of fixation to the periphery. 
Hence, in visual perception, we actively change our gaze directions in order to bring 
relevant information into foveal vision, where the highest quality visual information can be 
obtained. In recent years, researchers have shown that eye movements during visual 
perception are linked to the underlying cognitive processes (e.g., Hayhoe & Ballard, 2005; 
Henderson, 2003; Kowler, 1990). This phenomenon has especially been extensively 
demonstrated in the research on reading and word recognition (Rayner, 1998; Sereno & 
Rayner, 2003). For example, the existence of preferred landing positions (PLP, Rayner, 1979) 
in sentence reading and optimal viewing positions (OVP, O’Regan et al., 1984) in isolated 
word recognition has been consistently reported. The preferred landing location refers to the 
location where eye fixations fall the most often during reading, whereas the optimal viewing 
position refer to the location where the initial eye fixation is directed to when the best 
recognition performance is achieved. For English words, both the preferred landing location 
and the optimal viewing position have shown to be to the left of the center of the words. 
These locations have been argued to reflect an interplay among several different variables, 
including difference in visual acuity between foveal and peripheral vision, information 
profile of the words, influence of perceptual learning, and hemispheric asymmetry 
(Brysbaert & Nazir, 2005; Rayner, 1998).  
Similar to word recognition, the recognition of faces is an over-learned skill that we have 
constantly performed since birth, even earlier than the time we started to read. Nevertheless, 
in contrast to research on reading, the understanding of the role of eye movements during 
face recognition remains limited. Recent research on face recognition has suggested a 
dissociation between face and object recognition. Faces have been argued to be represented 
and recognized holistically; the recognition of faces has been shown to involve relatively less 
part-based shape representation compared with the recognition of objects (e.g., Farah et al., 
1995; Tanaka & Farah, 1993). Since we process faces holistically, there is a concern whether 
we need eye movements at all during face recognition; we may just need a single eye 
fixation to recognize a faces, and its location may not influence our performance since faces 
are represented and recognized holistically. This statement has recently been shown to be 
wrong. Some studies have suggested that performance in face recognition is related to eye 
movement behavior. For example, Henderson et al. (2005) examined the influence of 
restricting eye fixations during face learning on the performance of the subsequent face 

14
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recognition task, and showed that eye movements generated during face recognition have a 
functional role and are not just recapitulation of those produced during learning (see also 
Mäntylä & Holm, 2006). In my recent study (Hsiao & Cottrell, 2008), we restricted the 
number of fixations that participants were allowed to make during face recognition, and 
showed that the optimal recognition performance was achieved with two fixations, with the 
first fixation just to the left of the center of the nose and the second on the center of the nose. 
These studies suggest that eye fixations during face recognition do have functional roles; 
they also reflect the underlying cognitive processes involved in face recognition. I will 
review these studies in the following section. 
In recent years, some researchers have proposed computational models of face recognition 
that incorporate eye fixations, in order to more realistically account for the cognitive 
processes involved in face recognition.  For example, Lacroix et al. (2006) proposed the 
Natural Input Memory (NIM) model that uses image patches at eye fixation points as the 
internal representation for modeling face recognition memory. Barrington et al. (2008) later 
proposed a Bayesian version of the NIM model (the NIMBLE model, NIM with Bayesian 
Likelihood Estimation). In section three, I will review these two models and discuss their 
cognitive plausibility in addressing human face recognition behavior.  
In face perception, a left side bias has been consistently reported, in both perceptual 
judgments (e.g. Gilbert & Bakan, 1973) and eye movements (e.g., Everdell et al., 2007). This 
phenomenon has been argued to be an indicator of right hemisphere (RH) involvement in 
the perception of faces (e.g., Burt & Perrett, 1997; Rossion et al., 2003). A recent study of 
mine suggests a link between this left side bias and visual expertise (Hsiao & Cottrell, 2009). 
In section four, I will review these studies about the left side bias in face perception, and 
discuss their implications for visual expertise processing. 
Eye movements during face recognition have also been used to examine the processing 
differences between familiar and unfamiliar face recognition. Previous research has 
suggested that internal facial features (e.g. eyes and nose), as opposed to external features 
(e.g. hair and facial shape), are more important in the recognition of familiar faces compared 
with unfamiliar faces (e.g. Ellis & Shepherd, 1992). Nevertheless, Althoff and Cohen (1999) 
compared eye movements during familiar and unfamiliar face recognition in a familiarity 
judgment task, and showed that there was no difference between familiar and unfamiliar 
faces in the number of fixations falling into the internal face region. In a more recent study, 
Stacey et al. (2005) showed that participants made more fixations on the internal features 
when viewing familiar faces compared with unfamiliar faces only in a face matching task, 
but not in a familiarity judgment task or a standard recognition memory task. In section 
five, I will review these studies and discuss the processing differences between familiar and 
unfamiliar face recognition. Finally, in the conclusion section, I will give a summary of the 
chapter and some perspectives for future research directions. 

 
2. Functional Roles of Eye Movements in Face Recognition  

Henderson et al. (2005) examined whether eye movements in face recognition have a 
functional role or just a recapitulation of those produced during face learning. Participants 
performed a standard face recognition memory task while their eye movements were 
recorded. During the learning phase, they were presented with face images one at a time 
and asked to remember them; after a short break, during the recognition phase, they were 
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recognition task, and showed that eye movements generated during face recognition have a 
functional role and are not just recapitulation of those produced during learning (see also 
Mäntylä & Holm, 2006). In my recent study (Hsiao & Cottrell, 2008), we restricted the 
number of fixations that participants were allowed to make during face recognition, and 
showed that the optimal recognition performance was achieved with two fixations, with the 
first fixation just to the left of the center of the nose and the second on the center of the nose. 
These studies suggest that eye fixations during face recognition do have functional roles; 
they also reflect the underlying cognitive processes involved in face recognition. I will 
review these studies in the following section. 
In recent years, some researchers have proposed computational models of face recognition 
that incorporate eye fixations, in order to more realistically account for the cognitive 
processes involved in face recognition.  For example, Lacroix et al. (2006) proposed the 
Natural Input Memory (NIM) model that uses image patches at eye fixation points as the 
internal representation for modeling face recognition memory. Barrington et al. (2008) later 
proposed a Bayesian version of the NIM model (the NIMBLE model, NIM with Bayesian 
Likelihood Estimation). In section three, I will review these two models and discuss their 
cognitive plausibility in addressing human face recognition behavior.  
In face perception, a left side bias has been consistently reported, in both perceptual 
judgments (e.g. Gilbert & Bakan, 1973) and eye movements (e.g., Everdell et al., 2007). This 
phenomenon has been argued to be an indicator of right hemisphere (RH) involvement in 
the perception of faces (e.g., Burt & Perrett, 1997; Rossion et al., 2003). A recent study of 
mine suggests a link between this left side bias and visual expertise (Hsiao & Cottrell, 2009). 
In section four, I will review these studies about the left side bias in face perception, and 
discuss their implications for visual expertise processing. 
Eye movements during face recognition have also been used to examine the processing 
differences between familiar and unfamiliar face recognition. Previous research has 
suggested that internal facial features (e.g. eyes and nose), as opposed to external features 
(e.g. hair and facial shape), are more important in the recognition of familiar faces compared 
with unfamiliar faces (e.g. Ellis & Shepherd, 1992). Nevertheless, Althoff and Cohen (1999) 
compared eye movements during familiar and unfamiliar face recognition in a familiarity 
judgment task, and showed that there was no difference between familiar and unfamiliar 
faces in the number of fixations falling into the internal face region. In a more recent study, 
Stacey et al. (2005) showed that participants made more fixations on the internal features 
when viewing familiar faces compared with unfamiliar faces only in a face matching task, 
but not in a familiarity judgment task or a standard recognition memory task. In section 
five, I will review these studies and discuss the processing differences between familiar and 
unfamiliar face recognition. Finally, in the conclusion section, I will give a summary of the 
chapter and some perspectives for future research directions. 

 
2. Functional Roles of Eye Movements in Face Recognition  

Henderson et al. (2005) examined whether eye movements in face recognition have a 
functional role or just a recapitulation of those produced during face learning. Participants 
performed a standard face recognition memory task while their eye movements were 
recorded. During the learning phase, they were presented with face images one at a time 
and asked to remember them; after a short break, during the recognition phase, they were 

 

presented with face images one at a time and asked to judge whether they saw the face 
image during the learning phase. They manipulated participants’ eye movements during 
the learning phase: in the free-viewing learning condition, participants were allow to move 
their eyes naturally; in the restricted-viewing learning condition, participants had to remain 
looking at a single central location when they viewed the faces. They examined the influence 
of this eye fixation restriction during the learning phase on their performance in the 
subsequent face recognition task. Their results showed that this eye fixation restriction 
during face learning significantly impaired participants’ recognition performance compared 
with the free-viewing learning condition. Also, they showed that the fixation locations 
participants made during the recognition phase following the free-viewing and the 
restricted-viewing conditions were similar to each other. Their results thus suggest that eye 
movements generated during face recognition have a functional role and are not just 
recapitulation of those produced during learning. 
Mäntylä and Holm (2006) conducted a similar face recognition study in which they 
restricted participants’ eye movements during either the learning phase or the recognition 
phase, or both phases. In the trials in which participants had correct responses, they asked 
participants to report whether they indeed remembered seeing the face during the learning 
phase (i.e. recollection), or they only knew that the face was presented earlier (i.e. 
familiarity). They found that the restriction of eye movements impaired participants’ explicit 
recollection, but not familiarity-based recognition. 
Henderson et al.’s (2005) and Mäntylä and Holm’s (2006) studies demonstrate that eye 
movements in face recognition have a functional role, since restricting eye movements 
during face recognition significantly impair participants’ recognition performance. 
However, it remains unclear what the function roles of eye movements in face recognition 
are. For example, do we have preferred eye fixations during face recognition? What is the 
nature of these preferred fixations? Does the number of eye fixations we make during face 
recognition influence our performance? How many fixations do we need to recognize a 
face? Do we have better recognition performance with more fixations? 
In a recent study (Hsiao & Cottrell, 2008), we aimed to answer these questions regarding the 
functional roles of eye movements in face recognition. Instead of restricting eye fixation 
locations during either face learning or recognition phases, we restricted the number of eye 
fixations participants were allowed to make during the recognition phase. We recruited 
Caucasian participants and had them perform a face recognition memory task with 
Caucasian face images (i.e. own-race face recognition). During the learning phase, they 
viewed 32 face images one at a time, each for three seconds. During the recognition phase, 
they viewed the same 32 face images and another set of 32 new face images one at a time, 
and asked to judge whether they saw the face during the learning phase (i.e. old/new 
judgments). Four different restriction conditions were created for the recognition phase: in 
the unrestricted condition, participants viewed the face image for three seconds at most or 
until their response if they responded within the three seconds; in the one, two, or three 
fixation conditions, they were only allowed to make one, two, or three fixations on the face 
image; the face image was covered by an average face image, a pixel-wise average of all face 
images in the materials, when their eyes moved away from the last permissible fixation (Fig. 
1). We used the average face image as a mask when participants reached their maximum 
number of fixations allowed to create a smooth transition between the target face image and 
the mask; the average face image did not contain any identity information. During the 
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experiment, participants were not aware of the relationship between the number of fixations 
they made and the time the average-face mask appeared; even if they were aware of this 
manipulation in the middle of the experiment, they were not able to anticipate the number 
of permissible fixations in each trial since the condition order was randomized during the 
experiment. 
A major difference between our study and Henderson et al.’s (2005) and Mäntylä and 
Holm’s (2006) studies was that the restriction was on the number of fixations as opposed to 
fixation locations; in our experiment, during both phases, they were allowed to move their 
eyes naturally. Thus we were able to examine the functional roles of eye fixations during 
face recognition and answer questions such as how many fixations we need in order to 
recognize a face and where they are located. Another difference between our study and 
previous examinations of eye movements in face recognition was that, in order to examine 
participants’ preferred landing positions in face recognition, instead of having participants 
start a trial from the face centre, we started each trial with a central fixation, followed by the 
target face image presented either above or below the central fixation (randomly 
determined; Fig. 1). Thus, in each trial, participants had to make a saccade from the centre of 
the screen onto the target face image. If participants started a trial from the centre of the face 
(e.g., Henderson et al., 2005), their first fixation would always be away from the face centre 
and it would be impossible to know where the preferred landing position of their first 
fixation was when they viewed a face. In addition, in each trial in order to prevent 
participants from obtaining face identity information from parafoveal vision before they 
made their first fixation, the average-face mask was first presented and then replaced by the 
target face image after participants made a saccade from the initial central fixation (Fig. 1). 
 

 
 
Fig. 1. Flow chart of a test trial during the recognition phase (Hsiao & Cottrell, 2008). 
 
We used A, a bias-free nonparametric measure of sensitivity, as the measure of participants’ 
discrimination sensitivity in the study. Our results showed that participants were able to 
recognize a face with a single fixation (the average A was 0.63; A at the chance level is 0.5). 
Participants had better performance when they were allowed to make two fixations; there 
was no further performance improvement when they were allowed to make more than two 
fixations (Table 1). This result suggests that two fixations suffice in face recognition. These 
two fixations were at the centre of the nose, with the first fixation slightly to the left of the 
centre (Fig. 2), suggesting that the centre of the nose is the preferred landing location in face 
recognition.  
In this experiment participants had better performance in the two-fixation condition 
compared with the one-fixation condition. This performance difference may be due to a 
longer total face viewing time in the two-fixation condition compared with the one-fixation 
condition. To address this issue, we conducted another experiment in which the total face 
viewing time was fixed to be 610 ms, the sum of the average durations of the first two 
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experiment, participants were not aware of the relationship between the number of fixations 
they made and the time the average-face mask appeared; even if they were aware of this 
manipulation in the middle of the experiment, they were not able to anticipate the number 
of permissible fixations in each trial since the condition order was randomized during the 
experiment. 
A major difference between our study and Henderson et al.’s (2005) and Mäntylä and 
Holm’s (2006) studies was that the restriction was on the number of fixations as opposed to 
fixation locations; in our experiment, during both phases, they were allowed to move their 
eyes naturally. Thus we were able to examine the functional roles of eye fixations during 
face recognition and answer questions such as how many fixations we need in order to 
recognize a face and where they are located. Another difference between our study and 
previous examinations of eye movements in face recognition was that, in order to examine 
participants’ preferred landing positions in face recognition, instead of having participants 
start a trial from the face centre, we started each trial with a central fixation, followed by the 
target face image presented either above or below the central fixation (randomly 
determined; Fig. 1). Thus, in each trial, participants had to make a saccade from the centre of 
the screen onto the target face image. If participants started a trial from the centre of the face 
(e.g., Henderson et al., 2005), their first fixation would always be away from the face centre 
and it would be impossible to know where the preferred landing position of their first 
fixation was when they viewed a face. In addition, in each trial in order to prevent 
participants from obtaining face identity information from parafoveal vision before they 
made their first fixation, the average-face mask was first presented and then replaced by the 
target face image after participants made a saccade from the initial central fixation (Fig. 1). 
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We used A, a bias-free nonparametric measure of sensitivity, as the measure of participants’ 
discrimination sensitivity in the study. Our results showed that participants were able to 
recognize a face with a single fixation (the average A was 0.63; A at the chance level is 0.5). 
Participants had better performance when they were allowed to make two fixations; there 
was no further performance improvement when they were allowed to make more than two 
fixations (Table 1). This result suggests that two fixations suffice in face recognition. These 
two fixations were at the centre of the nose, with the first fixation slightly to the left of the 
centre (Fig. 2), suggesting that the centre of the nose is the preferred landing location in face 
recognition.  
In this experiment participants had better performance in the two-fixation condition 
compared with the one-fixation condition. This performance difference may be due to a 
longer total face viewing time in the two-fixation condition compared with the one-fixation 
condition. To address this issue, we conducted another experiment in which the total face 
viewing time was fixed to be 610 ms, the sum of the average durations of the first two 

 

fixations in the previous experiment. In the one-fixation condition, after participants made 
the first fixation, the face image moved with their gaze (i.e., the display became gaze 
contingent); thus, they would keep looking at the same location as their first fixation on the 
face image. In the two-fixation condition, the face image became gaze contingent after they 
made a second fixation. Participants were unaware of the gaze contingent design during the 
experiment. Our results showed that given the same total face viewing time, participants 
still had better performance when they were allowed to make two fixations compared with 
a single fixation (Table 2). This result suggests that the second fixation has functional 
significance: to obtain more information from a different location, but not just to increase the 
total face viewing time. 
 
 One fixation Two fixations Three fixations Unrestricted 
Mean A 0.625 0.826 0.812 0.799 
Standard Deviation 0.125 0.083 0.140 0.127 

 
Table 1. Mean A (a discrimination sensitivity measure) and standard deviations in the four 
fixation conditions (Hsiao & Cottrell, 2008). 
 

 
 
Fig. 2. Average eye xation locations of the first two xations during the recognition phase. 
The radii of the ellipses show standard deviations of the locations. The background shows 
the average face (Hsiao & Cottrell, 2008). 
 

 One fixation Two fixations 
Mean A 0.787 0.853 
Standard Deviation 0.108 0.074 
 
Table 2. Mean A (a discrimination sensitivity measure) and standard deviations in the one- 
and two- fixation conditions in the second experiment (Hsiao & Cottrell, 2008). 
 
Previous studies examining the diagnostic features in face recognition using the Bubbles 
procedure (e.g., Gosselin & Schyns, 2001, Schyns et al., 2002, Vinette et al., 2004) showed that 
the most diagnostic features for face identification are the eyes. Standard approaches to 
modeling human eye fixations and visual attention usually use a saliency map that is 
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calculated according to biologically motivated feature selection or information 
maximization (e.g., Itti et al., 1998; Bruce & Tsotsos, 2005; Yamada & Cottrell, 1995). These 
models would predict fixations on the eyes when we view face images. Our results (Hsiao & 
Cottrell, 2008) showed that this was not the case: the preferred landing position was not 
located on the most informative position on a face (i.e., the eyes). This phenomenon suggests 
that eye fixation behavior in face recognition is different from that during scene viewing or 
visual search tasks. Indeed, recent research on face recognition suggests that the recognition 
of faces is holistic and involves relatively less part-based shape representation compared 
with the recognition of objects (e.g., Farah et al., 1995). Some argue that this face-specific 
effect is in fact expertise-specific (e.g., Gauthier & Tarr, 1997, 2002; Gauthier et al., 1998; 
Gauthier et al., 1999). Our result is consistent with this view. It is possible that, due to our 
familiarity with the information structure of faces, fixations at each individual feature 
fragments only generate redundant processes and increase the processing time; instead, a 
more efficient strategy is to get as much information as possible with a single fixation. Given 
a perceptual window large enough to cover a whole face and the fact that visual acuity 
drops dramatically from the fovea to the periphery, the fixation from which the most 
information can be obtained should be at the “center of the information”, where the 
information is balanced in all directions. This location may also be the optimal viewing 
position for the recognition of faces. This claim is consistent with the observation that face 
recognition tends to be more holistic compared with the recognition of objects. 
In summary, in this study (Hsiao & Cottrell, 2008), we showed that two fixation suffice in 
face recognition. The distributions of these two fixations were around the centre of the nose, 
suggesting that this location is the preferred landing position in face recognition. We argue 
that this location may be the centre of the information for face recognition; it may also be the 
optimal viewing position for face recognition. Further research is required to examine these 
hypotheses.  

 
3. Incorporating Eye Fixations in Computational Models of Face Recognition 
 

In computational modelling of cognitive processes, several models have been proposed to 
address human behaviour in face recognition. Recently researchers started to incorporate 
eye fixations into their computational models of face recognition in order to more accurately 
modelling the cognitive processes involved in face recognition. For example, Lacroix et al. 
(2006) proposed the Natural Input Memory (NIM) model to account for human behaviour in 
face recognition memory. The model uses fixation-based face fragments and transforms 
these fragments into a feature-vector representation as the internal representation of 
recognition memory. Thus, memories can be stored as points in a vector space, and 
recognition processes can be modelled as comparing the currently perceived fragments to 
the stored fragments: the larger the distance between the two representations in the vector 
space, the harder the memory can be successfully recollected. The NIM model can be 
considered as an exemplar model of memory (Raaijmakers & Shiffrin, 2002). However, the 
NIM model differs from standard mathematical psychology models in that (1) it uses actual 
facial images as input, and (2) it is based on the idea of storing fixation-based face 
fragments, rather than whole face exemplars (e.g., Dailey & Cottrell, 1999; O’Toole et al., 
1988). In accounting for human behaviour, Lacroix et al. (2006) showed that the NIM model 
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calculated according to biologically motivated feature selection or information 
maximization (e.g., Itti et al., 1998; Bruce & Tsotsos, 2005; Yamada & Cottrell, 1995). These 
models would predict fixations on the eyes when we view face images. Our results (Hsiao & 
Cottrell, 2008) showed that this was not the case: the preferred landing position was not 
located on the most informative position on a face (i.e., the eyes). This phenomenon suggests 
that eye fixation behavior in face recognition is different from that during scene viewing or 
visual search tasks. Indeed, recent research on face recognition suggests that the recognition 
of faces is holistic and involves relatively less part-based shape representation compared 
with the recognition of objects (e.g., Farah et al., 1995). Some argue that this face-specific 
effect is in fact expertise-specific (e.g., Gauthier & Tarr, 1997, 2002; Gauthier et al., 1998; 
Gauthier et al., 1999). Our result is consistent with this view. It is possible that, due to our 
familiarity with the information structure of faces, fixations at each individual feature 
fragments only generate redundant processes and increase the processing time; instead, a 
more efficient strategy is to get as much information as possible with a single fixation. Given 
a perceptual window large enough to cover a whole face and the fact that visual acuity 
drops dramatically from the fovea to the periphery, the fixation from which the most 
information can be obtained should be at the “center of the information”, where the 
information is balanced in all directions. This location may also be the optimal viewing 
position for the recognition of faces. This claim is consistent with the observation that face 
recognition tends to be more holistic compared with the recognition of objects. 
In summary, in this study (Hsiao & Cottrell, 2008), we showed that two fixation suffice in 
face recognition. The distributions of these two fixations were around the centre of the nose, 
suggesting that this location is the preferred landing position in face recognition. We argue 
that this location may be the centre of the information for face recognition; it may also be the 
optimal viewing position for face recognition. Further research is required to examine these 
hypotheses.  

 
3. Incorporating Eye Fixations in Computational Models of Face Recognition 
 

In computational modelling of cognitive processes, several models have been proposed to 
address human behaviour in face recognition. Recently researchers started to incorporate 
eye fixations into their computational models of face recognition in order to more accurately 
modelling the cognitive processes involved in face recognition. For example, Lacroix et al. 
(2006) proposed the Natural Input Memory (NIM) model to account for human behaviour in 
face recognition memory. The model uses fixation-based face fragments and transforms 
these fragments into a feature-vector representation as the internal representation of 
recognition memory. Thus, memories can be stored as points in a vector space, and 
recognition processes can be modelled as comparing the currently perceived fragments to 
the stored fragments: the larger the distance between the two representations in the vector 
space, the harder the memory can be successfully recollected. The NIM model can be 
considered as an exemplar model of memory (Raaijmakers & Shiffrin, 2002). However, the 
NIM model differs from standard mathematical psychology models in that (1) it uses actual 
facial images as input, and (2) it is based on the idea of storing fixation-based face 
fragments, rather than whole face exemplars (e.g., Dailey & Cottrell, 1999; O’Toole et al., 
1988). In accounting for human behaviour, Lacroix et al. (2006) showed that the NIM model 

 

was able to simulate experimentally obtained human similarity ratings and recognition 
memory for individual faces. 
Barrington et al. (2008) further proposed a Bayesian version of the NIM model, (which was 
referred to as NIMBLE, NIM with Bayesian Likelihood Estimation), as a general framework 
that is able to handle multi-class problems. The model was able to achieve human-level 
performance on standard face recognition tasks and also performed multi-class face and 
object identification tasks with high accuracy. The Bayesian combination of individual 
fragment likelihoods in the NIMBLE model outperformed the combination method in the 
original NIM model in most cases; in addition, if using new kernels for density estimation, 
the NIMBLE model was shown to far outperform the NIM model. 
In accounting for human behaviour, the model was able to achieve correct face recall and 
identification with a very small number of fixations; on average, consistent with our human 
data (Hsiao & Cottrell, 2008), a single fixation was enough to recognize a face. Nevertheless, 
inconsistent with the human data, the probability of successful recognition increased with 
an increasing number of fixations; in contrast, the human performance levelled off after two 
fixations (Hsiao & Cottrell, 2008). This inconsistency may be due to the difference in the 
choice of eye fixation locations between the model and the human data: the NIMBLE model 
implemented a model of visual saliency (Yamada & Cottrell, 1995) as the way to select 
fixation points; as the result, the eyes, instead of the centre of the nose shown in the human 
data, were usually selected as the first fixation points. Thus, in order examine the cognitive 
plausibility of the NIMBLE model in modelling recognition memory alone, in another 
examination we directly used human eye fixation locations obtained in Hsiao and Cottrell 
(2008) in the NIMBLE model. The results showed that by using human fixation locations, 
with a single fixation the NIMBLE model already achieved a similar performance level (with 
ROC area between 0.8 and 0.9) to the best performance in the human data (i.e., with two 
fixations), and more fixations did not further improve the model’s performance. In other 
words, the NIMBLE model achieved maximum performance using just the first human 
xation. This result is consistent with our claim that the first fixation location chosen by 
humans (i.e., the preferred landing position, the center of the nose) may be the optimal 
viewing position for face recognition (Hsiao & Cottrell, 2008). 
A possible explanation for the discrepancy between the human data (Hsiao & Cottrell, 2008) 
and the NIMBLE model’s behaviour using the same xations is that, as shown in Fig. 2, the 
rst and second xations in the human data tended to be in very similar locations (around 
the centre of the nose). Recall that in the human data, the participants achieved their 
maximum performance with these two fixations. This phenomenon suggests that all of the 
information required for face recognition may be obtainable by looking at the centre of the 
nose, but perhaps the participants were not able to obtain all of the information required 
during the duration of a typical xation. Since we move our eyes about three times per 
second (Henderson, 2003) (in our human data, the average first xation duration was 295 ms 
and the second was 315 ms on average), it may be that a second xation in a nearby location 
is required to accumulate more information to achieve the best face recognition 
performance. This limitation in human vision may be explained by a task-switching cost 
from localizing to exploring for recognition; that is, in the experiment, participants had to 
plan a localizing saccade from the centre of the screen to the target face stimulus before the 
rst xation, and then switch the task from localizing to exploring for recognition 
afterwards (Tatler, 2007). In contrast to human vision, the NIMBLE model does not have this 
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limitation. In addition, this localizing fixation has been shown to have a central bias (e.g., 
Renninger et al., 2007; Tatler, 2007), regardless of image feature distribution (Tatler, 2007). 
Thus, the first fixation in face recognition may be influenced by both this central bias and 
the tendency to look at the optimal viewing position due to our expertise. 
In summary, the results of the NIMBLE model, which incorporates eye fixations in 
modelling cognitive processes involved in face recognition, support our hypothesis that the 
preferred landing position in face recognition (the centre of the nose; Hsiao & Cottrell, 2008) 
may also be the optimal viewing position for face recognition. The modelling results also 
suggest some possible limitations of the human visual system; further research is required 
to examine these hypotheses. 

 
4. Left Side Bias in Face Perception and Its Link to Visual Expertise 
 

In face recognition, a left side bias effect has been consistently reported. For example, a 
chimeric face made from two left half faces from the viewer’s perspective has been reported 
to be judged more similar to the original face than one made from two right half faces 
(Gilbert & Bakan, 1973), especially for highly familiar faces (Brady et al., 2005). This 
phenomenon has been argued to be an indicator of right hemisphere involvement in the 
perception of faces (Burt & Perrett, 1997; Rossion et al., 2003).  
This left side bias effect has also been shown to be reflected in eye movement behaviour. For 
example, in an eye movement study of face recognition, Mertens et al. (1993) reported an 
asymmetry in gaze-movement strategies for faces in a visual memory task: the overall time 
that the centre of gaze remained in the left side of the stimulus was longer than the right 
side; this asymmetry was not observed for vases. Leonards & Scott-Samuel (2005) showed 
that participants tended to have their initial saccade direction to the left side for face stimuli, 
but not for landscapes, fractals, or inverted faces. They hence attributed the observed initial 
saccade direction bias to internal cognition-related factors, i.e., familiarity of the stimuli. 
Their results also showed significantly shorter initial saccade latencies to the left half-field 
compared with those to the right half-field for participants who had the leftward bias, 
suggesting higher effectiveness through automatization. Vinette et al. (2004) used the 
Bubbles procedure (Gosselin & Schyns, 2001) to examine the timing of different face features 
used during face identification. They showed that the left eye was diagnostic between 47 ms 
to 94 ms after the stimulus onset, and both eyes became informative after 94 ms. Joyce (2001) 
also showed that during the first 250 ms in face recognition, participants’ eye fixations 
tended to be on the left half-face. Consistent with these results, in a recent study (Hsiao & 
Cottrell, 2008), we also showed that during face recognition participants’ first fixation 
tended to be slightly to the left of the centre (Fig. 2). These findings suggest that the left side 
of a face (from the viewer’s perspective) may be more informative in face recognition. This 
hypothesis is consistent with the diagnostic face images obtained from the Bubbles 
procedure (Gosselin & Schyns, 2001, Schyns et al., 2002, Vinette et al., 2004), showing that 
the left eye is the most diagnostic point at an early stage of face recognition. 
Why is the left side of a face from the viewer’s perspective more diagnostic than the right 
side of a face in face recognition? Researchers have shown that low spatial frequency 
information is important for face recognition (e.g., Whitman & Konarzewski-Nassau, 1997). 
Also, the right hemisphere has been shown to have an advantage over the left hemisphere in 
tasks requiring low spatial frequency information processing (Sergent, 1982). Ivry and 
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limitation. In addition, this localizing fixation has been shown to have a central bias (e.g., 
Renninger et al., 2007; Tatler, 2007), regardless of image feature distribution (Tatler, 2007). 
Thus, the first fixation in face recognition may be influenced by both this central bias and 
the tendency to look at the optimal viewing position due to our expertise. 
In summary, the results of the NIMBLE model, which incorporates eye fixations in 
modelling cognitive processes involved in face recognition, support our hypothesis that the 
preferred landing position in face recognition (the centre of the nose; Hsiao & Cottrell, 2008) 
may also be the optimal viewing position for face recognition. The modelling results also 
suggest some possible limitations of the human visual system; further research is required 
to examine these hypotheses. 

 
4. Left Side Bias in Face Perception and Its Link to Visual Expertise 
 

In face recognition, a left side bias effect has been consistently reported. For example, a 
chimeric face made from two left half faces from the viewer’s perspective has been reported 
to be judged more similar to the original face than one made from two right half faces 
(Gilbert & Bakan, 1973), especially for highly familiar faces (Brady et al., 2005). This 
phenomenon has been argued to be an indicator of right hemisphere involvement in the 
perception of faces (Burt & Perrett, 1997; Rossion et al., 2003).  
This left side bias effect has also been shown to be reflected in eye movement behaviour. For 
example, in an eye movement study of face recognition, Mertens et al. (1993) reported an 
asymmetry in gaze-movement strategies for faces in a visual memory task: the overall time 
that the centre of gaze remained in the left side of the stimulus was longer than the right 
side; this asymmetry was not observed for vases. Leonards & Scott-Samuel (2005) showed 
that participants tended to have their initial saccade direction to the left side for face stimuli, 
but not for landscapes, fractals, or inverted faces. They hence attributed the observed initial 
saccade direction bias to internal cognition-related factors, i.e., familiarity of the stimuli. 
Their results also showed significantly shorter initial saccade latencies to the left half-field 
compared with those to the right half-field for participants who had the leftward bias, 
suggesting higher effectiveness through automatization. Vinette et al. (2004) used the 
Bubbles procedure (Gosselin & Schyns, 2001) to examine the timing of different face features 
used during face identification. They showed that the left eye was diagnostic between 47 ms 
to 94 ms after the stimulus onset, and both eyes became informative after 94 ms. Joyce (2001) 
also showed that during the first 250 ms in face recognition, participants’ eye fixations 
tended to be on the left half-face. Consistent with these results, in a recent study (Hsiao & 
Cottrell, 2008), we also showed that during face recognition participants’ first fixation 
tended to be slightly to the left of the centre (Fig. 2). These findings suggest that the left side 
of a face (from the viewer’s perspective) may be more informative in face recognition. This 
hypothesis is consistent with the diagnostic face images obtained from the Bubbles 
procedure (Gosselin & Schyns, 2001, Schyns et al., 2002, Vinette et al., 2004), showing that 
the left eye is the most diagnostic point at an early stage of face recognition. 
Why is the left side of a face from the viewer’s perspective more diagnostic than the right 
side of a face in face recognition? Researchers have shown that low spatial frequency 
information is important for face recognition (e.g., Whitman & Konarzewski-Nassau, 1997). 
Also, the right hemisphere has been shown to have an advantage over the left hemisphere in 
tasks requiring low spatial frequency information processing (Sergent, 1982). Ivry and 

 

Robertson (1999) proposed the Double Filtering by Frequency (DFF) theory, in which they 
argue that information coming into the brain goes through two frequency filtering stages: 
the first stage involves selection of a task-relevant frequency range; at the second stage, the 
right hemisphere biases information to low frequency ranges, whereas the left hemisphere 
biases information to high frequency ranges. Consistent with these findings, the right 
hemisphere has been shown to be important for face processing. For example, fMRI studies 
have shown that an area inside the fusiform gyrus (fusiform face area, FFA) responds 
selectively to faces (although some argue that FFA is an area for expertise in subordinate 
level visual processing instead of selective for faces, e.g., Tarr & Gauthier, 2000), with larger 
activation in the right hemisphere compared with the left hemisphere (e.g. Kanwisher et al., 
1997). Electrophysiological data show that faces elicit larger Event Related Potential (ERP) 
N170 than other types of objects, especially in the right hemisphere (e.g., Rossion et al., 
2003). Neuropsychological data also suggest a link between right hemisphere damage and 
deficits in face recognition and perception (e.g., Young et al., 1990; Evans et al., 1995)  
Also, because of the partial decussation of the optic nerves, our visual field is vertically split 
and the two visual hemifields are initially contralaterally projected to the two hemispheres. 
Thus, when we are viewing a face and looking at the centre of the face, the left side of the 
face from our perspective has direct access to the right hemisphere. It has been shown that, 
when a stimulus is centrally fixated, each of the two hemispheres plays a dominant role in 
the processing of the half of the stimulus to which it has direct access (e.g., Lavidor et al., 
2004; Lavidor & Walsh, 2004; Hsiao et al., 2006; although these are based on research on 
visual word recognition). Hence it is possible that the representation of the left side of a face 
is most often encoded by and processed in the right hemisphere, making it more 
informative than the right side of the face, which is usually processed in the left hemisphere. 
As the result, we may gradually direct our fixations more to the left, because the internal 
representation of the left stimulus-half is more informative and attracts our attention. 
In addition to face processing, recent research on visual expertise has suggested that this left 
side bias may be related general visual expertise processing. For example, it has been shown 
that the increase of holistic processing effect for artificial objects after expertise training was 
correlated with right fusiform area activity (Gauthier & Tarr, 2002; Gauthier et al., 1999), 
suggesting that the low spatial frequency biased representation developed in the right 
hemisphere (Ivry & Robertson, 1998; Sergent, 1982; Hsiao et al., 2008) may be crucial for the 
development of visual expertise. In our recent study that examines visual expertise in 
Chinese character recognition (Hsiao & Cottrell, 2009), we showed that Chinese readers (i.e., 
experts) had a left side bias in the perception of mirror-symmetric characters, whereas non-
Chinese readers (i.e., novices) did not; this effect was also reflected in participants’ eye 
fixation behaviour: the distribution of Chinese readers’ fixations when viewing the 
characters was significant to the left of the distribution of non-Chinese readers’ fixations. In 
another study (Hsiao et al., in preparation), we trained participants to recognize other-race 
faces and a novel type of objects, Greebles (Gauthier & Tarr, 1997), through either 
individual-level (i.e. recognize them by individual names) or categorical-level (i.e. recognize 
their races/categories) recognition training; participants performed a standard recognition 
memory task once before and once after the training, while their eye movements were 
recorded. Our results showed that during the recognition phase of the recognition memory 
task, after training participants’ second and third fixations significantly shifted leftwards in 
both face and Greeble recognition, compared with their pre-training behaviour. These 
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findings thus suggest a link between the left side bias effect and visual expertise. In 
addition, in our study (Hsiao et al., in preparation), whereas in other-race face recognition 
this leftward shift in eye fixations was observed after both individual- and categorical-level 
training, in Greeble recognition it was only observed after the individual-level training. This 
phenomenon may suggest a more effective learning (i.e. learning to use the more 
informative, right hemisphere/low spatial frequency biased representation) in a domain in 
which participants already had prior perceptual knowledge (i.e. other-race face recognition) 
as opposed to a completely novel domain (i.e. Greeble recognition); it could also be because 
faces were automatically and unconsciously recognized at the individual level during the 
categorical-level training.  
In addition to hemisphere asymmetry in face processing, there may be other factors that also 
account for this left side bias in face recognition.  For example, Heath et al. (2005) showed 
that the left side bias effect in the perception of facial affect was influenced by both laterality 
and script reading direction. They showed that right-handed readers of Roman script 
demonstrated the greatest mean leftward bias, Arabic script readers demonstrated a mixed 
or weak rightward bias, and illiterates showed a slight leftward bias (see also Vaid & Singh, 
1989). In Hsiao and Cottrell (2008), in both the learning and recognition phases of the face 
recognition task, participants scanned from left to right. This direction was consistent with 
their reading direction, since all participants were native English speakers and English is a 
script read from left to right. Further research is required to examine whether Arabic script 
readers (i.e., for scripts read from right to left) have a different scan path from English 
readers in face perception and recognition. This left side bias in face recognition may also be 
due to fundamental differences in the amount of information normally portrayed relevant to 
face recognition between the two sides of a face, although so far there has not been any 
evidence suggesting this may be the case. 

 
5. Eye Movements in Familiar and Unfamiliar Face Recognition 
 

Previous face recognition research has shown that as we get to know a person better, the 
more expressive internal features of his/her face become more important in our mental 
representation of the face, as opposed to features in the external part such as hair and facial 
shape (e.g., Ellis & Shepherd, 1992). For example, Ellis et al. (1979) showed that there was an 
advantage of identifying famous people from face internal features compared with external 
features; this advantage was also found in a face recognition task with famous faces. In 
contrast, no difference was found between internal and external features when identifying 
unfamiliar faces. Young et al. (1985) showed that in a face matching task, in which 
participants were asked to match a face image that contained only either external or internal 
features and another complete face image and decide whether the two face images were 
from the same person, participants were significantly faster in matching internal features 
when faces were familiar compared with when faces were unfamiliar; in contrast, there was 
not difference between familiar and unfamiliar faces in matching external features. This 
advantage of familiar faces in matching internal features was held when the pair of face 
images did not have the same orientation or expression. In addition, they showed that this 
advantage disappeared if the pair of face images being matched was from the same 
photograph so that participants could simply match the photographs instead of face 
features, suggesting that this advantage of familiar faces was due to structural properties of 
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findings thus suggest a link between the left side bias effect and visual expertise. In 
addition, in our study (Hsiao et al., in preparation), whereas in other-race face recognition 
this leftward shift in eye fixations was observed after both individual- and categorical-level 
training, in Greeble recognition it was only observed after the individual-level training. This 
phenomenon may suggest a more effective learning (i.e. learning to use the more 
informative, right hemisphere/low spatial frequency biased representation) in a domain in 
which participants already had prior perceptual knowledge (i.e. other-race face recognition) 
as opposed to a completely novel domain (i.e. Greeble recognition); it could also be because 
faces were automatically and unconsciously recognized at the individual level during the 
categorical-level training.  
In addition to hemisphere asymmetry in face processing, there may be other factors that also 
account for this left side bias in face recognition.  For example, Heath et al. (2005) showed 
that the left side bias effect in the perception of facial affect was influenced by both laterality 
and script reading direction. They showed that right-handed readers of Roman script 
demonstrated the greatest mean leftward bias, Arabic script readers demonstrated a mixed 
or weak rightward bias, and illiterates showed a slight leftward bias (see also Vaid & Singh, 
1989). In Hsiao and Cottrell (2008), in both the learning and recognition phases of the face 
recognition task, participants scanned from left to right. This direction was consistent with 
their reading direction, since all participants were native English speakers and English is a 
script read from left to right. Further research is required to examine whether Arabic script 
readers (i.e., for scripts read from right to left) have a different scan path from English 
readers in face perception and recognition. This left side bias in face recognition may also be 
due to fundamental differences in the amount of information normally portrayed relevant to 
face recognition between the two sides of a face, although so far there has not been any 
evidence suggesting this may be the case. 

 
5. Eye Movements in Familiar and Unfamiliar Face Recognition 
 

Previous face recognition research has shown that as we get to know a person better, the 
more expressive internal features of his/her face become more important in our mental 
representation of the face, as opposed to features in the external part such as hair and facial 
shape (e.g., Ellis & Shepherd, 1992). For example, Ellis et al. (1979) showed that there was an 
advantage of identifying famous people from face internal features compared with external 
features; this advantage was also found in a face recognition task with famous faces. In 
contrast, no difference was found between internal and external features when identifying 
unfamiliar faces. Young et al. (1985) showed that in a face matching task, in which 
participants were asked to match a face image that contained only either external or internal 
features and another complete face image and decide whether the two face images were 
from the same person, participants were significantly faster in matching internal features 
when faces were familiar compared with when faces were unfamiliar; in contrast, there was 
not difference between familiar and unfamiliar faces in matching external features. This 
advantage of familiar faces in matching internal features was held when the pair of face 
images did not have the same orientation or expression. In addition, they showed that this 
advantage disappeared if the pair of face images being matched was from the same 
photograph so that participants could simply match the photographs instead of face 
features, suggesting that this advantage of familiar faces was due to structural properties of 

 

the faces instead of pictorial codes of the face images. Bonner et al. (2003) trained 
participants to be familiarized with a set of unfamiliar faces; they showed that in a face 
matching task, participants’ performance on matching internal features was improved 
gradually during training and eventually became equivalent to their performance on 
matching external features; in contrast, their performance on matching external features 
remained at a constant level over the training days. These results suggest that we use more 
internal facial features in processing familiar faces compared with unfamiliar faces. 
Later research showed that these internal features form a “configuration” that is crucial for 
the recognition of both familiar and unfamiliar faces (e.g., Farah, 1991; Tanaka & Farah, 
1993). More specifically, the processing of this configuration involves “the ability to identify 
by getting an overview of an item as a whole in a single glance” (Farah, 1991); in particular, 
the spatial organization of features relative to each other (i.e. second order relationships) 
have been shown to be important for face recognition and distinguish it from object 
recognition (Farah, 1991; Farah et al., 1995). Some have argued that this ability to identify 
faces according to the spatial organization of internal features is due to our expertise in 
subordinate level discrimination/individualization of faces (e.g. Bukach et al., 2006; 
Gauthier & Bukach, 2007). Consistent with this view, the recognition of unfamiliar, other-
race faces has been shown to involve less holistic processing compared with own-race faces 
(Tanaka et al., 2004); this phenomenon suggests difficulty in integrating internal features to 
form a configuration for holistic processing in the recognition of unfamiliar, other-race faces. 
This difference between familiar and unfamiliar face recognition has also been 
demonstrated in eye movement behaviour, although the effect seems to be task-dependent. 
For example, Althoff and Cohen (1999) presented famous (familiar) and unfamiliar faces to 
participants and asked them to make familiarity decisions while their eye movements were 
recorded; they found that although most of the fixations fell in the internal face region, there 
was no difference between familiar and unfamiliar faces. Stacey et al. (2005) replicated 
Althoff and Cohen’s results (1999) in a familiarity judgment task and a standard face 
recognition memory task; in contrast, in a face-matching task, in which participants were 
presented with two face images simultaneously and asked to judge whether the two face 
images were from the same person, they found that participants made more fixations in the 
internal face region when matching familiar faces compared with unfamiliar faces. Their 
result thus is consistent with earlier behavioural studies showing the importance of internal 
facial features in matching familiar faces compared with unfamiliar faces. This effect was 
also observed in face recall (identification) tasks: in a recent study, Heizs and Shore (2008) 
showed that when a face became more familiar, participants made more fixations to the eye 
region compared with other regions such as the nose, mouth, forehead, chin, and cheek 
regions in a face recall (identification) task, but not in a face recognition memory task.  
In a recent study (Hsiao et al., in preparation), we trained participants to recognize other-
race faces at either the individual level (i.e. identify faces by individual names) or the 
categorical level (i.e. identify faces by their races). Participants performed a standard face 
recognition memory task before and after this training. Our results showed that 
participants’ saccade lengths significantly decreased in the face recognition task after 
individual level training, but not after categorical level training; this decrease in saccade 
length may have reflected more local, finer-grain perceptual processing after the 
participants’ learned to individualize other-race faces. This result thus is consistent with the 
previous studies showing the importance of internal features in familiar face processing, 
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and suggest that this shift from processing external to internal facial features when we get to 
know a person better may be due to our experience in individualizing faces in daily life as 
opposed to basic-level categorization or mere exposure. 

 
6. Conclusion and Future Perspectives 
 

In this chapter, I have reviewed the current literature on eye movements in face recognition, 
in particular trying to answer questions that are frequently raised in the literature, such as 
whether eye movements are required in face recognition since faces are processed 
holistically; if they are, what their functional roles are in face recognition, and what they can 
tell us about the cognitive processes involved in face recognition. We have seen that eye 
movements during face recognition have a functional role and are not just a recapitulation 
of those produced during the learning phase (Henderson et al., 2005); eye movements are 
especially important for explicit face recollection, as opposed to familiarity-based 
recognition, since restriction of eye movements during either the learning or the recognition 
phase impairs explicit recollection but not familiarity-based recognition (Mäntylä and 
Holm’s, 2006). These results suggest that eye movements have a functional role and are 
required in face recognition. 
As for what their functional roles are, we have shown that two fixations suffice in face 
recognition, and these two fixations are just around the centre of the nose, with the first 
fixation slightly to the left of the centre (Hsiao & Cottrell, 2008). We argue that this location 
may be the optimal viewing position for face recognition because of our expertise in face 
processing and knowledge about the information structure of faces relevant to face 
recognition. This hypothesis has been supported by our computational modelling study 
(Barrington et al., 2008), which shows that by using only the first fixation in the human data 
(i.e. around the centre of the nose), the model already achieves its best face recognition 
performance, as opposed to using the first fixation selected according to computational 
programs that calculate visual salience (i.e. usually fixations on the eyes are selected first). 
The observation that humans nevertheless require two fixations around this optimal 
viewing position suggests a limitation of human vision. It may be that the duration of a 
typical fixation (about 300 ms) is not long enough to allow us to obtain all the information 
required for face recognition. Also, in addition the tendency to look at the optimal viewing 
location, the location of our first fixation may be influenced by the central bias that is usually 
observed in localizing fixations (Tatler, 2007), and thus a second fixation in a different 
location is usually required to accumulate more information. Our human data are consistent 
this hypothesis (Hsiao & Cottrell, 2008): given the same amount of total face viewing time, 
participants had better performance when they were allowed to make two fixations 
compared with a single fixation. An important direction of future work is to examine 
whether the centre of the nose is indeed the optimal viewing position for face recognition, 
whether our first fixation is influenced by both the localizing central bias and the tendency 
to look at the optimal viewing position, and whether we require two fixations to recognize a 
face because of a task-switching cost from localizing to exploring. 
Eye movements in face recognition also reflect hemispheric asymmetry in face processing. It 
has been shown that we have a preference of looking at the left side of a face from the 
viewer’s perspective when we view faces, and this phenomenon has been linked to the right 
hemisphere dominance in face processing (e.g., Hsiao & Cottrell, 2008). This phenomenon 
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Eye movements in face recognition also reflect hemispheric asymmetry in face processing. It 
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may be because the low-spatial-frequency biased representation developed in the right 
hemisphere is more informative in face processing compared with that in the left 
hemisphere (i.e. high-spatial-frequency biased; Ivry & Robertson, 1998). Because of the 
contralateral projection from our visual hemfields to the two hemispheres, when we learn to 
recognize faces, the left side of a face is most often initially projected to and processed in the 
right hemisphere, making its internal representation more informative than the right side of 
the face. As the result, we tend to direct our eye fixations to the left side of a face since it is 
more informative and thus attracts our attention. Consistent with this hypothesis, it has 
been shown that this left side bias may be related to visual expertise (e.g., Hsiao & Cottrell, 
2009). Possible future work is to investigate other factors that may also influence eye fixation 
behaviour in face recognition, such as script reading directions, and to examine whether the 
left side bias is a general visual expertise marker or specific to certain expertise domains. 
Eye movements in face recognition also help us understand cognitive processes involved in 
familiar and unfamiliar face recognition. They reflect that we use more internal facial 
features as opposed to external features in matching familiar faces compared with matching 
unfamiliar faces (Stacey et al., 2005); internal facial features are also more important when 
we identify familiar faces compared with unfamiliar faces (Ellis et al., 1979; Heizs & Chore, 
2008). This difference between familiar and unfamiliar face processing has also been 
reflected in participants’ saccade lengths in our recent eye movement study of visual 
expertise training in face and object recognition (Hsiao et al., in preparation): after expertise 
training, participants’ saccade lengths significantly decreased in standard recognition 
memory tasks of faces and objects; this decrease in saccade lengths may reflect a finer-
grained perceptual processing on the internal features. In addition, this effect was observed 
in face recognition after either categorical or individual level training, but was only 
observed in object recognition after individual level training. This result thus suggests that 
the shift from processing external to internal features in face recognition when we become 
familiar with a face may be related to visual expertise. Further research is required to 
examine this potential link between the shift from external to internal feature processing and 
the development of visual expertise. 
In conclusion, although using eye movements to study cognitive processes involved in face 
recognition is a relatively new approach in the face recognition literature, researchers have 
obtained several important findings about the dynamics of cognitive processes in face 
recognition that would not have been possible without the eye tracking technology. In the 
future, eye tracking technology will keep contributing to the research on face recognition 
and visual expertise to promote our understanding of how we recognize faces, how the 
brain processes faces, how we learn to recognize a face or develop expertise in a visual 
domain, and also, more generally, how we direct our eye gaze to obtain useful information 
in the environment to perform cognitive tasks. 
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1. Introduction

For long, face recognition has been a 2D discipline. However, 2D face recognition has shown
to be extremely difficult to be robust against a.o. lighting conditions and pose variations
(Phillips et al., 2003). At the same time, technological improvements are making 3D surface
capturing devices affordable for security purposes. As a result of these recent developments
face recognition shifts from 2D to 3D. This means that in the current state-of-the-art face recog-
nition systems the problem is no longer the comparison of 2D color photos, but the compari-
son of (textured) 3D surface shapes.
With the advent of the third dimension in face recognition, we think it is necessary to investi-
gate the known surface representations from this point of view. Throughout recent decades, a
lot of research focused on finding an appropriate digital representation for three dimensional
real-world objects, mostly for use in computer graphics (Hubeli & Gross, 2000; Sigg, 2006).
However, the needs for a surface representation in computer graphics, where the primary con-
cerns are visualization and the ability to process it on dedicated computer graphics hardware
(GPUs), are quite different from the needs of a surface representation for face recognition.
Another motivation for this work is the non-existence of an overview of 3D surface represen-
tations, altough the problem of object representation is studied since the birth of computer
vision (Marr, 1982).
With this in mind, we will, in this chapter, try to give an overview of surface representations
for use in biometric face recognition. Also surface representations that are not yet reported
in current face recognition literature, but we consider to be promising for future research –
based on publications in related fields such as 3D object retrieval, computer vision, computer
graphics and 3D medical imaging – will be discussed.
What are the desiderata for a surface representation in 3D face recognition? It is certainly use-
ful for a surface representation in biometric applications, to be accurate, usable for all sorts of
3D surfaces in face recognition (open, closed. . . ), concise (efficient in memory usage), easy to
acquire/construct, intuitive to work with, have a good formulation, be suitable for computa-
tions, convertible in other surface representations, ready to be efficiently displayed and useful
for statistical modelling. It is nevertheless also certainly necessary to look further than a list of
desiderata. Herefore, our approach will be the following: we make a taxonomy of all surface
representations within the scope of 3D face recognition. For each of the of the representations
in this taxonomy, we will shortly describe the mathematical theory behind it. Advantages
and disadvantages of the surface representation will be stated. Related research using these
representations will be discussed and directions for future research will be indicated.

*The first two authors have equal contribution in this work .

15



Face	Recognition274

The structure of this chapter follows the taxonomy of Fig. 1. First we discuss the explicit
(meshfree) surfaces in section 2, followed by the implicit surfaces in section 3. We end with
some conclusions regarding surface representations for 3D face recognition.
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Fig. 1. Overview of surface representations

2. Explicit surface representations

In this section, several explicit surface representations are discussed. Strictly speaking, explicit
functions f (�x) : Rm → Rn are functions in which the n dependent variables can be written
explicitly in terms of the m independent variables. Simple shapes (spheres, ellipsoids,. . . ) can
be described by analytic functions. Unfortunately, it is mostly not possible to represent real
world objects by analytical surfaces. Therefore, this section mainly focusses on discretised
surface representations.

2.1 Point clouds
The point cloud is without doubt the simplest surface representation. It consists of an un-
ordered set of points that lie on the surface, in the 3D case an unordered set of x, y, and

z-coordinates. While a point cloud is not a real surface representation, but a (sometimes very)
sparse approximation of the surface at certain well-defined points, we consider this represen-
tation for a number of reasons. Firstly, point clouds are most often the output created by 3D
scanners. Secondly, the point cloud can be the base of most of the following surface repre-
sentations. Another reason to incorporate the point cloud in this document is its increased
popularity because of the ever-increasing memory capacities in today’s computers. Earlier
the amount of stored information was to be minimized, so a minimal amount of points were
stored. As these point clouds were very sparse and as such a very coarse approximation of the
surface, they were then interpolated using, for instance, tensor-product splines. Today, mem-
ory shortage is of less concern, so more points can be stored, making point clouds approximate
other surface representations on finer and finer levels of detail.
Figure 2 gives an example of a 3D face represented as a point cloud, containing approximately
2000 points.

Fig. 2. An example of a 3D face represented as a point cloud.

One big advantage of the point cloud surface representation is the easy editing of point clouds:
because of the lack of a global connectivity graph or parameterization, point insertion, dele-
tion, repositioning,. . . is trivial. Another important advantage is the large amount of algo-
rithms developed for point clouds. A very popular method for 3D surface alignment, the
Iterative Closest Point (ICP) algorithm (Besl & McKay, 1992), uses only points on both sur-
faces and iterates between closest points search for correspondence finding and transforma-
tion calculation and application. Afterwards, many variants of the original algorithm were
developed (Rusinkiewicz & Levoy, 2001). The main drawback of point clouds is the incom-
pleteness of the surface description: only at some sparse point locations the surface is known.
Therefore, by representing a surface by a point cloud, a trade-off has to be made between ac-
curacy and amount of stored information. Also, rendering a set of points as a smooth surface
needs special processing, as explained in (Fabio, 2003).
The earliest use of point clouds was as a rendering primitive in (Levoy & Whitted, 1985). Point
clouds have also been used for shape and appearance modeling in e.g. (Kalaiah & Varshney,
2003; Pauly et al., 2003).
In 3D face recognition, point clouds are frequently used. Mostly for surface registration with
ICP (Alyüz et al., 2008; Amberg et al., 2008; Chang et al., 2006; Faltemier et al., 2008; Kakadiaris
et al., 2007; Lu & Jain, 2006; Maurer et al., 2005; Russ et al., 2006; Wang et al., 2006). Bronstein
et al. (2005) represent faces by an expression-invariant canonical form, i.e. a point cloud where
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The structure of this chapter follows the taxonomy of Fig. 1. First we discuss the explicit
(meshfree) surfaces in section 2, followed by the implicit surfaces in section 3. We end with
some conclusions regarding surface representations for 3D face recognition.
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2. Explicit surface representations

In this section, several explicit surface representations are discussed. Strictly speaking, explicit
functions f (�x) : Rm → Rn are functions in which the n dependent variables can be written
explicitly in terms of the m independent variables. Simple shapes (spheres, ellipsoids,. . . ) can
be described by analytic functions. Unfortunately, it is mostly not possible to represent real
world objects by analytical surfaces. Therefore, this section mainly focusses on discretised
surface representations.

2.1 Point clouds
The point cloud is without doubt the simplest surface representation. It consists of an un-
ordered set of points that lie on the surface, in the 3D case an unordered set of x, y, and

z-coordinates. While a point cloud is not a real surface representation, but a (sometimes very)
sparse approximation of the surface at certain well-defined points, we consider this represen-
tation for a number of reasons. Firstly, point clouds are most often the output created by 3D
scanners. Secondly, the point cloud can be the base of most of the following surface repre-
sentations. Another reason to incorporate the point cloud in this document is its increased
popularity because of the ever-increasing memory capacities in today’s computers. Earlier
the amount of stored information was to be minimized, so a minimal amount of points were
stored. As these point clouds were very sparse and as such a very coarse approximation of the
surface, they were then interpolated using, for instance, tensor-product splines. Today, mem-
ory shortage is of less concern, so more points can be stored, making point clouds approximate
other surface representations on finer and finer levels of detail.
Figure 2 gives an example of a 3D face represented as a point cloud, containing approximately
2000 points.

Fig. 2. An example of a 3D face represented as a point cloud.

One big advantage of the point cloud surface representation is the easy editing of point clouds:
because of the lack of a global connectivity graph or parameterization, point insertion, dele-
tion, repositioning,. . . is trivial. Another important advantage is the large amount of algo-
rithms developed for point clouds. A very popular method for 3D surface alignment, the
Iterative Closest Point (ICP) algorithm (Besl & McKay, 1992), uses only points on both sur-
faces and iterates between closest points search for correspondence finding and transforma-
tion calculation and application. Afterwards, many variants of the original algorithm were
developed (Rusinkiewicz & Levoy, 2001). The main drawback of point clouds is the incom-
pleteness of the surface description: only at some sparse point locations the surface is known.
Therefore, by representing a surface by a point cloud, a trade-off has to be made between ac-
curacy and amount of stored information. Also, rendering a set of points as a smooth surface
needs special processing, as explained in (Fabio, 2003).
The earliest use of point clouds was as a rendering primitive in (Levoy & Whitted, 1985). Point
clouds have also been used for shape and appearance modeling in e.g. (Kalaiah & Varshney,
2003; Pauly et al., 2003).
In 3D face recognition, point clouds are frequently used. Mostly for surface registration with
ICP (Alyüz et al., 2008; Amberg et al., 2008; Chang et al., 2006; Faltemier et al., 2008; Kakadiaris
et al., 2007; Lu & Jain, 2006; Maurer et al., 2005; Russ et al., 2006; Wang et al., 2006). Bronstein
et al. (2005) represent faces by an expression-invariant canonical form, i.e. a point cloud where
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point wise Euclidean distances approximately equal the point wise geodesic distances1 in
the original face representation. Three-dimensional face shapes are often modeled with a
point cloud based statistical model, mostly a PCA model as in (Al-Osaimi et al., 2009; Amberg
et al., 2008; Lu & Jain, 2006; Russ et al., 2006). In Mpiperis et al. (2008), a bilinear model,
based on point clouds, is used to seperate intra-class and inter-class variations. In Fabry et al.
(2008), point clouds are treated in an information theoretic way, leading to probability density
function as surface representation, which is discussed in more detail in section 2.6.

2.2 Contour and profile curves
Contour and profile curves are also very sparse surface representations. They can even be
sparser than point clouds, but can also be made to approximate the surface as good as wanted.
The main idea is to represent shapes by the union of curves. The curves itself can be repre-
sented by a set of connected points or as a parametric curve.
Contour curves are closed, non intersecting curves on the surface, mostly of different length.
Depending on the extraction criterion, different types of contour curves can defined. Iso-
depth curves are obtained by translating a plane through the 3D face in one direction and
considering n different intersections of the plane and the object. n is the number of contours
that form the surface representation. Mostly the plane is positioned perpendicular to and
translated along the gaze direction, which is hereby defined as the z-axis. Then iso-depth
curves have equal z-values. Iso-radius curves are contours, obtained as an intersection of the
object with a cylinder with radius r =

√

x2 + y2, or as an intersection with a sphere with
radius r =

√

x2 + y2 + z2, with the z-axis parallel to the gaze direction and the y-axis parallel
to the longitudinal axis of the face. An iso-geodesic curve, or iso-geodesic, is a contour with
each part of the curve on an equal geodesic distance to a reference point, i.e. the distance of
the shortest path on the full surface between the part of the curve and the reference point. The
calculation of geodesic distances is mostly done using a polygon mesh (see section 2.3).
Examples of iso-depth, iso-radius and iso-geodesic curves are given in Fig. 3. Only points
lying on those curves are shown.

(a) (b) (c) (d)

Fig. 3. Points lying on iso-depth curves (a), on iso-radius curves obtained by intersection with
a cylinder (b) or with a sphere (c) and iso-geodesics with respect to the nose tip (d).

Profile curves on the contrary have a starting and an end point. For 3D faces, the starting point
is most frequently a point in the middle of the face, mostly the nose tip, while the end point is
often at the edge of the face. There exist an infinite number of profile curves in between those
points. Figure 4(a) shows an example with each part on the curve having the same angle with
respect to a line in the xy-plane through the central point (nose tip). Figure 4(b) shows points

1 The geodesic distance is the length of the shortest path on the object surface between two points on the
object.

on lines with equal x-value, again with the z-axis parallel to the gaze direction and the y-axis
parallel to the longitudinal axis.

(a) (b)

Fig. 4. Points on profile curves with curve parts under the same angle (a) or with the same
x-value (b).

Curves are non-complete surface representations, implying that the surface is only defined on
the curves. On the one hand, this implies a loss of information, on the other hand lower stor-
age requirements. In order to construct contour curves, a reference point is needed. In 3D face
recognition mostly the nose is used, which infers the manual or automatic extraction of this
landmark. For extraction of iso-depth and cylinder based iso-radius curves and most types
of profile curves, even more information is required: the gaze direction and/or longitudinal
axis of the face. When done this, it is more easy to set correspondences between faces based
on corresponding curves.
Contour and profile curves are frequently used in 3D face recognition. Iso-geodesics are pop-
ular because of their lower sensitivity to expression variation, based on the hypothesis that
expression-induced surface variations can approximately be modeled by isometric transfor-
mations. Those transformations keep geodesic distances between every point pair on the sur-
face. Berretti et al. (2006) use the spatial relationship between the intra-subject iso-geodesics as
a subject specific shape descriptor. Feng et al. (2007) divide the iso-geodesics in segments that
form the basis of trained face signatures. Mpiperis et al. (2007) map the iso-geodesic curves to
concentric circles on a plane using a piecewise linear warping transformation. Jahanbin et al.
(2008) extract five shape descriptors from each iso-geodesic: convexity, ratio of principal axes,
compactness, circular and elliptic variance. These features are trained with Linear Discrim-
inant Analysis (LDA). In Li et al. (2008), LDA is also used for training of texture intensities
sampled at fixed angles on iso-geodesic curves. Pears & Heseltine (2006) use sphere based
iso-radius curves. Due to the infinite rotational symmetry of a sphere, the representation is
invariant to pose variations. Using this representation, registration can be implemented using
a simple process of 1D correlation resulting in a registration of a comparable accuracy to ICP,
but fast, non iterative, and robust to the presence of outliers. Samir et al. (2006) compare faces
using dissimilarity measures extracted from the distances between iso-depth curves. Jahan-
bin et al. (2008) use iso-depth curves in the same way as they use iso-geodesics. Profile curves
are used by ter Haar & Veltkamp (2008), where comparison is done using the weighted dis-
tance between corresponding sample points on the curves, and in Feng et al. (2006) where the
curves are used similar as in Feng et al. (2007) (see above).

2.3 Polygon meshes
In 3D research in general, and a fortiori in 3D face recognition, the vast majority of researchers
represent 3D object surfaces as meshes. A mesh is in essence an unordered set of vertices
(points), edges (connection between two vertices) and faces (closed set of edges) that together



Surface	representations	for	3D	face	recognition 277

point wise Euclidean distances approximately equal the point wise geodesic distances1 in
the original face representation. Three-dimensional face shapes are often modeled with a
point cloud based statistical model, mostly a PCA model as in (Al-Osaimi et al., 2009; Amberg
et al., 2008; Lu & Jain, 2006; Russ et al., 2006). In Mpiperis et al. (2008), a bilinear model,
based on point clouds, is used to seperate intra-class and inter-class variations. In Fabry et al.
(2008), point clouds are treated in an information theoretic way, leading to probability density
function as surface representation, which is discussed in more detail in section 2.6.

2.2 Contour and profile curves
Contour and profile curves are also very sparse surface representations. They can even be
sparser than point clouds, but can also be made to approximate the surface as good as wanted.
The main idea is to represent shapes by the union of curves. The curves itself can be repre-
sented by a set of connected points or as a parametric curve.
Contour curves are closed, non intersecting curves on the surface, mostly of different length.
Depending on the extraction criterion, different types of contour curves can defined. Iso-
depth curves are obtained by translating a plane through the 3D face in one direction and
considering n different intersections of the plane and the object. n is the number of contours
that form the surface representation. Mostly the plane is positioned perpendicular to and
translated along the gaze direction, which is hereby defined as the z-axis. Then iso-depth
curves have equal z-values. Iso-radius curves are contours, obtained as an intersection of the
object with a cylinder with radius r =

√

x2 + y2, or as an intersection with a sphere with
radius r =

√

x2 + y2 + z2, with the z-axis parallel to the gaze direction and the y-axis parallel
to the longitudinal axis of the face. An iso-geodesic curve, or iso-geodesic, is a contour with
each part of the curve on an equal geodesic distance to a reference point, i.e. the distance of
the shortest path on the full surface between the part of the curve and the reference point. The
calculation of geodesic distances is mostly done using a polygon mesh (see section 2.3).
Examples of iso-depth, iso-radius and iso-geodesic curves are given in Fig. 3. Only points
lying on those curves are shown.

(a) (b) (c) (d)

Fig. 3. Points lying on iso-depth curves (a), on iso-radius curves obtained by intersection with
a cylinder (b) or with a sphere (c) and iso-geodesics with respect to the nose tip (d).

Profile curves on the contrary have a starting and an end point. For 3D faces, the starting point
is most frequently a point in the middle of the face, mostly the nose tip, while the end point is
often at the edge of the face. There exist an infinite number of profile curves in between those
points. Figure 4(a) shows an example with each part on the curve having the same angle with
respect to a line in the xy-plane through the central point (nose tip). Figure 4(b) shows points

1 The geodesic distance is the length of the shortest path on the object surface between two points on the
object.

on lines with equal x-value, again with the z-axis parallel to the gaze direction and the y-axis
parallel to the longitudinal axis.

(a) (b)

Fig. 4. Points on profile curves with curve parts under the same angle (a) or with the same
x-value (b).

Curves are non-complete surface representations, implying that the surface is only defined on
the curves. On the one hand, this implies a loss of information, on the other hand lower stor-
age requirements. In order to construct contour curves, a reference point is needed. In 3D face
recognition mostly the nose is used, which infers the manual or automatic extraction of this
landmark. For extraction of iso-depth and cylinder based iso-radius curves and most types
of profile curves, even more information is required: the gaze direction and/or longitudinal
axis of the face. When done this, it is more easy to set correspondences between faces based
on corresponding curves.
Contour and profile curves are frequently used in 3D face recognition. Iso-geodesics are pop-
ular because of their lower sensitivity to expression variation, based on the hypothesis that
expression-induced surface variations can approximately be modeled by isometric transfor-
mations. Those transformations keep geodesic distances between every point pair on the sur-
face. Berretti et al. (2006) use the spatial relationship between the intra-subject iso-geodesics as
a subject specific shape descriptor. Feng et al. (2007) divide the iso-geodesics in segments that
form the basis of trained face signatures. Mpiperis et al. (2007) map the iso-geodesic curves to
concentric circles on a plane using a piecewise linear warping transformation. Jahanbin et al.
(2008) extract five shape descriptors from each iso-geodesic: convexity, ratio of principal axes,
compactness, circular and elliptic variance. These features are trained with Linear Discrim-
inant Analysis (LDA). In Li et al. (2008), LDA is also used for training of texture intensities
sampled at fixed angles on iso-geodesic curves. Pears & Heseltine (2006) use sphere based
iso-radius curves. Due to the infinite rotational symmetry of a sphere, the representation is
invariant to pose variations. Using this representation, registration can be implemented using
a simple process of 1D correlation resulting in a registration of a comparable accuracy to ICP,
but fast, non iterative, and robust to the presence of outliers. Samir et al. (2006) compare faces
using dissimilarity measures extracted from the distances between iso-depth curves. Jahan-
bin et al. (2008) use iso-depth curves in the same way as they use iso-geodesics. Profile curves
are used by ter Haar & Veltkamp (2008), where comparison is done using the weighted dis-
tance between corresponding sample points on the curves, and in Feng et al. (2006) where the
curves are used similar as in Feng et al. (2007) (see above).

2.3 Polygon meshes
In 3D research in general, and a fortiori in 3D face recognition, the vast majority of researchers
represent 3D object surfaces as meshes. A mesh is in essence an unordered set of vertices
(points), edges (connection between two vertices) and faces (closed set of edges) that together
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represent the surface explicitly. Mostly, the faces consist of triangles, quadrilaterals or other
simple convex polygons, since this simplifies rendering. Figure 5 shows the triangular mesh
corresponding with the point cloud of Fig. 2.
The problem of constructing a mesh given a point cloud is commonly called the surface re-
construction problem, although this might also incorporate reconstruction of other complete
surface representations. The most powerful algorithm to deal with mesh construction given a
point cloud is the power crust algorithm, described in Amenta et al. (2001). Other algorithms
that deal with this problem are, a.o., the algorithms of Hoppe et al. (1992), Edelsbrunner &
Mücke (1994) and Curless & Levoy (1996). A short overview of methods for triangulation can
be found in the paper of Varshosaz et al. (2005).

Fig. 5. An example of a 3D face represented as a mesh.

Probably the main benefit of a polygon mesh is its ease of visualization. Many algorithms for
ray tracing, collision detection, and rigid-body dynamics are developed for polygon meshes.
Another advantage of meshes, certainly in comparison to point clouds, is the explicit knowl-
edge of connectivity, which is useful for the computation of the geodesic distance between
two points. This is particularly useful in face recognition because geodesic distances between
points on the surface are often used in 3D expression-invariant face recognition, because they
seem to vary less than Euclidean distances. The use of this was introduced by Bronstein et al.
(2003), using a fast marching method for triangulated domains (Kimmel & Sethian, 1998) for
geodesic distance calculation. Afterwards, many other researchers used the concept of in-
variance of geodesic distances during expression variations, by directly comparing point wise
distances (Gupta et al., 2007; Li & Zhang, 2007; Smeets et al., 2009) or using iso-geodesic curves
(see section 2.2). On the other hand, mesh errors like cracks, holes, T-joints, overlapping poly-
gons, dupplicated geometry, self intersections and inconsistent normal orientation can occur
as described by Veleba & Felkel (2007).

2.4 Parametric surface representations
A generic parametric form for representing 3D surfaces is a function with domain R2 and
range R3 (Campbell & Flynn, 2000):

S(u, v) =







x = f1(u, v)
y = f2(u, v)
z = f3(u, v)

(1)

where u and v are the two parametric variables.

Amongst the advantages of parametric representations in general we can count the simple but
general and complete mathematical description, the easiness to handle and the readiness of
technology to visualise these representations. General disadvantages are that only functions
can be represented, which cause problems in, for instance, the ear and nose regions.
The class of parametric surface representations is very general, but the following three deserve
particular attention.

2.4.1 Height maps
A height map is a special form of a parametric surface with x = u and y = v and is also often
referred as depth map, range image or graph surface. A height map represents the height
of points along the z-directions in a regular sampling of the x, y image axes in a matrix. An
example of a face represented as a depth map can be seen in figure 6. A big advantage of this
representation is that many 3D laser scanners produce this kind of output. Because mostly the
x and y values lay on a regular grid, the surface can be descibed by a matrix and 2D image
processing techniques can be applied on it. The most prominent disadvantage of height maps
is the limited expressional power: only what is ‘seen’ when looking from one direction (with
parallel beams) can be represented.This causes problems in the representation of, for instance,
the cheeks and ears of human faces. The use of height maps in face recognition has already
been discussed by Akarun et al. (2005). One very specific example of a 3D face recognition
method using height maps is the method of Samir et al. (2006), because here height maps are
extracted from triangulated meshes in order to represent the surface by level curves, which are
iso-contours of the depth map. Colbry & Stockman (2007) extend the definition of depth map
leading to the canonical face depth map. This is obtained by translating a parabolic cylinder
or a quadratic, instead of a plane, along the z-direction. Because of this alternative definition,
it could also belong to section 2.4.2.

Fig. 6. An example of a height map surface representation.
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represent the surface explicitly. Mostly, the faces consist of triangles, quadrilaterals or other
simple convex polygons, since this simplifies rendering. Figure 5 shows the triangular mesh
corresponding with the point cloud of Fig. 2.
The problem of constructing a mesh given a point cloud is commonly called the surface re-
construction problem, although this might also incorporate reconstruction of other complete
surface representations. The most powerful algorithm to deal with mesh construction given a
point cloud is the power crust algorithm, described in Amenta et al. (2001). Other algorithms
that deal with this problem are, a.o., the algorithms of Hoppe et al. (1992), Edelsbrunner &
Mücke (1994) and Curless & Levoy (1996). A short overview of methods for triangulation can
be found in the paper of Varshosaz et al. (2005).

Fig. 5. An example of a 3D face represented as a mesh.

Probably the main benefit of a polygon mesh is its ease of visualization. Many algorithms for
ray tracing, collision detection, and rigid-body dynamics are developed for polygon meshes.
Another advantage of meshes, certainly in comparison to point clouds, is the explicit knowl-
edge of connectivity, which is useful for the computation of the geodesic distance between
two points. This is particularly useful in face recognition because geodesic distances between
points on the surface are often used in 3D expression-invariant face recognition, because they
seem to vary less than Euclidean distances. The use of this was introduced by Bronstein et al.
(2003), using a fast marching method for triangulated domains (Kimmel & Sethian, 1998) for
geodesic distance calculation. Afterwards, many other researchers used the concept of in-
variance of geodesic distances during expression variations, by directly comparing point wise
distances (Gupta et al., 2007; Li & Zhang, 2007; Smeets et al., 2009) or using iso-geodesic curves
(see section 2.2). On the other hand, mesh errors like cracks, holes, T-joints, overlapping poly-
gons, dupplicated geometry, self intersections and inconsistent normal orientation can occur
as described by Veleba & Felkel (2007).

2.4 Parametric surface representations
A generic parametric form for representing 3D surfaces is a function with domain R2 and
range R3 (Campbell & Flynn, 2000):

S(u, v) =







x = f1(u, v)
y = f2(u, v)
z = f3(u, v)

(1)

where u and v are the two parametric variables.

Amongst the advantages of parametric representations in general we can count the simple but
general and complete mathematical description, the easiness to handle and the readiness of
technology to visualise these representations. General disadvantages are that only functions
can be represented, which cause problems in, for instance, the ear and nose regions.
The class of parametric surface representations is very general, but the following three deserve
particular attention.

2.4.1 Height maps
A height map is a special form of a parametric surface with x = u and y = v and is also often
referred as depth map, range image or graph surface. A height map represents the height
of points along the z-directions in a regular sampling of the x, y image axes in a matrix. An
example of a face represented as a depth map can be seen in figure 6. A big advantage of this
representation is that many 3D laser scanners produce this kind of output. Because mostly the
x and y values lay on a regular grid, the surface can be descibed by a matrix and 2D image
processing techniques can be applied on it. The most prominent disadvantage of height maps
is the limited expressional power: only what is ‘seen’ when looking from one direction (with
parallel beams) can be represented.This causes problems in the representation of, for instance,
the cheeks and ears of human faces. The use of height maps in face recognition has already
been discussed by Akarun et al. (2005). One very specific example of a 3D face recognition
method using height maps is the method of Samir et al. (2006), because here height maps are
extracted from triangulated meshes in order to represent the surface by level curves, which are
iso-contours of the depth map. Colbry & Stockman (2007) extend the definition of depth map
leading to the canonical face depth map. This is obtained by translating a parabolic cylinder
or a quadratic, instead of a plane, along the z-direction. Because of this alternative definition,
it could also belong to section 2.4.2.

Fig. 6. An example of a height map surface representation.
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2.4.2 Geometry images
Another often used parametric surface representation is the geometry image, a regularly sam-
pled 2D grid representation, but here not representing the distance to the surface along a
viewing direction. The directions are ‘adaptive’ in the sense that they are conveyed so to be
able to represent the whole surface, thus also regions that would not be representable in a
height map due to the directionality of ‘height’. Gu et al. (2002) describe an automatic sys-
tem for converting arbitrary meshes into geometry images: the basic idea is to slice open the
mesh along an appropriate selection of cut paths in order to unfold the mesh. Next the cut
surface is parametrized onto a square domain containing this opened mesh creating an n × n
matrix of [x, y, z] data values. The geometry image representation has some advantages, the
biggest being that the irregular surface is represented on a completely regular grid, without
loosing information. As with the height map, this structure is easy to process, both for graph-
ics applications and for recognition applications. A big disadvantage is the computational
and technical complexity of the generation of geometry images.
Geometry images have already been used for 3D face recognition. In (Kakadiaris et al., 2007;
Perakis et al., 2009), a geometry image maps all vertices of the face model surface from R3

to R2. This representation is segmented to form the Annotated Face Model (AFM) which is
rigidly aligned with the range image of a probe. Afterwards, the AFM is fitted to each probe
data set using the elastically adapted deformable model framework, described by Metaxas
& Kakadiaris (2002). The deformed model is then again converted to a geometry image and
a normal map. Those images are analysed using the Haar and pyramid wavelet transform.
The distance metric that is used to compare different faces, uses the coefficients of the wavelet
transforms.

2.4.3 Splines
Spline surfaces are piecewise polynomial parametric surface representations that are very
popular in the field of Computer Aided Design and Modelling (CAD/CAM) because of
the simplicity of their construction, including interpolation and approximation of complex
shapes, and their ease and accuracy of evaluation. The basis of splines are control points,
which are mostly lying on a regular grid.
One well-known type of spline surfaces are Bézier surfaces. These are represented as:

S(u, v) =
n

∑
i=0

m

∑
j=0

Bn
i (u) Bm

j (v) �xi,j (2)

where Bn
i are Bernstein polynomials. Another well-known spline surface type are nonuniform

rational B-splines (NURBS), defined as

S(u, v) =
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�xi, (3)

with k the number of control points �xi and wi the corresponding weights. An example of face
representation by Bézier curves can be found in (Yang et al., 2006) and of NURBS in (Liu et al.,
2005; Yano & Harada, 2007). Although spline surfaces have been considered for representing
faces, they have not found widespread use in 3D face recognition. Most probably because, as is
stated by Besl (1990), a.o. : “it is difficult to make a surface defined on a parametric rectangle fit
an arbitrary region on the surface”. Also, the control points are not easily detectable. Another
disadvantage of splines is the uselessness of the spline parameters for recognition.

2.5 Spherical harmonics surface representations
Spherical harmonics are mathematical functions that can be used for representing spherical
objects (sometimes also called star-shaped objects). The surface first has to be represented
as a function on the unit sphere: f (θ, φ). This function can then be decomposed (spherically
expanded) as:

f (θ, φ) =
∞

∑
l=0

l

∑
m=−l

almYm
l (θ, φ). (4)

The spherical harmonics Ym
l (θ, φ) : |m| ∈ N are defined on the unit sphere as:

Ym
l (θ, φ) = kl,mPm

l (cos θ)eimφ, (5)

where θ ∈ [0, π], φ ∈ [0, 2π[, kl,m is a constant, and Pm
l is the associated Legendre polynomial.

The coëfficients alm are uniquely defined by:

alm =
∫ 2π

0

∫ pi

0
f (θ, φ)Ym

l (θ, φ)sin(θ)dθdφ. (6)

While this theory is stated for spherical objects, it is important to mention that spherical har-
monics have already been used for non spherical objects by first decomposing the object into
spherical subparts (Mousa et al., 2007) using the volumetric segmentation method proposed
by Dey et al. (2003).
Advantages of the spherical harmonics surface representation include the similarity to the
Fourier transform, which has already proven to be a very interesting technique in 1D signal
processing. Also, because of the spectral nature of this surface representation, it can lead
to large dimensionality reductions, leading to decreases in computation time and efficient
storage. Other advantages are the rotational invariance of the representation and the ability
to cope with missing data (occlusions and partial views).
The spherical harmonics surface representation has some drawbacks as well. One of them
has already been mentioned and is not insuperable: the need for spherical surfaces. Other
disadvantages include the unsuitability for intuitive editing, the non-trivial visualisation and
the global nature of the representation.
Spherical harmonics surface representations have already been used in a number of applica-
tions that bear a close relation to face recognition. Kazhdan et al. (2003) used it as a 3D shape
descriptor for use in searching a 3D model database. Mousa et al. (2007) use the spherical
harmonics for reconstruction of 3D objects from point sets, local mesh smoothing and texture
transfer. Dillenseger et al. (2006) have used it for 3D kidney modelling and registration. To
the best of our knowledge, the only use of this representation in face recognition so far is in
(Llonch et al., 2009). In this work, a similar transformation with another (overcomplete) basis
is used as a surface representation for the 3D faces in the face recognition experiments, where
this representation is also submitted to linear discriminant analysis (LDA). The performance
reported is better than PCA on depth maps, which the authors consider as baseline.
Further applications in face recognition are not yet widely explored, but we see a great poten-
tial in the method of Bülow & Daniilidis (2001), who combine the spherical harmonics repre-
sentation with Gabor wavelets on the sphere. In this way, the main structure of the 3D face is
represented globally, while the (person-specific) details are modelled locally (with wavelets).
This solves the drawback of the global nature of the representation and could as such be used
for multiscale progressive 3D face recognition.
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2.6 Point cloud-based surface representations: information theoretic measures
Recently, some researchers have proposed to work directly on the point cloud, without using
any real surface representation, but instead use information theoretic measures defined di-
rectly on the raw point cloud surface representation. Some of these methods do nevertheless
implicitly use some kind of kernel surface representation, which can also be viewed as density
estimation (Silverman, 1986), and although the density estimation itself is explicit, the surface
can be thought of as implicitly present. This is also the reason why this surface reprsentation
was not included in section 2.1 (which would also make sense) but is treated as a link be-
tween the explicit and implicit surface representations. Density estimation is a fundamental
concept in statistics, the search for an estimate of the density from a given dataset. In the case
of surface representations, this dataset is a point cloud. This estimation can be nonparametric,
which can be considered as an advantage of this method. Also the generality, sound statisti-
cal base and low data requirements are advantages. Disadvantages include the difficulties in
visualising the surface representation,
The most used density estimation technique is kernel density estimation KDE, introduced by
Parzen (1962). Here the density is computed as

̂fh(�x) =
1

nh

n

∑
i=1

K
(

�x − �xi
h

)

(7)

where K is some kernel with parameter h. A volume rendering of a KDE of a 3D face surface
can be seen in figure 7.

Fig. 7. Volume rendering of a kernel density estimation of a human face.

The information theoretic methods have already been proven to be useful in 3D registration
and recognition. Tsin & Kanade (2004) proposed the kernel correlation of two point clouds,
an entropy-related measure expressing the compatibility of two point clouds, and used this
for robust 3D registration. This measure has later been used in 3D face recognition by Fabry
et al. (2008). A related technique, which has until now not been applied to face recognition, is
found in (Wang et al., 2008). Here, groupwise registration between point clouds is performed
by minimizing the Jensen-Shannon divergence between the Gaussian mixture representations
of the point clouds.

3. Implicit surface representations

In general, implicit functions are defined as the iso-level of a scalar function φ : Rn → R. A
3D implicit surface S is then mathematically defined as

S = {�x ∈ R3|φ(�x) = ρ}. (8)

We call this the iso-surface of the implicit function. The iso-surface at ρ = 0 is sometimes
referred to as the zero contour or zero surface. As such, implicit surfaces are 2D geometric shapes
that exist in 3D space (Bloomenthal & Wyvill, 1997). The iso-surface partitions the space into
two regions: interior of the surface, and exterior of the surface. Mostly, the convention is
followed that inside the surface, the function returns negative values and outside the surface,
the function returns positive values. The inside portion is referred as Ω−, while points with
positive values belong to the outside portion Ω+. The border between the inside and the
outside is called the interface ∂Ω.
The simplest surfaces (spheroids, ellipsoids,. . . ) can be described by analytic functions and
are called algebraic surfaces. The surface is the set of roots of a polynomial φ(�x) = ρ. The
degree of the surface n is the maximum sum of powers of all terms. The general form of a
linear surface (n = 1), or plane, is

φ(x, y, z) = ax + by + cz − d = ρ, (9)

while the general form for a quadratic surface (n = 2) is:

φ(x, y, z)

= ax2 + bxy + cxz + dx + ey2 + f yz + gy + hz2 + iz + j
= ρ.

(10)

Superquadrics (n > 2) provide more flexibility by adding parameters to control the polyno-
mial exponent, allowing to describe more complex surfaces. Nevertheless, analytic functions
are designed to describe a surface globally by a single closed formula. In reality, it is mostly
not possible to represent a whole real-life object by an analytic function of this form.

3.1 Radial Basis Functions
Radial Basis Functions (RBFs) are another type of implicit functions that have been proven
to be a powerful tool in interpolating scattered data of all kinds, including 3D point clouds
representing 3D objects. A RBF is a function of the form

S(�x) =
N

∑
i=1

λiΦ(‖�x − �xi‖) + p(�x), (11)

with λi the RBF-coefficients, Φ a radial basic function, �xi the RBF centra and p(�x) a polynomial of
low degree.
As can be seen from equation (11), the RBF consists of a weighted sum of radially symmet-
ric basic functions located at the RBF-centra xi and a low degree polynomial p. For surface
representation, the RBF-centra xi are simply a subset of points on the surface. Finding the
appropriate RBF-coefficients for implicitly representing a surface is done by solving:

∀xi : s(xi) = fi, (12)
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For a surface representation, we want the surface to be the zero-contour of the implicit surface
s(�x) and hence fi = 0, ∀i. To prevent the interpolation to lead to the trivial solution, s(�x) = 0
everywhere, we have to add additional constraints. This is done by adding off-surface points:
points at a distance of the surface, whose implicit function value is different from zero and
mostly equal to the euclidean distance to the surface. Figure 8 gives an example of a RBF
interpolation with zero iso-surface.

Fig. 8. An example of a RBF interpolation with zero iso-surface.

A very clear introduction to the RBF-theory, and info about a fast commercial RBF-
implementation can be found in (Far, 2004). A mathematically very complete reference book
about Radial Basis Functions is (Buhmann, 2003).
The biggest advantage of radial basis function interpolation is the absence of the need for point
connectivity. Other advantages include the low input data requirements (bare point clouds),
and the possibility to insert smoothness constraints when solving for the RBF. A disadvantage
of RBFs is the computational complexity of the problem. This problem can however be alle-
viated by specific mathematical algorithms (Fast Multipole Methods (Beatson & Greengard,
1997)), or compactly supported basis functions (Walder et al., 2006). Because of this computa-
tional complexity, also the editing of the surface is not trivial.
In Claes (2007), a robust framework for both rigid and non-rigid 3D surface representation is
developed to represent faces. This application can be seen as 3D face biometrics in the wide
sense: representing and distinguishing humans by measuring their face geometry. This is used
for craniofacial reconstruction.
Thin Plate Splines, one particular kind of RBF basic function, are popular in non-rigid regis-
tration of face models. Surface registration is an important step in some model-based 3D face
recognition methods, but then the RBF is not used as the surface representation method but
merely as a preprocessing technique (Irfanoglu et al., 2004; Lu & Jain, 2005).
Another application of RBFs in face recognition can be found in (Pears, 2008), where the RBF
is sampled along concentric spheres around certain landmarks to generate features for face
recognition.

3.2 Blobby Models
The blobby model is another kind of implicit surface representation introduced by Blinn
(1982). It was originally perceived as a way to model molecular models for display, and is,
as such, tightly related to the quantum mechanical representation of an electron: a density
function of the spatial location. This way, the molecule surface can be thought of as the ρ
iso-contour of the sum of atom contributions

D(x, y, x) = ∑
i

bi exp(−air2
i ), (13)

where ri are distances to the atom locations. Various variants of the original blobby models
exist, which can also be called metaballs or soft objects, and instead of the exponential, one can
also use polynomials (Nishita & Nakamae, 1994) or ellipsoids (Liu et al., 2007) to represent the
blobs.
An advantage of the blobby model surface representation is the apparent possibility for huge
data reduction without loosing much detail. However, the efficient construction of blobby
models is still a problem under research (Liu et al., 2007).
Maruki Muraki (1991) used this blobby model to describe a surface originally represented by
range data with normals. He does this by solving an optimization problem with parameters
xi, yi, zi, ai, bi with xi, yi, zi the locations of the blobs and ai, bi the blob parameters. Interest-
ingly, the examples shown in this 1991 paper are representations of faces. It seems that a face
can reasonably well be represented with about 250 blobs, making this representation promis-
ing for 3D face recognition.
Nevertheless, there are not yet applications of this method in 3D face recognition. It has how-
ever been used in the related problem of natural object recognition, where 2D contours were
represented as blobby models, and these blobby models were then used for classification of
the contours (Jorda et al., 2001).

3.3 Euclidean distance functions
A special class of scalar functions are distance functions. The unsigned distance function yields
the distance from a point �p to the closest point on the surface S (Jones et al., 2006):

distS (�p) = inf
�x∈S

||�x − �p||, (14)

while signed distance functions represent the same, but have a negative sign in Ω−, inside the
object. The signed distance function is constructed by solving the Eikonal equation:

||∇φ(x, y, z)|| = 1, (15)

together with the boundary condition φ|S = 0. At any point in space, φ is the Euclidean
distance to the closest point on S , with a negative sign on the inside and a positive on the
outside (Sigg, 2006). The gradient is orthogonal to the iso-surface and has a unit magnitude
(Jones et al., 2006). An example of a distance function is given in figure 9. The signed dis-
tance function can also be approximated using Radial Basis Functions (Far, 2004), as shown in
figure 8.
One advantage of a surface represented by a distance function is that the surface can easily be
evolved using a level set method. In those methods, also other implicit surface representations
are possible, but distance transforms have nice numerical properties (Osher & Fedkiw, 2003).
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tional complexity, also the editing of the surface is not trivial.
In Claes (2007), a robust framework for both rigid and non-rigid 3D surface representation is
developed to represent faces. This application can be seen as 3D face biometrics in the wide
sense: representing and distinguishing humans by measuring their face geometry. This is used
for craniofacial reconstruction.
Thin Plate Splines, one particular kind of RBF basic function, are popular in non-rigid regis-
tration of face models. Surface registration is an important step in some model-based 3D face
recognition methods, but then the RBF is not used as the surface representation method but
merely as a preprocessing technique (Irfanoglu et al., 2004; Lu & Jain, 2005).
Another application of RBFs in face recognition can be found in (Pears, 2008), where the RBF
is sampled along concentric spheres around certain landmarks to generate features for face
recognition.

3.2 Blobby Models
The blobby model is another kind of implicit surface representation introduced by Blinn
(1982). It was originally perceived as a way to model molecular models for display, and is,
as such, tightly related to the quantum mechanical representation of an electron: a density
function of the spatial location. This way, the molecule surface can be thought of as the ρ
iso-contour of the sum of atom contributions

D(x, y, x) = ∑
i

bi exp(−air2
i ), (13)

where ri are distances to the atom locations. Various variants of the original blobby models
exist, which can also be called metaballs or soft objects, and instead of the exponential, one can
also use polynomials (Nishita & Nakamae, 1994) or ellipsoids (Liu et al., 2007) to represent the
blobs.
An advantage of the blobby model surface representation is the apparent possibility for huge
data reduction without loosing much detail. However, the efficient construction of blobby
models is still a problem under research (Liu et al., 2007).
Maruki Muraki (1991) used this blobby model to describe a surface originally represented by
range data with normals. He does this by solving an optimization problem with parameters
xi, yi, zi, ai, bi with xi, yi, zi the locations of the blobs and ai, bi the blob parameters. Interest-
ingly, the examples shown in this 1991 paper are representations of faces. It seems that a face
can reasonably well be represented with about 250 blobs, making this representation promis-
ing for 3D face recognition.
Nevertheless, there are not yet applications of this method in 3D face recognition. It has how-
ever been used in the related problem of natural object recognition, where 2D contours were
represented as blobby models, and these blobby models were then used for classification of
the contours (Jorda et al., 2001).

3.3 Euclidean distance functions
A special class of scalar functions are distance functions. The unsigned distance function yields
the distance from a point �p to the closest point on the surface S (Jones et al., 2006):

distS (�p) = inf
�x∈S

||�x − �p||, (14)

while signed distance functions represent the same, but have a negative sign in Ω−, inside the
object. The signed distance function is constructed by solving the Eikonal equation:

||∇φ(x, y, z)|| = 1, (15)

together with the boundary condition φ|S = 0. At any point in space, φ is the Euclidean
distance to the closest point on S , with a negative sign on the inside and a positive on the
outside (Sigg, 2006). The gradient is orthogonal to the iso-surface and has a unit magnitude
(Jones et al., 2006). An example of a distance function is given in figure 9. The signed dis-
tance function can also be approximated using Radial Basis Functions (Far, 2004), as shown in
figure 8.
One advantage of a surface represented by a distance function is that the surface can easily be
evolved using a level set method. In those methods, also other implicit surface representations
are possible, but distance transforms have nice numerical properties (Osher & Fedkiw, 2003).
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Fig. 9. An example of a distance function.

An interesting application in face recognition (in 2D though) is given in (Akhloufi & Bendada,
2008) where a distance transform is used to get an invariant representation for face recogni-
tion, using thermal face images. After extraction of the face region, a clustering technique
constructs the facial isotherm layers. Computing the medial axis in each layer provides an
image containing physiological features, called face print image. A Euclidean distance trans-
form provides the necessary invariance in the matching process. Related to the domain of face
recognition, the signed distance function is used in craniofacial reconstruction (Vandermeulen
et al., 2006). A reference skull, represented as distance maps, is warped to all target skulls and
subsequently these warps are applied to the reference head distance map.
Signed distance maps are also interesting for aligning surfaces, as described in Hansen et al.
(2007). Symmetric registration of two surfaces, represented as signed distance maps, is done
by minimizing the energy functional:

F(�p) = ∑
�x∈Ur

x

(φy(W(�x;�p))− φx(�x))2

+ ∑
�y∈Ur

y

(φx(W(�y;�p))− φy(�y))2,
(16)

with W(−;�p) the warp function, Ur
x and Ur

y the narrow bands around the surfaces Sx and Sy
and φ the signed distance map. The width of the narrow band r should be larger than the
width of the largest structure. Hansen et al. (2007) state that the level set registration performs
slightly better than the standard ICP algorithm (Besl & McKay, 1992).

3.4 Random walk functions
This scalar surface representation gives at a point in space a value that is the average time of
a random walk to reach the surface starting from that point. This scalar function is the result
of solving the Poisson equation:

∆φ(x, y, z) = −1, (17)

again subject to the boundary condition φ|S = 0 and with ∆φ =
∂2φ
∂x2 +

∂2φ
∂y2 +

∂2φ
∂z2 . For every

internal point in the surface, the function assigns a value reflecting the mean time required for

a random walk beginning at the boundaries and ending in this particular point. The level sets
of φ represent smoother versions of the bounding surface. A disadvantage of this function is
that a unique solution of equation (17) only exists within a closed surface. An example of a
random walk function is given in figure 10.

Fig. 10. An example of a random walk function.

To the best of our knowledge, this scalar function is not yet used in face recognition. However,
it has already been proven to be useful in 2D object classification which makes it for auspicious
for use in biometrics (Gorelick et al., 2006).

4. Conclusions

We can conclude that, although many representations in biometrics are based on meshes, a
number of interesting alternatives exist. We have given a systematic discussion of the differ-
ent three-dimensional surface representations that seem to be promising for use in 3D bio-
metrics and, if known, their already existing use. While we are aware of the non-exhaustive
nature of this work, we hope to have given to the face recognition and other related research
communities (computer graphics, mathematics of surfaces,. . . ) some interesting ideas.
We have paid attention to the advantages and disadvantages of the different surface represen-
tations throughout the whole text. The main advantages and disadvantages of the different
surface representations are summarized in table 1. From this we can conclude that many of
the advantages of the different surface representations have not yet been taken advantage of
in current face recognition research. This could thus be very interesting for future research.
Other interesting conclusions can be drawn from the preceeding text and table. First of all, we
see that the left branch of our taxonomy, the explicit representations, is much more frequently
used in todays face recognition research, opposed to the other branch, the implicit represen-
tations. This can be explained by the fact that explicit representations have been very much a
topic of interest in computer graphics because of hardware requirements and are as such also
the first to be considered in 3D face recognition.
Furthermore: although the polygonal mesh is often used in 3D face recognition and certainly
has some advantages, we think it is more important to keep the other surface representations
in mind for doing face recognition research. Moreover, we already see a gain in importance
of meshfree methods in the field of numerical analysis, where meshfree methods are used
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in finite element modelling, for solving partial differential equations or for approximating
functions without using classic mesh discretisations. These kind of methods have many ad-
vantages: easy handling of large deformations because of the lack of connectivity between
points, good handling of topological changes, ability to include prior knowledge, support for
flexible adaptable refinement procedures, the ability to support multiscale,. . . (Li & Liu, 2004).
Also in computer graphics, meshfree surface representations are gaining importance, espe-
cially in the physically based deformable models (Nealen et al., 2006), but also in many other
computer graphics subfields (Dyn et al., 2008; Sukumar, 2005). In 3D face recognition, some
progressive methods make use of some of these interesting meshfree surface representations
as explained in this chapter.
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1. Introduction 

Face recognition, together with fingerprint recognition, speaker recognition, etc., is part of 
the research area known as ‘biometric identification’ or ‘biometrics’, which refers to 
identifying an individual based on his or her distinguishing characteristics. More precisely, 
biometrics is the science of identifying, or verifying the identity of, a person based on 
physiological or behavioral characteristics (Bolle et al., 2003). Biometric characteristics 
include something that a person is or produces. Examples of the former are fingerprints, the 
iris, the face, the hand/finger geometry or the palm print, etc. The latter include voice, 
handwriting, signature, etc. (Ortega-Garcia et al., 2004).  
 
Face recognition is a particularly compelling biometric approach because it is the one used 
every day by nearly everyone as the primary means for recognition of other humans. 
Because of its natural character, face recognition is more acceptable than most other 
biometric methods. Face recognition also has the advantage of being noninvasive.  
  
Face recognition has a wide range of potential applications for commercial, security, and 
forensic purposes. These applications include automated crowd surveillance, access control, 
mug shot identification (e.g., for issuing driver licenses), credit card authorization, ATM 
machine access control, design of human computer interfaces (HCI), etc. Especially, the 
surveillance systems rely on the noninvasive property of face recognition systems. 
 
According to the different purposes in applications, face recognition scenarios can be 
classified into the following two:  
 
 Face verification: (“Am I who I say I am?”) is a one-to-one match that compares a query 

face image against a gallery face image whose identity is being claimed.  
 
 Face identification: (“Who am I?”) is a one-to-many matching process that compares a 

query face image against all the gallery images in a face database to determine the 
identity of the query face. In the identification task, it is assumed that the person is in 
the database. The identification of the query image is done by choosing the image in the 
database that has the highest similarity score with the query image. 
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According to the format of the data, analyzed face recognition methods can be classified as 
2D face recognition, 3D face recognition and infrared face recognition modalities. The 
infrared face recognition is commonly combined with other biometrics technologies. 
 
Most of the face recognition methods developed until recently use 2D intensity images 
obtained by photographic cameras as the data format for processing. There are two reasons 
for the interest in 2D face recognition. First of all, human beings can recognize a person from 
his or her picture alone, which means that the picture contains enough information about a 
person’s identity for a human being. Second, a picture is very easy to obtain in terms of 
acquisition and cost. This was even more important decades ago, when other imaging 
techniques, such as 3D imaging, were not well developed.  
 
Varying levels of success have been achieved in 2D face recognition research. A short 
overview is given in the following paragraph. More detailed and comprehensive surveys 
can be found in (Chellappa et al., 1995; Zhao et al., 2003). Most proposed techniques fall into 
two lines of research. The first one is appearance based (view based) face recognition. This 
approach represents a face image as a high dimensional vector, i.e., a point in a high 
dimensional vector space. Statistical techniques are then used to analyze the distribution of 
the face image in the vector space, and features are extracted in the vector space using linear 
decomposition like Principal Component Analysis (PCA) (also called ‘the Eigen Face’ 
method proposed in (Turk and Pentland, 1991)), Independent Component Analysis (ICA) 
(Bartlett, et al., 1998) or non linear methods like Kernel Principal Component Analysis 
(KPCA) (Cholkopf et al., 1998). The second group of approaches is model-based. The model-
based face recognition scheme is aimed at constructing a model of the human face, which 
can capture the facial variations of individuals. Exemplar approaches in this category 
include Feature-based Elastic Bunch Graph Matching (Wiskott et al. 1997) and Active 
Appearance Model (AAM).(Edwards et al., 1998) 
 
In 2002, the Face Recognition Vendor Test (FRVT 2002) was held. It was an independently 
administered technology evaluation sponsored by the Defense Advanced Research Projects 
Agency (DARPA), the National Institute of Standards and Technology (NIST) and other 
agencies. The primary objective of FRVT 2002 was to provide performance measures for 
assessing the ability of automatic face recognition systems to meet real-world requirements. 
FRVT 2002 measured the performance of the core capabilities of face recognition technology, 
all based on 2D face recognition. Ten participants were evaluated. (Phillips et al., 2002) 
 
FRVT 2002 showed that one of the most challenging tasks for modern face recognition 
systems is recognizing faces in non-frontal imagery. Most face recognition systems 
performed well when all of the images were frontal. But, as a subject became more and more 
off angle (both horizontally and vertically), performance decreased. Additionally FRVT 2002 
also showed that the variation in the structure of lighting had a great effect on performance 
(Phillips et al., 2002).  
 
From these observations, the following conclusions can be drawn. Although 2D face 
recognition has achieved considerable success, certain problems still exist. Because the 2D 
face images used not only depend on the face of a subject, but also depend on the imaging 

 

factors, such as the environmental illumination and the orientation of the subject. These two 
sources of variability in the face image often make the 2D face recognition system fail. That 
is the reason why 3D face recognition is believed to have an advantage over 2D face 
recognition. Although the first main rationale for 2D face recognition mentioned above, i.e. 
“a picture contains enough information about the identity of a person”, may be true for a 
human being, for an artificial system, without the biological knowledge of how the human 
vision system works, 2D face recognition is still a very difficult task. 
 
With the development of 3D imaging technology, more and more attention has been 
directed to 3D face recognition. In (Bowyer et al., 2004), Bowyer et al. provide a survey of 3D 
face recognition technology. Some of the techniques are derived from 2D face recognition, 
such as the use of PCA in (Hesher et al., 2003; Chang et al. 2003) to extract features from 
faces. Some of the techniques are unique to 3D face recognition, such as the geometry 
matching method in (Gordon, 1991) and the profile matching proposed in (Cartoux et al. 
1989; Nagamine et al. 1992).  
 
Most of the 3D face recognition systems treat the 3D face surface as a rigid surface. But 
actually, the face surface is deformed by different expressions of the subject. So, systems 
which treat the face as a rigid surface are significantly challenged when dealing with faces 
with expressions. In (Chang et al., 2005), experiments using Iterative Closest Point (ICP) and 
PCA methods were performed on the recognition of faces with expression. The authors 
found that expression changes do cause performance declines in all the methods. (Chang et 
al., 2005) 
 
Therefore, expression has become a big challenge in 3D face recognition systems. Up to 
now, only some methods address the facial expression issue in face recognition. In 
(Bronstein et al., 2003), the authors present a 3D face recognition approach based on a 
representation of the facial surface, invariant to isometric deformation by facial expression. 
In (Lu and Jain, 2005), both rigid registration and non-rigid deformations caused by 
expression were calculated. Iterative Closest Point (ICP) was used to perform rigid 
registration. For non-rigid deformation, the thin plated spline (TPS) was applied. For the 
purpose of face matching, the non-rigid deformations from different sources were 
identified, which was formulated as a two-class classification problem: intra-subject 
deformation vs. inter-subject deformation. The deformation classification results were 
integrated with the matching distance of rigid registration to make the final decision. In 
(Chang et al., 2005), the author tried to extract the area that deforms least with different 
facial expressions and used this area as the feature for every subject. Then ICP and PCA 
methods were applied for the matching. 
 
In our research, we want to tackle the expression challenge in 3D face recognition from a 
different point of view. Because the deformation of the face surface is always related with 
different expressions, an integrated expression recognition and face recognition system is 
proposed. In section 2, a model on the relationship between expression and face recognition 
is introduced. Based on this model, the framework of integrated expression recognition and 
face recognition is proposed. Section 3 explains the acquisition of the experimental data 
used and preprocessing performed. Section 4 outlines our approach to 3D face expression 



An	Integrative	Approach	to	Face	and	Expression	Recognition	from	3D	Scans 297

 

According to the format of the data, analyzed face recognition methods can be classified as 
2D face recognition, 3D face recognition and infrared face recognition modalities. The 
infrared face recognition is commonly combined with other biometrics technologies. 
 
Most of the face recognition methods developed until recently use 2D intensity images 
obtained by photographic cameras as the data format for processing. There are two reasons 
for the interest in 2D face recognition. First of all, human beings can recognize a person from 
his or her picture alone, which means that the picture contains enough information about a 
person’s identity for a human being. Second, a picture is very easy to obtain in terms of 
acquisition and cost. This was even more important decades ago, when other imaging 
techniques, such as 3D imaging, were not well developed.  
 
Varying levels of success have been achieved in 2D face recognition research. A short 
overview is given in the following paragraph. More detailed and comprehensive surveys 
can be found in (Chellappa et al., 1995; Zhao et al., 2003). Most proposed techniques fall into 
two lines of research. The first one is appearance based (view based) face recognition. This 
approach represents a face image as a high dimensional vector, i.e., a point in a high 
dimensional vector space. Statistical techniques are then used to analyze the distribution of 
the face image in the vector space, and features are extracted in the vector space using linear 
decomposition like Principal Component Analysis (PCA) (also called ‘the Eigen Face’ 
method proposed in (Turk and Pentland, 1991)), Independent Component Analysis (ICA) 
(Bartlett, et al., 1998) or non linear methods like Kernel Principal Component Analysis 
(KPCA) (Cholkopf et al., 1998). The second group of approaches is model-based. The model-
based face recognition scheme is aimed at constructing a model of the human face, which 
can capture the facial variations of individuals. Exemplar approaches in this category 
include Feature-based Elastic Bunch Graph Matching (Wiskott et al. 1997) and Active 
Appearance Model (AAM).(Edwards et al., 1998) 
 
In 2002, the Face Recognition Vendor Test (FRVT 2002) was held. It was an independently 
administered technology evaluation sponsored by the Defense Advanced Research Projects 
Agency (DARPA), the National Institute of Standards and Technology (NIST) and other 
agencies. The primary objective of FRVT 2002 was to provide performance measures for 
assessing the ability of automatic face recognition systems to meet real-world requirements. 
FRVT 2002 measured the performance of the core capabilities of face recognition technology, 
all based on 2D face recognition. Ten participants were evaluated. (Phillips et al., 2002) 
 
FRVT 2002 showed that one of the most challenging tasks for modern face recognition 
systems is recognizing faces in non-frontal imagery. Most face recognition systems 
performed well when all of the images were frontal. But, as a subject became more and more 
off angle (both horizontally and vertically), performance decreased. Additionally FRVT 2002 
also showed that the variation in the structure of lighting had a great effect on performance 
(Phillips et al., 2002).  
 
From these observations, the following conclusions can be drawn. Although 2D face 
recognition has achieved considerable success, certain problems still exist. Because the 2D 
face images used not only depend on the face of a subject, but also depend on the imaging 

 

factors, such as the environmental illumination and the orientation of the subject. These two 
sources of variability in the face image often make the 2D face recognition system fail. That 
is the reason why 3D face recognition is believed to have an advantage over 2D face 
recognition. Although the first main rationale for 2D face recognition mentioned above, i.e. 
“a picture contains enough information about the identity of a person”, may be true for a 
human being, for an artificial system, without the biological knowledge of how the human 
vision system works, 2D face recognition is still a very difficult task. 
 
With the development of 3D imaging technology, more and more attention has been 
directed to 3D face recognition. In (Bowyer et al., 2004), Bowyer et al. provide a survey of 3D 
face recognition technology. Some of the techniques are derived from 2D face recognition, 
such as the use of PCA in (Hesher et al., 2003; Chang et al. 2003) to extract features from 
faces. Some of the techniques are unique to 3D face recognition, such as the geometry 
matching method in (Gordon, 1991) and the profile matching proposed in (Cartoux et al. 
1989; Nagamine et al. 1992).  
 
Most of the 3D face recognition systems treat the 3D face surface as a rigid surface. But 
actually, the face surface is deformed by different expressions of the subject. So, systems 
which treat the face as a rigid surface are significantly challenged when dealing with faces 
with expressions. In (Chang et al., 2005), experiments using Iterative Closest Point (ICP) and 
PCA methods were performed on the recognition of faces with expression. The authors 
found that expression changes do cause performance declines in all the methods. (Chang et 
al., 2005) 
 
Therefore, expression has become a big challenge in 3D face recognition systems. Up to 
now, only some methods address the facial expression issue in face recognition. In 
(Bronstein et al., 2003), the authors present a 3D face recognition approach based on a 
representation of the facial surface, invariant to isometric deformation by facial expression. 
In (Lu and Jain, 2005), both rigid registration and non-rigid deformations caused by 
expression were calculated. Iterative Closest Point (ICP) was used to perform rigid 
registration. For non-rigid deformation, the thin plated spline (TPS) was applied. For the 
purpose of face matching, the non-rigid deformations from different sources were 
identified, which was formulated as a two-class classification problem: intra-subject 
deformation vs. inter-subject deformation. The deformation classification results were 
integrated with the matching distance of rigid registration to make the final decision. In 
(Chang et al., 2005), the author tried to extract the area that deforms least with different 
facial expressions and used this area as the feature for every subject. Then ICP and PCA 
methods were applied for the matching. 
 
In our research, we want to tackle the expression challenge in 3D face recognition from a 
different point of view. Because the deformation of the face surface is always related with 
different expressions, an integrated expression recognition and face recognition system is 
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recognition. Section 5 explains the process used for 3D face recognition. Section 6 describes 
the experiments and the results obtained. Section 7 presents our discussion and conclusion.  

 
2. Relationship between expression recognition and face recognition 

From the psychological point of view, it is still not known whether facial expression 
recognition information directly impacts the face recognition process in human beings. 
Some models suggest there is not relationship between face recognition and facial 
expression recognition (Bruce and Young, 1986). Other models support the opinion that a 
connection exists between the two processes (Hansch and Pirozzolo, 1980).  
 
One of the experiments that support the existence of the connection between facial 
expression recognition and face recognition was reported in (Etcoff and Magee, 1992). The 
authors found that people are slower in identifying happy and angry faces than they are in 
identifying faces with neutral expression. Also, in (Hay et al., 1991) experiments show that 
people are slower in identifying pictures of familiar faces when they exhibit uncommon 
facial expressions. 
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Fig. 1. Simplified framework of 3D face expression 
 
Our proposed framework is based on the assumption that the identification of the facial 
expression of a query face will aid an automated face recognition system achieve its goal. 

 

The incoming 3D range image is first processed by an expression recognition system to find 
the most appropriated expression label for it. The expression label could be one of the six 
prototypical expressions of the faces, which are happiness, sadness, anger, fear, surprise and 
disgust (Ekman and Friesen, 1971). In addition, the face could also be labeled as ‘neutral’. 
Therefore, the output of the expression recognition system will be one of the seven 
expressions. Our framework proposes that a different face recognition approach be used for 
each type of expression. If the expression label determined is neutral expression, then the 
incoming 3D range image is directly passed to a neutral expression face recognition system, 
which uses the features of the probe image to match those of the gallery images and get the 
closest match. If the expression label determined is other than neutral expression, then for 
each of the six prototypical expressions, a separate face recognition subsystem should be 
used. The system will find the right face by modeling the variations of the face features 
between the neutral face and the expressional face. Because recognition through modeling is 
a more complex process than the direct matching for the neutral face, our framework aligns 
with the view that people will be slower in identifying happy and angry faces than they will 
be in identifying faces with neutral expression. Figure 1 shows a simplified version of this 
framework, it only deals with happy (smiling) expressions in addition to neutral. Smiling is 
the most common (non-neutral) expression displayed by people in public. 

 
3. Data acquisition and preprocessing 

 

 
Fig. 2. 3D face surface acquired by the 3D scanner 



An	Integrative	Approach	to	Face	and	Expression	Recognition	from	3D	Scans 299

 

recognition. Section 5 explains the process used for 3D face recognition. Section 6 describes 
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To test the performance of our framework, a database including images from 30 subjects, 
was built. In this database, we included faces with the most common expression i.e., 
smiling, as well as neutral faces from the same subjects. Each subject participated in two 
data acquisition sessions, which took place in two different days. In each session, two 3D 
scans were acquired. One was neutral expression; the other was a happy (smiling) 
expression. The 3D scanner used was a Fastscan 3D scanner from Polhemus Inc. The 
accuracy of this scanner is specified as 1mm. The resulting database contains 60 3D neutral 
scans and 60 3D smiling scans of 30 subjects. Figure 2 shows an example of the 3D scans 
obtained using this scanner.  
 
In 3D face recognition, registration is a key pre-processing step. It may be crucial to the 
efficiency of matching methods. In our experiment, a method based on the symmetric 
property of the face is used to register the face image. In converting the 3D scan from 
triangulated mesh format to a range image with a sampling interval of 2.5 mm(e.g., Fig 2), 
trilinear interpolation was used (Li and Barreto, 2005). Unavoidably, the scanning process 
will result in face surfaces containing unwanted holes, especially in the area covered by dark 
hair, such as the eye brows. To circumvent this problem, the cubic spline interpolation 
method was used to patch the holes. An example of the resulting 3D range image is shown 
in Fig 3. 
 

 
Fig. 3. Mesh plot of the converted range image 

 

 

4. 3D expression recognition 

Facial expression of the face is a basic mode of nonverbal communication among people. 
The facial expression of another person is often the basis on which we form significant 
opinions on such characteristics as friendliness, trustworthiness, and status. The facial 
expressions convey information about emotion, mood and ideas.  
 
In (Ekman and Friesen, 1971), Ekman and Friesen proposed six primary emotions. Each 
possesses a distinctive content together with a unique facial expression. These prototypical 
emotional displays are also referred to as basic emotions. They seem to be universal across 
human ethnicities and cultures. These six emotions are happiness, sadness, fear, disgust, 
surprise and anger. Together with the neutral expression, these seven expressions also form 
the basic prototypical facial expressions.  
 
Facial expressions are generated by contractions of facial muscles, which result in 
temporally deformed facial features such as eye lids, eye brows, nose, lips and skin textures, 
often revealed by wrinkles and bulges. Typical changes of muscular activities for 
spontaneous expressions are brief, usually between 250ms and 5s. Three stages have been 
defined for each expression, which are onset (attack), apex (sustain) and offset (relaxation). 
In contrast to these spontaneous expressions, posed or deliberate expressions can be found 
very commonly in social interactions. These expressions typically last longer than 
spontaneous expressions.  
Automatic facial expression recognition has gained more and more attention recently. It has 
various potential applications in improved intelligence for human computer interface, 
image compression and synthetic face animation. “Face expression recognition deals with 
the classification of facial motion and facial feature deformation into abstract classes that are 
purely based on visual information.” (Fasel and Luettin, 2003).  
 
As in face recognition, most contemporary facial expression recognition systems use two-
dimensional images or videos as data format. Therefore, the same challenges exist for the 
face expression recognition as for face recognition, i.e. 2D formats are dependent on the pose 
of the subjects and on the illumination of the environment. In this respect this paper fills the 
gap by proposing a facial expression recognition system that uses three dimensional images 
or range images. 3D range images have the advantage of invariance with respect to subject 
alignment and illumination. In addition, the deformed features resulting from expressions 
are easy to extract from 3D range images. 
 
In our experiment, we sought to recognize social smiles, which were posed by each subject, 
in their apex period. Smiling is the easiest of all expressions to find in photographs and is 
readily produced by people on demand. The smile is generated by the contraction of the 
Zygomatic Major muscle. The Zygomatic Major originates in the cheek bone (Zygomatic 
arch) and inserts in muscles near the corner of the mouth. This muscle lifts the corner of the 
mouth obliquely upwards and laterally, producing a characteristic “smiling expression”. So 
the most distinctive features associated with a smile are the bulge of the cheek muscle and 
the uplift of the corner of the mouth, as can be seen in Fig 4. The line on the face generated 
by a smiling expression is called the nasal labial fold (smile line).  
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Fig. 4. Illustration of the features of a smiling face 
 
The following steps are followed to extract the features for the smiling expression: 

1. An algorithm is developed to obtain the coordinates of five characteristic points A, 
B, C, D and E in the face range image as shown in Figure 4. A and D are at the 
extreme points of the base of the nose. B and E are the points defined by the corners 
of the mouth. C is in the middle of the lower lip.   

2. The first feature is the width of the mouth BE normalized by the length of AD. 
Obviously, while smiling the mouth becomes wider. The first feature is represented 
by mw. 

3. The second feature is the depth of the mouth (The difference between the Z 
coordinates of points BC and EC) normalized by the height of the nose to capture 
the fact that the smiling expression pulls back the mouth. This second feature is 
represented by md. 

4. The third feature is the uplift of the corner of the mouth, compared with the middle 
of the lower lip d1 and d2, as shown in the figure, normalized by the difference of 
the Y coordinates of points AB and DE, respectively and represented by lc. 

5. The fourth feature is the angle of AB and DE with the central vertical profile, 
represented by ag.  

6. The last two features are extracted from the semicircular areas shown, which are 
defined by using AB and DE as diameters. The histograms of the range (Z 
coordinates) of all the points within these two semicircles are calculated.  

 
The following figure shows the histograms for the smiling face and the neutral face of the 
above subject. 

 

 
Fig. 5. Histogram of range of cheeks for neutral and smiling face 
 
The two figures in the first row are the histograms of the range values for the left cheek and 
right cheek of the neutral face image; the two figures in the second row are the histograms of 
the range values for the left cheek and right cheek of the smiling face image. 
 
From the above figures, we can see that the range histograms of the neutral and smiling 
expressions are different. The smiling face tends to have large values at the high end of the 
histogram because the bulge of the cheek muscle. On the other hand, a neutral face has large 
values at the low end of the histogram distribution. Therefore two features can be obtained 
from the histograms: One is called the ‘histogram ratio’, represented by hr, the other is called 
the ‘histogram maximum’, represented by hm. 
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In summary, six features, i.e. mw, md, lc, ag, hr and hm are extracted from each face for the 
purpose of expression recognition. 
 
After the features have been extracted, this becomes a general classification problem. Two 
pattern classification methods are applied to recognize the expression of the incoming faces. 
 

1. Linear discriminant classifier: (Linear Discriminant Analysis-LDA) 
 
LDA tries to find the subspace that best discriminates different classes by maximizing the 
between-class scatter matrix bS , while minimizing the within-class scatter matrix wS in the 
projective subspace. wS  and bS  are defined as follows,  
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coordinates) of all the points within these two semicircles are calculated.  

 
The following figure shows the histograms for the smiling face and the neutral face of the 
above subject. 

 

 
Fig. 5. Histogram of range of cheeks for neutral and smiling face 
 
The two figures in the first row are the histograms of the range values for the left cheek and 
right cheek of the neutral face image; the two figures in the second row are the histograms of 
the range values for the left cheek and right cheek of the smiling face image. 
 
From the above figures, we can see that the range histograms of the neutral and smiling 
expressions are different. The smiling face tends to have large values at the high end of the 
histogram because the bulge of the cheek muscle. On the other hand, a neutral face has large 
values at the low end of the histogram distribution. Therefore two features can be obtained 
from the histograms: One is called the ‘histogram ratio’, represented by hr, the other is called 
the ‘histogram maximum’, represented by hm. 
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In summary, six features, i.e. mw, md, lc, ag, hr and hm are extracted from each face for the 
purpose of expression recognition. 
 
After the features have been extracted, this becomes a general classification problem. Two 
pattern classification methods are applied to recognize the expression of the incoming faces. 
 

1. Linear discriminant classifier: (Linear Discriminant Analysis-LDA) 
 
LDA tries to find the subspace that best discriminates different classes by maximizing the 
between-class scatter matrix bS , while minimizing the within-class scatter matrix wS in the 
projective subspace. wS  and bS  are defined as follows,  
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Where im  is the mean vector for the individual class iX , and in  is the number of samples in 
class iX , m is the mean vector of all the samples. L is the number of classes. 
The LDA subspace is spanned by a set of vectors W, satisfying  
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2. Support Vector Machine (SVM): 

 
Support vector machine is a relatively new technology for classification. It relies on 
preprocessing the data to represent patterns in a high dimension, typically much higher 
than the original feature space. With an appropriate nonlinear mapping to a sufficiently 
high dimension, data from two categories can always be separated by a hyperplane (Duda et 
al., 2001). In our research, the Libsvm program package (Chang and Lin, 2001) was used to 
implement the support vector machine.  

 
5. 3D face recognition 

5.1 Neutral face recognition  
In previous related work, we have found that the central vertical profile and the face 
contour are both discriminant features for every person (Li et al., 2005a). Therefore, for 
neutral face recognition, the same method as in (Li et al., 2005b) is used. In this approach, 
the results of central vertical profile matching and contour matching are combined. The 
combination of the two classifiers improves the performance noticeably. The final similarity 
score for the probe image is the product of ranks for each of the two classifiers. The image 
which has the smallest score in the gallery will be chosen as the matching face for the probe 
image.  

 
5.2 Smiling face recognition  
For the recognition of faces labeled as ‘smiling’ by the expression recognition module, the 
probabilistic subspace method proposed by (Moghaddam and Pentland, 1995) is used. The 
following paragraphs provide an outline of this method and the relative principal 
component analysis (PCA). 
 
Subspace methods are commonly used in computer vision, including face recognition. A 
raw 2D image can be represented as a vector in a high dimensional space. In most cases, 
however, the information which needs to be extracted has a much lower dimension. That is 
where subspace methods such as principal component analysis (PCA), or the previously 

 

introduced linear discriminant analysis (LDA), can be applied to cope with the problem of 
reducing excessive dimensionality in the data to be analyzed.  
 
PCA 
 
Unlike LDA, which seeks a set of features that results in the best separation of each class, 
PCA seeks a projection that best represents the data in a least-square sense. In PCA, a set of 
vectors are computed from the eigenvectors of the sample covariance matrix C, 
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where m  is the mean vector of the sample set. The eigen space Y is spanned by k 
eigenvectors 1u  2u ….. ku , corresponding to the k largest eigen values of the covariance 
matrix C.  
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The dimensionality of vector iy  is   K (K<<M). 
 
Probabilistic subspace method 
 
In  (Moghaddam and Pentland, 1995) (Moghaddam and Pentland, 1997), B. Moghaddam et 
al. presented an unsupervised technique for visual learning, which is based on density 
estimation in high dimensional spaces using an eigen decomposition. The probability 
density is used to formulate a maximum-likelihood estimation framework for visual search, 
target detection and automatic object recognition. Using the probabilistic subspace method, 
a multi-class classification problem can be converted into a binary classification problem. 
 
Let Δ represents the difference between two vectors in a high dimensional subspace.  
  
 1 2I I    (8) 
 
Δ belongs to the intrapersonal space in the high dimensional subspace if I1 and I2 are two 
different instances of the same subject; Δ belongs to the interpersonal or extrapersonal space 
if I1 and I2 are instances from different subjects. ( )S   is defined as the similarity between I1 
and I2. Using Bayes Rule, 
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( | )IP   and ( | )EP    are the likelihoods of intrapersonal space and extrapersonal space. 

The likelihood function can be estimated by traditional means, i.e. maximum likelihood 
estimation or Parzen window estimation if there are enough data available. In most cases, 
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because of the high dimensionality of the subspace, training data are not sufficient. 
Subspace density estimation is another choice, which is the case in our experiment. ( )IP   
and ( )EP  are a priori probabilities for intrapersonal and extrapersonal subspace. Thus, 
according to the maximum a posteriori (MAP) rule, if ( | )IP   is greater than ( | )EP   , the 
two images are considered to be different instances of the same subject, otherwise, they 
belong to two subjects. 
 
Another method based only on I can be used to simplify the computation. This maximum-
likelihood (ML) similarity measure ignores extrapersonal variations. 
 
 '( ) ( | )IS P     (10) 
 
In (B.Moghaddam 1995), it was found that the I density in (10) carries greater weight in 
modeling the posterior similarity used for MAP recognition. The extrapersonal E , on the 
other hand serves a secondary role and its accurate modeling is less critical. By dropping the 

E  likelihood in favor of an ML similarity, the results typically suffer only a minor deficit in 
accuracy as compared to ( )S  . 
 
Subspace density estimation 
 
Given the high dimensionality of Δ, traditional methods are not suitable for the purpose of 
probability density estimation. An efficient subspace density estimation method proposed in 
(B.Moghaddam 1995; B.Moghaddam 1997) was used. The vector space of NR is divided into 
two complementary subspaces: DIFS (Difference in Feature Space), F , and DFFS (Difference 
from Feature Space), F ,as show in the figure.  
 

             
 
Fig. 6. The principal subspace F  and its orthogonal complement F  for a Gaussian density 
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F is spanned by the first M (M<<N) eigen vectors corresponding to the largest M eigen 
values of principal component decomposition results. 
As derived in(B. Moghaddam 1995), the complete likelihood estimate can be written as the 
product of two independent marginal Gaussian densities 
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where ( | )FP   is the true marginal density in F , ˆ ( | ; )FP   is the estimated marginal 

density in the orthogonal complement F , iy are the principal components and 2( )  is the 

PCA residual . From (B.Moghaddam 1995), the optimal value for  is the average of the F  
eigen values. 
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In the experiment for smiling face expression recognition, because of the limited number of 
subjects (30), the central vertical profile and the contour are not used directly as vectors in a 
high dimensional subspace. Instead, they are down sampled to a dimension of 17 for the 
analysis. The dimension of subspace F is set to be 10, which contains approximately 97% of 
the total variance. The dimension of complementary subspace F is 7. In this case also, 
independent ranks are computed for the central profile and the contour of each gallery face. 
The overall rank is found by sorting the product of these two ranks and is used to determine 
the final recognition result. 

 
6. Experiments and Results 

One gallery and three probe databases are formed for the evaluation of our methods. The 
gallery database has 30 neutral faces, one for each subject, acquired in the first data 
acquisition session. Three probe sets are constituted as follows and used in experiments 2 
and 3. 
 
Probe set 1: 30 neutral faces acquired in the second session. 
Probe set 2: 30 smiling faces acquired in the second session. 
Probe set 3: 60 faces, constituted by probe set 1 and probe set 2. 
The following experiments are undertaken: 
 
Experiment 1: Testing the expression recognition module 
 
The leave-one-out cross validation method is used to test the expression recognition 
classifier. Every time, the faces collected from 29 subjects in both data acquisition sessions 
are used to train the classifier and the four faces of the remaining subject collected in both 
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In the experiment for smiling face expression recognition, because of the limited number of 
subjects (30), the central vertical profile and the contour are not used directly as vectors in a 
high dimensional subspace. Instead, they are down sampled to a dimension of 17 for the 
analysis. The dimension of subspace F is set to be 10, which contains approximately 97% of 
the total variance. The dimension of complementary subspace F is 7. In this case also, 
independent ranks are computed for the central profile and the contour of each gallery face. 
The overall rank is found by sorting the product of these two ranks and is used to determine 
the final recognition result. 

 
6. Experiments and Results 

One gallery and three probe databases are formed for the evaluation of our methods. The 
gallery database has 30 neutral faces, one for each subject, acquired in the first data 
acquisition session. Three probe sets are constituted as follows and used in experiments 2 
and 3. 
 
Probe set 1: 30 neutral faces acquired in the second session. 
Probe set 2: 30 smiling faces acquired in the second session. 
Probe set 3: 60 faces, constituted by probe set 1 and probe set 2. 
The following experiments are undertaken: 
 
Experiment 1: Testing the expression recognition module 
 
The leave-one-out cross validation method is used to test the expression recognition 
classifier. Every time, the faces collected from 29 subjects in both data acquisition sessions 
are used to train the classifier and the four faces of the remaining subject collected in both 
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sessions are used to test the classifier. The results shown below are the average of the 30 
recognition rates. Two classifiers are used. One is the linear discriminant classifier; the other 
is a support vector machine classifier. They have similar performance of over 90% 
recognition rate. 
 

Methods LDA SVM 
Expression recognition rate 90.8% 92.5% 

 
Table 1. Expression recognition rate 
  
Experiment 2: Testing the neutral and smiling recognition modules separately 
 
In the first two sub experiments, probe faces are directly fed to the neutral face recognition 
module. In the third sub experiment leave-one-out cross validation is used to verify the 
performance of the smiling face recognition module. In each cycle, 29 subjects’ faces from 
both acquisition sessions are used for the training and the remaining subject’s smiling face 
from the second session is used as testing face. 
 

2.1 Neutral face recognition: probe set 1 is used. (neutral face recognition module is 
used) 

2.2 Neutral face recognition: probe set 2 is used. (neutral face recognition module is 
used) 

2.3 Smiling face recognition: probe set 2 is used. (smiling face recognition module is 
used) 

 
Fig. 7. Results of Experiment 2 
 
From Figure 7, it can be seen that when the incoming faces are all neutral, the algorithm 
which treats all the faces as neutral achieves a very high recognition rate. On the other hand, 

 

if the incoming faces are smiling faces, then the neutral face recognition algorithm does not 
perform well, only 57% rank one recognition rate is obtained. In contrast, when the smiling 
face recognition algorithm is used to deal with smiling faces, the recognition rate can go 
back as high as 80%.  
 
Experiment 3: Testing a realistic scenario 
 
This experiment emulates a realistic situation in which a mixture of neutral and smiling 
faces (probe set 3) must be recognized. Sub experiment 1 investigates the performance 
obtained if the expression recognition front end is bypassed, and the recognition of all the 
probe faces is attempted with the neutral face recognition module alone. The last two sub 
experiments implement the full framework shown in Figure 1. (Faces are first sorted 
according to expression and then routed to the appropriate recognition module.) In 3.2 the 
expression recognition is performed with the linear discrimant classifier, while in 3.3 it is 
implemented through the support vector machine approach.  
 

3.1 Neutral face recognition: probe 3 is used. (Probe 3 is treated as neutral faces.) 
3.2 Integrated expression and face recognition: probe 3 is used. (Linear discriminate 

classifier for expression recognition.) 
3.3 Integrated expression and face recognition: probe 3 is used. (Support vector 

machine for expression recognition.) 
 

 
Fig. 8. Results of Experiment 3 
 
It can been seen in Figure 8, that if the incoming faces include both neutral faces and smiling 
faces the recognition rate can be improved about 10 percent by using the integrated 
framework proposed here. 
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7. Discussion and Conclusion 

7.1 Discussion  
Experiment 1 was aimed at determining the level of performance of the Facial Expression 
Recognition Module, by itself. Using the leave-one-out cross validation approach, 30 
different tests were carried out (Each using 29 x 2 neutral faces and 29 x 2 smiling faces for 
training). The average success rate in identifying the expressions of the face belonging to the 
subject not used for training, in each case, was 90.8% with LDA and 92.5% when SVM was 
used. This confirms the capability of this module to successfully sort these two types of faces 
(neutral vs. smiling). Both algorithms were applied on the six facial features obtained from 
the range images (mw, md, lc, ag, hr and hm). Using these features, the actual choice of 
algorithm used to separate neutral from smiling faces did not seem to be critical. 
 
Experiment two was carried out to test one of the basic assumptions behind the framework 
proposed (Figure 1). That is, a system meant to recognize neutral faces may be successful 
with faces that are indeed neutral, but may have much less success when dealing with faces 
displaying an expression, e.g., smiling faces. This differentiation was confirmed by the high 
rank-one recognition (97%) achieved by the Neutral Face Recognition Module for neutral 
faces (probe set 1) in subexperiment 1, which was in strong contrast with the much lower 
rank-one recognition rate (57%) achieved by this same module for smiling faces (probe set 
2), in subexperiment 2. On the other hand, in the third subexperiment we confirmed that a 
module that has been specifically developed for the identification of individuals from 
smiling probe images (probe set 2) is clearly more successful in this task (80% rank-one 
recognition). 
 
Finally, Experiment 3 was meant to simulate a more practical scenario, in which the 
generation of probe images does not control the expression of the subject. Therefore for all 
three subexperiments in Experiment 3 we used the comprehensive probe set 3, including 
one neutral range image and one smiling range image from each of the subjects. In the first 
subexperiment we observe the kind of results that could be expected when these 60 probe 
images are processed by a “standard” Neutral Face Recognition Module alone, which is 
similar to several of the contemporary approaches used for 3D face recognition. 
Unfortunately, with a mix of neutral and smiling faces this simple system only achieves a 
77% rank-one face recognition (much lower than the 97% obtained for probe set 1, made up 
of just neutral faces, in Experiment 2). This result highlights the need to account for the 
possibility of a non-neutral expression in 3D face recognition systems. On the other hand, in 
sub experiments two and three we apply the same mixed set of images (Probe set 3) through 
the complete process depicted in our proposed framework (Figure 1). That is, every 
incoming image is first sorted by the Facial Expression Recognition Module and accordingly 
routed to either the Neutral Face Recognition Module or the Smiling Face Recognition 
Module, where the identity of the subject is estimated. The right-most four columns in 
Figure 8 show that, whether using the linear discriminant analyzer or the support vector 
machine for the initial expression sorting, the rank-one face recognition levels achieved by 
the overall system are higher (87%, 85%). 
 
In reviewing the results of these experiments, it should be noted that all the experiments 
involving smiling faces are done using the leave-one-out cross validation method because of 

 

the size of the database. Therefore the results displayed are the average, not the best one. For 
simplicity of implementation, the training samples for the expression recognition system 
and the smiling face recognition systems are the same faces. In a real application, we would 
select the training samples to make the best classifier for expression recognition and the 
identification of faces with a type of expression separately. Considerable performance 
improvement might be achieved in this way. 

 
7.2 Conclusion  
In this paper we have presented an alternative framework proposed to enhance the 
performance of 3D face recognition algorithms, by acknowledging the fact that the face of a 
subject is a deformable surface that undergoes significant changes when the subject displays 
common expressions. Our main proposition is that, instead of ignoring the possibility of 
significant facial changes due to expressions, 3D face recognition systems should account for 
the potential presence of an expression in their probe images. In particular our suggested 
framework requires the development of two new functional modules, in addition to a 
“standard” face recognition module for neutral faces: 
 

- A Facial Expression Recognition Module, capable to “tag” an incoming probe 
image with an appropriate expression label, and route it to an appropriate 
“specialized” face recognition classifier (matched to the expression found in the 
probe face), where the identity of the subject will be estimated. 

- “Specialized” Face Recognition Classifiers that are trained to identify faces with 
expressions other than “neutral” 

 
In this work we have developed the framework for the simplest case in which we consider 
only neutral and “smiling” faces, as one very common form of expression, frequently 
displayed by people in public. 
 
Our experimentation with this implementation of the framework, using 3 sets of probe 
images has revealed that: 
 

- It is possible to implement an appropriate module for the sorting of neutral vs. 
smiling 3D face images, based on classification of six facial features we have 
defined, and utilizing either the linear discriminant analysis or the support vector 
machine approaches (Experiment 1). 

- While a contemporary “neutral” face classifier is capable of achieving a good 
performance, (97% rank-one recognition), when identifying neutral 3D faces, the 
performance of this same classifier is much weaker (57% rank-one recognition) 
when dealing with otherwise comparable “smiling” faces. (Experiment 2). 

- It is feasible to develop a “specialized” classifier that will identify “smiling” faces 
with a reasonable level of success (80% rank-one recognition), which is clearly 
higher than the performance of the “neutral” face classifier for the same scenario 
(Experiment 2). 

- A system that follows the complete framework proposed (Figure 1) is better able to 
identify subjects from a mixture of neutral and smiling 3D faces (87% and 85% 
rank-one recognition) than a standard 3D face recognition system (77% one-rank 
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training). The average success rate in identifying the expressions of the face belonging to the 
subject not used for training, in each case, was 90.8% with LDA and 92.5% when SVM was 
used. This confirms the capability of this module to successfully sort these two types of faces 
(neutral vs. smiling). Both algorithms were applied on the six facial features obtained from 
the range images (mw, md, lc, ag, hr and hm). Using these features, the actual choice of 
algorithm used to separate neutral from smiling faces did not seem to be critical. 
 
Experiment two was carried out to test one of the basic assumptions behind the framework 
proposed (Figure 1). That is, a system meant to recognize neutral faces may be successful 
with faces that are indeed neutral, but may have much less success when dealing with faces 
displaying an expression, e.g., smiling faces. This differentiation was confirmed by the high 
rank-one recognition (97%) achieved by the Neutral Face Recognition Module for neutral 
faces (probe set 1) in subexperiment 1, which was in strong contrast with the much lower 
rank-one recognition rate (57%) achieved by this same module for smiling faces (probe set 
2), in subexperiment 2. On the other hand, in the third subexperiment we confirmed that a 
module that has been specifically developed for the identification of individuals from 
smiling probe images (probe set 2) is clearly more successful in this task (80% rank-one 
recognition). 
 
Finally, Experiment 3 was meant to simulate a more practical scenario, in which the 
generation of probe images does not control the expression of the subject. Therefore for all 
three subexperiments in Experiment 3 we used the comprehensive probe set 3, including 
one neutral range image and one smiling range image from each of the subjects. In the first 
subexperiment we observe the kind of results that could be expected when these 60 probe 
images are processed by a “standard” Neutral Face Recognition Module alone, which is 
similar to several of the contemporary approaches used for 3D face recognition. 
Unfortunately, with a mix of neutral and smiling faces this simple system only achieves a 
77% rank-one face recognition (much lower than the 97% obtained for probe set 1, made up 
of just neutral faces, in Experiment 2). This result highlights the need to account for the 
possibility of a non-neutral expression in 3D face recognition systems. On the other hand, in 
sub experiments two and three we apply the same mixed set of images (Probe set 3) through 
the complete process depicted in our proposed framework (Figure 1). That is, every 
incoming image is first sorted by the Facial Expression Recognition Module and accordingly 
routed to either the Neutral Face Recognition Module or the Smiling Face Recognition 
Module, where the identity of the subject is estimated. The right-most four columns in 
Figure 8 show that, whether using the linear discriminant analyzer or the support vector 
machine for the initial expression sorting, the rank-one face recognition levels achieved by 
the overall system are higher (87%, 85%). 
 
In reviewing the results of these experiments, it should be noted that all the experiments 
involving smiling faces are done using the leave-one-out cross validation method because of 

 

the size of the database. Therefore the results displayed are the average, not the best one. For 
simplicity of implementation, the training samples for the expression recognition system 
and the smiling face recognition systems are the same faces. In a real application, we would 
select the training samples to make the best classifier for expression recognition and the 
identification of faces with a type of expression separately. Considerable performance 
improvement might be achieved in this way. 

 
7.2 Conclusion  
In this paper we have presented an alternative framework proposed to enhance the 
performance of 3D face recognition algorithms, by acknowledging the fact that the face of a 
subject is a deformable surface that undergoes significant changes when the subject displays 
common expressions. Our main proposition is that, instead of ignoring the possibility of 
significant facial changes due to expressions, 3D face recognition systems should account for 
the potential presence of an expression in their probe images. In particular our suggested 
framework requires the development of two new functional modules, in addition to a 
“standard” face recognition module for neutral faces: 
 

- A Facial Expression Recognition Module, capable to “tag” an incoming probe 
image with an appropriate expression label, and route it to an appropriate 
“specialized” face recognition classifier (matched to the expression found in the 
probe face), where the identity of the subject will be estimated. 

- “Specialized” Face Recognition Classifiers that are trained to identify faces with 
expressions other than “neutral” 

 
In this work we have developed the framework for the simplest case in which we consider 
only neutral and “smiling” faces, as one very common form of expression, frequently 
displayed by people in public. 
 
Our experimentation with this implementation of the framework, using 3 sets of probe 
images has revealed that: 
 

- It is possible to implement an appropriate module for the sorting of neutral vs. 
smiling 3D face images, based on classification of six facial features we have 
defined, and utilizing either the linear discriminant analysis or the support vector 
machine approaches (Experiment 1). 

- While a contemporary “neutral” face classifier is capable of achieving a good 
performance, (97% rank-one recognition), when identifying neutral 3D faces, the 
performance of this same classifier is much weaker (57% rank-one recognition) 
when dealing with otherwise comparable “smiling” faces. (Experiment 2). 

- It is feasible to develop a “specialized” classifier that will identify “smiling” faces 
with a reasonable level of success (80% rank-one recognition), which is clearly 
higher than the performance of the “neutral” face classifier for the same scenario 
(Experiment 2). 

- A system that follows the complete framework proposed (Figure 1) is better able to 
identify subjects from a mixture of neutral and smiling 3D faces (87% and 85% 
rank-one recognition) than a standard 3D face recognition system (77% one-rank 
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recognition) that relies on the assumption that the subjects are expressionless 
during the capture of the probe images (Experiment 3). 

 
The work reported in this paper represents an attempt to acknowledge and account for the 
presence of expression on 3D face images, towards their improved identification. In 
comparison with other methods that pursue similar goals [1, 19, 32], the method introduced 
here is computationally efficient. Furthermore, this method also yields as a secondary result 
the information of the expression found in the faces. 
 
Based on these findings we believe that the impact of expression on 3D face recognition and 
the development of systems that account for it, such as the framework introduced here, will 
be keys to future enhancements in the field of 3D Automatic Face Recognition. 
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The work reported in this paper represents an attempt to acknowledge and account for the 
presence of expression on 3D face images, towards their improved identification. In 
comparison with other methods that pursue similar goals [1, 19, 32], the method introduced 
here is computationally efficient. Furthermore, this method also yields as a secondary result 
the information of the expression found in the faces. 
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the development of systems that account for it, such as the framework introduced here, will 
be keys to future enhancements in the field of 3D Automatic Face Recognition. 
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Abstract
The human face is one of the most important biometric modalities for automatic authentica-
tion. Three-dimensional face recognition exploits facial surface information. In comparison
to illumination based 2D face recognition, it has good robustness and high fake resistance,
so that it can be used in high security areas. Nevertheless, as in other common biometric
systems, potential risks of identity theft, cross matching and exposure of privacy information
threaten the security of the authentication system as well as the user’s privacy. As a crucial
supplementary of biometrics, the template protection technique can prevent security leakages
and protect privacy.
In this chapter, we show security leakages in common biometric systems and give a detailed
introduction on template protection techniques. Then the latest results of template protection
techniques in 3D face recognition systems are presented. The recognition performances as
well as the security gains are analyzed.

1. Introduction

Biometrics is technique to automatically recognize a person based on his/her physiological
or behavior characteristics. Since the characteristics used are unique to each individual, bio-
metrics can create a direct link between users and their identity. From this point of view, it
can provide more secure authentication in comparison to password and token based methods.
Moreover, it is very convenient to use.
Applications of biometrics have spread rapidly in last decade and are still growing. In Euro-
pean e-passports, images of faces and fingerprints are stored. Many countries employ biomet-
ric information in citizen cards. In the US visit program, 10 fingers and the facial image are
also acquired to support visa application and border control. It is efficient to prevent identity
fake and increase the security against terrorists. Additionally, biometrics are widely used in
access control, payment, banking and so on.
As biometrics markets are blooming, novel security and privacy leakages, such as exposure
of private sensitive information, unchangeability and impersonate of biometric identities,
and profiling, attract a lot of attention from public sectors, data protection officers, service
providers and end users. After carefully analyzing the weakness of biometrics and summa-
rizing requirements for secure biometric authentication, template protection techniques have
been developed as an important supplement to common biometric system with improved
security and enhanced privacy protection.
In this chapter we address the template protection techniques for 3D face recognition sys-
tems. Among fingerprints and iris, face is one of the most popular biometric modalities. So
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far, facial information is mainly acquired as 2D illumination based images, 3D surfaces, or 2D
near infra-red images. In comparison with other methods, 3D face recognition utilizes rich
geometric information of facial surfaces, is less sensitive to ambient light conditions and ro-
bust to face variation due to different poses. Especially due to its resistance to fake attack it
is very attractive in high security applications. Recently, 3D scanners become more and more
efficient and economically priced. A sufficiently precise 3D face scan can be accomplished in
several milliseconds. 3D face recognition shows a better recognition performance than 2D face
recognition and other kinds of biometrics modalities. By implementing template protection
techniques for 3D facial information not only the 3D facial information itself is protected. Also
potential risks are avoided and high secure authentication systems become realizable.

2. Motivation

As biometrics is applied in manifold areas and users enjoy its benefits, vulnerabilities of bio-
metric system and potential security risks cannot be neglected or underestimated as shown in
following example.
Bob is a frequent traveller. He does not like waiting in long queues including the queue in
front of a border control desk. Thus, he registers at the airport for the automatic verification
system that is based on 3D face recognition. When crossing the border, the system reads his
travel document, performs a 3D scan of his face and compares it with the stored information.
This saves the busy businessmen Bob a lot of time. He gets enthusiastic about biometrics and
enrols himself in 3D face recognition in the bank for cash points. Later he visits a casino and
leaves his 3D face information to access the casino.
In this example, he used the same biometric information in different areas. Some of them are
trustworthy. But can he really trust all the different service providers? What will happen,
if his biometric information is compromised? In the following we elaborate the privacy and
security issues in biometrics.

Aggravation of identity theft/fraud Biometric characteristics can not be stolen or handed
over like token or password, but they can be faked. For example, it is shown in (2; 20)
how effortless it is to make a gummy or laminate finger using a trace left on a glass.
With one more surveillance camera, facial information can be completely exposed even
without knowledge or consent of victims. Also, a synthetic artifact can be created with
stored biometric templates (4; 10; 15). Remote authentication systems based on digi-
tal transmitted biometric data can be even attacked without reconstructing biometric
modalities. As a consequence, on the one hand integrating liveness detection tech-
niques in sensors is essential to prevent impersonation. On the other hand, protection
of stored and transmitted biometric data is significant.
3D face recognition has advantages in comparison with other modalities from a security
point of view. It is hard to obtain 3D face information, since it can not leave a trace like
fingerprints. Besides the up-to-now minor risk of deriving a 3D face surface from pho-
tos, there is the risk to reconstruct a 3D face surface from stored biometric templates. 1

Unchangeability On the one hand, one of the advantages using biometrics is that users and
their identity are linked together with their personal unique biometric characteristics.
On the other hand, the exposure of biometric data is critical since it can not be eas-
ily revoked or renewed as in common password or toked based authentication. One

1 It is difficult to keep some biometric modalities such as fingerprint, 2D face images, ‘’secret”. In appli-
cations requiring high security, using these modalities should be avoided.

can only choose another biometric modality or try to modify the exposed one. Unfor-
tunately, both are not suitable solutions: we only have a limited number of biometric
modalities, e.g. ten fingers, one face and two irises. And alteration of our biometric
modalities is only possible with very complicated methods such as transplantation or
cosmetic surgery. In the report of defense science board (3) , it is also emphasized that
revocation of biometric keys used for identity or privilege is indispensable.

Cross matching As the same biometric modality is adopted in multiple applications, all these
applications are potentially coupled. A untrustworthy data collector can track the activ-
ities of a subject in external applications and misuse these informations. Additionally,
if the biometric identity is compromised in one application, all the others get in danger.

Privacy Biometric data is derived from human bodies or the behavior of a person. Per-se
this personal information is sensitive information. For example, in (30) it is shown that
some diseases and sexual orientation have influence on fingerprint. The disease such as
free-floating iris cyst, diffuse Iris Melanoma, can change iris pattern. From a face photo,
gender and race of users can be recognized. DNA-analysis can expose sensitive genetic
information. 3D face information is widely used in medical analysis. Moreover, many
genetic syndromes can effect the facial trait. Therefore, 3D face scans is used to analyze
facial morphology (13) as well as to diagnose some gene syndromes (29). Such private
information is not relevant for the authentication purpose. But it is contained in every
3D face scan and therefore retrievable from the scan results.

Legislation Since biometrics belongs to personal information, usage of biometrics including
storage and collection is very critical from the legislation point of view. In the European
data protection directive (1), it is emphasized to protect individuals regarding to the
processing of their personal data. In the white paper of TeleTrustT Deutschland e.V. (7),
it is elaborated the importance of data protection in biometrics in compliance with the
legislation.

Hill climbing Decision of biometric authentication rests on the similarity (or distance) mea-
surement between stored templates and a live derived template. A feedback of a com-
parison can be obtained, e.g. directly from the authentication response, or from a Trojan
horse embedded in a computer. An attacker can exploit such information to reconstruct
the stored biometric template or the biometric sample recursively (33). It is so called hill
climbing attack

The above issued security and privacy problems arise from the uncertainty of stored or trans-
mitted biometric data. The Information and Privacy Commissioner/Ontario also dwelt on
the problems of biometrics and drew the conclusions that applying biometrics causes ‘’a zero-
sum game” for this reason: biometrics provide additional security guarantees, meanwhile, it
brings also new leakages. Therefore techniques to protect biometric data is necessary(11). In
the next session we introduce the possible solutions to overcome these drawbacks.

3. Template Protection Techniques

Recently template protection techniques – also known as biometric encryption, untraceable
biometrics, cancelable or revocable biometrics – have been developed in order to meet the
requirements of protecting stored biometric data. These methods convert biometric data ele-
ments into multiple (ideally) uncorrelated references, from which it is infeasible to retrieve the
original information. Template protection is a generalized and efficient method to preserve
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far, facial information is mainly acquired as 2D illumination based images, 3D surfaces, or 2D
near infra-red images. In comparison with other methods, 3D face recognition utilizes rich
geometric information of facial surfaces, is less sensitive to ambient light conditions and ro-
bust to face variation due to different poses. Especially due to its resistance to fake attack it
is very attractive in high security applications. Recently, 3D scanners become more and more
efficient and economically priced. A sufficiently precise 3D face scan can be accomplished in
several milliseconds. 3D face recognition shows a better recognition performance than 2D face
recognition and other kinds of biometrics modalities. By implementing template protection
techniques for 3D facial information not only the 3D facial information itself is protected. Also
potential risks are avoided and high secure authentication systems become realizable.

2. Motivation

As biometrics is applied in manifold areas and users enjoy its benefits, vulnerabilities of bio-
metric system and potential security risks cannot be neglected or underestimated as shown in
following example.
Bob is a frequent traveller. He does not like waiting in long queues including the queue in
front of a border control desk. Thus, he registers at the airport for the automatic verification
system that is based on 3D face recognition. When crossing the border, the system reads his
travel document, performs a 3D scan of his face and compares it with the stored information.
This saves the busy businessmen Bob a lot of time. He gets enthusiastic about biometrics and
enrols himself in 3D face recognition in the bank for cash points. Later he visits a casino and
leaves his 3D face information to access the casino.
In this example, he used the same biometric information in different areas. Some of them are
trustworthy. But can he really trust all the different service providers? What will happen,
if his biometric information is compromised? In the following we elaborate the privacy and
security issues in biometrics.

Aggravation of identity theft/fraud Biometric characteristics can not be stolen or handed
over like token or password, but they can be faked. For example, it is shown in (2; 20)
how effortless it is to make a gummy or laminate finger using a trace left on a glass.
With one more surveillance camera, facial information can be completely exposed even
without knowledge or consent of victims. Also, a synthetic artifact can be created with
stored biometric templates (4; 10; 15). Remote authentication systems based on digi-
tal transmitted biometric data can be even attacked without reconstructing biometric
modalities. As a consequence, on the one hand integrating liveness detection tech-
niques in sensors is essential to prevent impersonation. On the other hand, protection
of stored and transmitted biometric data is significant.
3D face recognition has advantages in comparison with other modalities from a security
point of view. It is hard to obtain 3D face information, since it can not leave a trace like
fingerprints. Besides the up-to-now minor risk of deriving a 3D face surface from pho-
tos, there is the risk to reconstruct a 3D face surface from stored biometric templates. 1

Unchangeability On the one hand, one of the advantages using biometrics is that users and
their identity are linked together with their personal unique biometric characteristics.
On the other hand, the exposure of biometric data is critical since it can not be eas-
ily revoked or renewed as in common password or toked based authentication. One

1 It is difficult to keep some biometric modalities such as fingerprint, 2D face images, ‘’secret”. In appli-
cations requiring high security, using these modalities should be avoided.

can only choose another biometric modality or try to modify the exposed one. Unfor-
tunately, both are not suitable solutions: we only have a limited number of biometric
modalities, e.g. ten fingers, one face and two irises. And alteration of our biometric
modalities is only possible with very complicated methods such as transplantation or
cosmetic surgery. In the report of defense science board (3) , it is also emphasized that
revocation of biometric keys used for identity or privilege is indispensable.

Cross matching As the same biometric modality is adopted in multiple applications, all these
applications are potentially coupled. A untrustworthy data collector can track the activ-
ities of a subject in external applications and misuse these informations. Additionally,
if the biometric identity is compromised in one application, all the others get in danger.

Privacy Biometric data is derived from human bodies or the behavior of a person. Per-se
this personal information is sensitive information. For example, in (30) it is shown that
some diseases and sexual orientation have influence on fingerprint. The disease such as
free-floating iris cyst, diffuse Iris Melanoma, can change iris pattern. From a face photo,
gender and race of users can be recognized. DNA-analysis can expose sensitive genetic
information. 3D face information is widely used in medical analysis. Moreover, many
genetic syndromes can effect the facial trait. Therefore, 3D face scans is used to analyze
facial morphology (13) as well as to diagnose some gene syndromes (29). Such private
information is not relevant for the authentication purpose. But it is contained in every
3D face scan and therefore retrievable from the scan results.

Legislation Since biometrics belongs to personal information, usage of biometrics including
storage and collection is very critical from the legislation point of view. In the European
data protection directive (1), it is emphasized to protect individuals regarding to the
processing of their personal data. In the white paper of TeleTrustT Deutschland e.V. (7),
it is elaborated the importance of data protection in biometrics in compliance with the
legislation.

Hill climbing Decision of biometric authentication rests on the similarity (or distance) mea-
surement between stored templates and a live derived template. A feedback of a com-
parison can be obtained, e.g. directly from the authentication response, or from a Trojan
horse embedded in a computer. An attacker can exploit such information to reconstruct
the stored biometric template or the biometric sample recursively (33). It is so called hill
climbing attack

The above issued security and privacy problems arise from the uncertainty of stored or trans-
mitted biometric data. The Information and Privacy Commissioner/Ontario also dwelt on
the problems of biometrics and drew the conclusions that applying biometrics causes ‘’a zero-
sum game” for this reason: biometrics provide additional security guarantees, meanwhile, it
brings also new leakages. Therefore techniques to protect biometric data is necessary(11). In
the next session we introduce the possible solutions to overcome these drawbacks.

3. Template Protection Techniques

Recently template protection techniques – also known as biometric encryption, untraceable
biometrics, cancelable or revocable biometrics – have been developed in order to meet the
requirements of protecting stored biometric data. These methods convert biometric data ele-
ments into multiple (ideally) uncorrelated references, from which it is infeasible to retrieve the
original information. Template protection is a generalized and efficient method to preserve
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privacy and to enhance the security of biometric data by limiting the exposure of template
data which must not be revoked. They have the following key properties:

One-Way and Robustness The computational complexity of deriving a secure reference from
a biometric datum (template) is limited, while it is either computationally hard or im-
possible to deduce the template from such a reference. The derivative references can
be compared to a biometric datum under similarity metrics for the underlying biomet-
ric template. This allows the successful comparison of measurements exhibiting small
variations or measurement errors to a derivative reference.

Diversity and Randomness Template protection can create numerous secure references from
one biometric feature with the references independent of each other, i.e. knowledge of
one reference does not yield information on other references derived from the same
template.

The resulting various references are also called pseudo identities (9). Different methods to pro-
tect the biometrics data exist. They can be classified into four categories: cancelable biomet-
rics, biometric salting, fuzzy encryption and biometric hardening passwords (36). Cancelable
biometrics modifies the original biometric features or samples with “non-invertible” functions
such as scrambling, morphing so that the original data is no longer to be recognized (26),
(8), (27). Biometric salting randomizes biometric data with random patterns. For example, in
biometric encryption (28) , biometric data is convoluted with randomly generated code and
in the biohashing algorithm (16), biometric features are projected into different orthogonal
spaces generated from large amount random sequences. Biometric hardening passwords fuses
password-based authentication with biometrics (22), (21). Finally, fuzzy encryption combines
cryptographic hashing or secret sharing protocol with error correction codes (ECC) (17; 18).
Among these methods, fuzzy commitment is one of the most successful algorithm. In the
next section, we give detailed introduction on the helper data scheme, a practical realization
of fuzzy commitment.

4. Template Protection with Helper Data Scheme

In 1999, Juels et al. proposed the “fuzzy commitment” to protect biometric information by
using an existing cryptographic scheme (18). It is similar to password authentication system
on Unix computers. There, passwords are never stored or compared in a plain text form but
in an encrypted form. The system can authenticate a user without knowing the original pass-
word. Accordingly, a fuzzy template can be generated from biometric information and can be
safeguarded with cryptographic functions. Yet, the protection scheme must have tolerance to
variation of biometric data due to measurement noise or alteration of modalities. To overcome
this problem, error correction coding is used.
Later, the Helper Data Scheme (HDS) has been developed to make the idea of fuzzy commit
feasible for biometric systems. HDS can extract secure templates from biometric data. This
secure template is stable to biometric variation and it is impossible to retrieve original biomet-
ric information from it. The mathematical formulation of these properties is summarized as
delta-contracting and epsilon-revealing by J. P. Linnartz et al. (19). The block diagram of the
HDS is depicted in figure 1.
In figure 1 M is a biometric template extracted from a biometric measurement. In the en-
rollment process, the binarization converts the biometric template M into a binary vector Q.
Ideally, the binarization results in a binary string that is uniformly distributed for different
users and invariant for an identical user. The detailed description of binarization is given
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Fig. 1. Block diagram of the helper data scheme

in section 4.1. In parallel, a random number generator creates a secret code S. First, S is
hashed and stored. Thus, it enables randomness in the system so that distinct references can
be created from the same biometric characteristics for different applications. Second, a error
correction encoder adds redundancy in the secret S. As a consequence, the resulting code-
word C is longer than S. Depending on the characteristics of the bit errors, different error
correction codes can be adopted. Foe example, when bit errors are uniformly distributed in
the codeword, a BCH-code, which has a codeword length of 2L − 12, can be employed. If the
length of the binarized vector Q extends the length of the codeword C, then the most reliable
bits in Q are selected so that the resulting binary string X is as long as the codeword C and
robustness is improved. R indicates the position of reliable bits. W, the result of the bitwise
XOR-function of X and C, is so called helper data. With help of W and for a suitable input,
the secret S can be recovered in the verification process. Instead of storing the secret S, the
position vector R, the helper data W, the hashed secret code h(S) and user identity informa-
tion are stored in data storage. It can be proved that both W and h(S) reveal little information
about S, X as well as the biometric template M (32).
During the verification process, with claimed identity, R, W and h(S) are retrieved from the
data storage. The binary string Q′ is extracted from biometric template M′, which is M po-
tentially distorted by noise. The binary string X′ is estimated with Q′ and R. A potentially
distorted codeword C′ can be acquired from W and X′. The following error correction de-
coder removes errors in C′ and results in the reconstructed secret code S′. By comparing h(S)
with h(S′), a positive or negative response for a verification query can be given. In contrast to
common biometrics system, only a “hard decision” (rejected or accepted) is given and no simi-
larity score is available in the comparator of the template protection system due to the applied
hash function. The previously described hill climbing attack, which iteratively reconstructs
biometrics using matching scores (5), (31), is not applicable.

2 L is a natural number
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privacy and to enhance the security of biometric data by limiting the exposure of template
data which must not be revoked. They have the following key properties:

One-Way and Robustness The computational complexity of deriving a secure reference from
a biometric datum (template) is limited, while it is either computationally hard or im-
possible to deduce the template from such a reference. The derivative references can
be compared to a biometric datum under similarity metrics for the underlying biomet-
ric template. This allows the successful comparison of measurements exhibiting small
variations or measurement errors to a derivative reference.

Diversity and Randomness Template protection can create numerous secure references from
one biometric feature with the references independent of each other, i.e. knowledge of
one reference does not yield information on other references derived from the same
template.

The resulting various references are also called pseudo identities (9). Different methods to pro-
tect the biometrics data exist. They can be classified into four categories: cancelable biomet-
rics, biometric salting, fuzzy encryption and biometric hardening passwords (36). Cancelable
biometrics modifies the original biometric features or samples with “non-invertible” functions
such as scrambling, morphing so that the original data is no longer to be recognized (26),
(8), (27). Biometric salting randomizes biometric data with random patterns. For example, in
biometric encryption (28) , biometric data is convoluted with randomly generated code and
in the biohashing algorithm (16), biometric features are projected into different orthogonal
spaces generated from large amount random sequences. Biometric hardening passwords fuses
password-based authentication with biometrics (22), (21). Finally, fuzzy encryption combines
cryptographic hashing or secret sharing protocol with error correction codes (ECC) (17; 18).
Among these methods, fuzzy commitment is one of the most successful algorithm. In the
next section, we give detailed introduction on the helper data scheme, a practical realization
of fuzzy commitment.

4. Template Protection with Helper Data Scheme

In 1999, Juels et al. proposed the “fuzzy commitment” to protect biometric information by
using an existing cryptographic scheme (18). It is similar to password authentication system
on Unix computers. There, passwords are never stored or compared in a plain text form but
in an encrypted form. The system can authenticate a user without knowing the original pass-
word. Accordingly, a fuzzy template can be generated from biometric information and can be
safeguarded with cryptographic functions. Yet, the protection scheme must have tolerance to
variation of biometric data due to measurement noise or alteration of modalities. To overcome
this problem, error correction coding is used.
Later, the Helper Data Scheme (HDS) has been developed to make the idea of fuzzy commit
feasible for biometric systems. HDS can extract secure templates from biometric data. This
secure template is stable to biometric variation and it is impossible to retrieve original biomet-
ric information from it. The mathematical formulation of these properties is summarized as
delta-contracting and epsilon-revealing by J. P. Linnartz et al. (19). The block diagram of the
HDS is depicted in figure 1.
In figure 1 M is a biometric template extracted from a biometric measurement. In the en-
rollment process, the binarization converts the biometric template M into a binary vector Q.
Ideally, the binarization results in a binary string that is uniformly distributed for different
users and invariant for an identical user. The detailed description of binarization is given
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in section 4.1. In parallel, a random number generator creates a secret code S. First, S is
hashed and stored. Thus, it enables randomness in the system so that distinct references can
be created from the same biometric characteristics for different applications. Second, a error
correction encoder adds redundancy in the secret S. As a consequence, the resulting code-
word C is longer than S. Depending on the characteristics of the bit errors, different error
correction codes can be adopted. Foe example, when bit errors are uniformly distributed in
the codeword, a BCH-code, which has a codeword length of 2L − 12, can be employed. If the
length of the binarized vector Q extends the length of the codeword C, then the most reliable
bits in Q are selected so that the resulting binary string X is as long as the codeword C and
robustness is improved. R indicates the position of reliable bits. W, the result of the bitwise
XOR-function of X and C, is so called helper data. With help of W and for a suitable input,
the secret S can be recovered in the verification process. Instead of storing the secret S, the
position vector R, the helper data W, the hashed secret code h(S) and user identity informa-
tion are stored in data storage. It can be proved that both W and h(S) reveal little information
about S, X as well as the biometric template M (32).
During the verification process, with claimed identity, R, W and h(S) are retrieved from the
data storage. The binary string Q′ is extracted from biometric template M′, which is M po-
tentially distorted by noise. The binary string X′ is estimated with Q′ and R. A potentially
distorted codeword C′ can be acquired from W and X′. The following error correction de-
coder removes errors in C′ and results in the reconstructed secret code S′. By comparing h(S)
with h(S′), a positive or negative response for a verification query can be given. In contrast to
common biometrics system, only a “hard decision” (rejected or accepted) is given and no simi-
larity score is available in the comparator of the template protection system due to the applied
hash function. The previously described hill climbing attack, which iteratively reconstructs
biometrics using matching scores (5), (31), is not applicable.

2 L is a natural number
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The length of the secret code is one security issue. If the length of the codeword is fixed, the
length of the secret code is restricted by the error correction ability. The maximum length of
the codeword relies on the entropy for the considered biometric characteristics. Obviously,
the processes of binarization and selection of reliable bits strongly affects the performance of
the template protection scheme. In the following sections we introduce their functionalities
and construction.

4.1 Binarization
Binarization is the core component of the helper data scheme. The requirements of its output
binary vector can be summarized as follows: binarized vectors of different users should be
uniformly and independently distributed, and the binary vector of a specific user should be
robust to variation of biometric data. It guarantees that no prediction of a binary vector is pos-
sible and the discriminability of binary vector is optimized. And no information of a user can
be obtained using binary vectors of other users. The binarized features have certain resilience
to noise.
Moreover, binarization tries to extract a long binary vector from biometric template without
any degradation of authentication performance. The construction of binarization depends on
the statistical analysis of the input biometric templates. Assuming that a training template
set contains N users and each user has K samples and Mn,k =

[

mn,k,1, mn,k,2, · · · , mn,k,T
]

is the
template with T components extracted from the k-th samples of the user n with k ∈ {1, · · · , K}
and n ∈ {1, · · · , N}. If each component is statistically independent and at least one bit can be
extracted from each component, the binarization function can be defined as:

qn,t = B
{

mn,k,t|k ∈ [1, · · · , K]
}

=

{

1 if µn,t ≥ µt
0 if µn,t < µt

(1)

where µn,t is an estimation of the real template for user n and µt is the threshold of binariza-
tion. In order to achieve uniform distribution of the binary vector, µt could be the median of
µn,t of all the users. Instead of the median, the mean can also be adopted. If the training data
set is large enough, there is no significant difference between median and mean. In practice,
we suggest to use the median, which is resistant to extreme values caused by measure errors.

4.2 Selecting Reliable Bits
Selecting reliable bits contributes to the robustness of the system. It is based on the estima-
tion of the error probability for each bit. Only the bits with the lowest error probability are
selected. In the previously presented binarization method, the error probability depends on
the distance between µn,t and µt as shown in equation 1. µn,t of a relative stable bit should
derive from µt. On the other hand, intra-class variation also affects the error probability. The
smaller the intra-class variation is, the more reliable the corresponding bit is.
Statistical analysis of intra class characteristics for each user has a major effect on the perfor-
mance of selecting reliable bits. If biometric templates are Gaussian distributed, then:

µn,t = E
{

mn,k,t|k ∈ [1, · · · , K]
}

(2)

pn,t ∝
|µn,t − µt|

σn,t
(3)

where E is the function calculating the expected value, pn,t is the error probability of the t-th
component of user n, and σn,t is the standard deviation of mn,k,t for k ∈ [1, · · · , K] (see also
(34)).

If biometric templates are not Gaussian distributed or it is impossible to estimate intra class
variation, then:

µn,t = MEDIANK
k=1

{

mn,k,t
}

(4)

pn,t ∝ |µn,t − µt| (5)

Actually, the reliable estimation of error probabilities can only be achieved with a sufficient
number of samples. In the next section we show how the template protection using the helper
data scheme is integrated in 3D face recognition system.

5. An Example of Secure 3D Face Recognition System

The above sections stressed the importance of protecting biometric data and introduced to the
details of template protection systems. In this section, we show how such a method can be
integrated in a 3D face recognition system. Our experimental results show the effect on the
performance. At first, we will give an introduction on 3D face recognition algorithm.

5.1 3D Face Recognition Algorithm
In a 3D face recognition system, a 3D face image can be acquired by using a structured light
projection approach. To compensate pose variation during acquisition, the 3D face images are
normalized in a pre-processing step to a frontal view. The normalized facial image represents
the face geometry and can be used as a biometric feature. For example, the normalized im-
ages can be compared using the Hausdorff distance classifier ( (24), (23)). This normalized
data, however, cannot directly be utilized in the template protection, since these features are
strongly correlated and very sensitive to noise. A process to extract compact and robust fea-
tures is required. The Eigenface and Fisherface feature extraction algorithms (e.g. (12), (14)
and (6)) are widely used to reduce dimensions of the original data. These statistics-based al-
gorithms achieve a good verification performance, however, the size of the features is strongly
reduced and it is difficult to extract binary vectors of sufficient length, which is required for
an input for the helper data scheme.
In our experiments, we use a histogram-based feature extraction algorithm. It is based on
the distribution of depth-values of the face region to characterize facial geometry. In this al-
gorithm, a three dimensional rectangular region of a normalized image is used to limit the
considered facial surface points. In Figure 2, the intermediate processes of the proposed algo-
rithm is depicted. The algorithm consists of the following processing steps:

1. The facial surface points to be evaluated are selected from a normalized range image as
shown in the dark area of the image at the lower left of Figure 2.

2. The selected facial region is further divided into J disjunct horizontal stripes Sj, where
j ∈ [1, · · · , J] (see the image at the lower right of Figure 2). By this, the algorithm
evaluates local geometric surface information. Due to the symmetric properties of a
human face, the stripes are perpendicular to the symmetry plane.

3. The distribution of the facial points pi in stripe Sj is counted. If {d0, · · · , dL} is a vector
with L + 1 elements. This vector is used to partition the surface points in the horizontal
stripes according to their depth-value. d0 and dL indicate the upper band and lower
band of depth limit, the l-th feature of the stripe Sj is given as follows:

fl,j =

∣

∣

∣

{

pi = (xi, yi, zi)|pi ∈ Sj, dl−1 < zi < dl

}∣

∣

∣

∣

∣

∣
Sj

∣

∣

∣

, (6)
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The length of the secret code is one security issue. If the length of the codeword is fixed, the
length of the secret code is restricted by the error correction ability. The maximum length of
the codeword relies on the entropy for the considered biometric characteristics. Obviously,
the processes of binarization and selection of reliable bits strongly affects the performance of
the template protection scheme. In the following sections we introduce their functionalities
and construction.

4.1 Binarization
Binarization is the core component of the helper data scheme. The requirements of its output
binary vector can be summarized as follows: binarized vectors of different users should be
uniformly and independently distributed, and the binary vector of a specific user should be
robust to variation of biometric data. It guarantees that no prediction of a binary vector is pos-
sible and the discriminability of binary vector is optimized. And no information of a user can
be obtained using binary vectors of other users. The binarized features have certain resilience
to noise.
Moreover, binarization tries to extract a long binary vector from biometric template without
any degradation of authentication performance. The construction of binarization depends on
the statistical analysis of the input biometric templates. Assuming that a training template
set contains N users and each user has K samples and Mn,k =

[

mn,k,1, mn,k,2, · · · , mn,k,T
]

is the
template with T components extracted from the k-th samples of the user n with k ∈ {1, · · · , K}
and n ∈ {1, · · · , N}. If each component is statistically independent and at least one bit can be
extracted from each component, the binarization function can be defined as:

qn,t = B
{

mn,k,t|k ∈ [1, · · · , K]
}

=

{

1 if µn,t ≥ µt
0 if µn,t < µt

(1)

where µn,t is an estimation of the real template for user n and µt is the threshold of binariza-
tion. In order to achieve uniform distribution of the binary vector, µt could be the median of
µn,t of all the users. Instead of the median, the mean can also be adopted. If the training data
set is large enough, there is no significant difference between median and mean. In practice,
we suggest to use the median, which is resistant to extreme values caused by measure errors.

4.2 Selecting Reliable Bits
Selecting reliable bits contributes to the robustness of the system. It is based on the estima-
tion of the error probability for each bit. Only the bits with the lowest error probability are
selected. In the previously presented binarization method, the error probability depends on
the distance between µn,t and µt as shown in equation 1. µn,t of a relative stable bit should
derive from µt. On the other hand, intra-class variation also affects the error probability. The
smaller the intra-class variation is, the more reliable the corresponding bit is.
Statistical analysis of intra class characteristics for each user has a major effect on the perfor-
mance of selecting reliable bits. If biometric templates are Gaussian distributed, then:

µn,t = E
{

mn,k,t|k ∈ [1, · · · , K]
}

(2)

pn,t ∝
|µn,t − µt|

σn,t
(3)

where E is the function calculating the expected value, pn,t is the error probability of the t-th
component of user n, and σn,t is the standard deviation of mn,k,t for k ∈ [1, · · · , K] (see also
(34)).

If biometric templates are not Gaussian distributed or it is impossible to estimate intra class
variation, then:

µn,t = MEDIANK
k=1

{

mn,k,t
}

(4)

pn,t ∝ |µn,t − µt| (5)

Actually, the reliable estimation of error probabilities can only be achieved with a sufficient
number of samples. In the next section we show how the template protection using the helper
data scheme is integrated in 3D face recognition system.

5. An Example of Secure 3D Face Recognition System

The above sections stressed the importance of protecting biometric data and introduced to the
details of template protection systems. In this section, we show how such a method can be
integrated in a 3D face recognition system. Our experimental results show the effect on the
performance. At first, we will give an introduction on 3D face recognition algorithm.

5.1 3D Face Recognition Algorithm
In a 3D face recognition system, a 3D face image can be acquired by using a structured light
projection approach. To compensate pose variation during acquisition, the 3D face images are
normalized in a pre-processing step to a frontal view. The normalized facial image represents
the face geometry and can be used as a biometric feature. For example, the normalized im-
ages can be compared using the Hausdorff distance classifier ( (24), (23)). This normalized
data, however, cannot directly be utilized in the template protection, since these features are
strongly correlated and very sensitive to noise. A process to extract compact and robust fea-
tures is required. The Eigenface and Fisherface feature extraction algorithms (e.g. (12), (14)
and (6)) are widely used to reduce dimensions of the original data. These statistics-based al-
gorithms achieve a good verification performance, however, the size of the features is strongly
reduced and it is difficult to extract binary vectors of sufficient length, which is required for
an input for the helper data scheme.
In our experiments, we use a histogram-based feature extraction algorithm. It is based on
the distribution of depth-values of the face region to characterize facial geometry. In this al-
gorithm, a three dimensional rectangular region of a normalized image is used to limit the
considered facial surface points. In Figure 2, the intermediate processes of the proposed algo-
rithm is depicted. The algorithm consists of the following processing steps:

1. The facial surface points to be evaluated are selected from a normalized range image as
shown in the dark area of the image at the lower left of Figure 2.

2. The selected facial region is further divided into J disjunct horizontal stripes Sj, where
j ∈ [1, · · · , J] (see the image at the lower right of Figure 2). By this, the algorithm
evaluates local geometric surface information. Due to the symmetric properties of a
human face, the stripes are perpendicular to the symmetry plane.

3. The distribution of the facial points pi in stripe Sj is counted. If {d0, · · · , dL} is a vector
with L + 1 elements. This vector is used to partition the surface points in the horizontal
stripes according to their depth-value. d0 and dL indicate the upper band and lower
band of depth limit, the l-th feature of the stripe Sj is given as follows:
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Fig. 2. An overview of the histogram-based face recognition algorithm

where l ∈ [1, · · · , L], j ∈ [1, · · · , J], zi is the depth value (z-value) of point pi,
∣

∣

∣
Sj

∣

∣

∣
is

the number of the facial points in Sj. fl,j represents the proportions of the points in Sj,
whose z-values are located in the region [dl−1, dl ].

The resulting feature corresponds to the histogram count of the stripe. Therefore the proposed
algorithm is called histogram-based face recognition algorithm. An example of feature values
is shown in the image at the top right of Figure 2, where the feature vector corresponding to
each stripe is represented as a row in the image and the color indicates their absolute feature
values.
The algorithm adopts a simple statistical analysis to describe the geometrical character of a
facial surface. This algorithm efficiently filters noise and reduces the correlation in the range
image. The resulting feature vectors can be used as an input to the quantizer preceding the
template protection scheme. More details about this algorithm are shown in (35).

5.2 Experimental Results
We have implemented HDS in the 3D face recognition system. The 3D facial images of face
recognition grant challenge (FRGC) (25) database version 2 are used as testing data. The 3507
samples from 454 subjects are correctly normalized. During the test, only the users, who have
at least 4 samples, are chosen. Three samples per user are chosen as enrollment data and one
sample as verification data. A different sample for the verification is chosen for each test and
the tests are repeated 4 times.
The preciously described feature extraction process is applied with the following parame-
ters. The 3D facial data is normalized to compensate the pose variation in the acquisition.
The normalized 3D facial data is projected into regular grids. Then a fixed face region is se-
lected for each resulting range image. The selected face region is divided into 68 sub-areas. A
histogram-based extraction algorithm is applied in each sub-area. A feature vector containing
68 × 6 = 408 real values is obtained. The false acceptance rate (FAR) and the false rejection
rate (FRR) using the correlation classifier is plotted in figure 3. The equal error rate (EER) is
equal to 3.38%.
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Fig. 3. Classification results of the histogram-
based face recognition algorithm
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Then, we use the above mentioned binarization function to convert the extracted feature vec-
tors into binary strings. To compare the authentication performance before and after bina-
rization, we show the receiver operation characteristic (ROC) curves in figure 4. The solid
line of the binary feature vectors is obviously above the dashed line of the real-valued feature
vector. That is to say, binarization function improves slightly the authentication performance.
Generally, a good binarization can be applied with acceptable changing on the authentication
performance.
If we compare the distribution of interclass and intraclass distance before and after binariza-
tion process as shown in figure 5 and figure 6, the binarization has much stronger influence on
the distribution of the inter-class distance than on the intra-class distance. After binarization,
the inter-class distance becomes more symmetrical and concentrates on 50%.
In the above binarization process, the median was adopted to calculate the binarization thresh-
old. If we compare the FAR and FRR curves of the binarization using median (figure 7) and
mean (figure 8), there is no significant difference regarding authentication performance. Both
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∣
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the number of the facial points in Sj. fl,j represents the proportions of the points in Sj,
whose z-values are located in the region [dl−1, dl ].

The resulting feature corresponds to the histogram count of the stripe. Therefore the proposed
algorithm is called histogram-based face recognition algorithm. An example of feature values
is shown in the image at the top right of Figure 2, where the feature vector corresponding to
each stripe is represented as a row in the image and the color indicates their absolute feature
values.
The algorithm adopts a simple statistical analysis to describe the geometrical character of a
facial surface. This algorithm efficiently filters noise and reduces the correlation in the range
image. The resulting feature vectors can be used as an input to the quantizer preceding the
template protection scheme. More details about this algorithm are shown in (35).

5.2 Experimental Results
We have implemented HDS in the 3D face recognition system. The 3D facial images of face
recognition grant challenge (FRGC) (25) database version 2 are used as testing data. The 3507
samples from 454 subjects are correctly normalized. During the test, only the users, who have
at least 4 samples, are chosen. Three samples per user are chosen as enrollment data and one
sample as verification data. A different sample for the verification is chosen for each test and
the tests are repeated 4 times.
The preciously described feature extraction process is applied with the following parame-
ters. The 3D facial data is normalized to compensate the pose variation in the acquisition.
The normalized 3D facial data is projected into regular grids. Then a fixed face region is se-
lected for each resulting range image. The selected face region is divided into 68 sub-areas. A
histogram-based extraction algorithm is applied in each sub-area. A feature vector containing
68 × 6 = 408 real values is obtained. The false acceptance rate (FAR) and the false rejection
rate (FRR) using the correlation classifier is plotted in figure 3. The equal error rate (EER) is
equal to 3.38%.
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Then, we use the above mentioned binarization function to convert the extracted feature vec-
tors into binary strings. To compare the authentication performance before and after bina-
rization, we show the receiver operation characteristic (ROC) curves in figure 4. The solid
line of the binary feature vectors is obviously above the dashed line of the real-valued feature
vector. That is to say, binarization function improves slightly the authentication performance.
Generally, a good binarization can be applied with acceptable changing on the authentication
performance.
If we compare the distribution of interclass and intraclass distance before and after binariza-
tion process as shown in figure 5 and figure 6, the binarization has much stronger influence on
the distribution of the inter-class distance than on the intra-class distance. After binarization,
the inter-class distance becomes more symmetrical and concentrates on 50%.
In the above binarization process, the median was adopted to calculate the binarization thresh-
old. If we compare the FAR and FRR curves of the binarization using median (figure 7) and
mean (figure 8), there is no significant difference regarding authentication performance. Both
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Fig. 5. Probability density of interclass and
intraclass distance of real valued features

Fig. 6. Probability density of interclass and
intraclass distance of binary features

EERs are around 3%. However, the FRR-curve of the mean-based binary vectors deviates
from the probability-axis in comparison with the one of the median-based binary vectors.
The median-based binarization has higher robustness to noise. This is an advantage over the
mean-based binarization, since the performance of template protection is restricted by errors
occurring in the binary feature vectors.
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Fig. 7. The classification results for the binary
vectors using the median-based binarization
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Fig. 8. The classification results for the binary
vectors using the mean-based binarization

In the implemented scheme, a BCH- code is chosen as error correction code. The binary fea-
tures have the length of 408. The maximum length of a codeword under 408 is 255. The 255
most reliable bits is chosen from the 408-bits long binary vector. The classification results un-
der the assumption of uniquely distributed templates and Gaussian distributed templates are
shown in Figure 9 and in Figure 10. Both classification results are similar. Under the assump-

tion of uniquely distributions, the robustness is better than under the assumption of Gaussian
distributions, however, the discriminative power is slightly worse.
With codeword of 255 bits, only a discrete set of the secret code length s and the correctable
errors length e is possible. Several examples and their corresponding bit error rate (BER),
FRR and FAR are given in Table 1. The FRR under the assumption of a uniquely distribution
is significantly better than under the assumption of a Gaussian distribution, while its FAR
decreases slightly.
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Fig. 9. The classification results for the se-
lected binary vectors under the assumption
of uniquely distributed templates
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of Gaussian distributed templates

BCH Correctable Results for Results for

(c/s/e) BER uniquely distribution Gaussian distribution

255/107/22 8.6% FRR=12%; FAR=0.4% FRR=21%; FAR≈ 0

255/91/25 9.8% FRR=11%; FAR=0.6% FRR=16%; FAR=0.2%

255/79/27 10.5% FRR=10%; FAR=0.7% FRR=13%; FAR=0.3%

Table 1. Examples of possible BCH codes and the corresponding FRR and FAR

6. Discussion

Template protection techniques can derive different secure independent references from bio-
metric data. Secure references can not reveal information of biometric data. No biometric re-
lated information is available in authentication systems. Not only biometric data is protected,
security leakages such as crossing match, impersonation or cross matching are also avoided.
Moreover, they enable revocation and renewing of templates, which are crucial functionalities
for authentication process.
Our implementation of a 3D face recognition system shows the general feasibility of a tem-
plate protection technique. A minor performance degradation is observed in the experimental
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EERs are around 3%. However, the FRR-curve of the mean-based binary vectors deviates
from the probability-axis in comparison with the one of the median-based binary vectors.
The median-based binarization has higher robustness to noise. This is an advantage over the
mean-based binarization, since the performance of template protection is restricted by errors
occurring in the binary feature vectors.
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In the implemented scheme, a BCH- code is chosen as error correction code. The binary fea-
tures have the length of 408. The maximum length of a codeword under 408 is 255. The 255
most reliable bits is chosen from the 408-bits long binary vector. The classification results un-
der the assumption of uniquely distributed templates and Gaussian distributed templates are
shown in Figure 9 and in Figure 10. Both classification results are similar. Under the assump-

tion of uniquely distributions, the robustness is better than under the assumption of Gaussian
distributions, however, the discriminative power is slightly worse.
With codeword of 255 bits, only a discrete set of the secret code length s and the correctable
errors length e is possible. Several examples and their corresponding bit error rate (BER),
FRR and FAR are given in Table 1. The FRR under the assumption of a uniquely distribution
is significantly better than under the assumption of a Gaussian distribution, while its FAR
decreases slightly.
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BCH Correctable Results for Results for

(c/s/e) BER uniquely distribution Gaussian distribution

255/107/22 8.6% FRR=12%; FAR=0.4% FRR=21%; FAR≈ 0

255/91/25 9.8% FRR=11%; FAR=0.6% FRR=16%; FAR=0.2%

255/79/27 10.5% FRR=10%; FAR=0.7% FRR=13%; FAR=0.3%

Table 1. Examples of possible BCH codes and the corresponding FRR and FAR

6. Discussion

Template protection techniques can derive different secure independent references from bio-
metric data. Secure references can not reveal information of biometric data. No biometric re-
lated information is available in authentication systems. Not only biometric data is protected,
security leakages such as crossing match, impersonation or cross matching are also avoided.
Moreover, they enable revocation and renewing of templates, which are crucial functionalities
for authentication process.
Our implementation of a 3D face recognition system shows the general feasibility of a tem-
plate protection technique. A minor performance degradation is observed in the experimental
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results. This might originate in the binarization process and feature selection process: Con-
verting continuously distributed feature vectors into binary vectors can result in information
lost.
Although the performance after binarization is improved in our experiments, this can not be
generalized for other cases. If feature extraction and the corresponding comparator are opti-
mal, using the biometric features directly has the best performance characteristics. Similarly,
the performance degradation for an optimal binarization method is expected to be very small.
The selection of reliable components is the requirement of the coding schemes. Additionally,
the error probabilities of biometric features normally are not equal. The filtering of unreliable
features is helpful to increase the code rate of ECC and secret length. The reduced feature
vector, however, may lose discriminative power in comparison to the unabridged feature vec-
tor. Although the performance degradation after integrating template protection in the 3D
face recognition exist, the resulting performance is still acceptable and comparable with the
system without template proction. Moreover, there is potential for improvement: data-source
specific adaptation of the coding scheme or the binarization method. Furthermore, the fusion
of different modalities or different feature extraction algorithms – in other words deriving
more biometric features for one user – can enhance the security and performance.
As the security of template protection schemes is crucial, their evaluation and analysis should
not be limited to their performance. In the given experiment, the security evaluation is based
on the length of the secret. However, different security levels can be defined depending on
the information that is available and accessible to the attacker. If the attacker has only access
to individual entries in database, the only way to obtain the secret or the biometric related
information is the brute-force attack for the desired hash value. The length of secret is repre-
sentative to security. However, if they know the details of the template protection algorithm
and also distribution of biometric features, the risk of tracking system with much lower com-
plexity is possible. In the second case, the security is over-estimated if security is simply de-
fined by the secret length. Even worse, an attacker with a sufficiently large biometric database
can exploit the false acceptance. By doing this, he can identify individual users which share
similar biometric data, i.e. biometric twins.

7. Conclusions

In this chapter we show the privacy and security of common biometric systems, which can
not be neglected. Template protection techniques are introduced. They can safeguard biomet-
ric data and prevent exposing user’s private information. They can stop crossing matching,
impersonation and hill climbing problems, meanwhile they enable renewing and revocation
of identities. They are an very important supplementary to biometric technique.
An implementation in 3D face recognition is demonstrated. 3D face recognition has good
resistance to counterfeit and is widely used in high security area. The experimental results
show feasibility of template protection technique. The system performance after integration
is comparable with the one without template protection. High security can be achieved with
sufficient length of the secret. However, it is possible to improve performance and security
with optimized binarization and coding methods. Hopeful this work can draw more attention
of security enhancement in biometrics and motivate more research in this area.
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1. Personal Identification Technologies 

The citizen security is a problem that in the recent years, as the daily crime news show, has 
grown in importance. In particular, the world research in this area, has spent his energy into 
the producing of a personal identification system as most possible secure. In the last years 
the Biometrics methods have imposed itself more and more in personal recognition field. 
The word “Biometrics” is used to refer to the study of the automatic methods of 
identification or authorization of people which entail the use of physiologic and behavioural 
characteristics (Ashbourn, 2000). 
The main technologies used for the identification of people and based on biometric 
recognition (Cascetta & De Luccia, 2004) can be devided in 
 personal identification founded on the biometric recognition of “static features”: 

capturing and processing of human anatomic characteristics such as fingerprints, 
geometry and "footprint" of the hand vascular, facial, iris and retinal geometry; 

 personal identification founded on the recognition of "dynamic features": vocal timbre, 
speech peculiarities (spectral analysis of the sound field), dynamic signature (pressure), 
digitization (pressure), gait (steps in walking). 

There are also other recognition techniques among which DNA matching that are not 
widely employed due to their complexity and the impossibility to wiork in real time (Jain & 
Bolle et al., 1999)( Jain & Halici et al., 1999). 
 
1.1 Biometric Identification Systems 
The biometrical personal recognition techniques require the use of expert systems, neural 
networks, fuzzy logic systems and the development of sophisticated computing. These 
methods offer the main advantage over traditional ones to be able to remember and learn. 
For a long time, the aim of international researchers and scientists has been to create 
machines and systems capable of imitating certain human abilities, among which the 
identification based on biometric recognition or the identification through the acquisition 
and subsequent processing of images. 

18
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The main areas of interest of biometric technologies are: 
 direct authentication and verification of personal identity, proof of the identity stated by 

the individual; 
 indirect identification of a person through the available biometric characteristics. 
The main physiologic or behavioural characteristics that may be used for personal 
identification must meet the following essential requirements: 
 universality (each individual must have the characteristics that have been defined); 
 uniqueness (it is not possible for two people to be the same in terms of the 

characteristics); 
 permanence/invariance (biometric characteristics must remain unchanged in time or 

their change must be very slow and independent from changes in weight of the subjects 
and from the acquisition process);  

 collectability (in the sense that biometric characteristic can be measured quantitatively); 
 acceptability (the acquisition should not result, in case of invasive methods, not tolerated 

from the subjects); 
 reliability (detection must be reproducible); 
 reducibility (the data must be compressed and organized into easily accessible files for 

following use); 
In the follow list are described the main “intelligent” methods of biometric recognition 
(Prabhakar et al., 2003) (Zhang, 2000): 
a. Hand recognition: hand geometry recognition systems measure the physical 

characteristics (geometry) of an individual’s hand that is palm and fingers. The 
uniqueness and permanence feature are questioned as there may be many causes of 
insidious instability, and furthermore changes may intervene over time (age, diseases, 
accidents, etc). This method is acceptable (when excluding the hygiene factors for the 
hand positioning on the capture plate), requires easy reproducible acquisition methods, 
does not affect the privacy, but is used only when there are minimal identification 
requirements; 

b. Fingerprint recognition: the fingerprint is represented as a series of ‘ridges’ and ‘valleys’ 
with local discontinuities in the ridge flow pattern called minutiae. The map of ridges 
and minutiae is unique for each individual and may change only with the destruction of 
the skin; 

c. Vein recognition: the map of veins on the back of the hand varies for each individual, 
sufficiently to secure recognition from the comparison of the respective maps.The non-
invasive method has encouraged the search for the realization of sensors for recognition 
based on this principle: the map of veins is acquired by an infrared optical systems by 
temperature sensors; 

d. Face recognition: the identification of an individual through the face is based on the 
extraction of physiognomic parameters and metric measurements. The methodologies 
differ greatly depending on the type of recognition: they can be fully automatic and 
delegated to the appropriate software and hardware, or involving the operator for off-
line identification; 

e. Digitization (pressure): Gaines and his colleagues at the Rand Corporation have 
demonstrated the potential of dynamic typing in 1980 by measuring the amount of 
latency in the pressure of two consecutive letters in the text beaten by seven professional 
secretaries. The applicability of this methodology requires a large set of input data. A 
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research of 1986 showed that the typing of own name provides reliable performance and 
easier applicability. Alternative methods include the use of special keyboards that also 
measure the pressure exerted on the letters when typing; 

f. Retina recognition: is based on retinal scanning, a special scanner illuminates the retina 
through the pupil with an infrared (IR) light and memorises the information from the 
reflection of vascular contrast. The vascular map is stable and unambiguous. The biggest 
problem with this methodology relates to the difficulty of acquisition that requires 
extensive collaboration of the user. Moreover, the costs are high, so the method is 
confined in applications that require secure identification, such as research facilities, 
military and detention; 

g. Iris recognition: iris contains parameters of high power of discrimination for who does 
not use drugs, does not wear corrective contact lenses or colored and is not suffering 
from diseases (such as glaucoma). The acquisition is performed through scanning with 
high definition laser light. The method has limits of applicability similar to those 
mentioned for the retina recognition; 

h. Vocal timbre: these systems, based on the recognition of vocal timbre, are divided into 
two classes according to whether approval is given by depending on the text 
pronounced or independent of it. In the first case the personal recognition is carried out 
by asking to pronounce a "password" with which the various models are loaded. To 
avoid the use of recordings that can "circumvent" the system, it is preferred to use more 
words of which, the person must be recognized, they are asked to say a few. In the case 
of systems independent from the text, the system does not know in advance what will be 
pronounced and therefore for the enrollment must be loaded many words. For correct 
enrollment, therefore, it requires a large quantity of recordings.  

 
1.2 Biometric Recognition Applications 
In the traditional personal identification systems, the individual declares his identity 
through an personal identification code, numeric or alphanumeric code (PIN, login or 
userID). The weakness of these methods of personal identification is their fraudability due 
to the fact that the access code or password can be stolen or deducted, and then used 
fraudulently by others, obviously malicious. In fact, to limit and mitigate the fraudability, 
and then to improve security at physical access (of people) or in the remote systems 
(Internet, Intranet, corporate computer networks, etc..) is possible to replace alphanumeric 
access codes with the biometric features of the subject.  
This Section briefly reviews the main biometric recognition applications (Buciu, 2008): 
Security in the control of the physical and informatic accesses (banks, courts, judicial police and 
military facilities, strategic sectors of industry, patent offices, Research & Development, etc.): 
can be realized accesses with turnstiles or gates (sliding doors automatically opening), by 
inserting the magnetic badge in appropriate readers and by validating the identity through 
the extraction of a biometric characteristic (fingerprint, iris, hand geometry).  
Accreditation at institutions or services (digital signature and biometric signature). 
Counterfeiting of identity documents: the growing need for security has prompted many states, 
including Italy, to realize electronic identity documents (identity cards, passports, etc.). The 
smart cards can store, into the chip, much more information than traditional anagraphic 
data: the inclusion of fingerprints or images of iris/retina, making it very efficient and 



Face	Recognition332

 

secure the recognition of the subject, traditionally given to the photograph that accompanies 
the anagraphic data.  
Face identification was widely used for identifying driver licenses, in immigration programs, 
passports, or welfare registration. 
Access control deals with border – crossing, vehicle access, ATM, computer access, computer 
network access, online transaction access, online database access. 
Security refers to the terrorist alert issue in airports, secure boarding systems, file encryption, 
intranet and internet security, or medical records. Many airports have been adopted face 
recognition technology for improving security.  
Surveillance is another application area where face recognition plays a major part, including 
video surveillance, CCTV control or portal control.  
Multimedia management deals with face-based searching information, face-based video 
segmentation and summarization or event detection. Human faces are frequently seen in 
news, sports, films, home video, and other multimedia content. Indexing this multimedia 
content by face detection, face tracking, face recognition, and face change detection is 
important to generate segments of coherent video content for video browsing, skimming, 
and summarization.  
Low enforcement is closely related to suspect tracking and investigation, identifying cheats in 
casinos, criminal face retrieval and recognition. 
Human – computer interaction refers to interactive gaming and proactive computing.  
Table 1 lists some of the applications of face recognition that is the scgoal of this chapter 
(Zhao et al., 2003). 
 

Areas Specific Applications 
Entertainment Video Game, Virtual Reality, Training Programs 

Human-Robot-Interaction, Human-Computer-Interaction 
Smart Cards Drivers' Licenses, Entitlement Programs 

Immigration, National ID, Passports, Voter Registration 
Welfare Fraud 

Information Security TV Parent Control, Personal Device Logon, Desktop Logon 
Application Security, Database Security, File Encryption 

Intranet Security, Internet Access, Medical Records 
Secure Tracing Terminals 

Law Enforcement and 
Surveillance 

Advanced Video Surveillance, CCTV Control 
Portal Control, Post-Event Analysis 

Shoplifting, Suspect Tracking and Investigation 
Table 1. Typical applications of face recognition 

 
1.3 Face Recognition 
Face recognition is an innate method used by humans to recognize one another. Face 
recognition techniques have an advantage over the other biometric techniques in that they 
are non invasive and require little or no cooperation from the (passive) individual subjected 
to recognition as they are not susceptible to behavioural modifications (voluntary or 
involuntary). 
The main technologies used for facial recognition are: 
 Principal Component Analysis (PCA); 
 Local Feature Analysis (LFA); 
 Neural Networks. 
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1.3 Face Recognition 
Face recognition is an innate method used by humans to recognize one another. Face 
recognition techniques have an advantage over the other biometric techniques in that they 
are non invasive and require little or no cooperation from the (passive) individual subjected 
to recognition as they are not susceptible to behavioural modifications (voluntary or 
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The main technologies used for facial recognition are: 
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Recognition systems should be designed according to the type of application and to the 
attitude of the individual. The latter may be of three types: 
1. Cooperative: the subject is motivated to use the system in order to be recognised so that 
s/he can access portals and gates to certain areas; 
2. Uncooperative: the subject does not help or hinder the recognition process; 
3. Hostile or reticent: the subject tries to avoid recognition and shows evasive behaviour. 
The human face is made up of a “multidimensional set of images”. From a biometric point 
of view, face recognition is not characterized by high permanence: the numerous facial 
expressions, age, the radical changes which can have certain features as hair, hairstyle, 
beard, moustache, etc; the presence of eye glasses, changes in the use of cosmetics or facial 
color, variation of the user pose and change the direction of the incident light, are examples 
of exterior features that can change in time and make facial recognition difficult. The 
‘impermanent’ features of the face add to the complexity of the technical problems to solve. 
Nevertheless, successful techniques for personal identification have been developed at 
reasonable prices. 

 
1.4 3D Face Recognition Systems 
The difficulty of two-dimensional system of recognition (photographs, videotapes, etc. ...), 
comes from the type of data used to verify the similarity between two faces. This is because 
these devices are working on a two-dimensional representation in a three-dimensional 
scene.  
The 3D Face Recognition Systems have the ability to reproduce in 3D an image, capturing 
the smallest detail with outstanding precision. The promises of 3D face recognition are the 
high accuracy of recognition necessary for high-security applications, reducing the problems 
of pose and lighting, the best location of facial features.  
The advantages of this technology are in fact:  
 The 3D technology is more efficient than two dimensions because it is able to analyze 

much more information because you have access to new information; 
 A system of identifying 3D is less sensitive to the illumination conditions; 
 The problem of the pose can be solved with the realignment of the faces;  
 The occlusion can easily be found through a process of segmentation; 
 The automatic generation of synthetic facial expressions;  
conversely, there is that: 
 The 3D acquisition hardware is expensive (the cost increases with the precision of 

acquisition);  
 Some 3D acquisition systems are invasive;  
 Long acquisition times; 
 Some scanner systems can even be dangerous for the retina (laser);  
 Replace 2D devices (cameras, videocameras, etc..) with 3D with new equipment is a 

process that requires time and high costs. 
A first important classification of the techniques used is derived directly from the type of 
images that are presented as input to the process of recognition by dividing it into two 
broad categories: still images and video clips. In particular, in general applications of the 
automatic recognition are generally used still facial images of the subject to recognize or 
identify; these pictures are taken in layers of gray, as the color, almost anything used in the 
algorithms, presented a decidedly unfavorable report between the information conveyed 
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and the additional computational load required for its preparation. In some special 
applications, however, requires the face recognition in a complex scene and time variable, 
usually by video sequences taken by cameras (which would be that of people in an airport). 
Face recognition systems currently available are based on following approaches: 
Stereoscopy/photogrammetry is the technique that detects the position, shape and size of an 
object starting from its photographs. The method performs the steps without coming into 
contact with the object, and is based on the principle of triangulation. The subject is 
photographed through a pair of stereoscopic cameras, at least two different angles and from 
each camera is projected a "line of view" to the points of the object. The intersection of these 
lines provides the 3D coordinates of points of interest. The basic concept is that knowing the 
location of the cameras in relation to the same points in two different images, you can 
calculate the 3D depth by triangulation. The reconstruction algorithms are divided in two 
main stage: matching (search for corresponding points between images) and reconstruction 
(from a match is possible to obtain the 3D point associated). As regards reconstruction, there 
are two modes: classic stereo (with two fixed cameras) and multiple views (with a camera in 
motion). 
Time of flight acquisition is the technique that derive the distance to the object framed by 
measuring the time that a spot light takes to reach the subject framed and come back to the 
receiver placed in the device itself, from time of flight can be calculated immediately the 
distance traveled. In particular, they are optomechanic devices capable of emitting a laser, or 
an electromagnetic pulse that is distorted by the surface on which an impact, and receiving 
the reflected signal. From latter the time interval (time of flight) and then the distance 
between the instrument and the point found are measured. 
Laser scanner is based on optical-mechanical devices capable of emitting an electromagnetic 
pulse (the laser) and receiving the reflected signal, measuring the time interval and therefore 
the distance between the instrument and the point found. This system operates by 
measuring thousands of points in the second form of "point clouds". For each measurement 
(x, y, z), the system provides the intensity of the return signal describing the surface of the 
object scanned. These systems, also known as active methods, project on the object a specific 
pattern of light and obtain the depth image by analyzing the deformation that the pattern 
projected undergoes. The patterns of structured light that can be used are different and it is 
also possible to combine different patterns in the same device. The main patterns are: 
binary, n-ary, gray code and phase-shift. These are among the most used because they allow 
also the reconstruction of subject in the slight movement. The quality of the extracted model 
depends on the conditions of global illumination, which limits the use of these systems to 
environments with controlled lighting. These systems are conceptually very similar to those 
in time of flight, but with the important difference that the first image is acquired in a single 
pulse, while the scanners require several acquisitions to reconstruct the complete 3D model 
of the object. 

 
2. Face Recognition Methods 

The Face recognition has involved during the past years several research areas: psychology, 
pattern recognition, neural networks, computer vision and computer graphics. It is due to 
this fact that the literature on face recognition is vast and diverse. In fact, many methods of 
face recognition are based on different principles, algorithms and a mixture of techniques. 
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The usage of a mixture of techniques makes it difficult to classify these systems based purely 
on what types of techniques they use for feature representation or classification. We propose 
the following categorization (Zhao et al., 2003): 
 Holistic matching methods. These methods use the whole face region as the raw 

input to a recognition system. One of the most widely used representations of the 
face region is eigenpictures, which are based on principal component analysis. 

 Feature based (structural) matching methods. Typically, in these methods, local 
features such as the eyes, nose, and mouth are first extracted and their locations and 
local statistics (geometric, and/or appearance) are fed into a structural classifier. 

 Hybrid methods. Just as the human perception system uses both local features and 
the whole face region to recognize a face, a machine recognition system should use 
both. One can argue that these methods could potentially offer the best of the two 
types of methods. 

Table 2 lists some of the techniques of face recognition. 
 

Approach Representative Work 
Holistic methods  

  Principal Component Analysis (PCA)   
      Eigenfaces Direct application of PCA  
      Probabilistic Eigenfaces Two-class problem with prob. measure  
      Fisherfaces/Subspace LDA FLD on eigenspace  
      SVM Two-class problem based on SVM  
      Evolution Pursuit Enhanced GA learning  
      Feature Lines Point-to-line distance based  
      ICA ICA-based feature analysis  

Other  Representations   

      LDA/FLD FLD/LDA on raw image  
      PDBNN Probabilistic decision based NN  
Feature-based methods  
      Pure geometry methods Earlier methods; Recent methods  
      Dynamic Link Architecture Graph matching methods  
      Hidden Markov Model HMM methods  
      Convolution Neural Network SOM learning based CNN methods  
Hybrid methods  
      Modular Eigenfaces Eigenfaces and eigenmodules  
      Hybrid LFA Local feature method  
      Shape-normalized Flexible appearance models  
      Component-based Face region and components   

Table 2. Categorization of still face recognition techniques 

 
2.1 Three - Dimensional Face Recognition Methods 
In the recent years, different 3D face recognition methods have been proposed, a possible 
categorization can include the following four groups (Pan et al., 2005): 
The 3D face recognition methods that can be categorized into four groups (Pan et al., 2005): 
Curvature analysis-based: Curvature is the intrinsic local property of curved surface. The 
local shape could be determined by its primary curvature and direction (Trucco & Verri, 
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1998). Therefore, most of the early studies used curvature to analyze the features of 3D facial 
data (Lee & Milios, 1990; Gordon a & b, 1991; Yacoob & Davis, 1994). Gordon presented a 
template-based recognition system involving descriptors based on curvature calculations 
from range image data. The sensed surface regions were classified as convex, concave and 
saddle by calculating the minimum and maximum normal curvatures. Then locations of 
nose, eyes, mouth and other features were determined, which were used for depth template 
comparison. Yacoob proposed an approach to label the components of human faces. 
Qualitative reasoning about possible interpretations of the components was performed, 
followed by consistency of hypothesized interpretations. (Zhang et al., 2002) proposed an 
efficient method based on Gaussian curvature analysis. It consists of three major steps, 
Gaussian curvature estimation, boundary detection, and region growing. Moreover, (Song 
et al., 2006) presented a curvature analysis based method to estimate the principal freeform 
feature in a specified region of interest for template fitting. Based on the minimal, maximal, 
mean or Gaussian curvature computing, the geometric information is transferred to the 
curvature domain. Using a variant of Laplacian smoothing methods, the high frequency 
noises and interferences in the curvature domain are suppressed and the principal feature is 
addressed. By feeding back the extracted feature information to the geometric shape, the 
geometry of the template is estimated based on the feature analysis.   
Spatial matching based: Recognizing was performed via matching facial surface or profile 
directly in 3D Euclidean space (Beumier & Acheroy, 2000; Pan et al., 2003; Wu et al., 2003; 
Pan & Wu, 2005; Lu et al., 2004). This kind of approaches generally assume that the facial 
surface is a rigid object so that are not competent for the recognition among the models with 
expressions. 
Shape descriptor based: It exploits the shape representation or shape descriptor to achieve 
the recognition task in the representation domain. For instance, (Chua et al., 2000) used 
point signature - a representation for free-form surfaces for 3D face recognition, in which the 
rigid parts of the face of one person are extracted to deal with different facial expressions. 
(Wang et al., 2004) used a new shape representation called Local Shape Map for 3D face 
recognition. This kind of technique is simple and somewhat robust to small perturbations. 
However, its classification rate is considered to be low. (Berretti et al., 2008) presented an 
approach based on integral geometric shape information of a face. The method extracts 
salient face information by jointly considering metric and spatial properties between points 
of 3D face scans. First, the face surface is partitioned into a set of iso-geodesic surfaces, 
centered on the nose tip and characterized by increasing values of geodesic distance. Facial 
information captured by the iso-geodesic surfaces is then represented in a compact form by 
extracting their basic 3D shape and evaluating the spatial relationships between every pairs 
of surfaces. This is accomplished by a modeling technique capable to quantitatively measure 
the spatial relationships between 3D entities. Finally, surfaces and their relationships are 
cast to a graphlike representation, where graph nodes are the representations of the iso-
geodesic surfaces, and graph edges are their spatial relationships. In this way, the similarity 
between two 3D face models can be estimated extracting their graph representation and 
combining distances between arc labels of the two graphs. 
Recover-and-synthesis based: For this kind of methods, their probes still are 2D images but 
not 3D data. The partial 3D information was recovered from the 2D image, then the facial 
image in virtual view was synthesized for recognition (Zhao, 1999), (Lee & Ranganath, 
2003), (Hu et al., 2004) or the recognition task was accomplished with the recovered 
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point signature - a representation for free-form surfaces for 3D face recognition, in which the 
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not 3D data. The partial 3D information was recovered from the 2D image, then the facial 
image in virtual view was synthesized for recognition (Zhao, 1999), (Lee & Ranganath, 
2003), (Hu et al., 2004) or the recognition task was accomplished with the recovered 

 

parameters (Blanz et al., 2002). This type of approaches do not make full use of those online-
available 3D information. 

 
3. The Proposed System  

In this chapter the authors present a 3D face recognition system to personal identification 
based on Pseudo 2D Hidden Markov Models training by expression-invariant 
representation (Canonical Form) of the databases faces. 
In the section 1 has been emphasized that the main problems encountered in 3D face 
recognition are related to deformations of the face due to different facial expressions. 
Fortunately, the class of transformations that can suffer the surfaces representing the human 
faces are not arbitrary and can be modelled as isometric transformations that preserve the 
lengths. One way to find a representation which is the same for all isometric surfaces was 
proposed by Elad and Kimmel, named “bending invariant canonical form” (Elad & Kimmel, 
2001). In fact, from the consideration that the identity of a person is associated to the 
intrinsic geometry of the surface of the face, while facial expressions are associated with 
extrinsic geometry, begin the idea underlying this method: to represent the intrinsic 
geometry of the surface of the face in a form that is identical for different postures of the 
face.  
This invariant representation is an embedding of the intrinsic geodesic structure of the 
surface in a finite dimensional Euclidean space, in which geodesic distances are 
approximated by Euclidean ones: the Canonical Forms. 
To construct a Canonical Form it is necessary, by first, a three-dimensional surface of face of 
subject that is in recognition phase, called Mesh; next, to measure the geodesic distances 
between points on the surfaces by Fast Marching on triangulated curved surfaces, and 
finally the Multi-Dimensional Scaling (MDS) algorithm is applied to extract a finite 
dimensional flat space in which geodesic distances are represented as Euclidean ones. The 
first phase of system is summarized in Fig. 1.  
 

 
Fig. 1. Canonical Form Computation 
 
In the second phase, the obtained expression-invariant representation of the face (Canonical 
Form) is putting into the Pseudo 2-D Hidden Markov Model with 3-6-6-6-3 structure to 
perform the facial recognition (see Fig. 2). 
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Fig. 2. Face Recognition Process 

 
4. Fast Marching Methods 

The Fast Marching Method is a computational technique that approximate the solution of 
the "Eikonal equation" non-linear that is part of the broader class of Hamilton-Jacobi 
equations.  
The Eikonal equations are in form: 
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 onxgu )(  (2) 
 

where is a domain on n  The right side is generally known as it is the boundary 
condition that u equals a given function g(x) along the curve or surface  in  . 
One of the main difficulties in solving these equations is that the solution should not be 
differentiable even with smooth boundary data. The techniques based on Fast Marching 
Method are founded on two components. First, exploring the upwind “viscosity schemes”, 
they automatically select solutions that include non-differentiability in natural ways. The 
second component matches the causality of these patterns with fast sorting methods 
borrowed from the problems of discrete networks, making the Fast Marching Method 
computationally efficient. Considering a domain  with N total points, the complexity of 
these algorithms is the order of O (N log N). 
Many applications make use of the solution of non-linear Eikonal equation such as the 
problem of computing accurately the distance to a curve or a surface.  
For example, consider the case of  1u  outside the unit circle u= 0 on the unit circle it is 

verified that the function 12
1

)2y2(xy)u(x,   corresponding to the distance function from the 
unit circle solves the given Eikonal equation. By specifying the right side F(x) = 1 and 
assuming zero the boundary condition, the solution is precisely the distance from the initial 
curve  . The solution is shown in Fig. 3, as a set of concentric circles, and you can verify 
that is differentiable everywhere. 
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Fig. 3. Distance function to Eikonal equation 1u  
 
Another perspective is to imagine a disturbance propagating with unit speed away from the 
initial curve, and to calculate the propagation delay "first arrival time" at each point in the 
domain  . The points where the solution is not differentiable are placed between two 
points on the boundary curve at the same distance. By implementing the same calculation 
on the surface and back (backtrack) in a way orthogonal to the curves of propagation 
(curves in which the propagation delay is equal for all points) we can calculate the shortest 
path on the manifold. 

 
4.1 Upwind Schemes 
To deduce the reason why to use the upwind schemes (forward) for approximating the 
gradient operator, consider the Eikonal equation given by 
 

)(2 xFux   0)0( u  
0)0( u  

(3) 

  
The right side 0)( xF  is given, the objective is to calculate )(xu  away from the boundary 
condition that 0)0( u . It possible to notice that the solution to this problem is not unique 
because if )(xv  solves the problem, then does it also )(xv , and then attention will focus on 
non-negative solutions u . 
It is feasible to imagine building the solution “outwards” along the positive and negative x-
axis from the origin by solving each problem separately. Considering the following ordinary 
differential equations: 
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dx
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(5) 

 
them right-hand side is only a function of x: a numerical quadrature is performing. Using 
the standard finite difference notion that )( xiuui  and )( xiFFi  , you can approximate 
each of these two solutions using Euler’s method,  
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where 00 u . This is an upwind scheme: it is possible to compute derivatives using points 
“upwind” or towards the boundary condition. 

 
4.2 The Fast Marching Method on Orthogonal Grids 
In the previous section has been told that the Eikonal equation is non-differentiable and that 
the Fast Marching Method objective is to create an appropriate weak solution that arise from 
satisfying the entropy condition. The aim in this numerical scheme is the correct direction of 
the upwinding and treatment of sonic points. One particular upwind approximation to the 
gradient, is the following 
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The Fast Marching Methods progress in an upwind wise to find the solution T. It is 
fundamental observe that in Eq. 8 the information propagates from smaller to larger values 
of T, so the algorithm is based on solving the Eq. 8 by building the solution outwards 
starting from the smallest value of T. 
The Fast Marching algorithm is initialized as follows: 

- The points are tagged as Alive 
- All points one considered grid point away are tagged as Close  
- All remaining grid points are tagged as Far 

Then the algorithm proceeds as follow. The adjective "fast" is due to explorating of the 
points is done only for those places in a narrow strip outside of the front. The front is then 
moved forward in an upwind wise considering a set of points belonging to a band around 
the front stand; then it continues to move ahead on the points of the band; it freezes the 
values of existing points and, at last, incorporates some of those in front and calculate the 
new band around front (Chopp, 1993), (Malladi et al., 1993), (Adalsteinsson & Sethian, 1995). 
Ideas may be clarified by looking the main loop of method: 

1) Points with the smallest value of T are tagged with Tial; 
2) The Trial points becomes Alive and takes off from Close; 
3) All Trial neighbors that are not Alive are tagged as Close and, if they are in Far, are 

removed and added to Close group; 
4) The values of T for all the neighbors from the Eq. 8 are recalculated by solving the 

quadratic equation with only the values of the points that are Alive; 
5) The cycle begins again from 1). 
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The algorithm works because the process of recalculation of the T values of upwind 
neighboring points produces a value less than those of accepted points (those in Alive). This 
feature, called monotone properties, allows to move forward by choosing the narrow strip 
of Trial points with the minimum value of T. In this way is possible to change neighbors 
without having to go back and to adjust the accepted values as is shown in Figure 4. 
 

 
Fig. 4. Upwind construction of accepted values. 
 
The Fast Marching methods are used to solve the Eq.10 by means of an update procedure, 
where it can imagine an uniform square grid and the goal is to update the value of T at the 
center point i,j. The Fast Marching methods, also, can be extended on a particular 
Triangulated Planar Domain (Kimmel & Sethian, 1998). To do it is necessary built a 
monotone update procedure on the Triangulated Mesh or, generally on an Arbitrary 
Triangulation (acute triangulation and obtuse triangulation) (Kimmel & Sethian, 1998). 

 
5. GEODESIC DISTANCE 

The Fast Marching Method algorithm can be used to compute distances on triangulated 
manifolds, and, hence, to construct minimal geodesics. Before proceeding, is useful to say a 
few words about a geodesic distances. 
The geodesic distance between two pixels p and q is the length of the shortest path from p to 
q. Suppose  npppP ,...,, 21  is a path between pixels p1 and pn, i.e. pi and pi+1 are connected 
neighbors for  1...,,2,1  ni  and pi belong to the domain for all i. The path length l(P) is 
defined as: 
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the sum of the neighbors distances dN between adjacent points in the path.  
If the idea is to use the Fast Marching on triangulated manifolds first is necessary to solve 
the Eikonal equation on the triangulated surface with speed 1 FT to calculate the 
distance from a source point; then you can then go back (backtrack) along the gradient by 
solving the ordinary differential equation 
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where at the source points the distance is zero and X(s) is the geodesic path. Succesively, 
using the Heun‘s method of integration of the second order on Triangulated surface is 
possible to switch to a first order. Applying the Fast Marching method to triangulated 
domains requires a careful analysis of the update of one vertex in a triangle, while the T 
values at the other vertices are given: when the inner part of the triangle is integrated, three 
neighboring triangles are used to interpolate T with a polynomial second-order, whose six 
coefficients calculated from data values associated with T vertices. The fast marching on 
triangulated domains method can compute the geodesic distance between one vertex and 
the rest of the n surface vertices in O(n) operations. Repeating this computation for each 
vertex, we compute a geodesic distance matrix  in O(n2) operations. So we compute a 
geodesic distance matrix where  

 
  ijji pp  ,  (11) 

 
Each ij entry of  represents the square geodesic distance between the vertex i and the vertex 
j, that is ij=GeodesicDistance(Vertexi;Vertxj), where 
 

[]= 2ij (12) 
 
Thereby, given a triangulated surface, we apply the fast marching procedure for each vertex 
in a subset of the vertices as a source point and obtain the geodesic distance matrix, .  

 
6. Multidimensional Scaling 

The main problem of human face is that it can not be considered a rigid object because it 
undergoes deformations resulting from facial expressions. So classical surface matching 
methods, aimed to find a Euclidean transformation of two surfaces which maximizes some 
shape similarity criterion, are more suitable for rigid objects than moving objects. The 
second problem is that facial surface has class of transformations that are not arbitrary, and 
in literature facial expressions can be modeled as isometric (or length-preserving) 
transformations that do not stretch and do not tear the surface, or more strictly, preserve the 
surface metric. When is studied a human face, the problem is implemented a deformable 
surface matching algorithm is to find a representation, which is the same for all isometric 
surfaces. 
One of the algorithms most widely used for this purpose is the Multi-Dimensional Scaling 
(MDS). The idea is, preserving the relative distances between pairs of points, to transform a 
set of points in a high-dimensional space to a lower-dimensional one (Rohde, 2002). In most 
cases, in fact, is very complex to carry out results from studies handling high-dimensional 
vector spaces. So, if it is possible to obtain a set of vectors in a much lower-dimensional 
space, while preserving their similarity structure, the operations could be performed more 
efficiently. In other words multi-dimensional scaling (MDS) techniques are applied to 
extract a finite dimensional flat space in which geodesic distances are represented as 
Euclidean ones. 
In the MDS method, the dissimilarity between pairs of objects of a collection are given as 
coefficients and then approximated as distances between corresponding pairs of entities in 
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the visual representation. The quality of this approximation is expressed as a loss function, 
which produces the best value to its minimum. Is possible say that Richardson (Richardson, 
1938) and Young and Householder (Young & Householder, 1938) may have officially 
initiated the multidimensional scaling literature, but frequent applications did not begin to 
appear until the papers by Torgerson (Torgerson, 1952) and, successively, by Shepard and 
Kruskal. Torgerson used a one-dimensional scaling technique to convert dissimilarity 
ratings to target distances and then attempted to find a set of points whose pairwise 
Euclidean distances best matched the target distances, according to mean-squared error. 
Though very effective, this technique is too complicated for many applications and a serious 
incident is that the correct scaling method is difficult to determine and can vary from 
problem to another. An improvement occurred with Shepard (Shepard, 1962) that supposed 
that the goal of MDS should be to obtain a monotone relationship between the actual point 
distances. In literature Torgerson’s method has spread as MDS metric. On the contrary, the 
technique introduced by Shepard is known as non-metric MDS. Kruskal (Kruskal, 1964) 
further developed the procedure and defined the function known as stress function, relating 
the pairwise distances and the ranking of dissimilarities. The basic technique developed by 
Shepard and Kruskal remained the standard for most applications of MDS. 
Schwartz (Schwartz et al, 1989), were the first to use multidimensional scaling (MDS) as a 
tool for studying curved surfaces by planar models. In his work, he applied an MDS 
technique to flatten convoluted cortical surfaces of the brain, onto a plane, in order to study 
their functional architecture. Zigelman (Zigelman et al., 2002) and Grossman (Grossman et 
al., 2002) extended some of these ideas to the problem of texture mapping and voxel-based 
cortex flattening. A generalization of this approach was introduced in the recent work of 
Elad e Kimmel (Elad & Kimmel, 2001), that proposed an efficient algorithm to construct a 
signature for isometric surfaces. 
The problem can be so defined: suppose you have a collection of n objects and a way to 
determine the differences between each pair 
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The metric Multidimensional Scaling is a procedure to find a configuration of n points in a 
space of p size, usually Euclidean, so the point  
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The corresponding dissimilarity ij for all pairs of objects (i, j) is so approssimated: 
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Is usually sufficient to consider each pair of objects (i, j) only once with i<j, since differences 
are symmetrical. Asymmetric matrix elements ̂ must be mediated: 
 

  2ˆˆ
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For a given configuration X, the approximation error that is obtained to represent the 
dissimilarity between objects i and j can be defined as follows:  
 

  ijij

def
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The MDS - least squares technique (least-squares) defines the loss function as a weighted 
sum of normalized errors and possibly on all pairs of objects (i, j), and penalizes the overall 
approximation error. The minimum of this function on X is found through numerical 
optimization to obtain the desired configuration X *. 
Each of the MDS algorithms is an instance of a heuristic minimization function well known. 
This heuristic provides a theoretical basis and is usually the result of a large number of 
options and variations derived from operations research professionals and other fields. 
Some of the choices are determined simply by the application domain, others may be based 
on theoretical or empirical evidence found in the literature. 

 
7. Hidden Markov Models 

Hidden Markov models (HMMs) are a well-developed technology for classification of 
multivariate data that have been used extensively in speech recognition, handwriting 
recognition and even sign recognition. They consist of states, possible transitions between 
states (and the probability of those transitions being taken) and a probability that in a 
particular state, a particular observation is made (see Fig. 5). The “Hidden” mean that the 
state of the HMM can not, in general, be known by looking at the observations. Then, they 
are also “Markov” because the probability of observing an output depends only on the 
current state and not on previous states. By looking at the observations, using an algorithm 
known as the Viterbi Algorithm, an estimate of the probability that a particular instance or 
stream observed was generated by that HMM can be computed (Rabiner, 1989).  
 

 
Fig. 5. Schema of Hidden Markov Models 
 
For every class of interest, is possible apply HMMs, to calculate the probability returned by 
each of them and choose the most probable one. 
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7.1 One - Dimensional Hidden Markov Models 
The main idea of this structure is to design a multi-state system which outputs this sequence 
while being in a state qt at a given time t (Samaria & Young, 1994). At each state, the system 
is designed to output a certain observation from the vocabulary with a likelihood given by 
the output probabilities. At each time step the system will switch from its current state to the 
next (possibly stay in the same state) with a transition probability. The given of the 
transition probabilities will therefore implicitly design the (hidden) structure of the system. 
The state of the system at time t = 1 is given by its initial state probabilities. 
The elements that characterised a HMMs are: 

 N=|S| is the number of states of the model. If S is the set of states, then 
S={s1,s2,…,sn}.  si  is one of the states that can be employed by the model. To observe 
the system are used T observation sequences, where T is the number of 
observations. The state of the model at time t is given by qt in S, 1 < t < T; 

 M=|V| is the number of different observation symbols. If V is the set of all 
possible observation symbols (also called the codebook of the model), then 
V={v1,v2,….,vM}; 

 A = {aij} is the state transition probability matrix, where aij is the probability that the 
state i became the state j: 

 
aij = p(qt = sj | qt-1 = si) (19) 

 
where 1 ≤ i ; j ≤ N, with constraint   0 ≤ ai,j ≤ 1, and  ,1

1




N

j
ija  1 ≤ i ≤ N 

 B={bj(k)} the observation symbol probability matrix, bj(k) is the probability to have 
the observation k when the state is j: 

 
bj(k) = p (Ot = vk | qt = Sj) (20) 

 
        where 1  ≤  j  ≤  N;  1  ≤ k  ≤ M; and Ot is the observation symbol at time t. 
 
 = {N} is the initial state distribution: 

 
i = p (qj = Si) (21) 

 
where 1 ≤ j ≤ N. 
 

Using a shorthand notation, a HMM is defined by the following expression: 
 

 = (A,B,). (22) 
 
The training of the model, given a set of sequences {Oi}, is usually performed using the 
standard Baum-Welch re-estimation, which determines the parameters (A,B,) that 
maximize the probability P({Oi}|). 
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7.2 Two - Dimensional Hidden Markov Models  
Pseudo Two-Dimensional Hidden Markov Models (P2D-HMMs) can be considered how a 
generalization of the One-Dimensional HMMs, helpful to represent two-Dimensional data. 
A word “Pseudo” is used because of the state alignments of consecutive columns are 
calculated independently of each other (Werner & Rigoll, 2001).  
 

 
Fig. 6. Schema of Pseudo 2Dimensional Hidden Markov Model 
 
In Fig. 6, P2D-HMMs are organized in a two-dimensional way: the horizontal states are 
named superstates; each of them consists of a One-dimensional HMMs in vertical direction. 
For recognition process a P2D-HMM can be transformed into an equivalent one-
dimensional HMM.  
The HMMs can be trained by the standard Baum-Welch algorithm and the recognition step 
can be carried out using the standard Viterbi algorithm. 
The elements of an P2D-HMM are [Nefian & Hayes III, 1999] : 

 N0 are the number of superstates, and S0 = {S0,i}   1 ≤ i ≤ N0 the set of superstates. 
 The initial superstate distribution, Π0 = {π0,i}, were π0,i are the probabilities of being 

in super state i at time zero. 
 The super state transition probability matrix, 
 

A0 = {a0,ij} (23) 
 
        were a0,ij is the probability of transitioning from super state i to superstate j. 

 The parameters of the P2D-HMMs, which include: 
 The number of embedded states in the kth superstate, N1(k), and the set of 

embedded states, S1(k) {S1(k),i }. 
 The initial state distribution, Π1(k) = {π1(k),i}, where π1(k),i are the probabilities 

of being in state i of super state k at time zero. 
 The state transition probability of transitioning from state k to state j. 

 Finally, there is the state probability matrix, 
 

B(k) = {bi(k)(Ot0, t1)} (24) 
 
for the set of observations where Ot0, t1 represent the observation vector at row t0 and 
column t1. In a continuous density HMM, the states are characterized by continuous 
observation density functions. The probability density function that is typically used, is a 
finite mixture of the form 
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be the set of parameters that define the kth super state. Using a shorthand notation, an 
embedded HMM is defined as the triplet: 
 

),,( 00  A  (27) 
 
where: 

 
 )0()2()1( ,, N  (28) 

 
Although more complex than a one-dimensional HMM, a P2D-HMM is more appropriate 
for data that are two-dimensional, and has a complexity proportional to the sum of the 
squares of the number of states: 
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In Fig. 3 it’s shown an example of a P2D-HMM with a structure 3-6-6-6-3: the superstates 1 
and 5 are constituted by a left to right 1D-HMM with 3 states; instead the superstates 2, 3 
and 4 are constituted by a left to right 1D-HMM with 6 states. This is a particular structure 
used in the face recognition system realized by the authors and proposed in the followed 
sections. 

 
8. The Mesh and GAVADB 3D face database 

The Mesh, three-dimensional surfaces of face of subject, is in a ASE format, chosen for its 
excellent readability. A file ASE, in fact, is perfectly compatible with a text file, it opens up 
with a common notepad to show the content. The 3D image is a graphical model with a 
surface constructed from polygons. The polygons are described by the graphics system as 
solid faces, rather than as hollow polygons, as is the case with wireframe models. Separate 
portions of mesh that make up the model are called polygon mesh and quadrilateral mesh. 
The mesh is stored as three-coordinates points x, y and z of each point of the mesh and the 
triangles defined by the points themselves. The number of a three-coordinates points are 
variable, in this system a Mesh have 3000 points. 
To test the proposed system the GAVADB database (Moreno & Sanchez, 2004) is used. It is a 
3D face database. It contains 549 three-dimensional images of facial surfaces. This database 
has 9 images for each of the 61 different individuals with 45 male and 16 female. The total of 
the individuals are Caucasian and their age is between 18 and 40 years old. The database 
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provides systematic variations with respect to the pose and the facial expression. In 
particular there are: 2 neutral expressions with frontal views; 2 neutral expressions with 
views  x-rotated with ±30º, looking up and looking down respectively; 2 neutral expressions 
with views y-rotated ±90º, left and right profiles respectively; 3 frontal gesture images laugh, 
smile and a random gesture chosen by the user, respectively. 

 
8.1 The Implementation 
Given a polyhedral approximation (Mesh) of the facial surface, S, the fast marching on 
triangulated domains method computes the geodesic distance between one vertex and the 
rest of the n surface vertices. Repeating this computation for each vertex, we compute a 
geodesic distance matrix , where for each ij entry of  represents the square geodesic 
distance between the vertex i and the vertex j, that is ij=GeodesicDistance(Vertexi;Vertxj), 
with []=2ij (see Eq 11, Eq. 12). One of the crucial steps in the construction of the 
canonical form of a given surface, is an efficient algorithm for the computation of ij, that is 
the geodesic distances. 
The resulting matrix Δ is invariant under isometric surface deformations, but is not a unique 
representation of isometric surfaces since it depends on arbitrary ordering and the selection 
of the surface points. Treating the squared mutual distances as a particular case of 
dissimilarities, it is possible to apply a dimensionality-reduction technique, that is 
multidimensional scaling (MDS), in order to embed the surface into a low-dimensional 
Euclidean space 

m . This is equivalent to finding a mapping between two metric spaces, 
 

   
  ii

m

xp
dS





 ,,:  (30) 

 
that minimizes the embedding error, 
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for some monotone function f that sums over all ij. The obtained m-dimensional 
representation is a set of points  nix m

i ,...,1 , corresponding to the surface points pi. 
Different MDS methods can be derived using different embedding error criteria (Borg et al. 
1997). A particular case is the classical scaling, introduced by Young and Householder 
(Young et al. 1938), and that is a method here applied. The embedding in m  is performed 
by double-centering the matrix Δ 

JJB 
2
1  (32) 

(here U
n

IJ 1
 ; I is a n×n identity matrix, and U is a matrix consisting entirely of ones). The 

first m eigenvectors ei, corresponding to the m largest eigenvalues of B, are used as the 
embedding coordinates 

njni
ex j

i
j
i

,...,1;,...,1 
  (33) 
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where 
j
ix denotes the j-th coordinate of the vector 

ix . We refer to the set of points 
ix  

obtained by the MDS as the canonical form of the surface. In the described work it is obtained 
a surface representation with m=20. 
The autovectors values obtained by MDS that give the best characterization of a face surface, 
calculated Canonical Form, are saved in the binary format HTK (Hidden Markov Model 
ToolKit) in order to use the Hidden Markov Model to perform the face recognition. The 
binary file has an extension .bin, and contains the data saved in the format Big Endian, 
which is commonly used by Motorola processors (family 680x0), IBM and Sun as opposed to 
Intel and AMD's x86 family. 
The Hidden Markov Model Toolkit (HTK) (Young and Young, 1994) is a toolkit for building 
and manipulating Hidden Markov Models. HTK is primarily used for speech recognition 
research although it has been used for numerous other applications such as the face 
recognition. HTK consists of a set of library modules and tools to train and to test the HMM 
and to run a recognition. In the proposed system is used the Pseudo 2-D HMM with 
topology 3-6-6-6-3 shown in Fig. 7.  
 

 
Fig. 7. Schema of used Pseudo 2D HMM 

 
9. Experimental Results 

After training of P2D-HMM on canonical forms constructed from GAVADB database, the 
authors performed several experiments and the results were encouraging, indeed the 
system achieved a rate of recognition equal to 98%. The robustness of the system was put to 
the test by the presence of various noise situations: incompleteness of mesh in the form of 
holes and occlusions. Moreover, comparing these outcomes with others different from other 
methods proposed in the literature and applied on the same 3D database, the proposed 
method results outperform all of them (see Table 2). 
 

System Authors Results 
Fishersurface (LDA)  (Heseltine et al., 2004a) 88.7% 
Eigensurface (PCA)  (Heseltine et al., 2004b) 87.3% 
Fishersurface (LDA)  (Heseltine et al., 2004c) 88.4% 
3D matching + gray level  (Beumier & Acheroy, 2000) 98% 
Morphable model [19] (Blanz et al., 2002) 89% 
3D eigenfaces [20] (Xu et al, 2004) 71.1% 
The presented system  98% 

Table 2. Comparative results 
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Observing the Table 2, it is possible to notice that the proposed 3D facial recognition system 
obtained training a 3-6-6-6-3 P2D-HMM by expression-invariant representation (Canonical 
Form) of the databases faces, has reached reasonably good results, encouraging the authors 
to continue in this area for future developments in several directions such as: increasing the 
numbers of mesh points, that now are 3000; improving the Multi-Dimensional Scaling 
algorithm; reducing implementation time necessary to calculate the Canonical Form. 
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1. Introduction 

This chapter covers some of the latest developments in optical correlation techniques for 
face recognition using the concept of spectral fusion and placing a special emphasis on its 
practical aspects and applications for face recognition. Optical correlation is reviewed as a 
method to carry out instantly a decision on the target form (form to be recognized). A range 
of relevant practical topics is discussed, such as JTC (Joint Transform Correlator) and the 
Vander-Lugt architectures. Both of them are based on the "4f" optical setup and on a 
comparison between the target image and a reference image. The similarity between the two 
images is achieved by the detection of a correlation peak. The development of suitable 
algorithms for optical correlation and new technologies in electro-optical interfaces has 
significantly improved the processing capacity of optical correlators and reduce their sizes. 
To overcome the limitations of a decision taken by a simple detection of a correlation peak, 
more complex decision algorithms are required. These algorithms necessitate the integration 
of new correlation filters and the realization of multiple correlations and reconfigurable 
multi-channel architectures.  
 
This chapter surveys also the main correlation filters and the main multi-decision correlator 
architectures. It will describe the development of a multi-reconfigurable architecture based 
of a new version of correlation filter, i.e. the segmented filter. More specifically, we will 
describe an all-optical and compact correlator and a new phase optimized filter which based 
on four ingredients: POF, sector, composite and segmented filters. To extend the application 
of the algorithm and improve this system, a correlation filter is adapted in order to 
recognize a 3D face using multiple cameras arranged in a pickup grid. To minimize the 
effect of overlapping between the different spectra, the filter optimization is realized by 
shifting different reference spectral images. This could increase the number of references 
included in the same filter.  
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2. Background and Notations of optical correlation  

The use of optical correlation methods has evolved over the past thirty years. Thus, their 
scope has extended to security applications, as for example tracking and/or identifying for 
military applications (aircraft recognition, boats recognition, etc) or civilian applications 
(road signs recognition, face identification: bank, metro, airport). This interest for optical 
correlation techniques, based on the use of two Fourier transform (FT), is essentially due to 
the fact that it is possible to achieve an optical Fourier Transform instantly [1] (using a 
simple converging lens).  
 
To perform optical correlation techniques, two major approaches of correlators are proposed 
and validated in the literature: JTC (Joint Transform Correlator) [2] and Vander Lugt 
correlator [3]. Both approaches are based:  
 

1) On an all-optical set-up, called "4f" set-up [1], 
2) On a comparison between the target image and reference image coming from a 

learning data-base,  
3) On a simple detection of a correlation peak. The latter measures the similarity 

degree between the target image and the reference one. 
 

We begin this section by recalling the principles of these two approaches: 

 
2.1 Principle of the all optical filtering 4f setup 
The 4f set-up (Fig. 1) is an all optical system composed of two convergent lenses. The 2D 
object O (displayed in the input plane) is illuminated by a monochromatic wave [1]. A first 
lens performs the FT of the input object O in the image focal plane (Fourier plane), SO. In 
this focal plane, a specific filter H is positioned (using optoelectronic interfaces). Next, a 
second convergent lens performs the inverse Fourier transform (FT-1) in the output plane of 
the system to get the filtered image O’ captured using a CCD (charge-coupled device) 
camera. 

 
2.2 JTC : Joint transform correlator  
Weaver and Goodman introduced the foundations of a new type of correlator for pattern 
recognition called JTC [2]. In their pioneering article [2], Weaver and Goodman 
demonstrated the possibility and the necessary conditions to achieve optically the 
convolution between two images displayed in the input plane of the JTC correlator: a target 
image (image to be recognized) and a reference image (image coming from a given data-
base). Using this property and the classical "4f" set-up, Javidi and co-workers proposed [4] 
an optimized version of this JTC correlator. This optimized version allowing us to obtain 
very sharp and very intense peak correlations can increase the capacity of this type of 
correlators. This optimization is made possible by binarizing the joint spectrum1 according 
to a well-defined threshold and using a SLM modulator. Another optimized version of the 
                                                                 
1 Joint spectrum: spectrum obtained after performing a FT of the input plane of the JTC 
correlator, containing the target image and the reference image placed at a distance d from 
the target [5-6]. 

JTC correlator was proposed by Javidi [5] by introducing a non-linearity in its Fourier plane 
(the JTC Fourier plane). This non-linearity in the Fourier plane increases the performances of 
this type of correlators. 
 

 
Fig. 1. All optical filtering 4f setup 
 
The architecture of a non-linear JTC correlator (JTC-NL) [6] is now described in some detail. 
Other types of architecture will be listed in subsection (2. 3). A synoptic diagram of the JTC 
set-up is presented in Fig. 2-a. Basically, it is an arrangement based upon the 4f set-up with a 
non-linear operation in its Fourier plane [5-6]. Its principle is to introduce, in the input 
plane, both the target and reference images separated by a given distance and to separate 
the writing and reading phases. In Ref.[6], this non-linear operation was achieved by using 
an Optically Addressed Spatial Light Modulator (OASLM) in the Fourier plane. A first beam 
coming from a laser illuminates the input plane, I(x, y) Eq. (1), which contains the scene, s(x, 
y), i.e. the target image to be recognized, and the image reference, r(x-d, y-d), where d 
represents the distance between the target and the reference images.  
 
      dydxryxsyxI  ,,, . (1) 
 
The joint spectrum, obtained with Fourier transformed of I(x,y), is recorded by the OASLM 
modulator and yields t(u, v) Eq. 2 (writing stage shown in Fig. 2-b).  
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After a FT-1 of the joint spectrum, lighted with a second beam (reading stage shown in Fig. 
2-c), the correlation between the target and the reference image on a CCD camera is 
obtained. The correlation plane has several peaks which correspond to the autocorrelation of 
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After a FT-1 of the joint spectrum, lighted with a second beam (reading stage shown in Fig. 
2-c), the correlation between the target and the reference image on a CCD camera is 
obtained. The correlation plane has several peaks which correspond to the autocorrelation of 
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the whole scene in the center (zero order), and two correlation peaks (corresponding to the 
reference and target images). The location of the different correlation peaks depends on the 
positions of the reference and the target images within the scene.  
 

 
Fig. 2. Principle of the JTC correlator. 
 
The performance of the JTC-NL correlators [5-6] proved to be larger than the linear JTC 
correlators [2-3]. Furthermore, by modifying the non-linearity in the Fourier plane of the 
JTC-NL correlator, it is possible to increase or decrease the discrimination power of the JTC-
NL correlator. The interested reader may want to consult [7]. The optical implementation of 
the JTC correlator using an OASLAM modulator is simple to perform [6-7] and allows a 
high cadence (1 kHz) of processing (comparison between the target and reference images). 
Further adjustment in the non-linearity parameters can be easily made by changing, e.g. the 
voltage control of the modulator, the pulse duration, or the illumination of the modulator. 
 
However, this correlator suffers from physical and algorithmic drawbacks. Indeed, the use 
of two SLM modulators in the JTC (a first one is used in the input plane to display jointly 
the target image and the reference one, and the other one is used in the Fourier plane to 
write/read the joint spectrum of JTC correlator) imposes a limited resolution depending on 
the technology used to manufacture these modulators. Besides the loss of information 
caused by these resolutions, set by the manufacturers, they also impose constraints on the 
choice of lens to be used for performing the FT of the input plane. The focal must verify 
equation (3). 
 

 
Re Reinput plane Fourier planeN s s
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  ,    (3) 

 
where planeinputs Re  denotes the resolution of the modulator used in the input plane, 

planeFouriers Re  is the resolution of the Fourier plane modulator, N is the number of pixels 

and  is the wavelength. Similarly, the focal length of the second lens (to perform the 
second Fourier transform) is calculated by respecting the resolution of the modulator used 
in the Fourier plane and the resolution of the camera used to record the output plane: 
correlation plane. 
 
Figure (3) shows an example of a correlation plane using a JTC-NL correlator [8]. In this 
plane, three peaks are visible: a central peak characterizing the zero-th order of the JTC 
correlator; the other two peaks are the two correlation peaks which show similar 
correlations between the target and reference images. The position of the two correlation 
peaks depends of the position of the target image relatively to the reference image placed 
both in the input plane. 
 

 
Fig. 3. Correlation plane obtained with an all Optical NL-JTC correlator [8]. 

 
2.3 The correlator JTC applied to facial recognition 
To have a general overview on this type of correlator, we test by numerical simulations, 
some JTC architectures proposed in the literature. We examine the performance of this type 
of correlator vis-à-vis the face recognition application that interests us in this chapter. For 
this purpose, we begin by recalling the principles of several architectures implementing the 
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JTC correlator. All these architectures use the 4f set-up and differ from the treatment applied 
on the joint spectrum of the JTC correlator:  

 
 Classical JTC [2]: CL-JTC 

 

This classical architecture consists to record the intensity of the joint spectrum given by 
equation (2). The result is as follows 
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To obtain the correlation plane using the CL-JTC, we need to perform a FT-1 of the recorded 
intensity (Eq. 4) to get the three peaks in the correlation plane: one representing the zero-th 
order resulting from the FT-1 of the first line of Eq. 4, and two correlation peaks 
corresponding to the FT-1 of the second and third lines in Eq. 4. Studying these two 
correlation peaks determine the degree of resemblance between the target and the reference 
faces. However, this classical correlator has two major drawbacks rendering the decision of 
this type of correlator not always reliable:  
  

1. It presents a very large zero-th order and very intense peak compared to the 
correlation peaks, 

2. It is characterized by two low-intensity and large correlation peaks. 

 
 Binary JTC [4]: B-JTC  

 

Once the intensity of the joint spectrum (Eq. 4) is recorded, the binary JTC consists to 
binarize this intensity (Eq. 4) using the method detailed in equation (5). Then a FT-1 is 
performed to obtain the correlation plane. 
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where SJ_Bin is the binarized joint spectrum and S is a threshold that corresponds to the 
medium of the intensity joint spectrum values [4]. This correlator provides better 
performance than the classical JTC. It is more discriminating, has very sharp and intense 
correlation peaks and a very sharp zero-th order [4]. However, it is too sensitive especially 
to deformations of the target image relatively to the reference image (rotation, scale), which 
appear often in face recognition applications. 
 
 

 

  Nonlinear JTC [5]: NL-JTC 
 

To control the sensitivity of the JTC correlator, the authors of Ref [5] presented a non-linear 
version of this correlator. It consists in introducing a non-linearity function “g(E)” in the 
joint spectrum intensity (Eq. 4). The non-linearity function g(E) is given by the following 
equation: 
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where K represents the degree of freedom applied to our correlator. If K=0, we obtain the 
binary JTC correlate. Here we set 0.5K  since this value leads to a good compromise 
between the power discrimination and the sensitivity [7-8]. 

         
 JTC order without zeros [9]: NZ-JTC 

  

As was mentioned previously, the JTC correlator has a high zero-th order which is 
detrimental to obtain a good and reliable decision, especially for a small distance length 
between the object to recognize and the reference image. Reducing this distance is required 
for decreasing the size of the input plane that has a limited space-bandwidth product 
(SBWP). Indeed, the size of the input plane depends on the size of the scene (which contains 
the object to be recognized), the reference image and the distance between them. To solve 
this problem a first technique is proposed consisting in hiding the zero-th order by 
multiplying the correlation plane with a binary mask given by equation (7) 
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where c is the width value of the desired mask. However, this mask cannot entirely solve 
the problem. Depending on the value of c, the correlation peaks can be filtered out. To 
overcome correctly the zero-th order problem, another technique was proposed and 
validated in the literature [9]. It consists in eliminating the first two terms of the joint 
spectrum (Eq. 4), i.e.  22 ),(),( vuRvuS   , which introduce this zero-th order.  
 
This approach was chosen by us. For that purpose, we first record separately the spectra 
intensities of the two images presented in the input plane: the face to be recognized and the 
reference. Then, we subtract the two intensity values of the equation (4) to get 
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This equation contains only terms corresponding to the two correlation peaks. Then, by 
performing a FT-1 of this quantity only two correlation peaks are visible. 

 
 Fringe-Adjusted Joint Transform Correlation: FA-JTC [10]  

 

To optimize this JTC correlator and to render it more robust to noise, the authors of [10] 
suggested and validated a new approach of JTC, called Fringe-Adjusted Joint Transform 
Correlation FA-JTC. Basically, it consists in multiplying the intensity of the JTC joint 
spectrum (Eq 4) with the fringe-adjusted filter (Eq. 9) 
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where G(u,v) denotes a function to obtain an optical gain larger than 1 and N(u,v) is a 
function used to reduce the noise effect in the correlation peak and/or to delete the band 
limit the signal. A comparison of the FA-JTC method with the classical JTC and binary JTC 
shows that they are successful to increase the decision performance of the JTC correlator 
[10]. 

 
 Comparison and conclusion  

 

In this section, we give an overview of the performance of several JTC correlators vis-à-vis 
the face recognition issue. The example chosen, Table (l-a), is to recognize the face of Lena 
with a reference face-image Lena. This study was conducted in a controlled environment: 
without noise. 
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function used to reduce the noise effect in the correlation peak and/or to delete the band 
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Table 1. 3D representation of the various correlation planes obtained with several 
approaches of the JTC correlator. 
 
Table (1) presents information of the JTC correlator performances. The binary JTC correlator 
has very intense and sharp correlation peaks (Table (1-c)) compared to the values obtained 
with the classical JTC (Table 1-b). This results in a reliable and discriminating decision. The 
B-JTC correlators have good discriminating features, however they are too sensitive with 
respect to noise like for e.g. the deformation of the target face relative to the reference one, 
i.e. a small change between the reference face and the face to be recognized yields a 
significant decrease of the intensity of the correlation peaks. Thus, it is necessary to increase 
the number of reference images in the database to cover all possibilities that the target image 
can have in a given scene.  
 
One solution to overcome this problem is realized by introducing a non-linearity in the 
Fourier plane. This allows us to control the performance of the JTC correlator (Table 1-d) 
and to increase or decrease its discriminating characteristic. By changing the non-linearity 
degree of the JTC correlator, different applications, with or without noise, can be considered. 
Suppression of the zero-th order can make easier the decision and increase the performance 
(Table 1-e).  
 

Despite improvements found in the literature, the JTC architecture has still a serious 
drawback: it requires a large input SBWP [11]. The very nature of the JTC requires that the 
target and the reference (or references) images are placed side by side in the input plane 
(Figure 4). Assuming that Ns is the pixel size of the scene (that contains the target image 
with size=No) and Nr is the pixel size of the reference image, the pixel size of the input plane 
(Figure 4) Ne can be written as 
 
 rrse NPNNN  2 , (10) 
 
where P denotes the number of reference images to include in the input entry [11]. The use 
of many references in the input plane is necessary to overcome the problem of making a 
decision based on a single comparison between the target image with a single reference 
image. Thus, a decrease of the inputSBWP _  appears because of non-active zones to avoid 
overlapping of the correlation planes in the output plane of the JTC correlator [11]; the target 
and the reference images must be placed in the input plane at a distance d. Consequently, 
one can write 2_ eNinputSBWP  , indicating that inputSBWP _  increases when the size of 
the object is increased. For example if we want to recognize a face that has a size equal to 
 6464  pixels, it is necessary to use an input plane with a size equal to  320320  pixels. 
This plane has an unused area equals to  8 64 64   (with reference to Figure (4)) [11]. 

 
Fig. 4. Input plane of a JTC correlator using multiple references.   
 
The implementation of an all-optical NL_JTC correlator is quite simple. It has a good 
compromise between discrimination and robustness; this compromise is mainly due to the 
use of non-linearity in the Fourier plane introduced via an optically addressed modulator 
(OASLM). However, the number of references that can be treated in a parallel manner is 
limited by the structure of the input plane ( inputSBWP_ ), i.e. the target and references 
must be positioned in the input plane. In addition, the use of several references in the input 
plane can lead to saturation in the joint spectrum, when increasing the number of references 
[7,11]. 
 
To overcome this problem the Vander Lugt Correlator (VLC)-based technique can be used. 
This technique does not require a large input plane because only the scene is presented. 
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Thus, all the correlation features are introduced in the Fourier plane. This technique is now 
described. 

 
2.4 Vander Lugt Correlator (VLC) and mono-channel approach 
The synoptic diagram of the VLC is presented in Figure 5. Basically, this technique is based 
on the multiplication of the spectrum, S0, of the target image O by a correlation filter, H, 
made from a reference image. The input plane is illuminated with a linearly polarized 
incident parallel beam. Located in the rear focal plane of a Fourier lens, a SLM is used in 
order to display the chosen correlation filter in the Fourier plane of the optical set-up. Many 
approaches for designing this filter can be found in the literature according to the specific 
object that needs to be recognized [1,3][13-19]. A second FT is then performed with a lens in 
a CCD Camera (correlation plane). This results in a more or less intense central correlation 
peak depending on the degree of similarity between the target object and the image 
reference. 
 
Since the publication of the first optical correlator VLC [3], much research has been done to 
render it more discriminating and robust. The 1980s and 1990s have seen a large number of 
correlation filters to improve the Classical Matched filter (CMF) [3]. These improvements 
were intended to include physical constraints of the SLM modulators which are required to 
display filters in the optical set-up. A few words about the notation: I(x,y) and Ri(x,y) are the 
(2D) target image (to recognize) and the 2D reference image number #i, respectively. In like 
fashion, SI(u,v) and SR(u,v) denote the Fourier transform of the target image and the 
reference image, respectively. Subsequently, we will focus on presenting several filters 
which have been designed for 3D face recognition. 
 

 
Fig. 5. Synoptic diagram of VLC. 
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of the background noise and  is a constant. This filter is very robust, but presents a low 
discriminating power [1,3,13-14]. Without noise this filter can be written as: 
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 Phase Only Filter:  HPOF  
 

The POF filter is an optimized version of the classical matched filter ( CMFH ) and is defined 
by equation (12). This filter has a very sharp peak, is very discriminating, but is too sensitive 
to specify noise arising e.g. in object deformation [13,20].  
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 Binary Phase Only Filter: HBPOF 

 
This filter is a binary version of the HPOF filter to take into account the physical constraints 
imposed by using fast and binary SLM [8,21]. Several techniques have been proposed to 
achieve this binarization, e.g. [21]. Here, this filter is binarized according to the following 
equation:  
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Different types of binarization were considered, see e.g. Ref [22] for a review. 
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 Phase Only Filter with region of support: HROS_POF  
 
The principle of this filter is very important for the definition of our multi-correlation 
segmented filter. It is defined as a multiplication of the HPOF filter with a pass-band function 
P [22-23] and can be written as following: 
  

 ROS POF POFH H P  ,  (14)  
 
where P is a pass-band function used to select the desired information in the HPOF filter. This 
HROS_POF filter permits to increase the robustness of the classical HPOF, and has a good 
discriminating power. 
 
The following set of filters was also proposed and discussed in the literature: 

- HAMPOF: Amplitude Matched Phase only filter [24]  
- HCTMF: Complex Ternary Matched Filter [25]  
- HFPF: Fractional power filter [14] 
- HIF: Inverse filter [14]  
- HPCMF: Phase With Constrained Magnitude filter [26] 
- HPMF: Phase mostly filter [27]  
- HQPF: Quad-Phase filter [28-29] 

 
All these filters have been proposed to optimize the performance of the decision taken with 
the classical correlation filter HCMF. However, in every case, each filter uses a single 
reference. For a reliable decision, we must compare the target image with a large number of 
filters. These results in a huge increase of the time required to make a decision. In addition, a 
small part of the SBWP of the output plane is used (decision based on one point in the 
output plane: mono-correlation). To overcome these problems and improve the reliability of 
the decision, multi-correlation approaches constitute a useful option [8,30]. 

 
2.5 VLC and multi-correlation approaches 
Multi-correlation consists in considering a larger part of the correlation plane [8,30] to cover 
all possible situations and have a discriminating power. Other words stated, we explore 
decision-making structures based on several correlations to overcome the drawbacks 
existing with a decision taken with a single reference. From a practical point of view, the use 
of several references can be realized with a temporal multiplexing of these references 
(Figure 6). For that purpose, we consider successively several (number of used references) 
correlations to make the decision. This obviously increases the computational time. 
 

 
Fig. 6. Architecture using the temporal multiplexing of references.  
 
Alfalou et al. [18-19] proposed and validated another solution that consists of spatially 
multiplexing these references together by combining their respective filters as shown in 
Figure (7). This solution performs simultaneously and independently many correlations. 
Then, the decision is taken by comparing all these correlations. 

 
Fig. 7. Architecture using spatial multiplexing: principle of a correlator using a segmented 
composite filter for the multi-correlation. 
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Here, the filter that we seek to build is a filter allowing us to recognize one or several objects 
in a scene. To build such a filter, we have chosen to work with the composite filter approach 
for multi-correlation [18-19]. 
 

 Composite Filter: HCOMP  
 

This filter allows one to merge multiple versions of a reference image. This type of filter is 
interesting to solve the correlation filter sensitivity vis-à-vis the rotation and the scaling 
operations. This filter can be defined as a linear combination of different reference versions:  
 

 
i

iiCOM RaH ,  (15) 

 

where the ais are coefficients to optimize a cost function defined for a desired application 
[16-17]. In the composite filter approach, each point of the Fourier plane is involved in the 
correlation of a given class according to the intensity of its spectrum at this point. However, 
this may be inconvenient if several classes use the same point in the Fourier plane. 
 

 Segmented Composite Filter: Hseg  
 
To get a reliable decision, it turned out to be necessary to perform a multi-decision and 
reconfigurable correlator, in order to display the different references rapidly. A first solution 
consists in adding a grating in the correlator in order to obtain several channels at the same 
time [8]. However this kind of architecture lacks programmability: this is due to the fact that 
the various channels (necessary to separate the several decisions) are implemented in the 
correlator by a fixed grating. After investigating programmability opportunities of the 
various correlators architectures, we opted for a phase only filter based correlator [3,20] for 
optical implementation simplicity. But, the programmability of such architectures turned 
out to be a serious issue. Consequently, the study was directed towards composite filters 
based architectures, where the programmability introduced into the Fourier plane is easier 
to implement [16-17]. The various references are merged together in the same filter and can 
be placed in the correlator using reconfigurable interfaces. A specific carrier is assigned to 
each reference for separating the correlation results. 
However, this needs to cope with the issue of information encoding in the Fourier plane. To 
perform such encoding, various schemes of the Fourier plane were proposed. One of them is 
adapted to the composite filters for correlation and can be carried out using the concept of 
segmented composite filter [18-19]. This architecture is illustrated in Figure 7. It deals with a 
standard optical correlator using a spatial light modulator (SLM) with binary phase-like 
filters in the Fourier plane. 
To improve the robustness of the HPOF filter, it was shown that the multiplication of the 
latest filter with a binary pass-band function ( P(i)=0 i<N or P(i)=1 if i>N, where N is chosen 
according to the specific application) increases the robustness of the POF filter against noise. 
To improve the pass-band function, Ding and co-workers [23] proposed an iterative method. 
This technique requires a large computing time and depends on the desired application. 
Moreover, it is based on a binary function (0 or 1) leading to a loss of Horner efficiency 
which can be detrimental for optical implementation. A similar technique was proposed in 
Refs. [18-19] to improve the pass-band function based on a non-iterative method and 

optimized by using the SBWP in the Fourier plane. This technique was shown to give a good 
Horner efficiency identical to a conventional HPOF.  
This property was used to design our multi-correlation filter optimizing the use of the SBWP 
in the Fourier plane of the VLC correlator. We begin first by multiplying each filter 
(manufactured from one reference image) with a given pass-band function. Note that each 
pass-band function is chosen to eliminate all non-important areas in each filter. In these non-
used areas information coming from another filter to obtain is included. Thus, a single filter 
containing information on several references images is used. 
The significant increase in the processing capacity is due to the parallelism offered by the 
segmented composite filters, ensuring that an optimal use of the SBWP is available in the 
correlator. The parallelism provided by these filters offers two important advantages:  

- First, it enables to increase the rate of correlations independently from the 
technology used for SLMs. 

- Second, it offers a more efficient decision-making processes (the decision is made 
by the simultaneous consideration of several peaks). 

 
 Advantages of the segmented composite filter: 

 

In addition to parallelism, this filter allows one to obtain a better optimization of the SBWP 
available than conventional filters. With the composite filter, the phenomenon of local 
saturation in the Fourier plane is much more awkward than that met with the segmented 
filter, due to the fact that the manufacture of the composite filter is based on the local 
addition of spectral information coming from different references. On the other hand, the 
nature of the segmented composite filter, whose synoptic diagram is presented Figure (8), 
allows us to reduce the phenomenon of local saturation in Fourier plane. This result is 
obtained by segmenting the Fourier plane in several zones and by allotting a class to each 
zone. Separation at the output plane is obtained by adding a spatial carrier to each class.  

 
Fig. 8. Synoptic diagram of a correlator using a segmented composite filter for multi-
correlation  
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Fig. 8. Synoptic diagram of a correlator using a segmented composite filter for multi-
correlation  



Face	Recognition370

The used criterion which was worked out in [18] is purely energetic and does not take into 
account the phase information. Here, the validation of such optimization of this criterion is 
illustrated. The decision to assign this pixel to a reference is based on the overall 
comparison: 
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where L is the number of references, N is the size of the filter plane, and  lkE ij ,  is the 

spectral intensity of the i-th class at the pixel  lk , . Figure (9) presents a segmented filter 
with a reference base made up of 4 classes (with three references per class, i.e. 9 references at 
all).  

 
Fig. 9. Segmentation of each class in the Fourier plane   
 

 Criteria for assessing pattern-recognition 
 
Several criteria have been proposed to evaluate the correlation performance, i.e. recognition, 
discrimination [14, 31]. Here, two of them will be chosen for illustrative purpose. The first is 
the Peak-to-Correlation Energy (PCE) defined as the energy of the peak correlation 
normalized to the total energy of the correlation plane: 
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where N denotes the size of the peak correlation spot, and M is the size of correlation plane. 
A second criterion is the SNRout, defined as ratio of the energy of the peak correlation spot to 
the noise in the correlation plane: 
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 Performance of the segmented composite filter vis-à-vis the rotational invariance 

 

From a practical point of view, the Phase Only Segmented Composite Filter is a filter having 
a very good capacity of discrimination, but it is not robust. To illustrate such low robustness, 
we take a face onto which a rotation between 0° and 90° (0°, 10°, 20°, … 90°) is performed. 
The obtained faces are then compared with a single phase segmented composite filter made 
from two positions of faces: 0° and with a rotation equal to 90°. Figure (10-a) confirmed the 
low robustness of this kind of filter, i.e. the PCE is lowered by a factor of 4. To overcome this 
issue, we add a reference, a face rotated by 45° in the filter. The results, incorporating the 
same conditions as before, are presented in figure (10-b). These results demonstrate the 
increase of the robustness of the segmented filter by using only three references in each class 
(at 0 °, the second at 45° and a third to 90°). 
 

(a) (b) 

Fig. 10. Robustness of the segmented composite filter: (a) results obtained with a segmented 
filter used two references at 0° and 90°. (b) Results obtained with a segmented filter with 
three references at 0°, 45° and 90° [8] 

 
 Comparison between the classical composite filter and the segmented composite 

filter : application to face recognition  
 

Taking into account the limited space band-width product (SBWP), the quantity of 
information which can be introduced into the filter is rather limited. Consequently, the 
number of references which can be incorporated in the composite filter is low. Table (2) 
summarizes the PCE obtained numerically by introducing into the Fourier plane a single 
phase filter for a face recognition application. The evolution of the PCE versus the number 
of correlation is displayed in figure (11) (base consisted of 4 classes, with 4 references per 
class).  
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The used criterion which was worked out in [18] is purely energetic and does not take into 
account the phase information. Here, the validation of such optimization of this criterion is 
illustrated. The decision to assign this pixel to a reference is based on the overall 
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where L is the number of references, N is the size of the filter plane, and  lkE ij ,  is the 

spectral intensity of the i-th class at the pixel  lk , . Figure (9) presents a segmented filter 
with a reference base made up of 4 classes (with three references per class, i.e. 9 references at 
all).  
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Several criteria have been proposed to evaluate the correlation performance, i.e. recognition, 
discrimination [14, 31]. Here, two of them will be chosen for illustrative purpose. The first is 
the Peak-to-Correlation Energy (PCE) defined as the energy of the peak correlation 
normalized to the total energy of the correlation plane: 
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where N denotes the size of the peak correlation spot, and M is the size of correlation plane. 
A second criterion is the SNRout, defined as ratio of the energy of the peak correlation spot to 
the noise in the correlation plane: 
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From a practical point of view, the Phase Only Segmented Composite Filter is a filter having 
a very good capacity of discrimination, but it is not robust. To illustrate such low robustness, 
we take a face onto which a rotation between 0° and 90° (0°, 10°, 20°, … 90°) is performed. 
The obtained faces are then compared with a single phase segmented composite filter made 
from two positions of faces: 0° and with a rotation equal to 90°. Figure (10-a) confirmed the 
low robustness of this kind of filter, i.e. the PCE is lowered by a factor of 4. To overcome this 
issue, we add a reference, a face rotated by 45° in the filter. The results, incorporating the 
same conditions as before, are presented in figure (10-b). These results demonstrate the 
increase of the robustness of the segmented filter by using only three references in each class 
(at 0 °, the second at 45° and a third to 90°). 
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Fig. 10. Robustness of the segmented composite filter: (a) results obtained with a segmented 
filter used two references at 0° and 90°. (b) Results obtained with a segmented filter with 
three references at 0°, 45° and 90° [8] 

 
 Comparison between the classical composite filter and the segmented composite 

filter : application to face recognition  
 

Taking into account the limited space band-width product (SBWP), the quantity of 
information which can be introduced into the filter is rather limited. Consequently, the 
number of references which can be incorporated in the composite filter is low. Table (2) 
summarizes the PCE obtained numerically by introducing into the Fourier plane a single 
phase filter for a face recognition application. The evolution of the PCE versus the number 
of correlation is displayed in figure (11) (base consisted of 4 classes, with 4 references per 
class).  
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Correlation number PCE : Composite filter PCE : Segmented composite filter 
1 0.256 0.323 
2 0.163 0.309 
3 0.088 0.181 
4 0.066 0.141 
5 0.062 0.155 
6 0.033 0.138 
7 0.033 0.121 
8 0.029 0.121 
9 0.028 0.113 
10 0.029 0.099 
11 0.016 0.090 
12 0.012 0.090 

Table 2. PCE values according various methods of calculation from filter considered  
 

 
Fig. 11. PCE values obtained versus correlation number for two composite filters 
 
In figure (11) the PCE decreases as a function of the number of correlations for different 
filters. It is also important to observe in figure (11), the quasi-impossibility of recognizing a 
face (with a classical composite filter) when more than 5 references are used. While the 
segmented composite filter makes it possible to incorporate 12 references the PCE loses only 
1/3 of its initial value.  

 
3. Multi-view segmented filter for multi-correlation: Application to 3D face 
recognition 

In many practical applications, e.g. face recognition, 3D objects need to be recognized. In 
order to identify them, they should be first converted in 2D images. In this case, SLMs, used 

to display the input plane and the filters into a correlator are 2D. The 3D-2D conversion is 
generally achieved with a CCD camera resulting in a loss of information. To deal with this 
issue, we propose to use a basic correlator (VLC) and to merge information of both object 
shape and object depth in its Fourier plane. Two main methods for 3D object reconstruction 
can be found in the literature. The first is based on holography, i.e. the PSI technique [32-33]. 
Even though it can provide a reliable 3D object reconstruction, it is discarded here because it 
needs achieving complex transmittances using several specific reference waves. 
Furthermore, it requires the registration of these transmittances. The second method, called 
integral imaging technique (II) [34] is easy to achieve since it does not require complex 
amplitudes and acquisition of a large amount of information. Indeed, this technique is based 
on the registration of multi-views of a 3D target object. These different views are called 
elemental 2D images. They are taken using a matrix of fixed cameras (pickup grid). Each of 
these cameras captures a view of the 3D object (Figure (12)). Then, the elemental 2D images 
are used to rebuild the 3D object by a specific process [34].  

 
3.1. Our approach to recognize 3D object 
The first step in our approach consists in decomposing the 3D object into many elemental 
2D images. For this purpose, we use a pickup grid, i.e. symmetric arrangement with three 
rows of cameras: A first row is associated to an angle of -15° view of the object, a second one 
to 0°, and the third one to +15°. In our arrangement, the cameras are placed at a distance 
equal to 3 cm each in length and width. To validate our approach, we used objects without 
noise: the subject is positioned in front of the camera placed at the center. To recognize the 
3D object, we can correlate each 2D elemental image with its appropriate 2D correlation 
filter, thus giving an elemental decision. The final decision on the 3D object is taken by 
combining all these elemental decisions. However, it is a very long process that requires the 
a priori knowledge of the information on the object (especially on its orientation). To deal 
with this problem, we propose to merge the different elemental images together to produce 
a single image that contains all the necessary information on the various views of the 3D 
object. Next, we compare this image with only one filter. Two fusion techniques were used: 
the first one is to carry out the composite filter and the second one is to carry out the 
segmented filter. Next, we will detail the process to merge the input elemental images and 
the fabrication of the filter. 
For the dual purpose of merging the information dealing with a 3D object and reducing it in 
a 2D image, we start by applying the technique used in the fabrication of composite filters. 
The 3D/2D image obtained is a combination of different elemental images. However, a 
major drawback of this technique lies in its saturation problem, especially when the number 
of elemental images is large, which eventually leads to a decrease of the performance of the 
correlator. This saturation is due to the fact that the technique we want to propose here 
should be optically implementable. SLMs are used to display the input images and filters 
that require 8-bit coding of information for the SEIKO modulator (amplitude modulator, 
with 256 gray levels) and 2-bit coding for the Displaytech modulator. The former modulator 
is used to display the target image in the input plane of our correlator. The latter modulator 
is used to display the various filters. To overcome the saturation, the number of merged 
elemental images is limited to three. A fusion technique based on the segmentation of the 
Fourier plane is employed [18-35].  
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are used to rebuild the 3D object by a specific process [34].  
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The first step in our approach consists in decomposing the 3D object into many elemental 
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to 0°, and the third one to +15°. In our arrangement, the cameras are placed at a distance 
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filter, thus giving an elemental decision. The final decision on the 3D object is taken by 
combining all these elemental decisions. However, it is a very long process that requires the 
a priori knowledge of the information on the object (especially on its orientation). To deal 
with this problem, we propose to merge the different elemental images together to produce 
a single image that contains all the necessary information on the various views of the 3D 
object. Next, we compare this image with only one filter. Two fusion techniques were used: 
the first one is to carry out the composite filter and the second one is to carry out the 
segmented filter. Next, we will detail the process to merge the input elemental images and 
the fabrication of the filter. 
For the dual purpose of merging the information dealing with a 3D object and reducing it in 
a 2D image, we start by applying the technique used in the fabrication of composite filters. 
The 3D/2D image obtained is a combination of different elemental images. However, a 
major drawback of this technique lies in its saturation problem, especially when the number 
of elemental images is large, which eventually leads to a decrease of the performance of the 
correlator. This saturation is due to the fact that the technique we want to propose here 
should be optically implementable. SLMs are used to display the input images and filters 
that require 8-bit coding of information for the SEIKO modulator (amplitude modulator, 
with 256 gray levels) and 2-bit coding for the Displaytech modulator. The former modulator 
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Fig. 12. Decomposition of the 3D object into several multi-view images. 

 
3.2. Optimized multi-view segmented filter 
After this short presentation of the principle of the segmented filter technique, an extension 
of this technique to 3D recognition is now proposed. For that purpose, we first consider a 
linear combination of different elemental 2D images (Figure 13-a) taken by one camera row 
in the pickup-grid (with reference to Figure 13-b). Next, each spectrum of merged elemental 
images is shifted (Figure 13-c). It was also necessary to shift the spectra to optimize the 
segmentation in the Fourier plane. This is required because the elemental 2D images are too 
close to each other. In practice, the shifting is realized optically by multiplying each merged 
elemental image by a specific phase term [18]. Afterwards, a segmentation to obtain the 
SMVSF is performed. 

Particular attention was paid to find the appropriate value of the shifting parameter   
that minimizes the overlap between the different spectra. For that purpose, we rely on 
previous work by Papoulis [36], who determined the necessary minimal size of a given 
spectrum by calculating the quantity called RMS duration 
 

  
22 2 21 ( , ) ( ) ( , )

2 IH u v dudv x y x y dxdyS

   

   

        ,  (19) 

 
where ),( vuH is the gradient of the spectrum, SI(u,v) denotes the spectrum of an image I, 
and 

 
1 2 is a normalization factor. 

 

 
Fig. 13. Principle of the optimized multi-view segmented filter. 

 
3.3. Proposed 3D correlator set-up 
The principle of our approach is presented in Figure 14. The first operation is to add the 
different elemental target images. To realize this operation, we perform the same merging 
steps applied to fabricate our filter presented above. A multiplication with the SMVSF is 
followed by a FT-1 giving us the correlation plane. In the output plane, we get the result of 
simultaneous correlation of all elemental images obtained from the 3D face. 

 
Fig. 14. Principle of the 3D Correlator set-up. 
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3.4. Results and Discussion 
The purpose of this section is to validate the principle of our approach by numerical 
simulations. These simulations were conducted without noise, but taking into account the 
limitations imposed by using SLMs and their specific coding, i.e. 8 bit-coding of the input 
image and 2 bit-coding of the filter. We recall that the specific application we have in mind 
for these simulations is the recognition of a 3D face (with reference to Figure 15). 

 
Fig. 15. Example of decomposition of a 3D face into multi-view 2D elemental images 
 
If we apply our protocol for correlating the target image with a non-shifted multi-view 
segmented filter (Non-SMVSF), the correlation plane is presented in Figure 16(a). This figure 
shows the presence of a single correlation peak resulting from the autocorrelation between 
elemental input images with different corresponding elemental filters. It must be noted that 
the large width and the high level noise presented in the correlation plane (-38 dB) affects 
the performance of this filter. The segmentation of the different spectra is made from very 
similar spectra leading to strong spectral segmentation and consequently to the emergence 
of the isolated pixel phenomenon. 

  
PCE = 0.00127 
SNR1= -37.8 dB 

PCE = 0.00221 
SNR1= -32 dB 

(a) (b) 
Fig. 16. Correlation plane (a) without spectra shifting, i.e. Non-SMVSF, and (b) with spectra 
shifting, i.e. SMVSF. 
 
To overcome the problem of strong segmentation, we propose to optimize the use of the 
filter space SBWP. This is done by shifting the spectra to eliminate the high overlapping 

areas. The shifting value was calculated using the RMS duration criterion. Figure 16-b 
shows the correlation plane obtained with this optimization. It is seen that the correlation 
peak is higher and that the noise has been significantly reduced in the correlation plane (-32 
dB). Form the implementation standpoint, it is necessary to binarize the filter. Figures (17-a) 
and (17-b) show the correlation result obtained by the binarization of two filters used in 
(Figure 16). The most compelling result is the significantly higher correlation peak observed 
in these figures. 

  
PCE = 0.0051 
SNR1= - 45.8 dB 

PCE= 0.00221 
SNR1= - 41 dB 

(a) (b) 
Fig. 17. Correlation plane obtained by binarizing the (a) Non-Shifting MVSF filter, and (b) 
the SMVSF filter, respectively. 
 
A new approach for the purpose of recognizing 3D objects has been presented and 
validated. This approach is based on the decomposition of the 3D target object and the 3D 
reference images by using the II method. Once the elemental images are obtained, they are 
merged together using composite and segmented techniques. To deal with the problem of 
isolated pixel the different spectra were shifted. This shifting has been calculated based on 
the RMS duration criterion. The work presented here allows one to correlate a 3D object 
with a single filter, to obtain a higher and sharper correlation peak, and to reduce the noise 
level in the correlation plane.  

 
4. Conclusion  

In this chapter, we introduced the principle of two optical correlation approaches which can 
be used to recognize faces: the JTC correlator and VLC correlator. Both are based on the use 
of the standard optical set-up called 4f. Although the optical implementation of the JTC 
correlator is easier to realize than the VLC correlator, the JTC requires the use of a very large 
input plane in order to introduce both the face to recognize and references. Consequently, 
we have chosen the VLC correlator to perform our face recognition application. This choice 
seems appropriate, especially when a new concept of correlation filter called segmented 
composite filter is employed. Having detailed this filter, we presented results showing good 
performances of this filter applied to face recognition. Moreover, to take into account the 
fact that a face is a 3D object, we proposed and validated an optimization of this segmented 
filter suitable for 3D face recognition. For future work, it would be interesting to test the 



Understanding	Correlation	Techniques	for	Face	Recognition:	From	Basics	to	Applications 377

3.4. Results and Discussion 
The purpose of this section is to validate the principle of our approach by numerical 
simulations. These simulations were conducted without noise, but taking into account the 
limitations imposed by using SLMs and their specific coding, i.e. 8 bit-coding of the input 
image and 2 bit-coding of the filter. We recall that the specific application we have in mind 
for these simulations is the recognition of a 3D face (with reference to Figure 15). 

 
Fig. 15. Example of decomposition of a 3D face into multi-view 2D elemental images 
 
If we apply our protocol for correlating the target image with a non-shifted multi-view 
segmented filter (Non-SMVSF), the correlation plane is presented in Figure 16(a). This figure 
shows the presence of a single correlation peak resulting from the autocorrelation between 
elemental input images with different corresponding elemental filters. It must be noted that 
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the performance of this filter. The segmentation of the different spectra is made from very 
similar spectra leading to strong spectral segmentation and consequently to the emergence 
of the isolated pixel phenomenon. 
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filter space SBWP. This is done by shifting the spectra to eliminate the high overlapping 
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peak is higher and that the noise has been significantly reduced in the correlation plane (-32 
dB). Form the implementation standpoint, it is necessary to binarize the filter. Figures (17-a) 
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in these figures. 

  
PCE = 0.0051 
SNR1= - 45.8 dB 

PCE= 0.00221 
SNR1= - 41 dB 

(a) (b) 
Fig. 17. Correlation plane obtained by binarizing the (a) Non-Shifting MVSF filter, and (b) 
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A new approach for the purpose of recognizing 3D objects has been presented and 
validated. This approach is based on the decomposition of the 3D target object and the 3D 
reference images by using the II method. Once the elemental images are obtained, they are 
merged together using composite and segmented techniques. To deal with the problem of 
isolated pixel the different spectra were shifted. This shifting has been calculated based on 
the RMS duration criterion. The work presented here allows one to correlate a 3D object 
with a single filter, to obtain a higher and sharper correlation peak, and to reduce the noise 
level in the correlation plane.  

 
4. Conclusion  

In this chapter, we introduced the principle of two optical correlation approaches which can 
be used to recognize faces: the JTC correlator and VLC correlator. Both are based on the use 
of the standard optical set-up called 4f. Although the optical implementation of the JTC 
correlator is easier to realize than the VLC correlator, the JTC requires the use of a very large 
input plane in order to introduce both the face to recognize and references. Consequently, 
we have chosen the VLC correlator to perform our face recognition application. This choice 
seems appropriate, especially when a new concept of correlation filter called segmented 
composite filter is employed. Having detailed this filter, we presented results showing good 
performances of this filter applied to face recognition. Moreover, to take into account the 
fact that a face is a 3D object, we proposed and validated an optimization of this segmented 
filter suitable for 3D face recognition. For future work, it would be interesting to test the 
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robustness of this filter against noise and with respect to the modification of a 3D target 
object compared to 3D references images (rotation, scaling).  
 
To have a broader view of face recognition problem and not to be limited only to the optical 
approaches, the reader may want to consult [37]. This reference presents a pure numerical 
approach for face recognition based on ICA (Independent Component Analysis). A 
comparison between these numerical and optical approaches is also provided in [37].  
 
Finally, we point out the need of new research topics which can maximize the speed and 
improve the decision of the optical correlator for face recognition. Moreover, in some 
applications the correlator is not located in the same physical place as the target image to be 
recognized, thus requiring transmission and storage of the images before being processed. 
Therefore, it is necessary to develop appropriate techniques of image compression and 
encryption for recognizing a 3D face [38-39]. 
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Finally, we point out the need of new research topics which can maximize the speed and 
improve the decision of the optical correlator for face recognition. Moreover, in some 
applications the correlator is not located in the same physical place as the target image to be 
recognized, thus requiring transmission and storage of the images before being processed. 
Therefore, it is necessary to develop appropriate techniques of image compression and 
encryption for recognizing a 3D face [38-39]. 
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1. Introduction 

This chapter presents an implementation of the Neocognitron Neural Network, using a high 
performance computing architecture based on GPU (Graphics Processing Unit). 
Neocognitron is an artificial neural network, proposed by Fukushima and collaborators, 
constituted of several hierarchical stages of neuron layers, organized in two-dimensional 
matrices called cellular plains. For the high performance computation of Face Recognition 
application using Neocognitron it was used CUDA (Compute Unified Device Architecture) 
as API (Application Programming Interface) between the CPU and the GPU, from GeForce 
8800 GTX of NVIDIA Company, with 128 ALU’s. As face image databases it was used a face 
database created at UFSCar (Federal University of São Carlos), and the CMU-PIE (Carnegie 
Melon University - Pose, Illumination, and Expression) database. The load balancing 
through the parallel processing architecture was obtained by means of the distributed 
processing of the cellular connections as threads organized in blocks, following the CUDA 
philosophy of development. The results showed the viability of this type of device as a 
massively parallel data processing tool, and that smaller the granularity of the parallel 
processing, and the independence of the processing, better is its performance. 

 
2. Motivation 

The face recognition using machines is an active and actual research area. This is composed 
by multiple disciplines as image processing, pattern recognition, computer vision, artificial 
neural networks, and computer architectures. There are many commercial applications that 
implement Face Recognition Techniques, as in access control, and security using video 
camera. 
Many countries use the face recognition techniques for several purposes. On China, for 
example, it was developed the immigrant recognition system to the cities of Shenzhen and 
Zhunhai (Terra, 2006). The system gives good results, especially when the fingerprint can´t 
be used to the recognition purpose, due to several problems as age, damage with chemical 
reactions, and so on. 

20
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Owing to the user-friendly (non-intrusive) property, the face recognition is attractive, 
despite of the extremely reliable methods of personal biometric identification such as 
fingerprint and iris scanning analysis. 
As it can be seen there are major challenges on the issues of facial recognition, where you 
can highlight a relationship between two basics variables of the process: the degree of 
reliability/robustness of the technique being used and computational cost of this technique. 
The goal of this chapter is the presentation of a computer architecture for face recognition, 
aiming its performance increasing through the use of a massively parallel data processing, 
achieved by the implementation of a Neocognitron neural network architecture, based on 
GPU (Graphic Processing Unit). To access the GPU as a device for scheduling purposes, it is 
used in majority the CUDA (Compute Unified Device Architecture), a library that extends 
the functions of language C, FORTRAN and Python in order to provide the GPU as a device 
for data processing. 

 
3. Neocognitron Neural Network 

Neocognitron is a massively parallel neural network, composed by serveral layers of neuron 
cells, proposed by Fukushima (Fukushima end Miyake, 1982)(Fukushima and Wake 
1992)(Saito and Fukushima, 1998). In a brainway computer it corresponds to part of the 
human visual recognition system. 
The Neocognitron neural network has the basic principle of operation extracting features in 
a hierarchical manner, i.e., performs the extraction of features in various stages. In the first 
stage, the extracted features are the simplest; and at the following stages, summing up the 
lines in different senses of rotation, the features will be presenting with more complexity. 
The characteristic of this network is that the features extracted by a stage have the 
informations only sent by the previous stage, as a feedforward neural network. 

 
3.1 The Neocognitron Structure 
The stages of a Neocognitron network are arranged in tiers, each of these layers has its own 
type/complexity of data being processed, and these consist of simple cells (Cell-S), complex 
cells (Cell-C) and activity cells (Cell-V). 
The stages are compared by the Layer-S, of Cell-Ss. The Layer-C, of Cell-Cs; and Layer-V, of 
Cell-Vs. Within each layer there is a number of cell-plans, which are organized as two-
dimensional array of cells, each cell with the ability of extracting the same features of the 
adjacent cells in the same cell-plan. 
The stages function as a tool for organizing the process of extracting the characteristics or 
factors with a degree of complexity of the extracted pattern characteristics. The first stage, 
called the zero stage (Stage 0) is not used within the hierarchical scheme of feature 
extraction and it is used as the retina of the eye, capturing the pattern to be processed by the 
network. Figure 1 shows the stages of a Neocognitron with five stages. 
The number of stages of a Neocognitron network depends on the size of the input pattern 
being processed by the network. The larger the size of the input pattern, greater is the 
number of stages required by the network. For example, an input pattern of 20 x 20 pixels, 
typically results in a network of three hierarchical stages. 
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Fig. 1. Neocognitron representation with five stages. 
 
Each stage of a Neocognitron network is divided into three layers: a simple layer (Layer-S), 
a complex layer (Layer-C) and a layer of activity (Layer-V). Assuming the Neocognitron 
with five stages, shown earlier (Figure 1), its representation in layers can be seen in Figure 2. 
 

 

Fig. 2. Neocognitron representation with five stages with its layers. 
 
In stage 0 there is only one layer, which is the input layer or input pattern. All other stages 
have three types of layers, one Layer-S, a Layer-V and a Layer-C. 
Each layer is formed by a number of cellplans. The number of plans in each Layer-S and 
Layer-C is related to the number of features extracted by the stage of the network. A Layer-
V is a single cell-plan layer. The size of the plans is equal to the same layer and it decreases 
as you climb the hierarchy of stages. Figure 3 shows the plans distributed in the cell layers 
of the network. 
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Fig. 3. Five stages Neocognitron representation with its layers and plans. 
 
Each Plan-S, Plan-V, Plan-C and Input layer is formed by a set (array) of specialized cells. 
Figure 4 shows the cells distributed along the plans of the network. A Plan-C of the layer 
UC4, the last stage of the network, contains only a single cell, whose activity indicates the 
recognition of the input pattern. 
 

 

Fig. 4. Five stages Neocognitron representation with its layers, plans, and cells. 
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3.2 Weights and Connections 
A characteristic of the Neocognitron is to have a large number of cells but a reduced number 
of connections. The cells are connected to a reduced connection area, of the previous layer. 
This characteristic of connectivity is different from the Multilayer Perceptron, in which a 
neuron of a layer is connected to all neurons of the previous layer. 
For each connection there is a weight that is used to influence the amount of information 
that is transferred. Neocognitron has four types of weights: weight-a, weight-b, weight-c, 
and weight-d, whose uses are summarized as shown in Figure 5. 
 

 

Fig. 5. Neocognitron weights (weight-a, weight-b, weight-c and weight-d) and its 
connections. 
 
Within a cell-plan level, all cells share the same weight. This causes all cells in the same plan 
to observe the same feature, thus specializing the plan for the same feature in different 
positions. 
 

 

Fig. 6. Within a cellular level, all cells share the same weights. 
 
You can even arrange the weights in two categories, which are modified by training 
(weight-a weight-b); and which are not modified, i.e., the values attributed to them, remain 
unchanged through the implementation of the network (weight-c and weight-d). 
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3.3 Processing Neocognitron Network 
Each Cell-V calculates the input values of Cell-Cs from a small region connection area of all 
cell-plans of the previous Layer-C. The size of the connection area is the same for cells-V and 
cells-S in a stage of the network and it is determined at the time of construction of the 
network. An example of the connection area can be seen in Figure 7. 
The value of a Cell-V represents the average activity of cells belonging to its area of 
connection and is used to inhibit the corresponding Cell-S. The exact specification of the 
function of Cell-V, uVl(n), is given by Equation 1: 
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where the weight should be cl ≥ 0; and ucl-1(n+i, kl-1) represents the input value, from the 
previous cell-plan kl-1 at the position n+i. Here, i represents a position in a region Sl  in a cell-
plan.  
 

 

Fig. 7. Example of the connection area of a Cell-V. 
 
The Cell-S evaluates the output values of cell-Cs in a connection area of all cell-plan of the 
Layer-C of the previous stage, or the input layer. As seen in the previous section, the size of 
the connection area is the same for cell-Ss and cell-Vs on the same stage (Figure 8). 
The role of Cell-S is to recognize a feature in the connected area. To recognize a feature, a 
Cell-S uses the information in the connection area and information about activities in this 
area, informed by Cell-V. The feature extracted by a Cell-S is determined by weights on their 
input connections. 
The feature extraction by a plan-S and the significance of the weights is easier to be observed 
in the cell layer Uo (first layer) of the network. In each cell of layer-S, US1, following the first 
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function of Cell-V, uVl(n), is given by Equation 1: 
 

1

1

2
1

1

( ) ( ), ( , )
l

l

l l

K

vl l C l
k i S

u n C i u n i k





 

    (1) 

 

where the weight should be cl ≥ 0; and ucl-1(n+i, kl-1) represents the input value, from the 
previous cell-plan kl-1 at the position n+i. Here, i represents a position in a region Sl  in a cell-
plan.  
 

 

Fig. 7. Example of the connection area of a Cell-V. 
 
The Cell-S evaluates the output values of cell-Cs in a connection area of all cell-plan of the 
Layer-C of the previous stage, or the input layer. As seen in the previous section, the size of 
the connection area is the same for cell-Ss and cell-Vs on the same stage (Figure 8). 
The role of Cell-S is to recognize a feature in the connected area. To recognize a feature, a 
Cell-S uses the information in the connection area and information about activities in this 
area, informed by Cell-V. The feature extracted by a Cell-S is determined by weights on their 
input connections. 
The feature extraction by a plan-S and the significance of the weights is easier to be observed 
in the cell layer Uo (first layer) of the network. In each cell of layer-S, US1, following the first 

layer, there is only one connection area and this area is the receptive field or area of 
connection of input pattern. Because all cells are equal, any cell in the same cell-plan can 
recognize the same feature. In the example, the feature is a vertical line that can be in 
different positions. So, the Cell-S, that is positioned in the connection area containing the 
feature (vertical line), responds, as outlined in the Plan-S in Figure 9. 
 

 

Fig. 8. Example of the connection area of a Cell-S. 
 
The output value of a Cell-S is determined by Equation 2: 
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Fig. 9. Example of the connection area of a Cell-S. 
 
The element θ is the threshold parameter with which you can modify the ability for Cell-S 
extract a particular feature. The weight-a, al(kl-1,i,kl), should be greater than or equal to zero, 

as well as weight-b, bl(kl), and the activation function [ ] =

½ ¸
<

 . 

The Cell-Ss have the ability to extract features not only trained but also distorted, or 
generalized. This capacity is influenced by the choice of parameter θ, called threshold. It is 
easy to understand, because the threshold θ  multiplies the weighted value coming from the 
Cell-V, the denominator of the argument. Thus, the lower the value of θ, greater the ability 
of generalization of trained features. 
The cell-C evaluates the output values of plan-S of earlier layer-S (Figure 10). The value of 
Cell-C depends on the activity of Cell-Ss in its area of connection. The greater the number of 
active Cell-Ss, greater is the activity of Cell-C. The equation of the Cell-C is described by 
Equation 3. 
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As the weight-d, dl(i) ≥ 0 and [ ] =

½
+ ¸

<
  

If a cell-C is active for a single cell-S, all the adjacent cells will be active, so that plan-C 
contains a blurred representation of the Plan-S. Moreover, as the blurring results in the cell-
plan’s adjacent values are very close, a small number of Cell-Cs is necessary for the next 
stage. This results in reducing the size of the Plan-C, in relation to the Plan-S, Figure 11. 
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If a cell-C is active for a single cell-S, all the adjacent cells will be active, so that plan-C 
contains a blurred representation of the Plan-S. Moreover, as the blurring results in the cell-
plan’s adjacent values are very close, a small number of Cell-Cs is necessary for the next 
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Fig. 10. Example of the connection area of a Cell-C. 

 
3.4 Network Training 
Although there are two main training methods for the Neocognitron network, it is described 
here the method originally designed, which is learning without supervision. 
At first, the training follows as the majority of neural networks, i.e., it is showed a sample 
pattern, and data are propagated through the network, allowing the weights of the 
connections to fit progressively according to a given algorithm. After the weights are 
updated, the network receives a second pattern in the input layer, and the process repeats 
with all the training samples until the network classifies the patterns correctly. 
Neocognitron network has the characteristic that all the cells in the same cell-plan share the 
same set of weights. Therefore, only a single cell of each plan must participate in training, 
and after that, distribute the whole weight to the other cells. 
To better understand the operation, one can imagine all plans of a Layer-S stacked on each 
other, aligned so that the cells corresponding to a given location is directly above each other. 
Thus, it is possible to imagine several columns, cutting perpendicularly the planes. These 
columns create groups of cells-S, where all group members have receptive fields in the same 
location in the input layer. 
With this model in mind, we can now apply a standard input and examine the response of 
Cell-Ss in each column. To ensure that each Cell-S provides a distinct response, one may 
start al weights with random small positive value and the weights bl inhibitors with zero. 
First, note the plane and the position of the Cell-S whose response is the strongest in each 
column. Then it examines the plans individually so that if a plan has two or more of these 
Cell-Ss, it chooses only the Cell-S with the stronger response, subject to the condition that 
each cell is in a different column-S. 
These Cell-Ss become the prototypes or representatives of all the cells in the respective plan. 
Once chosen the representatives, the updates of the weights are made in accordance with 
the Equation 4 and Equation 5, and all the cells of the same plan will be updated to be with 
the same weights: 
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Once the cells are updated to respond to a particular characteristic, they begin to emit 
responses smaller in relation to other features. 

 
4. GPU as a Device to Generic Processing 

Over the past 10 years, hitherto, it has seen the evolution of the GPU's as specialized 
hardware to process graphics and video output, and massive parallel processing of data for 
general computing. The power of data processing of GPU's has grown much faster than the 
CPU, and the main reason for this rapid growth of GPU's with respect to the CPU is due to 
the fact that the GPU's were born with the focus of intensive computing, with respect to data 
processing and massive parallel computing, as just the minimum requirements necessary to 
meet the needs of the scenario of computer graphics, like rendering, shadows in 3D scenes 
and others. 
Thus the design of the GPU takes into account the existence of more transistors dedicated to 
a better process control and data flow, as illustrated schematically in Figure 12, which 
depicts the main elements: ALU, cache, and DRAM control for a CPU (Figure 12a) and a 
GPU (Figure 12b). 
 

 

Fig. 11. GPU intended to use more transistors for Data Processing. 
 
Many applications that process large data sets organized in a matrix/vector can use a model 
of parallel computing. In 3D rendering processes large arrays of pixels and vertices are 
organized so that they can be processed in parallel using threads. Similarly, applications of 
image processing, encoding and decoding, video scaling, stereo vision, artificial neural 
networks and pattern recognition can be processed in data blocks and pixels by parallel 
threads. In fact, many algorithms, even outside the area of image processing, can be 
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Fig. 11. GPU intended to use more transistors for Data Processing. 
 
Many applications that process large data sets organized in a matrix/vector can use a model 
of parallel computing. In 3D rendering processes large arrays of pixels and vertices are 
organized so that they can be processed in parallel using threads. Similarly, applications of 
image processing, encoding and decoding, video scaling, stereo vision, artificial neural 
networks and pattern recognition can be processed in data blocks and pixels by parallel 
threads. In fact, many algorithms, even outside the area of image processing, can be 

accelerated through parallelization of data processing, specially signal processing, 
simulation of physical effects, computer models of financial or biological applications. 

 
4.1 CUDA - Compute Unified Device Architecture 
The development of applications that use the GPU as a device for "unconventional” parallel 
data processing, i.e., not specifically the graphics processing like rendering, is increasing. 
However the use of a GPU as a device that requires an adjustment of the traditional graphics 
card pipeline's, forcing the developer to take responsibility for certain control points in these 
processes, through graphics libraries that have an API for GPU's to become programmable, 
is annoying. 
CUDA is a new architecture of hardware and software that was developed with the main 
objective of managing the parallel processing of data within the GPU device without the 
need to make the mapping of the routines and take responsibility for the execution of the 
pipeline system, through API chart. 
In Figure 12 we have the software stack environment of CUDA, not necessarily for 4 layers 
of software and these are: (a) application, which is implemented by the browser software 
that makes use of GPU as a device data processing; (b) CUDA Library is a set of 
mathematical libraries, such as CUBLAS, an extension of a BLAS library functions algebra 
implemented in FORTRAN and CUFFT's a fast Fourier transform of 1, 2 and 3 dimensions; 
(c) where the CUDA runtime routines of other graphics libraries like OpenGL and DirectX 
are accessed to be processed on the GPU; and (d) CUDA Driver API that is the direct 
communication with the GPU. 
In order to facilitate the development of computing solutions for general purpose, not just 
graphic, CUDA provides the GPU direct memory access to both writing (Figure 13) and for 
reading (Figure 14), just as a conventional CPU works. 
 

 

Fig. 12. CUDA Software Stack (NVIDIA, 2007). 
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Fig. 13. GPU accessing memory to read (NVIDIA, 2007). 
 

 

Fig. 14. GPU accessing memory to write (NVIDIA, 2007). 
 
In these Figures 14 and 15, the data is read from or written to memory by the ALUs. In this 
architecture there is a parallel data cache and a shared memory, which has a high-speed 
access for both, writing and reading. The applications benefit from this structure by 
minimizing overfetch and round-trips of DRAM and reduce the need/dependence on the 
bandwidth of DRAM access. 

 
4.2 CUDA Programming Model  
In developing a parallel application via CUDA, GPU is viewed as a computer device capable 
of running a large number of threads in parallel. The GPU operates as a coprocessor of the 
CPU, which in the context of CUDA is called the host. 
The part of the application, most suitable to be processed in the device, is a function 
performed several times with different data. These functions should be isolated and 
implemented within the scope of CUDA and are called the kernel that are executed within 
the device. 
Both host and device (GPU) have one call to a DRAM memory device and a host memory. 
The call is made from a kernel due to the transfer of data between two memories. CUDA 
provides a set of functions for this feature (moving data between the two types of memory). 
When a host application makes a call to a kernel, it is executed by a set of threads arranged 
in blocks of execution. These blocks in turn are grouped into grid blocks. 
A block of threads is a lot of threads that work together cooperatively to get a better 
efficiency of data usage and shared memories, and their processing is synchronized. Each 
thread within a block is identified by a threadID, which is a combination of the number of 
thread with the block in which it is inserted. 
The formation of a value of one threadID is complex, and to assist in this process, it can be 
specified a block to have two or three dimensions of arbitrary size, and identify each thread 
using a composite index of two or three instances, as shown in Table 1, where Dx, Dy, Dz 
are dimensions of the blocks, x, y, z are the coordinates, and threadID is obtained by 
calculating the expressions presented. 
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Block Size Coordinate
d Thread 

threadID 

Dx, Dy x,y x+yDx 
Dx, Dy, Dz x,y,z x+yDx+zDxDy 

Table 1. Formation of the address of the thread within the block 
 
The number of threads that a block can contain is limited. As previously mentioned, blocks 
with the same dimensionality working in the execution of a single kernel can be grouped 
into a grid of blocks of threads. The call of this kernel is performed using a specific syntax 
which is reported beyond the normal parameters of the function to be processed on the 
device: data on grid (Dg), block (Db) and memory to be allocated (Ns). 
As the threads, blocks also have an identification number within a grid, following a rule 
similar to the formation of the address of the threads, as shown in Table 2, where Dx, Dy 
indicate the dimensions of the grid, x, y the coordinates of blockID blocks and the 
identification number of the block calculated by the showed expression. 
 

Grid Size Coordinate
d Block 

blockID 

Dx, Dy x,y x+yDx 
Table 2. Formation of the address of the block within the grid 
 
In Figure 15 presents an overview of the structure of the threads running inside the device. 
This can be seen separating the two: host hardware (CPU) and the device (GPU), where the 
kernels called for implementation on the host are sent to the device, where the processing of 
threads arranged in blocks are divided into grids of processing. 
It is worth calling attention here to the fact that kernels have distinct grid settings, and 
different blocks, as its dimensionality, as shown in Figure 15, where the size of the blocks 
and the grid used in kernel 2 is different from that used by the kernel 1. 
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Fig. 15. Address of the threads within the blocks to the grid (NVIDIA, 2007). 

 
4.3 CUDA Memory Model  
The thread runs inside the device and only has (DRAM) memory access inside this, 
according to a set of access rules shown in Figure 16 and detailed in Table 3. 
The threads can access registers (register) and memory space for reading and writing. The 
shared memory (shared) is accessed by blocks for writing and reading. The global memory 
is accessed by grid for reading and writing. Memories of constant and textures are accessed 
by the grid in read-only. 
The global spaces, constant, and texture can be read or written by the host and are persistent 
across kernel calls during the same application. 
 

Memory 
Space 

When 
accessed 

Rule 

Register by thread Read/Write 
Local by thread Read/Write 
Shared by block Read/Write 
Global by grid Read/Write 
Constant by grid Read Only 
Texture by grid Read Only 

Table 3. Memory Model Access Rules 
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Fig. 16. CUDA Memory Model (NVIDIA, 2007). 

 
5. Processing Neocognitron Network with CUDA 

A face recognition system using Neocognitron neural network can be processed in two 
phases: the learning phase, and the recognition phase. This work have focused on 
recognition, since, the learning phase is ready. The training is being carried out by an 
application developed in Delphi (Saito and Abib, 2005) and it has as a product of its 
execution, the generation of a repository of data. This comprises a set of three types of 
binary files: one to store the number of plans for each stage, another type to store the 
weight-a e weight-b trained by the network and a third type with the results used by the 
layer of Cell-Cs of the stage. 
At the recognition phase, one face image (input pattern) is shown to the system, and it 
executes and tries to identify the face. Figure 17 shows the block diagram of the parallel 
processing management algorithm of the face recognition phase using CUDA, in two parts, 
host and device. 
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Fig. 17. Block Diagram Organization of Processing Neocognitron on CUDA device. 
 
As can be seen in the block diagram (Figure 17), there are two repositories of data, one with 
the weights produced during the training phase of the network, and the second repository 
of data with the images of the faces to be recognized. We used two banks of the faces, one 
developed at UFSCar (Figure 19), consisting of fifty frontal images of six persons, in 57x57 
pixels resolution; and the CMU PIE database (Figure 20) which consists of a large number of 
images of people in different poses, lighting and facial expressions. It used 13 cameras, 9 in 
the same horizontal line, each separated from 22.50. Other 4 cameras include 2 above and 
below the central camera, and 2 in the corners of the room. On Figure 19, the different 
positions of cameras are identified by ratings c02 ... c34. To obtain the change in lighting, it 
used a system with 21 flashes. Capturing images with and without the backlight, are 
obtained 43 different lighting conditions. For a variety of facial expressions were asked for 
people to neutral expressions, smile, blinking, and speaking. The database consists of 41368 
images of 68 people. 
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positions of cameras are identified by ratings c02 ... c34. To obtain the change in lighting, it 
used a system with 21 flashes. Capturing images with and without the backlight, are 
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Fig. 18. UFSCar Face Data Base. 
 

 

Fig. 19. CMU PIE database. 
 

Since this work corresponds to the recognition phase, they were selected randomly 10 
people of the database CMU PIE (4002, 4014, 4036, 4047, 4048, 4052, 4057, 4062, 4063, e 4067). 
They were selected the images of people speaking, because the existence of 60 images per 
pose, per person. Thus, during the experiments, they were used frontal images of people 
with size 640x486, and after the capture of the face region, the reduced image of size 57x57, 
as shown in Fig. 21. 
 

 

Fig. 20. Face picture used to recognition process. 
 
At Figure 21, it can be seen the Neocognitron network processing, to the process of 
recognition. It may be noted the three stages of the network, represented by: stage 1, formed 
by all the layers US1, UC1 and UV1; stage-2, formed by all the layers US2, UC2 and UV2 and 
stage-3, formed by all the layers US3, UC3 and UV3. Also, it is presented the input layer U0. 
 
Table 4 shows the dimensionality of the weights used in the network, according to the stage 
where it is applied. The weight-a and weight-b are obtained by the training process of the 
network, which in the scope of this project is already done. 
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Fig. 21. Neocognitron network processing using GPU. 
 
The weight-c and weight-d are fixed and defined at the time of implementing the network. 
On the Table 5, 6 and 7 are presented as matrices weight-c used in stages 1, 2 and 3 
respectively. 
 

Stage Weight-a Weight-
b 

Weight-c Weight-
d 

1 7x7 1x1 7x7 5x5 
2 7x7 1x1 7x7 5x5 
3 5x5 1x1 5x5 3x3 

Table 4. Dimensionality of the Weights used in the network. 
 

0.017361 0.019231 0.019231 0.019231 0.019231 0.019231 0.017361 
0.019231 0.019231 0.021635 0.021635 0.021635 0.019231 0.019231 
0.019231 0.021635 0.021635 0.024038 0.021635 0.021635 0.019231 
0.019231 0.021635 0.024038 0.026709 0.024038 0.021635 0.019231 
0.019231 0.021635 0.021635 0.024038 0.021635 0.021635 0.019231 
0.019231 0.019231 0.021635 0.021635 0.021635 0.019231 0.019231 
0.017361 0.019231 0.019231 0.019231 0.019231 0.019231 0.017361 

Table 5. Matrix of weight-c of stage 1. 
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The weight-c and weight-d are fixed and defined at the time of implementing the network. 
On the Table 5, 6 and 7 are presented as matrices weight-c used in stages 1, 2 and 3 
respectively. 
 

Stage Weight-a Weight-
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Weight-c Weight-
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1 7x7 1x1 7x7 5x5 
2 7x7 1x1 7x7 5x5 
3 5x5 1x1 5x5 3x3 

Table 4. Dimensionality of the Weights used in the network. 
 

0.017361 0.019231 0.019231 0.019231 0.019231 0.019231 0.017361 
0.019231 0.019231 0.021635 0.021635 0.021635 0.019231 0.019231 
0.019231 0.021635 0.021635 0.024038 0.021635 0.021635 0.019231 
0.019231 0.021635 0.024038 0.026709 0.024038 0.021635 0.019231 
0.019231 0.021635 0.021635 0.024038 0.021635 0.021635 0.019231 
0.019231 0.019231 0.021635 0.021635 0.021635 0.019231 0.019231 
0.017361 0.019231 0.019231 0.019231 0.019231 0.019231 0.017361 

Table 5. Matrix of weight-c of stage 1. 
 
 
 
 
 

0.017361 0.019231 0.019231 0.019231 0.019231 0.019231 0.017361 
0.019231 0.019231 0.021635 0.021635 0.021635 0.019231 0.019231 
0.019231 0.021635 0.021635 0.024038 0.021635 0.021635 0.019231 
0.019231 0.021635 0.024038 0.026709 0.024038 0.021635 0.019231 
0.019231 0.021635 0.021635 0.024038 0.021635 0.021635 0.019231 
0.019231 0.019231 0.021635 0.021635 0.021635 0.019231 0.019231 
0.017361 0.019231 0.019231 0.019231 0.019231 0.019231 0.017361 

Table 6. Matrix of weight-c of stage 1. 
 

0.035225 0.039628 0.039628 0.039628 0.035225 
0.039628 0.039628 0.044031 0.039628 0.039628 
0.039628 0.044031 0.048924 0.044031 0.039628 
0.039628 0.039628 0.044031 0.039628 0.039628 
0.035225 0.039628 0.039628 0.039628 0.035225 

Table 7. Matrix of weight-c of stage 1. 
 
Tables 8, 9 and 10 corresponds to the matrices of weight-d used in the processing of stages 1, 
2, and 3, respectively. 
 

0.72 0.72 0.72 0.72 0.72 
0.72 0.81 0.9 0.81 0.72 
0.72 0.9 1 0.9 0.72 
0.72 0.81 0.9 0.81 0.72 
0.72 0.72 0.72 0.72 0.72 

Table 8. Matrix of weight-d of stage 1. 
 

0.72 0.81 0.81 0.81 0.72 
0.81 0.81 0.9 0.81 0.81 
0.81 0.9 1 0.9 0.81 
0.81 0.81 0.9 0.81 0.81 
0.72 0.81 0.81 0.81 0.72 

Table 9. Matrix of weight-d of stage 2. 
 

0.81 0.9 0.81 
0.9 1 0.9 
0.81 0.9 0.81 

Table 10. Matrix of weight-d of stage 3. 
 
To carry out processing of any type of data within the CUDA, it must be able to be 
implemented within a hierarchical organization such as: 

Grid >> Block >> Thread 

meaning that the grid are composed by blocks, and the blocks by threads. The Neocognitron 
network also has an organization in a hierarchical structure, such as:  

Stage >> Cell Plan >> Neuron 
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meaning that the stages are composed by several call-plans, and the cell-plans of a collection 
of cells, or neurons. 
Analyzing the organization of the two architectures, it is possible to verify some points of 
correspondence, which can be seen in Figure 21 and listed in Table 11, which sees itself as a 
Grid equivalent to a Stage the block equivalent to all the neuron processing, and the thread 
equivalent to one connection processing. The correspondence between the two architectures 
facilitates the network modelling to be used at the CUDA/GPU environment. 
 

CUDA Neocognitron 
Grid Stage 
Block Cell Plan 
Thread Neuron 

Table 11. Points of correspondence: CUDA x Neocognitron. 
 
Another important factor of the validity of the correspondence between the architectures lies 
on the fact that there is an independence of the values of a huge amount of neurons at their 
processing. That is, the value of a neuron, in a cell-plan does not depend on the value of the 
neighbour neuron at the same plane, but on the data of the preceding stage. That validates 
the use of architecture as the GPU/CUDA. 
The implementation of a project using the GPU/CUDA, determines that there are two 
processing environments, the host and device. It was developed a set of functions 
(processes) that run in the host and only a function that is performed on the device, as can 
be seen in Figure 17. 
This kernel has the responsibility to process a single stage of the Neocognitron network, and 
is called by the host application in each stage within a specific order. It should be noted that 
the network model in this project has three stages. 
Despite the processing of the network be similar for all stages, the Neocognitron network 
shows a reduction of dimensionality during its processing. The plan size of each stage is 
reduced from stage to stage, until the last stage, which has a single neuron in a plan, and a 
number of plans coincident to the number of classes to be recognized. 
This is why the kernel is required at the time of processing a certain stage and can thus tell 
the GPU setting specific with respect to size of blocks of processing to be implemented. The 
models of cell-plans and connection area organizations, invoked by the kernels, by stage, are 
shown in Table 12. The goal is to process a plan with the greatest number of areas of 
possible connections. 
 

Stage Plan-S Con. Area Plan-C Block Grid 
1 21x21 7x7 21x21 5x49 1 
2 14x14 7x7 14x14 4x49 1 
3 7x7 5x5 1x1 10x25 1 

Table 12. Organization of cell-plans and connection area and its implementation in 
GPU/CUDA. 
 
As a block processed in a single cycle of GPU/CUDA, the data of 16 multiprocessors has 
been that for the Stage-1. Each plan has a size of 21x21 (441) neurons and the connection area 
of this plan has a dimension of 7x7, resulting in 49 connections. The size of the block used 
for the processing of this stage was 49 threads, the same size of the connection area, 5 blocks 
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As a block processed in a single cycle of GPU/CUDA, the data of 16 multiprocessors has 
been that for the Stage-1. Each plan has a size of 21x21 (441) neurons and the connection area 
of this plan has a dimension of 7x7, resulting in 49 connections. The size of the block used 
for the processing of this stage was 49 threads, the same size of the connection area, 5 blocks 

in the grid processing simultaneously, or 245 connections computed simultaneously, as can 
be seen in Figure 22. 
 

 

Fig. 22. Neuron connection processing diagram. 
 
The total number of neurons processed simultaneously from 245, 245 and 250, to the stages 
1, 2 and 3 respectively. 

 
6. Results 

Using the UFSCar and CMU-PIE human face databases, the recognition rate obtained is high 
and probably may be increased using more training images. The results of the recognition 
rate obtained by the two databases can be seen in Table 13. 
 

Database Face Rate Recognition 
CMU-PIE 98% 
UFSCar 97% 

Table 13. Degree of accuracy of recognition of faces. 
 
The total run time of the network was 0.118 seconds. The measure of time was obtained 
through the use of the control functions of processing time made available by the API 
CUDA, and used the cutCreateTimer functions, cutStartTimer, cutStopTimer, 
cutGetTimerValue and cutDeleteTimer. 
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Stage Plan-S time (sec) 
1 95 plans 0.092 
2 51 plans 0.022 
3 47 plans 0.004 

Table 14. Time, in seconds, spent during cell-plan processings. 
 
Table 15 presents a comparison between the processing time in the GPU / CUDA, with the 
same network being processed in a single (mono) environment and processed in a cluster 
with 8 processors, values obtained by Ribeiro (Ribeiro 2002). It was made an adjustment in 
time goals for the work of Ribeiro, depending on the speed of processors used in their work 
and the existing today. The table is organized into three columns, where the first column is 
the computer architecture, the second column is the number of parallel processors, and the 
third column, processing time in seconds. 
 

Architecture Number of Processors Time (sec) 
Mono 1 48 
Cluster 8 15 
GPU/CUDA 128 0.118 

Table 15. Comparing the processing time in different architectures. 
 
By this table it is possible to calculate the speed-up and efficiency of processing between the 
architectures. These values are presented in Table 16, organized into three columns: 
computer architecture, Speed-up, and efficiency. 
 

Architecture Speed-up Efficiency 
Cluster 79.787 0.311 
GPU/CUDA 255.319 0.999 

Table 16. Comparation Speed-up and Efficiency in different architectures. 
 
The total amount of memory used at the device was 439 MB, which represents an allocation 
of 57% of total memory. Since this is their distribution and consumption detailed at Table 17, 
in two columns, the first "Reserve Area" indicates where it allocated the amount of memory 
in Mega Bytes presented in the second column "Located Area". 
 

Reserved Area Located Area (Mb) 
Stage 1 336 
Stage 2 80 
Stage 3 10 
Other Variables 13 

Table 17. Number of dedicated memory, of GPU, allocated for the implementation. 
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Other Variables 13 

Table 17. Number of dedicated memory, of GPU, allocated for the implementation. 

 

7. Conclusion 

With the Neocognitron network processing within the GPU/CUDA presented in this work, 
we can conclude that there was a significant increase on the processing performance of the 
Neocognitron face recognition, showing the feasibility of using this method. 
However the size of images used in the operation were small, 57 x 57, which allowed the full 
load of the structure of the network into the memory of the device where access is protected 
and high-speed, factors that may have influenced the results presented. 
In an attempt to draw a line between the comparative Neocognitron network processed in 
the GPU/CUDA and traditional architecture it was verified through the calculation of 
speed-up, a gap, since they won a super-linear speed-up Sp > p. This occurred by differences 
in architecture. Moreover a high performance was observed when compared the time of 
processing. 
Another conclusion on the implementation of this project is that this minimizes some 
existing common problems, when used other parallel computing environment, cluster that 
for example, you can quote: 
 

 Synchronization: since the granularity of development within this device is not 
competing for shared memories (each thread has its point / area of memory) there 
is a need for loss of time for achieving a synchronization of processors; 

 Network: if the whole process takes place within the same device there is the issue 
connection type and the speed of the entire GPU architecture; and 

 Contention: there is no competition for resources by processors. 
 
Another issue, where the GPU has advantages over the traditional architecture of high 
performance computing (such as cluster), is related to load balancing. Since the GPU 
architecture is focused on SIMD data processing type, the Neocognitron network 
implementation project, focused on block processing, is privileged, since an entire block is 
processed in a single cycle of processing. 
However, the development of projects in GPU/CUDA environment presents as the main 
difficulty the modelling of streaming data processing. As seen in other studies by Poli (Poli 
et al. 2007) (Poli et al. 2008), it is not every applications that benefit with this architecture. It 
can be submitted three categories of possibilities for implementation of applications in the 
GPU: full potential for development, partial potential for development and the unfeasible 
development. 
The applications that benefit with the processing in GPU/CUDA, are those that have large 
volumes of data on a matrix, and have their processing independent of the adjacent 
processing. The computer cost for decision making is significant. It is concluded that the 
shorter the granularity inside a model of data organized and structured to a vision 
processing in blocks will have a better gain in processing performance. 
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