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Preface

This monograph consists of two main parts, mathematical and biological. The math-
ematical part, which is quite sophisticated involving advanced asymptotic methods
in partial differential equations, is aimed primarily at applied mathematicians and
theoretical physicists who are interested in biological applications. The targeted
readership of the second part is much wider and includes also computational
biologists, theoretical chemists, biochemists, biophysicists, and physiologists. This
part does not necessarily require the in-depth digesting of the tough analysis of
the first part. It includes a summary of output formulas from the first part and
mainly concentrates on their applications in various models of specific problems
in theoretical molecular and cellular biology.

Stochastic narrow escape consists in the passage of a diffusing particle through a
narrow opening in an impermeable wall or the arrival of the trajectory of a diffusion
process at a small target. For example, a stochastic narrow escape occurs when an
ion diffusing inside a biological cell finds a protein channel molecule embedded in
the cell membrane and squeezes through it across the membrane. A similar situation
occurs when a neurotransmitter molecule, such as glutamate, released from a vesicle
at the pre-synaptic terminal into a synaptic cleft of a neuron, finds its way by
diffusion to a receptor on the post-synaptic terminal of an excitatory synapse and
binds to it. Another example is a channel, such as calcium, or a receptor, moving
toward its destination in the post-synaptic density (PSD) on a cellular membrane
crowded with insurmountable and impermeable obstacles, finds its destination by
diffusion through the narrow openings between the obstacles.

The mathematical narrow escape problem in stochastic theory is to calculate
the mean first passage time (MFPT) of a diffusion process to a small absorbing
target (Dirichlet boundary) on the otherwise impermeable (Neumann) boundary of
a bounded domain (see Fig. 1.1). The main mathematical effort here is to develop
asymptotic methods for the approximate evaluation of the MFPT (also called the
narrow escape time, NET) in the various geometries of cellular structures (see
Sect. 3.3). The problem is equivalent to the construction of an asymptotic solution
to the homogeneous mixed Neumann–Dirichlet boundary value problem for the
Poisson equation in a bounded domain in the limit of shrinking Dirichlet part.
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viii Preface

The NET becomes infinite in this limit, thus rendering its computation a singular
perturbation problem.

We review in Chaps. 1–3 of this monograph recent developments in the non-
standard asymptotics of the problem, which are based on several ingredients: a better
resolution of the singularity of Neumann’s function, resolution of the boundary
layer near the small target by conformal mappings of domains with bottlenecks,
and on the break up of composite domains into simpler compartments. The new
methodology applies to two- and higher-dimensional problems.

In Chaps. 4–9, we review applications of the narrow escape problem in cell
biology (see Holcman and Schuss 2013a,b). Critical biological processes, such as
synaptic plasticity and transmission, activation of genes by transcription factors,
or double-stranded DNA break repair, are controlled by diffusion in structures
that have both large and small spatial scales. These may be small binding sites
inside or on the surface of the cell, or narrow passages between subcellular
compartments. The great disparity in spatial scales is the key to controlling cell
function by structure. We report here recent progress on resolving analytical
and numerical difficulties in extracting properties from experimental data, from
biophysical models, and from Brownian dynamics simulations of diffusion in multi-
scale structures.

The results of Chaps. 1–3 are applied first to the classification of the various
geometries of cellular domains that control ionic and molecular fluxes. The different
NETs in various cell geometries are manifested in Brownian dynamics simulations
in cellular biology. Specifically, Brownian dynamics simulations can be coarse-
grained to the time scale of the NET, thus revealing the dependence of cell function
on cell structure.

The resolution of the synaptic transmission by solving the NET problem in the
synaptic cleft and in the dendritic spine takes advantage of the particular geometries
of the synaptic spine and of the synaptic cleft. The explicit asymptotic expression of
the NET is applied to stochastic chemical reactions in microdomains, to regulation
of calcium flux through the dendritic spine neck, to the delivery of vesicles in neurite
outgrowth, to DNA repair in two-dimensional confinement, to control of reactions
by hidden binding sites, to asymmetric dumbbell-shaped division in cells, to coarse-
graining a stochastic model of a chemical reaction into a Markov chain model, to the
coarse-graining of molecular diffusion on a membrane crowded with obstacles to an
effective diffusion, as observed in supermicroscopic imaging, to physical virology
with a model of the early steps of viral infection in cells, and so on.
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Chapter 1
Elementary Theory of Stochastic Narrow Escape

1.1 Introduction

Stochastic narrow escape, as defined in the Preface, consists in the passage of a
diffusing particle through a narrow opening in an impermeable wall or the arrival
of the trajectory of a diffusion process at a small target. A stochastic narrow escape
is a rare event on the time scale of diffusion in the sense that the times between
stochastic narrow escapes may be much longer than the times between all other
diffusional events and, indeed, they become infinite as the narrow opening or target
shrinks to zero. It is therefore practically impossible to explore the high-dimensional
parameter space by Brownian-dynamics or other simulations. Very often these rare
events are the manifestations of cellular function, such as cross-membrane ionic
currents, neuronal signalling, the effective motion of a receptor between obstacles
on a membrane, and so on. The time-scale of cellular events is determined by the
time-scale of stochastic narrow escapes of molecular diffusion.

These rare molecular events are very sensitive to the geometrical structure of
the cellular environment in which the molecule or ions diffuse. In many cases the
molecular fluxes through the narrow openings or into small targets are controlled
by structure, not by forces. It is therefore imperative that in any physical or
mathematical model of ionic or molecular motion between cells the mean narrow
escape time (NET) be computable, preferably analytically or at least by molecular
or Brownian dynamics simulations. The latter, however, have the serious drawback
that rare events are hard to come by in simulations, which quite often fail to produce
cellular events from simulations of molecular motion. It is not clear to this day if
any Brownian dynamics has been able to produce the ionic current through a protein
channel of an excitable membrane.

Therefore the mathematical narrow escape problem in stochastic theory is to
calculate the mean first passage time of a diffusion process to a small target on
the impermeable boundary of a bounded domain (see Fig. 1.1). The mathematical
problem here is equivalent to solving the mixed Dirichlet–Neumann boundary value

© Springer Science+Business Media New York 2015
D. Holcman, Z. Schuss, Stochastic Narrow Escape in Molecular
and Cellular Biology, DOI 10.1007/978-1-4939-3103-3_1
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2 1 Elementary Theory of Stochastic Narrow Escape

Fig. 1.1 Brownian trajectory
escaping through a small
absorbing window a domain
with otherwise reflecting
boundary

problem for the Poisson equation with small Dirichlet and large Neumann parts.
This mixed boundary value problem goes back to Helmholtz (1860) and Lord
Rayleigh (1945) in the context of the theory of sound. The renewed interest in the
problem is due, as mentioned above, to the emergence of the NET as the key to the
determination of biological cell function from its geometrical structure (Holcman
and Schuss 2013a). The NET problem is closely connected to the eigenvalue
problem for the mixed problem and for the Neumann problem in domains with
bottlenecks. The evaluation of the NET coarse-grains the molecular time scale to the
cellular level, thus clarifying the role of cell geometry in determining cell function.
The NET coarse-grains Brownian dynamics simulations into coarser spatial scale
that can be used for resolving the long-time behavior of simulated trajectories.

The NET diverges as the Dirichlet part of the boundary shrinks, thus rendering
the computation a singular perturbation problem. In two dimensions the problem
is not the same as in higher dimensions, because the singularity of the Neumann
function in two dimensions is logarithmic, while that in higher dimensions is
algebraic. The computation is related to the calculation of the principal eigenvalue
of the mixed Dirichlet–Neumann problem for the Laplace equation in the domain,
when the Dirichlet boundary is only a small patch on the otherwise Neumann
boundary. Specifically, the principal eigenvalue is asymptotically the reciprocal of
the NET in the limit of shrinking patch.

1.2 The Mixed Boundary Value Problem

Consider free Brownian motion in a bounded domain D � R
d .d D 2; 3/, whose

boundary @� is sufficiently smooth (the analysis in higher dimensions is similar to
that for d D 3). The Brownian trajectory x.t/ is reflected at the boundary, except
for a small hole @�a, where it is absorbed, as shown in Figs. 1.1 and 1.2 (left). The
reflecting part of the boundary is @�r D @��@�a. The lifetime in� of a Brownian
trajectory that starts at a point x 2 � is the first passage time � of the trajectory to
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Fig. 1.2 Mathematical
idealizations of the cross
sections of neuronal spine
morphologies as composite
domains: Left: the bulky head
�1 is connected smoothly by
an interface @�i D AB to a
narrow neck �2. The entire
boundary is @�r (reflecting),
except for a small absorbing
part @�a D CD. Right: the
head, shown separately in
Fig. 1.1, is connected to the
neck without a funnel

the absorbing boundary @�a. The NET

v.x/ D EŒ� j x.0/ D x� (1.1)

is finite under quite general conditions (Schuss 2010b). As the size (e.g., the
diameter) of the absorbing hole decreases to zero, but that of the domain remains
finite, the NET increases indefinitely. A measure of smallness can be chosen as
the ratio between the surface area of the absorbing boundary and that of the entire
boundary, for example

" D
� j@�aj

j@�j
�1=.d�1/

� 1; (1.2)

provided that the isoperimetric ratio remains bounded,

j@�j1=.d�1/

j�j1=d
D O.1/ for " � 1 (1.3)

(see the pathological example below when (1.3) is violated). The NET v.x/
satisfies the Pontryagin–Andronov–Vitt (PAV) mixed boundary value problem for
the Poisson equation (Pontryagin et al. 1933; Schuss 2010b)

�v.x/ D � 1

D
for x 2 � (1.4)

v.x/ D 0 for x 2 @�a (1.5)

@v.x/
@n.x/

D 0 for x 2 @�r; (1.6)
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Fig. 1.3 Receptor movement
on the neuronal membrane

where D is the diffusion coefficient and n.x/ is the unit outer normal vector to the
boundary at x 2 @�. If � is a subset of a two-dimensional Riemannian manifold,
as in Fig. 1.3, the Laplace operator is replaced with the Laplace–Beltrami operator.
The compatibility condition

Z

@�a

@v.x/
@n

dSx D �j�j
D

(1.7)

is obtained by integrating (1.4) over � and using (1.5) and (1.6).
The solution v.x/ diverges to infinity as the hole shrinks to zero, e.g., as " ! 0,

except in a boundary layer near @�a, because the compatibility condition (1.7) fails
in this limit. Our purpose here is to find an asymptotic approximation to v.x/ for
small ".

A Pathological Example The following pathological example shows that
when (1.3) is violated the NET does not necessarily increase to infinity as the
relative area of the hole decreases to zero. This is illustrated by the following
example. Consider a cylinder of length L and radius a. The boundary of the cylinder
is reflecting, except for one of its bases (at z D 0, say), which is absorbing. The
NET problem becomes one dimensional and its solution is

v.z/ D Lz � z2

2
: (1.8)

Here there is neither a boundary layer nor a constant outer solution; the NET grows
gradually with z. The NET, averaged against a uniform initial distribution in the
cylinder, is E� D L2=3 and is independent of a, that is, the assumption that the NET
becomes infinite is violated. It holds, however, if the domain is sufficiently thick,
e.g., when a ball of radius independent of " can be rolled on the reflecting boundary
inside the domain.
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1.3 Neumann’s Function and an Helmholtz Integral
Equation

First, we prove the following theorem, which is valid for two- and higher-
dimensional narrow escape problems.

Theorem 1.3.1 (The Helmholtz Integral Equation). Under the assumption that
the solution v.x/ of (1.4)–(1.6) diverges to infinity for all x 2 � as " ! 0, the
leading order approximation to the boundary flux density

g.x/ D @v.x/
@n

for x 2 @�a; (1.9)

is the solution of the Helmholtz integral equation

Z

@�a

N.x; �//g.x/ dSx D �C" for � 2 @�a (1.10)

for some constant C".

Proof. To calculate the NET v.x/, we use the Neumann function N.x; �/, which is
a solution of the boundary value problem

�xN.x; �/ D � ı.x � �/ for x; � 2 �; (1.11)

@N.x; �/
@n.x/

D � 1

j@�j for x 2 @�; � 2 �;

and is defined up to an additive constant. Green’s identity gives

Z

�

ŒN.x; �/�v.x/ � v.x/�N.x; �/� dx

D
Z

@�

�
N.x; �/

@v.x/
@n

� v.x/@N.x; �/
@n

�
dSx

D
Z

@�

N.x; �/
@v.x/
@n

dSx C 1

j@�j
Z

@�

v.x/ dSx:

On the other hand, Eqs. (1.4) and (1.11) imply that

Z

�

ŒN.x; �/�v.x/ � v.x/�N.x; �/� dx D v.�/ � 1

D

Z

�

N.x; �/ dx;
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hence

v.�/ � 1

D

Z

�

N.x; �/ dx D
Z

@�

N.x; �/
@v.x/
@n

dSxC 1

j@�j
Z

@�

v.x/ dSx: (1.12)

Note that the second integral on the right-hand side of (1.12) is an additive constant.
The integral

C" D 1

j@�j
Z

@�

v.x/ dSx (1.13)

is the average of the NET on the boundary. Now (1.12) takes the form

v.�/ D 1

D

Z

�

N.x; �/ dx C
Z

@�a

N.x; �/
@v.x/
@n

dSx C C"; (1.14)

which is an integral representation of v.�/. We use the boundary condition (1.5)
and (1.9) to write (1.14) as

0 D 1

D

Z

�

N.x; �/ dx C
Z

@�a

N.x; �/g.x/ dSx C C"; (1.15)

for all � 2 @�a. Equation (1.15) is an integral equation for g.x/ and C". To
construct an asymptotic approximation to the solution, we note that the first integral
in Eq. (1.15) is a regular function of � on the boundary. Indeed, due to the symmetry
of the Neumann function, we have from (1.11)

��

Z

�

N.x; �/ dx D �1 for � 2 � (1.16)

and

@

@n.�/

Z

�

N.x; �/ dx D � j�j
j@�j for � 2 @�: (1.17)

Equation (1.16) and the boundary condition (1.17) are independent of the hole @�a,
so they define the first integral on the right-hand side of (1.15) as a regular function
of �, up to an additive constant, also independent of @�a.

The assumption that for all x 2 � the NET v.x/ diverges to infinity as " ! 0

and (1.13) implies that C" ! 1 in this limit. This means that for � 2 @�a the
second integral in (1.15) must also become infinite in this limit, because the first
integral is independent of @�a. Therefore, the leading order approximation to the
solution g.x/ of the integral equation (1.15) is the solution of (1.10). ut
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1.4 The NET on a Two-Dimensional Riemannian Manifold

We consider a Brownian trajectory x.t/ in a bounded domain � on a two-
dimensional Riemannian manifold .†; g/ (see relevant references in Sect. 1.4). For
a domain � � † with a smooth boundary @� (at least C1), we denote by j�jg
the Riemannian surface area of � and by j@�jg the arclength of its boundary,
computed with respect to the metric g. As in the previous section, the boundary @�
is partitioned into an absorbing arc @�a and the remaining part @�r D @�� @�a is
reflecting for the Brownian trajectories. We assume that the absorbing part is small,
that is, (1.2) holds in the form

" D j@�ajg
j@�jg � 1;

however, † and � are independent of "; only the partition of the boundary @� into
absorbing and reflecting parts varies with ". The first passage time � of the Brownian
motion from � to @�a has a finite mean u.x/ D EŒ� j x.0/ D x� and the function
u.x/ satisfies the mixed Neumann–Dirichlet boundary value problem (1.4)–(1.6),
which is now written as

D�gu.x/ D � 1 for x 2 � (1.18)

@u.x/
@n

D 0 for x 2 @� � @�a (1.19)

u.x/ D 0 for for x 2 @�a; (1.20)

where D is the diffusion coefficient and �g is the Laplace–Beltrami operator on †

�Mf D 1p
det G

X

i;j

@

@�i

�
gij

p
det G

@f

@�j

�
; (1.21)

with

ti D @jxj
@�i

; gij D hti; tji; G D .gij/; gij D .G�1/ij: (1.22)

Obviously, u.x/ ! 1 as " ! 0, except for x in a boundary layer near @�a.

Theorem 1.4.1. Under the above assumptions the NET is given by

EŒ� j x� D u.x/ D j�jg
	D

�
log

1

"
C O.1/

�
for " � 1: (1.23)

Proof. We fix the origin 0 2 @�a and represent the boundary curve @� in terms of
arclength s as .x.s/; y.s// and rescale s so that

@� D f.x.s/; y.s// W �1=2 < s � 1=2g
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and

.x .�1=2/ ; y .�1=2// D .x .1=2/ ; y .1=2// :

We assume that the functions x.s/ and y.s/ are real analytic in the interval 2jsj < 1

and that the absorbing part of the boundary @�a is the arc

@�a D f.x.s/; y.s// W jsj < "g :
The Neumann function can be written as

N.x; �/ D � 1

2	
log d.x; �/C vN.x; �/ for x 2 Bı.�/; (1.24)

where Bı.�/ is a geodesic ball of radius ı centered at � and vN.xI �/ is a regular
function (Garabedian 1964; Aubin 1998; Gilbarg and Trudinger 2001). We consider
a normal geodesic coordinate system .x; y/ at the origin, such that one of the
coordinates coincides with the tangent coordinate to @�a. We choose unit vectors
e1; e2 as an orthogonal basis in the tangent plane at 0 so that for any vector field
X D x1e1 C x2e2, the metric tensor g can be written as

gij D ıij C "2
X

kl

akl
ij xkxl C o."2/; (1.25)

where jxkj � 1, because " is small. It follows that for x; y inside the geodesic ball or
radius ", centered at the origin, d.x; y/ D dE.x; y/CO."2/, where dE is the Euclidean
metric.

To construct an asymptotic expansion of the solution of (1.10) for small ", we
recall that when both x and � are on the boundary, vN.x; �/ becomes singular [see
Garabedian 1964, p. 247, (7.46)] and the singular part gains a factor of 2, due to
the singularity of the “image charge.” Denoting by QvN the new regular part, (1.10)
becomes

Z

js0j<"

�
QvN.x.s0/I �.s// � log d.x.s/; �.s0//

	

�
f .s0/ S.ds0/ D C"; (1.26)

where S.ds0/ is the induced measure element on the boundary, x D .x.s/; y.s//,
� D .�.s/; 
.s//, and f .s0/ D g0.x.s0//. Expanding all functions in powers of " and
then in powers of s and s0 for jsj; js0j < ", the integrals give at the leading order [see
Holcman and Schuss (2004), Singer et al. (2006c), Schuss (2013) for details of the
computation]

" .log " � 1/ f0 C
X

p

�
"2pC1

2p C 1
log " � "2pC1

.2p C 1/2

�
f2p D 	

2

"Z

�"
v0.s

0/ ds0 C C";

(1.27)
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where fn are the Taylor coefficients of f .s/ and vn.s/ are the coefficients in the
expansion of v.s/ in powers of ". Equation (1.27) and

1

2

"Z

�"
f .s/ S.ds/ D

X

p

"2pC1

.2p C 1/
f2p

determine the leading order term in the expansion of C". Indeed, the compatibility
condition (1.7) gives

"Z

�"
f .s/ S.ds/ D �j�jg; (1.28)

so using the fact that
"R

�"
v0.s0/S.ds0/ D O."/, we find that the leading order

expansion of C" in (1.27) is

C" D j�jg
	

�
log

1

"
C O.1/

�
for " � 1. (1.29)

If the diffusion coefficient is D, (1.10) gives the NET from a point x 2 �, outside
the boundary layer, as

EŒ� j x� D u.x/ D j�jg
	D

�
log

1

"
C O.1/

�
for " � 1: (1.30)

ut
Higher-order terms in the expansion (1.30) are given in Singer et al. (2006b).

1.4.1 Exit Near Singularities of the Boundary

If the window is at a corner of an opening angle ˛ in the boundary (see Fig. 1.4), the
NET is to leading order

E� D j�j
D˛

�
log

1

"
C O.1/

�
: (1.31)

Indeed, putting the origin at the apex of the angle and the real axis on one of the rays
of the angle, the conformal mapping z 7! z	=˛ of � flattens the corner and leaves
@�a small. The Neumann function for the upper half plane, 	�1 log z, is transformed
into ˛�1 log z, so (1.30) gives (1.31).
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Fig. 1.4 A small opening
near a corner of angle ˛ e

a

To see that the area factor j�j remains unchanged under any conformal mapping
f W .x; y/ 7! .u.x; y/; v.x; y//, we note that this factor is a consequence of the
compatibility condition (1.7), that relates the area to the integral

Z

�

�.x;y/w dx dy D �j�j
D
;

where w.x; y/ D EŒ� j x.0/ D x; y.0/ D y� satisfies �.x;y/w D �1=D. According to
the Cauchy–Riemann equation the Laplacian transforms as

�.x;y/w D .u2x C u2y/�.u;v/w

and the Jacobian of the transformation is J D u2x C u2y . Therefore,

Z

�

�.x;y/w dx dy D
Z

f .�/

�.u;v/w du dv:

This means that the compatibility condition remains unchanged and gives the area
of the original domain. Higher order asymptotics are given in Singer et al. (2006c).

If the absorbing arc is at a cusp of the boundary, the leading order term
of the asymptotic expansion of the NET can be found by mapping the domain
conformally onto the upper half plane. A cusp can be viewed as a corner with
opening angle ˛ D 0, so a different asymptotic expansion than (1.31) should be
expected. Consider, for example, Brownian motion in a domain enclosed between
the circles .x � 1=2/2 C y2 D 1=4 and .x � 1=4/2 C y2 D 1=16 (see Fig. 1.5). The
conformal mapping z 7! expf	 i.1=z � 1/g maps this domain onto the upper half
plane. Therefore, the NET is to leading order

E� D j�j
D

�
1

"
C O.1/

�
: (1.32)

This result can also be obtained by mapping the cusped domain to the unit circle.
The absorbing boundary is then transformed to an exponentially small arc of length
expf�	="g C O.expf�2	="g/, and Eq. (1.32) is recovered.
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Fig. 1.5 The point .0; 0/ is a
cusp point of the dotted
domain bounded between the
two circles. The end of the
small absorbing arc of length
" is the cusp point

x

y

0 1/4 1/2 1 

e

If the ratio between the two radii, d, is less than 1, then the domain between
the two circles is mapped conformally onto the upper half plane by the function
exp

˚
	 i.1 � z/=.d�1 � 1/z	 (for d D 1=2 we arrive at the previous example), so the

NET is to leading order

E� D j�j
.d�1 � 1/D

�
1

"
C O.1/

�
: (1.33)

The NET tends algebraically fast to infinity, much faster than the O
�
log "�1�

behavior near smooth or corner boundaries. The NET for a cusp is much larger
because it is harder for the Brownian motion to enter the cusp than to enter a
corner. The NET (1.33) can be written in terms of d instead of the area. Substituting
j�j D 	R2.1 � d2/, we find that

E� D 	R2d.1C d/

D

�
1

"
C O.1/

�
; (1.34)

where R is the radius of the outer circle. Note that although the area of � is a
monotonically decreasing function of d, the NET is a monotonically increasing
function of d and tends to a finite limit as d ! 1. Similarly, one can consider
different types of cusps and find that the leading order term for the NET is
proportional to 1="�, where � is a parameter that describes the order of the cusp, and
can be obtained by the same method of conformal mapping (Singer et al. 2006c).

1.4.2 NET on a Two-Dimensional Sphere

Another example is that of Brownian motion on the surface of a 3-sphere of radius
R, described by the spherical coordinates .�; �/

x D R sin � cos�; y D R sin � sin�; z D R cos �:
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Fig. 1.6 A sphere of radius R
without a spherical cap at the
north pole with central angle
ı. The Brownian motion is
absorbed at the boundary of
the cap or only at an arc of
length 2" on the boundary of
the cap

d

ee

In spherical coordinates Eqs. (1.21) and (1.22) give (John 1982)

g�� D R2; g�� D R2 sin2 �; g�� D g�� D 0: (1.35)

Therefore, for a function on the 3-sphere w D w.�; �/ the Laplace–Beltrami
operator �M is given by

�Mf D R�2
�
@2f

@�2
C cot �

@f

@�
C 1

sin2 �

@2f

@�2

�
:

If the Brownian motion is absorbed when it reaches a small spherical cap centered
at the north pole � D 0 with a small opening angle ı (see Fig. 1.6), the MFPT to the
cap, v.�/, satisfies the PAV boundary value problem

�Mv D R�2 �v00 C cot � v0� D �1 (1.36)

v0.	/ D 0; v.ı/ D 0; (1.37)

because due to rotational symmetry the FPT to the spherical cap is independent of
the initial angle �. The solution of the boundary value problem (1.36), (1.37) is
given by

v.�/ D 2R2 log
sin �

2

sin ı
2

: (1.38)

A different approach to the calculation of the MFPT of Brownian motion on the
3-sphere is based on the stereographic projection of the sphere onto the plane
(Hille 1976). A related problem is that of entering a circular corral on the 3-sphere
through a small arc. These cases are discussed in Singer et al. (2006b) and
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Schuss (2013). A general approach leading to explicit asymptotic computations and
valid for several holes uses matching asymptotics [see Cheviakov et al. (2010) and
the next section].

1.4.3 The Matched Asymptotics Approach

In the matched asymptotics approach to the NET problem from a domain � in R
2,

a boundary layer solution is constructed near an absorbing window @�a of size
2" (Ward et al. 1993, 2010). First, the mixed boundary value problem (1.4)–(1.6)
is converted to local coordinates .
; s/, where 
 is the distance of a point x 2 �

from the boundary @� and s is the arclength from the center of the window to the
orthogonal projection of x on @�. If @� is sufficiently smooth in a neighborhood of
the window @�a, Eq. (1.4) for the MFPT v.x/ is converted locally to

w

 � �

1 � �
w
 C 1

1 � �

�

1

1 � �
ws

�

s

D � 1

D
; (1.39)

where w.
; s/ D v.x/ and � is the boundary curvature at the projection of x on
@�. If s is measured from the center of the arc @�a, the stretching 
 D " O
; s D "Os,
Ow. O
; Os/ D w.
; s/ maps a boundary strip near @�a into the upper half plane.
Assuming, as we may, that the origin x D 0 is at the center of @�a, we set
y D x=" D . O
; Os/. An expansion in powers of " gives the leading order boundary
layer problem for (1.4)–(1.6) as

OwBL; O
 O
 C OwBL;OsOs D 0 for 0 < O
 < 1; �1 < Os < 1 (1.40)

OwBL; O
.0; Os/ D 0 for jOsj > 1; OwBL.0; Os/ D 0 for jOsj < 1: (1.41)

We specify the growth condition OwBL � A log jyj as jyj ! 1, where A is as yet
an undetermined constant. Setting z D Os C i O
, the transformation 
 D u C iv D
Arcsin z D �iLog Œiz C p

1 � z2� maps the upper half plane O
 > 0 onto the semi-
infinite strip O� D f�	=2 < u < 	=2; 0 < v < 1g. The mixed boundary value
problem (1.40), (1.41) is transformed into

OWuu.u; v/C OWvv.u; v/ D 0 for .u; v/ 2 O�
OWu

�
˙	

2
; v



D 0 for 0 < v < 1; OW.u; 0/ D 0 for � 	

2
< u <

	

2
;

where OW.u; v/ D OwBL. O
; Os/. The solutions OW.u; v/ D Av have the required
logarithmic behavior for jyj ! 1, specifically,

OwBL � A log jyj C log 2C o.1/ as jyj ! 1: (1.42)

The constant A is related to the boundary flux by A D 2	�1 1R

0

OwBL; O
.0; Os/ dOs.
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The leading term wOUT.x/ in the outer expansion satisfies the original equation
with the reduced boundary condition and the matching condition

�xwOUT.x/ D � 1

D
for x 2 �

@wOUT.x/
@n

D 0 for x 2 @� � f0g

wOUT.x/ � A

�
log

�
1

"

�
C log 2C log jxj

�
for x ! 0:

Now the compatibility condition (1.7) gives (1.30).

1.4.4 Exit Through Several Windows

The diffusion flux through a cluster of small absorbing windows in an otherwise
reflecting boundary of a domain depends on the relative distance between the win-
dows. For example, splitting an absorbing window into two equal parts and moving
them apart increases the absorption flux by nearly 50% (Holcman and Schuss
2008a). Thus, the case of several targets is not a straightforward generalization of
the single target case. In fact, the MFPT of a Brownian trajectory to any one of
several targets @�a contains information about their relative distances. In particular,
when the small Dirichlet windows form a cluster, the MFPT to any one of them is
influenced by the others, which is not the case for well-separated windows (Holcman
and Schuss 2008a,b).

First, we consider exit through two windows. For a regular domain in R
2 with

two Dirichlet arcs of lengths 2" and 2ı (normalized by the perimeter j@�j) and
separated by the Euclidean distance � D " C �0 C ı between the centers, and in
a regular domain in R

3 with two Dirichlet circular windows of small radii a and
b, separated by the Euclidean distance � D a C �0 C b between the centers (see
Fig. 1.7), the NET N�" is given by

N�" D j�j
	D

�
log

1

"
C log

1

ı

�
log

1

ı
log

1

"
� �

log
ˇ̌
"C�0 C ı

ˇ̌C O.1/
�2

1C 2
log j"C�0 C ıj C O.1/

log
1

ı
C log

1

"

(1.43)

as a; b; "; ı;�0 ! 0 (Holcman and Schuss 2008a,b). As the windows drift apart the
NET becomes the sum of the single window NETs. A new result is obtained as the
windows touch (for d D 3) or merge (for d D 2).
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D
A

B

2 e

2 d b
D

A

B

a

Fig. 1.7 Schematic representation of a disk and a sphere with two holes on the boundary. In the
plane, the arclengths of the holes are 2ı and 2", respectively, at Euclidean distance � apart, while
in 3D, the radii of the holes are, respectively, a and b

1.4.5 Derivation of the Helmholtz Integral Equation

The generalization of Theorem 1.3.1 to the case of two windows is as follows.
The conditional NET of a Brownian trajectory x.t/ that starts at x 2 � is u.x/ D
EŒ� j x.0/ D x�; which is the solution of the mixed boundary value problem (1.4)–
(1.6), through each hole is

ˆA D �
Z

A

g.x/ dSx; ˆB D �
Z

B

g.x/ dSx;

where for x 2 @�a, g.x/ D D@u.x/=@n is the absorption flux density. To compute
the fluxes, we first integrate Eq. (1.4) over the domain and get

ˆA CˆB D j�j: (1.44)

The solution of (1.4)–(1.6) is represented as

u.�/ D
Z

�

N.x; �/ dx C
Z

@�a

N.x; �/
@u.x/
@n

dSx C C;

where C D j@�j�1 H
@�

u.x/ dSx is a constant to be determined from the boundary
condition (1.5) and dSx is a surface area element on @�a. To estimate C, we choose,
respectively, � 2 A and � 2 B, and using the boundary condition (1.5), we obtain
the two equations

F.�/ D
Z

A

N.x; �/gA.x/ dSx C
Z

B

N.x; �/gB.x/ dSx for � 2 A
[

B; (1.45)
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where

F.�/ D �
0

@
Z

�

N.x; �/ dx C C

1

A 	 �C: (1.46)

Equation (1.45) is called the Helmholtz integral equation (Helmholtz 1860). We
denote the centers of the absorbing disks (arcs) A and B by 0A and 0B, respectively.
The variables r and r0 are the signed arclengths in A and B, measured from
their centers. The equations for the fluxes gA and gB in the windows A and B
form an approximate solution of (1.45) for well-separated A and B and constants
QgA; QgB. They are only approximations, because the integral

R
B N.x; �/gB.x/ dSx is

not constant for � 2 A, though it is much smaller than
R

A N.x; �/gA.x/ dSx there.
If, however, A and B are not well separated, the flux expressions are not even an
approximate solution, because the integrals are of comparable orders of magnitude.

The fluxes calculated in loc. cit. are

gA.x/ �
QgAf

� r

"




r
1 � r2

"2

for x 2 A; d D 2 (1.47)

and a similar expression for x 2 B, where f .˛/ is a positive smooth function for
j˛j � 1 such that f .0/ D 1.

1.4.6 Asymptotic Solution of the Helmholtz Equation

It was shown in Singer et al. (2006a) that the flux density through a single hole
of size 2" is given by (1.47), where f .x/ is a smooth positive even function for
�1 � x � 1 and f .0/ D 1, where QgA and QgB are constants. The computations of
Holcman and Schuss (2004) and Singer et al. (2006b, Part II) show that the solution
of (1.45) has the form

gA.r/ D
QgAf

� r

"




r
1 � r2

"2

for � " � r � ";

gB.r/ D
QgBf

� r

"




r
1 � r2

"2

for "C�0 � r � 3"C�0:

Now f is a positive smooth function for �1 � x � 1 and for 1 C �0=" � x �
3 C �0=", such that f .0/ D f .2C�0="/ D 1. f�.0/ D f� .2C�0="/ D 1. For
small " and all � 
 ", we approximate
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Z

A

N.x; �/gA.x/ dSx D "˛ QgAŒN.0A; 0B/C O.1/�; (1.48)

where

˛ D
1Z

�1

f .x/ dxp
1 � x2

: (1.49)

and the Neumann function for the variables x and � at the centers of the two
windows, respectively, is given by

N.0A; 0B/ D � 1
	

log."C ı C�0/C O.1/:

The detailed analysis of the approximation is given in Holcman and Schuss
(2008a). Using (1.48) and the computations of Singer et al. (2006a), we get that

Z

A

N.x; �/gA.x/ dSx 	

8
ˆ̂<

ˆ̂:

˛"Œ� log "C 	vS.0; "/�QgA

D	
for � 2 A

�"˛ QgAN.0A; 0B/C O.1/ for � 2 B:

An analogous expression is obtained for x 2 B and � 2 A (with ˇ instead of ˛).
Using the boundary conditions (1.45) and the approximation (1.60), we obtain that

˛".log "/QgAŒ1C o.1/�

	
C ıˇ QgB Œlog."C ı C�0/C O.1/�

	

D "˛ QgA Œlog."C ı C�0/C O.1/�

	
C ˇı.log ı/QgBŒ1C o.1/�

	
D C:

The flux condition (1.44) gives for small " that

Z

A

gA.x/ dSx D
"Z

�"

QgAf
� r

"




r
1 � r2

"2

dr .1C o.1// D ˛"QgA.1C o.1//;

hence, for d D 2, Eq. (1.44) gives

˛"QgA C ˇı QgB D �j�jŒ1C o.1/�: (1.50)

Therefore, we get for the constant C D N�A[B, which is the MFPT to any one of the
two windows,

C D j�jŒ1C o.1/�

	

�
log

1

"
C log

1

ı

�
log

1

ı
log

1

"
� Œlog."C�0 C ı/C O.1/�2

1 � 2 Œlog."C�0 C ı/C O.1/�

log
1

ı
C log

1

"

: (1.51)
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Equation (1.51) reduces to the single window formula (1.30) in the limit ı ! 0.
The condition (1.44) gives

˛"QgA C ˇı QgB D �j�j.1C o.1//: (1.52)

Note that the derivation of (1.51) requires a generalization of the method of
Holcman and Schuss (2004) and Singer et al. (2006a), which consists in deriving and
solving a Helmholtz integral equation on several windows. The solution depends
on the separation between the windows in a strongly nonlinear way. The effect of
varying the distance between the windows is shown in Fig. 1.8. Recently, using
matched asymptotics (Ward et al. 2010), the following estimate for two windows
was obtained,

Nv � j�j
D	

�
�1
2

log

�
"l

4

�
� 	

2
log jx2 � x1j C 	R�

�
for O."/ � jx2 � x1j � O.1/;

where R� � R.x�
1 ; x

�
1 / is the regular part of the Neumann function at x�

1 2 @�. In
general,

Nv �

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

j�j
D	

Œ� log."d1/C 	R��
for a two-window cluster

j�j
D	

�
�1
2

log

�
"l

4

�
C 	

4
.R.x1I x1/C R.x2I x2/C 2G.x1I x2//

�

for well-separated windows.

Here x�
1 2 @� is the center of the two-window cluster, R� � R.x�

1 ; x
�
1 / is the regular

part of the Neumann function at x�
1 , and

d1 D l

2

�
1C 2a

l

�1=2
; (1.53)

where 2a is the distance along the boundary between the two windows. For the
special case of the unit disk D.1/, where the regular part R has the uniform value
R D 1=.8	/: Indeed, the Neumann function G.xI �/ with

R

�

G.xI �/ dx D 0 and

� 2 @D.1/ is given by Ward et al. (2010)

G.xI �/ D � 1
	

log jx � �j C jxj2
4	

� 1

8	
; R.�I �/ D 1

8	
: (1.54)

The average MFPT with respect to the initial position to any one of N equal
absorbing arcs of length 2", centered at x1; : : : ; xN on the boundary of the unit
disk, is
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Fig. 1.8 The MFPT � , normalized by �1 (the NET for a single window), as a function of the
distance� between two holes, normalized by ". Top: the MFPT for d D 2; " D ı D 0:02; D D 1.
The cell radius is R D 2. The contribution of the regular part of the Green function is estimated as
1:3 by a numerical fit. Bottom: the values of the parameters are d D 3; a D " D ı D 0:3; R D
2; D D 1
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Nv� 1

DN

2

4� log
� "
2



C N

8
� 1

N

NX

iD1

NX

j¤i

log jxi � xjj
3

5 : (1.55)

The sum in (1.55) is minimized when xj D e2	 ij=N are the equally spaced Nth roots
of unity,

v.x/ � 1

DN

2

4� log

�
"N

2

�
C N

8
� 	

NX

jD1
G.xI xj/

3

5

N� � 1

DN

�
� log

�
"N

2

�
C N

8

�
: (1.56)

1.4.7 Annotations

The narrow escape problem in diffusion theory was considered first by Lord
Rayleigh in (1945) and elaborated in Fabrikant (1989, 1991); the terminology NET
was introduced in Singer et al. (2006a). A recent review of early results on the NET
problem with many biological applications is given in Bressloff and Newby (2013)
and in Holcman and Schuss (2013a).

In the matched asymptotics approach to the NET problem from a domain �
in R

2, a boundary layer solution is constructed near an absorbing window @�a of
size 2" (Ward et al. 1993, 2010). The method has been developed in Ward and
Keller (1993), Ward et al. (1993), Ward and Van De Velde (1992), Kolokolnikov
et al. (2005), and Cheviakov et al. (2010). In three dimensions the method was
used in Ward and Keller (1993), where the boundary layer problem is the classical
electrified disk problem (Jackson 1975). Further refinements of (1.30) are given
in Ward and Keller (1993), Ward et al. (1993), Ward and Van De Velde (1992),
Kolokolnikov et al. (2005), Cheviakov et al. (2010), Singer et al. (2006b), and
Schuss et al. (2007).

The NET calculated in Chap. 1 was calculated for small absorbing windows in a
smooth reflecting boundary in Ward and Keller (1993), Ward et al. (1993), Ward and
Van De Velde (1992), Kolokolnikov et al. (2005), Cheviakov et al. (2010), Coombs
et al. (2009), Grigoriev et al. (2002), Holcman and Schuss (2004), Singer et al.
(2006a,b,c), Singer and Schuss (2006), Bénichou and Voituriez (2008), Schuss et al.
(2007), Gandolfi et al. (1985), and others. Several more complex cases, such as the
NET through a window at a corner or at a cusp in the boundary and the NET on
Riemannian manifolds, were considered in Singer et al. (2006a,b,c). Exit through
many holes is discussed in Holcman and Schuss (2008a,b, 2012a), and Cheviakov
et al. (2010) and the references therein.
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1.5 NET in Bounded Domains in R
3

The NET problem in three dimensions is more complicated than that in two
dimensions, primarily because the singularity of Neumann’s function for a regular
domain is more complicated than (1.2).

1.5.1 The Neumann Function in Regular Domains in R
3

The Neumann function N.x; y/ for a bounded domain � � R
3 with a sufficiently

smooth boundary @� is the solution of the boundary value problem

�xN.x; y/ D �ı.x � y/C 1
j�j ; for x; y 2 � (1.57)

@N.x; y/
@�x

D 0; for x 2 @�; y 2 �; (1.58)

where �.x/ is the outer unit normal to the boundary @�. If x or y (or both) are in @�,
then only a half of any sufficiently small ball about a boundary point is contained
in �, which means that the singularity of Neumann’s function is .2	jx � yj/�1.
Therefore Neumann’s function for y 2 @� can be written as

N.x; y/ D 1

2	jx � yj C v.x; y/; (1.59)

where v.x; y/ satisfies

�xv.x; y/ D 1

j�j for x 2 �; y 2 @� (1.60)

In general, the Neumann function has the form (Garabedian 1964)

N.x; �/ D 1

4	jx � �j C vS.x; �/; (1.61)

where vS.x; �/ has a weaker singularity at x D � when x 2 @� and � 2 � [ @�

(see Theorem 1.5.1 below). It follows that only the singular part of the Neumann
function contributes to the leading order approximation to the solution of the
integral equation (1.10). Thus we obtain for the leading order approximation to the
absorption flux density g0.x/ on @�a and to the leading order approximation C0 of
the MFPT C the Helmholtz integral equation (1.10)

1

2	

Z

@�a

g0.x/
jx � �j dSx D �C0: (1.62)
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Here C0 is a constant, which represents the first approximation to the MFPT. It is
also the electrostatic capacity of the window (Jackson 1975).

The structure of Neumann’s function for a regular domain in R
3 is described in

the following theorem (Popov 1992).

Theorem 1.5.1 (Popov). Assume � 2 R
3 is a bounded domain whose boundary

@� has continuous partial derivatives up to order three. Then for z 2 @�; y 2
� [ @�, the structure of the Neumann function (in dimensionless variables) is

N.y; z/ D 1

2	jy � zj � 1

8	
ŒL.z/C N.z/� ln jy � zj C vS.y; z/; (1.63)

where L.z/ and N.z/ are the principal curvatures of @� at z and vS.y; z/ is a bounded
function of x; y in �.

Thus Neumann’s function for a ball in R
3 is found from the canonical rep-

resentation of a hemisphere of (dimensionless) radius R at the south pole, x3 D
R �

q
R2 � .x21 C x22/. We find that L.z/ D N.z/ D 1

R
, so for jzj D R we have

N.y; z/ D 1

2	jy � zj C 1

4	R
ln

1

jy � zj C O.1/: (1.64)

Further analysis of the O.1/ term is given in Silbergleit et al. (2003). The structure
of Neumann’s function for a ball is given in Kellog (1954, p. 247, Exercise 4).

1.5.2 Elliptic Absorbing Window

An explicit solution to the Helmholtz equation (1.62) can be found when the hole
@�a is an ellipse (Rayleigh 1945; Lurie 1964). Consequently, the MFPT from a
large cavity of volume j�j to a small elliptic absorbing window on an otherwise
reflecting boundary @� can be calculated explicitly to leading order.

Theorem 1.5.2. Assume the boundary @� of a bounded domain � � R
3 is

sufficiently regular and the absorbing boundary @�a is the ellipse

x2

a2
C y2

b2
� 1; z D 0; .b � a/: (1.65)

If

" D
� j@�aj

j@�j
�1=2

� 1;
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and

j�j2=3
j@�j ;

j@�j
j�j2=3 D O.1/ for " � 1;

then the MFPT from a � to @�a is to leading order

E�.a; b/ � j�j
2	Da

K.e/; (1.66)

where K.�/ is the complete elliptic integral of the first kind and e D p
1 � b2=a2 is

the eccentricity of the ellipse.

If the hole is circular, e D 0 and K.0/ D 	=2, so that

E�.a; a/ � j�j
4Da

D O

�
1

"

�
: (1.67)

If the hole is an elongated ellipse with b � a, the eccentricity is eDp1�b2=a2 ' 1,
which gives the asymptotic expansion for the elliptic integral (Abramowitz and
Stegun 1972, p. 591)

K.e/ 	 1

2
log

�
16

1 � e

�
: (1.68)

Now (1.66) becomes

E�.a; b/ � j�j
2	Da

log

�
4a

b

�
; (1.69)

showing that for b � 1 and b � a, the NET depends logarithmically on the short
axis b.

A related problem is that of reaching a narrow spine-like absorbing or partially
absorbing protrusion of the boundary into the domain. For the case of an ellipsoidal
protrusion with transversal semi-axes a2 
 a1 and height a3 the eccentricity is

e D
q
1 � a21=a22 with f D a3=a1. With the elliptic integral

K.e; f / D 2

	

	=2Z

0

d�
p
.1 � e2 sin2 �/.1C f 2 tan2 �/

; (1.70)

the NET is given by Reingruber et al. (2009)

N� D jVj
4a1D

K.e; f /: (1.71)
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For a1 D a2 and f D a3=a1, the NET is

N� D jVj
2	a1D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

arccos f
p
1 � f 2

; f � 1

arccosh f
p

f 2 � 1 ; f 
 1:

(1.72)

In the limit f � 1, we obtain the approximation

N� 	 jVj
2	a1D

ln.2f /

f
:

If the narrow protrusion is reflecting, except for N absorbing circular disks of radius
s on its surface, the NET is given approximately by Reingruber et al. (2009)

�part-spine D jVj
4a1D

K.e; f /Ns C .1 � �/a1
Ns

: (1.73)

The proof of Theorem 1.5.2 is based on the following lemma (see Lurie 1964).

Lemma 1.5.1 (Helmholtz (1860)). Assume @�a is the ellipse

x2

a2
C y2

b2
� 1; z D 0; .b � a/:

Then the solution of the Helmholtz equation (1.62) is

g0.x/ D Qg0r
1 � x2

a2
� y2

b2

; (1.74)

where Qg0 is a constant.

Proof (of Theorem 1.5.2). The MFPT is to leading order the constant C0 in (1.74),
therefore we need to determine the value of the constant Qg0 in (1.74). To this end,
we use the value

Z

@�a

g0.x/ dSx D
aZ

�a

dx

b

r
1� x2

a2Z

�b

r
1� x2

a2

Qg0 dy
r
1 � x2

a2
� y2

b2

D 2	abQg0

and apply the compatibility condition (1.7) to obtain

Qg0 D � j�j
2	Dab

:
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Hence

C0 D � 1

2	

Z

@�a

g0.x/
jx � yj dSx D j�j

2	Da
K.e/: (1.75)

It follows that

E� � j�j
2	Da

K.e/:

ut
The explicit solution of the Helmholtz equation for a general shaped window, such
as a rectangle, is yet unknown.

1.6 Second Order Asymptotics for a Circular Window

To obtain higher order asymptotics of the MFPT, we use Popov’s Theorem 1.5.1
and Helmholtz’s Lemma 1.5.1 in (1.10). We get the following theorem.

Theorem 1.6.1. Under the assumptions of Theorems 1.5.1 and 1.5.2 for a circular
window of radius a � j@�j1=2

E� D j�j
4aD

�
1C L.0/C N.0/

2	
a log a C o.a log a/

� for a � j@�j1=2: (1.76)

Proof. To obtain higher order asymptotics of the MFPT, we us Popov’s Theo-
rem 1.5.1 and Helmholtz’s Lemma 1.5.1 in (1.10), which, in view of (1.63), now
becomes the generalized Helmholtz equation

R

@�a

g.x/
h

1
2	jx�yj C H.x; y/ log jx � yj C O.1/

i
dSx D �C for y 2 @�a (1.77)

H.x; y/ D� 1
8	
ŒL.y/C N.y/� �� 1

8	
ŒL.0/C N.0/�; for x; y 2 @�a; " � 1;

where L.0/;N.0/ are the principal curvatures at the center 0 of @�a. To solve (1.77),
we expand g.x/ D g0.x/C g1.x/C g2.x/C � � � , where giC1.x/ � gi.x/ for " � 1

and choose

g0.x/ D �2C

a	

r
1 � jxj2

a2

: (1.78)

According to Lemma 1.5.1, if @�a is a circular disk of radius a, then
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1

2	

Z

@�a

g0.x/
jx � yj dSx D C for all y 2 @�a: (1.79)

It follows that g1.x/ satisfies the integral equation

1

2	

Z

@�a

g1.x/
jx � yj dSx D 2C

a	

Z

@�a

H.x; y/ log jx � yj
r
1 � jxj2

a2

dSx: (1.80)

Setting y D a�; x D a�, and changing to polar coordinates in the integral on the
right-hand side of (1.80), we obtain

1

2	

Z

@�a

g1.x/
jx � yj dSx D 2Ca2

a	

2	Z

0

d�

1Z

0

H.a�; a�/ Œlog a C log j� � �j�p
1 � r2

r dr;

(1.81)

which gives in the limit " ! 0 (e.g., keeping j�j fixed and a ! 0) that

1

2	

Z

@�a

g1.x/
jx � yj dSx D �CŒL.0/C N.0/�

2	
a log a C o.a log a/: (1.82)

As in the pair (1.78), (1.79), we obtain that

g1.x/ D �CŒL.0/C N.0/�

	2

r
1 � jxj2

a2

log a C o.log a/: (1.83)

To determine the asymptotic value of the constant C, we recall that g.x/ D @u.x/=@�
and use in (1.7) the approximation

g.x/ � g0.x/C g1.x/ � �2C

a	

r
1 � jxj2

a2

�
1C L.0/C N.0/

2	
a log a

�
:

We obtain the NET (in dimensionless variables) as

E� D j�j
4aD

�
1C L.0/C N.0/

2	
a log a C o.a log a/

� ;

which is (1.76). ut
Higher order asymptotics of the principal eigenvalue of the Laplace equation in

� with the mixed Dirichlet–Neumann boundary conditions (1.5), (1.6) are derived
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from the asymptotic representation �1.a/ � .E�/�1 for a � j@�j1=2, which gives

�1.a/ D 4aD

j�j
�
1C L.0/C N.0/

2	
a log a C o.a log a/

�
: (1.84)

If� is a ball of radius R, then L.0/C N.0/ D 2=R and the NET E� D C is given
(in dimensional variables) by

E� D j�j
4aD

�
1 � a

	R
log

R

a
C o

�
a

R
log

R

a

��

D j�j
4aD

�
1C a

	R
log

R

a
C o

�
a

R
log

R

a

��
: (1.85)

Higher order asymptotics for a ball can be obtained from Silbergleit et al. (2003)
and Kellog (1954, p. 247, Exercise 4).

1.6.1 Higher Order Asymptotics in the Unit Ball

If Neumann’s function is defined as the solution of

�Gs D 1

j�j for x 2 �; @rGs D ı.cos � � cos �j/ı.� � �j/ for x 2 @�;

(1.86)
Z

�

Gs dx D 0;

then the following lemma holds (Cheviakov et al. 2010).

Lemma 1.6.1 (Cheviakov, Ward, Straube). Neumann’s function on the unit ball
in R

3, satisfying (1.86), is given by

Gs.xI xj/ D 1

2	
ˇ̌
x � xj

ˇ̌ C 1

8	

�
jxj2 C 1




C 1

4	
log

 
2

1 � jxj cos � C ˇ̌
x � xj

ˇ̌
!

� 7

10	
; (1.87)

where � is the angle between x and xj, given by cos � D cos � cos �j C
sin � sin �j cos.� � �j/.
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1.7 The NET Through Multiple Absorbing Windows

Next, we generalize the matched asymptotics expansion presented in Sect. 1.4.3 for
two-dimensional domains to the three-dimensional unit ball with N small disjoint
absorbing windows, @�"j .j D 1; : : : ;N/ each of area j@�"j j D O."2/, in the limit
" ! 0. We need to construct a uniform asymptotic expansion of the solution to the
mixed problem

�v� vrrC2

r
vrC 1

r2 sin2 �
v��Ccot �

r2
v�C 1

r2
v��D � 1

D
for rDjxj � 1 (1.88)

vD 0 for x 2 @�aD [N
jD1 @�"j ; jD1; : : : ;N; @rvD0 for x 2 @�n@�a: (1.89)

The outer solution, valid away from @�"j , is given in the form of the expansion
suggested by Lemma 1.6.1,

v.x/ � "�1v0 C log
� "
2



�0 C v1.x/C " log

� "
2



v2.x/C "v3.x/C � � � ;

(1.90)

where the coefficients v0; �0 are unknown constants, while v1.x/, v2.x/, v3.x/, and
higher order coefficients are unknown functions, to be determined.

In the inner region, near the jth absorbing window, we introduce the local curvi-
linear coordinates .
; s1; s2/, where 
 � "�1.1� r/; s1 � "�1 sin.�j/

�
� � �j

�
; s2 �

"�1.� � �j/, the inner expansion is

v � "�1w0 C log
� "
2



w1 C w2 C � � � : (1.91)

Using (1.91) in (1.88) leads to

w0 D v0 .1 � wc/ ; (1.92)

where v0 is a constant to be determined and wc is the solution of the boundary layer
equation

Lwc � wc

 C wcs1s1 C wcs2s2 D 0 for 
 
 0; �1 < s1; s2 < 1 (1.93)

@
wc D 0 for 
 D 0; s21 C s22 
 a2j ; wc D 1 for 
 D 0; s21 C s22 � a2j (1.94)

wc ! 0 for � D "�1jx � xjj ! 1: (1.95)

The boundary value problem (1.93), (1.94) with the matching condition (1.95) is
the well-known electrified disk problem in electrostatics (cf. Jackson 1975), whose
solution is
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wc D 2

	

1Z

0

sin�

�
e��
=aj J0

�
��

aj

�
d� D 2

	
sin�1 �aj

L



; (1.96)

where � � .s21 C s22/
1=2, J0.z/ is the Bessel function of the first kind of order zero,

and L D L.
; �/ is defined by

L.
; �/ � 1

2

��
.� C aj/

2 C 
2
�1=2 C �

.� � aj/
2 C 
2

�1=2

: (1.97)

The far-field behavior of wc in (1.96) is given by

wc � 2aj

	

"
1

�
C a2j
6

�
1

�3
� 3
2

�5

�
C � � �

#
as � ! 1; (1.98)

which is uniformly valid in 
, s1, and s2. Thus (1.92) and (1.98) give the far-field
expansion of w0 as

w0 � v0

�
1 � cj

�
C O.��3/

�
for � ! 1; cj � 2aj

	
; (1.99)

where cj is the electrostatic capacitance of the circular disk of radius aj.
Writing the matching condition that the near-field behavior of the outer expan-

sion (1.90) must agree with the far-field behavior of the inner expansion (1.91),we
obtain the uniform expansion

v � v0

"
C v1 C " log

� "
2



v2 C "v3 C � � �

� v0

"

�
1 � cj

�
� � �
�

C log
� "
2



w1 C w2 C � � � : (1.100)

The definition � � "�1jx � xjj gives in (1.100) the expansion v1 � �v0cj=jx � xjj
as x ! xj for j D 1; : : : ;N so that v1 is solution of the distributional equation

�v1 D � 1

D
for jxj < 1; @rv1 D �2	v0

NX

jD1

cj

sin �j
ı.� � �j/ı.� � �j/ for jxj D 1:

(1.101)

The solvability condition for (1.101) gives

v0 D j�j
2	DN Nc ; Nc � 1

N

NX

jD1
cj; cj D 2aj

	
: (1.102)
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Thus, the solvability condition for the problem for v1 determines the unknown
leading-order constant v0 in the outer expansion. The solution to (1.101), rep-
resented in terms of the Neumann functions (1.87), up to an unknown additive
constant �, is given by

v1 D �2	v0
NX

iD1
ciGs.xI xi/C �; � � j�j�1

Z

�

v1 dx: (1.103)

Iterating this procedure by expanding v1 in the limit x ! xj and by using the
near-field expansion of Gs.xI xj/ gives

� D log
� "
2



�0 C �1; (1.104)

hence

w1 D
�v0cj

2
C �0



.1 � wc/ ; (1.105)

and

v2 D �2	
NX

iD1
ci

�v0ci

2
C �0



Gs.xI xi/C �2: (1.106)

Repeated iterations of this procedure determine all the function vk and wk

(Cheviakov et al. 2010).

1.7.1 Third-Order Asymptotics

Specialization of the above asymptotics to a three-term expansion for N windows
with a common radius " � 1, centered at xj with jxi � xjj D O.1/ for i ¤ j, gives
the average NET up to third order (see Sect. 1.6.1) (Cheviakov et al. 2010)

Nv D j�j
4"DN



1C "

	
log

�
2

"

�

C "

	

�
�9N

5
C 2.N � 2/ log 2C 3

2
C 4

N
H.x1; : : : ; xN/

�
CO

�
"2 log

�
1

"

���
;

where the discrete energy-like function H.x1; : : : ; xN/ is defined by

H.x1; : : : ; xN/ D
NX

iD1

NX

jDiC1

�
1

jxi � xjj � 1

2
log jxi � xjj � 1

2
log

�
2C jxi � xjj

��
:
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The spatial arrangement that minimizes the energy H.x1; : : : ; xN/ is given as
follows. For N D 2, the traps are antipodal, for N D 3 they are the vertices of
the maximal inscribed equilateral triangle, and for N D 4 they are the vertices of
an inscribed tetrahedron. For 2 � N � 20, the optimal trap arrangements for the
energy H.x1; : : : ; xN/ and the Coulomb energy

HC D
NX

iD1

NX

jDiC1

1

jxi � xjj : (1.107)

are the same. This result was derived numerically (Cheviakov et al. 2010). For
example, for N D 10; 12; the minimal energy arrangement has two strips of
traps with common latitude, with two traps located at the poles. For large N and
charges distributed homogeneously on the sphere, and that there is no charge in the
azimuthal neighborhood 0 � � < �0 of the north pole, where �0 � 1, the number
density of charges is given approximately by

P.�; �/ D

8
ˆ̂<

ˆ̂:

N

4	
for �0 < � < 	

0 for 0 < � < �0;

(1.108)

where �0 is determined from the condition that
2	R

0

	R

�0

P.�; �/ sin � d� d� D N � 1,

which yields cos �0 D 1 � 2=N. For N � 1, we use cos �0 	 1 � �20 =2, to obtain
�0 	 p

4=N. Assuming the form

H 	 F.N/ D N2

2
.1 � log 2/C b1N

3=2 C b2N log N C b3N

C b4N
1=2 C b5 log N C b6; (1.109)

a least squares fit of (1.109) to the data yields

b1 	 � 0:5668; b2 	 0:0628; b3 	 �0:8420
b4 	 3:8894; b5 	 �1:3512; b6 	 �2:4523:

Using the approximation H 	 N2 .1 � log 2/ =2Cb1N3=2 for large N, we obtain the
following rough estimate of the minimum value of the average (with respect to the
initial position) MFPT Nv for the case of N � 1 identical circular traps of radius ",

Nv � j�j
4"DN

�
1 � "

	
log "C "N

	

�
1

5
C 4b1p

N

��
: (1.110)
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Equation (1.110) can be written in terms of the trap surface area fraction
f D N"2=4 as

Nv � j�j
8D

p
fN

"
1 �

p
f=N

	
log

�
4f

N

�
C 2

p
fN

	

�
1

5
C 4b1p

N

�#
: (1.111)

In order that the expansions (1.110) and (1.111) remain ordered, we require that the
third term in the bracket in (1.110) is asymptotically smaller than the second term.
This enforces the requirement that " D o

�
e�N=5

�
. The breakdown of such general

expansions for large N is yet to be fully explored.

1.8 NET from a General Domain with Two Absorbing
Windows

The NET through two small absorbing windows was resolved in Holcman and
Schuss (2008a,b).

Theorem 1.8.1 (NET from Two Windows). The leading order expansion of the
NET through two circular absorbing windows A and B of dimensionless radii a and
b, respectively, whose centers are � D a C �0 C b apart on the smooth boundary
@� of a bounded domain � � R

3, is given in the limit a; b; �0 ! 0 by

N�A[B D j�j
4.a C b/DQr

1 � 16abQr2
�

1

2	 ja C�0 C bj C O.1/

�2

1 � 8abQr
a C b

�
1

2	 ja C�0 C bj C O.1/

� : (1.112)

Here Qr D Qr.�0; a; b/ is a function of �0; a; b that varies monotonically between
Qr.0; 0; 0/ 	 0:6 and Qr.�0; 0; 0/ ! 1 as �0 ! 1.

Proof. The analysis of the three-dimensional case differs from that in Sect. 1.4.4 in
the explicit computation of the solution of the Helmholtz integral equation (1.60),

Z

A

N.x; �/gA.x/ dSx 	

8
ˆ̂<

ˆ̂:

1

2	
Q̨aQgA for � 2 A

a2 QgA˛ŒN.0A; 0B/C O.1/�; for � 2 B;

(1.113)

Z

B

N.x; x0/gB.x/ dSx 	

8
ˆ̂<

ˆ̂:

Q̌bQgB.1C o.1//

2D	
for x0 2 B; b < 1

b2 QgBˇ ŒN.0A; 0B/C O.1/� for x0 2 A; b < 1;

(1.114)



1.8 NET from a General Domain with Two Absorbing Windows 33

where b is the radius of B and

Q̨ D Q̌ D Q̌ D
2	Z

0

d�

1Z

0

f .r; �/r drp
1 � r2

; (1.115)

where f .r; �/ is a positive smooth function in the windows and equals 1 in their
centers, as described in Sect. 1.4.6.

Now we approximate Eq. (1.45) by

�C D 1

2	
Q̨aQgA.1C o.1//C b2 QgBˇ.N.0A; 0B/C O.1//

�C D 1

2	
Q̌bQgB.1C o.1//C a2 QgA˛.N.0A; 0B/C O.1//

and find that the flux integral in a window is
Z

A

gA.x/ dSx D a2˛ QgA.1C o.1//: (1.116)

The condition (1.44) for two windows of radii a and b, respectively, is

a2˛ QgA C b2ˇ QgB D �j�j.1C o.1//:

It follows that the NET is

N�A[B D j�jŒ1C o.1/�

4.a C b/r

1 � 16r2ab

�
1

2	 ja C�0 C bj Œ1C O.�/�

�2

1 � 8abr

a C b

�
1

2	 ja C�0 C bj Œ1C O.�/�

� ; (1.117)

where

� D min

�
1;
ˇ̌
a C�0 C b

ˇ̌
log

1

ja C�0 C bj
�
:

Here r D 	˛=2 Q̨ and ˛ is defined by (1.49). The expression (1.59) was used
for the Neumann function. For a fixed D, the parameter r depends on �0; a,
and b so we write r D r.�0; a; b/. If �0 is large, then f .x; �/ D const; so
lim�0!1 r.�0; a; b/ D 1. For a; b; �0 ! 0, we determine the value of r.0; a; b/
by fitting to numerical simulations of Brownian motion in a sphere with two tangent
circular holes (see below). Equation (1.117) is (1.112). ut

Brownian simulations and comparison of (1.117) to the MFPT (Fig. 1.8) give a
good agreement with the approximation

r.�0; a; a/ D 0:6C�0

1C�0 :
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A striking consequence of (1.117) is that moving the two windows apart from�0 D
0 to �0 D 1 changes r from 0:6 to 1 and changes the MFPT by the factor 0:6. This
means that clustering decreases the first eigenvalue (the flux) by about 40%.

1.8.1 Multiple Absorbing Windows

We consider Brownian motion with diffusion coefficient D in a bounded domain
� � R

3, whose smooth boundary @� reflects Brownian trajectories, except for
M circular absorbing windows Ai � @�; .i D 1; 2; : : : ;M/ of small dimensionless
radii "i, clustered in the sense that every window Ai has within a distance comparable
to "i a neighboring window Aj.

Theorem 1.8.2 (NET Through Multiple Windows (Holcman and Schuss
2008a,b)). The leading order asymptotic approximation of the NET through

SM
1 Ai

for
PM

1 "i � 1 is given by

C D N�SAi 	 j�j
4D

1

MX

iD1
"i

0

@1 � 2
X

i¤j

"jN.i; j/

1

A

; (1.118)

where N.i; j/ is the Neumann function for� at the centers of Ai and Aj, respectively.

Proof. The NET u.x/ has the representation (1.14)

u.�/ D
Z

�

N.x; �/ dx C D
Z

@�a

N.x; �/
@u.x/
@n

dSx C C; (1.119)

where C is a constant to be determined from the absorbing boundary condition. The
condition that u.x/ vanishes on

SM
1 Ai is

F.�/ D
MX

iD1

Z

Ai

N.x; �/gi.x/ dSx for � 2
M[

iD1
Ai; (1.120)

where

F.�/ D �
0

@
Z

�

N.x; �/ dx C C

1

A : (1.121)

The probability flux density in window Ai is denoted gi.x/. Integration of the
Poisson equation (1.4) over � gives the total flux in

SM
iD1 Ai as
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MX

iD1

Z

Ai

gi.x/ dSx D �j�j
D
: (1.122)

We denote by 0i the center of Ai. Proceeding as in the derivation of (1.113)
and (1.114) in the proof of Theorem 1.8.1, we obtain for � D � j 2 Aj a system
of M C 1 linear equations for the unknown constants Qgi and C,

	

2
"j Qgj C

MX

i¤j

2	"2i QgiN.i; j/ D F.�j/ 	 �C; j D 1; : : : ;M; (1.123)

2	

MX

iD1
"2i Qgi D � j�j

D
; (1.124)

where N.i; j/ D N.0i; 0j/. Equation (1.124) is the solvability condition (1.122). If
all radii "i can be scaled by "i D "Q"i; where " D min1�i�M "i � 1 and Q"i D O.1/ as
" ! 0, then for windows separated by distances �i;j,

max
i;j
Œ2"N.i; j/� D max

i;j

1

	

�
Q"i C Q"j C �i;j

"

� Œ1C o.1/� < 1: (1.125)

Scaling Gj D 	"j Qgj=C, we write the symmetric matrix of the system (1.123) (with
1=2 on the diagonal) as

M D

0

BBBBBBBBB@

1=2 2Q"2N.1; 2/ : : : 2Q"MN.1;M/

2Q"2N.1; 2/ : : :

: : : :

2Q"MN.1;M/ : : : : 1=2

1

CCCCCCCCCA

: (1.126)

We decompose M as

M D 1

2
IM C "A;

where IM is the identity matrix and A contains off-diagonal terms. Writing 1M (resp.
QGM) for a vector of 1 (respectively, of Gj), (1.123) becomes

�
1

2
IM C "A

�
QGM D �1M (1.127)
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and can be inverted as the convergent series

QGM D �2
1X

kD0
.�2"A/k1M: (1.128)

All terms can contribute to the sum, because "N.i; j/ can be of order 1. The
interaction of the cluster with window j is given by

Gj D �2 � 2
1X

kD0
.�2"/k

X

i1;::;ik

N.j; i1/N.i1; i2/ : : :N.ik�1; ik/; (1.129)

where the sum is over all non-diagonal pairs (not all ik are different). The
nonlinearity depends on the number of windows. In the first approximation,

QGM 	 �2.IM � 2"A/1M (1.130)

and

	
"j Qgj

C
D Gj D �2

0

@1 � 2"
X

i¤j

Q"iN.i; j/

1

A : (1.131)

Using the condition (1.124), we obtain for the constant C the equation

�4C
MX

iD1
"i

0

@1 � 2
X

i¤j

"iN.i; j/

1

A D �j�j
D
;

thus the NET through
S

Ai is (1.118). ut
If the number of absorbing windows on a surface increases while their combined

surface area remains constant, the NET decreases through the holes increases
(Holcman and Schuss 2008a; Reingruber et al. 2009; Cheviakov et al. 2010).
However, the asymptotics for a large number of windows, N with surface fraction
N"2 D o.1/ has not yet been elucidated. Such analysis requires the computation of
three terms in the expansion (1.118). The NET does not necessarily tend to zero as N
goes to infinity, depending on the windows organization and the initial distribution
of the Brownian trajectories. This is the case, for example, in an annular domain
with holes only on the inner circle (sphere), while Brownian trajectories start on
the outer circle (sphere). Some analysis was initiated in Berg and Purcell (1977),
however this problem calls for further analysis to treat the double asymptotics of
large N and small ".
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1.9 Diffusion Leak in a Conductor

A conductor of diffusion flux from a source to an absorbing target is a bounded
domain � containing a source on the boundary or in the interior and a part @�a of
the boundary is absorbing (the target). The remaining boundary @�r is impermeable
to the diffusing trajectories. Some of the diffusion flux may leak out of � if a part
S."/ of the absorbing boundary @�a is isolated from @�a � S."/ by a finite distance
and jS."/j � j@�aj [see Fig. 3.9(right)]. The calculation of the leakage flux is not
the same as that in the narrow escape problem, because the total flux on the boundary
remains bounded as the small hole shrinks. Our purpose is to find the portion that
leaks through the small hole out of the total flux.

The (dimensionless) stationary density u.x/ of the diffusive trajectories satisfies
the mixed boundary value problem

D�u.x/ D 0 for x 2 �
@u.x/
@�

D 0 for x 2 @�r (1.132)

�D
@u.x/
@�

D�.x/ for x 2 @�s

u.x/ D 0 for x 2 @�a [ S."/:

Our aim is to derive an asymptotic expression for the flux through S."/,

J" D D
Z

S."/

@u.x/
@�

dSx; (1.133)

in terms of the solution u0.x/ of the reduced problem [without S."/]. First, we find
the flux of each eigenfunction and then, using eigenfunction expansion, we calculate
J". Every eigenfunction u".x/ of the homogeneous problem (1.132) satisfies

�D�u".x/ D�."/u".x/ for x 2 � (1.134)

@u".x/
@�

D 0 for x 2 @�s [ @�r (1.135)

u".x/ D 0 for x 2 S."/ [ @�a: (1.136)

The eigenvalues have a regular expansion

�."/ D �.0/C �1"C o."/ D
D
Z

@�a

@u0.y/
@�

dSy

Z

�

u0.x/ dx
C O."/; (1.137)
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where �.0/ is the eigenvalue of the reduced problem (for � without the small
hole S."/) and u0.x/ is the principal eigenfunction of the reduced problem (see for
details Ward and Keller 1993; Ward et al. 1993; Ward and Van De Velde 1992;
Kolokolnikov et al. 2005; Singer et al. 2008a).

According to Popov’s Theorem 1.5.1, the reduced Green function (without the
small hole) has the form

G.x; y/ D 1

2	jx � yj C H.x; y/ log jx � yj C vS.x; y/; (1.138)

for x 2 @�; y 2 � [ @�, where H.x; y/ depends locally on the curvatures of
the boundary and vS.x; y/ is a continuous function of x; y 2 � and on @� and we
assume it is bounded (see Sect. 1.6).

We can express the eigenfunction in terms of G.x; y/ as

u".x/ D ��."/
Z

�

G.x; y/u".y/ dy C
Z

S."/

G.x; y/
@u".y/
@�

dSy (1.139)

and expand the integrals about the center of S."/ in the form

Z

�

�."/G.x; y/u".y/ dy D G0."/C O.jxj/ for x 2 S."/; (1.140)

where the origin is assumed to be in the center of S."/ and the .x1; x2/ plane is that
of S."/. Using (1.138) and expanding all the integrals for small ", we get at x D 0

the equation

G0."/ D
h	"
2

C O."2 log "/
i

C0."/C O."2 log "/;

where C0."/ is an unknown constant [see detailed computations in Singer et al.
(2008a) and Schuss (2013)]. Integrating (1.134) and expanding for small ", as above,
we get the two equations

�."/

Z

�

u".x/ dx D 4"D
G0."/C O."2 log "/

1C O." log "/
C O."2 log "/C D

Z

@�a

@u".y/
@�

dSy

G0."/ D�."/

Z

�

G.0; y/u".y/ dy: (1.141)

Solving for �."/ and taking the limit " ! 0 in (1.137), we find that the flux of u".x/
through the small hole is
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J."/ D D
Z

S."/

@u".y/
@�

dSy D 4"�.0/D
Z

�

G.0; y/u0.y/ dy C O."2 log "/

D 4"Du0.0/C O."2 log "/: (1.142)

The function DG.x; y/ is Green’s function for the mixed boundary value problem
with diffusion coefficient D, rather than 1. Finally, expanding the solution u.x/
of (1.132) in eigenfunctions, we obtain from (1.142)

J" D 4"Du0.0/ .1C O." log "// ; (1.143)

where u0.x/ is the solution of the reduced problem (1.132). In dimensional variables,
we obtain

J" D 4aDp0.0/C O

�
a2

j�j2=3 log
a

j�j1=3
�
; (1.144)

where p0.0/ is the value of the reduced stationary density (without the perforation)
at the hole.

1.9.1 Activation Through a Narrow Opening

The escape of a Brownian motion through a narrow absorbing window in an
otherwise reflecting boundary of a domain is a rare event. In the presence of a deep
potential well, there are two long time scales, the mean escape time from the well
and the mean time to reach the absorbing window. The two time scales are expressed
in an Arrhenius-like formula for the activation rate through narrow openings. The
activation rates for the different geometries are summarized in Eqs. (1.167)–(1.171).

As in classical theories, our point of departure is the Smoluchowski equation
(Schuss 2010b)

Px C 1

�
r�.x/ D

s
2kBT

m�
Pw; (1.145)

where m is the mass, � D 
=m is the dynamics viscosity, while 
 is the friction
coefficient, � D ˆ=m is the potential per unit mass and ˆ.x/ is the potential,
T is temperature, kB is Boltzmann’s constant, and Pw is a vector of n independent
ı-correlated Gaussian white noises.

The motion of the Brownian particle is confined to a bounded domain �, whose
boundary @� is reflecting, but for a small absorbing window @�a (@� D @�a[�r).
The assumption that the window is small means that

ı D
� j@�aj

j@�j
�1=.d�1/

� 1 (1.146)

(ı is a small parameter).
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The probability density function (pdf) pı.x; t/ of finding the Brownian particle at
location x at time t satisfies the Fokker–Planck equation

�
@pı
@t

D "�pı C r � .pır�/ � Lıpı; (1.147)

with the initial condition

pı.x; 0/ D p0.x/; (1.148)

and the mixed Dirichlet–Neumann boundary conditions for t > 0

pı D 0; for x 2 @�a (1.149)

"
@pı
@n

C pı
@�

@n
D 0; for x 2 @�r; (1.150)

where " D kBT=m and p0.x/ is the initial probability density function (e.g., p0.x/ D
1�.x/=j�j for a uniform distribution). The function

uı.x/ D
1Z

0

pı.x; t/ dt; (1.151)

which is the mean time the particle spends at x before it escapes through the narrow
window, is the solution of the boundary value problem

Lıuı D � �p0; for x 2 � (1.152)

uı D 0; for x 2 @�a (1.153)

"
@uı
@n

C uı
@�

@n
D 0; for x 2 @�r: (1.154)

The function gı D uıe�=" is the solution of the adjoint problem

L�
ı gı D � �p0e

�=" for x 2 � (1.155)

@gı.x/
@n

D 0 for x 2 @�r; gı.x/ D 0 for x 2 @�a: (1.156)

Equation (1.155) can be written in the divergence form

r �
e��="rgı

� D ��p0
"
: (1.157)

The adjoint operators Lı and L�
ı , defined by (1.147), (1.152), (1.153), (1.154)

and (1.155), (1.156), respectively, have bi-orthogonal systems of normalized eigen-
functions, f i.x; ı/g and f'i.x; ı/g .i D 0; 1; : : : / and we can expand

pı.x; t/ D
1X

iD0
ai.ı/ i.x; ı/e��i.ı/t=� ; (1.158)
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where �i.ı/ are the eigenvalues of Lı . The ai.ı/ are the Fourier coefficients of
the initial function p0.x/. In the limit ı ! 0 the Dirichlet part of the boundary
conditions, (1.149), is dropped, so that �0.ı/ ! 0 (the first eigenvalue of the
problem (1.147), (1.150) with @�r D @�), with the normalized eigenfunction

 0.x; 0/ D expf��.x/="gZ

�

expf��.x/="g dx
; (1.159)

and a0.ı/ ! 1. It follows from (1.151) and (1.158) that for all x 2 �

uı.x/ D �

1X

iD0

ai.ı/ i.x; ı/
�i.ı/

! 1; as ı ! 0: (1.160)

In particular, the first passage time �ı D infft > 0 j x.t/ 2 @�ag diverges. That is,
lim
ı!0

�ı D 1 on almost every trajectory x.t/. Obviously, the mean first passage time,

E�ı D
Z

�

uı.x/ dx D �

1X

iD0

ai.ı/

�i.ı/
; (1.161)

also diverges as ı ! 0. It is the purpose of this chapter to find the orders of
magnitude of uı.x/ and E�ı for small ı.

1.9.2 The NET

The Helmholtz integral equation for the potential case is to leading order

1

2	

Z

@�a

@u0.y/
@ny

dSy

jx � yj D �Cıe
��0="; (1.162)

where �0 is the potential at the window. For an elliptical absorbing window @�a the
value of the constant Cı , as calculated in Sect. 1.5.2, is found from the compatibility
condition

Z

@�a

@uı
@n

dS D ��
"

(1.163)

to be

Cı D �K.e/

2	"a
e�0=": (1.164)
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In a three-dimensional domain, the density of the mean time spent at point x before
escape through an elliptical absorbing window is given by

uı.x/ 	 �K.e/

2	"a
exp



�0 � �.x/

"

�
: (1.165)

Equations (1.161) and (1.165) give now the mean escape time as

E�ı D �K.e/e�0="

2	"a

Z

�

exp



��.x/

"

�
dx: (1.166)

If the barrier is sufficiently high, we evaluate the integral in (1.166) by the Laplace
method, assuming that � has a single global minimum �m at xm,

Z

�

exp



��.x/

"

�
dx 	 .2	"/n=2Qn

iD1 !i
exp



��m

"

�
;

where!i are the frequencies at the minimum xm. For reactions that consist in passing
through a small elliptical window (assuming no returns are possible) the reaction
rate is the modified Kramers formula

�ı D 1

E�ı
� a!1!2!3p

2	" �K.e/
e��E="; (1.167)

where �E D �0 � �m. In the special case of a circular window, we obtain

�ı � 4a!1!2!3
.2	/3=2�

p
"

e��E="; (1.168)

where a is the radius of the window. Note that �E is not the barrier height. We
conclude that the activation rate is of Arrhenius form and has two contributions. The
first is due to the potential, while the second is due to geometry of the absorbing
window alone. Unlike the free diffusion case considered in the previous sections,
geometrical properties of the domain, such as its volume, are not included in the
leading order asymptotics of the reaction rate.

In two dimensions the singularity of the Neumann function is logarithmic, so the
leading order approximation to the activation rate through the absorbing window is

k � 	"

� j�j
e�h�Ei="

Œln ı�1 C O.1/�
for " � �E

(1.169)

k � "
p
!1!2

2�

e��E="

Œln ı�1 C O.1/�
; for " � �E:

The remainder O.1/ is important, because in real life applications even if ı is small,
ln ı�1 is not necessarily large.
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If the boundary of the absorbing window contains a singular point of @�, such
as a corner or a cusp, the order of magnitude of the activation rate may change. As
in Sect. 1.4, if the window is at a corner of angle ˛, then the rate is

k � ˛"

� j�j
e�h�Ei="

Œln ı�1 C O.1/�
; for " � �E

(1.170)

k � ˛"
p
!1!2

2	�

e��E="

Œln ı�1 C O.1/�
; for " � �E:

If the absorbing window is near a cusp, then E�ı grows algebraically, rather than
logarithmically. For example, in the domain bounded between two tangent circles,
the activation rate is

k � .d�1 � 1/"
� j�j

�
ı C O.ı2/

�
e�h�Ei="; for " � �E

(1.171)

k � .d�1 � 1/"p!1!2
2	�

�
ı C O.ı2/

�
e��E="; for " � �E;

where d < 1 is the ratio of the radii.

1.9.3 Deep Well: A Markov Chain Model

The modified Kramers formulas (1.167) or (1.169) can be explained by coarse-
graining the diffusive motion into a simplified 3-state Markov model (see Schuss
2010b, Chap. 10), when the domain contains a deep well �W � �. The three states
of the Markov process are (1) state W—the trajectory is trapped in the deep well;
(2) state D—the trajectory diffuses in the domain �D D � � �W , outside the
well; (3) state A—the trajectory is absorbed in the small hole. Once the trajectory is
absorbed in the small hole, its motion is terminated, so A is a terminal state of the
Markov chain. For simplicity, we assume � � R

2.
In the deep well case the mean time that the particle spends at state W is

exponentially larger than the mean time spent at state D. Therefore, the mean time to
absorbtion is approximately the average number of visits at state D times the average
time of a single visit in the deep well. The average number of visits in state D prior
to absorbtion is 1=Prf�D!A < �D!Wg, as in a geometric distribution, hence

E�W!A � E�W!D
Prf�D!A < �D!Wg : (1.172)
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We conclude that

E�D!A � E�W!A; (1.173)

that is, the initial state (or location) of the particle has no (leading order) significance
for the mean absorbtion time E�ı , which by (1.172) and

Prf�D!A < �D!Wg � EŒ�D!W j �D!W < �D!A�

EŒ�D!A j �D!A < �D!W �
: (1.174)

is

E�ı � E�W!A � E�W!D
Prf�D!W < �D!Ag : (1.175)

It follows from the second equation in (1.169) that

E�ı D 2� ln ı�1

"
p

H.xW/
exp



�0 � �.xW/

"

�
: (1.176)



Chapter 2
Special Asymptotics for Stochastic
Narrow Escape

The method of Chap. 1 obviously fails for Brownian motion in two-dimensional
domains whose boundaries are smooth and reflecting, except for a small absorbing
window at the end of a cusp-shaped funnel, as shown in Figs. 1.2(left) and 2.1. The
cusp can be formed by a partial block of a planar domain, as shown in the schematic
Fig. 2.2(left). The MFPT from x 2 � to the absorbing boundary @�a, denoted
N�x!@�a , is the NET from the domain� to the small window @�a (of length a), such
that

" D 	j@�aj
j@�j D 	a

j@�j � 1: (2.1)

We consider the NET problem in an asymmetric planar domain, as in Fig. 2.2(left)
or in an asymmetric version of the (dimensional) domain �0 in Fig. 2.1(left). We
use the (dimensional) representation of the boundary curves for the upper and lower
parts, respectively,

y0 D r˙.x0/; ƒ0 < x0 < 0; (2.2)

where the x0-axis is horizontal with x0 D ƒ0 at AB. We assume that the parts of the
curve that generate the funnel have the form

r˙.x0/ D O.
p

jx0j/ near x0 D 0 (2.3)

r˙.x0/ D ˙a0 ˙ .x0 �ƒ0/1C�˙

�˙.1C �˙/`
�

˙˙
.1C o.1// for �˙ > 0 near x0 D ƒ0;

where a0 D 1
2
AB D "0=2 is the radius of the gap, and the constants `˙ have

dimension of length. For �˙ D 1 the parameters `˙ are the radii of curvature
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Fig. 2.1 Left: the planar domain �0 is bounded by a large circular arc connected smoothly to
a funnel formed by moving " apart two tangent circular arcs of radius Rc (i.e., AB D "). Right:
blowup of the cusp region. The red, green, and blue necks correspond to � D 1; 0:4, and 5 in (2.3),
respectively

Fig. 2.2 Left: the domain� is enclosed between the black curve, the red obstacle, and the segment
AB. The reflecting boundary @�r consists of the curve and the boundary of the obstacle. The
absorbing boundary @�a is the segment AB. Right: a surface of revolution with a funnel. The
z-axis points down

Rċ at x0 D ƒ0. To simplify the conformal mapping, we first rotate the domain by
	=2 clockwise to assume the shape in Fig. 2.2(right). The rotated axes are renamed
.x0; y0/ as well.
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2.1 Brownian Motion in Dire Straits

Theorem 2.1.1 (The MFPT to a Bottleneck). The NET of Brownian motion to the
end of the bottleneck in the domain �0 bounded by the curves (2.2), formula (2.3) is
given by

N� � 	j�0j
2D

pQ" ; (2.4)

where Q" D 2rc"=.Rc C rc/. In dimensional units (2.4) is

N� D
s

Rc.Rc C rc/

2rc"0
	j�0j
2D

.1C o.1// for "0 � j@�0j;Rc; rc: (2.5)

In the symmetric case Rc D rc (2.5) reduces to

N� D 	j�0j
2D
p
"0=Rc

.1C o.1// for "0 � j@�0j;Rc: (2.6)

Proof. We consider Brownian motion in a domain �0, with diffusion coefficient
D and with reflection at the boundary @�0, except for an absorbing boundary
@�0

a at the bottom of the neck. The MFPT from a point x0 D .x0; y0/ inside the
domain �0 to @�0

a is the solution of the Pontryagin–Andronov–Vitt boundary value
problem (1.4)–(1.6), which we rewrite in dimensional variables as

D�Nu.x0/ D � 1 for x0 2 �0 (2.7)

@Nu.x0/
@n

D 0 for x0 2 @�0 � @�0
a; Nu.x0/ D 0 for x0 2 @�0

a:

Converting to dimensionless variables by setting x0 D `Cx; ƒ0 D `Cƒ, the domain
�0 is mapped into � and we have [see (2.8) below]

j�0j D `2Cj�j; j@�0j D `Cj@�j; j@�0
aj D "0 D `Cj@�aj D `C": (2.8)

Setting Nu.x0/ D u.x/, we write (2.7) as

D

`2C
�u.x/ D � 1 for x 2 �

@u.x/
@n

D 0 for x 2 @� � @�a; u.x/ D 0 for x 2 @�a: (2.9)

First, we consider the case �˙ D 1, `C D Rc, and l� D rc, radius 1, and A
has dimensionless radius rc=Rc. This case can represent a partial block described
in Fig. 2.2(left). Under the scaling (2.8) the bounding circle B has dimensionless
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radius 1. We construct an asymptotic solution for small gap " by first mapping
the domain � in Fig. 2.1(left) conformally into its image under the Möbius
transformation of the two osculating circles A and B into concentric circles. To this
end we move the origin of the complex plane to the center of the osculating circle B
and set

w D w.z/ D z � ˛
1 � ˛z

; (2.10)

where

˛ D � 2"Rc C 2Rc C "2Rc C 2rc"C 2rc

2."Rc C rc C Rc/

˙
p
".8Rcrc C 4"R2c C 12"Rcrc C 4"2R2c C 8r2c C 4"2Rcrc C "3R2c C 4"r2c /

2."Rc C rc C Rc/

D � 1˙
s

2rc"

Rc C rc
C O."/: (2.11)

The Möbius transformation (2.10) maps circle B into itself and � is mapped onto
the domain �w D w.�/ in Fig. 2.3. The straits in Fig. 2.1(left) are mapped onto
the ring enclosed between the like-style arcs and the large disk is mapped onto the
small black disk. The radius of the small black disk and the elevation of its center

-1

A B
-0.5 0.5 1

Rew

Im w

0

0.2

0.4

0.6

0.8

1

Fig. 2.3 The image �w D w.�/ of the (dimensionless) domain � in Fig. 2.1(left) under the
conformal mapping (2.10). The different necks in Fig. 2.1(right) are mapped onto the semi-annuli
enclosed between the like-style arcs and the large disk in � is mapped onto the small black disk.
The short black segment AB in Fig. 2.1(right) (of length ") is mapped onto the thick black segment
AB (of length 2

p
"C O."/). The rays from the origin are explained in the text below
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above the real axis are O.
p
"/. The short black segment of length " in Fig. 2.1(right)

is mapped onto a segment of length 2
p
"C O."/.

Setting u.z/ D v.w/ and Q" D 2rc"=.Rc C rc/, the system (2.9) is converted to

�wv.w/ D � `2C
Djw0.z/j2 D � .4Q"C O.Q"3=2//`2C

Djw.1 � pQ"/ � 1C O.Q"/j4 for w 2 �w (2.12)

@v.w/

@n
D 0 for w 2 @�w � @�w;a; v.w/ D 0 for w 2 @�w;a:

The MFPT is bounded above and below by that from the inverse image of a circular
ring cut by lines through the origin, tangent to the black disk at polar angles � D
c1

pQ" (top) and � D c2
pQ" (bottom) for some positive constants c1; c2, independent

of Q". Therefore the MFPT from � equals that from the inverse image of a ring cut
by an intermediate angle � D c

pQ" (middle).
The asymptotic analysis of (2.12) begins with the observation that the solution

of the boundary value problem (2.12) is to leading order independent of the radial
variable in polar coordinates w D rei� . Fixing r D 1, we impose the reflecting
boundary condition at � D c

pQ", where c D O.1/ is a constant independent of Q" to
leading order, and the absorbing condition at � D 	 . The outer solution, obtained
by a regular expansion of v.ei� /, is given by

v0.e
i� / D A.� � 	/; (2.13)

where A is yet an undetermined constant. It follows that

@v0.ei� /

@�

ˇ̌
ˇ̌
�D	

D �A: (2.14)

To determine A, we integrate (2.12) over the domain to obtain at the leading order

2
pQ"@v0.e

i� /

@�

ˇ̌
ˇ̌
�D	

D �2pQ"A � �j�0j
D
; (2.15)

hence

A � j�0j
2D

pQ" : (2.16)

Now (2.13) gives for � D c
pQ" the leading order approximation (2.4). Returning

to dimensional units (2.4) becomes (2.5) and in the symmetric case Rc D rc (2.5)
reduces to (2.6). ut
Remarks. The symmetric case with �C D �� > 1 for which the curvature vanishes,
that is, Rc D rc D 1 is still open. After scaling the boundary value problem (1.4)–
(1.6) with (2.8), we can choose the bounding circles at A and B to have radius 1 and
repeat the above analysis in the domain �w enclosed by the dashed curves, shown
in Fig. 2.3. The result (2.6) becomes
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N� D 	j�0j
2D
p
"0=`C

Œ1C o.1/� for "0 � j@�0j; `C: (2.17)

A more direct resolution of the boundary layer, based on the observation that the
boundary layer equation (2.12) is an ordinary differential equation, is given in
Holcman et al. (2011), Holcman and Schuss (2011), and Schuss (2013).

2.1.1 Exit from Several Bottlenecks

In the case of exit through any one of N well-separated necks with dimensionless
curvature parameters lj and widths Q"j, we construct the outer solution (2.13) at any
one of the N absorbing windows so that (2.14) holds at each window. The integration
of (2.12) over � gives the following analog of (2.15),

NX

jD1
2
p Q"j

@v0.ei� /

@�

ˇ̌
ˇ̌
�D	

D �
NX

jD1
2
pQ"jA � �j�0j

D
; (2.18)

hence

A � j�0j
2D

PN
jD1

pQ"j

: (2.19)

Equation (2.17) is then generalized to

N� D 	j�0j
2D

PN
jD1

q
"0

j=`j

Œ1C o.1/� for "0
j=`j � j@�j: (2.20)

Equation (2.6) is generalized in a similar manner.
To calculate the exit probability through any one of the N necks, we apply

the transformation (2.10) separately for each bottleneck at the absorbing images
@�w;a1 ; : : : ; @�w;aN to obtain images �wj for j D 1; 2; : : : ;N. Then the probability
of exiting through @�w;ai is the solution of the mixed boundary value problem

�wv.w/ D 0 for w 2 �wi ;
@v.w/

@n
D 0 for w 2 @�wi �

N[

iD1
@�w;ai (2.21)

v.w/ D 1 for w 2 @�w;ai ; v.w/ D 0 for w 2 @�w;aj ; j ¤ i:

The outer solution, which is the exit probability through window @�w;i; is an
unknown constant pi. We construct boundary layers at each absorbing boundary
@�w;aj for j ¤ i by solving the boundary value problem in �wj , which is of the type
shown in Fig. 2.3 with a neck of width "j. In each case the boundary layer is a linear
function

vj.�/ D ıi;j � Aj.� � 	/ for all j; (2.22)
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such that

vj.0/ � ıi;j C Aj	 D pi for all j: (2.23)

To determine the value of the constant pi, we note that

@v
�
ei�
�

@n

ˇ̌
ˇ̌
ˇ
@�w;a

D @vj.�/

@�

ˇ̌
ˇ̌
�D	

D �Aj; (2.24)

so the integration of (2.21) over �wi gives to leading order

NX

jD1
Ajj@�w;aj j D

NX

jD1
2Aj

pQ"j D 0: (2.25)

The N C 1 equations (2.23) and (2.25) for the unknowns pi;A1; : : : ;AN give the exit
probability from an interior point in the planar case as

pi D
p
"0=`i

PN
jD1

q
"0

j=`j

: (2.26)

2.1.2 Two-Dimensional Bottlenecks

A planar composite domain with a bottleneck � consists of a head �1 connected
through a small interface @�i to a narrow cylindrical neck �2. The boundary of
� is assumed reflecting to Brownian particles, except the far end of �2, denoted
@�a, which is absorbing. For example, in Fig. 1.2(left) the interface @�i is the black
segment AB and the absorbing boundary @�a is the segment CD at the bottom of the
strip. The surface of revolution obtained by rotating the domain in the figure about
its axis of symmetry has a similar structure. The interface @�i in this case is a circle.
Thus the length of the interface j@�ij is given by

j@�ij D



a for a line segment
2	a for a circle:

(2.27)

Theorem 2.1.2 (The NET from a Domain with a Long Neck). The MFPT of
Brownian motion from a composite domain � with reflecting boundary to an
absorbing boundary at the end of a narrow cylindrical neck of length L is given by

N�x!@�a D N�x!@�i C L2

2D
C j�1jL

j@�ajD : (2.28)

.

First, we prove the following lemma.
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Lemma 2.1.1. The MFPT from a point x 2 �1 to @�a satisfies the renewal
equation

N�x!@�a D N�x!@�i C
Z

@�i

G.x j �/ N��!@�a ds� ; (2.29)

where G.x j �/ is Green’s function for the mixed boundary value problem

�u.x/ D 0 for x 2 �1 (2.30)

@u.x/
@n

D 0 for x 2 @�1 � @�i

u.x/ D'.x/ for x 2 @�i:

The identity (2.30) follows from the fact that both sides of (2.29) satisfy (2.30) for
x 2 �1 and coincide on @�i. The identity (2.29) can be interpreted as

N�x!@�a D N�x!@�i C N�@�i!@�a ; (2.31)

where the MFPT N�@�i!@�a is N�x!@�a , averaged over @�i with respect to the flux
density of Brownian trajectories in �1 into an absorbing boundary at @�i [see
Schuss (2010b) for further details].

Proof. We use Lemma 2.1.1 to sum the MFPTs. First, we calculate N�@�i!@�a and
the absorption flux at the interface. In the narrow neck �2 the boundary value
problem (1.4)–(1.6) can be approximated by the one-dimensional boundary value
problem

Duzz D �1 for 0 < z < L; u.0/ D 0; u.L/ D uH;

where the value at the interface u.L/ D uH is yet unknown. The solution is given by

u.z/ D � z2

2D
C Bz; (2.32)

so that

u.L/ D uH D � L2

2D
C BL; (2.33)

which relates the unknown constants B and uH . The constant B is found by
multiplying equation (1.4) by the Neumann function N.x; y/, integrating over �1,
applying Green’s formula, and using the boundary conditions (1.5) and (1.6).
Specifically, we obtain for all y 2 @�i

v.y/ D � 1

D

Z

�1

N.x; y/ dx �
Z

@�i

N.x; y/
@v.x/
@n

dSx C 1

j�1j
Z

�1

v.x/ dx: (2.34)
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Approximating, as we may, v.y/ 	 u.L/ and using (2.33), we obtain

� L2

2D
C BL D � 1

D

Z

�1

N.x; y/ dx �
Z

@�i

N.x; y/
@v.x/
@n

dSx (2.35)

C 1

j�1j
Z

�1

v.x/ dx:

Because v.x/ is the solution of the boundary value problem (1.4)–(1.6) in the entire
domain � D �1

S
�2, the meaning of (2.35) is the connecting rule (2.31), where

N�x!@�a D 1

j�1j
Z

�1

v.x/ dx (2.36)

N�@�i!@�a D u.L/ (2.37)

N�x!@�i D � 1

D

Z

�

N.x; y/ dx �
Z

@�i

N.x; y/
@v.x/
@n

dSx: (2.38)

Equation (2.36) gives the MFPT, averaged over �1. The averaging is a valid
approximation, because the MFPT to @�i is constant to begin with (except in a
negligible boundary layer). Equation (2.37) is the MFPT from the interface to the
absorbing end @�a of the strip, and (2.38) follows from (1.15).

Matching the solutions in �1 and �2 continuously across @�i, we obtain the
total flux on @�i as

J D D
Z

@�i

@v.x/
@�

dSx D � .j�1j C j�2j/ ; (2.39)

Noting that @v.x/=@n D �u0.0/ D �B, we get from (2.27) and (2.39) that

B D �

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

j�1j
aD

C L

D
for a line segment

j�1j
2	aD

C L

D
for a circle

j�1j
	a2D

C L

D
for a circular disk:

(2.40)

Finally, we put (2.31)–(2.40) together to obtain (2.28). The MFPT N�x!@�i for the
various domains is given in this chapter above. ut
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The expression (2.28) for the NET from a domain with a bottleneck in the form
of a one-dimensional neck, such as a dendritic spine, can be summarized as follows.
Consider a domain�with head�1 and a narrow cylindrical neck�2 of length L and
radius a, connected smoothly to the head. The radius of curvature at the connection
is Rc. In the two-dimensional case

N�x!@�a D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

j�1j
	D

ln
j@�1j

a
C O.1/

D
C L2

2D
C j�1jL

aD
planar spine connected to the neck at a right angle

	j�1j
D

r
Rc

a
.1C o.1//C L2

2D
C j�1jL
2	aD

planar spine with a smooth connecting funnel

j�1j
2	D

log
sin �

2

sin ı
2

C L2

2D
C j�1jL
2	aD

spherical spine surface connected to the neck at a right angle;

j�1j
2D

�
`

.1C �/a

��=1C�
�1=1C�

sin
�	

1C �

C L2

2D
C j�1jL
2	aD

spherical spine surface with a smooth connecting funnel (2.3);
(2.41)

where R is the radius of the sphere, a D R sin ı=2, and � is the initial elevation angle
on the sphere. If j�1j � aL and L � a, the last term in (2.41) is dominant, which is
the manifestation of the many returns of Brownian motion from the neck to the head
prior to absorption at @�a. Further cases are considered in Schuss (2013). Note that
modulation of neck length changes the residence time significantly.

2.1.3 Annotations to Sect. 2.1

Section 2.1 develops a boundary layer theory for the solution of the mixed
Neumann–Dirichlet problem for the Poisson equation in geometries in which the
methodologies of Ward and Keller (1993), Ward et al. (1993), Ward and Van
De Velde (1992), Kolokolnikov et al. (2005), Cheviakov et al. (2010), Coombs
et al. (2009), Grigoriev et al. (2002), Holcman and Schuss (2004), Singer et al.
(2006a,b,c), Singer and Schuss (2006), Bénichou and Voituriez (2008), and Schuss
et al. (2007) fail. In the case of sufficiently smooth boundaries near the absorbing
window considered in Ward and Keller (1993), Ward et al. (1993), Ward and Van
De Velde (1992), Kolokolnikov et al. (2005), Cheviakov et al. (2010), Coombs
et al. (2009), and Bénichou and Voituriez (2008) the leading order boundary layer
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problem is that of the exactly solvable electrified disk problem (Jackson 1975),
which gives no indication that the second order asymptotics ansatz should be
logarithmic. The Neumann function approach of Holcman and Schuss (2004),
Singer et al. (2006a,b,c), Singer and Schuss (2006), and Schuss et al. (2007),
which is based on the standard leading order singularity of Neumann’s function
(Garabedian 1964), also fails to indicate the ansatz for second order boundary layer
expansion. It is the insight that Popov’s Theorem 1.5.1 gives about the asymptotics
of Neumann’s function that points at the correct ansatz for both the boundary layer
method and the Neumann function method in the smooth case.

In the geometries considered in Sect. 2.1 the small Dirichlet part is located
at the end of narrow straits with an absorbing end, connected smoothly to the
Neumann boundary of the domain. The boundary layer near the absorbing boundary
is not mapped in an obvious way to an exactly solvable problem as in the smooth
case. Conformal mapping replaces the standard local stretching in resolving the
boundary layer in narrow necks. Additional problems related to Brownian motion
in composite domains that contain a cylindrical narrow neck connected smoothly or
sharply to the head are considered in Holcman and Schuss (2011). These include
the asymptotic evaluation of the NET, of the leading eigenvalue in dumbbell-shaped
domains and domains with many heads interconnected by narrow necks, the escape
probability through any one of several narrow necks, and more.

The effect of obstacles on the diffusion constant has been studied in the biological
context for the last two decades (Edidin et al. 1991; Sheetz 1993; Suzuki and Sheetz
2001; Kusumi et al. 2005, 1993; Saxton 1995; Saxton and Jacobson 1997; Eisinger
et al. 1986) and more recently it was demonstrated, using single-particle imaging
(Borgdorff and Choquet 2002; Tardin et al. 2003; Triller and Choquet 2003; Choquet
2010), that the effective diffusion constant can span a large spectrum of values, from
0.001 to 0.2�m2/s (Choquet 2010).

The calculation of the NET in composite domains with long necks was
attempted in Korkotian et al. (2004), Schuss et al. (2007), Grigoriev et al. (2002),
Berezhkovskii et al. (2009), and ultimately accomplished in Holcman and Schuss
(2011). The NET problem in a planar domain with an absorbing window at the end
of a funnel was considered in Holcman et al. (2011). The case of planar domains
that consist of large compartments interconnected by funnel-shaped bottlenecks was
also considered in Holcman et al. (2011). The result (2.6) was found in Holcman
et al. (2011). The coarse-graining of diffusion into a Markov chain is discussed in
Hänggi et al. (1990) (see also Holcman and Schuss 2005c; Holcman et al. 2011).
Results of this section are based on Holcman et al. (2011).

2.2 Brownian Needle in Dire Straits

As an application of the methodology described above, we study the planar diffusion
of a stiff thin rod (needle) of length l in an infinite horizontal strip of width
l0 > l. We assume that the rod is a long thin right circular cylinder with radius
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Fig. 2.4 Rod in strip. Left: the strip width is l0 and the rod length is l < l0. The position of the
rod is characterized by the angle � and the fixed coordinates x and y and the rotating system of
coordinates .X;Y; �/. Right: the motion of the rod is confined to the domain � in the .�; y/ plane

a � l0 [Fig. 2.4(left)]. The planar motion of the rod is described by two coordinates
of the centroid and the rotational angle � between the axes of the strip and the
rod. The y-coordinate of the center of the rod is measured from the axis of the
strip. The motion of the rod is confined to the dumbbell-shaped domain� shown in
Fig. 2.4(right). The rod turns around if the point .�; y/ crosses from the left domain
L into the right domain R or in the reverse direction (see Schuss 2010a, 2013). If

" D l0 � l

l0
� 1; (2.42)

the window AB becomes narrow and the mean first passage times �L!AB and �R!AB,
from the left or right domains to the segment AB, which is the stochastic separatrix
SS (Schuss 2013), become much longer than those from AB to L or R. They also
become independent of the starting position outside a boundary layer near the
segment AB. Thus the definition of the time to turn around is independent of the
choice of the domains L and R in Fig. 2.4(right) as long as they are well separated
from the segment AB. The neck near the segment is the boundary layer region near
� D 	=2. We neglect henceforward the short times relative to the long ones.

To turn across the vertical position the rod has to reach the segment AB from the
left domain L for the first time and then to reach the right domain R for the first
time, having returned to L any number of times prior to reaching R. The mean time
to turn, �L!R, is asymptotically given by

�L!R � 2�L!AB for " � 1; (2.43)

because on the average the rod trajectory hits the stochastic separatrix twice before
it crosses over from one side of the SS to the other (see Schuss 2010a, 2013 for
further details). The time to turn around is invariant to translations along the strip
(the x-axis), therefore it suffices to describe the rod movement by its angle � and the
y-coordinate of its center. The position of the rod is defined for �.mod 	/. Therefore
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the motion of the rod in the invariant strip can be mapped into that in the .�; y/ planar
domain � [see Fig. 2.4(right)]:

� D


.�; y/ W jyj < l0 � l sin �

2
; 0 < � < 	

�
: (2.44)

Our purpose is to calculate the mean turnaround time �L!R.

2.2.1 The Diffusion Law of a Brownian Needle
in a Planar Strip

In a rotating system of coordinates .X;Y; �/, where the instantaneous X-axis is
parallel to the long axis of the rod and the Y-axis is perpendicular to it, the diffusive
motion of the rod is an anisotropic Brownian motion, and can be described by the
stochastic equations (Holcman and Schuss 2012b)

PX D
p
2DX Pw1; PY D

p
2DY Pw2; P� D

p
2Dr Pw3;

where DX is the longitudinal diffusion coefficient along the axis, DY the transversal
diffusion constant, and Dr the rotational diffusion coefficient. Due to the anisotropy,
the rod makes in general larger excursions in the X-direction than in the Y-direction
and this is usually characterized by the ratio DY=DX . Transforming into a fixed
system of Cartesian coordinates .x; y/, the motion of the centroid .x.t/; y.t// and
the angle of rotation �.t/ of the rod is governed by the Itô equation (2.45).

In a fixed system of Cartesian coordinates .x; y/, the translational and rotational
motion of the centroid .x.t/; y.t// and the angle of rotation �.t/ of the rod is
governed by the Itô equations

Px D cos.�/
p
2DX Pw1 � sin.�/

p
2DY Pw2

Py D sin.�/
p
2DX Pw1 C cos.�/

p
2DY Pw2

P� D
p
2Dr Pw3 (2.45)

with co-normal reflection at the boundary of the domain in Fig. 2.4(bottom panel).
Putting (2.45) in the matrix form

Px.t/ D B.�/ Pw; (2.46)

where

x D
0

@
x
y
�

1

A ; w D
0

@
w1
w2
w3

1

A
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and

B.�/ D p
2

0

@
cos � � sin � 0
sin � cos � 0

0 0 1

1

A

0

@

p
DX 0 0

0
p

DY 0

0 0
p

Dr

1

A ;

we define the probability density function (pdf) p.t; x; y; �/ of the rod in the .x; y; �/
space by

p.t; x; y; �/ dx D Prf.x.t/; y.t/; �.t// 2 x C dxg; (2.47)

which satisfies the Fokker–Planck equation (Schuss 2010b)

@p.t; x/
@t

D �r � J.t; x/;

where the flux is given by

J.t; x/ D�

0

BBBBBBB@

�
DX cos2 � C DY sin2 �

� @p

@x
C 1

2
Œ.DX � DY/ sin 2��

@p

@y

�
DX sin2 � C DY cos2 �

� @p

@y
C 1

2
Œ.DX � DY/ sin 2��

@p

@x

Dr
@p

@�

1

CCCCCCCA

: (2.48)

Because J.t; x/ is 	-periodic in � and the position of the rod is defined
modulo 	 , the boundary conditions are 	-periodic in � and the normal flux
�Dr@p.t; x; y; �/=@� is 	-antiperiodic in � .

The MFPT �L!AB is the solution u.�; y/ of the Pontryagin–Andronov–Vitt
(Schuss 2010b) boundary value problem

Dr
@2u.�; y/

@�2
C Dy.�/

@2u.�; y/

@y2
D �1 for .�; y/ 2 �1; (2.49)

where Dy.�/ D DX sin2 � C DY cos2 � and �1 D � \ f� < 	=2g, with the mixed
boundary conditions

@u

@Qn D 0 for .�; y/ on the curved boundary and at � D 0 (2.50)

u
�	
2
; y



D 0 for jyj < l0 � l; (2.51)
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where the co-normal derivative of u.�; y/ is given by

@u

@Qn D ru.�; y/ � Qn.�/ for .�; y/ on the curved boundary (2.52)

and the co-normal vector Qn.�/ is given by

Qn.�/ D
�

Dr 0

0 Dy.�/

�
n.�/ (2.53)

with n.�/—the unit outer normal vector at the curved boundary.
The MFPT is the solution of the Pontryagin–Andronov–Vitt boundary value

problem for (2.49)–(2.51), which corresponds to the stochastic system (2.46).
Because the equation is translation-invariant with respect to x it reduces to (2.49).
The boundary conditions at a curved boundary for anisotropic diffusion with state-
dependent diffusion tensor follow from Singer et al. (2008b) and Schuss (2013,
Sect. 2.6.2).

2.2.2 The Turnaround Time

Equation (2.43) shows that it suffices to calculate the MFPT �L!AB in order to
calculate the turnaround time �L!R.

Theorem 2.2.1 (The Turnaround Time). The mean turnaround time of a Brown-
ian needle of length l in a narrow strip of width l0, such that " D .l0 � l/=l0 � 1, is
given by

�L!R D 	.	 � 2/
Dr

p
l0.l0 � l/

s
DX

Dr

 
1C O

 s
l0 � l

l0

!!
: (2.54)

Proof. Introducing the dimensionless variables

X0 D X

l0
; Y 0 D Y

l0
; �.t/ D x.t/

l0
; 
.t/ D y.t/

l0

and the normalized diffusion coefficients

D0
X D DX

l20
; D0

Y D DY

l20
; D
.�/ D Dy.�/

l20
;

we find that the domain � in (2.44) is mapped into

�0 D


.�; 
/ W j
j < 1 � .1 � "/ sin �

2
; 0 < � < 	

�
: (2.55)
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To convert (2.49) to canonical form, we introduce the variable

'.�/ D
�Z

0

s
D
.� 0/

Dr
d� 0; (2.56)

which defines the inverse function � D �.'/, and set u.�; y/ D U.'; 
/ to obtain

U''.'; 
/C U

.'; 
/ D U'.'; 
/
p

Dr
dD�1=2


 .�/

d�
� 1

D
.�/
: (2.57)

The domain �0, defined in (2.55), is mapped into the similar domain

�00 D


.'; 
/ W j
j < 1 � .1 � "/ sin �.'/

2
; 0 < ' < '.	/

�
(2.58)

in the .'; 
/ plane. Because the co-normal direction at the boundary becomes
normal, so does the co-normal derivative. The curved boundary in the scaled
Fig. 2.4(right) is denoted @�00. It follows that the no-flux boundary condition (2.50)
and the absorbing condition (2.51) become

@U.'; 
/

@n
D 0 for .�.'/; 
/ on @�00 (2.59)

@U.0; 
/

@'
D 0 for j
j < 1

2
; U

�
'
�	
2



; 




D 0 for j
j < "

2
;

respectively. The gap at � D 	=2 is preserved and the (dimensionless) radius of
curvature of the boundary at the gap is

R0 D
2D


�	
2




.1 � "/Dr
D 2DX

.1 � "/l20Dr
: (2.60)

First, we simplify (2.57) by setting

g.'/ D
p

Dr
dD�1=2


 .�/

d�
; U.'; 
/ D f .'/V.'; 
/ (2.61)

and choosing f .'/ such that f 0.'/ D 1
2
f .'/g.'/. Note that

dD�1=2

 .�/

d�

ˇ̌
ˇ̌
ˇ
�D0;	=2;	

D 0: (2.62)
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Equation (2.57) becomes

V'' C V

 D 1

f .'/


�
g.'/f 0.'/ � f 00.'/

�
V � 1

D
.�.'//

�
: (2.63)

Next, we move the origin to the center of curvature of the lower boundary by setting


 D �
�

 � R0 � "

2



C i

h
' � '

�	
2


i

and use the conformal mapping (2.10),

! D 
 � R0˛
R0 � ˛
 ; (2.64)

with ! D �ei . We also have

w0.
/ D 1

R0
.1C ˛w/2

1 � ˛2 (2.65)

jw0.
/j2 D 1

R02

ˇ̌
ˇ̌ .1C w˛/2

1 � ˛2
ˇ̌
ˇ̌
2

D j1 � w C p
"wj4

4"R02 .1C O.
p
"//; (2.66)

The image �! of the domain � is given in Fig. 2.5 and is similar to �w in Fig. 2.3,
except for a small distortion near  D c

p
", which we neglect, as we may. Setting

V.'; 
/ D W.�;  /, fixing � D 1 in �! , as in Chap. 2, and abbreviating W D
W. ; 1/, Eq. (2.63) becomes to leading order

W  C h. /

j!0.
j2W D � 1

j!0.
/j2k. / ; (2.67)

where

h. / D f 00.'/ � g.'/f 0.'/
f .'/

ˇ̌
ˇ̌
�D1

; k. / D f .'/D
.�.'//j�D1: (2.68)

Using (2.12) and neglecting terms of order O."/, we rewrite (2.67) as

W  C 4"R02h. /
jei .1 � p

"/ � 1j4W D � 4"R02

jei .1 � p
"/ � 1j4k. / : (2.69)

In view of (2.62), the boundary conditions (2.59) become

W .c
p
"/ D 0; W.	/ D 0: (2.70)
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Fig. 2.5 The image �! of the domain � under the mapping (2.64). The values of the parameters
are " D 0:01 with the approximation DY � DX . The domain is enclosed by the real segment AB,
the dashed arcs, and the small closing cap. The solid circular arcs are the conformal images of
arcs of the osculating circles at the narrow neck, as in Fig. 2.3

The outer solution of (2.69) is a linear function Wouter. / D a C b, where a
and b are yet undetermined constants. The uniform approximation is constructed as
Wuniform. / D Wouter. /C Wbl. /, where the boundary layer Wbl. / is a function
Y.�/ of the boundary layer variable � D  =

p
". The boundary layer equation is

Y 00.�/C 4R02h.0/
.1C �2/2

Y.�/ D � 4R02

.1C �2/2k.0/
; (2.71)

which is simplified by the substitution Y.�/ D QY.�/C 1=h.0/k.0/ to

QY 00.�/C 4R02h.0/
.1C �2/2

QY.�/ D 0: (2.72)

The boundary conditions (2.70) become QY 0.c/ D 0 and QY.1/ D 1=h.0/k.0/.
The boundary layer equation (2.72) has two linearly independent solutions, QY1.�/

and QY2.�/, which are linear for sufficiently large � . Initial conditions for QY1.�/ and
QY2.�/ can be chosen so that QY2.�/ ! const as � ! 1 (e.g., QY2.0/ D �4:7; QY 0

2.0/ D
�1, see Fig. 2.6). Thus the boundary layer function is given by

Wbl. / D A QY1
�
 p
"

�
C B QY2

�
 p
"

�
C C; (2.73)

where A and B are constants to be determined and C is related to the con-
stant 1=h.0/k.0/ and is also determined below from the boundary and matching
conditions.
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Fig. 2.6 Two linearly
independent solutions
of (2.72). The linearly
growing solution Y1.�/
satisfies the initial conditions
Y1.0/ D 0; Y 0

1.0/ D 2. The
asymptotically constant
solution Y2.�/ satisfies the
initial conditions
Y2.0/ D �4:7; Y 0

2.0/ D �1.
The asymptotic value is
Y2.1/ � �5

0

−5

0

5

10

15

20

Y (�)

2 4 6 8 10 12
�

The matching condition is that Wbl. / D A QY1
�
 =

p
"
� C B QY2

�
 =

p
"
� C C

remains bounded as � ! 1, which implies A D 0. It follows that at the absorbing
boundary  D 	 we have

Wunif.	/ D a	 C b0 D 0; W 0
unif.	/ D a; (2.74)

where the constant b0 incorporates all remaining constants. At the reflecting
boundary we have to leading order

W 0
unif.c

p
"/ D W 0

outer.c
p
"/C W 0

bl.c
p
"/ D a C B

QY 0
2.c/p
"

D 0; (2.75)

which gives

B D � a
p
"

QY 0
2.c/

; b0 D �a	: (2.76)

The uniform approximation to W.!/ is given by

Wunif.�ei / D a

 
 � 	 �

p
"

QY 0
2.c/

!
; (2.77)

so that using (2.61), (2.62), and (2.65), we obtain from (2.77)

@u

@n

ˇ̌
ˇ̌

2@�a

D f
�
'
�	
2



 @W.�ei /

@ 

ˇ̌
ˇ̌
 D	

!0.
/
ˇ̌
ˇ

D�1

@'

@�

ˇ̌
ˇ̌
�D	=2

D a

r
2

"R0 .1C O.
p
"//: (2.78)

Because W.!/ scales with 1=f .'/ relative to V.'; 
/, we may choose at the outset
f .'.	=2// D 1.
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Finally, to determine the value of a, we integrate (2.49) over �, use (2.78), and
the fact that

Z

@�a

dy D l0";

to obtain a D �j�jpR0=l0Dr

p
2". Now (2.77) gives the MFPT at any point x in the

head as

�L!AB D u.x/ � W
�
�eic

p
"



� �a	 D 	j�jpR0

l0Dr

p
2"
.1C O.

p
"/ for " � 1:

(2.79)

Reverting to the original dimensional variables, we get

�L!AB D
	
�	
2

� 1



Dr

p
l0.l0 � l/

s
DX

Dr

 
1C O

 s
l0 � l

l0

!!
; (2.80)

which together with (2.43) is (2.54). ut

2.2.3 The NET in a Solid Funnel-Shaped Domain

We consider now the NET problem in the solid of revolution in Fig. 2.2(right),
obtained by rotating the symmetric planar domain �0 in Fig. 2.1(left) about its
axis of symmetry. The absorbing end of the neck becomes a circular disk of radius
a0 D "0=2.

Theorem 2.2.2. The MFPT to the absorbing boundary at the end of the funnel
of a solid of revolution obtained by rotating the symmetric planar domain of
Fig. 2.2(right) is given by

N� D 1p
2

�
`C
a0

�3=2 V

`CD
.1C o.1// for a0 � `C; (2.81)

where V D j�0j is the volume of the domain.

Proof. Due to cylindrical symmetry of the mixed boundary value problem (2.9) the
MFPT in cylindrical coordinates centered on the axis of symmetry is independent
of the angle. It follows that with the scaling (2.8) the boundary value problem (2.9)
in the scaled spatial domain � can be written in cylindrical coordinates as

�u D @2u

@r2
C 1

r

@u

@r
C @2u

@z2
D �`

2C
D
: (2.82)
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Equation (2.82) can be considered as a two-dimensional problem in the planar cross
section by a plane through the axis of symmetry of � in the .r; z/ plane. Here r is
the distance to the axis of symmetry of �, the z axis is perpendicular to that axis
and the origin is inside the cross section of�, at the intersection of the axis with the
tangent to the osculating circle to the cross section at the gap. Setting u1 D ur1=2,
the MFPT equation (2.82) takes the form

@2u1.r; z/

@r2
C @2u1.r; z/

@z2
D �`

2C
D

�
r1=2 C u1.r; z/

4r2

�
(2.83)

in the cross section, with mixed Neumann–Dirichlet boundary conditions, as in the
planar case. We assume that in dimensionless variables AB D " � 1 < j�j1=3,
so the funnel is a narrow passage. The transformation to the rotated and translated
coordinates is given by Qr D r � 1 � "=2; Qz D �z C 1. Setting u1.r; z/ D Qu.Qr; Qz/,
Eq. (2.83) becomes

@2 Qu.Qr; Qz/
@Qr2 C @2 Qu.Qr; Qz/

@Qz2 D �`
2C

D

0

B@
�

Qr C 1C "

2


1=2 � Qu.Qr; Qz/
4
�

Qr C 1C "

2


2

1

CA : (2.84)

The construction of the asymptotic expansion of the solution of the boundary
layer equation (2.69) is similar to that in Sect. 2.2.2. We construct an asymptotic
solution for small gap " by first mapping the cross section in the .r; z/-plane
conformally into its image under the Möbius transformation (2.10),

w.
/ D �ei
 D 
 � ˛
1 � ˛
 ; (2.85)

where ˛ is given in (2.11) for the symmetric case Rc D rc D 1. Setting Qu.
/ D v.w/,
Eq. (2.84) becomes

�wv.w/ D `2
C

Djw0.
/j2

0

BBB@�
ˇ̌
ˇ̌jRe

w C ˛

1C ˛w
j C 1C "

2

ˇ̌
ˇ̌
1=2

� v

4

ˇ̌
ˇ̌jRe

w C ˛

1C ˛w
j C 1C "

2

ˇ̌
ˇ̌
2

1

CCCA :

(2.86)

Because the normalized head of Fig. 2.1(left) is mapped into the narrow hot dog-
shaped region in Fig. 2.3 of width

p
" at � D 1, we approximate

w D ei
 C O.
p
"/;

ˇ̌
ˇ̌ w C ˛

1C ˛w

ˇ̌
ˇ̌ D 1C O.

p
"/: (2.87)
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We also have

w0.
/ D .1C ˛w/2

˛2 � 1 ; jw0.
/j2 D j1 � w C p
"wj4

4"
.1C O.

p
"//; (2.88)

so that (2.83) reduces to

�wv D � `2C
D

4".1C O.
p
"//

j1 � w C p
"wj4

�p
2C 1

16
v

�
; (2.89)

or equivalently,

v00 C "

4jei
 � 1 � ei

p
"j4 v D `2C

D

4
p
2"

jei
 � 1 � ei

p
"j4

�
1C O.

p
"/
�
: (2.90)

Setting v D `2C.y � 16p2/=D, we obtain the leading order equation

y00.
/C "

4jei
 � 1 � ei

p
"j4 y.
/ D 0: (2.91)

The boundary conditions are

y0.c
p
"/ D 0; y.	/ D 16

p
2: (2.92)

The outer solution is the linear function

youter.
/ D M
C N; (2.93)

where M and N are yet undetermined constants. The absorbing boundary condition
in (2.92) gives

youter.	/ D M	 C N D 16
p
2: (2.94)

A boundary layer correction is needed to satisfy the boundary conditions at the
reflecting boundary at 
 D c

p
". To resolve the boundary layer at 
 D c

p
", we set


 D p
"� and expand

"2

jei
 � 1 � ei

p
"j4 D 1

.1C �2/2
C O.

p
"/:

Writing ybl.
/ D Y.�/, we obtain to leading order the boundary layer equation

Y 00.�/C 1

4.1C �2/2
Y.�/ D 0; (2.95)
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which has two linearly independent solutions, Y1.�/ and Y2.�/ that are linear
functions for sufficiently large � . Initial conditions for Y1.�/ and Y2.�/ can be chosen
so that Y2.�/ ! const as � ! 1 (e.g., Y2.0/ D �4:7; Y 0

2.0/ D �1, see Fig. 2.6).
Setting

ybl.
/ D AY1

�

p
"

�
C BY2

�

p
"

�
; (2.96)

where A and B are constants to be determined, we seek a uniform approximation
to y.
/ in the form yunif.
/ D youter.
/ C ybl.
/. The matching condition is that
AY1

�

=

p
"
�C CBY1

�

=

p
"
�

remains bounded as � ! 1, which implies A D 0. It
follows that at the absorbing boundary 
 D 	 we have

yunif.	/ D M	 C ˇ � 5B D 16
p
2; y0

unif.	/ D M: (2.97)

At the reflecting boundary we have to leading order

y0
unif.c

p
"/ D y0

outer.c
p
"/C y0

bl.c
p
"/ D M C B

Y 0
2.c/p
"

D 0; (2.98)

which gives

B D �M
p
"

Y 0
2.c/

; N D 16
p
2 � 5M

p
"

Y 0
2.c/

� M	: (2.99)

The uniform approximation to v.w/ is given by

vunif.�ei
/ D M

�

 � 	 � 5

p
"

Y 0
2.c/

�
; (2.100)

so that using (2.88), we obtain from (2.100)

@u

@n

ˇ̌
ˇ̌

2@�a

D @v.�ei
/

@


ˇ̌
ˇ̌

D	

w0.
/
ˇ̌
ˇ

D�1 D 2Mp

"
.1C O.

p
"//: (2.101)

To determine the value of M, we integrate (2.9) over �, use (2.101), and the fact
that

Z

@�a

dS D 	"2

4
; (2.102)

to obtain M D �2`2Cj�j=D	"3=2. Now (2.100) gives the MFPT at any point x in
the head as
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N� D u.x/ � v
�
�ec

p
"



� 2"�3=2 `
2Cj�j
D

D 2"�3=2 j�0j
`CD

for " � 1: (2.103)

The dimensional radius of the absorbing end of the funnel is a0 D `C"=2 [see (2.8)],
so (2.103) can be written in physical units as (2.81). ut

The generalization of (2.81) to exit through N well-separated necks is found by
noting that (2.102) becomes

Z

@�a

dS D
NX

jD1

	"2j

4
; (2.104)

and the integration of (2.7) over �0 gives the compatibility condition (dimensional)
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"j

D �j�0j
D

(2.105)

which determines

M D � 4j�0j
D
PN

jD1 `j	"
3=2
j

: (2.106)

Hence, using the dimensional a0
j D `j"j=2, we obtain

N� D �M	 D 1p
2

j�0j

D
PN

jD1 `j

 
a0

j

`j

!3=2 : (2.107)

To calculate the exit probability from one of N necks, we note that the boundary
layer function is to leading order linear, as in Sect. 2.1.1. Therefore in the three-
dimensional case the exit probability is given by

pi D "
3=2
i `i

PN
jD1 "

3=2
j `j

D a0
i
3=2
`

�1=2
iPN

jD1 a0
j
3=2
`

�1=2
j

: (2.108)

Finally, the analogous expression for the NET (2.41) in three dimensions is as
follows.

Theorem 2.2.3 (The NET from a Composite Domain in R
3). The NET of a

Brownian motion from a three-dimensional composite domain � with a bottleneck
in the form of a narrow circular cylinder of cross section area 	a2 is given by
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a general head connected smoothly to the neck by a funnel.
(2.109)

Here L.@�a/ and N.@�a/ are the principal curvatures of the boundary at the neck
and Rc is the boundary curvature at the cusp.

The O.1/ term in (2.109) can be computed for the sphere using the explicit
expression of the Neumann–Green function (Cheviakov et al. 2010). Modulation of
neck length changes the residence time significantly. Comparing (2.41) with (2.109),
we note that the geometry of the connection affects the residence time stronger in
two than in three dimensions.

2.2.4 The MFPT in a Dumbbell-Shaped Domain

A dumbbell-shaped domain consists of two compartments �1 and �3 and a
connecting neck �2 that is effectively one-dimensional, such as shown in Fig. 2.7,
or in a similar domain with a long neck. A Brownian trajectory that hits the segment
AB in the center of the neck�2 is equally likely to reach either compartment before
the other; thus, AB is the stochastic separatrix (SS). Therefore the mean time to
traverse the neck from compartment �1 to compartment �3 is asymptotically twice
the MFPT N��1!SS. Neglecting, as we may, the mean residence time of a Brownian
trajectory in�2 relative to that in�1 or in�3 we can write the transition rates from
�1 to the �3 and vv as

��1!�3 D 1

2 N��1!SS
; ��3!�1 D 1

2 N��3!SS
: (2.110)

These rates can be found from the explicit expression (3.1) for the flux into an
absorbing window

�1 � 1

N� ; (2.111)
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Fig. 2.7 A dumbbell-shaped domain is a composite domain that consists of two large compart-
ments �1 and �3 connected by a narrow neck �2. The bottleneck is the interval AB

where N� is given in (2.28). Here N�x!@�i is any one of the MFPTs given above,
depending on the geometry of �1 with L half the length of the neck and with
SS D @�a. The radii of curvature Rc;1 and Rc;3 at the two funnels may be different
in �1 and �3. The smallest positive eigenvalue � of the Neumann problem for the
Laplace equation in the dumbbell is to leading order � D �.��1!�3C��3!�1/. For
example, if the solid dumbbell consists of two general heads connected smoothly to
the neck by funnels [see (3.27)], the two rates are given by
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(2.112)

(see Holcman and Schuss 2012a). Formulas (2.112) indicate that the unidirectional
fluxes between the two compartments of a dumbbell-shaped domain can be
controlled by the area (or surface area) of the two and by the type of obstacles
to the access to the connecting neck. The equilibration rate in the dumbbell, �, is
thus controlled by the geometry.

2.3 The MFPT to a Ribbon

A Brownian search for a small target hidden between a membrane and a vesicle
(see Fig. 2.9) can be modelled locally by diffusion between two tangent spheres of
different radii R1 and R2 (R1 < R2).
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There are two natural scales of magnitude here, the size of the vesicle relative
to that of the pre-synaptic terminal and the size of the calcium ion that squeezes
between them, relative to that of the vesicle. The smaller scale is that of the ion, so on
this scale the radii R1 and R2 are O.1/ relative to the ion size. Under these conditions
a secondary expansion, with R1 � R2, can be applied to the final result (see below).
If the two scales are commensurate, a different expansion has to be constructed.
The search target is a narrow ribbon of (dimensional) width " (dimensionless width
"0 << 1) with " D "0R, where R is a typical length. The radius of the ribbon is

ra D p
˛" .1C O."// D p

"0
vuut

2RR2R1q
R21 C R22

.1C O."0//; (2.113)

where

˛ D 2R2R1q
R21 C R22

: (2.114)

A ribbon is a two-dimensional manifold with a nontrivial topology and thus the
absorbing part of the boundary is not a small window in the sense of the narrow
escape theory developed above. Therefore the method has to be adjusted to this
geometry. Scaling the cylindrical coordinates .r; z/ D R2.r0; z0/ by setting

R0
1 D R1

R2
; R0 D R

R2
; r0

a D ra

R2
D p

"0
vuut

2R0R0
1q

1C R0
1
2
.1C O."0//: (2.115)

maps domain � into the dimensionless domain �0, enclosed between spheres of
dimensionless radii R0

1 and 1. Projecting the cylindrically symmetric domain �0
enclosed between the two spheres into a plane of symmetry (through the common
axis of the two spheres), maps�0 into a planar domain enclosed between the circles
r02 C z02 � 2z0R0

1 D 0 and r02 C z02 � 2z0 D 0 in the .r0; z0/ plane, shown as the cusp
in the middle frame of Fig. 2.8 (denoted N�0). The absorbing band in �0 is mapped
into the short circular arc @ N�0

a joining the two circles (marked red). The radius r0
a

of the ribbon and the radius of the arc are to leading order the same for "0 � 1

[see (2.115)].
Due to the cylindrical symmetry of the three-dimensional boundary value

problem (1.4)–(1.6) for the MFPT in cylindrical coordinates .r0; z0; �/ to the ribbon,
V.r0; z0; �/ is independent of � . Thus we are left with the two-dimensional boundary
value problem in N�0
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Fig. 2.8 (a) Brownian search for a narrow ribbon (red) in the domain N� enclosed between tangent
reflecting spheres (blue and green). (b) The projection of N� on its the plane of symmetry is the
planar domain�0 enclosed by two circles. The projection of the ribbon target consists of two short
arcs (red)

@2V.r0; z0/
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D0 for .r0; z0/ 2 N�0
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@n0 D 0 for .r0; z0/ 2 N�0 n @ N�0

a

V.r0; z0/ D 0 for .r0; z0/ 2 N�0; (2.116)

where D0 D D=R22. Note that the dimension of (2.116) is time.
To construct a uniform asymptotic expansion of the solution of (2.116) for "0 �

1, we introduce the complex variable � D r0 C iz0 and apply the inversion ! D
x C iy D f .�/ D 1=� , which maps the right half of N�0 into the rectangle

Q� D
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;� 1
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< z < �1
2

�
; (2.117)

shown in Fig. 2.9b (Guerrier and Holcman 2015). Setting V.�/ D u.!/, Eq. (2.116)
becomes

.t2 C z2/2�u C t2 C z2

t

�
@t

@r0
@u

@t
C @z

@r0
@u

@z

�
D � 1

D0 for .t; z/ 2 Q� (2.118)

ut.0; z/ D 0; u

�
1

r0
a

; z

�
D 0 for � 1

2R0
1

< z < �1
2

(2.119)

uz

�
t;�1

2

�
D 0; uz

�
t;� 1

2R0
1

�
D 0 for 0 < t <

1

r0
a

: (2.120)
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Fig. 2.9 Conformal mapping. The domain Q� in frame (b) is the conformal image of the domainN�0 in frame (a) under the inversion ! D f .�/ D 1=� . Circles of radius r0 centered at .0; r0/ are
mapped into the lines <.�/ D 1=2r0: the gray dashed circle in frame (a) is mapped into the dashed
horizontal line in frame (b)
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Equation (2.118) becomes

r0
a

�4X4Uzz C r0
a

�2
.X2z2Uzz � 2X2zUz C X4UXX � X3UX/

C 2X2z2UXX C z4Uzz � 2z3Uz C 1

D0 D O.r0
a/

for 0 < X < 1 and �1=2 < y < �1=2R0
1. The boundary conditions (2.119), (2.120)

become

UX.0; z/ D 0 D U.1; z/ D 0 for � 1

2R0
1

< z < �1
2

(2.121)
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A regular expansion in powers of r0
a,

U.X; z/ D U0.X; z/C r0
aU1.X; z/C r0

a
2U2.X; z/C � � � ; (2.123)
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gives at the leading-order O.r0
a

�2
/ the equation X4U0

zz.X; z/ D 0, hence U0.X; z/ D
U0.X/ (independent of z). At order O.r0

a
�1
/, we obtain the equation

X4U1
zz C X4U0

XX � X3U0
X D 0: (2.124)

The solvability condition for (2.124) is

�1=2R0

1Z

�1=2
ŒX4U0

XX � X3U0
X� dz D 0;

so that

X4U0
XX � X3U0

X D 0: (2.125)

It follows that U0.X/ D A.1�X2/, where A is an unknown constant. To compute the
unknown constant A, we use the leading term U0.X/ D A.1 � X2/ D AŒ1 � .r0

ax/2�
to evaluate
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The compatibility condition (1.7), obtained by integrating (2.116) over the planar
domain N�0, is
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which under the change of variables given by the inversion t C iz D 1=.r0 C iz0/
becomes
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Hence
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so the MFPT to the ribbon is to leading order in "0
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Note that j N�j D 	.R22 � R21/ in (2.129) is the area of the cross section, not the
volume of the domain �. In the limit R1 � R2 and with R D R2, Eq. (2.129)
reduces in dimensional variables to

EŒ� j r; z; � � D vol.�/
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1C o
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: (2.130)

Diffusion to a ribbon can describe, for example, calcium ions near a vesicle in the
pre-synaptic terminal. The rare event of hitting the ribbon determines the rate of
vesicular release, which likely depends on the distance of the hitting spot to the
calcium channels on the membrane. It is yet unclear how the rate of vesicular release
can vary over 6 orders of magnitude for the same synapse (Kochubey et al. 2011).
The cusp geometry and rare events may hold the key to the resolution of this drastic
modulation of the vesicular release rate (Guerrier and Holcman 2015).

2.4 Conditioning and Splitting Probability

Conditioning a stochastic process on a given event reduces the Brownian probability
space to a subset of the trajectories and assigns to them a new probability measure.
For example, if in a simulation of Brownian motion in a field of force in a domain�
with reflecting boundary that contains two absorbing patches we want to calculate
the pdf of the NET through one of the patches for 0 � t � T , we reduce the
Brownian probability space to that of trajectories that are absorbed in that patch
in the given time interval. The probability measure is re-normalized to 1 at time
t D 0 on this set of trajectories (see Sect. 2.4.1 below). The process can also be
conditioned on the future, for example, on reaching a certain subset of � at a given
future time, such as in the case of the Brownian bridge (Schuss 2010b).
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2.4.1 Conditioning

Consider the Itô system

dx D a.x/ dt C p
2B.x/ dw (2.131)

in a domain D, whose boundary consists of two parts, A and B: If the trajectories
x.t/ that reach B before A are eliminated, the remaining trajectories form a process
conditioned on reaching A before B. We denote this process by x�.t/ and the first
passage times to A and to B by �A and �B, respectively. Thus x�.t/ is obtained
from x.t/ by conditioning on the event f�A < �Bg. We set, as usual, � .x/ D
B.x/BT.x/ and denote by L and L� the corresponding Fokker–Planck and backward
Kolmogorov operators, respectively.

Theorem 2.4.4 (Conditioned Diffusion). Conditioning the solution of (2.131) on
reaching a set A before reaching a set B results in a diffusion process x�.t/, whose
drift vector and diffusion matrix are given by

a�.x/ D a.x/C � .x/
rP.x/
P.x/

; � �.x/ D � .x/; (2.132)

respectively, where the splitting probability P.x/ is determined from the boundary
value problem

L�P.x/ D 0 for x 2 D (2.133)

P.x/ D 1 for x 2 A; P.x/ D 0 for x 2 B;

provided boundary conditions can be posed at A and B.1

Proof. Obviously, the trajectories of x�.t/ are continuous. The pdf of x�.t/, denoted
p�.y; t j x/, is given by

p�.y; t j x/ dy D Pr fx.t/ 2 y C dy; t j x.0/ D x; �A < �Bg :

Bayes’ rule gives

Pr fx.t/ 2 x C�y; t j x.0/ D x; �A < �Bg

D Pr fx.t/ 2 y C�y; t j x.0/ D xg Pr f�A < �B j x.0/ D x; x.t/ D yg
Pr f�A < �B j x.0/ D xg ;

1It is known in partial differential equations theory in higher dimensions that at boundary points
where

P
i;j �

ij.x/�i.x/�j.x/ D 0, boundary conditions can be imposed only at points where a.x/ �
�.x/ < 0.
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hence, using the Markov property and time homogeneity, we obtain

Pr f�A < �B j x.0/ D x; x.t/ D yg D Pr f�A < �B j x.0/ D yg
so that

p�.y; t j x/ D p .y; t j x/
Pr f�A < �Bj x.0/ D yg
Pr f �A < �B j x.0/ D xg : (2.134)

It is evident from Eq. (2.134) that p�.y; t j x/ is a probability density function
and that it satisfies the properties of a pdf of a diffusion process. It remains to
calculate its infinitesimal drift vector and diffusion matrix. Note that the function
P.x/ D Pr f�A < �B j x.0/ D xg can be determined from the boundary value
problem (2.133).

Next, we calculate the infinitesimal drift vector of x�.t/. By definition,

a�.x/ D lim
h#0

1

h

Z
p�.y; h j x/.y � x/ dy

D lim
h#0

1

h

Z
p .y; h j x/

P.y/
P.x/

.y � x/ dx: (2.135)

We expand P.y/ about y D x in Taylor’s series,

P.y/ D P.x/C .y � x/ � rP.x/C 1

2
.y � x/TH .P.x// .y � x/C o

�jy � xj2� ;

where H .P.x// is the Hessian matrix of P.x/. Substituting the expansion in
Eq. (2.135), we obtain
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1

h

Z
p .y; h j x/

"
.y � x/C .y � x/ � rP.x/

P.x/
.y � x/

C o
�jy � xj2�

#
dy D a.x/C � .x/

rP.x/
P.x/

;

which is (2.132). Similarly,

� �.x/ D lim
h#0

1

h

Z
p�.y; h j x/.y � x/.y � x/T dy
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1

h

Z
p .y; h j x/.y � x/.y � x/T
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dy D � .x/:

ut
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Note that Eq. (2.133) implies that the second term in Eq. (2.132) becomes infinite
as x approaches the part B of the boundary. The direction of a�.x/ is into the
domain, away from the boundary. Indeed, assume that B is an open subset of the
boundary @D. We have rP.x/=jrP.x/j D ��.x/, where �.x/ is the unit outer
normal at the boundary point x, because P.x/ D 0 at all points x 2 B and P.x/ > 0
for x 2 D. It follows that for points x 2 D near B,

a�.x/ � �.x/ D a.x/ � �.x/C � .x/
rP.x/
P.x/

� �.x/C o.1/

D a.x/ � �.x/ � jrP.x/j
P.x/

�T.x/� .x/�.x/C o.1/: (2.136)

If � .x/ is a positive definite matrix, then

a�.x/ � �.x/ ! �1 as x ! B; (2.137)

because P.x/ ! 0 as x ! B. If �T.x/� .x/�.x/ D 0 on B, then necessarily
a.x/ � �.x/ < 0, whenever boundary conditions can be imposed at B (see preceding
footnote). Equation (2.137) also means that a�.x/ ��.x/ < 0 near B. This means that
the angle between a�.x/ and �.x/ is obtuse; that is, a�.x/ points into D. It follows
that the trajectories x�.t/ cannot exit D at B. When the diffusion in the normal
direction vanishes at the boundary, and the drift vector pushes the trajectories x.t/
away from B, a trajectory x�.t/ cannot leave D through B, either.

The effect of conditioning on reaching A before reaching B is that the drift
vector a.x/ is replaced by the drift vector a�.x/, and the diffusion matrix remains
unchanged. The dynamics (2.131) changes so that the dynamics of the conditioned
process becomes

dx� D a�.x�/ dt C p
2B.x�/ dw: (2.138)

To simulate only those trajectories that satisfy the condition, the function P.x/ has
to be known. Finding this function from the simulation may be as costly as running
the unconditioned simulation.

The conditional MFPT to A is the MFPT of the conditional process x�.t/. Thus
u�.x/ D EŒ� j �A < �B� is the solution of the PAV boundary value problem

L�u�.x/ D � 1 for x 2 �
u�.x/ D 0 for x 2 A; (2.139)

where L� is the backward operator of the conditional diffusion (2.138). Note that
no boundary conditions can be imposed at B.

Remark 2.4.1. In the NET condition, the boundary for the splitting probability is
partitioned into pieces where on the larger part, the boundary condition is reflecting,
while if on A p D 1, the condition on B can be absorbing or partially absorbing
(Robin boundary conditions) (Delgado et al. 2015).
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2.5 The Splitting Probability for Small Targets

Consider the case that A is a small absorbing part of the boundary and B is either
a small or large part of the absorbing boundary, whereas the remaining part of the
boundary is impermeable to Brownian trajectories. This case can be viewed as a
refinement of the model discussed in Sect. 1.9.1. Specifically, consider Brownian
motion in a circular annulus� of outer radius R and inner radius ı. Assume that the
outer disk D.R/ has reflecting boundary, except for a small absorbing arc @�a. The
boundary of the inner disk D.ı/ is assumed absorbing. A Brownian trajectory that
reaches @�a is terminated (absorbed), never to return to �, while a trajectory that
reaches the boundary of the inner disk stays there for an exponentially distributed
random waiting time with rate k1 and is then restarted with a uniform distribution
in �. The reflecting part of the boundary is @�r D @D.R/ � @�a. The first passage
time of a Brownian trajectory from� to @�a is denoted TA and that to the boundary
S of D.ı/ is denoted TS. For x 2 �, the conditional probability p.x/ that a trajectory
x.t/ is absorbed in @�a without spending any time in D.ı/, given x.0/ D x, is

p.x/ D PrfTA < TS j x.0/ D xg:

The splitting probability p.x/ is the solution of the boundary value problem derived
in Sect. 2.4.1 for the conditional diffusion x�.t/, conditioned on the event fTA < TSg.
The complementary splitting probability q.x/ D 1� p.x/ D PrfTS < TA jx.0/ D xg
is the solution of the boundary value problem

�q.x/ D 0 for x 2 �; @q.x/
@n

D 0 for x 2 @�r (2.140)

q.x/ D 0 for x 2 @�a; q.x/ D 1 for x 2 S;

where @�a is the small opening, @�r is the remaining reflecting part of the external
boundary.

2.5.1 The Splitting Probability in an Annulus

We consider the case of the annular domain shown in Fig. 2.10. In polar coordinates
.r; �/, the portion of the boundary @�a is parameterized by � when j� �	j � ". An
explicit solution of (2.140) for the annulus � is constructed in Sneddon (1966) and
Fabrikant (1989, 1991) by the double series method. Specifically,

q.r; �/ D a0
2

C
1X

nD1

h
an

� r

R


n C bn

�ı
r


ni
cos.n�/C � log

r

ı
;

where ˇ D ı=R. The boundary conditions on at r D ı and r D R give
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Fig. 2.10 Model of a cellular microdomain in two dimensions. The domain is a disk D.R/
of radius R, made of two compartments: an inner disk D.ı/ of radius ı and the annulus
� D D.R/� D.ı/. A Brownian particle evolves inside � until it hits D.ı/ or the absorbing
boundary @�a 2 @D.R/. When it enters into D.ı/, which represents the domain of chemical
reactions, it stays there with a mean time (reciprocal of the backward binding rate), while its
motion in D.ı/ is frozen. The molecule is released uniformly inside the annulus. This scenario
repeats until the molecule hits the absorbing boundary @�a, where the molecule is finally removed
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where � is a constant to be determined. Equation (2.141) gives the identities

a0 D 2; bn D �anˇ
n for n 
 1:

Together with (2.142) and (2.143), these give the double series equations
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cos.n�/ � � log.ˇ/ D 0 for j� � 	j � ": (2.145)

Substituting cn D an.1Cˇ2n/ and Hn D 2ˇ2n=1�ˇ2n Eqs. (2.144) and(2.145) take
the form

c0
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C
1X

nD1

cn

1C Hn
cos.n�/ D 0 for � 2 Œ	; 	 � "� (2.146)
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� C
1X

nD1
ncn cos.n�/ D 0 for � 2 Œ0; 	 � "�; (2.147)

where

c0
2

D 1 � � logˇ: (2.148)

The asymptotic solution of Eqs. (2.146)–(2.147) uses the double series expansion,
developed in Sneddon (1966). The leading coefficient c0 for the solution of
Eqs. (2.146)–(2.147) is

c0 � 2˛

�
2 log

1

"
C 2 log 2C O.ˇ2; "/

�
(2.149)

where ˛ is as yet an undetermined constant (Singer et al. 2006b; Taflia and Holcman
2007). Using Eqs. (2.148) and (2.149), we get

˛ D 1

log
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ˇ
C 2 log
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"
C 2 log 2C 4ˇ2 C O.ˇ2; "/

; (2.150)

and

� D � 1

log
1

ˇ
C 2 log

1

"
C 2 log 2C 4ˇ2 C O.ˇ2; "/

: (2.151)

The constant ˛ depends on ˇ and " (˛ D ˛.ˇ; "/). For sufficiently small " and ı,
the remaining coefficients an and bn are negligible,

an � O.˛.ˇ; "//; bn � O.˛.ˇ; "/ˇn/:

Thus for sufficiently small ı, the leading order expansion of q.r; �/ is given by

q.r; �/ D

8
ˆ̂<

ˆ̂:
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C O.˛/ for r � R:

(2.152)

If j@D.ı/j=j@D.R/j � 1, then the splitting probability p.x/ is, to leading order in
this parameter, independent of x, that is,

m D PrfTA < TSg � 1

j�j
Z

�

p.r; �/r dr d�
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The probability of exactly n visits in D.ı/ prior to escape is .1� m/nm, therefore
the expected number of visits M in D.ı/ prior to escape at @�a and the variance V
are given by
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m
�
2 log

1

"
C 2 ln 2C 1

2

log
1

ˇ
� 1

2

V D
1X

nD0
n2.1 � m/nm � M2

�

�
2 log

1

"
C 2 ln 2C 1

2

��
log

1

ˇ
C 2 log

1

"
C 2 log 2

�

�
log

1

ˇ
� 1

2

�2 : (2.154)

These approximations are valid for "; ˇ � 1. The case ˇ � 1 remains to be
examined.

2.6 Asymptotic Computation of the Dwell Time

The dwell time is the MFPT EŒ� � of a trajectory from D.R/ to @�a. We assume
that after exiting the trap D.ı/ a trajectory is thermalized, that is, it is restarted in
D.R/� D.ı/ outside the boundary layers near S D @D.ı/ and near @�a. Therefore,
if j@D.ı/j=j@D.R/j � 1 and " � 1, the dwell time is to leading order independent
of the restarting point of a trajectory.

The dwell time, conditioned on n visits in D.ı/ prior to exit at @�a, is

EŒ� j n visits in D.ı/� D n

�
EŒTS j TS < TA�C 1

k1

�
C EŒTA j TA < TS�;
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where 1=k1 is the mean trapping time in D.ı/. Therefore, as in Sect. 2.5.1,

EŒ� � D
1X

nD0
EŒ� j n visits in D.ı/�Prfn visits in D.ı/ prior to escapeg

D
1X

nD0



n

�
EŒTS j TS < TA�C 1
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C EŒTA j TA < TS�

�
.1 � m/nm

D M

�
EŒTS j TS < TA�C 1

k1

�
C EŒTA j TA < TS�; (2.155)

To conditional MFPT EŒTA j TA < TS� is the MFPT of the conditional diffusion
process x�.t/, which is the solution of the stochastic differential equation (see
Sect. 2.4),

dx�.t/ D 2D
rp.x�.t//
p.x�.t//

dt C p
2D dw.t/;

where p.x/ D PrfTA < TS j x.0/ D xg is the splitting probability and w.t/ is
standard two-dimensional Brownian motion. The portion @D.R/� @�a of the outer
boundary is reflecting for the process x�.t/ and @�a is absorbing. The boundary
@D.ı/ is unattainable for x�.t/, because the drift 2Drp.x/=p.x/ is infinite and points
away from D.ı/. Thus the conditional mean time

N�A.x/ D EŒTA j TA < TS; x.0/ D x� (2.156)

is the solution of the PAV boundary value problem

Dp.x/� N�A.x/C 2Dr N�A.x/ � rp.x/ D � p.x/ for x 2 �
@ N�A.x/
@n

D 0 for x 2 @�r

N�A.x/ D 0 for x 2 @�a: (2.157)

Setting v.x/ D N�A.x/p.x/ the boundary value problem (2.157) reduces to

D�v.x/ D � p.x/ for x 2 �
@v.x/
@n

D 0 for x 2 @�r

v.x/ D 0 for x 2 @�a

v.x/ D 0 for x 2 @D.ı/: (2.158)
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An explicit representation of the solution uses the Green function G.x; y/ solution
of the mixed boundary value problem

��xG.x; y/ D ı.x � y/ in �; (2.159)

with v.x/ D � R
�

G.x; y/p.y/dy. Because outside the boundary layer near @�a

the problem is to leading order radial, an explicit expression for G.x; y/ D
G.r; �; r0; �0/ is for �0 D 0

G.r; �; r0; 0/ D g0.r; r0/C
1X

nD1
gn.r; r0/ cos.n�/:

where (Taflia and Holcman 2007)
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The contribution of gn.r; r0/ can be neglected in the first approximation. We
conclude that the mean escape time is to leading order given by
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Using (2.160), we get for " � 1 and j@D.ı/j=@D.R/j � 1 the asymptotic
approximation
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With ˛ given in (2.150), the leading order term is
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Other explicit examples where an asymptotic expression for the splitting probability
is needed appear in models of the synaptic cleft, where the probability of a molecule
to bind a receptor before absorption in a glia cell has to be estimated (Reingruber
and Holcman 2011b; Taflia and Holcman 2011; Holcman and Schuss 2014). The
derivations of this section form the basis for a molecular description of the post-
synaptic density (PSD) as a domain with many traps. Obviously, the diffusion in
the PSD needs to be coarse-grained. The inner disk D.ı/ can represent a coarse-
grained effective model of small scattered traps (e.g., scaffolding molecules), which
are pooled together to form a single bigger trap, while preserving the absorption flux
and the distribution of the trapping time. Such a coarse-grained model is presumably
derivable by homogenization of a more microscopic model of diffusion in a potential
landscape with many small and deep wells (relative to the thermal energy), which
represent the potential of the chemical bond in the traps (Fig. 2.10) (Taflia and
Holcman 2007).

2.7 NET with Killing

If the trajectories of a diffusion process x.t/ in a domain � can be terminated at
any time t and at each point x 2 � with probability k.x; t/�t C o.�t/, the function
k.x; t/ is called a killing measure (Schuss 2010b). If the boundary @� reflects the
trajectories x.t/, except for a small absorbing window @�a, the NET problem is to
find the absorption flux of trajectories that reach @�a. Thus there are two random
termination times defined on the trajectories x.t/, the time T to termination by killing
and the time � to termination by absorption in @�a.

2.7.1 The Probability of Absorbed Trajectories

We consider a diffusion process x.t/ in a domain �, defined by the stochastic
dynamics

dx D b.x/ dt C p
2B.x/ dw.t/ for x 2 �; (2.163)

where b.x/ is a smooth drift vector, B.x/ is a diffusion tensor, and w.t/ is a vector of
independent standard Brownian motions. We assume that a killing measure k.x; t/
is defined in� and that @� D @�a [ @�r, where @�a is a small absorbing part and
@�r is reflecting.

The transition probability density function of the process x.t/ with killing and
absorption is the probability density function of trajectories that have neither been
killed nor absorbed in @�a by time t,

p.x; t j y/ dx D Prfx.t/ 2 x C dx; T > t; � > t j yg: (2.164)
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It is the solution of the Fokker–Planck equation (Holcman et al. 2005a; Schuss
2010b, Sect. 6.6)

@p.x; t j y/
@t

D Lxp.x; t j y/ � k.x/p.x; t j y/ for x; y 2 �; (2.165)

where Lx is the forward operator

Lxp.x; t j y/ D
dX

i;jD1

@2� i;j.x/p.x; t j y/
@xi@xj

�
dX

iD1

@bi.x/p.x; t j y/
@xi

; (2.166)

and � .x/ D 1
2
B.x/BT.x/. The operator Lx can be written in the divergence form

Lxp.x; t j y/ D �r � J.x; t j y/, where the components of the flux density vector
J.x; t j y/ are

Ji.x; t j y/ D �
dX

jD1

@� i;j.x/p.x; t j y/
@xi

C bi.x/p.x; t j y/; .i D 1; 2; : : : ; d/:

The initial and boundary conditions for the Fokker–Planck equation (2.165) are

p.x; 0 j y/ D ı.x � y/ for x; y 2 � (2.167)

p.x; t j y/ D 0 for t > 0; x 2 @�a; y 2 � (2.168)

J.x; t j y/ � n.x/ D 0 for t > 0; x 2 @� � @�a; y 2 �: (2.169)

The probability of trajectories that are killed before reaching @�a is given by

PrfT < � j yg D
1Z

0

Z

�

k.x/p.x; t j y/ dx dt: (2.170)

The absorption probability flux on @�a is

J.t j y/ D
I

@�

J.x; t j y/ � n.x/ dSx

and
R1
0

J.t j y/ dt is the probability of trajectories that have ever been absorbed at
@�a.

The probability distribution function of the killing time T is the conditional
probability of killing before time t of trajectories that have not been absorbed in
@�a by that time,

PrfT < t j � > T; yg D PrfT < t; � > T j yg
Prf� > T j yg D

Z t

0

Z

�

k.x/p.x; s j y/ dx ds
Z 1

0

Z

�

k.x/p.x; s j y/ dx ds
:
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The probability distribution of the time to absorption at @�a is the conditional
probability of absorption before time t of trajectories that have not been killed by
that time,

Prf� < t j T > �; yg D

Z t

0

J.s j y/ ds

1 �
Z 1

0

Z

�

k.x/p.x; s j y/ dx ds
: (2.171)

Thus the NET is the conditional expectation of the absorption time of trajectories
that are not killed in �, that is,

EŒ� j T > �; y� D
1Z

0

Prf� > t j T > �; yg dt

D

Z 1

0

sJ.s j y/ ds

1 �
Z 1

0

Z

�

k.x/p.x; s j y/ dx ds
: (2.172)

The survival probability of trajectories that have not been terminated by time t is
given by

S.t j y/ D
Z

�

p.x; t j y/ dx: (2.173)

The mean time spent at x prior to termination,

Qp.xj y/ D
1Z

0

p.x; t j y/ dt;

is the solution of the boundary value problem

Lx Qp.x j y/ � k.x/Qp.x j y/ D � ı.x � y/ for x; y 2 � (2.174)

Qp.x j y/ D 0 for x 2 @�a; y 2 �
J.x j y/ � n.x/ D 0 for t > 0; x 2 @� � @�a; y 2 �:

If the initial pdf pI.x/ is a sufficiently smooth function, the density of the time spent
at x prior to termination,

Qp.x/ D
Z

�

Qp.x j y/pI.y/ dy; (2.175)
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is the solution of the inhomogeneous boundary value problem

Lx Qp.x/ � k.x/Qp.x/ D � pI.x/ for x 2 � (2.176)

Qp.x/ D 0 for x 2 @�a

QJ.x/ � n.x/ D 0 for t > 0; x 2 @� � @�a:

The probability PN of trajectories that are terminated at @�a is

PN D
Z

�

Prf� < T j ygpI.y/ dy D 1 �
Z

�

k.x/Qp.x/ dx: (2.177)

Averaging EŒ� j T > �; y� with respect to the initial density pI.x/ gives in (2.172)

EŒ� j T > �� D

Z 1

0

sJ.s/ ds

1 � R
�

k.x/Qp.x/ dx
; (2.178)

where J.s/ D R
�

J.s j y/pI.y/ dy.

2.7.2 Decay of the Survival Probability in One Dimension

To compare the survival probability of Brownian motion with and without a Dirac
killing (a trap or hot spot) at a point x1 in the interval Œ0; 	�, with absorbing
boundaries, we write the boundary value problem (2.165) as

@u.x; t j x1; y/

@t
D D

@2u.x; t j x1; y/

@x2
� Vı.x � x1/u.x; t j x1; y/ for 0 < x < 	

u.x; 0 j x1; y/ D ı.x � y/ (2.179)

u.0; t j x1; y/ D u.	; t j x1; y/ D 0;

and expand Green’s function for the initial-boundary-value-problem (2.179) for free
diffusion (V D 0) as

G.x; t j y/ D 2

	

1X

nD1
sin nx sin nye�n2t:

The survival probability for this problem in the interval is given by

S0.t j y/ D
	Z

0

G.x; t j y/ dx D 4

	

1X

nD1

sin.2n � 1/y
2n � 1 e�.2n�1/2t: (2.180)
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Next, we solve (2.179) with V > 0 for the Laplace transform OuV.x; q j x1; y/ of
u.x; t j x1; y/,

OuV.x; q j x1; y/ D OG.x; q j y/ � V OG.x; q j x1/

1C V OG.x1; q j x1/
OG.x1; q j y/; (2.181)

where

OG.x; q j y/ D 2

	

1X

nD1

sin nx sin ny

q C n2
: (2.182)

Note that

OS0.q j y/ D
	Z

0

OG.x; q j y/ dx D 4

	

1X

nD1

sin.2n � 1/y
.2n � 1/ .q C .2n � 1/2/ :

According to Eq. (2.173), the survival probability SV.t j y/ is given by

SV.t j x1; y/ D
	Z

0

uV.x; t j x1; y/ dx (2.183)

and the Laplace transform is

OSV.q j y/ D
	Z

0

OuV.x; q j x1; y/ dx: (2.184)

Using (2.181), we find that the survival probabilities, without and with the Dirac
killing, differ by

OS0.q j y/ � OSV.q j x1; y/ D V OG.x1; q j y/

1C V OG.x1; q j x1/

4

	

1X

nD1

sin.2n � 1/x1
.2n � 1/ .q C .2n � 1/2/ :

The difference OS0.q j y/ � OSV.q j x1; y/ has no poles other than the zeros of 1 C
V OG.x1; q j x1/, which are written as q D ��2, where � is the smallest positive root
of the equation

sin �.	 � x1/ sin �x1 D �� sin �	

V

Holcman et al. (2005a) (see Appendix I below). For small V , we have

q D �1 � V
2

	
sin.	 � x1/ sin x1 C O

�
V2
�
: (2.185)

The result (2.185) means that killing is most effective when the killing site is in the
middle of the interval.
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For large V and x1 > 	=2, we have

q D �
�
	

x1

�2
C 2	2

x31

1

V
C O

�
1

V2

�
; (2.186)

which means that for large killing V the decay rate is the same as that in the
interval enclosed between the killing site x1 and the more distant endpoint of the
interval Œ0; 	�, with absorbing boundaries. Note that the decay rate in this case is
independent of the initial point y.

The conditional MFPT EŒT j T < �; y� is (see Appendix II below)

EŒT j T < �; y� D � @

@q
lnfOp.x1; q j y/g

ˇ̌
ˇ̌
qD0

(2.187)

D x1y.x21 C y2 C 2	2/ � 	.x31 C y3/

6.	 � x1/y

	

	 C V.	 � x1/y
:

Appendix I: Details of Computations Used in Sect. 2.7.2

The Laplace transform OG.x1; q j x1/ is given by

OG.x1; q j x1/ D 2

	

1X

nD1

sin nx1 sin nx1
q C n2

: (2.188)

Replacing x by x � 	 in the identity

	 cos.ax/

2 sin.ax/
D 1

2a
C

1X

nD1

.�1/na cos.ax/

a2 � n2
for � 	 < x < 	; (2.189)

gives for the function

F.z/ D
1X

nD1

cos.nx/

q C n2
; (2.190)

the explicit expression

F.z/ D � 1

2q
� 	 cosŒ

p�q.z � 	/�
2
p�q sin.

p�q	/
:

Consequently,

OG.x1; q j x1/ D F.0/ � F.2x1/

	
D cosŒ

p�q.2x1 � 	/� � cos.
p�q	/

2
p�q sin.

p�q	/
:
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Remark. The expansions for small and large V of the zeros in Sect. 2.7.2 are
obtained by a regular perturbation scheme in terms of the potential and the inverse
of the potential.

2.7.3 The Ratio of Absorption to Killing

According to the Fokker–Planck equation (2.165), the time-dependent ratio R.t/ of
the absorption flux up to time t to the probability of killed trajectories by time t is
defined as

R.t/ D

Z

�

dy
Z

@�a

J.x; t j y/ � �.x/pI.y/ dSx

Z

�

dy
Z

�

k.x/p.x; t j y/ dx pI.y/
: (2.191)

The steady state ratio R1 is given by

R1 D lim
t!1 R.t/ D

Z

�

dy
Z

@�a

J.x j y/ � �.x/ dSxpI.y/
Z

�

dy
Z

�

k.x/G.x j y/ dxpI.y/
; (2.192)

where G.x j y/ is defined by the boundary value problem for the equation

�pI.y/ D LxG.x; j y/ � k.x/G.x j y/ for x; y 2 � (2.193)

with the forward operator Lx defined in (2.166), and J.x j y/—the flux density vector
at point x, computed with respect to the function G.x j y/. When pI.y/ D ı.y � x/,
the function G.x j y/ is the standard Green function for the specified boundary value
problem.

2.7.4 Splitting Influx into Absorption and Killing Effluxes

A related problem is that of splitting a steady-state influx through a part @�i of the
boundary into efflux through @�a and efflux by killing. Thus, we define the ratio
Rs of the two parts of the efflux. The boundary value problem for the steady state
Fokker–Planck equation is

Lxp.x/ � k.x/p.x/ D 0 for x 2 �
p.x/ D 0 for x 2 @�a

J.x/ � �.x/ D 0 for x 2 @� � @�a � @�i; t > 0

J.x/ � �.x/ D �ˆ.x/ for x 2 @�i; (2.194)
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where the forward operator Lx is defined in (2.166), ˆ.x/ 
 0 is the steady influx
density, and

Ja D
Z

@�a

J.x/ � �.x/dSx (2.195)

is the steady absorption efflux. Thus the total influx is

Ji D
Z

@�i

ˆ.x/ dSx: (2.196)

The efflux ratio Rs is defined as

Rs D

Z

@�a

J.x/ � �.x/ dSx

Z

�

k.x/p.x/ dx
D

Z

@�i

ˆ.x/ dSx �
Z

�

k.x/p.x/ dx
Z

�

k.x/p.x/ dx
: (2.197)

The second part of the identity expresses conservation of probability. The ratios
R1 and Rs can be evaluated explicitly in a one-dimensional finite interval. We
distinguish between two cases: in the first one the killing measure is uniformly
distributed and in the second it is the Dirac measure k.x/ D kı.x � x1/ at x1 with
some positive constant k. The boundary value problem (2.194) becomes

D
@2p.x/

@x2
� kı.x � x1/p.x/ D 0 for 0 < x < L

@p.L/

@x
Dˆ; p.0/ D 0

where ˆ < 0 and the efflux ratio is

Rs D
�D

@p.0/

@x
kp.x1/

: (2.198)

An explicit computation of p.x/ gives

Dp0.L/ D � Dˆ

1C k

D
.L � x1/

; kp.x1/ D kˆ.x1 � L/

1C k

D
.L � x1/

;

and

Rs D D

k.L � x1/
: (2.199)
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Similarly, from relation 2.192, the ratio R1 computed for a uniform distribution in
the interval Œ0;L� is given by

R1 � 1

cosh.bL/
for L ! 1; where (2.200)

b D
r

k

D
:

Appendix II: Derivation of (2.187)

The Laplace transform of Eq. (2.179) with absorbing boundary conditions is
given by

Ou.x; q j y/ D �2V

	

C1X

1

sin nx sin ny

q C n2
Ou.x1; q j y/C OG.x; q j y/;

which gives for x D x1

Ou.x1; q j y/ D
OG.x1; q j y/

1C 2V

	

1X

1

sin nx1 sin ny

q C n2

;

and

@

@q
ln Op.x1; q j y/ D @

@q
ln OG.x1; q j y/ � @

@q
ln

 
1C 2V

	

1X

1

sin nx1 sin ny

q C n2

!

D˛.x1 j y/C ˇ.x1 j y/

with

˛.x1 j y/ D @

@q
ln OG.x1; q j y/

ˇ̌
ˇ̌
qD0

D �

1X

nD1

sin nx1 sin ny

n4

1X

nD1

sin nx1 sin ny

n2

and

ˇ.x1 j y/ D � @

@q
ln

 
1C 2V

	

C1X

1

sin nx1 sin ny

q C n2

!ˇ̌
ˇ̌
ˇ
qD0
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D

2V

	

1X

nD1

sin nx1 sin ny

n4

1C 2V

	

C1X

1

sin nx1 sin ny

n2

:

It is well known that for x1; y 2 .0; 	/,

2

	

1X

nD1

sin nx1 sin ny

n2
D .	 � x1/y

	

2

	

1X

nD1

sin nx1 sin ny

n4
D x1y

6	
.x21 C y2 C 2	2/ � .x31 C y3/

6
;

hence

EŒT j T < �; y� D � ˛.x1 j y/C ˇ.x1 j y/

D x1y.x21 C y2 C 2	2/ � 	.x31 C y3/

6.	 � x1/y

	

	 C V.	 � x1/y
;

which is (2.187).



Chapter 3
NET in Molecular and Cellular Biology

3.1 Introduction

Critical biological processes, such as synaptic plasticity and transmission, activation
of genes by transcription factors, or double stranded DNA break repair, are
controlled by diffusion in structures that have both large and small spatial scales.
These may be small binding sites inside or on the surface of a cell, or narrow
passages between subcellular compartments. The great disparity in spatial scales
is the key to controlling cell function by structure. This disparity poses analytical
and numerical difficulties in extracting properties from experimental data, from
biophysical models, and from Brownian dynamics simulations of diffusion in multi-
scale structures. Some of these difficulties are resolved by the methods described in
Chaps. 1 and 2, which are applied here to the analysis and simulations of subcellular
processes and to the quantification of their biological functions.

The great disparity between spatial scales in a biological cell structure leads to
time scale separation between molecular events in the cell and in its physiological
response. Specifically, the time scale of diffusion at large is much shorter than that
of diffusing into small and hidden targets in cells. This separation indicates that
the conversion of molecular events into cellular response, which is a rare event
(on the time scale of diffusion) is controlled by structure. It is well known in the
theory of ionic channels that structure is the main determinant of channel selectivity
and gating (Hille 2001) (see also R. MacKinnon Nobel lecture MacKinnon 2003).
Traditionally, when the crystallographic structure of a channel is unknown, record-
ings of channel current–voltage characteristics are used to reconstruct the spatial
organization of protein and ions that define the channel pore (Chen et al. 1997;
Burger et al. 2007). But even when the crystallographic structure of a channel is
known, the determination of the function of different channel components, such
as gating, ionic selectivity, and channel conductances from the molecular structure,
is only partially known (Chen et al. 1999; Boda et al. 2007). A possible approach for
an answer relies on either solving the Poisson–Nernst–Planck equations (Eisenberg
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and Chen 1993) or Brownian or molecular dynamics simulations of the joint
diffusive motion of protein and ions as well as the computation of the time-
dependent electric field (see, for example, Aboud et al. 2003).

The resolution of the structure-function relationship in channels is more accurate
than in cells due to the nano-scale resolution of channel structure. The coarser
scale of structural resolution of cellular and subcellular compartments necessitates
perforce much coarser mathematical and biophysical models than channel models.
The former can be expected to give much coarser functional information on cellular
function than the latter for channel function. In order to produce manageable cell
models many physical features have to be given up, for example, interactions
between mobile particles, which are the determinants of channel conductance and
selectivity. Also the structural model of the cell, which is by and large unknown,
has to be simplified. The functional information that can be extracted from the
simplified models of cell structure calls for different analytical and simulation tools
than in channels. To address the structure-function question in cell models, we
focus on several examples of simplified structures of cellular microdomains, such
as the structure of enzymatic active sites, confined chromatin structure, the transient
structure during cell division, and the flow of genetic materials exchanged by
diffusion; in particular, on the regulation of diffusion flux in synapses and dendritic
spines of neurons, whose spatial structure has been extensively studied (Harris and
Stevens 1988; Bourne and Harris 2008).

There are about 1011 neurons in the human brain, each containing about
103 synapses, which consist of pre- and post-synaptic terminals. In excitatory
connections the latter can be a dendritic spine-like structure (Fig. 3.1). There are also
stand-alone spines that all in all can number about 105 in a hippocampal neuron. The
function of synapses and dendritic spines is still unclear, though their morphological
changes in cognitive pathology, such as in epilepsy and autism spectrum disorders,
indicate that they may be involved in regulating the synaptic function. The structure-
function approach in modeling and analyzing these structures can possibly be the
key to bridging the gap between the molecular and the cellular scales (Figs. 3.2
and 3.3).

Recognized more than 100 years ago by Ramón y Cajal (1909), dendritic spines
are small terminal protrusions on neuronal dendrites and are considered to be
the main locus of excitatory synaptic connections. The general spine geometry,
as observed in Fig. 3.1(right), consists of a relatively narrow cylindrical neck
connected to a bulky head (the round part in the schematic Fig. 3.4). Indeed, spine
shapes can fall into one of these categories. In addition, spine geometrical shapes
correlate with their physiological functions. Change of spine morphology can
be induced by synaptic potentiation protocols and indeed, intracellular signaling,
such as calcium release from stores, alters the morphology of dendritic spines in
cultured hippocampal neurons. These changes in geometry can affect the spine-
dendrite communication. One of the first quantitative assessments of geometry was
obtained by a direct measurement of diffusion through the spine neck. Concentration
gradients between spines and shafts in rat CA1 pyramidal neurons were established
by photo-bleaching and photo-release of fluorescein dextran in order to track the
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Fig. 3.1 Left: spines on a dendrite. Right: three-dimensional EM reconstruction of two dendrites
from the hippocampus. The PSDs of excitatory synapses are marked red and of inhibitory
synapses—blue. Filopodia (marked F) and mushroom spines (marked M) are clearly seen (Bourne
and Harris 2008)

Fig. 3.2 Left: electron-microscopy of an excitatory synapse. Vesicles containing NT can be seen
inside the pre-synaptic terminal (marked A). The spine (marked S) is connected to the dendritic
shaft (marked D) by a neck. The synaptic cleft separating pre- and post-synaptic membranes
is 20–25 nm wide. Glia cells surrounding the synaptic cleft are marked G. The arrow points
at organelles inside the spine. Right: blowup of the synaptic cleft vicinity. The synaptic cleft is
20–25 nm wide. Vesicles with NT molecules are clearly seen in this enlargement

time course of re-equilibration. It was well approximated by a single exponential
decay, with a time constant in the range of 20–100 ms. The role of the spine neck
was further investigated experimentally with flash photolysis of caged calcium and
theoretically, with the main conclusion that geometrical changes in the spine neck,
such as the length or the radius, are key modulators of calcium dynamics in the
process of spine-dendrite communication

The connection between the head and the neck is not only relevant to three-
dimensional diffusion in the bulk, but also for two-dimensional surface diffusion.
Indeed, synaptic transmission and plasticity involve the trafficking of receptors on
cell membranes such as AMPA or NMDA glutamatergic receptors, which mediate
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Fig. 3.3 Schematic diagram of the synaptic cleft. The cleft domain is marked �. The pre- and
post-synaptic membranes are reflecting boundaries (@�r) for the Brownian trajectories of the NT
molecules (blue dots). The glia cells G and the AMPA receptors form the absorbing boundary
@�a. Clusters of AMPARs (a,b,c) are co-localized with release sites of vesicle fusion, mediated by
adhesion molecules (red)

Fig. 3.4 Schematic diagram
of a dendritic spine with a
smoothly connected neck
(left) and with a neck
connected at a finite angle
(right)

the post-synaptic current. The number and type of receptors that shape the synaptic
current could be regulated by spine geometry. Regulation of synaptic current by
spine geometry was explored theoretically by using asymptotic expressions for the
residence time and experimentally by monitoring the motion of AMPA receptors on
the surface of mature neurons.

3.2 From Molecular to Cellular Description

In this section, we describe how to bridge between physical models at the molecular
scale and the micrometer scale, at which cells filter and convert molecular signals
into cellular response. The latter defines cellular or subcellular function. We report
here recent progress in quantifying analytically the control of diffusion flux into
small absorbing targets or through narrow passages in cells. This case is especially
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important in molecular searches that are not directed at long distances by a field
of force and the only flux control mechanism is the geometrical structure. We
discuss specific applications of the flux formulas in dendritic spines, in the case
of synaptic transmission, for enzyme structure and hidden target sites, for diffusion
in the confined chromatin structure in the context of DNA-repair, and the unilateral
flow of genetic materials exchanged by diffusion during cell division.

The behavior of molecules is complex not only because of their individual
structure, but also because they form clusters, interact, reflect, and so on. At this
stage we only have access to certain sampled molecular trajectories, thus it is unclear
how to reconstruct their dynamics from the statistics of the samples. In order to
interpret molecular data, we adopt the widely accepted model of molecular motion
as diffusion in a field of force. The force field may represent electric interactions
with fixed or mobile charges, dielectric interactions with obstacles, such as lipid
bilayers and other fixed cell components, hydrodynamical interactions with an
ambient flow field, and so on. The task of molecular level model is to extract cellular
level properties and infer from it cell function.

3.2.1 Flux Through Narrow Passages Identifies Cellular
Compartments

The random movement of ions, proteins, and other particles in cells is traditionally
described as Brownian motion, as mentioned above. The Brownian trajectories
are reflected at the cell membrane and at other obstacles, but can be absorbed
(terminated) at receptors and other binding sites or when they exit the cell (or a
subcellular compartment) and enter another structure. Different compartments for
Brownian trajectories are defined here by the probability density of the trajectories
or the statistics of the time a trajectory spends at a point. As in segmentation of
images (or other data, see Wikipedia), a histogram is computed from all points
visited by a trajectory (or trajectories) and the peaks and valleys in the histogram
are used to identify the compartments as clusters. What makes the clusters, be it
membranes, obstacles, or forces, is an active field of experimental live cell imaging
by super-resolution microscopy (Manley et al. 2008; Huang et al. 2010). By its
very definition, the passage of a trajectory from one compartment to the other is a
rare event. The rare events may be thermal activation over a potential barrier and/or
traversing a narrow passage, such as a channel, a nano-pore, or a narrow neck.

The mean first passage time (MFPT) N� of a Brownian trajectory from a compart-
ment to an absorbing target or through a narrow passage is a fundamental concept
in the description of rare events. Specifically, the probability density function of the
time spent in a compartment prior to termination or escape from the compartment
in the limit of small target is exponential for sufficiently long times,

pN� .t/ � N��1 expf�t= N�g: (3.1)
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Fig. 3.5 Left: Brownian motion in a circular disk whose boundary is reflecting, except for a short
absorbing arc @�a (marked green). Right: Brownian motion on the surface of a decapitated sphere.
The circumference of the spherical cap (marked green) is the absorbing boundary @�a

The exponential rate N��1 is therefore the flux into the absorbing target. In the case of
crossing from one compartment to another through a narrow neck the crossing rate is
1=2 N� , where N� is the MFPT to the stochastic separatrix between the compartments.
The latter is the locus of initial points of a Brownian trajectory from which it ends
up in one compartment or the other with equal probabilities (Schuss 2010a).

3.2.2 The MFPT and the Survival Probability

We consider again a compartment� whose boundary @� consists of a part @�r that
is impermeable to Brownian trajectories, such as a cell membrane, and a small part
@�a that absorbs them (see Figs. 3.5, 3.6, 3.7, 3.8). The MFPT N�.x/ from x 2 �

to @�r is the solution of the mixed boundary value problem (1.4)–(1.6), which we
rewrite for convenience as

D� N�.x/ D � 1 for x 2 � (3.2)

@ N�.x/
@n

D 0 for x 2 @�r (3.3)

N�.x/ D 0 for x 2 @�a; (3.4)

where D is the diffusion coefficient and n is the unit outer normal to the boundary
(Schuss 2010b). The system (3.2)–(3.4) follows from the backward Kolmogorov
equation (Schuss 2010b) (the adjoint of the Fokker–Planck equation) for the
transition probability density function p.y; t j x/ of the Brownian trajectories,

@p.y; t j x/
@t

D D�xp.y; t j x/ for x; y 2 � (3.5)

@p.y; t j x/
@nx

D 0 for y 2 �; x 2 �r (3.6)
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Fig. 3.6 Brownian trajectory inside a compartment containing well-separated absorbing windows.
Left: the reflecting boundary @�r consists of arcs and the absorbing boundary @�a consists of
well-separated small absorbing windows. Right: the domain � is the white area inside the dashed
square. The absorbing boundary @�a consists of the four segments of length L. The reflecting
boundary @�r consists of the four arcs of the orange disks

Fig. 3.7 A composite
domain consists of a bulky
head �1 connected by a
funnel to a narrow neck �2 at
an interface @�i D AB. The
entire boundary is reflecting
for Brownian motion, except
for a small absorbing window
@�a at the end CD of the
neck �2

W1

W2

¶Wi

¶Wa
DC

A B

p.y; t j x/ D 0 for y 2 �; x 2 �a (3.7)

p.y; 0 j x/ D ı.y � x/ for x; y 2 �: (3.8)

The survival probability of Brownian trajectories that start at x 2 � is

Prf� > t j xg D
Z

�

p.y; t j x/ dy (3.9)
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Fig. 3.8 @�a is an opening
at the end of a funnel of finite
angle [see Fig. 2.1(right)]

and its mean value is

EŒ� j x.0/ D x� D N�.x/ D
1Z

0

Prf� > t j xg dt: (3.10)

It follows from (3.5) and (3.8) that

D� N�.x/ D
1Z

0

D�x Prf� > t j xg dt D
1Z

0

Z

�

@p.y; t j x/
@t

dy dt D �1: (3.11)

The Neumann and Dirichlet boundary conditions (3.3) and (3.4) are inherited
from (3.6) and (3.7), respectively. Asymptotic expansions of the solution to (3.2)–
(3.4) are constructed in Chap. 1 above.

3.3 Geometrical Classification of Cellular Domains

The determination of cell function from its known structure relies on the geometrical
properties of the structure. Specifically, the geometry of small targets and narrow
passages is the determinant of the diffusion influx and efflux of ions and molecules
between cellular compartments or on cellular membranes. These can be determined
analytically by calculating the MFPT of two- and three-dimensional Brownian
trajectories from compartments to small targets.

The MFPT of two-dimensional Brownian motion on a membrane surface is
described by the two-dimensional version (1.18)–(1.20) of the boundary value
problem (3.2)–(3.4). The boundary of a surface compartment consists of a curve
that reflects Brownian trajectories on the surface and a small absorbing curve at
which trajectories are terminated. The physical domain � can be represented in
parameter space as a planar domain, which we again denote �, whose boundary
@� consists of an impermeable curve @�r and a small opening for the passage of
trajectory, which is a short curve @�a, at which trajectories are terminated in the
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sense that once a Brownian trajectory exits � through @�a it does not return to �
within the observation time (Fig. 3.5).

The small absorbing window @�a studied here can be classified as follows:

1. @�a is a short part of the smooth boundary curve @� [Figs. 1.1 and 3.5(left)].
2. @�a can be placed at a corner (Fig. 1.4) or at a cusp (Fig. 1.5).
3. @�a can be placed at the end of a cusp-shaped funnel of the boundary

(Figs. 2.1(left), 3.6(right), or 3.7, or the surface of revolution in Fig. 2.2(right),
obtained by rotating it about its axis of symmetry).

4. The compartment � can consist of a bulky head connected to an essentially one-
dimensional cylinder of small radius a and length L, as is the case of a neuronal
spine membrane [see Fig. 3.7(left)].

5. More complicated structures are formed by joining two or more bulky heads
by short or long narrow strips or cylinders [dumbbell-shaped domains, see
Fig. 3.7(right)]. The former can be formed on a spine membrane that contains
closely bunched obstacles, such as pickets, fences, non-interacting molecules,
actin filaments, and so on, between which a diffusing receptor has to squeeze on
its way to the PSD (Fig. 3.6). In this case the effective motion of the diffusing
receptor is dominated by the mean time N� to squeeze through the narrow straits
formed by the obstacles (see Sect. 4.3).

6. A collection of well-separated windows (Fig. 3.6).

In the context of the above classification, we define the following categories of
narrow escape problems for solid structures with a small absorbing window @�a:

1. @�a is a circular disk on a regular boundary @� [Fig. 3.5(right) of a decapitated
ball (Fig. 1.6) with an absorbing disk (marked green) in Fig. 3.5(right)].

2. @�a is a disk at the end of a funnel, as in Fig. 2.2(right) (e.g., obtained by rotating
Fig. 2.1(left) about its axis of

3. @�a is a disk at the end of a narrow cylindrical neck (e.g., obtained by rotating
Fig. 3.7(left) about its axis of symmetry).

4. In dumbbell-shaped structures, obtained by rotating Fig. 3.7(right) about its axis
of symmetry, the middle surface is a small target. A key quantification is given
by the principal eigenvalue of the Laplace equation.

5. Leakage through a small window in a structure that conducts Brownian particles
from a source to a relatively large absorbing part of the boundary and the
particles can leak out through small absorbing windows in the reflecting part
of the boundary. This is the case, for example, of the synaptic cleft that conducts
neurotransmitter molecules, released from a vesicle at the presynaptic terminal,
either to receptors in the post-synaptic distribution on the spine membrane
or to the surrounding glia cells [Fig. 3.9(left)]. The structure of the cleft is
approximately a short cylinder with a source of Brownian particles in one of the
impermeable bases, small absorbing windows in the other impermeable base, and
absorbing lateral envelop. Another example is that of calcium leakage through
channels in the spine neck that conducts calcium to the absorbing end at the
dendrite [Fig. 3.9(right)].
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Fig. 3.9 Left: a schematic model of the synaptic cleft Figs. 3.2(right) and 3.3. Right: a schematic
model of the spine neck as a conductor of diffusion flux [Fig. 3.3(left) and @�2 in Fig. 3.7(left)].
A Brownian trajectory enters a cylindrical neck (e.g., of a neuronal spine) at a source S0 and can
leak through a small window S."/ (e.g., a pump) or reach the absorbing bottom @�a D SL (e.g.,
the dendritic shaft)

6. @�a consists of a number of well-separated absorbing windows [Fig. 3.6(left)].
The absorbing windows can be at regular a boundary [Fig. 3.5(right)] or at the
ends of funnels [Fig. 3.7(left) with several necks].

As shown in Chap. 1, the MFPT to the small absorbing target or through the narrow
neck depends strongly on the detailed geometrical features of the listed types of
compartments and their connections to necks. Differences of orders of magnitude
in the MFPTs through a neck can arise between necks connected to the head at an
angle or smoothly by a funnel. The local curvature of the connection can change N�
by orders of magnitude.

3.3.1 The Formula for the NET N�

The analytical expression for the MFPT N� strongly depends on the geometrical
features of the compartment. It thereby defines time scales of diffusion influx
(respectively efflux) to (respectively from) the compartment, which can be inter-
preted as regulation of the flux. Thus the analytical asymptotic approximation to N�
expresses the influence of geometrical structure on cellular functions that consist in
controlling diffusion fluxes.

The asymptotic formulas for N� can be classified according to the local geometry
of the compartment near the absorbing sites or narrow passages, which are the
main controllers of the diffusion flux. Obviously, the formulas in two-dimensional
compartments are different than in three-dimensional ones.



3.3 Geometrical Classification of Cellular Domains 105

3.3.2 Formulas for Two-Dimensional Domains

The MFPT from a domain� in the plane to a small sub arc @�a (of length a) of the
boundary @�, according to the classification in Sect. 3.3, is given by

1. For type (I) @�a is a sub-arc of a smooth boundary [see the schematic Figs. 1.1
and 3.5(left)]. The MFPT from any point x in � to @�a is denoted N�x!@�a . This
is due to the fact that for

" D 	j@�aj
j@�j D 	a

j@�j � 1 (3.12)

the MFPT is independent of x outside a small vicinity of @�a (called a boundary
layer). According to Theorem 1.4.1, for x 2 �, outside a boundary layer near
@�a,

N�x!@�a D j�j
	D

ln
1

"
C O.1/; (3.13)

where O.1/ depends on the initial distribution of x (Ward and Keller 1993; Singer
et al. 2006b). In particular, if � is a disc of radius R, then for x at the center of
the disk,

N�x!@�a D R2

D

�
log

R

a
C 2 log 2C 1

4
C O."/

�
;

and averaging with respect to a uniform distribution of x in the disk

N� D R2

D

�
log

R

a
C 2 log 2C 1

8
C O."/

�
:

Formula (3.13) indicates that the flux through a hole in a smooth wall on a flat
membrane surface (e.g., a corral) is regulated by the following parameters, the
area j�j inside the wall, the diffusion coefficient D, and the aspect ratio " (3.12).

In the case of Brownian motion on a sphere of radius R the MFPT to an
absorbing circle centered on the north-south axis near the south pole with small
radius a D R sin ı=2 [see the schematic Figs. 1.6 and 3.5(right)], is given in
Sect. 1.4.2 by (1.38) as

N� D 2R2

D
log

sin �
2

sin ı
2

;

where � is the angle between x and the south-north axis of the sphere
2. For type (II), if the absorbing window is located at a corner of angle ˛ (Fig. 1.4),

then, according to Sect. 1.4.1,
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N� D j�jg
D˛

�
log

1

"
C O.1/

�
; (3.14)

where j�jg is the surface area of the domain on the curved surface, calculated
according to the Riemannian metric on the surface [see (1.21), (1.22), and Singer
et al. 2006c]. Formula (3.14) indicates that control of flux is regulated also by
the access to the absorbing window afforded by the angle of the corner leading
to the window (see Fig. 1.4).

3. For type (III), if the absorbing window is located at a cusp (see Fig. 1.5), then
the NET N� grows algebraically, rather than logarithmically. Thus, in the domain
bounded between two tangent circles, the expected lifetime is given in (1.32) (see
Sect. 1.4.1) as

N� D j�j
.d�1 � 1/D

�
1

"
C O.1/

�
; (3.15)

where d < 1 is the ratio of the radii. Formula (3.15) indicates that a drastic
reduction of flux can be achieved by putting an obstacle that limits the access to
the absorbing window by forming a cusp-like passage [see Fig. 2.2(left)].

4. For type (IV), when @�a (of length a) is at the end of a narrow neck with radius
of curvature Rc [see the schematics Fig. 1.2(left) and Fig. 2.1], the MFPT is given
in Theorem 2.1.1 as

N� D j�j
4D
p
2a=Rc

.1C O.1// for a � j@�j: (3.16)

The MFPT to the narrow straits formed by a partial block of a planar domain [see
Fig. 2.2(left)] is given in Theorem 2.1.1 as

N� D
s

Rc.Rc C rc/

2rc"

	j�j
2D

.1C o.1// for " � j@�aj;Rc; rc; (3.17)

where Rc and rc are the curvatures at the neck and " is the width of the straits.
For the surface of revolution in Fig. 2.2(right), generated by rotating the curve

in Fig. 2.1(left) about its axis of symmetry, we use the representation of the
generating curve

y D r.x/; ƒ < x < 0;

where the x-axis is horizontal with x D ƒ at the absorbing end AB. We assume
that the parts of the curve that generate the funnel have the form

r.x/ D O.
p

jxj/ near x D 0

r.x/ D a C .x �ƒ/1C�
�.1C �/`�

.1C o.1// for � > 0 near x D ƒ; (3.18)
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where a D 1
2
AB D "=2 is the radius of the gap, and the constant ` has dimension

of length. For � D 1 the parameter ` is the radius of curvature Rc at x D ƒ. The
MFPT from the head to the absorbing end AB is given by

N� � S.ƒ/
2D

�
`

.1C �/a

��=1C�
�1=1C�

sin
�	

1C �

; (3.19)

where S is the entire unscaled area of the surface. In particular, for � D 1 the
MFPT (3.19) reduces to

N� � S
4D
p

a=2`
(3.20)

[compare to (1.38)]. The case � D 0 corresponds to a conical funnel with an
absorbing circle of small radius a (see Fig. 3.8). Equation (3.20) for a sphere
reduces to (1.38) [see Figs. 1.6 and 3.5(right)]. Formulas (3.16)–(3.20) indicate
that efficient control of the flux can be achieved by putting the absorbing
window at the end of a narrow symmetric or asymmetric funnel [see Figs. 2.1
and 2.2(right)]. This type of funnel can be formed by crowding obstacles on the
membrane surface (Fig. 4.4a below), which results in an effective coarse-grained
diffusion coefficient on the surface, different from the microscopic diffusion
coefficient (see Sect. 4.3 below).

5. In domains of type (V) a bulky head is connected to an essentially one-
dimensional strip (or cylinder) of small radius a and length L, as is the case
of a neuronal spine membrane. The connection of the head to the neck can be at
an angle or by a smooth funnel [Figs. 3.4 and 3.7(left)], the narrow cylindrical
neck is�2. The boundary of the domain is impermeable to Brownian trajectories
and only the end of the cylinder @�a absorbs them. In the three-dimensional case
the Dirichlet boundary @�a is a small absorbing disk at the end of the cylinder.
The domain �1 is the one shown in Fig. 2.1 and it is connected to the cylinder at
an interface @�i, which in this case is the interval AB in Fig. 2.1. Theorem 2.1.2
gives the MFPT from x 2 �1 to @�a as (2.28), that is,

N�x!@�a D N�x!@�i C L2

2D
C j�1jL

j@�ajD :

Figure 3.10 shows that the smoothness of the neck connection makes a big
difference in the MFPT. Formula (2.28) explains the role of a narrow neck in
flux regulation. The flux dependence on the neck length is quite strong.

6. A dumbbell-shaped domain [of type (VI)] consists of two compartments �1

and �3 and a connecting neck �2 that is effectively one-dimensional, such as
shown in Fig. 3.7(right), or in a similar domain with a long neck. A Brownian
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Fig. 3.10 Left: the NET of Brownian motion on the surface of revolution in Fig. 2.2(right),
obtained by revolving one of the curves in Fig. 3.4 about its axis of symmetry. Right: the NET in
the corresponding solids of revolution. The smoothness of the connection makes a big difference

trajectory that hits the segment AB in the center of the neck �2 is equally
likely to reach either compartment before the other; thus, AB is the stochastic
separatrix (SS). Therefore the mean time to traverse the neck from compartment
�1 to compartment�3 is asymptotically twice the MFPT N��1!SS. Neglecting, as
we may, the mean residence time of a Brownian trajectory in �2 relative to that
in �1 or in �3 we can write the transition rates from �1 to the �3 and vv as

��1!�3 D 1

2 N��1!SS
; ��3!�1 D 1

2 N��3!SS
: (3.21)

These rates can be found from the explicit expression (3.1) for the flux into an
absorbing window

�1 � 1

N� ; (3.22)

where N� is given in (2.28). Here N�x!@�i is any one of the MFPTs given above,
depending on the geometry of �1 with L half the length of the neck and with
SS D @�a. The radii of curvature Rc;1 and Rc;3 at the two funnels may be different
in�1 and�3. The smallest positive eigenvalue � of the Neumann problem for the
Laplace equation in the dumbbell is to leading order � D �.��1!�3 C��3!�1/.
For example, if the solid dumbbell consists of two general heads connected



3.3 Geometrical Classification of Cellular Domains 109

smoothly to the neck by funnels [see (3.27)], then Theorem 2.2.2 implies that
the two rates are given by

1

��1!�3

Dp
2

"�
Rc;1

a

�3=2 j�1j
Rc;1D

#
.1C o.1//C L2

4D
C j�1jL
	a2D

(3.23)

1

��3!�1

Dp
2

"�
Rc;3

a

�3=2 j�3j
Rc;3D

#
.1C o.1//C L2

4D
C j�3jL
	a2D

:

Formulas (3.23) indicate that the unidirectional fluxes between the two compart-
ments of a dumbbell-shaped domain can be controlled by the area (or surface
area) of the two and by the type of obstacles to the access to the connecting neck.
The equilibration rate in the dumbbell, �, is thus controlled by the geometry.

7. The mean time to escape through N well-separated absorbing windows of lengths
aj at the ends of funnels with radii of curvature `j, respectively, in the boundary
@� of a planar domain � is given by (2.107) as

N� D 	j�j
2D

PN
jD1

p
aj=`j

.1C o.1// for aj=`j � j@�j: (3.24)

The probability to escape through window i is given by (2.108) as

pi D
p

ai=`iPN
jD1

p
aj=`j

: (3.25)

Formulas (3.24) and (3.25) are significant for diffusion in a network of com-
partments connected by narrow passages (e.g., on a membrane strewn with
obstacles). The dependence of the MFPT N� and of the transition probabilities pi

on the local geometrical properties of the compartments renders the effective dif-
fusion tensor in the network position-dependent and can give rise to anisotropic
diffusion.

8. If the domain contains a deep potential trap the Brownian trajectory can be in
any one of the following three states: trapped in the well, diffusing in the domain
outside the well, and be absorbed in the small absorbing window. The MFPT to
the window was calculated in Sect. 1.9.3.

3.3.3 Formulas for N� in Three-Dimensional Domains

The interpretation of the formulas for the cases (1)–(6) is much the same as for the
two-dimensional case.
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1. The MFPT to a circular absorbing window @�a of small radius a centered at 0

on the boundary @� is given in Theorem 1.6.1 as

N�x!@�a D j�j
4aD

�
1C L.0/C N.0/

2	
a log a C o.a log a/

� ; (3.26)

where L.0/ and N.0/ are the principal curvatures of the boundary at the center
of @�a.

2. The MFPT from the head of the solid of revolution in Fig. 2.2(right), obtained by
rotating the symmetric domain in Fig. 2.1(left) about its axis of symmetry, to a
small absorbing window @�a at the end of a funnel is given in Theorem 2.2.2 by

N� D 1p
2

�
Rc

a

�3=2 j�j
RcD

.1C o.1// for a � Rc; (3.27)

where Rc is the radius of curvature of the rotated curve at the end of the funnel.
3. The MFPT from a point x in a bulky head � to an absorbing disk @�a of a small

radius a at the end of a narrow neck of length L, connected to the head at an
interface @�i is given by the connection formula (2.28). When the cylindrical
neck is attached to the head at a right angle the interface @�i is a circular disk
and N�x!@�i is given by (3.26). When the neck is attached smoothly through a
funnel, N�x!@�i is given by (3.27).

4. The mean time to escape through N well-separated absorbing circular windows
or radii aj at the ends of funnels with curvatures `j, respectively, is given in
Sect. 2.1.1 as

N� D 1p
2

j�j

D
PN

jD1 `j

�
aj

`j

�3=2 (3.28)

and the exit probability through window i is given by

pi D ai
3=2`

�1=2
iPN

jD1 aj
3=2`

�1=2
j

: (3.29)

5. The principal eigenvalue of the Laplace equation in a dumbbell-shaped structure
is given in Eqs. (2.110)–(2.112) above.

6. The leakage flux through a circular hole of small radius a centered at 0 in the
reflecting boundary is given in Sect. 1.9 as

Ja D 4aDu0.0/C O

�
a2

j�j2=3 log
a

j�j1=3
�
; (3.30)
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where u0.0/ is the concentration of diffusers at the window in the same model
without the absorbing window.

7. The MFPT to a two-dimensional ribbon of width " separating spherical mem-
branes of radii R1 � R2 (see Fig. 2.8 and in the notation of Sect. 2.3) is given
by (2.130) as

EŒ� j r; z; � � D vol.�/

4D"

�
1C O

�
"

R2

��
: (3.31)

3.4 Annotations

It was shown in Harris and Stevens (1988), Bourne and Harris (2008), Korkotian
et al. (2004), Hotulainen and Hoogenraad (2010), and Newpher and Ehlers (2009)
that spine geometrical shapes correlate with their physiological functions. It was
also shown by serial electron microscopy and three-dimensional reconstruction of
dendritic spines from Purkinje spiny branchlets of normal adult rats that spine
geometry relates to synaptic efficacy (Harris and Stevens 1988). In Papa and Segal
(1996), Collin et al. (1997), and Korkotian and Segal (1999) it was shown that
change of spine morphology can be induced by synaptic potentiation protocols
and indeed, intracellular signaling, such as calcium release from stores, alters the
morphology of dendritic spines in cultured hippocampal neurons. These changes in
geometry can affect the spine-dendrite communication. One of the first quantitative
assessments of geometry was obtained by a direct measurement (Svoboda et al.
1996) of diffusion through the spine neck. Concentration gradients between spines
and shafts in rat CA1 pyramidal neurons were established by photo-bleaching
and photo-release of fluorescein dextran in order to track the time course of
re-equilibration. It was well approximated by a single exponential decay, with a
time constant in the range of 20–100 ms. The role of the spine neck was further
investigated experimentally with flash photolysis of caged calcium in Korkotian
et al. (2004) and Bloodgood and Sabatini (2005) and theoretically in Holcman et al.
(2005a), with the main conclusion that geometrical changes in the spine neck, such
as the length or the radius, are key modulators of calcium dynamics in the process of
spine-dendrite communication (Holcman et al. 2005b; Biess et al. 2007; Holcman
and Kupka 2010).

The connection between the head and the neck is relevant both to three-
dimensional diffusion in the bulk and to two-dimensional surface diffusion. Indeed,
synaptic transmission and plasticity involve the trafficking of receptors on cell
membranes (Chen et al. 2000; Bredt and Nicoll 2003; Adesnik et al. 2005; Shi
et al. 1999; Malinow and Malenka 2002; Malinow 2003), such as AMPA or NMDA
glutamatergic receptors, which mediate the post-synaptic current. The number and
type of receptors that shape the synaptic current (Bredt and Nicoll 2003) could
be regulated by spine geometry. Regulation of synaptic current by spine geometry
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was explored theoretically by using asymptotic expressions for the residence time
(Earnshaw and Bressloff 2006; Holcman and Triller 2006), and experimentally
by monitoring the motion of AMPA receptors on the surface of mature neurons
(Ashby et al. 2006). A recent review of early results on the NET problem with many
biological applications is given in Bressloff and Newby (2013).



Chapter 4
Applications to Cellular Biology and Simulations

Some applications of the analytical approximations to the MFPT are listed below.
The formulas quantify the structures and predict their functions. They are also used
to verify the validity of large Brownian simulations, such as the ones used for
predicting the synaptic current.

4.1 Applications to Brownian Dynamics Simulations

Brownian dynamics simulations of rare events are difficult and inefficient. Thus
predicting the diffusion current through narrow passages from a simulation is
often impossible, because the sample of simulated Brownian trajectories passing
through the opening is too small for any significant statistic. However, analytical
approximations may give reliable information where simulations fail. For example,
the bottleneck in simulations of ionic permeation in protein channels is the
arrival of ions from the salt solution to the channel. The arrival rate at a given
small neighborhood of the channel can be calculated analytically and used in the
simulation of the permeation process.

A similar situation arises in the simulation of the entire synaptic transmission
process, which contains the simulation of the arrival of neurotransmitter molecules
at receptors on the post-synaptic membrane. A significant reduction of the simula-
tion complexity is achieved by using the analytically computed neurotransmitter flux
rather than simulating it. Analytical formulas are also used for quantifying diffusion
in dendritic spines. Further progress is achieved by modeling and simulating
chemical reactions as Markov processes rather than as complex Brownian dynamics.
Indeed, using the fact that the stationary arrival process of Brownian particles from
the continuum to an absorbing boundary is Poissonian, it is possible to coarse-
grain the binding and unbinding process of Brownian particles in microdomains
into a Markov jump process, thus opening the way for a complete analysis of

© Springer Science+Business Media New York 2015
D. Holcman, Z. Schuss, Stochastic Narrow Escape in Molecular
and Cellular Biology, DOI 10.1007/978-1-4939-3103-3_4
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stochastic chemical reactions, which is impossible by simulating complex reaction-
diffusion equations that in general cannot be solved analytically and are hard to
solve numerically. A recent application of this Markovian approximation gives
new range for the rate of molecular dynamics underlying the spindle assembly
checkpoint during cell division (see Sect. 6.2.1).

Another application of asymptotic analytical results is the verification of molec-
ular dynamics simulations in domains that contain small passages or targets. The
convergence of the simulation can be measured by the convergence of the statistics
of rare events to the statistics predicted by the analytical asymptotic approximation
for dendritic spines (see Sect. 3.3).

4.2 Diffusion in the Synaptic Cleft

The neuronal cleft conducts neurotransmitters by diffusion from a vesicle released
at the excitatory presynaptic membrane to receptors such as NMDA and AMPA
on the postsynaptic membrane [Figs. 3.2(right) and 3.3]. Synaptic transmission
depends on various parameters such as the location of a released vesicle, the
number and type of receptors, trafficking between the post-synaptic density (PSD),
and extra-synaptic compartments, as well as the synapse organization. It is now
possible to quantify separately each of them by Brownian simulations and by
mixed analytical approaches. These can lead to better understanding of pathological
synapses, implicated in many cognitive disorders such as spectral autism disorders,
epilepsy, and many others. For example, using a combination of simulations and
electrophysiological recordings, it was possible to reduce the number of released
neurotransmitters, when ketone bodies were used in the physiological preparation,
which mimics starvation or the effect of ketogenic diet.

In the mathematical description of neurotransmitter diffusion in the synaptic
cleft, the cleft geometry is simplified to a circular cylinder of length L and radius R,
whose bases S0 and SL are centered at the z-axis, at z D 0 and z D L, respectively,
and are parallel to the .x; y/ plane. Neurotransmitters that are injected at S0 with a
constant flux density � are absorbed at the lateral surface Sr, which is surrounded
by glia cells [Figs. 3.3g and 3.9(left)]. A receptor is represented as a small absorbing
circular hole S.a/ of radius a on SL. Both S0 and SL � S.a/ are impermeable
to the Brownian neurotransmitters. Changing the distance of the small hole S.a/
(receptor) to the center can control the flux through the hole. For a point source at
.z; r; �/ D .0; 0; 0/ (in cylindrical coordinates), the density at the other end z D L is
found in a straightforward manner to be

u0.r;L; 0/ D
1X

mD1

LJ0
��0;mr

R




D	R�0;mJ0
0
2
.�0;m/ sinh

�0;mL

R

; (4.1)
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where �n;m are the roots of the Bessel function Jn.�/. The probability that a Brownian
particle, injected at the source, will ever reach a receptor centered at .r;L; 0/ is the
splitting probability that the time �hole to reach the absorbing window is shorter than
the time �Sr to reach the lateral absorbing boundary (glia cells), given by

Prf�hole < �Sr g D 4a

	R

1X

mD1

J0
��0;mr

R




�0;mJ0
0
2
.�0;m/ sinh

�0;mL

R

C O

�
a2

L2
log

a

L

�
: (4.2)

For r D 0 this reduces to

Prf�hole < �Sr g D 4a

	R

1X

mD1

1

�0;mJ0
0
2
.�0;m/ sinh

�0;mL

R

C O

�
a2

L2
log

a

L

�
: (4.3)

The graph of (4.2) in Fig. 4.1 shows that a slight misalignment of the synaptic release
or terminals may lead to a significant change in the number of neurotransmitters
bound to receptors in the process of synaptic transmission. This suggests that a
misalignment of the vesicular release with the receptor clustering can drastically
reduce the number of open channels. This, in turn, can explain the key role
of adhesion molecules such as the Ephrin B, which regulate the localization of
AMPA receptors (see Dalva et al. 2007). Moreover, overexpression or knockdown
of scaffolding molecules, such as PSD-95 in the postsynaptic cell, modulates
presynaptic release probability, thus confirming the tight control of the release
site compared to the accumulation of post-synaptic receptors (Futai et al. 2007).
This analysis of the physical model of the synaptic cleft reveals that changing the

relative position of pre- and post-synaptic elements can drastically affect the open
probability of receptors. The mathematical analysis of the physical model sheds

Fig. 4.1 The probability that
a neurotransmitter molecule
injected to the cleft at .0; 0; 0/
will reach an AMPA receptor
at .r;L; 0/ is the probability
that the time �hole to reach the
absorbing window is shorter
than the time �Sr to reach the
lateral absorbing boundary
(glia cells), according to (4.2)
(see Fig. 3.3). " D 1 nm, a
single AMPAR in the PSD
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some light on the complex electrophysiological data. Including additional synaptic
components in the model may further clarify the specific role of adhesion molecules
in controlling synaptic transmission. This includes glial transmitters or ATP.

Another application of the MFPT formula is to the homogenization of boundary
conditions for problems with many binding sites on the boundary. The homogenized
boundary conditions simplify complex molecular or Brownian dynamics simula-
tions that include neurotransmitter release, binding to receptors, and flux through
open channels.

4.2.1 Leak of Ions from a Dendritic Spine Neck

Although the function of dendritic spines is still unclear, one of their identified roles
is to dynamically filter calcium ions. One mechanism to filter ions would be to
extrude them from exchangers on the spine apparatus in the neck.

In the mathematical description of diffusion of calcium ions from the spine head
to the dendrite, the spine neck is modelled as a circular cylinder of length L and
radius R, whose bases S0 and SL are centered at the z-axis, at z D 0 and z D L,
respectively, and are parallel to the .x; y/ plane. The lateral surface Sr, which in
general represents the internal membrane of the endoplasmic reticulum, is reflecting.
A constant net flux � is injected at S0. A rapid exchanger is modeled as a small
absorbing circular hole S.a/ of radius a on Sr, which may represent an ion pump
[Fig. 3.9(right)]. The leakage formula (3.30) and the explicit expression u.0/ D
�.L � z/=	DR2, which replaces (4.1) in this case, give the flux through S.a/ as
Ja D 4a�.L � z/=	R2. It is thus possible to estimate the leak of any ion in the spine
neck. Note that the asymptotic formula (1.143) holds if " � L=R, so the source is
outside the boundary layer near the hole.

4.3 Diffusion on a Membrane Crowded with Obstacles

The organization of a cellular membrane is to a large extent the determinant of the
efficiency of molecular trafficking of receptors to their destination. The arrival rates
of these molecules at their specific destinations control their role and performance,
and thus steer the cell toward its function. After two decades of intense research on
membrane organization, it is still unclear how the heterogeneity of the membrane
controls diffusion (see Fig. 4.2). Recently, using single molecule tracking (Fig. 4.3),
the diffusion coefficient of a molecule freely diffusing on intact and treated neuronal
membranes, cleared of almost all obstacles was found. In this case the diffusion of a
protein on the membrane is described by the Saffman–Delbrück theory. If, however,
the membrane is crowded with obstacles, such as fixed proteins, fences and pickets,
and so on, the effective diffusion coefficient differs significantly from that predicted
in and depends strongly on the degree of crowding. The latter can be estimated from
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Fig. 4.2 Organization of a neuronal membrane (Kusumi et al. 2005) containing microdomains
made of overlapping filaments (see schematic Fig. 4.4a)

Fig. 4.3 Left: trajectories of receptors moving on a neuronal membrane (Triller and Choquet
2003). The trajectory switches between confined (red) and free (blue) periods. The synaptic domain
is marked green. Right: mean square displacement (MSD) vs time without confinement and with
confinement

diffusion data and from an appropriate model and its analysis, as explained below.
The key to assessing the crowding is to estimate the local diffusion coefficient from
the measured molecular trajectories and the analytic formula for the MFPT through
a narrow passage between obstacles (Fig. 4.4).
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a b

c d

Fig. 4.4 (a) Schematic representation of a Brownian particle diffusing in a crowded microdomain.
(b) Effective diffusion coefficient ND D L2=2N� as a function of time. (c) ND for different radii of
the obstacles. The three regions of N� are separated by dashed lines. The solid curve represents
Brownian simulations. While there is no crowding for a < 0:2, the decreasing of the effective
diffusion coefficient for 0:2 < a < 0:4 is logarithmic, and like square root for a > 0:4. (d) Effective
diffusion coefficient vs fraction of occupied surface

4.3.1 A Coarse-Grained Model of Membrane Crowding
Organization

A simplified model of a crowded membrane can be a square lattice of circular
obstacles of radius a centered at the corners of lattice squares of side L (Fig. 4.4a).
The mean exit time from a lattice box, formula (3.28), is to leading order
independent of the starting position .x; y/ and can be approximated by (2.20) as

N�4 D N�
4
; (4.4)
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where N� is the MFPT to a single absorbing window in a narrow strait with the other
windows closed (reflecting instead of absorbing). It follows that the waiting time in
the cell enclosed by the obstacles is exponentially distributed (3.1) with rate

� D 2

N�4 ; (4.5)

where N� is given by (3.14) and (3.17) as

N� 	

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

c1 for 0:8 < " < 1;

c2j�j log
1

"
C d1 for 0:55 < " < 0:8;

c3
j�jp
"

C d2 for " < 0:55;

(4.6)

with " D .L�2a/=a and d1; d2 D O.1/ for " � 1 (see Fig. 4.5). The MFPT c1 from
the center to the boundary of an unrestricted square is computed from

u.x; y/ D 4L2

	3D

1X

0

�
cosh.k C 1

2
/	 � cosh.k C 1

2
/	.2y=L � 1/� sin.2k C 1/	x=L

.2k C 1/3 cosh.2k C 1/	
;

(4.7)

so c1 D u.L=2;L=2/ 	 Œ4L2=	3D�Œcosh.	=2 � 1/= cosh	�: For L D 1;D D 1,
we find c1 	 0:076 , in agreement with Brownian dynamics simulations (Fig. 4.5b).
The coefficient c2 is obtained from (3.13) as c2 D 1=2	D 	 0:16: Similarly, the

a b

Fig. 4.5 MFPT vs scaled radius of obstacle in Fig. 3.6. NET from the domain (a) with D D 1,
L D 1. Statistics were obtained from 1000 exit times/point of simulated Brownian trajectories
(dashed line). (b) NET vs obstacle scaled radius r D a=L D 1

2
.1�"/. The simulated (dotted curve)

and analytical approximation (4.6) (continuous curve) for 0 < r D r1 D 0:2, r1 < r < r2 D 0:45,
and 0:45 < r < 0:5
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coefficient c3 is obtained from (3.16) as c3 	 	=4
p
2D 	 0:56: The coefficients di

are chosen by patching N� continuously between the different regimes. We get

d1 D c1 C c2j�.r1/j log.1 � 2r1/; (4.8)

and

d2 D c1 � c2 Œj�.r1/j log.1 � 2r1/C j�.r2/j log.1 � 2r2/�

�c3j�.r2/j.1 � 2r2/
�1=2;

where j�.r/j D L2 �	r2. Simulations with D D 1 in a square of radius L D 1 with
four reflecting circles of radius r, centered at the corners, show that the uniform
approximation by the patched formula (4.6) is in good agreement with Brownian
results (Fig. 4.5b), where the statistics were collected from 1000 escape times of
Brownian trajectories per graph point. The trajectories start at the square center.
Equation (4.6) holds in the full range of values of a 2 Œ0;L=2� and all L.

The Brownian motion around the obstacles (Fig. 4.5a) can be coarse-grained into
a Markovian jump process whose state are the connected domains enclosed by the
obstacles and the jump rates are determined from the reciprocals of the mean first
passage times and exit probabilities. This random walk can in turn be approximated
by an effective coarse-grained anisotropic diffusion, as done for atomic migration
in crystals (Schuss 1980, Chap. 8, Sect. 2) and for effective diffusion on a surface
with obstacles (Holcman et al. 2011). The diffusion approximation to the transition
probability density function of an isotropic random walk that jumps at exponentially
distributed waiting times with rate � on a square lattice with step size L is given by
Schuss (1980)

@p

@t
D ND

�
@2p

@x2
C @2p

@y2

�
; ND D �L2

4
: (4.9)

To illustrate this theory, we assume a reduction of the effective diffusion coefficient
from 0.01 on a clear membrane to 0.2�m2/s on an obstructed membrane (Triller and
Choquet 2003), which leads to the estimate of 70 % of the membrane surface being
covered with obstacles (Holcman et al. 2011), as can be seen from Fig. 4.4b–d.

4.3.2 Diffusion of Receptors on the Neuronal Membrane

The results of the previous section can be used to estimate the density of obstacles
on the membrane of cell such as a neuronal dendrite. The effective diffusion
coefficient of a receptor on the neuronal membrane can be estimated from the
experimentally measured single receptor trajectory by a single particle tracking
method. The receptor effective diffusion coefficient of a receptor is found in Triller
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and Choquet (2003) to vary between 0.01 and 0.2�m2/s. In the simplified model of
crowding, the circular obstacles are as in Fig. 4.4a. Simulated Brownian trajectories
give the MFPT from one square to the next one as shown in Fig. 4.4a, where
L is fixed and a is variable. According to (4.6), (4.5), and (4.9), as a increases
the effective diffusion coefficient ND decreases. It is computed as the mean square
displacement (MSD) h MSD.t/

4t i. Brownian simulations show that ND is linear, thus
confirming that in the given geometry crowding does not affect the nature of the
Brownian motion for sufficiently long times. Specifically, for Brownian diffusion
coefficient D D 0:2�m2=s the time considered is longer than 10 s. In addition,
Fig. 4.4c shows the diffusion coefficient ratio Da=D0, where Da is the effective
diffusion coefficient of Brownian motion on the square lattice described above with
obstacles of radius a. For a D 0:3 the value Da=D0 	 0:7 is found whereas a direct
computation from the mean exit time formula (4.6) gives

�0

�a
D c1

c2j�j log
1

"
C d1

	 0:69; (4.10)

where " D .L � 2a/=L D 0:4.
It can be concluded from the Brownian simulations that the coarse-grained

motion is plain diffusion with effective diffusion coefficient Da=D0 D �0=�a,
which decreases nonlinearly as a function of the radius a, as given by the uniform
formula (4.6). Figure 4.4c recovers the three regimes of (4.6): the uncrowded
regime for a < 0:2L, where the effective diffusion coefficient does not show any
significant decrease, a region 0:2L < a < 0:4L, where the leading order term of the
effective diffusion coefficient is logarithmic, and for a > 0:4L the effective diffusion
coefficient decays as

p
.L � 2a/=L, in agreement with (4.6).

Finally, to estimate the density of obstacles in a neuron from (4.6), (4.5),
and (4.9), a reference density has to be chosen. The reference diffusion coefficient
is chosen to be that of receptors moving on a free membrane (with removed
cholesterol), estimated to be 0:17 � D � 0:2�m2/s (Renner et al. 2009), while
with removing actin, the diffusion coefficient is 0:19�m2/s. The reference value
D D 0:2�m2/s gives an estimate of the crowding effect based on the measured
diffusion coefficient (Fig. 4.6d). The reduction of the diffusion coefficient from
D D 0:2�m2/s to D D 0:04�m2/s is achieved when 70 % of the membrane surface
is occupied by obstacles. Thus obstacles impair the diffusion of receptors and are
therefore responsible for the large decrease of the measured diffusion coefficient (up
to five times).

4.4 Synaptic Transmission and the Synaptic Current

Synapses are local active micro-contacts underlying direct neuronal communication
and they can vary in size and molecular composition, depending on their location
in the brain and on their specificity. The molecular processes underlying synaptic
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a

b

c d

Fig. 4.6 Organization of the neuronal membrane. (a) Schematic representation of a Brownian
particle diffusing in a crowded microdomain. (b) Mean square displacement (MSD) of the
particle in a domain paved with microdomains. The MSD is linear, showing that crowding
does not affect the nature of diffusion. The effective diffusion coefficient is computed as ND D
limt!1hMSD.t/=4ti for D D 1. (c) The effective diffusion coefficient computed from the MSD
for different radiuses of the obstacles. Brownian simulations (continuous curve): there are three
regions (separated by the dashed lines). While there is no crowding for a < 0:2, the decreasing of
the effective diffusion coefficient for 0:2 < a < 0:4 is logarithmic, and like square root for a > 0:4.
(d) Effective diffusion coefficient of a particle diffusing in a domain as a function of the fraction
of the occupied surface. An AMPAR has a diffusion coefficient of 0.2�m2/s in a free membrane
(Renner et al. 2009)

transmission are well known (Kandel et al. 2000). After neurotransmitters, such as
glutamate, are released into the synaptic cleft from a vesicle on the surface of a
pre-synaptic neuron (see Fig. 4.7), they can either find a specific receptor protein
on the membrane of the postsynaptic terminal, such as NMDA, AMPA, and so
on,1 or are absorbed by the surrounding glia cells and recycled (see Sect. 4.2).

1See, e.g., http://en.wikipedia.org/wiki/Biochemical_receptor.

http://en.wikipedia.org/wiki/Biochemical_receptor.
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Fig. 4.7 A neuronal synapse.
Schematic representation of a
synapse between neurons.
Neurotransmitters (blue) are
released to the synaptic cleft
at the presynaptic terminal
and can find a receptor
(Green) on the postsynaptic
terminal or be absorbed by
the surrounding glial cells
(red). The postsynaptic
density (PSD) is the dense
region above the yellow sheet
holding the scaffolding
molecules (orange)

The ionotropic glutamate receptors, such as AMPA and NMDA, may open upon
binding neurotransmitters. We refer to Wikipedia for the terminology, illustration,
and movies for the biological material. The synaptic current originates when these
ligand-gated channels on the post-synaptic membrane open and admit positive ions,
such as calcium and sodium from the cleft into the post-synaptic terminal (the
neuronal spine), thereby changing the depolarization of the post-synaptic membrane
potential. The ions in the spine ultimately leave the spine by both diffusion in the
potential field and hydrodynamical flow induced by the twitching of the spine. This
occurs when calcium binds to actin-myosin filaments which contract and push the
ionic solution through the spine neck into the neuronal shaft.

The synaptic current in the cell plays a fundamental role in neuronal communi-
cation. It is the direct and fast signal of synaptic transmission. This current depends
not only on receptors such as AMPA, but also on the complex molecular machinery
edifice that controls them. Possible changes in the current dynamics are the readout
of synaptic plasticity, a process that underlies learning and memory (Kerchner and
Nicoll 2008). Many properties of synaptic transmission result in from diffusion in
microdomains, as described above.

4.4.1 The Synaptic Cleft

Glutamate receptors are activated by neurotransmitters diffusing in the cleft geom-
etry, which is approximated by a flat cylinder. This activation is described below
in terms of AMPA-receptors conductances rather than by the standard Markov
description, obtained from optimal fitting of measurements outside a synapse. The
model proposed here for the synaptic current accounts for the four glutamate binding
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sites per receptor. While glutamate molecules are Brownian inside the cylindri-
cal synaptic cleft �, AMPARs are positioned on the PSD [see Figs. 4.7(right)
and 3.9(right)]. The model of glutamate binding to an AMPAR is a radiative
boundary condition on the PSD (�PSD), as described below.

When a glutamate molecule hits the lateral boundary (@�Lat) of the cleft
(modeled as a cylinder �), it is absorbed by glia cells and no longer can contribute
to the activation of AMPARs. The pdf p.x; tjx0/ of a Brownian trajectory x.t/ of a
glutamate molecule, given x.0/ D x0 2 �, is the solution of the initial-boundary
value problem for the diffusion equation

@p.x; t j x0/
@t

D D�p.x; t j x0/ for x 2 �; t > 0 (4.11)

p.x; 0 j x0/ D ı.x � x0/ for x 2 �
@p.x; t j x0/

@�
D 0 for x 2 @�r

p.x; t j x0/ D 0 for x 2 @�Lat

�D
@p.x; t j x0/

@�
D � �p.x; t j x0/ for x 2 @�PSD;

where D is the diffusion coefficient of a free glutamate molecule. The partial
absorption rate constant � accounts not only for the fraction of AMPARs inside the
PSD, but also for the activation barrier of a single glutamate to a glutamate receptor
binding site. The rate constant

� D D

2	R2PSD

1

1

Naa
C D

�e2	a2Na

: (4.12)

The absorption rate constant �e in (4.12) is obtained by calibration with the
experimental value �e 	 1:6 (see Sect. 4.7 below and Taflia and Holcman 2011).
Here a and RPSD are the radii of a single receptor and the PSD, respectively, and Na

is the number of AMPARs. The derivation starts by considering that the Na receptors
are placed on the PSD, whose surface area is 	R2PSD. The criterion for choosing �
is that the absorption flux be equal to the flux on the last line of (4.11) (see Schuss
2013, Sect. 2.5). Here D is the diffusion constant of glutamate molecules in the cleft
and �e is the partial reflection rate constant of a single AMPAR on a glutamate
molecule. This constant is calibrated from (patch-clamp) experimental data.

The probability p.x0/ that a glutamate molecule binds a receptor released at x0,
is the total probability flux into the receptors, that is, into the absorbing boundary
@�PSD,

p.x0/ D D

1Z

0

Z

@�PSD

@p.y; t j x0/
@n

dSy dt D D
Z

@�PSD

@u.y j x0/
@n

dSy; (4.13)
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where the function u.x j x0/ D R1
0

p.x; t j x0/ dt is the solution of the boundary
value problem

D�u.x j x0/ D � ı.x � x0/ for x 2 �
@u.x j x0/
@�

D 0 for x 2 @�r (4.14)

u.x j x0/ D 0 for x 2 @�Lat

D
@u.x j x0/
@�

D �u.x j x0/ for x 2 @�PSD:

Absorption of a Brownian trajectory in a small receptor is a rare event that can
hardly be expected to provide sufficient statistical data for a reliable estimate of the
number of saturated receptors. It is necessary, therefore, to coarse-grain Brownian
simulations of such events by deriving analytical approximations to u.x j x0/ and
p.x0/ [see (4.13)], to be used in numerical simulations.

4.5 The Mean and Variance of the Synaptic Current Is

To compute the mean and the variance of the synaptic current the number of bound
glutamate molecules and the probability of a given configuration of bound AMPARs
has to be calculated. To estimate it, we construct a combinatorial model of the
synaptic current. First, we recall that the probability distribution of k independent
bound glutamate molecules, after a vesicle is released at x0 is binomial,

Prk.x0/ D Ck
4Na

p.x0/k.1 � p.x0//4Na�k; (4.15)

where Na is the expected number of bound glutamates and p.x0/ is the probability
that a glutamate binds one of the receptors before it escapes the cleft. The latter is
given by (4.13) as

p.x0/ D �

Z

@�PSD

u.x j x0/ dSx: (4.16)

The mean and the variance of the number of bound receptors are given by

M.x0/ D Ngp.x0/; �2.x0/ D Ngp.x0/.1 � p.x0//;

respectively. When a vesicle is released at the center of the synapse, for PSD and
synaptic radii of, respectively, 300 nm and 500 nm (the effective surface area of a
single AMPAR is 10 nm2 and � D 0:25, see Fig. 4.8).
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An additional source of fluctuations in the number of bound AMPARs is
as follows. AMPARs can bind up to four glutamate molecules. Therefore the
probability PrfEn j kg of a given configuration En D .n4; n3; n2; n1/ of n1 AMPARs
that bind one glutamate molecule, n2 AMPARs that bind 2, and so on, when there
are Na AMPA receptors and k < 4Na bound glutamate molecules, is given by

PrfEn j kg D NaŠ

n4Šn3Šn2Šn1Š.Na � .n4 C n3 C n2 C n1//Š

1

F.k;Na/
: (4.17)

This is the probability of choosing at random n4 AMPARs out of Na, n3 out of
Na � n4, and so on. F.k;Na/ is the total number of possibilities to partition the
number k to a sum of Na integers from the set f4; 3; 2; 1; 0g as

k D 4n4 C 3n3 C 2n2 C n1; (4.18)

with the constraint that n4 C n3 C n2 C n1 � Na. The number F.k;Na/ can
be computed numerically as the .k C 1/th coefficient in the expansion of .1 C
x C x2 C x3 C x4/Na in powers of x. With the notation V for the potential and
E� D .�1; �2; �3; �4/ for the vector of conductances, all moments of the current can
be found, given these probabilities, and in particular, the mean and variance are
given by

EŒIs.x0/� D
NgX

kD1

X

n2Sk

En � E� PrfEn j kgVPrk.x0/

D
4NaX

kD1

X

n2Sk

En � E� PrfEn j kgPrk.x0/V C Na�4V

 
1 �

4NaX

kD0
Prk.x0/

!

EŒI2s .x0/� D
NgX

kD1

X

n2Sk

.En � E�/2 PrfEn j kgPrk.x0/V2

� .EŒIs.x0/�/2
4NaX

kD1

X

n2Sk

.En � E�V/2 PrfEn j kgPrk.x0/

C .Na�4V/
2

 
1 �

4NaX

kD0
Prk.x0/

!
� .EŒIs.x0/�/2: (4.19)

Here Sk is the set of all the possible configurations of En D .n1; n2; n3; n4/ such
that 4n4 C 3n3 C 2n2 C n1 D k. The formulas for the mean and variance consist of
two terms: in the first one, the summation extends over sites that are partially bound
by glutamate molecules. The probability for such an event is the product of the
probability Prk, that k glutamates are bound (k < 4Na) and the probability PrfEn j kg
for a given binding configuration k D 4n4 C 3n3 C 2n2 C n1. The second term in
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Fig. 4.8 (a) For a PSD radius of 0:3�m, the coefficient of variation (CV) reaches a maximum.
This shows that for a given size of the active zone (AZ), where vesicles are released, the CV
is minimum when receptors are spread over an optimal PSD area. (b) Calibration of the partial
absorption rate constant �. The synaptic current is simulated according to Eq. (4.19) for different
values of the activation coefficient � [see (4.12)]. The optimal synaptic response in the range of
3000–12,000 glutamate molecules is achieved at � D 1:6

the mean current experssion (4.19) accounts for the event that all AMPAR binding
sites are occupied (4Na) and its probability equals to the one complementary to the
that of partial binding described by in the first terms. Figure 4.8a shows that the
coefficient of variation (CV D SD=Mean, where SD stands for standard deviation)
has a minimum as a function of the size of the PSD. This unexpected result is further
discussed in Taflia and Holcman (2011). The optimal PSD size, as shown in Figs. 4.8
and 4.9, is due to a nonlinear phenomenon involving the receptor multi-binding
cooperativity described below.

4.5.1 Properties of the Synaptic Current Is

The mean and variance of Is, as functions of the PSD radius, when one vesicle
is released at the center for different active zone (AZ) sizes (Fig. 4.9a), show
that for a given number of receptors, the moments of the current are decreasing
functions of the PSD and AZ radii. The number of AMPARs bound to two and
four glutamate molecules is a function of the PSD radius when the AZ radius is
fixed at 50 nm (blue) and 150 nm (red) (Fig. 4.9b, c). For a small AZ radius, most
of the AMPARs are bound to four glutamate molecules and thus the synaptic-
current amplitude is much higher than that for a large AZ radius. In the latter case,
the current is primarily generated by receptors bound to two glutamate molecules.
The large current difference observed in Fig. 4.9a with the radii 50 and 150 nm
is due to the nonlinear properties of conductivities, generated by the number of
bound glutamate molecules. But in all cases, the moments of the synaptic current
are decreasing functions of the AZ radius (Fig. 4.9d).
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Fig. 4.9 Optimal PSD radius. (a) The mean current and SD are plotted as a function of the PSD
size for three different active zones (50, 100, and 150 nm) (the synaptic radius is 500 nm and the
height is 20 nm). (b, c) The mean number of AMPA receptors bound by 2 (resp. 4) glutamate
molecules as a function of the PSD radius. (d) Current vs active zone (AZ) radius. The PSD size
is fixed at 300 nm and each curve represents 1, 2, and 3 released vesicles. (e) CV vs PSD size. The
CV achieves a minimum when the PSD and the active zone are approximately equal. In that case
the AZ is 100 nm and the CV minimum is achieved for a PSD of radius of 120 nm. (f) Optimal PSD
radius: It is plotted as a function of the AZ radius obtained by minimizing the CV for a fixed AZ
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The reliability of the synaptic response is measured in terms of the coefficient
of variation (CV) of the synaptic current Is. For a fixed AZ radius, the CV has
a minimum as a function of the PSD radius. Indeed, simulation results show, for
example, that with an AZ of radius 100 nm, the CV reaches its minimum for a PSD
radius of 120 nm (Fig. 4.9e). The radii of the PSD and the AZ shown in Fig. 4.9f
show the optimal PSD radius as a function of the AZ radius. The figure indicates
that the optimal PSD size increases with the radius of the AZ.

Another aspect of the combinatorial model has to do with the description of
AMPARs. The synaptic current is computed from conductances that originate in
patch-clamp experiments of isolated AMPARs (Gebhardt and Cull-Candy 2006;
Smith and Howe 2000), where the relation between the number of bound glu-
tamates and the associated conductances is found for different fixed glutamate
concentrations. Although more than four conductance levels have been reported,
it is still unclear how to relate them to the number of bound glutamate molecules.
In addition, having four glutamates bound to a single receptor lead to a current
amplitude of 13 pA, which has to be compared with that for two bound AMPARs
to two glutamates, which should lead to 2 � 4 D 8 pA. This difference suggests that
binding four glutamates to a single AMPAR has a nonlinear effect and is different
from having two receptors bound by two glutamates, as shown in Fig. 4.9a–c.

4.5.2 Nonlinearity of the Synaptic Current Is

The minimum of the CV is due to the nonlinear dependence on the PSD radius of the
number of glutamates bound to receptors. Consider, for simplicity, a reduced model
of one among N receptors. The receptor can be in one of the following three states,
depending on the number of bound glutamates, for which the current I can switch
between the three values ŒI1; I2; I3�. Each receptor binds a glutamate with probability
q 2 Œ0; 1� and the probability of I is given by

PrfI D Ikg D

8
ˆ̂̂
<

ˆ̂̂
:

 
N

k

!
qk.1 � q/N�k for k D 1; 2

1 � PrfI D I1g � PrfI D I2g � .1 � q/N for k D 3;

(4.20)

where the probability for k D 1; 2 is binomial while the probability for the current
I3 is the complementary probability to having no binding, one binding, and two
bindings. The CV of the current I can be computed analytically as a function of the
probability q. Figure 4.10 shows that only for a certain range of the parameters, such
as I1; I2 � I3, the CV exhibits a local minimum. Changing the parameter q in this
model is equivalent to varying the AZ or PSD size, or both.
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Fig. 4.10 Analysis of a simplified model showing discrete current levels: the random variable I
can have any one of the values I1; I2; I3. The probabilities of these events are given by Eq. (4.20).
The model describes a single receptor with three conductivity levels, which depend on the number
of bound glutamate molecules, each of which can bind to a receptor with a probability q. The figure
shows a plot CV vs q for different values of I3, where I1 D 1; I2 D 2 are fixed. When I3 � I1; I2,
the CV has a local maximum point. This is a manifestation of the nonlinear cooperative effect of
multiple bindings

4.6 Coarse-Grained Glutamate Partial Absorption Rate
of the PSD

The goal of this section is to coarse-grain the single glutamate absorption rate in a
receptor to an effective partial absorption rate constant � of glutamate in the PSD,

� D
@p.x; t/
@n

D �p.x; t/ for x 2 PSD: (4.21)

The coarse-grained rate constant � can be computed from a model of a population
of Na partially reflecting AMPA receptors of size a in the PSD. When a glutamate
molecule hits a single receptor, the receptor can either be activated or not.
The homogenization is based on the partially absorbing condition for a single
glutamate in a receptor,

� D
@p.x; t/
@n

D �ap.x; t/ for x in a receptor: (4.22)

Here �a is the single glutamate partial absorption rate at an AMPAR’s partially
reflecting activation barrier (�a D 1 if there is no activation barrier and the receptor
is activated when hit by glutamate), while for �a D 0, the barrier is so large that
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all glutamate molecules are reflected. The value of �a depends on the intrinsic
properties of the AMPA binding site and should be recovered from the experimental
literature (Gebhardt and Cull-Candy 2006).

To compute � in the PSD, we assume that all the binding sites are confined in
the PSD to a disk of radius RPSD. The homogenized partial absorbing boundary
condition is given in (4.21). The homogenization consists in choosing the partial
absorption rate � so that the influx to the Na individual binding sites and the influx
through the partially absorbing PSD are equal.

The influx through the partially absorbing PSD is determined from the solution
of the PAV equation

D�u.x/ D � 1 for x in the synaptic cleft � (4.23)

with the boundary condition (4.21) instead of an absorbing boundary condition and

@u.x/
@n

D 0 for x 2 @�r

�D
@u.x/
@n

D � u.x/ for x 2 PSD: (4.24)

The solution of the PAV boundary value problem (4.23), (4.24) is constructed
by the NET method described in Chaps. 1 and 2. In three dimensions, the MFPT
N� D u.x/ from a point x in the synaptic cleft to the PSD is independent of the
starting point x 2 � and is given by (see Reingruber et al. 2009; Taflia and Holcman
2011)

N� 	 j�j
D

�
1

4RPSD
C D

2	�R2PSD

�
; (4.25)

so the probability flux is

J D 1

N� 	 D

j�j
1

1

4RPSD
C D

2	�R2PSD

: (4.26)

The flux into Na fully absorbing AMPA binding sites of size a in a PSD disk of
radius RPSD is calculated as follows. The MFPT to the PSD is given by

N� D j�j
4RPSDD

Naa C f .�/R

Naa
; (4.27)

where f .�/ D 1 � � and the fraction of absorbing surface is � D Naa2=R2PSD (see
Sect. 4.8 for references). Equating (4.27) with (4.25),

j�j
D

�
1

4RPSD
C D

2	�PR2PSD

�
D j�j
4RPSDD

Naa C f .�/RPSD

Naa
; (4.28)
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leads to the expression for the homogenized partial absorption rate constant

� D D

2	R2PSD

Naa

f .�/
:

Using the relation (see Dudko et al. 2004)

N� D j�j
D

�
1

4RPSD
C f

Naa
C D

�a2	a2Na

�
(4.29)

for a partially reflecting hole, we obtain the homogenized partial reflection rate
constant

� D D

2	R2PSD

1

f .�/

Naa
C D

�a2	a2Na

: (4.30)

4.7 Estimate of the Molecular Rate �a from Experimental
Data

A Markovian kinetic model of the initial binding step of glutamate to AMPAR can
be used for estimating the partial absorption rate constant �a. The homogenized
partial absorption rate coefficient � and (4.30) are used as follows: the process of
binding and unbinding of a glutamate molecule to an AMPAR can be described as
a two-state Markov chain

C
k1
�
k�1

O; (4.31)

in which the forward binding rate k1 is given in units of Mole/s (k�1 is the
unbinding rate). On the one hand, the binding rate can be calculated by the flux
formula (4.13) as

JMarkov D k1A
�1NgV�1

Z

@�a

p.x/ dx 	 k1A
�1NgV�1	a2p.x/; (4.32)

where A is the Avogadro number, p.x/ is the density of glutamate near the receptor,
and V D 	Rh2 is the volume of the synaptic cleft. Using the diffusion model (4.22),
the flux term is given by

Jdiff D Ng�a

Z

@�a

p.x/ dx 	 Ng�a	a2p.x/; (4.33)
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where a is the radius of a receptor and @�a represents the receptor surface. Setting
Jdiff D JMarkov, we obtain an expression for the partial reflection constant

�a D k1A
�1V�1:

Using the published value k1 D 107 M�1 s�1 (taken from Milstein et al. 2007), we
obtain that �a 	 1:06. The two-state chain model is an adequate approximation even
in the case that there are more states in the Markov chain.

4.8 Annotations

A simulation of the entire synaptic transmission process, which contains the arrival
of neurotransmitter molecules at receptors on the post-synaptic membrane, was
done in Holcman and Triller (2006). Using the analytically computed neurotrans-
mitter flux rather than simulating it leads to significant improvement in Reingruber
and Holcman (2011b). Analytical formulas were also used for quantifying diffusion
in dendritic spines in Biess et al. (2007). Modeling and simulation of chemical
reactions as coarse-grained Markov processes speeds up the simulation of complex
Brownian dynamics (Holcman and Schuss 2005a; Dao Duc and Holcman 2010).
Taking into consideration the fact that the stationary arrival process of Brownian
particles from the continuum to an absorbing boundary is Poissonian (Nadler et al.
2002; Schuss et al. 2007), it is possible to coarse-grain the binding and unbinding
process of Brownian particles in microdomains into a Markov process (Holcman
and Schuss 2005a). A recent application of such a coarse-grained Markovian
approximation gives new range for the rate of molecular dynamics underlying the
spindle assembly checkpoint during cell division (see Sect. 6.2.1 and Dao Duc and
Holcman 2012).

Another application of asymptotic analytical results is the verification of molec-
ular dynamics simulations in domains that contain small passages or targets (Biess
et al. 2007). The convergence of the simulation can be measured by the convergence
of the statistics of rare events to the statistics predicted by the analytical asymptotic
approximation for dendritic spines (see Sect. 3.3).

Brownian simulations and by mixed analytical approaches were used in Taflia
and Holcman (2011) and Freche et al. (2011) and led to better understanding
of pathological synapses, implicated in many cognitive disorders such as spectral
autism disorders, epilepsy, and many others (Südhof 2008; Durand et al. 2011). A
simulation that mimics starvation or the effect of a ketogenic diet was proposed in
Fresche et al. (2012). Brownian dynamics simulations that include neurotransmitter
release, binding to receptors, and flux through open channels were communicated
in Taflia and Holcman (2011) and Freche et al. (2011).

The possible function of dendritic spines is to dynamically filter calcium ions is
discussed in Korkotian and Segal (1999), Svoboda et al. (1996), and Bloodgood and
Sabatini (2005).
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Membrane organization is discussed in Kusumi et al. (1993, 2005), Edidin et al.
(1991), Sheetz (1993), Suzuki and Sheetz (2001), Saxton (1995), and Saxton and
Jacobson (1997). The diffusion coefficient of a molecule freely diffusing on intact
and treated neuronal membranes, cleared of almost all obstacles, was reported in
Renner et al. (2009). The diffusion of a protein on the membrane is described in
Saffman and Delbrück (1975). The effective diffusion coefficient on a membrane
crowded with obstacles differs significantly from that predicted in Saffman and
Delbrück (1975) and depends strongly on the degree of crowding (Saxton 1993). It
has been estimated from diffusion data and from a model in Holcman et al. (2011).

A similar analysis to that of Sect. 4.3.1 was used in Hoze et al. (2012) to estimate
the density of obstacles in dendritic spine (70 %) versus dendritic shaft (50 %).
Coarse-grained modeling for three-dimensional crowding in dendrites was used in
Biess et al. (2011) to study calcium spread during bursting.

The narrow escape method is used in models of the synaptic current to estimate
the mean and variance of the post-synaptic current in Taflia and Holcman (2011)
and Freche et al. (2011). The probability that a glutamate molecule hits a cluster
of AMPARs is found in Taflia and Holcman (2011) to be p.x0/ D 8 � 10�3 (see
Sect. 4.5). Formula (4.27) was derived in the following references: Berg and Purcell
(1977), Zwanzig (1990), Zwanzig and Szabo (1991), Reingruber et al. (2009),
Berezhkovskii et al. (2004).



Chapter 5
Determination of Features
from Super-Resolution Data

5.1 Receptor Motion on a Cellular Membrane

Stochastic narrow escape arises in the problem of determining physical features of a
neuronal membrane from a large number of short receptor trajectories generated by
the method of single particle tracking with photo-activated localization microscopy
(sptPALM) applied to diffusing molecules (Manley et al. 2008) or AMPARs on
hippocampal cultured neurons (Hoze et al. 2012). The features, such as potential
wells and narrow passages, can be determined from long dwell times of the
trajectories in certain parts of the neuronal membrane. However, the dwell time of
a receptor diffusing in a microdomain on a neuronal membrane cannot be obtained
directly from the short recorded fragments of trajectories, because they are much
shorter than the dwell times in potential wells and than NETs from other traps.
Moreover, longer trajectories obtained by other techniques (such as quantum dot)
provide only partial sampling of space-time, which cannot be used to compute
transition probabilities between different regions.

This section describes a simulation method to estimate the residence time of a
receptor in a microdomain, such as a dendritic spine, where the local biophysical
properties are determined from large samples of single particle data (Hoze et al.
2012). Simulations of the dynamics reconstructed statistically from a large sample
of short trajectories can be run for arbitrarily long times and can therefore generate
statistically significant samples of rare events, such as narrow escapes.

We adopt the overdamped limit of the Saffman–Delbrück–Langevin equation
(Saffman and Delbrück 1975; Saffman 1976) as a physical model of receptor motion
on a homogenous surface. Specifically, the diffusion of a receptor embedded in a
membrane surface is generated by a diffusion coefficient D and a field of force f .X/,

PX D f .X/
�

C p
2D Pw; (5.1)

© Springer Science+Business Media New York 2015
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where Pw is a vector of independent standard ı-correlated Gaussian white noises
and � is the dynamical viscosity (Schuss 2010b). Impenetrable obstacles, mostly
due to dielectric forces, are coarse-grained into a no-flux boundary condition on the
boundaries of the obstacles instead of expressing the repulsion of the obstacle in
terms of high potential barriers. To account for the local crowding organization,
Eq. (5.1) is coarse-grained on a coarser spatiotemporal scale into an effective
stochastic equation as (see Hoze et al. 2012)

PX D b.X/C p
2Be.X/ Pw; (5.2)

with the empirical drift field b.X/ and diffusion matrix Be.X/, where the effective
diffusion tensor De.X/ D 1

2
Be.X/BT

e .X/ can be expressed in terms of the more
microscopic diffusion coefficient D and in terms of the density and geometry of
obstacles (see Sect. 4.3.2). The effective diffusion coefficient can be state-dependent
whereas the friction coefficient � , measuring local interaction remains constant.
Obviously, the impenetrable obstacles that slow the effective diffusion down affect
neither the microscopic physical properties of the diffusing particle nor those of the
membrane.

The coefficients of (5.1) can be estimated statistically at each point of the
membrane X D .X1;X2/T from a sufficiently large sample of its trajectories,
sampled with microscopic resolution in the neighborhood of the point X at time t.
Specifically, setting�X.t/ D X.t C�t/� X.t/, the coefficients are given by Schuss
(2010b, 2012)

f .X/
�

D lim
�t!0

1

�t
EŒ�X.t/ j X.t/ D X�; (5.3)

and

2Dij.X/ D lim
�t!0

1

�t
EŒ�Xi.t/�Xj.t/ j X.t/ D X�: (5.4)

In practice, the expectations are estimated by sample averages and �t is the
time-resolution of the recording of the trajectories. In effect, the coarse-grained
coefficients of (5.2) are estimated, as described below.

5.1.1 The Empirical Moments

The data set for estimating the coarse-grained expectations (5.3) and (5.4) consists
of a large number of short trajectories of receptors moving on neuronal membranes
(5 points sampled on the average every 50 ms), generated the above-mentioned
sptPALM method. To estimate the expectations in (5.3) and (5.4), the ensemble
of points is used, where the number of trajectories passing through a given
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a

b c

Fig. 5.1 Schematic representation of the estimation algorithm. (a) Receptor trajectories recorded
in the confocal image of a neuron. The image is decomposed into squares of side r. The estimated
components of the drift b.X/ and diffusion tensor De.X/ are computed according to (5.5) and (5.6),
respectively. (b) Specific features of the neuron, such as potential wells and properties of dendritic
spines, can be detected from the drift field b.X/. (c) Sequential spatial filters require the simulations
of trajectories and the re-computation of local values of the drift and diffusion tensor. Trajectories
are simulated by Euler’s scheme for the stochastic equation (5.2) in the empirical domain for any
length of time. Potential wells can be identified by longer dwell times in their domains of attraction

neighborhood of each point is statistically sufficient (around 200). These short
trajectories cover only a very small fraction of the space and cannot be used directly
to obtain estimates about transition properties between any given regions of interest.

The expectations (5.3) and (5.4) are estimated by the local coarse-grained drift
b.X/ and diffusion tensor De.X/, respectively, at a given resolution, which is the
size of the squares S.Xc; r/ of side r and center at Xc, as described below (Fig. 5.1a).
The empirical approximations of (5.3) and (5.4) are discretized in a square S.x; r/ of
side r centered at X. When there are N.X; r/ points of sampled trajectories y1; : : : ; yN

in S.X; r/, such that y1 D Xi1 .t1/; : : : ; yN D XiN .tN/, the drift b.X/ D b.X; r/ at
position X is approximated by the empirical sum
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b.X; r/ 	 1

N.X; r/

N.X;r/X

kD1

�Xik.tk/

�t
: (5.5)

As r goes to zero and N is fixed, the quality of the approximation increases.
Similarly, we approximate the tensor Dij.X/ D Dij.X; r/ at position X and

resolution r by

2Dij
e .x/ 	 1

N.X; r/

N.X;r/X

kD1

�Xi.t/�Xj.t/

�t
: (5.6)

The tensor Dij
e .x/ contains information about the local organization of the neuronal

surface. In practice, the diffusion is isotropic and the effective diffusion tensor Dij
e is

proportional to the identity matrix.

5.2 Simulations in Empirical Domains

5.2.1 Imaging Analysis, Spatial Filtering, and Discretization

Because the sampled image resolution of the data set is lower than the one of
trajectories, there are several artifacts due to the pixelization that are resolved by
spatial filtering. Artificial trajectories Xc.t/ are generated inside live microscopy
empirical images by the empirical equation (5.2). The coefficients b.X/ and De.X/
are the piecewise constant values of the drift and the diffusion tensor at any point
X 2 S.Xc; r/. This discretization procedure of the space (neuronal dendrite) in small
squares S.Xc; r/ generates local discontinuities and artificially disconnected regions.
These artifacts are overcome by using a sequence of spatial filters. A schematic
summary of the algorithm is described in Fig. 5.1.

Construction of the Spatial Filter

The small size of a microdomain is reflected in the small number of pixels dedicated
to their representation (around 20–30). This small number poses an additional
difficulty in the simulation of stochastic trajectories. Indeed, in a pixelized image,
some pixels intersect the region �0 that we shall define here as the set of pixel not
covered by experimental trajectories, e.g., at corners, in which case, switching from
one pixel to another by a stochastic trajectory corresponds to a very unlikely jump
that is a rare event:

�0 D fSi;j 2 E such that #ŒXk 2 Si;j� < 15g: (5.7)
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Fig. 5.2 Example of spatial filtering for trajectory simulation. A dendritic spine is pixelized:
(a) image before reconstruction, (b) after suppression of the regions with less than 15 points of
trajectories and of isolated regions, and (c) after application of the low-pass filter (5.9). The region
� is in black and gray, �0 in white, and the boundary @� is red

Consequently, the escape time from such a pixel is a narrow escape time. In that
specific case, such trajectory is artificially restricted and the confinement time has
no biological relevance. To avoid this confinement, pixels surrounded by the ones
in the ensemble �0 or by those touching � (the pixel ensemble) at corners are
excluded (filtered out, see Fig. 5.2). This exclusion procedure consists in eliminating
pixels as follows. A pixel of size r and coordinates .i; j/ is suppressed when the four
neighbors are in the ensemble �0. In that case, to smooth out the diffusion tensor
on the ensemble and to avoid possible jumps due to the discretization procedure at
the pixel level, the following local smoothing procedure is applied



Di;j.X/ ¤ 0 for X 2 �0

DiC1;j.X/ D Di�1;j.X/ D Di;j�1.X/ D Di;jC1.X/ D 0 for X 2 �0;
(5.8)

where Di;j.X/ [resp. bi;j.X/] is the discrete value of the diffusion tensor D.X/
[resp. drift b.X/] in the pixel of two-dimensional coordinates .i; j/. This procedure
corresponds to running a low-pass filter that smoothes out the diffusion and drift
coefficient. In fact, the filtered diffusion tensor D0.X/ is a weighted average on the
square centered at .i; j/ and on the four adjacent squares, given by

D0
i;j.X/ D 1

2
Di;j.X/C 1

8
ŒDi�1;j.X/C DiC1;j.X/C Di;j�1.X/C Di;jC1.X/�:

(5.9)

To simulate trajectories at each point of the dendrite image, Eq. (5.2) is discretized
by Euler’s scheme as

X.t C�t/ D X.t/C b.X/�t C Be.X/
p
2�t �; (5.10)

where � is a two-dimensional standard Gaussian random variable and �t is the
simulation time-step. In the region �0, not covered by experimental trajectories,
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the values Be.X/ D 0; b.X/ D 0 are chosen. Simulated trajectories are reflected
at the boundary @� of the pixel ensemble. The squares with insufficient sampling
(<15 points) are also added to the uncovered region �0, defined above.

5.2.2 Residence Time of Receptors in Dendritic Spines

The procedure described in Sect. 5.2 is applied in order to estimate the residence
time of receptors in a given domain. After estimating the drift and diffusion
coefficients, long trajectories are generated from the coarse-grained stochastic
equation (5.2) in the chosen dendritic spine geometries. Spines of Type I and Type
II (Fig. 5.3a) are chosen with inward and outward drift in the neck. The simulation
indicates that the residence time depends on the spine geometry and on the nature
of the spine (Fig. 5.3b–d). Residence time of 81 s is found in the Type I spine and of
about 279 s for Type II.

To assess the contribution of the drift to the residence time simulations free
Brownian trajectories were run. The mean residence time of about 180 s was found
for both spine types (see Fig. 5.3e–g). In conclusion, the excess time for Type II
is due to the inward drift inside the neck and to an internal potential well in the
PSD. Finally, simulations in empirical domains will soon become the gold standard,
which allows incorporating geometrical features into molecular dynamics.

5.3 Annotation

In neuronal cells, the regions where the field of force f .X/ in (5.1) is the gradient
of a potential f .X/ D �rU.X/ are mostly synaptic regions, but also other regions
have been identified (Hoze et al. 2012; Hoze and Holcman 2014).

I
Fig. 5.3 are extracted from a data set of single particle trajectories. A trajectory starting at the
red spot is terminated upon hitting the target area (red circle). (c) Histograms of the generated
residence times showing an asymmetric distribution associated with the different spine types. The
values of the rate � of the exponential decays are indicated. (d) Cumulative distribution function
of the NET from the spine head. The NET data were generated from 1000 simulated trajectories
of (5.2) in each spine. In (e–g) the drift in (5.2) is set to zero
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a

b c d

e f g

Fig. 5.3 Residence time of a receptor in a dendritic spine obtained by numerical simulations.
(a) Two types of spines: Type I and Type II spines are characterized by outward and inward drifts,
respectively. (b) Simulations of trajectories of (5.2) exiting Type I and a Type II spines. Parameters



Chapter 6
Markov Models for Stochastic Chemical
Reactions

Traditional chemical kinetics, based on mass action laws or reaction-diffusion
equations, provide a deficient description of stochastic chemical reactions in
micro-domains, where only a small number of substrate and reactant molecules
are involved. The small populations of reactant and substrate give rise to large
fluctuations in the number of bound substrate sites that can be manifested as large
noise in the efflux and influx of ions through open membrane channels and in other
cellular functions. Coarse-graining the binding and unbinding reactions to the time
scale of the MFPT of the diffusing reactant into and out of a binding site leads to a
Markovian jump process description of the stochastic dynamics of the binding and
unbinding of molecules. The goal of this chapter is to present such approach.

6.1 Stochastic Chemical Reactions

6.1.1 Introduction to Stochastic Chemical Reactions

Consider the simplest example of two finite species, the mobile reactant M,
which diffuses freely in a bounded domain �, and the stationary substrate S
(e.g., a protein), which binds M. The boundary @� of � is partitioned into an
absorbing part @�a (e.g., protein channels, pumps, exchangers, another substrate
that forms permanent bonds with M, and so on) and a reflecting part @�r (e.g., a
cell membrane). In this model the volume of species M is neglected. In terms of
traditional chemical kinetics the binding of M to S follows the law

M C Sfree

k1
•
k�1

MS; (6.1)

© Springer Science+Business Media New York 2015
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where k1 is the forward binding rate constant, k�1 is the backward binding rate
constant, and Sfree is the unbound substrate. We assume in our model of the reaction
that the M molecules diffuse in� independently of each other and when bound, are
released independently of each other at exponential waiting times with rate k�1.

The time to binding of a single M molecule is the first passage time to diffuse
to a small portion of the boundary, @�a, which is absorbing and represents the
active surface of the free substrate (receptor), whereas the remaining part of @�
is reflecting. Thus it is the NET to @�a. Due to the small target and to the deep
binding potential well of the binding site, the binding and unbinding of M to S are
rare events on the time scale of diffusion (Schuss et al. 2007). This implies that
the probability distribution of binding times is approximately exponential (Schuss
2010b) with rate �1 D 1= N�1, where N�1 is the MFPT to @�a. When there are S binding
sites, k.t/ of which are unbound, there are N D ŒM � S C k�C D maxf0;M � S C kg
free diffusing molecules in �. The arrival time of a molecule to the next unbound
site is well approximated by an exponential law with state-dependent instantaneous
rate (see discussion in Holcman and Schuss 2005b)

�k D Nk

N�1 D k.M � S C k/C

N�1 :

The number k D k.t/ of unbound receptors at time t is a Markovian birth–death
process with states 0; 1; 2; : : : ;maxfM � S; 0g and transition rates �k!kC1 D �k;

�k!k�1 D � D k�1. The boundary conditions are �S!SC1 D 0 and �0!�1 D 0:

Setting Pk.t/ D Prfk.t/ D kg, the Kolmogorov equations for the transition
probabilities take the form

PPk.t/ D � Œ�k C k�1.S � k/�Pk.t/C �kC1PkC1.t/C k�1.S � k C 1/Pk�1.t/
(6.2)

for k D .S � M/C C 1; : : : ; S � 1, with the initial and boundary equations

Pk;q.0/ D ık;Sıq;0

PP.S�M/C.t/ D � k�1SP.S�M/C.t/C �1P.S�M/CC1.t/

PPS.t/ D � �SPS.t/C k�1PS�1.t/: (6.3)

Our purpose is to calculate the average number of unbound (or bound) sites Nk.t/,
which for t ! 1 is given by Nk1 D PS

jD.S�M/C jPj, where Pj D lim
t!1 Pj.t/.

Similarly, the stationary variance of the number of unbound sites is �2.M; S/ D
Nk21 � .Nk1/2, where Nk21 D PS

jD.S�M/C j2Pj. The results of the Markovian model
(6.2)–(6.3), using a direct induction from the steady state equations, are
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PS D 1

1C
S�.S�M/CX

kD1

QS
iDS�kC1 i.M � S C i/C

kŠ. N�1k�1/k

hk1i D PS

.S�M/CX

kDS�1
.S � k/C

QS
iDS�kC1 i.M � S C i/C

kŠ. N�1k�1/k

hk21i D PS

.S�M/CX

kDS�1
Œ.S � k/C�2

QS
iDS�kC1 i.M � S C i/C

kŠ. N�1k�1/k

�2S .M/ D hk21i � hk1i2; (6.4)

see Holcman and Schuss (2005b) for further details.

6.1.2 The Mean Time the Number of Bound Molecules
Reaches a Threshold

Another application of the Markovian model is the calculation of the mean time
the number of bound molecules reaches a threshold (MTT). In a cellular context,
the MTT can be used to characterize the stability of chemical processes, especially
when they underlie a biological function. The above Markovian description leads
to an estimate of the MTT in terms of fundamental parameters, such as the number
of molecules, of ligands, and of the forward and backward binding rates. As shown
next, the MTT depends nonlinearly on the threshold T .

Consider M Brownian particles (e.g., molecules) that can bind to immobile
targets S in a microdomain. The number ŒMS�.t/ of MS bound particles at time t
is modeled generically by Eq. (6.1). The first time the number ŒMS�.t/ reaches the
threshold T is defined as

�T D infft > 0 W ŒMS�.t/ D Tg (6.5)

and its expected value is E �T D N�T . We consider N�T for an ensemble of initially
free targets distributed on the surface of a closed microdomain, assuming first a
vanishing backward rate k�1 D 0 and then assuming k�1 > 0. The dynamical
system for the transition probabilities of the Markov process MS.t/ is similar to
that in (6.1), but for the absorbing boundary condition at the threshold T , which
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gives (6.2) (see Dao Duc and Holcman 2010). When the binding is irreversible
(k�1 D 0), N�T is the sum of the forward rates

� irrev
T D 1

�0
C 1

�1
C � � � C 1

�T�1
D 1

�

T�1X

kD0

1

.M0 � k/.S0 � k/
: (6.6)

In particular, when M0 D S0 and M0 � 1 (6.6) becomes asymptotically � irrev
T 	

T=�M0.M0 � T/. In addition, when the diffusing molecules largely exceed the
number of targets (M0 � S0;T), Eq. (6.6) gives the asymptotic formulas

� irrev
T 	

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

1

�M0

log
S0

S0 � T
for M0 � S0;T

1

�S0
log

M0

M0 � T
for S0 � M0;T

T

�M0S0
for M0; S0 � T:

(6.7)

Figure 6.1 shows the plot of � irrev
T for several values of the threshold T , compared to

Brownian simulations in a circular disk � D D.R/ with reflecting boundary, except
at the targets.

When k�1 > 0, the asymptotic formulas are given by Dao Duc and Holcman
(2010)
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Fig. 6.1 Left: trajectories of diffusing molecules in a circular disk containing five binding sites
on the boundary. Right: MFPT � irrev

T to threshold T as a function of T in the irreversible case
(k�1 D 0). Brownian simulations (blue dash), formula (6.6) (black dash), and its approxima-
tion (6.7) (continuous blue line). The other parameters are S0 D 15, M0 D 10, " D 0:05,
D D 0:1�m2 s�1 and the radius of the disk is R D 1�m (200 runs)
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N�T 	

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

� irrev
T C k�1

.�M0/2

�
T

S0 � T
� log

�
1C T

S0 � T

��
for M0 � S0;T

� irrev
T C k�1

.�S0/2

�
T

M0 � T
� log

�
1C T

M0 � T

��
for S0 � M0;T

� irrev
T C k�1

2�2

�
T

M2
0

�3
for S0 D M0 � T:

Thus N�T varies quadratically with the MFPT N� D 1=�, and is a nonlinear increasing
function of T . These computations are quite general and can be applied to describe
the mean time to reach a threshold for any chemical reaction. Changing the threshold
modulates the threshold time in an efficient way.

6.2 Applications of MTT in Cell Biology

Two applications of the above Markovian approximation concern new predictions
of the rate of molecular dynamics that underlies the spindle assembly checkpoint
(SAC) during cell division and the probability that a messenger RNA (mRNA)
escapes degradation through binding a certain number of microRNAs (miRNA) (see
Wikipedia) and are discussed below. Recall that during the process of cell division,
the spindle checkpoint (see Wikipedia) prevents separation of the duplicated
chromosomes until each chromosome is properly attached to an apparatus called
the spindle apparatus.

6.2.1 Escaping Degradation by Binding microRNAs

mRNA is responsible for protein production, but its binding by miRNA results in
permanent repression. However, when binding sites are blocked, miRNAs cannot
bind to their targets. Specific decoy RNAs (“decoys”) bind competitively to the
same sites as miRNAs, thereby interfering with miRNA–mRNA interactions. If
these decoys block the binding sites of mRNAs, they will be up-regulated, because
there will be fewer opportunities for miRNAs to bind and repress mRNA translation.
A schematic is shown in Fig. 6.2 for the case of phosphatase and tensin homologs
(PTENs) mRNAs.
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Fig. 6.2 Schematic of the
miRNA-PTEN
post-transcriptional
regulatory process, with
miRNAs and decoys
competing for binding to
PTEN mRNA

Fig. 6.3 Markov chain diagram for the mRNA state (no decoys)

Escaping Degradation with siRNA Only

Silencing RNA (siRNA) is a class of RNA that interferes with the expression of
specific genes (see Wikipedia). We study the escape of mRNA from the nucleus
through small nuclear pores before it is degraded by siRNAs. First, we consider the
case that there are no decoys in the system, which we study through the process of
RNA interference (RNAi) in the nucleus. The model accounts for multiple siRNA
binding sites on the mRNA. When the number S of siRNAs bound to an mRNA
exceeds a given threshold T the mRNA is considered to be degraded. When an
siRNA occupies a site, no other siRNA can bind to this site. We assume that siRNAs
diffuse freely in the nucleus and that siRNA-mRNA binding is irreversible. The
aim of the model is to compute the escape probability Pa that an mRNA exits the
nucleus intact, that is, it escapes through a nuclear pore before binding T siRNAs
(see Fig. 6.3). Specifically, we assume in our model of the degradation reaction
that M mobile reactant mRNA molecules diffuse independently of each other in
a microdomain � and bind to S stationary sites. When bound, they are released
independently of each other at exponential waiting times with rate k�1. The number
k.t/ of unbound sites at time t is a Markovian birth–death process with states
0; 1; 2; : : : ;minfM; Sg and transition rates �k!kC1 D �k; �k!k�1 D k�1.

The reduced Markovian model is used for the calculation of the mean time of
the number of bound molecules to reach a given threshold T . When there are only
degrading miRNAs, the probability Pe that an mRNA exits the nucleus alive is
computed from the joint probability density that the mRNA is at x and that there are
k bound miRNAs. In terms of the diffusion process X.t/ of a siRNA, with killing at
the threshold, the joint survival probability and density of X.t/ is given by

PrfX.t/ 2 x C dx; k.t/ D kg D pk.x; t/ dx: (6.8)
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When there are less than T � 1 bounds, the mRNA is still alive, but it is degraded
at the threshold T . The survival probability in the nucleus (before reaching the
threshold) is the marginal

Sk.t/ D
Z

�

PrfX.t/ 2 x C dx; k.t/ D kg dx: (6.9)

The probability that the mRNA exits the nucleus alive at time t with k bound sites is

PrfmRNA exits at time t; k.t/ D kg D Jk.t/; (6.10)

where the instantaneous flux is Jk.t/ D R
@�
@pk.x; t/=@n dSx. Finally, the probability

that the mRNA exits alive is the sum over all possibilities that k < T sites are bound,
Pa.t/ D PT�1

0 Jk.t/. The overall probability that an mRNA exits alive is therefore

Pa D
1Z

0

Pa.t/ dt: (6.11)

In the narrow escape approximation �k D N��1 the exit time is exponentially
distributed and the survival probability with k bound sites, pk.t/ D R

�
pk.x; t/ dx,

satisfies the Kolmogorov equations for the Markov process k.t/

Ppk.t/ D �
�
1

N� C kk�1 C .S � k/kf

�
pk.t/C kf .S � k C 1/pk�1.t/

C .k C 1/k�1pkC1.t/

Pp0.t/ D �
�
1

N� C Skf

�
p0.t/C k�1p1.t/

PpT�1.t/ D �
�
1

N� C .T � 1/k�1 C .S � T C 1/kf

�
pT�1.t/

C kf .S � T C 2/pT�2.t/

PpT.t/ D kf .S � T C 1/pT�1.t/; (6.12)

where we assume that the transition rate from state T to T � 1 is zero. The exiting-
alive probability is given by

Pa D 1

N�
T�1X

0

1Z

0

pk.t/ dt: (6.13)
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In the irreversible case, ks
b D 0, defining the probability of an alive mRNA with s

bound siRNAs within the domain at any given time t, as

as D
1Z

0

pS
s .t/dt; (6.14)

the system (6.12) gives

0 D �1N� as � kf .N0 � s/as C kf .N0 � s C 1/as�1 for 0 < s < T � 1; (6.15)

with aT D 0, and the conditions (6.3) reduce to

�1 D � 1

N� a0 � kf N0a0 (6.16)

0 D � 1

N� aT�1 � kf .N0 � T C 1/aT�1 C kf .N0 � T C 2/aT�2 (6.17)

pS
T.1/ D kf .N0 � T C 1/aT�1: (6.18)

The initial condition is pV
s .0/ D ıs, because initially the mRNA is not bound by any

siRNAs. The escape probability is given by

Pa D 1

N�
T�1X

kD0
as; (6.19)

while the conservation of probability leads to the relation

Pa C pS
T.1/ D 1: (6.20)

A direct solution of (6.15) and (6.16) gives

as D kf .Nb � s C 1/

1= N� C kf .Nb � s/
as�1 for s < T; (6.21)

where a0 D N�=.1C kf Nb N�/. Thus,

as D kk
f

.Nb/Š

.Nb � s/Š

sY

jD0

1

1= N� C kf .Nb � j/
: (6.22)

Using (6.19) and (6.22), the probability that the mRNA escapes the domain intact is
given by
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Pa.T;Nb; x/ D
T�1X

sD0
xs NbŠ

.Nb � s/Š

sY

jD0

1

1C .Nb � j/x
; (6.23)

where x D N�kf .
The reversible case is technically more difficult and Eq. (6.15) becomes

0 D �1N� as � kf .Nb � s/as � ks
bsas C ks

b.s C 1/asC1 C kf .Nb � s C 1/as�1;
(6.24)

with boundary conditions

�1 D � 1

N� a0 � kf Nba0 C ks
ba1

0 D � 1

N� aT�1 � kf .Nb � T C 1/aT�1 � ks
b.T � 1/aT�1

C kf .Nb � T C 2/aT�2

pS
T.1/ D kf .Nb � T C 1/aT�1:

Note that (6.24) can be written in matrix form as

M

0

BBB@

a0
a1
:::

aT�1

1

CCCA D

0

BBB@

�1
0
:::

0

1

CCCA (6.25)

with the tridiagonal matrix

M D

0

BBBBBBBBB@

˛0 ˇ1 0 : : : 0

�1 ˛1 ˇ2 0 .0/

0
: : :

: : :
: : :

: : :
:::

: : :
: : :

: : :
: : : 0

::: .0/
: : :

: : :
: : : ˇT�1

0 : : : 0 �T�1 ˛T�1

1

CCCCCCCCCA

; (6.26)

where

˛i D �
�
1

N� C ˇi C �iC1
�
; ˇi D ks

bi; �i D .Nb � i C 1/kf : (6.27)

Thus, the probability to reach the threshold T is given by

PT D kf .Nb � T C 1/aT�1 D �kf .Nb � T C 1/m�1
T1 ; (6.28)
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where m�1
ij D .M�1/ij for 1 � i; j � T . A direct computation gives

m�1
T1 D .�1/TC1QT�1

kD1 �k

�T
; (6.29)

where the sequence .�n/n2N satisfies the recursion relation with polynomial coeffi-
cients, given by

�i D ˛i�1�i�1 � ˇi�1�i�1�i�2; (6.30)

with �0 D 1 and �1 D ˛0 (Usmani 1994). Using (6.27), we obtain

PT.1/ D kT
f NbŠ

.Nb � T/ŠuT
; (6.31)

where the sequence un satisfies for i > 1

uiC1 D
�
1

N� C ks
bi C kf .Nb � .i C 1/C 1/

�
ui C ks

bkf i.Nb � i C 1/ui�1;

with u0 D �1 and u1 D N��1 C kf Nb. However, the series un cannot be obtained
explicitly in a simple closed form. As a particular example, T D 3 gives

PT.1/ D
Nkf
3
Nb.Nb � 1/.Nb � 2/

Q.Nkf ; Nks
bNb/

; (6.32)

where

Q.Nkf ; Nks
b;Nb/ D1C Nkf

X

0�i�2
.Nb � i/C Nkf

2
X

0�i¤j�2
.Nb � i/.Nb � j/

C Nks
bŒ3C 2 Nks

b C Nkf .2N2
b C 2 Nkf Nb.Nb � 1/C 5Nb � 6/�

C Nkf
3
N.Nb � 1/.Nb � 2/:

and

Nkf D kf N�; Nks
b D ks

b N�: (6.33)

The survival probability Pa can be computed in general using Gillespie’s stochastic
simulation algorithm (SSA) (Gillespie 1976) (see Fig. 6.4). Figure 6.4b shows the
good agreement between the analytical expression (6.28) and the results of the SSA.
Compared with irreversible binding (ks

b D 0), the survival probability is relatively
insensitive to the values of the escape time, � , when � is small compared to the
chemical times .ks

b/
�1 and .kf /

�1 (Fig. 6.4a, b for N�kf D 0:1). Indeed, when the
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Fig. 6.4 Escape probability as a function of the threshold T (bound miRNAs) for the RNAi
problem (no decoys). (a) Comparison between stochastic simulations (square) and analytical
formula (6.23) (dotted line) in the irreversible binding case for different values of x D � D
0:1; 1; 10: (b) Same as in (a) but with reversible binding case and a comparison with analytical
formula (6.28). For each value of T the number of SSA simulations is 1000 with Nb D 20 and
ks

b D kf D 1

escape time is short compared to the binding and unbinding times, the miRNAs
generally have no time to unbind before the mRNA exits. However, as the mean
escape time N� increases, the number of bound miRNAs increases and thus unbinding
affects the probability of absorption. These changes become apparent for a high
threshold value. Thus unbinding can delay the time to reach the threshold, enabling
the mRNA to escape with higher probability than in the irreversible case.

6.2.2 2D-Markov Chain Model of mRNA Escaping
Degradation

A more general model of the safe delivery of a PTEN mRNA to the endoplasmic
reticulum (ER), by binding to a ribosome (represented by a small, stationary
target within the cytoplasm) assumes that mRNAs have binding sites which are
complementary to two types of small RNAs: miRNAs, denoted s, which can repress
the mRNA, and decoys, denoted d, which can protect the mRNA from repression
by blocking the binding sites. We assume that when a decoy is bound to a site,
no miRNA can bind to that site, and vice versa. In general, miRNAs and decoys
compete for the same binding sites: when the number of miRNAs bound to an
mRNA exceeds a certain threshold, T , the mRNA is considered to be irreversibly
repressed. Small RNAs diffuse freely with diffusion coefficient Ds, confined to a
domain, are present in large proportion relative to the number of mRNAs. The
mRNA diffusion process x.t/ has diffusion coefficient Dm. The diffusion coefficient
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of the small RNAs is much bigger than that of mRNAs (Ds � Dm). Each mRNA
has a finite and small number of binding sites, Nb (assumed to be in the range of 10–
20). The PTEN model assumes that these interactions between the mRNA, miRNA,
and decoys are taking place in the cytoplasm.

The state of each mRNA can be described by the probability density function

Prfx.t/ 2 x C dx; s.t/ D s; d.t/ D dg D p.x; s; d; t/dx; (6.34)

which represents the probability that an mRNA is found at position x at time t with
s miRNAs and d decoys bound. When the number of bound miRNAs, s, reaches a
threshold, T , the mRNA is repressed. The master equation for the three-dimensional
pdf p.x; s; d; t/ of the Markov process .x.t/; s.t/; d.t// (6.34) is derived under the
standard assumption (Schuss 2010b) that in the time interval Œt; tC�t�, the processes
s.t/ and d.t/ of bound miRNAs and decoys, respectively, an miRNA or decoy can
bind with rate kf .Nb � s � d/�t. An miRNA (or decoy) can unbind with rate ks

bs�t
(or kd

bd�t). A more detailed description of the derivation of the joint pdf is given in
Dao Duc and Holcman (2010). The mathematical difficulty and novelty here is to
examine the master equation at the reaction boundaries (see Holcman et al. 2014).
The subscript fs; dg represents that there are s miRNAs and d decoys bound to the
mRNA, with s 2 Œ0;T� and d 2 Œ0;Nb � s�).

The survival probability of mRNA with s miRNA and d decoys at time t, given
its initial position x0 2 �, is given by

pS.s; d; t j x0/ D
Z

�

p.x; s; d; t j x0/ dx: (6.35)

The conditional probability efflux density J.s; d; t j x0/ is defined as the instanta-
neous arrival rate of an mRNA to a target with s miRNAs and d decoys bound,

J.s; d; t j x0/ D �@pS.s; d; t j x0/
@t

: (6.36)

Binding to targets is a rare event, because targets occupy only a small fraction of the
domain. Therefore, the efflux density can be approximated in the small hole limit as

Js;d.t/ D 1

N� pS
s;d.t/; (6.37)

where N� is the mean arrival time of an mRNA to a target. This MFPT is independent
of the number of bound miRNAs/decoys, but dependent on the diffusion properties
of the mRNA and on the number of targets. For constant isotropic diffusion, N� has
been calculated for various geometries and binding site configurations (Holcman
and Schuss 2013a). The survival probability of a live mRNA in the domain at time
t, given by (6.35), satisfies the master equation,
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Fig. 6.5 Markov chain diagram for the mRNA state. The general transitions are represented in
the inner diagram, while we emphasize the boundary condition. The rectangle represents the state
where the mRNA is repressed (absorbing state). There is also a probability to exit from each non-
absorbing state, represented in the diagram as asterisk

@

@t
pS

s;d.t/ D � 1

N� pS
s;d.t/ � 2kf .Nb � s � d/pS

s;d.t/ � .ks
bs C kd

bd/pS
s;d.t/

C ks
b.s C 1/pS

sC1;d.t/C kd
b.d C 1/pS

s;dC1.t/

C kf .Nb � s � d C 1/pS
s�1;d.t/C kf .Nb � s � d C 1/pS

s;d�1.t/:

The transition diagram for (6.40) is summarized in Fig. 6.5. The boundary terms are
obtained in a similar manner (see Holcman et al. 2014) (Fig. 6.6). The first time that
the number of bound miRNAs reaches the threshold T is known as the “mean time
to threshold” (MTT) and is denoted N�T . It is used to define the escape probability Pa

of an mRNA prior to its repression and probability Pd that an mRNA is repressed
before it escapes. The probability that an mRNA exits the domain at time t before
it is repressed is the sum over all probabilities that there are s < T bound miRNAs
when the mRNA reaches a target at time t, that is,

Pa.t/ D
T�1X

sD0

1

N� pS
s;d.t/C

NbX

dDNb�TC1

Nb�dX

sD0
pS

s;d.t/: (6.38)

The overall exit probability of a live mRNA is

Pa D
1Z

0

Pa.t/dt: (6.39)
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Fig. 6.6 Markov chain diagram for the mRNA state. The general transitions are represented in
the inner diagram, while we emphasize the boundary condition. The rectangle represents the state
where the mRNA is repressed (absorbing state). There is a probability to exit from each non-
absorbing state, represented in the diagram as asterisk

Similarly, the probability of an mRNA being repressed before it escapes is defined as

Pd D
Nb�TX

kD0

Nb�TX

dD0
pS

T;k.1/; (6.40)

where

pS
T;d.1/ D lim

t!1 pS
T;d.t/: (6.41)

Combining (6.38) and (6.39) this can be expressed as

Pa D
T�1X

sD0

Nb�TX

dD0

1Z

0

Js;d.r/dr C
NbX

dDNb�TC1

Nb�dX

sD0

1Z

0

Js;d.r/dr: (6.42)

In the small hole approximation the exit time is Poissonian. To estimate the survival
probability, we integrate the Markov chain over the domain, �, and simplify our
results by defining

as;d D
1Z

0

pS
s;d.t/dt; (6.43)

which represents the probability of an mRNA being found intact within the domain
at any time. From this, (6.42) can be written as



6.2 Applications of MTT in Cell Biology 157

Pa D 1

N�
T�1X

sD0

Nb�TX

dD0
as;d C 1

N�
NbX

dDNb�TC1

Nb�dX

sD0
as;d: (6.44)

The probability as;d satisfies

0 D � 1

N� as;d � 2kf .Nb � s � d/as;d � .ks
bs C kd

bd/as;d

C ks
b.s C 1/asC1;d C kd

b.d C 1/as;dC1 (6.45)

C kf .Nb � s � d C 1/as�1;d C kf .Nb � s � d C 1/as;d�1

for 0 < s < T and 0 < d < Nb � T . This results from

lim
t!1 pS

s;d.t/ D 0 for s ¤ T; (6.46)

which means that the probability to find the mRNA inside the cytoplasm is zero,
except in the following cases:

pT;d.1/ D kf .Nb � T � d C 1/aT�1;d for Nb � T > d 
 0
pT;Nb�T.1/ D kf aT�1;Nb�T ;

which corresponds to mRNA repression at t D 1. The boundary conditions for
s D 0 and d D 0 give the following equations

�1 D � 1

N� a0;0 � 2kf Nba0;0 C ks
ba1;0 C kd

ba0;1 (6.47)

0 D � 1

N� a0;Nb � kd
bNba0;Nb C kf a0;Nb�1; (6.48)

Finally we recall that the initial condition is

p0;0.0/ D 1:

At this stage,we have the following set of conditions: for Nb > d > 0,

0 D �1N� a0;d � 2kf .Nb � d/a0;d � kd
bda0;d C ks

ba1;d

Ckd
b.d C 1/a0;dC1 C kf .Nb � d C 1/a0;d�1:

For T�1 > s > 0,

0 D �1N� as;0 � 2kf .Nb � s/as;0 � ks
bsas;0 C ks

b.s C 1/asC1;0

Ckd
bas;1 C kf .Nb � s C 1/as�1;0:
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For s D T � 1,Nb � T > d > 0,

0 D �1N� aT�1;d � 2kf .Nb � T C 1 � d/aT�1;d

�.ks
b.T � 1/C kd

bd/aT�1;d C kd
b.d C 1/aT�1;dC1

Ckf .Nb � T � d C 2/aT�2;d C kf .Nb � T � d C 2/aT�1;d�1:

For T > s > 0, Nb � s D d,

0 D � 1

N� as;Nb�s � .ks
bs C .Nb � s/kd

b/as;Nb�s C kf as�1;Nb�s

C kf as;Nb�s�1:

Using the SSA, it is possible to simulate, for particular values of the reversible and
irreversible binding rates, the number of bound decoys and miRNAs on a single
mRNA (see Fig. 6.7). The general system of Eq. (6.40) cannot, in general, be solved
analytically. However, in the case of irreversible binding ks

b D kd
b D 0, we can com-

pute the survival probability by summing probabilities over all trajectories starting
from .0; 0/ and leading to the repression state .T;m/. We start by considering the
path � with n bindings (T � n � Nb), whose probability is
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P.�/ D
�
1

2

�n n�1Y

iD0

kf .Nb � i/

kf .Nb � i/C 2= N� :

The number of these paths of length n is then
�n�1

T�1
�
, because there are T bindings

with miRNAs, including the last one. Thus, the probability of repression prior to
exit, Pd, is given by

Pd D
NbX

kDT

 
k � 1
T � 1

!�
1

2

�k k�1Y

iD0

kf .Nb � i/

kf .Nb � i/C 2= N� : (6.49)

When the MFPT is larger than the binding time ( N� � 1=kf ), the approximation

kf .Nb � i/

kf .Nb � i/C 2= N� D 1

1C 2=. N�kf .Nb � i//
	 1

can be used in (6.49) to give

Pd 	
NbX

kDT

 
k � 1
T � 1

!
1

2k
; (6.50)

which can be interpreted as follows. Neglecting the exit probability for large MFPT
N� , relative to the mean binding time 1=.kf .Nb � i// to either a decoy or miRNA,
the Markov chain converges to a steady state, where the number of bound decoys is
binomial with parameters .Nb; 1=2/. Thus, the probability of repression is given
by (6.50). In general, various quantities are computed asymptotically or by the
Gillespie SSA (Gillespie 1976). Quantities of interest include the probability that
an mRNA escapes to the ER (by locating a ribosome) before it is repressed (see
Fig. 6.7a).

As the MFPT N� increases, the rate of unbinding events decreases the escape
probability (for intermediate values of T). Dramatic differences appear for a
threshold of T D 11 and Nb D 20 (Fig. 6.7), leading to a twofold increase in the
escape probability for the irreversible case (	0.6) relative to the reversible case
(	0.3). Unbinding of decoys increases the likelihood of reaching the threshold
value, and a decrease in the escape probability of escape is observed. This effect is
hard to predict, because both decoys and miRNAs can unbind. Irreversible binding
reduces the effect of decoys on the escape probability, and so we see an increase in
the effect of T on Pa, similar to that is observed in the case of reversible binding
alone. The histogram of the number of bound miRNAs before the mRNA exits is
given in Fig. 6.7b for different values of T .

To conclude, the MTT is a general methodology for the study of cell activation
processes on the molecular level. This framework is applied here to study the effects
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of elementary parameters, such as the threshold to repression, T , the number of
binding sites, Nb, and the various kinetics parameters, on the stochastic repression
of mRNA by siRNAs/miRNAs.

6.3 The Spindle Pole Body Activation

The alignment of each pair of chromosomes is a fundamental step in cell division.
This process occurs during metaphase, when the center of the chromosomes
(centrosome) attached to microtubules interacts with the kinetochores to build the
mitotic spindle (Fig. 6.8) (the kinetochore is the protein structure on chromatids
where the spindle fibers attach during cell division to pull sister chromatids apart).
Only after all chromosomes are aligned and when every kinetochore is properly
attached to a bundle of microtubules, the cell enters a new phase, called anaphase.
To prevent a premature anaphase, even if all-but-one of the kinetochores have
been attached and the chromosomes are aligned, unattached or improperly attached
kinetochores generate a signal that inhibits the anaphase activators. This process is
called the SAC. Although the exact mechanisms of the SAC and anaphase processes
are still unclear, several key steps have been identified. Sister chromatids are initially
bound by proteins such as cohesin. However, when the kinetochores are not all
properly attached, the SAC enables the ubiquitylation and inhibition of the cell-
division cycle protein 20 (Cdc20, which is an essential regulator of cell division
in humans, see Wikipedia) to bind another complex of the molecule anaphase-
promoting complex (also called the cyclosome or APC/C, see Wikipedia) (Nilsson
et al. 2008).

The model proposed here for the study of inhibition followed by fast activation of
Cdc20, which is the key activator of the anaphase promoting complex, accounts for
the small number of kinetochores in the SAC. Moreover, the forward binding rate of
a chemical reaction in the model, which is traditionally assumed in the continuously
concentrated limit, is inapplicable here, because the model of chemical reactions
in microdomains, described in Sect. 6.1.1, is the one relevant to targets such as
kinetochores that have to be reached by the anaphase activators. This is the general
framework for the study of the dynamics of activators during the spindle checkpoint
and the anaphase transition. The aim of the model is to compute the time-dependent
probability that the spindle is not initiated before time t and also to compute the
mean time to induce anaphase.

6.3.1 Model of the SAC

In a cell containing N chromosomes, the targets of the Cdc20 molecules are
the N associated kinetochores, containing the APC/C complexes. When a Cdc20
molecule reaches a kinetochore, it activates the APC/C complex and this can
trigger a cascade of reactions leading to the separation of the sister chromatids.
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Fig. 6.8 A schematic view of the spindle assembly checkpoint and anaphase. (a) Before all
chromosomes are attached, the mitotic checkpoint complex inhibits the Cdc20 molecules binding
with APC/C to prevent premature separation of sister chromatids. This signal ubiquitylates Cdc20.
(b) When all chromosomes are properly attached, the inhibiting signal is shut down. (c) and (d)
Activation of APC/C triggers the separation of the chromatids and ultimately the anaphase

A large number of these proteins diffuse in the cell to inhibit the APC/C binding
by Cdc20 molecules. Indeed, these proteins form with Cdc20 a complex called
mitotic checkpoint complex (MCC). The MCC represents in the proposed model
the complex of inhibitory proteins before it binds Cdc20. This contrasts the usual
terminology that assumes that MCC includes Cdc20. The chemical reactions of
interest are
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Complex:Cdc20
��! Complex + Cdc20 (production)

Cdc20 + MCC
k�1�! MCC:Cdc20 (ubiquitylation)

Cdc20 + APC/C
��! APC/C:Cdc20 (activation);

where � is the rate of Cdc20 production and k�1 is its degradation rate, whereas
� is the arrival rate of CdC20 to an APC/C site. The joint probability of k Cdc20
molecules and that the APC/C is not activated by any free Cdc20 molecule by time
t is denoted

pk.t/ D Pr f#Cdc20.t/ D k and no activation has occurred by time tg :

We define an auxiliary random process s.t/ that takes the value 1 if an activation
of APC/C by Cdc20 has occurred prior to time t and 0 otherwise. According to
the above chemical reactions table, the pair .#Cdc20.t/; s.t// is a two-dimensional
Markov jump process. Starting with k active Cdc20 molecules and no activation,
there are three possible transitions (Fig. 6.9):

1. One Cdc20 molecule is inhibited, so that k � 1 active molecules are left,
2. One Cdc20 molecule activates the APC/C,
3. One Cdc20 molecule is generated, leading to the transition from k to k C1 active

molecules.

The probability p�.t/ of s.t/ satisfies together with the probabilities pk master
(Kolmogorov) equations

Pp0 D ��Sp0 C k�1p1
Ppk D �.�.S � k/C .�N C k�1/k/pk C �.S � k C 1/pk�1

Ck�1.k C 1/pkC1; for 1 � k (6.51)

Pp� D
X

k

�Nkpk:

Fig. 6.9 Markov diagram for the probability of number of Cdc20 molecules. Cdc20 at state k is
generated and destroyed at rate �.S � k/ and k�1k, respectively. Diffusing Cdc20 molecules bind
to the APC/C complex to trigger the separation of sister chromatids
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To understand the derivation of (6.51), we note that the production rate of Cdc20
molecules is proportional to the number of remaining available complex molecule
given by �.S � k/. Indeed, Cdc20 molecules are produced during metaphase by
dissociation from a pool of complexes, which limits the level of Cdc20 to a
maximum number of S molecules. When none of the N target kinetochores have
been activated, the arrival rate for a Cdc20 molecule to an APC/C is �N, where
� D N��1 and N� is the mean time for a Cdc20 molecule to reach the APC/C site.
The initial condition is pk.0/ D ık;0. Because there can only be at most S Cdc20
molecules, we have pk.t/ D 0 for all times t and k > S. In that case, during time t
and t C ıt, starting with k �1molecules, the rate of production is �.S � k C1/ while
when there are k C 1, the destruction rate is k�1.k C 1/, leading to the general term
in system (6.51).

The Probability of No Activation

To quantify the inhibition capacity of the SAC, we compute the probability P.t/ that
no APC/C has been activated by time t, so that no chromosomal migration could
have been initiated. This probability is given by

P.t/ D
1X

kD0
pk.t/: (6.52)

Equation (6.51) imply that the generating function

f .t; x/ D
1X

kD0
pk.t/x

k (6.53)

satisfies the linear first order PDE

@f

@t
D �S.x � 1/f C .��x2 C .� � �N � k�1/x C k�1/

@f

@x
; (6.54)

whose characteristics are the solutions of the Riccati equation

PX D �X2 � .� � �N � k�1/X � k�1: (6.55)

The substitution X D � 1
�

u0

u
reduces (6.55) to the linear second order ODE with

constant coefficients

u00 C .� � �N � k�1/ u0 � k�1�u D 0: (6.56)

The one-parameter family of solutions of (6.55) is

XC.t/ D � 1
�

�
r1er1t C r2Cer2t

er1t C Cer2t

�
; (6.57)
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where r1 and r2 are the two roots of the quadratic polynomial associated with (6.56),

r1 D 1

2

�
��C �N C k�1 C

q
.��C �N C k�1/2 C 4k�1�

�

r2 D 1

2

�
��C �N C k�1 �

q
.��C �N C k�1/2 C 4k�1�

�
:

The PDE (6.54) can be written on the characteristics as the linear ODE

df .t;XC.t//

dt
D �S.XC.t/ � 1/f .t;XC.t//; (6.58)

whose general solution is

f .t;XC.t/;K/ D K exp

8
<

:�S

tZ

0

.XC.u/ � 1/du

9
=

; ; (6.59)

where K is a constant. The initial conditions pk.0/ D ık0 determine K D 1. To find
the analytical expression for P.t/, we use the characteristic for which XC.t/ D 1 in
the family of solution (6.57). Thus

C.t/ D �e.r1�r2/t
�C r1
�C r2

; (6.60)

and

XC.t/.u/ D � 1
�

0

BB@
r1 � r2

�
�C r1
�C r2

�
expŒ.r1 � r2/.t � u/�

1 �
�
�C r1
�C r2

�
expŒ.r1 � r2/.t � u/�

1

CCA :

Thus the probability P.t/ of no activation by time t is

P.t/ D exp

8
<

:��S

0

@t C 1

�

tZ

0

r1 � r2
�
�Cr1
�Cr2



e.r1�r2/u

1 �
�
�Cr1
�Cr2



e.r1�r2/u

du

1

A

9
=

;

D exp



��S

�
t C 1

�

�
r1u � ln

�
1 �

�
�C r1
�C r2

�
e.r1�r2/u

��t

0

��

D e��St�r1St

��� � r2 C .�C r1/e.r1�r2/t

.r1 � r2/

�S

D e��tS

�
.�C r1/e�r2t � .�C r2/e�r1t

�.r1 � r2/

�S

:
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Finally,

P.t/ D
�
.�C r1/e�.�Cr2/t � .�C r2/e�.�Cr1/t

r1 � r2

�S

; (6.61)

which is a decreasing function of t. For � D 0 and � D 0 it remains constant. For
fixed t the probability P.t/ is a decreasing function of �, that is, increasing the Cdc20
production rate decreases the probability of activation. Similarly, it is a decreasing
function of k�1, which means that increasing the inhibition of Cdc20 increases the
probability of no activation.

6.3.2 Activation of the APC/C

When all kinetochores are properly attached, the SAC is shut down and the activa-
tion of APC/C:Cdc20 complex triggers a cascade of reactions that lead to cohesin
ubiquitylation. To study the time to such activation, we assume that production and
degradation of MCC are sufficiently fast enough so that the MCC concentration
decreases rapidly once all the kinetochores are attached. Neglecting the transient
time for the rate k�1 to decay to 0, the equilibrium Cdc20 concentrations are taken
as the initial conditions for the activation of APC/C. Furthermore, the time for all
kinetochores to be attached is not too short on the time scale of degradation and
production, so that the CdC20 concentration stays close to equilibrium. When there
are k Cdc20 present in the cell and m of them are bound to APC/C, the association
rate is �.N � m/.k � m/. The joint probabilities that there are k Cdc20 molecules
and m activated APC/C by Cdc20 are given by

pk;m.t/ D Pr f#CDC20.t/ D k; and m APC/C are activated by Cdc20 by time tg :

Because the transition rate to activation of APC/C on another kinetochore from the
state .k;m/ is �.k � m/.N � m/, the master equation is

Pp0;0 D � �Sp0;0

Ppk;0 D � .�.S � k/C �Nk/pk;0 C �.S � k C 1/pk�1;0
Ppk;k D � �.S � k/pk;k C �.N � k C 1/pk;k�1 (6.62)

Ppk;m D � .�.S � k/C �.N � m/.k � m//pk;m C �.S � k C 1/pk�1;m
C �.N � m C 1/.k � m C 1/pk;m�1;

with the initial condition



166 6 Markov Models for Stochastic Chemical Reactions

pk;m.0/ D

 
S

k

!�
�

k�1

�k

�
1C �

k�1

�S ı0;m: (6.63)

In this case, the mean time N� that all APC/C are activated is found from a continuous-
time Markov process that reaches a given threshold (see Dao Duc and Holcman
2010). The MFPT to the threshold is expressed as the sum

� D
N�1X

kD0

SX

mD0
ak;m; (6.64)

where ak;m D R1
0

pk;m.t/dt. Integrating the system (6.62) from 0 to 1 with the
initial conditions (6.63) gives

�p0;0.0/ D � �Sa0;0

�pk;0.0/ D � .�C �N/.S � k/ak;0 C �.S � k C 1/ak�1;0
0 D � �.S � k/ak;k C �.N � k C 1/ak;k�1 (6.65)

0 D � .�.S � k/C �.N � m/.k � m//ak;m

C �.N � m C 1/.S � k/ak;m�1 C �.S � k C 1/ak�1;m:

In practice it is easier to solve the system numerically and to use the probability P.t/
and the MFPT N� to determine the constraints that define the range of the parameters
� and k�1, as described below.

6.3.3 Determination of the Production and Unbinding Rates

The rates of production and unbinding, � and k1, respectively, can be determined
from the following principles: a strong inhibition signal keeps the probability for no
activation very high during SAC and thus k�1 has to be sufficiently high relative to
� to maintain a quasi-steady state. In contrast, fast activation during anaphase keeps
the mean time to activate all the kinetochores short, so that � has to be sufficiently
high to maintain a quasi-steady state. These two constraints determine a range for
the parameters � and k�1.

1. First, the probability P of no activation remains sufficiently high for the time �1
until all chromosomes get properly attached in the metaphase plate. It has been
estimated that �1 	 20min (Rieder et al. 1994). Therefore, fixing a threshold of
0.95 for the probability P.�1/ of no activation prior to �1, we get

Prf�1 > 20ming 
 0:95: (6.66)
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Fig. 6.10 Representation of the domain � for the rate constant (red). (a) The probability for no
activation at time � D 10min as a function of parameters � and k�1. (b) The mean time to
threshold as a function of � and k�1. (c) Line 1 is the level curve � D 10min in (b). Line 2 is
the level curve P.�/ D 0:95 in (a). These two curves determine the domain � that satisfies (6.66)
and (6.67)

2. Second, during the onset of anaphase, the mean time N�S for all chromosomes
to be separated is short. Since APC/C activation triggers the separation of
chromosomes, N�S can be considered to be the time for activation of all APC/C.
Indeed, biophysical data (Meraldi et al. 2004) suggest that N�S should be limited
by the time � 0 	 10min. Thus,

N�S � � 0: (6.67)

Equation (6.61) for the probability P.�1/ and numerical integration of the mean
time N�S from the matrix equation (6.65) determines the range of validity of �
and k�1 by the geometrical domain �, represented in Fig. 6.10 as the intersection
� D �1 \�2, where

�1 D f.�; k�1/ W Prf�1.�; k�1/ > 20ming 
 0:95g (6.68)

and

�2 D ˚
.�; k�1/ W N�S.�; k�1/ � � 0	 : (6.69)
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6.4 Annotation

Coarse-graining the binding and unbinding reactions on the time scale of the MFPT
of the diffusing reactant into and out of binding sites leads to a Markovian jump
process description of the stochastic dynamics of the binding and unbinding of
molecules is given in Holcman and Schuss (2005b) and applied in Dao Duc and
Holcman (2010, 2012).

The Kolmogorov equation (6.2) with the boundary conditions (6.3) were derived
in Holcman and Schuss (2005b). Equation (6.4) were used in Holcman and Schuss
(2005b) to estimate the fraction of bound receptors in photo-receptor outer segments
and also to interpret the variance of channel noise measurements. This analysis was
also used in Holcman and Triller (2006) to estimate the number of bound AMPA
receptors in the post-synaptic density. A different model was proposed in Bressloff
and Earnshaw (2009).

The application of the Markovian approximation to the SAC during cell division
is given in Dao Duc and Holcman (2012) and that to the mRNA escaping
degradation through binding a number of miRNAs is discussed in Holcman et al.
(2014). Formula (6.50) was derived in Dao Duc and Holcman (2010). It is
shown in Holcman et al. (2014) that when the siRNA/miRNA bind reversibly,
the probability of escape decreases relatively to that of irreversible binding. The
SAC has been modeled at the molecular level, however the parameters used in
Doncic et al. (2005, 2009) and Mistry et al. (2008) may not necessarily reflect in
vivo dynamics. For example, these models do not account for the finite number of
binding sites for Cdc20. In addition, the constant flux assumption for molecules
reaching a kinetochore impacts the APC/C activation, leading to an overestimate
of the catalytic activity (Doncic et al. 2005). The time-dependent probability that
the spindle is not initiated before time t and the mean time to induce anaphase was
calculated in Dao Duc and Holcman (2012) where also the system (6.65) was solved
numerically.



Chapter 7
Random Search with Switching

The NET problem studied so far is essentially that of a Brownian search for a small
target. A more complex search is that by a Brownian particle that switches between
different states, for example, its diffusion coefficient switches between two values,
D1 and D2, at exponential waiting times with rates k12 and k21, respectively, in search
of a small target in a bounded domain � (Reingruber and Holcman 2009). When
the diffusion coefficient is D1, the Brownian trajectory is reflected at the boundary
@�, except for a small absorbing part @�a. When the diffusion coefficient is D2,
the entire boundary reflects the Brownian trajectory. Thus the target is gated by the
state of the searching particle. The gated narrow escape time (GNET) is the time to
absorption of the switching Brownian trajectory and the mean time to absorption is
the GNET. A generalization is a class of diffusions (Reingruber and Holcman 2010)
whose diffusion coefficient can switch between Di and Dj .i; j D 1; 2; : : : ; n/ at
exponential waiting times with given rates kij and are absorbed at a small part @�a

of @� when in states D1; : : : ;Dk. Otherwise, they are reflected at @�. The GNET is
related to certain intermittent search processes, where switching strategies between
different states lead to minimal search time of a target (Bénichou et al. 2005). See
Sect. 7.2 for further references.

7.1 Random Switching Between Two Modes of Diffusion

Consider a diffusion process x.t; i/whose diffusion coefficient switches between D1

and D2 at exponential waiting times with rates k12. The Euler simulation scheme is
given by

© Springer Science+Business Media New York 2015
D. Holcman, Z. Schuss, Stochastic Narrow Escape in Molecular
and Cellular Biology, DOI 10.1007/978-1-4939-3103-3_7
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x.t C�t; i/ D
(

x.t; i/C p
2Di�wi.t/ w.p. 1 � kij�t C o.�t/

x.t; j/ w.p. kji�t C o.�t/; i ¤ j
(7.1)

for i; j D 1; 2, with the randomly chosen initial condition x.s; i/ D x. Here wi.t/ .i D
1; 2/ are independent standard Brownian motions and �wi.t/ D wi.t C�t/� wi.t/.

The transition probability density p.y; i; t j x; s; j/ of the trajectory x.t; i/ in a given
domain �, given the initial condition x.s; j/ D x with probability 1, is the limit as
�t ! 0 of the solution to the system of integral equations (Schuss 2010b)

p.y; i; t C�t j x; s; j/ D 1 � kij�tp
2	Di�t

Z

�

p.z; i; t j x; s; j/ exp



�jy � zj2
2Di�t

�
dz

C kji�tp.y; `; t j s; j/C o.�t/ for i; j; ` D 1; 2; i ¤ `:

In the limit �t ! 0, the system of Kolmogorov (master) equations is obtained

pt.y; 1; t j x; s/D D1�yp .y; 1; t j x; s/ � k12p .y; 1; t j x; s/C k12p .y; 2; t j x; s/

pt.y; 2; t j x; s/D D2�yp .y; 2; t j x; s/C k21p .y; 1; t j x; s/ � k21p .y; 2; t j x; s/:
(7.2)

Setting

p D
�

p .y; 1; t j x; s/
p .y; 2; t j x; s/

�
; K D

�
k12 �k12

�k21 k21

�
; Dy D

�
D1 0

0 D2

�
�y:

The forward master equation (7.2) can be written as

pt.y; t j x; s/ D Dyp .y; t j x; s/ � Kp .y; t j x; s/: (7.3)

The transition probability density p .y; t j x; s/ satisfies the backward system of
master equations (with respect to .x; s/), which is the formal adjoint to (7.3). Upon
setting t � s D � , as we may, we obtain

p� .y; � j x; 0/ D Dxp .y; � j x; 0/ � KTp .y; � j x; 0/: (7.4)

The mean sojourn time u.i jx; 1/ in state i prior to absorption, of a trajectory of (7.1)
that starts at time � D 0 in state 1 at position x with probability 1, is given by
Reingruber and Holcman (2010)

u.i j x; 1/ D
Z

�

dy

1Z

0

d� p.y; i; � j x; 1/: (7.5)
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Fig. 7.1 Example of a
trajectory of a diffusing
Brownian ligand in a confined
domain � and randomly
switching between two states
1 (continuous line) and 2
(dashed line). The ligand is
reflected at the entire
boundary when in state 2,
whereas it is absorbed at @�a

when in state 1

Ω
∂Ωa

∂Ωr

x

To find the differential equations that the times u.i jx; j/ satisfy, the backward
equation (7.4) is integrated with respect to y and � to give

D1�u.i j x; 1/ � k12Œu.i j x; 1/ � u.i j x; 2/� D �1
D2�u.i j x; 2/ � k21Œu.i j x; 2/ � u.i j x; 1/� D 0: (7.6)

The mean sojourn times u.2 j x; 1/ and u.2 j x; 2/ satisfy equations that are obtained
by interchanging 1 $ 2 in (7.6) (Fig. 7.1).

7.1.1 The GNET for a Particle Switching Between Two States

It suffices to solve the equations only for i D 1, because the solutions u.2 j x; j/
can be obtained from u.1 j x; j/ by linear transformations. Specifically, averaging
u.i j x; j/ over a uniform initial spatial distribution of x, we define the mean sojourn
times prior to absorption as

u.i j j/ D 1

j�j
Z

�

u.i j x; j/ dx: (7.7)

When the trajectory x.t; i/ is absorbed at @�a with i D 1 while it is reflected
everywhere on the @� with i D 2, the boundary conditions for the system (7.6) are

u.1 j x; 1/ D 0 for x 2 @�a;
@u.1 j x; 1/

@n
D 0 for x 2 @�r

@u.1 j x; 2/
@n

D 0 for x 2 @�:
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The sojourn times u.2 j x; 1/ and u.2 j x; 2/ are obtained from u.1 j x; 1/ and
u.1 j x; 2/ through the linear transformation

�
u.2 j x; 1/
u.2 j x; 2/

�
D k12

k21

�
1 0

0 1

��
u.1 j x; 1/
u.1 j x; 2/

�
C
�

0

1=k21

�
: (7.8)

Equations (7.6) and (7.8) show that the spatially averaged sojourn times (7.7) satisfy
the relations

u.1 j 2/ D u.1 j 1/; u.2 j 1/ D u.1 j 1/k12
k21
; u.2 j 2/ D u.2 j 1/C 1

k21
: (7.9)

It follows that the mean sojourn times u.1/, u.2/, and u, conditioned on a uniform
initial distribution in states 1, 2, or in 1 and 2 with the equilibrium distribution
.p1; p2/ D .k21; k12/=.k12 C k21/, respectively, are

u.1/ D u.1 j 1/C u.2 j 1/ D u.1 j 1/
�
1C k12

k21

�

u.2/ D u.2 j 2/C u.2/ D u.1/C 1

k21
(7.10)

u D p1u.1/C p2u.1 j 2/ D u.1/C p2
k21
:

7.1.2 GNET in One Dimension

The GNET for one-dimensional diffusions, though not directly relevant to bio-
logical applications, can be calculated explicitly and is quite instructive about the
dependence of the NET on switching. Specifically, the system (7.6) in the interval
� D .0;L/ with absorption at x D 0 in state 1 and reflection at x D L is given in the
scaled variables

Ox D x

L
; l1 D k12L2

D1

; l2 D k21L2

D2

(7.11)

� D D1

D2

; v1.Ox/ D D1

L2
u1.x; 1/; v2.Ox/ D D1

L2
u1.x; 2/

by

v00
1 .Ox/ � l1Œv1.Ox/ � v2.Ox/� D �1; v00

2 .Ox/C l2Œv1.Ox/ � v2.Ox/� D 0; (7.12)

with boundary conditions v1.0/ D v0
1.1/ D v0

2.0/ D v0
2.1/ D 0. The system can be

solved explicitly and exhibits a nonlinear effect of switching. This can be seen from
the explicit expressions
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Fig. 7.2 Graph of the sojourn time u.1 j 1/ obtained from the explicit solution as a function of l1
(left) and l2 (right), scaled by the NET �1 with no switching. The continuous curve in the left panel
is the asymptotic approximation 3=

p
l1 for l1 � 1 and

p
l1 � l2

u.1 j 1/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

L2

D1

�
coth

p
l1p

l1
� 1

l1

�
C O

�
l2
l1

�
; for l2 � l1

L2

3D1

C O

�
l1
l2

�
; for l2 � l1;

(7.13)

while for l1 � 1 and l2 � p
l1

u.1 j 1/ 	 L2

D1

1p
l1

D Lp
k12D1

; l1 � 1;
p

l1 � l2: (7.14)

Figure 7.2 shows the plots of u.1 j 1/ vs l1 (left) and vs l2 (right). The counterintuitive
result, that the sojourn time u.1 j 1/ is always smaller than the mean exit time
in state 1 without switching, is remarkable. In addition, when the parameters D1,
D2, and k21 are fixed, Eq. (7.14) shows that u.1 j 1/ becomes arbitrarily small as
k12 increases. This counterintuitive behavior can be understood as follows (see
also Doering 2000). For a trajectory starting uniformly distributed in state 1, the
probability to be in the neighborhood of the absorbing boundary at x D 0 decreases
quickly as a function of time. However, after switching to state 2, the distribution is
re-homogenized and later on, after switching back to state 1, the probability density
around x D 0 is higher than that in the non-switching case. After switching back
to state 1, the ligand starts closer to x D 0 with high probability and thus exits
in state 1 faster than in the non-switching case. Figure 7.3(left) shows the plot
of u.1/ vs l1 for various fixed values of l2. This situation describes a chemical
reaction, where the diffusion constants and the backward rate k21 are fixed, but
the forward binding rate k12 can be adjusted by changing the concentration of a
reactant partner. Figure 7.3(right) shows the plot of u.1/ vs l2 for fixed l1, which
demonstrates that also u.1/ has a minimum u.1/m in this case. The minimum u.1/m
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Fig. 7.3 Graph of the exit time u.1/ as a function of l1 (left) and l2 (right) for D1=D2 D 0:1,
scaled by NET �1 in the absence of switching

decreases as switching becomes faster. A lower bound for u.1/m can also be found
explicitly. The analysis of the one-dimensional case shows that the lower limit of
the GNET u.1/ corresponds to diffusion with the maximal diffusion constant and
for � D D1=D2 � 1, the fastest exit is achieved by diffusing most of the time in
state 2, with no exits possible. The exit time u.1/ has no global or even local minima
for � < 1 and the best strategy to minimize the GNET needs to be adapted to the
given constraints. For example, when k21, k12 are the unbinding and the binding
rates, respectively, k21 usually depends on the local interaction potential while k12
can be modulated by changing the concentration of the binding partner.

Furthermore, as shown in Fig. 7.3, the graph of u.1/ around and past the
minimum is quite flat, and thus increasing switching to attain the minimum may
not be necessary, because a similar effect can already by achieved at much slower
rates. Moreover, because the graph of u.1/ decays steeply for small values l1 and l2,
this behavior provides an efficient mechanism to modulate the activation time, and
thus cellular signaling.

7.1.3 GNET in Three Dimensions

Consider the GNET problem for a three-dimensional domain� when the trajectory
is absorbed upon hitting @�a in state 1 only. In the scaled variables

Ox D x
a
; l1 D k12a2

D1

; l2 D k21a2

D2

v1.Ox/ D aD1

j�j u1.x; 1/; v2.Ox/ D aD1

j�j u1.x; 2/;
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the system (7.6) becomes

�v.i jOx; 1/ � l1Œv.i j Ox; 1/ � v.i j Ox; 2/� D � j O�j�1
�v.i j Ox; 2/C l2Œv.i j Ox; 1/ � v.i j Ox; 2/� D 0; (7.15)

where j O�j D j�j=a3 � 1. The boundary condition is absorbing on @ O�a for v1.Ox/,
and otherwise reflecting. Asymptotic approximations to the solution of (7.15) in
the limit of small window and extreme values of the parameters clarify the effect of
switching. For l1 � 1 or l2 � l1, at leading orders, v.1 j Ox; 1/ is solution of the NET
problem �v.1 j Ox; 1/ D �j O�j�1. When l2 � p

l1, the leading order approximation
for v.1 j Ox; 1/ is found by solving�v.1 j Ox; 1/� l1Œv.1 j Ox; 1/�v1� D �j O�j�1, where
v1 is the spatial average of v.1 j Ox; 1/. The leading order asymptotic approximation
to the mean sojourn time is

u.1/ D
�
1C k12

k21

� j�j
aD1

v1 (7.16)

�
�
1C k12

k21

�
8
ˆ̂<

ˆ̂:

�1 for l1 � 1 or l2 � l1

j�j
j@�ajpD1k12

for l1 � 1;
p

l1 � l2;
(7.17)

where �1 is the NET in state 1 without switching. The asymptotic behavior (7.17)
of u.1/ and u.1 j 1/ as functions of l1 and l2 (Reingruber and Holcman 2009) is
confirmed by Brownian simulations together with the Gillespie-algorithm (Gillespie
1976) to model switching in a sphere of radius r D 30 with a circular hole of
radius a D 1. In the left panel of Fig. 7.4 simulation results are shown for u.1 j 1/
as a function of l1 for various values of l2. Clearly, u.1 j 1/ � �1, which confirms
the asymptotic behavior u.1 j 1/=�1 	 4=.	

p
l1/. The latter follows from (7.17)

with the asymptotic approximation �1 	 j�j=.4aD1/ (see Schuss et al. 2007) and
j@�aj D 	a2. Simulations results for u.1/ as a function of l1 for various values of l2
and � D 0:1 (D1 D 1;D2 D 10) are displayed in the left panel of Fig. 7.4. The plot
shows that u.1/ has a minimum u.1/m smaller than �1, which is attained at some
value l1;min > 0.

In the range of parameters such that u1.1/ 	 �1 the switching dynamics can be
approximated by an effective non-switching diffusion process with diffusion con-
stant Deff D D1=.1C k12=k12/. However, because Deff < D1, the effective diffusion
approximation cannot give an exit time u.1/ smaller than �1. Interestingly, (7.17)
shows that u.1/ in the range

p
l1 � l2; l1 � 1 is smaller than �1 and inversely

proportional to the surface area of the absorbing window, similarly to the NET to
a partially absorbing hole (see Reingruber et al. 2009). In this range, the switching
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Fig. 7.4 Simulation results for the mean sojourn time u.1 j 1/ and the mean exit time u.1/ as a
function of l1 for different values of l2 (marked by various symbols). The results are scaled by the
NET �1. The continuous line in the left panel is the asymptotic value 4=	

p
l1; obtained from (7.17)

(see text). The results for u.1/ in the right panel are obtained for � D 0:1

dynamics cannot be approximated by the classical diffusion process. If D2 > D1,
then switching can significantly decrease the GNET relative to the non-switching
NET. For small values of l1 and l2, the GNET is very sensitive to changes in these
parameters (see Figs. 7.3 and 7.4).

7.1.4 Application to the Search by a Transcription Factor

The computations of the GNET are relevant to the search time of a transcription
factor (TF) for a DNA-promoter site (Fig. 7.5). The search can alternate between
three-dimensional diffusion in the nucleus and one-dimensional diffusion along the
DNA, as shown in Fig. 7.6 (see for some experimental details Elf et al. 2007; Wang
et al. 2006). While diffusing along the DNA, the TF can switch at random between
two conformational states: in state 1 the diffusion is slow due to a high affinity of
the TF for the DNA and therefore it scans accurately the DNA base pairs. In state
2, diffusion is much faster, but the TF does not scan the DNA molecule accurately.
It was shown recently that the search time of such a TF can be significantly reduced
relative to that of a TF, which accurately examines all the DNA base pairs. Several
recent computations show that the mean time to find the DNA site is several minutes
long (see Malherbe and Holcman 2010; Reingruber and Holcman 2011a). The above
considerations pose a fundamental question that remains to be addressed: what is the
role of DNA conformation, accessibility, and chromatin organization in the search
process?
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Fig. 7.5 Motion of a transcription factor along the DNA molecule. A TF at position i moves by
one base pair to the right with probability pi and to the left with probability qi as represented in
the lower half of the figure (Malherbe and Holcman 2010). The figure is adapted from Furini et al.
(2010)

7.1.5 Search Analysis for a Three State Switching Process

We briefly describe the mean first passage time for a TF to find its promoter site
when it freely diffuses in the nucleus, but once bound to the DNA, it alternates
between two states: in state 1, it interacts with individual DNA base pairs, while in
state 2 it is insensitive. In state 1, the motion occurs in a rough energy landscape
described by an effective diffusion with constant D1, while in state 2, the diffusion
is much faster D2 � D1 and occurs in a smooth potential well, generated by
interactions with the DNA backbone. The switching dynamics is Poissonian with
rates k12 and k21 that depend on the energy profile (Fig. 7.7b). In state 2, in addition
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Fig. 7.6 Search scenario for
a DNA target by a TF. The TF
can attach to the DNA
molecule and scan a number
of potential binding sites or
diffuse freely in the nucleus.
The TF alternates periods of
one-dimensional random
walks along the DNA
molecule and free diffusion in
the nucleus

Fig. 7.7 (a) Search scenario with three states. (b) Energy profile and switching rates between
states

to switching to state 1, the TF can detach from the DNA with rate k23 and switch to
state 3, where it freely diffuses in the nucleus before reattaching in state 2 after an
average time k�1

32 .
The search time can be estimated in a 1D search process in the interval Œ0;L�with

switching between three states. The target (promoter site) is located at x D 0 (x is
the DNA contour length) and can only be found in state 1. In this approximation,
the 3D diffusion in the nucleus (state 3) is described as an effective 1D (diffusion)
process in the segment Œ0;L�. In general, this 1D process has to be such that
it correctly reproduces the attaching positions in state 2. However, because the
attaching positions are random, what only matters is the rate k32.

Using the equations for the sojourn times tnm.x/ that a particle spends in state n
(n D 1; 2; 3), when it starts in state m at position x (Reingruber and Holcman 2010)
[see Eq. (7.6)]

D1t0011 � k12.t11 � t12/ D �1
D2t0012 � k21.t12 � �11/ � k23.t12 � t13/ D 0

D3t0013 � k32.t13 � t12/ D 0 ;

(7.18)



7.1 Random Switching Between Two Modes of Diffusion 179

where D3 is an effective constant that accounts for the complex 3D organization
of the nucleus. The boundary conditions are t11.0/ D t011.L/ D t012.0/ D t012.L/ D
t013.0/ D t013.L/ D 0. The remaining sojourn times t2i.x/ and t3i.x/ are obtained from
t1i.x/ by t2i.x/ D .k12=k21/t1i.x/Ck�1

21 .1� ıi1/ and t3i.x/ D .k23=k32/t2i.x/Ck�1
32 ıi3.

By integrating Eq. (7.18), we have that the spatially averaged sojourn times
�1i D L�1 R L

0
t1i.x/dx satisfy �11 D �13 D �12. Moreover, starting initially uniformly

distributed in state m, the MFPT �.m/ D �1m C �2m C �3m can be expressed in terms
of �11 only. Starting in state 1, we have �.1/ D �11.1C k12=k21 C k12k23=.k21k32//.

Equation (7.18) can be solved in the limit D3 ! 1, in which case the sojourn
time t13.x/ is independent of x and equals the mean, t13.x/ D �13 D �12 D �11. In
this limit Eq. (7.18) reduces to two equations for t11.x/ and t12.x/.

Using the dimensionless variables Ox D x=L, l12 D k12=.L2D1/, l21 D k21=.L2D2/

and l23 D k23=.L2D2/, and the functions

v1.Ox/ D k12�11.x/ ; v2.Ox/ D k12�12.x/ ; (7.19)

(v1.Ox/ is the mean number of switchings between state 1 and 2), solutions of
Eq. (7.18), are given by

�
v1.Ox/
v2.Ox/

�
D l21
�2

�
cosh.

p
l12�2.1 � Ox//p

l12�2 sinh.
p

l12�2/
� 1

l12�22

�
e2

� l21
�2

�
cosh.

p
l12�1.1 � Ox//p

l12�1 sinh.
p

l12�1/
� 1

l12�21

�
e1 C v1

�
1

1

�
(7.20)

where �2 D p
.1C .l21 C l23/=l12/2 � 4l23=l12, �1 D �1 C .l21 C l23/=l12, �21 D

1C .�1 � �2/=2, �22 D 1C .�1 C �2/=2 and

e1> D .l12.�1 C �2/=.2l21/; 1/ (7.21)

e2> D .l12.�1 � �2/=.2l21/; 1/: (7.22)

The average v1 D R 1
0
v1.Ox/dOx is

v1 D �2 � �1
2�2

�p
l12

coth.
p

l12�2/

�2
� 1

�22

�

C�1 C �2

2�2

�p
l12

coth.
p

l12�1/

�1
� 1

�21

�
: (7.23)

Because �1, �2, �1, and �2 are independent of L, v1 depends on L only via l12. The
relevant physical parameters are L, k12, k21, k23, k32, D1, and D2.

The rates k12, k21 and k23 can be characterized by the probability p D
k21=.k21 C k23/ to switch from state 2 to 1 (q D 1�p is the probability to detach and
switch from state 2 to 3) and the lengths ls1 D p

D1=k12 and ls2 D p
D2=.k21 C k23/,
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corresponding to the average sliding distances in state 1 and 2 before switching. The
spatially averaged search time � 	 �.1/ is given by

� D v1

�
l2s1
D1

C l2s2
pD2

C 1

k32

q

p

�
: (7.24)

Before detaching and switching to state 3, a TF stays bound to the DNA for an
average time �DNA D k�1

23 C k�1
12 p=q, and the overall ratio of the mean time bound to

the DNA to the mean time spent in state 3 is

r D k32�DNA D k32l2s1
D2

�
p

q

D2

D1

C l2s2
ql2s1

�
: (7.25)

For a fast switching between state 1 and 2 and the diffusion in state 1 is negligible
compared to state 2 (D1 � D2), the diffusion constant with which a TF appears to
slide along the DNA is

Da 	 D2

1C k21=k12
D D2

1C pD2l2s1=.D1l2s2/
: (7.26)

The search process depends on ls1, ls2, q, and D1, when the parameters L, D2,
and k32 are given. Modulating these parameters can be a way to regulate gene
expression. Because a TF moves in state 2 in a smooth potential, we consider that
D2 is comparable to the 3D diffusion constant. In contrast, in state 1, the TF interacts
with individual bp and the effective diffusion constant is much reduced and can be
written as D1 D D2e��, where � > 0 depends on the binding energy profile. For a
single sliding state, � is related to the variance of the binding energy. The search is
not much sensitive to �, as long as � is not too large.

In the regime where � D l2sl1=l2sl2 � 1 and q � 1, the condition � � 1 avoids
a redundant search in state 1 where diffusion is slow. As long as switching between
state 1 and 2 is fast compared to the time k�1

32 spent in state 3, the limit q � 1 restricts
the frequency of detachment from the DNA that would increase the search time.
Under the condition that � � 1 and q � 1, we have the asymptotic �1 	 �.1� �/,
�2 	 1C �.1 � 2q/, �21 	 �q, �22 	 1C � and v1 	 L=ls1.1Cp

�=q/.
Using these expressions in Eqs. (7.24) and (7.25), we find

� 	
s

L2

D2k32

�
1C

r
�

q

��
e�

˛
C 1

˛�
C ˛q

�
; (7.27)

r 	 e�

˛2q
C 1

˛2q�
; (7.28)

where ˛ D
q

D2=.l2s1k32/. When ˛ and � are fixed, the minimum of �.q; �/ as a

function of � and q is achieved for .�min; qmin/ D .
p
2=.˛e�/; ˛�2��1

min/, and
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�min D
s

L2

D2k32

 
1C

r
2˛

e�

!2
e�

˛
: (7.29)

rmin D 1C
p
2e�=˛: (7.30)

For e�=˛ � 1, the asymptotic expansion is �min 	 2
p

L2=.D2k32/.1 C p
2e�=˛/,

showing that �min does not depend exponentially on � in that regime. These results
can be compared with the ones for a single sliding state: when a TF alternates only
between state 1 and 3 with rates k13 and k31 (the intermediate state 2 is absent), we
find from Eq. (7.23) that Qv1 D p

l13 D p
L2=.D1k13/, and for the search time we

recover the expression Q� D p
L2=.D1k13/.k�1

13 C k�1
31 /.

When the rate k31 is fixed, the minimum Q�min D 2
p

L2=.D1k31/ is achieved for
k13 D k31, implying that the ratio r is always one at the minimum, which is not the
case in the two states sliding model. Increasing the binding strength in state 1, while
the motion in state 2 (interaction with DNA backbone) is not affected, affects the
search time � (see Fig. 7.8a, b for ls1 D 0:5 and various ls2 and q that are independent
of �). This is in contrast to cases where �min is achieved for values of qmin and ls2;min

that do depend on � and ls1. In Fig. 7.8c, we plot the apparent diffusion constant Da

(sliding along the DNA) as a function of �, with parameters associated with panel
a. Da decreases as � increases, and for � � 7, we have Da � 0:4�m2=s, which is
similar to measurements (Elf et al. 2007). Within a single sliding state model, the
1D diffusion coefficient D1 D D2 � ��=2 decreases much faster as function of �
compared to Da (dashed line in Fig. 7.8c).

Experimental measurements of the apparent diffusion are now compatible with
stronger binding energies in a two-state compared to a single state model. Finally,
� is also modulated by varying q or ls2 for � D 7:5 (Fig. 7.8d). The present model,
describing the dynamics of a TF that alternates between a slow and a fast state on
the DNA molecule, shows that the overall search time is considerably faster and
much less sensitive to binding energy fluctuations compared to a scenario, with a
single sliding state. Furthermore, performing fast translocations (“hoppings”) of the
order of 10 bp in state 2 speeds up the search time by reducing a recurrent search in
the slow state.

7.2 Annotations

Other switching searches have been investigated, where particles diffuse close to
the surface membrane (Tsaneva et al. 2009; Oshanin et al. 2010; Berezhkovskii
and Barzykin 2012). The gated narrow escape model is used to calculate the
GNET, which requires the solution of a coupled system of mixed Dirichlet–
Neumann boundary value problems for Poisson’s equations. The system was solved
in Reingruber and Holcman (2009, 2010), where (7.3) was generalized in to any
number of states and the one-dimensional case was resolved.
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Fig. 7.8 (a) Mean search time � for lsl1 D 0:5 and q D 0:01. The dashed line shows the minimum
of � . (b) � for lsl1 D 0:5 and ls2 D 10. (c) Apparent diffusion constant Da scaled by D2 for the
situation in (a). The dashed line is the diffusion constant D1=D2 D e��=2 for a model with a single
sliding state. (d) Search time � for � D 7:5, showing a minimum

In the absence of switching, the computation of the sojourn time reduces to that
of the NET �1 (Kolokolnikov et al. 2005; Singer et al. 2006c; Grigoriev et al. 2002),
which shows that outside a small boundary layer around the absorbing hole of radius
a, where a characterizes the extent of @�a, the positional NET is almost independent
of the initial ligand position (Singer et al. 2006c). The scaled system (7.15) was
derived in Reingruber and Holcman (2009). The model introduced in Sect. 8.1 was
proposed in . It is contrary to the early studies in Edelstein-Keshet and Ermentrout
(2000), Gennady et al. (2006), Graham et al. (2006), Hammele and Zimmermann
(2003), and Miller and Samuels (1997).



Chapter 8
Narrow Escape in Other Cellular Processes

Several applications of the narrow escape theory are considered in this chapter.
The first one concerns the process of growth in neurons, which results from the
delivery of vesicles to a small initiation place. The second example concerns the
rotation of a rigid rod between two layers. This computation provides a time scale in
the context of large motion during DNA repair confined in a two-dimensional
chromatin structure. The next example is the elucidation of the role of geometry
in hiding binding sites that control chemical reactions. The last example concerns
the diffusive transfer of molecules in asymmetric dumbbell-shaped domains that are
formed during cell division.

8.1 Stochastic Model of Vesicular Trafficking During
Neurite Outgrowth

Neurite growth is a fundamental process in the generation of dendritic trees and
axons, involved in neuronal wiring during early brain development, learning, and
regeneration. Many cellular mechanisms are contributing to axonal and dendritic
genesis such as actin cytoskeleton and microtubules (Fig. 8.1) (da Silva and Dotti
2002; Burnette et al. 2007; Bouquet et al. 2007; Dent and Gertler 2003). Indeed
membrane is added to the neurite through the delivery of vesicle (exocytosis) during
the growth process (Futerman and Banker 1996): by fusing with the cell membrane,
these vesicles deliver their membrane, which increases the surface area of the neurite
(Alberts et al. 2003, 2006; Futerman and Banker 1996; Pfenninger et al. 2003;
Shea and Sapirstein 1988). The cytoskeleton also contribute to the neurite growth
process by first being involved in vesicular trafficking, and second by stabilizing the
neurite structure (Graham et al. 2006; Zhou et al. 2002). The specific contribution
of both vesicle and microtubule dynamics to neurite growth can be examined using
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Fig. 8.1 Neuron outgrowth. (a) Quantification of fluorescence intensity during neurite outgrowth.
The red (mRFP-TI-VAMP) and green (EGFP-Syb2) show distribution of vesicles along the
growing neurite. To quantify the dynamics of the two FP-tagged proteins, the selected neurite was
ideally segmented in seven stages (colors numbers), from the cell body limit to the maximal extent
of the process. (b) Schematic representation of the neurite outgrowth. (c) Scheme of microtubules
and vesicles dynamics
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Fig. 8.2 Vesicular motion
confined to the soma surface:
vesicles enter the neurite
when they reach the small
part of the soma boundary
@�a. L.t/ is the protrusion
length

a modeling approach and the overall neurite outgrowth rate can be computed from
vesicular dynamics. We describe here a vesicular stochastic model that accounts
for their motion in the cell soma, where the main step is a narrow escape due
to the search for the neurite initiation site (�a), that can be described as a two-
dimensional diffusion/sequestration/fusion at the cell surface (Tsaneva et al. 2009).
The modeling of neurite growth starts with the delivery and insertion of vesicles at a
specific boundary location, denoted by�a. It can be, for example, the part where the
axon or the dendrite is generated (see Fig. 8.2). Although vesicles may have different
sizes, only vesicles of mean radius a are considered. Because there are plenty of
vesicles in the cytoplasm (hundreds to thousands), the fluctuations in their number
can be neglected and we can assume that after a vesicle fuses, another is generated,
resulting in a constant supply of new vesicles. This assumption serves to maintain a
constant number of vesicles in the model. The growth is assumed to be initiated by
fusion of vesicles with the surface of the membrane (Smith 1994). When this occurs,
the vesicular membrane is used to increase the neurite by a quantal length l0. The
dynamics of neurite growth is also controlled by the membrane endocytosis rate k2.
When the neurite radius does not change, the endocytosis rate is proportional to the
neurite surface.

The motion of a vesicle toward @�a (Fig. 8.2) consists of intermittent binding and
drift along microtubules with deterministic velocity and free diffusion in the cell
when the vesicle is detached from any microtubule. The transitions between the
two modes of motion are modeled here as a random telegraph process. Thus the
dynamics of the motion is described by the switching rule

Px.t/ D
8
<

:

p
2D Pw.t/ when the particle is free

V.t/r when the particle is bound,
(8.1)

where x.t/ represents the position of the particle (the zero of the coordinate system
is the center of the soma, approximated as a ball in Fig. 8.2) and V.t/ 
 0 is a
time-dependent drift velocity along microtubules, directed toward the cell surface,
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w.t/ is a ı-correlated standard white noise, r D x.t/
jx.t/j is the radial unit vector pointing

toward the boundary @�a. A simplifying assumption is that the velocity along the
microtubules is constant.

8.1.1 Derivation of the Join pdfs for a Coarse-Grained
Stochastic Equation

The state of the particle, S.t/, is chosen as 1 when the particle is free and �1 when
it is bound to a microtubule. We assume S.t/ switches from 1 to �1 at exponential
waiting times with rate �1 and in the opposite direction with rate ��1. The rates
can depend on x. The pair .x.t/; S.t// is a Markovian jump-diffusion process.
We consider, for simplicity, the one-dimensional case. The transition probability
densities are

Prfx.t C�t/ D y; S.t C�t/ D 1 j x.t/ D x; S.t/ D 1g

D .1 � �1�t/p
2	D�t

exp



� .x � y/2

2D�t

�
(8.2)

Prfx.t C�t/ D y; S.t C�t/ D �1 j x.t/ D x; S.t/ D 1g

D �1�tp
2	D�t

exp



� .x � y/2

2D�t

�
(8.3)

Prfx.t C�t/ D y; S.t C�t/ D �1 j x.t/ D x; S.t/ D �1g
D .1 � ��1�t/ı.y � x � V.t/r�t/ (8.4)

Prfx.t C�t/ D y; S.t C�t/ D 1 j x.t/ D x; S.t/ D �1g
D ��1�tı.y � x � V.t/r�t/: (8.5)

Writing

Prfx.t C�t/ D y; S.t C�t/ D s j x.�/ D x; S.�/ D �g D p.y; s; t C�t j x; �; �/;

we can write the Chapman–Kolmogorov equation as (Schuss 2010b)

p.y; s; t C�t j x; �; 0/ D
Z

p.y; s; t C�t j z; s; t/p.z; s; t j x; �; 0/ dz

C
Z

p.y; s; t C�t j z;�s; t/p.z;�s; t j x; �; 0/ dz:

(8.6)
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Thus, for s D 1 Eqs. (8.2) and (8.5) give in (8.6)

p.y; 1; t C�t j x; �; 0/ D
Z
.1 � �1�t/p
2	D�t

exp



� .z � y/2

2D�t

�
p.z; 1; t j x; �; 0/ dz

C
Z
��1�tı.y � z � V.t/r�t/p.z;�1; t j x; �; 0/ dz:

(8.7)

The expansion of the first integral in (8.7) for small �t gives

p.y; 1; t C�t j x; �; 0/ D p.y; 1; t j x; �; 0/C D�t
@2p.y; 1; t j x; �; 0/

@y2

� �1�tp.y; 1; t j x; �; 0/

C ��1�tp.y � V.t/r�t;�1; t j x; �; 0/C o.�t/:

It follows that

@p.y; 1; t j x; �; 0/

@t

D D
@2p.y; 1; t j x; �; 0/

@y2
� �1p.y; 1; t j x; �; 0/C ��1p.y;�1; t j x; �; 0/: (8.8)

For s D �1 Eqs. (8.3) and (8.4) give in the Chapman–Kolmogorov equation (8.6)

p.y;�1; tC�t j x; �; 0/ D
Z

�1�tp
2	D�t

exp



� .z � y/2

2D�t

�
p.z; 1; t j x; �; 0/ dz

C
Z
.1���1�t/ı.y � z � V.t/r�t/p.z;�1; t j x; �; 0/ dz;

(8.9)

which in the limit �t ! 0 reduces to

@p.y;�1; t j x; �; 0/

@t
D�1p.y; 1; t j x; �; 0/ � ��1p.y;�1; t j x; �; 0/

� V.t/r
@p.y;�1; t j x; �; 0/

@y
: (8.10)

Dropping the initial conditions, (8.8) and (8.10) can be written as

@p1.y; t/

@t
D � �1p1.y; t/C ��1p�1.y; t/C D

@2p1.y; t/

@y2

@p�1.y; t/
@t

D�1p1.y; t/ � ��1p�1.y; t/ � V.t/r
@p�1.y; t/

@y
: (8.11)
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Setting

p˙1.t j ˙ 1/ D PrfS.t/ D ˙1 j S.0/ D ˙1g

D
1Z

�1
p0.x/

1Z

�1
p˙1.y; t j x; 0;˙1/ dy dx (8.12)

and integrating (8.11) with respect to x and y gives the system

Pp1.t/ D ��1p1.t/C ��1p�1.t/; Pp�11.t/ D �1p1.t/ � ��1p�1.t/: (8.13)

The normalized stationary solution of (8.13) corresponding to the eigenvalue 0 is

p1 D ��1
�1 C ��1

; p�1 D �1

�1 C ��1
; (8.14)

which is the stationary distribution of the random telegraph process S.t/. The other
solution decays exponentially in time.

The process x.t/ can be approximated by a diffusion process Qx.t/, for example, if
the jumps are frequent or small,

dQx.t/ D a.Qx.t/; t/ dt C p
2b.Qx.t/; t/ dw; (8.15)

where

a.x; t/ D lim
�t!0

EŒx.t C�t/ � x j x.t/ D x�

�t
;

b2.x; t/ D lim
�t!0

EŒ.x.t C�t/ � x/2 j x.t/ D x�

�t
: (8.16)

The conditional expectations are calculated by expressing the transition density
p.y; t C�t j x; t/ of the process x.t/ as the marginal of the joint transition density of
the pair .x.t/; S.t//. That is,

Prfx.t C�t/ j x.t/ D xg
D Prfx.t C�t/; S.t C�t/ D 1 j x.t/ D x; S.t/ D 1g PrfS.t/ D 1g

C Prfx.t C�t/; S.t C�t/ D 1 j x.t/ D x; S.t/ D �1g PrfS.t/ D �1g
C Prfx.t C�t/; S.t C�t/ D �1 j x.t/ D x; S.t/ D 1g PrfS.t/ D 1g
C Prfx.t C�t/; S.t C�t/ D �1 j x.t/ D x; S.t/ D �1g PrfS.t/ D �1g:
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For sufficiently long time PrfS.t/ D ˙1g 	 p˙1, so using (8.2)–(8.5), and (8.14),
we obtain the weighted average of the two dynamics in (8.1),

a.x; t/ D ��1
�1 C ��1

V.t/r; b2 D �1

�1 C ��1
D; (8.17)

as expected. The generalization to two and three dimensions is pretty straightfor-
ward.

The velocity field and diffusion coefficient in (8.17) have to be estimated. Their
calibration is found by first solving the Fokker–Planck equation for the transition
probability density explicitly in a ball and then fitting it to the vesicles distribution
generated by Brownian simulations of (8.1) and (8.15). In these simulations, vesicles
move inside a slice domain (Fig. 8.3), where the boundary associated with the
dynamics of (8.1) represents the place where the drift occurs, while it reflects
trajectories in the case of (8.15). The histogram of vesicles distribution (Fig. 8.3)
is generated by Brownian simulations of (8.1) with 1000 vesicles. It is then fit to the
explicit solution of the FPE and by optimizing velocity amplitude. Using the same
drift amplitude, the histogram of vesicles is generated according to (8.15) and fit
to the explicit solution of the FPE, which turns out to be in very good agreement
with the given choice of the drift field (Fig. 8.3b). The simulations of vesicular
diffusion and velocity along microtubules used the parameter values obtained from
experimental studies in PC12 cells (Han et al. 1999) and Xenopus embryo neuronal
cultures (Zakharenko and Popov 1998) (see details in Tsaneva et al. 2009).

8.1.2 Calibration Procedure to the Explicit Solution of the FPE

The calibration procedure described in the previous section can be made explicit by
using for the drift a potential term. Indeed, when the drift field ax is supposed to be
radial symmetric in the three-dimensional model (8.17), we chose

a.x/ D �r�.x/: (8.18)

where

�.x/ D ˛jxj: (8.19)

The parameter ˛ is estimated from a steady distribution, where no neurite can
grow. To evaluate the steady state distribution of vesicles inside a cellular domain
containing a bundle of microtubules, Brownian trajectories of many vesicles are
simulated inside a cell with no-flux (reflection) at the boundary. The simulations are
restricted to the case of a repulsive drift, which points towards the cell boundary. For
a spherical domain ˛ in (8.19) is a positive constant to be determined. The Brownian
simulations of (8.15) are shown in Fig. 8.3. The fitting curve is the steady state
solution of the Fokker–Planck equation. Indeed, the probability density function
(pdf) p.x; t/ of a trajectory is the solution of the FPE

@p

@t
D D4p C r � .r�p/ (8.20)
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Fig. 8.3 Steady state distribution (N0 D 1000) and probability density function of vesicle in a
wedge. (a) 2D sample membrane vesicle trajectory obtained by simulating Eq. (8.1); (b) 2D sample
membrane vesicle trajectory obtained by simulating Eq. (8.15)
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with the no-flux boundary condition

J � n D �D
@p

@n
� p

@�

@n
D 0: (8.21)

The steady state solution of (8.20), (8.21) is given by

p.x/ D Ce��.x/=D; (8.22)

where C is determined by the normalization condition

Z

�

p.x/ dx D 1: (8.23)

The steady concentration �STEADY.x/ of N0 independent vesicles is given by

�STEADY.x/ D N0p.x/: (8.24)

For a constant drift velocity
@�

@r
D �˛ in the radial direction (8.22) becomes

pSTEADY.x/ D Ce˛jxj=D for 0 < jxj � R: (8.25)

In two dimensions it is given by

pSTEADY.x/ D ˛e˛jxj=D

2	D
�
Re˛R=D � D

˛
.e˛R=D � 1/� for 0 < jxj � R (8.26)

and in three dimensions

pSTEADY.x/ D ˛e˛jxj=D

4	D
�
R2e˛R=D � 2D

˛

�
Re˛R=D � D

˛
.e˛R=D � 1/��

for 0 < jxj � R: (8.27)

The parameter ˛ is chosen such that the density of vesicle trajectories generated by
simulations of (8.15) fits the histogram generated by the model process (8.1) for the
same domain in dimension 2.

8.1.3 Arrival Rate of Vesicles to a Small Opening in the Soma

The vesicle motion (Fig. 8.2) is modeled as isotropic diffusion in a spherical domain
of radius R. The field of microtubules in this model generates a radial potential
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�.x/ D �˛jxj, so the homogenized force field is

F.x/ D �r�.x/ D ˛
x

jxj : (8.28)

The constant radial velocity field points away from the center when ˛ D v > 0.
This model coarse-grains into effective diffusion the vesicle motion that jumps
intermittently between Brownian motion and directed motion along microtubules
and actin filaments. The domain � for the some is approximated as a ball, where
@�a is the absorbing part where vesicles are absorbed upon hitting the boundary
(see Fig. 8.2). The switching motion is now replaced by the calibrated homogenized
version (8.15).

The arrival rate of vesicles arrival to @�a is the reciprocal of the mean first
passage time, which is the sum of the mean time to the boundary plus the mean time
to find the small window @�a of radius ı located on the sphere (see Fig. 8.2). This
decomposition for the mean times is valid for large ˛ (see relation (8.37) below). To
determine the arrival rate of vesicles at @�a, we use the narrow escape method with
a potential described in Sect. 1.9.1. The probability density function pı.x; t j x0/ of
a vesicle trajectory x.t/ that starts anywhere in the entire domain at x0 2 � is the
solution of the FPE in �

@pı
@t

D D4pı C r � .pır�/ (8.29)

with the mixed boundary conditions

pı.x; t j x0/ D 0 for x 2 @�a (8.30)

J � n.x; t j x0/ D 0 for x 2 @�r; (8.31)

and the initial condition

pı.x; 0 j x0/ D ı.x � x0/: (8.32)

For an initial density p0.x0/, the pdf is given by

pı.x; t/ D
Z

�

pı.x; t j x0/p0.x0/ dx0; (8.33)

so that

pı.x; 0/ D p0.x/: (8.34)

The mean time a trajectory spends at x 2 � prior to absorption in @�a is given by
Schuss (2010b)
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uı.x/ D
1Z

0

pı.x; t/ dt; (8.35)

which is exponential uı.x/ D 1
4Dı exp

n
�0��.x/

D

o
. The MFPT to @�a is given in

Sect. 1.9.2 as

�ı D
Z

�

uı.x/ dx 	 e�0=D

4Dı

Z

�

exp


 ��.x/
D

�
dx; (8.36)

where �0 is the potential at the absorbing window @�a. The evaluation of the
integral in (8.36) differs from that in Sects. 1.9.1–1.9.2, because the drift here is
directed toward the boundary. This compels the trajectories to reach the boundary
prior to absorption and search for the absorbing window by surface diffusion. The
integral (8.36) can indeed be approximated for sufficiently large drift by the Laplace
expansion of the integral,

Z

�

exp



��.x/

D

�
dx 	 D exp



�m

D

� Z

@�

dSx
@�.x/
@n

C o.D/; (8.37)

where the maximum of the potential �m D �.x/ is at x D R achieved on the sphere.
Due to the radially symmetric soma, we get

Z

�

exp


 ��.x/
D

�
dx D 4	D

˛

�
R2 � RD

˛
C D2

˛

�
exp



�m

D

�
; (8.38)

where ˛ D @�

@r
is the constant drift along microtubules. Hence the mean arrival

time is

N�ı D 	e
�m��0

D

ı˛

�
R2 � RD

˛
C D2

˛

�
:

Thus the arrival rate of vesicles is given by

�ı D 1

�ı
D ı˛

	
h
R2 � RD

˛
C D2

˛

ie�4E=D; (8.39)

where 4E D �m � �0. Since 4E D 0 (because �0 and �m are both achieved on the
cell surface) and neglecting the contribution of the last two terms in the denominator
(which is around 1 %) we get
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�ı D 1

�ı
	 ı˛

	R2
: (8.40)

This approximation of the rate assumes that the mean time to find the surface which
is R=˛ is much smaller than the mean time N�ı . The effective drift ˛ captures the
microtubule organization. Furthermore under the spherical cell approximation, the
maximum of the potential � is achieved everywhere on the cell surface. Situation
where 4E is not zero may occur in non-spherical cells where the neurite initiation
is located at a distance different from where the maximum of � is achieved.

We conclude that the mean first passage time of a vesicle to a small neurite
initiation site of radius a on the cell surface is given (Tsaneva et al. 2009) in the
large force limit by

N� D jSj
av

�
1C O

�
D

vR

��
; (8.41)

where jSj is the entire surface area of the soma. Formula (8.41) reveals that
unlike (3.26) for Brownian motion, the search time in this case depends on the
boundary surface due to the sequestration at the surface by the strong drift.
Simulations show that the Brownian trajectories stay close to the boundary surface
in their search for the absorbing window (Tsaneva et al. 2009). The derivation
of (8.41) relies on the three-dimensional NET formula for Brownian motion in a
potential field in the limit of high velocity v [see (1.166)–(1.168) in Sect. 1.9.1]. In
general for small diffusion, the mean arrival time to the small window will be the
sum R

v
C jSj

av

�
1C O

�
D
vR

��
.

Dynamics of Neurite Outgrowth

Using the vesicular arrival rate at the protrusion, @�a, the neurite growth process
can be coarse-grained into a Markovian jump process with a simple master
equation. The neurite length L.t/ increases proportionally to the flux of vesicles
and exocytosis, and decreases due to endocytosis, which can occur anywhere on the
neurite surface membrane with rate k2 (see Nishimura et al. 2003). The probabilities
pq.t/ D PrfL.t/ D ql0g that at time t a neurite has exactly length ql0 satisfy the
Kolmogorov (master) equations

Ppq.t/ D � Œk2q C �ıN0�pq.t/C k2.q C 1/pqC1.t/C Œ�ıN0�pq�1.t/ for q 
 1;

Pp0.t/ D � �ıN0p0.t/C k2p1.t/ for q D 0;

where q is a quantal number, l0 is quantal length, given by a single vesicle fusion,
and the total number of vesicles N0 is maintained constant inside the soma. The
mean and the variance of pq are given by
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M.t/ D
1X

qD1
qpq.t/; �2.t/ D

1X

qD1
q2pq.t/ � M2.t/

and in the steady-state,

M.1/ D �ı

k2
N0; �2.1/ D �ı

k2
N0:

The mean length of the neurite can be shown to satisfy (Tsaneva et al. 2009)

dL

dt
D l0N0�ı � k2L: (8.42)

Assuming that initially the neurite length is zero integration of (8.42) gives the time-
dependent length

L.t/ D l0N0�ı
k2

.1 � e�k2t/: (8.43)

and the steady state

Leq D l0N0�ı
k2

:

The neurite length with time-dependent vesicles flux J.t/ satisfies the equation

dL

dt
D J.t/ � k2L: (8.44)

In the absence of microtubules, a nascent neurite initiated by vesicular delivery
can only reach a small length but by adding the microtubules dynamics to the
vesicular dynamics, using stochastic analysis and simulations, the dynamics of
neurite growth can be generated, depending on the coupling parameter between the
microtubules and the neurite. Indeed, the interactions of vesicles and microtubules
can lead to various growing regimes: three types of neurite growth regimes have
been identified: axonal, dendritic growth (Prochiantz 1995; da Silva and Dotti 2002)
and an oscillatory mode (Tsaneva et al. 2009). Microtubules and neurite growth can
be stabilized when they are attached together, preventing collapse or catastrophe
microtubule decay. This interaction is measured by the parameter pa (probability
of attachment), pd (probability of detachment) and k2 the rate of detachment. The
ensemble of stochastic rules for neurite growth are summarized in Tsaneva et al.
(2009).
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8.1.4 Neurite Outgrowth Modulated by Intermittent Neuronal
Activity

The local environment activity can modulate neurite outgrowth. Such activity may
represent the modulation by neurotransmitters or any cues involved in growth cone
guidance. This modulation influences the growth cone through the mean number
of cues released by neighboring neurons. For example, neurotrophins (Pfenninger
et al. 2003) can play a key role in regulating neurite growth. To account for this
mechanism, this effect can be incorporated by redefining the vesicular fusion rate
that should now depend both on the dynamics of external cues and vesicle arrival.
Vesicles fusion is now controlled by the presence of external cues at the site
vesicular fusion.

Cues arrive at random times, distributed uniformly during a periodic interval of
time of length T . During a fraction of time Ta, cues allow vesicles to fuse. The time
Ta is chosen uniformly distributed during each period T with a density probability
function given by p.u/ D 1

T�Œ0;T�, where � is the characteristic function (equal to
one for t 2 Œ0;T�, 0 otherwise). Thus the mean fusing time T? is given by

T? D
Z T

0

up.u/du D 1

T

Z T

0

udu D T

2
: (8.45)

The rate of vesicle fusion can be computed from the joint event that a vesicle arrives
and some cues are located on the neurite tip. The mean of the random time � arrive that
a vesicle is allowed to fuse can be computed from an infinite sum, where a vesicle
fuses in the kth time interval kT , when cues are received during a time uk (distributed
according to the uniform probability p). The join probability is for k D 0; 1; 2; : : :

pJ.t/ D Prf� arrive < t; kT < � arrive < kT C ukg: (8.46)

Since the arrival time of the vesicles to the small hole is Poissonian,

PrfkT < � arrive < kT C ukg D
Z kTCuk

kT
�e��xdx

Prf� arrive < tg D 1 � e��t;

where � D 1

�ı
D �ı , we get for the conditional time

E� D
Z 1

0

t
d

dt
pJ.t/dt D

Z 1

0

t�e��tdt
1X

kD0

Z T

0

Z kTCu

kT
�e��xdx

1

T
�Œ0;T�du:

(8.47)
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Consequently,

E� D 1

�

1

T

1X

kD0
e��kT

�Z T

0

.1 � e��u/�Œ0;T�du

�
:

Thus the formula for the conditional arrival time of vesicle during the interval where
external cues are activated is

� D E� D 1

�

1

T

�
1

1 � e��T

��
T � 1 � e��T

�

�
: (8.48)

This analysis reveals how the neurite growing rate is modified when external cues
modulate vesicular fusion.

8.2 DNA Repair in a Two-Dimensional Confined
Chromatin Structure

A Brownian needle in a strip can model an mRNA, a transcription factor, or a stiff
DNA fragment moving in the very confined chromatin structure (see Sect. 2.2). For
example, under severe stress, the DNA of the bacterium Deinococccus radiodurans,
the most radioresistant organism, undergoes a phase transition in reorganizing the
genome into tightly packed toroids (Fig. 8.4a–c), which may facilitate DNA repair
(Lieber et al. 2009). Three-dimensional analysis (Minsky 2004) reveals a complex
network of double membranes that engulf the condensed DNA, suggesting that two-
dimensional domains lying between parallel walls may play a significant role in
DNA repair.

The diffusion of the needle is characterized by three diffusion coefficients:
longitudinal along the axis DX , transversal DY , and rotational Dr. In the diffusive
motion of a needle confined to a planar strip, which is only slightly wider than the
length of the needle, its turning around is a rare event (see Fig. 2.4). This is due to
the narrow space around the vertical position of the needle in the strip. If the length
of the needle l is only slightly smaller than the width of the strip l0 > l, such that
" D .l0 � l/=l0 � 1, then the mean time for the needle to turn 180ı is given in
Theorem 2.2 as

N� D
	
�	
2

� 1



Dr

p
l0.l0 � l/

s
DX

Dr

 
1C O

 s
l0 � l

l0

!!
: (8.49)

Formula (8.49) shows that when the free space between two planes decreases,
the effective diffusion constant, proportional to the reciprocal of N� , experiences a
second order phase transition, characterized by a discontinuity of the derivative of
the effective diffusion constant for the rotation [reciprocal of the MFPT (8.49)].
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Fig. 8.4 (a) Two-dimensional stratification: the model depicts the toroidal morphology that acts
as a structural template for growth of the DNA–(DNA-binding protein) co-crystal. The DNA
(red stripe) is localized in between the pseudohexagonal faces of the dodecameric symmetric
proteins (blue spheres) (Minsky 2004). Figure 2.4 is a schematic model of the motion of a broken
DNA strand in this geometry. (b) Two-dimensional arrangement of DNA: formation of DNA-
RecA “repairosome” assemblies in E. coli cells exposed to DNA-damaging agents. The ordered
intracellular assembly is promoted by DNA molecular condensation and the structural features are
modulated by the RecA proteins. Scale bar is 200 nm. (c) DNA packaging in the radioresistant
bacteria D. radiodurans. The electron micrograph depicts the toroidal organization of its genome.
Within this structure, the tight and ordered packaging of the DNA molecule may facilitate repair
of double-stranded DNA breaks. Scale bar is 400 nm. The genomic reorganization in bacterial
systems into tightly packed structures is proposed to restrict molecular diffusion

x
Y y

q
I0 x

Fig. 8.5 Rod in strip. The strip width is l0 and the needle length is l < l0. The position of the
needle is characterized by the angle � and the fixed coordinates x; y of the center or in a rotating
system of coordinates .X;Y; �/

Specifically, when the variable l reaches and exceeds the value l D l0 the diffusion
constant vanishes (Fig. 8.5). This result explains the crucial role of the chromatin
organization in maintaining the genome integrity during heavy radiation stress.

The phase transition indicated by (8.49) was observed experimentally several
times and reported in Lieber et al. (2009), Minsky (2004), and Levin-Zaidman
et al. (2003). It should be associated with the high probability of DNA repair by
preventing the broken DNA strand from drift away or from misaligning by turning
over.
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8.3 MFPT to a Hidden Binding Site

Active sites of a complex molecule, such as hemoglobin, penicillin-binding proteins,
and many others, are often hidden inside the complex organization of ˛ and
ˇ-sheet structures. A ligand, such as ˇ-lactam antibiotic, has to bind to a small
site hidden inside the molecule and indeed, ligand recognition requires that strands
be antiparallel in the active site area. This phenomenon was observed for large
antibiotic molecules. In Fig. 8.6(2),(3) the penicillin-binding proteins are in closed
(2)(left) and open (2)(right) L-conformations, respectively (Macheboeuf et al.
2005). In the closed conformation the active site is blocked and unavailable for
binding, while in the open state the catalytic funnel reveals an elongated binding
cleft, where the active site (red arrow) is hidden at the bottom.

The time for changing conformation and molecular activation is thus the mean
time for a ligand to hit the active site in the pocket (see arrows in Fig. 8.6). The
MFPT in this case is estimated from the asymptotic formula (3.27) for the MFPT
from the head of solid of revolution, obtained by rotating a planar symmetric domain
about its axis of symmetry, to a small absorbing window at the end of a funnel,
given by

N� D 1p
2

�
Rc

a

�3=2 j�j
RcD

.1C o.1//; (8.50)

where D is the diffusion coefficient, Rc is the radius of curvature of the rotated
curve at the end of the funnel, and j�j is the volume of the domain explored by
the ligand, which contain the volume of the pocket and the immediate accessible
volume outside. Thus the mean determinant for complex molecules to be activated
is the local geometry near the active site, that contributes significantly to the binding
rate.

1 2 3

active site

Fig. 8.6 (1) Complex molecule containing a hidden site. The domain � is the surrounding fluid,
the absorbing boundary @�a is the hidden target (marked green), and the reflecting boundary @�r

is the remaining surface of the molecule. (2) Hidden site. (3) Hidden active site
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8.4 Asymmetric Dumbbell-Shaped Division in Cells

An intermediate stage of a dividing cell consists of an asymmetric dumbbell shape
with a relatively long connecting neck (Figs. 3.8 and 8.7). In this stage of the cell
division some of the genetic material is delivered from the bigger (mother) to the
smaller (daughter) compartment. An open debate in this field is how the genetic
material is selected? A recent report Gehlen et al. (2011) proposes that diffusion
through the connecting neck is the main determinant of the delivery rate and of
the selection of fast-diffusing particles in the transient regime before steady state
is reached. Indeed, the analysis below confirms that in the absence of any active
mechanism, the delivery process can be controlled by drastic slowdown of the
back flow from the daughter to the mother cell, brought about by asymmetry in
the curvature of the connecting neck in the smaller compartment, as described
in the asymptotic formulas (2.110)–(2.112) for the mean residence times N� in
the compartments. Specifically, the mean time to go from mother to daughter is
given by �M!D � 2 N�M!SS and in the other direction by �D!M � 2 N�D!SS in the
limit of narrow neck. The transition rates given in (2.110) can differ by orders of
magnitude as the geometry changes. This can explain some of the findings reported
experimentally in Gehlen et al. (2011).

The rate of equilibration between the two compartments can be found from the
estimate of the second eigenvalue � of the Neumann problem in the dumbbell-
shaped domain, given by

1

�
D 1

�D!M
C 1

�M!D
:

When the time scale of morphological changes in the shape of the dumbbell is
slower than diffusion, the protein and genetic material transferred by diffusion from
the mother to the daughter cell can be estimated from a reduced system of equations
for the mass in the mother and daughter cells, MM and MD, respectively, given by

PMD D � MD

�M!D
C MM

�D!M

PMM D � MM

�D!M
C MD

�M!D
(8.51)

with MM.0/ D M0 and MD D 0. The solution is

MM.t/ D M0

�
1 � �

�D!M

�
e��t C M0

�

�D!M
: (8.52)

The mean transfer time from the mother to the daughter can be estimated
with the following parameters (Gehlen et al. 2011): diffusion coefficient



8.4 Asymmetric Dumbbell-Shaped Division in Cells 201

Fig. 8.7 Time-lapse images of mitotic cells: the dumbbell-shaped dividing cell seems to vary with
time (Gehlen et al. 2011)

D D 6:5 � 10�3 �m2=s, a neck length L D 0:1�m, a neck radius a D 0:2�m, a
mother radius of R D 0:9�m, and a curvature of Rc D 0:5�m, it is �M!D D 5626 s,
about an hour and a half.

As shown in Fig. 8.7, the connection geometry varies over time, which can
change the flux drastically, as formulas (2.112) indicate. The low transfer rate may
lead to an early separation between the mother and daughter cells, prior to reaching
the steady state in (8.52). If steady state diffusion is reached before separation,
the probability density function is uniform in the domain, rendering MM.1/ and
MD.1/ proportional to the respective volumes. In the reduced model (8.51) the
steady state masses are proportional to the fractions of the residence times in the
two cells. In view of (2.112), these are proportional to the volumes (to leading
order in small neck radius). The reduced model can be used before steady state
is reached. A simple consequence of (8.52) is that a Brownian simulation of the
transferred material (messenger RNA, soluble proteins, and so on) has to be run for
times t � 1=� to reach the steady state. Some transitions M ! D and D ! M
have to occur in the simulation in order for steady state to set in.



Chapter 9
Modeling the Early Steps of Viral
Infection in Cells

9.1 Introduction

Quantifying the early steps of viral infection in cells is a new area of physical
virology. It is dedicated to the analysis of the main pathways used by viruses
for reproduction. Most viruses entering cells after binding to specific membrane
receptors are enveloped in an endosomal compartment (Fig. 9.1) (see Whittaker
et al. 2000; Greber and Way 2006). These viruses entering through the endosome
have to escape this compartment later on. Enveloped viruses, such as influenza,
contain membrane-associated glycoproteins, which mediate the fusion between the
viral and endosomal membranes, from which they have to escape. In particular,
acidification of the endosome triggers the conformational change of the influenza
hemagglutinins, leading to endosome-virus membranes fusion and release of genes
into the cytoplasm. Following the endosomal escape, nuclear replication viruses
have to travel through the crowded cytoplasm to reach replication sites such as the
nucleus to deliver their genetic material through the nuclear pores. Virus motion
into the cytoplasm is composed of periods described as Brownian, while others
are directed motion along microtubules. While the cytoplasmic movement of viral
particles towards the nucleus is facilitated by the microtubular network and viral
proteins, very little is known about the fate of non-viral DNA vectors in the
cytoplasm.

The goal of this chapter is to study a recent model of these different steps
of viral infection. The model considers viruses as separate diffusers in a random
environment. The viral motion is modeled on a coarse scale by a stochastic
differential equation. In this model the drift term represents the average velocity
along randomly organized microtubules. An important simplification is achieved by
separating the random drift into a deterministic component and noise. Note also
that the arrival of a virus to a small nuclear pore competes with the killing in the
bulk, as described in Sect. 2.7. The mathematical models of viral motion give rise
to Brownian dynamics simulations for the study of sensitivity to parameters and,
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Fig. 9.1 Common Entry and uncoating mechanisms of selected nuclear-replicating viruses.
Viruses can undergo substantial uncoating in the cytoplasm before translocating into the nucleus;
(a) HIV, (b) influenza virus. Alternatively, viruses can dock to the NPC and uncoat at the
cytoplasmic side of the nuclear membrane; (c) adenovirus and (d) herpesvirus. They may possibly
disassemble within the nuclear pore; (e) hepatitis B virus; (f) parvovirus (Whittaker et al. 2000)

eventually, for testing the increase or the drop in infectivity by using simultaneously
a combination of various drugs. The modeling approach can also be used for design-
ing optimal condition for the delivery considering the high-dimensional parameter
space (Lagache et al. 2012). Viral motions alternate intermittently between periods
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Fig. 9.2 Virus trajectories in cell. (a) Trajectories of single AAV-Cy5 particles: the traces showing
single diffusing virus particles were recorded at different times. They describe various stages of
AAV infection, e.g. diffusion in solution (1 and 2), touching at the cell membrane (2), penetration
of the cell membrane (3), diffusion in the cytoplasm (3 and 4), penetration of the nuclear envelope
(4), and diffusion in the nucleoplasm (Seisenberger et al. 2001). (b) Schematic description of
early steps of infection for viral and synthetic vectors. Synthetic vectors are not assisted by active
transport during their cytoplasmic trafficking

of free diffusion and directed motion along microtubules (MTs) (Greber and Way
2006). Such viral trajectories have been recently monitored by using new imaging
techniques in vivo (Seisenberger et al. 2001).

The trajectory of a viral particle x.t/ (Fig. 9.2a) can be modeled as a randomly
switching process, much as in Sect. 8.1,

dx D
( p

2D dw when the virus is free

V.x/ dt when the virus is bound to a MT,
(9.1)

where w.t/ is the standard Brownian motion, D is the diffusion constant, and V.x/ is
the velocity field of the motion along the microtubule (MT) network. The switching
process can be described as in (8.1). The vector field V.x/ in (9.1) is difficult to
estimate. As in Sect. 8.1 the switched process can be coarse-grained into a diffusion
process

dx D b.x/ dt C p
2D dw; (9.2)

where b.x/ is a coarse-grained steady drift field. The expression for b.x/ depends
on the MT organization and on the viral dynamical properties, such as the diffusion
constant D, affinity with microtubules, and net velocity along MTs. Finally, the
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crowded cytoplasm is a risky environment for viruses that can be trapped or
degraded by the cellular defense machinery. Thus cytoplasmic trafficking is rate-
limiting and to analyze quantitatively that step, an asymptotic expression will be
derived for the probability PN that a virus arrives at a nuclear pore alive, as described
in Sect. 9.3.1 below.

9.2 Viral Trafficking in the Cell Cytoplasm

Several steps are necessary before a viral particle can undergo cytoplasmic or
nuclear replication. One step is to successfully escape the endosome and thus to
avoid degradation in acidic lysosomes. Enveloped viruses, such as influenza, contain
membrane-associated glycoproteins, which mediate the fusion between the viral
and endosomal membranes. In particular, acidification of the endosome triggers
the conformational change of the influenza hemagglutinins (HA) into a fusogenic
state, leading to endosome-virus membranes fusion and release of genes into the
cytoplasm. Other non-enveloped viruses, such as the adeno-associated-virus (AAV),
have to escape the endosome, a process that requires one of the (less than 10) capsid
proteins to change conformation. In Sect. 9.5part of this chapter, we will present
model for the endosomal escape based on Markov jump processes.

Following the endosomal escape, viruses have to travel through the crowded
cytoplasm to reach the nucleus and deliver their genetic material through the nuclear
pores. While the cytoplasmic movement of viral particles towards the nucleus is
facilitated by the microtubular network and viral proteins, very little is known about
the fate of non-viral DNA vectors in the cytoplasm. However, trapping of large DNA
particles (>500 kDa) in the crowded cytoplasm drastically hinders their cytoplasmic
diffusion (Dauty and Verkman 2005) and subsequently diminishes the transfection
rate of synthetic gene vectors (see Fig. 9.2). Mathematical and physical models of
this process are constructed for the purpose of predicting and quantifying infectivity
and the success of gene delivery.

9.2.1 The Steady State Drift for a Two-Dimensional Radial Cell

The motion described by Eq. (9.1) and its coarse-grained version (9.2) is shown
in Fig. 9.3. An idealized two-dimensional model of a cell is a circular annulus
�, representing the cell cytoplasm, with outer radius R and inner radius ı. An
abstract model of the cytoplasm contains N MTs radially oriented with equally
spaced angles ‚ D 2	=N apart. They emanate from the inner circle of radius r,
which represents the nucleus, and end at outer circle of radius R, which represents
the external membrane. The two-dimensional model can represent flat culture cells,
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Fig. 9.3 A fundamental
step of motion: diffusion and
directed motion. A virus
(dotted line) starts at a
position x0 and diffuses freely
until it binds to an MT and
moves an average distance
dm. It is finally released at xf .
This result is compared to a
trajectory generated by the
steady state Eq. (9.2) (solid
line)

Fig. 9.4 A two-dimensional
radial cell with radially
equidistributed MTs. A viral
trajectory alternates
intermittently between
directed motion when bound
to an MT and free diffusion in
the cytoplasm

which stay flat due to adhesion to the substrate. The thickness can be neglected
in this model. Before reaching a small nuclear pore, the dynamics of the virus
alternates intermittently between free diffusion and directed motion along an MT,
as described in Sect. 8.1 (Fig. 9.4). It is enough to study the intermittent dynamics in
a single sector Q� of central angle ‚. The viral motion described in Fig. 9.3 begins
at a radius r0 with an angle uniformly distributed in Œ0I‚�. The virus binds to a
MT at time �.r0/ and radius Nr.r0/ and while moving on the MT, it has a radially
directed movement towards the nucleus for an exponentially distributed random
time, whose average is tm, and travels an average distance dm D jjVjjtm. The virus
is released with a uniformly distributed angle at a final radius rf D Nr.r0/ � jjVjjtm
(Fig. 9.5). In most eukaryotic cell large asters, there are from 600 to 1000 MTs
(Nedelec et al. 2001). The average number N of MTs per cell cross section can
be estimated as follows: for a cell thickness h 	 9�m, an interaction range
� 	 50 nm between the MTs and the molecular motors (Coy et al. 1999), and
diameter d D 30 nm for a virus such as AAV (Seisenberger et al. 2001), the range
of N is found for a radial MT organization in a thin cylindrical cell to be between
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Fig. 9.5 Homogenization of
motion in a sector Q�. A virus
starts at radius r0, with an
angle uniformly distributed in
Œ0I‚�, it diffuses freely for
time �.r0/ until it binds to an
MT at an average radius
Nr.r0/; after a directed motion
over a distance dm D jjVjjtm
it is released randomly at a
final radius rf

600.2� C d/=h and 1000.2� C d/=h, that is 9–15. In this range ‚ << 1. If the
reflecting boundary at r D R is neglected, the domain Q� becomes an open-ended
wedge.

9.2.2 MFPT of a Brownian Motion to the Boundary
of a Circular Sector

We consider here a Brownian motion in a circular sector �R of radius R and
central angle ‚ � 1. Brownian trajectories are reflected at the arc @�R

r D fr D
R; �‚=2 < � < ‚=2g and absorbed at @�R

a D f� D �‚=2;‚=2; 0 � r < Rg.
The MFPT to the absorbing boundary @�R

a (which represents a microtubule) u D
u .r; �/ of a Brownian trajectory to @�R

a , given the initial point .r; �/, is the solution
of the boundary value problem (Schuss 2010b)

D�u .x/ D �1 for x 2 �R; u .x/ D 0 for x 2 @�R
a ;
@u

@n
D 0 for x 2 @�R

r :

(9.3)

In polar coordinates (9.3) takes the form

@2u

@r2
C 1

r

@u

@r
C 1

r2
@2u

@�2
D � 1 for .r; �/ 2 �R

u .r; �/ D for .r; �/ 2 @�R
a

@u.r; �/

@r
D 0 for .r; �/ 2 @�R

r :
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The solution is found by separation of variables as Redner (2001)

u .r; �/ D r2

4D

�
cos 2�

cos‚
� 1

�
C

1X

nD0
Anr�n cos�n� for � ‚

2
� � � ‚

2
: (9.4)

The right hand of (9.4) is the general solution of the homogeneous problem�u D 0

in �R. The boundary condition on @�R
a determines the eigenvalues as

�n D .2n C 1/
	

‚
; (9.5)

while the reflecting condition at @�R
r is

@u .R; �/

@r
D 0 for � ‚

2
< � <

‚

2
: (9.6)

This determined

An D .�1/nC1 8R2��n

D‚�2n
�
�2n � 4� : (9.7)

Averaging (9.4) with respect to a uniform initial distribution gives the MFPT to
@�R

a as

Nu .r/ D 1

‚

‚=2Z

�‚=2
u .r; �/ d� D r2

4D

�
tan .‚/

‚
� 1

�
�

1X

nD0

16R2��n r�n

D‚2�3n
�
�2n � 4� ; (9.8)

For small ‚ (9.4) can be approximated by

Nu .r/ 	 r2

4D

�
tan .‚/

‚
� 1

�
�

16‚R2
� r

R


	=‚

�
D	3

�	
‚


2 � 4
� : (9.9)

For ‚ � 1 (9.9) reduces to

�.r0/ 	 r20
‚2

12D
C o.‚2/: (9.10)

9.2.3 Distribution of Exit Points on @�a

The probability density of exit points on @�a is the density of points at which a
virus attaches to a microtubule. This probability density is the normal flux density
on @�a of the solution of the transition probability density p .x; t jx0/ of Brownian
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trajectories that are absorbed in @�a and reflected in @�R
r . It is the solution of the

initial and boundary value problem for the Fokker–Planck equation

@p .x; t j x0/
@t

D D�p .x; t j x0/ for x 2 �R

p .x; 0 j x0/ D ı .x � x0/ for x; x0 2 �R

p .x; t j x0/ D 0 for x 2 @�R
a

@p .x; t j x0/
@n

D for x 2 @�R
r ;

The distribution of exit points � .y/ is given by

� .y/ D
Z 1

0

j .y; t/ dt; (9.11)

where the flux j is defined by

j .y; t/ D �D
@p .r; t/
@n jr D y

.

If we denote C .r0; r/ D R1
0

p .r; tjr0/ dt, then C is the solution of

� D�C .r0; r/ D ı .r � r0/ ; (9.12)

and

� .y/ D �D
@C

@n
.r0; y/ for y 2 �R

a : (9.13)

Consequently, to obtain the pdf �.y/ of exit points y, we use the Green function in
the wedge domain �R. By using a conformal transformation, we hereafter solve a
simplified case of an open wedge (i.e., without a reflecting boundary at r D R). This
computation could be compared with the general one that will be derived in the next
section.

To compute the exit points distribution, we compute the solution of Eq. (9.12),
obtained by the image method and a conformal transformation from the open wedge
to the upper complex half-plane. The Green function, solution of Eq. (9.12) in the
upper complex half-plane is given by

C .z/ D 1

2	D
ln

z � z0
z � z�

0

; (9.14)

where z�
0 the complex conjugate of z0. Using the conformal transformation

! D f .z/ D z
	
‚ , that maps the interior of the wedge of opening angle ‚ to the

upper half plane, the Green function in the wedge is given by
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C .z/ D 1

2	D
ln

 
z
	
‚ � z

	
‚

0

z
	
‚ � �

z�
0

� 	
‚

!
: (9.15)

The flux to the line � is given by

�� .r/ D �D

r

@C

@�

�
rei�

� D 1

2	r

i�
�
rei�

��
:
�
k0 � k�

0

�
��

rei�
�� � k0

� ��
rei�

�� � k�
0

�

D 1

2	r

�2� �rei�
��

r�0 sin .��0/
�
rei�

�2� C r2�0 � 2 �rei�
��

r�0 cos .��0/
;

where � D 	
‚

, k0 D z�0 D �
r0ei�0

��
. Finally, the exit point distribution for � D ‚ is

given by

�‚ .r/ D r0
‚

.rr0/
.��1/ sin .��0/

r2� C r2�0 C 2 .rr0/
� cos .��0/

; (9.16)

while for � D 0 it is given by

�0 .r/ D r0
‚

.rr0/
.��1/ sin .��0/

r2� C r2�0 � 2 .rr0/
� cos .��0/

: (9.17)

A matlab check guarantees that
Z 1

0

f�‚ .r/C �0 .r/gdr D 1: (9.18)

This computation gives the leading order term. The full computation for a closed
wedge is given in Lagache and Holcman (2008a).

9.2.4 The Mean Exit Radius

To determine the mean exit distribution radius � .rjr0/ for a Brownian particle
starting initially at position r0; �0 where �0 is uniformly distributed between 0 and
‚, we consider � .rjr0; �0/ D �0 .rjr0; �0/C �‚ .rjr0; �0/ and estimate the integral

� .rjr0/ D 1

‚

Z ‚

‚0D0
� .rjr0; �0/ d�0: (9.19)

We obtain from 9.17

� .rjr0/ D 2

‚	r
log

�
r� C r�0
jr� � r�0 j

�
C ln

�
R2� C .rr0/

�

R2� � .rr0/
�

�
: (9.20)
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We define the mean exit point as rm .r0/ D E .rjr0/ conditioned on the initial
radius r0. Thus,

rm .r0/ D E .rjr0/ D
Z R

0

r� .rjr0/ dr: (9.21)

Using the expansion log .1C x/ D P
n	1 .�1/nC1 xn

n for x < 1, we obtain by a
direct integration that

rm .r0/ D 8

	2
r0

0

@
1X

nD0

1

.2n C 1/2

0

@ 1

1 � 1

.2nC1/2. 	‚ /
2

1

A

1

A (9.22)

using the expansion in the first part,

1

1 � 1

.2nC1/2. 	‚ /
2

D
1X

pD0

�
‚

.2n C 1/ 	

�2p

(9.23)

and the approximation ‚ << 1, we obtain using the value of the Riemann

-function, 
 .2/ D 	2

6
and 
 .4/ D 	4

90
, r0 � R, that

rm .r0/ 	 r0

�
1C ‚2

12

�
� 8R

	2

� r0
R


	=‚ 	=‚

.	=‚/2 � 1 : (9.24)

For ‚ small, the second term in the right-hand side of (9.24) is exponentially small.
We conclude that

Nr.r0/ 	 r0

�
1C ‚2

12

�
: (9.25)

We can now use relation (9.25) and (9.10) to finalize the homogenization procedure
of the drift.

9.2.5 Homogenization Procedure to a Constant Drift

In radial geometry, with a drift b.x/ D b.r/ r
jjrjj , the MFPT u.r0/ of a virus starting

at r0 and ending at position r D rf is described by Eq. (9.2) and it satisfies

D�u � b.r0/ru D �1
du

dr
.R/ D 0 and u.rf / D 0; (9.26)



9.2 Viral Trafficking 213

where we approximated b.r/ by b.r0/. The solution of Eq. (9.26) is

u.r0/ D
Z r0

rf

 Z R

v

ue� b.r0/
D .u�v/

Dv
du

!
dv: (9.27)

For D << 1, using the Laplace’s method,

Z R

v

ue� b.r0/
D .u�v/

Dv
du 	 1

b.r0/
: (9.28)

Thus, in the first approximation, u.r0/ 	 r0�rf

b.r0/
. We can now obtain the value for the

homogenized drift b.r0/, by equalizing the MFPT u.r0/ from r0 to rf computed
from Eq. (9.2) with the one obtained from an intermittent dynamic: �.r0/ C tm.
Consequently, we get:

b.r0/ D r0 � rf

�.r0/C tm
D dm � r0

‚2

12

tm C r20
‚2

12D

: (9.29)

9.2.6 Asymptotic Solution Versus Brownian Simulations

We impose reflecting boundaries at the external membrane r D R and we shall
now compare the steady state distribution (Eq. (9.31)) against Brownian simulations
generated by empirical intermittent Brownian trajectories in the pie wedge domain.
For a potential field b, the steady state distribution satisfies the Fokker–Planck
equation

D�p � rŒbp� D 0 in � (9.30)

with reflecting boundary condition J.x; t/:nx D 0 on @�: The distribution p in a
two-dimensional radial geometry is:

p.r/ D e�ˆ.r/
D

R R
0

e�ˆ.r/D
2 	rdr

; (9.31)

The potentialˆ of b D �rˆ is obtained by integrating Eq. (9.29) with respect to r0,

ˆ.r/ D dm
p
12Dtm

tm‚
arctan

�
‚rp
12Dtm

�

�D

2
ln
�
12Dtm C r2‚2

�
: (9.32)
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Fig. 9.6 Steady state
distributions for the
homogenized and switching
dynamics. Particle
distribution (dashed line)
generated from (9.31) with
the effective drift b.r/
(Eq. (9.29)) compared to the
empirical steady state
distribution (solid line)
obtained by running 10;000
intermittent Brownian
trajectories. The cell radius is
R D 20�m and ‚ D 	

6

0.010

0.006

0.008

0

0.002

0.004

191715131197531

Steady State 
Distribution

Radius (μm)

Fig. 9.7 Dendrite
cross-section with N MTs,
which are thin cylinders
uniformly distributed inside
the dendrite

In Fig. 9.6, we plotted the steady state distribution given in (9.31) against the
distribution of intermittent empirical trajectories generated from (3.2).

The parameters are chosen such that the viruses move towards the nucleus
observed in vitro, loaded dynein moves during 1 s over a distance of 0:7�m (King
and Schroer 2000), we thus take tm D 1 s and dm D 0:7�m; furthermore, the
diffusion constant is D D 1:3�m2=s as observed for the AAV (Seisenberger
et al. 2001). The agreement between the curves in Fig. 9.6 validates that the switch
system (9.1) can be coarse-grained into the stochastic Eq. (9.2).

9.2.7 The Cylindrical Geometry

Many transport mechanisms such as viral [herpes virus (Smith et al. 2004)] and
vesicular occur in long axons or dendrites, which can be approximated as thin
cylinders (radius R and length L). To derive a quantitative analysis of viral infection
in that case, we follow the method described above for the case of a disk and
compute the steady state drift that accounts for the directed motion along MTs. We
model the N MTs parallel to the dendrite principal axis as cylinders (radius � � R,
Length L). The cross-section � of the dendrite is shown in Fig. 9.7. The cylindrical
symmetry imposes that the steady state drift b.x/ is independent of z and can be
written as Bz, where B is a constant and z the principal axis unit vector along the
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dendrite. In a small diffusion approximation, the leading order term of B is equal to
the effective velocity (Ajdari 1995; Lipowsky et al. 2001): B D dm

tmC�m
; where tm is

the mean time the virus binds to an MT, dm D jjVjjtm the mean distance of a run
and �m the MFPT to find an MT.

To derive an expression for � , we consider the cross-section � and impose
reflecting boundary condition at the external membrane of the dendrite (r D R) and
absorbing ones at the MTs surfaces. In the long time asymptotic, for an MTs radius
� << 1, the mean time to a microtubule �m is asymptotically equal to 1

�D where
� is the first eigenvalue of the Laplace operator in � with the boundary conditions
described above (Schuss 2010b, p. 175). The leading order term of � as a function
of � is (Ozawa 1980)

� D 2	N

j�j ln
�
1
�

� ; (9.33)

where j�j D 	R2. Thus, the MFPT to an MT is

�m D 1

�D
D R2 ln

�
1
�

�

2ND
; (9.34)

and the steady state drift amplitude B is given by

B D dm

tm C �
D 2NDdm

2NDtm C R2 ln
�
1
�

� : (9.35)

We conclude that in the limit tm � �m, the effective velocity is proportional to the
number of MTs: B 	 N 2Ddm

R2 ln. 1� /
, as already observed in Nedelec et al. (2001).

9.2.8 Conclusion About Homogenization
of Stochastic Equations

The intermittent dynamics (9.1) with random periods of free diffusion and directed
motion along MTs characterizes several transport processes. The homogenization of
a switching process into a steady state stochastic equation allows explicit expression
for the drift in two-dimensional radial cell and in a cylindrical dendrite or axon that
depends on some cellular elements such as MTs organization.

The steady state description of the movement can be used to estimate the
probability that a virus reaches a small nuclear pore alive and the conditional mean
time for it, given that it does. Because viruses are very efficient DNA carriers,
understanding and quantifying their movement in the cell cytoplasm is potentially
helpful for designing synthetic vectors.
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9.3 Probability that a Viral Particle Arrives Alive
at a Nuclear Pore

The viral path to the nuclear pore can be computed from the stochastic equation
described in Sect. 9.1 and the effective diffusional dynamics of the virus is derived
for various geometries in the previous sections. In particular, the expression for
the effective drift b.x/ depends on the organization of the microtubules and on the
properties of the viral dynamics, such as the diffusion constant D, affinity with MTs
and net velocity along them. The coarse-grained path x.t/ of the virus in a domain
� is modeled as the output of the stochastic differential equation

dx D b.x/ dt C p
2B.x/ dw.t/; (9.36)

where b.x/ is a smooth drift vector, B.x/ is a diffusion tensor, and w.t/ is a vector
of independent standard Brownian motions.

The viral trajectory x.t/, however, can be terminated at any point x 2 � and any
time t with probability at rate k.x; t/, that is, with probability k.x; t/�t C o.�t/.
The instantaneous rate k.x; t/ is called killing measure (see Sect. 2.7). When the
boundary @� (here the cytoplasmic domain) admits no absorption flux, except for
a small absorbing window @�a, the NET problem is to find the absorption flux of
trajectories that survive the killing. Thus there are two random termination times
defined on the trajectories x.t/, the time � k to killing and the time �a to absorption
in @�a. The virus is said to reach the nucleus alive if �a < � k.

9.3.1 The Probability PN and Mean Time N�N to Reach
the Nucleus

We consider the effective viral motion in a cell, whose external boundary is @�ext

and the boundary of the nucleus is divided into absorbing and an reflecting parts,
@Na and @Nr, respectively. The absorbing part @Na is the union of well-separated
small pores. The entire boundary is thus @� D @�ext [ @Na [ @Nr:

The probability PN.x/ D Prf�a < � k j xg that a particle, such as a virus, that
starts at x in the cell domain� reaches the nucleus, which is modeled as a ball B.a/
of radius a before degradation, depends on the cell geometry. Keeping the notation
of Sect. 2.7.1, the probability PN , averaged over the initial density pi.x/, is given by

PN D
Z

�

Prf�a < � kjx.0/ D ygpi.y/ dy

D 1 �
Z

�

k.x/Qp.x/ dx: (9.37)



9.3 Survival Probability 217

The mean time N�N to reach the nucleus alive is the conditional average of �a, given
that �a < � k. The probability distribution function (PDF) of the time � k that a viral
trajectory is killed before reaching an absorbing pore, @Na, is studied in Sect. 2.5. In
the notation of that section, the mean time to reach a nuclear pore, averaged over an
initial density pi.x/,

q.x/ D
Z 1

0

sQp.x; s/ ds; (9.38)

is the solution of the boundary value problem

8
ˆ̂<

ˆ̂:

�Qp.x/ D D�q.x/ � r � b.x/q.x/ � k.x/q.x/ for x 2 �
q.x/ D 0 for x 2 @Na

J.x/ � n.x/ D 0 for x 2 @Nr [ @�ext;

(9.39)

where

J.x/ � n.x/ D �Drq.x/ � n.x/C b.x/ � n.x/q.x/:

The mean time to absorption is given by [see formula (2.178) of Sect. 2.7]

N�N D EŒ�a j �a < � k; pi� D

Z

�

Qp.x/ dx �
Z

�

k.x/q.x/ dx

1 �
Z

�

k.x/Qp.x/ dx
: (9.40)

9.3.2 Probability and MFPT for a Diffusion Process to Reach
a Small Nuclear Pore

A viral particle can enter the nucleus through a small opening @Na in the nucleus sur-
face that may consist of any number of holes. Thus reflecting boundary conditions
for the Fokker–Planck equation are imposed on the surface @� of the cell, except for
@Na, where absorbing boundary conditions are imposed. We may assume that in two
dimensions @Na consists of an arc of length " � j@�j and in three dimensions, of a
disk B" of radius " � j@�j1=2. Thus in the two-dimensional case 
 D "=j@�j � 1

and in the three-dimensional case 
 D "=j@�j1=2 � 1. We assume henceforward
that all variables are scaled with respect to j@�j in dimension n D 2 and with respect
to j@�j1=2 in dimension n D 3. The probability PN that a virus arrives alive at the
nucleus is the splitting probability between absorption and killing.
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When the drift is set to zero, the boundary value problem (2.176) for the density
of the time spent at x prior to termination becomes

D�Qp.x/ � k.x/Qp.x/ D �pi.x/ for x; y 2 �
Qp.x/ D 0 for x 2 @Na

@Qp.x/
@n

D 0 for x 2 @Nr [ @�ext: (9.41)

Green’s function G.x; y/, which is the solution of the boundary value problem

D�xG.x; y/ D �ı.x � y/ for x; y 2 �;

D
@G.x; y/
@n.x/

D �1
j@�j for x 2 @�; y 2 �; (9.42)

is defined to an additive constant. It is given by (see Garabedian 1964),

DG.x; y/ D

8
ˆ̂<

ˆ̂:

� 1

2	
ln jx � yj C w.x; y/ for n D 2

1

4	jx � yj C W.x; y/ for n D 3;

(9.43)

where w.x; y/ and W.x; y/ are bounded harmonic functions. Recall that due to the
image source, the singularity of the Green function on the regular boundary @Na is
multiplied by a factor of 2, as discussed in Sect. 1.5.1.

9.3.3 Asymptotics of PN for Small Killing Rate k.x/ � 1

To estimate PN asymptotically for small absorbing boundary, we note PN converges
to a constant, due to killing. Therefore a regular Taylor expansion gives the leading
term. The integral representation of the solution Qp is obtained by substituting
Eqs. (9.41) and (9.42) in Green’s formula. We get from

Z

�

�
GQ�Qp � Qp�GQ

�
.x/dx D

Z

@�

�
GQ
@Qp
@n

� Qp@GQ

@n

�
.x.S//dS (9.44)

that
Z

�

GQ.x/ .�pi.x/C k.x/Qp.x// dx C Qp.Q/ D D
Z

@Na

GQ
@Qp
@n

dS C 1

j@�j
Z

@�

QpdS:
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We assumed that the absorbing boundary is a small ball B
 (in dimension 3) or a
small arclength (in dimension 2) @Na D B
, where 
 << 1. Under this assumption
the leading order term Qp.x/ outside a boundary layer of the absorbing boundary is
approximated by a constant (see Holcman and Schuss 2004), Qp.x/ 	 P
. We get

Qp.Q/ D D
Z

@Na

GQ
@Qp
@n

dS C P


�
1 �

Z

�

k.x/GQ.x/dx
�

C
Z

�

GQ.y/pi.y/dy: (9.45)

In order to estimate the constant P
, we use that at the absorbing boundary @Na, the
function Qp has to vanish. The unknown flux is

g.S/ D @Qp
@n
.x.S//; (9.46)

and at a point Q 2 @Na where Qp.Q/ D 0, we have the relation

0 D D
Z

@Na

GQ.x.S//g.S/dS C P


�
1 �

Z

�

k.x/GQ.x/dx
�

C
Z

�

GQ.y/pi.y/dy: (9.47)

To compute g.s/, we integrate (9.41) over the domain�, using that
R
�

pi.x/dx D 1,

D
Z

@Na

g.S/dS D �1C
Z

�

k.x/Qp.x/dx

D �1C P


Z

�

k.x/dx: (9.48)

To estimate the left-hand side of expression (9.48), we use a Taylor expansion of
the flux g.S/ at a fixed point in the interior of the absorbing boundary far from the
edges (Holcman and Schuss 2004), we get

Z

@Na

g.S/dS D
Z 


�

g.S/dS D 2
g0 C o.
/; (9.49)

where g0 is the first term of the expansion of g.S/. Thus, we obtain from
relation (9.48) that

g0 D �1C P

R
�

k.x/dx

2D

: (9.50)
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To estimate the constant P
, we use the expansion of the Green function in
dimensions 2 and 3 in expression (9.47),

DGQ.x/ D
( � 1

2	
ln jx � Qj C C0 C hQ.x/; for n D 2

1
4	

jx � Qj�1 C C0 C hQ.x/; for n D 3;
(9.51)

where C0 is a constant and hQ a harmonic function, then in dimension 2, we get (for
the details of the computations see Holcman (2007))

0 D D
Z

@Na

GQ.x.S//g.S/dS C P


�
1 �

Z

�

k.x/GQ.x/dx
�

C
Z

�

GQ.y/pi.y/dy

	 � 1
	

Z 


�

ln jsjg0dS C 2.C0 � 1/g0
C P


�
1 �

Z

�

k.x/GQ.x/dx
�

C
Z

�

GQ.y/pi.y/dy

	 2g0


�
� ln 


	
C .C0 � 1/

�
C P


�
1 �

Z

�

k.x/GQ.x/dx
�

C
Z

�

GQ.y/pi.y/dy

	 1

D

�
�1C P


Z

�

k.x/dx
��

� ln 


	
C .C0 � 1/

�

CP


�
1 �

Z

�

k.x/GQ.x/dx
�

C
Z

�

GQ.y/pi.y/dy:

It is easy to check that this identity does not depend on the Green function. Finally,
far enough from the boundary layer near the window @�a, the solution Qp.x/ is
approximated by,

Qp.x/ 	 P
 	
ln 1




D	
C C0 � 1 �

Z

�

GQ.y/pi.y/dy

ln 1



D	

Z

�

k.x/dx C .C0 � 1/
Z

�

k.x/dx C
�
1 �

Z

�

k.x/GQ.x/dx
�

(9.52)
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In the two-dimensional case, formulas (9.37) and (9.43) give for y 2 @Na

PN 	 PN.y/ D 1 �
Z

�

k.x/Qp.x/dx

	
1C

Z

�

k.x/ dx
Z

�

G.x; y/pi.x/ dx �
Z

�

k.x/G.x; y/ dx

ln 1



D	

Z

�

k.x/dx C .C0 � 1/
Z

�

k.x/dx C
�
1 �

Z

�

k.x/G.x; y/dx
� ;

where C0 is a constant that fixes the Green function. In the limit of k.x/ � 1,
whatever is the choice of C0, terms of order O.1/ in k.x/ can be neglected, except
the term in the denominator, which is multiplied by a large flux. Thus the leading
order term in the expansion of PN in the two-dimensional case is

PN 	 1

1C
ln 1




D	

Z

�

k.x/ dx

for k.x/ � 1: (9.53)

In the three-dimensional case the calculation of PN follows that in Sect. 1.5.
Although similar to that for the two-dimensional case, there are some significant
differences. Specifically, the flux through @Na, which can be assumed a small disk
of radius ", is given by

@Qp.x.s//
@n

D g.s/ D g0p

2 � s2

C o.
/: (9.54)

The leading order term in the expansion of g.s/ for small 
 is computed by
integrating Eq. (9.41),

D
Z

@Na

g.s/ ds D �1C P


Z

�

k.x/ dx: (9.55)

Because

Z

@Na

g.s/ ds D

Z

0

2	g0sp

2 � s2

ds D 2	
g0; (9.56)

the approximation

g0 D
�1C P


R

�

k.x/dx

2	D

(9.57)
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holds. As in the two-dimensional case, expanding the three-dimensional Green
function (9.43) at a point y 2 @Na, we get

D
Z

@Na

G.x.s/; y/g.s/ ds D

Z

0

�
1

2	jsj C C0

�
2	g0s ds
p

2 � s2

: (9.58)

Instead of (9.53) the small k.x/ approximation becomes

PN D 1 �
Z

�

k.x/Qp.x/ dx 	 1

1C 1

4D


Z

�

k.x/ dx
for k.x/ � 1: (9.59)

Recall that in the three-dimensional case 
 D .j@Naj=j@�j/1=2 represents the ratio
of the absorbing part to that of the nucleus. When there are N well-separated small
holes on the surface of the nucleus Eq. (9.53) is generalized, as in Chap. 1, to

PN D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

1

1C
ln 1




ND	

Z

�

k.x/ dx

for n D 2:

1

1C 1

4ND


Z

�

k.x/ dx
for n D 3:

(9.60)

9.3.4 Asymptotics of N�N for Small Killing Rate k.x/ � 1

The mean time N�N to reach a nuclear pore alive is conditioned on �a < � k. Its regular
expansion for small k.x/ is given asymptotically for small 
 by

N�N 	

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

j�j
ln. 1



/

D	
�
Z

�

G.x; y/pi.x/ dx

1C
ln. 1



/

D	

Z

�

k.x/ dx

for n D 2; C0 D 1

j�j
1

4D

�
Z

�

G.x; y/pi.x/ dx

1C
R
�

k.x/ dx

4D


for n D 3; C0 D 0;

(9.61)

where y is any point in @Na. The detailed calculations are given in Holcman (2007).
If there are N well-separated small holes on the surface of the nucleus, Eq. (9.58) is
generalized, as in Chap. 1, to
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N�N 	

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

j�j ln. 1


/

ND	

1C
ln. 1



/

ND	

Z

�

k.x/ dx

for n D 2

j�j
4D
N

1C
R
�

k.x/dx

4ND


for n D 3:

(9.62)

where we neglected the first order terms in (9.61). As N tends to infinity (9.62)
breaks down. It is necessary in this case to introduce a new term, which is
the geometrical capacity of the nucleus with respect to the cellular domain (see
Sect. 1.7.1), to account for the time to travel from the cell surface to the nuclear
envelop.

It is informative to estimate the probability and the mean time a Brownian particle
(like a small plasmid) to reach a small nuclear pore. The typical diffusion coefficient
for a cytosolic plasmid DNA of 5500 base pairs (average size of a gene) is about
D 	 0:02�m2=s. Consider, for example, a spherical cell of radius R D 5�m, with
10 % of its nucleus surface covered by nuclear pores. This gives about n D 160

nuclear pores in dimension three and n D 25 in dimension two. The lifespan of the
cytoplasmic DNA is about 1 h (see Lagache and Holcman 2008b). Thus, choosing
k D 1=3600 s�1 in (9.60), the resulting delivery probability is

PN 	 0:9371 for n D 2; PN 	 0:6875 for n D 3; (9.63)

while the conditional mean arrival time (9.62) is given by

�N 	 226 s for n D 2; �N 	 1125 s for n D 3: (9.64)

The results in two dimensions can be applied to flat cells, while those in three
dimensions are relevant to bulky cells. The difference in the numerical values of PN

can be understood intuitively by noting that the mean time to absorption in the three-
dimensional case is of a different order of magnitude than in the two-dimensional
case, which gives the killing process a chance to terminate the trajectory prior to
absorption.

9.4 The Case of Non-zero Drift

Adding a drift to the Brownian motion changes the probability PN and the mean
reaching time N�N relative to those for pure Brownian motion. We consider for
simplicity the case of a gradient drift, given by b.x/ D �r�.x/, with a potential



224 9 Modeling the Early Steps of Viral Infection in Cells

�.x/ that has a minimum at the origin, inside the nucleus and that b.x/ is directed
into the cell at its external surface, that is, b.x/ � n.x/ < 0 for all x 2 @�ext. For
example,

�.x/ D Bjxj for x 2 �; (9.65)

see Fig. 9.4.

9.4.1 Probability to Reach Alive the Nucleus Surface

To estimate the probability PN , we now estimate asymptotically the solution Qp of
Eq. (2.176). According to Sect. 1.9.1, the equilibrium solution of (2.176) in the limit
of vanishing Dirichlet boundary is the principal eigenfunction (1.159), which is thus
the outer solution of (2.176) outside a boundary layer near @�a. It is given by

Qp.x/ D C
e
��.x/=D: (9.66)

To determine the constant C
, we proceed as above. Integrating (2.176) and using
the no flux boundary conditions, we get

D
Z

@Na

g.s/ ds D �1C
Z

�

k.x/Qp.x/dx; (9.67)

where the absorption flux at @�a is given by g.s/ D @Qp.x.s//
@n

. As in Sect. 1.9.1,

g.s/ in (9.67) can be approximated for s in @�a as

g.s/ D

8
ˆ̂̂
<

ˆ̂̂
:

g0e��.x0/=D C o.
/ for n D 2;

g0e��.x0/=D

p

2 � s2

C o.
/ for n D 3;

(9.68)

where �.x0/ is the practically constant value of � in @�a for small 
. Thus,

g0 D

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

e�.x0/=D
�1C C


Z

�

k.x/e��.x/=Ddx

2D

for n D 2

e�.x0/=D
�1C C


Z

�

k.x/e��.x/=Ddx

2	D

for n D 3:

(9.69)
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The function Qp.y/ can be represented in terms of Green’s function as
Z

�

G.x; y/ Œ�pi.x/C k.x/Qp.x/� dx

�
Z

�

rxG.x; y/ � r�.x/Qp.x/ dx C Qp.y/

D D
Z

@�a

G.x.s/; y/
@Qp.x.s//
@n

ds C 1

j@�aj
Z

@�a

Qp.x.s// ds; (9.70)

which reduces by the absorbing boundary condition Qp.y/ D 0 for y 2 @�a and
by (9.66) to

D
Z

@�a

G.x.s/; y/ g.s/ ds C 1

j@�j
Z

@�

C
e
��.x.s//=D ds

D
Z

�

G.x; y/
��pi.x/C k.x/C
e��.x/=D

�
dx

�
Z

�

rxG.x; y/ � r�.x/C
e��.x/=D dx: (9.71)

The flux condition (9.69) gives for y 2 @�a

D
Z

@�a

G.x.s/; y/g.s/ ds (9.72)

D

8
ˆ̂̂
<

ˆ̂̂
:

2D
g0e��.x0/=D

�
� ln 


	
C C0 � 1

�
for n D 2

	Dg0e��.x0/=D

�
1

2
C 2
C0

�
for n D 3:

Choosing C0 D 1 for n D 2 and C0 D 0 for n D 3, we get from (9.71) that for
n D 2 and y 2 @�a

C
 	
ln 1



D	
�
Z

�
G.x; y/pi.x/ dx

ln 1



D	

Z

�
e��.x/=Dk.x/ dx C 1

j@�aj
Z

@�a

e��.x.s//=D ds �
Z

�
e��.x/=Dk.x/G.x; y/ dx

(9.73)



226 9 Modeling the Early Steps of Viral Infection in Cells

and for n D 3 and y 2 @�a

C
 �
1

4D

�
Z

�

G.x; y/pi.x/ dx

1

4D


Z

�

e��.x/=Dk.x/ dx C 1

j@�aj
Z

@�a

e��.x.s//=D ds �
Z

�

e��.x.s//=Dk.x/G.x; y/ dx
:

(9.74)

For small k.x/ this gives

PN D 1 �
Z

�

k.x/Qp.x/ dx D 1 � C


Z

�

k.x/e��.x/=D dx; (9.75)

which can be written as

PN 	

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

1

j@�aj
Z

@�a

e��.x/=DdSx

ln 1



D	

Z

�

e��.x/=Dk.x/ dx C 1

j@�aj
Z

@�a

e��.x/=D dSx

for n D 2

1

j@�aj
Z

@�a

e��.x/=DdSx

1

4D


Z

�

e��.x/=Dk.x/ dx C 1

j@�aj
Z

@�a

e��.x/=DdSx

for n D 3:

(9.76)

9.4.2 The Arrival Probability PN with the Potential
	.x/ D Bjxj

When the (dimensionless) potential �.x/ is an increasing function of the distance
from the nucleus, its minimum is achieved on the surface of the nucleus. For
simplicity, we assume that the nucleus is a ball of radius ı, centered at the origin.
We consider two extreme cases, that �.x/ achieves its minimum uniformly on the
nucleus surface and that the minimum is achieved at a finite number of isolated
points on the surface.

In the first case, assuming �.x/ D Bjxj, we obtain

1

j@�aj
Z

@�a

e��.x/=D dSx D e�ıB=D: (9.77)
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Setting

Qk.r/ D
Z

jxjDr

k.x/ dSx; (9.78)

we obtain for 1 � Bı=D � BR=D the asymptotic expansion

Z

�

e��.x/=Dk.x/ dx D
RZ

ı

Qk.r/e�Br=Drn�1dr

D
�

Bı

D

�n�1
e�Bı=D

�
Qk.ı/C Bı

D
Qk0.ı/C � � �

�

which reduces for a locally constant k.x/ D k.ı/ in a neighborhood of the nucleus
jxj D ı to

Z

�

e��.x/=Dk.x/ dx D
�

Bı

D

�n�1
e�Bı=Dj@�ajk.ı/; (9.79)

with

j@�aj D
8
<

:
2	ı for n D 2;

4	ı2 for n D 3:
(9.80)

With this approximation (9.76) reduces to

PN 	

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

1

2 ln 1



D

�
Bı2

D

�
k.ı/C 1

for n D 2

1

	

D


�
B

D

�2
ı4k.ı/C 1

for n D 3:

(9.81)

For a general potential �.x/ that achieves its absolute minimum �m in the cells at
isolated points .x1; x2; : : : ; xM/ on the surface of the nucleus the Laplace expansion
of the integrals in (9.76) gives
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Z

@�

e��.x/=D dS D

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

e
�
�m

D
MX

kD1

s
2D	

Hess.�.xk//
for n D 2

e
�
�m

D
MX

kD1

2D	
p

Hess.�.xk//
for n D 3;

(9.82)

where Hess.�.xk// is the n � 1-dimensional Hessian determinant of the restriction
of � to @�a at xk 2 @�a . Also the integral

Z

�

e��.x/=Dk.x/ dx

can be evaluated asymptotically by the Laplace method for 1 � Bı=D � BR=D
(Schuss 2010b).

In the reverse limit Bı=D � 1 the exponential function in the above integrals
can be expanded in Taylor’s series to obtain the approximation

1

j@�j
Z

@�

e��.x/=D dS D 1 �
N�

D
C o

�
�

D

�2
; (9.83)

where N� is the average of � over @�. For the potential �.x/ D Bjxj in the annular
domain ı < jxj < R with R >> ı,

N� 	 BR: (9.84)

Thus,

PN 	

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

1 � BR
D

ln 1



D	

�Z

�

k.x/ dx �
Z

�

k.x/�.x/ dx
�

C 1 � BR

D

for n D 2

1 � BR
D

1

4D


�Z

�

k.x/ dx �
Z

�

k.x/�.x/ dx
�

C 1 � BR

D

for n D 3:

(9.85)

9.4.3 The Conditional MFPT to the Nucleus

The conditional MFPT to the nucleus, N�N , is computed much like in the no-drift
case in Sect. 9.3.2. The detailed computations are given in the references listed
in Sect. 9.6. Specifically, keeping the notation of Sect. 9.3.2, the small killing rate
result is
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N�N 	

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:
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D	

Z

�

e��.x/=D dx

ln 1
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Z

�
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(9.86)

If the diffusion coefficient D is small, the potential � achieves its minimum
uniformly on the nucleus surface boundary, and the killing rate k is locally constant
near the surface,

N�N 	

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

2 ln 1



D

Dı

B

1C k
2 ln 1




D

Dı

B

for n D 2

	


D

Dı2

B

1C 	

D


Dı2

B
k

for n D 3:

(9.87)

Note that when the diffusion constant is small, the conditional MFPT depends
mainly on the time spent in a small region around the nucleus. If Bı=D � 1, other
limit formulas can be obtained, such as (9.73) and (9.74), with N�N D C
. In the
case of n well-separated small holes, formulas (9.81) and (9.87) are modified by
replacing 
 with n
 in dimension 3 and ln 
 with .ln 
/=n in dimension 2.

The asymptotic formulas can be applied to data concerning the AAV. The dif-
fusion constant is D 	 1:3�m2=s and the mean drift is in the range 1.8–3.7 �m=s
(Seisenberger et al. 2001). Because the effective drift of a virus toward the nucleus is
about 5–10 % of the mean drift on a microtubule, close to the nucleus, the effective
drift value can be taken as B D 2:5=20 D 0:12�m=s (Lagache et al. 2009b).
The killing rate is about k D 1=3600 s�1. The cell characteristics are identical to
the case of a plasmid. For these values the absorption probability of a live virus is

PN D 0:98 for n D 2; PN D 0:70 for n D 3; (9.88)

while the conditional MFPT is

N�N D 66 s for n D 2; N�N D 1056 s for n D 3: (9.89)
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Thus the probability to reach the nucleus alive is higher for viruses than for
plasmids, which is a consequence here of the drift effect. However, the conditional
MFPT in dimension two and three is very different for both plasmids and viruses.
For viruses, the difference between dimensions 2 and 3 is observed mainly for the
conditional MFPT N�N , which is about 16 times longer [see Lagache and Holcman
(2015) for generalizations]. The case of large degradation rate k � 1 is relevant to
plasmid trafficking in the cell cytoplasm, where the killing rate due to the protease
can be much larger than absorption rate. A full study of this case is given in Lagache
et al. (2009a).

9.4.4 The Large Degradation Rate Limit k � 1

The previous analysis (Holcman 2007) does not give any results for the probability
and the mean time to reach a nuclear pore when the degradation rate is large
k � 1. In some cases such plasmid trafficking in the cell cytoplasm, the killing
activity due to the protease could be much larger than the diffusion time scale.
Hereafter, we present an asymptotic estimation in the large degradation rate limit.
We start with a constant degradation rate k.x/ D k [the computations for a general
radial degradation rate are given in Lagache et al. (2009a)]. We consider a uniform
initial plasmid distribution over the cytoplasm pi.x/ D p0 D 1

j�j . To compute the
probability PN , we shall solve Eq. (2.174) (there is no drift)

D�Qp.x/ � k.x/Qp.x/ D �p0 D � 1

j�j ; (9.90)

with boundary conditions

Qp.x/ D 0 for x 2 @Na

@Qp.x/
@n

D 0 for x 2 @Nr [ @�ext: (9.91)

When D
j�j � k and for a particle starting far away from nuclear pores, we

approximated the solution of Eq. (9.90) by

pouter.x/ D 1

kj�j C O.D/: (9.92)

However, this outer solution does not match the absorbing condition. Thus, we
construct an inner solution pinner.x/ near nuclear pores, that satisfies the absorbing
conditions and match the outer solution.
In local coordinates .�; s/ near @Na, where � is the distance from @Na, measured
positively into the domain �, and s is the tangential variable in the plane � D 0.
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Projecting Eq. (9.90) on the �-coordinate (the variation of Qp with respect to s is small
compared to the one in �), we obtain for the leading order term pinner:

d2pinner.�/

d�2
� k

D
pinner.�/ D � 1

Dj�j ; (9.93)

with

pinner.0/ D 0: (9.94)

Far from the boundary layer, the matching condition is

lim
�

p

D
!1

pinner.�/ D pouter D 1

j�jk : (9.95)

Consequently, near the boundary we get

pinner.�; s/ D 1

j�jk
�
1 � e�

p
k
D �


: (9.96)

To compute PN , we use formula (6.61)

PN D 1 �
Z

�

k.x/Qp.x/dx; (9.97)

which can be rewritten as

PN D 1 �
�Z

�nBL
kpouter.x/dx C

Z

BL
kpinner.�/d�

�
; (9.98)

where BL is the boundary layer. Using expression (9.92) for pouter, we get

Z

�nBL
kpouter.x/dx D j� n BLj

j�j (9.99)

and finally

Z

BL
kpinner.�/d� D 1

j�j
�

jBLj C j@Naj
Z �0

0

�e�
p

k
D �d�

�

D 1

j�j

 
jBLj � j@Naj

r
D

k

�
1 � e�

p
k
D �0

!
; (9.100)
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where �0 >>
q

D
k is the thickness of the boundary layer. Finally,

PN D j@Naj
j�j

r
D

k
C O

�
e�

p
k
D �0


: (9.101)

In a three-dimensional cell, when the boundary consists of n well-separated small
holes of radius 
, we obtain that

PN D n	
2

j�j

r
D

k
C O

�
e�

p
k
D �0


: (9.102)

Because our analysis is local, it can be extended to any degradation rate, large
compared to the exploring rate. In that case, when for n well-separated narrow pores
of size 
q, 1 � q � n, located at position x1; : : : ; xn, the asymptotic formula is

PN 	
nX

qD1

	
2q

j�j

s
D

k.xq/
C O

�
e�

q
k0
D �0

�
; (9.103)

where k0 is the minimum value of k.x/ among the pores. In Fig. 9.8, we show
the comparison of Brownian simulations with the analytical formula (9.101): we
conclude that the matching occurs for large degradation rate (more than 200 times
the normal rate) and thus the large k � 1 case might be useful to characterize gene
delivery for abnormal cells, where the degradation rate is large. We now compute
the MFPT �N to a small pore for a live virus in the case k � 1. We recall that from
formula (9.40) that

�N D
R
�

Qp.x/dx � R
�

kq.x/dx

PN
: (9.104)

where q.x/ D R1
0

sQp.x; s/ ds satisfies (9.39). To estimate �N , in a small diffusion
regime, the outer approximation of q is

qouter D pouter

k
D 1

j�jk2 : (9.105)

The inner solution qinner in the boundary layer expansion satisfies :

d2qinner.�/

d�2
� k

D
qinner.�/ D �pinner

D
D � 1

Dj�jk
�
1 � e��

p
k
D




qinner.0/ D 0

lim
�

p

D
!1

qinner.�/ D qouter D 1

j�jk2 :
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Fig. 9.8 The probability and mean time for a plasmid to reach a small nuclear pore, plotted as a
function of the constant degradation rate for a two-dimensional flat cell. The Brownian simulations
match the analytic solutions (9.101) and (9.107) only after a rate of 3000 D
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Finally, we obtain in Eq. (9.40)

Z

�

Qp.x/dx �
Z

�

kq.x/dx D j@Naj
p

D

2j�jk 3
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C O
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e�
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: (9.106)

Finally,

�N D j@Naj
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: (9.107)

For a large degradation rate, the analytical results match Brownian simulations
(see Fig. 9.8). Moreover, this analysis is local and can be extended to any x-
dependent degradation rate and for n well separated narrow pores, located at position
x1; : : : ; xn. The general asymptotic formula is

�N 	 1

n

nX

qD1

1

2k.xq/
C O

�
e�

q
k0
D �0

�
; (9.108)

where k0 D minq k.xq/ is the minimum value of k.x/ among the pores. k0 is the
minimum concentration of killing factors among nuclear pores.

9.4.5 MFPT of the First DNA Carrier to Reach a Nuclear Pore

When multiple copies of stochastic particle (DNA carries) enter the cytoplasm,
the conditional MFPT N�FIRST.M/ of the first carrier (virus or DNA) to reach a
nuclear pore alive is also a quantity of interest. The M-DNA carriers’ trajectories are
assumed independent. The conditional MFPT of the jth carrier to reach the nuclear
pore is denoted N� j

N . Two random times are to be considered, the absorbing time
�FIRST.M/ of the first carrier that reaches the absorbing boundary @Na and the first
time � k

FIRST.M/ it is degraded. The conditional probability that the first carrier, with
initial density pi, arrives alive at the absorbing boundary prior to time t is given by

P.t/ D Prf�a
FIRST.M/ < t j �a

FIRST.M/ < �
k
FIRST.M/; pig: (9.109)

The conditional MFPT N�FIRST.M/is defined by

N�FIRST.M/ D
1Z

0

t
dP.t/

dt
dt D

1Z

0

ŒP.1/ � P.t/� dt: (9.110)

Bayes’ law gives

P.t/ D Prf�a
FIRST.M/ < t; �a

FIRST.M/ < �
k
FIRST.M/; pig

Prf�a
FIRST.M/ < �

k
FIRST.M/; pig D N.t/

D.t/
; (9.111)
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where N.t/ and D.t/ are the numerator and denominator, respectively, to be
computed. The event f�a

FIRST.M/ > t or �a
FIRST.M/ > � k

FIRST.M/g is that none of
the M-carriers have reached a nuclear pore alive by time t. Because the particles are
independent, we obtain

Prf�a
FIRST.M/ > t or �a

FIRST.M/ > �
k
FIRST.M/; pig

D
MY

jD1

�
1 � Prf�a

j < t; �a
j < �

k
j ; pig

�
;

where �a
j (reps. � k

j ) is the first time the jth particle is absorbed (resp. killed). Because
the normal flux density at the boundary is the pdf of the exit point (Schuss 2010b),
we get that for any of the particles

Prf�a
j < t; �a

j < �
k
j ; pig D

tZ

0

I

@�

J.x; t/ � n.x/ dSx D
tZ

0

J.s/ ds; (9.112)

where the flux J.s/ is defined in (2.178). Therefore the numerator in (9.111) is

N.t/ D Prf�a
FIRST.M/ < t; �a

FIRST.M/ < �
k
FIRST.M/; pig

D 1 �
0

@1 �
tZ

0

J.s/ds

1

A
M

and the denominator is

D.t/ D Prf�a
FIRST.M/ < �

k
FIRST.M/; pig D 1 � Prf�a

FIRST.M/ > �
k
FIRST.M/; pig:

Because the particles are independent

D.t/ D 1 �
MY

jD1
Prf�a

j > �
k
j ; pig;

which can be written as

D.t/ D 1 � .1 � PN/
M ; (9.113)

where PN is the probability that a particle is killed before reaching the nucleus
(Sect. 9.3.1). Thus the conditional probability that the first carrier, with initial
density pi, arrives alive at the absorbing boundary prior to time t is given by

P.t/ D N.t/

D.t/
D 1 � �

1 � R t
0

J.s/ ds
�M

1 � .1 � PN/
M (9.114)
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and the conditional MFPT N�FIRST.M/ of the first particle to reach the nucleus alive
[see (9.110)] is

N�FIRST.M/ D
1Z

0

�
1 � R t

0
J.s/ ds

�M � �
1 � R1

0
J.s/ ds

�M

1 � .1 � PN/
M dt: (9.115)

The leading term in a small k expansion of N�FIRST.M/ can be found from the
long-time tail of the density p.x; t/,

p.x; t/ 	 p0.x/e��0t; (9.116)

where p0.x/ is the normalized first eigenfunction of the Fokker–Planck operator and
�0 is its principal eigenvalue,

� �0p0.x/ D D�p0.x/ � rŒb.x/p0.x/� � k.x/p0.x/: (9.117)

Integrating (9.117) over �, we find the flux of the normalized principal
eigenfunction

J.t/ D e��0t

�
�0 �

Z

�

k.x/p0.x/ dx
�
;

which in view of �0 D N��1
N for k � 1 (see Schuss et al. 2007) and (6.61), can be

written as

J.t/ 	 e�t=N�N

N�N

0

@1 �
Z

�

k.x/Qp.x/ dx

1

A D PN

N�N
e�t=N�N : (9.118)

Equation (9.118) gives in (9.115) the small k.x/ approximation

N�FIRST.M/ 	
1Z

0

�
1 � PN

�
1 � e�t=N�N

��M � .1 � PN/
M

1 � .1 � PN/
M dt

D N�N.�/

1 � .1 � PN/

M�1X

kD0

�
.1 � PN/

k � .1 � PN/
M
� 1

M � k
:

Figure 9.9(upper) compares the time decay with Brownian simulations and confirms
the validity of the long time asymptotic approximation. Figure 9.9(lower) shows the
plot of N�FIRST.M/= N�N vs � D 1 � PN , which is an increasing function of � . As the
number of carriers that reach a nuclear pore alive decreases, the MFPT of the first
survivor increases. Furthermore, for small � , the leading order term of the expansion
of N�FIRST.M/ for large M is given by

N�FIRST.M/ D N�N

M
.1C o.1// for M � 1; (9.119)
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Fig. 9.9 Left: MFPT of the first virus to a nuclear pore for 300 simulated Brownian trajectories
(solid line). The geometry is given by R D 20�m; ı D 4�m; 
 D 	ı=12 D 1:05�m; D D
1:3�m2s�1; n D 1 and B D 0:2�m s�1. Right: normalized MFPT of the first virus to the MFPT
of a single virus, as a function of the probability � D 1 � P300 to be killed before reaching the
nucleus. Here N�FIRST D N�300=300 for � ! 0 with N�300 D 974 s. When almost all DNA carriers are
degraded N�FIRST ! N�300

whereas when � tends to 1, that is, when almost all carriers are killed before reaching
nuclear pores, the following approximation holds,

N�FIRST.M/ 	 N�N : (9.120)

Note that N�N is a function of � . The general expression for N�FIRST.M/ as a function
of � and M is still unknown [see a general discussion in Lagache et al. (2009b)].

9.5 Model of the Endosomal Step of Viral Infection

Another step of viral trafficking inside the cytoplasm is that of endosomal
trafficking. Indeed, once a virus enters an endosome, it has to escape into the
cytoplasm before to be degraded by lysosomes. Although the exact pathways
leading to endosomal escape are not fully elucidated, they are a limiting step.
Most viruses possess efficient endosomolytic proteins that allow them to disrupt
the endosomal membrane. This is the case for VP1 penetration protein of the
AAV or the influenza HA. The biophysical mechanism leading to endosomal
membrane destabilization and concomitant release for synthetic vectors is still
poorly understood. However, in both cases, acidification of the endosome is needed
for triggering endosomal escape. For viruses, protons or low pH-activated proteases
bind viral endosomolytic proteins, triggering their conformational change into a
fusogenic state.
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Models aimed at estimating the residence time of a viral particle inside an
endosomal compartment are based on the evaluation of the accumulated discrete
proton binding events, leading to the conformational change of hemagglutinin
proteins (HAs). These models, for both enveloped and non-enveloped viruses,
consist of two steps. In the first step, the concentration of protons is fixed and the
mean time for protons to bind to fundamental protein-binding sites until a threshold
is reached is calculated from a Markovian jump process model by asymptotic
methods. After the threshold is reached, a conformational change into a fusogenic
state is triggered. In the second step, the dynamics of endosomal escape is modeled
by coupling the pH-dependent conformational change of glycoproteins with proton
influx rate. The impact of the size of the endosome on the escape kinetics and pH
can be mathematically predicted. This approach reconciles different experimental
observations: while a virus can escape a small endosome (radius of 80 nm) in the
cell periphery at a pH of about 6 in about 10 min, it can also be routed towards the
nuclear periphery, where the escape from larger endosomes (radius of 400 nm) is
rapid (less than 1 min) at pH D 5 (Lagache et al. 2012).

9.5.1 Model of the Conformational Change of Hemagglutinin
Proteins for the Influenza Virus

The underlying assumption in the Markovian model of the conformational rate of
change of a single HA glycoprotein for a given proton concentration c and ns HA
binding sites is that the protein changes conformation instantaneously when the
number of bound sites reaches a critical threshold ncrit � ns (Lagache et al. 2012).

The number of protonated sites X.t/ at time t is modeled as a Markovian jump
processes (Schuss 2010b) that can increase by 1 with probability r.X/�t C o.�t/
when a proton binds to a free site in the time interval .t; t C �t/, decreases
with probability l.X/�t C o.�t/ when a proton unbinds, or remain unchanged
with probability 1 � l.X/�t � r.X/�t C ø.�t/. Setting " D 1=ns and scaling
x.t/ D "X.t/, the scaled jump size becomes �x.t/ D x.t C �t/ � x.t/ and the
transition probabilities are given by

Prf�x.t/ D " j x.t/ D xg Dr.x/�t C o.�t/;

Prf�x.t/ D �" j x.t/ D xg Dl.x/�t C o.�t/;

Prf�x.t/ D 0 j x.t/ D xg D Œ1 � r.x/ � l.x/��t C o.�t/:

For a fixed proton concentration c, the transition probability density function
p.y; t j x/ is the solution of the master equation

p.y; t C�t j x/ D p.y � "; t j x/r.y � "/�t C p.y C "; t j x/l.y C "/�t

C p.y; t j x/Œ1 � r.y/�t � l.y/�t�C o.�t/;



9.5 Model of the Endosomal Step of Viral Infection 239

which reduces in the limit �t ! 0 to the forward Kolmogorov equation

@p.y; t j x/

@t
D p.y � "; t j x/r.y � "/C p.y C "; t j x/l.y C "/

� p.y; t j x/Œr.y/C l.y/� D Lyp.y; t j x/: (9.121)

The jump moments are given by

mn.y/ D "nŒr.y/C .�1/nl.y/�: (9.122)

Assume that there is a point 0 < x0 < xcrit D ncrit=ns such that

.y � x0/m1.y/ < 0 for y ¤ x0: (9.123)

The first time � (a protein is lysed) is quantified by filling up the number of bound
to a critical threshold xcrit D ncrit=ns. It is the first passage time of the (scaled)
number of bound protons x.t/ to reach the level xcrit. The MFPT N�.x/ is defined as
the conditional expectation

N�.x/ D EŒ� j x.0/ D x�; (9.124)

which is the solution of the boundary value problem

Lx N�.x/ D � 1 for 0 < x < xcrit

N�.xcrit/ D 0;
@ N�.0/
@x

D 0;

where Lx is the backward Kolmogorov operator, adjoint to Ly.
An asymptotic expansion of N�.x/ for " � 1 is given in Schuss (2010b,

Example 9.1) with the leading term

N�.x/ 	 C."/
�
1 � exp

n
�˛ xcrit � x

"

o


D C."/

 
1 �

�
l.xcrit/

r.xcrit/

��.xcrit � x/="!
; (9.125)

where

˛ D log

�
l.xcrit/

r.xcrit/

�

is the positive solution of the eikonal equation (Knessl et al. 1984a, Eq. (3.22))

e˛ C
�

l.xcrit/

r.xcrit/

�
e�˛ D 1C

�
l.xcrit/

r.xcrit/

�
: (9.126)
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Note that outside a boundary layer of width O."/ near xcrit the expected activation
time is the constant C."/. We abbreviate therefore N�.x/ D N� . The constant C."/,
which increases to infinity as " ! 0 to 0, is given by

C."/ 	 	K."/
p
"r.x0/Œl0.x0/ � r0.x0/�

where

K."/ D 1

l.0/ � r.0/
p

r.0/l.0/
�.0/C l .xcrit; c/ � r .xcrit; c/p

r.xcrit/l.xcrit/
�.xcrit/

and

�.x/ D exp



�1
"

Z x

x0

log

�
l.s/

r.s/

�
ds

�
: (9.127)

When all binding sites are identical and in the absence of any molecular coopera-
tivity, the forward rate r.x/ is proportional to the number of free binding sites and
to the glycoprotein concentration c in the endosome and the backward rate l.x/ is
proportional to the number of bound sites, leading to

r.x/ D k1.1 � x/nsc; l.x/ D k�1xns; (9.128)

where k1 and k�1 are the forward and backward rate constants, respectively. In this
case, the expected number of bound proteases for a given concentration c is

x0 D 1

1C ˛c
; (9.129)

where

˛c D k�1
ck1

: (9.130)

An explicit expression for �.x/ is given in this case by

xZ

x0

log

�
l.s/

r.s/

�
ds D

xZ

x0

log
� ˛cs

1 � s



ds D F .x/ � F.x0/

D F .x/ � F

�
1

1C ˛c

�
; (9.131)

where

F.x/ D x log.˛c/C x log
� x

1 � x



C log.1 � x/ for 0 < x < 1: (9.132)
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Substituting (9.131) in (9.127), we obtain

�.xcrit/ D exp



�1
"

�
F.xcrit/ � F

�
1

1C ˛c

���
r

˛cxcrit

1 � xcrit�
˛cxcrit

1 � xcrit
� 1

� : (9.133)

Using all the above in (9.125), we obtain the explicit formula for the mean activation
time (9.128)
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where

F.x/ D x log

�
k�1
ck1

�
C x log

� x

1 � x



C log.1 � x/ for 0 < x < 1: (9.135)

The explicit formula (9.134) expresses the dependence of the expected time for
conformational change N� on the protease concentration c and the binding number
of binding sites of a single penetration protein. The reciprocal of (9.134) is the
rate of conformational change, which has been measured experimentally for several
viruses, such as influenza (Krumbiegel et al. 1994).

Specializing the above analysis to the case of influenza the parameters used in
Lagache and Holcman (2015) are

r.x/ D Kcns.1 � x/; l.x/ D Kns.1 � x/10�.3.1�x/C4/; (9.136)

the number of binding sites is ns D 9 (Krumbiegel et al. 1994) at concentration c of
free protons in the endosome, and K is the binding rate of protons to free binding
sites. Here X0 is the mean number of hemagglutinin (HA1) sites that are additionally
protonated for concentrations c > 10�7 mol L�1, and 0 < x0 D "X0 < xcrit has been
obtained by a fitting procedure as (Lagache and Holcman 2015)

x0 D 7

3
C log.c/

3 log.10/
: (9.137)
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With the parameters " D 1=ns and xcrit D ncrit=ns formula (9.134) reduces to

N� D
p
6	 exp
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�
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�
� F

�
7C log10 c

3

���

K
p

cns ln 10 .4C log10 c/
�

c107=2�3ncrit=2ns � 103ncrit=2ns�7=2

 ; (9.138)

where F is given in (9.135). The rate of conformational change �.pH/ D N��1
has been measured for various pH values, �.4:9/ D 5:78 s�1; �.5:1/ D
0:12 s�1; : : : ; �.5:6/ D 0:017 s�1 (Krumbiegel et al. 1994). Using a least
square method to approximate the data, the value of the critical threshold
according to Lagache and Holcman (2015) is ncrit 	 6 and the forward rate is
K 	 7:5 � 103 L mol�1s�1. For these values (9.138) gives the theoretical mean
time to conformational change N� that in comparison with the experimental data
of Krumbiegel et al. (1994) gives K 	 7:5 � 103 L mol�1s�1 and xcrit 	 0:7

(Lagache and Holcman 2015). The theoretical curve N� vs c describes the entire
range of the experimental data set of the influenza hemagglutinin, confirming the
validity of the present approach. Furthermore, comparing the mean proton binding
time N� D 1=.Kc/ with the mean time N�d for a proton to find a binding site by
diffusion, the value N�d= N� 	 10�4 is obtained, suggesting that the HA binding
time is dominated by a high activation barrier, which guarantees the stability of
the conformational change. That is, it cannot be easily triggered randomly (see
Krumbiegel et al. 1994, Table 2). The theory predicts that the HA conformational
changes occurs when about xcritns 	 6 HA binding sites are protonated.

Modeling the Endosomal Acidification Escape of the Influenza Virus

In this final section, we present a model of endosomal acidification for the influenza
virus based on protons entering through V-ATPase pumps located in the endosomal
membrane. This proton entry leads to a pH decrease and the conformational change
of HAs into a fusogenic state (Huang et al. 2002). This process characterizes
endosomal maturation. After fusion of the viral and endosomal membrane, the
influenza genes can be released inside the cytoplasm during a certain time that
depends on the proton influx �t, where the rate � is proportional to the number
of pumps and thus to the endosomal surface (Lagache and Holcman 2015). The rate
� may, however, increase as the endosome matures and increases its size by fusion
of early endocytic vesicles into larger compartments. As protons accumulate into an
endosome, they can bind to influenza HAs, triggering their change of conformation
when exactly 6 sites are protonated.

Another step of endosomal escape consists in the enlargement of the fusion pore,
that should rely on the activation of additional HA located nearby the contact zone,
between the virus and the endosome membranes. In previous models (Lagache et al.
2012), this cooperative mechanism between activated HAs nearby the contact zone
was accounted for by considering that genes are released in the cytoplasm when
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the total number of activated HAs among the viral envelope reaches a threshold
0 � T � NHA, where NHA D 400 is the total number of HAs covering a single
virus. Consequently, the escape release time �e is defined by

�e D infftjHA6.t/ 
 Tg; (9.139)

where HA0.t/;HA1.t/; : : : ;HA6.t/ are the number of HAs that have bound
0; 1; : : : ; 6 protons at time t. The acidification time course of an endosome
containing an influenza virus is related to the number of free protons located
in the endosome by P.t/ D NV0c.t/ , where c.t/ is the associated endosomal
concentration at time t. Using the on-rate of a proton to a HA free binding site,

Qr .x/ D r .x;P.t// =P.t/ D Kns.1 � x/=.NV/ (9.140)

and the off-rate l.x/ (9.136), the kinetics equations are
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: : :

HA5 C P
Qr.5=ns/����! HA6 (9.141)

and the associated mass action law leads to the following reduced differential
equations
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where the proton influx rate in the endosome is a linear function of time �t.
The initial conditions (t D 0) are a neutral medium pH = 7 and P0 D NV010

�7 	 1,
HA0.t D 0/ D NHA and HAi.t D 0/ D 0 for 1 � i � 6.
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The two critical unknown parameters of the model are the protons influx rate �
and the mean number T of activated HAs, needed for the large fusion pore formation
allowing gene release inside the cytoplasm. These parameters can be obtained
by solving numerically the system of Eq. (9.142), and by comparing the time �e

(formula (9.139)) with the experimental mean escape time (	10min) obtained for
the virus-endosome fusion in Hela cells (Sakai et al. 2006): it was found in Lagache
and Holcman (2015) that

T 	 50%NHA D 200, and � 	 3 s�1: (9.143)

The details modeling of these two steps were reviewed in Amoruso et al. (2011). It
should be noted, in conclusion, that much of the field of physical virology remains
to be explored and open questions abound. They include the following questions:
what is the mode of vesicular delivery to final locations? Is this search random, as
in the NET theory, or are vesicles delivered to specific locations using a Zip-address
that needs to be identified? How do viral DNA find their destination site inside the
nucleus? Many of these questions do not have at this time any answers that are based
on classical physical principles. Answering these questions requires more advanced
modeling, analysis, and simulations combined with data analysis.

9.6 Annotations

Mathematical and physical models of the early steps of viral infection are con-
structed for the purpose of predicting and quantifying infectivity and the success
of gene delivery (Holcman 2007; Lagache and Holcman 2008a,b; Amoruso et al.
2011; Lagache et al. 2009a). Principles toward optimization of delivery of virus
and exploring the high-dimensional parameter space are discussed in Lagache et al.
(2012). Tuning of the pH-sensitivity of fusogenic glycoproteins is discussed in
Rachakonda et al. (2007). Escape efficacy of the vector is discussed in Sodeik
(2000).

Vesicular and viral motions that alternate intermittently between periods of free
diffusion and directed motion along microtubules (MTs) are discussed in Greber
and Way (2006). Such viral trajectories have been recently monitored by using new
imaging techniques in vivo (Seisenberger et al. 2001). The MFPT of a virus to a
nuclear pore was calculated in Holcman (2007). The effective drifts of viral motion
have been derived for various geometries in Lagache and Holcman (2008a,b). The
adeno-associated virus and the influenza hemagglutinin (HA) have been discussed
in Farr et al. (2005) and Huang et al. (2002). Models aimed at estimating the
residence time of a viral particle inside an endosomal compartment are considered
in Lagache et al. (2012). The key to the calculation of the MFPT of the Markovian
jump process model is the method of Knessl et al. (1984a,b). The details modeling
of two key steps in the viral release were reviewed in Amoruso et al. (2011).
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Asymptotic expressions for the probability of trajectories that are terminated at
@�a, given in (9.37), and the mean arrival time E� of a virus vector to one of the
n small nuclear pores @�a, were derived in Holcman (2007) and Lagache et al.
(2009b) by the narrow escape methodology.

The endosomal step of viral infection studied in Lagache et al. (2012) aimed to
estimate the residence time of a viral particle inside an endosomal compartment.
Conformational change kinetics were estimated in Krumbiegel et al. (1994). In
Lagache and Holcman (2015), it was predicted that the size of the endosome
drastically impacts both the escape kinetics and pH, which reconciles different
experimental observations. Thus, while a virus can escape a small endosome (radius
of 80 nm) in the cell periphery at pH about 6 in about 10 min (Sakai et al. 2006),
it can also be routed towards the nuclear periphery, where escape from larger
endosomes (radius of 400 nm) is rapid (less than 1 min) at pH = 5 (Lakadamyali
et al. 2006).
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