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Chapter 1

Introduction

Abstract This chapter provides an elementary introduction to some of the basic

biology and technology that underlies genetic association studies that rely on dense

genotyping of nominally unrelated individuals to discover genetic variants related

to risk of disease and other outcomes, phenotypes, or traits. This chapter discusses

relevant aspects of DNA and RNA architecture, coding of amino acids, describes

chromosomal organization, gives an overview of the most common types of

sequence variation, and provides an overview of genotyping methods. It introduces

concepts, databases, analysis programs, and example data that will be used in later

portions of the book.

1.1 Historical Perspective

Many important ideas about genetics were discovered long before there was any

biochemical knowledge of the way in which traits are transmitted from parents to

offspring. By 1953, when Watson and Crick [1, 2] published their discoveries about

the molecular structure of DNA (deoxyribonucleic acid), a great deal of knowledge
about the nature of inheritance in plant, animal, and human species had been

worked out from a long process of experiment and observation. Arguably the

most important single researcher whose work led most directly to the field that is

now called genetics was Charles Darwin whose theory of evolution [3] was

published nearly 100 years before Watson and Crick. His work emphasized the

fundamental ideas of within-species inheritable variation and natural selection as

the driving force of evolution, so that while all members of a given species shared

distinctions between other species, within-species inheritable variation could be

selected for either naturally or by human breeding of animals and plants. Darwin’s

theory posited that accumulation of variation selected for within a given group of

living organisms could eventually lead to new species when breeding populations

of organisms became isolated geographically or by their habits of life. Natural

selection for traits favorable to survival either in existing or new environments was

D.O. Stram, Design, Analysis, and Interpretation of Genome-Wide Association Scans,
Statistics for Biology and Health, DOI 10.1007/978-1-4614-9443-0_1,

© Springer Science+Business Media New York 2014

1



recognized as both imposing constraints on the type of differences that could be

successfully passed on, but also as a force leading to increasing diversity and

complexity of organisms’ characteristics and behavior. Darwin came to his con-

clusions through his great knowledge of the geographical variation of similar

species and of the practice of animal breeding. Especially important ideas of

Darwin’s were that novel inheritable trait variation could unpredictably appear in

a single individual and that the most frequent cause of variability may be attributed

to the male and female reproductive “elements” having been affected prior to the

act of conception. Today we know that this is due to unpredictable, essentially

random, de novo mutations due to errors in DNA replication during gamete

formation causing DNA changes that affect protein properties and/or regulation.

Unknown to Darwin but fundamental to the emergence of modern genetics was

the discovery by Gregor Mendel in 1866 of the general rules of inheritance in pairs

that underlie the phenomenon of genetic dominance, equal segregation, and inde-

pendent assortment, which today are known to apply to the transmission of chro-

mosomes from parental generation to offspring, from diploid individuals (parents),

through meiosis, to haploid gametes which then unite during conception to regain

diploidy, with independent assortment applying to genes on different chromo-

somes. While the importance of “Mendel’s Laws” was not recognized immediately,

they were later rediscovered (by de Vries, Correns, and Tschermak), with the

chromosomal theory of inheritance proposed by Sutton in 1902 and confirmed in

1910 by T. H. Morgan explaining why some traits are inherited independently from

each other, while others (as previously discovered by Bateson and Punnett) are

partly or fully linked. The linearity of chromosomes leads to a concept of genetic

distance in terms of recombination probabilities as formalized by the first genetic

maps (of traits in Drosophila melanogaster). Recombination was later identified

(by Creighton and McClintok) to be due to the physical exchange of chromosome

pieces. Other notable discoveries were of the mutagenic nature of ionizing radiation

(Hermann Muller [4]) and the general relationship between mutations in a single

gene and loss of specific enzymes [5].

Attempts to merge the work of Darwin (contributing the concepts of selection,

isolation, formation of new inheritable mutation, and speciation) together with the

observations of Mendel and his rediscoverers led to the foundations of quantitative,

population, and statistical genetics principally through the work of Sewall Wright,

J.B.S. Haldane, and R. A. Fisher. Their interests lay in understanding the quantita-

tive implications of Mendelian inheritance on basic evolutionary phenomenon

including natural selection, genetic drift, and gene flow. As we will see in

Chaps. 2 and 4, genetic drift and gene flow between isolated groups lead to

correlation patterns between individual’s phenotypes that affect the statistical

properties of the genetic association studies that are the topic of this book. Other

important statistical concepts developed include the infinite sites model (Kimura

and Crow [6]) with its implication of a single origin for most mutations—a

fundamental concept in linkage disequilibrium-based association studies—and

the resulting distribution of the number and frequency of genetic variants under

neutral evolution [7] or selection.
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1.2 DNA Basics

The discovery of the structure of DNA by Watson and Crick and its immediate

implications on the biological basis for Mendelian inheritance as well as the

discoveries, by H.G. Khorana, M. Nirenberg, and others, of the relationship

between DNA codon (triples of letters of DNA) order and amino acid order in

proteins revolutionized all areas of genetics. While the focus of this book is

emphatically not devoted to molecular biology, a number of fundamental concepts

concerning the nature of DNA are required in order for a statistician to effectively

communicate with molecular biologists and epidemiologists, clinicians, and the

like in the conduct of large-scale genetic association studies.

DNA is carried in almost all human cells in both the nucleus of a cell—where the

DNA is organized into pairs of homologous chromosomes and in the mitochondria.

Generally speaking, throughout this book we will be discussing only nuclear DNA

variants, although we give a brief introduction to mitochondrial variants at the end

of the next section.

1.2.1 Organization of Chromosomes

The human genome is composed of 22 autosomes and 2 sex chromosomes (X or Y).

In normal individuals most body cells contain two copies of the genome and are

said to be diploid. A normal diploid cell contains a total 46 chromosomes, 22 homol-
ogous pairs of autosomes, and either two X chromosomes (females) or an X and Y

chromosome (males). Cells that contain one copy of the genome, such as sperm and

unfertilized egg cells, are said to be haploid.
All chromosomes have a centromere which becomes evident during chromo-

somal duplication prior to cell division (the duplicated chromosomes are joined at

the centromere). The centromere divides the chromosome into two arms. The

shorter of the two is the p (petite) arm and the longer the q arm. Staining of

duplicated chromosomes produces distinct bands, grouped together into regions,

by which chromosomes can be visibly identified, and these bands are counted

outward from the centromere; for example, 8q24 is the 4th band of the 2nd region

of the long arm of chromosome 8. These can be further distinguished into sub-bands

(8q24.1, 8q24.2, etc.) or sub-sub-bands (8q24.11, 8q24.12, etc.).

Chromosomes are duplicated during both meiosis and mitosis. Gametes (sperm

and egg cells) are formed during meiosis from germ-line stem cells through a

process involving an initial chromosomal duplication and two subsequent cell

divisions which together results in a reduction of chromosome number of the

gametes from diploid to haploid (with four gametes produced by each germ cell)

so that each haploid gamete contains just one copy of each chromosome. It is during

the first cell division that duplicated homologous chromosomes pair up and form

physical connections called chiasmata, and meiotic recombination or crossing-over
occurs at the chiasmata. Specific enzymes break the DNA strands and repair the
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break in a way that swaps material from one homologous chromosome with

material from another. Two alleles that are on the same chromosome in the parent

may not be on the same chromosome in the gametes. During meiosis in most

organisms, at least one recombination takes place for each pair of homologous

chromosomes [8–10]. This implies that the gametes receive contributions from both

homologs of each chromosome pair (thus from both grandparents). Another process

that also (although much less commonly than recombination) can alter homologous

chromosomes during meiosis is that of gene conversion in which, rather than having

the two homologs trade DNA evenly, the DNA from one (the donor) is simply

copied into and replaces that of the other (recipient).

Haploid gametes unite during conception to form a fertilized diploid egg and

thereafter grow through a process of mitotic duplication and cell differentiation. In

mitosis there is no reduction in chromosome number since only one cell division

takes place after chromosomal duplication, and each daughter cell receives identi-

cal genomic material. DNA copying errors can result in mutations during mitosis,

but these only affect specific cell lineages and thus are not generally inherited by

further generations. One important event that takes place early in mitotic develop-

ment in females is the inactivation of one of the pair of X chromosomes. In random

X inactivation, one of the X chromosomes is randomly chosen to be methylated
(by addition of a methyl group to cytosine and adenine nucleotides) during mitosis,

and gene expression from that chromosome is silenced for all descendant (daugh-

ter) cells. Random X inactivation occurs in the early female embryo where both the

maternal and paternal X chromosome have an equal chance of becoming

inactivated. This has two implications, the first is that the gene dose of the products

of the X chromosome is similar in males (with only one copy) and in females (with

two). However, in females different cells (derived from different early lineages)

will have different (maternal or paternal derived) X chromosomes silenced, so that

effects of genetic variants appearing on only one X chromosome will not be

universally exhibited as they are in males. This is why such sex-linked recessive

genetic traits as hemophilia and colorblindness remain much less common in

females (where only homozygotes show the trait) than in males inheriting a single

X chromosome. In other species X inactivation is not random, for example, in mice,

where the paternal X chromosome is preferentially inactivated in all developing

cells of the female embryo [11].

1.2.2 Organization of DNA

Each chromosome is made up of two strands of deoxyribonucleic acid (DNA)
coiled into a double helix (see Fig. 1.1). Each strand has a deoxyribose backbone

consisting of deoxyribose sugars bound together into a long chain, with each sugar

having a 30 carbon linked, by a phosphate group, to the 50 carbon of the next sugar in
the chain. The terminal sugar at one end of the DNA strand has a free 50 carbon, and
the terminal sugar at the other end has a free 30 carbon. Attached to each sugar is a
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base. Four different bases are found in DNA: two purines, adenine (A) and guanine
(G), and two pyrimidines, cytosine (C) and thymine (T). The two strands of double-
stranded DNA are held together by bonding between opposing bases. Bonding

occurs specifically between A and T and between G and C: thus the two strands

must be complimentary (so that, e.g., a 50-ACTGGGCA-30 on one strand binds with
30-TGACCCGT-50 on the other). By convention sequences are usually specified by

writing only a single strand (choosing by convection the 50–30 direction, which is

also the direction of DNA synthesis). RNA is a very similar molecule to DNA

except that it has a ribose backbone, generally exists only as single strands, and

substitutes the base uracil (U) for thymine (T).

1.2.3 DNA and Protein

Less than 2 % of the human genome codes directly for the amino acid chains that

make up protein molecules through a three-letter code (codon) that maps the

Fig. 1.1 Basic DNA structure (from http://static.ddmcdn.com/gif/dna-2.jpg)
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64 possible combinations of codes of form, AAA, AAC, AAT, . . ., TTT,1 to one of
the 20 amino acids or to one of the 3 STOP codons. Since there are more possible

codons than amino acids, each amino acid is coded for by from 1 to 6 different

codons. The linear order of the letter codes directly to the order of amino acids

in the target protein. Generally, the coding sequence for a protein is separated in

the DNA into several exons interspersed with noncoding introns. Transfer of

information from DNA to messenger RNA involves transcription factors that

recognize specific noncoding DNA regulatory sequences, physical separation

through RNA polymerase of the two DNA strands over a short region to expose it

for RNA base binding, and the copying of information from one of the strands (the

template strand) to its complementary RNA. During transcription DNA is read from

the template in the 30–50 direction (so that RNA is assembled in the 50–30 direction
with respect to its own orientation) from the start of the first exon (the transcription

start site), through all exons and introns, to the end of the last exon. The introns are

immediately removed by a process called RNA splicing to form a mature mRNA.

Many genes exhibit alternative splicing with certain exons being spliced out in

certain tissues, so that several distinct proteins can be created from a different gene.

Translation involves migration of mature mRNA to the cell cytoplasm, for

binding to ribosomal RNA/protein complexes called ribosomes. At the ribosome,

the messenger RNA interacts with transfer RNAs (tRNA) that recognize the codons

(through an antisense sequence complementary to the mRNA codons), each of

which recruits specific amino acids for attachment to the growing polypeptide chain.

Asmentioned above, less than 2% of the 3 billion base pairs that make up a single

copy of the human genome are thought to code directly for proteins. Other parts of

DNA molecule code for different kinds of RNA including tRNA, ribosomal RNA

(rRNA), and microRNAs (miRNA) (which block mRNA). Many other DNA ele-

ments are involved in gene regulation including the promoter sequences that RNA

polymerase binds to as described briefly above. It is only recently that the Encyclo-
pedia of DNA Elements project, ENCODE, has provided information implying that

most of the genome contains elements that are linked to biochemical functions [12].

1.3 Types of Genetic Variation

1.3.1 Single-Nucleotide Variants and Polymorphisms

The most common type of genetic variant, which is ubiquitous throughout the

human genome, is the single-nucleotide variant or SNV. An SNV consists of a

single base variation at a specific position on a given strand (chromosome) of DNA

with the change measured relative to some existing consensus sequence. A new

1These are DNA codons; RNA codons (translated from DNA for the purpose of interaction with

the ribosome in protein formation) substitute thymine (T) with uracil U since T is replaced by U in

RNA molecules.

6 1 Introduction



SNV originates as a chance copying error during the process of meiosis (production

of sperm or egg cells) or as a result of DNA damage in the subsequent sperm or egg

cell, but the occurrence of a new variant at any given chromosomal location is a rare

event, i.e., the vast majority of DNA base pairs are copied with complete fidelity

during any one meiosis, and most subsequent DNA damage is completely repaired.

Because of this rarity of de novo mutations, by far the vast majority of single-copy

variants carried in the DNA of a given person have been inherited from one

(or both) of their biological parents, who in turn inherited the variant from one or

both of their parents, etc. all the way back to the original ancestral mutation.

Single-copying errors can occur during DNA replication prior to mitosis (ordi-

nary cell division), or DNA damage can occur in ordinary (non-sex cell) cells as

well, but the errors occurring during mitosis are not inherited from generation to

generation and are only present in what is usually the very small number of direct

descendant cells (an exception is when a variant originates in a cell of an early

embryo, leading to mosaicism). Inherited variants are therefore present in either one

or two copies in all typical cells (there are ~1 trillion cells per person) depending

upon whether the variant was inherited from one or both parents.

In order to be denoted a single-nucleotide polymorphism (SNP) an SNV is

(by tradition) required to be present at a frequency of at least 1 % or more of all

chromosomes. The distinction between SNV and SNP, however, is somewhat

arbitrary since SNV frequency is generally population dependent. The 1000
Genomes Project maps more than 38 million SNPs [13] in the human genome

with somewhat more SNPs seen in people of African ancestry than in people of the

other two major continental groupings—Europeans and Asians. This difference in

SNP numbers is likely because of population history since large African

populations have been in existence longer than large European or Asian

populations. Because of this complication, this book generally refers to both

single-nucleotide polymorphisms and single-nucleotide variants as simply SNPs.

More about the relationship between population history, population genetics, and

SNP numbers and frequency is presented in Chap. 2.

While every SNP originated as an ancestral de novo variant, only a very small

fraction of all de novo single base pair changes ever became frequent enough to be

detectable in a population. For the vast majority of today’s common SNPs, it is

assumed that it was simply a matter of luck that they became frequent; in fact, it was

far more likely that a de novo variant became extinct than it became frequent. The

statistics of allele frequency distributions under various assumptions about popu-

lation history and selective pressure are an important topic in population genetics

theory; this book describes some relevant findings in the following chapter.

In certain cases selection in favor of a given SNPmay have occurred—if that SNP

altered some phenotypic characteristic in a way that increased reproductive fitness of

the carriers of that SNP. Despite their importance in speciation and evolution, it is

generally regarded that de novo occurrence of favorable mutations are very rare

occurrences at least on quotidian time scales, and generally speaking the vast

majority of SNPs are considered to be neutral with regard to reproductive fitness;

this is especially true for common SNPs (since variants which decreased fitness
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would be selected against and would be less likely to have become common). Thus

by and large it is chance alone that leads to an initial single base pair variant

originating in the formation of a single sperm or egg to be common in today’s

population. Common SNPs (and other common variants) may of course cause

diseases of late adulthood without having significant effects on reproductive fitness.

The coding regions of genes directly code for proteins using a coding scheme

that is universal throughout all living things on earth. Proteins are polypeptides that

are synthesized as a linear combination of amino acids; each amino acid is coded by

one or more three-letter sequences called codons, and the order of the codons

specifies the order of the amino acids in the protein. Table 1.1 shows the DNA

triplicate codon sequences for each of the 20 amino acids; note that there is

considerable redundancy, i.e., there are a possible 43 ¼ 64 possible codons to

code for 20 peptides. Several possible codons code for a stop sequence rather

than amino acids, and all but two amino acids are mapped to by more than one

codon. SNPs within exons that change codons without changing amino acids are

called synonymous SNPs, and SNPs that do change codons from one to another

amino acid are called missense SNPs. Because of coding redundancy (and undoubt-
edly also because of selection), the majority of SNPs in exons are synonymous, and

Table 1.1 DNA codons. The left rows refer to the first nucleotide, the columns to the second, and

last to the third

Second nucleotide

T C A G

T TTT Phenylalanine

(Phe)

TCT Serine (Ser) TAT Tyrosine (Tyr) TGT Cysteine (Cys) T

TTC Phe TCC Ser TAC Tyr TGC Cys C

TTA Leucine (Leu) TCA Ser TAA STOP TGA STOP A

TTG Leu TCG Ser TAG STOP TGG Tryptophan

(Trp)

G

C CTT Leucine (Leu) CCT Proline (Pro) CAT Histidine (His) CGT Arginine (Arg) T

CTC Leu CCC Pro CAC His CGC Arg C

CTA Leu CCA Pro CAA Glutamine (Gln) CGA Arg A

CTG Leu CCG Pro CAG Gln CGG Arg G

A ATT Isoleucine (Ile) ACT Threonine

(Thr)

AAT Asparagine

(Asn)

AGT Serine (Ser) T

ATC Ile ACC Thr AAC Asn AGC Ser C

ATA Ile ACA Thr AAA Lysine (Lys) AGA Arginine

(Arg)

A

ATG Methionine

(Met) or START

ACG Thr AAG Lys AGG Arg G

G GTT Valine Val GCT Alanine (Ala) GAT Aspartic acid

(Asp)

GGT Glycine (Gly) T

GTC (Val) GCC Ala GAC Asp GGC Gly C

GTA Val GCA Ala GAA Glutamic acid

(Glu)

GGA Gly A

GTG Val GCG Ala GAG Glu GGG Gly
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the vast majority of SNPs in humans lie either in intronic DNA or completely

outside the transcribed regions for genes. In some cases SNPs within exons can

change amino acid codons to become STOP codons (known as nonsense changes),
resulting in early termination of the gene’s protein product; other times STOP

codons can be affected by single base mutations leading to a loss of the stop

codon, and a consequent gain in protein length. Deletions or insertions in the

exons can result in frameshift mutations in which the entire protein sequence is

modified. Frameshift mutations are an important source of deleterious mutations in

the BRCA1 and BRCA2 cancer genes, for example [14]. The prediction of the

consequence of amino acid changes on protein characteristics and function is an

important biological and informatics problem, and computer programs and data-

bases have been constructed to try to classify the significance of such changes, e.g.,

SIFT [15] and Polyphen [16].

Note that there is an inherent ambiguity in the identification of the alleles of an SNP

due to the complementary nature of the double strands making up the DNAmolecule.

For example, suppose that on one strand the sequence at a particular location on a given

chromosome was originally ATGAC, with its complement TACTG, and because of a

copying error the G in the third position on the first strand is replaced by a T and hence

C on the second strand replaced by an A so that the new strands ATTAC and TAATG

remain (as theymust) complementary; then if a probe (see Sect. 1.2) is designed for the

first strand, it must be designed to detect a G/T polymorphism at the third position,

while a probe designed for the other strand must detect a C/A polymorphism.

This strand issue is one of the common problems that crop up when comparing SNP

data from different genotyping platforms used in different studies in post-GWAS

analysis (see Chap. 8). For our example if one platform uses probes for one strand

and another uses the reverse probes, the difference (one study reporting a G/T

polymorphism and the other a C/A polymorphism) will be readily apparent when

comparing the two sets of data. Note however that if the ancestral G on one strand had

been replaced by its complement C and (hence) the C on the opposite strand by a G,

then both the probes would show the same polymorphism denoted as either G/C or

C/G (with the allele in the second position being the “minor” or less frequent allele).

In order to avoid such ambiguities, the strand that an SNP is on can be identified.

The approach (at least for human DNA) is to define “plus” (+) strand for a given

chromosome as the strand of DNA for which the 50 end is the nearest to the

centromere. Since bases in the human genome consensus sequence are numbered

starting from the furthermost end of the p arm from the centromere to the furthermost

end of the q arm, another way of defining the plus strand is as the strand for which

moving from the 50 to the 30 end moves in increasing base position order. The minus

strand is of course the other complementary strand to the plus strand. See Fig. 1.2.

The plus strand is sometimes called the forward strand and the minus strand the

reverse strand, but this usage actually conflicts with an older terminology related to

the particular probes used to originally definitively define the SNP as reported to the

dbSNP database [17].

Ideally the SNP array and assay manufacturers all report the direction (plus or

minus) of all probes used. One difficulty is that this has been a moving target, since

1.3 Types of Genetic Variation 9

http://dx.doi.org/10.1007/978-1-4614-9443-0_8


early genome builds were quite unstable (base sequences could switch strands as

more information was generated). With the much greater stability of later builds,

this is in turn much less of a problem now than it once was.

Note that the plus strand is not necessarily either the coding or antisense strand

for a particular gene, i.e., while RNA synthesis always proceeds in the 50–30

direction along a given strand, the template strand will be different (i.e., either

plus or minus) for different genes (i.e., the reading direction could be either in the

short arm to long arm direction or the long to short). DNA synthesis during

replication also proceeds in the 50–30 direction (as the base pairs on each of the

two template strands are read in the 30–50 direction). DNA synthesis proceeds

continuously on one strand (the leading strand) which is the template strand

of the DNA molecule where the replication fork moves in the 30–50 direction.
Synthesis occurs in short separated segments (Ozaki fragments) along the other

(lagging) strand as shown in Fig. 1.3.

Fig. 1.2 Definition of the plus and minus strands of human DNA. As shown the plus strand is the

strand for which the 50 end of the molecule is closest to the centromere, the minus is its

complement. Downloaded as image from http://hapmap.ncbi.nlm.nih.gov/

a

b

Fig. 1.3 DNA and RNA replication. During replication the direction of growth of the DNA

molecule is from the 50–30 end. For the leading strand, the replication is continuous as a

polymerase “reads” the DNA and adds nucleotides continuously; on the lagging strand, DNA

replication still proceeds in the 50–30 direction but in short separated segments called Ozaki

fragments. RNA synthesis copies the template strand (which could be either of the two strands)

as the DNA is opened up with RNA polymerase and then closed. The direction of RNA synthesis

(growth of the RNA molecule) is again 50–30, but the template could be either the plus or minus

strand of DNA. Images downloaded from http://users.rcn.com/jkimball.ma.ultranet/BiologyPages /

R/ReplicationFork.gif and http://1.bp.blogspot.com/_g5xPw_PeY0U/TJRnD0sfhFI/AAAAAAA

AAQQ/Ylvd8d2yLgY/s1600/rna+synthesis.gif
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Substitutions of a purine with another purine, i.e., C $ T, or a pyrimidine for

another pyrimidine (A $ G) are termed transitions, while substitutions of a

purine $ pyrimidine (C $ A, C $ G, T $ A, T $ G) are transversions.
Although the possible transversions outnumber the possible transitions, transitions

are approximately twice as frequent in the human genome. Manufacturers of

genotype arrays often avoid choosing ambiguous T $ A and C $ G transversion

SNPs altogether in an effort to allow the identification and immediate resolution

of strand problems when comparing datasets with a minimum of effort. For

example, the gene allele list for the Illumina Omni SNP array only lists A $ G

and A $ C SNPs, but where the listed strand may be plus or minus. This

corresponds, when strand is changed to correspond to the plus strand only, to

having each of the four unambiguous possibilities: A $ G, C $ T, A $ C, and

G $ T SNPs. Since the ambiguous transversions are much less common than the

remaining unambiguous SNPs, little loss of coverage (see next chapter) is

expected because of this.

1.3.2 Insertions/Deletions

Small insertions or deletions of DNA, indels, are also quite common over the

human genome; they are thought to originate most commonly as deletions of

existing DNA sequence [18] by a factor of about 3–1, compared to de novo

insertions. About 1.4 million of them were found by phase 1 of the 1000 Genomes

Project, sequencing of 1,092 genomes from diverse populations [13]. This may be

compared to approximately 37 million SNPs found in the same project. When

indels occur in coding regions, they will result in frameshift mutations unless the

number of inserted or deleted bases is evenly divisible by three, since they disturb

the reading of all subsequent codons during DNA translation. Such frameshift

mutations can be very damaging to protein function and are implicated in many

heritable diseases and syndromes.

1.3.3 Larger Structural Variants

Larger structural variants including deletions, insertions, and duplications of

segments of DNA that are 1 kb or greater in extent are termed copy number
variants or CNVs. It is only in the last 10 years or so that it has been discovered

that such variants are present in relatively large numbers [19–21]. Other types of

structural variants include inversions and translocations. Inversions are segments

of DNA that are reversed in orientation compared to the rest of the chromosome,

while translocations involve a change in the position of a chromosomal segment

within a genome that involves no change in the total DNA content. Transloca-

tions can be intra- or inter-chromosomal. The largest structural variants involve
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entire chromosomes, e.g., the aneuploidies (abnormal chromosome number) such

as trisomy 21 (resulting in Down syndrome) in which three copies of chromo-

some 21 are present. Aneuploidies of the sex chromosomes are the most com-

mon; these include both loss and gains of X or Y chromosomes, the most serious

of which is the loss of one X chromosome in females resulting in Turner’s

syndrome.

1.3.4 Exonic Variation and Disease

The genetic basis for a large number of highly heritable phenotypes and diseases is

now understood. The so-called “Mendelian” traits or disorders are most often due to

protein changes in specific genes. A well-known example (and the most common

Mendelian disorder in humans) is neurofibromatosis type I which is due to either

deletions, missense, or nonsense mutations in the neurofibromin 1 gene (NF1), a
gene which acts as a tumor suppressor. People with neurofibromatosis have tumors

of the nerve tissue that can be benign or damaging. It is inherited in an autosomal

dominant fashion, i.e., people carrying one or more copies of a damaged NF1 gene

will have the disease, since the ability to suppress these tumors is attenuated.

Interestingly about half of the NF1 cases are sporadic, i.e., neither parent has the

disease; these cases are due to de novo mutations in the NF1 gene occurring during

meiosis [22]. Children of sporadic neurofibromatosis cases can then inherit the new

mutations and have the disease.

Many other examples of protein coding mutations and disease are cataloged in

the OMIM database (Online Mendelian Inheritance in Man database, http://www.

ncbi.nlm.nih.gov).

1.3.5 Non-exonic SNPs and Disease

While a large proportion of Mendelian disorders are due to protein-altering

changes in one or a few genes, this is apparently not true of the vast majority of

common disorders especially those which have onset late in life including com-

mon cancers, cardiovascular disease, and stroke. While protein changes in high-

risk genes such as BRCA1 and BRCA2 are involved in a certain number of highly

familial cases, the vast majority of common variants associated with late-onset

complex disease do not seem to be directly related to alterations in protein

sequence. Often the strongest associations are found with SNPs that are either in

introns (intronic) or outside of the transcribed regions entirely (intergenic). It is
sometimes found that a noncoding SNP association may be a surrogate for an

underlying protein coding variant, but this does not appear to be very often the

case [23]; it is assumed that the variants that underlie most such associations

have functions that are regulatory in nature. At present for most associations
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with complex disease risk, the underling causal variant is yet to be determined

as is its mode of action.

1.3.6 SNP Haplotypes

An SNP haplotype is a combination of from several to many SNPs on the same

chromosomal segment of DNA. Haplotype blocks are regions of a given chromo-

some for which little recombination (chromosomal shuffling) has yet to take place

(see discussion of recombination in Chap. 2). Thus the SNPs in a haplotype block

are inherited in distinct patterns. Conventional SNP genotyping does not directly

yield haplotype information, and thus the two haplotypes (one for each of the two

homologous chromosomes inherited from each parent) carried by an individual

must be inferred based on the genotypes (number of copies, 0, 1, or 2, of each SNP).

This inference can be highly accurate within haplotype blocks where there are few

recombinant haplotypes actually present, especially when genotypes from close

relatives, such as siblings, parents, or offspring, are available. Haplotypes are of

interest for two reasons; first, haplotype estimation is the key to SNP prediction for

missing or ungenotyped SNPs (or other variants), and in addition haplotypes

themselves may be the risk variants, i.e., it may matter whether SNPs alleles are

inherited on the same chromosome or not in terms of their direct effects [24]. Con-

siderable discussion of haplotype estimation and SNP prediction is given in

Chaps. 5 and 6.

1.3.7 Microsatellites

Microsatellites, also called simple sequence repeats or short tandem repeats, are

repeating sequences of 2–6 base pairs of DNA, in which the number of copies

of the repeated sequence varies from individual to individual. They are often

highly variable between individuals since they appear to be especially suscepti-

ble to errors in duplication or during recombination. Microsatellites have

been used as markers in many linkage studies and their high degree of variability

makes them very informative about parental origin of linked disease loci in

these studies.

A variable CAG repeat within the coding region of theHUNTINGTIN gene is the

cause of Huntington’s disease; repeat lengths equal to 40 or above are associated

with fully penetrant disease, while repeat lengths of 36–39 are associated with

increased risk.

The diversity of microsatellites also has led to their use in DNA fingerprinting

and in paternity testing. About 30,000 microsatellites are known in the human

genome. Some authors have proposed use of microsatellite markers rather than or in

addition to SNPs in GWAS studies [25].
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1.3.8 Mitochondrial Variation

Mitochondria are organelles found in most eukaryotic cells, they are involved in the

production of ATP used as a source of chemical energy, and in other cellular

processes. In animals mitochondria are the only location of extrachromosomal

DNA within the cell (in plants, chloroplasts also contain DNA). Each cell has

1 or (sometimes many) more mitochondria, each mitochondria has its own genome,

and the DNA in the mitochondria is termed mtDNA. Mitochondria are inherited

maternally; the mitochondrial genome consists of 16,600 base pairs arranged in a

circle, coding for 37 genes; and each mitochondria has from 2 to 10 copies of the

mtDNA. Despite the multiple copies most individuals are homoplastic, meaning

that all copies are identical in sequence (or at least not detectably heteroplastic)
[26]. Mitochondria interact with many genes that are coded in the nuclear DNA so

that a comprehensive study of the effect of inherited variation and mitochondrial-

related disease involves both the nuclear and mtDNA. A fairly large number of

quite heterogeneous disorders [26, 27] are attributed to deletions of muscle-related

mtDNA. Some common diseases (e.g., diabetes) also may be affected by such

mitochondrial mutations, but the fraction of patients so affected is probably small.

Human populations can be divided into several mtDNA haplogroups that are

based on specific SNPs, reflecting mutations accumulated by a discrete maternal

linkage. Attempts to relate haplogroup to diseases such as Alzheimer’s and

Parkinson’s have been made [26]; these efforts are complicated by the need to

control for population differences in these diseases. Furthermore, because linkage

disequilibrium (see Chap. 2) between mitochondrial SNPs is universal, localization

of SNP associations within the mtDNA is difficult.

1.4 Overview of Genotyping Methods

The general idea of using DNA hybridization provides the approach used for SNP

interrogation using very large-scale SNP arrays sold commercially by such com-

panies as Illumina and Affymetrix. The binding of complementary DNA to sample

DNA after denaturation (separation of two-stranded DNA into two one-stranded

molecules by heating) is utilized. Allele-specific hybridization-based genotyping

requires creation of probes that are specific for a certain portion of the genome

containing an SNP, i.e., will be complementary only to DNA around that SNP.

Generally two probes are required, which are different only at one base pair,

namely, the SNP position, with one probe complementary for one allele of the

SNP and the other probe complementary to the other allele. Note that a probe of

length 20 has 420 or approximately 1012 different possible probe sequences.

Assuming that (to a first approximation) human DNA sequence is random with

each base (A,T,G, or C) having equal frequency, then there is only approximately a

1 in 1,000 chance that the same 20 base sequence will occur more than once in the
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human genome (of length 3 � 109 base pairs). Probe lengths typically are longer

than this to allow for nearly similar sequences. The very basic idea (see Fig. 1.4)

is that a probe that completely matches the target DNA will be more chemically

stable than a probe that is even one base pair different (i.e., because of the SNP)

than the target DNA. Each probe will be labeled, typically with a florescent dye of a

specific color, so that the intensity of the expression of each dye will indicate

whether a specific sample is homozygous for one or the other SNP allele (so that

only one color dye will be expressed) or is heterozygous (both dyes will be

expressed). A slightly different approach than having two different probes is to

use (as in the Illumina Omni chip released commercially in 2009) a single probe

that stops just before the base (SNP) to be interrogated. Then a single labeled base

is added with the base complementary to the target sequence at that position.

Again two different dyes are used as labels so that the two possible alleles may

a

b

Fig. 1.4 Depiction of (a) DNA hybridization and single base extension and (b) allele-specific

extension. Used with permission from Kwok [61]

1.4 Overview of Genotyping Methods 15



be identified. This method is termed single base pair extension. The Illumina Omni

chip uses a 50 bp length probe and single base pair extension to interrogate each of

approximately 1 million SNPs.

There are some regions of the genome that are highly repetitive, for example, for

acrocentric chromosomes (those with the centromere positioned away from the

center of the chromosome) such as chromosome 21, much of the short arm consists

of many different types of repetitive sequence and is highly homologous to the short

arms of other acrocentrics. Thus it would be essentially impossible to design probes

that detect SNPs on the short arm of chromosome 21. Less radical repetition occurs

in many other portions of the genome as well, and if the repetition is great enough,

then it may be impossible to design a probe that will hybridize to just the one target

region. Other problems in probe design occur when there are two SNPs that are very

close to each other, so that there is less chemical stability than anticipated between

the probe and target sequence. The chemical stability between probe and target can

also depend upon base content. A length of double-stranded DNA with high G+C

content is more chemically stable (e.g., denaturizes at a higher temperature) than

does a length of DNA with high A+T content. This means that SNPs in high G+C

regions can be difficult to detect because a single mismatch (i.e., the wrong SNP

allele) may still produce a strong binding between probe and target so that differ-

ences in dye intensities may be much less distinctive for high G+C regions than

desirable.

1.4.1 SNP Calling

When only small numbers of SNPs are being interrogated for a study, human

assistance in calling all SNPs was often possible. Ideally a plot of dye intensities

(Y vs. X with X the intensity of one dye and Y the intensity of the other) would

reveal clusters that could be called easily by eye as in Fig. 1.5a [28]. When hundreds

of thousands of SNPs are to be called for a study using a large-scale SNP array,

human “curation” of each SNP is impossible, and we must rely upon automated

algorithms to call SNPs. Once a set of interesting SNPs (i.e., those associated with

the disease or outcome) is found, then the cluster plots for those SNPs should be

examined carefully before getting too excited; almost all researchers in this area

have had the experience that certain results that seemed at first glance to be

extremely promising were upon examination found to have been artifacts of poor

genotype calling. Cluster plots often are based upon a polar transformation of the X
and Y intensities (e.g., as θ ¼ arctan(A/B), R ¼ A + B) as in Fig. 1.5b. A typical

example of a bad cluster plot (Fig. 1.5c) also is provided. A considerable number of

algorithms for automatic genotyping calling using raw dye intensities have been

described [28–35]. The interest here is not really in the details of these algorithms

but rather to acquaint the reader with the kinds of typical output produced by

genotyping platforms. Poor quality DNA for a sample is one common cause of

poor genotype calling; genotype calling is complicated by other factors as well.
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Generally it is more difficult to call rare SNPs than common SNPs since this

requires identification of the one or two clusters which are either very small or

completely absent. Copy number variation at a particular SNP site can produce very

difficult to interpret cluster plots, since intensities of samples exhibiting multiple

copies of the surrounding sequence will be unexpectedly amplified.

a

b

c

Fig. 1.5 Cluster plots on

(a) orthogonal and (b) polar

scale for SNPs with easily

called genotypes and (c) for

more problematic SNP.

Taken from [28]
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1.5 Overview of GWAS Genotype Arrays

At most arrays used in GWAS studies to date genotype approximately 500,000 to

1 million SNPs per sample, with an average spacing between SNPs of 3,000–6,000

base pairs (kb). This number of SNPs provides surrogates for (based on linkage

disequilibrium, see Chap. 2) not only of most common SNPs but also of most

common variants of other types, such as insertion/deletion polymorphisms and

copy number variants. As described above, some portions of the genome contain

too many repetitive elements to be amenable to probe design so that a certain

fraction of the genome necessarily remains uncovered by GWAS arrays. Here the

term common variant generally refers to alleles between 5 and 95 % in frequency in

large human populations. The actual alleles that are common vary between

populations and GWAS arrays targeting all variants common in African-origin

populations require more SNPs since large populations have been in existence in

Africa longer than in other portions of the world, allowing more time for recombi-

nation to have taken place (see Chap. 2). Until recently the focus of GWAS studies

has been on common variation, partly because common variation is easier to

interrogate than rare variation, but also because of theoretical arguments that

common variation ought to contribute much more than rare variation to the risk

of most common diseases (see Chap. 2). At present there is increased focus on rare

variation, and certain GWAS arrays now have increased the number of SNPs

present up to several million. General purpose GWAS arrays are produced by two

main companies, Illumina based in San Diego and Affymetrix based in Santa Clara.

In addition to these general purpose arrays, a number of custom arrays have been

used widely in the GWAS community; these include fine-mapping chips designed

to follow up GWAS associations in cancer (ICOGS chip) [36] and metabolic

diseases (Metabochip) [37] and arrays targeting (the generally rare)

nonsynonymous variation in exons (Exome chip) [23]. Additional chips of this

type will undoubtedly continue to be developed and genotyped in large numbers.

1.6 Software and Data Resources

Some of the most important software and data resources helpful in the design,

analysis, and interpretation of genome-wide association studies include:

1. PLINK [38] for manipulation, summarization, and cleaning of large-scale

genetic marker datasets composed of diallelic variants, i.e., SNPs; in addition,

PLINK can be used for many types of association analysis (note that the name

PLINK is pronounced to rhyme with “blink”). This program is freely download-

able and the download point can easily be located by a web search using the

keywords PLINK (current URL is pngu.mgh.harvard.edu/~purcell/plink/).
2. EIGENSTRAT [39] for principal components analysis (see Chaps. 2 and 4).

3. MACH [40], SHAPEIT [41], BEAGLE [42], and IMPUTE2 [43] for haplotype

phasing and genotype imputation (see Chaps. 5 and 6).
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4. QUANTO [44] for sample size calculations.

5. EMMAX [45] for mixed model analysis of population stratification (see Chap. 4).

6. GCTA [46] for heritability analysis (see Chap. 8).

In addition to these stand-alone programs, there are a large number of

R packages that have been developed for various aspects of genetic analysis, and

it is assumed that the reader of this book is generally familiar with the R system (R is

also freely downloadable from The Comprehensive R Archive Network cran.r-

project.org). This book illustrates many concepts using simple simulations and

analyses in R; R itself however is awkward for genome-wide analyses primarily

because of weaknesses in input and output of very large files. However, R can be

very useful in manipulating the output from the special purpose programs men-

tioned above, for summarization and graphical display. Also of note are the

bioconductor packages for various genomics tasks that run within R, one of

which is described below.

Finally the use of SAS (Cary NC, a definitely not-free program) is worth mention.

While not optimized for GWAS analysis, SAS is very capable of processing large

data files quickly including interpretation of complex user statements and macros.

There are many cases when analysts need to use methods not available in the stand-

alone programs, and there are many more options for performing the association

tests built into the flagship SAS analysis procedures such as PROC GLM,

PROC LOGISTIC, and PROC PHREG (for linear, logistic, and time to event

modeling) than in PLINK. With some programming work SAS macros can be

developed for genome-wide association analyses and will run quite well.

1.7 Web Resources

A great deal of information about human genetics and GWAS studies is available

on the web. A short list of some of the most important resources is provided here

and others are introduced in additional chapters.

1.7.1 Basic Genomics

dbSNP database, http://www.ncbi.nlm.nih.gov/projects/SNP/. This very exten-

sive repository began as and continues to be the place that SNPs and other variants

are reported (after discovery), compiled, and officially named. It provides technical

details and extensive SNP annotation and links to other related resources.

UCSC Genome Browser, http://genome.ucsc.edu/. This website contains many

important tools and datasets compiling sequence information for many genomes.

The blat tool which maps sequences to genome location and strand is

available here.
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The HapMap project website, http://hapmap.ncbi.nlm.nih.gov/. This website

gives results of extensive genotyping (in phases 1 and 2 of the project) of a total of

270 individuals comprised of 90 Yoruba in Ibadan, Nigeria (abbreviation: YRI);

45 Japanese in Tokyo, Japan (JPT); 45 Han Chinese in Beijing, China (CHB); and

90 CEPH (Utah residents with ancestry from northern and western Europe, CEU).

These participants were genotyped for a total of over 3.1 million SNPs selected

from the dbSNP repository. The HapMap phase 1 + 2 data were the primary source

of genotype frequency and linkage disequilibrium information (see Chap. 2) used to

select SNPs for most of the current generation of general purpose GWAS chips.

HapMap phase 3 used two of the GWAS chips to genotype approximately 1.6

million SNPs in samples from a total of 11 populations.

1000 Genomes Project website, http://www.1000genomes.org/. This website

provides results of next-generation sequencing (see Chap. 8) of 1,092 individuals

from a variety of racial ethnic groups of similar diversity as HapMap phase 3. An

aim of the project is to find most SNPs of frequency 1 % or greater in the

populations studied. The resulting datasets currently serve as a reference panel

for a great deal of large-scale SNP imputation (see Chap. 6) and as a source of

genetic information for GWAS and specialty chip development.

Exome Sequencing Project ESP [47] http://evs.gs.washington.edu/EVS/. The

goal of the NHLBI GO Exome Sequencing Project (ESP) is to discover novel

genes andmechanisms contributing to heart, lung, and blood disorders by pioneering

the application of next-generation sequencing of the protein coding regions of

the human genome across diverse, richly phenotyped populations and to share

these datasets and findings with the scientific community to extend and enrich the

diagnosis, management, and treatment of heart, lung, and blood disorders.

1.7.2 GWAS Associations

A Catalog of Published Genome-Wide Association Studies [48] http://www.

genome.gov/gwastudies/. This easily accessed and downloaded database provides

a list of the thousands of published GWAS associations (with associations meeting

statistical criteria for global significance) in human diseases and disease-related

traits that have been discovered to date. The database is currently being updated

regularly.

1.7.3 Annotation

For most common diseases, the vast majority of GWAS associations are with SNPs

outside of coding regions [48, 49], either in introns or in intergenic regions, and not
in LD with protein-altering variants. There has been much effort placed on
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predicting the functional implications of coding variants, but attempts to annotate

the kinds of noncoding variants mostly associated in GWAS studies are more

recent. Several different approaches are embodied in the websites, programs, and

databases described below. By analyzing global RNA expression within individual

tissues and treating the expression levels of genes as quantitative traits, variations in

gene expression that are highly correlated with genetic variation can be identified as

expression quantitative trait loci, or eQTLs. SNPs that have been observed to be

correlated with gene expression, especially in tissues related to a disease of interest,

become candidate functional variants when they are in LD with a GWAS hit.

Sequence conservation over species is another potential source of annotation

information since highly conserved regions are thought to have functional impor-

tance. Sequence conservation is used extensively in analysis of the significance of

coding variation but can also be applied to noncoding regions. Analysis of chro-

matin packaging of DNA in a number of different tissues has been a key part of the

identification of functional regions by the ENCODE and other projects, as has the

identification of DNA sequences that serve as protein binding sites. The following

is a selection of some of the currently utilized tools for identifying causal variation

underlying GWAS associations:

SIFT [15] http://sift.jcvi.org/. Provides predictions of whether protein amino acid

substitutions affect protein function. SIFT prediction is based upon the conservation

of amino acid residues in sequence alignments from closely related sequences

across species.

Polyphen2 [16] http://genetics.bwh.harvard.edu/pph2/. Also provides predic-

tions of the significance of amino acid substitutions on protein function; these

predictions are based upon analysis of disease-causing variants in human Mende-

lian disorders as well as on between-species sequence conservation.

The Genotype-Tissue Expression Project [50] http://www.broadinstitute.org/

gtex/. The Genotype-Tissue Expression (GTEx) correlates human gene expression

in a variety of tissues to genetic variation. This ongoing project will collect and

analyze multiple human tissues from donors who are also densely genotyped for

discovery and cataloging of additional eQTLs.

Gene Expression Variation (Genevar) [51] http://www.sanger.ac.uk/resources/

software/genevar/. Genevar provides a database and browser of SNP-gene asso-

ciations in eQTL studies including studies of adipose, LCL, and skin tissues

collected from 856 healthy female twins of the MuTHER resource [52, 53];

lymphoblastoid cell lines from 726 HapMap3 CEU, CHB, GIH, JPT, LWK,

MEX, MKK, and YRI individuals [54]; and fibroblast, LCL, and T-cells derived

from umbilical cords of 75 Geneva GenCord individuals [55].

Encyclopedia of DNA Elements (ENCODE) [12] http://genome.ucsc.edu/

ENCODE/. This is an ambitious project and consortium dedicated to identifying

all functional elements of the human genome sequence. The primary assays used in

ENCODE are ChiP-seq used to identify binding sites of DNA-associated proteins,
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DNase I hypersensitivity which identifies regions of exposed (and hence actively

transcribed) DNA, RNA sequencing, and assays of DNA methylation. The

ENCODE project currently archives data at the UCSC Genome Bioinformatics

Site, and a comprehensive data portal for ENCODE is under construction.

RegulomeDB [56] http://regulome.stanford.edu. RegulomeDB is a database

that annotates SNPs with known and predicted regulatory elements in the intergenic

regions of the human genome. Known and predicted regulatory DNA elements

include regions of DNAse hypersensitivity, binding sites of transcription factors,

and promoter regions that have been biochemically characterized to regulation

transcription. Source of these data include public datasets from GEO, the ENCODE

project, and published literature.

FunciSNP [49] http://bioconductor.org/packages/2.12/bioc/html/FunciSNP.

html. This R package integrates information from GWAS, 1000 Genomes, and

chromatin marks to identify functional SNPs in coding or noncoding regions. It is

especially useful in finding all variants in LD with a given marker (e.g., a GWAS

hit) and screening them for overlaps with known or predicted functional features.

HaploReg [57] http://www.broadinstitute.org/mammals/haploreg/haploreg.

php. This online tool uses LD information from the 1000 Genomes Project to

find SNPs and indels that are linked to a user-supplied GWAS hit and display

predicted chromatin state in nine cell types, sequence conservation across species,

effect on regulatory motifs, and enrichment of cell type-specific enhancers.

1.8 Hardware and Operating Systems

Most analyses for GWAS studies can be performed on single-user single-“node”

machines either running Windows or Unix/Linux/Mac based. This includes most

QC work and simple association tests. However, there are several important

analyses that require so much computation that they typically are best performed

on a computer cluster which can allow many jobs to run simultaneously rather than

sequentially. Examples of these analyses include relatedness checking (discussed in

Chap. 2) and genome-wide SNP imputation (discussed in Chap. 6).

Because such clusters are important and because Linux is a de facto standard

operating system for these clusters, we assume in the data analysis that the reader of

this book has access to a Linux-based cluster. The structure of this cluster is

assumed to be as follows. There is a login node with a relatively small amount

of memory available. Accessible to the login node is a (large) number of other

processors with a range of memory available (up to several gigabytes or more). All

nodes including the login node have access (pending appropriate permission) to all

files on a (large) file system suitable for storing GWAS-sized datasets (many

gigabytes for each analysis) and for providing workspace for large temporary

files. In order to run anything more than the simplest sort of Linux commands,
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one uses the Linux Portable Batch System (PBS) qsub or equivalent command to

request one or more nodes for job processing. This command can be used interac-

tively (qsub -I), in which case one node is made available for the user to run

programs on that node, or (more commonly) in batch mode. In batch mode it is

assumed that before issuing qsub commands the user develops one or more PBS

files that contain the sequence of commands to be executed in the course of the

computer run. These commands are then submitted (using the qsub filename
command syntax). Many different jobs can be started using qsub and will be queued

and run when resources are available.

1.9 Data Example

The primary example used in this book is based on the Japanese American Prostate

Cancer (JAPC) study [58], a relatively small but quite interesting GWAS study of

prostate cancer that used an Illumina.Human660W_Quad_v1 SNP array to geno-

type approximately 600,000 SNPs. We will illustrate some standard QC checks,

basic (single SNP) analyses of these data, correction for population stratification,

and use of the software packages above to manipulate and analyze these data. These

data are chosen because of the author’s familiarity with the data as well as the fact

that these data may (with proper authorization) be downloaded from the dbGAP

website. Note that basic association results for this study have been published by

Cheng et al. [58].

In the analysis of these data, we assume that we are starting out with genotype

calls rather than the raw intensity data that the scanning platform produces as its

native output. In fact we assume that we have available PLINK-formatted files japc.
bim, japc.fam, japc.bed, and japc_variables.txt for the JAPC study. In addition an

SNP information file available from Illumina (Human660W-Quad_v1_H.csv) for

this chip is assumed available.

Three of the four available files are “human readable.” japc.bed on the other

hand is a binary file (containing genotypes in compressed format). Let us consider

each of the files.

japc.bim is an SNP information file that contains fields for chromosome, rsnumber
or snp identifier, genetic distance, and physical location for each SNP with data.

Note that the Illumina information file Human660W-Quad_v1_H.csv contains

much more information than this for each SNP. We will discuss this file as well,

but it is not used directly in PLINK.

japc.fam is a sample identification file that contains fields family id, individual id,
father’s id, mother’s id, sex (1 for males 2 for females), and status (1 for unaffected
2 for affected).

japc_variables.txt is a file that contains covariates and disease status for each

individual. The fields are famid, iid, aff, and age. The famid and iid variables

must appear in the japc.fam file in order to match the covariates to the samples
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with genotypes. Note here that affection status aff is coded slightly differently than

is status on the genotype file; here 0 means unaffected, while 1 means affected.

When logistic regression is used in PLINK (see Chap. 3), the status variable used is

aff from the japc_variables.txt file. Note that the data contained in the files japc.
bim, japc.fam, and japc.bed are all strictly defined by PLINK. The additional file

japc_variables.txt has variables which will depend upon the needs of specific

analyses. For example, we wish to adjust by age in the analysis so age is included

(as a dichotomous variable).

The following PLINK commands are worth practicing:

This will create files called plink.imiss and plink.lmiss which contain informa-

tion about the fraction of SNPs genotypes that are missing either by subject (imiss)

or by SNP (lmiss). To change the name of the output files from plink.imiss and

plink.lmiss, simply assign a new name using an –out command as in

Then the output files will be called check1.imiss and check1.lmiss, respectively.

To calculate frequencies, running the command

will create a file plink.frq which lists the following for each SNP:

While this book will not attempt to teach all of the PLINK commands, PLINK

will be used in many examples to follow. Documentation is available online from

the program’s author (Sean Purcell) http://pngu.mgh.harvard.edu/~purcell/plink/.

1.9.1 Save Your Work

Data cleaning and association testing using GWAS data is (nearly) always a multi-

step process. It is important to automate all processes, by writing shell scripts, both

so they can be run again on similar data and also so as to keep records of exactly

what analyses were done to achieve the results on a given dataset that are used in
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manuscripts, reports, papers, books, etc. The Linux system and other Unix-based

systems have powerful scripting capabilities as well as many built-in programs that

aid in developing an analysis pipeline.

Homework Problems/Projects

1. The SNP information file from Illumina for the GWAS chip used in the JAPC

study lists surrounding sequence information for each SNP. One of these

is given below (for SNP designated rs1008618). Use the blat utility found

on the UCSC Genome Browser (http://genome.ucsc.edu/cgi-bin/hgBlat?

command¼start) to identify the chromosome and strand (plus or minus) that

this sequence refers to. Select the Feb 2009 build 37 (GRCh37/hg19) genome

assembly in the box provided. The SNP of interest immediately follows the last

base sequence given.

AGGAGAAACATTTGCAAAAACCTTCTATGGAGACAAGAGAGATGA-

GAGAGACTATGATGA

Do the same for SNP rs1008619 with flanking sequence

CCTTTACTCCTTCAGATTAGTCCAAAATATGGCTGCCAGAAT-

GAGCTTCCTGAAGCACAA

If the SNP of interest follows immediately on the right, then what is the

position number of each SNP? Check your results using dbSNP.

2. The following flanking sequence (around a C/T SNP)

refers to a nonsynonymous SNP in a gene that may be related to prostate

cancer risk.

(a) Use the web resources above to find the gene this SNP is in as well as its

rs-number, chromosome, and position.

(b) Which strand (+ or �) is the coding strand for the gene?

(c) What is the amino acid change coded for by this SNP? What is the amino

acid position number within the protein where this change occurs?

3. What factors affect the probability that a new de novo SNV in an exon will be

synonymous, nonsynonymous, or cause a STOP codon? Note that base position

within the codon is important, i.e., from Table 1.1 changes in the last codon often

do not affect the coded amino acid. Consider the codon TTT which codes for the

amino acid Phenylalanine.

(a) If transitions are twice as common as transversions, what is the distribution

of resulting codons due to a single-nucleotide change?

(b) What is the distribution of resulting amino acid or stop codons? Assume that

the probability of a change at each of the three positions is equal.
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4. Even when using interactive programs such as R for certain tasks, it is important

to record all the steps used to produce results, for example, by saving and

polishing or otherwise improving the job history logs (.RHistory files) produced

by R and saving them for future reference. Is R able to run in batch mode? How

would a PBS (qsub) file call R to execute a text file containing R code and return

results?

5. Note that there are several individuals listed in the japc.fam file who do not have

sex or status defined on the file, NA for sex and -9 for status. We assume that all

JAPC participants are males, and affection status is available on the

japc_variables.txt file. Read the description of the PLINK commands in

the data management section of the PLINK online documentation to learn the

recommended way of fixing these issues (i.e., inputting correct sex and affection

status into the .fam file for those with missing data). Of course one could

manually (or with a program like SAS) edit the japc.fam file outside of

PLINK. What is wrong with the latter approach?

6. The ENCODE project has recently published information about the role of

noncodingDNA claiming that at least 80% of humanDNA is “active and needed”

[59]. Review the publications fromENCODE, what sorts of techniques are used to

make this determination? For a counterview, try reading reference [60].

7. Using the databases above: a genome-wide association study (GWAS) of breast

cancer was conducted using the Illumina 1M SNP array in 15,000 cases and

15,000 controls of European ancestry. In this study a novel risk variant,

rs11196191 (A allele, frequency ¼ 0.52, OR per A allele ¼ 1.25, p ¼ 10�10),

was identified.

(A) Where is the novel breast cancer risk variant located with respect to chro-

mosome location, genome position?

(B) Where is the SNP according to gene (i.e., upstream of gene or in an exon or

intron—what gene)?

(C) What are the two alleles and the global minor allele frequency according to

1000 Genomes Project?

(D) Has this region been previously associated with any other disease or trait

from a GWAS? If so, which SNP and which disease in particular and where

is the variant located with respect to rs11196191?

(E) Using the ESP database, determine how many missense, nonsense/frame-

shift variants with frequencies >1 % are in the coding region of the nearby

gene. Are these SNPs likely to explain the association? Why or why not?

(F) What is the frequency of the risk allele in 1000 Genomes Project

populations?

(G) Is the breast cancer risk SNP correlated with the SNP(s) in D (above).

Provide R2. Use FunciSNP or HaploReg.

(H) Determine whether the risk allele for breast cancer is correlated with the

allele that is associated with increased risk for the other phenotype.

(I) What does the information inH (above) tell you about pathways ormechanisms

of disease for these phenotypes? (Bonus: What is the term used to describe

a genetic effect of a single gene or variant on multiple phenotypic traits?)
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Chapter 2

Topics in Quantitative Genetics

Abstract An understanding of the genetics of current world populations provides

the conceptual basis upon which today’s genetic association studies rest. This

chapter focuses specifically on gaining a basic grounding in three general topics:

1. Linkage disequilibrium (LD), the nonrandom associations of alleles. A dis-

cussion on how linkage disequilibrium varies between populations due to mul-

tiple factors, such as random drift in allele frequencies in isolated populations,

population migration, admixture, and population expansion.

2. Population heterogeneity. A discussion of the effects of population heteroge-

neity, including population stratification, admixture, and relatedness between

subjects—specifically, the distribution of marker alleles and their apparent

association with each other and with causal variants, using marker data for the

empirical estimation of relatedness and kinship coefficients and of identity by
descent probabilities.

3. The common disease-common variant hypothesis. Arguments in favor of the

common disease-common variant hypothesis and a discussion of distributions of
allele frequencies for both marker alleles and causal variants.

In addition to these concepts, several important tools for the investigation of

linkage disequilibrium and of population heterogeneity are introduced: specifi-

cally data from the HapMap project and data manipulation and LD visualization

tools which help to explore these data effectively. Principal components analysis
(PCA) of large-scale genetic data for the purpose of examining population

substructure and admixture is introduced and illustrated using a download of

phase 3 HapMap data for 11 population samples; an example of some simple

PLINK commands and a corresponding R script is provided. These illustrate the

selection (in PLINK) of a subset of SNPs to be used in the computation

and display, by R, of leading principal components that characterize global

population structure.
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Many parts of the broader field of population genetics are entirely ignored here.

Notably we do not discuss, except parenthetically, natural selection as a force

determining allele frequency distributions within modern populations or the differ-

ences seen between modern populations. Differences between populations in allele

frequencies for marker alleles or causal variants are largely assumed here to be due

to random drift or founder effects and population expansion.

Implicitly we are restricting interest, and this is part of topic (3), to common

genetic causes of disease. The mere fact that the alleles are common indicates that

the reproductive fitness of carriers of the alleles is not greatly impacted; even when

looking at diseases that do affect reproductive fitness (such as fatal childhood

diseases, early adult onset mental illnesses), the selective pressure against alleles

that cause modest increases in risk of such disease may be very minor if the diseases

themselves are rare.

2.1 Distribution of a Single Diallelic Variant in a Randomly

Mixing Population

2.1.1 Hardy–Weinberg Equilibrium

The description in Chap. 1 of the mechanics of gamete formation provides the basis

for a discussion of first the marginal distribution of allele counts for a single

individual and secondly the joint distribution of these counts between related

individuals. The Hardy–Weinberg rule states that under a number of assumptions,

the marginal distribution of the number of copies of a given allele observed in a

single individual will follow a binomial distribution with index (i.e., the “number of

trials”) equal to 2 and mean parameter equal to the frequency in the population of

that allele. For example, if we have a diallelic marker taking the values A with

frequency p and awith frequency (1 � p), then the number of copies, nA, of A that a

given individual carries will take the values 0, 1, and 2 with probabilities equal to

(1 � p)2, 2p(1 � p), and p2, respectively. If an allele count, nA, follows this

distribution, then we say that it is in Hardy–Weinberg equilibrium with the name

being reflective of the independent derivation of this rule by Godfrey Hardy and

Wilhelm Weinberg in 1908. This marginal distribution applies to all individuals

sampled from a given population for which there has been at least one generation of

random mating; additional assumptions are that there is no reproductive disadvan-

tage to carrying one or two of the two alleles (e.g., the allele does not increase the

risk of early mortality and infertility) and that the number of copies carried by males

is the same as that carried by females, e.g., the rule does not apply to X chromosome

variants in males. Violations of random mating include the interrelated concepts

of inbreeding, population stratification, and admixture, each of which will be

discussed in the following.
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2.1.2 Random Samples of Unrelated Individuals

Large-scale genotyping technology frees genetic studies from needing closely

related individuals with disease, allowing for the (generally much easier) sampling

of unrelated subjects from within a given population. If we have a sample of size

N from a population in which the allele of interest is in Hardy–Weinberg equilib-

rium, and if the N individuals sampled are unrelated to each other (which is a

reasonable expectation so long as the number of individuals sampled is small

relative to the size of the population being targeted), then the distribution of the

sum
XN
i¼1

niA of the allele counts of alleleA for each individual iwill follow a binomial

distribution with index equal to 2N and frequency also equal to p. In this case we can

estimate p as p̂ ¼ 1
2N

XN
i¼1

niA. The variance of this estimator is then equal to

1

2Nð Þ2
XN
i¼1

Var niAð Þ ¼ 1

2Nð Þ2 2Np 1� pð Þ ¼ 1

2N
p 1� pð Þ:

For values of N and p which jointly meet the requirement that min(2Np, 2N
(1 – p)) is “large,” the estimator p̂ can be approximated as a normal random

variable with mean p and standard error equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2N p̂ 1� p̂ð Þ

q
so that an

approximate 1 – α level confidence interval for p is given by

p̂ � z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ

2N

r
< p < p̂ þ z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ

2N

r
: ð2:1Þ

The accuracy of such a confidence interval depends importantly on the type I

error rate α; for the “traditional” α level of 0.05 , a value of 2Np of around 5 or so is
generally considered adequate for the approximation to be reliable; however, for

more rigorous α levels such as those often employed in GWAS studies (e.g.,

α ¼ 5 � 10�8), 2Np should be considerably larger (at least five times as large for

common alleles) before approximate confidence intervals (and equivalently tests)

can be safely relied upon. See Chap. 7 for more information.

2.1.3 Joint Distribution Between Relatives of Allele Counts
for a Single SNP

In the following we consider the joint distribution of the number of copies, niA, and
njA of the same diallelic variant taking values a and A, for two related individuals

drawn from a randomly mixing population. Since the population is randomly
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mixing, the marginal distribution of both niA and njA will follow the

Hardy–Weinberg equilibrium, with the same value of allele frequency p, but the
probabilities that each take the values 0, 1, or 2 will not be independent of each

other. For example, if we select a mother and one of her children, the child will

always share exactly one of the alleles of the mother, and so if the mother has

genotype AA (for example), then it is impossible (in the absence of a de novo

mutation) that the child will have njA equal to 0. This is because one chromosome is

always passed from each parent to each offspring.

2.1.3.1 Identity by Descent

If we assume that all mating is between unrelated individuals, i.e., that the popu-

lation is “outbred,” then the degree of relatedness between individuals for whom a

pedigree structure is known can be summarized in terms of the expected numbers of

alleles that are inherited identically by descent from the founders of the pedigree. In

order to clarify what inheritance identical by descent (IBD) means, consider a

simple nuclear family with two parents and two offspring and we will label the

four founders (parents) copies of a short chromosomal region according to whether

the copy originated from each of the maternal grandmother (MGM), maternal

grandfather (MGF), paternal grandmother (PGM), or paternal grandfather (PGF).

Table 2.1 considers all 16 (equally probable for neutral alleles) combinations that

could be transmitted to the two offspring and gives the number of copies of this

segment that are therefore shared identically by descent. Since each cell has

probability 1/16, we see that the probability (call it z0) that the two siblings share

no alleles is 1/4; the probability, z2, they share two alleles is also 1/4; and the

probability, z1, that they share 1 allele is 1/2. Thus the expected number of shared

copies is equal to 0 � z0 + 1 � z1 + 2 � z2 ¼ 1; dividing this by two gives the

expected fraction of shared alleles as (1/2)z1 + z2 ¼ (1/2) . Similar calculations

for parent-offspring pairs give the three IBD sharing probabilities as z0 ¼ 0,

z1 ¼ 1, and z2 ¼ 0 with the fraction of shared alleles again equal to (1/2).1

Table 2.1 All possible transmissions and number of copies of chromosomal region shared

identically by descent for two full siblings

Sibling 2

Sibling 1 MGM, PGM MGM, PGF MGF, PGM MGF, PGF

MGM, PGM 2 1 1 0

MGM, PGF 1 2 0 1

MGF, PGM 1 0 2 1

MGF, PGF 0 1 1 2

1 If however the maternal and/or paternal grandparents were related to each other, then there is a

nonzero probability that a parent–offspring pair will share 2 alleles IBD, i.e., z2 > 0. For example,

if the parents are siblings, then the three IBD probabilities will be z0 ¼ 0, z1 ¼ 5/8, and z2 ¼3/8;

see below.
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Such calculations can be extended to more complex pedigrees, and it can readily be

shown, for example, that both half siblings and grandparent–grandchild pairs are

expected to share 1/4 of their alleles IBD.

Now let us consider the correlation between the counts, nA,1 and nA,2, of an SNP
allele observed in two related individuals (numbers 1 and 2) with a known rela-

tionship. We can compute the covariance between nA,1 and nA,2 as a function of the
probabilities (z0, z1, z2) of sharing either 0, 1, or 2 alleles identically by descent.

To show this, we first need to describe the joint probability distribution of the count

of a marker allele conditional on IBD status.

Table 2.2 shows the joint probabilities of n1 and n2 conditional on the number of

alleles shared identically by descent. These probabilities are computed by simple

counting assuming that both the shared and unshared alleles are sampled indepen-

dently from a population of possible alleles. For example, the conditional proba-

bility of the genotype (Aa, Aa) being sampled given that 1 allele is shared in

common can be broken into a fraction with numerator equal to

Pr Aa,Aa is sampled
��1st and 3rd alleles shared IBD

� �� Pr
�
1st and 3rd alleles

shared IBD
�

þ Pr Aa,Aa is sampled
��1st and 4th alleles shared IBD

� �� Pr
�
1st and 4th alleles

shared IBD
�

þ Pr Aa,Aa is sampled
��2nd and 3rd alleles shared IBD

� �� Pr
�
2nd and 3rd alleles

shared IBD
�

þ Pr Aa,Aa is sampled
��2nd and 4th alleles shared IBD

� �� Pr
�
2nd and 4th alleles

shared IBD
�

and denominator

Pr 1st and 3rd alleles sharedð Þ þ Pr 1st and 4th alleles sharedð Þ
þ Pr 2nd and 3rd alleles sharedð Þ þ Pr 2nd and 4th alleles sharedð Þ:

Table 2.2 Joint probability distribution for counts, n, of number of copies of allele A given

number of alleles shared IBD

Number of alleles shared IBD

Unphased genotype n1 n2 0 1 2

(aa, aa) 0 0 (1 � p)4 (1 � p)3 (1 � p)2

(Aa, aa) 1 0 2p(1 � p)3 p(1 � p)2 0

(AA, aa) 2 0 p2(1 � p)2 0 0

(aa, Aa) 0 1 2p(1 � p)3 p(1 � p)2 0

(Aa, Aa) 1 1 4p2(1 � p)2 p(1 � p)2 + (1 � p)p2 2p(1 � p)

(AA, Aa) 2 1 2p3(1 � p) p2(1 � p) 0

(aa, AA) 0 2 p2(1 � p)2 0 0

(Aa, AA) 1 2 2p3(1 � p) p2(1 � p) 0

(AA, AA) 2 2 p4 p3 p2
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Consider the first probability Pr(Aa, Aa is sampled|1st and 3rd alleles shared).

Since genotypes Aa and aA are treated here as indistinguishable, this probability

can be further broken into the probability of sampling first an A (for the first and

third alleles), then an a (for the 2nd allele), and then another a for the fourth allele,

plus the probability of sampling first an a (for the first and third alleles) and then two
A s in sequence (for the 2nd and 4th alleles). Thus, this probability is equal to p
(1 � p)2 + (1 � p)p2. The same quantity is found for the 3 other sampling proba-

bilities, and moreover the probability of sharing either the 1st and 3rd or 1st and 4th

or 2nd and 3rd or 2nd and 4th are all equal to each other, i.e., are equal to some

constant, c. Therefore the total conditional probability is

4c p 1� pð Þ2 þ 1� pð Þp2
h i

4c
¼ p 1� pð Þ2 þ 1� pð Þp2,

as presented in the table.

If we know (from the pedigree relationship) the probabilities, z0, z1, and z2, of
sharing zero one or two alleles IBD, then multiplying the rightmost three columns

of Table 2.2 by z0, z1, or z2, respectively, and summing them together, we have the

complete joint probability distribution of n1 and n2. Hence, we can compute the

covariance of n1 and n2 as a simple weighted sum of the possible values of [n1 � E
(n1)][n2 � E(n2)] ¼ (n1 � 2p)(n2 � 2p) with the weights given by the joint prob-

ability distribution for n1 and n2. A little bit of algebra shows that

Cov n1; n2ð Þ ¼ z1 þ 2z2ð Þp 1� pð Þ:

Since the variance of njA is equal to 2p(1 � p) for both j ¼ 1 and j ¼ 2, we see

that the correlation between the allele counts for the two individuals will be Cor(n1,
n2) ¼ (1/2)z1 + z2 which is from above the expected fraction of shared alleles.

From this we can write the n � n covariance matrix of a single SNP allele for all

related subjects, as equal to

Var n1; n2; . . . ; nNð Þ ¼ 2p 1� pð ÞK, ð2:2Þ

where the matrix K has diagonal elements equal to 1 and off-diagonal elements

equal to kij ¼ h(1/2)z1 + z2iij with z1 and z2 computed for each pair (i, j) of family

members.

2.1.4 Coefficients of Kinship and of Inbreeding

Up until now the relationship matrix K has been a correlation matrix with

diagonal elements all equal to 1. K, however, does not have to be a correlation

matrix and off-diagonal elements can in fact be greater than one. Note that

z1 + 2z2 is the expected number of alleles shared identically by descent between
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two individuals. Now consider the following experiment: randomly sample two

chromosomal segments, one from each individual, and then count the fraction of

times that the two alleles are identical. It is easy to see that on average this fraction

will (since there are four possible ways of sampling the two alleles) be equal to 1/4

times the expected number of shared alleles. It is this fraction, i.e., (1/4)z1 + (1/2)

z2 that is called the coefficient of kinship. Now think of a single individual and

consider two independent draws from the same individual’s chromosomes; if that

individual’s parents are unrelated, the two chromosomal segments of interest that

comprise the two alleles are different, and the probability that the same one is

sampled twice is 1/2. If however the parents are related with a coefficient of

kinship equal to h, then the probability that the same chromosome is represented

twice in that individual, rather than just once, will be equal to h. Thus when

sampling two alleles at random with replacement from the same individual, the

probability that the same allele is sampled twice is (1/2) � (1 � h) + 1 � h or

(1/2)(1 + h). Moreover, it can readily be shown that the variance of the number of

alleles carried by a single individual is 2p(1 � p)(1 + h). Here, h (i.e., the kinship

between parents) is termed the coefficient of inbreeding and applies to individuals

and identical twins. Thus for inbred populations, we continue to have the model

for the variance-covariance matrix of a single marker measured for a total of

N individuals equal to

2p 1� pð ÞK, ð2:3Þ

but now with K being equal to twice the kinship matrix which we denote with the

bold Greek lowercase letter kappa, κ. The kinship matrix κ ¼ (1/2)K has

off-diagonal terms equal to h(1/4)z1 + (1/2)z2iij for i 6¼ j and diagonal terms

equal to (1/2)(1 + hi).

2.2 Relationship Between Identity by State and Identity

by Descent for a Single Diallelic Marker

Identity by state (IBS) refers to the number of similar alleles shared (irrespective

of descent) between two individuals at a particular locus. For example, if one

subject has genotype aa and another subject genotype Aa, then one allele (the a)
is said to be identical by state; if both subjects have genotypes equal to Aa and

Aa, then two alleles are identical by state. From the joint distribution, in

Table 2.2, of genotypes for two subjects given IBD status, we can easily compute

the conditional probability distribution for sharing 0, 1, or 2 alleles by state,

given the number of alleles that are identical by descent. This is shown in

Table 2.3.
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2.3 Estimating IBD Probabilities from Genotype Data

Table 2.3 motivates a simple method of moments estimate of IBD probabilities

using a set of M markers, under the assumptions that subjects are drawn from a

single population; improvements on this method to deal with finite sample sizes in

estimation of allele frequency is given in [1] and maximum likelihood estimation is

described in [2].

Changing notation to add an index ℓ distinguishing markers, we can estimate z0
by counting the number of alleles (ℓ ¼ 1, . . ., M ) with IBS count equal to zero.

Since from Table 2.3 the marginal probability, Pr (IBS(niℓ, ni0ℓ) ¼ 0), of zero IBS

sharing is equal to z0{2pℓ
2(1 � pℓ)

2} so that the expected number of alleles with

IBS ¼ 0 is 2z0
XM
l¼1

pl
2 1� plð Þ2. This suggests that we can estimate z0 by equating

the observed count,
XM
l¼1

I IBS nil; ni0lð Þ ¼ 0f g, of alleles with IBS ¼ 0 with its

expectation 2z0
XM
l¼1

pl
2 1� plð Þ2 and solve for z0 as

ẑ 0 ¼

XM
l¼1

I IBS nil; ni0lð Þ ¼ 0f g

2
XM
l¼1

pl
2 1� plð Þ2

: ð2:4Þ

Similarly, since the marginal probability that IBS nil; ni0 l
� � ¼ 1 is equal to

z0{4pℓ(1 � pℓ)
3 + 4pℓ

3(1 � pℓ)} + z1{2pℓ(1 � pℓ)
2 + 2pℓ

2(1 � pℓ)}, we can esti-

mate z1 as

ẑ 1 ¼

XM
l¼1

I IBS nil; ni0lð Þ ¼ 1f g � ẑ 0
XM
l¼1

4pl 1� plð Þ3 þ 4pl
3 1� plð Þ

XM
l¼1

2pl 1� plð Þ2 þ 2p2l 1� plð Þ
ð2:5Þ

and finally estimate z2 as ẑ 2 ¼ 1� ẑ 0 � ẑ 1.

Table 2.3 The probability of allele sharing (IBS) given identity by descent (IBD) for a diallelic

marker with allele frequency p

Number of alleles shared IBD

0 1 2

Pr(IBS|IBD) 0 2p2(1 � p)2 0 0

1 4p(1 � p)3 + 4p3(1 � p) 2p(1 � p)2 + 2p2(1 � p) 0

2 4p2(1 � p)2 + (1 � p)4 + p4 (1 � p)3 + p(1 � p)2 + p2(1 � p) + p3 1
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We must also estimate the allele frequencies, pℓ as well generally using only

unrelated subjects, and these frequencies are assumed known in the above. Note

that the estimators for the IBD probabilities are only valid for members of homo-

geneous populations and do not apply when one or more non-mixing hidden strata

exist. Applying these formulas to stratified samples overestimates z2, the probabil-
ity of sharing two alleles IBD, since a hallmark of population stratification is an

overrepresentation of homozygotes (relative to that expected under HWE) for

markers that are differentiated between two or more groups (see below).

2.4 The Covariance Matrix for a Single Allele

in Nonrandomly Mixing Populations

We have just shown that when sampling related individuals, the covariance matrix

for a single allele with frequency p is equal to 2p(1 � p)K with the off-diagonal

elements of K reflecting the relationships between subjects and the diagonals

reflecting inbreeding. It turns out that for structured populations, i.e., ones where
there are either hidden non-mixing populations and/or incomplete admixture

between such groups, a similar model holds, except that in these cases the

off-diagonal elements of K are not directly reflective of familial relationships

between individuals but are rather influenced by the similarities or differences in

genetic ancestry between individuals who would not normally be considered to be

related (i.e., randomly selected members of a large racial/ethnic group) compared to

other subjects (i.e., those from other such groups). The important thing (as shown

for several examples below) is that in structured populations, the relationship

matrix (or more properly quasi-relationshipmatrix since the elements of the matrix

are not reflective of close familial relationships but rather of population history and

ancestry) is the same for all variants (assuming neutral effects).

2.4.1 Hidden Structure and Correlation

Consider the between-person correlation in the allele counts for a given marker that

is induced by the presence of hidden structure in a population. Intuitively it is clear

that the individuals who are more alike (i.e., members of the same group) will have

more similar values of a marker that has different allele frequencies in the different

groups than do individuals who are in different groups. In order to quantify this and

to make some general observations, we use a well-known model (the Balding-
Nichols beta-binomial model) for the difference in allele frequencies in currently

isolated groups which have originated from the same ancestral group, with the

difference in allele frequencies being due to random drift in the frequencies through

time. While a simplification of population genetics models for drift in allele

frequencies [3], the model is used extensively [4].
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The Balding-Nichols [5] beta-binomial model assumes that for any marker allele

with frequency equal to p in the ancestral population, the allele frequency pt in a

modern population (here t indexes the different populations) will be distributed

according to the beta distribution

pt � B
1� F

F
p,

1� F

F
1� pð Þ

� �
, ð2:6Þ

so that pt will have the same mean p as in the ancestral population and variance

equal to Fp(1 � p). Here F is a parameter that is common for all SNPs and specifies

the genetic distance, due to random drift in neutral allele frequency, between the

modern day and ancestral populations. We assume that given the allele frequency,

an individual’s marker genotypes in the modern population (or populations) will

then be distributed as draws from a binomial distribution—i.e., will satisfy

Hardy–Weinberg equilibrium.

Now assume that a study sample is made up of subjects from total of T different

subpopulations each with a genetic distance from the ancestral population equal to

Ft and consider first single individuals and then pairs of subjects from the same or

different populations. Again let ni be the count of the number of copies of a given

SNP for the person i in the sample, who happens to be in subpopulation t. We now

compute the mean and variance of ni unconditionally, i.e., incorporating the

variability of the modern day allele frequency. The expected value of ni can be

computed asEpt E ni
��pt� �� 	 ¼ Ept 2ptð Þ ¼ 2p, just as in the ancestral population. The

variance of ni is computed as

Var nið Þ ¼ Ept Var ni
��pt� �� 	þ Varpt E ni

��pt� �� 	
:

With

Ept Var ni
�� pt� �� 	 ¼ Ept 2pt 1� ptð Þ½ � ¼ 2Ept ptð Þ � 2Ept p2t

� �
¼ 2p� 2 p2 þ Ftp 1� pð Þ� �

and

Varpt E ni
��pt� �� 	 ¼ Varpt 2pð Þ ¼ 4Ftp 1� pð Þ,

so that the unconditional variance of ni equals 2p(1 � p)(1 + Ft). Notice that this is

overdispersed relative to the binomial variance and implies that counts from a

structured population will not follow the Hardy–Weinberg rule (and there will be

an over abundance of homozygotes and a corresponding deficit in the number of

heterozygotes compared to that expected under HWE). Of course if we knew which

population individual i was sampled from, then we could compute the conditional

variance, 2pt(1 � pt) which does correspond to HWE, but here we are assuming

that this is not possible.

40 2 Topics in Quantitative Genetics



Now suppose that two individuals i and j are sampled from the same subpopu-

lations. Analogous to the rule for variances we have

Cov ni; nj
� � ¼ Ept Cov ni, nj

��pt� �� 	þ Covpt E ni
��pt� �

,E nj
��pt� �� 	

:

The first term is zero for all pt (since we assume independence within each

population). The second term is Cov(2pt, 2pt), i.e., equals the variance of 2pt, which
is 4Ftp(1 � p). Thus the covariance between the two genotypes is 4Ftp(1 � p)

and the correlation between the two genotypes is 2 Ft

1þFtð Þ. For individuals in

different subpopulations, we easily see that the covariance and correlation between

n1 and n2 is zero.
Note (Homework) that under this model the covariance matrix of the sum, s,

of two independent alleles with ancestral allele frequency p1 and p2 is equal to

(2p1(1 � p1) + 2p2(1 � p2))K and hence that the correlation of a sum of alleles

between two individuals in the same population will also be equal to 2 Ft

1þFtð Þ just as
for a single allele. This extends to polygenes composed of weighted sums of many

different alleles.

2.4.1.1 Relationship Between Balding–Nichols’ F Parameter

and the Fixation Index Fst

Measures of the degree of population stratification in a given population include the

fixation index Fst described initially by Sewall Wright [6] which quantifies degree

of population separation by the difference in heterozygote frequency expected in

stratified versus randomly mixing populations. This statistic can be written as

Fst ¼ Ht�Hs

Ht
. Here Ht is the expected fraction of heterozygotes in the total stratified

population if HWE could be assumed in that population, which we specify as

2p 1� pð Þ, and Hs is the average of the expected fraction of heterozygotes within

each component of the stratified population, namely, E(2pt(1 � pt)). Now consider

generating a SNP with ancestral frequency p for T equal-sized subpopulations using

the beta-binomial model with all subpopulations sharing the same F. It is easy to see
from the calculations immediately above that the expected number of heterozygotes

in the full stratified population will be E(2pt(1 � pt)) ¼ 2p(1 � p)(1 � F). If we
know the ancestral allele frequency, p, then we can say that the expected fraction of
heterozygotes in the stratified population under HWE is 2p(1 � p), so that Fst ¼ F.
If we do not know the ancestral allele frequency, then we estimate p as 1/2 the

observed count of the generated allele over all populations. The expected value of

2p 1� pð Þ (i.e., Ht) under the beta-binomial model can be shown to be equal

to Ht ¼ 2p(1 � p)(1 � F/T ) so that the calculated value of Fst is approximately
T�1
T�F F which converges to F as T (the number of populations) increases. See the

simulation experiment in file BN_Fst.r. Note that we do not (in the simulation)

calculate a separate Fst for each SNP and then average the Fst. Instead we calculate

Ht and Hs for each SNP, then average these values over all the SNPs and form the

ratio from the average values to estimate Fst.
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2.4.2 Effects of Incomplete Admixture on the Covariance
Matrix of a Single Variant

Population admixture occurs when individuals from two or more previously sepa-

rated populations begin interbreeding. As mentioned earlier, even one generation of

subsequent random mixing leads to alleles with a marginal distribution that are in

Hardy–Weinberg equilibrium no matter how distinct the merging populations are.

However, modern day admixture is more complicated than this, typical admixed

populations show a greater than expected variation between members of the current

population in the number of ancestors that derive from each of themixing populations

(compared to random mating after an initial mixing), and this between-person

variation in ancestry is what leads to a failure of the Hardy–Weinberg rule to apply.

Consider two populations mixing, then as described by Chen et al. [7] the

covariance matrix for a single SNP is of form 2p(1 � p)K where the elements, kij,
depend upon the fraction of ancestors αi and αj, that each subject has from one of the

twomixing populations (with 1 � αi and 1 � αj from the other population). Here we

are assuming that each sampled subject is unrelated to each other in the usual sense.

In this case the diagonal terms, kii of K will equal 1 + Fi with Fi ¼ F(1 + 2αi
2

� 2αi) and off-diagonal terms Fij ¼ F(1 + 2αiαj � αi � αj). This reduces to the

above model when αi ¼ 1 and αj ¼ 0 or vice versa. A subtlety noted by Chen

et al. is that when all αi are equal (i.e., there is complete mixing), the effects of

admixture are no longer detectable, and replacing p from the ancestral population

with the allele frequency in the completely admixed population (which is now

p1α + p2(1 � α) where p1 and p2 are the allele frequencies in the two mixing

populations) allows one to drop the Fi and Fij in the above calculations, i.e., the

admixed population can be treated as any other homogeneous population when

considered alone, at least in terms of the correlation of a single SNP.

2.5 Direct Estimation of Differentiation Parameter

F from Genotype Data

We now consider the problem of using genotype data from two individuals to

estimate a pair-specific differentiation parameter F. We concentrate here on the

problem of there being hidden non-mixing populations, indexed by t. For simplicity

we assume that all Ft are equal to a single value of F.
Using the index ℓ for distinguishing different markers from each other, note that

the variances of the allele counts, niℓ, for each marker ℓ all have the same form, i.e.,

the variance is equal to (1 + F) times the usual binomial variance 2pℓ(1 � pℓ)
where pℓ is the allele frequency in the ancestral population. Similarly the covari-

ance between variants for two individuals in population l is always equal to a

constant, 2F, multiplied by the usual binomial variance. While it is impossible to

estimate the (unknown) differentiation parameter F between subjects based on just
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one marker observed in the two individuals, in a GWAS study we have hundreds of

thousands of SNP markers available. Suppose for the time being that the ancestral

allele frequency pℓ of marker ℓ is known. Then upon observing a total of M SNPs,

we could form standardized alleles for each SNP and each individual, i, as

zil ¼ nil � 2plffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pl 1� plð Þp : ð2:7Þ

Each of these has expected value 0 and variance (1 + F). Moreover the covari-

ance between two different standardized alleles, ziℓ and zjℓ, for the same SNP but

different individuals is equal to

Cov nil; njl
� �

2pl 1� plð Þ ¼ 4Fpl 1� plð Þ
2pl 1� plð Þ ¼ 2F:

This leads to the estimator of the covariance matrix of the counts of a given

marker for individuals i and j as

2pl 1� plð ÞK̂ , ð2:8Þ

where K̂ is a 2 � 2 matrix with off-diagonal elements equal to

1

M

XM
l¼1

zilzjl ð2:9Þ

and the ith diagonal element equal to

1

M

XM
l¼1

z2il: ð2:10Þ

Extending this to consider all pairs of individuals, the resulting matrix is

commonly used for describing the structure of a population sample and is the

matrix computed, for example, in the principal components approach described

by [4] and in the EIGENSTRAT program.

Although we have described it in terms of simple hidden structure problem

(non-mixing hidden groups), this estimator is useful in many problems where we

can model the covariance matrix for all SNPs as equal to a constant matrix K times

a variance parameter unique to each SNP (here 2pℓ(1 � pℓ)).

2.5.1 Relatedness Revisited

We have seen from our initial discussion of relatedness that the covariance matrix

for the marker counts, niℓ and njℓ, for two related subjects, i and j, coming from an

otherwise unstratified population (i.e., randomly mixing) is equal to
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2pl 1� plð Þ
1

1

2
z1 þ z2

1

2
z1 þ z2 1

0
BBB@

1
CCCA,

with z0 and z0 the IBD probabilities as defined above so that our estimate K̂ adapts

to this setting as well.

If there is no hidden population structure, but we relax the assumption that all

subjects are unrelated, then K̂ estimates the relationship matrix (i.e., twice the

kinship matrix κ [8]) which has off-diagonal elements equal to (1/2)z1 + z2 and

diagonal elements equal to 1 + hiwhere hi is the inbreeding coefficient for subject i,

i.e., the kinship between subject i’s parents. In the forgoing we refer to K̂ (computed

now for all pairs of subject i and j) as the estimated relationship matrix, recogniz-

ing, however, that this name is only technically accurate in the absence of popula-

tion stratification.

Note that if one was sure that the underlying population was not stratified, then

we could also use (2.4) for ẑ 0 and (2.5) for ẑ 1 (and ẑ 2 ¼ 1� ẑ 0-̂z 1) to estimate (1/2)

z1 + z2, and this estimator may be better behaved when using markers with small

allele frequencies pk because division is delayed until after considerable simulation

has taken place. Recently Yang et al. [9] have specifically noted that the diagonal

estimate
1

M

XM
l¼1

z2il is poorly behaved if many markers with small allele frequencies

are used and have suggested the alternative

1þ 1

M

XM
l¼1

n2il � 1þ 2plð Þnil þ 2p2l
2pl 1� plð Þ ,

which has the same expectation but a smaller sampling variance than does

1

M

XM
l¼1

z2il.

Even in situations where hidden stratification is present, it still is of interest to

identify close relatives in a study especially in the process of performing data

cleaning and outlier identification (see later chapters). One simple method of

estimating IBD probabilities for close relationships that is not overly sensitive to

population stratification is to simply exclude from the calculations of relatedness

any markers that appear to be out of Hardy–Weinberg equilibrium. More complete

estimation of z1 and z2 in a fashion that is relatively impervious to hidden structure

is described in Purcell et al. [1] in their discussion of the GWAS analysis program,

PLINK. The general approach is to bound the estimates of z1 and z2 so that they

correspond to actual familial relationships. In almost all cases (except for identical

twins, duplicated DNA samples, or extremely inbred population), the true proba-

bility of sharing two alleles IBD will be less than the probability of sharing one
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allele IBD, so that z2 is generally much closer to zero than is z1; in randomly mixing

populations, z2 can be no greater than the square of twice the kinship coefficient.

Enforcing such constraints on z2 helps to better estimate true close relationships in

the presence of hidden structure.

As shown above for two individuals sampled from an admixed population

derived from the (incomplete) mixing of two different ancestral populations, the

covariance matrix for a given marker will again equal a constant matrix K, with

K not depending on which SNP is measured, multiplied by a variance parameter

depending on SNP [7]. Even more general problems, such as admixture + related-

ness or inbreeding within pedigree founders in a complex pedigree, can be modeled

in this fashion [8, 10].

2.5.2 Estimation of Allele Frequencies

Next we need to point out that for our hidden subpopulation example that we have

assumed that the ancestral population frequency is known when calculating the

quasi-relationship matrix K̂ . This is rarely if ever true in actual practice. What is

done is to estimate pℓ as the frequency of marker ℓ within the sample that is

available. In the hidden strata example, the overall sample allele frequency remains

an unbiased estimator of pℓ, but it is not one with particularly good statistical

properties. For example, it will not in general converge to the true ancestral pℓ as
the number, N, of subjects in the study increases (only if the number of distinct

hidden strata all derived from the same ancestral population increases with N would

the sample allele frequency be expected to converge to pℓ). Rather than seeking to

improve the estimate of pℓ, it makes better sense in most cases to simply accept the

fact that K̂ measures the relative relatedness between subjects rather an absolute

relatedness [10]. In fact if we use the sample estimated allele frequency in the

calculations, then we will see that kinship estimates for certain pairs of subjects are

negative reflecting that these pairs are more dissimilar to each other than are pairs

from the same population. While some authors recommend setting negative

off-diagonal elements to zero, this is not usually necessary for the kind of uses

we make of this estimator [10] (as in Chap. 4).

2.6 Allele Frequency Distributions

2.6.1 Initial Mutations and Common Ancestors

One of the underlying principles of population genetics relevant to all association

studies is that, at least in most cases, all carriers of a given genetic variant inherited

that variant from a single most recent common ancestor (MRCA); i.e., we can trace
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back from generation to generation the variant allele to a single carrier chromosome

or, more precisely, a single chromosomal segment, or locus, surrounding the variant
allele. Indeed it is this “single origin” of a given variant that partly leads to the

concept of association-based genetic studies, since the background pattern of other

variants or genetic markers, and specifically SNPs, that were already present on the

ancestral segment uniquely labels that given chromosome (distinguishing it from all

other chromosomes with progeny in today’s population). Searching for unique

patterns of SNPs that are related to disease by association with causal alleles is at

the core of what is meant by association studies.

This most recent common ancestral chromosome was not necessarily the earli-

est chromosome that ever carried that genetic variant, for at the time that the

MCRA was extant, there may have been many other carriers of that same variant

allele. Indeed the variant allele may already have been common in the population

at that time. In essence, however, no other carrier of that allele at that time left

progeny in today’s population. As we see shortly, this is an overstatement, since a

different genetic variant, for example, one on a different chromosome, will have a

different most recent ancestral origin. It is not that the other carriers of the first

allele have no progeny today; they just have no progeny today at that locus. It is
through the process of recombination that different segments of the DNA have

different origins.

This tracing back of carriers of a variant lying on a particular chromosomal locus

or to its common origin can be modeled in terms of a tree-diagram called the

coalescent. Coalescent theory has many important results, the simplest of which can

be derived easily under restricted assumptions such as no recombination, no natural

selection, random mating, and fixed population size, yielding essentially the

Wright-Fisher model of neutral evolution [11].

Under the assumption of neutral evolution, if we consider a population of

chromosomes which has been of constant size N over its history, we can construct

a genealogy for that population by thinking of each offspring chromosome present

at generation t as “randomly choosing” its parent chromosome from the population

(also of size N ) of chromosomes present at time t � 1, and from this we can derive

the probability distribution of the time (counting backwards in generations) until

any two chromosomal segments selected from among the current generation meet

their MCRA or coalesce.
The probability that these two segments coalesce, i.e., choose the same parent, in

the previous generation is 1/N, while the probability that they do not coalesce is

1 � 1/N. Repeating this process through earlier generations we see that the prob-

ability distribution of t the time (in generations counting backwards t ¼ 1, 2,. . .)
until coalescent occurs is geometrically distributed with probability distribution

function

P tð Þ ¼ 1� 1

N

� �t�1
1

N
:
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The first term indicates the probability that the coalescence did not occur at times

t ¼ 1, 2, . . ., t � 1, and the second term is the probability of a coalescence at time

t. If N is large, this can be approximated as the exponential distribution

P tð Þ ¼ 1

N
e�

t
N,

which has mean N and variance equal to N2.

More generally if we start with a sample of n chromosomal segments from

among the population of size N, then we see that the time to the first coalescent

(from among nC2 ¼ n
2

� �
possible pairs) will be distributed as

Pn tð Þ ¼ 1� pnð Þt�1pn,

where pn is the probability of at least one coalescent occurring in one generation.

If N is large relative to n, then we can approximate pn as

nC2

N

and also ignore the possibility that more one coalescent occurs in a single gener-

ation. Thus under the coalescent approximation, the number of distinct lineages

decreases in steps of one back in time and the expected time from the kth coalescent
until the k + 1st is equal to

N

n�kC2

: ð2:11Þ

The expected time to the MCRA for the whole sample will be equal to the sum of

the coalescent times or

N
Xn�2

k¼0

1=n�kC2 ¼ 2N 1� 1=nð Þ: ð2:12Þ

We can also (for large N ) approximate Pn�k(t), the distribution of time between

coalescent F and k + 1, as exponential with mean N
n�kC2

.

This exponential approximation is heavily exploited for computer simulation of

realistic genetic data [12]. For example, under the assumptions above, plus an

assumption about the probability (per generation) of a new (neutral) mutation, we

can take a population of chromosomal segments and simulate the occurrence of new

genetic markers (such as SNPs or any other inheritable variant) on those segments

by doing simulations backward in time, rather than forward. Moreover the program

does not have to keep track of whether coalescences occur in each generation,
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instead it generates N � 1 independent exponential random numbers, with the

appropriate mean, and independently of these a random bifurcating tree to construct

the full genealogy describing the relatedness between all chromosomes in the

current generation.

2.6.2 Mutations and the Coalescent

A basic simplifying assumption often useful in population genetics is that mutations

only occur once at a given site with no possibility of backwards mutation or further

changes at that site. This assumption is known as the infinite sites model, i.e., that

there are an infinite number of mutation sites so that the chance of two mutations

occurring at exactly the same site can be neglected. This model reflects the large

number of base pairs in the genome as well as a very low per-base pair (10�8 or so)

probability of change per generation or so in “higher organisms” [13]; the model

appears to apply to SNPs considering, for example, the very small fraction of SNPs

that have more than two alleles.

In coalescence models mutations are assigned along the branches of the tree,

with exponential arrival times so that the number of new mutations along a

particular path is distributed as a Poisson random variable with mean equal to the

product of the mutation rate and the length of that path. To accommodate this notion

in the simulation, each mutation is assigned not only a path position but also a

unique chromosomal position.

Simulation programs based on the coalescent have wide usefulness in illumi-

nating and comparing the properties of various statistical methods when they are to

be applied to real data. Coalescent-based simulation programs, such as those given

by Hudson [12] while based on this fundamental approach, can be modified to allow

certain of the assumptions of the Wright-Fisher model to be relaxed, in particular

population sizes can be allowed to change in time, and the migration of genes

between populations can be accommodated.

See Fig. 2.1 for a depiction of a simulated coalescent tree.

2.6.3 Allelic Distribution of Genetic Variants

An important topic that impacts the design, analysis, and prospect for success of

GWAS studies is the frequency distribution of variation in the genome and specif-

ically of variation that is causative of disease or influences other phenotypes of

interest. Much of the motivation for undertaking first candidate gene association

studies and later GWAS studies was summarized in the common disease-common
variant hypothesis, which argues that common, rather than rare, genetic variants

underlay the heritability of common diseases. If this hypothesis is true then it has

been shown [14] that genetic association studies will have more power than
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traditional pedigree-based linkage studies when it comes to finding the risk alleles.

The arguments for the common disease-common variant hypothesis (c.f. [15–18])

include (1) weak or nonexistent selective pressure against variants involved in

susceptibility for common diseases (especially late onset diseases which would

tend not to affect reproductive success), (2) expansion of populations after passing

through bottlenecks related to migration away from the earliest human groupings,

and (3) a resulting distribution of alleles that involve susceptibility in which

common variants predominate. The latter point follows from the first two; the

distribution of frequencies of selectively neutral alleles in stable populations was

described by Wright [19], further refined by Ewens [20], and has been updated to

account for population growth and selection [17, 21].

An important implication of the neutral selection model is that, while there are

many rare markers, if two individual chromosomes are compared to one another,

most of the differences seen between the two chromosomes are due to common,

rather than rare, alleles. Specifically, considering a specific site where the two

genotypes differ, if we take a larger sample of individuals and examine the same

site in each of the new individuals, in most cases many of them too will also be

found to differ at this site as well. A heuristic argument for this can be made by

considering the time to coalescence between the two individual chromosomes

showing a different allele at a specific site. In order for the two sequences to differ

Fig. 2.1 Simulation of SNP data through the coalescent process
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at a given site, the mutation at that site must have occurred after the time of

coalescence for the two chromosomes (here we are focusing on segments short

enough not to have been affected by recombination). The mean coalescent time is

N generations in the past with an expected time of appearance of the mutation equal

to 1/2N (assuming a constant rate of mutation over time). But this is early enough so

that it would predate a very large number of coalescent events in the larger

sample since the expected time to the MRCA for all the subjects in the sample is

2N(1 � 1/n) or roughly 2N for large n; in fact on average we would expect, from

(2.11) and (2.12), that the last 3 coalescences take up time 3/2N so that all but these

are (expected to be) yet to come by the (expected) time of the observed mutation.

Thus a large fraction of the nmembers of the sample are likely to carry the mutation

of interest. There is considerable variability in both the actual times of mutation and

the number of coalescent events yet to take place at that time, but this argument can

be fleshed out in further detail using coalescent theory.

For example, a formula for the expected number of sites, ηi, at which the less

frequent base is present on i sequences out of a sample size of n sequences (N ¼ n/2
individuals) is given by Wakeley [3] [(4.21), p. 105)] as

E ηið Þ ¼ θ
1
i þ 1

n�i

1þ δi,n�1

1 � i � n=2½ �, ð2:13Þ

where θ is the (scaled) mutation frequency, [·] is the largest integer (i.e., floor)

function, and δij is the Kronecker δ function equal to 1 if i and j are equal and equal
to 0 otherwise. Figure 2.2a shows the expected cumulative frequency of minor

allele frequencies for SNPs seen at least once in a sample of 1,000 chromosomes

(500 diploid individuals) using this formula (by considering only SNPs seen at least

once, we can drop the mutation frequency parameter from the calculations).
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Fig. 2.2 (a) Expected cumulative distribution of allele frequencies of variants seen when

genotyping a large number of sites in a sample population of size 500. (b) Expected cumulative

distribution of total minor allele counts in same study
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It is clear from Fig 2.2a that a large proportion of variants are expected to be

“rare,” with, for example, about 39 % of total alleles having allele frequency less

than one percent while only about 20 % of variants will have frequency between 0.2

and 0.5. However, things look quite different when counting the total number of

variant (e.g., minor) alleles seen, since each variant contributes an expected 2pN
minor alleles; Fig 2.2b gives the expected cumulative contribution to the total

number of minor alleles seen according to allele frequency. SNPs with frequency

less than 1 % contribute hardly at all to the total variation, while common SNPs

(frequency 0.2–0.5) contribute approximately two thirds.

This same argument applies to genetic variants (causal alleles) that increase

susceptibility to diseases that have no relationship to reproductive success, either

because they do not interfere with fitness or because they tend to be too late in onset

to affect fertility. As will be shown in Chap. 7, common causal alleles are inherently

more detectable than are rare alleles, all other things being equal, and would seem

to contribute far more to risk of disease than rarer SNPs, unless there is a marked

tendency for rarer variants to have higher risks associated with them.

2.6.4 Allele Distributions Under Population Increase
and Selection

One factor in human population history that influences the number of rare variants

(and potentially their contribution to risk) relative to the discussions above is the

very large growth in human populations in the last 2–3 hundred years. This recent

spectacular growth implies an excessive fraction of alleles are rare compared to the

model given above. Recent large-scale sequencing in the 1000 Genomes Project
show that there is a surfeit of SNP alleles with frequency less than 0.5 % compared

to that expected under the constant population size model [22].

An additional, and potentially more important factor influencing allele frequen-

cies, is selection. Equation (2.13) is based on an assumption that all the alleles

considered are neutral in the effects on reproductive success. A formula for allele

frequency distributions in an infinite population that includes the effect of natural

selection was given byWright [23] who found that allele frequency p is distributed as

f pð Þ ¼ kp βS�1ð Þ 1� pð Þ βN�1ð Þ
eσ 1�pð Þ, ð2:14Þ

with βS as scaled mutation frequency (equivalent to θ above), βN as scaled back-

mutation (reversion) frequency, σ as the scaled selection rate, and k as a normal-

izing constant. Note that f( p) in (2.14) is not really a probability distribution since

its integral does not exist over the range (0–1) of interest. However, we can still use

Wright’s formula to evaluate questions involving the relative frequencies of ranges

of alleles in an infinite population. The key parameter of interest to us here is the

selection parameter σ; this is given in units of 4Neswith Ne the effective sample size

and s the reduction in reproductive success (expressed as the fractional reduction in
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the number of offspring expected from carriers compared to noncarriers) associated

with the allele of interest. Following Pritchard [24], we set σ to equal 12 to signify

“weak selection” against the allele of interest and zero for no selection. Note that

σ ¼ 12 translates to a 0.03 % reduction in the probability of leaving offspring in

each generation assuming a constant effective sample size of Ne ¼ 10,000.

Figure 2.3 plots the cumulative distribution of allele frequencies under this

model. Even under this weak level of selection pressure, it is evident that there is

a dramatic shift to rarer alleles compared to the neutral model. Does this mean that

the common disease-common variant hypothesis that has underpinned GWAS

studies to date is misconceived? This and related questions is taken up in Chap. 8.

2.7 Recombination and Linkage Disequilibrium

Note that in the coalescent depicted in Fig. 2.1 if two mutations (call them A and B)
occur along a specific path segment between coalescences then in the resulting

population all chromosomes that carry mutation A would also carry mutation B as

well. This observation illustrates the first of two concepts (linkage disequilibrium)

underlying the association-based approach to identifying risk alleles. The second is

recombination.
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Fig. 2.3 Allele frequency distribution under selection or not. Wright’s formula is used to depict

the cumulative density of allele frequencies between frequency 0.001 and 0.999 under no selection

(solid line) and selection with nb (dotted line)

52 2 Topics in Quantitative Genetics

http://dx.doi.org/10.1007/978-1-4614-9443-0_8


Recombination is the exchange of genetic material during meiosis as two

(homologous) chromosomes split at a certain point and reorganize after having

traded the DNA sequence on one or the other side of the split with each other. Now

markers A and B are no longer traveling together in the progeny issuing from that

point forward thus altering (weakening) the pattern of correlation between these

two markers. Approaching this backwards in time we note that when a recombina-

tion occurs, we can think of the child chromosome as having chosen two parents at

that generation time, t, i.e., one for the position that A occupies and one for the

position that B occupies. Figure 2.4 gives an illustration of such an ancestral

recombination graph [25]. The ancestry of each position (one for A and one for

B) marginally follows a coalescent. Ultimately even with recombination, there will

be a single MCRA found from which both loci were inherited [25] and ultimately a

single MCRA for all sites for the entire chromosome and genome, i.e., common

ancestors for all living humans.

If the recombination occurs early in the coalescent process, the correlation

between A and B will be weakened possibly considerably since a large number of

both recombinant and nonrecombinant chromosomes may have progeny in the

current generation. On the other hand, if the recombination event occurs much

later down the tree than the initial occurrence of these two mutations, most, but not

all, of the resulting (modern day) chromosomes that carry mutation Awill also carry

mutation B, i.e., the correlation between A and B will have been only partly

diminished by the recombination. Here we have considered the impact of just one

recombination event on the resulting correlations, but in fact if A and B are widely

separated then many recombination events will generally have occurred, each one

will tend to reduce the association between alleles like A and B.
The basic principles underlying association-based genetic studies is that markers

are correlated with each other and with causal variants of any type which have

Fig. 2.4 Recombinations and the ancestral recombination graph. Two mutations are depicted as

having occurred on the same branch. (a) No recombination. (b) Recombination that breaks the

correlation between mutations A and B
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similar histories, for example, the allele A may be a variant that increases suscep-

tibility to disease and B is a marker on the same chromosome that originated on the

same path segment (as in our simplified example) in Fig. 2.1. If there were no

recombination events anywhere on an entire chromosome, then marker B would not

be informative at all about the location of risk allele A; i.e., B could be placed

anywhere on the same chromosome and still be highly correlated with A, so that

B would appear to be associated with disease. However, when recombination does

occur, the correlations between markers are weakened. If the loci occupied by A and

B are distant from each other, then there will have been many recombinations taking

place over time so that the correlation between the marker B and the risk allele

A will be so low that B will no longer appear to be related to the disease of interest.2

The probability, in any generation, of a recombination occurring between the

loci that are occupied by A and B is termed the genetic distance between these two

sites. Genetic distance is an increasing function of the distance between sites, but

not uniformly so because recombination events do not occur at uniform rates at all

positions on a chromosome. There are certain regions where recombinations are

rare and certain regions where they are unusually common. These may be termed

recombination cold spots or hot spots, respectively [26–29]. Alleles between which

there have been low numbers of historical recombinations are said to be in linkage

disequilibrium (LD). The ongoing revolution in biotechnology has allowed the

inexpensive genotyping of hundreds of thousands of markers in large numbers of

people; the number of markers is so large that there is likely to be at least one

marker in high linkage disequilibrium with any given (common) variant affecting

risk of a disease or influencing some other phenotype that we are interested

in. Depending on the frequency of both the marker and the underlying causal

variant, this may result in a statistically detectable association between the disease

of interest and the marker. Once such an association has been detected, the

chromosomal region surrounding the marker becomes a candidate for a number

of additional analyses designed to first replicate the association, then further

localize and identify variants, and ultimately characterize the mechanism by

which a causal variant affects the disease or phenotype.

2.7.1 Quantification of Recombination

There are a number of standard statistics that are used to describe the pattern of

association between markers and to therefore characterize the extent of linkage

disequilibrium between markers. The two most important of these are Lewontin’s

2Note that we are now talking about correlations between SNP allele counts of two different

markers at different locations, over a sample of individuals, i ¼ 1,. . .,N. In Sects. 2.1–2.5, our

focus was on the correlations (induced by structure or relatedness) of counts, nA of a single marker

A for different individuals i and j.
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[30] δ0, while the second is the usual R2 criterion applied to alleles at two loci. These

two statistics are closely related; the first is designed to be a measure of linkage

disequilibrium between the two independent of their allele frequencies, while the

second depends on both the degree of linkage disequilibrium and the allele fre-

quencies of the two markers. The R2 statistic is most directly related to the

performance of association-based genetic studies in the situation we described

above, namely, when a nearby marker is measured as a surrogate for an unmeasured

(and generally unknown) causal variant. Both δ0 and R2 can be initially considered

in terms of a 2 � 2 table of two diallelic variants at two loci on a single chromo-

some. Each of the four possible combinations of the two alleles for the two variants

is termed a haplotype. If we denote the two variants as having alleles a or A for the

first variant and b or B for the second and if p is the probability of allele

A (so that 1 � p is the probability of allele a) and q the probability of allele B,
then the probabilities of the four haplotypes, ab, aB, Ab, and AB, can be depicted as
in Table 2.4.

Here δ is a disequilibrium parameter that measures the association between the

two loci in the sense that if δ is zero, the two alleles are independent and otherwise

are positively (for δ > 0) or negatively (δ > 0) associated. In fact, we see below

that δ is the covariance in the population of haplotypes of the counts (0 or 1) of the

number of alleles at each of the two loci. Because all haplotype probabilities must

be nonnegative, we can immediately see that δ is bounded by �min((1 � p)(1 �
q), pq)) � δ � min( p(1 � q), (1 � p)q). Since the labeling of the alleles (a vs.

A or b vs. B) is completely arbitrary, yet affects the sign of δ, the interest is actually
in |δ| which is bounded by

δmax ¼ min q 1� pð Þ, �1� q
�
p
�� 	

if δ > 0

min 1� pð Þ�1� q
�
, pq

� 	
if δ < 0



:

The scaled version of |δ| is defined as δ0 ¼ (|δ|/δmax) which takes values

between zero and 1. Note that if δ0 takes its maximum value of 1, then this

means that at least one cell (i.e., haplotype) in Table 2.4 will have probability

zero. Note that if all haplotypes have nonzero probability, then this constitutes

proof (under the infinite sites model) that there has been a historical recombination

between the two loci, i.e., the only way that all four haplotypes, ab, aB, Ab, and
AB could occur is if there was either (1) a second de novo occurrence of either A or

B (assuming that ab is the ancestral allele), ruled out by the infinite sites model, or

(2) that there was a recombination between the two loci to form, for example, AB
from aB and Ab.

Table 2.4 Haplotype

probabilities for two loci
b B

a (1 � p)(1 � q) + δ (1 � p)q � δ 1 � p

A p(1 � q) � δ pq + δ p

1 � q q 1
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While a value of δ0 close to one is evidence that there has been little or no

recombination between the two loci δ0 does not really measure the strength of the

association between the two variant alleles in a way that is important for associ-

ation testing. For example, if the allele frequencies p and q are very different (e.g.,
if p is close to 1/2 but q is much smaller), then the presence of only three

haplotypes, for example, ab, aB, and Ab, means that while A always appears

with b and never B, there are many instances of b not associated with A. When it

comes to assessing the power of an association study that genotypes the loci

occupied by B but not the loci occupied by A, the appropriate linkage disequilib-

rium criteria is simply the squared correlation R2 between the count of the two

alleles A and B.
Working within the haplotype framework, we introduce a slight variation on

previous notation so that nA(h) counts the number of A alleles on haplotype h. Thus
for haplotypes ab, aB, Ab, and AB, nA(h) takes values 0, 0, 1, and 1, respectively;

similarly nB(h) counts the B allele.

From first principles R2 ¼ Cov[nA(h), nB(h)]
2/{Var[nA(h)]Var[nB(h)]}. The var-

iance of the count, nA, of the number of alleles of A (now a binary random variable

since we are dealing with only one haplotype) is simply p(1 � p) and for nB is

q(1 � q), with the covariance between the two equal to E[nA(h)nB(h))] � E[nA(h)]

E[nB(h)] ¼ (pq + δ) � pq ¼ δ so that R2 ¼ δ2
pð1�pÞqð1�qÞ. It is worth noting first that

R2 does not depend upon which of the two alleles, a or A, is being counted, i.e., we

could use nA or na equivalently, and similarly for nB or nb.

2.7.2 Phased Versus Unphased Data and LD Estimation

While we have described R2 as the squared correlation between binary variables

(the n counters) in an experiment where we observe the haplotypes, ab, Ab, aB,
and AB, directly, the same R2 (or R for that matter) applies if we observe, rather

than the haplotypes themselves, unphased genotypes for diploid chromosomes, so

long as we assume that each haplotype is inherited independently; in this case nA
and nB are correlated binomial random variables, which now take the values

(0, 1, or 2), but with the same value of the correlation between them as if

haplotypes were measured directly. Since we can certainly estimate the allele

frequencies p and q as well from the unphased as from the haplotype data, a

non-iterative estimate of δ based solely on the genotype data is simply

δ̂ ¼ R̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þq̂ 1� q̂ð Þp

. Here we have estimated R as the usual sample

correlation estimate for nA and nB from genotypes obtained for a sample of

individuals in the population. Other estimates of δ can be formed from genotype

data, with the method of maximum likelihood easily implemented using an EM

algorithm [31]. More about estimation of haplotypes based on genotype data is

presented in Chaps. 5 and 6.
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2.7.3 Hidden Population Structure

As we will see in Chap. 3, genetic association studies are based upon the assump-

tion that because of recombination only markers that are in close proximity to a

causal genetic variant that directly or indirectly influences disease risk or phenotype

distribution should be statistically associated with that phenotype. However, there

are a number of reasons why this may not be true. The most important of these is

hidden population structure present in the study. When hidden population structure

is present, LD appears to be of much greater extent than expected, and very large

numbers of markers scattered over the entire genome may show unexpected levels

of association with the phenotype of interest. At the root of this failure to localize

associations is the extent of apparent LD that is brought about by the presence of

such phenomenon as admixture, hidden stratification, and cryptic relatedness.

2.7.3.1 Stable Populations

Consider first a stable population of chromosomes that is isolated, in that there is no

migration from the outside entering the region, and where there is random mixing

between chromosomes (i.e., genetic variants are all assumed to be neutral in terms

of reproductive fitness and unrelated to mating choice). In this case over time we

will see two things: (1) an increase in the number of (neutral) mutations and (2) a

loss of linkage disequilibrium between existing markers. For a given pair of

markers t, it can be shown that the linkage disequilibrium parameter δ changes

with generation, t, according to

δ tð Þ ¼ δ0 1� θð Þt, ð2:15Þ

where δ0 is the initial value of δ and θ is the probability of a recombination between

the two markers in one generation. Ultimately with enough time elapsed, recombi-

nation between markers would insure that only those markers that are extremely

close to each other physically (i.e., with θ very close to zero) should be in LD with

each other. As we will further illustrate later in this chapter, of the major continental

populations (e.g., European, African, and Asian), it is the oldest continental popu-

lation, i.e., people in or from Africa, that tends to show the lowest LD between

markers and also the most common variants.

2.7.3.2 Out Migration and Population Expansion

Groups of Africans began to expand into Europe and Asia at the end of the last great

ice age. Outmigration of a small number of founders and subsequent rapid popu-

lation growth has profound effects upon linkage disequilibrium and frequency of

markers. Since the founders may each have a great number of descendents, any

mutation carried by a founder, no matter how rare in the ancestral population, will
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tend to be common in the descendant population. Moreover mutations that were in

linkage equilibrium in the ancestral population, but which were both carried by a

given founder chromosome, will be in linkage disequilibrium in the new population

and remain in linkage disequilibrium until the force of recombination again

weakens such disequilibrium. Thus recently founded isolated populations will

tend to have higher levels of linkage disequilibrium than will older more stable

populations.

For GWAS studies the extended linkage disequilibrium of recently derived

isolated populations has sometimes been considered to be of benefit in that it would

take fewermarkers to find regions of the genome that were associatedwith disease- or

phenotype-associated causal variants. Iceland, for example, has been described [32,

33] as an ideal setting for conducting GWAS studies because in this recently derived

ethnically homogeneous island, LD patterns should be longer and coverage of causal

variants with GWAS chips should therefore be more complete. In fact the GWAS

studies in Iceland, conducted by deCode Genetics corporation, has had many impor-

tant successes. It appears however that these successes had much more to do with the

fact that DNA resources for a large fraction of the entire population of Iceland were

available at an early stage, as well as the abilities of the deCode scientists, and less to

do with better coverage of the genome, at least in comparison with other European

populations. In particular, the discoveries in Iceland were very often reproduced by

other similar sized GWAS studies of other less recent but still European-derived

populations using similar genotyping technology.

A downside of using an isolated population in a GWAS is that not all alleles

related to the phenotype of interest disease are likely to be present in that population

(due to founder effects), and moreover extended linkage disequilibrium implies that

localization of causal alleles underlying observed associations may be more diffi-

cult. Studies of disease and other phenotypes in populations of more ancient origins,

notably African-derived groups, do require more SNPs to cover any one particular

genetic region, or the genome as a whole, and this was one early impediment to

progress in GWAS studies in such populations. The ability of commercial GWAS

platforms to cover the variation in the African genome is gradually improving, and

the shorter LD can be beneficial for the localization of the signal from GWAS

findings, a crucial step in the ultimate identification of specific causal variants. The

most crucial impediment now to GWAS studies in African populations is the less

developed infrastructure of cohort and case–control studies with access to DNA

samples in this (and other) non-European groups.

2.7.3.3 Population Admixture and Hidden Stratification

In the last few hundred years not only have population sizes grown immensely but

also groups that had been relatively isolated for long periods are now in contact,

because of migration patterns brought on by technological advances, the growth in

trade and other economic relations between groups, and for less positive reasons

including war, conquest, and slavery. Recent admixture between formerly isolated
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groups is an important feature of many of today’s modern populations. Recent

admixture introduces linkage disequilibrium between markers at two loci which

have different allele frequencies in the original populations; this linkage disequi-

librium is extensive and even affects markers that are on different chromosomes; if

the resulting admixed population then mixes freely in subsequent generations, truly

long-range linkage disequilibrium (between markers separated so that their recom-

bination rate is near 1/2) will disappear rapidly , as indicated by formula (2.15), in

subsequent generations. If mating practice is affected by admixture proportion

(with mating more likely between similarly admixed than dissimilar subjects),

then apparent linkage disequilibrium can remain high between markers throughout

the genome for many generations. Admixture is an important aspect of such US

populations as African Americans, Latinos, American Indians, and Native Hawai-

ians, and additional admixture among many populations may be expected to

continue due to continued population movements and loosening of cultural pro-

hibitions. As we will see in Chap. 4, it may be very important to control for

admixture in an association study.

Hidden stratification occurs when an apparently homogeneous population con-

tains unrecognized (or simply unmeasured in a given study) population structure,

specifically the presence of subgroups within a larger population between which

mixing is rare. Historically within the USA, we can think of many religious or

ethnically based groups with prohibitions against marriage outside the group, but

which may not be distinguished from each other in typical epidemiological studies.

The distinction between hidden population stratification and admixture is not very

clear in practice since in many cases traditional prohibitions are increasingly

relaxed. The impact on LD structure of such stratification (while usually milder

than the effect of recent admixture between continentally separated groups) can still

be important in association studies especially in certain types of extreme studies, as

we will see in later chapters.

2.7.3.4 Hidden Relatedness Between Subjects

Another potentially problematic issue for association studies is the presence of

unexpected close relatives in studies. Many association studies that enroll a large

number of participants from small populations are likely to encounter a fairly large

number of quite closely related subjects, and even large-scale multisite studies

occasionally find unexpected relatives (and even identical twins) when they look

carefully at the genotypes that are generated. As we see in Chap. 4, cryptic
relatedness, does, if many close relatives are genotyped in a study but the subjects

were not recognized to be close relatives, have an important effect on the distribution

of test statistics designed to detect associations between markers and phenotype.

While relatedness between individuals does not affect the marginal distribution of

individual genotypes (here we are ignoring the possibility of inbreeding), it does affect

the distribution of quantities such as the sum of two or more related individual’s

genotypes, for example, for two siblings (so that z0 ¼ 1
4
, z1 ¼ 1

2
, and z2 ¼ 1

4
) so that
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the correlation between n1 and n2 is equal to 1/2 z1 + z2 ¼ 1/2, then the sum, S, of
n1 + n2 will have variance

Var n1ð Þ þ Var n2ð Þ þ 2Cov n1; n2ð Þ ¼ 6p 1� pð Þ

compared to 4p(1 � p) if the two counts were independent. This comparison is

important because, as discussed in Chaps. 3 and 4, statistical tests that use inap-

propriate variance estimates are generally overdispersed under the null hypothesis,

i.e., are prone to give inappropriate false-positive (type I) error rates.

2.7.4 Pseudo-LD Induced by Hidden Structure
and Relatedness

For most of this chapter only one marker has been considered in the discussion of

hidden structure and relatedness. Now consider an extension of the Balding-Nichols

model to two markers, not in linkage disequilibrium in any individual population,

sampled for a set of individuals (i ¼ 1, . . ., N ) in a stratified population with

substrata l ¼ 1, . . ., L. For the purpose of notational simplification, assume that

both markers have the same frequency, p, in the ancestral population. The simula-

tion process is as follows:

For the first marker, draw a set of subpopulation marker frequencies, pl1, l ¼ 1, . . ., L
from the beta distribution with mean p.

For the first marker, draw a sample of marker values ni,1, i ¼ 1, . . ., N indepen-

dently from the binomial distribution with index ¼ 2 and frequency pl1, where
l corresponds to the substratum that individual i is assigned to.

Draw a set of marker frequencies, p2l, l ¼ 1, . . ., L from the same beta distribution

for the second marker.

Draw sample of the second marker ni,2, i ¼ 1, . . ., N again stratified by

subpopulation.

The following R code snippet illustrates the sampling procedure for L ¼ 2

populations each of size 1,000 subjects:
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Now consider testing for whether there is an association between markers 1 and

2. After running the above code, we type:

which gives results:

Note that variables n2 and n1 appear to be associated despite being sampled

independently, while the magnitude of the correlation is not very large (just

R ¼ �0.07), the p-value for testing association is equal to 0.00136 clearly some-

thing that is unlikely just by chance, in fact repeating this experiment many times

gives a large number of quite small p-values.
The real source of this apparent association between independent markers is the

failure to take account of the correlation structure of n1 when we tested for

association between n1 and n2.
The R function lm has underestimated the variance of the ordinary least squares

estimate because it has assumed that the elements of n1 are independent of each

other, when instead the nonzero value of F used in the simulation has induced the

between-marker correlation structure described above. When averaging over many

runs, the correlation will be estimated to be equal to zero between the two markers;

however, for any given run the usual tests for association are very likely to yield a

very small p-value, i.e., a false-positive assessment of correlation, and this problem

increases with sample size N.
A more detailed analysis (see Chap. 4) shows that the assumption that both n1

and n2 are differentiated according to population structure is required to produce

this sort of induced correlation (this makes sense since we can always reverse the

role of n1 and n2 in this problem). Note the use here of ordinary least squares (the

R procedure lm) rather than glm to test for a relationship between two marker count

variables; while this may seem nonstandard to many statisticians familiar with

analysis of binomial data (e.g., using logistic regression), it is quick and gives very

well-behaved tests of the null hypothesis of no association between the two markers

for sample sizes as large (1,000 per strata) as used here (this can be observed in the

behavior of the simulation program by setting F to zero and running the entire

experiment again—only something very close to the expected number of small p-
values will be observed), see Chap. 3 for more information.

Clearly the induced correlation described here behaves nothing like true linkage

disequilibrium, which should die out as the genetic distance between the two

markers increases; here we have simulated a situation that is analogous to markers

lying on different chromosomes entirely. Interestingly as we will see in Chap. 4,
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even such weak apparent correlations (because they are spread over the entire

genome) can have important consequences when it comes to distinguishing true

marker/genotype associations between those induced by hidden structure or relat-

edness. This is most especially true for certain extreme analyses such as the case-

only method for assessing gene x gene interactions [34] (see Chap. 7).

2.8 Covering the Genome for Common Alleles

As described above the common disease-common variant hypothesis is undoubt-

edly a simplification of a much more complex genetic architecture for many

diseases, and while common disease-related alleles have been detected for

many diseases, many questions remain about the relative role of common vari-

ants versus rare variants. Nevertheless the CDCV hypothesis motivates the

use, in genetic association studies, of the technical breakthroughs that have led

to the identification of millions of common SNPs, as well as cost-effective

array-based large-scale genotyping of hundreds of thousands or even millions

of SNPs.

A key issue then for GWAS studies is the “coverage” of common variants by the

SNP arrays that are available commercially; coverage calculations are based on R2

statistics between SNPs on the arrays and a target set of known variants. For each

target variant, the goal is to have an SNP on the SNP array that is highly correlated

with the target. Since these arrays are meant to be used generally, i.e., for all

heritable phenotypes that could be of interest, target variants should not be simply

be SNPs in candidate genes for one or more phenotypes but rather should as much

as possible constitute a census of all common variation.

SNP array coverage statistics have been described for various populations by

the companies that manufacture and sell the arrays, as well as by other investi-

gators [35, 36]. However, at least three factors make the evaluation of coverage of

the genome an ongoing project; first of all, the frequency domain of the target

variants (which originally specified variants with minor allele frequencies at least

5 to 10 % frequency in one or more populations as common) is changing with

rarer alleles increasingly being considered to be worthy targets; secondly the

number of populations being assessed for genetic variation is increasing and

this can lead to additional variants, common in specific populations being

included in the target set; and finally techniques of SNP discovery are continuing

to improve and to lead to increased discovery of variants not known to have

existed. One additional factor that may also complicate the assessment of the

coverage of common variation is inherent uncertainty in the measurement of some

kinds of potential causal variants. Here I am referring to the possibility that

haplotypes made up of SNPs or other variants could be causal variants (examples

have been reported, e.g., [37]) rather than the SNPs: a “haplotype effect” means

that a combination of SNPs falling on the same homologous chromosome could

have a different effect than if the same SNPs were present, but on different
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homologs. Even if all the SNPs that constitute a SNP haplotype appear on the

array, there still may be (depending on the degree of historical recombination

between the SNPs making up that haplotype) considerable uncertainty in inferring

the haplotype based upon the genotypes of those SNPs. We discuss haplotype

uncertainty in more detail in Chap. 7. If we begin to consider not only all common

SNPs and other sequence variants but also all common haplotypes of these SNPs
as our target set of variants, then this greatly increases both the number of variants

to be tested and also lowers overall coverage statistics due to haplotype

uncertainty.

To date, the coverage target set of choice has been the SNPs (and other

identified inherited variants) genotyped in the HapMap project (http://hapmap.

ncbi.nlm.nih.gov/), specifically in phase 1 and phase 2 of this project [38]. As

described below, phase 1 and phase 2 together genotyped over six million SNPs of

which several millions were found to be common in at least one of four groups of

samples. The DNA samples genotyped by the HapMap project originated from

270 people: 90 Africans (members of the Yoruba people, in Ibadan, Nigeria),

90 Americans of European descent from Utah, 45 Han Chinese from Beijing

China, and 45 Japanese from Tokyo, Japan. The SNPs that were chosen to be

genotyped in HapMap were those that had been previously reported to dbSNP

(http://www.ncbi.nlm.nih.gov/snp/ [39]), an online repository of information

about genetic variation contributed by scientists studying the human genome

from around the world. In order to assess completeness of ascertainment of

common SNPs by the HapMap, the HapMap project included within it an SNP

discovery project focusing upon 10 different regions of the human genome, each

of approximate length 500 kb, for which genetic sequencing was performed in

48 unrelated DNA samples (16 Yoruba, 8 Japanese, 8 Han Chinese, and 16 Euro-

peans); all identified SNPs as well as all SNPs from dbGAP reported in these

regions were genotyped in all the HapMap samples. Reports about the frequency

and number of common variants in these regions as well as other statistics

designed to use these regions to assess coverage over the full genome have been

published [38].

More recently the 1000 Genomes Project [40] is in the process of using high-

throughput sequencing methods to identify additional common sequence variants

and also to begin to for the first time create a census of less common variants,

specifically those within the range from 1 to 5 % frequency in at least one of the

14 populations considered. While these data are still (at the time of this writing)

incomplete, there are already indications that not all common variants to be found

in this project will have good surrogate SNPs either on the commercial arrays or

indeed within the HapMap itself.

Table 2.5 shows the number of individual samples and type of sample (unrelated

individuals or parent-offspring trios) for the HapMap phase 1 + 2 project, the

HapMap phase 3 project, and the 1000 Genomes Project.
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Table 2.5 Population description for HapMap and the 1000 Genomes Project (1KP)

Population designator Population descriptor

HapMap

1 + 2 HapMap 3 1KG phase 1

ASW African ancestry in southwest USA

N samples 0 90 61

N founders 0 60 61

CEU Utah residents with northern and western European

ancestry

N samples 90 180 85

N founders 60 121 85

CHB Han Chinese in Beijing, China

N samples 45 90 97

N founders 45 90 97

CHD Chinese in Denver, Colorado

N samples 0 100 0

N founders 0 100 0

CHS Han Chinese, South

N samples 0 0 100

N founders 100

CLM Columbians in Medellin, Columbia

N samples 0 0 60

N founders 60

FIN Finnish in Finland

N samples 0 0 93

N founders 93

GBR British from England and Scotland

N samples 0 0 89

N founders 89

GIH Gujarati Indians in Houston, Texas

N samples 0 100 0

N founders 0 100 0

IBS Iberian populations in Spain

N samples 0 0 14

N founders 0 0 14

JPT Japanese in Tokyo, Japan

N samples 45 91 89

N founders 45 91 89

LWK Luhya in Webuye, Kenya

N samples 0 100 97

N founders 0 100 97

MEX/MXL Mexican ancestry in Los Angeles, CA

N samples 0 90 66

N founders 0 60 66

MKK Maasai in Kinyawa, Kenya

N samples 0 180 0

N founders 0 150 0

(continued)
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2.8.1 High-Throughput Sequencing

As of the time that this book is written, large-scale high-throughput sequencing [41]

is beginning to be performed in association studies either focused on candidate

regions, such as exons either of candidate genes, or for all known genes, regions

containing GWAS hits; whole genome sequencing is beginning to be used despite

the considerable expense and informatic burdens that large-scale sequencing

involves. More on the rationale for collecting and approaches to the analysis of

such data is given in Chap. 8.

2.9 Principal Components Analysis

One of the most useful methods for detecting and visualizing hidden structure and

admixture is principal components analysis [42], and this technique has been

widely advocated (and used) as an effective tool for addressing population structure

in the analysis of data from association studies [4]. For the time being, we

concentrate on principal components methods as a technique for display of sample

or population features.

Reviewing very briefly, see Jolliffe [43], given samples of random vectors

X with M components, the first principal component of X is a linear function α01X
of the elements of X which has maximum variance under the constraint that α01α1
equals 1. The second principal component is another linear function, α02X, which is
uncorrelated with α01X and again with maximum variance subject to α02α2 ¼ 1.

Proceeding in this fashion further up toM principal components can be found, but it

is hoped that important characteristics of the variability of X will be captured by

L principal components with L considerably less than M. These first L linear

functions are called the leading principal components. They can be computed

through a spectral or eigenvector/eigenvalue decomposition of the covariance

Table 2.5 (continued)

Population designator Population descriptor

HapMap

1 + 2 HapMap 3 1KG phase 1

PUR Puerto Ricans in Puerto Rico

N samples 0 0 55

N founders 0 0 55

TSI Tuscany in Italia

N samples 0 100 98

N founders 0 100 98

YRI Yoruba in Ibadan, Nigeria

N samples 90 180 88

N founders 60 120 88
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matrix of X; specifically if Σ is the covariance matrix of X, then the spectral
decomposition of Σ is

Σ ¼
XM
k¼1

wkαkα
T
k ,

where the wk are each nonnegative scalars (the eigenvalues of Σ), with w1 � w2 �
w3. . . � wM � 0, and the αk as the eigenvectors of Σ each having the property that

(Σ � wkI)αk ¼ 0. The fraction of total variance that is explained by the L principal

components is computed as

XL
i¼1

wi=
XM
i¼1

wi

 !
: ð2:16Þ

Principal components analysis is used as a data summarization technique in a

wide variety of data intensive fields and disciplines including bioinformatics for

gene expression data, proteomics, and metabolomics [44, 45]. In nutritional epide-

miology, there have been a number of papers relating risk of late onset disease

(cardiovascular disease, cancer, etc.) to specific eating patterns captured by the

first L (or leading) principal components of dietary data [46]. Many other uses

of principal components analysis and its cousin, factor analysis, have been

described in many different fields including bioinformatics, meteorology [47],

and economics.

When variables are not all scaled similarly, it is customary to compute the

principal components from the correlation matrix for the random vector X rather

than from the covariance matrix. When dealing with massive amounts of SNP

data (i.e., where M corresponding to the number of SNPs genotyped in a given

study is very large), large-scale genetic association studies tend to approach

principal components slightly differently than described above. For example,

Price et al. [4] describes the extraction of the eigenvectors of the N � N kinship

matrix K, where N is the number of subjects, rather than starting with (as above)

the eigenvectors of theM � M correlation or covariance matrix for the SNP data.

The first L of these eigenvectors themselves (not their dot products with each

individual’s SNP data) are then termed “principal components” by Price et al.,

i.e., the ith element of the jth eigenvector is referred to as the value of the jth
“principal component” for person i. While it is nonstandard terminology to call

these the principal components, there is actually a close relationship between the

classical principal components, calculated by decomposing the correlation matrix

of the genotype data, to the eigenvectors of the relationship matrix (a matrix of

dimension N � N ). While the relationship matrix is not a correlation matrix

per se, note that we can compute the sample correlation matrix between the

genotypes as
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C ¼ 1

N � 1ð ÞX
TX, ð2:17Þ

where X is a (N � M ) matrix with the (i, k) elements equal to the normalized

values

xik ¼ nik � n :kffiffiffiffiffiffi
S2:k

q :

Here n :k is the usual sample mean for SNP k and S.k
2 is equal to the usual sample

variance estimator 1=N � 1ð Þ
XN
i¼1

nik � n :kð Þ2. Note the similarity between this xik

and zik in (2.7) which is used in the calculation of the estimated relationship matrix

K̂ . In fact the estimate of the mean n :k is exactly equal to 2p̂ k, and
ffiffiffiffiffiffiffiffi
2p̂ k

p
1� p̂ kð Þ

will be close (if HWE is not greatly violated) to

ffiffiffiffiffiffi
S2:k

q
. This implies that the

estimated relationship matrix (computed for all pairs of a total of N subjects) is

“almost” equal to the N � N matrix (1/M )XXT. Moreover it is easy to show that if

αl is the lth eigenvector of (1/(N � 1))XTX, the lth eigenvector of (1/M )XXT will

be equal to a constant times Xαl. Because of this, the eigenvectors of the relation-
ship matrix while computed using the zi,k are generally almost proportional to the

principal components computed using the eigenvectors of the correlation matrix

computed from the xi,k.
Note that if (as typical in a GWAS study) we have a larger number, M, of SNPs

(several hundred thousand) genotyped than we have individuals, M (several thou-

sand), then it may be much more computationally efficient to extract eigenvectors

from the N � N relationship matrix than from theM � M correlation matrix. Given

these considerations, it is reasonable to accept the slight abuse of terminology of

Price et al. and refer to the eigenvectors of K̂ as the principal components of the

genotype data.

2.9.1 Display of Principal Components for the HapMap
Phase 3 Samples

The HapMap project expanded the number of populations with genotypes available

by (in phase 3) genotyping a total of 1,184 subjects from 11 different distinct

population samples using a combination of the Affymetrix 6.0 and Illumina 1M

SNP arrays, each of which genotyped about one million SNPs with approximately

400,000 SNPs genotyped using both arrays. We illustrate the power of principal

components analysis to extract the main features of historical separation that arose

between populations, as groups diverged from their ancestral origins, and more

recently admixture between long-separated groups, by use of a sample of SNPs
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from these data. We illustrate the process here of using the HapMap website in order

to read into R a sample of ~20,000 randomly chosen SNPs from each of the

11 HapMap phase 3 populations, perform the calculation of the relationship matrix

and its principal components (e.g., eigenvectors), and then display simple plots of

these data. Because we will only be using a small sample of the HapMap genotypes,

we can do all of the statistical calculations and plotting reasonably quickly in R; for
larger datasets, there are several other choices depending on the expertise of the

statistician, for example, the stand-alone program EIGENSTRAT, introduced by

Price et al. computes principal components, but then these must be read into other

programs (such as R) for plotting, filtering of results, summarization, etc.

The statistical package SAS and its principal components procedure PRINCOMP

can also be used to compute and display eigenvectors of K̂ . These programs are

effective in computing eigenvectors for quite large matrices (~10,000 subjects or

more) on amodern desktop computerwith a large amount ofmainmemory (8–16Gb).

For the illustrative example here, the simplest way to retrieve data from the

HapMap website is as a PLINK format file and to use PLINK (see Computer

Appendix) to extract a random sample of SNPs. The following steps were followed:

Download HapMap phase 3 data set, hapmap3_r1_b36_fwd.qc.poly.tar.bz2, from
the HapMap website ftp site ftp://ftp.ncbi.nlm.nih.gov. This file, which contains

separate files for each of the 11 contributing population samples, can be

decompressed using the linux command bunzip or the Windows program winzip.
The 11 HapMap 3 populations each have files of type *.ped which contain

genotypes and *.map files which contain SNP information.

Using PLINK, merge these 22 files together, make a random selection of approx-

imately 20,000 SNPs to use in the PCA analysis, and perform the PCA analysis

and plotting using R. To do so, we first run the following PLINK commands:

The first command refers to a list of all the files (allfiles.txt, created by the user)

to be merged with the first file (ASW). The allfiles.txt file lists the remaining

10 genotype files to be merged starting with the first one as listed on the command

line. It contains the list:
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These files being merged are named according to the population descriptors for

the 11 HapMap phase 3 groups: See Table 2.5.

The output of the second PLINK command is the file, hapmap3_snp_sample.

raw, which is formatted in a way that the R command, read.table, can read directly.
The –recodeA subcommand codes the SNP alleles as equal to 0, 1, or 2 copies of the

minor allele with NA being the missing value indicator. The –maf 0.05 command

removes SNPs which have minor allele frequency less than 5 %, and the –filter-
founders command indicates that only genotype data for the total of 988 founders

(i.e., dropping offspring from any parent-offspring trios) is to be included.

With the addition of one other file (IDgroup.txt which contains the ID record for

and group affiliation (ASW, CEU, etc. for each subject), we can now perform a

simple PCA analysis in R.
Read data into R and compute the estimated relationship matrix for all

X subjects:

Next we compute eigenvectors and define and run a function plotPC used to

display the results:
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The results of this first call to the function plotPC are given in Fig. 2.5a.

In Fig. 2.5a the main visible features are the clustering of the three continental

groups (European, Asian, and African) as well as evidence of admixture for several

groups including the African Americans (ASW) and the Mexican Americans

(MEX). We can look in more detail at the two East Asian groups, Japanese from

Tokyo (JPT) and Chinese from Beijing (CHB), by recomputing the K matrix that

pertains to these two groups, recalculating the eigenvectors, and again calling the

plotPC function:

The results are shown in Fig. 2.5b. Now the first eigenvector is sensitive to

differences in SNP frequencies between the Japanese samples, compared to the

Chinese samples. This plot shows that the principal components method can make

more subtle distinctions than just the detection of large-scale continental variation.

This Japanese group of samples appears to derive from China given the overall

similarity of the two groups seen in Fig. 2.5a, but remains partly distinguishable as

in Fig. 2.5b. The observed differences are probably related to founder effects and

random genetic drift due to the relative isolation of Japan from the mainland of Asia

over a number of generations [48].

Principal components analysis is of course interesting since it says much about

historical relationships among population groups; it has also been stressed here
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Fig. 2.5 Principal components plot for the HapMap phase 3 data. R code for this plot is given in

the text. The colors correspond to group membership; see the R function plotPC, defined in the

text, for color coding. The left side plot shows all 11 groups plotted, while the right side plot is only
the Japanese and Chinese samples
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because of its utility as a tool in association studies as will be described in later

chapters. Principal components can also be used as a QC tool in checking that

batches of genotype data are not being disturbed by subtle factors (such as plate

specific errors and DNA quality issues). Principal components are sensitive to each

of population structure, relatedness between subjects, and to certain patterns of

linkage disequilibrium, as well as such QC problems.

It is worth saying also that while principal components can distinguish groups

that are quite closely related historically, the total amount of SNP variation that is

explained by the first few leading principal components—i.e., the portion of SNP

variation that can be directly related to racial/ethnic origins, is actually quite small.

Figure 2.6 plots the cumulative percentage (2.16) of SNP variation explained by the

first L eigenvectors for both the total HapMap phase 3 population and for

the Japanese and Chinese separately. About 15 % of the total variation in the entire

HapMap sample and much less (~2 %) of the variation of the SNP data for the

Japanese and Chinese is explained by the two eigenvectors plotted in Fig 2.6a, b.
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Fig. 2.6 Plots of the total variation explained by eigenvectors 1, . . ., L for (a, b) the entire

HapMap phase 3 dataset and (c, d) for the Japanese (JPT) and Chinese (CHB)
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This illustrates the general concept that racial groups are ultimately much more

similar than they are different, or more precisely that within-group genetic variation

dwarfs between-group variation.

2.10 Chapter Summary

The chapter has presented a brief survey of topics related to population and

quantitative genetics that are relevant to the motivation for and the design and

analysis of large-scale genetic association studies. The concepts of linkage disequi-

librium, population heterogeneity and relatedness, and the induced covariance

between markers caused by population heterogeneity, as well as the techniques of

principal component analysis, described here, are all followed up in the later

chapters in this book.

Homework/Projects

1. If the vector of allele counts n1 ¼ (n11, n21, . . ., nN1)
0 for a given variant has

covariance matrix 2p1(1 � p1)K and that another variant with allele counts

n2 ¼ (n12, n22, . . ., nN2)
0 independent of n1 which has covariance matrix

2p2(1 � p2)K:

(a) Show that the sum of these two variants, s ¼ n1 + n2, will have covariance

matrix (2p1(1 � p1) + 2p2(1 � p2))K.

(b) Show that the correlation matrix of s is the same as the correlation matrix of

n1 (or for that matter n2).

(c) Define a polygene, gi ¼
X

j¼1, ...,M
wjnij, as a weighted sum ofM independent

alleles each with the same covariance structure (covariance between sub-

jects i and j) as above. Show that the covariance structure of the polygene is

equal to γ2K with γ2 ¼
X

j¼1, ...,M
wj

22pj 1� pj
� �

2. Give details of the calculations for several other probabilities in Table 2.2

following the method used for the (Aa, Aa) genotype.
3. For first cousins (where the grandparents are unrelated to each other):

(a) Compute the probabilities z0, z1, and z2 from first principles.

(b) Suppose the first cousins marry and have two children, what is each off-

spring’s inbreeding coefficient and the probabilities z0, z1, and z2 between
them?

4. Show using Table 2.2 that

Cov n1; n2ð Þ ¼ z1 þ 2z2ð Þp 1� pð Þ:
5. Section 2.1.3: Suppose that DNA for a random sample of pairs of siblings is

obtained and all DNA samples are genotyped for a polymorphism. How does
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(2.1) need to be modified to give a confidence interval for the allele frequency

of an allele A?
Hint: first find the variance of the allele frequency estimate for each sibling

pair and then the average of this estimate over all pairs.

6. Section 2.1.4, inbreeding:

(a) Show that if an individual’s parents are related with coefficient of kinship

equal to h then if nA is the count of allele A for a given polymorphism {aA}
with frequency of A equal to p, the variance of nA is 2p(1 � p)(1 + h).

(b) Show also that the predicted fraction of heterozygotes equals 2p(1 � p)
(1 � h) in the same situation. This gives a definition of Fst for an inbred

population, namely, as the average kinship between individuals in the

population, which is estimated by the reduction of heterozygotes away

from HWE.

See Balding and Nichols’ papers [49–51] for more details.

7. Section 2.5.1, relatedness: compute the variance of
1

M

XM
l¼1

z2il under assumptions

of (1) Hardy–Weinberg equilibrium for all SNPs (implying that this quantity

has expected value equal to one), (2) that all variants are independent (not in

LD) of each other, and (3) that all have the same allele frequency p. Compute

the variance under the same conditions of the suggested estimator (Yang

et al. [9])

1þ 1

M

XM
l¼1

n2il � 1þ 2plð Þnil þ 2p2l
2pl 1� plð Þ :

Hint: compute from first principals the mean and second moments of ziℓ
2

under HWE by summation over its distribution, i.e., ziℓ
2 takes value 0� 2plð Þ2=

2pl 1� plð Þð Þ with probability (1 � pℓ)
2, value 1� 2plð Þ2= 2pl 1� plð Þð Þ with

probability 2pℓ(1 � pℓ), and
2�2plð Þ2

2pl 1�plð Þ with probability pℓ
2.

8. Section 2.9, principal components. Why are the eigenvalues of a covariance

matrix Σ considered to be equivalent to variances explained by eigenvectors,

and why is (2.16) interpreted as the fraction of variance explained by the first

L leading eigenvectors?

9. Section 2.7.4: Show that for a mixed population, Z, treated as a single popula-

tion containing two subpopulations, X and Y, with proportion m and (1 – m),
respectively, that the disequilibrium between any two markers A and B in the

mixed population is equal to

δZ ¼ mδX þ 1� mð ÞδY þ m 1� mð Þ pA,X � pA,Y
� �

pB,X � pB,Y
� �

,

with δX, δY, and δZ as the disequilibrium parameters in populations, X, Y, and Z,
respectively, and allele frequencies of markers A and B as pA,X, pB,X, pA,Y, and
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pB,Y in populations X and Y, respectively. Hint: see reference [52]. Note that this
implies that markers which are unlinked in the originating populations (δX ¼ 0,

and δY ¼ 0) will be linked in a stratified populations only if the allele frequen-

cies of both alleles are different.

10. Section 2.4.1.1: Based on the Balding–Nichols model used in that section give

a formula for Ht and Hs and hence Fst when F remains the same for each

population t, but the sample size in each population, Nt is different.

11. Section 2.6.3, selection and allele frequency distribution. Consider a cancer

like breast cancer and assume that the only reduction in reproductive fitness

related to occurrence of breast cancer is due to early mortality (e.g., mortality in

the childbearing years from the cancer). We are interested in the following

question: if a genetic variant of 10 % frequency increases relative risk of breast

cancer mortality by 20 % per allele proportionately over a woman’s lifetime,

what value of σ in (2.14) would this correspond to, i.e., what reduction of fitness
does this imply? What data would be needed in order to address this question?

12. Section 2.6.1, having two sexes raises an obvious question. Is there a most

recent common female ancestor and a most recent common male ancestor? If

so did they know each other? For a discussion, see http://scienceblogs.com/

authority/2007/07/17/adam-eve-and-why-they-never-go/.

2.11 Data and Software Exercises

Here we assume that the JAPC and LAPC data mentioned in Chap. 1 are available

to the student, either through a dbGaP request or otherwise. If other GWAS data are

available to the student, these can in most cases be used instead.

1. Using available GWAS data (e.g., JAPC and LAPC) as well as the HapMap data

described above, perform principal components analysis on the combined data.

This consists of several steps:

(a) Develop a list of SNPs that are genotyped in both the GWAS data and the

HapMap data described above (hint: use the bim files to manipulate them in

SAS or R) to form a list of the intersection of SNPs between all these files.

(b) Sample perhaps 10,000 or so markers from the intersection above (SAS or R).
(c) Pull out SNP data from each file (using PLINK commands). For HapMap do

not use offspring who have parents with genotypes (PLINK command).

(d) Merge the data for the 10,000 common markers into a single PLINK file

(PLINK commands).

(e) Recode this file to 0, 1, 2 coding (count of the number of minor alleles

carried for each SNP) using PLINK commands.

(f) Read this file into R and modify/run the R programs given above to extract

principal components of the data and display these data as done above for the

HapMap samples.
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(g) Make a special run just on the JAPC data in combination with the JPT

HapMap population. Describe the finer structure in the JAPC data; see [48]

for a survey of population structure in Japan.

2. EIGENSTRAT for principal components estimation. We have shown a simple

R program that can estimate the relationship matrix K using the formulae (2.8)

and (2.9). This program will work reasonably well for a few thousand markers

and few hundred subjects. A much more efficient program that can handle

hundreds of thousands of markers and tens of thousands of subjects is

EIGENSTRAT [53] available from http://genepath.med.harvard.edu/~reich/Soft

ware.htm. Review the use of this program.

3. STRUCTURE, Pritchard et al.[54]. This program is specifically designed to

identify hidden structure in a population based upon SNP data and estimate

population membership or admixture fraction for each individual in a study. The

results of the STRUCTURE analysis (an individual’s percent admixture from

different populations) is often more interpretable than using principal compo-

nents and has been used in many analyses. The program can be downloaded from

URL http://pritch.bsd.uchicago.edu/structure.html.

(a) Try running this program on samples of the HapMap data described above.

Estimate admixture fractions for individuals in the ASW group (African

ancestry in Los Angeles CA).

(b) Using the JAPC data, does this program estimate the fine structure visible by

contained in this population?
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Chapter 3

An Introduction to Association Analysis

Abstract This chapter focuses on techniques commonly used in GWAS studies to

estimate single SNP marker associations in samples of unrelated individuals; when

the phenotype is discrete (disease/no disease) then case–control methods, condi-
tional and unconditional logistic regression, are typically utilized. Maximum like-
lihood estimation for generalized linear models is reviewed, and the score, Wald,
and likelihood ratio tests are defined and discussed. The analysis of data from

nuclear family-based designs is also briefly introduced. Issues regarding

confounding, measurement error, effect mediation, and interactions are described.

Control for multiple comparisons is reviewed with an emphasis placed on the

behavior of the Bonferroni criteria for multiple correlated tests. The effects on

statistical estimation and inference of the loss of independence between outcomes

are characterized for a specific model of loss of independence, which is relevant to

the presence of hidden population structure or relatedness. These last results build
on a basic theme described in Chap. 2 and are then carried forward in Chap. 4.

3.1 Single Marker Associations

As discussed in the previous chapter, an ideal SNP genotyping array for GWAS

studies would provide surrogates for all of the variants in a comprehensive target

set, with the target set guaranteed to represent, or even provide a census of, all

common variations within the human genome. For any member of the target set

there should be a predictor on the array which has a high value of R2 with the target,

so that testing for association between the phenotype of interest and the surrogate

should be as nearly as possible equivalent to the testing of an association with the

causal variant itself. The discussion for the time being is on single SNP analysis and

is thus implicitly focused only on the targets (or causal variants) that are in high

pairwise LD with at least one SNP on the array. As we discuss haplotype analysis

we will see that there are difficulties in this one-marker per common causal variant
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concept and haplotype analysis leads to an expansion of the number of tests, and the

complexity of the type of tests, that are to be considered.

Consider a study in which the phenotype is disease or no disease and both cases

with disease and controls without disease are genotyped and association of disease

with a diallelic autosomal variant (taking values a and A) is to be tested. Table 3.1

gives a layout of a 3 � 2 table representing observed data.

3.1.1 Dominant, Recessive, and Co-dominant Effects

Here we consider a variety of tests for a relationship between disease status and

genotype and then will relate these to tests that arise from logistic regression of

disease status on individual genotypes. If we assume that both cases and controls

come from the same randomly mixing population and are all unrelated to each other

a number of tests immediately are suggested by the layout of Table 3.1. An omnibus

Pearson test of no association between the rows and columns of Table 3.1 gives a

chi-square test on two degrees of freedom, which can be computed as

χ2 ¼
X1
i¼0

X2
j¼0

nij � Eij

� �2
Eij

, ð3:1Þ

with Eij ¼ ni.n. j/n
2
:: being the expected value of nij conditional upon the row and

column totals under independence. This test is sensitive to any association of

genotype with disease probability; the statistic is distributed approximately as a

chi-square for sample sizes that are large enough so that each expectation, Eij, is

reasonably large. The rule of thumb is that the chi-square approximation is reliable

so long as each Eij is at least equal to 5. This traditional standard is based upon

analysis of the behavior in the tails of the two distributions at approximately the

95 percentile, i.e., for testing at the a¼.05 level of significance, and needs modifi-

cation since multiple testing requirements of GWAS studies require much smaller

p-values to be computed accurately.

An allele that is more common in the cases than in the controls is said to be a risk
allele while an allele that is more common in the controls than in the cases is said to

be protective. A dominant effect of allele A on disease risk means that carrying

either the aA or AA genotype has an equivalent association with risk compared to

the homozogote aa. A recessive effect is when only the AA genotype and not the Aa
genotype differs from aa in its association with risk. A one degree of freedom test

for a dominant effect is therefore achieved by collapsing the 3rd and 4th columns of

Table 3.1 Tabulation

of observed genotypes for

a single autosomal variant

for cases and controls

Disease status aa Aa AA

Controls n00 n01 n02 n0.

Cases n10 n11 n12 n1.
Total n.0 n.1 n.2 n..
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Table 3.1 before computing the χ2 statistic, with appropriate renumbering in (3.1),

while a test for a recessive effect is achieved by collapsing columns 2 and 3. Note

that if allele A is a risk allele with a dominant effect, then allele a shows a recessive
protective effect and vice versa.

In many cases the association of the heterozygote genotype Aa with disease is

somewhere midway between that of aa and aA. In classical genetics this is referred
to as incomplete dominance. A one degree of freedom chi-square test for incom-

plete dominance can be constructed from the Cochran–Armitage [1] test:

T2 �

X2
i¼0

ti
�
n1in0: � n0in1:

�" #2

n1:n0:
n::

X2
i¼0

ti
2n:i n:: � n:ið Þ � 2

X1
i¼0

X2
j¼iþ1

titjn:in:j

: ð3:2Þ

In order to test for a linear trend (an approximation for incomplete dominance) in

the association between the counts for n(A) and disease the weights ti take the

values t0 ¼ 0, t1 ¼ 1, and t2 ¼ 2 (other values can be used to test other possible

effects if desired). Note that if t0 ¼ 0 and if both t1 ¼ 1 and t2 ¼ 1, then the

Armitage test agrees with the test of a dominant effect using (3.1) on the collapsed

table. It is further worth noting that when t0 ¼ 0, t1 ¼ 1, and t2 ¼ 2 the trend test

can be equivalently written in a rather different form from the raw data (rather than
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the table of cell counts) as NCor(niA, ci)
2 where N is the total number of observa-

tions (equivalent to n..) and niA is the count of the number of A alleles carried by

subject i and ci is case–control status of subject i. The correlation coefficient Cor

(niA,ci) is computed in the usual way, i.e., as

XN
i¼1

niA � n Að Þ ci � cð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

niA � n Að Þ2
XN
i¼1

ci � cð Þ2
s :

As we will see shortly each of these tests is closely related or coincides with tests

that stem naturally out of the tests of various hypotheses using either linear or

logistic regression as described below.

3.2 Regression Analysis and Generalized Linear Models

in Genetic Analysis

Univariate and multivariate regression analysis using generalized linear models
provides a suitable framework for analysis of data from genetic association studies

including both the testing of hypotheses and the estimation of parameters in

models describing the relationship between measured genetic variants and the

phenotypes of interest. This section gives a brief overview of using generalized

linear models for regression analysis as will be used in the remainder of the book; it

is based on the more extensive material from McCullagh and Nelder’s book [2].

Generalized linear models begin with specifying that, conditional on all

covariates of interest, the probability distribution, f, of the phenotype Y is known

and is of exponential family form. The two exponential family probability distri-

butions that this book will be considering are the normal distribution and the

binomial distribution; other notable examples include the Poisson, gamma, and

the inverse Gaussian distributions. Next a generalized linear model specifies that

the mean E(Y ) of the phenotype Y is connected to one or more covariates X through

a link function g. Link functions are invertible (smooth and monotonically increas-

ing) scalar valued functions. The relationship between the mean and the covariates

is written as

g E Yið Þ½ � ¼ α1Xi1 þ α2Xi2 þ � � � þ αrXir: ð3:3Þ

Here the i indexes study participants, i ¼ 1, . . ., n, who will have observations

of the outcome phenotype, Yi, as well as covariate data Xi ¼ (Xil,Xi2, . . .,Xir)
T.

The parameters α are the regression parameters which are generally to be estimated
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in the course of the analysis and about which hypothesis tests, etc., are to be

constructed. The right-hand side of (3.3) is known as the linear predictor for subject
i and can be written as X0

i α with the un-subscripted α referring to the vector of

parameters (α1,α2, . . .,αy)
T. Defining the matrix X as the n � r matrix having rows

XT
i we can write the n-vector of linear predictors for all subjects simultaneously,

(αTX2, α
T X2, . . ., α

T Xn)
T, as Xα.

For each probability function there is a so-called canonical link function, which
plays a special role in the theory of the generalized linear model [2]. For the normal

distribution the canonical link function is the identity link, i.e., g(x) ! x, for binary
or binomial counts it is the logistic function g(x) ! log(x) � log(1 � x), and for

the Poisson the canonical link is the log function. Often but certainly not always the

canonical link function is chosen as the link function g in the analysis. When, for

example, the identity link function is used to analyze normally distributed data this

yields ordinary least squares (OLS) regression.
In certain cases the canonical link function may not provide the simplest or best

description of the data, however, and the flexibility of the general framework allows

other choices. Note that model (3.3) can be written equivalently as

E Yið Þ ¼ g�1 α1Xi1 þ α2Xi2 þ � � � þ αrXirð Þ,

with g� 1 being the inverse of the link function, for example, g� 1(x) ! exp(x)/
(1 + exp(x)) for the logistic link function.

In case–control data, i.e., where Yi is binary and where the sampling of study

participants is conditional on the observed value (diseased or not diseased) of Y, the
logistic link function plays a very special role. This is because most of the

parameters, α, in the linear predictor for a typical logistic regression model (i.e.,

model (3.3) with logistic g and binary Y ) are the log of odds ratios; A fundamental

result about case–control studies (and also about their relationship to cohort studies)

is that the interpretation of odds ratios, unlike other measures of risk, is not

dependent on the sampling fraction of cases and controls.

When the Yi are each independent of each other and the generalized linear model

holds then maximum likelihood estimation of the parameters α is accomplished by

use of an iteratively reweighted least squares algorithm, which is equivalent to OLS

regression for the case of normal data with the identity link. For other GLMs (e.g.,

logistic regression) the iteratively reweighted least squares regression is equivalent

to Fisher’s scoring procedure (see Sect. 3.4 below). Hypothesis testing regarding

the parameters αmay be performed by several standard methods, such as likelihood

ratio tests, score tests, or Wald tests which are based upon the asymptotic behavior

(behavior as N gets large) of the likelihood function, its derivatives, and associated

maximum likelihood estimates.

The choice of probability distribution f (e.g., normal, binomial, etc) also imposes

a model for the variance of Y. For example, if the data can be interpreted as the

number of successes from among m independent trials and therefore follow the

binomial distribution then the generalized linear model for the proportion of
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successes, Y ¼ (number of successes/m) models the variance of Y as a function of

the mean of Yi, namely, E(Yi)(1 � E(Yi))/m. If the normal distribution is chosen the

variance of Y is a constant value, σ2 , for all i, which is estimated along with the

mean parameters α. For the Poisson distribution, the variance is also a known

function of the mean, since Var(Yi) ¼ E(Yi) in this case. For other exponential

family distributions also, such as the gamma and inverse Gaussian, where the

variance is not a function of the mean, one additional (scale) parameter is estimated;

the scale parameter for the normal distribution is σ2.
It is possible also to alter the variance function of Yi for the Poisson and for the

binomial distribution with m � 2 in order to model over-dispersed count data, by

introducing a pseudo-scale parameter into the fitting of these models as well. In this

case the analog [3] to the iteratively reweighted least squares algorithm for fitting

these models is a simple form of what more generally are known as generalized
estimating equations [4].

3.3 Tests of Hypotheses for Genotype Data Using

Generalized Linear Models

Consider a layout of phenotype and genotype as would be used in ordinary

regression (either least squares or logistic regression); as above we use i to index

each of the study participants from 1 to N and Yi denotes the phenotype value (the
dependent variable in the regression analysis) which can be either continuous or

discrete; in case–control studies we may prefer to use Di as a disease indicator

taking the value 0 for controls and 1 for cases. For the time being we are

considering only a single diallelic variant (e.g., an SNP), with alleles A and a,
and a counter, niA, of the number of copies of allele A carried by subject i as an
explanatory variable. Rather than putting the counts niA of this variant into the

model directly, we expand this into three indicator variables for the specific

genotypes: Gi0 which is equal to 1 if and only if niA ¼ 0 (i.e., if the genotype is

aa); Gi1, an indicator for niA ¼ 1; and Gi2 indicating niA ¼ 2. We will also

consider the possible presence of additional covariates, Xij with j ¼ 1, . . ., r, but
for the time being we defer this aspect of the model. With slight change in notation

from (3.3), we write

g E Yið Þ ¼ μþ β0Gi0 þ β1Gi1 þ β2Gi2½ �: ð3:4Þ

As written model (3.4) is over-parameterized, the constant μ is not separately

estimable from the parameters β0, β1, and β2, without placing constraints on the β
parameters. The reason μ is introduced in the model is because we usually want to

be able to interpret the β parameters as increments (in the log odds scale) of disease

risk always compared to some baseline group parameterized by μ. This means that

we will almost always impose constraints on the three β parameters. For example,
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to fit a model in which g[E(Y)] is linear in genotype count nA we constrain β0 to
equal zero and β2 to equal twice β1 which is equivalent to replacing β0Gi0 + β1Gi1 +

β2Gi2 in model (3.4) with β1niA. In this case β1 is interpreted as the additive increase
(or decrease if β1 is negative) of the log odds of disease (for logistic regression) or in
the phenotype mean (for OLS regression) with each copy of the allele A compared

to carriers of aa.
The constant μ can sometimes be taken as the population mean phenotype

(transformed by g), or more often, if we constrain β0 to equal zero, the

(transformed) mean phenotype for subjects with genotype aa. As discussed

above, in case–control studies, sampling is conditional on disease status and μ
cannot be directly related to population disease prevalence. If there is no effect of

genotype (all three β equal to zero) then μ is simply g(Sy) where

Sy ¼ number of cases

total casesþ controls

is the sampling ratio.

3.3.1 Test of Hypothesis regarding Genotype Effects Testing
Using Logistic Regression in Case–Control Analysis

All the hypothesis tests described in Sect. 3.1.1 (e.g., tests for additive, dominant,

or recessive effects of genotype) can also be performed using GLMs. For example,

a test of the null hypothesis of no effect of genotype on risk against the general

two degrees of freedom test, i.e., the same hypothesis tested using the Pearson

chi-square statistic given in expression (3.1), can be performed by setting β0 to

zero (i.e., removing Gi0 from the model) and then fitting the remaining parameters

in model (3.4) using the binomial distribution and the logistic link in order to

estimate values for β1 and β2. The fit of this “full” model can be compared to the

fit of the null model (estimated with all of β0 ¼ β1 ¼ β2 ¼ 0 so that only μ
remains). For example, the likelihood ratio test (see below) compares the log

likelihood of the null model with only μ in the linear predictor to the likelihood of

the full model. Specifically twice the change in likelihood for the full compared to

the null model is compared to a chi-square (with 2 degrees of freedom); see

Sect. 3.4 below. For illustrative purposes we compute the likelihood ratio test,

as well as the Pearson chi-square test for a simulated dataset representing a

case–control study with 506 cases and 494 controls in which one SNP has been

simulated. The data for case–control status and a simulated SNP, given as the

count nA of the allele A, are provided in “simul1.dat.” The following R code reads

the data, displays the first few lines of the raw data, and then summarizes the data

using the R table command:
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As we see in the box the data are organized in a way that is suitable for

regression analysis, but then is summarized, using the table command, as in

Table 3.1 above. We will use the generalized linear model (GLM) program in

R (function glm in library stats) in order to compute the likelihood ratio test (see

Sect. 3.4 for more information) of whether there is any association between

case–control status and the genotypes. The glm function takes 2 primary arguments:

a description of the outcome variable and linear predictor (separated by a ~ ) to form

a model formula, and a specification of the probability model and link function. To

organize the output of the glm function we use the generic R function summary.
Specifically, we can run the code

to fit first the null model (M0) with only μ in the linear predictor, using the model

formula Y ~ 1 (see below), and then a model (M1) which estimates the three

parameters μ, β1, and β2 to fit the model (3.4). The use of factor(n_A) in R on the

right-hand side of the ~ in the model formula tells R to set up the dummy variables,

G0, G1, and G2, corresponding to the levels of niA by default R automatically drops

G0 in favor of estimating the constant μ. Here we display only the change in log

likelihood for the two models.

The printed value 7.896825 is the value of the chi-square statistic, computed as

the difference in deviance of the 2 models (in GLM notation this is twice the

difference in the log likelihood) and the value 0.01928529 is the associated p-value
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for the test of the null hypothesis that both β1 and β2 are equal to zero, against the

alternative than one or both are nonzero. To see that this test gives very similar

results to the Pearson’s chi-square test, we can use the built in R function chisq.test

on the TBL object created earlier. We have

We can test the fit of a dominant model to the data, compared to the fit of the null

model similarly. To fit a dominant model using these data we impose the constraints

that β0 ¼ 0 and that β1 ¼ β2 so that the linear predictor in (3.4) is equal to

μþ β1 Gi1 þ Gi2ð Þ:
This can be accomplished in R creating a new variable G_dom as (taking values

0 or 1) in

and then fitting and computing the p-value for the likelihood ratio test as

We can compare this to using the Pearson chi-square test on the collapsed

(as described above) table.

Again the resulting p-values are very similar. Fitting a model that is linear in nA
(by removing the call to factor in the model equation, see below for more infor-

mation about R model formula) gives a likelihood ratio test ( p-value ¼ 0.0116)

that is very close to the that of the Armitage test ( p-value ¼ 0.0119) computed for

these data (The R code for the Armitage test in R is given in the sidebar above)
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3.3.2 Interpreting Regression Equation Coefficients

So far we have not seen any really good reason to prefer the GLM approach to these

data compared to the use of either the Armitage test or Pearson’s chi-square test.

That is partly because up to now we have been “hiding” the regression output, other

than to compute the likelihood ratio tests from the change in model deviances that

were calculated using the glm function. We now examine the results of fitting

models M_1 and M_lin. For clarity’s sake we recompute model M1 and print the

resulting summary object

To reiterate we are estimating the model,

g E Yið Þ ¼ μþ β1Gi1 þ β2Gi2½ �, ð3:5Þ

using the (default for the binomial family) logistic link function. We focus on the

coefficients portion of the R output. As mentioned before the intercept parameter

estimate is not very meaningful for case–control data. If sampling had been random

with respect to case–control status then the intercept parameter in this output could

be interpreted as an estimate of the log odds of disease in homozygotes (individuals

carrying aa) for the a allele, i.e.,

log
P Y ¼ 1

��niA ¼ 0
� �

P Y ¼ 0
��niA ¼ 0

� � :
Here that estimate of the odds as (exp(�0.05913) ¼ 0.9426)) reflects mainly the

close to 1:1 matching of cases to controls in this “study.” The next two estimates

are more meaningful; the glm output for the second coefficient is the estimate of the
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log odds ratio of disease in the heterozygote carriers compared to the homozygote

carriers of aa. To be more specific what we have estimated is

β1 ¼ log
P Y ¼ 1

��niA ¼ 1
� �

=P Y ¼ 0
��niA ¼ 1

� �
P Y ¼ 1

��niA ¼ 0
� �

=P Y ¼ 0
��niA ¼ 0

� � :
The exponent of the estimate exp(0.46928) ¼ 1.598842 indicates that the odds

of disease in carriers of heterozygote, aA, are estimated to be approximately 60 %

greater than in homozygotes. The odds of disease for carriers of the homozygote AA
are estimated to be exp(0.05913) ¼ 1.060913 or only 6 % greater than for homo-

zygotes aa. The number of subjects (10 total) with this genotype is small however.

When we display the fit of the linear logistic model M_lin we see that the per allele

increase in the odds ratio is estimated to be exp(0.38139) ¼ 1.464319 or about a

46 % increase per copy. Compared to model M1 the slope is much closer to the

estimate of the heterozygote odds ratio than the homozygote reflecting the paucity

of subjects with an AA genotype. The deviance of the two models M1 and M_lin

(which can be displayed as M1$deviance and M_lin$deviance) is very close

(1378.234 and 1379.781, respectively) so that there is little evidence that the log

linear model, M_lin, is inferior to M1.

Note that we could have fit model M1 using the identity link function, i.e.,

specify family ¼ binomial(link ¼ "identity"), in place of the logistic, and achieved
an identical fit to the data (as measured by the log likelihood of the model). This is

because in estimating each E(Yi) M1 has used all 3 available degrees of freedom

(one for each of μ, β1, and β2) in modeling the relationship between the genotype

(taking 3 levels) and case–control status. The fit of model M1 is therefore equiv-

alent to the fit of any other binomial model with three degrees of freedom in the
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linear predictor. While the fit of the identity link function would have been

identical, the parameter estimates would not be.

The logistic link function is usually preferred when analyzing case–control data

because the interpretation of odds ratios is not dependent on the case–control

sampling ratio and hence is applicable to the population sampled in the study.

The numerical values of the parameters being estimated when using an identity link

function, for example, would depend on the case–control sampling ratio.

The fit (as measured by the log likelihood) of the linear model M_lin (i.e., with

nA treated as a continuous trend variable rather than a categorical factor, i.e.,

g(E(Yi)) ¼ α + βniA) would, on the other hand, be different if the identity link is

used as g compared to using the logistic link function, since with the logistic link

function the log odds ratios, rather than the case–control probabilities, are being

modeled as linear in the genotype count.

3.4 Summary of Maximum Likelihood Estimation,

Wald Tests, Likelihood Ratio Tests, Score Tests,

and Sufficient Statistics

Here we provide some general information about likelihood-based inference based
closely upon the classic discussion of these methods provided in McCullaugh and
Nelder [2].

Let f(Y;θ) be the probability mass or density function of the random variable, Y,
which depends upon the parameter vector θ (for generalized linear models θ
includes the regression parameters, α1 . . . αy, in model (3.3) as well as the scale

or variance parameter if needed). Then the likelihood function L(θ;Y ) is identical to
f(Y;θ) but treated as a function of θ with Y fixed.

Specific Examples

1. Normal distribution for scalar Y with E(Y) ¼ μ and Var(Y ) ¼ σ2:

L θ; yð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp
�1

2σ2
y� μð Þ2

� �
:

2. Binomial distribution with index (number of independent trials) m (integer >0),

with number of successes Y and probability of success equal to π:

L π; Yð Þ ¼ m
Y

� 	
πY 1� πð Þ m�Yð Þ:

Note that if Y is defined to be equal to the proportion of successes, i.e.,

(number of successes)/m, rather than the number itself the binomial likelihood

is rewritten as
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L π; Yð Þ ¼ m
mY

� 	
πmY 1� πð Þ m�mYð Þ:

3. Normal distribution for n independent normal random variables, Y1, Y2, . . ., Yn
with mean E(Yi) ¼ α0 + α1Xi and variance σ2:

L θ; Y1; Y2; . . . ; Ynð Þ ¼
Yn
i¼1

L α0; α1; σ
2; Yi

� �
,

YN
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � 1

2σ2
Yi � α0 � α1Xið Þ2

� �
: ð3:6Þ

4. Binomial distribution for the proportion of successes Yi, for n independent

binomial observations, with binomial index mi with mean

E Yið Þ ¼ exp α0 þ α1Xið Þ
1þ exp α0 þ α1Xið Þ ,

L θ; Y1; Y2; . . . ; Ynð Þ ¼
Yn
i¼1

L α0; α1; Yið Þ,

¼
Yn
i¼1

mi

miYi

� 	
exp α0 þ α1Xið Þ

1þ exp α0 þ α1Xið Þ
� 	miYi

1� exp α0 þ α1Xið Þ
1þ exp α0 þ α1Xið Þ

� 	 mi�miYið Þ
:

This is the likelihood for the logistic regression model for binomial data with a

single explanatory variable. For binary case–control data this likelihood with all

mi ¼ 1 is used; the constant parameter α0 here is equivalent to μ above.

3.4.1 Properties of Log Likelihood Functions

For the vector, Y, of independent observations, Y1, . . ., Yn, define the log likeli-

hood, l θ;Yð Þ, as the natural log of the likelihood function L(θ;Y1, . . .,Yn) ¼
Yn

i¼1

L(θ;Yi), so that we have

l θ;Yð Þ ¼
Xn
i¼1

log L θ;Yið Þf g:

Now consider the derivatives of the log likelihood function. If θ is a scalar then

we find that
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E
d

dθ
l θ;Yð Þ

� �
¼ 0 ð3:7Þ

and

Var
d

dθ
l θ; Yð Þ

� �
¼ �E

d2

dθ2
l θ;Yð Þ

� �
: ð3:8Þ

For example, to show that (3.7) holds we simply differentiate the identity

(applying to any probability distributions or density functions) thatZ
f Y; θð ÞdY ¼ 1,

with respect to θ. This gives

0 ¼ d

dθ

Z
Y; θð ÞdY ¼

Z
d

dθ
f Y; θð ÞdY:

By dividing and multiplying the integrand above by f(Y;θ), we have

Z d
dθ f Y; θð Þ
f Y; θð Þ f Y; θð ÞdY ¼ 0:

Equation (3.7) follows because

d

dθ
log
�
f θ;Yð Þ ¼

d
dθ f Y; θð Þ
f Y; θð Þ :

Similar techniques are used to prove (3.8).

Note that (3.7) and (3.8) appear to be suitable for forming hypothesis tests about

the parameter θ. To test a null hypothesis that θ ¼ θ0 we compute the observed

value of the derivative of the log likelihood evaluated at θ0, and compare it to its

standard deviation, also computed at θ0, to see if the derivative is close to zero. If

the derivative is small compared to its standard deviation then we would accept the

null hypothesis; otherwise we would reject it. This argument forms the basis of the

score test described below. Equation (3.8) says that we can compute this standard

deviation as the square root of the expected value of minus the second derivative of

the log likelihood.

When θ denotes a vector of 2 or more parameters (3.7) holds for all partial

derivatives and (3.8) generalizes to
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Cov
∂
∂θi

l θ; Yð Þ, ∂
∂θj

l θ; Yð Þ
� �

¼ �E
∂2

∂θi∂θi
l θ; Yð Þ

( )
for i, j

¼ 1, . . . , r: ð3:9Þ

The resulting variance matrix (of size r � r) is fundamental in making

likelihood-based inference about the parameters as described below.

3.4.2 Score Tests

The derivative of the log likelihood, U θ;Yð Þ ¼ ∂
∂θ l θ;Yð Þ, is called the score

statistic and its variance matrix is the expected information, also known as the

Fisher’s information, denoted herein as i(θ). Several important large sample results

apply to U(θ,Y) and i(θ). For example, under suitable regularity conditions the

growth of the information matrix i(θ) with n we have

U θ; Yð Þ0i θð Þ�1U θ; Yð Þ,

as asymptotically distributed as a chi-square random variable with r degrees of

freedom. This forms the basis of the score test for θ which is a generalization of the
method of inference discussed briefly above. Specifically, a test of the hypothesis

that θ ¼ θ0 is constructed by comparing the observed value of

U θ0;Yð Þ0i θ0ð Þ�1U θ0; Yð Þ ð3:10Þ

to critical values of the cumulative distribution function for a chi-square random

variable, χ2r , with r degrees of freedom. Speaking somewhat crudely, for large

samples, (3.10) follows a central chi-square distribution because U(θ0,Y)
converges to a multivariate normal random variable (with mean 0 and variance

i(θ)) under the null hypothesis; this follows because it is a sum of independent

random variables each with mean zero and variance ii(θ0) which is the contri-

bution of the ith individual to i(θ0). If the observed value of expression (3.10) is

larger than the critical value then the hypothesis is rejected at the chosen level of

significance.

If the main interest is only in certain of the components of the parameter vector θ
then θ can be partitioned into sub-vectors (γ,λ), with γ regarded as the parameter or

parameters of interest and λ as the nuisance parameters. Here the vector of nuisance

parameters, λ, is of length q and γ of length r � q.
Then the information matrix is partitioned as

i θð Þ ¼ iγγ iγλ
iλγ iλλ


 �
,
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with inverse

i�1 θð Þ ¼ iγγ iγλ

iλγ iλλ


 �
,

and from the formula for a partitioned inverse iγγ ¼ (iγγ � iγλi
�1
λλ iλγ)

� 1. A score test

of the hypothesis γ ¼ γ0 with the nuisance parameters λ unspecified is formed as

U γ0; λ̂; Y
� �T

iγγU γ0; λ̂; Y
� �

: ð3:11Þ

HereU γ0; λ̂; Y
� �

are the elements ofU(θ,Y) corresponding to γ and λ̂ is chosen so

that the remaining q components of the score are equal to zero.

Upon calculation of the value (3.11) it is compared to the critical values for the

χ2γ�q distribution, rejecting the hypothesis that γ ¼ γ0 for larger observed values.

3.4.3 Likelihood Ratio Tests

The value, θ̂ MLE, of θ that maximizes the log likelihood is known as the maximum

likelihood estimate (MLE). For large samples (and under regularity conditions) we

have the approximation that

2l θ̂MLE; Y
� �� 2l θ; Yð Þ ! χ2γ :

This yields the likelihood ratio test. We can test the hypothesis that θ ¼ θ0 by
computing

2l θ̂MLE; Y
� �� 2l θ0; Yð Þ

and comparing this value to the critical value for a chi-square statistic, χ2γ . Note that

in the terminology for generalized linear models adopted by the R package �2l

θ̂ ,Y
� �

is termed the model deviance and increases in (twice) the likelihood are

computed as declines in model deviance.

If there are nuisance parameters, λ, in the model and we are interested in testing

the null hypothesis that γ ¼ γ0 with λ unrestricted, we do this in two steps. First we

form the profile maximum likelihood estimate, λ̂ γ0 , which maximizes 2l γ0; λ; Yð Þ
with respect to λ with γ fixed at γ0. Next we calculate

2l γ̂MLE; λ̂MLE; Y
� �� 2l γ; λ̂γ0 ; Y

� �

94 3 An Introduction to Association Analysis



where γ̂ MLE and λ̂MLE are the unconstrained maximum likelihood estimates of θ
under the null hypothesis. This value is then compared to the critical values of a

χ2γ�q random variable and the null hypothesis is rejected for larger observed values.

3.4.4 Wald Tests

Wald tests use an asymptotic approximation of the behavior of the MLE estimate

itself for inference; specifically it is assumed that for large N that the MLE θ̂ MLE is

normally distributed with mean equal to the true value of the parameters θ and with
variance matrix equal to i(θ)� 1. A Wald test of θ ¼ θ0 is constructed as

θ̂ MLE � θ0
�0
i θ̂ MLE

� ��
θ̂ MLE � θ0

� 


and the observed value of this statistic is compared to the critical values for a χ2γ
random variable. In the nuisance parameter case

γ̂ MLE � γ0ð ÞT iγγð Þ�1 γ̂ MLE � γ0ð Þ

is compared to the critical values of a χ2r�q . When hypotheses for a single parameter

are of interest, i.e., when the dimension of γ is 1, Wald tests are often reported as

Z ¼ γ̂ MLE � γ0ð Þ= ffiffiffiffiffi
iγγ

p
and referred to the standard normal distribution; here

ffiffiffiffiffi
iγγ

p
is

the standard error of the estimate γ̂ MLE.

3.4.5 Fisher’s Scoring Procedure for Finding the MLE

Fisher’s scoring procedure provides updated values θ1 of initial values θ0 of the

parameter vector according to

θ1 ¼ θ0 þ i�1 θ0ð ÞU θ0; Yð Þ ð3:12Þ

with the calculations repeated until convergence. For generalized linear models the

Fishers’ scoring procedure for estimating the regression parameters α is equivalent

to the iteratively reweighted least squares algorithm (IRWLS) of McCullagh and

Nelder which has the added value of providing useful initial values for the regression

parameters α0 as a part of the algorithm. For generalized linear models the Fisher’s

scoring procedure will usually converge in a few iterations to the maximum pro-

vided that the parameters are identifiable, which requires for example that the n � r
matrix X having rows X be of full column rank. In some cases, generally involving

small sample sizes, or nearly singular X, Fisher’s scoring may diverge or reach a
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local rather than a global maximum of the likelihood. Some further discussion of this

behavior is provided when discussing the analysis of rare variants in Chap. 8.

Equation (3.12) is also important because we can often approximate the behavior

of the MLE θ compared to the true value θ by substituting true θ for θ0 and θ̂ for θ1
so that

θ̂ � θ ffi i�1 θð ÞU θ; Yð Þ: ð3:13Þ

Since U(θ,Y ) is the sum of independent elements each with mean zero, i.e.,

U θ; Yð Þ ¼Pn
i¼1 Ui θ; Yð Þ, then in most cases we can appeal to the (multivariate)

central limit theorem to argue that θ̂ will converge in distribution to a normal

random variable with mean θ and variance–covariance matrix i� 1(θ)Var(U(θ;Y))
i� 1(θ) which equals i� 1(θ), thereby justifying the Wald test. The likelihood ratio

test can be motivated in a similar way. Specifically the change l θ̂; Y
� �� l θ; Yð Þ

can be approximated around θ as U θ; Yð Þ θ̂ � θ
� �þ 1

2
θ̂ � θ
� �0i θð Þ θ̂ � θ

� �
.

Since the expectation of U(θ;Y) is zero at the true parameter value we can ignore

the first term leaving 2l θ̂; Y
� �� 2l θ; Yð Þ 	 θ̂ � θ

� �0i θð Þ θ̂ � θ
� �

which can be

assumed to converge to a χ2r random variable.

3.4.6 Scores and Information for Normal and Binary
Regression

Starting from expression (3.3) for the relationship between E(Yi) and covariates this
section gives some specifics for the two most relevant GLMs: those using the

normal distribution with identity link functions (i.e., OLS regression) and the binary

distribution with logistic link (logistic regression). Expression (3.6) for simple OLS

regression generalizes to

l α; σ2; Y
� � ¼ � n

2
log 2ð Þ � n

2
log πσ2
� ��Xn

i¼1

1

2σ2
Yi � X

0
iα

� 
2
,

so that the score for the regression parameters α is simply

U α; σ2; Y
� � ¼ 1

σ2

Xn
i¼1

Yi � X
0
iα

� 

Xi, ð3:14Þ

and the information matrix i(θ) is simply

1

σ2

Xn
i¼1

XiX
0
i: ð3:15Þ
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For logistic regression the log likelihood is

l α; Yð Þ ¼
Xn
i¼1

Yilog
exp X

0
iα

� �
1þ exp X

0
iα

� �
 !

þ 1� Yið Þlog 1� exp X
0
iα

� �
1þ exp X

0
iα

� �
 !

,

with score equal to

U α;Yð Þ ¼
Xn
i¼1

Yi �
exp X

0
iα

� �
1þ exp X

0
iα

� �
 !

Xi ð3:16Þ

and information

i αð Þ ¼
Xn
i¼1

exp X
0
iα

� �
1þ exp X

0
iα

� �� �2
 !

XiX
0
i: ð3:17Þ

For binary logistic regression there is no scale or variance parameter to be

estimated since the variance of any binary random variable Yi is strictly a function

of the mean, i.e., equal to E(Yi)(1 � E(Yi)). For normal regression the variance

parameter σ2 is estimated as 1/(n � r) times the sum of squares of the residuals,

Yi � Xiα̂ .
For binary regression we can reexpress (3.17) as

i αð Þ ¼
Xn
i¼1

viXiX
0
i,

with vi ¼ μi(1 � μi) with μi ¼ (exp(X0
iα))/(exp(1 + X0

iα)). Note that μi and vi is
the mean and variance respectively of binary Yi under the logistic model.

For normal linear regression the three testing procedures (score, likelihood ratio,

and Wald) described above are equivalent—i.e., they produce the same value of the

criteria (see Homework). However none of these tests are equal to the standard

F and t-tests for parameters as described in linear models theory, which are based

upon exact rather than approximate inference for the normal distribution. This is

very easily remedied, however, since dividing the chi-square statistic obtained by a

likelihood ratio test first by the number of degrees of freedom, r � q, and then by

σ̂ 2 yields the usual F statistics with r � q and n � r degrees of freedom for the

numerator and denominator, respectively. Similar comments of course apply to

Wald and score tests since they are equivalent in this setting.

For logistic regression the three tests (score, likelihood ratio, and Wald) can give

different results and it is natural to ask which of the tests is more reliable when they

do differ. An interesting point about the Wald test for logistic regression is that

it has unexpected poor behavior when effects are very strong, for example
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(see Chap. 8), when a very rare SNP has large effects it is possible that the only

observed minor alleles will be among the cases. In this setting the logistic regres-

sion estimate of the effect of that SNP will diverge to infinity during Fisher’s

scoring, but so will its variance estimate (at an even faster rate) so that a Wald

test computed at the end of each iteration converges to zero as the iterations

proceed.

It is for this sort of behavior, see Hauck 1977 [5] for further discussion, that,

when the tests differ, it is the Wald test that is generally considered to be the least

reliable.

One reason to prefer the likelihood ratio test to the other two is to note that it is

invariant to parameter transformation, whereas neither the score nor the Wald test is

invariant; if there exists a re-parameterization of the problem that produces very

nicely normally distributed estimates, then this parameterization should be used

over some other parameterization when constructing the Wald test. For example, in

a logistic regression involving a parameter β1 we can directly estimate the odds

ratio OR ¼ exp(β1) rather than the log odds ratio β1 and then compute a Wald test

for OR ¼ 1 as Ô R� 1
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ô R
� �q

this test will in general give different values

of the chi-square statistic than the usual Wald test that β1 ¼ 0 computed as β̂ 1=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var β̂ 1

� �q
even though they are testing exactly the same hypothesis. Furthermore

if on the original scale β1 is close to being normally distributed (so that the Wald

test is very accurate) on the exponential scale Ô R, equal to exp β̂ 1

� �
, would tend to

be distributed as a log normal random variable. This could reduce the accuracy of

the Wald test, since a log normal random variable divided by the square root of its

variance may be far from normally distributed. The likelihood ratio tests of either

OR ¼ 1 or β1 ¼ 0 on the other hand will be identical.

Note however that these concerns go away as the sample size gets larger and

larger and both β1 and exp β̂ 1

� �
are asymptotically normally distributed except in

pathological cases.

3.4.7 Score Tests of β ¼ 0 for Linear and Logistic Models

Note that the score (i.e., the first derivative of the log likelihood) for both linear and

logistic regression takes the form

U θ; Yð Þ /
Xn
i¼1

Yi � μið ÞXi,

where μi is the mean of Yi; see (3.14) and (3.16). Intuitively it makes sense that

U here is measuring the covariance between the variables X and Y. We make this

clear below for logistic regression by considering the score test in the simplest case
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when only a slope and an intercept are being fit. In this case each regression vector

Xi has two elements, a 1 (for the intercept) and the variable of interest Xi so that

μi ¼ g� 1(a + bXi). The score vector for logistic regression evaluates to

Xn
i¼1

Yi � μi

Xn
i¼1

Yi � μið ÞXi

2
6664

3
7775

and the information is

exp að Þ
1þ exp að Þð Þ2

n nX
nX

X
X2
i


 �
:

The information has matrix inverse equal to

1þ exp að Þð Þ2
exp að Þ

1

n
X

Xi
2 � n2X

2

X
X2
i �nX

�nX n

" #
:

Therefore the score statistic for testing that the slope b ¼ 0 is equal to zero is

Xn
i¼1

XiYi � exp âð Þ
1þ exp âð Þ

Xn
i¼1

Xi

 !2
1þ exp âð Þð Þ2

exp âð ÞnVar Xð Þ ,

with nVar(X) equal to the sum of squares of X or
X

X2
i � nX

2
� 


. Here the

estimate â of a is to be its MLE under the null hypothesis which is

â ¼ log Y
� �� log 1� Y

� �
. After this substitution the score test for b ¼ 0 sim-

plifies to

Xn
i¼1

XiYi � nY X

 !2

nVar Xð ÞY 1� Y
� � :

Because the numerator is equal to the square of the sample covariance of X and

Ymultiplied by n and because Y 1� Y
� �

is the estimate of the variance for a binary

random variable it follows that this equals nCor(X,Y )2 as mentioned above.

Note that for univariate linear regression the usual F or t2 test for a slope b can be
written as (n � 2)R2/(1 � R2) which is similar to the score test for logistic regres-

sion if n is large and if R2 is small. When there are other adjustment variables to be
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used in the model the test for linear regression is (n � p � 1)R2
partial/(1 � R2

partial)

where p is the number of adjustment variables (including the intercept as an

adjustment variable) and where R2
partial is the squared partial correlation between

X and Y after adjustment. The extent to which score tests from multivariate logistic

regression can be approximated using R2
partial is the subject of homework exercises.

3.4.8 Matrix Formulae for Estimators in OLS Regression

For ordinary least squares regression, i.e., when using model (3.3) with g equal

to the identity, it is very helpful to be familiar with matrix expressions for

the estimators of both the regression parameters and for the variance σ2. Here
these results are briefly introduced. First we define the vector of outcomes, Y, as
(Y1, Y2, . . ., YN)

0 and the matrix of covariate values as

X ¼
1 X11 X12 . . . X1, r�1

1 X21 X22 . . . X2, r�1

⋮ ⋮ ⋮ ⋮
1 XN1 XN2 . . . XN, r�1

0
BB@

1
CCA:

Further we define the vector of parameters to be estimated as β ¼ (μ,β1,
β2, . . .,βr � 1)

0. Here we assume that the matrix X is of full rank r (so that linearly

dependent parameters have already been removed). Furthermore we assume that

(conditional on the covariates X) that the elements of Y are uncorrelated and each

has variance parameter σ2 so that we can write the variance–covariance matrix ∑ of

Y as σ2I where I is the N � N identity matrix.

In this case then it is easy to show that the maximum likelihood estimate, β̂ , of
the regression parameter β is equal to

β̂ ¼ X
0
X

� 
�1

X
0
Y: ð3:18Þ

The usual estimate of σ2 can be written in matrix form as

σ̂ 2 ¼ 1

N � r
Y0�I�X X0X

��1X0� �
Y: ð3:19Þ

We can show that both β and σ̂ 2 are unbiased (i.e., have expectation β and σ2,
respectively) by understanding several properties of matrix manipulation of random

vectors (and matrices) the first is that for any fixed matrix A and random vector

V that are conformable, i.e., A has the same number of columns as V has elements

then E(AV ) ¼ AE(V ) where E(V ) is the vector containing the expected values of
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the elements of the random V. (This rule also holds when V is replaced with V a

matrix of random variables conformable with A.) Furthermore the variance–-

covariance matrix for AV is equal to A Var(V)A0 where Var(V) is the variance–-

covariance matrix of V.
Using the rule for expectations we can see that

E β̂
� � ¼ E X

0
X

� 
�1

X
0
Y ¼ X

0
X

� 
�1

X
0
E Yð Þ ¼ X

0
X

� 
�1

X
0
Xβ ¼ β,

so that β̂ is unbiased. Using the rule for variances if follows that that

Var β̂
� � ¼ X

0
X

� 
�1

X
0�
σ2I
�
X X

0
X

� 
�1

¼ σ2 X
0
X

� 
�1

:

In order to show that σ̂ 2 is unbiased it is helpful to invoke some additional matrix

properties, specifically rules about the trace function defined as the sum of diagonal

elements and denoted tr(X) for a square matrix X. Specifically suppose that A and

B are matrices where A has the same number of columns as B has rows and in

addition B has the same number of columns as A has rows (so that both products

AB and BA are defined and square) In this case it is easy to show that tr(AB) ¼ tr

(BA). Furthermore it can be easily shown that if V is a random matrix then E(tr
(V)) ¼ trE(V)

A somewhat more complicated but very useful result [6] concerns the trace of

the matrix X(X0X)� 1X0 in expression (3.19) for σ̂ 2. The general rule is that for any

idempotent matrix P (so that PP ¼ P) then tr(P) ¼ rank(P) implying that tr(X

(X0X)� 1X0) ¼ rank(X) ¼ r. Note also that I � X(X0X)� 1X0 is idempotent with

rank equal to N–r.
Application of these rules shows that

E σ̂ 2
� � ¼ E

1

N � r
tr Y 0 I� X X0Xð Þ�1

X0
� 


Y
n o2

4
3
5

¼ 1

N � r
tr I� X X0Xð Þ�1

X0
� 


E YY0ð Þ
n o

¼ 1

N � r
tr I� X X0Xð Þ�1

X0
h i

E Yð ÞE Yð Þ0 þ σ2I
� �n o

:

¼ 1

N � r
tr I� X X0Xð Þ�1

X0
h i

Xββ0X0 þ σ2I
� �n o

¼ σ2

N � r
tr I� X X0Xð Þ�1

X0
h in o

¼ σ2

3.4 Summary of Maximum Likelihood Estimation, Wald Tests, Likelihood Ratio. . . 101



We use calculations like these in several other places in this book, particularly as

we explore the results of population structure on OLS estimation of linear models

(and by implication upon the estimation of other general linear models).

When Yi are not independent and the covariance matrix Σ of the vector Y is

known, then the best linear unbiased estimate (BLUE) of the parameters β in the

mean model E(Y) ¼ Xβ is

β̂ ¼ X0Σ�1X
� ��1

X0Σ�1Y ð3:20Þ

and the variance of β̂ is equal to (X 0 Σ� 1X)� 1. If in addition Y is multivariate

normal then β̂ is the maximum likelihood estimate. In this case when there are

parameters in Σ that are unknown and must be estimated then β̂ with Σ replaced by

an estimate Σ̂ remains the maximum likelihood estimate.

3.5 Covariates, Interactions, and Confounding

The importance of generalized linear models has a great deal to do with the

simplicity in which the model can be extended to incorporate covariates, by

adding these to the linear predictor. Control for additional variables, beyond

the ones of direct interest, is often useful simply in order to sharpen inference;

for example, if the phenotype of interest in a study of smokers is blood or urine

levels of a nicotine metabolite then controlling for reported tobacco use (e.g.,

number of cigarettes consumed per day) will reduce the inherent variability of the

phenotype and allow the effects, presumably more subtle, of a particular genetic

variant of interest to be more readily detected. In addition it may be that we are

interested in interaction effects; i.e., does the effect of an SNP allele increase or

decrease with increasing exposure? In the nicotine example it may be that the

SNP is most related to levels of the metabolite when smoking is at a low or

intermediate level, with the SNP effect being swamped by the exposure at higher

levels of smoking; adding an interaction term between smoking and the coded

SNP genotype to the genetic model allows us to improve the quantification of the

SNP effect. If such effects are assumed to exist a priori then we may even be able

to improve the detection of SNP effects in a scan by simultaneously testing

for the existence of either a genetic “main effect” or a gene � smoking interac-

tion or both [7].

Often the most important covariates to consider including in the association

modeling are potential confounders of the genetic variants. Confounding variables

are variables that are themselves associated both with the study phenotype and with

the explanatory variable of real interest to the investigator. For example, obesity is

related to diabetes risk in nearly all populations [8], and therefore SNPs that affect

obesity levels may appear to be risk factors for diabetes even if they are really only

related to risk of obesity. An SNP in the FTO gene has been found to be associated
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with both obesity [9] and diabetes [10] as well as with diabetes-related phenotypes

[11] including fasting insulin and glucose levels. However in the regression anal-

ysis of Freathy et al. [11] a very strong significant relationship between the FTO

SNP and fasting insulin or glucose disappeared after including body mass index
(BMI, weight/height2) in the model; the effect of the SNP allele was no longer

statistically significant in the regression models. It therefore appears that the variant

in the FTO gene may not be related directly to diabetes risk but rather the increase

in obesity caused by this variant is the mediator of the increase in diabetes risk seen
in carriers.

Mediation of effects may or may not be regarded as confounding; this depends

on the purpose of the analysis; if we are interested in innate disease susceptibility,

not due to already known risk factors, then obesity is certainly a potential con-

founder; however, if estimation of the overall genetic component of diabetes risk is

the primary focus then SNPs in FTO clearly remain important. For individual

prediction, however, appropriate measurement of obesity itself may trump the

FTO SNPs as predictors.

In other analyses, which have been calledMendelian randomization [12], testing
for the marginal effect on disease risk of an SNP which is known to be related to a

potential (but unproven) risk factor for a disease may help show that the unproven

risk factor is indeed important as a causal factor for disease and is not for example a

simple byproduct of disease. To give a recent example, the protein MSP is abun-

dantly secreted by the prostate and has been recently suggested as a biomarker for

prostate cancer risk [13]; it has also been shown [14] that an SNP allele in the

MSMB gene (which encodes MSP) strongly predicts circulating levels of this

protein. The fact that this SNP is both a predictor of MSMB levels and a known

prostate cancer risk factor [15] helps to alleviate concerns about whether MSP

levels are a by-product of cancer occurrence, rather than a predictor of cancer risk,

since an SNP for which the only known effects are to alter MSP levels is predictive

of prostate cancer risk.

Again taking smoking as an example, there are SNPs [16, 17] in a region of

chromosome 15 that contains nicotinic acetylcholine receptor genes that have

strongly and reproducibly been associated with risk of lung cancer. Since

nicotine itself is not a suspected lung carcinogen it is very likely that these

SNPs, and the underlying causal variants, are actually associated with smoking

carcinogen exposure level, rather than innate susceptibility to lung cancer; i.e.,

they affect personal smoking behavior rather than individual sensitivity to the

effects of smoking. If we can condition on true exposure to lung carcinogens then

these SNPs may not appear to be predictive. However the situation here may be

even more complicated than described above in the FTO/obesity/diabetes exam-

ple. This is because smoking behavior may not be well characterized by the

available information about cigarette consumption available in these studies;

counting the number of cigarettes smoked per day does not capture individual

differences in number of puffs taken per cigarette or in depth of inhalation.

Simply including cigarettes per day in a model for lung cancer may not fully

capture the variation in smoking behavior so that disease susceptibility will still
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appear to depend upon the SNPs in chromosome 15 because they “pick up

additional information” about carcinogen exposure. This problem of incomplete

control for confounders is also known in the epidemiologic literature as residual
confounding [18].

We have already begun our discussion of population stratification in the previous

chapter, and for genetic studies that involve participants from multiple racial/ethnic

groups control for ethnicity is of great importance; self-reported racial/ethnic group

membership can either be controlled for as a confounder or in case–control studies,

treated as a matching factor when the study is designed (see discussion below on

stratification). However self-reported ethnicity may provide insufficient control for

population stratification in many cases (with particularly acute problems in

admixed groups) and SNPs or other variants that are predictive of racial/ethnic

origins may appear to be predictive for many phenotypes even after controlling for

self-reported ancestry. This issue is discussed at length below, but many of the basic

issues are the same as dealing with other confounders. In order to be a confounder

individual racial/ethnic background must not only vary from person to person

within a study but must also be related to the disease or phenotype distribution.

For such phenotypes residual confounding occurs when available information

concerning ancestral background is insufficiently informative, and all SNPs or

other variants that are related to ancestral origin will appear to remain related to

disease.

3.6 Conditional Logistic Regression

Matching of cases and controls at the design stage of a case–control study is an

attempt to reduce the chance that heterogeneity due to either known or unknown

factors will influence results. In genetics studies the use of sibling case–control

pairs ensures that both the cases and the controls have the same ancestral back-

ground, thus eliminating concern about the effects of population stratification,

admixture, etc., on results. The standard approach to the analysis of such data is

conditional logistic regression. Conditional logistic regression constructs a different

probability model than the usual (unconditional) model. For one-to-one matching

the likelihood of the data from each matched pair is computed as the probability that

the observed case had the disease conditional on the fact that exactly one of the two

members of the pair had disease. Thus if the unconditional probability of the event

follows a logistic regression model with the linear predictor for the case equal to

α 0 X1 and for the control α 0 X0 then from first principles this conditional proba-

bility is written as

logit�1 α0X1ð Þ 1� logit�1 α0X0ð Þ� �
logit�1 α0X1ð Þ 1� logit�1 α0X0ð Þ� �þ logit�1 α0X0ð Þ 1� logit�1 α0X1ð Þ� � :
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This reduces immediately to

exp α0X1ð Þ
exp α0X1ð Þ þ exp α0X0ð Þ : ð3:21Þ

Note also that any terms in αTXi that are common to the case and the control

(including the intercept parameter) will cancel out of the likelihood (and we assume

that these have all been removed). The contribution of each pair to the kth element

of the score vector and the k, k0 element of the information matrix will be equal to

exp α0X1ð Þ
exp α0X0ð Þ þ exp α0X1ð Þ X1k � X0kð Þ

for k ¼ 1, . . ., r and

exp α0X1ð Þ
exp α0X0ð Þ þ exp α0X1ð Þ½ �2 X1k � X0kð Þ X1k0 � X0k0ð Þ

for k, k0 ¼ 1, . . ., r, respectively. These contributions are summed over all pairs to

compute the full score and information. If there is only one parameter of interest,

then the score test for the null hypothesis that this parameter is zero is easily seen to

be equal to

X
i

Xi1 � Xi0ð Þ
 !2

X
i

Xi1 � Xi0ð Þ2 , ð3:22Þ

which is essentially a test that the mean value of X for the cases differs from the

mean value of X for the controls.

For more complicated matching, the conditional likelihood, i.e., the probability

that the particular observed combination of cases and controls was observed given

that there were N cases from among the N + M subjects, involves complicated

summations. However the best of today’s modern software (e.g., PROC LOGISTIC

in SAS) implements very fast and effective means to perform or approximate these

computations.

3.6.1 Breaking the Matching in Logistic Regression
of Matched Data

Even for data that has been collected using a matched design it is often desirable to

break the matching, i.e., to use an unconditional logistic model for analysis of the
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study. Notice that for a 1:1 matched design that if either a case or a control is

missing a covariate value then both the case and control in that stratum are no

longer available for a given analysis; the situation is even worse for 1:M design if a

case is missing data since then M + 1 subjects will no longer be available for

analysis. This means that a matched design will often lose somewhat more cases

and controls to missing data than would an equivalent unmatched design. Another

common rationale for breaking the matching of a 1–1 study is to investigate sub-

types of disease, restricting attention, for example, to ER- or ER + cancers rather

than all disease in a breast cancer GWAS. By breaking the matching many more

controls remain available than if the matching is retained. When faced with missing

data or for subset analyses epidemiologists will generally break the matching and

use unconditional logistic regression when they can.

Breaking the matching produces reliable results so long as the influence of the

matching variables can be parsimoniously modeled using known covariates; here

parsimoniously means “without introducing too many new parameters in the

model.” When breaking the matching it is important to use the original matching

variables as adjustment variables in the unconditional analysis. To give an extreme

example suppose that cases and controls were matched by race/ethnicity and some

other variables but with the complexity that for one ethnicity a 1:1 matching of

controls to cases is performed, but for another group a 1:2 matching was used. If the

matching is broken then any variables (such as SNP counts nA) that have different
distributions in the two subgroups will appear to be strongly related to disease

unless ethnicity is included in the unconditional (matches broken) model.

More generally whenever the variable of interest is itself associated with one or

more of the variables used in the matching it is important to include the matching

variables as adjustment variables in unconditional analysis: In particular when both

the matching variables and the variables of interest are strongly associated with risk

and are themselves correlated, then leaving out the matching variables from the

unconditional analysis will lead to low powered analysis compared to the condi-

tional matched logistic regression. Figure 3.1 shows the results (obtained by

running “break_matching.r”) of five different tests for the effect of a single SNP

for data where (1) age is a very important predictor of disease and (2) the study is

designed to be either individually matched on age or is unmatched (with equal

numbers of cases and controls). Shown are box plots of the Z-statistics (estimate/

standard error) for the following tests of a nonzero SNP effect (see the R program

for details of the model).

1. Conditional logistic regression analysis using the individual matching.

2. Breaking the matching (and using unconditional logistic regression) with no

adjustment for age.

3. Breaking the matching with adjustment for age as a continuous variable.

4. Breaking the matching with adjustment for age as a categorical variable (5-year

age groups).

5. Analysis of an unmatched case–control sample drawn from the same population,

with adjustment for age.
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Fig. 3.1 Visual comparison of five tests under three conditions. The tests are (1) Conditional

logistic regression analysis for individually matched data; (2) breaking the matching (and using

unconditional logistic regression) with no adjustment for age; (3) breaking the matching with

adjustment for age as a continuous variable; (4) breaking the matching with adjustment for age as a

categorical variable (5 year age groups); (5) analysis of unmatched case control sample drawn

from the same population. The upper panel gives the results of these tests when the variable of

interest (snp count) is uncorrelated with age and the middle panel when the snp1 count is strongly

correlated with age (correlation approximately equal to 0.85). This illustrates the importance of
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We see from the top two panels of Fig. 3.1 that all analyses seem to have similar

power when age and the SNP are not highly correlated with each other; i.e., the Z-
statistics computed in each of analyses (1–5) are similarly distributed. However for

the middle panel, where age and SNP count are highly correlated then analysis 2 is

very underpowered. Adjusting for age seems to make up this power loss quite nicely

(in analyses 3 and 4) even though by design the distribution of age is the same in the

cases as in the controls. This can be understood because conditional on a given value

of SNP count the age distribution of the cases will now be different than the age

distribution of controls, because of the strong correlations between both age and

outcome, and between age and SNP, even though averaging over the SNP counts

there is no such correlation.Modeling the association of SNP and outcome given age

(by including age as an adjustment variable) then improves the power of the analysis.

In this setting analysis 5 (actually a different design than analyses 1–4, since the data

are collected unconditionally) has similar power to that of analyses 1, 3, and 4.

While we did not see much difference between the power of unmatched (anal-

ysis 5) and matched studies(analysis 1) in the top 2 panels of Fig. 3.1, it is important

to realize when an unmatched study might be a better design than a matched study.

From a study design perspective matching has a price to pay compared to the

unmatched analysis whenever (1) the variables being matched on are not strongly

related to disease, but (2) the variables being matched on are related to the variable

(here SNP) of interest; this is often called overmatching since we are matching (for

no good reason) on a non-influential variable that is correlated with the exposure of

interest. In this setting the comparison of the 5 analyses considered above is

different (see Fig. 3.1 lower panel) in particular the unmatched design; i.e., scenario

(5) above provides the most powerful analysis. Note also that analysis (2), breaking

the matching with no adjustment for age, is again the least powerful analysis,

emphasizing again that matching variables should be included as adjustment vari-

ables in the unconditional analysis of matched data.

Note (Homework) that in a matched analysis that if the matching variable is

correlated with the variable of interest (here the SNP count) with correlation R then

the correlation between the exposure of interest seen when comparing the values of

the cases and controls will be equal toR2. This observation allows us to now consider

sibling matched designs where a case is matched to his or her unaffected sibling.

Prior to the advent of large-scale genotyping studies, where principal components

and other analyses are possible, the matching factors (basically the complete ances-

try of the parents) could not be summarized parsimoniously so that if we break the

family matching we could only do an analysis equivalent to analysis (2).

Fig. 3.1 (continued) control for age after breaking the matching since analysis (2) is much inferior

to the remainder of the analyses when there is a strong correlation between the matching factor

(here age) and the variable of interest (here a snp count). In the lower panel we are assume that age

is not a predictor of the effect but that there is still a strong correlation (0.85) between SNP count

and age. In this case it is clear that the best analysis is the unmatched design (adjusting for age)

whereas all the other analyses (of matched data) are inferior
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It was shown in the previous chapter that the correlation between SNP counts for

siblings is equal to 1/2. From the comment above this is equivalent to assuming that

the correlation between SNP count and matching factor (which would be a hypo-

thetical parsimonious representation of the ancestry of each sibling pair) must be

the square root of (1/2) or roughly 0.71. Thus the results from the middle and lower

panel of Fig. 3.1 (where a similar high correlation was assumed between the

variable of interest and the matching variable) would seem to apply to the sibling

matched design. In this case, analysis (2), breaking the matching and ignoring the

matching variable (which we must then do since we can’t measure the hypothetical

parsimonious representation of ancestry), has much poorer power than keeping the

matching, so therefore we would always choose to keep the matching in the analysis

of such a study. However, when considering whether to design such a study, we

should realize that there is a considerable loss of power in choosing a sibling

matched case–control design over an unmatched design unless some unmeasured

characteristics varying among families1 are strongly predictive of outcome. If all

the families have the same disease risk (i.e., matching on family is unneeded)

matching on family is equivalent to choosing design (1) over design (5) for the

bottom panel of Fig. 3.1; i.e., there is severe loss of power. In the past the problem

with choosing the unmatched design was that there was no way to adjust for the

influence of hidden population structure, admixture, etc. Modern large-scale

genotyping studies can make up for this deficit.

3.6.2 Parent Affected-Offspring Design

Another family-based design specifically the parent affected-offspring design [19,

20] also provides protection against population stratification. Here outcome data

(disease of interest) are only collected for an affected offspring, but genotypes are

available for both the affected offspring and the parents. Analysis of these data can

be presented in a variety of ways including as a conditional logistic regression

problem [20], although that is not our emphasis here. Consider the triplet (nf,A nm,A
no,A) of allele counts for father, mother, and offspring for a given variant of interest

(with alleles a and A). Conditional on the genotypes for the father and mother, the

distribution of the number of copies can be readily computed under Mendel’s law.

Moreover the mean and variance of the offspring allele counts can be computed as

well, as given in Table 3.2 below.

Table 3.2 is computed under the null hypothesis. If however the SNP is linked to

a disease variant then the affected offspring will tend to have more copies of the risk

allele than expected given their parental genotypes (under an additive model for the

effect of having 0, 1, or 2 copies of allele A). Given data for family i ¼ 1, . . ., Ntrios

1 Hidden stratification or admixture + either cultural practices affecting disease risk varying by

ethnicity and/or the presence of an unmeasured polygene are obvious candidates.

3.6 Conditional Logistic Regression 109



a test of the null hypothesis of no effect of A on risk against an additive alternative

can be computed as

T2 ¼

X
i¼1,Ntrios

nioA � E
�
nioA
��nifA,nimA�

 !2

X
i¼1,Ntrios

Var nioA
��nifA, nimA� � : ð3:23Þ

With T2 distributed as approximately χ21 under the null hypothesis. A more

general test would be to construct a multi-degree of freedom test for any distortion

in Mendelian segregation among the affected offspring. Note that many of the

parental genotypes are non-informative (no variability in the offspring genotype

given the parental genotypes). These can of course be eliminated from the calcu-

lations. The test statistic, T2, in (3.23) can be shown to be equivalent to the

transmission-disequilibrium TDT test [19] (see Homework) and to the score test

for the conditional logistic regression discussed by [20].

Case–parent trios allow for the investigation of a number of unique effects that

cannot be addressed in only unrelated individuals. For example, parental origin of

an allele may be important because of imprinting (see Chap. 1); that is, an allele

could have a different effect on risk of disease depending upon whether it was

transmitted from the mother versus the father. Since parental origin of each allele

can be inferred for 14 of the 15 nonzero cells in Table 3.2 (the exception is when

each of the parents and the offspring are heterozygous) it is possible to make

appropriate comparisons that include not only the observed genotype for the

affected offspring, but also the parental origin of that genotype. For example, if

we saw similar numbers of parent affected-offspring trios falling into the (nfA, nmA,
noA) ¼ (1,0,1) cell compared to the (1,0,0) cell of Table 3.2 but saw more trios

falling into the (0,1,1) cell than in the (0,1,0) cell this might be evidence that an A

allele is only related to risk if it was transmitted from the mother. See Weinberg

[21] for a careful discussion.

Table 3.2 Conditional distribution of offspring allele count, noA, of allele A given parental allele

counts nmA and nfA

Pr(noA)

Parental genotype (nfA, nmA) 0 1 2 E(no|nf, nm) Var(no|nf, nm)

(0, 0) 1 0 0 0 0

(0, 1) 1/2 1/2 0 1/2 1/4

(0, 2) 0 1 0 1 0

(1, 0) 1/2 1/2 0 1/2 1/4

(1, 1) 1/4 1/2 1/4 1 1/2

(1, 2) 0 1/2 1/2 3/2 1/4

(2, 0) 0 1 0 1 0

(2, 1) 0 1/2 1/2 3/2 1/4

(2, 2) 0 0 1 2 0

110 3 An Introduction to Association Analysis

http://dx.doi.org/10.1007/978-1-4614-9443-0_1


3.7 Case-Only Analyses

3.7.1 Case-Only Analyses of Disease Subtype

Consider first case-only analysis in the context of distinguishing between risk factors

for one form or type or grade of disease from another such form of disease (say

low stage versus high stage disease, nonaggressive versus aggressive disease,

biomarker positive versus biomarker negative, etc.). For example, many cancers

of the prostate and thyroid are low grade at diagnosis and may remain indolent for

many years. In a GWASdevoted to such an outcome a natural question is whether it is

possible to find risk genetic variants that predict susceptibility to high stage or

aggressive disease but not (or to a lesser degree) low state disease. A simple but

effective approach for analysis of such data is simply to redefine the case status

variable so that high-grade cases are defined asD ¼ 1, the remaining cases asD ¼ 0,

and the controls are dropped from this portion of the analysis. With this redefinition

standard logistic regression analyses are utilized. When associations between

markers and this new case status variable are detected, these can be interpreted as

interactions between genes and grade of disease. For example, in breast cancer

research most associations found in the first few GWAS studies appeared to be

restricted to increasing the risk of ER + breast cancer and not the risk of ER disease.

Testing and affirming the significance of such an apparent interaction using case-only

analysis add credibility to the assertion that these two forms of the disease have

distinct etiology as well as being of prognostic importance.

3.7.2 Case-Only Analysis of Gene � Environment
and Gene � Gene Interactions

Consider fitting a model

logit Pr Di ¼ 1ð Þð Þ ¼ μþ β1niA þ β2Ei þ β3 Ei � niAð Þ, ð3:24Þ

where the primary interest is in the parameter β3, i.e., in the interaction between the
count, niA, of allele A and the additional (environmental) variable Ei. If we knew

that in the population sampled that Ei and niA are independent of each other then in

certain situations it is possible to exploit this independence in order to test for

multiplicative interactions between Ei and niA affecting the mean, Pr(Di ¼1), of Di .

A classic paper by Piegorsch et al. [22] pointed out that under this assumption

interactions can be tested for by testing explicitly for an association between Ei and

niA among the cases in the study. When disease is rare so that all terms in the model

can be approximated to be multiplicative, then Piegorsch et al. show that this test is

more powerful than the usual test for G � E interaction using both cases and

controls. To give intuition to the results of Piegorsch et al., the R program case-
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only.r in the online materials illustrates what is going on. First it is helpful to

understand that testing for a G � E interaction using model (3.24) is nearly

equivalent to testing whether the association between the G and E variables differs

by case–control status. For example, in the R program mentioned above two models

are fit in each simulation:

1. glm(E[case] ~ G[case],family ¼ binomial)

2. glm(E[control] ~ G[control] ,family ¼ binomial)

Then the coefficients for the slope parameter (called e1 for cases e0 for controls
in the program) as well as their variances (v1 for cases and v0 for controls) are
extracted from the summary of these models and a simple test for equality of

independent estimates is performed as (e1 � e0)
2/(v1 + v2), which is compared

to a chi-square statistic with 1 degree of freedom to assess significance. In

addition the usual case–control main effect + interaction model is fit

3. glm(Y ~ G + E + G*E,family ¼ binomial)

and the Wald test for the G*E interaction (also of 1 degree of freedom) is

performed. Finally the case-only test that e1 ¼ 0 is computed from the fit of

the first glm model (as e21/v1). Figure 3.2 shows the results of 50 such analyses

using simulated data with parameters chosen for illustrative purposes. The figure

suggests the near equivalence of the standard G � E test (x-axis) with the test

that compares the association between E and G between cases and controls, as

well as the striking increase in power seen in the case-only analysis relative to

the usual test. It should be noted here that the model being fit is nearly multipli-

cative because for rare diseases and modest effects (of E, G, and G*E) the

logistic function behaves similarly to the logarithmic function. The logistic

function is log(x) � log(1 � x) so that if the operand x is close to zero (as in a

rare disease) the second term is also close to zero.

In many cases it seems very reasonable to assume independence between

genetic and environmental variables (i.e., here between Ei and niA). The best case
would be as in a clinical trial if treatment is assigned randomly to individuals.

However most randomized trials are studies of common, rather than rare, events

(e.g., relapse after treatment for an initial cancer). When the event probability is

close to 1/2 in the population of interest the usual test for interaction is more

powerful than the case-only analysis. This is reasonable because of the relative

efficiencies between the test that (using the above terminology) e1 ¼ e2 and the

case–control test. If the disease is common (close to 50 % probability) then the

controls are under as much (or more) selection than are the cases, and it is the

selection that causes e1 to be nonzero. For example, in the above simulation the

expected values of e2 would no longer be close to zero (and would be opposite in
direction than e1) and so the test that e1 ¼ e2 (~equivalent to the case–control

test for interaction) becomes more powerful than the test using only the cases

that e1 ¼ 0. Of course for very common outcomes a “control-only” analysis

would become an attractive alternative.

In epidemiologic studies without the benefit of randomization the assumption

of G and E independence may still be plausible, and even if a few genes are not
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independent of exposure this may not matter on the larger scale. For example,

alcohol intake is related to ability to metabolize alcohol and it is well known that

certain SNPs in the alcohol dehydrogenase gene are related to alcohol intake and

these could be ignored in the results of a G � alcohol genome-wide survey.

A number of authors [7, 23–25] have sought to find some way of combining

the case–control and case-only analyses in ways that can provide protection

against a failure of assumption of independence between E and G. One of the

most interesting proposals is by Murcray et al. [26] who suggest first testing for

association between E and G for all individuals (cases and controls) and then

moving associations that pass a certain threshold of significance into traditional

case–control analysis. Murcray et al. show that the two tests are formally

independent of each other; i.e., for a given association the outcome of the

case–control analysis will not depend upon that of the initial screen. Moreover

by fine-tuning the thresholds for significance in this “two-stage” testing, both for
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Fig. 3.2 Plot of chi-squared statistics for two alternative tests plotted against the chi-squared

statistic for the standard G � E test using case control data. The first alternative is a test that the

association between E and G differs between the cases and controls (circles), the second is for the
case-only test (triangles). This figure suggests the near-equivalence of the standard G � E test

with the comparison between cases and controls of association between E and G as well as the

striking increase in power in the case-only analysis, when, as here, it is appropriate
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the initial case-only analysis and the follow-up case–control analysis, Murcray

et al. are able to preserve power and control for multiple testing [27]. Intuitively,

however, the Murcray et al.’s approach still rests upon the rare-disease assump-

tion, since if both cases and controls are common in the population then the

initial screen will have diminished power since the sample roughly speaking

reflects the full population, and so no association will be detected between G and

E when the independence assumption is true.

Case-only analyses are susceptible to population stratification; i.e., in struc-

tured populations it could well be that exposures are related to culture or

ethnicity; thus careful control for population stratification can be important.

This is especially true when case-only analysis is performed to test for gene by

gene (G � G) interactions. Associations between unlinked SNPs, e.g., SNPs

very far away from each other on the same chromosome or on different chro-

mosomes must be analyzed carefully before they can be considered to be

evidence of interactions (when observed among cases), since as seen below,

correlations between unlinked SNPs are a hallmark of hidden population

structure [28].

3.8 Non-independent Phenotypes

So far in this chapter it has been assumed that each of the outcomes Yi is indepen-
dent of each other so that likelihoods can be multiplied (and log likelihoods

summed) over the independent observations. It is worthwhile to consider situations

where phenotypes Yi and Yj (i 6¼ j) might NOT be independent of each other and

what the effects of such lack of independence will be.

Consider the effects of unexpected relatedness between subjects. Suppose that

the mean of Yi and Yj depended not only on the measured genotypes nj(A) and nj(A)
but also on an unmeasured variant with allele counts ni(U ) and nj(U ). If ni(U ) and

nj(U ) are independent of each other we could still regard Yi as being independent of
Yj given only the known genotypes for the first variant. However if ni(U ) and nj(U )

are dependent then Yi and Yj will also be dependent; for example, for linear models

(i.e., g is the identity function) that are linear in n(U ) (with parameter βu)
the covariance between Yi and Yj is equal to βuCov[ni(U ), nj(U )], where this

covariance is calculated conditionally on the values of the measured variables

and ni(A) and nj(A).

3.8.1 OLS Estimation When Phenotypes Are Correlated

Here we expand our discussion in Sect. 3.4.8 of the mean and variance of β to the

case when phenotypes are correlated according to a special structure; namely, we

assume that the model for the expectation of phenotype vector Y remains
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E Yð Þ ¼ Xβ

and assume that Y has variance–covariance matrix equal to ∑ ¼ σ2I + γ2K. We

will see that this model is highly relevant to the issues of relatedness and hidden

structure described in Chaps. 2 and 4. For this model we can show (from the rules

used in Sect. 3.4.7) that the ordinary least squares estimate β̂ of (3.18) has

expectation β, i.e., is unbiased, but it now has variance equal to

Var β̂
� � ¼ X

0
X

� 
�1

X
0
ΣX X

0
X

� 
�1

¼ σ2 X
0
X

� 
�1

þ γ2 X
0
X

� 
�1

X
0
KX X

0
X

� 
�1

: ð3:25Þ

Further we can show that under this model the estimate of σ2 in (3.19) is no

longer unbiased; in fact with a little algebra similar to that used in Sect. 3.4.7 the

usual estimate, σ̂ 2, can be shown to have expectation equal to (for Proof see

Appendix below)

σ2 þ γ2
tr Kf g � tr X0Xð Þ�1

X0KX
n oh i
N � r

: ð3:26Þ

Notice that since the variance of any given observation, Yi, conditional on

covariate data X is under this model equal to σ2 + γ2Kii σ̂
2 underestimates the

variability of Yi if
tr Kf g�tr X0Xð Þ�1

X0KXf g½ �
N�r is less than Kii. When tr{(X0X)�1(X0KX)} is

large then the true variability will be most underestimated. It turns out that

the problem of finding a maximum value of tr{(X0X)�1(X0KX)} is similar to

the eigenvector/eigenvalue problem. In particular when columns of X load on the

largest eigenvectors of K, then both the variance of observations Yi and therefore

the variance of β̂ will be underestimated. More on these effects is described in

the following chapter when correction for population stratification and relatedness

is discussed.

3.9 Needs of a GWAS Analysis

In GWAS studies several hundred thousand to more than one million SNP markers

are genotyped often in thousands of study participants. One of the most obvious

differences between GWAS studies and traditional epidemiological studies is the

sheer number of models fit and effects tested. This has an impact both on the

software that we choose to analyze the data (to complete the analyses in a reason-

able length of time) as well as upon the sample sizes that are needed to keep control

of type I error rates in a major study. Single SNP analyses with no or only few
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covariate variables included in the model are very simple to fit computationally but

nonetheless represent a serious burden for most software: the data are very volu-

minous, and the computer software must be able to rapidly access the data for each

SNP in turn during the course of the analyses. Simple naı̈ve use of the usual

statistical packages familiar to most statisticians, including R, will not work on

datasets this large, unless special methods are adopted. In R perhaps the most

important problem to deal with is speeding up access to the data from disk to

memory, which is far slower using standard R methods, such as the read.table

command illustrated above, than can be regarded as acceptable for large-scale

studies.

3.9.1 Hardware Requirements for GWAS

A typical GWAS dataset may involve manipulating many gigabytes of data for a

single study. For most but not all analyses, stand-alone machines costing in the

rough range of 5–10 thousand dollars including access to several terabytes of disk

space and 16 gigabytes memory or more are adequate with most analyses running in

a few hours. One exception to this, often regarded as an essential part of quality

control, is to estimate IBD probabilities for all pairs of subjects in a study in order to

identify unexpected close relatives or unknown duplicates, often with the intention

being to remove one member of each such pairs from analysis (or both if sample

mix-ups are suspected as a cause). For these and some other (multivariate) analyses,

for example, involving scans of the entire genome for haplotype effects using

sliding windows, as described in Chap. 6, it is extremely helpful if not essential

to have access to a reasonably large cluster of interconnected computers. Calcula-

tion of principal components may require specialty software; i.e., general purpose

programs such as SAS PROC PRINCOMP may be inadequate for larger problems,

while programs like EIGENSTRAT (see Chap. 2) remain feasible to run on single

user systems (although EIGENSTRAT only runs on Linux or UNIX systems).

3.9.2 Software Solutions

A basic dilemma arises when considering the choice of software, i.e., whether to

abandon, in favor of specialty software, tried and true statistical packages, which

while not optimized for the GWAS setting, but which provide extremely flexible

model fitting, and also allow for a great deal of automation, either through macro-

generation (e.g., in SAS) or through user-defined functions (in R).
There are some very impressive stand-alone programs available for analysis of

GWAS data that are optimized for dealing with hundreds of thousands or even

millions of SNPs. The best of them, such as the PLINK program [29], provide

capabilities for both processing large files containing SNP data and for dealing with
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special problems that such data pose. These include providing procedures to deal

with quality control for these data such as computing genotype completion rates,

performing Hardy–Weinberg tests, and checking for Mendel errors for family data,

providing help with strand issues when two or more sources of genetic data are to be

merged or compared, as well as performing specialized analyses, such as related-

ness checking, etc. Such packages, however, are not optimized for data display or

more generally for post-analysis manipulation of results. A compromise procedure

is often adopted; i.e., a familiar statistical package is used for initial data manipu-

lation of the raw data coming from genotype calling software for the purpose of the

setup of files for analysis in PLINK or other external software, which may include

genotype files, subject description files, SNP information files, additional covariate

information, etc. When the external program finishes, the results of the external

program are again manipulated with a highly flexible package such as R or SAS. By

using the ability of the statistical package (such as the R system command or SAS

X command) to call external programs, and then to read and manipulate the results

files for data display or other post processing, much of the pre- and post-analysis

data manipulation process can be automated by a statistical programmer working

within a statistical package such as SAS or in the R language. Writing,

documenting, and saving a program script that orchestrates as much of the analyses

as is possible are an essential part of ensuring that results obtained can ultimately be

traced back to the original data and samples, even if the same analysis is not

expected to be repeated many times.

It is possible to run large-scale GWAS problems in SAS, and this allows for use

of the large range of features available in PROC LOGISTIC (use of offsets,

conditional logistic regression, calculation of score and likelihood ratio tests,

etc.). The main issue in SAS is to reduce the number of calls to PROC LOGISTIC

from one per variable, to one call per large number of variables, using a BY

statement in SAS to break up SNPs. For example, if there are 10,000 SNPs being

run for 5,000 individuals in single SNP analyses, a file can be created with only a

few columns, one of them named SNP, and an additional column, labeled

SNPNAME, e.g.,

the data file long_skinny is the concatenation of files needed to run a single SNP,

i.e., there may be only 5 columns in long_skinny, i.e., those needed to contain D,

age, sex, SNP, and SNPNAME, but there are 10,000 � 5,000 rows; since each of

the 10,000 SNPs being analyzed (all named SNP) needs the covariate data for all

5,000 individuals, SNPNAME contains the SNP identifier distinguishing the SNPs.

For larger numbers of SNPs many long_skinny files may need to be created in

sequence (and discarded after processing, to save space), but surprisingly the whole

procedure can be implemented in SAS macros and run in times that are highly

competitive with stand-alone programs such as PLINK, while keeping the greater

flexibility of the SAS regression programs.
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3.10 The Multiple Comparisons Problem

AGWAS study is designed to provide an unbiased search for regions of the genome

that contain variants that are related to risk of disease. As such GWAS studies are

inherently exploratory, and hundreds of thousands to millions of often correlated

tests are produced. For a given disease or other phenotype of interest the ultimate

goals of the scientific enterprise that GWAS studies play a part in are to understand

at a fundamental level the genetic portion of individual variability of that pheno-

type. Because of the work involved in following up GWAS results for the identi-

fication of causal variants and (ultimately) their mechanistic relationship to

phenotypic variability it is necessary to carefully control the rate of false-positive

reports coming out of GWAS studies.

Currently the de facto standard that in order to be accepted as a true association

by the community of interested scientists (and accepted for publication in a good

journal) a novel finding (generally an SNP/phenotype association not previously

known or suspected) should be

1. Globally significant in the original GWAS—which may have been performed in

several stages, so that not all subjects need to have been genotyped for all SNPs

(see discussion of the design of two-stage studies, Chap. 7).

2. Be replicated in at least one other study that is completely independent of the

original discovery sample.

For the present attention is focused here on issue (1). By globally significant it is
meant that starting with an initial set of SNPs (i.e., those present on the genotype

array), the sequence of analyses that was followed in the GWAS study in order to

declare a novel finding significant would have produced no false-positive results in

the vast majority of all such investigations (i.e., if the entire study was somehow able

to be repeated again a large number of times). Thus the phrase global significance
means controlling the overall experiment-wise type I error rate, α, typically at the

generally accepted 5 % level. From a practical stand point, since the details of the

sequence of analysis followed by a specific study may be obscure, a standard for

nominal significance that is generally accepted as implying global significance, at

least for a single SNP association, is that the p-value for the observed association is
less than 5 � 10� 8. This standard for nominal significance to equal global signif-

icance fluctuates a bit depending upon circumstances since LD patterns vary by

race/ancestry and by the frequency spectrum of the alleles that are to be interrogated.

The justification of the use of this (or other similar p-values) is not so much based

upon a Bonferroni test (i.e., dividing 0.05 by the total number of SNPs that are

genotyped), but rather upon considerations involving a hypothetical effective num-
ber of independent single marker associations that could be tested if we were to

capture, through linkage disequilibrium with the set of genotyped markers, all

common variations in the human genome. This criterion for nominal significance

is designed to allow for the use of a particular type of multi-SNP analysis, namely,

predicting (and testing for association) ungenotyped SNPs or other known common
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variants, using disequilibrium patterns. For a number of years the set of common

variants that have been targeted in such analyses were the common SNPs genotyped

in the Phase 2 HapMap data [30, 31]. Such analyses typically include examination of

the ENCODE regions that have been more extensively sequenced for discovery

purposes, in order to estimate the “capture” rates for common variants that have

been achieved by the Phase 2 HapMap itself. It is very possible that these criteria

will need to be changed with the more extensive discovery of both common and

rarer variation provided by the ongoing 1000 Genomes Project.

3.11 Behavior of the Bonferroni Correction

with Non-Independent Tests

The Bonferroni correction for multiple comparisons is based upon a very simple

concept; for any set of random events (whether independent or non-independent)

the probability that at least one of the events occurs is less than or equal to the sum

of the marginal probabilities of the events. In the hypothesis testing framework if

we perform N tests of hypotheses, each one with type I error rate α/N, the

probability, if all the null hypotheses are true, that we will falsely reject one or

more of them is less than or equal to α. Use of the Bonferroni criteria is an effort to
control the overall type I error rate α of the experiment, under the global null
hypothesis that all of the individual null hypotheses are true.

Bonferroni correction works very well in controlling the false-positive rate for

large numbers of independent or nearly independent tests. For example, if the test

statistics are all independent, then under the global null hypothesis the probability

that one or more tests is rejected is calculated as 1 � (1 � α/N )N which as

N increases converges rapidly to 1 � exp(�α). At α ¼ .05 using the Bonferroni

calculation will be slightly over-conservative since 1 � exp(�0.05) ¼ 0.04877

rather than the desired α of 0.05.

For non-independent tests, where the rejection of one hypothesis means that

another hypothesis is more likely to be rejected as well, the Bonferroni correction

worsens as an approximation to the true experiment-wise type I error rate; it is

conservative in the sense that the probability of a false-positive experiment is

smaller than the nominal significance level α. When testing massive amounts of

SNP data, each SNP one at a time, association tests of nearby SNPs are

non-independent because the SNPs are in linkage disequilibrium with their

neighbors.

In the model

E Yið Þ ¼ μþ β1ni Að Þ,

if we reject the hypothesis that β1 ¼ 0, in favor of a two-sided alternative, then if

B is another nearby SNP allele with high correlation to A, i.e., high R2 between n(A)
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and n(B), we are also likely to reject the hypothesis β1 ¼ 0 when testing SNP allele

B (i.e., replacing ni(A) with ni(B) above).
In special cases it is possible to quantify the loss of accuracy of the Bonferroni

correction due to such correlation. For example, consider a study in which evenly

spaced markers are each tested, to form the z-scores, Zi and Zj, from Wald or other

tests of β1 ¼ 0 at the two marker positions, i and j. Now assume that short-range

linkage disequilibrium decays so that for two test statistics at marker positions

i and j, we have Cor(Zi,Zj) ¼ exp(�λΔ) with Δ being the distance between markers

and λ a positive rate of decay parameter. This model for decay in the correlation

between test statistics with distance, Δ, has some theoretical justification when

recombination events are regarded as occurring independently with a rate constant

over the genome. Such a sequence of correlated normal random variables is called

an Ornstein–Uhlenbeck process after the physicists who first studied it (see

Siegmund and Yanik’s book [32] Sect. 3.3 for additional discussion of this process

and its relevance to genetic studies and including R code to perform the

computations).

For this process the probability that the maximum z-score is larger in absolute

value than the positive number z can be well approximated as

Pr max
i

��Zi

�� � Z

� 	
	 1� exp �2C 1� Φ zð Þ½ � � 2λLzϕ zð Þv z 2λΔf g1=2

� 
n o
, ð3:27Þ

with Φ(z) and ϕ(z) being the probability distribution and density functions, respec-

tively, of the standard normal distribution, where L is the total genetic length, and

C the number of chromosomes, being considered in the scan. The third function,

v(�), can be approximated as

v yð Þ ¼ 2=yð Þ Φ y=2ð Þ � 0:05ð Þ
y=2ð ÞΦ y=2ð Þ þ ϕ y=2ð Þ :

Equation (3.27) can be used to study the behavior of an approximation to the true

experiment-wise rate, when using the Bonferroni criteria to control that rate, but

when the marker z-scores for pairs of adjacent markers are correlated with corre-

lation equal to the value R > 0. For example, in a study with one million markers

assumed to be evenly spaced over 3 billion base pairs (a spacing of one SNP every

3 kb) over 23 chromosomes, we can calculate the Ornstein–Uhlenbeck approxi-

mation (3.27) using values C ¼ 23, L ¼ 3 � 109, Δ ¼ 3, 000, λ ¼ � (1/3, 000)

log(R), and z ¼ 5.45. Here, z ¼ 5.45 defines the critical value for significance

required by the Bonferroni test, i.e., Pr(|Z| > 5.45131) ¼ 5 � 10� 8, and λ is

chosen so that the correlation between nearby z-scores, exp (�λΔ), is equal to R.
Figure 3.3 gives values of the Ornstein–Uhlenbeck approximation for R ranging

from 0.01 to 0.99. From Fig. 3.3 the simple Bonferroni correction appears to

perform very reasonably until correlations between neighboring tests become rather

large. Only with R > 0.88 does the Ornstein–Uhlenbeck approximation to the true

experimental-wise type one error rate decrease below 0.04.
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The implication of Fig. 3.3 is that for simple one-marker tests it is quite “hard to

beat” the Bonferroni approximation so long as marker correlations die out within a

few score kilo basepairs. For other types of tests, such as the sliding window

haplotype approach described in Chap. 7, the correlations between tests can get

very large however, and for these types of approaches it may be very important to

consider alternative methods to estimating the global significance of any apparent

associations found [33].

3.12 Reliability of Small p-Values

One practical consideration that merits addressing is the validity of the asymptotic

approximations used to approximate the distribution of the score tests and likeli-

hood ratio tests when very small p-values for significance are required (as when

applying a Bonferroni criteria in genome-wide analyses). While little has been

published on this subject concerns have often been raised that “rule of thumb”

criteria developed for the reliability of p-values close to 0.05, e.g., that the expected
counts for each cell of a table (say of genotype by case–control status) must be

equal to 5 or so before a chi-square approximation to the distribution of a test of
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Fig. 3.3 Ornstein–Uhlenbeck approximation to global type I error rate when using a Bonferroni

approximation for one million evenly spaced correlated markers. Correlations, R, between z-scores
for single marker tests range from 0.01 to 0.99

3.12 Reliability of Small p-Values 121

http://dx.doi.org/10.1007/978-1-4614-9443-0_7


independence of genotype by status can be relied upon, may be completely inap-

propriate for p-values in the range of 5 � 10�8. We contrast two very simple tests,

one where such a “rule of thumb” is very bad and another where it appears to be

quite good.

3.12.1 Test of a Single Binomial Proportion

Consider a one-sample test of binomial proportion, adapted to testing for allele

frequencies for an autosomal SNP (under Hardy–Weinberg equilibrium). The

standard test that the true value of the allele frequency p̂ is equal to p is

T2 ¼ 2N
p̂ � p0ð Þ2
p̂ 1� p̂ð Þ :

The “standard” rule would be that this can be treated as chi-squared (1df)

random variable for values of 2Np � 5. The following simulation in R examines

this for a given value of N and p. Figure 3.4 shows the resulting Quantile–Quantile

(QQ) plot of the p-value from the statistic assuming that this is a chi-square with

1 degree of freedom, for two choices of p (large and small) and N (small and large,

respectively) with 2Np ¼ 10

It is clear from the Fig. 3.4a, b that this approximation is very bad for p-values
less than 10�3 or so, much less 10�8. In fact (personal communication Kenneth

Rice, University of Washington) a much better approximation is to treat T2 not as a
chi-square random variable, but rather as an F with 1 and Np degrees of freedom.

This is shown in Fig. 3.4c for the case of small p and large N.
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Fig. 3.4 QQ plot showing the distribution of the test statistic for one sample test of proportions
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3.12.2 Test of a Difference in Binomial Proportions

Interestingly the usual chi-square approximation is more acceptable for testing for a

difference in binomial proportions evenwhen the total number of allele counts for each

cell is quite small. TheR code to run a similar example to the above is provided below,

which produces Fig. 3.5.

Fig. 3.5 Quantile–Quantile

plot for the null distribution

of the test of two binomial

proportions, small p, large
N, expected number of

alleles in each group equal

to 2Np ¼ 10
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For very low expected counts (2Np ¼ 10 here) the chi-square approximation has

slightly smaller variance compared to the simulated distribution; however, as 2Np
increases this tail behavior improves rapidly (not shown). We should note that the

test a difference in binomial frequencies used here is sensitive to failures of HWE

and so it is generally better to use an Armitage test instead (Homework).

3.13 Chapter Summary

This chapter has described several of the main techniques used as well as issues

relating to testing individual markers for association with risk. The theory of

maximum likelihood estimation for the generalized linear model has been

reviewed, general issues regarding confounding are introduced, the behavior of

regression tests when outcomes are not independent was briefly touched on, and the

problem of multiple comparisons was described. In addition some comments on

hardware and software requirements have been discussed. Each of these topics will

be taken up again in later chapters.

Homework

1. Show that if random variable X is correlated with variable W with correlation

coefficient equal to R, and if Y is correlated with W with correlation coefficient

R as well, and finally that X and Y are independent given W that X and Y are

correlated with correlation coefficient R2. See last paragraph of Sect. 3.6.1.

2. Consider a model for Poisson regression in which the log link function is used

and a slope and intercept term fit. What is the score vector and information

matrix for the two parameters?

Suppose that instead of a log link function for Poisson data, the identity

function is used. Then what is the score and information?

3. What is the score and Fisher’s information for the variance parameter σ2 in a

OLS regression model with

(a) Only an intercept, μ, in the model

(b) An intercept and slope model, μ + βX
(c) What is the covariance between the score for σ2 and those for μ and β?

4. Prove expression (3.8)

(a) when the parameter θ is a scalar

(b) for multivariate θ.

5. The layout of the conditional distribution of offspring genotypes given parental

genotypes in Table 3.2 can be used to motivate several different multi-degree

of freedom tests. Suppose that we tabulate affected-offspring data according to

parental genotypes for a total of 645 trios as below:
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Maternal genotypes

aa aA AA

Offspring

genotypes aa aA AA aa aA AA aa aA AA

Parental

genotypes

aa 394 0 0 68 44 0 0 4 0

aA 46 51 0 5 16 3 0 0 1

AA 0 10 0 0 1 2 0 0 0

(a) Compute the expected number of offspring counts conditional on the

parental counts for each cell of the above layout.

(b) Compute the statistic T2 in (3.23) for these data.

(c) Compute a statistic for an overall failure of Mendelian segregation in these

data and relate that to the appropriate χ2 distribution. How many degrees of

freedom should be used? If we explicitly assume that there is no “parental

origin effect” can this table be further collapsed?

6. Consider the first entry for the table above; there are 394 offspring homozygous

for aa for whom both parents were aa. Thus each of the fathers has one a allele
transmitted and one a allele not transmitted similarly for the mother. If we

create a table of transmitted and untransmitted alleles then we have 394.

Transmitted

A a Total

Not transmitted A 0(a) 68(b)

a 0(c) 394 + 394 + 68(d)

Total

fathers with genotype aa who transmitted one a and did not transmit one a allele

which adds 394 to cell (d) of the table and similarly for the mothers. For the next

nonzero cell in the same row there were 68 offspring with genotype aa whose

father’s genotype was aa and mother’s genotype was Aa. This means the fathers

each transmitted one a allele and failed to transmit the other a allele, adding 68 to

the (d) cell of the table, whereas the mothers each transmitted one a allele and failed
to transmit one A allele adding 68 to the (b) cell of the Table. Finish the calculation

of this transmission table.

Transmitted

A a Total

Not Transmitted A (a) (b)

a (c) (d)

Total

(a) What is the resulting Table?

(b) Perform McNamar’s test (search web if necessary) of whether the A allele

is more or less often transmitted than untransmitted. Compare the
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chi-square with that seen in problem 4. What conclusion would you make if

one allele is transmitted to the affected offspring significantly more often

than the other allele?

7. Simulation experiment: simulate data from model logit E(Yi) ¼ μ + α1ni,A
+ α2Xi where Xi is either a weak or strong predictor of Yi. Compare the

power and type one error of the score test, or likelihood ratio test, of α1 ¼ 0

to a test based on the partial correlations between Y and nA adjusting for X. Do
this for the following situations: (1) Y is a rare disease (frequency ~ 1 %) and

X is a weak predictor, (2) Y is rare and X is a strong predictor, (3) Y is common

and X is a weak predictor, and (4) Y is common and X is a strong predictor.

8. Modify the code case-only.r to change the prevalence of disease in the popu-

lation (by modifying the intercept parameter in the model used to generate the

data). How prevalent does the disease have to be (in the simulation given)

before the power of the case–control test of interaction becomes equal to or

greater than the power of the case-only test?

9. One problem with the test of binomial proportions given in Sect. 3.12.2 is that it

is dependent upon HWE holding in each population. The Armitage trend test

(which can be computed as NCor(c,n)2) is more robust to deviations from

HWE. Redo the simulations and QQ plot shown in Fig. 5.3 by modifying the

R code in Sect. 3.12.2 to use this test.

10. Show that the score test for ordinary least squares linear regression (assuming

normal errors and a linear link function) that all slope parameters (α1, α2, . . ., αp)
are equal to a known value α0 is equal to theWald test of the same hypothesis. It

is OK to assume that the variance parameter σ2 is known.
Hint, start with the score statistic expressed in matrix form as U ¼ (1/σ2)

X0 (Y � Xα0) and the information matrix expressed as ι ¼ (1/σ2)X0 X and

multiply out terms in U0 ι�1U to show that these become equal to the Wald test

expressed as 1=σ2ð Þ α̂ � α0ð Þ0X0X α̂ � α0ð Þ
12. The best linear unbiased estimate BLUE is the estimate, linear in outcomes Y,

that has the smallest variance among all linear unbiased estimates.

(a) Find a proof (web search OK but pick one that you understand) that when

E(Y) ¼ Xβ and the covariance matrix is Σ (assume known),

β̂ ¼ X0Σ�1X
� ��1

X0Σ�1Y is the BLUE estimate of β. Note that this does

not require normality of the outcome vector Y.

(b) Is β̂ still the BLUE estimate if Σ is not known but must be estimated?

Data and Software Exercises

1. Use PLINK to estimate associations in the JAPC data. In order to make sure the

programs are running correctly (and to save wasted time and electricity if they

are not) first randomly select 1 % of the SNPs (using the “–thin” command) and

use these SNPs to test the programs before running the entire dataset.
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Perform two tests, those using “–assoc” and “–logistic,” and compare the

results. Does adjustment for age or principal components (in the logistic regres-

sion) affect the distribution of resulting p-values? For computation of principal

components, see Data and Software Exercises for Chap. 2.
2. For a small number of SNPs use the –recodeA command to create a file that can

be read into R or SAS and merged with the covariates used. Check that you can

reproduce the tests performed by PLINK. What test is being performed with the

“–assoc” command?

3. A score test of a single variable in SAS PROC LOGISTIC can be performed

using the following code. Here we assume that SNP is the variable of interest and

that we are adjusting for AGE and principal components PC1–PC10

Compare the score test to the Wald test and likelihood ratio test for the SNPs

in problem

4. Write code to do the score test for logistic regression in R. Hint: you have to roll
your own; the standard glm procedure in Rwill not compute it without additional

help.

(a) Here a brute force example downloaded from https://stat.ethz.ch/pipermail/

r-help/2009-March/190406.html which can get you started. (Included in

Score_Test_in_R.r):

(b) Note here that only the 3rd element of efscor is numerically nonzero (explain

why) so that this implies that the test is equal to
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scortest<-efscor[3]^2%*%ifim[3,3]

(c) Generalize this code to allow for expansion of the model (to allow for more

than one nuisance variable z and more than one variable of interest to be used

in the score test). Allow for both single and multivariate score tests.

5. This score test can also be done using one additional step of Fisher’s scoring

after having fit the null model (here m0).
In the above example we can use the following R code to perform the same

test by adding the following code:

The start parameter uses the initial model results (without x in it) as the

starting values for a model that includes the variable x (with a starting value of

zero). Then the maxit ¼ 1 parameter is used to make the program stop after just

one iteration of the Fisher’s scoring estimation procedure mentioned above.

Notice then that the usual Wald test for the effect of variable x (the square of

the reported z value for this variable) gives the same numerical result as the score

test in 4 above.

(a) Prove based on the discussion of Fisher’s scoring algorithm above that

computing the usual Wald test (estimate/std error)2 after allowing only

Fisher’s scoring 1 iteration away from the null model is equal to the

score test.

(b) Can you modify these code segments to perform a score test of a 2-degree

freedom alternative hypothesis, for example, the joint influence of z and x in

the above example.

(c) Is it possible to implement a multivariate score test in SAS?

(d) Does PLINK implement the univariate score test?

6. Figure 3.6 is a so-called Manhattan plot of the results from the JAPC data as

published by Cheng et al. [34]. Each point shows a p-value from a single test of

association. Standard plots are on the�log10 scale so that a p-value of 1 � 10�6

is plotted as a 6, 1 � 10�8 is plotted as an 8, etc. The ordinate of the plot is

chromosome number and location.

Another very commonly produced plot is the quantile–quantile (QQ) plot

plots, which often show the �log10 value of each sorted p-value plotted against
its expectation given its rank. The basic idea (once the data have been read in) is

as follows:
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Deviations from the Y ¼ X line, here abline (0, 1), can be indicative of many

things including (1) significant “top hits” or (2) over dispersion perhaps due to

population stratification.

(a) Describe the expected shape of the plot in both instances.

(b) With the results from the full PLINK analysis of the JAPC data create a QQ

plot for the results in either R or SAS.

(c) A QQ plot can also be shown for the chi-square statistic rather than for the

p-value. How would the code above be altered to do so?

Appendix

Proof of Equation (3.26). We have the OLS estimate of σ2 equal to

1
N�r Y

0 I � X X0Xð Þ�1
X0

� 

Y. In order to simply the notation re-write this as

1

N � r
Y0 I � Pð ÞY,

where P ¼ X(X0X)� 1
X0. Note that PP ¼ P and (I � P)(I � P) ¼ (I � P)

i.e. both P and I � P are idempotent with trace equal to r and N � r respectively.
Now we take the expected value of the estimate. We have

Fig. 3.6 Manhattan plot of single SNP associations in the LAPC data; from Cheng et al. [34],

p. 849
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E σ̂ 2
� � ¼ E

1

N � r
Y0 I� Pð ÞY

8<
:

9=
; ¼ 1

N � r
tr
�
I� P

�
E
�
YY0�� �

¼ 1

N � r
tr
�
I� P

�
Var
�
Y
�þ E

�
Y
�
E
�
Y0�� �� �

:

Note that

I� Pð ÞE Yð ÞE Y0ð Þ ¼ Xββ0X0 � Xββ0X0X X0Xð Þ�1
X ¼ 0:

Thus the above expression simplifies to

1

N � r
tr I� Pð Þ Var Yð Þ½ �f g:

Since it assumed that Var(Y ) ¼ σ2I + γ2K, the above expression is equal to

1

N � r
tr I� Pð Þ σ2Iþ γ2K

� �� � ¼ σ2

N � r
tr
�
I� P

�� �þ γ2

N � r
tr
�
I� P

�
K

� �

¼ σ2 þ γ2

N � r
tr K� PKð Þf g ¼ σ2 þ γ2

N � r
tr
�
K� X X0Xð Þ�1

XK
�n o

¼ σ2 þ γ2

N � r
tr Kf g � tr X0Xð Þ�1

X0KX
n oh i
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Chapter 4

Correcting for Hidden Population Structure

in Single Marker Association Testing

and Estimation

Abstract Chapter 2 discussed both relatedness of study participants and hidden

population structure in terms of the correlations induced between the number of

copies, niA and njA, of a diallelic genetic variant carried by two individuals i and j. In
Chap. 3 we discussed the requirement for association studies of unrelated subjects

that the outcomes of interest, Yi, be independent between study subjects. In this

chapter we will expand on this initial discussion (1) to examine the impact of

non-independence on the distribution of statistical tests for the influence of alleles

(here a and A) on phenotype or disease risk, and (2) how non-independence

between individuals’ outcomes can arise as a direct result of correlation among

the genotypes of study subjects due to hidden strata or relatedness or due to other

factors (e.g., cultural/behavioral) that act as confounders of genetic associations.

The chapter introduces several basic approaches for dealing with population struc-

ture in single marker association analyses and shows how all these methods deal, at

least in part, with the fundamental problem of the analysis of correlated phenotypes.

At the heart of these methods is the empirical estimation of a relationship matrix

(more precisely a covariance structure matrix) that describes the relative related-

ness of individuals. The statistical methods for dealing with covariances in estima-

tion of single marker effects fall into three categories: fixed effects models utilizing

adjustment for eigenvectors (“principal components”) of this matrix; random
effects methods dealing explicitly with the relationship matrix as a covariance

matrix of random effects in extended generalized linear modeling; and retrospec-
tivemethods, which invert the usual generalized linear modeling procedures so that

the conditional distribution of the genetic markers given the phenotypes (rather than

the reverse) is used for inference in genetic association studies. Our discussion of all

these approaches is unified around the theme of dealing with false-positive associ-

ations that are due to unrecognized inflation of the variance of estimators relied

upon in traditional regression methods when correlated data are analyzed. Finally

the relative performance of the various methods is described in various settings.

D.O. Stram, Design, Analysis, and Interpretation of Genome-Wide Association Scans,
Statistics for Biology and Health, DOI 10.1007/978-1-4614-9443-0_4,

© Springer Science+Business Media New York 2014
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4.1 Effects of Hidden Population Structure on the Behavior

of Statistical Tests for Association

In this chapter the term population structure refers to all of the following three

phenomena either separately or in combination: non-mixing subpopulation strata;

incomplete admixture between formerly separated groups; and relatedness (IBD

allele sharing) between subjects. The main concern of course is when population

structure is “hidden,” i.e., not directly known to the investigators in the study.

Here much of our entire treatment of this subject is motivated by first deriving

some results regarding the behavior of traditional estimates stemming from ordi-

nary least squares analysis (OLS), when there exist nonzero correlations between

outcomes. Specifically we derive below expressions for an expected “variance

inflation” in regression parameter estimates due to ignoring correlations between

outcomes when fitting models relating the mean of outcome Yi to covariates Xi.

By “variance inflation” we mean the difference between the true sampling vari-

ances of the regression parameter estimates compared to the variance estimates that

derive naturally in OLS regression (see Chap. 3). While derived for OLS regression,

we note that the similarity of the score statistics for testing for nonzero effects for

other generalized linear models means that these same formulae can be relevant in

other models such as logistic regression.

4.1.1 Effects on Inference Induced by Correlated Phenotypes

Consider (for the time being) the estimation of a linear model for a continuous

phenotype Yi, i.e., we seek to estimate the parameter vector β in the model:

E Yi

��Xi

� � ¼ X
0
i β, ð4:1Þ

where Yi is the outcome of interest for individual i and Xi is a r-vector of explan-
atory variables. Suppose that this mean model is correct, but that the covariance

between Yi and Yj (j 6¼ i) of individual outcomes is nonzero. Specifically we assume

that the N � N covariance matrix, Σ, for the vector of all observations Y ¼ (Y1,
Y2, . . .,YN) has the same special form discussed in Sect. 3.8.1, i.e.,

Var Yð Þ ¼ σ2I þ γ2K ð4:2Þ

(we will see below that this covariance matrix structure is relevant in our discussion

of the effects of both hidden relatedness and unknown population stratification). We

now display some basic consequences of ignoring the (nonzero) covariances

between individual outcomes when testing for the effect of the covariates, Xi, on

the mean of the phenotype Yi. Expanding the notation (as in Chap. 3, Sect. 3.4.8) a
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bit so that the N � rmatrix, X, has the covariate vector Xi as its ith row we write the

ordinary least squares (OLS) estimate of β as

β̂ ¼ X
0
X

� ��1

X
0
Y: ð4:3Þ

Since this expression is linear in Y and since E(Y) ¼ Xβ it follows that the

expected value of β̂ is equal to the true value, β, a result that holds despite nonzero
covariances between outcomes. While the covariances between outcomes do not

affect the mean of the OLS estimator they do affect its sampling variance. Because

of the linearity of β̂ as a function ofY the sampling variance of β̂ can readily be seen

to be equal to

Var β̂
� � ¼ X

0
X

� ��1

X
0
ΣX X

0
X

� ��1

¼ σ2 X
0
X

� ��1

þ γ2 X
0
X

� ��1

X
0
KX X

0
X

� ��1

: ð4:4Þ

Suppose now that we ignore the covariance structure ∑ and construct the usual

OLS estimator of the variance–covariance matrix of. β̂ This estimator is of form

VarOLS β̂
� � ¼ σ̂ 2 X0Xð Þ�1 ¼ Y0Y� Y0X X0Xð Þ�1

X0Y
N � r

X0Xð Þ�1
: ð4:5Þ

Because expression (4.5) ignores the correlations between the components ofY it

follows that VarOLS β̂
� �

is in general a biased estimate of the actual sampling

variance given in expression (4.4). In fact using the result, given in Sect. 3.8.1,

that σ̂ 2 for OLS regression has an expected value under model (4.2) of (σ2 + γ2)
([tr{K} � tr{(X0X)�1X0 KX}]/(N � r)). we can write the expected value of

VarOLS β̂
� �

as

σ2 X0Xð Þ�1 þ γ2

N � r
X0Xð Þ�1

tr K � tr X0Xð Þ�1
XK0X

n oh i
: ð4:6Þ

Therefore the expected error in variance estimation for β̂ is equal to expression

(4.4) minus (4.6) or

γ2 X0Xð Þ�1
X0KX X0Xð Þ�1 þ

tr X0Xð Þ�1
X0KX

n o
N � r

� tr K

N � r

2
4

3
5: ð4:7Þ

Consider the special case when r ¼ 2 with the first column ofX equal to a vector

of 1s and where the second column, X, of X is the covariate of interest and X is

orthogonal to the vector of 1s (i.e., its mean is zero). This corresponds to fitting a
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model with an intercept and a single slope parameter since “regressing out” the

intercept corresponds to subtracting the mean of X from each element of X. In this

case the (2, 2) element of (4.7) (i.e., the inflation in the variance of the slope

estimate) can with some straightforward but tedious algebra be shown to reduce to

γ2

X
0
X

X
0
KX

X
0
X

1þ 1

N � 2ð Þ
� �

� tr Kð Þ
N � 2

þ 1
0
K1

N N � 2ð Þ

" #
: ð4:8Þ

Notice that for a fixed value of the variance of X [i.e., fixed (X0X)] this expression
will be largest when (X0KX)/(X0X) is large and at its smallest when X0KX is small. If

N is reasonably large we can simplify (4.8) a bit to be approximately

γ2

X
0
X

X
0
KX

X
0
X

� tr Kð Þ
N

� Avg Kð Þ
� �	 


, ð4:9Þ

where Avg(K) is the average value of K, i.e., 10K1/N2.

The case when K is a correlation matrix with all diagonal elements equal to

1 (so that tr(K) ¼ N ) is of special interest (it corresponds to relatedness but no

hidden stratification or inbreeding). In this case (4.9) equals

γ2

X
0
X

X
0
KX

X
0
X

� 1� Avg Kð Þð Þ
	 


: ð4:10Þ

We can easily see that in some cases (i.e., when (X0KX)/(X0X) > 1 � Avg(K))

the expected error in the variance estimation is positive, that is, VarOLS β̂
� �

underestimates the actual variability of β̂ (the case of inflation, i.e., the true

variance is larger than predicted). In other cases when (X0KX)/(X0X) < 1 � Avg(K)

the true variance of β̂ is overestimated by VarOLS β̂
� �

. Having true variances that are

inflated beyond what they are estimated to be when using OLS regression will

clearly lead to anti-conservative tests and confidence intervals, whereas if the

sampling variances are deflated (when (X0KX)/(X0X) < 1 � Avg(K)) then this

leads to exactly the opposite problem, i.e., confidence limits and tests will be

over-conservative. Notice also that in the different types of population stratification

that we have discussed each of the elements of K is positive so that the average

value is positive as well. Moreover in most cases of interest (except in cases of

extreme hidden stratification) the average value of K will be small and can be

ignored in much of the remainder.

The discussion of principal components in this chapter noted that maximizing

the quadratic form X0KX with respect to the vector X while keeping X0X fixed gives

as a solution the first eigenvector, V1, of K. A little algebra shows that this implies

that any vector which is a scalar multiple of V1 maximizes the ratio (X0KX)/(X0X)
and that the maximum value of the ratio is equal to the first eigenvalue, λ1 When

K is a correlation matrix the first (i.e., largest) eigenvalue must be � 1 since the

138 4 Correcting for Hidden Population Structure in Single Marker Association. . .



sum of the eigenvalues of K equals the trace of K which here is equal to N. Thus if
the explanatory variable X is close to the first eigenvector of K then the OLS

variance estimate will tend to be an underestimate of the true sampling variance of

β̂ ; on the other hand if the explanatory variable is close to the last (smallest)

eigenvector of K then VarOLS β̂
� �

may well overestimate the true variability of β̂
(i.e., if the last eigenvalue is less than (1 � Avg(K )). By “close to” V1 we mean that

the dot product X0V1 is large in magnitude while the dot products X0V2, X
0V3, . . .,

X0VN are all small in magnitude. The dot products can be termed the loadings of the
covariate vector X on the respective eigenvectors.

Finally consider the situation (highly relevant to the specific cases described

below) when the vector X is itself a random variable with mean 0 (its mean having

been subtracted) with a covariance matrix equal to wK, with w > 0, and where

all values of K are greater than or equal to zero (i.e., there are no “negative”

relationships between individuals). Note from (4.10) that the expected difference

in variances (true-estimated assuming independence) is positive whenX0KX� X0X>
� X0XAvg(K). The expected value of the difference can be written as tr{KE(XX0)}
� tr{E(XX0)} which can be simplified to

w tr KKð Þ � tr Kð Þð Þ: ð4:11Þ

Since tr(KK) is the sum of the eigenvalues of KK and since the eigenvalues of

KK are the square of the eigenvalues of K (which are all positive and sum to N ) it

follows that tr(KK) � tr(K) is always greater than or equal to zero (with equality

only when K is the identity matrix). Finally since the sum of all elements of K, i.e.,

10K1, is (assuming positivity of the off diagonal elements) greater than or equal to

the trace ofK ¼ 101 ¼ N it follows that the entire expression (4.11) must be greater

than or equal to zero, and hence greater than � X0XAvg(K).

To reiterate what was just covered: we have shown that for a particular model for

the variances and covariances of Yi, i.e., ∑ ¼ σ2I + γ2K, on average the variance of

β̂ is underestimated by the OLS variance estimator VarOLS β̂
� �

when using a single

covariate which itself can be regarded a random variable with constant mean having

a covariance matrix proportional to K. Moreover the inflation underestimation is at

its greatest in a given analysis when a specific realized value of the random

covariate vector is proportional to the first leading eigenvector of K.

In the following we will use this basic result to clarify a number of issues

regarding the influence of between-subject correlation on hypothesis testing in

OLS regression. Such results generally carry over to hypothesis testing for other

models, i.e., when there are additional covariates, so that p > 2 in the linear

predictor, and to other types of GLMs, e.g., logistic regression for case–control

data. The implications of variance inflation are of course profound on inference; if

we consistently underestimate the sampling variance of β̂ due to unaccounted

correlations between outcomes then the coverage properties of confidence intervals

estimated for covariate effects will be adversely affected. Under the null hypothesis

this implies loss of control of type I error rates and potentially many false-positive

associations when the true effect of a covariate is equal to zero.
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4.1.2 Influences of Latent Variables

When study outcomes, Yi, are independent from subject to subject (conditional on

covariates) hypothesis testing and confidence interval estimation in association

testing and estimation will behave as expected. As indicated above, violations of

the independence assumption can lead to loss of control of type I error rates for

testing null hypotheses and biases in confidence interval coverage.

Consider the covariance matrix that is induced by the presence of a latent

(unmeasured) factor U which affects the mean of Yi. If the individual values of Ui

are known for each subject we assume that the mean of Yi can be written as

E Yi

��Xi,Ui

� � ¼ μþ Xiβ þ γUi ð4:12Þ

and that conditional on Ui and Xi the outcomes Yi are independent with covariance

matrix σ2I. Now consider the issues that arise when Ui is an unobserved random

effect. If the distribution of the unknown Ui depends upon the values of Xi then the

results of fitting (4.12) may be seriously distorted; in particular if the mean of Ui

depends on Xi then some of the information about Yi that is captured by Ui will be

misattributed to the effect of Xi. Also, however, from our above analysis for OLS

regression we can see that even if the distribution of Ui does not depend on Xi at all

there can be a failure of variance estimation which can lead to poorly performing

confidence intervals and an excess of apparent (i.e., false positive) associations.

Specifically if Ui is a random variable independent of Xi with variance–covariance

matrix proportional to K then the model for the mean conditional on X only is

E(Yi|Xi) ¼ μ + Xiβ (with β taking the same value as in (4.12)), but the variance

model is now equal to σ2I + γ2K which is what was considered above. As before

the variance of β̂ will be underestimated by VarOLS β̂
� �

when the covariate vectors

load on the leading eigenvectors of K. For the case of a single covariate X ¼
(X1, X2, . . ., XN)

0 treated as a random vector the variance inflation will be positive

on average when X has correlation structure similar to K. A slightly modified

version of this result still holds when other adjustment variables are included in the

model. If an adjusted version of the variable of interest, Xp ¼ (X1p,X2p, . . .,XNp),

either (when thought of as a fixed effect) loads on the larger eigenvalues of K or

(when regarded as random) has a correlation structure similar to K then inflation of

the variance of β̂ p is expected relative to the OLS estimate of this variance. We

describe what we mean by “adjusted version” of Xp further below.

4.1.3 Hidden Structure as a Latent Variable

In genetic association scans the effects of hidden population structure can be

thought of as the latent variable, U, above, i.e., Ui is the effect on the mean

phenotype that occurs due to the subpopulation membership of subject i. As
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described in Chap. 3 (and which is really a consequence of the same results that are

given above), unrecognized strata (the presence of non- or incompletely mixing

populations) induce pseudo-LD between markers that extends far beyond genomic

regions actually relevant to disease and can mask true associations by the addition

of noise. For any given outcome analyzed in a study (and many studies may

examine more than one outcome) the role of hidden population structure may or

may not be influential as a confounder, since this depends not only on the presence

of hidden strata but also upon (1) whether the (mean) phenotype of interest varies in

distribution among the strata and (2) whether (the mean of) the variable of

interest (e.g., the allele count for a particular marker) also varies in distribution

among the strata.

There are several ways in which population substructure can affect the distribu-

tion of phenotypes. For example, risk of certain diseases may differ by population

strata because exposures differ among subpopulations. Such population differences

in exposure may be unrelated to genetics except by accidents of history and culture

affecting such factors as dietary preferences, occupational exposures, lifestyle

choices made both voluntarily and as a response to external circumstances, etc.

There are many examples of diseases having notable differences by race/ethnicity

in their frequency, including diabetes, high blood pressure, heart disease, and

certain cancers such as breast (strongly influenced by reproductive and hormonally

related factors), where these ethnic differences in risk can be at least partly

explained by different exposures to known risk factors [1]. In admixed populations

the fraction of relatives (of a given study participant) who have derived from each

recently mixing ancestral group may intuitively be a powerful factor driving

culturally based exposures that influence disease risk in the study group. Since

(1) the risks of a large number of common diseases are influenced by behavior and

environmental factors and since (2) exposures and lifestyle choices related to

disease are partly cultural and because (3) cultural similarities may correspond

to genetic similarities, the potential exists for false genetic associations to arise due

to the confounding of genetic variables with environmental determinants of disease.

4.1.4 Polygenes, Latent Structure, Hidden Relatedness,
and Confounding

It is increasingly evident [2] that associations being detected by GWAS studies

often have only limited effects on mean phenotype, even phenotypes which appear

to be (from family studies) strongly genetically influenced. These include height

[3], weight or obesity [4], lipid levels [5], blood pressure [6], and many others. In

many of these phenotypes it would appear that a very large number of largely

independent alleles each make very small contributions to the phenotype mean. For

example, it has recently been shown that hundreds of variants [3] underlie the

heritability of height in study populations. Phenotypes for which variability and
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heritability between individuals are influenced by the additive effect of many genes

are termed polygenic.
When strongly polygenic effects are noted the polygene (which we can think of

as a weighted sum of the many relevant alleles each weighted by its influence on

phenotypic mean) itself acts as the confounder in studies of stratified or admixed

populations and/or studies that include many relatives. If there is no hidden

population structure in a study then the existence of even a powerful polygene

itself has little influence upon the ability of a study to identify the influence of single

variants related to risk. This is because true LD between the marker of interest and

the other members of the polygene decays over a relatively short genetic distance

and thus the variant or marker being tested for association with outcome is not at all

(or only extremely weakly) associated with the remainder of contributors to the

polygene. On the other hand when there is differentiation into hidden non-mixing

substrata then the polygene can meet the requirements of a confounder; all markers

will tend to have the same between person correlation structure inducing “pseudo-

LD” between the polygene and the marker of interest being tested since the usual

association tests (which assume no correlation) underestimate the variance of the

estimated effects; standard tests for association between the marker of interest and

the phenotype will be distorted because of the potential for the variance inflation

and variance underestimation described above.

4.1.5 Hidden Non-mixing Strata

Here we explore the implications of the Balding–Nichols model (Sect. 2.4.1) for

differentiation in population allele frequencies when there is a polygene present.

Specifically if the polygene consists of a weighted sum of purely additive effects on

the phenotype, so that for individual i the contribution of the polygene to phenotype
mean or risk of disease is

gi ¼
X
k

wknik: ð4:13Þ

The effect of the polygene g on the covariances of the individual outcomes Yi is
to induce a covariance matrix ∑ of form σ2I + Var(g). From Chap. 2 (Homework

problems), it is quite easy to show that the correlation between gi and gj for two
different individuals will be the same as the correlation between the individual

components nik and njk which is 2Fl/(1 + Fl) for pairs of individuals in the lth
subpopulation and 0 for all other pairs (here, as in Chap. 2, Fl is the differentiation

parameter between the lth subpopulation and the original ancestral population of

the modern day groups). Therefore we may write the covariance matrix Σ as

σ2Iþ γ2K, ð4:14Þ
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with γ2 ¼
X

j¼1, ...,M
wj

22pj 1� pj
� �

. It is clear from above that the similarity between

the covariance structure, ni(A), for the counts of a variant of interest and for Yi can
produce an excess of nominally significant false-positive associations between out-

comes and any SNP that is differentiated by population. This in fact is again a special

case of the analysis given at the beginning of this chapter: because gi and ni(A) have
the same correlation structure, both involving K, then (when gi is unmeasured)

sampling variances for the effect of ni(A) on the mean of Yi will tend on average to

be underestimated. Moreover variance underestimation will be at the worst for those

specific variants that align with the largest eigenvalues of K. In this case (as seen

below) this corresponds to those SNPs that are the most differentiated by population.

The following simulation in R should help to make these points clear.

In this simulation a total of L ¼ 2 hidden strata are considered with differenti-

ation parameters Fl both equal to 0.02. A polygene is generated as well as a test SNP

and each SNP allele following the Balding–Nichols model described in Chap. 2.

The weights for each component of the polygene are equal and are chosen so that on

average approximately ½ the total variability of the individual phenotypes is due to

the polygene. There is no LD between the SNP to be tested and any of the polygene

members and it is not a causal SNP. If there was no hidden structure (F ¼ 0 in the

simulations) then there should be no association apparent between the test SNP and

the outcome. However running this code once (with F ¼ 0.02), i.e.,
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gives a highly significant p-value for the association between the SNP count and the

continuous phenotype which is very unlikely to be due to chance alone.

Note that the squared correlation between Y and the test SNP (calculated as)

means that this variant seems to explain about 1/2 of 1 % of the variability of the

continuous variable Y despite having no causal association with Y. For many

complex continuous phenotypes this seems to be about the magnitude of the

correlation between outcome and many of the SNPs that have been found to be

globally significant (c.f. [3] for height and [6] for blood pressure).

In fact here the correlations induced by the population stratification would be

very difficult to differentiate between the correlations between the individual causal

SNPs (elements of the polygene g) and the outcome Y assuming no population

stratification. In this case (with the parameters chosen in the simulation) the true

squared correlation of any single component, n, of the polygene, with the outcome

Y will be equal to

Cov Y; nð Þ2
Var Yð ÞVar nð Þ ¼ w2 Var nð Þ

Var Yð Þ :

This value will be about equal to 0.00076 if n has 50 % frequency and is even

smaller for smaller allele frequencies. These are fairly small signals to attempt to

differentiate from the noise including the effects of population stratification without

careful analysis.

Running the R code 50 times gives the highly overdispersed quantile– quantile

plot (or QQ plot; see Chap. 3 Homework) shown in Fig. 4.1a. It is clear from the

figure that hidden stratification and polygenic influences on phenotype can together

produce false-positive associations that are far too large to be ignored when

evaluating the results of genetic association studies. Similar results can easily be

constructed for other types of phenotypes (e.g., disease in case–control studies), if

we again assume that there are strong polygenic influences on disease.

4.1.5.1 Eigenvector Analysis

In the case of simple hidden strata the first few eigenvectors of the relationship

matrixK can be shown to be equivalent to indicator variables for membership in the

various strata. This is shown in Fig. 4.2 for the illustrative case of the presence of

three distinct hidden strata each with sample size 100, 50, and 25 and the differen-

tiation parameter, Fl, equal to 0.02 for all three populations. A plot of the eigen-

values (Fig. 4.2a) shows that only the first 3 eigenvalues are greater than 1 and all

the others are just very slightly less than 1. The first eigenvector (with eigenvalue,

λ1, of 4.98) indicates whether a subject falls into population one versus the other
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Fig. 4.1 Behavior of null test statistics in the presence of a strong and highly differentiated

polygene affecting the mean of continuous phenotype Y. The figure shows the result of running the
R code in file “polygene.r” 50 times. Shown is a quantile–quantile plot for the relationship between

observed and expected p-values (on the log10 scale) for a test of zero correlation between Y and a

noncausal SNP not in complete linkage equilibrium (in each population) with the components of

the polygene g. (a) shows the QQ plot for L ¼ 2 populations with N ¼ 1,000 subjects and (b) with

L ¼ 100 populations each with N ¼ 20 subjects
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Fig. 4.2 Eigenvectors from a Kinship matrix corresponding to existence of three separate groups



two, eigenvector 2 does the same for population two (λ2 ¼ 2.98), and eigenvector

3 (λ3 ¼ 1.98) for population three. Thus the size of the hidden strata in the sample is

reflected in the eigenvalue size. Later eigenvectors (with λ < 1) are not interpret-

able since the eigenvalues are equal to each other in which case eigenvectors are

not unique.

From the above discussion above it follows that false-positive associations are

particularly likely for a variant that has a frequency that is different in the largest

population than in the combination of the two smaller populations, i.e., if it is

correlated with the first eigenvector. False-positive associations are also more likely

for variants that have different frequencies in the third population compared to

the first two (i.e., most correlated with the third eigenvector) although (since the

eigenvalue is smaller) the problem is less severe than in the first instance. On the

other hand if the particular variant of interest is not informative about group

membership then variance inflation is not present since all of the other eigenvalues

are very close to 1.

There are aspects of the simulation which must be acknowledged as extreme. For

example, the value of F used in the simulations is quite large compared to what

would be expected in most studies and the assumption that the polygene consists of

1,000 components each with equal influence on phenotype mean is also something

like a “worst-case” scenario—we expect that there will be some components of the

polygene which will have considerably larger individual effects, even if many

others have smaller effects, and these will be far more detectable than those with

smaller individual influences. However the assumption of 50 % heritability of the

phenotypic trait due to polygenic influences does not seem terribly high for many

common phenotypes [2] and the sample size N ¼ 2,000 used in the simulation is

not as large as some of the very massive studies and meta-analyses that are now

involved in finding genes for complex phenotypes such as height, blood pressure,

lipid levels, and obesity [3–6].

4.1.5.2 Varying the Number of Strata

As the number of strata increases the problems associated with inference due to the

presence of these strata tend to become less important all other things being equal.

Altering the simulation experiment above so that there are 20 strata sampled each of

size 100 (rather than 2 with 1,000 each) while keeping the other parameters the

same as above produces a far less overdispersed plot shown as Fig. 4.1b. If the

number of hidden strata is increased so that only a few subjects are in each strata

then the variance inflation term is essentially zero even for very strong differenti-

ation parameters. This can also be understood in terms of an eigenvector analysis of

the matrix K. As described above the leading eigenvectors can be thought of as

indicator variables for each of the hidden strata. As the number of strata becomes

larger and larger it becomes increasingly less likely that any single SNP will have a

high allele frequency in just one strata and a low allele frequency in all others, or

vice versa; however, this is exactly what is needed in order for a given SNP to be
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highly correlated with a leading eigenvector. Since the variance inflation term

disappears as the correlation of SNP alleles with the leading eigenvectors decreases

the OLS estimators of variance become more and more appropriate. This is not to

say, however, that the problem goes away completely. For a large but fixed number

of hidden strata, as sample sizes increase the pseudo correlations between pheno-

type and genotype become more and more statistically significant, even when the

variance inflation is “almost” zero for a modest sample size. For the kinds of very

large studies needed to obtain statistical significance when making hundreds of

thousands (or millions) of separate tests correcting for population stratification

remains important.

4.1.6 Admixture

There are many modern admixed populations throughout the world. In the USA

these include African Americans, Hispanic populations, many Native American

groups, and Pacific Islanders.

Studies of disease traits and other phenotypes in admixed populations are among

the most susceptible to population structure, especially when studying populations

in which very long separated continental groups are only partially mixed. Many

reports of the apparent inflation of false-positive rates in (raw or unadjusted)

analysis have been made for studies of admixed populations including schizophre-

nia [7] and Prostate Cancer [8] in African-American populations, diabetes in Native

Americans [9], etc.

Although some admixed populations involve mixtures of several continental

groups the focus here is the mixing of two long-separated ancestral groups. The

covariances between markers for two individual members (i and j) of an admixed

population are described in terms of the proportion, α, of ancestors that derive from
a given long-separated population versus the other mixing population proportion

(1 � α). We assume that admixture proportion varies between subject (so the αi is
not in general equal to αj). Assuming that two long-separated populations are

derived ultimately from a single ancestral population and that the differentiation

parameters are both equal to F, then for subject i the variance of the allele count

ni(A) for a given marker will be equal to 2p (1 � p)(1 + F(1 + 2 α2i � 2αi)) (see
Chen et al. [10]) where p is the frequency of the A allele in the original ancestral

source population. The variance of nj(A) equals 2p (1 � p)(1 + F(1 + 2 α2j � 2αj))

and the covariance between ni(A) and nj(A) is 4p (1 � p)F(1 + 2 αi αj � αi � αj).
Thus assembling the entire covariance matrix for all the counts, ni(A), i ¼ 1, . . .,
N, of allele A the general form of the covariance matrix is equal to 2p(1 � p)K
where K is (as in the previous examples) the same for all markers.
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4.1.6.1 Eigen Analysis of the Relationship Matrix

for Simple Admixture

We now examine the eigenvectors and eigenvalues of theKmatrix that corresponds

to admixture analysis of the data by Chen et al. [10] from the African-American

Breast Cancer (AABC) GWAS study [8]. For this study Chen et al. inferred

African-American ancestry for over 5,000 GWAS samples (using the STRUC-

TURE program discussed briefly in Chap. 2). They estimated the average fraction

of African ancestry in the AABC study as approximately 75–80 % of overall

ancestry, with this average varying according to geographical location with study

participants for the West Coast sites (Los Angeles, San Francisco) exhibiting about

5 % less African ancestry, on average, than study participants in the East or South of

the USA. European ancestry constituted the majority of the remainder although

there were smaller fractions (1–2 % on average) of Native American or Hispanic

admixture apparent as well. Chen et al. suggested that the distribution of African

ancestry for the sites participating in the AABC study could be modeled as a beta

distribution with parameters r ¼ α/h and s ¼ (1 � α)/h with mean African ances-

try α in the range from 0.75 to 0.80 and with h (a dispersion parameter) approxi-

mately equal to 1/7.

Sampling from a beta distribution to form values of αi for N ¼ 100 subjects,

constructing the N � N matrix K according to the values of α for each subject, and

then plotting the first few eigenvectors of K against the simulated values of αi , to
produce Fig. 4.3, are performed using the following R program code given below

Notice when running this code that the first two eigenvectors are the only two

ones which have eigenvalues (displayed as e$values) greater than 1 (all the

remaining eigenvalues fall in the range from 0.95 to 0.90). Both the leading

eigenvectors are perfectly linear functions of admixture percentage αi ; the first
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one is nearly equal to an indicator variable for African ancestry, while the second

for non-African ancestry (and these are of course perfectly related). Note also that

any marker that is strongly differentiated in frequency will tend to load on both of

the first and second eigenvectors which are themselves extremely highly corre-

lated (although their dot product is zero). We will see later on that when we

estimate eigenvectors (using SNP data) in studies of simple simulated admixed

individuals with two ancestral source populations that only one eigenvector

related to ancestry will appear in the calculations and that eigenvectors of the

estimated relationship matrix will not be correlated with each other (and will all

be of zero mean).

No other eigenvectors have relationship to ancestry or have large eigenvalues.

The implications of the analysis are (as expected) that when analyzing phenotypes

with a mean that is related to fraction of African ancestry that false-positive

associations are likely for markers which are informative about African ancestry.
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Fig. 4.3 Eigenvectors from a Kinship matrix corresponding to admixture of two continental

groups (Africans and Europeans) as approximated by Chen et al.’s [10], p. 495, analysis of the

AABC GWAS data
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4.1.7 Polygenes and Cryptic Relatedness

As expected very similar issues arise when study samples contain many relatives,

which can happen in studies of small isolated and inbred populations [11]. Here we

are concerned with situations where we do not in general know the relationship

structure between participants in the study, i.e., situations where there is so-called

cryptic relatedness. Cryptic relatedness can act as a confounder when a powerful

polygene is present or when cultural patterns of environmental exposures mimic the

genetic patterns.

4.1.7.1 Effects of Hidden Relatedness

Some of the most interesting examples to date of the use of small isolated inter-

breeding populations as the source for GWAS studies are those that have been

performed in the Micronesian island population of Kosrae. Naı̈ve analysis of these

data has been shown to produce many false positives [11] in association studies of

quantitative outcomes such as BMI, plasma cholesterol, triglycerides, etc.,

and alternative data analysis strategies have been considered to deal with this

variance inflation issue. Presumably this is because of relatedness between study

subjects and possibly other aspects such as admixture with outside groups,

e.g., Europeans [12].

For illustrative purposes we perform several simulations of this sort of related-

ness on OLS estimation.

In small isolated inbreeding populations we expect that all individuals are at

least somewhat related to each other. Interestingly, association analyses are not

actually very much affected by low (or even high) levels of relatedness that is

identical between all pairs of subjects, either in terms of power or in control of type

I error rates. It is only when clusters of individuals are more related to each other

than they are to others outside the cluster that relatedness begins to have adverse

effects on association testing. The effect of a constant background level of related-

ness between individuals can be determined by considering the eigenvectors of a

N � N matrix K with ones on the diagonal and all off diagonals equal to a given

value b > 0. It can be readily shown that this matrix has largest eigenvalue equal to

(N – 1)b + 1 with all remaining eigenvalues equal to a constant 1 – b. The leading

eigenvector is constant with value 1=
ffiffiffiffi
N

p
with all other eigenvectors orthogonal to

this constant vector. The above analysis implies that the estimate of the mean of the

phenotypes, i.e., (1/N )10Y, suffers from variance inflation because the “covariate”

N-vector of ones, 1, is proportional to the first eigenvector of K; note however that

any covariate of zero mean will only load on the later eigenvectors and will not be

overdispersed, since the later eigenvectors are all less than 1 and in fact are close to

tr(K ) � Avg(K ) ffi 1�b in (4.9). In an analysis that fits both a mean and a slope it

follows (from earlier discussion) that the usual variance estimate for the mean will
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be an underestimate of the true variance of this parameter estimate but not so for the

slope parameter; its OLS variance estimate will be quite accurate.

We now consider a more complex situation in which there are levels of related-

ness with each subject having a few first-degree relatives, a greater number of

somewhat more distant relatives, and many more quite distant relatives as well as

unrelated individuals.

Each of these simulations deals with a heritable trait that is influenced by a

polygene, and the heritability of the outcome equal to 1/2, i.e., the model for the

covariance of the outcome vector Y is that Σ ¼ σ2I + γ2K with σ2 ¼ γ2. In each

simulation null marker alleles are generated having covariance matrix equal to

K while Y is generated as multivariate normal with mean zero and covariance

matrix Σ.
In order to generate SNP and outcome data with a covariance pattern of this type

we introduce the r function Sim_SNP_related in the file Sim_SNP_related.r. This
function simulates SNP data on a single chromosome from an arbitrary pedigree of

related individuals and allows for admixture and hidden stratification as well. In

order to use this function in the simulations we first must define a pedigree matrix,

called pedigree, and specify SNP allele frequencies for each chromosome and for

each population (when admixture or hidden stratification is considered) as well. For

example, in order to simulate sets of siblings a pedigree matrix would be of form:

Here the rows of the pedigree matrix correspond to individuals; the columns are

individual id (iid), father’s id (fid), mother’s id (mid), fathers’ population (fpop),

and mothers’ population (mpop).

The second and third columns (the 1 and 2s) on rows 3 and 4 indicate that the

father and mother of subjects 3 and 4 are subjects 1 and 2, respectively. Those

pedigree members (i.e., the first two) with no parents in the pedigree are “founders”

indicated by the pair (0 0) for father and mother ids. The fpop and mpop refer to the

population group (here all set to population 1) that a parent not in the pedigree

originates from. Thus the pedigree matrix can specify multiple groups and/or

admixture by specifying different values of fpop and mpop for different individuals.

Note that if, for a given subject, a parent of that subject is in the pedigree (so that

columns 2 and/or 3 are not equal to zero) then the population (columns 4 and/or 5)
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for that parent is ignored. The remainder of the code needed to call

Sim_SNP_related to create an array of simulated SNP data (SNPs_chr1 below) is

The call to Sim_SNP_related

generates SNP count data (0, 1, or 2 copies) for a single chromosome (chromosome

here 1 with 100 SNPs). The nout variable indicates that data for subjects 3 and

4 (the siblings) are to be returned and stored in the SNPs_chr1 array. In a typical

simulation the Sim_SNP_related function is called many times to generate data for

one or more (diploid) chromosomes for many subjects.

A more complex structure is used in the next example. Here we assume that

some of the pedigrees are from one population (all with background relationship

coefficient, b, equal to 0.03215 between nominally unrelated subjects), and others

are from a second population (with same b). The following code generates a dataset
of 400 individuals 200 from each of the two populations, within each population

each individual is related to 7 other individuals, 1 sibling and 6 first cousins.
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Next an outcome is generated according to a polygenic model involving a set of

100 randomly chosen “causal” SNPs. A polygene consisting of the unweighted sum

of (randomly chosen) risk alleles is computed and used to simulate a (for illustrative

purposes) highly heritable phenotype (Y ) with 90 % of the outcome variance

explained by the polygene. Then association statistics are computed for the

noncausal SNPs.

A QQ plot of the association statistics is given as Fig 4.4a.

For this model we can calculate the true covariance structure matrix for the SNP

data. The R code
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Fig. 4.4 Complex simulated data: (a) QQ plot of association statistics; (b) eigenvalues of true

K matrix; (c) eigenvalues of estimated K matrix; and (d) QQ plot after adjusting for one or ten

principal components
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generates the true value of K and a plot of the eigenvalues of this matrix is given in

Fig. 4.4b

Here the first two eigenvectors of the true K are both very nearly equal to indicator

variables for the two populations from which the founders are drawn from. Now

however there are many other eigenvalues >1 which has implications about the

success of certain of the methods for correcting for population structure described

below.

4.2 Correcting for the Effects of Hidden Structure

and Relatedness

In the remainder of this chapter four different approaches to adjusting for the effects

of population stratification and cryptic relatedness will be considered. These

include genomic control, adjustment for principal components, variance compo-
nents methods, and a retrospective approach for adjustment. Here our main interest

is on the analysis of studies of nominally unrelated subjects with unknown pedigree

structure so that other approaches such as family-based association testing [13, 14]

are not usually applicable.

4.2.1 Genomic Control

The simplest approach to addressing the effects of between-person correlations in

outcome variables, whether due to hidden structure, admixture, or to cryptic relat-

edness between subjects, is based upon empirical examination of the behavior of test

statistics for a large number of markers and an adjustment of the level of evidence

required before a marker can be considered “significant” in a particular analysis.

This approach, known as genomic control [15, 16], specifically adjusts for wide-

spread overdispersion of the chi-square statistics computed from the Armitage trend

test (Chap. 5) by simply estimating an overdispersion factor, usually denoted λ, from
the collective behavior of chi-square tests for association with phenotype for marker

allele count variables. Genomic control (similar to all empirical methods) requires

that many markers be genotyped; rather than dealing with the correlation structure of

the genotypes in some way (which is the key to the other methods discussed)

genomic control directly addresses the behavior of test statistics, T2k , from the
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Armitage trend test (here k ¼ 1, 2, . . ., M denotes marker). In particular genomic

control adopts an altered model for the distribution of one degree of freedom

chi-square tests under the null hypothesis so that T2k /λ ~ χ21. The overdispersion

parameter λ is estimated under the assumption that the majority of markers are

null, that is, not associated with the phenotype or disease of interest. In fact the most

commonly used estimate of λ is simply equal to the observed median of the T2k
statistics divided by 0.455 which is the median of the central χ21 distribution. The

genomic control method of adjustment simply corresponds to the division of each

observed trend statistic, T2k , by the estimate λ̂ based on all the observed T2k . The
original paper [15] related genomic control to several possible sources of correla-

tions between outcomes (e.g., hidden relatedness, strata, and admixture) and indi-

cated that the null distribution of the Armitage test under population structure could

often be approximated in this manner. It should be intuitively clear that the calcu-

lation of a reliable λ̂ requires a considerable number of unlinked null markers. If only

a few markers are available and especially if many of these markers are in high LD

with each other then the estimate of λ is highly variable. In the extreme case, when

most markers are located in regions associated with the phenotype of interest then λ̂
will be biased upward by the presence of true non-null associations.

There have been many criticisms of the use of genomic control as a method for

controlling for the effects of population structure in GWAS studies, chief among

these is the complaint that the method never reorders associations [17], i.e., the

most significant association before correction always remains the most significant

after correction, even in situations when other methods are much more selective.

From our perspective genomic control ignores the correlation of specific SNPs with

the leading eigenvectors of Σ on determining whether specific associations are

likely to be overdispersed or not when a applying a uniform correction for all SNPs.

Another potential problem with this method is that it can behave strangely

asymptotically; in particular the power of a study that relies only upon genomic

control may not increase in the expected way as the study sample size, N, increases
[10] (see also Chap. 7). Intuitively this is because the correction factor λ may

depend on sample size, N, and λ � 1 can in some cases increase linearly with

sample size which is the same rate that the noncentrality parameter increases when

testing for a given true association; this means that the effective increase in sample

size per subject added to the study becomes smaller and smaller as N ! 1, and the

power for testing a given true non-null hypothesis may reach an asymptotic value

that is less than one. This is discussed again in Chap. 7.

Despite these concerns the estimated overdispersion factor, λ̂ , is a very important

and widely used summary statistic for describing the success of other approaches to

dealing with hidden population structure. The calculation of λ̂ before and after other

correction methods have been applied is an easy and intuitive method of judging

whether adequate correction for hidden population strata has been achieved by these

other methods; the closer that λ̂ is to the null value of 1 the better that population

structure has been accounted for, at least in terms of control for false-positive

association under the assumption that the majority of associations must be null.
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4.2.2 Regression-based Adjustment for Leading
Principal Components

The first sections of this chapter have stressed the importance of the eigenvector/

eigenvalue structure of the covariance matrix for individual phenotypes in deter-

mining the behavior of tests for marker/phenotype associations under the null

hypothesis of no effect. Two basic results are (1) that when the outcomes have a

special structured covariance matrix, Σ ¼ σ2I + γ2K, covariates which load

heavily on the first few eigenvectors of the matrix K will tend to appear to be

falsely associated with the phenotype because of underestimation of the variance of

the effect estimates and (2) that under a model in which the phenotype means are

affected by population substructure either due to cultural influences or because of

the presence of a polygene, the markers will have a covariance matrix which is

proportional to K allowing us to estimate this matrix. These two results motivate

the so-called principal components method of adjustment for population

stratification.

The exposition of the principal components method as described in an influential

paper by Price et al. [17] is as follows. Recall that the discussion of principal

components in Chap. 4 describes extracting the leading eigenvectors of the N � N

relationship matrix K̂ having off-diagonal elements equal to (1/M ) ∑k¼1
M zikzjk and

diagonal elements equal to (1/M ) ∑k¼1
M z2ik for i 6¼ j ¼ 1, . . ., N with

zik ¼ nik � 2pkð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pk 1� pkð Þp� �

. These eigenvectors (referred to as principal

components by Price et al.) were in Chap. 2 used to qualitatively describe popula-

tion structure for various populations in graphical plots. Consider now the use of the

principal components as adjustment variables in GLMs relating genotype counts to

phenotype mean or disease risk.

As originally described the correction method of Price et al. starts (as does the

genomic control method) with the Armitage trend test, T2, for association between

phenotype and a marker count variable, computed as T2 ¼ Nr2 where N is the

sample size and r is the usual sample estimate of the correlation between phenotype

and genotype. Next both the phenotype values, Yi, and the genotype counts, nik, for
a specific marker k are transformed so that they are orthogonal to each of the

L leading eigenvectors, Vl. This orthogonalization is done by computing the

residuals of the linear regression first of the phenotype values Y ¼ (Y1, Y2, . . ., YN)
0

on the leading eigenvectors V1, V2, . . ., VL and then computing the residuals for

each of the genotype counts nk ¼ (n1k, n2k, . . ., nNk)
0 after regression on the same

set of eigenvectors. Denoting the residuals for each of these as Yadjusted and

nk adjusted, an adjusted Armitage trend test for the association between marker

k and phenotype is computed as

T2
adjusted ¼ N � Lð Þr2adjusted, ð4:15Þ

where radjusted is the usual sample correlation between Y0adjusted and n0k adjusted.

156 4 Correcting for Hidden Population Structure in Single Marker Association. . .

http://dx.doi.org/10.1007/978-1-4614-9443-0_4
http://dx.doi.org/10.1007/978-1-4614-9443-0_2


Note that to the degree that the eigenvectors of the true relationship matrixK and

its estimated value K̂ coincide, the eigenvector adjustment process described above

produces adjusted genotype count vectors which load only on the lower eigenvec-

tors of K. From our earlier discussion of variance estimation in the OLS model we

conclude that variance inflation (and hence false-positive associations) arising from

correlations between outcomes due to population substructure should be reduced if

eigenvector-adjusted phenotype and genotype count variables are used in the

analysis.

While we have only carefully described the situation for linear regression

with one variable in the model those results translate to the following types

of analyses:

1. Use of F-tests in multiple linear regression for testing for a nonzero association

between a single continuous outcome and counts of a single variant including the

first L eigenvectors as adjustment variables as well as other (non-genetic adjust-

ment variables).

2. Score tests in logistic regression for the null hypothesis of no effect of genotypes,

adjusting for the first L eigenvectors.

3. Use of the adjusted Armitage test, (N � L )r2adjusted, for either binary or contin-

uous phenotype variables.

These results extend to logistic regression because of the correspondence

(described in Sect. 3.4.7) between score tests for logistic regression and OLS

regression applied to binary phenotypes when the effect of the variable of interest

is small. Thus type I error properties under the null hypothesis of no association will

be similar whether one uses OLS regression or logistic regression to analyze the

binary disease endpoint.

Note again that the adjusted Armitage trend test corresponds very closely to

testing in OLS regression when the sample size N is large and true effect sizes

are small. In OLS regression the F-test for the influence of a single variable

after adjustment for L other variables (plus an intercept term) can be written as

F ¼ (N � L � 2)r2adjusted/(1 � r2adjusted). Since the F distribution with 1 df in the

numerator converges, as the denominator of degrees of freedom increases, to a

chi-square with 1 df, the two tests (T2 and F) will be similar for large N and small r2.

4.2.3 Implementation of Principal Components
Adjustment Methods

Principal components methods involve first the estimation of the relationship

matrix K, then the eigenvector eigenvalue decomposition of the estimate, K̂ , and

the choice of which of the leading eigenvectors to use as adjustment variables.
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4.2.3.1 Estimation of K

Estimation of the relationship matrix has already been discussed in Chap. 2,

although certain practical details have not been mentioned. For example, we have

not discussed what to do when certain subjects are missing genotypes for a given

marker included in the analysis; nor have we discussed the distortions in

eigenstructure of the estimate of K that occur due to the inclusion of large number

of markers that are in high LD with each other, or the effects on the estimate of not

knowing true (ancestral) values of allele frequencies and making due instead with

estimated frequencies. Finally we have not considered questions regarding the

number of markers needed for an analysis or the uncertainty of estimation of

K based on a given set of markers. As above the estimated relationship matrix

K̂ has its i, j element (for i and j from 1 to N) equal to

k̂ ij ¼ 1=M
XM
k¼1

nik � 2p̂kð Þ njk � 2p̂ k

� �
2p̂k 1� p̂kð Þ : ð4:16Þ

Deletion of either all subjects with any missing genotype data or of all markers

with any missing samples is not usually practical when constructing K since

virtually every genotyping platform has some degree of genotyping failure rate

for each of the hundreds of thousands of markers required for genome-wide study.

An ad hoc approach of substituting in 0 to replace nik � 2p̂ kð Þwhen nik is missing is

much more widely used than the alternative of using pairwise deletion only (which

could produce non-positive semi-definite estimates). Clearly if very large numbers

of markers are missing data for large numbers of subjects then this could lead to

gross distortions in k̂ ij and presumably in the eigenstructure of K̂ as well. Enforcing

a requirement that markers that are to be included in the calculation of k̂ ij be missing

for only a small fraction of participants (from 1 to 5 %) ensures that the added zeros

do not dominate the estimation of the matrix.

Another important question is the degree to which LD between markers may

distort the eigenvector structure. If there are large numbers of markers that are all in

high LD with each other then some of the eigenvectors may be distorted. For

example, the most common large-scale chromosomal inversion in humans occurs

on chromosome 9 with a frequency of from 1 to 3 %. Because inversion suppresses

recombination in heterozygotes [18] mutations appearing on the inversion are in

high LD over the entire length of the inversion. Markers on that inversion can have

significant effects on the estimation of the strength of genetic relationship between

individuals carrying the inversion with individuals carrying the inversion appearing

to be more closely related than they would otherwise be, all other things being

equal. In terms of the calculation of k̂ ij it should be clear that if there is high

correlation between a string of markers then sums such as (4.16) will be more

variable than if each marker is independent. For this reason principal components

analysis is usually carried out using a “thinned” set of markers, imposing a

158 4 Correcting for Hidden Population Structure in Single Marker Association. . .

http://dx.doi.org/10.1007/978-1-4614-9443-0_2


restriction that nearby markers not be in high linkage disequilibrium. A common

criterion is to preclude any marker that has an R2 > 0.2 with any already chosen

marker within several hundred kb in order to avoid overestimation of relatedness

[19, 20]. Generally however purely local LD (with just a few nearby SNPs in high

LD with each marker) will have little effect on the leading eigenvectors since these

are sensitive to the larger patterns in the data.

Having to estimate pk for each marker has several effects on the estimation ofK.

First of all the estimate of the elements ofK using (4.16) produces an estimate with

rank at most equal to N � 1 rather than N. Rakovski and Stram note that since the

sum
XN

i
nik � 2p̂ kð Þ equals zero for each marker this implies that a vector of ones

is in the null space of K̂ and therefore K̂ is not invertible (an issue for the

retrospective approach to the analysis of case–control data detailed below). This

has implications for the eigenvector structure of K̂ compared to K. For example,

Fig. 4.3 showed the true eigenvector structure for an admixed sample of subjects; in

this figure both eigenvector 1 and eigenvector 2 of the true value of K are perfectly

correlated with the admixture fraction α as described above. However if we

simulate a sample of SNP markers according to the same model so that

1. Allele frequencies for two related populations are chosen using Balding–Nichols

beta binomial model.

2. An admixture fraction αi is chosen for subject i from the beta distribution having

parameters α/h and (1 � α)/h for i from 1 to N and then.

3. For each subject a total of M SNP allele counts are generated with fraction αi
coming from the first ancestral population and fraction (1 � αi) from the second.

Then computing K̂ using the SNP data (with M ¼ 10, 000 and N ¼ 100) and

plotting the first 4 of the resulting eigenvectors against admixture proportion αi
gives the plot shown in Fig. 4.5. In this plot there is only one eigenvector that is

correlated with admixture fraction compared to two in Fig. 4.3. The “loss” of

eigenvector 2 seen in Fig. 4.3 is due to the fact that K̂ is of rank N � 1. The

original first two eigenvectors were perfectly correlated with each other (although

their dot product was 0); however since the vector 1 is in the null space of K̂ all the

eigenvectors with eigenvalues greater than zero must have mean equal to zero.

Therefore the correlation between eigenvectors of K̂ must be exactly equal to zero

and hence the loss of a second eigenvector that is also correlated with ancestry.

Such a loss however is not relevant to the use of the eigenvectors as adjustment

variables since it is in any event impossible to include two perfectly correlated

variables as adjustment variables in a regression analysis. Using only one adjust-

ment variable that is (almost) perfectly correlated with ancestry will still ensure that

(residual) loadings of the covariate of interest on either of the two eigenvectors with

eigenvalues >1 of the true K will be near zero.
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4.2.3.2 Choosing the Number of Eigenvectors to Include

as Adjustment Variables

Several rules for choosing eigenvectors to be used as adjustment variables for

phenotypic analysis have been described. Roughly speaking these fall into two

categories: methods based only on the eigenstructure structure of the marker data

and methods that also take into account the behavior of the phenotype data as well.

For example, one rule is to simply include a fixed number of eigenvectors; ten is

often used following a precedent established by Price et al. [17]. A second approach

is to use statistical criteria related to the statistical significance of a given eigen-

vector. For example, Patterson et al. [21] employed the Tracy–Widom [22] statistic

to determine a set of L eigenvectors which had eigenvalues greater than the

remainder of eigenvalues, with the number L proposed as the number of leading
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eigenvectors to be adjusted for in association analysis. From our analysis it would

appear that a simpler approach for choosing L would simply be the number of

eigenvalues that are greater than 1, since it is the loading of covariates upon the

corresponding eigenvectors that leads to variance inflation.

In our experience [10] with genotypes from a large GWAS breast cancer risk in

an admixed, African-American, population, neither of these two criteria yielded

particularly helpful suggestions for the number of eigenvectors to use as adjustment

equations in association analysis. Starting with approximately 5,000 cases + con-

trols approximately 660 eigenvectors were greater than 1 and approximately 400 of

these were nominally significantly elevated, compared to the remainder, using the

Tracey–Widom statistic as computed by the program SMARTPCA [21]. The very

large number of eigenvalues greater than 1 may be a finite sample issue. Since the

trace of the K̂ matrix computed for these data was quite close to N the average value

of the trailing eigenvalues is just under one. Using a finite number of SNPs in

estimating the eigenvalues sampling error in K̂ could easily send many estimated

values over one just due to chance alone. It is unclear why there were so

many significant eigenvectors reported from the Tracey–Widom statistic

implemented in SMARTPCA; this may be a consequence of LD being lengthened

by incomplete admixture (personal communication, Nick Patterson, Broad Insti-

tute, Cambridge, MA).

In any given analysis specific eigenvectors may or may not be associated with

disease. Including a variable that is not associated with disease as an adjustment

variable usually has little effect on the conclusions of an analysis regarding the

association of the alleles of interest with the phenotype being examined, so long as

the number of such variables used is not large and so long as the adjustment variable

is not highly correlated with the independent variable of interest. Therefore rather

than trying to use the eigenstructure of the K̂ matrix alone to determine which

eigenvectors should be used as adjustment variables it is often far more parsimo-

nious to simply include just those eigenvectors that appear to be predictive of the

phenotype of interest at some level of significance. In this fashion the choice of

eigenvectors for adjustment will be treated as an ordinary variable selection prob-

lem. In the African-American breast cancer data described by Chen et al., only a

single eigenvector, namely, the first, highly correlated with fraction of African

ancestry, was significant in the breast cancer analysis, and this association was

mainly restricted to a specific subtype (estrogen receptor negative disease) known

to be more common in African-American women.

To summarize, the adjustment for principal components is probably the most

commonly used approach for the inclusion of information about ancestry available

from a GWAS to adjust association statistics for the presence of either hidden

non-mixing groups as well as admixture between historically separate populations.

The PC method has been widely applied to both case–control data and to analysis of

continuous phenotypes.

For more complicated structure involving levels of hidden relatedness between

individuals the PC method does not work well [23]. To take an extreme example
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(which is discussed also in Chaps. 3 and 7) a study in which cases are matched to

sibling controls cannot be analyzed as if the siblings are unrelated even if large

numbers of eigenvectors (e.g., 1 per sibship) are included in the regression model.

In general the principal components based methods are less well equipped to deal

with cryptic relatedness than is either genomic control or the next two types of

analyses to be considered.

4.2.4 Random Effects Models

This section revisits the analysis of continuous phenotypes Y1, Y2, . . ., YN for which
a model for the mean phenotype is written as

E Yið Þ ¼ β1Xi1 þ β2Xi2 þ � � � þ βr�1Xi, r�1 þ βrXir: ð4:17Þ

In addition we assume that the variance/covariance matrix for the vector of

outcomes Y ¼ (Y1, Y2, . . ., YN)
0 is of form

Σ ¼ σ2Iþ γ2K: ð4:18Þ

Our interest is when one of the variables (for example, the last one, Xr) corre-

sponds to the allele count n(A) of a variant, A, of interest being tested for association
with phenotype Y and where the other X variables relate phenotype means to

measured exposures or other host factors (age, race, body mass index, etc.) that

we would like to adjust for in the model. Since the goal of a GWAS study is to

evaluate the effect of each of many variants by fitting model (4.17) many times, Xr

will take many different sets of values namely (in turn) nk ¼ (n1k, n2k, . . ., nNk)
0,

k ¼ 1, 2, . . ., M for the allele counts of the kth variant being tested.

Implicitly we are assuming that the K matrix in (4.18) driving the covariance

between outcomes is actually proportional to the variance–covariance matrix for

each nk. As described above this model is reasonable for polygenic phenotypes or

for phenotypes in which cultural factors are related to environmental determinants

(exposures, lifestyle choices, etc.) and where cultural similarities in these determi-

nants mimic genetic similarities.

From Chap. 3 if each of K, σ2, and γ2 are known then the best linear unbiased

estimate, β̂ BLUE, of β can be written as

β̂ BLUE ¼ X
0Σ�1X

� ��1

X
0Σ�1Y ð4:19Þ

with

E β̂ BLUE

� � ¼ β

and
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Var β̂ BLUE

� � ¼ X
0Σ�1X

� ��1

: ð4:20Þ

For large values of N (the number of observations) Wald tests for the parameter

of interest: that is, testing whether βr ¼ 0 by dividing β̂r2 by the (r, r)th element of

(X0Σ� 1X)� 1 will have appropriate size (e.g., type I error will be controlled) and

generally will have good power. This will hold even when the true values of σ2 and
γ2 are replaced by consistent estimates of these quantities.

4.2.4.1 Introduction to Estimation of Random Effects Models

If the matrix K is known, then the problem of estimating σ2 and γ2 is a special case
of fitting a so-called linear structured covariance matrix model; Anderson (e.g.,

[24]) and other statisticians defined these models and introduced estimating equa-

tions that provide maximum likelihood estimates, when phenotypes are normally

distributed, for all parameters in the mean and variance functions. Estimating

equations for the parameters in such models (here σ2 and γ2) have been noted

[25] to be equivalent to performing a series of weighted least squares regression of

elements of the sample covariance matrix (Y � Xβ)(Y � Xβ)0 upon the elements of

the matrices in the covariance model, here I and K (see Yang et al. [26] for an

application that stresses such a regression procedure in the context of estimating the

heritability of height). Once σ2 and γ2 have been estimated large sample inference

(based on a Wald test) about the influence of nk on phenotype Y is performed by

dividing the rth element of the vector β̂ BLUE to (the square root of) the r � r

element of Var β̂ BLUE

� �
and comparing this ratio to critical values for a normal

random variable (or the square of the ratio to the critical values for a χ21)
Variance components models for genetic analysis originally were introduced for

the analysis of continuous traits when the genealogical relationships between study

subjects are known. These methods have a long history starting with work by Fisher

[27]. In a recent example Pilia et al. [28] examined the heritability of cardiovascular

and personality traits among 5,610 participants, for whom pedigree information

was available, recruited from four towns in the Sardinian province of Nuoro. In this

study there were over 34,000 relative pairs identified with an average kinship

coefficient of 0.1625. The program POLY (http://www.sph.umich.edu/csg/chen/

public/software/poly/) was used to compute (by analysis of IBD sharing from the

pedigree information) the components of the relationship matrix and to estimate

heritability, by solving the estimating equations needed to estimate σ2 and γ2 for the
quantitative traits of interest. This program allows additional components of vari-

ance to be included in the model for the covariance matrix of the phenotype, for

example, to take account of effects of especially strong shared environment for very

close relatives such as siblings, genetic dominance components, interaction (epi-

static) components, etc. These are incorporated into the general model by inclusion
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of additional (known) covariance matrices in the covariance model so that the

variance–covariance matrix of the phenotypes becomes equal to

Σ ¼ σ2Iþ
XR
r¼1

γ2rKr: ð4:21Þ

Again the Kr are assumed to be known from first principles (rather than

estimated from marker or other data) and the variance components γ2r are estimated

in the analysis. For example, in order to estimate a genetic dominance component as

well as an additive component of heritability, one can fit a model

Σ ¼ σ2Iþ γ21Kadd þ γ22Kdom,

in which the elements of Kadd are equal to the additive kinship coefficients, or

z1 + 1/2z2, for all pairs of subjects and where the elements ofKdom equal z2. (The z1
and z2 are the probabilities of sharing either one or two alleles identically by descent
and are calculated for each pair of subjects, Chap. 2). It can be shown that z2 is

greater than zero only when related individuals have paths of coancestry through

both of their respective parents, as have full sibs and double first cousins [29].

A general algorithm for estimation of linear structured covariance models of this

form as described by Anderson involves the repeated inversion of large matrices

(of order N � N ), once for each iteration. Because of the time and computer

resources required for these computations it is not realistic to estimate σ2 and the

γ2 parameters in (4.18) or (4.21) separately for each marker being tested. Instead

these parameters are estimated just once, at the beginning of the scan, and these

initial values retained. For each marker the BLUE estimate, β̂ BLUE, of the mean

parameters as well as its variance estimate is constructed and tests performed,

cf. Kang et al. [30], using the same estimate of Σ. This procedure is quite effective
at providing valid tests and unbiased estimates so long as no single marker explains

a large fraction of the variability of the genetic component and moreover closely

corresponds to a score test of the null hypothesis of no effect on phenotype mean for

a given marker [30].

4.2.4.2 Software for Genetic Applications

The historical, rarely now used, program BMDP5v [31] was the first widely

available general purpose program that could fit general structured covariance

matrix models such as those of interest here. The currently very widely used SAS

(Cary, NC) procedure PROC MIXED can fit linear structured covariance matrix

models for fairly large problems (thousands of individuals). Specialty software that

can be used for genetic association analysis of quantitative traits includes programs

such as PAP, ACT, SEGPATH, SOLAR, SAGE, MENDEL, and MERLIN

[32]. These programs generally rely upon knowledge of the genealogy of the
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sample in order to compute the relationship matrix and other covariance matrices

corresponding to other terms (dominance components, shared environment among

close relatives, etc.) in order to deal with covariance structures such as (4.21). More

recently programs such as EMMAX (below) have been described which incorpo-

rate estimation of a covariance structure matrix based on the observed SNPs for use

in the variance components analysis.

4.2.4.3 Estimation of K

Empirical estimation of the covariance structure matrix K by observing the corre-

lation structure of large numbers of SNP alleles has been discussed already above.

Several other choices have been considered; for example, EMMAX [30] permits

the use of either a (normalized) IBS matrix (a simple count of the number of alleles

shared for pairs of individuals summed overall all markers and normalized to have

diagonals equal to ones) or the matrix with elements k̂ ij as in (4.16) (termed the

Balding–Nichols matrix by Kang et al.). Their analysis found that use of either

estimate appeared to have similar control for type I error rates and power

characteristics.

4.2.4.4 Control of Confounding Using Random Effects

Models for Case–Control Data

Generalized linear models which include predictor variables Z associated with

random effects w, i.e.,

g E Y
��X,Z� �� � ¼ Xβ þ Zw, ð4:22Þ

with w treated as random mean zero quantities with a covariance matrix that is

known up to some set of parameters, can be used as a starting point both for the

correction of association tests for population stratification (our interest here) and

(see Chap. 8) for tests for the aggregate effects of many (typically rare) variants as

in the sequence kernel (SKAT) tests described by Wu et al. [33]. The influence of

hidden structure, admixture, or other relatedness together with the action of a

polygene (or culturally based behaviors or exposures which mimic such polyge-

netic effects) can (as with the linear models described above) be modeled as

g E Y
��X,Z� �� � ¼ Xβ þ g: ð4:23Þ

Here, as before, we assume that the covariance matrix of g equal to γ2K with the

K equal to a known or the estimated relationship matrix. Direct incorporation of the

random term g with this covariance matrix, and maximum likelihood estimation of

the parameters β and γ2 for generalized linear models is provided by certain well
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known statistical software programs (SAS Proc GLIMMIX, R packages GLMM

and lme4). These general purpose programs, however, are quite slow (requiring

iterative inversion of an NxN matrix for example) and are not generally suitable for

large-scale genetic analysis involving hundreds of thousands of markers.

Kang et al. [30] discussed the application of standard random effects regression

(for quantitative traits) to binary outcomes (case–control) data for the testing of

effects and came to the conclusion that applying to case–control data using same

software used for quantitative traits worked reasonably well. This is partially

justified by noting the similarities of the Armitage trend test to both F-tests for

the significance of variables in OLS regression and to score tests in logistic

regression. This may be the most feasible approach to apply random effects

methods to case–control data for genome-wide association testing. Such calcula-

tions are of most interest in situations (such as the presence of many highly related

subjects) where the fixed effects principal components methods tend to fail.

4.2.5 Retrospective Methods

Up to this point we have considered models in which phenotype means or

case–control status probabilities are described conditionally upon marker genotype.

It is possible and potentially useful to think about this problem from the other

direction, i.e., by investigating the distribution of marker counts given case–control

status. In many cases modeling the mean of genotypes given case–control status will

yield equivalent or nearly equivalent inference as doesmodeling disease status given

marker genotype; some classic results on use of retrospective versus “prospective”

methods are given by Prentice and Pyke [34]: in addition, retrospective analyses can

be extended to cases in which both the genotypes and phenotypes for different

individuals are not independent of each other. This approach leads to a development

of methods for the analysis of case–control studies that allow for non-independence

due to population stratification and hidden relatedness in a more natural manner than

simply applying methods designed for quantitative data directly to case–control data

as suggested above. A classic paper by Bourgain et al. [35] applied retrospective

analyses to analysis of genetic associations when pedigree structure is known, and

these have been more recently adapted to large-scale association testing when

pedigree structure is not known, e.g., [36, 37].

To give a very simple example when so-called retrospective analysis agrees with

a more familiar case–control analysis, consider a sibling matched case–control

study. The sibling-based case–control design and certain other family-based

designs provide highly effective protection against the effects of population strat-

ification [38]. Matching full siblings on disease status ensures that every case has a

control with exactly the same ancestry so that differences in ancestry between cases

and controls cannot lead to an excess of false-positive associations. When using

conditional logistic regression (Chap. 5) of 1:1 matched data with only one variable
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of interest, i.e., a genotype count, n(A) for a specific allele the conditional likelihood
readily reduces to

YNpairs

i¼1

exp ni1βð Þ
exp ni1βð Þ þ exp ni0βð Þ, ð4:24Þ

where the index i indicates matched pair (here sibship), and the index of 1 or 0 refers

to case and control status, respectively.

It is easy to see that that the score statistic for testing β ¼ 0 is equal to

1

2

XNpairs

i¼1

ni1 � ni0ð Þ,

and the information is

1

2

XNpairs

i¼1

ni1 � ni0ð Þ2:

So that the score test is simply

X
i

ni1 � ni0ð Þ
" #2
X
i

ni1 � ni0ð Þ2 : ð4:25Þ

This test is closely related to the square of the usual paired t-test for testing
whether there is a difference in the mean counts for cases and controls. Specifically

we can rewrite (4.25) as

δ
2

σ̂ 2
δ

Npairs

Npairs�1ð Þ
Npairs

þ δ
2

Npairs

� �
,

where δi ¼ ni1 � ni0, δ ¼ 1
Npairs

XNpairs

i¼1
δi, and σ̂δ2 is the usual sample variance

estimate computed from the δi. Therefore as Npairs increases the score test rapidly

approaches T2 ¼ Npairs δ
2
=σ̂

2

δ

� �
, which is the square of the usual paired-t test.

Now consider this same problem from a slightly different angle. We construct

the vector, n, of counts of allele A of length 2Npairs as n ¼ n1,1; n1,0; n2,1; n2,0; . . . ;ð
nNpairs, 1 ; nNpairs, 0Þ

0
and we adopt the following retrospective model for n:

E nð Þ ¼ μþ cβ, ð4:26Þ
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where the vector c (also of length 2Npairs) contains ones and zeros indicating case

and control status, respectively, i.e., we are now modeling the mean allele count for

controls as equal to μ and the mean allele count for cases as μ + β; note that if the
disease outcome is rare then μ should equal twice the allele frequency, p. Now
consider a model for the variance–covariance matrix of n reflecting the sibling

design. Assuming that individuals from different sibships are independent of each

other then Var(n) will be equal to 2p(1 � p)K, with K a block diagonal matrix

having blocks equal to
1 0:5
0:5 1

� �
and all other elements equal to zero, where p is

the allele frequency of A (and is equal to 1/2μ). Letting the 2Npairs � 2 matrix

C have first column equal to a vector of 1s and second column equal to c then the

BLUE estimate of μ and β will be computed (Chap. 3) as

μ̂

β̂

 !
¼ C

0
K�1C

� ��1

C
0
K�1n: ð4:27Þ

The variance–covariance matrix of the estimates will be

Var
μ̂

β̂

� �
¼ 2p 1� pð Þ C

0
K�1C

� ��1

: ð4:28Þ

In (4.27) the matrix (C0K� 1C)� 1C0K� 1 reduces to the 2 � 2Npairs matrix with

elements

1

Npairs

0 1 0 1 . . . 0 1

1 �1 1 �1 . . . 1 �1

	 

,

and the variance matrix (C0K� 1C)� 1 equals

2p 1� pð Þ
Npairs

1 �0:5
�0:5 1

	 

:

A test of β ¼ 0 with an asymptotic χ21 distribution can be computed as β̂
2

� �
=

Var β̂
� �� �

or

Npairs

δ
2

2p 1� pð Þ : ð4:29Þ

Since

Var δið Þ ¼ Var ni, 1ð Þ þ Var ni, 0ð Þ � 2Cov ni, 0; ni, 1ð Þ ¼ 2p 1� pð Þ,

this test is equivalent to T2 ¼ Npairs δ
2
=σ2δ

� �
, which is the paired t-test with a

slightly different variance estimate, i.e., 2p̂ 1� p̂ð Þ after substitution of p with p̂ .
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The point of this exercise is to establish the idea that retrospective tests that take

account of the correlation structure of the allele counts of interest are often

equivalent to more familiar tests performed in studies designed specifically to

deal with population structure. Another example [36, 39] of this is the analysis of

affected-offspring + parents (trio) data. Rakovski et al. show that if each trio is

unrelated that the retrospective regression method produces a test very similar to

the transmission-disequilibrium test [40] often used to analyze affected-offspring

trios (see also Chap. 3, Sect. 3.6.2).

4.2.5.1 The Bourgain Test

A general retrospective approach to using the correlation structure of allele counts to

analyze case–control data in the presence of relatedness between subjects was

proposed by Bourgain et al. [35]. The basic idea generalizes the procedure just

used. The model for the mean of the allele counts for a specific variant being tested

remains the same as above, that is, E(n) ¼ μ + cβ. In the setting in which Bourgain
et al. introduced the test, it was assumed that the kinship coefficients between

individuals (as well as inbreeding coefficients) could be computed on the basis of

pedigree information. Bourgain et al. motivated this test by considering a study of

asthma occurrence taking place among the Hutterites, an isolated North American

religious population whose entire population can be traced back to 90 ancestors in

the 1780s/1800s. The complete genealogy of 719 different study participants was

constructed from a Hutterite pedigree of over 12,000 individuals. The covariance

matrix of the counts, n, of a given allele was assumed to be equal to 2p(1 � p)Kwith

K ¼
1þ h1 2ϕ12 . . . 2ϕ1N

2ϕ12 1þ h2 . . . 2ϕ2N

⋮ . . . . . . ⋮
2ϕ1N 2ϕ2N . . . 1þ hN

2
664

3
775: ð4:30Þ

Bourgain et al. consider the simultaneous estimation of both parameters, μ and β,
using methods that correspond to the use of the BLUE estimates of (4.27) to provide

estimates of both these parameters (and hence p ¼ μ/2 as well).

4.2.5.2 An Empirical Bourgain Test

Several authors [36, 37, 39] have considered the use of empirical estimates,

calculated from GWAS data, of an approximate relationship matrix, K̂ , when

genealogical data are absent for substitution into the BLUE estimation procedure

described above. Astle et al. [39] explored the substitution of K̂ of (4.16) for K in

(4.27) and (4.28) as a method of correcting for any of hidden relatedness or hidden

stratification and/or admixture in the analysis of case–control studies. A few
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practical issues have to be dealt with in order to consider the use of this test. First as

noted above the maximum rank of K̂ is equal to N � 1 since the vector of 1s lies in

the null space of K̂ . Thus K̂
�1

does not exist. As noted by Rakovski and Stram [36]

the use of a generalized inverse of K̂ in place of K� 1 in (4.27) allows for the

estimation of β only if μ (and hence p ¼ μ/2) is treated as known (set, for example,

to its naı̈ve estimate, ignoring population stratification) rather than a parameter to be

estimated in the course of the fitting procedure.

A second important issue is the amount of computation involved when using this

test on a genome-wide basis. Note that if no SNPs are missing any data then the

matrix (C0K�1C)�1C0K�1 in (4.27) needs to be computed only once. The estimate

β̂ is then computed for each marker in turn by post-multiplying this matrix by each

count vector n. Similarly (C0K�1C)�1 in (4.28) remains constant during the calcu-

lations as well and only p̂ needs to be calculated separately for each SNP. In a real

study all SNPs will be missing some data and it is best to avoid performing many-

fold calculations of the inverse of the submatrix of K̂ that corresponds to those

subjects with data. Using formulae for partitioned matrices is one possible

approach, and this reduces the computation of the inverse of the submatrix to that

of inverting a matrix of the same size as the number of subjects missing that marker.

Another is to simply substitute the expected value, 2p, for any missing count values.

Thornton and McPeek [37] provide other suggestions and in particular try to exploit

case–control status information and the marker count values of known relatives,

when dealing with missing data.

4.3 Comparison of Correction Methods by Simulation

In order to compare the methods given above, i.e., genomic control, principal

components, variance components, and the retrospective approach we develop a

sequence of simulated data using the R routine Sim_SNP_related described above

to generate random SNP data under conditions of relatedness, population structure,

and/or very recent admixture. For illustrative purposes the simulated phenotypes

are highly heritable and driven by a polygene consisting of 100 randomly selected

SNP alleles (the causal alleles) from among 2,200 simulated markers. In each

simulation all noncausal SNPs are tested for association (to estimate type 1 error

rate) as well as the causal alleles (in order to estimate power for each approach). We

implement each of the correction methods in R, following the general approaches

described by Price et al. [17] for principal components correction, Kang et al. [30]

(EMMAX program) for the mixed model, and Rakovski and Stram [36] for the

retrospective model. We also consider a hybrid approach that both adjusts for

significant principal components and corrects for any remaining overdispersion

using genomic control (a PC + GC approach)

The first simulated dataset consists of a combination of close and distant

relatedness between individuals (the presence of both hidden strata and inclusion
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of close relatives). We compare genomic control to principal components (control-

ling for eigenvectors that are significantly related to the generated phenotype) and

to the mixed model approach. The mixed model uses the R function

EMMAX_mimic (defined in the linStructCov.r file) to fit the mean and variance

parameters in the model E(Y) ¼ μ andVar Yð Þ ¼ σ2Y þ γ2K̂ with K̂ estimated as in

expression (16) above.

Consider a simulation experiment in which there is weak relatedness between

large groups of individuals but very close relatedness for some family members.

Weak relatedness is simulated as the presence of two different non-mixing

populations with (ancestral) differentiation parameter F in the Balding–Nichols

model to a value (F ¼ 0.0163) that gives a correlation between individuals within

the two populations of 2F/(1 + F) ¼ .03215, which is the level expected for second

cousins. Within each population there are 50 families for which eight members are

genotyped so that each individual has one sibling and six cousins in the study. The

results of a typical simulation are shown as a series of QQ plots in Fig. 4.6.

Figure 4.6a gives the distribution of (�log10) p-values for the noncasual SNPs

either uncorrected or corrected for significant principal components from a single

simulation realization. Notice that there is a very strong overdispersion of p-values
in the uncorrected analysis (λ ¼ 2.62) and also overdispersion after PC correction

(λ ¼ 1.13); this reflects that it is both population stratification and also relatedness

that is being simulated here. Figure 4.6b shows the QQ plot for the noncausal SNPs

using the mixed model approach, indicating good protection against type 1 error.

Finally Fig. 4.6c shows the results of running the mixed and PC correction method

on the 100 causal SNPs. Because there was overdispersion in Fig. 4.6a for the PC

method the chi-square statistics were divided by the corresponding genomic control

factor λ ¼ 1.13 (the hybrid PC + GC approach described above). In the PC method

(for this single simulation run) a total of 12 principal components (ranging from

numbers 1 to 219) were nominally significantly associated with outcome

(at p ¼ 0.05); however, it was the first principal component (highly correlated

with population membership) that was the most significant. In this single simulation

it appears that the PCþGC approach is similar to the mixed model approach both in

terms of type 1 error control (Fig. 4.6b) and power; it will take much more

simulation work to really evaluate whether they are consistently similar strategies

(the R code used is called sim1.r, see Homework).

4.3.1 Comparison of the Mixed Model and Retrospective
Approach for Binary (case–control) Outcomes

A second simulation modifies the above in two ways. First the differentiation

parameter F is increased to a very large value (0.1) for illustrative purposes, and

second a truncated version of y (split at the median) is used as the outcome variable.

The implementation of the retrospectivemethod is provided by function retro defined
in retrospective.r. The simulations described are implemented in sim2.r. Figure 4.7a
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shows the null distribution for both the mixed model and retrospective method

applied to the data, both appear (in this simulation) to be adequately following a

null chi-square distribution. Figure 4.7b shows a very similar dispersion of the tests of

the causal SNPs indicating that both tests appear to have similar power.

4.3.2 Conclusions

Of the four different methods considered two of them, the mixed model and

retrospective approach, appear to be general purpose algorithms in the sense that

whether the cause of overdispersion of tests is due to either hidden population

structure or hidden relatedness or both the methods seem to have good type 1 error
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Fig. 4.6 QQ plots for p-values from simulated data: (a) Noncausal SNPs with no correction (solid
line) and correction for significant principal components (dashed line). (b) Noncausal SNPs using
the mixed model (EMMAX) method. (c) Causal SNPs using the mixed method (solid lines) and
combination of PC correction and genomic control (dashed line). Also shown for reference is the

Y¼X line (solid)

172 4 Correcting for Hidden Population Structure in Single Marker Association. . .



properties and similar power. In a sense they lie in between the PC method and the

genomic control method. The PC method works well when large-scale hidden

structure is present or for correcting for the effects of recent admixture (but see

Chap. 8 for more discussion of association testing using admixed populations). The

genomic control method works best when individual study members are related to

some fraction of other study participants.

From a practical standpoint there are many advantages to the PC and genomic

control methods compared to the mixed or retrospective models, in their simplicity

and wide availability. While special software may be required (such as

EIGENSTRAT) to compute principal components for large numbers of individuals,

once they have been computed implementation is very easy. Moreover in many

cases (and this can be seen with further experimentation with Sim_SNP_related) the
hybrid PC + GC method (genomic control applied after significant PCs have been

included in the model) can be used to adequately control for both hidden structure

and hidden relatedness. This was illustrated in Fig. 4.6c where the hybrid (PC +

GC) correction gave only slightly less significant results than the mixed model, and

in most simulations the hybrid method was very competitive with the mixed model

(or retrospective) approach (Homework).

4.4 Behavior of the Genomic Control Parameter

as Sample Size increases

As discussed also in Chaps. 3 and 7, if the genomic control parameter, λ, increases
with sample size then this can have a serious effect on study power; for example, if

this increase is linear study power can reach an asymptote below 1 (Chap. 7). On the
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Fig. 4.7 Comparisons of mixed model and retrospective approaches to analysis of case–control

data. (a) QQ plot for noncausal SNPs showing mixed model (solid line) retrospective (dashed line)
and the unadjusted Armitage test (dotted line). (b) QQ plot for causal SNPs
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other hand, if λ remains constant as sample size increases then the power of tests

will continue to increase with sample size in an expected fashion. We consider here

a simple structured population problem, i.e., one in which there are a number of

non-mixing populations within the study population and consider what happens to

the variance of the estimated slope in OLS regression as sample size increases. Two

possibilities are allowed, the first is when the number of groups stays constant as

sample size increases and the fraction of members from each group in the whole

study also stays constant, and the second is when the number of groups increases at

the same rate as sample size keeping the number of individuals from any given

group constant. The first situation is similar to a typical population stratification or

admixture problem affecting a population-based study, i.e., increasing the study

size (by drawing from the same admixed or stratified population) does not alter the

fraction of study individuals who are “related” (i.e., in the same strata) to any

specific individual. The second situation is more typical of having included closely

related individuals in a study. As the study size increases the number of individuals

that a given participant is closely related to remains relatively constant so that the

fraction who are related to that participant decreases with sample size. In order to

examine these two cases more closely we discuss the following simplification of

this problem.

Suppose that Yij denotes the outcome observed for individual j in group i and that
Yij has a mean that depends on a variable xij (e.g., a genotype count for that

individual) but that the Yij given xij are not independent of the outcome of other

group members. In particular assume that Yij follows the random intercept model

Yij ¼ μ + βxij + ai + eij for i ¼ 1, 2, . . ., N, j ¼ 1, 2, . . ., ni with Var(eij) ¼ σ2

and Var(ai) ¼ γ2. Then E(Y) ¼ μ + Xβ with block constant variance–covariance

matrix Var Yð Þ ¼ σ2I þ γ2In � diag 11
0
ni

� �
(� denotes the Kronecker product),

where X is a matrix with rows equal to (1,xij) for (i,j) as above. It is relatively

easy to show in this situation that the variance of the OLS estimate of β̂ is equal to

σ2P
ij xij � x
� �2 1þ γ2

σ2

XN
i¼1

Xni
j¼1

xij � x
� �" #28<

:
9=
;

P
ij xij � x
� �2h i

0
BBBBBB@

1
CCCCCCA
:

Now (as in population stratification problems where x is a SNP count variable)

we assume that the covariance matrix of the predictor variable is similar to that

of Y. Specifically suppose that xij can also be written as a random intercept model

xij ¼ f + wi + εij with Var(wi) ¼ ν2 and Var(εij) ¼ τ2. Now the question is what

happens to the variance of β̂ as (1) the number of groups, N, grows but group sizes

ni do not and (2) the number of groups stays constant but the group sizes grow.

The term
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γ2

σ2

XN
i¼1

Xni
j¼1

xij � x
� �" #28<

:
9=
;

P
ij xij � x
� �2h i , ð4:31Þ

acts as an overdispersion term. If this term is large then variances will be

underestimated in OLS regression, so that genomic control parameter will be

greater than 1.

To simplify things we consider the ratio of the expectations of the numerator and

denominator of (4.31) (rather than the expectation of the ratio itself). The key issue

here is to understanding the expectation of
Xn

j¼1
xij � x
� �h i2

. This is equal to the

variance of
Xni
j¼1

xij � x
� �

which can, with a bit of work, be written as

τ2 þ niν
2

� �
1� 2ni

ntot

� �
þ ni

ntot

� �2

ntotτ
2 þ ν2

X
i

n2i

" #
: ð4:32Þ

Assuming all ni are equal to n then the entire numerator has expectation

N τ2 þ nν2
� �

1� 2n

ntot

� �
þ N

n

ntot

� �2

ntotτ
2 þ Nν2n2

� 
 ¼ N � 2þ nð Þ τ2 þ nν2
� �

while the denominator has expectation (τ2 + ν2)(nN � 1). Therefore expectation of

the denominator is linear in both the number of blocks, N, and the size of the blocks,
n, while the expectation of the numerator is linear in the total number of blocks but

quadratic in n. This implies if the number of blocks increases but the block size does

not the overdispersion term (and hence the genomic control λ, which corrects for

overdispersion) will tend to a constant value, while if the size, n, of the blocks

increases the overdispersion term, and λ, increases linearly with n.
This finding generalizes to more complex situations (e.g., involving relatedness

and admixture as well as hidden stratification), which can be seen empirically by

further exploration with Sim_SNP_related. The basic principle is that if the

fraction of pairs of individuals that are “related” stays constant with sample size

(as in admixture or simple population stratification) as the sample size increases

then the genomic control λ will tend to increase with sample size. If on the other

hand if the fraction of pairs that are related to each other decreases (even if the

total number of related individuals increase) then the genomic control parameter

will not increase.
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4.5 Removing Related Individuals as Part of Quality

Control, Is It Needed?

The design of most GWAS studies targets unrelated individuals as study members.

Looking at estimated relatedness (i.e., by estimating IBD probabilities z0, z1, and z2;
see Chap. 2) in the course of data cleaning for quality control is important in order to

find sample mix-ups that have led to unintended duplicate samples or to find

evidence of sample contamination a hallmark of which is that one or more partic-

ipant samples appear to be related to a large number of other study samples.

Removal of unintended duplicates and potentially contaminated samples is of course

well advised. In the course of data quality control however it is not uncommon to find

that some pairs of individuals appear to be genuinely but unexpectedly related to

each other. In fact the discovery of pairs of identical twins (verified by record search

or recontact) is not unheard of, and almost all studies find sets of siblings,

parent–offspring pairs, and other close relationships (e.g., avuncular, half-sibs)

that are not possible to classify strictly on the basis of IBD probabilities. It is

commonly recommended practice (for example, see the National Human Genome

Research Institute, GENEVA project [41] website https://www.genevastudy.org

and the material therein) to remove samples in order to break up first- and second-

degree relative pairs for analyses that are to be performed assuming all individuals

are unrelated. A simulation study in R (sim3.r) looks at the necessity of doing so in a
small sized GWAS. In this simulation 500 pairs of individual genotypes are gener-

ated (again using Sim_SNP_related) with 400 of the pairs being strictly unrelated to
each other; the remaining participants consist of 10 parent–offspring pairs, and

30 pairs each of siblings, half-siblings, and avuncular relations. Removal of 100 indi-

viduals (from 100 related pairs) leaves 900 subjects, keeping them in leaves 1,000

individuals but with the possibility that we may have to correct for overdispersion

using genomic control (or other methods). Using a setup similar to sim1.r above
(e.g., a continuous outcome Y with 50 % polygenic heritability), the result of

100 replications is shown in Fig. 4.8. Even with this small simulation it is evident

that (1) overdispersion caused by even 10 % of individuals being closely related to

another study member is small (average GC parameter was λ ¼ 1.038 for the full

dataset compared to λ ¼ 1.022 for the unrelated individuals only); (2) that type

1 error was well preserved by genomic control; and (3) that the mean power was a

few percent higher using all individuals (with GC adjustment) than only the

unrelated samples (where no GC was applied).

These results are suggestive that keeping subjects in the study, even when

nominally related to other members, may have either little influence on power, or

may provide power gains, relative to their removal. Moreover the implications of

the previous section are that in this situation we would not expect the GC parameter

to tend to increase with sample size (which of course can be verified by further

simulation work; see Homework) so that the results here from this very small

simulation will remain consistent as sample sizes increase.
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4.6 Chapter Summary

This chapter has reviewed the effects of population structure, namely, hidden

relatedness, stratification, and admixture on association estimation and testing

using a unified eigenvector-based approach. Three different types of procedures

including fixed effects, random effects, and retrospectivemodeling, for dealing with

hidden population structure, have been introduced and motivated. General theoretic

analyses as well as some simulation experiments have been used to describe the

problems associated with and the utility of each of these types of correction

methods. Fixed effects approaches, specifically principal components analysis,

for the analysis of genetic associations for both binary (case–control) outcomes,

and quantitative phenotypes appear to be highly effective at dealing with the
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Fig. 4.8 Results of third simulation experiment (sim3.r). One hundred simulations were

performed. Type 1 error rate is computed using the fraction of noncausal SNPs (2,100 used in

each simulation) with nominal association at p � 0.05, and power is computed using the fraction

of causal SNPs found to be significantly associated (at p � 0.05)
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problem of admixture and gross hidden stratification. Hidden relatedness can

require other approaches and the use of random effects modeling as well as

retrospective modeling (for quantitative and case–control outcomes, respectively)

can be helpful in such settings, as illustrated here. Another reasonable and easy to

implement method is to control for gross stratification by the PC method but allow

for additional relatedness using genomic control.

Homework

1. In the normalization process described by Price et al. and discussed in Sect. 4.2.2

the eigenvectors are orthogonal and assume that there is no missing data. Show

that this implies that performing the linear regression of Y on leading eigenvec-

tors Vj for j ¼ 1, . . ., L is equivalent to computing Yadjusted ¼ Y � Y0V1 � Y0V2

� � � � � Y0VL and similarly for the linear regression of each nk on the leading

eigenvectors. What is necessary to modify here in the presence of missing data?

2. In the method of Price et al. is it really necessary to adjust both Y and nk? Suppose

we only adjust nk but leave Y alone when calculating the Armitage tests, what

effects does this have on the false-positive rate for the Armitage test now

constructed as (N � L )Cor(nk,adjusted, Y )
2 rather than (N � L )Cor(nk,adjusted,

Y
adjusted

)2. Are the false-positive rates similar for these two tests? Similarly if we

only adjust Y and not nk, does this also give similar results? Modify sim1.r
(Supplementary material) so that these possible correction methods are included.

3. Consider the Model

Yi ¼
Xr
k¼1

βk þ
XN
k¼1

αkVk

with Vk equal to the k eigenvector of K. Show that when the αk are treated as

independent random variables with mean 0 and Var(αk) ¼ γ2λk, this model is

equivalent to model (4.17) for the means combined with model (4.18) for the

variances. Therefore the models described in Sect. 4.2.4 can be thought of as a

random effects version of the fixed effects principal components regression

presented in Sect. 4.2.2.

4. Show that performing a simple linear regression of Yadjusted on each nk,adjusted is

equivalent (in terms of inference about the influence of genotype on phenotype)

to a multiple linear regression of Y on nk and the leading eigenvectors

Vj, j ¼ 1, . . ., L.
5. Perform other simulation experiments using the sim1.r, sim2.r, and sim3.r pro-

grams. For example, make additional runs of sim1.r to determine whether the

GC + PC method is indeed competitive (on the basic of power) with the mixed

model method in this complicated simulation. How does the GC parameter

increase with sample size:

(a) If there is no correction for principal components.

(b) If the leading principal component (first) is included.
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Data and Software Exercises

The following are based on the availability (from dbGaP) of the JAPC data from

Cheng et al. If these data are not handy please substitute any other large-scale

association study dataset that is available:

1. In the JAPC data are any of the first 10 principal components, computed as part

of Homework in Chap. 2, predictive of prostate cancer?

2. Use PLINK, with the—logistic flag or other software to adjust for leading

eigenvectors and red the QQ and Manhattan plots from Chap. 3 Homework.

3. Download and install the EMMAX software to fit variance model (4.18) to the

JAPC data and perform single SNP analysis for each SNP.

(a) Read the results into SAS or R and make QQ plots to compare with those in 2.

(b) Should leading eigenvectors be adjusted for, i.e., included in the mean

model (4.17).
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Chapter 5

Haplotype Imputation for Association

Analysis

Abstract This chapter discusses extending association analyses to include a larger

set of hypotheses beyond just the single markers that have been genotyped in a

particular study. This chapter first reviews haplotype frequency estimation and

imputation. It gives the details of EM estimation and haplotype imputation for a

small number of SNPs using data from unrelated subjects and then considers the

extension of this method to larger number of SNPs. The partition-ligation EM

algorithm is detailed as a method of obtaining haplotype count estimates for

individuals in an association study for a moderate number of SNPs.

The problem of haplotype-specific risk estimation and incorporation of SNP

haplotype analysis into generalized linear regression models is considered in some

detail; first a simple substitution of imputed for true haplotypes into association

testing is described. Since this method ignores uncertainties in the estimation of the

haplotype frequencies that underlie the imputation of haplotypes, the chapter also

considers simultaneous maximum likelihood estimation of all parameters (risk

estimates and haplotype frequency estimates), so that haplotype uncertainty is

formally taken account of in the construction of hypothesis tests and confidence

intervals. For case–control data, a full likelihood-based approach also must take

into account ascertainment of cases and controls as haplotype frequencies in the

sample may not reflect haplotype frequencies in the population, specifically for

haplotypes that are associated with risk.

The substitution of expected (imputed) haplotype count for unobserved true

haplotype count in regression analysis is a special case of the “expectation-substi-

tution” method described in the statistical literature on the subject of regression

parameter estimation when measurement errors occur in the explanatory variables.

It is known to have reasonable statistical properties in many analyses, especially for

forming tests of the null hypothesis (of no haplotype-specific effects). However

under the alternative hypothesis, the validity of the expectation-substitution

method can be questioned, and joint estimation as well as ascertainment correction

D.O. Stram, Design, Analysis, and Interpretation of Genome-Wide Association Scans,
Statistics for Biology and Health, DOI 10.1007/978-1-4614-9443-0_5,
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(for case–control sampling) may be considered. This and other problems in

haplotype-specific risk estimation are discussed.

Finally some special requirements of imputing SNPs or haplotypes in heteroge-

neous populations are described.

5.1 The Role of Haplotypes in Association Testing

Haplotype analysis is used to extend the number of hypotheses that are tested

during association analysis. Haplotypes, by which is meant the arrangement of

alleles on chromosomal segments, contain information about variants that are in LD

with the measured marker alleles, but which were not genotyped directly. If a causal

variant (consisting of a single mutation) occurs within a region of limited recom-

bination and then (through selection or random drift) becomes common, the SNP

haplotype that this variant fell on necessarily also becomes common. Since there

may have been no single SNP that uniquely defined that haplotype from all others

(see Fig. 5.1), it follows that haplotype-based association testing may be a more

powerful approach to detecting the effect of the (unmeasured) causal variant than

will the analysis of any of the single SNPs that make up the observed haplotypes.

In the figure, the second (causal) SNP falls exclusively on the (0 1) haplotype of the

first and third SNPs and so is perfectly associated with that haplotype while not

being perfectly correlated with either the first or the third SNP. If we only measured

the first and third SNPs, then we should see a stronger haplotype association than

any single SNP association.

The above illustration serves as a heuristic rationale for the use of haplotype-
block-based analysis. Haplotype blocks [1, 2] are simply regions of limited recom-

bination between SNPs demarked by regions with higher levels of historical

recombination. Several algorithms can be used to define such blocks, and are

most notably implemented in the graphical program Haploview [3]. Haplotype-

specific association analysis is often thought of as being restricted to such blocks

since the likelihood of picking up an association from an unmeasured variant is

much smaller when the measured SNPs are nearly independent (i.e., NOT in the

same haplotype block). Since the same comment applies to single SNP associa-

tions, the only realistic approach to finding risk variants in regions of high

h1

SNP1 1

1

0

0

1

1

0

0

0SNP2

SNP3

h2 h3

Fig. 5.1 Three SNP

haplotypes
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recombination is simply to genotype every known variant in the region and hope

that there are no unknown causal variants there.

In addition, haplotypes can also be causal variants themselves. In a very well

worked out example, Nackley et al. [4] reported that three common haplotypes

involving two synonymous and one non-synonymous SNPs in the COMT gene

code for differences in COMT enzymatic activity and are associated with pain

sensitivity. Strong evidence that it was the haplotypes rather than the individual

SNPs that influenced the activity was found in functional analysis of RNA loop

structures and enzymatic activity; one of the low-activity haplotypes has been

associated with preeclampsia in a Norwegian cohort [5]. Haplotype associations

(sometimes called cis-interactions) have been found to be stronger than associa-

tions with the individual markers in many instances, e.g., [6–11]; however (as with

most single marker associations) the functional basis for the haplotype effects

underlying the associations is yet to be understood.

5.2 Haplotypes, LD Blocks, and Haplotype Uncertainty

Haplotypes are observed with uncertainty (for the autosomes) even if all the SNPs

(or other variants) are genotyped without error. The degree of uncertainty in

haplotype imputation correlates both with the number of SNPs making up the

haplotype of interest and upon the extent of historical recombination that has

occurred between the SNPs.

A formal calculation of the squared correlation, R2
h, of the estimates, E(δhjGi),

with the true counts, δh, of haplotype h carried by each subject is described briefly

below [12]; this quantity will be less than one if recombinant haplotypes have

nonzero frequency ph. In regression analysis haplotype uncertainty reduces the

effective sample size (or noncentrality parameter) of a haplotype-based association

analysis (compared to a study that could genotype haplotypes directly) approxi-

mately in proportion to R2
h. For very small numbers of SNPs in linkage equilibrium

(but near enough so that the possibility of contemporary recombination can be

ignored) or for larger numbers of markers that are in high linkage equilibrium, the

predictability of common haplotypes is generally quite high.

5.3 Haplotype Frequency Estimation and Imputation

5.3.1 Small Numbers of SNPs

Start by considering haplotype frequency estimation from genotype data for

unrelated participants under the assumption of Hardy–Weinberg equilibrium

applied to the haplotypes. An EM implementation of maximum likelihood
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estimation [13] involves the calculation for each possible haplotype, h, of an

estimate of the haplotype dosage, δh(H ), which is the count of the number of copies

of h contained in the true (but generally unknown) pair of haplotypes H carried by

that individual (i.e., δh(H ) ¼ 0, 1, or 2).

Starting with an initial set ph1 ,ph2 , . . . ,ph2m
� �0

of haplotype frequency estimates,

in each iteration of the EM, the expectation step estimates (the superscript indicates

iteration number), for each subject, i, (for i ¼ 1, . . ., N ), the expected haplotype

dosage δh,i(H ) conditionally on the genotype data Gi for each subject treating the

current estimates of the haplotype frequencies as if they were known. Assuming

HWE, the expected haplotype dose estimates are computed for each haplotype h as

E δh
��Gi

� � ¼
X
H�Gi

δh Hð Þpk
h1
pk

h2X
H�Gi

pk
h1
pk

h2

, ð5:1Þ

where H ~ Gi denotes the set of haplotype pairs H ¼ (h1, h2) that are compatible

with the observed genotype data Gi (so that h1 + h2 ¼ Gi). Next the haplotype

frequency estimates, pkh, are updated in the maximization step as

pkþ1
h ¼ 1

2N

XN
i¼1

E δh
��Gi

� �
:

This process is then repeated iteratively. Upon convergence of the algorithm, the

haplotype dosage estimates, E(δh,ijGi), can be used in association analysis, to form

score tests for haplotype-specific effects [14, 15] as described below.

Haplotype imputation using fewer SNPs than were considered when defining the

haplotypes can also be considered; the aim is to infer haplotypes seen in reference

data, such as the HapMap, using the genotypes of tagging SNPs (for candidate gene

analyses) or the SNPs available on a GWAS platform. The only modification to

(5.1) that is needed is to have the symbol h represent the haplotype of interest as

seen in the reference data while Gi represents just the measured genotypes.

5.3.2 Haplotype Uncertainty

As mentioned above, even if haplotype frequencies are known, and all SNPs are

genotyped, there remains uncertainty in haplotype prediction (for the autosomes)

using measured data. One measure of haplotype uncertainty applied separately to

each haplotype is the haplotype R2
h measure which is the variance of E(δhjGi)

computed over the distribution of genotypes divided by the unconditional variance

of δh which is 2ph(1 – ph) under Hardy–Weinberg equilibrium. Under HWE
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Var{E(δhjGi)} can be calculated formally from the haplotype frequencies.1

Table 5.1 shows the details of the calculation for two SNPs.

In Table 5.1, the top row lists the possible genotype counts, G ¼ (n1, n2), for the
first and second SNP, respectively, and each entry in the second row lists the

(unordered) pair or pairs of haplotypes that are consistent with the genotype counts

above it. p0 to p3 are the haplotype frequencies for haplotypes (0,0), (0,1), (1,0), and
(1,1), respectively. Notice that the only pair of genotypes where there remains any

uncertainty about which pair of haplotypes is present is the double pair of hetero-

zygotes, G ¼ (1,1), where the haplotype pairs {(0,0), (1,1)} and {(0,1), (1,0)} are

both consistent with the observed data. The third row gives the probability of

observing each of the genotypes and the last four rows give the expected values

for each of the four haplotype counts δh, given the genotype counts in row 1. For the

first haplotype count, δ0, the variance is calculated as EG[(E{δh0(H|G})
2] �

E(δh0(H ))2 with

E E δh0 Hð Þð Þf g ¼ 2� p0
2

� �þ 1� 2p0p1ð Þ þ 1� 2p2p0ð Þ
þ p3p0ð Þ= p2p1 þ p3p0ð Þð Þ � 2 p2p1 þ p3p0ð Þð Þ,

which is easily shown (after substituting p3 ¼ 1 – p0 – p1 – p2) to equal 2p0. And

E δh0 Hð Þ2
� �

¼ 4� p0
2

� �þ 1� 2p0p1ð Þ þ 1� 2p2p0ð Þ þ p3p0ð Þ= p2p1 þ p3p0ð Þð Þ2

� 2 p2p1 þ p3p0ð Þð Þ:

So that the variance is

Var E δh0
��G� �� �¼2p0

p1
2p2�p0p1þp1p0

2þp2
2p1�p2p0þp2p0

2þp0�2p0
2þp0

3ð Þ
p0

2þp0p1þp2p0�p2p1�p0
,

(here p3 does not appear since it has been replaced with 1 – p0 – p1 – p2).
Notice if either of p1 or p2 is zero (or if p3 ¼ 1 – p0 – p1 – p2 is zero), the

variance ofE δh0
��G� �

will be 2p0(1 – p0) so that R
2
h will be equal to 1. Otherwise the

variance will always be less than 2p0(1 – p0) (and R2
h < 1).

The uncertainty of haplotype count prediction can be extended to haplotypes

involving more than 2 SNPs and to the situation when not all SNPs that make up the

haplotypes are measured. Figure 5.2 (adapted from Stram et al.) gives a plot of

haplotype R2
h for haplotypes involving N SNPs in the special case when all SNPs

have frequency ½ and are in complete linkage equilibrium. At 7 SNPs, the certainty

of haplotype count estimation is quite low with R2
h near 0.3. Figure 5.3 shows R

2
h for

1Note that HWE for the haplotypes implies HWE for each SNP individually. However it does not

imply that there is no linkage disequilibrium for the SNPs; linkage disequilibrium is dependent

upon the haplotype frequencies ph which can take any positive values summing to 1.
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two SNP haplotypes when only one of the pair of SNPs are measured, as a function

of theD0 statistic (which is 1 if at least one of p0 to p3 are zero) between the SNPs. If
D0 is 1, then (in the special case of SNPs both with frequency equal to ½)

genotyping only one SNP predicts haplotype counts perfectly, but with only

about 30 % certainty (R2
h ffi 0.3) for D0 ¼ 0.

Fig. 5.3 R2
h for predicting haplotypes composed of two SNPs each with allele frequency of 1/2

according to standardized linkage disequilibrium coefficient D0 when (a) two SNPs are genotyped
or (b) when only one SNP is genotyped

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Independent Markers

R
2h

Parents + Offspring Genotypes Available

Only Founders Genotypes Available

Fig. 5.2 R2
h for predicting haplotype h0 in the case of n independent SNPs each with

frequency ¼ ½
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5.4 Haplotype Frequency Estimation for Larger

Numbers of SNPs

If the number of SNPs, m, is large, a brute force EM algorithm used to estimate

haplotype frequencies is very slow, since with 2m possible haplotypes there are

(2m + 1)2m�1 possible haplotype pairs, H, which are (in a naı̈ve implementation)

being summed over for each subject. However given the genotypes, Gi, for an

individual, the size of the set of haplotype pairs, [H|H ~ Gi], which are compatible

with that data depends upon the number of heterozygous SNPs for that individual

not on total m of SNPs being considered. For example, if genotype counts for

6 SNPs for a given individual are equal to Gi ¼ (0, 1, 2, 2, 1, 0), then in (5.1) only

haplotype pairs of form H ¼
�
0, 1; 0f g, 1, 1, 1, 0f g, 0��
0, 0; 1f g, 1, 1, 0, 1f g, 0�

	 

need to be considered in

the summation, leaving just four pairs left. Since typically about 30–40 % of

common SNPs will be heterozygous for a given subject, this alone reduces the

computational burden noticeably.

5.4.1 Partition-Ligation EM Algorithm

In regions of limited recombination where the number of haplotypes is small, most

of the haplotype frequency estimates ph will rapidly approach zero in the EM

algorithm. This observation suggests a simple divide-and-conquer strategy that

can be used to extend the number of markers that can be utilized. This algorithm

(called the partition-ligation EM algorithm [16]) applies the EM algorithm in

“chunks” (partitions) of 5–10 markers and then performs a stitching together

(ligation) of adjoining partitions, by running the EM algorithm again. In the ligation

EM algorithm, the summation in (5.1) is over the cross product of the haplotypes in

each partition that are estimated to have nonzero probability from the earlier EM

steps. This method can be effective in estimating haplotype frequencies for 20 or

more SNPs in high LD.

5.4.2 Phasing Large Numbers of SNPs

As we will see in the discussion of SNP imputation, large-scale SNP imputation

using current software packages generally requires that reference panel data be

phased (i.e., haplotype pairs assigned to each study participant) to begin the

process. From the previous discussion, it is clear that phasing of large numbers of

genotypes for a panel unrelated individuals must be inherently unreliable.

For example, if as few as 7 very common SNPs are in linkage equilibrium,

then the estimate of the number of copies (0, 1, or 2) of any given haplotype that
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are carried is predicted quite poorly (as indicated by R2
h in Fig. 5.2). This is

overcome to some degree if data from nuclear families is available—for exam-

ple, if parents and a single child are genotyped, then a doubly heterozygous

parent has uncertain haplotype counts only if the child’s genotypes are also

doubly heterozygous and the other parent is heterozygous for at least one of

the two SNPs. A calculation of haplotype uncertainty under the same assump-

tions as Fig. 5.2 (1–10 independent SNPs) but with sibling data also available

can be done readily by simulation, by first generating independent binomial data

as genotypes for the parents and then following Mendel’s laws to generate

random genotypes for the offspring. Running an imputation program that uses

the genotype data for the children as well as the parents allows empirical

estimation of the variance, Var(E(δh|G)), of the dosage estimate for a given

haplotype and comparison to the expected 2ph(1 – ph). This is shown as the

dotted line in Fig. 5.2 which plots the estimate of R2
h computed for the parents for

haplotype imputation for from 2 to 10 very common SNPs. The implication of

Fig. 5.2 is that once ten or more very common SNPs in linkage equilibrium are

included in the set of SNPs to be phased haplotype identification is not highly

accurate. Despite this inherent uncertainty, we will see that imputed long-range

phased haplotypes for the HapMap or 1000 Genomes data are routinely used as a

starting point for SNP imputation.

5.5 Regression Analysis Using Haplotypes

as Explanatory Variables

5.5.1 Expectation Substitution

Haplotype association testing using the expectation-substitution method for studies

of unrelated subjects involves three basic steps: [1] the estimation of haplotype

frequencies for all the haplotypes of the SNPs of interest; [2] the formation of

estimated haplotype dosage variables, E(δhjGi), for each individual i with measured

genotypesGi; and then [3] the use of these dosage variables, which we abbreviate as

δ̂ h, i, as (continuous) predictor variables in the generalized linear model analysis.

That is, we simply use our standard model to fit the generalized linear regression
model (or GLM)

g E Yið Þ½ � ¼ μþ βhδ̂ h, i, ð5:2Þ

to estimate haplotype-specific effects for carriers of a 1 or more copies of a single

haplotype compared to all other haplotypes (here, g is the link function, as in

logistic or linear regression).
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More generally estimation of all haplotype effects involves fitting the model

g E Yið Þ½ � ¼ μþ
X
h

βhδ̂ h, i, ð5:3Þ

with the sum over the haplotypes with nonzero estimated probability.

Notice that the expectation-substitution method is extremely simple and conve-

nient: once the haplotype dosage variables are estimated for each subject, they are

used as ordinary continuous variables in generalized linear models in order to fit

associations with phenotypes and disease. As just described, the models are esti-

mating the change in mean phenotype or in log odds of disease that is associated

with a one-copy increase in δh, i.e., we are fitting an additive or log additive model

to the phenotype means or log odds, respectively. As described in Chap. 3, there

may also be interest in other types of models, i.e., dominant, recessive, or

unconstrained two degrees of freedom (codominant) models. Before we discuss

the (minor) changes to the expectation-substitution approach that are needed to fit

such models, we first consider the impact that uncertainty in the haplotype fre-

quency estimation will have upon testing and estimation in these models.

The expectation-substitution method used both in general statistical analysis

[17] and in haplotype analysis [15, 18] typically has extremely good control of the

type I error rate. So long as errors in dosage estimation are non-differential, control
of type I error rates will be preserved. The assumption of non-differential errors
means that the haplotype dosage estimates are not predictive of disease except to

the degree that they are surrogate variables for the true haplotype dosages. For

example, in analysis of binary traits (D ¼ 0 or 1), we assume that

Pr D ¼ 1
��δ̂ h, i, δh, i

� � ¼ Pr D ¼ 1
��δh, i� � ð5:4Þ

where δh,i denotes the value of the true haplotype count δh for individual i. The
assumption of non-differential errors can be violated if, for example, we perform

haplotype frequency estimation separately for the cases and controls in a

case–control study, since then the random error in haplotype frequency estimation

will cause consistent differences in the estimates of E(δh|Gi) between cases and

controls. It is important therefore to use all the data simultaneously (combining

cases and controls) when haplotype frequencies are estimated.

It turns out that not only does the expectation-substitutionmethod give correct type

I error rates when δ̂h, i is substituted for δh,i, but doing so can be shown [15] to be

equivalent to performing a score test that the regression parameter βh in (5.4) is zero in
a model in which both the haplotype frequencies and the regression parameters

are estimated simultaneously by maximum likelihood (ML). Thus for testing

purposes, expectation substitution should have near-optimal characteristics.

Expectation-substitution methods have been noted in the exposure measure-

ment error literature to have some biases both in effect and confidence interval

estimation when used away from the null hypothesis. These biases are most

important when the exposure is very influential (i.e., the magnitude of βh is
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large) and where there is considerable error in the parameters (here the haplotype

frequency estimates) that relates the observed data to the true exposure of

interest. Rosner et al. [19] give a correction to the standard errors of an effect

estimate which can be used when calibration study data is available. For haplotype

analysis, simple corrections to improve the standard errors for regression param-

eters have not been worked out and would seem to be difficult to derive. Instead

a number of authors [20–22] have considered maximum likelihood estimation

of both the haplotype frequency estimates and the risk parameters in general linear

regression involving haplotypes, with the hope that these methods will have

better statistical properties than the expectation-substitution method.

Note that while the range of the values that E(δhjGi) takes is from 0 to 2, this

expectation is not necessarily equal to an integer value. Only if R2
h is precisely equal

to 1 for that haplotype will all values be integer (0, 1, and 2). Allowing E(δhjGi) to

take non-integer values helps to correct for the uncertainty of haplotype estimation

by removing attenuation bias.

5.5.2 Fitting Dominant, Recessive, or Two Degrees
of Freedom Models for the Effect of Haplotypes

The EM algorithm can be used to compute the expectation of functions of the

haplotype count; for example, we can fit a generalized linear model using a

codominant (2 degrees of freedom) coding as

g E Yið Þð Þ ¼ μþ β1I δh, i ¼ 1ð Þ þ β2I δh, i ¼ 2ð Þ, ð5:5Þ

where I(·) is the indicator function by replacing the indicator functions with their

expectations given the observed genotype data, as

g E Yið Þð Þ ¼ μþ β1E I δh, i ¼ 1ð Þf g þ β2E I δh, i ¼ 2ð Þf g: ð5:6Þ

The expectations of the indicator functions are computed, when the EM algo-

rithm converges, as

E I δh, i ¼ 1ð Þf g ¼

X
H�Gi

I
�
δh Hð Þ ¼ 1

�
ph1ph2X

H�Gi

ph1ph2
and

E I δh, i ¼ 2ð Þf g ¼

X
H�Gi

I
�
δh Hð Þ ¼ 2

�
ph1

ph2X
H�Gi

ph1
ph2

,

ð5:7Þ
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respectively. Fitting dominant or recessive models can be performed by

constraining β1 to either equal β2 or zero, respectively.
Alternative approaches that seem attractive but which can introduce problems

are based upon first estimating the phase of the diploid genotype data. As

described above, there are a number of programs (fastPHASE [23], BEAGLE

[24], PHASE [25]) which provide estimates of the two haplotypes that each

individual carries. The EM estimate as described above is not estimating haplo-

type phase per se. The expectations described above provide an estimate of the

conditional probability that a person carries haplotype h1 given Gi and an estimate

of the conditional probability that a person carries h2 but not the joint conditional
probability that the individual carries h1 and h2. In order to estimate this joint

probability, (5.1) needs to be adjusted to compute the expectation of the product of

two indicator functions as in

E I δh1, i ¼ 1ð Þ � I δh2, i ¼ 1ð Þ��Gi

� � ¼ Pr I δh1, i ¼ 1ð Þ � I δh2, i ¼ 1ð Þ½ � ¼ 1
��Gi

� �

¼

X
H�Gi

I
�
δh1 Hð Þ ¼ 1

�
I δh2 Hð Þ ¼ 1ð Þph1ph2X

H�Gi

ph1ph2
:

ð5:8Þ

Essentially phasing programs like fastPHASE estimate these probabilities for

many pairs of haplotypes and then nominate the haplotype pair with the greatest

probability as the phased data for subject i.
It is tempting to apply a program such as fastPHASE over the region of

interest and then to use the estimated pair of haplotypes, Ĥi, as if they were

actually equal to the unknown Hi and to treat δh as known when fitting models

(5.2) or (5.5). However this approach introduces attenuation bias (bias of the

regression parameter estimates towards zero) and can also reduce power to reject

a false null hypothesis relative to the expectation-substitution approach [18,

26]. In general, the use of phased data when fitting models in (5.4) or (5.5) for

association analysis produces less reliable estimates than the regression substi-

tution method.

5.5.2.1 Global Test for Haplotype Effects

Haplotype dosages estimated for the haplotypes in a given region can be used

in several different ways to construct tests and assign significant levels to the results

of the analysis. Besides the testing for the effects (on phenotypes) of single

haplotypes, global tests of the null hypothesis can be constructed by fitting all

haplotype dosage variables simultaneously. For example, suppose that in a given

region or haplotype block there are r haplotypes and we wish to examine whether
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any of the haplotypes are (linearly) related to the phenotype. The model we are

interested in is

g E Yið Þð Þ ¼ μþ β1δh1i þ β2δh2i þ � � � þ βrδhri ð5:9Þ
and the null hypothesis of interest is β1 ¼ β2 ¼ � � � ¼ βr ¼ 0. This hypothesis can

be tested by comparing the log likelihood of the null model (with only μ) to that of

the full model, fit by expectation substitution. Several practical issues arise in this

testing. First themodel of (5.9) is (not surprisingly) over-parameterized. Specifically

for each subject, the sum of the haplotype dosage variables is equal to 2, so that

imposing a constraint is needed to make the model identifiable. A typical analysis

such as [27] drops the most common haplotype from the model so that the mean

phenotypes of carriers of one or more of the all the less common haplotypes are

compared to carriers of two copies of the most common haplotype which serves as

the baseline comparison group (now captured by the estimate of μ). When haplo-

types are made up of more than just a few, SNPs certain of the haplotypes are likely

to be present but in low frequency. Since power to detect the effects of rare

haplotypes can be limited (and also convergence problems may arise in the

IRWLS algorithm used to fit a model that includes very sparse covariates), it may

not be useful to include all rare haplotypes inmodel (5.9) individually. If the terms βj
that correspond to rare haplotypes are simply dropped from the model, then what-

ever effect that these haplotypes have is mixed into the effect of the baseline (most

common) haplotype. Separating the effects of the rare haplotypes from the common

haplotypes is accomplished by computing the sum of all haplotype counts for

haplotypes of less than some frequency and using this sum as a composite (rare

haplotype) effect. Thus for practical purposes, if h1 is the most common haplotype

and hk through hr are all rare haplotypes, then model (5.9) can be modified as

g E Yið Þð Þ ¼ μþ β2δh2, i þ β3δh3, i þ � � � þ βk�1δhk�1, i

þ βrare δhk , i þ δhkþ1, i þ � � � þ δhr , i
� �

:

Here all the β estimates relate to the differences in phenotype expected value

compared to individuals carrying two copies of the most common haplotype.

5.6 Dealing with Uncertainty in Haplotype Estimation

in Association Testing

5.6.1 Full Likelihood Estimation of Risk Parameters
and Haplotype Frequencies

We now consider maximum likelihood methods for jointly estimating the regres-

sion parameters in the (additive) model:
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g E Yið Þ½ � ¼ μþ
X
h

βhδh, i, ð5:10Þ

where δh,i is the count (0, 1, or 2) of copies of haplotype h carried by subject i. For
the time being, we ignore issues of population structure or relatedness among

subjects and concentrate on studies in which both HWE equilibrium (for all

haplotype counts and hence all markers as well) and independence (between Yi
and Yj for i 6¼ j) can be assumed.

Assuming initially that there has been no explicit sampling on case–control

status the likelihood to be maximized isY
i

Pr Yi;Gið Þ ¼
Y
i

X
H

Pr Yi;Gi;Hið Þ

¼
Y
i

X
H

Pr Yi

��H,Gi

� �
Pr
�
H,Gi

� ¼ Y
i

X
H�Gi

Pr
�
Yi

��H�
Pr
�
H
�
,

here the likelihood is a function of both the haplotype frequency parameters ph and
the regression parameters in model (5.10). Under HWE Pr(H ) is simply ph1ph2 as in

(5.1). The removal of Gi from Pr(Yi|H, Gi) and Pr(H,Gi) follows because any

genotype count can be constructed as the sum of the counts of the haplotypes that

contain the alleles counted in Gi.

A generalized EM algorithm [20], which is based upon formulae described

in [28] which can be used to maximize this likelihood, involves the following

steps:

1. Given an initial set of parameter estimates for each of the parameters μ and each

pair of haplotype frequencies ph and haplotype effects βh, a calculation of the

conditional expected value of the vector of score statistics for the regression

parameters is performed. This expectation is obtained by first computing, for

each subject i, the score contributions, Si(μ, β|Gi) as a weighted average of

Si(μ, β|H ) with the weights being equal to Pr(H|Gi, Yi; μ, β, p) (where p is the

set of haplotype frequencies) which are computed as:

Pr H ¼ h1; h2ð Þ��G,Y�� � ¼ I H � Gð ÞPr Y
��H� �

ph1ph2X
H0 � G

Pr Y
��H0� �

ph1ph2
: ð5:11Þ

2. Computing a pseudo information matrix ι0(μ, β)i as the weighted average over

all possible H of the contributions of individual i to the information matrix

ι(μ, β|H )i given H with the weights again equal to Pr{H ¼ (h1, h2)|G, Y )}.
3. Summing over i to compute the total score vector S(μ, β) and pseudo information

matrix i0(μ, β).
4. Updating the parameter vector as (μnew, βnew)T ¼ (μnew, βold)T + i0(μold, βold)� 1

S(μold, βold).
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We call ι0(μ,β) a pseudo information matrix since computing the proper

information matrix in the course of an EM algorithm involves additional calcu-

lation as described in [28]. Since the expectation given in (5.11) depends upon

the imperfectly known population haplotype frequencies, updating of these

frequencies with each new estimate of βh formally becomes part of the step

(4) as well. The updating of the haplotype frequencies is now modified from

those given in (5.1) as

pnewh ¼ 1

2N

X
i

E δh Hð Þ��Gi, Yi

� � ¼ 1

2N

Xn
i¼1

X
H�Gi

δh Hð ÞPr H
��Yi,Gi; α

old, βold, pold
� �

:

5.6.2 Ascertainment in Case–Control Studies

Case–control sampling leads to the enrichment of cases with high-risk haplotypes

(those where βh > 0) thereby distorting our estimates of haplotype frequencies ph
and possibly violating the assumption of Hardy–Weinberg equilibrium in the

combined data. In order to deal with the complications due to case–control sam-

pling, we adopt a simplistic “view” of the way in which case–control data has been

ascertained [20]. This approach is appropriate when 1) frequency matching, rather

than individual matching, of cases to controls is utilized and 2) the disease rate in

the underlying population is known. We make here the simplifying assumption that

cases in the underlying population were chosen randomly with known probability

π1 and that controls were chosen randomly with known probability π0. Thus an

approximation to the full likelihood of the case–control dataset [29] is

Y
i

Pr Yi,Gi

��subject i is sampled
� � ¼Y

i

πYi
Pr Yi

��Gi

� �
Pr Gið Þ

π1Pr Y ¼ 1ð Þ þ π0Pr Y ¼ 0ð Þ: ð5:12Þ

By summation over the haplotypes, this can be written asY
i

πYi

X
H�Gi

Pr Yi

��Hi

� �
ph2ph2

X
all H

π1Pr Y ¼ 1
��H� �

ph1ph2 þ π0Pr Y ¼ 0
��H� �

ph1ph2
� �" #N : ð5:13Þ

In order to estimate simultaneously all parameters in the likelihood (5.13), we

first estimate initial values for all the ph by using the standard EM algorithm

(if there are large numbers of SNPs, we use an implementation of the partition-

ligation EM algorithm of [16]). This is equivalent to maximizing (5.13) with an

initial value of β ¼ 0. Then we drop from further consideration all haplotype
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frequency parameters which are estimated in this first stage that have smaller

estimated frequency than a fixed positive constant (we used ε ¼ 0.001 for the

calculations for the example below). We then construct the full score and full

information matrix for all remaining parameters. This is done by using the Louis

formulae for the likelihood in the numerator in (5.13) and then by subtracting the

first and (minus the) second derivatives of the log of the denominator from the

appropriate elements of the resulting score and information. These calculations

allow for a full Newton–Raphson update for all parameters simultaneously which

can be used iteratively to compute the final ascertainment-corrected estimates.

Inverting the matrix of second derivatives can be problematic when there are

numerous low-frequency haplotypes being considered. It is for this reason that we

drop the lowest-frequency haplotypes from the computations.

A number of other authors [21, 22, 30] have discussed maximum likelihood or

related approaches to haplotype analysis for case–control studies; the main differ-

ence between the approach outlined above and the other examinations has to do

with the details of case–control ascertainment, for example, the analysis of indi-

vidually matched rather than frequency matched case–control involves analysis of

the conditional likelihood function rather than the unconditional, ascertainment-

corrected likelihood described above.

5.6.3 Example: Expectation-Substitution Method

This section uses data originally published in Stram et al. [20]. The data are for a

nested case–control study of a candidate gene (CYP17) in breast cancer. The

expectation substitution uses a partition-ligation version of the EM algorithm

(originally written in Fortran 90) called from an R function named “expected_ha-

plotypes.” This function takes genotype count data from unrelated individuals and

returns an object that contains (1) a list of haplotypes with nonzero frequency,

(2) the frequency of each such haplotype, and (3) the estimated haplotype count

data for each haplotype for each individual. To see how this works, we first

reproduce the haplotype frequency estimates for the controls in the study as given

in Stram et al. The dataset CYP17_breast_WH_cases_and_controls.dat can be read

into R as follows:

The return value (here controlh) is a list with elements controlh$hfreqs (a sorted
list of haplotype frequencies), controlh$ids (which gives back the IDs used in the
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call), and controlh$haps which provides the predicted haplotype counts for each

subject. We can view the haplotype frequencies by entering:

Recomputing the haplotype frequencies using the cases and controls in order to

use the predicted haplotypes in a model for case–control status is accomplished as:

Upon examination of h_all$hfreqs, we see that there are now four haplotypes

with estimated frequency greater than 5 % and these constitute 88 % of all

segregating haplotypes. Using each of these haplotypes in turn to fit regression

models is accomplished as:

The results show modestly significant results for haplotype h000000 (log OR ¼
�0.26119, std err. ¼ 0.11530, p ¼ 0.0235) comparing carriers of this (most com-

mon) haplotype to all others. The global test for the significance of any of the first

4 haplotypes can be accomplished by first fitting the null model and calculating the

deviance (978.24) and then the deviance of the model that includes the haplotypes

(2–4) and adds an additional variable calculated as the sum of all rare haplotypes so

that haplotypes (2–4) will be compared to the most common haplotype. This is

accomplished as:

The change in deviance from the null model is equal to 978.24–970.38 ¼ 7.86

on 4 df ( p ¼ 0.097) so that again the evidence for any haplotype effect is only

modest. There is some indication of risk associated with carrying the third most

common haplotype (h000010) compared to the most common (h000000)
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( p ¼ 0.0205), but enthusiasm for this finding is tempered by the fact that the

overall test is not strongly significant.

A detailed analysis of profile likelihoods from three different methods to fit the

first model (comparing haplotype h000000 to all the other haplotypes) to these data

is given in Stram et al. [20]. The three methods compared are:

1. Expectation substitution.

2. Full likelihood analysis without any case–control sampling ascertainment

correction.

3. Full likelihood analysis including the ascertainment correction (5.13) with

selection probabilities π0 ¼ 0.002 for controls and π1 ¼ 1 for cases.

Figure 5.4 is from that paper. The profile likelihoods at each point on the curves

are obtained from these data by holding the log odds ratio parameter, β00000,
corresponding to h000000, fixed at the value given on the x-axis while maximizing

out the other parameters in the model, and then calculating the log likelihood of that

maximized model which is then displayed on the y-axis. For the expectation-

substitution method, the only other parameter is the intercept parameter μ which

incorporates “all other” haplotypes. For the two full likelihood methods, the

estimates of the haplotype frequencies ph are also being simultaneously maximized

out as the value of β000000 is fixed at each point shown on the x-axis.
Note that, for this example at least, there is no important difference between the

three likelihoods or between inferences using them. The far simpler expectation-

Fig. 5.4 Comparisons of three profile likelihoods based on the approaches described in the text.

The naı̈ve likelihood refers to the profile likelihood from the expectation-substitution method
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substitution approach appears to have provided an adequate analysis including

appropriate standard errors in this instance. Simulation studies tend to support

this general finding, i.e., that there is little evidence of bias in the expectation-

substitution method for dealing with haplotype imputation. Simulation work [26]

tends to show that acceptable type I error coverage and good coverage of confi-

dence intervals under both the null and alternative hypotheses are retained by the

expectation-substitution method.

5.7 Haplotype Analysis Genome-Wide

Consider now the problem of performing haplotype risk estimation, where haplo-

types are made up of contiguous SNPs either in haplotype blocks, which may be

defined in a number of different ways, or are grouped together using windowing

methods.

5.7.1 Studies of Homogeneous Non-admixed Populations

As in Chap. 4, correction for population structure, admixture, and possibly for

hidden relatedness between subjects is an important issue in single SNP analysis,

and these considerations carry over into haplotype analysis. Within homogeneous

populations, Hardy–Weinberg equilibrium can be assumed for most markers and

marker haplotypes so that (5.1) applies for the population (except possibly for

haplotypes under strong selective pressures). Note that in case–control studies, it

can generally be assumed that HWE holds for the controls (especially for a rare

disease) but not for the cases, because selection of high-risk haplotypes could have

distorted the underlying haplotype frequencies. However, as mentioned previously,

ignoring this distortion in allele frequencies still leads to valid tests of the null

hypothesis, for the simple reason that under the null, HWE will hold for the

combination of cases and controls, so that using the expectation-substitution

method gives an appropriate score test [14, 15].

If genome-wide SNP data is available, then either a block-based or sliding

window-based method can be considered in order to look for contiguous SNPs,

the haplotypes of which are predictive of (unknown) variation related to phenotypes

or disease.

The block-based approach of Gabriel et al. [2], which is the most common

method used to visualize LD blocks, has an important drawback when it comes to

defining groups of SNPs to be used in haplotype association; specifically many

SNPs are declared by the algorithm to not be in blocks at all. However minor

adjustments in the details of the block definition (specifically the values of D0 and
confidence intervals computed for D0 used in the algorithm implemented in
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Haploview) can cause SNPs outside blocks to be included in blocks or the reverse.

For example, in Fig. 5.5 one third of the common SNPs in a small region in

chromosome 8q24 for the CEU population are found with the default Gabriel

et al. block definitions in Haploview to be outside of blocks. Relatively minor

adjustments will determine whether these SNPs are included in blocks or not, and

overall this region appears to be of relatively high LD.

An alternative to a block-based approach is windowing, in which a window of a

certain size—the number of contiguous markers to be included in the window—is

determined and then either overlapping or nonoverlapping windows are placed over

the region of interest. Within each window, haplotype frequencies are estimated

and the expectation-substitution method is used to investigate haplotype-specific

risk. An inflexible window size (especially if it is quite short) will produce many

correlated tests when it is run over regions of very high linkage disequilibrium, but

if the window size is too large, then haplotypes in regions in low LD will each be of

very low frequency. A more flexible approach is to allow the window size to be

larger in regions of high linkage disequilibrium and smaller in regions of low LD. A

compromise approach is to define haplotype blocks according to some reasonable

criteria but to include, using a windowing method, SNPs outside of blocks using a

short window size.

Overlapping (sliding) and nonoverlapping windows have been considered as an

approach for discovery of haplotype effects. While offering a more comprehensive

examination of each region, the downside to using sliding or otherwise overlapping

windows in haplotype analysis is the increase in computation time and the increases

in difficulty in obtaining type I error bounds for global significance. The Bonferroni

method certainly will be poorly performing in such a setting since overlapping

windows will have very similar haplotypes. Adjustments to the Bonferroni method

using permutation methods and approximations [31–34] are possible.

5.7.2 The Four-Gamete Rule for Fast Block Definition

A very simple approach to estimating haplotype blocks is based upon the four-

gamete rule. This rule is one of the methods implemented in Haploview for block

definition, and it is also extremely simple to compute in R or in other appropriate

languages. As described above, we can show that the presence of all four possible

haplotypes (a-b, A-b, a-B, and A-B) of two SNPs (with alleles a and A and b and B,

respectively) is evidence (under an infinite sites approximation) for the occurrence

of recombination between these two loci. A very quick way of checking, using the

genotype data alone without having to impute haplotypes, whether there is evidence

of recombination is to form the 3 � 3 table of minor allele counts for each SNP as

given in Table 5.2.

Note that if any of n00, n01, or n10 are nonzero, then this implies that haplotype a-b

must be present. Similarly, if any of n10, n20, and n21 are nonzero, then haplotype A-b
must be present. Extending this to the other “corners” of the table leads to the rule that
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if all of the quantities (n00 + n10 + n01), (n10 + n20 + n21), (n21 + n22 + n12), and
(n01 + n12 + n02) are greater than zero, then all four haplotypes must be present

and therefore a recombination can be assumed to have occurred. This “four corners”

rule can be checked rapidly while blocks are being defined. Note that the frequency of

haplotype a-a is at least equal to (2n00 + n10 + n01)/2n with the only uncertain

contribution being the number of copies of haplotype a-b that contributed to n11
since individuals in this cell have uncertain haplotypes (either (a-b, A-B) or (a-B,

A-b)). A reasonable relaxation of the four-gamete rule allows the minimum of

(2n00 + n10 + n01)/2n and the other similar quantities for the other haplotypes to be

nonzero but “small,” while blocks are extended from an initial starting point.

Checking all pairs of SNPs in this fashion as blocks are extended is thus a simple,

easy to implement, and quite fast block formation rule.

5.7.3 Multiple Comparisons in Haplotype Analysis

The global test based on fitting model (5.9) is useful because it can help us (in the

course of a windowing or haplotype-block-based analysis) to identify regions of

interest for which more detailed examination may subsequently be undertaken.

Considering regions in which there is no recombination between markers (i.e., in an

idealized haplotype block), three useful facts are worth noting. First of all if the

haplotype-type frequencies are known (and consistent with no recombination), then

there is no haplotype uncertainty; all the dosage variables for all the haplotypes will

take integer values 0, 1, or 2 equal to the true haplotype counts. Secondly the

likelihood ratio test constructed for a global test of no haplotype effects will be

precisely the same test as the likelihood ratio test of no SNP effects, i.e., the

likelihood obtained fitting model (5.9) will be the same as the likelihood obtained

by fitting the model

g E Yið Þð Þ ¼ μþ β1Gi1 þ β2Gi2 þ � � � þ βsGis ð5:14Þ

where s is the number of SNPs in the region and Gij are the genotype counts for

SNP j for subject i. This model may also be over-parameterized, not because

of the inclusion of μ, but because some of the markers may be perfectly

Table 5.2 Genotype data for two SNPs; the body of the table contains

counts of the number of individuals with the listed genotype combination

Genotypes for SNP 1

Genotypes for SNP 2 Aa aA AA

bb n00 n10 n20
bB n01 n11 n21
BB n02 n12 n22
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correlated with each other. Specifically for a given set of s SNPs, there can be at

most s + 1 nonrecombinant haplotypes (and there are often far less in long

haplotype blocks), so that in the absence of recombination, the degrees of

freedom obtained by fitting equation (5.14) will be equal to r � 1 just as when

fitting model (5.9).

Bearing this in mind, a reasonably fast haplotype-block-based search for haplo-

type effects may be considered genome-wide as follows:

1. Use the four-gamete rule to define haplotype blocks as in the previous algorithm.

2. Compute likelihood ratio or score tests for model (5.14) using standard regres-

sion software.

3. For haplotype blocks for which the global test is significant (see below), examine

haplotype effects more carefully by first imputing dosage variables for all

haplotypes and then fitting models such as (5.9) or (5.2).

If only SNPs showing no (or little) evidence of historical recombination are to be

considered in genome-wide haplotype analysis, then (as follows from the above

discussion) the effective number of tests in a haplotype analysis is very similar to

the effective number of tests that are performed using SNP markers alone (i.e., after

taking account of LD). Thus similar criteria for global significance ( p < 10�8 or

so) is likely to be useful for block-based haplotype analysis.

5.8 Multiple Populations

Haplotype analysis in multiple populations raises some interesting issues. Since

LD structure changes, sometimes dramatically, between long-separated

populations, the indirect use of haplotype analysis to search for unknown variants

that may be in higher LD with SNP haplotypes than with individual SNPs may be

attenuated in power by the inclusion of multiple groups. Even if the same

unobserved variant is present and biologically related to phenotype or disease

susceptibility in all groups, it may not be associated with the same haplotype or

group of haplotypes in each group. On the other hand as emphasized below,

haplotypes of known variants themselves may be disease- or phenotype-related

biologically, and therefore it is worth discussing the issue of multiple ethnic groups

for haplotype analysis.

A standard approach taken in such papers as Haiman et al. [27], who analyzed

data from the CYP19 gene (like CYP17, CYP19 is a candidate gene for breast

cancer), is to estimate haplotype frequencies separately for each racial/ethnic group

included in a given analysis. This may be important since HWE, which underlies

the EM algorithm, is violated when data for multiple populations are combined. To

give some idea of the importance of this, we compare two different methods for

predicting haplotype frequencies for African-American participants in the

sub-study used for haplotype discovery in Haiman et al. First we use the 70 -

African-American subjects with dense genotyping for this gene to estimate the
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haplotype frequencies for the African Americans and produce the haplotype fre-

quency estimates for these same subjects for 22 SNPs in “block 1” of this gene. R
code to do this using the data for CYP19 is shown below:

We next perform haplotype imputation using a total of 5 ethnic groups (whites,

African Americans, Latinos, Japanese Americans, and Native Hawaiians) in one

run (rather than separately) to compute haplotype comparing the haplotype impu-

tations on the African-American data from this run with the imputations from the

“African-American-only” data derived above:

Figure 5.6 shows the resulting plot. While the two dosage estimates are similar

for most individuals, in several instances the estimates are quite different, empha-

sizing that haplotype imputation is sensitive to population stratification. However
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the overall correlation between the two imputations is high at about 0.92; there is a

large mass at (0, 0) that is not obvious in this plot. Looking through additional plots

(see file haplotype_predictions.r) finds that other common haplotypes are similarly

predicted for this example, i.e., when changing the reference panel from only

African Americans to all groups combined, the estimates of δh for the common

haplotypes h are generally similar but with some outlying values. In this example,

the haplotypes being imputed consisted of 22-SNP haplotypes, and this is probably

more SNPs that would customarily be examined in this way.

5.9 Chapter Summary

Haplotype analysis is an important part of association testing since haplotype

analysis can be sensitive to unmeasured variants for which single SNP analysis

may miss. Haplotype imputation for common haplotypes among a set of SNPs with

limited historical recombination can be highly accurate and a variety of methods are

applicable to this problem. Limitations exist on the ability of any algorithm to

reconstruct haplotypes in regions of high recombination rates or for very long

haplotypes especially if family data is not available.

We have emphasized relatively simple EM-based techniques that permit fitting

of regression parameters for generalized linear model estimation including logistic

or normal regression analysis for studies of unrelated subjects. The problem of

accounting for uncertainty in haplotype imputation given only genotype data for

unrelated subjects has similarities to other measurement error problems in epide-

miological analysis, and simple methods that work reasonably well in that setting

are useful generally here as well.

Most of the above discussion has treated haplotypes as surrogates for

unmeasured variants, but of course haplotypes may themselves be the causal

variants. Two or more potentially causal variants may themselves only have an

effect, or their effects may be enhanced, if they fall upon the same chromosome

(e.g., [4]).

It is possible that causal haplotypes could include SNPs that are not in very high

linkage disequilibrium with each other, and so the restriction of interest to haplo-

types only made up of neighboring SNPs (as in haplotype block or windowing

methods) may be too strict. A search over wide regions in the genome for such long-

range haplotype effects would by necessity have to involve only 2 or possibly

3 SNPs since using any more vastly increases the number of comparisons to be

tested and would increase the uncertainty in haplotype estimation. Nevertheless it

would be interesting to consider, in a scan, estimation of phenotype or risk effects of

all two or three SNP haplotypes of all SNPs that lie within a centimorgan or so of

each other. While this is a large number of haplotypes, it is much smaller than the

number of pairwise or three-way interactions between all SNPs in the human

genome which has sometimes been considered [35–37]. Moreover, haplotypes

containing SNPs up to several centimorgans in distance away (several megabases)
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from each other could potentially contribute to the additive heritability of a trait,

since the haplotype will be inherited mostly as an intact unit, even though over past

history recombinations have occurred. The same is not true of interactions between

SNPs more distant than this—i.e., these interaction effects would not make a

significant contribution to the heritability of a trait, except for the most closely

related individuals, because they would rarely be passed on to more distant descen-

dants, see Chap. 8 for discussion of GWAS-based heritability analysis.
Recently Hu and Lin [38] have shown in a slightly different setting (SNP rather

than haplotype imputation) that when haplotypes involving unmeasured SNPs (i.e.,

SNPs seen in a reference panel but not genotyped) are to be imputed, the statistical

behavior of the ML methods may represent an important improvement over the

substitution approach under the alternative hypothesis. That is, the ML estimates of

haplotype-specific risk have less bias and likelihood-based confidence intervals for

βh have better coverage properties. Again, however, these benefits are mainly seen

when the true magnitudes of βh are quite large; tests for βh ¼ 0 based upon the

expectation-substitution approach were observed by Hu and Lin to retain good type

I error properties and to be reasonably powerful compared to ML.

Homework

1. Show that if the mean of outcome Y is linear in the count, δh, of haplotype h but if
δh is unmeasured, then the expected value of Y is also linear (with the same slope

parameter) in the expected count E(δh|G) where G are the measured genotypes.

Assume non-differential errors in estimating δh
2. Estimate R2

h as the ratio of the observed variance over the expected variance, 2ph
(1 – ph), for all the counts of common and rare haplotypes seen in the CYP17 or

CYP19 example. Is there a relationship between haplotype frequency, ph, and R
2
h

in these data?

3. Using the R function expected_haplotypes in expected_haplotypes.r, predict
haplotype counts separately for cases and controls in the CYP17 example. As

described above, this leads to differential error in the estimation. How serious is

this error?

(a) Compared to using all the samples, how different are the haplotype counts

for the common haplotypes when cases are imputed separately from

controls?

(b) When the haplotype counts are used in logistic regression, do the results of

the analysis appear to be the same as in the text above?

Note: Follow directions in the expected_haplotypes.r file for setting up the call to
the program tagSNPs that does the actual imputation.

4. Use a different program, one or more of BEAGLE [39], IMPUTE2 [40], or

MACH [41], see links below, to impute haplotype dosage for the same SNPs in

the CYP17 or CYP19 example. How do the results of these programs compare to

each other and to the output of the expected_haplotypes function?
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5. Download the program HAPSTAT [42]. This program implements maximum

likelihood estimation and correction for haplotype uncertainty in estimation of

disease associations. Try this program on the CYP17 example data and compare

to the results shown in the text using the expectation-substitution approach.

6. Review the haplotype-based association tests that are implemented in the pro-

gram PLINK; which tests and analyses described above can be implemented

(e.g., logistic or linear regression testing for individual haplotype effects and

joint tests for no haplotype effects)? If you have access to the JAPC data,

consider haplotype analysis using PLINK of the 8q24 region, a region that has

many strong SNP associations. Are any of the haplotype associations stronger

than nearby SNP associations?

Links

BEAGLE genetic analysis software program http://faculty.washington.edu/brow

ning/beagle/beagle.html

IMPUTE2 Genotype imputation and haplotype phasing program http://mathgen.

stats.ox.ac.uk/impute/impute_v2.html

MACH Markov Chain based haplotyper. http://www.sph.umich.edu/csg/abecasis/

MaCH/

HAPSTAT: Software for the statistical analysis of haplotype–disease association.

http://dlin.web.unc.edu/software/hapstat/
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Chapter 6

SNP Imputation for Association Studies

Abstract This chapter also (as does Chap. 5) discusses an extension of association

analyses to include a larger set of hypotheses beyond just the single markers that

have been genotyped in a particular study. Imputed SNP analysis is in certain

respects identical to haplotype analysis since the imputed SNPs are on specific

haplotypes or haplotype combinations. Testing imputed SNPs as well as genotyped

SNPs is thus simply a more focused kind of haplotype analysis and serves to extend

the set of hypotheses that are tested to encompass known but ungenotyped variants.

Imputed SNP analysis plays a special role during a post-GWAS phase when during

meta-analysis many studies are combined in efforts to find associations that are

too small to be detectable in any one study. Imputation is necessarily relied

upon when (as is generally the case) not all studies used the same genotyping

platform or chip version.

This chapter discusses the basic statistical method, namely, Hidden Markov
Model (HMM) that is used for fast and very large-scale SNP imputation in a number

of high-performance programs. A brief introduction to the HMM methods is

provided and the basic principles behind estimating the parameters of an HMM

are illustrated with R code. The basics of a particular algorithm, patterned loosely

after that implemented in the program MACH, are described.
Since nearly all large-scale SNP imputation methods require that phased hap-

lotypes be provided for SNPs to be imputed (or measured for the purpose of

imputation), a discussion of the use of phasing algorithms is also provided, with

the details also modeled after the MACH program.

The use of imputed SNPs as independent variables in regression analysis is

introduced with the discussion mostly focused on the same approach (expectation

substitution) used in haplotype analysis. Use of imputed SNPs in association

analyses for a single study is described, although the use of imputed SNPs in

meta-analysis is deferred until Chap. 8.
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6.1 The Role of Imputed SNPs in Association Testing

Similar to haplotype analysis, imputed SNPs are used to extend the number of

hypotheses that are tested during association analysis. In order to be able to impute

unmeasured alleles in an association study, there must first be information available

about the LD pattern relating the markers that are genotyped in the association

study to those SNPs that are not genotyped directly. For the purposes of discussion

here, the set of SNPs or markers that are to be tested in the association study is

denoted as the set of imputation targets. It is assumed that all the alleles in the

imputation target are genotyped in a reference panel of individuals but that only a

subset of target alleles will actually be genotyped in the association study; these

SNPs are termed the main study genotypes. Note that the SNPs constituting the

imputation target must contain the SNPs genotyped in the main study and hence in

any given analysis will include SNPs for which actual genotypes, rather than only

imputed genotypes, are available for association testing. At times the imputation

target will be referred to as the reference panel genotypes when this is clear.

In standard applications, the reference panel participants will be considerably

smaller in number than the number of association study members. For many past

studies, HapMap phase 2 has served as reference panel, with the specific reference

panel chosen to best correspond to the ethnic makeup of the participants in the

association study [1]. More recently the 1000 Genomes Project has become the

provider of the “standard” list of target SNPs for imputation with the proviso that as

of the writing of this chapter, SNP discovery and validation in this project remains an

ongoing process and more samples are being added. Going beyond the 1000

Genomes Project, it is almost certain that with the advent of high-throughput next-

generation sequencing, data suitable for use as reference panel genotypes and

samples will continue to expand.

For a GWAS, the main study genotypes consist of the SNPs on a specific GWAS

chip. In candidate gene or fine-mapping studies, the reference panel genotypes may

be focused on specific regions of the genome, and selection of the SNPs to be used

for the main study genotypes (rather than using a fixed SNP array) becomes a

necessary component of the study.

Here we first go over the basic principles of SNP imputation in a way that is most

applicable to smaller studies and then introduce key methods used in large-scale

imputation.

6.2 EM Algorithm and SNP Imputation

When haplotype frequency estimates are available for a target set of SNPs but main

study genotypes are only available for a subset, it is possible to use those haplotype

frequency estimates to estimate the number of copies of the unmeasured SNPs

using an algorithm which is identical in spirit to the methods introduced in Chap. 5.
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The computation of the expected value of either (1) the number of copies of a given

allele for SNP or (2) the probability that the number of copies of that SNP equals

0, 1, or 2 is performed for each subject conditionally on the genotypes that are

available. Begin by assuming that haplotype frequencies are known. Then if

(following the framework of Chap. 5 for haplotype estimation) nA(H ) counts the

number of copies (0, 1, or 2) of allele A for an SNP not genotyped in the main study

that is contained in the pair of haplotypes, H, the expected number of copies of

allele A (the dosage estimate) is computed as

E nA
��Gi

� � ¼
X
H�Gi

nA Hð Þph1
ph2X

H�Gi

ph1
ph2

, ð6:1Þ

with the summation over the set of haplotype pairs, H, for the target SNPs which are
compatible with the genotypes,Gi, observed for the main study SNPs. These dosage

estimates may then be used in the expectation-substitution method for association

testing of the ungenotyped SNPs by fitting outcome models like

g E Yið Þð Þ ¼ μþ βni, A,

by replacing the unobserved ni,A with the observed E(nAjGi) see below and Chap. 5.

If the interest is in fitting codominant rather than additive models, i.e., models

of form

g E Yið Þð Þ ¼ μþ β1I nA ¼ 1ð Þ þ β2I nA ¼ 2ð Þ, ð6:2Þ

then it is necessary to estimate the conditional probabilities

E I nA ¼ kð Þ��Gi

� � ¼

X
H�Gi

I
�
nA Hð Þ ¼ k

�
ph1

ph2X
H�Gi

ph1
ph2

, for k ¼ 1, 2 ð6:3Þ

and substitute accordingly into (6.2).

This method of SNP imputation is easily described, but there can be several

complications to this procedure. For example, as given above, if the haplotype

frequency estimates are obtained for the reference panel completely separate from

the calculation of haplotype dosage for the association study, then there occasion-

ally will be subjects whose genotypes,G, are not compatible with any of the pairs of

haplotypes that were estimated to have nonzero frequency in the reference panel,

i.e., an observed genotype combination seen for one or more individuals in the

association study appears to have zero probability of occurrence using the haplo-

type frequencies estimated in the reference panel. This is not particularly surprising

when the number of association study subjects is much greater than those
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genotyped in the reference panel, since some rare haplotypes seen in the association

study will be likely to have been missed in the reference panel. One possible

solution to this problem is to include the association subjects as if they were

reference panel members (with missing data for all the ungenotyped target SNPs)

in the haplotype estimation phase so as to estimate haplotype frequencies and

perform (at the convergence of the EM) the SNP predictions simultaneously.

Doing this will insure that no observed genotype combination is given zero

probability in the EM algorithm; however the large number of subjects with a

large amount of missing data being used in the EM algorithm tends to dramatically

slow down the estimation of haplotype frequencies.

Another serious impediment to directly using (6.1) is more logistical in nature

especially when very large numbers of SNPs have been genotyped. Since it is

impossible (even with the PLEM) to run the EM algorithm for very large numbers

of SNPs, it is first necessary to decide, for each SNP in the target SET, the set of

SNPs in the basis set to actually use in the imputation. This may be done, for

example, by setting up windows of nearby SNPs or by dividing all SNPs into

haplotype blocks, with only the basis SNPs in the same window or blocks as the

target SNPs used in the EM algorithm; however fine-tuning such algorithms can

be tricky.

An alternative approach is to use SNP tagging software [2–4] to find, for each

SNP in the target set, a short list of basis SNPs that in combination serve as tags

for the target. This was done in Haiman et al. [5]. In this large-scale candidate

gene study, a total of 2,897 SNPs were successfully genotyped in a special

purpose reference panel, and 1,234 SNPs were chosen as the tag SNPs to be

genotyped in the association study. The program Tagger [6], as implemented in

Haploview [7], identified a maximum of 3 tag SNPs as haplotype predictors of

each target SNP, and the list of the predictors for each target SNP was retained

for later use. After the association study genotyping had been completed, the

data for all subjects genotyped with the tag SNPs (including both the reference

panel and the association study members) was run through the program TagSNPs

[8] to perform haplotype frequency estimation and SNP imputation using (6.1).

The genotypes that were processed by each run of the TagSNPs program included

only the single target SNP genotypes plus the genotypes of the tag SNPs that had

been identified by Tagger for that target SNP. Therefore for each target SNP, a

complete EM algorithm was run (involving from 2 to 4 SNPs) prior to SNP

imputation.

Another fairly simple approach to SNP imputation which has been discussed to

some degree in the literature [3, 9] is to replace the EM-haplotype frequency-based

SNP imputation with linear regressions. That is, SNP genotype in the target set is

analyzed by ordinary regression analysis using the main study SNPs as (linear)

explanatory variables. As discussed by Stram [3], this method gives similar results

to haplotype-based imputation so long as the target SNP and the SNPs used for

prediction are in complete linkage disequilibrium (no recombinant haplotypes

evident). In general, however, it does not appear to be as effective a method for

SNP imputation as the haplotype-based methods described above.
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6.3 Phasing Large Numbers of SNPs

for the Reference Panel

As we will see in the discussion of more current software, large-scale SNP

imputation using current packages generally requires that all target SNPs for the

reference panel subjects be initially phased to begin the imputation process. From

the discussion of haplotype uncertainty in Chap. 5, it is clear that phasing of large

numbers of genotypes for a panel of unrelated individuals must be inherently

unreliable. For example, if as few as 7 very common SNPs are in linkage equilib-

rium, then the estimate of the number of copies (0, 1, or 2) of any given haplotype

that are carried is predicted quite poorly (as indicated by R2
h in Fig. 5.2). This is

overcome to some degree if data from nuclear families is available—for example, if

parents and single-child trios are genotyped, then a doubly heterozygous parent has

uncertain haplotype counts only if the child’s genotypes are also doubly heterozy-

gous and the other parent is heterozygous for at least one of the two SNPs. However

uncertainty in haplotype assignment while reduced still remains (see discussion in

Chap. 5). Despite this inherent uncertainty, we will see that imputed long-range

phased haplotypes for the HapMap data and variants observed in the 1000 Genomes

Project are routinely required as a starting point for SNP imputation. The phasing of

the SNP data provided by the HapMap and 1000 Genomes Project, especially for

those groups (e.g., the Japanese and Chinese HapMap samples) where no family

members, specifically no offspring, have been genotyped, should be regarded as

“pseudo-phasing” that is only accurate over regions of limited linkage disequilib-

rium. The empirical success of SNP imputation methods that rely on initial phasing

of the reference panel data (phased reference panel data is available for the HapMap

and thousand genomes or can be computed using such programs as PHASEII [10],

MACH [11], fastPHASE [12], or SHAPEIT [13]) implies that SNP imputation is

not very dependent on the strict accuracy of the initial phasing especially over long

genomic distances. This is undoubtedly because of the flexibility of the probability

models that the HMM-based imputation methods rely upon as seen below.

6.4 Brief Introduction to Hidden Markov Models

An important special case of the EM algorithm is estimation of the parameters

(including transition probabilities, initial distribution, most probable path) for a

Markov chain when the transitions are not directly observed. Introductions to

Hidden Markov Models (HMMs) for certain genetic applications are available

from a number of sources (e.g., [14] Chap. 3, [15] Chap. 9). An interesting historical

note is that the original papers on the Hidden Markov Model [16–18] describing the

updating procedure predated the classic EM paper (Dempster et al. [19]) by a

number of years, and indeed the earlier papers proved many of the basic properties

of the EM algorithm.
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Using the notation of Rabiner 1989 [20], an HMM consists of aMarkov chain Qt

which takes values, qt, t ¼ 1, . . ., T from a set of possible states S ¼ {S1, . . .,SN}.
In a Markov chain, the complete probability distribution of the sequence of states

qt is defined by the initial distribution πi ¼ p(q1 ¼ i) and a state transition proba-

bility matrix A ¼ {aij}, i.e., the probability of moving from state Si (at a given

time t) to state Sj at time t+1 conditional on being in state Si at time t. This allows
the evaluation of the probability of a sequence of states Q ¼ (q1, . . .,qT) given the

model parameters θ ¼ (A,π) as

Pr Q
��θ� � ¼ πq1

YT
t¼2

aSt�1St

" #
:

Now consider the problem of estimating the state transition probabilities

p Si; Sj
� � ¼ Pr qtþ1 ¼ Sj

��qt ¼ Si
� �

:

In order to simplify the notation for the remainder of this section, we will denote

p(Si, Sj) as aij and refer the states in S as simply states 1 to N.
Now suppose we wanted to estimate the transition probabilities by observing the

Markov chain for a total of T transitions, i.e., we observe the sequence q1, . . ., qT,
for this purpose.

Clearly the MLE of aij would be just the observed number of transitions from

state i to state j divided by the total number of times that qt is observed to be in state
i for t ¼ 0, 1, . . ., T � 1:

â ij ¼ ΣT
t¼2I qt�1 ¼ i AND qt ¼ jð Þ

ΣT
t¼2I qt�1 ¼ ið Þ : ð6:4Þ

Let us consider now the Hidden Markov Model where instead of seeing directly

the states, qt, at each time t, we saw output (called signals) O ¼ (O1,O2, . . .,OM) at

each time, but this output is ambiguous in the sense that the same signals can be

generated from more than one state. A Hidden Markov Model is characterized by

the following:

1. N the number of states, S ¼ {S1,S2, . . .,SN} in the underlying Markov chain.

2. M the number of distinct observation symbols with the possible signals taking

values from the set V ¼ {v1,v2, . . .,vM}.
3. The state transition matrix A ¼ {aij} where

aij ¼ P qtþ1 ¼ Sj
��qt ¼ Si

� �
:

4. The observation symbol probability distribution in state j

B ¼ bj kð Þ� �
,

where bj(k) ¼ P[Ot ¼ vk|qt ¼ Sj}, 1 � j � N, 1 � k � M.

5. The initial state distribution π ¼ {π1,π2, . . .,πN}
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Given values of N, M, A, B, and π, the HMM can be used as a generator to give

an observation sequence O ¼ O1O2 . . . OT as follows:

1. Choose an initial state q1 ¼ Si according to the initial state distribution π.
2. Set t ¼ 1.

3. Choose Ot ¼ vk according to the symbol probability distribution in state Si, i.e.,
bi(k).

4. Transit to a new state qt+1 ¼ Sj according to the state transition probability

distribution for state Si, namely, aij.
5. Set t ¼ t + 1; return to step 3 if t<T; otherwise terminate.

There are three basic problems that are posed by an HMM. These are:

Problem 1: Given the observation sequence O ¼ O1O2 . . . OT and a model

λ ¼ (A, B, π), how do we efficiently compute the probability, P(O|λ), given the

model?

Problem 2: Given the observation sequence O ¼ O1O2 . . . OT, how do we choose

a corresponding state sequence Q ¼ q1q2 . . . qT which is optimal in some sense?

Problem 3: How do we adjust the model parameters λ to maximize P(O|λ)?

Problems 1 to 3 involve the Baum–Welch forward and backward algorithms
(see below) or sometimes the closely related Viterbi algorithm (for solving Prob-

lem 2). We note that Problem 3 can be solved1 using the EM algorithm. For

example, for estimating the transition probabilities aij from just the observation

sequence O, the EM algorithm requires that we compute estimates of the condi-

tional probabilities of a transition from i to j given the observed data O and initial

estimates of the model parameters λ ¼ (A,B,π). Define (using the initial estimates

as if they were the true values) the conditional probability of a transition from Si to
Sj at time t as

ηij tð Þ ¼ p St ¼ i, Stþ1 ¼ j
��O; θ� � ð6:5Þ

(computing these constitutes the E-step) and then (in the M-step) update the

A matrix as

âij ¼
ΣT�1
t¼1 ηij tð Þ

ΣT�1
t¼1 P qt ¼ ið Þ , ð6:6Þ

where P qt ¼ ið Þ ¼
XN
j¼1

ηij tð Þ, i.e., we have computed the expected value of the

function of the data, i.e., (6.4), that would be used to estimate the aij if the qt were

1Actually the EM algorithm generally will only find a local maximum; running the EM repeatedly

using multiple starting values for the parameters in λ is recommended for assessment of whether a

global maximum has been achieved.
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observed. Again efficiently computing â ij involves the Baum–Welch forward and

backward variables (computed by the forward and backward algorithms, respec-

tively). The solution for updating initial estimates of the initial probabilities π is

π̂i ¼
XS
j¼1

ηij 0ð Þ:

In addition we can estimate the probabilities of being in state i at any particular

time t as

π̂i tð Þ ¼
XS
j¼1

ηij tð Þ:

6.4.1 The Baum–Welch Algorithm

The Baum–Welch algorithm is essentially a way of quickly computing ηij(t)
through two sets of recursive calculations, one going forward in time t and the

other going backward in t. First consider how the probability of a given observation

sequence O1O2 . . . OT can be computed. Define the auxiliary variable αi(t) as

αt ið Þ ¼ p O1:t, qt ¼ i
��θ� �

:

Here we have used the notation O1:t ¼ (O1, . . .,Ot).

The algorithm to compute p(O|θ) is as follows:
Initialization:

α1 ið Þ ¼ bi O1ð Þπi for 1 � i � N:

Iteration:

αtþ1 jð Þ ¼
XN
i¼1

αt ið Þaij
" #

bj Otþ1ð Þ for 1 � t � T � 1, 1 � j � N:

Termination:

p O
��λ� � ¼ XN

i¼1

αT ið Þ: ð6:7Þ

This computation is called a “forward pass” through the series, and this compu-

tation thus gives the solution to Problem 1 above, i.e., we have computed the

probability of the observation O given the model parameters. To solve the other

two problems, we continue as follows:

Now consider the “backward pass,” compute βt(i) ¼ p(Ot+1, Ot+2, . . . OT|

qt ¼ i, λ).
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This can be done similarly to the forward pass:

Initialization:

βT ið Þ ¼ 1, 1 � i � N:

Iteration:

βt ið Þ ¼
XN
j¼1

aijbj Otþ1ð Þβtþ1 jð Þ, t ¼ T � 1, T � 2, . . . , 1, 1 � i � N:

We can now compute the conditional probability of a transition from state i to
j at time t + 1, i.e.,

ηij tð Þ ¼
1

Zt
αt ið Þaijbj Otþ1ð Þβtþ1 jð Þ, ð6:8Þ

where Zt is a normalizing constant so that
XS
i, j¼1

ηij(t) ¼ 1. Then the M-step for aij is

as in (6.6) above.

For our purposes (of SNP imputation), we focus on solving Problem 2, i.e.,

giving some sort of optimal estimate for the state sequence since if the state

sequence is known, then we will know the genotypes for each SNP that is missing

in the main study. The key issue is to estimate the conditional probability distribu-

tion of being in state Si at time t given the observation sequence O and the model

parameters; this can be readily computed from the forward and backward variables

and using the solution to Problem 1, i.e., the calculated value of Pr(Ojλ). Defining
γti) as Pr(qt ¼ SijO, λ) we have

γt ið Þ ¼
αt ið Þβt ið Þ
Pr O

��λ� � : ð6:9Þ

One relatively easy solution then to estimating the state that is occupied at time

t is just as the state with the maximum probability

q̂t ¼ argmax
1�i�N

γt ið Þ½ �, ð6:10Þ

so that at time, t, the value of the individually most likely state is chosen. Another

approach is to attempt to find the state sequence, Q, that maximizes Pr(QjO, t),
which is not necessarily equivalent to a choice of the sequence of individually most

likely values q̂1; q̂2; . . . ; q̂Tð Þ from (6.10). Maximizing Pr(Q|O,t) is accomplished

using a technique known as the Viterbi algorithm; however this is tangential to our

interests and is not discussed here; see Rabiner [20] for more information. Updating

the basic model parameters, i.e., the initial state, the parameters in the transition

matrix or the output sequence probabilities from each state all involve the transition

probabilities at time t, i.e., ηij(t) from (6.8). However, it should be noted that
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creating identifiable models (for which the observation sequence alone provides

sufficient information for estimation) typically involves developing models for the

transition matrix and the output signal probabilities that involve a relatively small

number of parameters; these parameters, rather than, for example, the entire matrix

of transition probabilities, are then estimated from the estimates of ηij(t) and the

corresponding estimates of the number of transitions into and out of each state,

treating these estimated data points as if they had been observed directly. Note that

this will correspond to an EM algorithm that uses the expectation of the number of

transitions (computed during the E-step) as if it was data actually observed from the

underlying Markov chain model.2

6.5 Large-Scale Imputation Using HMMs

The problem of imputing target genotypes for members of the study (using basis

genotypes) is greatly simplified if we can assume that phase is known for both the

reference panel genotypes as well as the main study genotypes. This not only

simplifies the imputation algorithm but also corresponds to a recommended

approach for imputation of the 1000 Genomes target [13]. Since the 1000 Genomes

target is still (as of this writing) subject to significant revisions and extensions (and

other extensive datasets are and will continue to become available) and since

imputing missing genotypes when phase is known for the main study is much faster

than when phase is not known, the following heuristic algorithm is advocated by

Delaneau et al. [13] and others [21]:

1. Genotype the main association study, perform quality control, identify the basis

genotypes, and finalize the association genotype dataset.

2. Phase the finalized association study genotype data.

3. Download the phased haplotypes for the 1000 Genomes Project version

X (reference panel).

4. Impute target genotypes for the main study using results of Steps 2 + 3.

5. Perform association analysis of imputed genotype data.

When the new and improved 1000 Genomes version X + 1 is released, incre-

ment X and repeat from Step 3.

Step 2 may take many hours of computer time (and may require a cluster of

computers) and generally involves first splitting up each chromosome into many

partly overlapping pieces of manageable size and then piecing the imputation results

2 In other settings, the EM algorithm requires calculating expectations of sufficient statistics or of log

likelihood functions in toto, rather than just the unobserved data; see [19]. It is because theHMM is a

model for multinomial data (i.e., number of transitions), and since the log of the likelihood of a

multinomial is linear in the observed or unobserved counts, calculating the expectation of

unobserved transitions, given observed data (signals), is sufficient for the estimation of model

parameters.
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back together. Once Step 2 is done then as each version of the 1000 Genomes data is

released, only the very much less time-consuming Steps 2 and 3 are to be performed.

Therefore rather than discuss here the problem of inferring target genotypes when

phased haplotypes are available only for the reference panel, we describe both

phasing genotype data (without the benefit of a reference panel) and imputing

missing genotypes when both the reference panel andmain study are already phased.

Since Step 4 is far less complicated than Step 2, Step 4 is discussed first.

6.6 Using an HMM to ImputeMissing Genotype Data when

Both the Reference Panel and Study Genotypes Are

Phased

One basic approach to applying an HMM to the problem of imputing alleles for the

missing markers (i.e., for the ungenotyped SNPs) relies on an assumption that most

or all haplotypes in the association study can be regarded as recombinations of the

haplotypes for the reference panel members. Suppose that there are N haplotypes in

the reference panel and n members of the association study, the problem of

imputing missing markers at a given location, i, consists of identifying, for a

given association study haplotype, which of the reference panel haplotypes at that

location is the most probable given the marker allele information that is available.

To illustrate a basic HMM (in R) as follows with very simple data, we consider

that the haplotypes for N individuals at T markers are available for reference panel.

For purposes of illustration, we work with 19 markers and 12 reference panel

subjects defining the 12 � 19 matrix H of reference panel haplotypes as (these

are data from [22]):
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The possible states are S ¼ (1,2, . . .,N ) with qt ¼ imeaning that at location t the
association study haplotype corresponds to reference panel haplotype i. There are a
total of T diallelic markers in the reference panel.

There are M ¼ 3 three possible output symbols, V, consisting of {0, 1, ∅}.

The output symbol 1 is produced at state j with probability 1 if the genotype at the

current position (t) is equal to 1 and with probability zero if that genotype is 0, and

similarly for output symbol zero. The output symbol ∅ (indicating missing data

and coded here as 9) is assumed to be produced with equal probability from

any state.

Following the above, we define the emission probabilities (probability of

reporting a signal, o, depending on the state, j, and position t (which takes values

from 1 to Tt) as:

Note that in the above we have not allowed for the possibility of genotyping

error in the main study. We could allow a (small) probability that a 1 is produced if

the true state has genotype zero and vice versa; this might reduce the number of

recombinations that are estimated by the algorithm, but for now we ignore this

possibility.

We next define the recombination probability (probability of a crossover

between haplotypes) to be a constant value θ here set to be equal to 0.1. This

corresponds to an assumption that the genetic distance between every pair of

neighboring SNPs is equal. This can be (and is in many programs) modified

according to genome map data. This assumption allows us to define the transition

probabilities as an R function:

The definition explicitly allows for (when i and j are the same state) the

possibility of a crossover between identical haplotypes which is why the second

line of function a includes the θ/N term.

We now define the initial probabilities π0 as equal as in:
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To run the algorithm, we observe an observation sequence (i.e., read in a main

study haplotype) such as:

For the time being, we consider only the problem of producing a “best” estimate

of the state sequence Q ¼ q1; q2; . . . ; qTt

� �
corresponding to the observation

sequence, O.
The Baum–Welch algorithm consists of first calculating the forward variable,

α(t, qt), Pr(O1:t, qt ¼ i) for t ¼ 1, . . ., T, i ¼ 1, N. In order to do this, we work on

the log scale (and utilize a helper algorithm, logsum, which computes the log of the

sum of very small numbers stored as logarithms) (see haplo_impute.r for its

definition):

and we terminate by calculating the probability of the observation sequence,

(6.7), as:

After this we calculate the backward variable (again using logs) as:

From this we can calculate the conditional state probabilities, γti), (6.9), as:
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and we can maximize the individual state probabilities to give an individually

“best” sequence as:

Now we can calculate the alleles of the imputed haplotype as:

Finally we display the results observed and imputed haplotypes as well as the

“best state” itself:

Here we see that the state estimate first starts with state 11, which makes sense

because the 11th row of table H (the reference panel haplotypes, see above) is the

only haplotype with a 4 in the first position. The best state then switches to state

3 for the next two SNPs and then settles on state 5 (which matches the observed

haplotype at SNPs 6 through 9 and at SNPs 12 and 13, with SNPs 11 and

12 unobserved) for SNPs 4–13 and finally switches to state 10 which matches the

observed haplotypes at all remaining observed positions.
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Note that from the discussion in the previous chapter, it is important, for

association testing, to allow for the uncertainty in haplotype estimation, by provid-

ing the expected genotype count values at each position, where the count will be of

the number of copies of a reference allele; for convenience, the reference allele is

taken to be the allele contained by the first reference panel haplotype. The expected

count can be calculated as follows:

and the results displayed as:

We see now that in general when there is a missing genotype value in the

observed data, there remains some uncertainty about the true genotype. For exam-

ple, at base position 4, there remains a 36 % probability that the underlying

genotype is actually a 3 rather than the “best” prediction of 4, and at position

5, there is a 19 % chance that the true genotype is a “2” rather than a “4.” At the

other positions where the observed sequence is missing data, the uncertainty is a bit

less. As described in the previous chapter, it is the estimated genotype counts that

should be used as the genetic “dosage” variable in haplotype association studies.

Note that we have obtained seemingly good results for these data without going

through any additional steps, specifically we have not considered the updating of

the model parameters (Problem 3 above); here there really only are two parameters
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that could be updated: one is the recombination probability and the other is the

initial probability (probability of state 1, i.e., values for the first SNP). Running the

above algorithm (with the same input data) for a range of values of recombination

probability, rp, from 0.01 to 0.90 does not change the “best” missing genotype

assignments, but does modify the certainty with which the genotypes are assigned,

with the larger values of recombination probability leading to larger uncertainties.

By considering the values of the log of the observation probability (logPO which

equals �28.9 for θ ¼ 0.1, �34.9 for θ ¼ 0.01, and �30.9 for θ ¼ 0.9 in the

R program), we can see that for these data a considerably better fit to the observed

data is provided by using the larger (e.g., 0.1 or 0.9) than the smaller p ¼ 0.01

crossover probability; this makes sense given that the algorithm was forced to

“jump” several times in order that the observed genotypes matched for the refer-

ence haplotype of interest.

Note however that we would not actually consider implementing an EM proce-

dure to maximize the likelihood with respect to θ after having seen only one

observation sequence (i.e., main study genotype). Maximization over any of the

parameters would be done when all the data has been processed. Assuming that the

main study genotypes are independent of one another, one would apply the max-

imization stage of the EM algorithm (solving Problem 3) in order to maximize the

product of all observation probabilities, not the probability of each of them; see

Section V.B. of Rabiner [20].

Keeping the same basic structure, we could modify aspects of the model; for

example, rather than using a fixed recombination probability, one could allow

genetic map information to be used to provide an external source of information

about how θ varies from position to position, and this is allowed in most

programs. Note that the usual genetic maps describes the recombination

probability for a single meiosis; here θ corresponds to a population-level

observed rate of historical recombination, which might best be modeled as a

constant times genetic map distances rather than equal to genetic distance in the

traditional sense.

Another parameter that appears in the model is the probability of missing data

(an emission of a ∅, coded as 9 in the R program); varying this parameter from

0.02 to 0.8 has a large effect on logPO (with larger values more likely than

smaller values, since after all 6 out of 19 markers are missing in the observation

sequence) but has no effect at all on the estimation of the best state or the

uncertainty in the imputed genotype. Another change would be to model main

study haplotypes as the result of mutation as well as recombination of the main

study haplotypes; this is incorporated by modifying the output function

b introducing an “error” parameter ε. As pointed out by Li et al., such a parameter

encompasses a number of possibilities including genotyping error, mutation, and

gene conversion.
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6.7 Using an HMM to Phase Reference

or Main Study Genotypes

We now consider the complications that would be involved in modifying the

R program so that it would be able to predict haplotype phase for a large number

of SNPs and for a large number of panel or study members. Starting from scratch,

with no phased data to provide guidance or to build from, naively would involve all

2T choose 2 possible states where state now refers to the combination of 2 possible

haplotypes that an individual could carry. This is not tractable and conceptually

more complicated methods are required. We focus upon the methods that are

described for the program MACH (Li et al. [11], Appendix). We break the problem

into two parts:

1. Given a current set of possible haplotypes for the reference panel or study group,

the assignment of a haplotype pair for each individual with genotype data.

2. Initialization and subsequent updating of the current set of possible haplotypes.

Consider now the modifications to the HMM procedure to take account of

Problem (1). Let the number of haplotypes currently assigned be equal to h. At
each location t, there are a total of N ¼ h2 possible states St ¼ (xt,yt), where xt
denotes the haplotype for the first chromosome at position t and yt the haplotype for
the second chromosome. The transition probabilities, i.e., Pr(St|St � 1), can be

defined as

P St
��St�1

� �
¼

θ2=h2, if xt 6¼ xt�1 and yt 6¼ yt�1

1� θð Þθ=hþ θ2=h2, if xt 6¼ xt�1 or yt 6¼ yt�1

1� θð Þ2 þ 2 1� θð Þθ=hþ θ2=h2 if xt ¼ xt�1 and yt ¼ yt�1

8<
: :

ð6:11Þ

Here the probability of one change, i.e., the second line of (6.11), allows for the

probability of exactly one crossover to the current state or of two crossovers but in

which one of the crossovers was between identical haplotypes, and the third line

(probability of no changes) counts the probability of no crossovers plus the prob-

ability of one or two crossovers between identical haplotypes. The first line is the

probability of two crossovers from state St � 1 to reach St.
In order to simplify implementation in R, we first convert the table of current

haplotypes (we will use those defined above) into a matrix of 0’s and 1’s so that that

the H matrix counts the number of reference genotypes as follows:
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We rewrite the function a in R as follows:

Here, in order to minimize any other needed changes in the program, the single

state encodes the two haplotypes (from 1 to N ¼ h2) into a single value so that state
1 corresponds to the haplotype pair (1, 1) and state 2 to pair (1, 2), continuing all the

way up to state N which corresponds to haplotype pair (h, h); here the numbers 1 to

h refer to haplotype appearing in the rows of the table H. The first few lines of

a simply decodes the state information for state i and j into the haplotype pairs (xi,yi)
and (xj,yj).

The emission probabilities Pr(Gt|St) are now defined (including the error prob-

ability ε) as [23]

P Gt

��St� � ¼
1� εð Þ2 þ ε2, if sum Stð Þ ¼ Gt and Gt ¼ 1

2 1� εð Þε, if sum
�
St
� 6¼ Gt and Gt ¼ 1

1� εð Þ2 if sum Stð Þ ¼ Gt and Gt∈
�
0, 2

�
1� εð Þε if sum

�
St
� ¼ 1 and Gt∈

�
0, 2

�
ε2 if sum Stð Þ and Gt∈

�
0, 2

�
but St 6¼ Gt

8>>>><
>>>>:

: ð6:12Þ

For example, the last line of (6.12), where the genotype implied by state St, i.e.,
sum(St) and the observed Gt are opposite homozygotes, can only occur if there

are two “errors” in the emission of signal from state St; this occurs with probability
ε2 assuming independence. These emission probabilities can be implemented in R,
and also including possibility of missing genotypes, not considered in (6.12) as

follows:
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Also we will change to a more realistic recombination probability for these data,

namely,

The same iterations as above can be used to develop the “current” estimate of

best state (haplotype pair) corresponding to a given G; see haplo_impute.r. For
example, consider a genotype G ¼ (2,0,1,1,2,1,0,1,1,2,0,2,0,1,0,0,1,2,1). With

these changes in the a and b (transition and emission probabilities), running the

same code shown above to perform the forward and backward algorithms (see

haplo_impute.r) sets the R variable Qbest equal to Qbest ¼ (33,33,41,41,41,41,41,

41,41,45,45,45,45,45,45,45,45,45,45), indicating that the best (current) estimate of

the haplotypes that correspond to this genotype is the haplotype pairs (3, 9) in the

first two locations, (4, 5) from location 3–9, and (4, 9) thereafter; here 3 refers to

row 3 of matrix H that holds the current haplotypes, 4 refers to row 4, etc. Putting

this together, the current estimate of the phased haplotype for this observation is

displayed using

R code as:
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The actual haplotype assignments h1 and h2 are shown as the third and fourth

columns of this output, and we see the consistency of the haplotype assignments

with the genotype data G. Note, however, that when phasing data without the

benefit of an existing reference panel, we are not interested in finding the single

best estimate of h1 and h2; instead we need to address the second question of this

section, namely, the initialization and updating of the current list of haplotypes.

6.7.1 Initializing and Updating the Current
List of Haplotypes

Up to this point, all the imputations have been dependent upon the prior existence of

a table of possible haplotypes from which recombinants are formed. All programs

that are capable of performing large-scale haplotype imputation rely upon sampling

haplotypes from among the set of possible haplotypes that are compatible with a

given observed genotype sequence, G. The number of haplotype pairs that are

compatible with the sequence G is equal to 2Nhets where Nhets is the number of

heterozygous markers in G. One approach to initializing haplotypes (used by

MACH) is simply to randomly sample compatible haplotypes. For example, for
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the observed sequence G ¼ (2,0,1,1,2,1,0,1,1,2,0,2,0,1,0,0,1,2,1) used above, a

pair of compatible haplotypes would be simply

1; 0; x1; x2; 1; x3; 0; x4; x5; 1; 0; 1; 0; x6; 0; 0; x7; 1; x8ð Þ
1, 0, 1� x1, 1� x2, 1, 1� x3, 0, 1� x4, 1� x5, 1, 0, 1, 0, 1� x6, 0, 0, 1� x7, 1, 1� x8ð Þ

	 

,

where each of xi for i ¼ 1, . . ., 8 is sampled as independent Bernoulli draws with

frequency 0.5. Thus if we are trying to impute haplotypes for N individuals, then we

could initialize the table, H, by adding two sampled haplotype pairs for each

individual to H. In R if the matrix Gtable contains the genotype counts for (here

11) individuals in the panel to be phased:

then the initial estimate of H can be computed as:

This gives (as one possible realization) a table H equal to:
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This table is only used temporarily, however. In particular, after one run through

the observed genotype vectors, G, for each individual, new haplotypes will be

assigned, and these will replace the current table H.
For example, running the forward and backward algorithm on the first line of

Gtable, i.e., on the observation sequence, G ¼ (2,2,2,2,2,1,2,2,2,1,2,1,2,1,1,1,2,2),

using H given above, produces the log probability of all states at location t as the
array loggamma. Now, however, we are not really interested in the “best” sequence
of states that correspond to this observation sequence; instead an update of the

current assignment of states is performed by sampling a new state (i.e., new pair of

haplotypes) with the sampling at each time point t using the expression for γti) in
(6.9) as the posterior distribution to be sampled from. Doing this for all genotype

vectors G in Gtable produces a new table H to be used in the next round.

This procedure is allowed to iterate, typically around 20 times or so as described

in Li et al. [11].

We can implement the sampling as follows:

1. First, sample initial state q1 proportional to Pr(Q1 ¼ SijO, λ), i.e., proportional to
exp(loggamma[1,]) in the R program.

2. Next, use the combination of forward and backward variables to compute the

probabilities of a transition from the sampled state q1 to each of the possible

states j ∈ {1, . . .,N} which from (6.8) is proportional to

α1 q1ð Þaq1, jbj O2ð Þβ2 jð Þ:

3. Iterate through the remaining states so that if state qt is sampled at location t, the
sampling probabilities for a transition to state j at time t + 1 is proportional to

αt qtð Þaqt, jbj Otþ1ð Þβtþ1 jð Þ:

This sampling can be performed using the R program code as:
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The replacement pair of haplotypes is provided by decoding sampleQ as in:

which gives something like:

Repeating this sampling process for each genotype in turn and over a number of

iterations should gradually improve the assignment of haplotypes for each study

participant.

6.8 Practical Issues in Large-Scale SNP Imputation

Notice that the main loops above (for the calculation of logalpha and logbeta using
the Baum–Welch algorithm in the above) are linear in the number of SNPs and in

the number of samples being phased or imputed but are quadratic in the number of

states, i.e., there are two nested for loops over the N states in the calculations

of logalpha and logbeta above. The number of states is the square of the number of
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haplotypes (h2 in the code above)3 so that the whole run time would be a polynomial

in the 4th power of the number of haplotypes used to define states. Therefore the

number of haplotypes being considered must be quite small for any run, so that our

above device, of starting with twice the number of haplotypes as genotypes to be

phased is not feasible for large reference panels or main studies. An analysis and

description of the run times of a number of different algorithms is provided as a part

of Delaneau et al.’s [13] description of the program SHAPEIT. The success of the
modern programs (including SHAPEIT) in providing useful phasing information

and imputation for very large numbers of SNPs in feasible amounts of time is very

impressive; while many important modifications are required to achieve this suc-

cess, the fundamental ideas of encoding the imputation and phasing problems into

an HMM and solving these problems using relatively standard Baum–Welch

algorithms are at the heart of all the current high-performance algorithms.

Clearly also (as the reader can judge by running the above code selections, see

also haplo_impute.r) the time required for the R interpreter to go through the loops

described above is far too great for R to serve as a native language for this type of

work. Typically, programs are written in C++ and are run simultaneously on

multiple computer clusters breaking up the jobs either by chromosome or most

often into many smaller segments. The state of knowledge of SNPs and other

variants is constantly changing so that available reference panels are a moving

target. As described above, it is useful to break up the overall imputation process

into two parts, first phasing the main study data in its entirety and then running and

rerunning as necessary the much faster haplotype-based imputation methods as

reference panels are modified.

6.8.1 Assessing Imputation Accuracy

The most useful statistic for assessing the quality of imputation of an SNP or other

allele is the correlation between true genotype count and imputed dosage variable

[24]. Of course, except in special experiments, e.g., that of [24], we do not directly

observe both genotyped and imputed variables for the main study SNPs being

imputed. However we can estimate imputation R2 in a number of ways. First of

all, a formal calculation based on Hardy–Weinberg equilibrium for the imputation

accuracy can be performed when haplotype frequencies are known and is similar to

the calculation of haplotype imputation accuracy, R2
h, discussed in Chap. 5. This

calculation involves computing the “fraction of variance explained” as (Var(E
(nAjGi))/2p(1 � p)) where nA is an allele count with frequency p. Since E(nAjGi)

3 The number of unique states, N, can be reduced to h(1 + h)/2 since haplotype order is not being

considered here. The R code above becomes slightly less intelligible when mapping the state

number j to the pair of haplotypes referred to by j which is why this redundancy has not been

removed.
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is the imputed allele “dosage,” one quasi-empirical estimate of imputation accuracy

is simply the observed variance of the computed dosage variable divided by

estimated 2p̂ 1� p̂ð Þ where p̂ is the estimated allele frequency; this can be

computed using the dosages as one half the average value of the dosage estimate,

i.e., the estimate of E(nAjGi). This is termed a quasi-empirical imputation R2

because its calculation depends upon the correctness of the estimate of E(nAjGi)

in the first place (if the imputations were completely off base or biased, then the

variance of the estimated dosage variables would not be informative). A more direct

assessment of overall imputation accuracy is to mask some fraction of either the

main study genotypes or the reference panel samples. The former calculation is

routinely performed by many or all of the current imputation programs. Typically a

few percent of the main study genotypes are “hidden” (treated as ungenotyped) and

then imputed; and the sample correlations between the imputations and genotypes

are directly calculated. The weakness of this approach is that it does not give an

accuracy estimate for the (unmeasured) SNPs where the imputations are of any

direct interest. It may be overoptimistic to assume that imputation accuracy for

measured but hidden SNPs can be translated to the unmeasured SNPs for a variety

of reasons including differences in population structure, minor allele frequency, and

LD patterns. The second approach (hiding reference panel samples) is potentially

informative but generally requires that a very large reference panel is available,

especially if the accuracy of rare SNPs is to be carefully evaluated. Each of these

measures, i.e., the quasi-empirical, SNP-based, and sample-based R2 statistics, has

been examined in certain publications [11, 24, 25]. Generally for common SNPs,

the quasi-empirical and SNP-based R2 statistics are reasonably consistent with each

other; for example, see Fig. 3 of [24].

6.8.2 Imputing Rare SNPs

As is described in more detail in Chap. 8, the target sets of variants of interest for

association studies have increasingly included rarer variants and SNPs. Following

the logic described in Chap. 2, all variants are expected to have a single origin, and

the specific chromosome that the variant arose upon is uniquely identifiable by

patterns of marker variants nearby the site of origin. It follows that rare SNPs should

be imputable on the basis of rare haplotypes of the common SNPs that are typically

present on a GWAS array. Since rare SNPs are (in the absence of selective

pressures) almost always of recent origin, it follows that the marker haplotype

marking the new variant may still be unaffected by recombination occurring after

the origin of the rare variant and thus still be recognizable. This means that the

imputation of rare variants may be possible using common SNPs.

One of the crucial questions has to do with the necessary size of the reference

panel needed in order to get good imputation quality. The required reference panel

size increases as the frequency of the SNPs (or haplotypes in the above discussions)

that are being imputed decreases. An analysis by Liu et al. [24] considered
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imputation of both common and rare SNPs that were genotyped in about 2,000

subjects. They found that with this many individual samples (and withholding

genotyped data so that “dosage R2,” i.e., R2 between imputed dosage variable and

true genotype could be directly examined), a reference panel of ~2,000 samples

could impute with R2 � 0.8 SNPs with minor allele frequency in the range from

1 % to 3 %. Note that alleles with frequency 1 % would be seen an expected

40 times in a reference panel of 2,000 individuals. This is roughly the same number

of minor alleles that would be expected to be seen in a reference panel of 40–100

samples (e.g., approximately HapMap sized) for SNPs in frequency range 0.2 to

0.5, and indeed SNPs in this frequency range are generally highly imputable with

HapMap data [25]. Naively scaling this to rarer SNPs implies that reference panels

of size at least 20,000 samples are required to impute SNPs with minor allele

frequencies at 1/10 of 1 % with this same level of imputation accuracy.

In this naı̈ve scaling, however, the issue of haplotype uncertainty as embodied in

the R2
h calculation of Chap. 5 has been neglected. Without recombination there is a

limit on the total number of haplotypes (and hence also a limit on the number of rare

haplotypes), so if many rare haplotypes are to be defined by common SNPs, then

recombination must be present. If a rare SNP falls on one or more rare haplotypes of

common SNPs, it may not be well imputed by the common SNPs since imputation

accuracy declines with the amount of recombination as described in the previous

chapter.

6.8.3 Use of Cosmopolitan Reference Panels

As of the writing of this chapter, the most widely used reference panel and set of

target genotypes for imputation are those available from phase 1 of the 1000

Genomes sequencing project. The 1000 Genomes Project is multiethnic and quite

diverse. One important question is whether for a given project it is necessary to pick

and choose from reference panels in order to do imputation and specifically whether

it is important to match the reference study to the main study according to race/

ethnicity. As illustrated in Chap. 5, haplotype imputations and by implication

imputed genotypes are dependent upon which reference group is selected, and it

would be very bad to select (to give an extreme example) European or Asian

reference panels in order to impute SNPs in a main study with participants of

African origin. Two papers have looked at the use of the combined HapMap phase

2 genotypes (YRI, CEU, JPT, and CHB) [4, 26] for tag SNP selection (and by

implication for imputation purposes) with the general conclusion that either a

weighted or unweighted cosmopolitan panel is an appropriate choice. Here a

weighted panel would be a combined panel with the fraction of individuals included

in the panel weighted according to approximate admixture fractions (either recent

or historical) of the study population. In a recent analysis of diabetes risk in a

Singapore Chinese population quite close genetically to the 286 East Asians in the
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1000 Genomes Project, Chen et al. [27] used the full set of thousand genomes

(1,009 individuals) (rather than only the Asian) samples as a reference panel with

evident success, showing that many unmeasured diabetes variants could be imputed

and directionally validated in terms of their association with diabetes risk. While

further investigation of this topic would seem worthwhile, it seems likely that (as in

Chen et al.) all individuals in the 1000 Genomes Project are likely to be included in

the reference panel for many projects.

6.9 Estimating Relative Risks for Imputed SNPs

6.9.1 Expectation Substitution

Based on the discussion of haplotype inference given in Chap. 5, expectation

substitution of E(nA|Gi) in place of nA in association analysis of the trait of interest

can be expected to have good type I error probabilities and reasonable power

relative to other (e.g., maximum likelihood) methods that jointly estimate risk

parameters and haplotype frequencies when fitting models such as

g E Yið Þð Þ ¼ αþ βnA: ð6:13Þ

More generally, if the model

g E Yið Þð Þ ¼ αþ β0I nA ¼ 0ð Þ þ β1I nA ¼ 1ð Þ þ β2I nA ¼ 2ð Þ ð6:14Þ

is of interest, the probabilities that nA equals 0, 1, or 2 given the observed genotype
data (i.e., the expected values of the indicator functions) are used as the explanatory

variables in (6.14).

More discussion of the behavior of expectation-substitution methods in

unmeasured SNP analysis is provided in Chap. 8 (post-GWAS meta-analysis).

SNPs that are well imputed may also safely be taken into multi-marker analyses,

such as conditional analyses in which the effect of one variant is evaluated after

allowing for the effects of another in order to determine if multiple associations

seen in a single region are likely coming from the same or independent sources.

6.10 Chapter Summary

SNP imputation is very important in both extending the hypotheses being tested and

for combining incompletely overlapping datasets. This chapter has tried to give the

flavor of the HMM-based methods that form the basis of today’s software. While

some authors [28] have stressed the importance of more sophisticated methods,
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simple expectation substitution is the basic for nearly all association testing using

imputed variants and is reasonably reliable at least for testing the effects of single

variants. The 1000 Genomes Project as a cosmopolitan reference panel is a good

source of information about LD patterns for the imputation of common SNPs,

whereas targeting rarer alleles requires larger reference panels. Imputation of rare

alleles using only common markers must ultimately be less accurate than imputing

common markers, no matter how large the reference panel, based on considerations

of haplotype uncertainty in the presence of recombination.

Homework

1. In the first example above (imputing genotypes from phased data for both the

reference and main study), there was no allowance for genotyping error (e.g.,

function b in the R code above, see also haplo_impute.r). Modify this so that

there is a high probability of genotyping error and rerun the imputation for the

same data. What is the effect on the imputation?

2. Try replacing someof theobserveddatawithmissing in thefirst example (i.e., change

the vector O<-c(4,3,3,9,9,3,1,2,3,9,9,2,2,4,1,2,9,1,9) so

that one or two of the non-missing genotypes are set to missing, i.e., set to 9. Run

the imputation again and compare the imputed genotypes to their true values. How

successful does the imputation seem to be?

3. If not already available, download IMPUTE2 from the IMPUTE2 website (see

links below) and install on your computer. Download the HapMap phase 3 phased

genotypes (haplotypes) for the CEU and YRI groups for the SNPs on chromo-

some 22. Download the phased haplotypes for the ASW group and remove 1/2 of

the SNPs (i.e., mask them in the analysis). Use the CEU + YRI data as the

reference panel and impute the missing SNPs for the ASW group. Compare the

imputed SNPs for ASW to the true values by calculating R2 between the imputed

and true SNP allele counts. What is the distribution of R2? If necessary (for ease

in testing the programs and manipulating the data) do the experiment first using

only a few hundred SNPs within a short region of the chromosome.

4. IMPUTE2 provides an imputation quality score for each imputed SNP. How does

that imputation quality score compare to the R2 calculated above? For example,

plot the quality scores against the R2 values. Also compute the imputation R2 as

Var SNP allele dosageð Þ= 2p̂ 1� p̂ð Þð Þ with p̂ the estimated allele frequency for

the imputed SNP ( p̂ is the mean of the dosage divided by 2). Compare the

imputation R2 with the IMPUTE2 quality score and the observed R2 from the

masking experiment. Howwell do they compare (e.g., are they highly correlated)?

5. If you have access to the JAPC data, try extracting the SNPs in the 8q24 region

near the top hits as listed in the Cheng et al. paper (see Chap. 3) and use the

HapMap phase 2 data for JPT + CHB samples in the same region as the reference

panel and target genotypes. Run either MACH or IMPUTE2 to impute the

genotypes in HapMap phase 2 that are not in the JAPC data. Run association

tests using either R, SAS, or PLINK, to relate the dosage estimates to prostate

cancer risk. Are there any imputed SNPs that appear to have stronger results than

the genotyped SNPs?
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6.10.1 Links

IMPUTE2, Genotype imputation and haplotype phasing program, http://mathgen.

stats.ox.ac.uk/impute/impute_v2.html#download

MACH, Markov Chain based haplotyper. http://www.sph.umich.edu/csg/abecasis/

MACH/index.html
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Chapter 7

Design of Large-Scale Genetic Association

Studies, Sample Size, and Power

Abstract The subject of this chapter is sample size and power calculations for

studies of genetic associations for both case–control studies and prospective studies

of a quantitative phenotype or trait. This chapter starts with a comparison of three

different methods for calculating power for the simplest single marker studies and

then goes on to consider the general statistical approach to power calculations that

are embodied in the very widely used QUANTO (Gauderman, W., & Morrison, J.

(2006). QUANTO 1.1: A computer program for power and sample size calculations
for genetic-epidemiology studies. http://hydra.usc.edu/gxe) program for a variety of

study designs, including those which are impervious to population stratification,

specifically sibling-matched and parent-affected-offspring studies. The chapter

then discusses additional considerations affecting sample size and power including

(1) control for multiple comparisons, (2) control for population stratification by the

principal components methods discussed in Chap. 4, (3) multi-staged genotyping

designs, (4) fine-mapping of associations using multi-marker analyses, (5) power

calculations for haplotype analysis and imputed marker analysis, and (7) reuse of

existing data for new studies.

7.1 Design Considerations

Design considerations include (1) source(s) of samples including cases and controls

in retrospective studies, (2) control for population stratification either directly or

indirectly, (3) control of multiple comparisons, (4) genotyping plan, and (5) data

reuse/meta-analysis plans.

All human genetic studies are inherently observational studies. The goal of a

genetic association study is to find results (associations between phenotype and

variant) which can be reliably reproduced if not in all human populations (which

may be impossible since allele frequencies and LD patterns can vary widely

between populations) at least in populations with similar ancestral origins. There

are many potential pitfalls in genetic association studies, not the least of which is

D.O. Stram, Design, Analysis, and Interpretation of Genome-Wide Association Scans,
Statistics for Biology and Health, DOI 10.1007/978-1-4614-9443-0_7,

© Springer Science+Business Media New York 2014

243



the possibility that population structure may introduce bias and/or unexpected

correlations between phenotypes into association results. Two well-known designs,

sibling-matched designs and affected-offspring (trio) designs, have the advantage

of being immune to usual concerns about population structure and confounding,

since the ancestry of the parents is completely adjusted for (conditioned out) in the

analysis of data from these two designs. However in most settings these designs

have important logistical disadvantages compared to studies of “unrelated” sub-

jects. Admixture between groups with varying disease susceptibility was early on

[1] recognized as a serious potential problem; one solution, when studying diseases

such as diabetes in admixed populations, is to only consider “stratification-proof”

designs and accept the limitations that this implies on study size and conduct.

Luckily as we have seen, when large amounts of genotype data are available

(large-scale SNP data) additional approaches to controlling for admixture and

other kinds of population structure open up. Previously justified admonitions to

take extreme care in seeking highly homogeneous sources of case and controls [1]

to avoid the possibility of hidden stratification or admixture differences are less

relevant when admixture can be detected directly and adjusted for in the analysis.

7.2 Sample Size and Power for Studies

of Unrelated Subjects

7.2.1 Power for Chi-Square Tests

Many different kinds of tests can be approximated as single or multi-degree of

freedom central and non-central chi-square statistics under the null (central

chi-square) or alternative (non-central chi-square) hypotheses. To briefly review,

a central chi-square random variable with one degree of freedom arises as the

square of a standard normal random variable, z, having mean zero and unit variance.

A non-central chi-square with one degree of freedom and the non-centrality

parameter μ2 arise as the square of a normal random variable, with mean μ and

variance 1. Central chi-squares with more than one degree of freedom, p, arise as

the sum of squares of p independent standard normal random variables. A

non-central chi-square random variable with p degrees of freedom arises as the

sum of normal random variables, zi, i ¼ 1, . . ., p, each having means μi and

variance 1. The non-centrality parameter for the distribution is λ2 ¼Pp
i¼1

μ2i . The

non-central chi-square distribution has mean p + λ2 and variance 2( p + 2λ2).
Consider a one degree of freedom test. Assume that there is a single parameter of

interest, β, in a model for the outcome data (which may also involve other nuisance

parameters) and that β has an estimator, β̂ , which converges to β and which has a

variance estimate V̂ar β̂
� �

. For most generalized linear models under certain

244 7 Design of Large-Scale Genetic Association Studies, Sample Size, and Power



regularity conditions (required to remove pathological cases) we can assume that

for large samples β̂ is distributed as a normal random variable with mean β and that

the variance estimate will converge to the true variance Var β̂
� �

, of β̂ . Further
assume that we are testing the null hypothesis that β ¼ 0 against the two-sided

alternative β 6¼ 0. In this case the test statistic β̂
2
=V̂ar β̂

� �
, will, for large samples,

have a χ21 distribution with non-centrality parameter equal to the true value, β2,

divided by the true variance Var β̂
� �

(For tests of other null hypotheses, i.e.,

β ¼ β0 the non-centrality parameter is β ¼ β0ð Þ2=Var β̂
� �

). This non-centrality

parameter is key to evaluating power of the test. For example, in order to obtain

power at least equal to s (i.e., sensitivity, or one minus the type II error rate) to test a

null hypothesis β ¼ 0 using a test with type 1 error rate α then the non-centrality

parameter must be at least as large as

Φ�1 1� α=2ð ÞΦ�1 sð Þ� �2
, ð7:1Þ

where Φ� 1(x) is the inverse of the CDF function for a standard normal random

variable, z, i.e., Pr(z � Φ� 1(x)) ¼ x when z is normal with mean 0 and variance 1.

In a simple univariate least squares regression problem, where outcome, Yi, is a
linear function of a predictor, Xi, with both variables observed for i ¼ 1, . . ., N
subjects, the estimate of the slope parameter, β, is equal to

β̂ ¼
XN
i¼1

Xi � X
� �

Yi � Y
� � !

=
XN
i¼1

Xi � X
� �2

. Assuming that the OLS model is

correct (i.e., the mean of Yi is linear in Xi and that the variance of Yi is equal to a

constant σ2 for all i), then the variance of β̂ is equal to σ2=
XN
i¼1

Xi � X
� �2

. The

non-centrality parameter of the χ2 test, β̂
2
=Var β̂

� �
, of the null hypothesis that

β ¼ 0 is equal to β2=σ2
XN

i¼1
Xi � X
� �2

. Note that this non-centrality parameter

can be obtained by a method which we term following Longmate 2001 [2] as the

exemplary data substitution approach as follows. We take the formula for the

chi-square statistic

β̂
2

Var β̂
� � ¼

X
Xi � X
� �

Yi � Y
� �

Xi�Xð Þ2
 !2

σ2X
Xi � X
� �2 ¼

X
Xi � X
� �

Yi � Y
� �� �2

σ2
X

Xi � X
� �2 ð7:2Þ

and replace Yi andY with their expected values μ + βXi andμþ βX , respectively so

that the RHS of (7.2) becomes
X

Xi � X
� �

βXi � βX
� �� �2

=σ2
X

Xi � X
� �2 ¼

β2=σ2
� �X

Xi � X
� �2

, which is the non-centrality parameter. It turns out that for

7.2 Sample Size and Power for Studies of Unrelated Subjects 245



ordinary least squares regression this substitution approach can be utilized to

determine the non-centrality parameter for a great number of tests, both single

and multi-degree of freedom. In general the chi-square statistics relevant to linear

regression can all be written as Y0AY/σ2 where A is a symmetric projection matrix

with rank equal to the number of hypotheses, p, being simultaneously tested. It is

easy to show that the expected value of this statistic is equal to

rank Að Þ þ E
�
Y
�0
AE Yð Þ=σ2 ¼ pþ E

�
Y
�0
AE Yð Þ=σ2,

so that the non-centrality parameter λ2 is obtained by substitution of the vector

Y ¼ (Yi, Y2, . . ., YN)
0 with its expected value, E(Y) ¼ (E(Yi), E(Y2), . . ., E(YN))

0,
into the formula for the statistic itself; i.e., to obtain the non-centrality parameter we

analyze E(Y) in the same way we would analyze the actual observed data Y. This

idea is expanded upon in the next sections. Note that β2=σ2
� �X

Xi � X
� �2

increases linearly with the sum of squares term,
XN

i¼1
Xi � X
� �2

. Typically the

sum of squares can be assumed to increase linearly with the number of subjects

(if for example the sampled Xi are representative of an underlying population of

possible values so that each individual brings on average the same amount of

information to the study). This is also generally true for the non-centrality param-

eter, E(Y)0AE(Y)/σ2, for multiple degrees of freedom test.

As usually described, tests of null hypotheses in ordinary linear regression utilize

F, rather than chi-square, statistics to perform hypothesis testing. The F tests, by

taking into account the variability of the estimate of σ2 (σ̂ 2, equal to the sum of the

square of the residuals divided by the residual degrees of freedom), are exact for any

sample size when, in addition to being linear in Xi and homogeneous in variance, the

Yi are normally distributed. The chi-square statistics described above form the

numerator and denominator of these F tests (after division by the number of degrees

of freedom, p), and the non-centrality parameter for the F is equal to the

non-centrality parameters for the numerator. As the number of degrees of freedom

for the residual error estimate, σ̂ 2, increases, the conclusions of the F test (i.e., the p-
values obtained from the test) approach those of the chi-square statistic.

Once the non-centrality parameter for a single or multi-degree of freedom test is

computed it is very simple to obtain the power of a chi-square test using the R code

functions pchisq and qchisq, which give (respectively) the CDF and inverse CDF

functions of the chi-square distributions. The function Power_chisq defined below

takes arguments equal to the number of degrees of freedom and non-centrality

parameter as well as the test size α used to determine significance:
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The power function for F tests is a function also of the same ncp and alpha

parameters, but includes both the numerator and denominator (residual) degrees of

freedom in the calculations. R code for this function is:

Finding the non-centrality parameter that corresponds to a fixed value of power

is easy for 1 degree of freedom chi-square tests using (7.1). For multiple degrees of

freedom tests a simple search can be used to solve for the ncp value that satisfies a

given power requirement. When the non-centrality parameter can be assumed to be

linear in sample size, finding the non-centrality parameter also finds the sample size

needed to meet specific study requirements on power and type I error rate α.
The exemplary data approach to power calculation applies this substitution

method to tests which can be assumed to have an asymptotic chi-square distribu-

tion; our main focus will be upon likelihood ratio tests for generalized linear

regression. While the underlying statistical justification of this approach can be

quite complex it is an extremely useful and relatively simple approximation tech-

nique [2–4].

As described in previous chapters there is more than one way to analyze genetic

associations in case–control data (here we concentrate on diallelic variants), for

example, we may

1. Perform tests for allele frequency differences (allele A versus allele a) between
cases and controls, using standard binomial statistics.

2. Use the Armitage test NR2 to test for correlation between case–control status, D,
and the count, n(A), of the number of copies of allele A.

3. Perform logistic regression relating individual case–control status, Di, to ni(A)
by fitting the logistic model.

log E Dið Þ � log 1� E Dið Þ½ � ¼ μþ β0Gi0 þ β1Gil þ β2Gi2,½ ð7:3Þ

with Gik equal to the indicator variable I[ni(A) ¼ k] for k ¼ 0, 1, 2.

We now consider power calculations for all three of these. Consider several

possible constraints on the βk parameters in model (7.3).

1. The dominant model constrains β0 ¼ 0 and β1 ¼ β2.
2. The recessive model constrains β0 ¼ β1 ¼ 0.

3. The log additive model constrains β0 ¼ 0 and β2 ¼ 2β1.

In addition μ is a free parameter that will play a role as well in the following. Of

course in a case–control study the estimated value of μ is mainly reflective of

matching frequency ratios and not of background rates of disease in a population.
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7.2.2 Calculation of Non-centrality Parameters
for Chi-Square Tests in Generalized Linear Models

We begin our analysis of power by computing the expected genotype probabilities

Pr(ni(A) ¼ k|Di) conditional on case–control status (Di ¼ 0 or Di ¼ 1) assuming

(1) that the frequencies of alleles a and A are in Hardy–Weinberg equilibrium in the

source population for the case–control study with allele A having frequency p and

(2) that model (7.3) applies. We use Bayes’ Rule to compute

Pr ni Að Þ ¼ k
��Di

� � ¼ Pr Di

��ni Að Þ ¼ k
� �

Pr ni Að Þ ¼ kð ÞX2
l¼0

Pr Di

��ni Að Þ ¼ l
� �

Pr ni Að Þ ¼ lð Þ
: ð7:4Þ

Illustrative values coming from the calculations are displayed in Table 7.2. Here

we focus on an example involving a rare disease (μ ¼ 10� 5 in the population) and

a modest log odds ratio parameter β ¼ log(1.3) for a common variant having

frequency equal to p ¼ 0.1.

R code to compute the second line of Table 7.1 is given below; note that this uses

the built-in R function dbinomwhich gives the probability function for the binomial

distribution; the first argument for dbinom is the number of successes, the second is

the index (number of trials), and the third the frequency parameter p
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The other lines are computed by altering the parameters, p, μ, and the βs
accordingly.

With Table 7.1 in hand consider power calculations for each of the tests above.

The binomial test assumes that each of the genotype count variables for cases

and controls is distributed as a binomial random variable with number of trials

equal to 2 and tests for a frequency difference between the two groups. A standard

asymptotic χ21 test statistic is

p̂ 1 � p̂ 0ð Þ2
V̂ar p̂ 1 � p̂ 0ð Þ : ð7:5Þ

The variance estimator is

p̂ 1 1� p̂ 1ð Þ
2n1

þ p̂ 0 1� p̂ 0ð Þ
2n0

	 

,

where p̂ 1 and p̂ 0 are the sampled frequencies of allele A in the cases and controls

respectively and p̂ is the frequency in the combined sample (cases and controls).

The non-centrality parameter for test (7.5) is

p1 � p0ð Þ2
Var p̂ 1 � p̂ 0ð Þ , ð7:6Þ

with Var p̂ 1 � p̂ 0ð Þ equal to ( p1(1 � p1)/2n1) + ( p0(1 � p0)/2n0). Consider now
the power of testing for allele frequency differences in a scenario in which the

population allele frequency, p, equals 10 %; the model for disease given allele

count n(A) is log additive with β1 ¼ log(1.3) (and β2 ¼ 2 log(1.3)) in a study

which samples 500 cases and 500 controls from a population with background

disease frequency specified by μ ¼ logit(10� 5). From Table 7.1 we see that in this

scenario the genotype count probabilities for the cases are Pr(n(A) ¼ 0) ¼ 0.7635,

Pr(n(A) ¼ 1) ¼ 0.2206, and Pr(n(A) ¼ 2) ¼ 0.0159. Therefore the true A allele

frequency is P1 ¼ (0.2206 + 2 � 0.0159)/2 ¼ 0.1262 for the cases. For the con-

trols Pr(n(A) ¼ 0) ¼ 0.81, Pr(n(A) ¼ 1) ¼ 0.18, and Pr(n(A) ¼ 2) ¼ 0.01, with

mean frequency 10 % as in the population. Upon substitution the non-centrality

parameter is equal to

λ2 ¼ 1, 000
0:02622

0:1262 1� 0:1262ð Þ þ 0:10 1� 0:10ð Þ ¼ 3:4275:

Substituting this into the Power_chisq function above:

gives a power of 0.4568 under the alternative hypothesis.
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For the Armitage trend test (computed as NR2 where N is the total number

of subjects and R2 is the squared correlation between case–control status and

genotype count) we can compute the correlation between case–control status

and genotype count for this example. The joint probability distribution of genotypes

and case–control status for a 1:1 frequency-matched study will be as shown in

Table 7.2 which is computed using the R function p_n_given_d defined above.

Analyzing these data as if they are observed data can be done (approximately) as

follows:

which gives 3.364 as the non-centrality parameter.

For a more precise answer we can use the cov.wt function in R which allows for

weights and analyze Table 7.2 directly as

which gives 3.4163 as the non-centrality parameter (here the cov2cor function is

used to compute a correlation matrix from an input covariance matrix which

is computed using cov.wt). Using the latter in function Power_chisq gives

power ¼ 0.5745, close to the power determined from the test of binomial frequen-

cies above.

Table 7.2 Expected distribution of case–control status and genotype

computed in a case–control study with 500 cases and 500 controls for

the above example

n(A) D Pr(n(A),D) E(Nn(A),D)

0 0 0.4050 405

1 0 0.0900 90

2 0 0.0050 5

0 1 0.38175 381.75

1 1 0.1103 110.3

2 1 0.0080 7.95

Each value E(Nn(A),D) is the expected number of subjects and is computed

as 1,000 times Pr(n(A),D) which equals Pr(n(A)|D)π(D) for n(A) ¼ 0, 1, 2

and D ¼ 0, 1. Here π(D) is the fraction of sampled subjects with disease

state D. In this 1:1 matching π(D) equals ½ for both D ¼ 0 and D ¼ 1
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Finally we can use Table 7.2 to approximate the power for a likelihood ratio test

of no association between disease, D, and outcome. We fit a logistic regression

model to the data in Table 7.2 either approximately as in:

which returns ncp ¼ 3.37395 or directly (using a weight function in the call to the

glm function) as:

which gives ncp ¼ 3.426016.

All of these non-centrality parameters give similar estimated study power of

45.7–45.9 %.

Table 7.3 gives non-centrality parameters for the three tests (allele counting,

Armitage, and Logistic regression) corresponding to all the parameter choices

given in Table 7.1.

Notice that the non-centrality parameters are far smaller for the recessive model

than for the dominant or additive models (which is expected since the risk genotype,

the AA, is very rare). Also notice that the non-centrality parameter computed for the

allele counting method for the recessive model is noticeably larger than for either

the Armitage test or for logistic regression. This needs to be interpreted carefully; in

this case the a priori assumption, used by the allele counting method, of

Hardy–Weinberg equilibrium of genotypes in both the cases and controls is not

valid. Compared to a binomial distribution with the same mean the distribution

among the cases has too many homozygotes (aa or AA) and too few heterozygotes.

This means that the allele counting test underestimates the variance of p̂ 1 and

therefore of the test statistic, p̂ 1 � p̂ 0ð Þ; hence this test may not control the false-

positive rate at the required type I error level. The dominant model (second line of

Table 7.3) also shows a small discrepancy between the distribution of genotypes in

Table 7.3 Non-centrality parameters calculated for the parameter values given in Table 7.1

Allele

counting

Armitage

test

Logistic regression

exemplary data

μ ¼ logit(10�5), additive, β ¼ log(1.3), p ¼ 0.1 3.4275 3.4163 3.4260

μ ¼ logit(10�5), dominant, β ¼ log(1.3),

p ¼ 0.1

2.6735 2.5739 2.5907

μ ¼ logit(10�5), recessive, β ¼ log(1.3),

p ¼ 0.1

0.0343 0.0064 0.0065

μ ¼ logit(0.5), additive, β ¼ log(1.3), p ¼ 0.1 3.1664 3.0160 3.0224

252 7 Design of Large-Scale Genetic Association Studies, Sample Size, and Power



the cases and that expected with the binomial distribution with the same mean.

In this case the discrepancy again leads to a slight overestimation of the power for

the allele counting test. The same appears to be true for a log additive model (last

line of Table 7.3) in which the disease is assumed to be common (background

frequency of 0.5). In general the allele counting test is only fully appropriate for an

additive logistic model when the disease is rare, since only then does the distribu-

tion of n(A) in both the cases and the controls follow HWE (see Homework).

The exemplary data method is a very flexible method for approximating

non-centrality parameters for case–control studies [2]: it can be extended to

the computation of power for tests of gene � environment and gene � gene

interactions using standard logistic regression analysis (i.e., unconditional anal-

ysis), conditional logistic regression [3], and case-only analysis (for interac-

tions), etc. For each choice of parameters in Table 7.2 models for the

distribution of disease, given genetic variants and covariates, (including interac-

tions with covariates), are combined with models for the distribution of genetic

variants and covariates in the population as a whole to produce the expected

numbers given in the table.

A fairly complicated example of the exemplary data method is given in

Longmate [2] who describes power calculations for a gene–environment interac-

tion, in this case between smoking and a candidate gene for lung cancer. In order to

compute power for such a study it is necessary to specify (1) the risk allele

frequency in the population, (2) the frequency of smoking in the population,

(3) the relationship between smoking and probability of disease, and (4) how this

smoking risk depends upon the number of risk alleles, n(A), that an individual

carries. It was assumed in Longmate 2001 that smoking is independent of n(A) in
the population as a whole, that the population frequency of never smoking was

34 % (coded as Smoking ¼ 1), 44 % for former smoking (Smoking ¼ 2), and 22 %

for current smoking (Smoking ¼ 3), and that the frequency of the risk allele A was

80 %. Next it was assumed that for individuals in which n(A) ¼ 0 (noncarriers)

smoking multiplied the risk of lung cancer by a factor of 2 and 4 for former and

current smokers compared to never smokers, respectively; for n(A) ¼ 1 disease risk

was assumed to be increased by a factor of 4 and 8 for former and current smokers,

and n(A) ¼ 2 further increased the relative risk of disease to 5 and 10 for former

and current smokers. No main effects were attributed to n(A), i.e., the risk allele

count had no effect on lung cancer risk among never-smokers. Finally it was

assumed that in the case–control design there was an oversampling of nonsmoking

cases (15 % of the total sample) with 50 % of subjects being controls, not sampled

on the basis of smoking and the remaining 35 % either former or current smokers.

Based on all this information the expected data distribution was calculated and

summarized in Table 2 of that paper.

Table 2 of that paper can be reexpressed (for a study of 2,000 total cases and

controls) as Table 7.4.

Here the stratum variable (dependent on smoking and disease) takes the value

1 for controls, 2 for nonsmoking cases, and 3 for former or current smoking cases.
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Summing over the elements composing the stratum we have
X

stratum¼1

w ¼ 0:5,X
stratum¼2

w ¼ 0:15, and
X

stratum¼3

w ¼ 0:35 as planned for the study.

These data can be used to calculate non-centrality parameters for each of the

effects, smoking, allele count, and the interaction between smoking and allele count

using the glm function and display them in an analysis of deviance table using

anova as follows:

which returns:

Finally power is computed using the Power_chisq function, using the changes in
deviance as the non-centrality parameter in each case. The power of this study is

computed as equal to Power_chisq(2,42.69,.05) ¼ 99.99 % for the smoking effect,

Table 7.4 Exemplary data for example from Longmate 2001 [2]

Disease n(A) Smoking Stratum w ¼ Pr(n(A)|Smoking, Disease) � π(stratum) E(ND,n(A),S)

0 2 1 1 0.1088 217.6

0 2 2 1 0.1408 281.6

0 2 3 1 0.0704 140.8

0 1 1 1 0.0544 108.8

0 1 2 1 0.0704 140.8

0 1 3 1 0.0352 70.4

0 0 1 1 0.0068 13.6

0 0 2 1 0.0088 17.6

0 0 3 1 0.0044 8.8

1 2 1 2 0.0960 192

1 2 2 3 0.1228 245.6

1 2 3 3 0.1228 245.6

1 1 1 2 0.0480 96

1 1 2 3 0.0491 98.2

1 1 3 3 0.0491 98.2

1 0 1 2 0.0060 12

1 0 2 3 0.0031 6.2

1 0 3 3 0.0031 6.2

254 7 Design of Large-Scale Genetic Association Studies, Sample Size, and Power



Power_chisq(2,5.88,.05) ¼ 57 % for the marginal effect of genotype count, G, and

Power_chisq(4,3.56,.05) ¼ 29 % for the smoking by gene interaction.

7.3 QUANTO

The widely used QUANTO program authored by Gauderman and Morrison [5] is a

power calculator that computes power for detection of effects on phenotype mean

or case–control status, for gene, environment, and gene � environment or gene �
gene interactions using a modification of the exemplary data method. It allows

many types of study designs and outcome analyses including (1) ordinary least

squares regression analysis, (2) 1:M frequency-matched designs using uncondi-

tional analysis, (3) 1:1 individual-matched data including sibling-matched designs,

(4) the parent-affected-offspring (trio) design, and (5) the case-only approach for

testing of G � G and G � E interactions.

As described in two papers [6, 7] Gauderman and coworkers implement a

modification of the exemplary data method in order to compute power for complex

case–control designs. This method is a bit more complex than that described above.

Rather than using the expected counts (i.e., the last column of Tables 7.1 or 7.3)

directly as observed data, they are used instead to compute the maximum value of

the expected log likelihoods for both the null and alternative hypothesis, when

fitting parameters in the models of interest. It is worthwhile going through the

calculations for the example in Table 7.2. Table 7.5 adds two additional (the fourth

and fifth) rows to Table 7.2, which is the log likelihood contribution for each cell.

The expected log likelihood for the null hypothesis (calculated using the

E(Nn(A),D above), which is computed using the parameter values under the alterna-

tive hypothesis), is

381:75þ 110:3þ 7:95ð Þ
α� 381:75þ 110:3þ 7:95þ 405þ 90þ 5ð Þlog 1þ eαð Þ
¼ 500α� 1, 000log 1þ eαð Þ:

This easily shows that the maximum of this function is achieved when α ¼ 0 and

maximum value is � 1, 000 log(2) ¼ � 693.1472. Under the alternative hypoth-

esis the expected log likelihood is

�786:75log 1þ exp αð Þð Þ � 200:3log 1þ exp αþ βð Þð Þ
�12:95log 1þ exp αþ 2βð Þð Þ þ 500:00αþ 126:20β:

This expression can be maximized with respect to α and β with the following

R code which uses a multidimensional search program, optim, for optimization, that

is, provided by R:
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This gives results showing $par (the maximized values of the parameters) $value

(the maximized value of f ) and other information:

Table 7.5 Expected distribution of case–control status and genotype computed in a case–control

study with 500 cases and 500 controls for the above example as in Table 7.2

n(A) D Pr(n(A),D)
Contribution to null

log likelihood

Contribution to alternative log

likelihood E(Nn(A),D)

0 0 0.4050 � log(1 + eα) � log(1 + eα) 405

1 0 0.0900 � log(1 + eα) � log(1 + eα+β) 90

2 0 0.0050 � log(1 + eα) � log(1 + eα+2β) 5

0 1 0.3818 α � log(1 + eα) α � log(1 + eα) 381.75

1 1 0.1103 α � log(1 + eα) α + β � log(1 + eα+β) 110.3

2 1 0.0080 α � log(1 + eα) α + 2β � log(1 + eα+2β) 7.95

Disease n(A) Smoking Stratum w ¼ Pr(n(A)|Smoking,

Disease) � π(stratum)

E(ND,n(A),S)

0 2 1 1 0.1088 217.6

0 2 2 1 0.1408 281.6

0 2 3 1 0.0704 140.8

0 1 1 1 0.0544 108.8

0 1 2 1 0.0704 140.8

0 1 3 1 0.0352 70.4

0 0 1 1 0.0068 13.6

0 0 2 1 0.0088 17.6

0 0 3 1 0.0044 8.8

1 2 1 2 0.0960 192

1 2 2 3 0.1228 245.6

1 2 3 3 0.1228 245.6

1 1 1 2 0.0480 96

1 1 2 3 0.0491 98.2

1 1 3 3 0.0491 98.2

1 0 1 2 0.0060 12

1 0 2 3 0.0031 6.2

1 0 3 3 0.0031 6.2

The contribution to the log likelihood of each cell under the null and alternative hypothesis is

added to the table
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We can now compute the non-centrality parameter as the expected change in

deviance (twice the change in log likelihood) as:

which returns ncp equal to 3.426014 which is indistinguishable from the NCP

calculated using the exemplary data method (3.426016) as given in the previous

section. Power is therefore estimated to be Power_chisq(1,3.4260,0.05) ¼ 45.7 %.

The expected change in likelihood method can also be extended to more

complicated tests as for example in Table 7.4. If the null hypothesis includes the

presence of an effect ofG and S but not ofG � S term then we specify initial values

for five parameters in the null model

log
�
Pr D ¼ 1ð Þ= 1� Pr Dð Þð Þ ¼ μþ βS2S2 þ βS3S3 þ βG1G1 þ βG2G2

(here the S and G variables are appropriate indicator functions for smoking and

gene count, n(A) respectively, with μ representing the odds of disease for nonsmokers

with n(A) ¼ 0). We then calculate the log of the likelihood, lnull,k, for each data

configuration given in Table 7.4 (k ¼ 1,. . .,18,with k indexing the rows of Table 7.4).
For example, for the configuration D ¼ 0, n(A) ¼ 2, S ¼ 0 (row 8 of Table 7.4) the

log likelihood will be equal to l(μ0,β0)null,8 ¼ log(1 � (exp(μ0 + β0G2))/(1 + exp

(μ0 + β0G2))) and for configuration given D ¼ 1, n(A) ¼ 1, S ¼ 2 (the 14th row)

the log likelihood will be equal to l(μ0,β0)null,14 ¼ log(exp(μ0 + β0S2 + β0G1)/1 + exp

(μ0 + β0S2 + β0G1)). We calculate the expected value as E{(lnull(μ
0, β0)} ¼ P18

k¼1, ...18
¼

wkl(μ
0β0)null,k then we must search for parameter values, (μ, βS2, βS3, βG1, βG2),

which maximize this expectation, i.e., find we find arg max[E{(lnull(μ, β))}] and
save the corresponding maximized value as lmax

null . This computes the first step of the

power calculation.

The next step is to perform the same procedure again this time using the

likelihood under the alternative hypothesis, i.e., the likelihood function that

includes the four interaction terms βG1,S2G1S2, βG1,S3G1S3, βG2,S2G2S2, and βG2,
S3G2S3 in the model and perform a maximization (including the added parameters)
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to find the maximized value, lmax
alternative, of the expected log likelihood including

the two interaction parameters, using the same weights as before. Finally

the non-centrality parameter for the test (here a 4 degree of freedom test) is

computed as 2(lmax
alternative � lmax

null ).

Coding this all in R and using the optim function twice (see the accompanying

file power_functions.R) give a non-centrality parameter of 2.80 (power ¼ 23 %)

compared to 3.56 (power ¼ 28 %) using the exemplary data method; thus in more

complex models these two methods are likely to diverge to some degree.

7.3.1 Use of QUANTO to Compute Power to Detect Main
Effects of Genetic Variants in Case–Control Studies

QUANTO is available at the URL http://hydra.usc.edu/gxe/. On start-up (after

installation) an initial screen appears showing default values. Normally a user

will begin by clicking on the “Wizards” menu item and then choosing “New,”

this being a series of input screens which specify the choice of study design as

well as (for main effects analysis) allele frequency and range of genetic effects of

interest. In addition (for case–control studies) the baseline probability of disease

in the population is required (as discussed above) in order to compute the

expected data configurations. For the example given in the first line of Table 7.3

(see Fig. 7.1), choose “Unmatched Case–Control Study” with frequency

matching of 1 case to 1 control from the Outcome/Design section and choose

“Gene Only” from the Hypothesis section. On the next screen set the allele

frequency to 0.10 and the Inheritance Mode to “Log Additive”. On the third

screen set the Baseline Risk to 0.00001 and the Genetic Effect to 1.3. On the last

screen specify the sample size as 1,000 and the type I error rate as 0.05. Finally

choose “Finish” and click the calculator icon on the main menu. This gives

the output

Parameter Power Null Full

Gene 0.4570 βG ¼ 0 βG

The power reported is in agreement with the 45.7 % power found above for the

same example.

7.4 Alternative Designs

As described in previous chapters control for population stratification is an impor-

tant issue in genetic association studies. This is especially true of small scale

studies in which too few markers can be genotyped in order to allow for the

methods of correction described in Chap. 4, i.e., the principal components or
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mixed model methods. Control for the effects of population stratification by study

design has been discussed extensively in the statistical genetics literature. Here we

discuss the two types of such designs that QUANTO can calculate power for,

namely, the use of sibling controls in case–control studies and the parent-affected-

offspring designs.

7.4.1 Sibling Controls

Studies in which cases are matched to controls selected from among their biolog-

ical full siblings offer complete control for population stratification because each

full sibling has exactly the same ancestry. The analysis of sibling-matched con-

trols must be performed using conditional logistic regression and power calcula-

tions for this design must take account of the fact that siblings are more likely to

share the genotype of an allele of interest than are randomly selected controls.

Figure 7.2 shows sample sizes (number of required cases) computed using

QUANTO that are required for the detection of odds ratios ranging from 1.1 to
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Fig. 7.2 Sample sizes plotted against odds ratios. Sample sizes computed in QUANTO are those

required to maintain power of 80 % for detecting the effects of variants with specified ORs and

allele frequencies from 10 to 30 % for sibling (solid lines) versus random (dotted lines) controls
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2.0 for allele frequencies 10–30 % under the log additive model for both the

sibling (1:1) matched design and a 1:1 matched case–control design using ran-

domly selected controls. For all the combinations of odds ratios and allele

frequencies shown QUANTO finds that it takes almost exactly twice the number

of sibling control matched cases to detect (with type I error rate 5 % and power

80 %) the effect of a given variant than using random controls. The loss of

effective sample size when sibling controls are used is due to the correlation

between the genotypes of the siblings. From Chap. 2 we recall that this correlation

is r ¼ 0.50. It is because of this strong correlation there are many more

non-informative case–control sets (i.e., case–control sets where both the cases

and controls have the same genotypes) than there would be if random controls

were selected.

The loss of effective sample size for detecting the main effects of genes is a

significant detriment to this study design; in modern-day studies where large

numbers of markers are genotyped protection against population stratification can

be achieved using other methods, for example, by control for principal components.

However, as shown below utilization of these methods also causes a loss in

effective sample size, although this varies by the degree of differentiation of each

marker, so that we need to be careful in concluding that random controls are

“always” better than sibling controls

7.4.2 Power for Interactions

As illustrated above a full analysis of power for testing interactions is necessarily

quite complicated since power and required sample size depends upon many

“nuisance” factors, including, (1) the frequency of the exposure, (2) genotype

frequency, (3) marginal effects of exposure on risk, (4) marginal effects of geno-

types on risk, (5) the background risk of disease, (6) the correlation of exposure

among case–control sets, etc.

Extensive comparisons of the power of tests for gene by environment interac-

tions using sibling controls versus random controls are given in Gauderman

et al. [6]. In most cases it turns out the use of sibling controls is somewhat more
powerful than using random controls, so long as the environmental exposures

between the two siblings are not correlated. Once the exposures are correlated

within sibship the (generally modest) power advantage of the sibling control design

degrades. Intuition is provided for this last result by considering that when both

exposures and (necessarily) the SNP genotypes are correlated within sibships, the

probability of obtaining pairs that have the same values for both genes and

exposures (and hence are non-informative for gene � exposure interactions)

becomes larger than for randomly paired cases and controls.
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7.4.3 Parent-Affected-Offspring Trios

The parents-affected-offspring design (trio design) also provides full protection

against the confounding effects of population stratification. As described in

Chap. 3 (Sect. 3.6.2) there are several ways to analyze data from the trio design,

QUANTO calculates the maximized expected likelihoods for this design using

conditional logistic regression. For main effects analysis the transmission disequi-

librium test is a score test for this likelihood. When the model for disease status is

log-linear in the number, n(A), of copies of the allele of interest, then the

parent–offspring design requires virtually the same number of cases (and

hence 3/2 times as many subjects genotyped) as does the unmatched case–control

design. For other penetrance models (i.e., dominant or recessive) the

parent–offspring design requires somewhat fewer cases than does the unmatched

case–control design.

For the study of gene � environment interactions the parent–offspring design

is somewhat more powerful than the unmatched case–control design, especially

for dominant or recessive penetrance models and this design can be considerably

more powerful for the study of gene � gene interactions. As mentioned above the

particulars for power calculations for gene � environment (or gene � gene)

interactions become complicated, since they depend on a large number of

nuisance parameters, the interested reader is directed to the papers by Gauderman

and others.

7.4.4 Power for Case-Only Analysis of Interactions

As described by many authors [7, 8], and as seen in Chap. 3 (Sect. 3.7.2), testing for

gene by environment or even gene by gene interactions can be much more power-

ful, for a rare disease, if only the cases are used in an analysis. Such an analysis

gains power by reliance on an assumption that in the population as a whole, genetic

variants of interest are distributed independently with respect to the exposures of

interest and of the other genes (when testing gene � gene interactions). The case-

only analysis of interactions essentially tests for dependence, among the cases,

between the allele count, n(A), of interest and the particular exposure being studied.
If such dependence is noted among the cases in a case–control study, and if

independence in the population as a whole is assumed then dependence among

cases can be interpreted as being due to interactions between gene and environment.

Under the independence assumption, for a rare disease, it takes approximately ½ as

many cases to give the same power that a case–control study has for detecting the

same effect. For example consider again the data from Longmate. Using only the

data for the cases (rows 10–18 of Table 7.4), we form a 3 � 3 table of expected

counts as:
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Next we use the chisq.test function in R to test for association between the rows

and columns of this matrix:

We use the test value (6.5617) as the non-centrality parameter, to calculate the

power of the test:

This indicates that the case-only test for interaction, with power 51 %, is more

powerful than the value calculated for the case–control analysis (29 % power for the

test for interaction) using the exemplary data technique above. The power gain for

the case–control analysis arises by exploiting the independence assumption

(between genes and environment) that was used in calculating the weights for the

case–control analysis, but which was not explicitly incorporated into the analysis.

To understand what is going on consider that if there is an interaction between

genes and environment then those combinations of genes and environment that lead

to especially high risk will be over-represented in the cases so the probability of a

case carrying those combinations will be greater than predicted based on the

marginal frequency of either of the two among cases. If we assume that there is

no relationship between genes and environment in the population as a whole the

interaction analysis is simplified to test for independence of genes and environment

among cases, a test which is (for rare disease) inherently more direct and powerful

than the test for interaction in the cases-control analysis. As described in Chap. 3

(Sect. 3.7.2) the standard case–control analysis of interactions can in fact be thought

of as a test for whether the relationship between genes and environment is the same

in cases as in the controls. For a rare disease, where the controls represent the

population and so G, E independence can be assumed it takes twice as many cases

(plus one control per case) to test for interactions in the 1:1 frequency-matched

case–control data as does as it does to test for association between genes and

environment using the case-only analysis.
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7.5 Control for Multiple Comparisons

7.5.1 Single Marker Associations

Large-scale, “agnostic” genetic studies involve the testing of an extremely large

number of hypotheses. Testing of single marker associations (main effects) has to

date been the main focus of almost all GWAS analyses, often with the inclusion of

imputed variants as well as the SNPs directly genotyped among the hypotheses to be

tested. As described in Chap. 3 (Sect. 3.11) the Bonferroni approach to the correc-

tion for multiple hypothesis testing in assignment of the experiment-wise signifi-

cance of a result from large-scale genetic studies is a reasonable approximation

except when the correlations between “nearby” tests is very high. Direct application

of the Bonferroni criteria would assign different criteria for significance to different

platforms/marker sets. This is somewhat of an inconvenience and does not take into

account the use of imputation (Chap. 6) to further extend the number of single

marker hypotheses being tested. For common variants (e.g., those above 5–10 %

frequency) a general rule of thumb [9] is that there are approximately one million

independent hypotheses that “could” be tested using common SNPs (with fre-

quency 5 % or greater) so that a criteria of 0.5/106 ¼ 5 � 10� 8 for global signif-

icance of a given association (for either a genotyped or imputed SNP) is an often

relied upon guide. It may be justifiable also to use somewhat stricter criteria than

this in studies of the older populations, for example, African or African-derived,

where the number of common variants is larger and the LD patterns weaker. The

effect on power of using a 2.5 � 10� 8 vs. 5 � 10� 8 significance threshold

(allowing for twice as many tests in these populations) can typically be made up

for by an increase in sample size of approximately 3 % for a study which is designed

to have 80 % power.

7.5.2 More Complex Marker Associations

Figure 7.3 slows a plot of required sample size (obtained from QUANTO) versus

number of markers to be tested for a study with 80 % power to reject the null

hypothesis in favor of a specific alternative. In the figure the sample size is

expressed as the ratio of the number of subjects that are required for testing

M hypotheses compared to testing only 1 hypothesis, which allows the plot to be

free of the actual alternative value of the odds ratio parameter that is being used in

the calculation. This plot is extremely linear in the log of the number of markers.

For example a study that is to testM ¼ 10 million hypotheses at false-positive error

rate, α ¼ 0.05/M, must be approximately six times as large as a study that only tests

1 hypothesis at α ¼ 0.05. Using this log linear relationship, we can calculate

sample size requirements for studies involving a truly forbidding number of

hypotheses being tested; consider for example the testing of all two-way
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interactions between all one million SNPs on a hypothetical GWAS array. We have

one million choose two or approximately 500 billion tests being performed, which

gives a Bonferroni criteria of 1 � 10� 13. This value is smaller than the (currently)

permitted minimum value in QUANTO for the type 1 error criteria. However

simple extrapolation, based on the log linearity of Fig. 7.3 readily shows that it

would require approximately nine times as many subjects for a study to have 80 %

power while controlling for 500 billion tests of gene by gene interactions at a global

false-positive error rate of 0.05, compared with a study that has 80 % power to

detect an effect of a single gene � gene interaction. (Here we are assuming that the

gene frequencies, as well as the marginal and joint effects on risk of the pairs of

variants considered are similar in both studies.)

This discussion has emphasized the simplest but arguably an overly conservative

method for control of the false-positive rates when performing multiple compari-

sons, i.e., the Bonferroni criteria. We have already argued (Chap. 4) that when each

association test is only correlated with a limited number of nearby tests that the

Bonferroni method performs quite well in comparison to more complex approxi-

mations based on theoretical behavior of the Ornstein–Uhlenbeck process. In

testing gene by gene interactions the dependence structure between tests is surely

more complicated, and it may be worthwhile to consider other methods of assessing

significance when such a study is actually conducted; however the point being made

here is mainly about the power of having large studies; in an era of large-scale meta-

analyses it may (soon) be possible to indeed put together combinations of studies of

common diseases that are large enough to effectively control for 500 billion

associations using the Bonferroni criteria, moving what can now, with today’s

sample sizes, mainly be exploratory analysis into the realm of the reliable and

reproducible.
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7.5.3 Reliability of Very Small p-Values

Chapter 3 (Sect. 3.12) described briefly some of the considerations involved in

evaluating whether asymptotic approximations used to calculate p-values, etc. are
reliable enough to ensure that the small p-values needed to control for experiment-

wide single variant tests (e.g., ~5 � 10�8) are reliable. It is of course even more

difficult to evaluate the reliability of p-values smaller than 10�13 or so needed to

control for hypotheses concerning all pairwise G � G interactions using the

Bonferroni approach. One intuitive approach is motivated by Fig. 7.3. Consider a

sample size that is sufficient to reject one hypothesis of interest at the customary

0.05 type I error level reliably, i.e., enough data is available so that the asymptotic

approximations are reliable at this rejection rate. Then raise the sample size

requirement according to the log linear relationship depicted in Fig. 7.3. Of course

determining whether this simple approach is adequate requires additional analysis.

7.6 Two-Staged Genotyping Designs

Many genome-wide association studies have used some form of multistage sam-

pling design [10] because of the considerable savings in genotyping costs this

approach offers. Two-stage sampling for GWAS studies is described in detail in

Wang [11] based on genotyping part of the sample using a commercial high density

panel (typically 500,000 to a million SNPs) and then genotyping the most promis-

ing SNPs using a customized panel on the remainder of the sample. A final analysis

combining the information from both samples is more powerful than treating the

design as a hypothesis generation followed by independent replication [12] because

it exploits the additional information about how significant the first-stage associa-

tions were, not just the fact that they exceeded some threshold. Formally, two-stage

designs can be conceptualized as a family of group sequential tests (one per SNP)

with allowance for early stopping for “futility” [13].

Despite the dramatic cost reductions for genotyping of the GWAS era, cost is

still a limiting factor in conducting genome-wide association studies and currently

there are several potentially important reasons for adopting a multistage genotyping

strategy. First, it has been shown [14] that considerable cost savings result by

adopting multistage approach to genotyping in a large-scale association study

without sacrificing very much power [15]. With the multistage approach, all

SNPs are genotyped in the first stage in a fraction of samples, and a liberal

significance level threshold is used to identify a subset of SNPs with putative

associations. In later stages, these putative associations are retested in a separate

sample. This design eliminates waste of resources on noncausal markers and

substantially increases power per dollar spent when the principal constraint is the

total cost [16]. Another reason for conducting two-stage genotyping studies is that

potential data quality concerns, such as heterozygote dropout, or case/control
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differential call/error rate, may create false positives that are rare in general, but

abundant among positive associations detected using a genome-wide technology.

Since these artifacts are usually technology specific, genotyping the SNPs selected

in stage I on a different platform in later stages may greatly alleviate this practical

problem.

Wang et al. [17] focused upon the first of these two problems, by updating these

earlier analyses to take account of a number of characteristics of GWAS

genotyping. First, in genome-wide scans the total number of SNPs being considered

far exceeds those considered in earlier papers and the number of SNPs has an

impact upon the optimal sample sizes in the two stages and the threshold for

significance in stage I. Second, the per-genotype costs in the first stage and the

second stage are dramatically different in a genome-wide scan. Recently cost ratios

appear to be in the range of 15 to 20, comparing per-genotype costs using the SNP

array in stage I versus the high throughput genotyping platforms generally being

considered in stage II. While the costs of both stage I and stage II genotyping

technologies have continued to drop rapidly, it seems likely that a large cost

differential will remain for the foreseeable future. Third, in the previous work,

there has been no consideration of attempting to expand the marker set at promising

regions in the second stage.

7.6.1 Measured SNP Association Tests

We first assume that the only SNPs of interest are those that actually appear on the

SNP chip, so that no imputation of unmeasured SNPs is performed and no increase

in marker density is made in stage II. Here we assume a population-based

case–control study is used for the genome scan, i.e., all cases and controls are

unrelated. In the first stage, the full set of m markers (SNPs) is genotyped on n1
subjects. A stage I test of association is performed on all markers at a significance

level α1. The significant markers are then genotyped for an additional n2 subjects,
and the stage II statistics based on all (n1 + n2) subjects are evaluated at a signif-

icance level α2. Generally α2 is slightly larger than the overall type I error, α,
reflecting the necessity that a marker must be significant in both stages to be

significant overall.

Let p denote the population allele frequency and assume Hardy–Weinberg

equilibrium. Here the allele of interest is the one that increases disease risk, not

necessarily the minor allele. Let δ denote the number of risk alleles a subject carries

(allele dosage), δ ¼ 0, 1, or 2. We assume a multiplicative genetic risk model, and

let ψ be the increased relative risk (odds ratio, OR) of carrying each additional copy

of the disease allele. Details of the optimization method are provided in the

Appendix to Wang et al. Briefly, in stage I choose as a test statistic S1 the difference
in average risk allele dosages between cases and controls, and compare this statistic

against its asymptotic normal distribution. In the second stage, the test statistic S is

based on the combination of data from both samples and the vector (S1, S) is
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distributed as bivariate normal with means and covariance given in Appendix.

These allow us to compute the power and type I error rate as a function of the

sample sizes (n1,n2), model parameters ( p,β), and critical values (α1,α2) at stages I
and II respectively. The cost function involves the ratio t1/t2 of per-genotype costs
at stages I and II, as well as the sample sizes and expected number of markers tested

in stage II (determined by the type I error and power for stage I and the number of

true causal genes). The optimal design is found by numerically minimizing the total

cost for a combination of sample sizes and critical values that yield the desired

overall type I error and power. We use a function written in R, see file “2-stage

power.R”, to perform the searches.

7.6.1.1 Power Calculations for a Specific Two-Stage Design

Before giving results from the optimization procedure it is worthwhile obtaining

some basic familiarity with a utility function (called in the optimization) that, for a

fixed set of the parameters above, computes power for both the stated two-stage

design, as well as a one-stage design in which all subjects are genotyped with the

GWAS array. The header for this function is shown below:

Here CC is the number of controls per case in each stage, the OR is the odds ratio

as hypothesized under the alternate hypothesis, P0 is the baseline risk of disease in

the population being sampled, p is the hypothesized causal allele frequency, n1 is
the number of cases (+n1 � CC controls) genotyped in stage 1, n2 is the number of

cases genotyped in stage 2, m is the total number of markers on the GWAS chip

used in the first stage, ALPHA is the desired type I error rate with a default value of

5 %, and finally a1 is the criteria for significance for moving markers from stages

1 to 2. Consider the use of this function for calculating the power for a one-to-one

matched case/control study with 5,000 cases and 5,000 controls in which one

million markers are tested initially, and in which various fractions, n1/(n1 + n2),
of subjects are genotyped in stage I, and for which the criteria for significance in the
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first stage, α1, is varied from 10� 6 to 0.1. We choose OR ¼ 1.25, p ¼ 0.2 and keep

P0 and CC at the default values of 0.00001, and 1 respectively. Figure 7.4 plots the

results of running the twostagePower function (see file “2-stage power.R”) repeat-
edly for several choices of the fraction n1/(n1 + n2) in stage 1 and the threshold

criteria. For studies in which n1 and n2 are equal, nearly full power (i.e., the power

of the single-stage design with 5,000 cases and controls) is obtained by setting the

criteria, α1, for significance in the first stage, to 1 % or so. For a study in which the

first stage is three times as large as the second stage, close to full power is achieved

with a first-stage alpha level of 10� 4, and in contrast, when only one fourth of the

subjects are genotyped in stage 1 a first-stage alpha level of over 0.1 is required for

close to full power.

Figure 7.4 also illustrates (dotted non-monotonic curve) the power of a discov-
ery + replication based approach to discover new markers, compared to the use of

combined analysis. Here the power of the discover + replication-based method is

the product of (1) the power in the first stage that the first-stage test exceeds the

significance level α1 for given markers and (2) the power of the second stage after

performing a Bonferroni correction for the number of markers that reach stage
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2. Assuming that the number of truly associated markers is small compared to the

number of SNPs genotyped in stage 1 we can assume that approximately α1M
markers will be genotyped in stage 2 (i.e., will meet the criteria for advancement) so

that the Bonferroni correction is approximately α/(α1M ). The R function

onestagePower can be used as below:

Which returns 0.663 compared to the power:

which returns 0.731. This illustrates the results of Skol et al. [12] who found that a

proper two-stage analysis is always more powerful than discovery + replication.

7.6.2 Optimal Two-Stage Case–Control Designs

Wang et al. [17] numerically solved the problem of finding the optimal values of n1,
n2 , c1, c2 which, for fixed values of the parameters ( p, P0, and ψ) in the risk model

satisfied the type I and type II error constraints that α ¼ Pr(S1 > c1, S > c2jH0)

and Pr(S1 > c1, S > c2jHA) ¼ 1 � β, while minimizing an expected cost function

of form t1n1m + t2n2E(m2) where the expected number of markers, E(m2)

genotyped in the second stage is approximated as [(m � T)α1 + T(1 � β1)]
where T is the number of markers which meet the requirements of the alternative

hypothesis (the number of “true” associations), and all other associations are

assumed to be null. Generally we would anticipate that T is very small compared

to α1m and for simplification, we can approximate the expectation of the cost as

simply 2(t1n1m + t2n2 α1m), only a slight underestimate unless there are a huge

number of true-positive associations. Here α1 is defined as Pr(S1 > c1jH0) and α2 as
Pr(S > c2jH0). Figures 7.5 and 7.6 show (as a function of the number of markers

tested, M, and the cost ratio t2/t1) the optimal fraction of subjects, n1/(n1 + n2), to
genotype in stage 1 (Fig. 7.5) and the optimal fraction of markers, α1, to genotype in
stage 2 (Fig. 7.6), for a study that is designed to achieve 90 % power to detect a

variant with a given odds ratio, OR, and frequency, p. While the total number of

subjects needed in the study is highly dependent on the assumed value of OR and p,
the optimal fractions, n1/(n1 + n2) and α1, are independent of both quantities. For

studies genotyping a large number (0.5 to 1 million) of SNPs in stage 1 where the

cost ratio is high (t2/t1 ¼ 20) then study designs that include about 30 % of subjects

in the initial GWAS genotyping and move approximately 1/3 of one percent of

markers (α1 ~ 0.003) into stage 2 are optimal in terms of study power.
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Fig. 7.5 The proportion, n1/(n1 + n2), of sample size allocated to stage I in the optimal design

plotted as a function of the cost ratio t2/t1 and the number of SNPs, m, genotyped in stage I, for a

study with 90 % power to detect an effect with type I error equal to 0.05/m

0.001

0.01

0.1

1

1 10 30 10
0

50
0

1,
00

0

1 10 30 10
0

50
0

1,
00

0

1 10 30 10
0

50
0

1,
00

0

1 10 30 10
0

50
0

1,
00

0

1 10 30 10
0

50
0

1,
00

0

1 5 10 15 20

S
ig

ni
fic

an
ce

 th
re

sh
ol

d 
of

 S
ta

ge
 I

Cost Ratio and Number of Markers (x1,000)

Fig. 7.6 The significance threshold α1 for promoting a SNP from stages I to II in the optimal

design plotted as a function of the cost ratio t2/t1 and the number of SNPs, m, genotyped in stage I
for a study with 90 % power to detect an effect with type 1 error equal to 0.05/m
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Very often it is not only the constraints on costs that limit the power of a study;

the availability of cases for a case–control study may impose limits as well. In this

setting studies that are a little bit more expensive, but which retain nearly all the

power of a study in which all subjects are genotyped for all markers, can be

attractive. For example, whenM ¼ 1 million and t2/t1 ¼ 20 then the optimal design

would place 32 % of subjects into stage 1 and genotype 0.32 % of markers (Table 3

of Wang et al.). The drawback to this study design can be seen by running:

The output from this command indicates that this (optimal) design would have

91.2 % power to detect an OR of 1.3 per copy of an allele with 20% frequency. If the

genotyping cost in stage 1 is 0.05 cents per genotype (500 dollars per sample) and

1 cent per genotype in stage 2 then the cost of this study will be about 1.8 million

dollars. The drawback to this design is the power loss in comparison to a (muchmore

expensive) study (5 million dollars) that genotypes all subjects in stage 1, since a

single-stage study would achieve 98.8 % power. Relaxing the criteria a bit so that

44 % of subjects are in stage 1 and 0.44 % of markers are moved to stage 2 as in:

gives a study design with almost full power compared to the 1 stage design (97.9

vs. 98.8) and which still saves 2.54 million dollars compared to the 1-stage design

(although it costs 37%more than does the optimal study). Using this same design but

with total number of cases equal to 4,000 rather than 5,000would achieve 92% power

at a cost of 2.0 million dollars. The advantage of this study is that there is little loss of

power compared to a one-stage study with this many cases (92 vs. 93.5 % power) and

the cost it is still within about 11% of the optimal study (with 33% of the 5,000 cases

genotyped in the first stage) and remains much less than the single-stage study.

7.7 Control of Population Stratification: Effects

on Study Power

Chapter 3 (Sect. 3.6) described two alternative designs (case-sibling and parent-

affected offspring) which control completely for population stratification in estima-

tion of genetic main effects and interactions. Both designs have implementation and

cost issues and have only relatively rarely been employed in GWAS studies. The use

of the correction methods described in Chap. 4 such as principal components and

mixed models are generally more feasible and cost-effective than these special

designs. It is important to realize that control for population stratification using the

genotype data is not cost free either; for testing a marker with the same allele

frequency and effect sizes in two populations, one structured and one not, the study
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without hidden structure will always be more powerful than a study involving hidden

structure after correction for the hidden structure. In this section we consider the

effect on study power that is a result of having to control for population stratification

using the principal components and related methods, in a study of nominally

unrelated individuals. We first consider the simplest method, genomic control.

7.7.1 Genomic Inflation and Study Power

Genomic control as originally described [18] involves the division of a given

chi-square statistic (e.g., the Armitage test, T2, for a single SNP association) by

a genomic control parameter, λ, prior to the calculation of the corresponding p-value
for the statistic. The value of λ is estimated from a large number of similar chi-square

statistics, T2k , (e.g., one for each SNP, k) as λ̂ ¼ median T2
1,

�
T2
2, . . . ,T

2
MÞ=0:455.

This genomic control procedure can be (as seen in Chap. 4) can be effective method

of adjusting for hidden relatedness in which study subjects are related to a number of

other individuals but the fraction of individuals that a given subject is related to does

not increase with study size. For large-scale hidden stratification or admixture

(where the number of other individuals related to a given subject tends to increases

linearly with sample size) it is generally less effective than principal components at

preserving power while reducing false-positive rates. Consider the impact on the

non-centrality parameter for the adjusted test T2=λ̂ . When there is large-scale

population stratification each random variable T2k will be distributed as a χ21 with

some (nonzero) non-centrality parameter ncpk. If we assume that all possible study

participants come from the same underlying (infinite sized) stratified population,

then all the non-centrality parameters, ncpk, will increase linearly with sample size

N. This implies that that λ̂ � 1 increases proportionately with the number of

individuals N for such a study because in this case the non-centrality parameter for

each T2k statistic will be increasing linearly with N. The simulation study below

illustrates the behavior of λ̂ � 1 with sample size:
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If λ̂ � 1 is linear in sample size it follows that the non-centrality parameter,

ncpk(N ) , for the T2 statistic for a genuinely casual variant after division by of T2

lambda, for sample size N will be equal to

ncpk Nð Þ ¼
N
n ncpk nð Þ

1þ N
n λn � 1ð Þ , ð7:7Þ

where λn is the genomic control parameter when sample size equals some initial

value n and ncpk(n) is the non-centrality parameter for the causal variant also at

sample size n. This implies that the non-centrality parameter can get no larger than

ncpk(n)/(λn � 1) no matter how large we increase the sample size. For example, if

for a given (initial study size) n the genomic control parameter is 1.5 then no study

of this population that uses genomic control to control for population stratification

can increase the non-centrality parameter for the causal allele by more than twofold,

no matter how many-fold the sample size is increased.

As described in Chap. 4, the behavior of the genomic control parameter as

sample size increases depends on the specifics of the setting. If there are many

clusters of related individuals and if as the sample size increases the number of

clusters increase but the size of each cluster does not, then the genomic control

parameter will tend to a constant rather than increase linearly; in this case then the

genomic control-adjusted non-centrality parameter for the causal allele and hence

power to detect the causal allele will continue to increase with sample size.

7.7.2 Correction for Admixture and Hidden Structure
by Principal Components

As shown in Chap. 4, when the relationship matrix K imposed by hidden structure

or admixture has only a few leading eigenvalues (and the rest of them are close to

1 in value) then false-positive associations are expected when the covariates (i.e.,

SNPs) of interest load on the leading eigenvectors of K. The principal components

method of Price et al. [19] adjusts for the leading principal components by including

them as regression variables in the analysis. Consider the effect on power of having

to control for leading principal components compared to not having to, in a given

analysis. Let n be a vector of SNP allele counts of interest, and let n* be the vector

of residuals of n after regression of n on the leading principal components. The

non-centrality parameter for the analysis of the continuous trait using n* will be

equal to

β2

σ2Y�

XN
i¼1

n�i � n�
� �2 ¼ β2

σ2Y�
NVar n�ð Þ, ð7:8Þ
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where β is the regression parameter relating E(Y ) to n,* and σY*
2 is the variance

of the adjusted value of Y, adjusted for the same principal components of K that

were used to adjust the SNP allele counts n. Note that the relationship between Var

(n*) and Var(n) is that Var(n*) ¼ (1 � R2
n;pc)Var(n) where R2

n;pc is the squared

multiple correlation between n and the leading principal components. Also σY*
2 is

equal to (1 � R2
Y;pc)Var(Y). We see that there are two countervailing effects upon

the non-centrality parameter for a fixed β. The first is that the numerator of (7.8)

decreases compared to NVar(n), thereby decreasing the NCP and hence power,

while the denominator also decreases thereby increasing the NCP (although the

latter generally has a smaller effect than the former). Since the change in Var(Y )
due to the adjustment does not depend upon which SNP count variable is being

considered our attention is mainly on the numerator. In cases of recent admixture

between formally widely separated groups or of gross population stratification all

SNPs are differentiated to some degree between ancestral groups, i.e., they all tend

to have the same correlation structure matrix 2p(1 – p)K with the pairwise ele-

ments of K reflecting the ancestral similarities of each pair of study members. This

does not mean however that each SNP will all have the same observed correlation

with the eigenvectors ofK, rather, due to chance some will be more associated with

the leading eigenvectors of K and others will be less associated. Since the leading

eigenvectors either closely mirror admixture fraction in admixed samples or act as

dummy variables for ancestral origin when there are two or more non-mixing

groups, the degree of differentiation of the allele frequency between the ancestral

groups determines the sample correlations Rn,pc and hence the power reduction.

Therefore we would expect that more differentiated SNPs pay a greater penalty for

incomplete admixture or hidden structure than do non-differentiated SNPs.

There is a subtlety however to this issue, which can be seen in the case of admixed

populations. If SNPs are highly differentiated by ancestral population, i.e., an allele

has frequency near 0 in one population and frequency near 1 in the other, then a study

in an admixed group will be far more powerful than an equally sized study in either

population separately even if global ancestry is adjusted for using principal compo-

nents. In fact, power is increased over a fairly wide range of allele frequency

differences in an admixed compared to non-admixed study. However, studies of a

recently admixed population, with little time for recombination to take place, pay a

greater price for control of global ancestry than do studies of a less recently admixed

population, since more SNPs will align with the ancestry indicators in a recent than

an older admixed population. More discussion of this phenomenon is provided in

Chap. 8 when adjusting for local, as well as global, ancestry is addressed.

7.7.3 A Retrospective Analysis of Study Power

While we could use (7.7) to compute power of a study in some instances, it is rare

for today’s studies to depend entirely on genomic control to provide test statistics.

The methods described in Chap. 4, Sect. 4.2.5 give one approach to understanding
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the power characteristics of a study that is required to account for population

structure. To review, the retrospective approach to analysis of case–control data

(e.g., the Bourgain test [20]) models the genotype counts n ¼ (n1,n2, . . .,nN) for an
allele of interest as having mean equal to

E nð Þ ¼ μþ cβ, ð7:9Þ

where c is a vector of zeros and ones indicating case–control status for each study

participant so that the mean genotype counts are modeled as μ + β and μ for the

cases and controls respectively, for a rare disease μ will correspond to twice the

population frequency, p of the allele. The variance–covariance matrix of n is

assumed to be equal to

Var nð Þ ¼ 2p 1� pð ÞK, ð7:10Þ

with K being equal to twice the kinship matrix (Chap. 2, Sect. 2.1.4). In this model

μ, β, and p all depend on the particular marker being considered, whileK is constant

for all markers. In the original test described by Bourgain et al. [20], it was assumed

that K was calculated from known pedigree relationships between participants,

while in the empirical versions of the test [21–23] K is estimated from large-scale

genotyping data (e.g., GWAS data), for example, using the method of moments

approach described in Chap. 2 (Sect. 2.5). The parameters μ and β are estimated

using generalized least squares and the non-centrality parameter (if K is treated as

known), for the test of the null hypothesis that β ¼ 0 is equal to β2=Var β̂
� �� �

where

Var β̂
� �

is equal to the (2, 2) element of 2p(1 � p)(C0K� 1C)� 1 with the 2 � N

matrix C having its first column equal to a vector of 1’s and the second column

equal to the case–control status indicator c above. When K is estimated as in

Chap. 2 (Sect. 2.5), it is necessary to replace matrix inverses with generalized

inverses (since K̂ as given in Sect. 2.5 is not invertible) in order to actually perform

the test, but this is ignored for the purposes of power calculations here.

7.7.3.1 Non-Centrality Parameter for the Bourgain Test

in the Case of Isolated Populations

We use the Balding–Nichols model (Chap. 2) for allele frequency differences

between isolated populations. In this model allele frequencies for an SNP in modern

data populations are distributed according to a beta distribution B(((1 � F)/F)
p, ((1 � F)/F)(1 � p))) with p the ancestral allele frequency of that SNP. In this

model the variance of the modern-day allele frequency is Fp(1 � p), thus F is a

parameter specifying the degree of separation between the modern-day and ances-

tral population. As described in Chap. 4 if genotypes are obtained for randomly

sampled individual from two modern-day isolated populations using this model and
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the separation of each modern-day population from the ancestral population equals

Fk (for k ¼ 1, 2) statistic then the covariance matrix, σ2jK between subjects for the

jth SNP will have diagonal terms equal to 2pj(1 � pj)(1 + F1) for members of

the first population, diagonal terms equal to 2pj(1 � pj)(1 + F2) for members of the

second, off diagonal terms of 4pj(1 � pj)F1, 4pj(1 � pj)F2, or zero for pairs of

individuals who are either both from the first population, both from the second

population or from different populations respectively. Here pj is the frequency in

the ancestral population of SNP j.
Consider a case–control study of these two populations in which one popu-

lation contributes proportionately more cases to the study than the other popu-

lation, in order to (for example) save on genotyping costs by reusing existing

control data.1 The worst-case example i.e., a study in which all cases come from

one isolated population and all controls from another is discussed first. Note that

for such a study the use of principal components as fixed effects in the analysis to

control for population stratification would not be helpful since with enough

markers in play a leading principal component would completely capture

population membership so that case–control status would be completely con-

founded with this component. On the other hand, genomic control (as discussed

above) would retain some power to find disease-associated alleles so long as

the two study populations were not too different. We analyze this more fully

below by computing the non-centrality parameter for the Bourgain test in

this situation.

Assume for simplicity that F1 ¼ F2 ¼ F (both populations have the same

degree of separation from their ancestral source) and that the number of cases

and controls are both equal to N so that total sample size is 2N (the calculations

below can be readily altered for different matching fractions if necessary).

Thus we can write the variance of the estimator of the case–control difference

for SNP j as

Var β̂ j

� � ¼ σ2j CTK�1C
� ��1

, ð7:11Þ

with the first column of C being a vector of 1’s and the second column of C a

vector of 1’s and 0’s indicating case–control (and population) status. Using a

readily derived formula for the inverse of an N � N matrix of compound sym-

metric form

1 For example, the Wellcome Trust Case Control Consortium (WTCCC) study used controls from

two sources (the 1958 British Birth Cohort study and a sample of British blood donors) in studies

of a total of seven common diseases with cases coming from a variety of different studies. While

the studies contributing cases to the WTCCC study were all from the UK one could imagine

further reuse of these controls in studies (e.g., of rarer diseases) involving many cases from outside

the UK.
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�b aþ N � 2ð Þb . . . �b
⋮ ⋮ ⋱ ⋮
�b �b . . . aþ N � 2ð Þb
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3
775,

we can easily write

Var β̂ 2j

� �
¼ 2pj 1� pj

� � 4 N � 2ð ÞFþ 2

N
: ð7:12Þ

Thus the non-centrality parameter, λ2 ¼ β2j
2=Var β̂ 2j

� �
, of a test of association

does not increase linearly in N, but rather is bounded above by the value (β22;j)/

8Fpj(1 � pj). This can impose severe limitations on the power of any study in

which there are such differences. To put this in perspective, consider two isolated

populations which are each separated from their ancestral population with an

F value of 0.0005, and consider an allele that exhibits 40 % frequency in the

ancestral population. The variance of the difference between the two isolated

modern-day populations in the frequency of this allele is equal to 2pj(1 � pj)F
so that we would expect by chance that there is a about a 1.5 % difference in allele

frequencies between cases and controls for such an allele. Consider now the

detection, in a study of 5,000 cases and 5,000 controls, of a disease-causing allele

of the same frequency associated with a 10 % difference in allele frequencies

between cases and controls (β2j ¼ 2). The difference in allele frequencies is

approximately six times larger than expected due to population differences, and

can be seen to correspond to an odds ratio for disease, under a multiplicative risk

model, of 1.5 per copy of the risk allele. From (7.12) the non-centrality parameter

β2j
2=Var β̂ 2j

� �
will be equal to 34.73 in this case; on the other hand if F between

cases and controls is 0 the non-centrality parameter will equal 208.33. Thus a study

that would, given no differences between cases and controls in population of

origin, have overwhelming power (>0.9999) to reject the null hypothesis at a

genome-wide level significance ( p < 10� 8) is, under this alternative, reduced to

having power of only 56 % after correcting for the differences in origins of cases

and controls. The survey of European populations by Nelis et al. [24] estimates

fixation indices, Fst, between populations in SNP allele frequencies which range

from less than 0.001 between neighboring populations to 0.023 for Southern Italy

versus parts of Finland. Because our F values as defined above are between

present-day and ancestral populations the fixation indices calculated between

present-day populations by Nelis et al. need to be multiplied by approximately ½

to be consistent with our definition of F (see Chap. 2, Sect. 2.4.1.1). Thus the

example we have given (F¼.0005) corresponds only to the nearest neighbor

populations in Europe, even though the value of F is not large, the presence of

stratification has a large effect on the power of a test after stratification is

considered.

Less extreme situations can be analyzed using this approach by brute force

calculation of (7.11). Figure 7.7 shows the non-centrality parameter for the test
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for two values of F (0.0005 and 0.01) roughly corresponding to nearby and

relatively distant European populations, according to the fraction of cases that

come from population 1. Here (as above) it is assumed that the two populations

contribute equally to the total number of cases and controls. Once there is a fair

amount of overlap in ancestry between the cases and controls (with 25–75 % or

more of cases coming from population 1) then a considerable fraction of the

power is regained.

This general discussion is relevant to the control of simple population stratifi-

cation by either principal components or genomic control as well as the retro-

spective methods described here. Using estimated leading principal components

as adjustment variables in a fixed effects analysis is not possible when all cases

come from a single isolated population and all controls come from another,

although in this case genomic control still retains some power, as does the test

used here, for detection of strong genetic effects. Once there is some overlap in

ancestry between the cases and controls then controlling for ancestry differences

by either the fixed effects method or the retrospective approach will regain power,

and either will generally be more effective than genomic control in adjusting for

simple population structure [19, 25, 26]. Only rarely will a study which collects its

own controls in a reasonable fashion suffer a severe loss of power by having to

control for the rather minor degree of residual population stratification typical in

such settings. Studies that seek to use existing control data while only collecting

samples from cases are inherently more susceptible to population stratification and

careful analysis of power should be undertaken. Chen et al. [25] give an example

of such an analysis focused on the problem of correcting for admixture differences

in hypothesized studies of African Americans that reuse existing control data

available from a large study of prostate cancer and conclude that such reuse of

data is feasible.
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7.8 Power of Multi-SNP Conditional Tests

So far we have restricted attention to power in single SNP associations, and simple

G � E interactions, perhaps after having had to adjust for population stratification

or admixture. Another important problem, relevant to such topics as fine-mapping

(see Chap. 8) around GWAS hits, is assessing the power to detect whether one

marker shows either a stronger, or an independent signal than does another marker.

For example, if we write a two-SNP model as

g E Yið Þð Þ ¼ μþ β1Gi1 þ β2Gi2, ð7:13Þ

then our interest may be in determining whether conditional on a known GWAS

association with G1 the association with a nearby SNP G2 remains significant.

Power to detect the effect of G2 will depend not only on the size of β2 and the

frequency of G2 but also on the correlation between G1 and G2. Under the assump-

tion that neither G1 or G2 explains a large amount of the variance of Y we can

approximate the sample size N* needed to reject the hypothesis β2 ¼ 0 at a given

type I error rate and power as N= 1� R2
G1,G2

� �
where N is the sample size needed

when only G2 is in the model, and R2
G1,G2

is the squared correlation between G1 and

G2. This follows in an argument similar to that given in Sect. 7.7.2 because the

variance ofG2 conditional onG1 is equal toVar G2ð Þ 1� R2
G1,G2

� �
. This implies that

we can estimate the sample size N needed to reject β2 ¼ 0 conditionally on G1

being in the model by performing the calculations above (or running Quanto)

ignoring G1 and then adjusting the sample size upward by dividing N by the

hypothesized value of 1� R2
G1,G2

� �
. Of course power for testing β2 ¼ 0 for

model (7.13) can be approached directly using the exemplary data or expected

likelihood approach.

7.9 Chapter Summary

This chapter has aimed to give a working knowledge of the standard approaches

used to calculate sample size and power for linear and logistic regression, for tests

of main effects and interactions, with extensions to other generalized linear models

following easily. The chapter introduces the so-called exemplary data method to

assessing power in generalized linear models and also describes the generalization

of this approach as used in the very popular QUANTO program.

In addition to standard approaches some unique problems and issues for GWAS

studies are addressed with attention devoted to the problem of assessing power after

correction for population stratification, reuse of control data, design of two-stage

genotyping designs, and large-scale multiple comparisons requirements.
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Homework

1. Consider the logistic regression model (7.3) with μ ¼ logit(10-4), β0 ¼ 0, β1 ¼
log(3), β2 ¼ log(9), p ¼ 0.001.

(a) Calculate the probabilities Pr(n(A)jD), for n(A) ¼ 0, 1, 2; D ¼ 0, 1 that

correspond to the columns of Table 7.1 for this configuration.

(b) For a study of 500 cases and 1,000 controls calculate the joint probabilities

Pr(n(A), D) and the expectations E(N ) as given in Table 7.2.

(c) Using the exemplary data method, calculate the non-centrality parameter for

rejecting using logistic regression, the null hypothesis β1 ¼ β2 ¼ 0, at type

1 error 0.05 in favor of the (linear in genotype count) alternative that

β2 ¼ 2β1 6¼ 0, what is the power for rejecting the null hypothesis?

(d) What is the power using the Armitage test to reject this same hypothesis?

(e) What is the non-centrality parameter for rejecting the hypothesis that

β2 ¼ β1 using logistic regression?

(f) What is the power for rejecting the null hypothesis that β1 ¼ β2 ¼ 0 against

the general alternative that at least one of β1 and β2 are nonzero?

2. If X1 is a n � p design matrix, of rank p, and X2 is an (n) � ( p + r) design
matrix, of rank p + r that includes the columns of X1 as well as additional

columns for the r new covariates to be tested then

A ¼ X2 X
0
2X2

� ��1

X
0
2 � X1 X

0
1X1

� ��1

X
0
1

is used for testing whether the effect of the additional variables contribute

significantly to a regression of continuous outcome Y on X2.

(a) Special case: What is the A matrix that provides

(i) The regression sum of squares in univariate linear regression.

(ii) The residual sum of squares.

(b) Show that A is a projection matrix, i.e., that AA ¼ A. Hint: X2(X
0
2X2)

� 1

X0
2X1 is the predicted value of the regression of the columns of X1 onto the

columns of X2 therefore it must equal X1.

(c) What is the rank of A?
(d) Give an argument that YAY/σ2 is indeed a chi-square random variable.

3. Show for logistic regression that when the background rate of disease is small

and the model is log additive in n(A) that HWE is preserved in both cases and

controls. Hint, approximate the logistic as an exponential in this case.

4. Consider the model for continuous outcome Y

Y ¼ μþ β0Gi0 þ β1Gi1 þ β2Gi2 þ ei,

with ei normal with mean 0 and variance σ2. Suppose that the true values of the
parameters are μ ¼ 10, β0 ¼ 0, β1 ¼ 0.2, β2 ¼ 1 and σ2 ¼ 0.7. Consider a

study of 100 individuals and an SNP with minor allele frequency equal to 0.2.
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(a) If we assume HWE what is the expected number of individuals with 0, 1, and

2 genotypes?

(b) What are the expected values of Y for each of these genotype categories?

(c) Use (7.2) with E(Y) substituted for Y to compute the non-centrality param-

eter for rejecting the null that β1 ¼ 0, β2 ¼ 0 in favor of the linear hypoth-

esis that β2 ¼ 2β1 6¼ 0. What is the power for rejecting this hypothesis

(using an F test)?

(d) In R compute (as in problem 2) theAmatrix for testing the linear hypothesis,

verify that the non-centrality parameter E(Y ) 0 AE(Y )/σ2 is the same as

above. Hint in R matrix the multiplication operator is %*% and transpose

is t(·), inversion is done using solve(·).

(e) Compute (in R) the Amatrix for testing the linear hypothesis (that β2 ¼ 2β1)
against the general hypothesis that either or both of β1 or β2 is not equal to
zero. What is the non-centrality parameter and power for this test?

5. Power for gene environment interactions. Suppose that Xi denotes the presence

or absence of an environmental exposure. Consider the model

logit Pr D ¼ 1ð Þð Þ ¼ μþ β1 Gi1 þ 2Gi2ð Þ þ β2Xi þ β3Xi Gi1 þ 2Gi2ð Þ,

with the parameter values μ ¼ logit(10-4), β1 ¼ log(1.3), β2 ¼ log(1.9), β3 ¼
log(0.5), p ¼ 0.3 and Pr(X ¼ 1) ¼ 0.5. Here p is the frequency of the allele of

interest:

(i) Make up a table (as in Table 7.4) the probabilities, Pr(n(A)jDisease, Expo-
sure). Assume that exposure is independent of genotype of interest.

(ii) Assume that 1,000 cases and 1,000 controls will be selected and calculate

exemplary data from this model.

(iii) Compute non-centrality parameters for the series of hypotheses β1 ¼ 0,

β2 ¼ 0, and β3 ¼ 0 using the glm and anova procedures in R. Calculate
power based on these non-centrality parameters.

(iv) Compare power for each of these hypotheses to the output from QUANTO.

6. Power for conditional analyses. Below is a table of genotype probabilities for

minor allele counts of two SNPs in the same region containing GWAS hits.

SNP2

0 1 2

SNP2 0 0.2239 0.1200 0.0161

1 0.0254 0.3600 0.0946

2 0.0007 0.0200 0.1393

(a) What is the minor allele frequency of SNP1?

(b) What is the minor allele frequency of SNP2?

(c) What is the squared correlation, R2, between the counts of the minor alleles

of SNP1 and SNP2?
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(d) Assume that disease, D, follows a logistic model

logit Pr D ¼ 1ð Þð Þ ¼ μþ β1n1 þ β2n2

with n1 and n2 denoting the count of the minor alleles of SNP1 and SNP2,

respectively

Suppose that μ ¼ log(10–4), β1 ¼ log(1.3), β2 ¼ log(1.2).
Calculate exemplary data from this model for a study with 500 cases and

500 controls. Use these data to calculate non-centrality parameters and the

power for testing:

H1. The null hypothesis that β1 ¼ 0 and β2 ¼ 0 against the alternative that

β2 6¼ 0.

H2. The null hypothesis that β1 6¼ 0 and β2 ¼ 0 against the hypothesis that

β1 6¼ 0 and β2 6¼ 0.

How close is the NCP for hypothesis H2 to (1 – R2)(NCP for test H1) as

predicted in Sect. 7.8?
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Chapter 8

Post-GWAS Analyses

Abstract The term post-GWAS analyses here refers to two somewhat distinct

general topics; first are a compendium of analyses that are typically performed after

one or more GWAS studies of a particular disease have been completed. These

analyses include pooled or meta-analysis used in order to combine results of two or

more studies, typically with the help of the of large-scale SNP imputation as

discussed in Chap. 6. Additional analyses include replication of results often

found first in Europeans, in studies of other racial/ethnic groups. Discussion of

this topic is broadened to include what has been called multiethnic fine mapping.
Adjustment for local ancestry in studies of admixed groups, as an aid to fine

mapping within a single group is discussed as well. Heritability estimation using

GWAS data is also considered.

A second set of topics are termed post-GWAS because they relate to issues

raised by a new technology, namely, next-generation whole genome sequencing
(WGS), which is currently being evaluated for large-scale association studies. The

main raison d’être for WGS is to allow for interrogation of rare variation that cannot

be measured on GWAS SNP arrays used to date. This chapter covers some of

statistical topics related to the assessment of the role of rare variation, especially

composite groups of rare variation related to each other through their mode of

actions, pathway membership, physical location in or between genes, etc.

8.1 Meta-analysis

Meta-analysis is a phrase that has a number of related meanings; most fundamen-

tally meta-analysis refers to the conduct of comprehensive, objective, and quanti-

tative surveys of the state of current knowledge concerning a specific topic, which

may involve only published summary data or can involve assembly of raw data

from primary sources for combined analysis. Meta-analysis of published data was

D.O. Stram, Design, Analysis, and Interpretation of Genome-Wide Association Scans,
Statistics for Biology and Health, DOI 10.1007/978-1-4614-9443-0_8,

© Springer Science+Business Media New York 2014
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proposed in the 1970s and 1980s [1–3] in an effort to enhance the scientific

credibility of literature reviews, by replacing selective discussion of specific results

with more broadly objective and “reproducible” techniques. The scope of meta-

analysis in this sense may be very broad, with almost any question that is amenable

to experimental, quasi-experimental, or epidemiological investigation a candidate

for such analysis. A review of meta-analysis procedures in this broad sense would

necessarily include discussion of methods for identifying studies or other sources of

information about specific topics, as well as normalization or standardization

techniques needed to produce analyzable data that is not simply a collection of

“apples and oranges.”

More restrictively, the term meta-analysis refers to the statistical techniques that

are used in order to summarize data from disparate studies while taking account of

sampling variability. Beyond the issue of sampling variability alone, testing for

between-study heterogeneity in results is often an important part of meta-analysis.

The ability of the meta-analysis to draw conclusions in the presence of heteroge-

neity is somewhat controversial; however, the estimation of overall or average

treatment effects has been considered by many authors [3–6]. This issue closely

parallels the interpretation of main effects estimates in a two-way analysis of

variance design when it is found that there is an interaction between the two

treatments. The usual test of the main effects of treatment A in a two-way design

asks whether, when averaged over the levels of B, there is a tendency for the levels

of A to be different from each other. In fixed effects analysis, where both A and B

are regarded as fixed treatments (and not sampled randomly from a hypothetical

population of treatments), the introduction of an interaction between A and B can

greatly complicate the conclusions about the efficacy of treatment A. Much of this

complication has to do with clarifying whether in future application of treatment A

(say when a new drug is released for marketing) factor B will continue to play a role

and if so whether that role will be similar to the role that it played in the

experimental period. A test for the effects of A when both A and B are regarded

as fixed and when there is an interaction is really a test for an effect of A in the

presence of B with B being in the same proportions as in the clinical trial. On the

other hand, B may by design be regarded as a random effect, with the sampling of

factor B that took place in the study being representative of the distribution of factor

B (typical examples being plots, animal litters, individuals in repeated measures

analysis, etc.) in the underlying population in which A will be used. In this case the

main effect of A is clearly meaningful because the concept of averaging over the

effects of B is meaningful in both the study sample and in the underlying popula-

tion. The presence of an interaction between A and B does not change the inter-

pretation of the main effects of A; however, it will change the specific test that is

used to test for the effects of A. Referring to the classic decomposition of the total

sums of squares (for a balanced design) into effects for A, B, A * B, and error

(with mean square errors MSA, MSB, MSAB, and MSE, respectively), the test for an

effect of A when B is fixed, with or without the interaction term is based on

FA ¼ MSA
MSE

. However, if B is random and an interaction is present, the test for
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the main effects of A is to be based on FA ¼ MSA
MSAB

; if the interaction is not present,

then the test reverts to FA ¼ MSA
MSE

.

Fundamentally, the issue is about interpretability. If B is not random and an

interaction is present, then the test for A is interpreted as applying to the given

assignment of B; that is (speaking somewhat loosely), FA ¼ MSA
MSE

tests whether we

can expect to see an effect of A averaged over B if we were to run the whole

experiment repeatedly with the basic same layout (fraction of subjects assigned to

each level of A and B) used each time. If instead the chosen levels of B represent a

sample from a population of effects, then the presence of an interaction A*B

reduces study power (since MSAB has a larger expectation and fewer degrees of

freedom than does MSE) but does not complicate the interpretation of the main

effects of treatment A.

As we see, these same issues arise when interpreting the results of meta-analysis

of large-scale SNP data; in this case, factor B could refer to study, while factor A

could refer to the allele counts of a particular SNP of interest. Of course, in real

studies, things get more complicated, as adjustment variables (for age, sex, race, or

principal components to correct for population structure or admixture), etc., are

introduced into actual models; nevertheless, the issues remain quite similar.

8.2 Meta-analysis of Linear or Logistic Regression

Estimates

The basic model that underlies most meta-analyses in practice corresponds to

modeling a two-stage procedure in which there are a number, L, of studies each
contributing independent estimates of the effect of a particular variable of interest

(typically a SNP count nA). For a number of reasons, it may not be considered

practical to pool all data together in order to estimate the overall effect of nA.
Consider initially, however, a full pooled analysis. This can be written as

g E Yij

� �� � ¼ α
0
jXij þ βjnAij: ð8:1Þ

Here we have complicated the notation used previously so that the index i for
subject is nested within study j for j ¼ 1, . . ., L. Here each Xij constitutes a vector

of adjustment variables for subject i within study j that may include factors such as

age, sex, race, and principal components. The dependency of the parameter vector

αj on the index j simply allows these adjustment variables to have different effects

in each study and also allows studies to not necessarily correct for all the same

variables, i.e., there may be no need to correct for sex in one study that happened to

be all males or for admixture in one study of a homogeneous group, whereas sex or

admixture correction may be important in other studies. In any event, the variables

in X are not the variables of interest, and further modeling of their effects is not of

primary concern here. The dependency of the parameter of interest β on study

8.2 Meta-analysis of Linear or Logistic Regression Estimates 287



j allows for study to study heterogeneity. In particular we consider three possible

models:

βj ¼ β fixed and equal for all j, ð8:2Þ
βj ¼ β þ εj, i:e:, a random effects analysis, ð8:3Þ

βj heterogeneous but fixed: ð8:4Þ

Model (8.2) imposes a constraint that each βj in (8.1) be identical; model (8.3)

relaxes this by allowing for mean zero random study to study heterogeneity in the

true value of βj, as well as sampling error in the estimate of βj; the difference

between model (8.3) and model (8.4) is that in the former, β has meaning as the

expected effect for all studies while allowing for heterogeneity between studies.

Model (8.4) simply posits heterogeneity between the studies in the effect of nA with

no attempt to generalize the results to other possible studies. With pooled data, both

model (8.2) and model (8.4) are estimable with standard generalized linear model

software, and model (8.3) is also available in procedures such as the R function lme
[7] or the SAS procedure GLIMMIX, under the assumption that εj is distributed as a
normal random variable with mean 0. A test for heterogeneity (i.e., a test for SNP

by study interactions) which tests model (8.2) against either alternative model (8.3)

or model (8.4) can be formed as a likelihood ratio test which compares the

likelihood of model (8.1) with all βj equal to the likelihood of the full model with

at least one βj different than the remainder, by fitting model (8.4). Direct tests of the

hypothesis that Var(εi) ¼ 0 in model (8.3) can also be performed. These may be

expected to provide similar inference as the fixed effects test for heterogeneity in

most cases; this holds exactly in two-way (balanced) analysis of variance where the

F statistics used to test for the existence of an A*B interaction does not depend upon

whether either A or B or both are treated as fixed or random effects.

For any number of reasons, it may be inconvenient to assemble the data required

to fit model (8.1) directly in one pooled analysis. In this case meta-analyses will

fall back on techniques developed for the analysis of published data such as

those discussed by DerSimonian and Laird [3] and many others [4–6]. The

DerSimonian and Laird approach starts with an assumption that each study pro-

duces an estimate β̂ j and an estimate Vj of the variance, i.e., by fitting model (8.1)

and reporting the estimate of beta and (the square of) its standard error. A simple

model for the β̂ j is that

β̂ j ¼ βj þ ζj, ð8:5Þ

where it is assumed that the sampling errors, ζj, are independent normally distrib-

uted with mean zero and variance Vj and are also independently of the values of βj.
This essentially is assuming that the sample size in each study is large enough so

that the central limit theorem applies and that the variability in the estimate of Vj

can be ignored. If all the βj are assumed to be equal, then the best linear unbiased
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estimate BLUE, β̂ BLUE of the underlying parameter β, is obtained as a weighted

mean of the estimates β̂ j with the weights being inversely proportional to the

variance estimates Vj so that

β̂ BLUE ¼

XL
j¼1

1

Vj
β̂ j

XL
j¼1

1

Vj

: ð8:6Þ

The variance of the weighted BLUE estimate can be easily shown to reduce to

1XL
j¼1

1

Vi

, ð8:7Þ

so that a test for whether the parameter β is equal to zero is just

β̂ BLUE

� �2XL
j¼1

1

Vi
: ð8:8Þ

Confidence intervals are also readily constructed using the variance (8.7).

Assuming that the behavior of the β̂ i is adequately described as Gaussian, then

this test has a chi-square 1 distribution with a noncentrality parameter equal to the

plug-in estimate (see Chap. 7) of β2
XL
j¼1

1

Vi

 !

A test for heterogeneity, i.e., whether βj ¼ β, 8 j is formed by fitting the model

β̂ j ¼ β þ βj þ ζj, ð8:9Þ

either as a fixed effects model, in which case a constraint on βj must be imposed,

such as ∑ βj ¼ 0 (as in traditional ANOVA) or β1 ¼ 0 (as in glm in R), or as a
random effects model with βj random with mean zero. The fixed effects test for

heterogeneity is derived as an L – 1 degree of freedom contrast test. Starting with

the model for the means and variances

E

β̂ 1

β̂ 2

⋮
β̂ L

2
664

3
775 ¼

β1
β2
⋮
βL

2
664

3
775,

with
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Var

β̂ 1

β̂ 2

⋮
β̂ L

2
664

3
775

0
BB@

1
CCA ¼

V1 0 . . . 0

0 V2 0 0

0 0 ⋱
0 0 0 VL

2
664

3
775 ¼ Σ:

The hypothesis that elements of the parameter vector β are equal to each other

can be written as the contrast Cβ ¼ 0 with C the L – 1 � L matrix

1 �1 0 . . . 0

0 1 �1 . . . 0

0 0 . . . 1 �1

2
4

3
5:

The estimated value of this contrast Cβ̂ has variance–covariance matrix CΣC 0

so that the Wald test of the null hypothesis that this contrast is zero is

β̂ 0C0 CΣC0ð Þ�1
Cβ̂ , ð8:10Þ

with some algebra this reduces to Q ¼
XL
j¼1

1

Vj
β̂ j � β̂ BLUE

� �2
.

Under the null hypothesis that all βj are equal, Q has a central chi-squared

distribution with L – 1 degrees of freedom.

8.2.1 Random Effects Models

As described above in the context of analysis of variance, the interpretation of the

results of a fixed effects analysis is complicated when there is strong evidence of

heterogeneity. If one is willing to think of the studies as having been sampled

“randomly” from a population of possible studies, adopting a random effects

analysis does three things:

1. It reevaluates the weights in the model.

2. It produces a new “best” estimate, β̂ RE, of the average, β, of the βj that underlay

the observed β̂ j.

3. It forms modified tests and confidence intervals regarding the underlying

parameter β.

Treating the βj in model (8.5) as a random effect with mean zero and variance σ2β,

the total variance of βj is now Vj + σ2β so that the BLUE estimate will become
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β̂ RE ¼

XL
j¼1

1
VJþσ2β

β̂ j

XL
j¼1

1
VJþσ2β

,

with variance equal to

Var β̂ RE

� � ¼XL
j¼1

1

VJ þ σ2β
:

Estimation of σ2β can be approached either using the method of moments or using

maximum likelihood or restricted maximum likelihood. A simple non-iterative

method of moments estimator [3] is

σ̂β2 ¼ max 0, Q� L� 1ð Þf g= X
j

wj �
X
j

w2
j =
X
j

wj

 !" #( )
,

with wj ¼ 1/Vj.

Note that the noncentrality parameter for the test that β is zero is now

β2
XL
j¼1

1

Vj þ σ2β
which will be smaller than the NCP for the fixed effects test (unless

σ2β is zero).

A more general random effects model for the observed β̂ j based on (8.5) is

β̂ j ¼ Xjαþ βj þ ζj: ð8:11Þ

The fixed effects term Xjα is introduced to allow for study-level covariates

which may explain some of the heterogeneity between studies; see Stram

et al. [4] for an extended discussion.

8.3 Meta-analysis for the GWAS Setting

In the general exposition of meta-analysis (e.g., Borenstein et al. [8]), a good deal of

discussion is provided on such topics as the identification of studies to be used in

meta-analysis and the potential for biases due to poor selection strategies or due to

publication bias (a tendency to only publish positive results). While these problems

remain germane here [9] especially for candidate gene studies which have had

inconsistent reliability, e.g., [10, 11], GWAS studies generally face a somewhat

different set of issues; see, for example, reference [12]. Meta-analysis methods
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originally designed for published summaries (e.g., counts, effect estimates) have

been used even when the studies to be considered are all being conducted by a

group of collaborating investigators (e.g., the GENEVA Consortium [13], PAGE

collaboration [14]), GAME-ON consortium, who may indeed each have individual

access to at least their own data if not all collaborators data. The reason that meta-

analysis (e.g., analysis of summary statistics computed for each study) rather than

full pooled analysis may be performed is primarily a matter of convenience and

sometimes of administrative necessity (due to restrictions on data sharing, patient

confidentiality, etc.).

An issue that can be frustrating to deal with in either pooled or summary analysis

is the need to rectify any allele/strand differences that may crop up between studies

either when genotyping SNPs or when imputing ungenotyped SNPs. Consider, for

example, an SNP that when genotyped on the plus strand (see Chap. 1) is an C/T
SNP. One study may be using as the risk variable in logistic regression the (observed

or expected) number of copies of the allele T for this SNPwhereas another studymay

be counting the number of copies ofC; clearly if the SNP allele T is truly a risk factor
for the outcome of interest, then the first study will tend to find positive risk

associations when the second study will tend to find negative (protective) associa-

tions. A third studymay be genotyping the same SNP on theminus strand (where it is

aG/A SNP) and counting the number of copies of theA allele (the risk allele), while a

fourth studymay be counting the number of copies of the (protective)G allele on the

same strand. The confusion described in this particular example can be easily

rectified by simply having each study report the allele that is being counted, A, G,
C, or T, in the risk analysis. The meta-analysis can go forward after appropriate

reversal of signs of the effect estimates (e.g., linear regression parameters or log odds

ratios) so that all studies contribute to the same effect, e.g., the effect of the A allele

on the plus strand. As noted in Chap. 1, the problem of rectifying allele/strand

differences is a bit trickier for the ambiguous A/T or C/G SNPs (where strand

reversal does not change the alleles that are reported). If ambiguous SNPs cannot

be avoided altogether, then using the BLAT program (genome.ucsc.edu; see

Chap. 1) to match the probes used by each platform to determine strand positivity

and then performing appropriate allele “flipping” to resolve complementarities

(forcing strand positivity and allele choice for all studies) may be the only really

effective measure to avoid nonsense results when the data are combined.

8.3.1 Meta-analysis and Imputation

One of the most unusual aspects of meta-analysis of GWAS data (relative to typical

uses of meta-analysis for review purposes) is the large-scale use of imputed geno-

types. Since each study to be combined may use different genotyping arrays, or

different versions of the same genotyping array, the list of successfully genotyped

SNPs can differ for each study to be combined. Rather than dropping whole studies

in the analysis of individual SNPs, SNP imputation methods (see Chap. 6) are used
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so that inference can include all SNPs genotyped by any study or even all SNPs

known from either the HapMap [15], 1000 Genomes Project [16], or other source

[17] when used as a reference panel for imputation. As stressed in Chap. 6, it is

important that the individual studies (e.g., those contributing to the meta-analysis)

use the expected indicator or dosage variables when fitting models such as

g E Yið Þð Þ ¼ αþ βnA, ð8:12Þ

or 2 df models

g E Yið Þð Þ ¼ αþ β1I nA ¼ 1ð Þ þ β2I nA ¼ 2ð Þ, ð8:13Þ

for an allele A.
One question frequently asked in this context (e.g., [12]) is whether studies in

which allele A is either genotyped or very well imputed should be given more

weight in the meta-analysis of the effects of allele A than do studies in which A is

less well genotyped. While it may be a good idea to drop very poorly imputed

genotypes from analysis, it is helpful to realize that when fitting (for example)

model (8.12) using E(nA|G) (where G is the data used for imputation), less well-

imputed genotypes (as measured by the R2 criteria) are implicitly being down-

weighted automatically. This is because the contribution that a specific study will

make to the meta-analysis will depend on the variance of the explanatory variable

(here, nA when A is genotyped and E(nA) when it is not) in that study. If R2 for a

given study is low, then the variance of the predictor, E(nA), is also low and so the

contribution of that study is low, because R2 can be defined here as
Var E nAð Þð Þ
Var nAð Þ . Note

that the R2 values output by such imputation programs as MACH is equal to this

expression with the numerator equal to the observed (sample) variance of the

expected dosage variable E(nA) and the denominator replaced by its value under

HWE, 2p(1 � p), where p is the allele frequency of A. Thus, the use of the expected
dosages (or expected indicator variables for 2 degrees of freedom models) already

accounts for uncertainty in SNP imputation by implicitly down-weighting the

contribution of studies for which SNPs are less well imputed. The calculation of

this R2 of course assumes that the relevant haplotype frequencies have been

reasonably well estimated and therefore is model based rather than empirical. See

the discussion of other estimates of imputation reliability described in Chap. 6.

8.4 Efficiency of Meta-analysis Versus Pooled Analysis

Pooled analysis refers to the combined analysis of individual data for each study. It

is possible to come up with examples in which meta-analysis of study-level results

(e.g., log odds ratios and their standard errors) is much less efficient than a pooled

analysis. To give an illustrative example, consider an artificial situation in which
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there are two case–control studies for which effect estimates are to be combined but

that one of the studies utilizes a (frequency) matching of 10 controls to each of

n cases and the other study matches 10 cases to each of n controls! In a simple

comparison of the mean genotype frequency between cases and controls for each

study (i.e., using an allele counting test to compare genotype frequencies), the

variance (for simplicity evaluated under the null hypothesis of no true difference) of

the estimate of the effect (e.g., the difference, d, in allele frequency) is Var d̂ i

� �
¼ 2p 1� pð Þ 1=nð Þ þ 1=10nð Þ½ � in each study i ¼ 1, 2, where p is the population

frequency of the allele of interest. Combining the estimates from the two studies,

under the assumption that both d̂ i estimate the same quantity, gives

Var overall d̂ from meta-analysis
� � ¼ p 1� pð Þ 1=nð Þ þ 1=10nð Þ½ �. Pooled analysis

of the data from the two studies would give a single study with 11n cases and 11n
controls so that the variance of the difference estimate would be

Var overall d̂ from pooled analysis
� � ¼ 2p 1� pð Þ 1=11nð Þ þ 1=11nð Þ½ �. Therefore,

the pooled analysis has a variance which is less than 1/3 as large (more precisely

40/121 times as large) as the meta-analysis. This discussion assumes that there

would be no need to adjust for study in the pooled analysis; as soon as a study

variable is introduced into the pooled analysis, then the effect estimates for the two

situations become essentially indistinguishable. This can be seen by running the

R code (with arbitrarily picked parameters):
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Note how similar the standard error estimates from the study-corrected pooled

regression analysis (0.04195) and the meta-analysis (0.04192) are, as well as from

the uncorrected regression (0.02419) and pooled (0.02412). While this is far from a

complete analysis, it is illustrative of the fact that when the models being used are

comparable, the results from the meta-analytic methods should be similar to the

results from pooled analyses, especially when sample sizes are large enough that

normality of effect estimates can be safely assumed. Note that all of the analyses

above assume that there is no interaction between study and the effect of treatment.

If we include a study*cc effect in the regression model as in

then the standard error of the main effects estimate increases further (to 0.05929 in

this example). Here, of course we do not need the interaction term (because it is not

present in the simulated data). If the interaction was significant, then this would

raise issues about the meaning of the main effect parameter. While we have

summarized the data as differences in allele frequencies by case–control status

rather than as odds ratios, we expect that the same general results (e.g., regarding

the relative variances of overall effect estimates) will hold when (log) ORs are

computed separately by study and then combined (in a meta-analysis) or when the

data are pooled.

8.5 Sources of Heterogeneity in Meta-analysis

of GWAS Data

Differences in LD, exposure differences, and gene � gene interactions can all be

sources of between-study heterogeneity in meta-analysis results.

8.5.1 LD Differences

As described in Chap. 2, different racial/ethnic groups have different patterns of

linkage disequilibrium so that if the same SNP is measured in different groups, it

may be in strong LD with a causal allele in one population but not another. It could

be, for example, that the causal allele is not present (or is much rarer) in the second

population than the first or that the causal allele is in LD with a different set of SNPs

in the second population than the first one. A variation on the first possibility (the

synthetic association hypothesis [18]) is that the causal allele is very highly

penetrant but very rare. Under this scenario LD between the causal allele and

common markers such as those typed in GWAS studies would be low, but since

the underlying signal is very large, common SNPs with D’ equal to 1 with the rare
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causal allele would still show modest, “synthetic” associations with the outcome of

interest. One implication of the synthetic association hypothesis is that the associ-

ation signal may be spread over long genetic distances since high LD (measured by

D0, see Chap. 2) between rare and common alleles tends to be more extended than

LD between common alleles. In addition since rare alleles are generally more recent

in origin than common alleles, rare causal alleles are much more likely to be

population-specific so that associations seen in one population are less likely to

be replicable in other populations with different genetic ancestry.

8.5.2 Exposure Differences

Populations can and do have different exposures to disease-causing nongenetic

factors, and susceptibility to different exposures may well be modified by different

SNPs. Evenwithin very similar populations, exposuresmay changewith time or with

geographic location; while most examples are fairly hypothetical at this stage,

exposure differences clearly are possible sources of heterogeneity in a meta-analysis.

8.5.3 Gene � Gene Interactions

Interactions between alleles complicate the search for causal variants and the role of

gene � gene interactions in heritability (see discussion of missing heritability

below) of many traits is of considerable past and current interest [19, 20].

When the measured alleles being considered in a meta-analysis (or the causal

alleles in linkage disequilibriumwith themeasured alleles) are interacting with other

alleles (or a polygene) which vary greatly in frequency between populations, then

the main effects of the alleles of interest can also vary greatly between populations.

Note that a comprehensive identification of interactions is much harder than

identifying main effects in GWAS studies (consider, e.g., performing a brute force

search of all possible pairwise interactions for one million SNPs, a total of 5 � 1011

tests); Bonferroni correction for 5 � 1011 comparisons requires approximately a

ninefold increase in sample size to preserve similar power compared to a single test

at α ¼ 0.05 (see Chap. 7). Ultimately therefore as sample sizes increase for the

most common diseases, it may be possible to perform such agnostic tests, at least

for common variants. More focused semi-agnostic tests are already currently

possible, for example, to check whether any common variant interacts with one

of the known variants.

Homogeneity of effects between most or all populations (especially after LD

differences have been dealt with as in multiethnic fine mapping, see below) is an

argument against the domination of trait variance by gene by gene interactions. It is

interesting, indeed, to note that the analysis of human height by Lango Allen [21]

found almost no direct evidence of gene � gene interactions between hundreds of
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replicated common variants. However, since only single-SNP analyses were used to

identify these height variants, it is possible that these are simply the most “additive”

variants in the first place and that interactions are not expected with such variants.

More extensive analyses will be needed as sample sizes continue to increase.

8.6 Meta-analysis Based on Effect sizes, Z-scores,
and P-Values

In the analysis above, it is assumed that each estimate, β̂ i, from each study is

estimating fundamentally the same quantity (measured on the same scale), e.g., the

increase in phenotype mean, or (log) odds for disease, with the number of risk

alleles carried. Historically, however, much work on meta-analysis was in settings

[22], where many different measurement instruments existed, which, while consid-

ered to be related on a fundamental level, had different scales of measurement and

population distributions. A typical example in education research could be student

performance on different standardized tests used before and after an intervention or

in relation to some sort of predictor variable; class size, for example, has been

studied in observational and some experimental studies using a number of different

standardized tests [23]. In a study comparing an intervention (such as a reduction in

class size) on outcome (test performance), the effect size is often defined as the

difference between means divided by the standard deviation for the individuals in

the control group. Meta-analysis of effect-size estimates in a combined analysis

over many schools, etc., can be discussed as above, so long as each effect-size

estimate is also given an appropriate variance estimate. Note that distinctions

between random and fixed effects models may be less clear when using effect

sizes of different instruments because of the inherent dependence of the effect size

on the standard deviation in the populations considered. Typically only fixed effects

methods seem to be used in these instances; leaving aside this question, however,

we consider below some of the well-known methods.

8.6.1 Z-Score Analysis

The test, equation (8.8), of nonzero β can rewritten in terms of Z-scores from each

study, i.e., in terms of Zi ¼ β̂ i=
ffiffiffiffiffi
Vi

p
as

XL
i¼1

1ffiffiffiffiffi
Vi

p Zi

 !2

XL
i¼1

1

Vi

: ð8:14Þ
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Based at least in part upon the identity between (8.14) and (8.8), weighting

Z-scores by weights that are proportional to the inverse of the standard error of the

effect estimate, or (which often gives similar results) by weights that are propor-

tional to the square root of the sample size of each study, is a popular method for

providing a summary test even when there is no underlying single effect β being

estimated, i.e., when different, but related, instruments are being utilized. It is worth

noting that when there is no underlying single parameter to be estimated, an

“optimal” weighting would intuitively give larger weights to the Z-scores from

the studies with the most power to reject the null hypothesis [24]. Doing so,

however, requires that the effect sizes (or at least their relative sizes) as well as

the sample sizes be known, which is typically more information than is available

[25] when no underlying single effect is being tested.

8.6.2 Fisher’s Method of Combining P-Values

Fisher [26] examined the distribution of the product p1p2 . . . pL of independent p-
values (each testing different and independent hypotheses) as an overall summary

statistic for the significance of a series of studies. We assume that by construction,

p-values under the null hypothesis are distributed as uniform continuous random

variables. (This not always the case since the underlying test statistics may have not

been uniformly distributed because of either small sample sizes, model misspeci-

fication, or the nature of the hypotheses being tested; for example, the asymptotic

distribution of likelihood ratio tests in maximum likelihood estimation depends on

the parameter space geometry [27].) Applying –log(x) to a uniform random vari-

able, x, produces an exponential random variable, and doubling an exponential

gives a chi-square with two degrees of freedom. It follows that if each of a set of

L different pi is from independent tests, all computed under the null, then

2
XL
i

�log pið Þ is a central chi-square with 2L degrees of freedom. Comparing the

observed value of this statistic to the critical value from the χ22L distribution forms

an omnibus test of the joint null hypothesis against the alternative that at least one of

the null hypotheses are false. Note that there is no direction implied by this test

(each test specifies a two-sided alternative with no credit for having effects all in the

same direction) and that no weighting of p-values is performed, i.e., a small p-value
from the smallest study is just as influential as from the largest. Because of this, a

number of authors have provided weighted directional versions [25, 28]. One

general approach is to compute a Z-score from a (one-sided) p-value as Zi ¼ Φ� 1

( pi) with Φ the cumulative standard normal distribution (two-sided tests are first

converted to one-sized tests by dividing each p-value by two and inserting the

direction of each test). With this transformation the methods described above are

then utilized. Another well-known treatment is the Lancaster method [29] which
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calculates the statistic T ¼
XL
i

χ2nið Þ
h i�1

1� pið Þ having the distribution T � χ2Σnið Þ

under the global null hypothesis. Zaykin 2011 [24] found that this statistic behaves

similarly to the Z-score method above with weights proportional either to
ffiffiffiffi
ni

p
or to

1=
ffiffiffiffiffiffiffiffiffi
Við Þp

although it should be noted that Lancaster’s method, like Fisher’s, gives

no credit for having individual studies agree on the direction of effect.

8.6.3 Meta-analysis of Score Tests

In some cases (as in the discussion of rare SNPs given below), it may be important

to use scores tests rather than Wald tests as the summary statistics. As described in

Chap. 3, the score test is a test of the null hypothesis that (univariate) β ¼ 0 of form

iββU β ¼ 0, λ̂ ,Y
� �2

, where ιββ is the element of the inverse of the information matrix

evaluated at β ¼ 0 and at the maximum likelihood value (computed under the null)

of the nuisance parameters, here λ, that are also in the model and U β ¼ 0, λ̂ ,Y
� �

is the component of the score that corresponds to β (also evaluated at zero for β and

at λ̂ ). Now consider the score statistics for the same risk allele calculated for each of

k ¼ 1, . . ., L studies summarized over each study assuming that the studies each

provide independent information regarding the effect of the allele of interest. Since

the score test is fundamentally a ratio of the squared score value for β to its variance
(which is here 1/ιββ), we compute a combined score test using all study data as

XL
k¼1

1=ιββk

" #�1 XL
k¼1

Uk β ¼ 0, λ̂ ,Y
� �" #2

, ð8:15Þ

where ιββk is the appropriate element of the inverse information matrix (evaluated at

β ¼ 0) for the kth study and likewise for Uk β ¼ 0, λ̂ ,Y
� �

. This is a ratio of the

square of the total score (combined over all studies) to its estimated variance under

the null hypothesis. See Homework for further discussion of the practical signifi-

cance of this formulation. Note that this test does not actually require that the same

set of nuisance parameters λ be used in every study analysis.

8.7 Multiethnic Analyses

Although there have been some improvements in diversifying GWAS studies, as

well as pooled or meta-analyses [30–33], GWAS studies using participants from

other ethnic groups remain far less common than GWAS studies in Europeans.

A primary reason for this is undoubtedly lack of preexisting research infrastructure,
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i.e., the relative paucity, for other groups, of large-scale case–control and cohort

studies with biological samples. Another reason however [34] is the persistence of a

general view that homogeneity is required in order for genetic association studies to

produce reliable results.

The use of multiple ethnic groups GWAS studies in either pooled analyses or

meta-analysis of summary data is useful for at least three reasons:

1. Discovery of additional risk variants

2. Better localization of causal associations and improvement of risk score

behavior

3. Enhancement of general knowledge about trait heritability

While alleles that are common in any one large-scale population are generally

present in most other such populations, allele frequencies vary considerably

between population, and since frequency is a determinant of power (Chap. 7),

large-scale ethnically homogeneous but non-European discovery samples have

the potential for determining additional risk- or phenotype-associated alleles that

are relatively infrequent in Europeans, c.f. [30, 31].

Localization of causal alleles in association studies can be enhanced by use of

additional ethnic groups beyond those in which the association was first discov-

ered. Typically when viewing association data for a single population, linkage

disequilibrium at the fine scale level ultimately interferes with localization, i.e.,

there are many similarly performing associated alleles spread out over tens or

even hundreds of kilo bases of DNA sequence. If data for other ethnic groups is

available then it is possible to rule out a fraction of the similarly performing

associated alleles by their behavior in the multiethnic population. Utilization of

this approach has been successful in further localizing breast cancer risk in the

FGFR2 region [35] and has been attempted in several other studies [32] other
references. In one specific example, Chen et al. [32] constructed a risk score

consisting of the unweighted counts of 19 common genetic variants that had been

discovered and reliably shown to be related to breast cancer risk in European or

Asian populations. They showed that this score was not reproducible in a large

African ancestry study, i.e., the score was not significantly associated with risk in

3,016 cases and 2,745 controls of African ancestry. Chen et al. found however that

fine mapping in the 250 kb regions containing the reported SNPs produced novel

disease associations of two types: (1) with SNPs that in the original reporting

populations were in high LD with the reported variant but were not in LD in with

the index variant in African populations and (2) with SNPs that were not in LD

with the previously reported variant either in the original or in the African

population. They produced a revised score that included both these novel associ-

ations (4 of each type were tentatively identified). While it will be important to

replicate the revised score in both African and non-African ancestry women

before it can be fully accepted, the revised score was highly predictive of risk in

their sample.

Domination of trait variance by either gene � gene interactions or gene �
exposure interactions would greatly reduce the overall heritability that can be
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explained by simple gene-risk summaries such as the score described above

[20]. Use of multiple ethnic groups in meta-analysis not only has the potential

to refine the effects of each allele included in such a summary but also can yield

information about the predominance of interactive effects versus simple additive

genetic effects on disease risk or trait mean. If interactive effects predominate,

then it would be expected that many associations would fail to replicate in other

populations and that additional fine mapping of risk associations would not be

enough to find more robust associations. On the other hand, if it can be verified

that most risk loci replicate in all populations, then interactive effects may be

less important than sometimes feared. Large-scale attempts to replicate associa-

tions in other ethnic groups which were found originally in European samples

are currently ongoing (as of this writing) in such studies as the PAGE

consortium [14].

8.8 Fine Mapping of Single-SNP Associations:

Conditional Analyses

Densely genotyping markers around SNPs that have been well replicated in a

search for markers that are more associated with the outcome of interest than the

index signal, i.e., the previously reported SNP association, requires us to judge

whether any associations found this way either underlie or enhance the reported

signal. A simple approach guiding such a judgment is to first include the index

signal in a baseline model and perform a likelihood ratio test of whether the

newly discovered allele passes an appropriate significance threshold when added

to the baseline model; and then second to perform the reverse analysis, the new

allele is forced into the baseline model, and a test for the significance of the index

signal, conditional on the new allele, is constructed. Possible results of this

analysis are:

1. The new association enters the model significantly in the first test, and the index

signal does not enter in the second test.

2. The new association fails to enter the model significantly in the first test, but the

index signal also fails to enter in the second test.

3. The new association enters the model significantly in the first test, and the index

signal also enters in the second test.

4. The new association fails to enter the model significantly in the first test, while

the index signal does enter the model in the second test.

The (tentative) conclusion from result (1) is that the new association is more

strongly associated with the same causal allele than is the index signal; from result

(2) we might conclude that the new allele and the index signal are equivalently

associated with the same causal allele; from result (3) we would tend to conclude

that there is more than one causal allele at work in the region being fine-mapped and
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these are not highly correlated with each other; from result (4) the conclusion would

be the index signal remains the most closely associated allele.

The strength of our confidence in these conclusions depends upon the signif-

icance level used in the test and the power of detecting conditional associations.

There have been some suggestions made concerning appropriate significance

levels to use in fine mapping. It is generally agreed that requiring genome-wide

significance ( p-values of 5 � 10–8 or so) for the results of the fine mapping is too

stringent since there is a very high prior probability that a causal variant exists in

the region and a high prior probability is an accepted rationale for accepting

reduced p-value [36]. A seemingly more reasonable criterion would be for a

fine-mapping study to use the Bonferroni test according to the number of associ-

ations investigated during the fine mapping exercise, so that a level of signifi-

cance of 0.05/n, where n is the number of alleles used in the fine mapping, is

required. For example, in the paper described above, Chen et al. [32] used a

modification of this criteria when fine-mapping associations and searching for

new alleles in regions surrounding 19 risk loci for breast cancer. They used a

more stringent criterion to accept that a new allele was an independent risk

predictor (i.e., pointing to a new risk allele not associated with original index

signal), i.e., to accept result 3 they required a Bonferroni correction for all the

SNPs genotyped in all regions considered, whereas to accept that the new allele

was a better predictor of the same underlying causal allele (result 1) required only

Bonferroni correction for the SNPs genotyped in each specific (of 19) region.

Here the onus is on the new allele to pass the appropriately Bonferroni-adjusted

criteria during the first test, the significance criteria for the second test (when the

index allele is competing against the new allele) arguably could be much more

relaxed since the index allele already has been judged to be globally significant in

other analyses.

Clearly the confidence in the conclusions when either result 2 or result 4 is

seen depends upon the power to detect conditional associations. An approxima-

tion to the sample size needed to detect the influence of a causal variable X (the

test SNP) when another noncausal but correlated variable Z (the index SNP) is

already in the model is to divide the sample size computed with only variable

X in the model by (1 � R2
xz) with R2

XZ being the squared correlation between the

two variables. This approximation follows because one of the primary determi-

nants of the power of detecting an effect of X is the variance of X in the

population; when computing the power of a test of whether X is influential in

the presence of Z, we may replace the variance of X with the variance of

X conditional on Z which is Var(X)(1 – R2
XZ). Since needed sample size is

inversely proportional to the variance of the predictor, we can use standard

sample size programs to compute conditional power for a fixed sample size, n,

by using an effective sample size of neff ¼ n(1 � R2
XY) in the place of n when

running these programs.
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8.9 Fine Mapping in Admixed Populations

In Chap. 4 the use of global ancestry estimated by principal components is described

for the purpose of control of false-positive rates due to recent or incomplete

admixture. We now consider issues related to fine mapping in admixed populations;

to simplify matters, only admixed populations having two ancestral populations are

discussed. We also assume that the true effect of the underlying causal variant of

interest on phenotype mean or risk is the same in both mixing populations. At the

outset, it is important to understand that studying an admixed population can

provide more power to detect the effect of a large range of variants than can studies

that are restricted either to a single ancestry or to a combination of single ancestry

studies reflecting the source populations of the admixed population. If we only study

one ancestry source, then a study of the admixed population will have greater power

to detect the influence of any allele that is more common in the other (unstudied)

ancestral population. Of course, power is lost for study of alleles that are less

common in the other unstudied source population. However, now consider a

comparison of the power of an admixed study to an equally sized study

(in combination) of the two source populations. Moreover, we will also require

that the number of subjects being studied in each of the two source populations is

proportional to each populations’ contribution to the admixed population. In this

case for any allele, A, with different allele frequencies in the two source populations,
one can show that Var(n(A)) in the admixed population will be greater than in the

two source populations, after stratification for population source, even after

adjusting for global ancestry, G. For constant effect size (increase in phenotype

mean or disease log odds ratio per allele), the power to detect the effects of allele

A on phenotype mean or disease risk is largely determined by the variance of

n(A); therefore, it is expected that in general, admixed populations will provide

more power for the same number of subjects under study than would a stratified

study of the source populations. This power gain is especially noticeable for

alleles which are greatly differentiated in the two source populations.

As described in Chap. 7, Sect. 7.7.2, we expect that more recently admixed

populations will pay a greater penalty in power than will less recently admixed

populations for having to correct for global ancestry because the paucity of recom-

binationwillmean there ismuchmore variance in global ancestry in recently admixed

populations than in older admixed populations. Nevertheless, even for very recently

admixed populations, correcting for global ancestry has less of an effect on power

than does correcting for population membership in a stratified un-admixed study;

again, this holds especially true for highly differentiated risk alleles.

There is a flip side however of studying very recently admixed populations,

which is that haplotypes tend to be longer than in the ancestral populations. In

particular, alleles that are unlinked but highly differentiated in frequency between

the two source populations will tend to be linked in the admixed population. A risk

allele that is highly differentiated may have higher power to be detected in the

admixed study but will also be linked with other highly differentiated alleles.

Correction for global ancestry will eliminate “cross-chromosome” associations
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due to very recent admixture, as well as associations between variants at different

ends of the same chromosome, but will not eliminate the associations between

highly differentiated SNPs riding on as yet un-recombined haplotypes. Therefore, a

differentiated risk allele will have greater power to be detected in a recently

admixed population but will be more difficult to localize, i.e., to distinguish from

associations with other differentiated markers.

8.9.1 The Role of Local Ancestry Adjustment

Since localization of risk alleles is an important aspect of post-GWAS analyses

there has been much recent discussion of the role of local ancestry adjustment in

association-based studies of admixed populations [37–41]. The ancestry of a

particular genomic sequence containing an allele of interest can be traced back to

one of the mixing ancestral populations and estimation of local ancestry has been of

long interest [38, 42] for several reasons, notably for admixture mapping

[43, 44]. The interest here is not on how well local ancestry can be estimated in

practice or on the use of local ancestry estimates to perform admixture mapping but

rather on whether or not local ancestry should be routinely adjusted for in associ-

ation studies in admixed groups, assuming that local ancestry at each allele of

interest can indeed be estimated with precision.

The hope is that adjusting for local ancestry, L, coded as 0, 1, or 2, copies from

one of the two source populations, will allow for better localization of the signal

because after adjusting for local ancestry, differentiated SNPs not linked in the

source populations will no longer appear to be linked in the admixed population.

This is true but it should also be noted that adjusting for local ancestry is expected to

reduce power of association tests especially for highly differentiated SNPs, this

follows because it can be shown that the expected value of Var(n(A)|L ) is less than
or equal to Var(n(A)|G)) with equality only when the allele frequencies are equal in

the two populations. Therefore, adjusting for local ancestry is two-faced; while it

eliminates admixture-based LD, it also tends to reduce power. Moreover, it only

improves localization ability for differentiated variants; these are exactly the ones

for which the difference between expected Var(n(A)|L ) and Var(n(A)|G) is the

greatest, i.e., where the power loss for correcting for local ancestry is greatest.

In summary, it appears unreasonable to always require local ancestry adjustment

before declaring that a significant association is detected in an admixed population.

Local ancestry adjustment while reducing artificial admixture-based LD, something

which is undoubtedly needed for localization, is at best an imperfect tool for

localization because it also reduces power and, for example, may not be as useful

for localizing alleles as would be the inclusion of other unrelated populations in

multiethnic analyses.

Finally, we must consider the extent to which large modern-day admixed groups

actually do show longer LD after correction for global admixture than is seen in

relatively non-admixed populations. In the study of the HapMap 3 populations and
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of data from the Multiethnic Cohort Study (personal communication J Zhang), only

relatively modest increases in LD in the large admixed populations could be

detected relative to unmixed source populations.

8.10 Polygenes and Heritability

It has been assumed for a very long time that there are traits which must be

influenced by the effects of many genes each contributing relatively small amounts

to phenotypic variance. Fisher [45] pointed out that this was the reason that genes

which are inherited in a Mendelian fashion could explain the heritability of con-

tinuous phenotypes such as height, a point of controversy in the early history of

modern genetics. For the time being, we consider a simplified situation wherein the

only genetic effect on a phenotype of interest is through the (weighted) sum of the

alleles of many independent associated SNPs.

8.10.1 Fraction of Familial Risk Explained by a Polygene
Under a Multiplicative Model

Suppose that the probability of a binary outcome of interest can be approximated as

logPr(Di ¼ 1|vi) ¼ α + βvi (e.g., this is often used to approximate a logit model

when D denotes a rare disease). Here vi is a normally distributed polygene with

mean zero and variance set to equal one so that the variance of the risk variable βvi
is equal to β2. We can show that under this model that in order to explain a simple

family relative risk of FRR (relative risk of disease in a relative of an individual

with disease) for a coefficient of relationship equal to k solely on the basis of the

polygene, then β must be equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log FRRð Þ

k

q
. Here our polygene may be thought of

as the sum of many weighted normalized (to mean zero) alleles with the weights,

wk, proportional to the log relative risks, log RRk, associated with the allele but

scaled so that total polygene variance Var við Þ ¼X
k

2pk 1� pkð Þw2
k equals 8. Notice

that under these assumptions, a number of other relevant observations fall out as

well. For example, in order to explain a familial risk coefficient of two between

first-degree relatives (e.g., similar to that seen for many cancers), the variance β2 of
individual relative risk associated with the polygene should equal 8.39. If this is the

case, then individuals in the top quintile of risk will have average risk which is

about 6.9-fold that of the remainder of the population. Perhaps more realistically

(see below), if only half this FRR can be explained by a simple polygene, then the

upper quintile will still be at 4.4-fold increased risk of the outcome compared to the

lower 80 % of the population. Higher familial risks require larger β in this simple

polygenic model.
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8.10.2 Synergies Between Polygenes and Environmental
Variables

It is seen above that in order to explain a large fraction of familial risk with a simple

combination of genetic variants, i.e., a polygene, this polygene must be highly

predictive of individual risk. Identification of such high-risk individuals could be

important for many reasons, with application of focused screening being one often

discussed example. In certain occupational settings, interaction of genetic risk and

risk due to exposures from the job is of potential concern. For example, if the

individuals who are most susceptible, based on their polygenes, vi, are also the most

susceptible to exposures on the job, then it could be that protection schemes should

be modified for those individuals. For example, if exposures and genetic risk

synergize in a multiplicative fashion, i.e., the relative risk associated with vi holds
for all levels of the exposure of interest, then it can be readily shown that the

fraction of excess cases due to exposure is higher in the genetically exposed. In the

example above (where the most genetically susceptible 20 % have a risk 6.9-fold

the remainder of the population), about 63 % of total cases occur among the most

susceptible quintile; moreover, the same fraction of the excess cases due to expo-

sure (those that would not be seen in the absence of exposure) would also occur

among the most genetically susceptible quintile. In this setting one could imagine a

system of personalized standards that would try to hold down each individual’s

absolute excess risk of an adverse event or disease to some permissible level by

modifying the individual exposure amounts allowed according to genetic risk and

the synergism between genetic risk and exposure.

At present, these question are far more hypothetical than real, since the genetic

basis for very few complex diseases is well understood to date, and for most

diseases, only a fraction (such as carriers of BRCA mutations) of high-risk indi-

viduals can be identified on the basis of current knowledge. Nevertheless, as the

polygenic component of risk is identified and quantified, the evaluation of the joint

impact of polygenes and other exposures is likely to become increasingly

important.

8.11 GWAS Heritability Analysis

At present, there is controversy about the overall contribution of additive genetic

risk to heritability. In an interesting series of papers, Yang, Visscher, and colleagues

[46–49] have used GWAS studies to estimate the overall polygenic contribution of

common variants to complex phenotypes without actually identifying the specific

genes that contribute to the polygene. (A similar effort using different methods has

been described in Purcell et al. [50]). Here we go over the basics of what they are

attempting and also discuss the behavior of these estimates in the presence of

population stratification.
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The original analyses of Yang et al. [46] discussed estimation of the heritability

of height. Their analysis is closely related to the use of random effects models

to correct for population stratification and relatedness described in Chap. 4, Sect.

4.2.3. In their original analysis of height, for example, they fit essentially the same

variance components model as does the EMMAX program [51] which we

display as

E Yið Þ ¼ X
0
iβ ð8:16Þ

and

Var Yð Þ ¼ σ2Iþ γ2K, ð8:17Þ

where Y ¼ (Y1,Y2, . . .,YN) is the vector of observations of height and where we

estimateK using SNP data by constructing the N � N Balding-Nichols relationship

matrix K̂ (see Chaps. 2 and 4) with components

k̂ ij ¼ 1=M
XM
l¼1

nil � 2p̂lð Þ njl � 2p̂l
� �

2 p̂lð Þ 1� p̂lð Þ ,

where p̂l for l ¼ 1, . . ., M are the estimated allele frequencies of each genotyped

SNP. (Actually Yang et al. replaced the diagonal elements k̂ ii with a revised

version having better sampling properties when rare SNPs are used in the analysis.)

Unlike in Kang et al. [51] who used the variance model (8.17) to adjust for

population stratification when SNP allele counts, nil, are included in the mean

model (8.16), the interest in the heritability analysis is not in the effect of

individual SNPs; rather, the estimates of the variance components γ2 and σ2 are

examined and reinterpreted. Yang et al. interpret the variance component γ2 as

being related to the polygenic effect of all the measured SNPs combined (including

the effects of those that are in close LD with the measured SNPs), and they

estimate the fraction of the overall trait variance that is due to the effects of a

polygene as equal to h2 ¼ γ2

σ2þγ2.

The interpretation of the variance components as indicative of the total variance

due to SNPs was based on an underlying model

Yi ¼ μþ gi þ ei and gi ¼
XM
l¼1

zilul, ð8:18Þ

with zil a normalized version of nil and ul proportional to the effect (e.g., linear

regression slope parameter) of this normalized variant (here gi is equivalent to the

polygene vi above multiplied by the polygene effect β). It is also assumed that ei is
independent of ei0 for i 6¼ i 0.
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Treating the effects, ul, of each normalized SNP as an independent mean zero

random variables with variance equal to γ2

M gives the random effects version of

model (8.18) as

E Yið Þ ¼ μ and Var Yð Þ ¼ σ2Iþ γ2
1

M
ZZ0: ð8:19Þ

Note that 1
MZZ0 is equivalent to the estimated relationship matrix K̂ discussed

previously.

In their initial paper, Yang et al. used this method to estimate that 45 % of the

variability of height can be explained by considering all SNPs simultaneously, i.e.,

the estimate γ̂ 2 was equal to 45 % of total estimated variance σ̂ 2 þ γ̂ 2; note that this

is far greater than the 10 % of variance explained by the SNPs in the “mega-

analysis” of Lango Allen et al. using many more participants than in the Yang

et al.’s paper. A later paper from the same group [48] went on to apportion this

overall trait variance into components that are due to certain types of SNPs, such as

all SNPs on given chromosomes and all “genic” versus “intergenic” SNPs (i.e.,

SNPs close to or within the transcribed region of known genes and SNPs outside of

these transcribed regions), by restricting the SNPs used in Z. They also used

liability models [19] to extend these methods to binary (case–control) outcomes.

8.11.1 Heritability Estimation in the Presence
of Population Stratification

It is striking that themodel used byKang et al. [52] is essentially identical to that used

by Yang et al. [46] but that the focus is so different. For Kang et al. the SNPs that are

used in the estimate, K̂ , are of no special interest themselves, other than to capture

hidden structure and relatedness and the SNPs that are used are not interpreted as

necessarily being in close LD with causal SNPs; the parameter γ2 is a nuisance

parameter which is assumed to capture the effects of hidden population structure

and relatedness. On the other hand, Yang et al. basically assume that all related

individuals have been removed from the analysis and that gross population structure

and admixture is either absent or accounted for (by use of principal components or

similar methods) so that γ2 can be interpreted as the direct effect of the portion of the
measured SNPs that either are causal or are in close LD with causal SNPs.

It is clear that in a number of instances the resulting heritability estimates h2

¼ γ2

σ2þγ2 may be biased estimates of the inherent predictive capacity of the measured

SNPs [52]. For example, Browning and Browning [53] have shown that severe

hidden population stratification (i.e., the presence of several different non-mixing

groups) can bias GWAS heritability estimates, even after adjusting for principal

components, as can the presence of unknown close relatives in the data [52].
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More precisely, consider an expansion of model (8.18)

Yi ¼ μþ gi þ gi
U þ ei, ð8:20Þ

where again gi ¼
XM
l¼1

zilul and the additional effect gUi refers to unmeasured causal

variants, zUil ; with gUi ¼ XMU

l¼1

zUil u
U
l , we assume that the effects, uUl of the unmeasured

SNPs are distributed with mean zero and variance γ2U/MU. If this is the correct

model, then writing this in terms of the induced variance components we have

E Yið Þ ¼ μ and Var Yð Þ ¼ σ2Iþ γ2
1

M
ZZ0 þ γ2U

1

MU
ZUZU0: ð8:21Þ

Finally, suppose that we fit the variance model (8.19) rather than the true

model (8.21). If the matrices 1
MZZ0 and 1

MU
ZUZU0 are similar to each other, then it

can be shown that the estimate of γ2 from fitting (8.19) will be biased upward,

towards γ2 + γ2U. Remembering from Chaps. 2 and 4 that a consequence of

population stratification and cryptic relatedness is that all variants will tend to

have a similar covariance matrix structure, reflecting the hidden structure in the

sample, we would expect 1
MZZ0 and 1

MU
ZUZU0 to be similar to each other when

hidden stratification is present; hence, the estimation of γ2 could be confounded

with γ2U. See Chen et al. [54] for considerable further discussion of this phenom-

enon in the context of an analysis of the heritability of height in an African

American sample.

8.12 Analysis of Rare Variants

GWAS studies to date have largely focused upon the discovery of common variants

that are related to diseases and other phenotypes. There is increasing interest in rare

variants as causes of complex diseases and phenotypes. It part this may be attributed

to disappointment with the failure (in most instances) of GWAS studies to find

common variants that explain a large fraction of phenotype heritability or of

familial risk [55, 56]. Some researchers (based on analyses such as those of Yang

et al. and Purcell et al.) call for additional scrutiny of common variants already

accessible by standard technologies, but using very large sample sizes, however,

many others [18, 57–60] are drawn to models in which rare variants play a more

prominent role in disease susceptibility.

Coinciding with the maturation of high-throughput sequencing technologies

(refs) interest in DNA sequencing as the primary or sole source of information

about upon genetic variation for large-scale association studies. High-throughput

8.12 Analysis of Rare Variants 309

http://dx.doi.org/10.1007/978-1-4614-9443-0_2
http://dx.doi.org/10.1007/978-1-4614-9443-0_4


sequencing can be used for selected regions (such as in numerous candidate gene

and fine-mapping studies) and is increasingly being applied to interrogate all coding

variation, as in the National Heart Lung and Blood Institute’s exome sequencing

project, ESP [61], and in some studies the entire genome.

There are many statistical issues in the construction of data usable for associa-

tion analyses from the massive amounts of raw sequence reads generated by these

technologies (reference). Of note here [62] is the topic of using haplotype and

genotype imputation methods discussed earlier in this book to improving variant

calling by imputation across site. However, the primary problem to be considered

directly here is in describing and evaluating methods for relating rare and very rare

variation to disease risk.

8.13 Contribution of Rare SNPs to Phenotypic Variance

and Heritability Under a Polygenic (Additive) Model

For a continuous trait with variability determined by additive effects of individual

(statistically independent) causal alleles, the contribution to trait variance of a

single given variant, j, with frequency pj and effect on the mean of βj per allele in
the population of interest is 2pj(1 � pj)β2j .

In order that rare variation plays an important role in disease heritability, it

should be obvious that either phenotype effects and risk or odds ratios need to be

much larger for rare alleles or that the fraction of rare alleles that are causal

variants should be higher than for common alleles. Chapter 2 introduced the

Wright formulae [57, 63, 64] for distribution of allele frequencies under an

assumption of constant population size; we revisit that formula here. The Wright

formula is

f pð Þ ¼ kp βS�1ð Þ 1� pð Þ βN�1ð Þ
eσ 1�pð Þ, ð8:22Þ

where p is the allele frequency, βS is the (scaled see Chap. 2) mutation frequency,

βN is the scaled reversion frequency, σ is the scaled selection rate, and k is a

normalization constant. When risk alleles are reproductively neutral (σ ¼ 0), as

can be expected for most late-onset disease alleles, and when the mutation

rates are small, this function is almost equal to k
p 1�pð Þ which is a symmetric

U-shaped curve. The contribution to the variance of phenotype Y of a causal

(additive) allele is

2p 1� pð Þβ2, ð8:23Þ

where β is the effect parameter. If we assume that all effects are additive and that

the effect size, β, is constant for all risk alleles, then the contribution to phenotypic

variance of risks alleles with frequency between p0 and p1, found by multiplying
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equation (8.23) by (8.22) and integrating, simply reduces to 2kβ2( p1 � p0).
This implies that the relative contribution of rare alleles (say p < 0.01, or

p > 0.99) to phenotype variance is very small compared to the common alleles

( p between 0.05 and 0.95 frequency). As described in Chap. 2, arguments like this

motivate the complex disease common variant hypothesis that underlies array-

based GWAS studies.

There are several arguments in favor of a more important role for rare variants in

disease risk; these include:

1. The detection through large-scale DNA sequencing of considerably more rare

variation than expected under the constant population size model, presumably

due to recent explosive world population growth. Recent large-scale sequencing

in the 1000 Genomes Project shows that there is a surfeit of SNP alleles with

frequency less than 0.5 % compared to that expected under the constant popu-

lation size model [65].

2. The clear role that rare variants, and especially protein-modifying rare risk

alleles, play in high-penetrance genes for Mendelian disorders c.f. the Online
Mendelian Inheritance in Man (OMIM) database [66].

3. Some evidence that risk alleles for certain complex human diseases are more

likely to occur in evolutionarily highly conserved regions, when the DNA

sequences of different species are considered [67], implying that such genes

are under selective pressure.

Point 1 indicates that rare variants, simply by being more numerous, may play

a less limited role in disease heritability, even if risk allele magnitudes are not

greater than for common variants. If one assumes that risk alleles are associated

with reduced reproductive fitness (s > 0), then the allele frequency from the

Wright formula shifts to the left considerably. For example, if disease alleles

are associated with negative selection that decreases reproductive fitness by as

little as 0.03 % (scaled selection coefficient σ � 4Nes ¼ 12 assuming the com-

monly accepted value of 10,000 for Ne), then the U shape of the variant distribu-

tion becomes much closer to an “L” (see Fig. 8.1a), and therefore the relative

contribution to phenotype variance and heritability due to rare alleles is larger

than that due to common alleles (Fig. 8.1b, d). In addition, it is unrealistic that all

risk variants have the same effect size β. It is sometimes assumed [57, 68] in

discussions of the contribution of rare variants to disease risk that there is a link

between the effect size of a variant and the selection coefficient σ. If σ increases

with the magnitude of β, then larger effect sizes will be restricted to rare

risk alleles so that the relative contribution of rare variants is increased even

further. This link is certainly reasonable for risk alleles for fatal diseases with

nontrivial incidence during reproductive lifespan, as well as for nonfatal diseases

of early adulthood or before with very severe social effects, e.g., autism

and schizophrenia.

In the remainder of this section, we discuss the practical implications of assum-

ing that rare alleles explain a large portion of phenotype variance.
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8.14 Moderately Rare Single-SNP Analysis

As described in Chap. 7, in order to be detectable in single-SNP analysis, rare

variants must have higher effects than common SNPs in order to be detectable using

the types of tests described in Chap. 3. When SNPs are very rare, several different

types of breakdown in the asymptotic distribution of test statistics may be expected.

We first consider the Wald test in a very simple setting, that of a case–control study,

where a rare SNP count is the only predictor in the model, and in addition we

assume (to simplify the treatment but with no loss of generality) that the SNP is rare

enough so that there are no study participants who carry two copies of the rare

allele. The expected data can be displayed as a two-by-two table.

Disease status

0 1

SNP risk allele count 0 n00 n01
1 n10 n11

Here n00 and n01 (the noncarriers) are many more than n10 and n11 (the carriers).
For a two-by-two table such as above, the ML estimate of the log odds ratio,
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Fig. 8.1 Allele frequency distributions (a) and fraction of genetic variance (b) under a neutral

model (solid lines) and under a mild selection model (dotted line) with 4Ne ¼ 12 ; also shown are

cumulative frequencies (c) and cumulative heritability (d) under the same models
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denoted as b below, can readily be shown to be equal to b̂ ¼ log n00ð Þ þ log n11ð Þ
�log n10ð Þ � log n01ð Þ and the estimated variance, Var(b̂ ), of this estimate equal to
1
n00

þ 1
n11

þ 1
n10

þ 1
n01
. Now consider what happens when there is a very strong positive

effect on risk of a rare SNP. In fact let us assume that in a given dataset the minor

allele for the rare SNP is only seen among the cases so that n10 is 0. In this case, the
estimate of the odds ratio is infinite as is the estimate of the variance so that a Wald

test is undefined. Moreover, it can be shown that when applying the Fisher’s scoring

procedure to such data that if a Wald test, b̂
2
=Var b̂

� �
, is calculated using the

estimates given at the end of each iteration, then this quantity goes to zero as the

iterations proceed (see Homework).

In practical implementations of iterative logistic regression procedures as in

PLINK and SAS, the programs will stop when the changes in log likelihood

decrease beyond some point; noting that the parameter estimates are still changing,

SAS will insert a missing value for the Wald test (and for the p-value for testing the
null hypothesis), whereas PLINK or glm in R will generally substitute a value near

0 for the Wald test and near 1 for the p-value.
Let us consider instead the likelihood ratio test and score test. The likelihood for

these data (assuming an unmatched case–control study) is

n01log
exp að Þ

1þ exp að Þ þ n00log
1

1þ exp að Þ þ n11log
exp aþ bð Þ

1þ exp aþ bð Þ

þ n10log
1

1þ exp að Þ : ð8:24Þ

The score test for the hypothesis b ¼ 0 (b is the log(OR)) is obtained by first

maximizing (8.24) with respect to a with b ¼ 0, which gives â 0 ¼ log n01þn11
n00þn10

� �
(i.e., the log of the number of cases/number of controls). We then calculate the 1st

derivative of (8.24) with respect to b (call it Db) and matrix of second derivates

with respect to (a, b) (call the elements Daa, Dab, and Dbb) and evaluate them all at

b ¼ 0, and a ¼ â 0 to form the score test (see Chap. 3) for b ¼ 0, as � D2
b/(Dbb �

D2
ab/Daa). This test can be easily seen to equal

n00 n11 � n10n01ð Þ2 n01 þ n11 þ n10 þ n00ð Þ
n00 þ n10ð Þ n01 þ n00ð Þ n10 þ n11ð Þ n01 þ n11ð Þ : ð8:25Þ

Note that when n10 is zero, the score has value equal to

n00 n11 n01 þ n11 þ n00ð Þ
n01 þ n00ð Þ n01 þ n11ð Þ :

This can be seen to increase with n11 so that this test, unlike theWald test, remains

sensitive to very strong effects of rare variants. Because of this type of behavior the
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score test is generally considered to be more powerful than the Wald test for rare

variants, the failures of the Wald test are described more generally in Huack [69].

Note however that the score test still relies upon asymptotic approximations to

provide p-values. In the example above, the score test can be further seen to be

identical to the (uncorrected) Pearson χ2 for independence of the rows and columns

of a 2 � 2 table. When expected cell sizes (expected values of the n given marginal

totals) are small, the chi-square approximation is poor and is often overly liberal,

i.e., rejecting the null hypothesis much more often than desired. This behavior can

be quite serious for “unbalanced” case–control studies, for example, when there are

many more controls than cases, the expected value of n11 can become very small for

rare variants. The use of exact logistic regression [70] may be needed to provide

believable p-values for very rare variants especially in unbalanced designs. For

example, in an analysis of exonic variation (almost 200,000 protein coding SNPs)

in relation to breast and prostate, Haiman et al. [71] found that the score test

produced hundreds of nominally globally significant p-values (all for very rare

SNPs) when examining ER breast cancer cases which used approximately 10 times

as many controls as cases. None of these rare-SNP associations remained globally

significant when exact logistic regression was applied.

For continuous phenotypes, similar problems occur. If phenotype residuals are

truly normally distributed, then the usual regression tests are exact, but when

normality is not perfect, the apparent effects of rare variants can be extremely

distorted. This is especially true when interest is in the tails of the distributions of

parameter estimates. Violations of normality that are not very important when tests

are conducted at p ¼ 0.05 may be very important for values at the levels for global

significance (approximately p ¼ 5 � 10-8) appropriate for GWAS studies. More-

over, as the number of rare variants that can be tested increases (through large-scale

sequencing or by further GWAS SNP array development), these GWAS p-values
(defined for the analysis of common SNPs) may be much too large to guard against

global type I errors when testing many rare variants.

8.15 Burden and Pathway Analysis

The application of sequencing technology rather than genotyping known variants

allows for the simultaneous discovery and testing of exceedingly rare variants.

However, individual testing of SNPs reaches a point of vanishing returns even if

(because of effects on reproductive fitness) large effect sizes are expected to be

restricted to rare alleles. One hope is that numerous rare phenotype or risk-altering

alleles will cluster in identifiable regions of the genome such as within or near

known genes or known pathways of genes or in regions involved in the control of

such genes. If candidate genes or gene combinations or other well-defined genomic

regions can be identified a priori, then cumulative testing of the effects of all rare

variation found within these genes or pathways can be approached from a variety of

angles. We consider two here.
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8.15.1 A Weighted Sum Statistic

Madsen and Browning [68] propose a weighted sum method applicable to

case–control studies in which mutations are grouped according to function (e.g.,

gene/pathway) and each individual is scored by a weighted sum of the minor allele

counts in each component group (e.g., each gene or pathway). In order that this sum

not be dominated by common variants, they suggest weighting each minor allele

according to its frequency in unaffected individuals with smaller weights given to

more frequent mutations. More specifically, they suggest

burdeni ¼
X
j

1

γj
nij, ð8:26Þ

where nij is the number of copies of the minor allele for mutation j carried by

subject i and the sum is over all nj individuals with data for mutation j. The

(inverse) weight γj is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p̂ j 1� p̂ j

� �q
where pj is an estimate of allele

frequency of mutation j in controls adjusted to avoid zeros as p̂ i ¼ mj
U þ 1

� �
=

2nUj þ 2
� �

where mU
j is the total count of mutation j in the unaffected individuals

and nUj is the number of unaffected individuals with data for mutation j. Madsen

and Browning then perform a Wilcoxon test for whether the distribution of burdeni
differs between cases and controls and finally use a permutation procedure (per-

muting affection status) to assign p-values to the results. This final permutation

step is needed because the weights are calculated using only the unaffected

individuals; otherwise, this procedure would show many false-positive risk scores

since null alleles that by chance are more common in the controls are down-

weighted, while those that are by chance less common in the controls are

up-weighted in the calculations. In power calculations (accomplished through

simulations), Madsen and Browning show that this testing procedure works well

in simulations in which disease risk alleles are rare and are weakly selected against

(with σ in the Wright formulae set to 12) but where there is a strong

non-probabilistic inverse relationship between the effect (odds ratio) of a given

variant and the frequency, p, of the risk alleles in unaffected individuals (the

assumed relationship is r ¼ c/p + 1 with c a constant determined by the total

amount of population risk explained by a particular “gene”).

There are a number of important questions about this procedure including its

behavior and power (1) when not all alleles affect risk and (2) when not all risk

alleles are the minor alleles (i.e., when there are rare protective alleles along with

the rare risk alleles).

The first of these questions is partially answered in simulations but these

restricted to (seemingly quite permissive) situations when there are an equal

number of causative and non-causative loci (and with the non-causative alleles all

having the same direction of effect).
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8.15.2 Omnibus Tests, Variance Components,
and Kernel Machines

A natural alternative to burden-based tests which assume directionality of effect are

tests of the form β1 ¼ β2 ¼ � � � ¼ βM ¼ 0 where βk is the effect of the kth variant,

i.e., a simultaneous test of the composite null hypothesis that all genetic effects are

zero (here we are assuming an additive model in the counts, nk, of the kth allele; for
rare variants, very few homozygotes for the minor allele will be observed so that

there is no ability to distinguish between dominant, additive, or codominant

models). When modeling the effects of each variant using a GLM, tests of equality

can be performed as score tests with the number of degrees of freedom for the score

test being equal to the number,M, of SNPs (unless some of these are redundant, i.e.,

are in perfect LD with other SNPs, in which case the rank is reduced by the number

of redundant). There are a host of other omnibus tests (see [72] for a review) that

have been proposed; here we focus on those that are related to variance component

methods. We start here by assuming that the outcome of interest is a quantitative

trait which we model as Gaussian with mean equal to

E Yð Þ ¼ Xβ þ Z1b1 þ Z2b2 þ � � � þ ZMbM ð8:27Þ

and variance matrix σ2I. Here we are distinguishing between adjustment variables

(such as age, sex, principal components), which are included in the covariate matrix

X, and the SNP variables Z (each Zk is a N � 1 vector containing the counts nik of
the number of the kth SNP allele carried by the ith individual). Model (8.27) is a

fixed effects model, but we are free to consider an alternative model in which each

bk is regarded as a random variable (independent of the others) with mean zero and

variance σ2k . In this case our model becomes

E Yð Þ ¼ Xβ
Var Yð Þ ¼ σ2Iþ σ21Z1Z1

0 þ σ22Z2Z2
0 þ � � � þ σ2MZMZM

0: ð8:28Þ

So far we have not really gained anything in terms of model parsimony since this

model has just as many parameters as does model (8.27) (fewer mean terms but

more variance components). For rare SNPs where there are few or no homozygotes

for the minor allele, so that each element of Zk is either 0 or 1, fitting model (8.28) is

equivalent to fitting a very unbalanced 2 � 2 � 2 . . . � 2 ¼ 2M random effects

ANOVA model with no interaction terms. In perfectly balanced designs of this

type, the F statistics for testing that each of the βk parameters is zero are identical to

the F statistics for testing that each of the σ2k parameters is zero so that we would

expect no differences in performance (type I error or power) between fixed and

random effects model when testing whether all (fixed or random) parameters are

equal to zero. For unbalanced designs (where each cell size is not equal), models

such as (8.28) can be fit using maximum likelihood or restricted maximum
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likelihood methods and again we would expect little or no differences in the

performance of the two models.

Note that here (when all the SNPs are rare) there is comparatively little infor-

mation available that can distinguish σ21 from σ22, or σ
2
2 from σ23, especially if each

variant has only relatively modest effects. We can introduce parsimony by using a

model for the variances such as σ2k ¼ w2
kσ

2
g where we chose various forms for

weights wk. For example, if we assume that all σ2k are equal to each other (e.g., all

w2
i ¼ 1), then the model for the variance matrix of Y is now

Var Yð Þ ¼ Iσ2 þ σ2gZZ
0 ð8:29Þ

with Z equal to the N � M matrix with columns equal to Z1 . . . ZM. (For conve-
nience in our further discussion but without loss of generality, we also assume that

columns of Z sum to zero, i.e., the means have been subtracted from each Zk) The
model (8.29) replaces M unknown variance components in model (8.28) with

1 unknown component σ2g. In this situation then we can expect performance to

improve, especially if the model for w2
k is “correct” (i.e., that w2

kσ
2
g is close to the

true σ2k); essentially, we are (hoping) to trade some loss in estimating each βk
correctly (e.g., increased bias if the modeled σ2k differs from the true value) with

increased power (decreased variance) to detect joint effects of the whole set of

SNPs. This basic idea, of trading some bias for decrease in variance or increase in

predictive power, underlies a very large body of statistical research starting with

Stein shrinkage [73] and ridge regression [74] in the 1960s and early 1970s and

including the shrinkage and variable selection methods such as the Lasso [75]; the

connection between variance components models and shrinkage methods of each of

these is very strong [76].

For the general model (8.28), the Var(Y ) can be rewritten as

Var Yð Þ ¼ σ2Iþ σ2gZDZ
0, ð8:30Þ

with D equal to a diagonal matrix, diag(w2
1,w

2
2, . . .,w

2
M), with the weights on the

diagonal. Note that if the Z matrix is centered at zero by subtracting the column

means from each column and if the weights are equal towk ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pk 1� pkð Þp

with

pk the allele frequency of the kth SNP, then this model is equivalent both to the

model discussed above for estimating heritability and to the variance model used

for adjustment for population structure in the EMMAX program [51]. Since under

the general model, the genetic variance for a given SNP is equal to 2pk(1 � pk)σ2k , it

follows that taking wk ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pk 1� pkð Þp

is equivalent to assuming that all SNPs

(no matter how rare) tend to explain the same amount of phenotypic variance.

While this may be an appropriate model to use for correction for population

stratification (since then 1
MZDZ0 estimates the relationship matrix when we have

a very large number of SNPs included), it seems like a very strong assumption to
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use in actual analysis of the heritability of a given set of SNPs. (Note however that

this is in fact the model advocated by [68] discussed above.)

Modeling the (squared) weights, w2
k , can involve other features than simply

allele frequency. For example, one can consider the use of “prior covariates” in

the sense of [77] to characterize the appropriate weight for the kth SNP as a function

of features such as pathway membership and predicted functionality (e.g., as is

assessed for coding variants by Polyphen [78] or SIFT [79]).

In general it is expected that if the weights used in model (8.30) are reflective of

the true contribution of the normalized SNP variable Zk to trait variance, then tests

of the null hypothesis that σ2g ¼ 0 will be more powerful than when other (inap-

propriate) weights are used. For example, a simulation ([80], Ph.D. Thesis) when

the true weights were equal for each SNP but the data was analyzed using

wk ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pk 1�pkð Þ

p , then the variance attributable to the SNP counts in Z (i.e., the

“heritability” estimate) was underestimated by approximately 1/3.

Fisher’s scoring algorithms for maximizing the likelihood in the general linear

structured covariance matrix problem (of which the above is a special case) are

discussed by many authors starting with [81]. The score test statistic, assuming

multivariate normality of Y and using formulas from [81], for testing σ2g ¼ 0 in

(8.30) can be computed as

T2 ¼ N

Y�Xβ̂ð Þ0ZDZ0 Y�Xβ̂ð Þ
σ̂ 2 � tr ZDZ0ð Þ

� �2
N tr ZDZ0ZDZ0ð Þ � tr ZDZ0ð Þ2 : ð8:31Þ

Asymptotically this will have a central χ21 distribution under the null hypothesis

that σ2g ¼ 0 . (Here σ̂ 2 and β̂ are estimated under the null hypothesis using OLS

regression.)

8.15.2.1 Sequence Kernel Association Test

One of the most influential recent papers on testing for the composite effects of rare

variants, by Wu et al. [82], introduced what is known as the sequence kernel

association test (SKAT). This test picks up on the themes introduced above and

greatly extends them. The simplest sequence kernel association test is based on

properties of the statistic Q ¼ Y � Xβ̂
� �0ZDZ0 Y � Xβ̂

� �
which appears above as

well. A little thought shows Q is a measure of the covariance (or similarity)

computed over all pairs of individuals (i, i 0) between the pairs of residuals

Yi � X
0
iβ̂

� �
and Yi � X

0
i0 β̂

� �
of the regression on X and the genetic similarities

(captured by the (i, i 0)th element of ZDZ 0) between the same pairs. Notice that the

assumption that the score test is distributed (under the null) as a central χ21 statistic is

essentially assuming that Q

σ̂ 2 is normally distributed with mean tr(ZDZ0) and
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variance N
N tr ZDZ0ZDZ0ð Þ�tr ZDZ0ð Þ2. The paper byWu et al. [82] replaces this assumption

with a more sophisticated representation of the behavior of Q as a mixture of χ21
random variables with the weights corresponding to the eigenvalues of the matrix

RZDZ0 R where R is the matrix (I � X(X0X)� 1X0). Note that applying this matrix

R to Y (i.e., computing RY ) gives the residuals Y � Xβ̂
� �

and that the variance–

covariance matrix of the residuals Y � Xβ̂
� �

is σ2R (since R is symmetric and

idempotent, i.e., RR ¼ R). This representation can readily be shown to be exact

when Y is distributed as multivariate normal and so is not reliant on large sample

approximations in this case. Next [82] extends the methods to logistic regression by

replacing Y � Xβ̂
� �

in Q with the residuals Y � logit�1 Xβ̂
� �

and replacing the

matrixRwith a matrix P1/2where P is an approximation to the variance–covariance

matrix for the logistic residuals, i.e., the eigenvalues of P1/2ZDZ0 P1/2 are used in

place of the eigenvalues of RZDZ0 R to compute the null distribution of Q.
The sequence kernel method canmake use of other similaritymatrices besidesZDZ0

to defineQ; for example, to capture quadratic and first-order interactions aswell asmain

effects, the quadratic kernel function K Zi; Z
0
ið Þ ¼ 1þXM

k¼1

w2
kZikGi0k

 !2

is used to

provide the (i, i0) element of the similaritymatrix (replacingZDZ0 inQ). Other versions
of the kernel function can be constructed to assess gene � environment interactions (see

Homework) on a mass basis, etc.

8.16 Final Remarks

The elephant in the room of genetic association studies at the time this is written is

the role that next-generation whole genome sequencing (WGS) will play in future

association studies. Next-generation sequencing’s impact so far has been almost

entirely on variant discovery as in the exome sequencing project [62] and the 1KG

project [66]. To date, no large association studies have been based on using whole

genome sequencing as the primary technology for variant assessment for all

individuals in the study. This is only now beginning to change in candidate gene

studies, with exploratory efforts underway within such US NIH led projects as the

GAME-ON consortium (Genetic Associations and Mechanisms in Oncology).

Sequencing has the potential of identifying regions of the genome either that harbor

extremely high risk but very rare alleles or which are rife with rare variants which

individually do not make much of an impact (and may in fact be seen only once in a

particular study) but which collectively are important. Finally, sequencing has the

potential (when DNA for parents as well as affected and unaffected offspring are

available) to determine the role of de novo variation in particular genes as a cause of

sporadic disease [83].

At present, it is still not known whether rare variation in most common diseases

plays an important role in overall disease heritability. The advent of WGS

8.16 Final Remarks 319



sequencing has provided the rationale for the development of the burden and

omnibus tests that are described in Sect. 8.15; however, the main issue of how to

group regions of the genome together in order improve the power of these tests is

unsolved at this point. Right now, there are still many hurdles for the use of WGA

sequencing in large association studies; these include:

1. Sheer cost issues, with WGA sequencing dropping in cost but still far above that

of SNP array-based technology.

2. Sequencing quality. Quality of sequencing varies over the genome both ran-

domly (as the coverage, i.e., number of molecules actually read at a given

location varies according to chance) and according to features of the genome

such as the existence of repetitive DNA sequences and pseudo genes.

3. Bioinformatics issues as the degree of processing in order to turn sequence reads

into genotype calls that can be used in statistical analyses require intensive

computing and massive data manipulation and storage.

4. Annotation requirements, the burden and omnibus tests described in Sect. 8.15,

are much better motivated and much more powerful if the genetic regions or

types of variants that they are applied to have a high prior probability of

including rare variants affecting disease risk or phenotype mean. At present is

in only for the 1–2 % of the genome that is coded into protein for which good

annotation exists.

5. Database issues. Each sequencing study is likely to identify new variants not

seen before in any previous individuals; the logistics of keeping track of them,

i.e., their base position, alleles, and strand, will itself be a nontrivial task.

6. Meta-analysis issues. There is a need to expand meta-analysis methods to

include the summarization of the results of burden and omnibus tests over

large numbers of studies, in order to enhance the power to detect modest effects

of such summaries.

7. Reuse of control data. Because of the expense of WGS, it is very attractive to

consider using publically available sequences as controls in case–control studies

while reserving study resources to sequence only cases. This can be extremely

problematic, partly for reasons described in Chap. 7, Sect. 7.7.3.1, related to

small ethnicity differences, but also because of variation in sequencing quality.

For example, if 40� coverage is available for the cases (meaning that on

average, each DNA locus has had 40 DNA molecules sequenced), but if only

10� is available for the controls (or vice versa), then there is a potential for an

increase in false-positive associations since sequencing errors will be differen-

tial, affecting cases differently than controls.

Because of cost considerations, it makes sense to restrict WGS sequencing to a

subset of individuals in the study, perhaps those with extreme phenotypes (very

early age at onset or high level of family history), and develop a much shorter list of

regions for which targeted sequencing will be applied to the remainder of the study.

This involves many of the same elements as the two-staged genotyping designs

described in Chap. 7, Sect. 7.6.
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Ultimately, however, it is the unknown state of nature that will determine

whether variants that are so rare that they require sequencing to detect even in

large studies will play an important role in disease etiology and prediction. If the

first few studies that really give WGS a chance to shine (i.e., are large enough to be

able to cast light upon the fundamental issue about the role of rare relative to

common variation) are positive, then rapid spread of WGS studies can be expected,

especially if costs fall quickly. On the other hand, early null results for rare variants

will be likely to slow enthusiasm for this avenue of investigation. The most likely

(to this author) scenario for the future is that neither profoundly positive nor

profoundly negative results will appear quickly, leading to much controversy

about the value of WGS for association testing over the next few years.

8.17 Chapter Summary

This chapter has focused on analyses that typically take place after GWAS for a

particular study has been analyzed using standard single-SNP analyses, such as

meta-analysis, replication of results in other populations, and multiethnic fine

mapping of associations. Heritability estimation using GWAS data has also been

discussed. In addition, it has discussed several issues that are motivated by the

attempts to assess the role of rare rather than common variation in association

studies. This later topic is motivated by the advent of whole genome sequencing

technology.

Homework

1. Behavior of Wald tests for rare events. Consider the following data table

Disease status

0 1

SNP risk allele count 0 1000 994

1 0 6

We can fit a logistic regression model to these data as
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Notice that (as described in Sect. 8.14) that the estimate of the effect of SNP

count variable n is very large but so is its standard error.

(a) Run these same data in SAS. What does SAS report as the significance of the

genotype count variable?

(b) In R it is possible to control the number of iterations that are performed in

Fisher’s scoring in the glm function through the parameter maxit. Write an

R program that will run 1 iteration, then print out the parameter estimates

and z value, and then run 2 iterations and print out the parameter estimates,

z value, etc. What is happening to the numerator, and the denominator, as we

increase maxit? Which seems to be going to infinity faster, the numerator or

the denominator?

(c) Use a chi-square test to test whether there is any dependence between the

rows and columns of the above table.

(d) Perform a Fisher’s exact test of the same hypothesis.

What is your conclusion about:

(i) Which tests are most reliable?

(ii) Whether there is an association between genotype count and disease risk.

2. The program METAL (see links below) is a widely used program for meta-

analysis of genome-wide association data. It implements most or all of the meta-

analysis methods described in Sect. 8.1. In addition, it keeps track of allele and

strand differences. If the first study reports counting the C allele of a C/T SNP

when it computed a logistic regression slope estimate for this SNP and the next

study reports counting the T allele, a third study reports counting (on the other

strand) a G allele, and a fourth study reports counting an A allele, METAL will

adjust the estimates appropriately, as if they were all counting the C allele. This

feature alone saves the users considerable work when dealing with a diverse

number of platforms. Now suppose, as in Sect. 8.6.3, that the score test rather

than the Wald test is to be used as the test reported by each study. It turns out that

there is still a way to use METAL to compute the combined test (8.15), thereby

retaining all of the usual benefits of METAL. The following procedure

will work.

(i) Fit the null model containing all terms but the SNP allele of interest.

(ii) Add the SNP allele to the alternative model but constrain the fitting algo-

rithm to:

(a) Use as starting values the parameter estimates of the previous fit + 0 as

the starting value for the SNP effect β1.
(b) Perform only 1 step of the Fisher’s scoring procedure.

This can be accomplished in R as
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Here Z is an N � p matrix of adjustment variables needed in the null

model, and n is the SNP count to be added to the model.

Then we can compute the score statistic as follows:

And Fisher’s information as

Now the score test is

Which is identical to

(a) Justify this procedure for calculating the score test. Hint, start with Fisher’s

scoring that can be written as (as in Chap. 3, Sect. 3.4.5)

θ1 ¼ θ0 þ i�1 θ0ð ÞU θ0; Yð Þ,

where θ ¼ (λ,β) with λ the p + 1 vector of nuisance parameters. If we set

θ0 to the parameter estimates under the null hypothesis (as done in model

M1), then after 1 iteration, β̂ will be equal to iβ0β0U β0; λ̂; Y
� �

. The estimated

Var β̂
� �

will be equal to iβ0β0 .

(b) Show that if there are L studies to be analyzed as above, then (8.6) equals

(8.15).

3. Show that for logistic regression with μi ¼ logit� 1(α0 Xi), the variance of the

vector of residuals Y � Ŷ can be approximated as V � VX(X0 VX)� 1X0 V
where V is a diagonal matrix with diagonal elements equal to μi(1 � μi) . Hint:

express (in vector matrix form) Y � Ŷ ¼ Y � μ� Ŷ � μ
� �

and then use a first-

degree Taylor expansion to approximate Ŷ � μ
� �

as VX α̂ � αð Þ. Use Fisher’s

scoring (3.12) to approximate α̂ � αð Þ as α̂ � α ¼ �i�1 αð ÞU α; Yð Þ. This

together with expressions for i and U approximates Y � Ŷ as a known matrix

times Y uses matrix formula to determine its variance; see also reference [82].

Links

METAL—Meta Analysis Helper

http://www.sph.umich.edu/csg/abecasis/metal/
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