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Preface

This book was written to summarize and describe the state of the art of statistical
methods developed to address questions of estimation and inference for dynamic
treatment regimes, a branch of personalized medicine. The study of dynamic treat-
ment regimes is relatively young, and until now, no single source has aimed to pro-
vide an overview of the methodology and results which are dispersed in journals,
proceedings, and technical reports so as to orient researchers to the field. Our pri-
mary focus is on description of the methods, clear communication of the conceptual
underpinnings, and their illustration via analyses drawn from real applications as
well as results from simulated data. The first chapter serves to set the context for the
statistical reader in the landscape of personalized medicine; we assume a familiarity
with elementary calculus, linear algebra, and basic large-sample theory. Important
theoretical properties of the methods described will be stated when appropriate;
however, the reader will, for the most part, be referred to the primary research arti-
cles for the proofs of the results. By doing so, we hope the book will be accessible to
a wide audience of statisticians, epidemiologists, and medical researchers with some
statistical training, as well as computer scientists (machine/reinforcement learning
researchers) interested in medical applications.

Examples of data analyses from real applications are found throughout the book.
From these, we hope to impart a sense of the power and versatility of the methods
discussed to answer important problems in medical research. Where possible, we
refer readers to available code or packages in different statistical languages to facili-
tate implementation; whether or not such code exists, we aim to describe all analytic
approaches in sufficient detail that any researcher with a reasonable background in
statistical programming could implement the methods from scratch.

We hope that the publication of this book will foster the genuine enthusiasm
that we feel for this important area of research. Indeed, with the demographic shift
of most Western populations to older age, the treatment of chronic conditions will
bring increased pressure to develop evidence-based strategies for care that is tai-
lored to individual changes in health status. The recently proposed methods have not
yet reached a wide audience and consequently are underutilized. We hope that this
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text will serve as a useful handbook to those already active in the field of dynamic
regimes and spark a new generation of researchers to turn their attention to this
important and exciting area.
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Chapter 1
Introduction

1.1 Evidence-Based Personalized Medicine for Chronic Diseases

Personalized medicine is a medical paradigm that emphasizes systematic use of
individual patient information to optimize that patient’s health care. The primary
motivation behind this paradigm is the well-established fact that patients often re-
spond differently to a particular treatment, both in terms of the primary outcome and
side-effects. This inherent heterogeneity across patients in response to any treatment
prompted many health researchers to make an ideological transition from the one-
size-fits-all approach of health care to the modern and more logical approach of
personalized medicine. Benefits of personalized medicine include increased com-
pliance or adherence to treatment, having the option of enhanced patient care by
selecting the optimal treatment, and reduction of the overall cost of health care.
While the increasing popularity of this paradigm within the medical community
seems natural, it is less obvious why a statistician – or more generally a quantitative
researcher – would be particularly interested in this topic. The primary reason is
the growing interest in making the personalized treatments more evidence-based or
data-driven, thus posing new methodological challenges that are often beyond the
scope of traditional quantitative tools. As a natural consequence, there has been a re-
cent surge of interest among statisticians, computer scientists and other quantitative
researchers in this new arena of research leading to many exciting methodological
developments.

This book focuses on personalized treatments for chronic diseases; we will de-
scribe various study designs as well as statistical analysis methods that aid in devel-
oping evidence-based personalized treatments for chronic diseases. Broadly speak-
ing, chronic disorders constitute a considerable portion of today’s pressing public
health issues (WHO 1997; PFS 2004). For example, widely prevailing conditions
like hypertension, obesity, diabetes, nicotine addiction, alcohol and drug abuse,
cancer, HIV infection, and mental illnesses like depression and schizophrenia are
all chronic. For effective long-term care of the patients, many of these chronic
conditions require ongoing medical intervention, following the chronic care model
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(CCM) (Wagner et al. 2001) rather than the more traditional acute care model. Some
of the key features of health care that the CCM emphasizes are as follows. First, clin-
icians following the CCM treat the patients by individualizing the treatment type,
dosage and timing according to ongoing measures of patient response, adherence,
burden, side effects, and preference; there is a strong emphasis on personalization of
care according to patients’ needs. Second, instead of deciding a treatment for once
and all (static treatment), clinicians following CCM sequentially make decisions
about what to do next to optimize patient outcome, given an individual patient’s
case history (dynamic treatment). The main motivations for considering sequences
of treatments are high inter-patient variability in response to treatment, likely re-
lapse, presence or emergence of co-morbidities, time-varying side effect severity,
and reduction of costs and burden when intensive treatment is unnecessary (Collins
et al. 2004). Third, while there exist traditional practice guidelines for clinicians
that are primarily based on “expert opinions”, the CCM advocates for making these
regimes more objective and evidence-based. In fact, Wagner et al. (2001) described
the CCM as “a synthesis of evidence-based system changes intended as a guide to
quality improvement and disease management activities” (p. 69).

Since effective care for chronic disorders typically requires ongoing medical in-
tervention, management of chronic disorders poses additional challenges for the
paradigm of personalized medicine. This is because the personalization has to hap-
pen through multiple stages of intervention. In this context, dynamic treatment
regimes (Murphy et al. 2001; Murphy 2003; Robins 2004; Lavori and Dawson 2004)
offer a vehicle to operationalize the sequential decision making process involved in
the personalized clinical practice consistent with the CCM, and thereby a potential
way to improve it. In the following sections, we will develop key notions underlying
dynamic treatment regimes.

1.2 Personalized Medicine and Medical Decision Making

Personalized treatments can be viewed as realizations of certain decision rules; these
rules dictate what to do in a given state (e.g. demographics, case history, genetic
information, etc.) of the patient. Thus, decision-theoretic notions, such as utility,
can be employed in the development of these clinical decision rules. As argued by
Parmigiani (2002), the main contribution of decision-theoretic ideas to medicine lies
in providing a structure and formally defining a goal for the process of gathering,
organizing, and integrating the quantitative information that is relevant to a decision.
This justifies the role of decision-theoretic formalism in medical decision making
despite the difficulties associated with its communication to the general public.

Use of decision-theoretic notions in medical and health care decision making has
a long history. Early works in this domain include Lusted (1968), Weinstein et al.
(1980), and Sox et al. (1988). More recent works include Chapman and Sonnenberg
(2000), Clemen and Reilly (2001), and Parmigiani (2002). Specific discussion of
the role of utility theory can be found in Pliskin et al. (1980) and Torrance (1986).
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More statistically oriented works include Lindley (1985), French (1986), and Parmi-
giani (2002); in particular, Parmigiani (2002) provides an excellent account of the
Bayesian approach to medical decision making. The type of decision problems stud-
ied in this book are, however, slightly different from the ones considered by the
above authors. Below we briefly introduce the single-stage and multi-stage decision
problems arising in personalized medicine that we will be considering in this book.

1.2.1 Single-stage Decision Problems in Personalized Medicine

For simplicity, first consider a single-stage decision problem, where the clinician has
to decide on the optimal treatment for an individual patient. Suppose the clinician
observes a certain characteristic (e.g. a demographic variable, a biomarker, or result
of a diagnostic test) of the patient, say o, and based on that has to decide whether
to prescribe treatment a or treatment a′. In this example, a decision rule could be:
“give treatment a to the patient if his individual characteristic o is higher than a pre-
specified threshold, and treatment a′ otherwise”. More formally, a decision rule is
a mapping from currently available information, often succinctly referred to as the
state, into the space of possible decisions.

Any decision, medical or otherwise, is statistically evaluated in terms of its utility,
and the state in which the decision is made. For concreteness, let o denote the state
(e.g. patient characteristic), a denote a possible decision (treatment), and U (o,a)
denote the utility of taking the decision a while in the state o. Following Wald
(1949), the current statistical decision problem can be formulated in terms of the op-
portunity loss (or regret) associated with each pair (o,a) by defining a loss function

L (o,a) = sup
a

U (o,a)−U (o,a),

where the supremum is taken over all possible decisions for fixed o. The loss func-
tion is the difference between the utility of the optimal decision for state o, and
the utility of the current decision a under that state. Clearly the goal is to find the
decision that minimizes the loss function at the given state o; this is personalized
decision making since the optimal decision depends on the state. Equivalently, the
problem can be formulated directly in terms of the utility without defining the loss
function; in that case the goal would be to choose a decision so as to maximize
the utility for the given state o. The utility function can be specified in various
ways, depending on the specific problem. One of the most common ways would be
to set U (o,a) = Ea(Y |o), i.e. the conditional expectation of the primary outcome
Y given the state, where the expectation is computed according to a probability
distribution indexed by the decision a; we will make the underlying distributions
precise in Chap. 3. Alternatively, one can define U (o,a) = E(Y (a)|o), where Y (a)
is the potential outcome of the decision a; see Chap. 2 for a precise description of
the potential outcome framework.
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In the econometrics literature, Manski (2000, 2002, 2004), Dehejia (2005),
and Hirano and Porter (2009) use a similar decision-theoretic framework for the
evaluation of social welfare programs, where the role of a clinician is replaced by a
social planner, different welfare programs serve as different treatment choices, and
the state again consists of individual characteristics. They use a slight variant of a
loss or regret, and call it a welfare contrast. A welfare contrast is the difference be-
tween the utilities corresponding to two decisions, say a and a′, under the same state
o, i.e.

g(o,a,a′) = U (o,a)−U (o,a′).

Note that in the case where a is equal to the optimal decision, defined as the ar-
gument of the supremum of U (o,a), the welfare contrast coincides with the loss
or regret associated with a′. Robins (2004) uses the term blip to denote a quantity
similar to the welfare contrast in the multi-stage decision problems to be introduced
next.

The focus of this book is multi-stage decision problems rather than the consid-
erably simpler single-stage problems. However, we will use the single-stage deci-
sion framework at times to develop certain ideas to be ultimately used in the more
complicated setting of multiple decisions. Theoretically oriented readers interested
in the estimation of optimal single-stage decision rules and associated asymptotics
may consult Hirano and Porter (2009) and Qian and Murphy (2011).

1.2.2 Multi-stage Decisions and Dynamic Treatment Regimes

Decision making problems arising not only in medicine but also in many other sci-
entific domains like business, computer science, and social sciences often involve
complex choices with multiple stages, where decisions made at one stage affect
those to be made at another. In the context of multi-stage decisions, a dynamic treat-
ment regime (DTR) is a sequence of decision rules, one per stage of intervention,
for adapting a treatment plan to the time-varying state of an individual subject. Each
decision rule takes a subject’s individual characteristics and treatment history ob-
served up to that stage as inputs, and outputs a recommended treatment at that stage;
recommendations can include treatment type, dosage, and timing. DTRs are alter-
natively known as treatment strategies (Lavori and Dawson 2000; Thall et al. 2000,
2002, 2007a), adaptive treatment strategies (Murphy 2005a; Lavori and Dawson
2008), or treatment policies (Lunceford et al. 2002; Wahed and Tsiatis 2004, 2006).
Conceptually, a DTR can be viewed as a decision support system of a clinician (or
more generally, any decision maker), described as a key element of the CCM (Wag-
ner et al. 2001). At a more basic level, it may be helpful to think of the regime as
a rule-book and the specific treatment as the rules that apply to an individual case.
The reason for considering a DTR as a whole instead of its individual stage-specific
components is that the long-term effect of the current treatment may depend on
the performance of future treatment choices. This issue will be discussed in greater
detail in Chaps. 2 and 3.
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In the current literature, a DTR is usually said to be optimal if it optimizes the
mean long-term outcome (e.g. outcome observed at the end of the final stage of
intervention). However, at least in principle, other utility functions (e.g. median or
other quantiles, or some other feature of the outcome distribution) can be employed
as optimization criteria. The main research goals in the arena of multi-stage decision
making can be summarized as:

(a) To compare two or more preconceived DTRs in terms of their utility; and
(b) To identify the optimal DTR, i.e. to identify the sequence of treatments that

result in the most favorable outcome possible (i.e. highest utility).

Thus, any attempt to achieve the above goals in a data-driven way essentially re-
quires knowing or estimating the utility functions (or some variations). Key no-
tions from the single-stage decision problems, as outlined above, can be extended to
multi-stage decisions. For example, Murphy (2003) defines multiple stage-specific
regret (loss) functions, and Robins (2004) defines stage-specific blip functions (wel-
fare contrasts) in his framework of structural nested mean models. They provided
methodologies to estimate the parameters of regret or blip functions, and thereby
to identify the optimal DTR. Both of their approaches will be discussed in great
detail in Chap. 4. On the other hand, Q-learning, a method originally developed in
computer science but later adapted to statistics, targets estimating and maximizing
the utility function (conditional expectation of the primary outcome), rather than
minimizing the regret or any other blip; this method will be introduced in Chap. 3,
and also will be used in some of the subsequent chapters in various contexts. All of
these methods have their relative merits and demerits, which we will discuss as we
go along. See also Dawid and Didelez (2010) for a decision-theoretic review of the
DTRs from a causal inference perspective.

With the above broad picture of the multi-stage decision problems in mind, we
provide a few concrete examples below.

Example 1: Treatment of HIV Infection

Patients with HIV infection are usually treated with highly active antiretroviral ther-
apy (HAART). It is widely agreed that HAART should be initiated when CD4 cell
count falls below 200 cells/μl, but a key question is whether to initiate HAART
sooner in the course of the disease. In particular, it is of interest to know whether
it is optimal to begin treatment when CD4 cell count first drops below a certain
threshold, where that threshold may be as low as 200, or as high as 500, cells/μl
(Sterne et al. 2009). Thus, the process of treating an HIV-infected patient is a multi-
stage decision problem faced by the clinician who has to make treatment decisions
based on the patient’s CD4 count history (state) at a series of critical decision points
(stages) (Cain et al. 2010).
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Example 2: Treatment by Anticoagulation

Consider long-term anticoagulation treatment, as often given after events such as
stroke, pulmonary embolism or deep vein thrombosis. The aim is to ensure that the
patient’s prothrombin time, measured by a quantity called the international normal-
ized ratio (INR), is within a target range. Patients on this treatment are monitored
regularly, and when their INR is outside the target range, the dose of anticoagulant
is increased or decreased by the clinician so as to bring the INR level back within
the target range. This is a multi-stage decision problem where the decisions are the
doses and the previous INR observations and genetic markers comprise the state
(Rosthøj et al. 2006).

Example 3: Treatment of Alcohol Addiction

Consider management of alcohol dependent subjects, with two clinical decisions:
choosing the initial treatment and choosing the secondary treatment. Initially the
clinician may prescribe either an opiate-antagonist called naltrexone (NTX) or cog-
nitive behavioral therapy (CBT) to the alcohol dependent subjects. Subjects are clas-
sified as responders or non-responders based on their level of heavy drinking in the
two months while they are on initial treatment. If at any time during this two-month
period the subject experiences a third heavy drinking day, he is classified as a non-
responder to the initial treatment. On the other hand, if the subject is able to avoid
more than two heavy drinking days during the two-month period, he is considered a
responder. If a subject is a non-responder to NTX, the clinician must decide whether
to either switch to CBT or augment NTX with CBT and an enhanced motivational
program (EM + CBT + NTX). If a subject is a non-responder to CBT, the clinician
must decide whether to switch to NTX or augment CBT with NTX and an enhanced
motivational program (EM + CBT + NTX). Responders to the initial treatment can
be assigned either to telephone monitoring only (TM) or telephone monitoring and
counseling (TMC) for an additional period of six months.

In this set-up, clinicians may want to use a DTR that maximizes the percent of
days abstinent over a 12-month period (primary outcome). A DTR in this case con-
sists of two decision rules: the first decision rule can use baseline level of addiction
(e.g. number of heavy drinking days in a pre-specified period) to choose the ini-
tial treatment, and the second decision rule can utilize the intermediate outcome
(responder/non-responder status) to choose the secondary treatment. One possible
DTR can be: “as the initial treatment, prescribe NTX if the subject’s baseline level
of addiction is greater than a pre-specified threshold value, and prescribe CBT oth-
erwise; as the secondary treatment, prescribe telephone monitoring if the subject is
a responder to initial treatment, and prescribe a switch of treatment if the subject
is a non-responder”. Of course one can formulate many other DTRs in this set-up.
Variations of this example have been discussed by Murphy (2005a), Chakraborty
(2011), and Lei et al. (2012).
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Example 4: Treatment of Cancer

Patients with cancer are often treated initially with a powerful chemotherapy, known
as induction therapy, to induce remission of the disease. If the patient responds (e.g.
shows sign of remission), the clinician tries to maintain remission for as long as pos-
sible before relapse by prescribing a maintenance therapy to intensify or augment
the effects of the first-line induction therapy. If the patient does not respond (e.g.
does not show sign of remission) to the first-line induction therapy, the clinician pre-
scribes a second-line induction therapy to try to induce remission. Of course there
exist many possible induction therapies and maintenance therapies. For treating a
patient with cancer, a clinician may want to use a DTR that maximizes the disease-
free survival time (primary outcome). One possible DTR can be: “initially prescribe
the first-line induction therapy a; if the patient responds to a, prescribe maintenance
therapy a′, and if the patient does not respond to a, prescribe the second-line induc-
tion therapy a′′”. See, for example, Wahed and Tsiatis (2004) for further details on
this two-stage clinical decision problem in the context of leukemia.

1.3 Outline of the Book

Constructing evidence-based (i.e. data-driven) dynamic treatment regimes com-
prises an emerging and important line of methodological research within the do-
main of personalized medicine, particularly in the context of chronic disorders. This
book is an attempt to provide a comprehensive overview of this cutting-edge area of
research. The methodologies emerged from at least two widely different academic
disciplines, namely, reinforcement learning (within computer science) and causal
inference (at the interface of statistics, epidemiology, economics and some other so-
cial sciences). Because of these very different origins, the methodologies are often
described in different technical languages. In this book, we try to assimilate these
into a coherent body of work.

In the present chapter, we have introduced the decision problems (both single-
and multi-stage) arising in personalized medicine, and in particular, the concept of
dynamic treatment regimes in the context of chronic diseases. Some concrete ex-
amples are provided to help readers appreciate the applications. In Chap. 2, we will
describe different types of data sources and study designs relevant for constructing
evidence-based DTRs. In this context, we will discuss both longitudinal observa-
tional studies and the sequential multiple assignment randomized trial designs that
are tailor-made to produce high quality data for constructing dynamic treatment
regimes. We will also review the potential outcome framework from causal infer-
ence in this chapter, while discussing observational studies.

The problem of estimating dynamic treatment regimes closely resembles rein-
forcement learning, and so we will review this area in Chap. 3, and develop a formal
probabilistic framework in which we will work. In particular, we will introduce the
Q-learning procedure, a simple yet powerful method for estimating optimal dynamic
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treatment regimes. In the following chapter, we will focus on methods from the sta-
tistical literature that hinge on direct modeling of contrasts of conditional mean
outcomes under different regimes; this includes methods such as G-estimation of
structural nested mean models and A-learning.

In Chap. 5, we turn to methods that model regimes directly. The chapter includes
inverse probability of treatment weighted estimators such as marginal structural
models as well as classification-based estimators. Chapter 6 takes a more model-
based approach, and considers the likelihood-based method of G-computation.

The first six chapters focus on continuous outcome settings. In Chap. 7, we
consider the literature to date on alternative outcome types: composite (multi-
dimensional) outcomes, censored data, and discrete outcomes. A variety of methods
from the previous chapters will be revisited.

Inference for optimal DTRs are discussed in Chap. 8. The issue of inference is
particularly difficult in the DTR setting due to the phenomenon of non-regularity.
Non-regularity and the ensuing complications arise because any method of esti-
mating the optimal DTR involves non-smooth operations on the data. As a result,
standard asymptotic theory or the usual bootstrap approach fail to produce valid con-
fidence intervals for true treatment effect parameters. Various methods of avoiding
this problem are discussed and compared in this chapter.

In Chap. 9, we will discuss some additional considerations, such as model build-
ing strategies and variable selection. In this chapter, we conclude the book with
some overall discussion and remarks on the directions in which the field appears to
be moving.



Chapter 2
The Data: Observational Studies
and Sequentially Randomized Trials

The data for constructing (optimal) DTRs that we consider are obtained from either
longitudinal observational studies or sequentially randomized trials. In this chapter
we review these two types of data sources, their advantages and drawbacks, and
the assumptions required to perform valid analyses in each, along with some ex-
amples. We also discuss a basic framework of causal inference in the context of
observational studies, and power and sample size issues in the context of random-
ized studies.

2.1 Longitudinal Observational Studies

The goal of much of statistical inference is to quantify causal relationships, for in-
stance to be able to assert that a specified treatment1 improves patient outcomes
rather than to state that treatment use or prescription of treatment is merely asso-
ciated or correlated with better patient outcomes. Randomized trials are the “gold
standard” in study design, as randomization coupled with compliance allows causal
interpretations to be drawn from statistical association. Making causal inferences
from observational data, however, can be tricky and relies critically on certain (un-
verifiable) assumptions which we will discuss in Sect. 2.1.3. The notion of causation
is not new: it has been the subject matter of philosophers as far back as Aristotle,
and more recently of econometricians and statisticians. Holland (1986) provides a
nice overview of the philosophical views and definitions of causation as well as
of the causal models frequently used in statistics. Neyman (1923) and later Rubin
(1974) laid the foundations for the framework now used in modern causal inference.
The textbook Causal Inference (Hernán and Robins 2013) provides a thorough de-
scription of basic definitions and most modern methods of causal inference for both

1 In this book, we use the term treatment generically to denote either a medical treatment or an
exposure (which is the preferred term in the causal inference literature and more generally in epi-
demiology).
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point-source treatment (i.e. cross-sectional, or one-stage) settings as well as general
longitudinal settings with time-varying treatments and the associated complexities.

2.1.1 The Potential Outcomes Framework

Much of the exposition of methods used when data are observational will rely on
the notion of potential outcomes (also called counterfactuals), defined as a per-
son’s outcome had he followed a particular treatment regime, possibly different from
the regime which he was actually observed to follow (hence, counter to fact). The
individual-level causal effect of a regime may then be viewed as the difference in
outcomes if a person had followed that regime as compared to a placebo regime or
a standard care protocol. Consider, for example, a simple one-stage2 randomized
trial in which subjects can receive either a or a′. Suppose now that an individual
was randomized to receive treatment a. This individual will have a single observed
outcome Y which corresponds to the potential outcome “Y under treatment a”, de-
noted by Y (a), and one unobservable potential outcome, Y (a′), corresponding to the
outcome under a′. An alternative notation to express counterfactual quantities is via
subscripting: Ya and Ya′ (Hernán et al. 2000). Pearl (2009) uses an approach similar
to that of the counterfactual framework, using what is called the “do” notation to
express the idea that a treatment is administered rather than simply observed to have
been given: in his notation, E[Y |do(A = a)] is the expected value of the outcome
variable Y under the intervention regime a, i.e. it is the population average were all
subjects forced to take treatment a.

The so-called fundamental problem of causal inference lies in the definition of
causal parameters at an individual level. Suppose we are interested in the causal ef-
fect of taking treatment a instead of treatment a′. An individual-level causal parame-
ter that could be considered is a person’s outcome under treatment a′ subtracted from
his outcome under treatment a, i.e. Y (a)−Y(a′). Clearly, it is not possible to observe
the outcome under both treatments a and a′ without further data and assumptions
(e.g. in a cross-over trial with no carry-over effect) and so the individual-level causal
effect can never be observed. However, population-level causal parameters or aver-
age causal effects can be identified under randomization with perfect compliance, or
bounded under randomization with non-compliance. Without randomization, i.e. in
observational studies or indeed randomized trials with imperfect compliance, fur-
ther assumptions are required to estimate population-level causal effects, which we
shall detail shortly.

Suppose now that rather than being a one-stage trial, subjects are treated over two
stages, and can receive at each stage either a or a′. If an individual was randomized
to receive treatment a first and then treatment a′, this individual will have a single
observed outcome Y which corresponds to the potential outcome “Y under regime

2 While the term stage is commonly used in the randomized trial literature, the term interval is
more popular in the causal inference literature. In this book, for consistency, we will use the term
stage for both observational and randomized studies.
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(a,a′)”, which we denote by Y (a,a′), and three unobservable potential outcomes:
Y (a,a), Y (a′,a), and Y (a′,a′), corresponding to outcomes under each of the other
three possible regimes. As is clear even in this very simple example, the number
of potential outcomes and causal effects as represented by contrasts between the
potential outcomes can be very large, even for a moderate number of stages. As shall
be seen in Chap. 4, the optimal dynamic regime may be estimated while limiting the
models specified to only a subset of all possible contrasts.

2.1.2 Time-Varying Confounding and Mediation

Longitudinal data are increasingly available to health researchers; this type of data
presents challenges not observed in cross-sectional data, not the least of which is the
presence of time-varying confounding variables and intermediate effects. A variable
O is said to be a mediating or intermediate variable if it is caused by A and in turn
causes changes in Y . For example, a prescription sleep-aid medication (A) may cause
dizziness (O) which in turn causes fall-related injuries (Y ). In contrast, a variable,
O, is said to confound a relationship between a treatment A and an outcome Y if
it is a common cause of both the treatment and the outcome. More generally, a
variable is said to be a confounder (relative to a set of covariates X) if it is a pre-
treatment covariate that removes some or all of the bias in a parameter estimate,
when taken into account in addition to the variables X . It may be the case, then,
that a variable is a confounder relative to one set of covariates X but not another,
X ′. If the effect of O on both A and Y is not accounted for, it may appear that there
is a relationship between A and Y when in fact their pattern of association may
be due entirely to changes in O. For example, consider a study of the dependence
of the number of deaths by drowning (Y ) on the use of sunscreen (A). A strong
positive relationship is likely to be observed, however it is far more likely that this is
due to the confounding variable air temperature (O). When air temperature is high,
individuals may be more likely to require sunscreen and may also be more likely to
swim, but there is no reason to believe that the use of sunscreen increases the risk of
drowning. In cross-sectional data, eliminating the bias due to a confounding effect
is typically achieved by adjusting for the variable in a regression model.

Directed Acyclic Graphs (DAGs), also called causal graphs, formalize the causal
assumptions that a researcher may make regarding the variables he wishes to ana-
lyze. A graph is said to be directed if all inter-variable relationships are connected
by arrows indicating that one variable causes changes in another and acyclic if it
has no closed loops (no feedback between variables); see, for example, Greenland
et al. (1999) or Pearl (2009) for further details. DAGs are becoming more common
in epidemiology and related fields as researchers seek to clarify their assumptions
about hypothesized relationships and thereby justify modeling choices (e.g. Bodnar
et al. 2004; Brotman et al. 2008). In particular, confounding in its simplest form can
be visualized in a DAG if there is an arrow from O into A, and another from O into
Y . Similarly, mediation is said to occur if there is at least one directed path of arrows
from A to Y that passes through O.
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Let us now briefly turn to a two-stage setting where data are collected at three
time-points: baseline (t1=0), t2, and t3. Covariates are denoted O1 and O2, measured
at baseline and t2, respectively. Treatment at stages 1 and 2, received in the intervals
[0, t2) and [t2, t3), are denoted A1 and A2 respectively. Outcome, measured at t3, is
denoted Y . Suppose there is an additional variable, U , which is a cause of both O2

and Y . See Fig. 2.1.

A1 A2

O2O1 Y

0U

(e)

(b)(a)

(d)

(f)

t1 t2 t3

(c)

(g)

Fig. 2.1 A two-stage directed acyclic graph illustrating time-varying confounding and mediation

We first focus on the effect of A1 on Y ; A1 acts directly on Y , but also acts indi-
rectly through O2 as indicated by arrows (e) and (d); O2 is therefore a mediator. We
now turn our attention to the effect of A2 on Y ; O2 confounds this relationship, as
can be observed by arrows (d) and (f). In this situation, adjustment for O2 is essential
to obtaining unbiased estimation of the effect of A2 on Y . However, complications
may arise if there are unmeasured factors that also act as confounders; in Fig. 2.1,
U acts in this way. If one were to adjust for O2 in a regression model, it would open
what is called a “back-door” path from Y to A2 via the path (b)→(a)→(c)→(g). This
is known as collider-stratification bias, selection bias, Berksonian bias, Berkson’s
paradox, or, in some contexts, the null paradox (Robins and Wasserman 1997; Gail
and Benichou 2000; Greenland 2003; Murphy 2005a); this problem will be consid-
ered in greater depth in Sect. 3.4.2 in the context of estimation. Collider-stratification
bias can also occur when conditioning on or stratifying by variables that are caused
by both the exposure and the outcome, and there has been a move in the epidemiol-
ogy literature to use the term selection bias only for bias caused by conditioning on
post-treatment variables, and the term confounding for bias caused by pre-treatment
variables (Hernán et al. 2004).
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Modeling choices become more complex when data are collected over time,
particularly as a variable may act as both a confounder and a mediator. The use
of a DAG forces the analyst to be explicit in his modeling assumptions, particu-
larly as the absence of an arrow between two variables (“nodes”) in a graph implies
the assumption of (conditional) independence. Some forms of estimation are able
to avoid the introduction of collider-stratification bias by eliminating conditioning
(e.g. weighting techniques) while others rely on the assumption that no variables
such as U exist. See Sect. 3.4.2 for a discussion on how Q-learning, a stage-wise
regression based method of estimation, avoids this kind of bias by analyzing one
stage at a time.

2.1.3 Necessary Assumptions

A fundamental requirement of the potential outcomes framework is the axiom of
consistency, which states that the potential outcome under the observed treatment
and the observed outcome agree: that is, the treatment must be defined in such a way
that it must be possible for all treatment options to be assigned to all individuals in
the population under consideration. Thus, the axiom of consistency requires that
the outcome for a given treatment is the same, regardless of the manner in which
treatments are ‘assigned’. This is often plausible in studies of medical treatments
where it is easy to conceive of how to manipulate the treatments given to the patients
(this setting is relevant in the DTR context), but less obvious for exposures that are
modifiable by a variety of means, such as body-mass index (Hernán and Taubman
2008), or that are better defined as (non-modifiable) characteristics, such as sex
(Cole and Frangakis 2009).

Before stating the necessary assumptions for estimating DTRs, we introduce the
following notations. Let āK ≡ (a1, . . . ,aK) denote a K-stage sequence of treatments.
Let (d1, . . . ,dK) denote a treatment regime, i.e. a set of decision rules where d j is
a mapping from the history space to the treatment/action space for all j. Similarly
let Ō j ≡ (O1, . . . ,O j) denote the collection of covariates observed up to stage j and
Ā j−1 ≡ (A1, . . . ,A j−1) denote the collection of past treatments prior to stage j. We
combine the treatment and covariate history up to the jth stage into a single history
vector, Hj ≡ (Ō j, Ā j−1). To estimate a DTR from either randomized or observational
data, two assumptions are required:

1. Stable unit treatment value assumption (SUTVA): A subject’s outcome is not in-
fluenced by other subjects’ treatment allocation (Rubin 1980).

2. No unmeasured confounders (NUC): For any regime āK ,

A j ⊥ (O j+1(ā j), . . . ,OK(āK−1),Y (āK))
∣
∣
∣Hj ∀ j = 1, . . . ,K.

That is, for any possible regime āK , treatment A j received in the jth stage is inde-
pendent of any future (potential) covariate or outcome, O j+1(ā j), . . . ,OK(āK−1),
Y (āK), conditional on the history Hj (Robins 1997).
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The first assumption – sometimes called no interaction between units or no
interference between units (Cox 1958) – is often reasonable, particularly in the
context of randomized trials where study participants are drawn from a large popu-
lation. SUTVA may be violated in special cases such as vaccinations for contagious
disease where the phenomenon of “herd immunity” may lead to protection of unvac-
cinated individuals or in the context of group therapy (e.g. a support group) where
the inter-personal dynamics between group members could influence outcomes.

The NUC assumption always holds under either complete or sequential random-
ization, and is sometimes called the sequential randomization assumption (SRA),
sequential ignorability, or exchangeability, which is closely linked to the concept
of stability (Dawid and Didelez 2010; Berzuini et al. 2012). The assumption may
also be (approximately) true in observational settings where all relevant confounders
have been measured. No unmeasured confounding is a strong generalization of the
usual concept of randomization in a single-stage trial, whereby it is assumed that,
conditional on treatment and covariate history, at each stage the treatment actually
received, A j, is independent of future states and outcome under any sequence of
future treatments, ā j. That is, conditional on the past history, treatment received at
stage j is independent of future potential covariates and outcome:

p(A j|Hj,O j+1(ā j), . . . ,OK(āK−1),Y (āK)) = p(A j|Hj).

It is this assumption that allows us to effectively view each stage as a randomized
trial, possibly with different randomization probabilities at stage j, given strata de-
fined by the history Hj.

If subjects are censored (lost to follow-up or otherwise removed from the study),
we must further assume that censoring is non-informative conditional on history,
i.e. that the potential outcomes of those subjects who are censored follow the same
distribution as that of those who are fully followed given measured covariates.

The optimal regime may only be estimated non-parametrically among the set of
feasible regimes (Robins 1994). Let p j(a j|Hj) denote the conditional probability of
receiving treatment a j given Hj, and let f (HK) denote the density function of HK .
Then for all histories hK with f (hK)> 0, a feasible regime d̄K satisfies

K

∏
j=1

p j(d j(Hj)|Hj = h j)> 0.

That is, feasibility requires some subjects to have followed regime d̄K for the an-
alyst to be able to estimate its performance non-parametrically. To express this in
terms of decision trees, no non-parametric inference can be made about the effect
of following a particular branch of a decision tree if no one in the sample followed
that path.

Other terms have been used to describe feasible treatment regimes, including
viable (Wang et al. 2012) and realistic (Petersen et al. 2012) rules. Feasibility
is closely related to the positivity, or experimental treatment assignment (ETA),
assumption. Positivity, like feasibility, requires that there are both treated and
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untreated individuals at every level of the treatment and covariate history. Positiv-
ity may be violated either theoretically or practically. A theoretical or structural
violation occurs if the study design prohibits certain individuals from receiving a
particular treatment, e.g. failure of one type of drug may preclude the prescription
of other drugs in that class. A practical violation of the positivity assumption is
said to occur when a particular stratum of subjects has a very low probability of re-
ceiving the treatment (Neugebauer and Van der Laan 2005; Cole and Hernán 2008).
Visual and bootstrap-based approaches to diagnosing positivity violations have been
proposed for one-stage settings (Wang et al. 2006; Petersen et al. 2012). Practical
positivity violations may be more prevalent in longitudinal studies if there exists a
large number of possible treatment paths; methods for handling such violations in
multi-stage settings are less developed.

There is an additional assumption that is not required for estimation, but that
is useful for understanding the counterfactual quantities and models that will be
considered: the assumption of additive local rank preservation, which we shall elu-
cidate in two steps. First, local rank preservation states that the ranking of subjects’
outcomes under a particular treatment pattern aK is the same as their ranking un-
der any other pattern, say dK , given treatment and covariate history (see Table 2.1).
In particular, if we consider two regimes dK and aK , local rank preservation states
that the ranking of patients’ outcomes under regime dK is the same as their rank-
ing under regime aK conditional on the history Hj. Local rank preservation is said
to be additive when Y (dK) = Y (aK)+ cons, where cons = E[Y (dK)−Y (aK)], i.e.,
the individual causal effect equals the average causal effect. This is also called unit
treatment additivity. Thus, rank preservation makes the assumption that the indi-
viduals who do best under one regime will also do so under another, and in fact
the ranking of each individual’s outcome will remain unchanged whatever the treat-
ment pattern received. Additive local rank preservation makes the much stronger
assumption that the difference between any two individuals’ outcomes will be the
same under all treatment patterns.

Table 2.1 Local rank preservation (LRP) and additive LRP, assuming all subjects have the same
baseline covariates

LRP Additive LRP
Subject Y (aK) Rank Y (dK) Rank Y (dK) Rank
1 12.8 3 15.8 3 13.9 3
2 10.9 1 14.0 1 13.0 1
3 13.1 4 16.0 4 14.2 4
4 12.7 2 14.5 2 13.8 2

2.2 Examples of Longitudinal Observational Studies

A variety of studies aimed at estimating optimal DTRs from observational data
have been undertaken. Data sources include administrative (e.g. hospital) databases
(Rosthøj et al. 2006; Cain et al. 2010; Cotton and Heagerty 2011), randomized
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encouragement trials (Moodie et al. 2009), and cohort studies (Van der Laan and
Petersen 2007b). We shall briefly describe three here to demonstrate the variety of
questions that can be addressed using observational data and DTR methodology.
In particular, the data in the examples below have been addressed using regret-
regression, G-estimation, and marginal structural models; these and related methods
of estimation are presented in Chaps. 4 and 5.

2.2.1 Investigating Warfarin Dosing Using Hospital Data

Rosthøj et al. (2006) aimed to find a warfarin dosing strategy to control the risk of
both clotting and excessive bleeding, by tailoring treatment using the international
normalized ratio, a measure of clotting tendency of blood. Observational data were
taken from hospital records over a five year period; recorded variables included age,
sex, and diagnosis as well as a time-varying measure of INR. There exists a standard
target range for INR, and so the vector-valued tailoring variable, O j, was taken to
be 0 if the most recent INR measurement lay within the target range and otherwise
was taken to be the ratio of the difference between the INR measurement and the
nearest boundary of the target range, and the width of that target range. Treatment at
stage j, A j, was taken to be the change in warfarin dose (with 0 being an acceptable
option). The outcome of interest was taken to be the percentage of the time on study
in which a subject’s INR was within the target range.

Rosthøj et al. (2006) modeled the effect of taking the observed rather than the
optimal dose of warfarin using parametric mean models that are quadratic in the
dosing effect so that doses that are either too low or too high are penalized.

2.2.2 Investigating Epoetin Therapy Using the United States Renal
Data System

Cotton and Heagerty (2011) performed an analysis of the United States Renal Data
System, an administrative data set based on Medicare claims for hemodialysis with
end-stage renal disease. Covariates included demographic variables as well as clin-
ical and laboratory variables such as diabetes, HIV status, and creatinine clearance.
Monthly information was also available on the number of dialysis sessions reported,
the number of epoetin doses recorded, the total epoetin dosage, iron supplementa-
tion dose, the number of days hospitalized and the most recently recorded hemat-
ocrit measurement in the month.

Restricting their analysis to incident end-stage renal disease patients free from
HIV/AIDS from 2003, Cotton and Heagerty (2011) considered treatment rules that
adjust epoetin treatment at time j, A j, multiplicatively based on the value of treat-
ment in the previous month, A j−1, and the most recent hematocrit measurement, O j:
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A j ∈
⎧

⎨

⎩

A j−1 × (0,0.75) if O j ≥ ψ − 3
A j−1 × (0.75,1.25) if O j ∈ (ψ − 3,ψ + 3)
A j−1 × (1.25,∞) if O j ≤ ψ + 3

where the target hematocrit range specified by the parameter ψ is varied to consider
a range of different regimes. That is, O j is the tailoring variable at each month, and
the optimal regime is the treatment rule dopt

j (O j,A j−1;ψ) that maximizes survival
time for ψ ∈ {31,32, . . . ,40}. Thus, in contrast to the strategy employed by Rosthøj
et al. (2006), the decision rules considered in the analysis of Cotton and Heagerty
(2011) did not attempt to estimate the optimal treatment changes/doses, but rather
focused on estimating which target range of hematocrit should initiate a change in
treatment dose from one month to the next. Note that the parameter ψ (the mid-
value of the target hematocrit range) does not vary over time, but rather is common
over all months; this is called parameter sharing (over time).

2.2.3 Estimating Optimal Breastfeeding Strategies Using Data
from a Randomized Encouragement Trial

The Promotion of Breastfeeding Intervention Trial (PROBIT) (Kramer et al. 2001)
has been used to explore several different dynamic regimes, with a view to optimiz-
ing growth (Moodie et al. 2009; Rich et al. 2010) and the vocabulary subtest of the
Wechsler Abbreviated Scales of Intelligence (Moodie et al. 2012).

PROBIT randomized hospitals and affiliated polyclinics in the Republic of
Belarus to a breastfeeding promotion intervention modeled on the WHO/UNICEF
Baby-Friendly Hospital Initiative or standard care. Mother-infant pairs were en-
rolled during their postpartum stay, and follow-up visits were scheduled at 1, 2,
3, 6, 9, and 12 months of age for various measures of health and size, including
weight, length, number of hospitalizations and gastrointestinal infections since the
last scheduled visit. At each follow-up visit up to 12 months, it was established
whether the infant was breastfeeding, as well as whether the infant was given other
liquids or solid foods. In a later wave of PROBIT, follow-up interviews and exami-
nations including the Wechsler test were performed on 13,889 (81.5 %) children at
6.5 years of age.

In analyses of these data, the treatment A j was taken to be continued breastfeed-
ing throughout the jth stage, and variables such as infant weight at the start of the
stage or the number of gastrointestinal infections at the previous stage have been
considered as potential tailoring variables, O j.
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2.3 Sequentially Randomized Studies

It is well known that estimates based on observational data are often subject to
confounding and various hidden biases; hence randomized data, when available, are
preferable for more accurate estimation and stronger statistical inference (Rubin
1974; Holland 1986; Rosenbaum 1991). This is especially important when dealing
with DTRs since the hidden biases can compound over stages. One crucial point
to note here is that developing DTRs is a developmental procedure rather than a
confirmatory procedure. Usual randomized controlled trials are used as the “gold
standard” for evaluating or confirming the efficacy of a newly developed treatment,
not for developing the treatment per se. Thus, generating meaningful data for de-
veloping optimal DTRs is beyond the scope of the usual confirmatory randomized
trials; special design considerations are required. A special class of designs called
sequential multiple assignment randomized trial (SMART) designs, tailor-made for
the purpose of developing optimal DTRs, is discussed below.

SMART designs involve an initial randomization of patients to possible treat-
ment options, followed by re-randomizations at each subsequent stage of some or
all of the patients to another treatment available at that stage. The re-randomizations
at each subsequent stage may depend on information collected after previous treat-
ments, but prior to assigning the new treatment, e.g. how well the patient responded
to the previous treatment. Thus, even though a subject is randomized more than
once, ethical constraints are not violated. This type of design was first introduced
by Lavori and Dawson (2000) under the name biased coin adaptive within-subject
(BCAWS) design, and practical considerations for designing such trials were dis-
cussed by Lavori and Dawson (2004). Building on these works, Murphy (2005a)
proposed the general framework of the SMART design. These designs attempt to
conform better to the way clinical practice for chronic disorders actually occurs, but
still retain the well-known advantages of randomization over observational studies.

SMART-like trials, i.e. trials involving multiple randomizations had been used
in various fields even before the exact framework was formally established; see
for example, the CALGB Protocol 8923 for treating elderly patients with leukemia
(Stone et al. 1995; Wahed and Tsiatis 2004, 2006), the CATIE trial for antipsy-
chotic medications in patients with Alzheimer’s disease (Schneider et al. 2001), the
STAR*D trial for treatment of depression (Lavori et al. 2001; Rush et al. 2004; Fava
et al. 2003), and some cancer trials conducted at the MD Anderson Cancer Center
(Thall et al. 2000). Other examples include a smoking cessation study conducted
by the Center for Health Communications Research at the University of Michigan
(Strecher et al. 2008; Chakraborty et al. 2010), and a trial of neurobehavioral treat-
ments for patients with metastatic malignant melanoma (Auyeung et al. 2009). More
recently, Lei et al. (2012) discussed four additional examples of SMARTs: the Adap-
tive Characterizing Cognition in Nonverbal Individuals with Autism (CCNIA) De-
velopmental and Augmented Intervention (Kasari 2009) for school-age, nonverbal
children with autism spectrum disorders; the Adaptive Pharmacological and Behav-
ioral Treatments for children with attention deficit hyperactivity disorder (ADHD)
(see for example, Nahum-Shani et al. 2012a,b); the Adaptive Reinforcement-Based
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Treatment for Pregnant Drug Abusers (RBT) (Jones 2010); and the ExTENd study
for alcohol-dependent individuals (Oslin 2005). Lei et al. (2012) also discussed the
subtle distinctions between different types of SMARTs in terms of the extent of
multiple randomizations: (i) SMARTs in which only the non-responders to one of
the initial treatments are re-randomized (e.g. CCNIA); (ii) SMARTs in which non-
responders to all the initial treatments are re-randomized (e.g. the ADHD trial); and
(iii) SMARTs in which both responders and non-responders to all the initial treat-
ments are re-randomized (e.g. RBT, ExTENd).

CBT

NTX

R

R

R

TM

TMC

CBT

EM+CBT+NTX

R

R

TM

TMC

NTX

EM+CBT+NTX

Fig. 2.2 Hypothetical SMART design schematic for the addiction management example (an “R”
within a circle denotes randomization at a critical decision point)

In order to make the discussion more concrete, let us consider a hypothetical
SMART design based on the addiction management example introduced in Chap. 1;
see Fig. 2.2 for a schematic. In this trial, each subject is randomly assigned to one
of two possible initial treatments: cognitive behavioral therapy (CBT) or naltrex-
one (NTX). A subject is classified as a non-responder or responder to the initial
treatment according to whether he does or does not experience more than two
heavy drinking days during the next two months. A non-responder to NTX is re-
randomized to one of the two subsequent treatment options: either a switch to
CBT, or an augmentation of NTX with CBT and an enhanced motivational program
(EM + CBT + NTX). Similarly, a non-responder to CBT is re-randomized to either
a switch to NTX or an augmentation (EM + CBT + NTX). Responders to the initial
treatment are re-randomized to receive either telephone monitoring only (TM) or
telephone monitoring and counseling (TMC) for an additional period of six months.
The goal of the study is to maximize the number of non-heavy drinking days over a
12-month study period.
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2.3.1 SMART Versus a Series of Single-stage Randomized Trials

Note that the goal of SMART design is to generate high quality data that would aid
in the development and evaluation of optimal DTRs. A competing design approach
could be to conduct separate randomized trials for each of the separate stages, to
find the optimal treatment at each stage based on the trial data, and then combine
these optimal treatments from individual stages to create a DTR. For example, in-
stead of the SMART design for the addiction management study described above,
the researcher may conduct two single-stage randomized trials. The first trial would
involve a comparison of the initial treatments (CBT versus NTX). The researcher
would then choose the best treatment based on the results of the first trial and move
on to the second trial where all subjects would be initially treated with the cho-
sen treatment and then responders would be randomized to one of the two possi-
ble options: TM or TMC, and non-responders would be randomized to one of the
two possible options: switch of the initial treatment or a treatment augmentation
(EM + CBT + NTX). However, when used to optimize DTRs, this approach suffers
from several disadvantages as compared to a SMART design.

First, this design strategy is myopic, and may often fail to detect possible de-
layed effects of treatments, ultimately resulting in a suboptimal DTR (Lavori and
Dawson 2000). Many treatments can have effects that do not occur until after the
intermediate outcome (e.g. response to initial treatment) has been measured, such
as improving the effect of a future treatment or long-term side effects that prevent
a patient from being able to use an alternative useful treatment in future. SMART
designs are capable of taking care of this issue while the competing approach is
not. This point can be further elucidated using the addiction management example,
following the original arguments of Murphy (2005a). Suppose counseling (TMC) is
more effective than monitoring (TM) among responders to CBT; this is a realistic
scenario since the subject can learn to use counseling during CBT at the initial stage
and thus is able to take advantage of the counseling offered at the subsequent stage
to responders. Individuals who received NTX during the initial treatment would not
have learned to use counseling, and thus among responders to NTX the addition
of counseling to the monitoring does not improve abstinence relative to monitoring
alone. If an individual is a responder to CBT, it is best to offer TMC as the sec-
ondary treatment. But if the individual is a responder to NTX, it is best to offer the
less expensive TM as the secondary treatment. In summary, even if CBT and NTX
result in the same proportion of responders (or, even if CBT appears less effective
at the initial stage), CBT may be the best initial treatment as part of the entire treat-
ment sequence. This would be due to the enhanced effect of TMC when preceded
by CBT. On the other hand, if the researcher employs two separate stage-specific
trials, he would likely conduct the second trial with NTX (which is cheaper than
CBT) as the initial treatment, unless CBT looks significantly better than NTX at the
first trial. In that case, there would be no way for the researcher to discover the truly
optimal regime.

Second, even though the results of the first trial may indicate that treatment a is
initially less effective than treatment a′, it is quite possible that treatment a may elicit
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valuable diagnostic information that would permit the researcher to better personal-
ize the subsequent treatment to each subject, and thus improve the primary outcome.
This issue can be better discussed using the ADHD study example (Nahum-Shani
et al. 2012a,b), following the original discussion of Lei et al. (2012). In secondary
analyses of the ADHD study, Nahum-Shani et al. (2012a,b) found evidence that
children’s adherence to the initial intervention could be used to better match the
secondary intervention. More precisely, among non-responders to the initial inter-
vention (either low-dose medication or low-dose behavioral modification), those
with low adherence performed better when the initial intervention was augmented
with the other type of intervention at the second stage, compared to increasing the
dose or intensity of the initial treatment at the second stage. This phenomenon is
sometimes called the diagnostic effect or prescriptive effect.

Third, subjects who enroll and remain in a single-stage trial may be inherently
different from those who enroll and remain in a SMART. This is a type of co-
hort effect or selection effect, as discussed by Murphy et al. (2007a). Consider a
single-stage randomized trial in which CBT is compared with NTX. First, in order
to reduce variability in the treatment effect, investigators would tend to set very re-
strictive entry criteria (this is the case with most RCTs), which would result in a
cohort that represents only a small subset of the treatable population. In contrast,
researchers employing a SMART design would not try to reduce the variability in
the treatment effect, since this design would allow varying treatment sequences for
different types of patients. Hence SMARTs can recruit from a wider population
of patients, and would likely result in greater generalizability. Furthermore, in a
single-stage RCT, for subjects with no improvement in symptoms and for those ex-
periencing severe side-effects, there is often no option but to drop out of the study
or cease to comply with the study protocol. In contrast, non-responding subjects in
a SMART would know that their treatments will be altered at some point. Thus it
can be argued that non-responding subjects may be less likely to drop out from a
SMART relative to a single-stage randomized trial. Consequently the choice of the
best initial treatment obtained from a single-stage trial may be based on a sample
less representative of the study population compared to the choice of the best initial
treatment obtained from a SMART.

From the above discussion, it is clear that conducting separate stage-specific tri-
als and combining best treatment options from these separate trials may fail to de-
tect delayed effects and diagnostic effects, and may result in possible cohort effects,
thereby rendering the developed sequence of treatment decisions potentially subop-
timal. This has been the motivation to consider SMART designs.

2.3.2 Design Properties

For simplicity of exposition, let us focus on SMART designs with only two stages;
however the ideas can be generalized to any finite number of stages. Denote the
observable data trajectory for a subject in a SMART by (O1,A1,O2,A2,Y ), where
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O1 and O2 are the pretreatment information and intermediate outcomes, A1 and A2

are the randomly assigned initial and secondary treatments, and Y is the primary
outcome, respectively. For example, in the addiction management study discussed
earlier, O1 may include addiction severity and co-morbid conditions, O2 may in-
clude the subject’s binary response status, side effects and adherence to the initial
treatment, and Y may be the number of non-heavy drinking days over the 12-month
study period. Under the axiom of consistency (see Sect. 2.1.3), the potential out-
comes are connected to the observable data by O2 = O2(A1) and Y = Y (A1,A2).

In a SMART, the randomization probabilities may depend on the available treat-
ment and covariate history; more precisely, the randomization probabilities for A1

and A2 may depend on H1 ≡ O1 and H2 ≡ (O1,A1,O2), respectively. Thus data
from a SMART satisfy the sequential ignorability or no unmeasured confounding
assumption (see Sect. 2.1.3). Under this assumption, the conditional distributions of
the potential outcomes are the same as the corresponding conditional distributions
of the observable data. That is,

P(O2(a1)≤ o2|O1 = o1) = P(O2 ≤ o2|O1 = o1,A1 = a1),

and

P(Y (a1,a2)≤ y|O1 = o1,O2(a1) = o2)

= P(Y ≤ y|O1 = o1,A1 = a1,O2 = o2,A2 = a2).

This implies that the mean primary outcome of a DTR can be written as a function
of the multivariate distribution of the observable data obtained from a SMART;
see Murphy (2005a) for detailed derivation. This property ensures that data from
SMARTs can be effectively used to evaluate pre-specified DTRs or to estimate the
optimal DTR within a certain class. We defer our discussion of estimation of optimal
DTRs to later chapters.

Power and Sample Size

As is the case with any other study, power and sample size calculations are cru-
cial elements in designing a SMART. In a SMART, one can investigate multiple
research questions, both concerning entire DTRs (e.g. comparing the effects of two
DTRs) and concerning certain components thereof (e.g. testing the main effect of the
first stage treatment, controlling for second stage treatment). To power a SMART,
however, the investigator needs to choose a primary research question (primary hy-
pothesis), and calculate the sample size based on that question. Additionally, one or
more secondary questions (hypotheses) may be investigated in the study. While the
SMART provides unbiased estimates (free from confounding) to these secondary
questions by virtue of randomization, it is not necessarily powered to address these
secondary hypotheses.
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A good primary research question should be both scientifically important and
helpful in developing a DTR. For example, in the addiction management study
an interesting primary research question would be: “marginalizing over secondary
treatments, what is the best initial treatment on average?”. In other words, here the
researcher wants to compare the mean primary outcome of the group of patients
receiving NTX as the initial treatment with the mean primary outcome of those
receiving CBT. Standard sample size formula for a large sample comparison of two
means can be used in this case. Define the standardized effect size δ as the standard-
ized difference in mean primary outcomes between two groups (Cohen 1988), i.e.

δ =
E(Y |A1 = NTX)−E(Y |A1 = CBT)

√

[Var(Y |A1 = NTX)+Var(Y |A1 = CBT)]/2
.

Suppose the randomization probability is 1/2 for each treatment option at the first
stage. Standard calculation yields a total sample size formula for the two sided test
with power (1−β ) and size α:

n = 4(zα/2 + zβ )
2δ−2,

where zα/2 and zβ are the standard normal (1−α/2) percentile and (1−β ) per-
centile, respectively. To use the formula, one needs to postulate the effect size δ , as
is the case in standard two-group randomized controlled trials (RCTs).

Another interesting primary question could be: “on average what is the best sec-
ondary treatment, TM or TMC, for responders to initial treatment?”. In other words,
the researcher wants to compare the mean primary outcomes of two groups of re-
sponders (those who get TM versus TMC as the secondary treatment). As before,
standard formula can be used. Define the standardized effect size δ as the standard-
ized difference in mean primary outcomes between two groups (Cohen 1988), i.e.

δ =
E(Y |Response,A2 = TM)−E(Y |Response,A2 = TMC)

√

[Var(Y |Response,A2 = TM)+Var(Y |Response,A2 = TMC)]/2
.

Let γ denote the overall response rate to initial treatment. Suppose the random-
ization probability is 1/2 for each treatment option at the second stage. Standard
calculation yields a total sample size formula for the two sided test with power
(1−β ) and size α:

n = 4(zα/2 + zβ )
2δ−2γ−1.

To use the formula, one needs to postulate the overall initial response rate γ , in
addition to postulating the effect size δ . A similar question could be a comparison
of secondary treatments among non-responders; in this case the sample size formula
would be a function of non-response rate to the initial treatment.

Alternatively researchers may be interested in primary research questions related
to entire DTRs. In this case, Murphy (2005a) argued that the primary research ques-
tions should involve the comparison of two DTRs beginning with different initial
treatments. Test statistics and sample size formulae for this type of research ques-
tion have been derived by Murphy (2005a) and Oetting et al. (2011).
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The comparison of two DTRs, say d̄ and d̄′, beginning with different initial treat-
ments, can be obtained by comparing the subgroup of subjects in the trial whose
treatment assignments are consistent with regime d̄ with the subgroup of subjects
in the trial whose treatment assignments are consistent with regime d̄′. Note that
there is no overlap between these two subgroups since a subject’s initial treatment
assignment can be consistent with only one of d̄ or d̄′. The standardized effect size

in this context is defined as δ = (μd̄ − μd̄′)
/√

(σ2
d̄
+σ2

d̄′)/2, where μd̄ is the mean

primary outcome under the regime d̄ and σ2
d̄

is its variance. Suppose the random-
ization probability for each treatment option is 1/2 at each stage. In this case, using
a large sample approximation, the required sample size for the two sided test with
power (1−β ) and size α is

n = 8(zα/2 + zβ )
2δ−2.

Oetting et al. (2011) discussed additional research questions and the correspond-
ing test statistics and sample size formulae under different working assumptions. A
web application that calculates the required sample size for sizing a study designed
to discover the best DTR using a SMART design for continuous outcomes can be
found at

http://methodologymedia.psu.edu/smart/samplesize.

Some alternative approaches to sample size calculations can be found in Dawson
and Lavori (2010, 2012).

Furthermore, for time-to-event outcomes, sample size formulae can be found in
Feng and Wahed (2009) and Li and Murphy (2011). A web application for sample
size calculation in this case can be found at

http://methodologymedia.psu.edu/logranktest/samplesize.

Randomization Probabilities

Let p1(a1|H1) and p2(a2|H2) be the randomization probability at the first and second
stage, respectively. Formulae for the randomization probabilities that would create
equal sample sizes across all DTRs were derived by Murphy (2005a). This was
motivated by the classical large sample comparison of means for which, given equal
variances, the power of a test is maximized by equal sample sizes. Let k1(H1) be
the number of treatment options at the first stage with history H1 and k2(H2) be the
number of treatment options at the second stage with history H2, respectively. Then
Murphy’s calculations give the optimal values of randomization probabilities as

p2(a2|H2) = k2(H2)
−1, and

p1(a1|H1) =
E[k2(H2)

−1|O1,A1 = a1]
−1

∑k1(H1)
b=1 E[k2(H2)−1|O1,A1 = b]−1

. (2.1)
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If k2 does not depend on H2, the above formulae can be directly used at the start of
the trial. Otherwise, working assumptions concerning the distribution of O2 given
(O1,A1) are needed in order to use the formulae. In the case of the addiction man-
agement example, k1(H1) = 2 and k2(H2) = 2 for all possible combinations of
(H1,H2). Thus (2.1) yields an optimal randomization probability of 1/2 for each
treatment option at each stage. See Murphy (2005a) for derivations and further
details.

2.3.3 Practical Considerations

Over the years, some principles and practical considerations have emerged mainly
from the works of Lavori and Dawson (2004), Murphy (2005a) and Murphy et al.
(2007a) which researchers should keep in mind as general guidelines when design-
ing a SMART.

First, Murphy (2005a) recommended that the primary research question should
consider simple DTRs, leading to tractable sample size calculations. For example, in
the addiction management study, one can consider regimes where the initial decision
rule does not depend on an individual’s pre-treatment information and the secondary
decision rule depends only on the individual’s initial treatment and his response
status (as opposed to depending on a large number of intermediate variables).

Second, when designing the trial, the class of treatment options at each stage
should be restricted by ethical, scientific or feasibility considerations (Lavori and
Dawson 2004; Murphy 2005a). It is better to use a low dimensional summary crite-
rion (e.g. response status) instead of all intermediate outcomes (e.g. improvement of
symptom severity, side-effects, adherence etc.) to restrict the class of possible treat-
ments; in many contexts including mental health studies, feasibility considerations
may often force researchers to use a patient’s preference in this low dimensional
summary. Lavori and Dawson (2004) demonstrated how to constrain treatment op-
tions (and thus decision rules) using the STAR*D study as an example (this study
will be introduced later in this chapter). Yet, Murphy (2005a) warned against un-
necessary restriction of the class of the decision rules. In our view, determining the
“right class” of treatment options in any given study remains an art, and cannot be
fully operationalized.

Third, a SMART should be viewed as one trial among a series of randomized
trials intended to develop and/or refine a DTR (Collins et al. 2005). It should even-
tually be followed by a confirmatory randomized trial that compares the developed
regime and an appropriate control (Murphy 2005a; Murphy et al. 2007a).

Fourth, like traditional randomized trials, SMARTs may involve usual problems
such as dropout, non-compliance, incomplete assessments, etc. However, by virtue
of the option to alter the non-functioning treatments at later stages, SMARTs should
be more appealing to participants, which may result in greater recruitment success,
greater compliance, and lower dropout compared to a standard RCT.
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Finally, as in the context of any standard randomized trial, feasibility and ac-
ceptability considerations relating to a SMART can best be assessed via (external)
pilot studies (see, e.g. Vogt 1993). Recently Almirall et al. (2012a) discussed how
to effectively design a SMART pilot study that can precede, and thereby aid in fine-
tuning, a full-blown SMART. They also presented a sample size calculation formula
useful for designing a SMART pilot study.

2.3.4 SMART Versus Other Designs

The SMART design discussed above involves stages of treatment and/or experi-
mentation. In this regard, it bears similarity with some other common designs, in-
cluding what are known as adaptive designs (Berry 2001, 2004). Below we discuss
the distinctions between SMART and some other multi-stage designs, to avoid any
confusion.

SMART Design Versus Adaptive Designs

“Adaptive design” is an umbrella term used to denote a variety of trial designs that
allow certain trial features to change from an initial specification based on accu-
mulating data (evolving information) while maintaining statistical, scientific, and
ethical integrity of the trial (Dragalin 2006; Chow and Chang 2008). Some com-
mon types of adaptive designs are as follows. A response adaptive design allows
modification of the randomization schedules based on observed data at pre-set in-
terim times in order to increase the probability of success for future subjects; Berry
et al. (2001) discussed an example of this type of design. A group sequential design
(Pocock 1977; Pampallona and Tsiatis 1994) allows premature stopping of a trial
due to safety, futility and/or efficacy with options of additional adaptations based
on the results of interim analyses. A sample size re-estimation design involves the
re-calculation of sample size based on study parameters (e.g. revised effect size,
conditional power, nuisance parameters) obtained from interim data; see Banerjee
and Tsiatis (2006) for an example. An adaptive dose-finding design is used in early
phase clinical development to identify the minimum effective dose and the max-
imum tolerable dose, which are then used to determine the dose level for the next
phase clinical trials (see for example, Chen 2011). An adaptive seamless phase II/III
trial design is a design that addresses within a single trial objectives that are nor-
mally achieved through separate trials in phase II and phase III of clinical devel-
opment, by using data from patients enrolled before and after the adaptation in the
final analysis; see Levin et al. (2011) for an example. In general, the aim of adaptive
designs is to improve the quality, speed and efficiency of clinical development by
modifying one or more aspects of a trial. Recent perspectives on adaptive designs
can be found in Coffey et al. (2012).
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Based on the above discussion, now we can identify the distinctions between the
standard SMART design and adaptive designs. In a SMART design, each subject
moves through multiple stages of treatment, while in most adaptive designs each
stage involves different subjects. The goal of a SMART is to develop a good DTR
that could benefit future patients. Many adaptive designs (e.g. response adaptive de-
sign) try to provide the most efficacious treatment to each patient in the trial based
on the current knowledge available at the time that a subject is randomized. In a
SMART, unlike in an adaptive design, the design elements such as the final sam-
ple size, randomization probabilities and treatment options are pre-specified. Thus,
SMART designs involve within-subject adaptation of treatment, while adaptive de-
signs involve between-subject adaptation.

Next comes the natural question of whether some adaptive features can be in-
tegrated into the SMART design framework. In some cases the answer is yes, at
least in principle. For example, Thall et al. (2002) provided a statistical framework
for an adaptive design in a multi-stage treatment setting involving two SMARTs.
Thall and Wathen (2005) considered a similar but more flexible design where the
randomization criteria for each subject at each stage depended on the data from
all subjects previously enrolled. However, adaptation based on interim data is less
feasible in settings where subjects’ outcomes may only be observed after a long pe-
riod of time has elapsed. How to optimally use adaptive design features within the
SMART framework is an open question that warrants further research.

SMART Design Versus Crossover Trial Design

SMART designs have some operational similarity with classical crossover trial de-
signs; however they are very different conceptually. First, treatment allocation at any
stage after the initial stage of a SMART typically depends on a subject’s intermedi-
ate outcome (response/non-response). However, in a crossover trial, subjects receive
all the candidate treatments irrespective of their intermediate outcomes. Second, as
the goal of a typical cross-over study is to determine the outcome of a one-off treat-
ment, crossover trials consciously attempt to wash out the carryover effects (i.e.
delayed effects), whereas SMARTs attempt to capture them and, where possible,
take advantage of any interactions between treatments at different stages to opti-
mize outcome following a sequence of treatments.

SMART Design Versus Multiphase Experimental Approach

As mentioned earlier, a SMART should be viewed as one trial among a series of ran-
domized trials intended to develop and/or refine a DTR. It should eventually be fol-
lowed by a confirmatory randomized trial that compares the developed regime and
an appropriate control (Murphy 2005a; Murphy et al. 2007a). This purpose is shared
by the multiphase experimental approach (with distinct phases for screening, refin-
ing, and confirming) involving factorial designs, originally developed in engineering
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(Box et al. 1978), and recently used in the development of multicomponent behav-
ioral interventions (Collins et al. 2005, 2009; Chakraborty et al. 2009). Note that
DTRs are multicomponent treatments, and SMARTs are developmental trials to aid
in the innovation of optimal DTRs. From this perspective, a SMART design can be
viewed as one screening/refining experiment embedded in the entire multiphase ex-
perimental approach. In fact, Murphy and Bingham (2009) developed a framework
to connect SMARTs with factorial designs. However, there remain many open ques-
tions in this context, and more research is needed to fully establish the connections.

2.4 Examples of Sequentially Randomized Studies

In this section, we consider two examples of SMARTs in great detail. An in-depth
discussion of several other recently-conducted SMARTs can be found in Lei et al.
(2012).

2.4.1 Project Quit – Forever Free: A Smoking Cessation Study

Here we briefly present a two-stage SMART design implemented in a study to de-
velop/compare internet-based interventions (dynamic treatment regimes) for smok-
ing cessation and relapse prevention. The study was conducted by the Center for
Health Communications Research at the University of Michigan, and was funded
by the National Cancer Institute (NCI). This study allowed the researchers to test
cutting-edge web-based technology in a real-world environment that has the infras-
tructure for both evaluating and disseminating population-based cancer prevention
and control programs. The first stage of this study, known as Project Quit, was con-
ducted to find an optimal multi-factor behavioral intervention to help adult smokers
quit smoking; and the second stage, known as Forever Free, was a follow-on study
to help those (among the Project Quit participants) who had already quit remain
non-smoking, and offer a second chance to those who failed to give up smoking
at the previous stage. Details of the study design and primary analysis of the stage
1 data can be found in Strecher et al. (2008). Analysis of the data from the two
stages considered together with a goal of finding an optimal DTR can be found in
Chakraborty (2009) and Chakraborty et al. (2010).

At stage 1, although there were five two-level treatment factors in the original
fractional factorial design, only two, source (of online behavioral counseling
message) and story (of a hypothetical character who succeeded in quitting smok-
ing) were significant in the primary analysis reported in Strecher et al. (2008). For
simplicity of discussion, here we consider only these two treatment factors at stage
1, which would give a total of 4 treatment combinations at stage 1 corresponding to
the 2×2 design. The treatment factor sourcewas varied at two levels, e.g. high vs.
low level of personalization; likewise the factor storywas varied at two levels, e.g.
high vs. low tailoring depth (degree to which the character in the story was tailored
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to the individual subject’s baseline characteristics). Baseline variables at this stage
included subjects’ motivation to quit (on a 1–10 scale), selfefficacy (on
a 1–10 scale) and education (binary, ≤high school vs.> high school). At stage
2, there were two treatment options: booster intervention and control. At the first
stage, 1,848 subjects were randomized, out of which only 479 decided to continue
to stage 2 and hence were subsequently randomized.

There was an outcome measured at the end of each stage in this study. The stage
1 outcome was binary quit status at 6 months from the date of initial randomization,
called PQ6Quitstatus (1 = quit, 0 = not quit). The stage 2 outcome was binary
quit status, called FF6Quitstatus, at 6 months from the date of stage 2 random-
ization (i.e., 12 months from the date of stage 1 randomization). We will re-visit
this study in Sects. 3.4.3 and 8.3.3, in the context of estimating optimal DTRs and
conducting inference about them.

2.4.2 STAR*D: A Study of Depression

Sequenced Treatment Alternatives to Relieve Depression (STAR*D) was a multi-
site, multi-level randomized controlled trial designed to assess the comparative ef-
fectiveness of different treatment regimes for patients with major depressive dis-
order (MDD) (Fava et al. 2003; Rush et al. 2004). This study was funded by the
National Institute of Mental Health (NIMH). The study enrolled a total of 4,041
patients, all of whom were treated with citalopram (CIT) at level 1. Clinic visits
occurred several times during each treatment level, at 2- or 3-week intervals (weeks
0, 2, 4, 6, 9, 12). Severity of depression at any clinic visit was assessed using the
clinician-rated and self-report versions of the Quick Inventory of Depressive Symp-
tomatology (QIDS) scores (Rush et al. 2004). A schematic of the treatment assign-
ment algorithm is given in Fig. 2.3. This study is more complex than the smoking
cessation study in that there are more than two stages.

Level 1 Initial treatment: CIT

Level 2 “Switch” treatments: BUP, CT, SER, or VEN
“Augment” treatments:  CIT + (BUP, BUS, or CT)

Level 2a If switched to CT in Level 2: BUP or VEN

Level 3 “Switch” treatments: MIRT or NTP
“Augment” treatments:  previous treatment + (Li or THY)

Level 4 Switch to TCP or MIRT + VEN

Follow-up

Fig. 2.3 A schematic of the algorithm for treatment assignment in the STAR*D study
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Success was based on a total clinician-rated QIDS-score of ≤5 (“remission”)
during treatment with CIT. Those without remission were eligible to receive one
of up to seven treatment options available at level 2, depending on their prefer-
ence to switch or augment their level-1 treatment. Patients preferring a switch were
randomly assigned to one of four treatment options: bupropion (BUP), cognitive
psychotherapy (CT), sertraline (SER), or venlafaxine (VEN). Those preferring an
augmentation were randomized to one of three options: CIT + BUP, CIT + buspirone
(BUS), or CIT + CT. Only the patients assigned to CT or CIT + CT in level 2 were
eligible, in the case of a non-satisfactory response, to move to a supplementary level
of treatment (level 2A), to switch to either VEN or BUP. Patients not responding sat-
isfactorily at level 2 (and level 2A, if applicable) would continue to level 3 treatment.
Depending on the preference, patients at level 3 were randomly assigned to switch
to either mirtazapine (MIRT) or nortriptyline (NTP), or randomly assigned to aug-
ment their previous treatment with lithium (Li) or thyroid hormone (THY). Patients
without a satisfactory response at level 3 continued to level 4 treatments, which
included two options: tranylcypromine (TCP) or MIRT + VEN. Patients achieving
remission (QIDS ≤5) at any level entered a follow-up phase. Treatment assignment
at each level took place via randomization within a patient’s preference category.
For a complete description of the STAR*D study design, see Fava et al. (2003) and
Rush et al. (2004). We will re-visit this study in Chap. 8 in the context of making
inference about the parameters indexing the optimal DTRs.

2.5 Discussion

In this chapter, we have described the two sources of data that are commonly used
for estimating DTRs: observational follow-up studies and SMARTs. The use of ob-
servational data adds an element of complexity to the problem of estimation and
requires careful handling and additional assumptions, due to the possibility of con-
founding. To assist in the careful formulation of causal contrasts in the presence
of confounding, the potential outcomes framework was introduced. In contrast,
SMARTs offer simpler analyses but often require significant investment to conduct
a high quality trial with adequate power. We discussed conceptual underpinnings
of and practical considerations for conducting a SMART, as well as its distinctions
from other multiphase designs. We introduced several examples of observational
and sequentially randomized studies, some of which we will investigate further in
subsequent chapters.



Chapter 3
Statistical Reinforcement Learning

3.1 Multi-stage Decision Problems

Constructing optimal dynamic treatment regimes for chronic disorders based on
patient data is a problem of multi-stage decision making about the best sequence of
treatments. This problem bears strong resemblance to the problem of reinforcement
learning (RL) in computer science. RL is a branch of machine learning that deals
with the problem of multi-stage, sequential decision making by a learning agent
(e.g. a robot). In this paradigm, a learning agent tries to optimize the total amount
of reward it receives when interacting with an unknown environment. Unlike super-
vised learning (e.g. classification, regression) and unsupervised learning (e.g. clus-
tering, density estimation), this branch of machine learning is relatively less known
within the statistics community. However, there has been a recent surge of inter-
est within the statistical and biomedical communities regarding the application of
RL techniques to optimize DTRs. Recent efforts have targeted the development of
DTRs for cancer (Zhao et al. 2009), epilepsy (Guez et al. 2008), depression (Murphy
et al. 2007b; Pineau et al. 2007), schizophrenia (Shortreed et al. 2011), HIV infec-
tion (Ernst et al. 2006) and smoking cessation (Chakraborty et al. 2010), among
others. In this chapter, we will review the necessary concepts of RL, connect them
to the relevant statistical literature, and develop a mathematical framework that will
enable us to treat the problem of estimating the optimal DTRs rigorously.

Historically, the first class of methods to solve multi-stage decision problems
is dynamic programming (DP), which dates back to Bellman (1957). Classical
DP algorithms are of limited practical utility in RL because of the following two
reasons. First, they require a complete knowledge of the learning environment,
often known as the system dynamics. In statistical terms, this means a complete
knowledge about the multivariate distribution of the data. In many application ar-
eas, health-related or otherwise, it is often impractical to assume full distributional
knowledge. Second, DP methods are computationally very expensive, and they be-
come hard to manage in moderately high dimensional problems; in other words, they
suffer from the curse of dimensionality (Sutton and Barto 1998). However, DP is still
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important as a theoretical foundation for RL. The field of modern RL experienced a
major breakthrough when Watkins (1989) developed Q-learning, a method to solve
multi-stage decision problems based on sample data trajectories. This can be viewed
as an approximate dynamic programming approach. In this book, we will focus on
Q-learning as the main RL-based approach to estimating optimal DTRs; this will be
implemented using primarily linear parametric models, although more flexible mod-
eling is possible. A detailed introduction to the field of RL can be found in Sutton
and Barto (1998), Bertsekas and Tsitsiklis (1996) and Kaelbling et al. (1996).

3.2 Reinforcement Learning: A Conceptual Overview

Reinforcement learning is characterized by a sequence of interactions between a
learning agent and the environment it wants to learn about. At every decision point
or stage, the agent observes a certain state of the environment, and chooses an action
(makes a decision) from a set of possible actions. The environment responds to the
action by making a transition to a new state. In addition to observing the new state,
the agent observes a reward1 that is meant to assess the immediate desirability of the
action chosen by the agent. State, action and reward are the three basic elements of
the RL framework. The most traditional (and perhaps the simplest) context in which
RL is applied is called a Markov decision process (MDP). In an MDP setting, the
probability of the environment making a transition to a new state, given the current
state and action, does not depend on the distant past of the environment; more pre-
cisely, the state transition probabilities follow the well-known Markov property of
memorylessness. In an MDP, the goal of RL is to learn how to map states to actions
so as to maximize the total expected future reward (unless otherwise specified in a
given problem, it is assumed that higher rewards are desirable). Note that the reward
itself is usually a random variable, and hence the goal is formulated in terms of an
expectation.

The number of stages in an RL problem can be either finite or infinite; accord-
ingly it is called a finite-horizon or an infinite-horizon problem. In this book, we
will only consider finite-horizon RL problems. In RL, a policy defines the agent’s
behavior (i.e. which action to take based on the current state) at any given stage.
A deterministic policy is a vector of mappings, with as many components as the
number of stages, where each component of the vector is a mapping from the state
space (set of possible states) to the action space (set of possible actions) corre-
sponding to a stage. More generally, a policy can be stochastic, in which case the
mappings are from the stage-specific state spaces to the space of probability distri-
butions over the stage-specific action spaces. Unless otherwise noted, by the term
policy, we will generally mean deterministic policy throughout this book.

A useful quantity for assessing the merit of a policy is the value function, or
simply, the value. While rewards reflect immediate desirability of an action, val-
ues represent what is good in the long run. Roughly speaking, the value of a given

1 In some settings, there may only be a terminal reward for the entire sequence of agent-
environment interactions.



3.2 Reinforcement Learning: A Conceptual Overview 33

state, with respect to a given policy, is the total expected future reward of an agent,
starting with that state, and following the given policy to select actions thereafter.
Thus the goal of RL, rephrased in terms of policy and value, is to estimate a pol-
icy that maximizes the value over a specified class of policies. Since the value is
a function of two arguments, namely the state and the policy, the above-mentioned
maximization of value over policy space can happen either for each state, or aver-
aged over all the states. Unless otherwise specified, in this book, we will concentrate
on maximization of value averaged over all the states.

Compare the above conceptual framework of traditional RL to the present prob-
lem of constructing DTRs for chronic disorders. The computerized decision support
system of the clinician plays the role of the learning agent, while the population
of subjects with the disorder of interest plays the role of the environment. Every
time a patient visits the clinic defines a stage of potential clinical intervention. Pre-
treatment observations on the patient constitute the state, and the treatment (type,
dosage, timing etc.) serves as the action. A suitably-defined measure of the patient’s
well-being following the treatment can be conceptualized as the reward. For exam-
ple, in the addiction management problem described in Chap. 1, reward can be the
percentage of days abstinent in a given period of time following the treatment. How-
ever, it must be recognized that constructing good rewards in the medical setting is
challenging, and how best to combine different outcomes of interest (e.g. efficacy
and toxicity) into a single reward is an open question. Finally, policy is synonymous
with dynamic treatment regime, and the value of a policy is the same as the expected
primary outcome under a dynamic regime.

While the problem of constructing DTRs from patient data seems to be a special
case of the classical RL, it has several unique features that distinguishes it from the
classical RL problem. Below we list the major distinctions:

Unknown System Dynamics and the Presence of Unknown Causes: In many RL
problems, the system dynamics (multivariate distribution of the data, including
state transition probabilities) are known from the physical laws or other subject-
matter knowledge. For example, in the case of a robot learning about its envi-
ronment, the system dynamics are often known (Sutton and Barto 1998, p. 66).
Unfortunately this is often not the case in the medical setting due to the pres-
ence of potentially many unknown causes of the outcome. Consider, for example,
treatment of chronic depression. A patient’s response to a treatment may depend
on how well he adheres to the treatment assigned, his genetic composition, co-
occurring family problems, etc. These unknown causes play an important role
in treatment outcome, and in some cases interact with treatment to affect that
outcome. Hence classical DP algorithms that use direct knowledge of the system
dynamics are not suitable, and constructing DTRs in the medical setting using
patient data is not a straightforward RL problem.

Furthermore, the unknown causes and system dynamics pose potential chal-
lenges to statistical methods for estimating treatment effects. In statistics, it is a
common practice to collect data, whenever possible, on all potential risk factors
and confounders and adjust for these by including them in regression models.
However, it is not possible to collect data on a cause if it is unknown, and
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difficult to model a relationship (a component of the system dynamics) if it too
is unknown or poorly understood. One might think to use nonparametric models
to estimate the transition probabilities and then use DP methods to estimate the
DTRs, provided the dimension of the problem is small relative to the sample
size. When the state space and the action space are large, DP is a challenging
computational problem. In most medical settings, particularly if the data arise
from randomized trials (SMARTs), the number of subjects is typically not large
compared to the size of the state space and the action space; hence nonparametric
modeling of the system dynamics followed by DP has not become popular in the
DTR literature.

Need to Pool over Subject-level Data: In some other classical RL problems, the
system dynamics are not completely specified, rendering the DP methods unsuit-
able, however, good generative models are available from which one can simulate
data on states, actions, and rewards – essentially as much data as one wants. In
other words, data are often very cheap in these classical problems. The primary
restrictive issue in this setting is the computational complexity. In the medical
setting, however, data are extremely expensive in terms of both time and money.
Furthermore, generative models from which to simulate patient data are rarely
available due, in part, to the point noted above: that there may be unknown or
poorly understood causes of the outcome in the medical setting. Thus, all that
is typically available to the analyst is a sample consisting of treatment records
(pre-treatment observations, treatments, and post-treatment outcomes) of n pa-
tients from a randomized or observational study. The sample size n is usually not
very large compared to the size of the state space and the action space. Hence
one is forced to use parametric or semi-parametric statistical models (called
function approximation in computer science) to add some structure to the data
and then pool over subjects’ data to construct the decision rules. In computer
science, a sample of data is often called a batch; hence a sub-class of RL al-
gorithms that work with batch data are called batch-mode learning algorithms
(Ernst et al. 2005; Murphy 2005b). In the medical setting, batch-mode RL al-
gorithms with function approximation (as opposed to the more common online
algorithms, which we will not discuss in this book) are suitable.

Non-Markovian Set-up: As mentioned earlier in this section, the most tradi-
tional setting in which the classical RL algorithms are applied is called an
MDP, in which the state transition probabilities follow the Markov property.
Roughly speaking, this means that the transition probabilities depend only on
the immediate past as opposed to the entire history. In the medical setting, how-
ever, there is no reason to believe that the next state of the patient following a
treatment depends on the immediately preceding state and treatment alone, and
not on any distant history (there is no biological model indicating this). The main
implication of this departure from the Markovian set-up is the need to introduce
the notion of history; the history at any stage consists of all the present and past
states, and also the past actions (treatments). Note that the space of history grows
with the number of stages, and thus can quickly become high dimensional. Some
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of the previously defined terms need to be slightly re-defined in the non-MDP
setting. For example, a policy is a mapping from the space of history (rather than
just the immediate state space) to the action space at any stage. Also, in the non-
MDP setting, one has to define the value of a certain history, rather than a state,
with respect to a policy.

In spite of the above differences, one can think of RL algorithms as a good start-
ing point for constructing DTRs. This book will focus largely on a particular RL
algorithm named Q-learning, along with its variants. In the following, we will de-
velop a probabilistic (statistical) framework to formalize the above concepts of RL.

3.3 A Probabilistic Framework

In a general RL problem, the agent and the environment interact at each of a possibly
infinite number of stages. In the medical setting, we restrict ourselves to RL prob-
lems with a finite number of stages (say K). These are called finite-horizon prob-
lems. We do not assume Markov property here, since it is not appropriate in general.

At stage j (1 ≤ j ≤ K), the agent observes a state O j ∈O j and executes an action
A j ∈ A j, where O j is the state space and A j is the action space. We will restrict
ourselves to settings where the state O j can be a vector consisting of discrete or
continuous variables, but the action A j can only be discrete. RL problems with a
continuous action space are beyond the scope of this book, however exciting work
on G-estimation of optimal strategies for dosing of continuous-valued treatments is
being undertaken (Rich et al. 2010). Partly as a consequence of its action, the agent
receives a real-valued reward Yj ∈ R, and moves on to the next stage with a new
state O j+1 ∈ O j+1. As in Chap. 2, define Ō j ≡ (O1, . . . ,O j) and Ā j ≡ (A1, . . . ,A j).
Also define the history Hj at stage j as the vector (Ō j, Ā j−1). At any stage j, the
quantities O j,A j,Yj and Hj are random variables, the observed values of which will
be denoted respectively by o j,a j,y j and h j. The reward Yj is conceptualized as a
known function of the history Hj, the current action A j, and the next state O j+1.
Thus,

Yj =Yj(Hj,A j,O j+1) =Yj(Ō j, Ā j,O j+1).

In some settings, there may be only one terminal reward YK ; rewards at all previous
stages are taken to be 0. In statistical terms, rewards may be taken to be synonymous
with outcome.

Define a deterministic policy d ≡ (d1, . . . ,dK) as a vector of decision rules, where
for 1 ≤ j ≤ K, d j : H j → A j is a mapping from the history space H j to the action
space A j. A policy is called stochastic if the above mappings are from the history
space H j to the space of probability distributions over the action space A j which,
in a slight abuse of notation, we will denote d j(a j|h j). The collection of policies,
depending on the history-space and action-space, defines a function space called
policy space and is often denoted by D .

A finite-horizon trajectory consists of the set {O1,A1,O2, . . . ,AK ,OK+1}.
As mentioned earlier, the problem of constructing DTRs conforms to what is
known as batch-mode RL in computer science. In a batch-mode RL problem, the
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data consist of a sample (batch) of n finite-horizon trajectories, each of the above
form. That is, in the problem of constructing DTRs, the data consist of the treatment
records of n subjects, i.e. n trajectories. We assume that the subjects are sampled
at random according to a fixed distribution denoted by Pπ . This distribution is
composed of the unknown distribution of each O j conditional on (Hj−1,A j−1),
and a fixed exploration policy2 for generating the actions. Call the foregoing
unknown conditional densities { f1, . . . , fK}, and denote the exploration policy by
π = (π1, . . . ,πK), where the probability that action a j is taken given history Hj

is π j(a j|Hj). We assume that π j(a j|h j) > 0 for each action a j ∈ A j and for each
possible value h j; that is, all actions have a positive probability of being executed.
Then the likelihood under Pπ of the trajectory {o1,a1,o2, . . . ,aK ,oK+1} is

f1(o1)π1(a1|o1)
K

∏
j=2

f j(o j|h j−1,a j−1)π j(a j|h j) fK+1(oK+1|hK ,aK). (3.1)

Denote the expectation with respect to the distribution Pπ by Eπ . As will be clear
shortly, it is often useful to be able to write the likelihood of a trajectory under a
policy different from the exploration policy that generated the observed data. Let Pd

denote the distribution of a trajectory where an arbitrary policy d = (d1, . . . ,dK) is
used to generate the actions. If d is a deterministic policy, then the likelihood under
Pd of the trajectory {o1,a1,o2, . . . ,aK ,oK+1} is

f1(o1)I[a1 = d1(o1)]
K

∏
j=2

f j(o j|h j−1,a j−1)I[a j = d j(h j)] fK+1(oK+1|hK ,aK). (3.2)

For a stochastic policy d, the likelihood becomes

f1(o1)d1(a1|o1)
K

∏
j=2

f j(o j|h j−1,a j−1)d j(a j|h j) fK+1(oK+1|hK ,aK). (3.3)

Denote the expectation with respect to the distribution Pd by Ed . The primary goal
in statistical RL is to estimate (learn) the optimal policy, say d∗, from the data on
n finite-horizon trajectories, not necessarily generated by the optimal policy (hence
the need for what are known as off-policy algorithms in RL). By optimal policy
within a policy class, we mean the one with greatest possible value within that class.
The precise definition of value follows.

The value function for a state o1 with respect to an arbitrary policy d is

V d(o1) = Ed

[ K

∑
j=1

Yj(Hj,A j,O j+1)
∣
∣
∣O1 = o1

]

.

2 In the case of a SMART, this policy consists of the randomization probabilities and is known
by design, whereas for an observational study, this can be estimated by the propensity score (see
Sect. 3.5 for definition).
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This represents the total expected future reward starting at a particular state o1 and
thereafter choosing actions according to the policy d. Given a policy d, the stage
j value function for a history h j is the total expected future rewards from stage j
onwards, and is given by

V d
j (h j) = Ed

[ K

∑
k= j

Yk(Hk,Ak,Ok+1)
∣
∣
∣Hj = h j

]

, 1 ≤ j ≤ K.

Note that, by definition, V d
1 (·) = V d(·). For convenience, set V d

K+1(·) = 0. Then the
value functions can be expressed recursively as follows:

V d
j (h j) = Ed

[ K

∑
k= j

Yk(Hk,Ak,Ok+1)
∣
∣
∣Hj = h j

]

= Ed

[

Yj(Hj,A j,O j+1)
∣
∣
∣Hj = h j

]

+Ed

[ K

∑
k= j+1

Yk(Hk,Ak,Ok+1)
∣
∣
∣Hj = h j

]

= Ed

[

Yj(Hj,A j,O j+1)
∣
∣
∣Hj = h j

]

+Ed

[

Ed

[ K

∑
k= j+1

Yk(Hk,Ak,Ok+1)
∣
∣
∣Hj+1

]∣
∣
∣Hj = h j

]

= Ed

[

Yj(Hj,A j,O j+1)
∣
∣
∣Hj = h j

]

+Ed

[

V d
j+1(Hj+1)

∣
∣
∣Hj = h j

]

= Ed

[

Yj(Hj,A j,O j+1)+V d
j+1(Hj+1)

∣
∣
∣Hj = h j

]

, 1 ≤ j ≤ K. (3.4)

The optimal stage j value function for a history h j is

V opt
j (h j) = max

d∈D
V d

j (h j).

The optimal value functions satisfy the Bellman equation (Bellman 1957),

V opt
j (h j) = max

a j∈A j

E
[

Yj(Hj,A j,O j+1)+V opt
j+1(Hj+1)

∣
∣
∣Hj = h j,A j = a j

]

, (3.5)

when all observations and actions are discrete (see Sutton and Barto, 1998, pp. 76,
for details). The Bellman equation also holds for more general scenarios, but with
additional assumptions.

Finally, the (marginal) value of a policy d, written V d , is the average value
function under that policy, averaged over possible initial observations, i.e.,

V d = EO1 [V
d(O1)] = Ed

[ K

∑
k=1

Yk(Hk,Ak,Ok+1)
]

. (3.6)

Note that the above expectation is taken with respect to entire likelihood of the
data, as given by (3.2) or (3.3), for the case of deterministic or stochastic policy
respectively. Thus the value of a policy is simply the marginal mean outcome under
that policy.
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Given a policy, the primary statistical goal is to estimate its value. A related
problem would be to compare the values of two or more pre-specified policies; this
is, in fact, an extension of the problem of comparing mean outcomes of two or
more (static) treatments. Note that this is often the primary analysis of a SMART. In
Sect. 5.1, we will consider some methods for estimating the value of a pre-specified
policy developed in the statistics literature.

In many classical RL as well as medical domains, researchers often seek to
estimate a policy that maximizes the value (i.e. the optimal policy). One approach is
to first specify a policy space, and then employ some method to estimate the value
of each policy in that space to find the best one. An alternative approach is to work
with what is known as action-value function or simply the Q-function (where “Q”
stands for the “quality of action”) instead of the value function V d defined above.
Q-functions are defined as follows.

The stage j Q-function for policy d is the total expected future reward starting
from a history h j at stage j, taking an action a j, and following the policy d thereafter.
Thus,

Qd
j (h j,a j) = E[Yj(Hj,A j,O j+1)+V d

j+1(Hj+1)|Hj = h j,A j = a j].

The optimal stage j Q-function is

Qopt
j (h j,a j) = E[Yj(Hj,A j,O j+1)+V opt

j+1(Hj+1)|Hj = h j,A j = a j].

In the medical decision making paradigm (also in many classical RL domains), a
major interest lies in estimating Qopt

j , since this can directly lead to the optimal
policy; see Sect. 3.4 for further details.

3.4 Estimation of Optimal DTRs by Modeling Conditional
Means

The primary goal in statistical RL is to estimate the optimal policy. As briefly men-
tioned in Sect. 3.3, one approach to achieve this goal is to first specify a policy space
D , and then employ any suitable method to estimate the value of each candidate pol-
icy d ∈ D to estimate the best one, say d̂opt . More precisely,

d̂opt = argmax
d∈D

V̂ d .

This class of methods is known as the policy search methods in the RL literature (Ng
and Jordan 2000). Methods like inverse probability weighting and marginal struc-
tural models developed in the causal inference literature also fall in this category;
we will discuss these approaches in considerable detail in Chap. 5. While the policy
search approach is typically non-parametric or semi-parametric, requiring only mild
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assumptions about the data, the main issue is the high variability of the value func-
tion estimates, and the resulting high variability in the estimated optimal policies.

With reference to estimating the optimal policy, one can conceive of methods that
lie at the other end of the parametric spectrum, in the sense that they model the entire
multivariate distribution of the data, and then apply dynamic programming methods
to learn the optimal policy. Likelihood-based methods, including G-computation
and Bayesian methods, fall in that category; we will briefly discuss them in Chap. 9.
One downside of this class of methods is that the entire likelihood of the data may
not be relevant for choosing optimal actions, and hence these methods run the risk
of providing a biased estimator of the value function (and hence the optimal policy)
if the model specification is incorrect. Since there is more modeling involved in this
approach, there are more chances to get it wrong.

In between these two extremes, there exist attractive methods that model only
part of the entire likelihood, e.g. the conditional expectation of the reward given his-
tory and action. In other words, these methods model the Q-functions (Q-learning)
or even only parts of the Q-functions relevant for decision making (e.g. A-learning,
G-estimation, etc.). In the present chapter and Chap. 4, we will be focusing on this
class of methods. Modeling the conditional expectation can be done via regression.
Below we introduce a simple version of Q-learning that estimates the optimal policy
in two steps: (1) estimate the stage-specific Q-functions by using parametric models
(e.g. linear models), and (2) recommend the actions that maximize the estimated
Q-functions. In its simplest incarnation (using linear models for the Q-functions),
Q-learning3 can be viewed as an extension of least squares regression to multi-stage
decision problems. However, one can use more flexible models (e.g. splines, neural
networks, trees etc.) for the Q-functions.

3.4.1 Q-learning with Linear Models

For clarity of exposition, we will first describe Q-learning for studies with two
stages, and then generalize to K (≥ 2) stages. In a two-stage study, longitudinal
data on a single subject are given by the trajectory (O1,A1,O2,A2,O3), where nota-
tions are defined in Sect. 3.3. The histories at each stage are given by H1 ≡ O1 and
H2 ≡ (O1,A1,O2). The data available for estimation consist of a random sample
of n subjects. For simplicity, assume that the data arise from a SMART with two
possible treatments at each stage, A j ∈ {−1,1} and that they are randomized (con-
ditionally on history) with known randomization probabilities. The study can have
either a single terminal reward (primary outcome), Y , observed at the end of stage

3 The version of Q-learning we will be using in this book is similar to the fitted Q-iteration algo-
rithm in the RL literature. This version is an adaptation of Watkins’ classical Q-learning to batch
data, involving function approximation.
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2, or two rewards (intermediate and final outcomes), Y1 and Y2, observed at the end
of each stage. The case of a single terminal outcome Y is viewed as a special case
with Y1 ≡ 0 and Y2 = Y . A two-stage policy (DTR) consists of two decision rules,
say (d1,d2), with d j(Hj) ∈ {−1,1}.

One simple method to construct the optimal DTR dopt = (dopt
1 ,dopt

2 ) is Q-
learning (Watkins 1989; Sutton and Barto 1998; Murphy 2005b). First define the
optimal Q-functions for the two stages as follows:

Qopt
2 (H2,A2) = E

[

Y2|H2,A2
]

,

Qopt
1 (H1,A1) = E

[

Y1 +max
a2

Qopt
2 (H2,a2)|H1,A1

]

.

If the above two Q-functions were known, the optimal DTR (dopt
1 ,dopt

2 ), using a
backwards induction argument (as in dynamic programming), would be

dopt
j (h j) = argmax

a j
Qopt

j (h j,a j), j = 1,2. (3.7)

In practice, the true Q-functions are not known and hence must be estimated from
the data. Note that Q-functions are conditional expectations, and hence a natural
approach to model them is via regression models. Consider linear regression models
for the Q-functions. Let the stage j ( j = 1,2) Q-function be modeled as

Qopt
j (Hj ,A j;β j,ψ j) = β T

j Hj0 +(ψT
j Hj1)A j, (3.8)

where Hj0 and Hj1 are two (possibly different) vector summaries (or, features) of
the history Hj, with Hj0 denoting the “main effect of history” (Hj0 includes the
intercept term) and Hj1 denoting the “treatment effect of history” (the vector Hj1

also includes an intercept-like term that corresponds to the main effect of treatment).
The collections of variables Hj0 are often termed predictive, while Hj1 is said to
contain prescriptive or tailoring variables. The Q-learning algorithm involves the
following steps:

1. Stage 2 regression: (β̂2, ψ̂2)= argminβ2,ψ2
1
n ∑n

i=1

(

Y2i−Qopt
2 (H2i,A2i;β2,ψ2)

)2
.

2. Stage 1 pseudo-outcome: Ŷ1i = Y1i +maxa2 Qopt
2 (H2i,a2; β̂2, ψ̂2), i = 1, . . . ,n.

3. Stage 1 regression: (β̂1, ψ̂1)= argminβ1,ψ1
1
n ∑n

i=1

(

Ŷ1i−Qopt
1 (H1i,A1i;β1,ψ1)

)2
.

Note that in step 2 above, the quantity Ŷ1i is a predictor of the unobserved random
variable Y1i +maxa2 Qopt

2 (H2i,a2), i = 1, . . . ,n. Once the Q-functions have been
estimated, finding the optimal DTR is easy. The estimated optimal DTR using Q-
learning is given by (d̂opt

1 , d̂opt
2 ), where the stage j optimal rule is specified as

d̂opt
j (h j) = argmax

a j
Qopt

j (h j,a j; β̂ j, ψ̂ j), j = 1, 2.
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The above procedure can be easily generalized to K > 2 stages. Define Qopt
K+1 ≡ 0,

and

Qopt
j (Hj,A j) = E

[

Yj +max
a j+1

Qopt
j+1(Hj+1,a j+1)|Hj,A j

]

, j = 1, . . . ,K.

Stage specific Q-functions can be parameterized as before, e.g.

Qopt
j (Hj,A j;β j,ψ j) = β T

j Hj0 +(ψT
j Hj1)A j, j = 1, . . . ,K.

Finally, for j = K,K − 1, . . . ,1, moving backward through stages, the regression
parameters can be estimated as

(β̂ j, ψ̂ j)

= arg min
β j ,ψ j

1
n

n

∑
i=1

(

Yji +max
a j+1

Qopt
j+1(Hj+1,a j+1; β̂ j+1, ψ̂ j+1)

︸ ︷︷ ︸

stage j pseudo-outcome

−Qopt
j (Hji,A ji;β j,ψ j)

)2
.

As before, the estimated optimal DTR is given by (d̂opt
1 , . . . , d̂opt

K ), where

d̂opt
j (h j) = argmax

a j
Qopt

j (h j,a j; β̂ j, ψ̂ j), j = 1, . . . ,K.

Q-learning with linear models and K = 2 stages has been implemented in the R
package qLearn that is freely available from the Comprehensive R Archive Net-
work (CRAN):

http://cran.r-project.org/web/packages/qLearn/index.html.

3.4.2 Why Move Through Stages?

Some readers, especially those unfamiliar with causal inference, may find the
indirect, two-step procedure of Q-learning a bit strange, at least on the surface.
To them, the following one-step procedure for estimating the optimal DTR might
seem more natural. In this approach, one would model the conditional mean out-
come E(Y |O1,A1,O2,A2) and run an all-at-once regression analysis; the estimated
optimal policy would be given by

(

d̂opt
1 , d̂opt

2

)

= arg max
(a1,a2)

E(Y |o1,a1,o2,a2).

Unfortunately, this is not a good idea because of the possibility of bias in the
estimation of stage 1 treatment effect; this arises as a consequence of what is
known as collider-stratification bias or Berkson’s paradox (Gail and Benichou
2000; Greenland 2003; Murphy 2005a; Chakraborty 2011). This phenomenon was
first described in the context of a retrospective study examining a risk factor for
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a disease in a sample from a hospital in-patient population by Berkson (1946).
The phenomenon can be explained with the help of the addiction management
example (see Sect. 2.3). Suppose there is an unobserved variable U that affects a
patient’s ability to respond to treatment. For simplicity, let us conceptualize U as
the stability in one’s life (U = 1 if stable, and 0 otherwise). One can expect that U is
positively correlated with the intermediate outcome responder/non-responder status
(O2), and also U is positively correlated with Y , percent days abstinent. Suppose that
the initial treatments have differing effects on responder/non-responder status (O2).
Since the initial treatment assignment is randomized, U and A1 should be uncor-
related. However, there will be a conditional correlation between U and A1, given
non-response to initial treatment (i.e. given O2). Intuitively, a non-responder who
received the better initial treatment is more likely to have an unstable life (U = 0).

To make the above concept more concrete, consider the following example de-
scribed by Murphy and Bingham (2009). Suppose U ∼ Bernoulli( 1

2) and Y =
δ0 + δ1 U + ε , where ε has zero mean, finite variance, and is independent of
O1,A1,O2,A2,U . Thus in truth, there is no effect of A1 or A2 on Y . Next suppose that

P(O2 = 1|O1,U,A1) =U
[q1 + q2

2
+

q1 − q2

2
A1

]

+(1−U)
[q3 + q4

2
+

q3 − q4

2
A1

]

,

where each q j ∈ [0,1]. That is, the binary intermediate outcome O2 (responder/non-
responder status to initial treatment) depends on U and also on the treatment A1

(when q1−q2 �= 0 and q3−q4 �= 0). By applying Bayes’ theorem and some algebra,
one can see that

E(Y |O1,A1,O2 = 0,A2) = δ0 + δ1 E(U |O1,A1,O2 = 0)

= δ0 + δ1 P(U = 1|O1,A1,O2 = 0)

= δ0 +
δ1

2

( 1− q1

2− q1− q3
+

1− q2

2− q2− q4

)

+
δ1

2

( 1− q1

2− q1− q3
+

1− q2

2− q2− q4

)

A1.

Thus, conditional on the intermediate outcome O2, the effect of A1 on Y can be
non-zero, which is different from the true effect. Note that when one runs a regres-
sion of Y on (O1,A1,O2,A2), among other things, one conditions on O2. Condition-
ally on O2, the unobserved variable U and A1 will be correlated. This correlation,
coupled with the correlation between U and Y , will induce a spurious (non-causal)
correlation between A1 and Y (even though A1 is randomized). As a consequence,
the stage 1 treatment effect will be estimated with bias.

Figure 3.1 (where O1 and A2 are excluded to simplify the diagram) may help
to demonstrate the situation visually. The direct arrow (solid) from A1 to Y is the
true stage 1 treatment effect we want to estimate. However since U is unobserved
and thus not included in the regression, the spurious effect arising out of Berkson’s
paradox, represented by the dotted path from A1 to Y via O2 and U , contaminates
the true effect of A1. Thus, including both the stage 1 and stage 2 variables in one
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O2A1 Y

U

Fig. 3.1 A diagram displaying the spurious effect between A1 and Y , as a consequence of Berk-
son’s paradox

regression is potentially problematic. However, any method that moves stage by
stage does not suffer from this problem since stage-wise methods do not condition
on any covariate that occurs after the treatment of interest in that stage. Q-learning,
as outlined above, is one such stage-wise method that avoids this unwanted bias.

3.4.3 Analysis of Smoking Cessation Data: An Illustration

To demonstrate the use of Q-learning in a health application, here we present the
analysis of a data set from a randomized, two-stage, internet-based smoking cessa-
tion study, introduced in Sect. 2.4.1.

As described in Sect. 2.4.1, there were two treatment components, source (of
online behavioral counseling message) and story (of a hypothetical character who
succeeded in quitting smoking) at stage 1 of the study. The treatment component
sourcewas varied at two levels, high vs. low level of personalization, coded 1 and
−1; also the treatment component story was varied at two levels, high vs. low tai-
loring depth (degree to which the character in the story was tailored to the individ-
ual subject’s baseline characteristics), coded 1 and −1. Baseline variables included
subjects’ motivation to quit (on a 1–10 scale), selfefficacy (on a 1–10
scale) and education (binary, ≤high school vs.> high school, coded 1 and −1).
At stage 2, the treatment variable was called FFarm, coded 1 and−1 (1 = booster in-
tervention,−1 = control). There were two outcomes at the two stages: the binary quit
status at 6 months from the date of initial randomization, called PQ6Quitstatus
(1 = quit, 0 = not quit), and the binary quit status, called FF6Quitstatus, at
6 months from the date of stage 2 randomization (i.e., 12 months from the date
of stage 1 randomization).

Having reviewed the study, let us now identify the setup for a dynamic treatment
regime. Here O1 consists of baseline variables (e.g., motivation, self-efficacy, edu-
cation), O2 consists of several stage 1 outcomes (e.g., quit status, reduction in the
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average number of cigarettes smoked per day, number of months not smoked during
the study period, all measured at 6 months from the baseline), and O3 consists of the
same outcome variables measured at stage 2 (12 months from the baseline). A1 and
A2 represent the behavioral interventions given at stages 1 and 2 respectively. The
outcomeY could be the quit status at the end of the study. An example DTR can have
the following form: “At stage 1, if a subject’s baseline selfefficacy is greater
than a threshold (say 7, on a 1–10 scale), then provide the highly-personalized level
of the treatment component source; and if the subject is willing to continue treat-
ment, then at stage 2 provide booster intervention if he continues to be a smoker
at the end of stage 1 and control otherwise”. Of course characteristics other than
selfefficacy or a combination of more than one characteristic can be used to
specify a DTR. To find the optimal DTR, we applied the two-stage Q-learning pro-
cedure involving the following steps.

1. Fit stage 2 regression (n = 281) of FF6Quitstatus using the model:

FF6Quitstatus = β20 +β21 ×motivation+β22 ×source

+β23 ×selfefficacy+β24 ×story

+β25 ×education+β26 ×PQ6Quitstatus

+β27 ×source×selfefficacy

+β28 ×story×education

+
(

ψ20 +ψ21 ×PQ6Quitstatus
)

×FFarm+error.

2. Construct the pseudo-outcome (Ŷ1) for the stage 1 regression by plugging in the
stage 2 estimates:

Ŷ1 = PQ6Quitstatus+ β̂20+ β̂21 ×motivation+ β̂22×source

+ β̂23 ×selfefficacy+ β̂24 ×story

+ β̂25 ×education+ β̂26 ×PQ6Quitstatus

+ β̂27 ×source×selfefficacy+ β̂28 ×story×education

+
∣
∣
∣ψ̂20 + ψ̂21 ×PQ6Quitstatus

∣
∣
∣.

Note that in this case one can construct the pseudo-outcome for everyone who
participated at stage 1, since there are no variables from post-stage 1 required to
do so.

3. Fit stage 1 regression (n = 1,401) of the pseudo-outcome using a model of the
form:

Ŷ1 = β10+β11 ×motivation+β12×selfefficacy+β13×education

+
(

ψ(1)
10 +ψ(1)

11 ×selfefficacy
)

×source

+
(

ψ(2)
10 +ψ(2)

11 ×education
)

×story+error.
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Table 3.1 Regression coefficients and 95 % bootstrap confidence intervals at stage 1 (significant
effects are in bold)

Variable Coefficient 95 % CI
motivation 0.04 (−0.00, 0.08)
selfefficacy 0.03 (0.00, 0.06)
education −0.01 (−0.07, 0.06)
source −0.15 (−0.35, 0.06)
source × selfefficacy 0.03 (0.00, 0.06)
story 0.05 (−0.01, 0.11)
story × education −0.07 (−0.13, −0.01)

Note that the sample sizes at the two stages differ because only 281 subjects
were willing to continue treatment into stage 2 (as allowed by the study protocol).
No significant treatment effect was found in the regression analysis at stage 2. The
stage 1 analysis summary, including the regression coefficients and 95 % bootstrap
confidence intervals4 (using 1,000 replications) is presented in Table 3.1.

The conclusions from the present data analysis can be summarized as follows.
Since no significant stage 2 treatment effect was found, this analysis suggests that
the stage 2 behavioral intervention need not be adapted to the smoker’s individual
characteristics, interventions previously received, or stage 1 outcome. More inter-
esting results are found at stage 1. It is found that subjects with higher levels of
selfefficacy are more likely to quit. The highly personalized level of source
is more effective for subjects with a higher selfefficacy (≥7), and deeply tai-
lored level of story is more effective for subjects with lower education (≤high
school); these two conclusions can be drawn from the interaction plots (with confi-
dence intervals) presented in Fig. 3.2. Thus, according to this data analysis, to maxi-
mize each individual’s chance of quitting over the two stages, the web-based smok-
ing cessation intervention should be designed in future such that: (1) smokers with
high selfefficacy (≥7) are assigned to highly personalized level of source,
and (2) smokers with lower education are assigned to deeply tailored level of
story.

3.5 Q-learning Using Observational Data

Until recently, Q-learning had only been studied and implemented in settings where
the exposure was randomized. However, as the development of DTRs is often ex-
ploratory, the power granted by the large samples often available using observa-
tional data may be a good means of discovering potentially optimal DTRs which
may later be assessed in a confirmatory randomized trial. It has long been believed
that Q-learning could easily be adapted to observational (non-randomized) treatment

4 Inference for stage 1 parameters in Q-learning is problematic due to an underlying lack of
smoothness, so usual bootstrap inference is not theoretically valid. Nevertheless, we use it here
for illustrative purposes only. Valid inference procedures will be discussed in Chap. 8.
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Story by Education Interaction Plot (with confidence intervals)
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Fig. 3.2 Interaction plots: (a) source by self-efficacy (upper panel), (b) story by education (lower
panel), along with confidence intervals for predicted stage 1 pseudo-outcome

settings, provided all confounding covariates are measured, using covariate adjust-
ment or so-called causal methods, i.e. propensity score approaches, including re-
gression, matching, and inverse probability of treatment weighting.
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The propensity score (PS) is defined to be

π(o) = P(A = 1|O = o)

where A is a binary treatment and O is a collection of measured covariates (Rosen-
baum and Rubin 1983). The PS is a balancing score such that, given the propensity
score, treatment received is independent of known covariates O used to construct the
PS. This property is used to obtain unbiased estimates of the treatment effect based
on conditional expectation modeling of the outcome and conditioning on some form
of the PS or based on simple comparisons of the treated and untreated using a PS-
matched subsample of the full sample data. When using the PS for adjustment,
quintiles of the propensity score are often included as covariates (D’Agostino 1998;
Rosenbaum and Rubin 1983, 1984) as a means of providing a substantial reduction
in bias without making strict assumptions about the functional form of the relation-
ship between the outcome and the propensity score that is made when including the
PS as a linear term, or without the loss of power associated with the reduction in
sample size incurred when matching.

Unbiasedness can be achieved if the PS conditions on all confounding variables,
i.e. all confounding variables are measured and included in the PS model (Ertefaie
et al. 2012). In an inverse probability of treatment weighted (IPW) analysis, weight-
ing is used to achieve a pseudo-sample in which covariates do not predict treatment
(Robins et al. 2000). As with the PS adjustment methods, we require no unmeasured
confounding, and that the PS is neither 0 nor 1 to ensure the resulting weights are
well-defined (this is the positivity assumption).

We briefly present a basic no-adjustment implementation of Q-learning with five
approaches to confounder adjustment, and examine their performance in a small
simulation study. In this section, we shall distinguish between the components O j

that are tailoring variables, and those that are predictive variables including poten-
tial confounders, denoted Cj, j = 1,2. Three of the adjustment methods adapt Q-
learning by redefining the history vectors, H1 and H2. The fourth approach uses a
caliper-matched sample of the data (Rosenbaum and Rubin 1985), while the fifth
relies on inverse probability weighting. If we denote the interval-specific propen-
sity scores by PS1 = P(A1 = 1|C1), PS2 = P(A2 = 1|C1,C2), then we will compare
Q-learning using the following implementations:

1. Including only tailoring variables in the Q-function: H1 = O1;H2 = O2.
2. Including all covariates as linear terms in the Q-function: H1 = (C1,O1), H2 =

(C1,C2,O1,A1,O2),
3. Including the propensity score as a linear term in the Q-function: H1 = (PS1,O1),

H2 = (PS2,O1,A1,O2),
4. Including quintiles of PS j as covariates in the j-th stage Q-function,
5. Caliper matching on the propensity score with H1 = O1;H2 = O2,
6. Inverse probability of treatment weighting with H1 = O1;H2 = O2.

Caliper matching with replacement into pairs was accomplished using the Matching
package in R (Sekhon 2011). For simplicity, we focus on the IPW estimator which
uses unstabilized weights, defined as w1 =I[A1=1]/PS1+(1−I[A1=1])/(1−PS1)
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at the first interval and w2 = w1 ∗ {I[A2 = 1]/PS2 +(1− I[A2 = 1])/(1−PS2)} at
the second interval, although the conclusions of the simulations which follow are
unaltered by the use of the more efficient, stabilized weights.

O1 A1 O2

C1 C2

A2 Y

ζ1ζ1

γ1

γ5

Fig. 3.3 Causal diagram for generative model for simulations in Sect. 3.5

We consider five scenarios:

Scenario A: Consider a single continuous confounder, Cj , at each interval, where
C1 ∼N (0,1) and C2 ∼N (η0+η1C1,1) for η0 =−0.5, η1 = 0.5. Treatment as-
signment is dependent on the value of the confounding variable: P[A j = 1|Cj] =
1 − P[A j = −1|Cj] = expit(ζ0 + ζ1Cj), j = 1,2. The binary covariates which
interact with treatment to produce a personalized rule are generated via

P[O1 = 1] = P[O1 =−1] =
1
2
,

P[O2 = 1|O1,A1] = 1−P[O2 =−1|O1,A1] = expit(δ1O1 + δ2A1).

Let μ = E[Y |C1,O1,A1,C2,O2,A2], and ε ∼ N(0,1) be the error term. Then Y =
μ + ε , with

μ = γ0 + γ1C1 + γ2O1 + γ3A1 + γ4O1A1 + γ5C2 + γ6A2 + γ7O2A2 + γ8A1A2.

See Fig. 3.3 for the causal diagram corresponding to the data generating models.
Parameters were chosen to produce regular settings (see Chap. 8 for considera-
tion of non-regularity): γ = (0,γ1,0,−0.5,0,γ5,0.25,0.5,0.5) and δ = (0.1,0.1).
We begin with a randomized treatment setting, ζ0 = ζ1 = 0 and γ1 = γ5 = 0. This
is the reference scenario.

Scenario B: This setting is the same as Scenario A, except that γ1 = γ5 = 1. Note
that this is again a randomized treatment setting.

Scenario C: This setting is the same as Scenario A, except that γ1 = γ5 = 1 and
ζ0 =−0.8, ζ1 = 1.25. Treatment is now confounded by C1 and C2.
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Scenario D: Here, we made the confounders C1 and C2 binary rather than
continuous: P[C1 = 1] = 1− P[C1 = −1] = 1/3 and P[C2 = 1] = 1− P[C2 =
−1] = expit(0.6C1). We set γ1 = γ5 = 1.

Scenario E: This setting is the same as Scenario D, except that γ1 = 0 so that C2

is a predictor of Y , but C1 is not.

We focus our attention on the parameter ψ10, the parameter in the analytic model
for the first-stage Q-function which corresponds to the main effect of A1. Perfor-
mance of the six different Q-learning approaches under are given in Table 3.2 for
a sample size of 250. Note that when the confounders are binary, PS matching and
partitioning of the PS into quintiles are not feasible strategies.

All methods perform well when treatment is randomly allocated, with better per-
formance when Cj does not predict the outcome. This would suggest that correct
specification of the Q-function is not essential in the RCT setting.

In settings where treatment is confounded by the continuous confounders C1 and
C2, only covariate adjustment provides unbiased estimates. The same general pat-
tern holds when confounders are binary, with one exception: if there exists a single
confounder at each interval, and only C2 but not C1 affects Y then including the PS
in the Q-function model performs as well as including C2 in the model, since the PS
acts as a re-scaled version of C2. Although the PS regression-based methods yield
unbiased estimates of the parameters associated with treatment A2 (i.e. the variables
contained in H21), the methods do not yield a good prediction of the stage 1 pseudo-
outcome itself, since the model mis-specifies the functional form of the dependence
of that pseudo-outcome on important predictors C1 and C2. This leads to bias in
the stage 1 parameter estimates. Furthermore, we note that the PS matching esti-
mator targets the average treatment effect on the treated (ATT), and has increased
variability due the re-use of data in matching with replacement.

In the simulations above, the data were generated in such a way that a model that
includes the confounding variables as linear terms in the Q-function was correctly
specified. We therefore pursue an alternative approach to generating data that will
allow us to examine the performance of the adjustment methods without the ad-
ditional complication of incorrect model specification by generating data in which
confounding is introduced by allowing the choice of treatment received to depend
on the counterfactual outcomes.

In particular, the data are created by generating the outcome under each of the
four potential treatment paths (−1,−1), (−1,1), (1,−1), and (1,1):

1. Generate the first-stage tailoring variable, O1, using P[O1 = 1] = P[O1 =
−1] = 1

2 .
2. Generate the potential value of the second-stage tailoring variable, O2(A1), using

P[O2 = 1|O1,A1] = 1−P[O2 = −1|O1,A1] = expit(δ1O1 + δ2A1) for each pos-
sible value of A1, thereby generating the potential second-stage value that would
occur under each of A1 =−1 and A1 = 1.

3. Generate the vector of potential outcomes, Y = μ + ε , where ε is a multivariate
normal error term with mean (0,0,0,0)T and a covariance matrix that takes the
value 1 on its diagonal and 0.5 on all off-diagonals, and
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Table 3.2 Performance of Q-learning adjustment methods: Bias, Monte Carlo Variance (MC var),
and Mean Squared Error (MSE)

Method Bias MC var MSE
Scenario A

None −0.0004 0.0080 0.0080
Linear −0.0005 0.0079 0.0079
PS (linear) −0.0006 0.0079 0.0079
PS (quintiles) −0.0007 0.0080 0.0080
PS (matching) −0.0066 0.0164 0.0164
IPW −0.0006 0.0080 0.0080

Scenario B
None 0.0073 0.0297 0.0298
Linear 0.0088 0.0121 0.0122
PS (linear) 0.0054 0.0188 0.0188
PS (quintiles) 0.0056 0.0204 0.0204
PS (matching) −0.0109 0.0431 0.0432
IPW 0.0080 0.0224 0.0224

Scenario C
None −0.7201 0.0256 0.5441
Linear −0.0027 0.0116 0.0116
PS (linear) −0.2534 0.0233 0.0875
PS (quintiles) −0.3151 0.0213 0.1206
PS (matching) −0.2547 0.0681 0.1330
IPW −0.4304 0.0189 0.2042

Scenario D
None −0.5972 0.0211 0.3777
Linear 0.0075 0.0120 0.0121
PS (linear) −0.2599 0.0227 0.0902
IPW −0.3274 0.0159 0.1231

Scenario E
None −0.2475 0.0114 0.0727
Linear 0.0075 0.0120 0.0121
PS (linear) 0.0050 0.0141 0.0141
IPW −0.1381 0.0116 0.0306

μ = γ∗0 + γ∗1 O1 + γ∗2 A1 + γ∗3 O1A1 + γ∗4 A2 + γ∗5 O2A2 + γ∗6 A1A2 (3.9)

where O1 is the 4×1 vectors consisting of O1 from step (1) repeated four times,
A1 = (−1,−1,1,1), O2 = (O2(−1),O2(−1),O2(1),O2(1)) using the potential
values generated in step (2), and A2 = (−1,1,−1,1).

4. Set the confounders to be C1 = Y and C2 = max(Y).
5. From among the four possible treatment paths and corresponding potential out-

comes, select the “observed” data using P[A j = 1|Cj] = 1− P[A j = −1|Cj] =
expit(ζ0 + ζ1Cj), j = 1,2.

The vector of δ s was set to (0.1,0.1), while the vector of γ∗s was taken to be
(0,0,−0.5,0,0.25,0.5,0.5), indicating a regular (large effect) scenario. In simula-
tions where treatment was randomly allocated, ζ0 = ζ1 = 0, while for confounded
treatment, ζ0 = 0.2, ζ1 = 1. As can be observed from Eq. (3.9), the Q-functions
will not depend on the values of C1 and C2 so that any model for the Q-function
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that includes O1,A1,O2,A2 and the appropriate interactions will be correctly speci-
fied. However the observed or selected treatment depends on C1 and C2, which are
functions of the potential outcomes, hence the treatment-outcome relationship is
confounded by these variables.

Under this data-generating approach, we observe that all methods of adjusting
for confounding provide considerably improved estimates in terms of bias for small
samples, but in large samples, only inverse probability weighting or directly ad-
justing for covariates by including them as linear terms in the model for the Q-
function provide the required bias-removal (Table 3.3). While these simulations
provide a useful demonstration of the methods of adjustment in principle, it is not
clear whether these results generalize to real-data scenarios as it is difficult to con-
ceive of a situation in which counterfactual outcomes could be measured and used
as covariates. Rather, the results of these simulations should serve to provide a cau-
tionary note on the importance of adequately modeling the Q-function, particularly
in observational data settings.

Table 3.3 Performance of Q-learning adjustment methods under the confounding by counterfac-
tuals simulations: Bias, Monte Carlo Variance (MC var), Mean Squared Error (MSE) and coverage
of 95 % bootstrap confidence intervals

Adjustment Randomized treatment Confounded treatment
method Bias MC var MSE Cover Bias MC var MSE Cover

n = 250
None 0.0020 0.0082 0.0082 94.0 0.2293 0.0080 0.0605 26.4
Linear 0.0011 0.0032 0.0032 95.1 0.0051 0.0039 0.0039 93.8
PS (linear) 0.0010 0.0052 0.0052 96.2 0.0548 0.0060 0.0090 89.4
PS (quintiles) 0.0008 0.0056 0.0056 96.1 0.0779 0.0061 0.0121 83.2
PS (matching) 0.0027 0.0099 0.0099 98.0 0.1375 0.0107 0.0295 75.9
IPW 0.0004 0.0046 0.0046 93.9 0.0108 0.0075 0.0076 92.8

n = 1,000
None −0.0012 0.0022 0.0022 93.4 0.2246 0.0021 0.0525 0.5
Linear 0.0001 0.0009 0.0009 93.5 0.0037 0.0010 0.0010 93.5
PS (linear) −0.0002 0.0014 0.0014 95.5 0.0446 0.0015 0.0035 77.0
PS (quintiles) −0.0004 0.0015 0.0015 95.7 0.0699 0.0015 0.0064 55.0
PS (matching) −0.0015 0.0026 0.0026 97.5 0.1256 0.0027 0.0184 31.0
IPW −0.0008 0.0012 0.0012 93.6 0.0018 0.0018 0.0018 93.6

3.6 Discussion

In this chapter, we have delved into the mathematical complexities of multi-stage
decision problems, and placed them in context in both the statistical and computer
sciences literature. In particular, the terminology of the two fields has been brought
together to assist researchers in each field understand that a policy is a treatment
regime or set of decision rules, a state space is a set of covariates, and an action
space is the set of treatments under consideration.
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In Sect. 3.3, the longitudinal data structure was described. In Sect. 3.4, Q-learning
was introduced. This is a semi-parametric approach to estimation that we will return
to throughout the remainder of the text. In its typical implementation, it employs a
sequence of regressions, initially aiming to determine the optimal treatment strategy
at the last stage, then at each previous stage assuming the optimal DTR is followed
in later stages. The method is appealing for its computational and conceptual sim-
plicity, and as we will see in the next chapter, it ties closely with other methods of
estimation from the statistical literature. However, Q-learning may depend heavily
on being able to correctly specify the model for the Q-function, as we observed in
Sect. 3.5. The approach must therefore be undertaken with particular caution when
non-randomized data are used.



Chapter 4
Semi-parametric Estimation of Optimal DTRs
by Modeling Contrasts of Conditional Mean
Outcomes

In this chapter, we will focus on semi-parametric estimation of optimal DTRs by
modeling contrasts of conditional mean outcomes, as opposed to modeling the con-
ditional means themselves (e.g. Q-learning). Within the statistics (causal inference)
literature, Robins has been a pioneer in the domain of time-varying treatment
regimes (Robins 1986, 1994, 1997), while Murphy (2003) produced one of the
first methods to estimate optimal dynamic regimes semi-parametrically using
regret functions. Robins produced a number of estimating equation-based methods
for finding optimal regimes relying on structural nested mean models (SNMM); a
review of SNMMs can be found in Vansteelandt and Goetghebeur (2003). The term
structural is used to indicate that the model is for a counterfactual quantity and
therefore is meant to capture a causal rather than merely associational relationship.
SNMMs are used to model the function of an exposure (treatment) at stage j as
a function of the state history up to that stage; the approach therefore requires a
model for each stage, and these models are said to be nested within stages.

As we shall see in Sect. 4.1.1, the regret is a special case of SNMMs. A SNMM
parameterizes the causal effect that is the difference between the conditional
expectation of an outcome in the observed data and the conditional expectation
of an outcome under some potential outcome scenario. To return to the two-
treatment, two-stage example of previous chapters, a model specifying the form of
E[Y (a,a)−Y (a,a′)|Covariates] is a SNMM; a key notion is that only differences
in outcomes under different treatment regimes must be parameterized, rather than
the full outcome distribution. This chapter focuses attention on situations where the
outcome of interest is a continuous measure; other outcome types are considered
briefly in Chap. 7.

4.1 Structural Nested Mean Models

Define an optimal blip-to-reference function, γ j(h j,a j), at any stage j to be the

expected difference in outcome when using a reference regime dref
j instead of a j at

B. Chakraborty and E.E.M. Moodie, Statistical Methods for Dynamic Treatment Regimes,
Statistics for Biology and Health 76, DOI 10.1007/978-1-4614-7428-9 4,
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stage j, in persons with treatment and covariate history h j who subsequently receive
the optimal regime dopt

j+1:

γ j(h j,a j) = E[Y (ā j,d
opt
j+1)−Y(ā j−1,d

ref
j ,dopt

j+1)|Hj = h j],

where “optimal” refers to treatment subsequent to stage j and “blip” refers to the
single-stage change in treatment at stage j, i.e., a “blip” of treatment given at stage
j. Note that at least one of Y (ā j,d

opt
j+1), Y (ā j−1,d

ref
j ,dopt

j+1) is a counterfactual out-
come unless the reference regime is optimal in stage j and the patient was treated
optimally at stage j and thereafter, in which case γ j(h j,a j) = 0.

As noted previously, a dynamic treatment regime d̄opt
K is optimal if it maximizes

the expectation of the outcome Y ; define components of the optimal regime recur-
sively starting at K as

dopt
j (h j) = argmax

a j

E[Y (ā j−1,a j,d
opt
j+1)|Hj = h j].

In general, dopt
j (h j) depends on ō j and ā j−1, however as in previous chapters,

we will sometimes suppress the argument of the treatment regime function and
simply write dopt

j . Note that both of the counterfactual outcomes Y (ā j,d
opt
j+1) and

Y (ā j−1,d
ref
j ,dopt

j+1) in the optimal blip-to-reference assume that the optimal regime
is followed from stage j+1 to the end of treatment. However, the actual treatments
prescribed by the optimal regime may differ because the treatments which maxi-
mize outcome given treatment history ā j may not correspond to those that maximize

outcome given treatment history (ā j−1,d
ref
j ). Thus, we must keep in mind the subtle

distinction between the optimal regime and the specific optimal treatment prescribed
by that regime given an individual’s particular history.

Optimal regimes are defined for any sequence of treatment and covariate history,
even a sequence h j that might not be possible to observe had the optimal regime
been followed by all participants from the first stage. Thus, an optimal regime
provides information not only on the best treatment choices from “time zero”, but
also on the treatment choices that would maximize outcome from some other time
or stage, even if a sub-optimal regime had been followed up to that point. The
sequential randomization or no unmeasured confounding assumption discussed in
Chap. 2 is important as it allows us to infer that the average counterfactual outcome
of people who received treatments āK had they instead received d j from stage j
onwards is the same as the average outcome in those people who actually received
treatments (ā j−1,d j) conditional on history, and thus identify the parameters of the
blip function.

The assumption of rank preservation, introduced in Chap. 2, provides a simplistic
situation in which the parameters of a SNMM may be interpreted at the individual
level. That is, additive local rank preservation gives that the difference in the out-
come that would be observed for each particular person (who has history Hj = h j)

should he be treated with regime (ā j−1,d
ref
j ,dopt

j+1) instead of regime (ā j,d
opt
j+1) is

equal to γ j(h j,a j) given some treatment a j at stage j. However, SNMMs may be
used without making such assumptions, relying instead on an arguably more useful
population-level interpretation of average causal effects.
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4.1.1 Special Cases of Optimal SNMMs

There are two special cases of optimal blip-to-reference functions that are
commonly used in the dynamic regimes literature and applications. We focus
here on binary treatment, i.e. A j ∈ {−1,1},1 however the two SNMMs dis-
cussed below are mathematically equivalent under more general treatment types
(Robins 2004, pp. 243–245).

The first of these, suggested by Robins (2004), takes the reference regime to be
the zero regime, where by “zero regime” we mean some substantively meaningful
treatment such as placebo or standard care. Of course, like the optimal regime, what
is considered to be standard care may be different for participants with different
covariates or in different stages of treatment. Call this the optimal blip-to-zero func-
tion.

A second special case of the optimal blip-to-reference function, called the regret
function, takes the negative of the optimal blip-to-reference that uses optimal
treatment at stage j as the reference regime. Denote this by

μ j(h j,a j) = E[Y (ā j−1,d
opt
j )−Y(ā j,d

opt
j+1)|Hj = h j]

for j = 1, . . . ,K. Thus the regret at stage j is the expected difference in the outcome
that would have been observed had the participant taken the optimal treatment in
stage j instead of treatment regime a j in participants who followed ā j up to stage j
and the optimal regime from stage j+ 1 onwards; note that this is identical in spirit
the loss-function L (o,a) introduced in Chap. 1.

For binary treatment and continuous outcome, the correspondence between the
optimal blip-to-reference functions and regrets is:

μ j(h j,a j) = max
a j

γ j(h j,a j)− γ j(h j,a j), or

γ j(h j,a j) = μ j(h j,d
ref
j )− μ j(h j,a j).

It is evident from these identities that if the regret is smooth in its arguments, the
optimal blip-to-zero will also be smooth. The converse does not hold: a smooth
optimal blip-to-zero may imply a discontinuous regret function. We shall henceforth
assume that dref

j equals the zero regime (coded −1), and simply refer to the optimal
blip-to-zero function as the optimal blip.

1 While the 0/1 coding of treatment is widely used in the causal inference literature, the −1/1
coding is more common in Q-learning and SMART design literature, and hence we will adopt it in
this chapter as in the rest of the book.
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4.1.2 Standard SNMMs

Another class of SNMM is the standard blip-to-reference functions, which consider
the expected difference in outcome when using a reference regime dref

j instead of a j

at stage j, in persons with treatment and covariate history h j who subsequently re-
ceive the zero regime rather than subsequently being treated optimally as in optimal
SNMM.

These models require knowledge of the longitudinal distribution of states and
outcome to be able to specify the optimal regime. To see this, consider a two-stage
example where we take the reference regime to be the zero (placebo/standard care)
regime. Leave the distribution of O1 unspecified and assume

O2 = β10 +β11O1 +(ψ10 +ψ11O1)(A1 + 1)/2+ ε1

Y (A1,A2) = β20 +β21O2 +(ψ20 +ψ21O2 +ψ22(A1 + 1)/2)(A2+ 1)/2+ ε2,

where ε1, ε2 are mean zero random variables.
At the final stage, the standard blip function and the optimal blip function are

equal:

E[Y (A1,A2)−Y (A1,−1)|H2] = (ψ20 +ψ21O2 +ψ23(A1 + 1)/2)(A2+ 1)/2

giving dopt
2 = sign(ψ20 +ψ21O2 +ψ23(A1 + 1)/2). However at previous stages (in

this example, there is only one prior stage: the first), the standard blip:

E[Y (A1,−1)−Y(−1,−1)|H1] = (A1 + 1)/2(β21ψ10 +β21ψ11O1),

differs from the optimal blip:

E[Y (A1,A
opt
2 (Ō2,A1))−Y(−1,Aopt

2 (Ō2,−1))|H1] =

E
[

(β21ψ10 +β21ψ11O1)(A1 + 1)/2+

(ε ′+ c1 + c2)(sign(ε ′+ c1 + c2)+ 1)/2−
(ε ′+ c1)(sign(ε ′+ c1)+ 1)/2|H1

]

,

where

ε ′ = ψ21ε1

c1 = c1(O1) = ψ20 +ψ21β10 +ψ21β11O1

c2 = c2(O1,A1) = (ψ22 +ψ21ψ10 +ψ21ψ11O1)(A1 + 1)/2.
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This gives

dopt
1 = argmax

A1∈{−1,1}
E [(β21ψ10 +β21ψ11O1)(A1 + 1)/2+

(ε ′+ c1 + c2)(sign(ε ′+ c1 + c2)+ 1)/2|H1
]

. (4.1)

The presence of ε1 in non-linear functions within the expectations requires a model
for its distribution in order to estimate the optimal rule. More concretely, suppose
ε ′ ∼ N (0,σ2). Then the optimal rule is given by

dopt
1 = argmax

A1∈{−1,1}

{

(β21ψ10 +β21ψ11O1)(A1 + 1)/2+σφ
(

c1 + c2

σ

)

+

(c1 + c2)Φ
(

c1 + c2

σ

)}

.

The optimal rule contains both the probability and cumulative density functions of
the normal distribution. Specific parametric knowledge of the distribution of the
state variable is required to estimate the optimal rule – but of course this is precisely
what we wish to avoid when using semi-parametric methods such as G-estimation,
which will be presented shortly, in Sect. 4.3. The study of standard SNMMs will not
be pursued further in this chapter, as, for the present, our interest lies in estimating
optimal dynamic regimes without explicitly modeling all aspects of the longitudinal
distribution of the data.

4.2 Model Parameterizations and Optimal Rules

Let ψ be parameters for the SNMM, γ j(h j,a j;ψ) or μ j(h j,a j;ψ). If the true form
of the SNMM and the true values of ψ were known then the optimal regime is

dopt
j (h j;ψ) = argmax

a j
γ j(h j,a j;ψ) or

dopt
j (h j;ψ) = {a j such that μ j(h j,a j;ψ) = 0}

for j = 1,2, . . . ,K. Sections 4.3 and 4.4 discuss in greater detail methods of finding
estimators ψ̂ of ψ so that the optimal rules may be estimated to be the treatment
a j which maximizes γ j(h j,a j; ψ̂) over all possible treatments at stage j. A number
of estimators for ψ have been proposed. For example, in some cases solutions can
be found in closed form while in others, an objective function must be minimized
or iteration is required (Murphy 2003). Once ψ̂ has been found by an appropriate
method, the optimal treatments are found by maximizing the regret or the optimal
blip function over all treatments where ψ̂ is used in place of ψ .

There is a variety of parameterizations that may be chosen to describe the optimal
blip function at each stage. For instance, we may suppose that the blips are time-
dependent (non-stationary), so that γ j(h j,a j;ψ j) is such that ψ j �= ψk whenever
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j �= k. On the other hand, when the state variable, O j, measures the same quantity at
each stage, for example CD4 cell count in an HIV setting or white blood cell count
in a cancer trial, it may be more reasonable to assume that parameters are shared
across stages: ψ j = ψk for all j,k. We consider the shared parameters case in more
detail in Chap. 9.

Define D j(γ) to be the set of rules, dopt
j , that are optimal under the optimal blip

function model γ j(h j,a j;ψ) as ψ is varied:

D j(γ) = {dopt
j (·;ψ)|dopt

j (h j;ψ) = argmax
a j

γ j(h j,a j;ψ) for some ψ}.

Similarly, let D j(μ) be the set of optimal rules that are compatible with regret model
μ j(h j,a j;ψ):

D j(μ) = {dopt
j (·;ψ)|μ j(h j,d

opt
j (h j;ψ);ψ) = 0 for some ψ}.

Murphy (2003) proposes modeling regrets using a known link function, f (u), that
relates the regret and the decision rule. For a scale parameter η j(h j)≥ 0, set

μ f
j (h j,a j) = η j(h j)× f (a j − dopt

j (h j;ψ)),

where f (·) is required to be non-negative and the superscript f is used to remind
the reader of the parametric form assumed. When there is an effect of treatment,
the regret is zero if and only if a j is optimal. Consequently, f (0) = 0 if and only
if dopt

j (h j;ψ) is the optimal rule. Note that when treatment has no effect, every
regime is equally optimal (or sub-optimal), and the regret and blip functions equal
zero for all treatments. The form of the optimal decision rule must be postulated
to specify f (·) (see below). The parameters in dopt

j (h j;ψ) are not defined when the
scale parameter, η j, equals zero.

Murphy (2003) models discrete decisions via a smooth approximation in order to
facilitate estimation. For example, if using a 0/1 coding of treatment, the analyst may
choose to approximate an indicator function for the binary decision rule with the
inverse logit function expit(x) = ex(ex +1)−1; equivalently, one could use 2[ex(ex +
1)−1 − 0.5] for treatment coded −1/1. When the decision in the regret model is
approximated as is the case when using the inverse logit in place of an indicator
function, use μ̆ j(h j,a j) to denote the approximation of regret μ j(h j,a j), and let

D j(μ̆ j) = {dopt
j (·;ψ)|dopt

j (h j;ψ) = argmin
a j

μ̆ j(h j,a j;ψ) for some ψ}

denote the set of optimal rules that are compatible with the approximation μ̆ j(h j,a j)
of μ j(h j,a j). The approximate regret may not equal zero at the optimal regime.
In particular, using the expit function gives μ̆ j(h j,a j) = 0.5 at the optimal regime for
individuals whose covariates values lie exactly on the optimal decision rule thresh-
old (i.e., people for whom the optimal rule is not unique).

Suppose γ j(h j,a j) = c′(o j;ψ)(a j + 1)/2 is monotonic and increasing in o j so
that treatment is beneficial if a subject is above a threshold value of the random
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variable O j. If treatment is binary, the corresponding regret is

μ j(h j,a j) = |c′(o j;ψ)|× [a j − sign(c′(o j;ψ))]2/4,

and D j(γ) =D j(μ) = {sign(c′(o j;ψ))}. This holds true since whenever the optimal
blip is positive, the outcome is being maximized by taking treatment (A = 1) rather
than not (A =−1), while when the optimal blip is negative, the best one could do is
to have an expected difference in potential outcomes of zero, which is achieved by
not being treated (Fig. 4.1).
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Fig. 4.1 (a) Monotonic, increasing optimal blip and (b) corresponding regret functions. The regret
in black is for A =−1, and in grey, for A = 1. Note that the regrets, where non-zero, are a reflection
of the optimal blip above the x-axis

The parameterization of the underlying data generating procedure by the analyst
is key to obtaining good estimates of the DTR (Robins 2004, p. 243). For ex-
ample, suppose the optimal blip, γ j(h j,a j;ψ) = c′(o j;ψ)(a j + 1)/2, is such that
c′(o j;ψ) = ψ0 +ψ1o j and treatment a j is binary. The corresponding regret is
μ j(h j,a j) = |ψ0 + ψ1o j| × (a j − sign(ψ0 + ψ1o j))

2/4 and D j(γ) = D j(μ) =
{sign(ψ0 +ψ1o j)}. If in fact ψ1 > 0 so that treatment is beneficial when O j is
above the threshold β = −ψ0/ψ1, we may re-parameterize the regret to obtain
the threshold, β : μ∗

j (h j,a j) = |o j − β | × (a j − sign(o j − β ))2/4, which gives
D j(μ∗) = {sign(o j − β )}. However, if ψ1 < 0 so that now subjects should be
treated when O j < β , μ∗

j (h j,a j) = |o j − β | × (a j + sign(o j − β ))2/4 and so
D j(μ∗) = {−sign(o j −β )}. Thus, one consequence of using the re-parameterized
regret is that the analyst must know in advance whether it is optimal to treat patients
for low or high values of O j. Incorrectly specifying for whom treatment will be
beneficial can lead to false conclusions such as failure to detect a treatment ef-
fect, however this can be overcome simply by using a richer class of models for
the regret, such as the two-parameter model in this example (see the reply to the
discussion of (Murphy 2003)).
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4.3 G-estimation

Robins (2004) proposed finding the parameters ψ of the optimal blip function
or regret function via G-estimation. This method is a generalization of esti-
mating equations designed to account for time-varying covariates and general
treatment regimes. There are close ties between G-estimation and instrumental vari-
ables methods. To use an instrumental variable analysis to estimate a causal ef-
fect requires a variable (the instrument) that is associated with the outcome only
through its effect on the treatment received and possibly also through measured
confounders (Angrist et al. 1996). All that is required to define an unbiased esti-
mating equation is that the model residual is conditionally uncorrelated with the
instrument. Viewing the expected counterfactual outcome (G j(ψ), defined below)
as the model and a centered function of treatment as the instrument, we may think of
G-estimation as an instrumental variables analysis (Joffe 2000); by the assumption
of no unmeasured confounding, treatment allocation at stage j is independent of
outcome and state in any future stage, conditional on treatment and state history.
See Joffe and Brensinger (2003) for a detailed one-stage explanation and imple-
mentation. Instrumental variables analysis and G-estimation fall under the wider
umbrella of the Generalized Methods of Moments approach, thoroughly treated by
Newey and McFadden (1994).

Define

G j(ψ) = Y +
K

∑
k= j

[

γk(hk,d
opt
k ;ψ)− γk(hk,ak;ψ)

]

= Y +
K

∑
k= j

E
[{

Y (āk−1,d
opt
k )−Y (āk−1,0k,d

opt
k+1)

}−
{

Y (āk,d
opt
k+1)−Y(āk−1,0k,d

opt
k+1)

}∣
∣Hk = hk

]

= Y +
K

∑
k= j

E
[

Y (āk−1,d
opt
k )−Y(āk,d

opt
k+1)|Hk = hk

]

.

In the two-stage case, this gives

G2(ψ) = Y +E
[

Y (a1,d
opt
2 )−Y(ā2)|H2 = h2

]

= Y −E[Y(ā2)|H2 = h2]+E[Y(a1,d
opt
2 )|H2 = h2]

at the second stage, which is the observed outcome minus the expected counterfac-
tual outcome under the observed treatment (given the observed covariate history)
plus the expected counterfactual outcome under the observed treatment at the first
stage and the optimal treatment at the second stage (given the observed covariate
history). In expectation, the first of two terms cancel out, leaving only the expected
counterfactual outcome under the observed treatment at the first stage and the opti-
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mal treatment at the second stage. Similarly, for the first stage in a two-stage setting,
we have

G1(ψ) = Y +E
[

Y (dopt
1 )−Y(a1,d

opt
2 )|H1 = h1

]

+E
[

Y (a1,d
opt
2 )−Y(ā2)|H2 = h2

]

.

The third and fourth terms, −E
[

Y (a1,d
opt
2 )|H1 = h1

]

+ E
[

Y (a1,d
opt
2 )|H2 = h2

]

cancel in expectation, as do the first and last, leaving only the expected counter-
factual outcome under optimal treatment at both stages.

Therefore, G j(ψ) is a person’s outcome adjusted by the expected difference
between the average outcome for someone who received a j and someone who
was given the optimal treatment at the start of stage j, where both had the same
treatment and covariate history to the start of stage j − 1 and were subsequently
treated optimally. Under the assumption of additive local rank preservation, G j(ψ)
equals the counterfactual outcome, not simply its expectation (Robins 2004); i.e.,
G j(ψ) = Y (ā j−1,d

opt
j ). Now, let S j(A j) = s j(Hj ,A j) be a vector-valued function

that is chosen by the analyst to contain the variables thought to interact with
treatment to effect a difference in the outcome; the range of the function is in
R

dim(ψ j). For example, if K = 2, we may choose S1(A1) = (A1 + 1)/2 · (1,O1)
T

and S2(A2) = (A2 + 1)/2 · (1,O1,A1,O1A1)
T , which is simply the derivative of the

stage j blip function with respect to ψ .
Model the probability of receiving treatment a j by p j(A j = 1|Hj;α), where α

may be vector-valued; for binary treatment, this model is the propensity score which
was first introduced in Sect. 3.5. A common parametric model used to describe the
treatment allocation probabilities is the logistic model when treatment is binary,
however non-parametric models may also be used. Let

U(ψ ,α) =
K

∑
j=1

G j(ψ){S j(A j)−E[S j(A j)|Hj;α]}. (4.2)

Then E[U(ψ ,α)] = 0 is an unbiased estimating equation from which consis-
tent, asymptotically normal estimators ψ̂ of ψ may be found under standard
regularity conditions provided the treatment allocation probabilities, p j(A j =
1|Hj), are known or modeled correctly with respect to confounding variables
(using estimates α̂) and there are no distributions of the data for which more than
one treatment is optimal. This latter condition, also known as requiring no excep-
tional laws, will be considered in greater detail in Chap. 8; when this condition is
violated, estimators may be non-regular. Even when the treatment model and its
parameters are known, it is more efficient to estimate the treatment model param-
eters than to substitute in known values (Robins 2004, p. 211); this is analogous
to the gains in efficiency observed by adjusting for covariates in a randomized
trial to account for chance imbalance between treatment groups. The unbiased-
ness of Eq. (4.2) is due to the fact that counterfactual outcomes under different
treatment regimes at stage j are independent of any function of actual treatment
conditional on prior treatment and covariates (by the assumption of no unmea-
sured confounding). These estimators are not semi-parametric efficient. Note that
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semi-parametric efficiency is a concept similar to efficiency in a simple parametric
case; semi-parametric analogs to the Cramer-Rao lower bound on the variability of
an estimator can be derived.

4.3.1 More Efficient G-estimation

Robins refined the estimating equation in (4.2) to gain efficiency by making an
additional modeling assumption for the form of E[G j(ψ j)|Hj]. For example, we may
use ordinary least squares to model E[G j(ψ j)|Hj;ς ] with (possibly vector-valued)
parameters ς . Let

U(ψ ,ς(ψ),α) =
K

∑
j
(G j(ψ)−E[G j(ψ)|Hj;ς ]){S j(A j)−E[S j(A j)|Hj;α]}. (4.3)

Robins (2004) proved that the estimator ψ̂ of ψ using Eq. (4.3) is consistent pro-
vided that either E[G j(ψ)|Hj;ς ] or p j(A j = 1|Hj;α) is correctly modeled, and
thus the estimate is said to be doubly-robust. In fact, the propensity score model
p j(A j = 2|Hj;α) need not be correctly specified in the sense of capturing the data-
generating mechanism, but rather it must include and correctly model the impact
of all confounding variables on the choice of treatment. To use Eq. (4.3), typi-
cally estimates ς̂ and α̂ of the nuisance parameters ς and α are substituted into
the estimating equation. Estimates from Eq. (4.3) may be considerably less variable
than those from Eq. (4.2), but they are still not efficient. As with Eq. (4.2), if the
treatment model and its parameters are known (as they would be, for instance, in a
randomized trial with perfect compliance), estimates from (4.3) are more efficient
using estimated treatment probabilities than the known values (Robins 2004).

Efficient estimates can be found with judicious choice of the function S j(A j).
Unfortunately, the form of S j(A j) that leads to efficient estimates is typically com-
plex except in the special case where

Var[G j(ψ)|Hj ,A j] = Var[G j(ψ)|Hj]

for all j (Robins 1994). In the particular situation where this variance assumption
holds, setting

S j(A j;ψ) = E

[
∂

∂ψ
G j(ψ)

]

(Var[G j(ψ)|Hj])
−1

yields estimators that are semi-parametric efficient provided each of E[G j(ψ)|Hj],
p j(A j = 1|Hj;α), E[ ∂

∂ψ G j(ψ)], and Var[G j(ψ)|Hj] is correctly specified. Note,
however, that “correct” specification of the treatment model does not in fact require
complete knowledge of the treatment assignment mechanism, but only that the
model p j(A j = 1|Hj;α) conditions on all variables that confound the relationship
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between treatment in the jth stage, A j, and the outcome; Ertefaie et al. (2012) prove
this in the context of propensity score adjustment and inverse probability weighting.

4.3.2 Recursive G-estimation

When optimal blips are linear in ψ and parameters are not assumed to be shared
across stages, we can solve for ψ̂ explicitly. In general, for instance when blips are
not linear or parameters are shared across stages, search algorithms may be required.
Use the modification

Gmod, j(ψ) = Y − γ j(h j,a j;ψ)+
K

∑
k= j+1

[

γk(hk,d
opt
k ;ψ)− γk(hk,ak;ψ)

]

,

which is a person’s outcome adjusted by the expected difference between the av-
erage outcome for someone who received a j and someone who was given the zero
regime at stage j, where both had the same treatment and covariate history to stage
j − 1 and were treated optimally from stage j + 1 onwards. Under additive local
rank preservation, Gmod, j(ψ) = Y (ā j−1,−1,dopt

j+1).
This modification allows recursive estimation using Eqs. (4.2) or (4.3). At the last

stage, we first estimate the nuisance parameter (ςK ,αK) and note that Gmod,K(ψ) and
consequently UK(ψ) now has only a single (possibly vector) unknown parameter as
well as ψK . Solve for ψ̂K . Now estimate (ςK−1,αK−1) at the second-to-last stage,
K − 1. Substitution of these estimates ψ̂K leaves us with only the parameter ψK−1

unknown in UK−1(ψ), and so ψ̂K−1 may be found. Continuing in this manner yields
recursive G-estimates for all optimal regime parameters, ψ j, j = 1, . . . ,K.

Recursive G-estimation is particularly useful when parameters are not shared
across stages (i.e., not stationary or common to different stages). An example of
blip functions for two stages which are linear in ψ but do have common pa-
rameters between stages are γ1(h1,a1) = (ψ0 +ψ1o1)(a1 + 1)/2 and γ2(h2,a2) =
(ψ0 +ψ1o2 +ψ2a1)(a2 +1)/2, since ψ0 and ψ1 appear in the blip functions at both
stages. In fact, recursive G-estimation may still be used when parameters are shared
by first assuming no sharing and then taking, for instance, the inverse-covariance
weighted average or even the simple average of the stage-specific estimates. Note
that Gmod, j(ψ) could also be used in G-estimation (Eqs. (4.2) or (4.3)) without recur-
sion.

To accomplish G-estimation (using either the standard or the recursive approach)
requires estimates of the nuisance parameters ς and α . Thus, we can perform G-
estimation in two steps: find ς(ψ) analytically by ordinary least squares and α
by some possibly non-parametric method of estimation (step 1), then plug these
estimates into Eqs. (4.2) or (4.3) and solve to find ψ (step 2). For recursive G-
estimation, we in fact have two steps of estimation at each stage for a total of 2K
steps. The impact of this two-step approach on estimation of standard errors will be
considered in Chap. 8.
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4.3.3 G-estimation Versus OLS Regression for a One-Stage
Problem

In the one-stage case with univariate O and binary A, a linear (optimal) blip function
gives

E[Y |O = o,A = a]−E[Y |O = o,A =−1] = (ψ0 +ψ1o)(a+ 1)/2

so that E[Y |O = o,A = a] = (ψ0 +ψ1o)(a+ 1)/2+ b(o) where the form of b(o) is
not specified. In this simple context, we may model b(o) non-parametrically and use
ordinary least squares to model the optimal blip as an alternative to G-estimation
(Robins 2004); in fact, the ordinary least squares (OLS) approach is a simplified
implementation of Q-learning. We consider two examples; in both, we generate the
state and treatment data such that O∼ Uniform(−0.5,3) and A takes the value 1 with
probability expit(−2+ 1.8O). In the first example,

Y (A) =−1.4+ 0.8+(5+2O)(A+ 1)/2+ ε,

and in the second,

Y (A) =−1.4O3 + eO +(5+ 2O)(A+ 1)/2+ ε,

with ε ∼ N (0,1) for each. For both G-estimation approaches based on (4.2)
and (4.3), take S(A) = (A + 1)/2 · (1,O)T . To perform G-estimation more effi-
ciently, model E[H(ψ)|O] as a linear function of O. Recall that the estimator is
doubly-robust, so that it is consistent even when E[H(ψ)|O] is incorrectly speci-
fied provided treatment allocation probabilities are correctly modeled with respect
to the confounding variables. For the regression method, model b(o) in two ways:
non-parametrically with a smoothing spline and parametrically via a linear model.

Table 4.1 shows results from 1,000 simulations in which G-estimation is com-
pared to modeling outcome, Y , among those who were not treated with a straight
line and with a smoothing spline, and the regressing observed outcome minus the
predicted value from the initial regression on the state variable. When Y (A = −1)
depends linearly on O, all four methods exhibit little bias, with the smallest variabil-
ity exhibited by the regression method which models b(o) linearly, followed closely
by the G-estimation using Eq. (4.3).

In the second example, where the dependence of Y on O is highly non-linear,
G-estimation using (4.2) demonstrates the least bias of the three approaches, how-
ever it is also the most highly variable. Using the more efficient G-estimating
Eq. (4.3) reduces the standard error considerably, at the cost of an introduction of
some bias at small sample sizes. The regression method that models b(o) linearly
exhibits a low variance but considerable bias even at large sample sizes.
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Table 4.1 Comparison of G-estimation and OLS regression for a one-stage case

G-estimation Linear regression
Eq. (4.2) Eq. (4.3) Linear b(o) Smooth b(o)

n ψ ψ̂ SE ψ̂ SE ψ̂ SE ψ̂ SE
Y =−1.4+0.8O+A(5+2O)+ ε

50 ψ0 = 5 5.183 1.071 5.020 0.777 5.029 0.599 5.062 1.004
ψ1 = 2 1.864 0.823 1.978 0.563 1.975 0.412 1.938 0.778

100 ψ0 = 5 5.040 0.602 4.984 0.476 4.976 0.381 4.996 0.598
ψ1 = 2 1.963 0.464 2.000 0.355 2.007 0.263 1.993 0.480

1,000 ψ0 = 5 5.008 0.176 5.001 0.150 5.000 0.123 4.998 0.172
ψ1 = 2 1.993 0.136 1.998 0.111 1.999 0.084 2.001 0.130

Y =−1.4O3 + eO +A(5+2O)+ ε
50 ψ0 = 5 4.626 3.846 5.655 1.917 11.358 2.389 7.449 2.018

ψ1 = 2 2.167 3.494 1.452 1.501 −3.134 1.585 −0.018 1.695
100 ψ0 = 5 4.940 1.893 5.318 1.187 10.982 1.541 6.817 1.208

ψ1 = 2 1.944 1.980 1.680 0.990 −2.907 1.098 0.523 1.086
1,000 ψ0 = 5 4.981 0.481 5.011 0.355 10.726 0.476 6.319 0.286

ψ1 = 2 2.011 0.550 1.990 0.295 −2.654 0.337 1.001 0.244

4.3.4 Q-learning and G-estimation

Under the following sufficient conditions, it has been shown that Q-learning and
G-estimation are algebraically equivalent when linear models are used for the
Q-functions (Chakraborty et al. 2010):

(i) The parameters in Qopt
1 and Qopt

2 are distinct;
(ii) A j has zero conditional mean given the history Hj = (Ō j, Ā j−1), j = 1,2; and

(iii) The covariates used in the model for Qopt
1 are nested within the covariates used

in the model for Qopt
2 , i.e., (HT

10,H
T
11A1) ⊂ HT

20 where Hj0 and Hj1 are two
vector summaries of the history Hj, denoting the main effect of history and the
part of history that interacts with treatment.

Recall that with binary treatments A j coded −1/1, the random variable A j may in
fact have a zero mean conditional on covariate history.

Recall that the regret is given by μ j(h j,a j) = E[Y (ā j−1,d
opt
j )−Y (ā j,d

opt
j+1)|Hj =

h j], which can also be expressed as

−μ j(h j,a j) = Qopt
j (h j,a j)−max

a j
Q opt

j (h j,a j)

for j = 1,2. Using linear models parameterized by β ,ψ of the form
Qopt

j (Hj,A j;β j,ψ j)=β T
j Hj0+(ψT

j Hj1)A j for the Q-functions, this gives

−μ j(Hj,A j;ψ j) = ψT
j Hj1a j −|ψT

j Hj1|, j = 1,2.

Define m2(H2) = E[Qopt
2 (H2,A2)|H2]. Since we assume no parameter sharing, we

can perform the estimation recursively, beginning at the last stage.
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The recursive form of G-estimation using Eq. (4.3) first solves

Pn [(Y2 + μ2(H2,A2;ψ2)−E[Y2 + μ2(H2,A2;ψ2)|H2]) (H21A2 −E[H21A2|H2])] = 0,

where Pn denotes the empirical average function, thereby finding estimates of
θ T

2 = (β T
2 ,ψT

2 ). By assumption (ii), the left-hand side reduces to

Pn [H21A2 (Y2 + μ2(H2,A2;ψ2)−E[Y2 + μ2(H2,A2;ψ2)|H2])]

= Pn
[

H21A2
(

Y2 −ψT
j Hj1A j + |ψT

j Hj1|− (m2(H2)+ |ψT
j Hj1|)

)]

= Pn
[

H21A2
(

Y2 −m2(H2)−ψT
j Hj1A j

)]

since −μ2(H2,A2;ψ2) = ψT
j Hj1A j − |ψT

j Hj1| and so E[μ2(H2,A2;ψ2)|H2] =

|ψT
j Hj1|. Then, taking m2(H2) = HT

j0β̂2 where

β̂2 = [Pn(H20HT
20)]

−1 [
Pn(H20Y2)−Pn(H20H21T A2

ψ2)
]

,

we have shown that the G-estimating equation is identical to the second-stage least
squares regression performed in Q-learning. The proof for the first stage estimation
follows in a similar fashion.

In the case of shared parameters, the G-estimating functions are stacked and
solved simultaneously. Approximate solutions to the G-estimation functions and
Q-learning functions have been considered by taking the outer product of the esti-
mation functions and searching for values of ψ that minimize the resulting quadratic
function (Chakraborty and Moodie 2013). In such circumstances, assuming condi-
tions (ii) and (iii) above, it can again be shown that Q-learning and G-estimation are
equivalent.

As noted previously, even in randomized trial settings where treatment proba-
bilities are fixed and known, it is more efficient to use estimates of the propensity
score rather than known randomization probabilities; as this expectation does not
involve parameters ψ j, it is typically estimated at the outset of a G-estimation anal-
ysis and substituted into the G-estimating functions for the DTR parameters. Thus,
while Q-learning and G-estimation are in some instances equivalent, the typical im-
plementation of these methods leads to estimates which are not identical.

4.4 Regret-Based Methods of Estimation

Advantage learning, or A-learning, is a method of identifying optimal dynamic
regimes by focusing on modeling the advantage, the regret, or a similar quantity
such as the difference between the Q-function and the untreated outcome:

μ̃ j = Qopt
j (Hj,A j)−Qopt

j (Hj,−1)
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where −1 is used to indicate a standard or zero treatment, such as placebo or usual
care. Since the Q-function can be written as the sum of the advantage function and
the value function, we can see that A-learning requires a model for only part of the
Q-function, namely the interaction terms specific to the decision making or tailoring
part of the Q-function.

4.4.1 Iterative Minimization of Regrets

Murphy (2003) developed a method that estimates the parameters of the optimal
regime, ψ , by searching for (ψ̂ , ĉ) which satisfy

K

∑
j=1

Pn

[

Y + ĉ +
K

∑
k=1

μk(Hk,Ak; ψ̂) − ∑
a

μ j(Hj,a; ψ̂)p j(a|Hj; α̂)
]2

≤
K

∑
j=1

Pn

[

Y + c + ∑
k �= j

μk(Hk,Ak; ψ̂) + μ j(Hj,A j;ψ)

− ∑
a

μ j(Hj,a;ψ)p j(a|Hj; α̂)
]2

(4.4)

for all c and all ψ . Treatment probabilities – i.e., parameters α of the propensity
score – can be estimated in the same fashion as for G-estimation. The scalar quantity
c is not easily interpreted, except in the special case of no effect of treatment, when
ĉ = −Pn(Y ) i.e. it is the negative of the sample mean of the outcomes. In fact, c
(ĉ) may be omitted from (4.4); it is not required for estimation but greatly improves
the stability of the procedure (Murphy 2003). The estimator ψ̂ is consistent for
ψ provided the treatment allocation probabilities, p j(A j = 1|Hj;α), are correctly
specified with respect to confounding variables.

Murphy (2003) described an iterative method of finding solutions to (4.4), which
begins by selecting an initial value of ψ̂ , say ψ̂(1), then minimizing the right-hand
side (RHS) of the equation over (ψ ,c) to obtain a new value of ψ̂ , ψ̂(2), and repeat-
ing this until convergence. This iterative minimization of regrets (IMOR) method
may not produce a monotonically decreasing sequence of RHS values of Eq. (4.4).
Furthermore, this iterative procedure may not converge to a minimum; use of sev-
eral starting seeds and profile plots of the RHS of (4.4) for each parameter in a
stage about its estimate may reassure the analyst that a minimum was reached.
Rosthøj et al. (2006) provided an empirical demonstration of the method applied
to estimate the optimal dose of anticoagulation medication, and investigated con-
vergence properties through extensive simulations. The simulation study suggested
that IMOR may not converge when samples are small (e.g. 300), there is consider-
able noise in the data, or the researcher cannot posit good initial values for the search
algorithm; mis-specification of the treatment model can lead to serious convergence
problems, indicating that IMOR is not a doubly-robust procedure.

In the following section, we will see that IMOR is closely connected to, but not
in general the same as, Robins’ more efficient estimation (Eq. (4.3)) and that these
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are equivalent under the null hypothesis of no treatment effect for particular model
choices in Eq. (4.3). Note that the term “more efficient G-estimation” is used to
distinguish between the two G-estimating Eqs. (4.2) and (4.3), and is not meant to
imply that G-estimation is more efficient than IMOR.

4.4.1.1 Connections to G-estimation: The One-Stage Case

Consider the one-stage case with observed variables O, A, and Y where A is binary
and O and Y are both univariate. We shall demonstrate that G-estimation and IMOR
are equivalent, given specific choices of models. Robins (2004, Theorem 9.1) proves
that for

γ(o,a;ψ) = E[Y |O = o,A = a]−E[Y |O = o,A =−1],

which equals E[Y (a)−Y (−1)|O = o] under the no unmeasured confounding as-
sumption, γ(o,a) is the unique function g(o,a) minimizing

E
[

{Y − g(o,a)−E[Y − g(o,a)|O = o]}2
]

(4.5)

subject to g(o,−1) = 0. This constraint on g() is required to restrict the function
to be in the class of blip functions. In G-estimation, minimization occurs when the
derivative of Eq. (4.5),

∂
∂ψ

E
[

{Y − g(o,a)−E[Y − g(o,a)|O = o]}2
]

∝

E

[

{Y − g(o,a)−E[Y − g(o,a)|O = o]}×
{

− ∂
∂ψ

g(o,a)+E[
∂

∂ψ
g(o,a)|O = o]

}]

,

equals zero. At the minimum, g(o,a) = γ(o,a), which gives Y − g(o,a) = G(ψ) =
Gmod(ψ). Taking S(A) equal to − ∂

∂ψ g(O,A), Eq. (4.5) equals Eq. (4.3), the more
efficient G-estimating equation.

For a one-stage problem, IMOR proceeds directly by minimizing the left-hand
side of Eq. (4.4). At the minimum we have:

E

[{

Y − g(o,a)−E[Y − g(o,a)|O]
}2
]

= E

[{

Y − γ(o,a)−E[Y − γ(o,a)|O = o]
}2
]

= E
[{

Y − (μ(o,−1)− μ(o,a))−E[Y − (μ(o,−1)− μ(o,a))|O= o]
}2]

= E

[{

Y + ĉ+ μ(o,a)−E[μ(o,a)|O= o]
}2
]

with ĉ =−μ(o,−1)+E[μ(o,−1)−Y|O = o], which can be re-expressed as
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−ĉ = E[Gmod(ψ)|O = o]+ μ(o,−1)−E[μ(o,a)|O= o].

One critical difference exists: IMOR does not model E[Gmod(ψ)|O= o] explicitly,
but rather does so through the regrets and ĉ. This expression for ĉ makes clear that,
under the null hypothesis of no treatment effect, ĉ = E[Gmod(ψ)] = E[Y ], and IMOR
is equivalent to G-estimation using Eq. (4.3) with E[Gmod(ψ)|O = o] modeled by a
constant.

4.4.1.2 Connections to G-estimation: K Stages

Suppose now that we have K stages and we observe ŌK , ĀK , and Y where A j is
binary and O j, Y are univariate for all j. Suppose also that parameters are not shared
across stages, so that ψ j �= ψk for j �= k. Robins (2004, Corollary 9.2) extended
Eq. (4.5), proving that for an optimal blip γ j(h j,a j) with parameters ψ j, the unique
function g(h j,a j) minimizing

E

⎡

⎣

{

Y − g(h j,a j)+
K

∑
k= j+1

[

γk(hk,d
opt
k ;ψk)− γk(hk,ak;ψk)

]

−E
[

Y − g(h j,a j)+
K

∑
k= j+1

[

γk(hk,d
opt
k ;ψk)− γk(hk,ak;ψk)

] |Hk = hk
]

}2
⎤

⎦

(4.6)

subject to g(h j,a j) = 0 for a j = −1 is γ j(h j,a j). For this to be of any use in
estimating ψ j, ψk for k = j + 1, . . . ,K must have been estimated already. For any
arbitrary function q j(·), it is not possible to minimize

E
[
{

Y − q j(h j,a j)+
K

∑
k= j+1

[

qk(hk,d
opt
k )− qk(hk,ak)

]

−E
[

Y − q j(h j,a j)+
K

∑
k= j+1

[

qk(hk,d
opt
k )− qk(hk,ak)

]|Hk = hk
]

}2
]

simultaneously over q j(·) (Robins 2004). In G-estimation, simultaneous
minimization is avoided by proceeding recursively, estimating first ψK , then ψK−1

and so on until all parameters have been estimated. As observed in the case of a
single stage, G-estimation for several stages is equivalent to minimizing Eq. (4.6) at
each stage by setting its derivative to zero. At the minimum, g(h j,a j) = γ j(h j,a j)
and so

Y − g(h j,a j)+
K

∑
k= j+1

[

γ(hk,d
opt
k ;ψk)− γ(h j,a j;ψk)

]

= Gmod, j(ψ j).
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When S(A j) =− ∂
∂ψ j

g(Hj,A j), Eq. (4.6) equals a G-estimating equation of the same

form as Eq. (4.3) using the modified version of the counterfactual quantity G j(ψ).
IMOR is another method of recursive minimization. At any stage j, taking

g(h j,a j) = γ j(h j,a j;ψ j) = μ j(h j,−1;ψ j)− μ j(h j,a j;ψ j) in Eq. (4.6) leads to the
RHS of (4.4) for a single stage with

−ĉ = μ j(h j,−1;ψ j)+
j−1

∑
k=1

μk(hk,ak; ψ̂k)

− E
[

μ j(h j,−1;ψ j)+
K

∑
k= j+1

μk(hk,ak; ψ̂k)−Y
∣
∣Hj = h j

]

= E
[

Gmod, j(ψ)|Hj = h j

]

+ μ j(h j,−1;ψ j)

+
j−1

∑
k=1

μk(hk,ak; ψ̂k)−E
[

μ j(h j,a j;ψ j)|Hj = h j

]

.

However, the parameter c in Eq. (4.4) is not stage-specific and IMOR and G-
estimation are not in general equivalent. As in the one-stage instance, there is the
important difference between the way the methods achieve their solutions that is
due to whether or not E[Gmod, j(ψ)|Hj = h j] is modeled explicitly or through the
regrets and ĉ. As in the case of a single stage, under the null hypothesis of no treat-
ment effect, ĉ = E[Gmod, j(ψ)] = E[Y ], so there is equivalence between IMOR and
G-estimation (4.3) when E[Gmod, j(ψ)|Hj = h j] is modeled with a constant (which is
stationary across all stages) and S(A j) =− ∂

∂ψ j
g(Hj,A j).

Regarding the relative efficiency, we can make the following points:

(i) Under the null hypothesis of no treatment effect, IMOR is a special case of G-
estimation using Eq. (4.3) in which E[Gmod, j(ψ j)|Hj] is assumed to be constant.

(ii) Under regularity conditions, estimates from Eq. (4.3) are the most efficient
among the class of G-estimates using a given function S(A j) when both the
propensity score (w.r.t. confounders) and expected counterfactual models are
correctly specified (Robins 2004, Theorems 3.3(ii), 3.4).

(iii) Equation (4.3) does not satisfy the regularity conditions under the null
hypothesis due to non-differentiability of the estimating equation in a neigh-
borhood of ψ = 0. However, the conditions hold for constant blip functions,
γ j(h j,a j) = a jψ j (which may depend on j but not h j) which posit no treat-
ment interactions. (See Chap. 8 for a thorough consideration of the problem of
non-regularity and solutions.)

Therefore, we may say that if the null hypothesis holds and we estimate a
constant blip model (which trivially is correctly specified under the null hypothe-
sis of no treatment effect), then G-estimation is more efficient than IMOR when
E[Gmod, j(ψ)|Hj = h j] = E[Y |Hj = h j] depends on Hj and is correctly specified in
G-estimating Eq. (4.3). If E[Gmod, j(ψ)|Hj = h j] is constant, IMOR and Eq. (4.3)
yield efficient estimators.
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4.4.2 A-Learning

Recall that a regret is a difference in Q-functions. A-learning is an approach to DTR
estimation that focuses on modeling only Q-function contrasts, rather than the full
Q-function, since it is only the contrast which is required to identify the optimal
DTR. By reducing the dependence of the estimation procedure on the full data-
distribution, robustness to model mis-specification is won.

The A-learning procedure solves, at each stage j, the equation

{Y −C(Hj,A j;ψ j)−θ (HK)}{S j(A j)−E[S j(A j)|Hj;α]}= 0

where C(Hj,A j;ψ j) is a contrast of Q-functions. For linear Q-functions of the form
β T

j Hj0 +(ψT
j Hj1)(A j + 1)/2, C(Hj,A j;ψ j) = (ψT

j Hj1)(A j + 1)/2, the same form
as the optimal blip function. Like the more efficient G-estimation, A-learning us-
ing the above estimating equation is doubly-robust: it suffices for either S j(A j)−
E[S j(A j)|Hj;α] or Y −C(Hj,A j;ψ j)− θ (HK) to have mean zero (and thus, it suf-
fices to adequately model either the treatment or the outcome) to obtain a consis-
tent estimator of the DTR parameters, ψ . Indeed, for certain choices of θ (Hk), A-
learning and G-estimation are identical.

Schulte et al. (2012) have provided a detailed and self-contained comparison of
A-learning and Q-learning, in which they performed several simulations aimed at
identifying regions in which one method is superior to the other. In a two-stage
problem, they found that when all models were correctly specified, Q-learning was
nearly twice as efficient in estimating the second stage parameters relative to A-
learning, while gains at the first stage were much more modest. Q-learning was
also more efficient than A-learning when the treatment model was mis-specified.
However, if the Q-function was mis-specified, there were values of the parameters
for which gains in efficiency exhibited by Q-learning were clearly outweighed by
the bias incurred, making A-learning preferable in terms of mean squared error.

4.4.3 Regret-Regression

Two very similar methods have been proposed to model blip or regret function
parameters using regret-regression. The first, proposed by Almirall et al. (2010),
relies on the observation that, in a two-stage setting, the marginal mean of the coun-
terfactual outcome Y (a1,a2) can be expressed as

E[Y (a1,a2)|Hj,A j] = E[Y (−1,−1)]+E
[

Y (ā2)−Y (a1,−1)|H2 = h2

]

+

E
[

Y (a1,−1)−Y(−1,−1)|H1 = h1

]

+
2

∑
j=1

ε j(Hj)

= β0 +
2

∑
j=1

γ0
j (Hj,A j;ψ j)+

2

∑
j=1

ε j(Hj)
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where β0 = E[Y (−1,−1)] and γ0
j are zero blip-to-zero functions, i.e. blip func-

tions that consider the zero treatment regime to be the reference at stage j and
assume zero treatment at all subsequent stages. The functions ε j(Hj) are nui-
sance functions which must have mean zero for equality of the above equation
to hold. In particular, ε1(H1) = E[Y (−1,−1)|H1]− E[Y (−1,−1)] and ε2(H2) =
E[Y (a1,−1)|H2]− E[Y (a1,−1)|H1]. One modeling possibility is to set the func-
tions equal to a linear function of the residual obtained after subtracting O j from its
estimated conditional mean: ε j(Hj) = β j(O j − Ê[O j|Hj−1,A j−1]). A linear model
implementation of the algorithm can thus be described in brief as following the
steps:

1. At each stage, regress O j on the history Hj−1 and A j−1 and set Zj = O j −
Ê[O j|Hj−1,A j−1].

2. Estimate the parameters of

E[Y |Hj,A j;β j,ψ j] = β0 +
K

∑
j=2

β T
j Z j −

K

∑
j=1

γ0(Hj,A j;ψ j)

using a standard linear regression of Y on a column of 1s, the nuisance functions
Zj and all covariate-interaction terms Hj1A j.

Henderson et al. (2010) propose a very similar method, which they term regret-
regression. The algorithm for estimation proceeds as follows:

1. At each stage, regress O j on Hj−1,A j−1 and set Zj = O j − Ê[O j|Hj−1,A j−1].
2. Assuming

E[Y |Hj,A j;β j,ψ j] = β0(O1)+
K

∑
j=2

β T
j Z j −

K

∑
j=1

μ(Hj,A j;ψ j)

is a correct specification for the conditional mean of Y , estimate the parameters
β and ψ of this function by minimizing

n

∑
i=1

(

Y −β0(H1)−
K

∑
j=2

β T
j (Hj−1)Zj +

K

∑
j=1

μ(Hj,A j;ψ j)

)2

.

In simulation, this method appeared to perform better than IMOR in terms of both
bias and variability.

The regret-regression methods described above require estimation of the com-
ponents of the full data-likelihood that involve the time-varying covariates O j, but
not the treatment decisions, A j. In contrast, G-estimation and IMOR do not require
estimating the components of the data relating to state variables. It has been ar-
gued that it may be easier to model the treatment mechanism than the covariate
mechanism. This is undoubtedly the case in sequentially randomized trials, but
may be subject to debate in observational studies. Finally, as noted in Sect. 4.3.1,
G-estimation enjoys the property of double-robustness, which is not a feature of
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the regret-based methods described in this section. However, under correct model-
specification, the regression-based estimators appear to enjoy lower variability than
G-estimators and it is reasonable to conjecture that the regret-regression estima-
tor will as well. Furthermore, as the above methods are regression-based, the usual
linear-regression residual diagnostic techniques may be used to guide the choice of
the regret-function. See Sect. 9.2 for further discussion of model-checking in DTR
estimation.

4.4.4 Occlusion Therapy for Amblyopia: An Illustration

To demonstrate the use of G-estimation and IMOR, we consider a simplified
analysis using data from the Monitored Occlusion Treatment of Amblyopia Study
(MOTAS). Amblyopia is the most common visual problem among children in West-
ern societies, resulting from an interruption of development during a susceptible
period of childhood. It causes visual impairment and is usually treated by occlusion
(eye patching) of the dominant eye. MOTAS was conducted in 87 children aged 3–
8 years in the United Kingdom, and was the first to describe the dose-response rela-
tionship of occlusion to improvement in visual acuity (Stewart et al. 2002). Briefly,
MOTAS followed a three-phase design: (1) children were assessed and monitored
to ensure baseline vision was stable, (2) children needing glasses received them and
were monitored until vision was stable, and (3) all children were prescribed 6 hours
of occlusion per day and followed until visual acuity ceased to improve. All children
who entered the third phase of the study, regardless of age, were prescribed 6 hours
of occlusion daily. We consider the first 12 weeks of the occlusion phase as a single
stage in order to demonstrate G-estimation and IMOR in the simplest context; the
purpose of this example is purely illustrative.

Patch use data were obtained from a dose monitor built into the eye patch and
visual acuity was measured on the logMAR scale (a scale in which smaller numbers
are indicative of better visual acuity). Of the 80 children eligible for the occlusion
phase of the trial, eight dropped out before any dose was given and three dropped out
after less than 15 min of occlusion. These 11 participants were excluded, leaving 69
subjects for analysis. Thirty-one children missed their week 12 visit. Missing values
were imputed by using a child’s linear prediction plus a randomly selected resid-
ual term (taken from any child). The vision of 15 children ceased to improve with
occlusion before 12 weeks. For these children, their last measurement was carried
forward and a randomly selected residual from the linear regressions was added.

Age is the state variable, O. Take Y to be a utility defined as the negative of week
12 visual acuity, so that high values of Y are desirable. It has been postulated that
200 hours of occlusion are sufficient to achieve improvement in visual acuity of at
least 0.2 on the logMAR scale (Stewart et al. 2004). Thus, we consider a child to
have been treated if he received at least 200 hours of occlusion in the first 12 weeks;
25 (36.2 %) children were treated under this definition. Treatment allocation proba-
bilities were estimated via logistic regression, so that the probability of being treated
is E(A = 1|O) = expit(α̂0 + α̂1O).
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4.4.4.1 Analysis Using G-estimation

To implement G-estimation for one stage, we modeled the optimal blip function
with a simple linear model,

γ(o,a;ψ) = E[Y |O = o,A = a;ψ ]−E[Y |O = o,A =−1;ψ ]

=
1
2
(a+ 1) · (ψ0+ψ1o). (4.7)

For S(O,A) = 1
2 (A+1) · (1,O)T , E[S(A)|O] = (P(A = 1|O),O ·P(A = 1|O))T when

A is binary and so the resulting G-estimation function for Eq. (4.2) is

U(ψ) = Pn

{

[Y − γ(O,A;ψ)] (S(A)−E[S(A)|O])
}

= Pn

{[

Y − 1
2
(A+ 1)× (ψ0+ψ1O)

]

×
(

(A+ 1)/2−P[A= 1|O]
O((A+ 1)/2−P[A= 1|O])

)}

.

The G-estimates (95 % CI), which can be found in closed-form, are ψ̂0 = 0.847
(0.337, 1.358) and ψ̂1 = −0.014 (−0.023, −0.005), so that the optimal rule is to
treat all amblyopes who are no older than 61.7 months. Bootstrap re-sampling was
used to estimate standard errors. The confidence interval of each parameter excludes
0, implying that there is a significant effect of treatment at the 5 % level. Using G-
estimating Eq. (4.3) yields the same estimate of the optimal rule.

4.4.4.2 Analysis Using IMOR

Following Murphy (2003), we assume a quadratic regret, μ f (O,A) = β1(A +
sign(O−β2))

2/4, which we will approximate with

μ̆ f (O,A) =
β1

4

[

A+ 2

(

e−30(O−β2)

1+ e−30(O−β2)
− 1

2

)]2

. (4.8)

The expit function is scaled by −30 to reflect that treatment is to be recommended
below a given age threshold, rather than above. Minimizing the LHS of Eq. (4.4) es-
timates β1 (95% CI) as 0.000 [0,0.007), while β2 is undefined since the scale param-
eter is not significantly different from zero, suggesting no effect of treatment. The
confidence interval for β1 may not be precise since the estimate is on the boundary
of the parameter space.

The regret model implies a (discontinuous) blip whose form implies that it is
equally disadvantageous to receive occlusion when one should not as it is to have
occlusion withheld when it is needed. It further implies that the negative impact of
inappropriate treatment is the same regardless of a child’s age.
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4.4.4.3 IMOR Using the Model μ(O,A)

The G-estimation result, which suggests that occlusion is beneficial but less so at
older ages, is in keeping with medical knowledge of neuro-development. Both the
models and the methods of estimation varied between the two analyses described
above, and so we now investigate further to discern the source of the differing
results.

The linear blip of Eq. (4.7) implies a symmetric regret:

μ(O,A) = |ψ0 +ψ1O|× (A− sign(ψ0+ψ1O))2/4

= |β −O|× (A+ sign(O−β))2/4 (4.9)

when treatment should occur for low values of O, which, using G-estimation, is
estimated to be

μ(O,A; ψ̂) = |0.847− 0.014O|× (A+ sign(O−61.7))2/4

= |61.7−O|× (A+ sign(O−61.7))2/4.

Suppose that the model of the regret from the G-estimation approach, described in
(4.9), is correct and take the optimal treatment to be: treat only patients who are
no older than 62 months. The threshold β2 in the SNMM described by μ̆ f (O,A)
corresponds to −ψ0/ψ1 = 62 from μ(O,A) in Eq. (4.9). To help visualize this, let
β2 = 62 and arbitrarily choose β1 = 0.4; then the model μ f (O,A) is a step function
(Fig. 4.2), which assigns equal regret to all treatment regimes other than that which
is optimal. If the model of Eq. (4.9) is correct, then μ f (O,A) is not capturing its
“peakedness” and it is in exactly this case that simulations have shown the IMOR
method to perform less well (Murphy 2003).
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Fig. 4.2 (a) Optimal blip and (b) regret functions. The blue lines are under linear blip parameter-
ization, the red, under μ f (O,A), and the dashed line is the threshold for the optimal rule. In (b),
the solid lines are regrets for A = 1, the dotted lines, for A =−1
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Using IMOR to find β using model (4.9), i.e. |β −O|× (A+ sign(O−β ))2/4,
gives estimates similar to those found via G-estimation: β̂ (95 % CI) = 61.3
(58.6,64.1). Thus, when comparable blip and regret models are used, G-estimation
and IMOR yielded similar estimates. Restricting the analysis to the children who
were followed to 12 weeks resulted in the same decision rule (61 months), and
varying the number of hours of occlusion required to define treatment also failed to
substantially change the optimal decision rule.

4.4.5 Simulation of a Two-Stage Occlusion Trial
for Treatment of Amblyopia

Suppose that children aged 36–96 months are treated for amblyopia by eye patching
over 12 weeks, with a check-up at 8 weeks. The outcome is a utility function incor-
porating a child’s visual acuity and a measure of psychological stress endured due
to wearing an eye patch. Variables are distributed as follows:

Age: O1 ∼ Uniform(36,96)

Week 8 visual acuity: O2 = O1 +(1− 0.8O1)(A1 + 1)/2+ ε
Outcome under optimal treatment: Y (Aopt

1 ,Aopt
2 ) = |δ |+O1/400−O2/30

where ε ∼ N (0,0.05), δ ∼ N (0,0.12) are independent of each other and of
Ā2, Ō2,Y . Treatments A j takes value 1 with probability p j, where p1 = expit(2−
0.03O1) and p2 = expit(−0.1+ 0.5O2). The optimal blips,

γ1(H1,A1) = E[Y (A1,A
opt
2 )−Y(0,Aopt

2 )|H1,A1] = (18− 0.3O1)(A1 + 1)/2,

γ2(H2,A2) = E[Y (A1,A2)−Y(A1,0)|H2,A2] = (4+ 0.5O2+A1)(A2 + 1)/2

and corresponding regrets

μ1(H1,A1) = |18− 0.3O1|(A1 −Aopt
1 )2/4,

μ2(H2,A2) = |4+ 0.5O2+A1|(A2 −Aopt
2 )2/4

give observed outcome Y (A1,A2) = Y (Aopt
1 ,Aopt

2 )− μ1(H1,A1)− μ2(H2,A2) under
the assumption of additive local rank preservation.

In 1,000 simulations, both G-estimation and IMOR perform well in terms of
bias (Table 4.2). The expected counterfactual model is mis-specified: when the opti-
mal blip is linear, the expected counterfactual, E[Gmod, j(ψ)|Hj,A j−1], is disjoint and
piece-wise linear (Moodie et al. 2007). In these simulations, neither G-estimation
with an incorrect model for E[Gmod, j(ψ)|Hj,A j−1] nor IMOR dominates the other in
terms of efficiency over all six decision rule parameters.
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Table 4.2 Comparison of G-estimation and IMOR for two stages in 1,000 data sets of sample size
500: A hypothetical trial of occlusion therapy for treatment of amblyopia

G-estimation IMOR
Eq. (4.2) Eq. (4.3)

ψ ψ̂ SE ψ̂ SE ψ̂ SE
n = 500

ψ10 = 18.0 17.845 2.554 17.984 0.717 17.996 0.561
ψ11 =−0.3 −0.298 0.038 −0.300 0.009 −0.300 0.008
ψ20 = 3.0 3.059 2.122 3.000 0.652 3.023 0.416
ψ21 = 0.5 0.456 3.001 0.507 0.857 0.475 0.635
ψ22 = 2.0 1.952 2.750 2.006 0.728 1.986 0.613
ψ23 = 0.0 0.016 4.630 −0.031 1.017 0.010 0.985

n = 1,000
ψ10 = 18.0 17.914 1.734 17.998 0.470 18.019 0.381
ψ11 =−0.3 −0.299 0.026 −0.300 0.006 −0.300 0.006
ψ20 = 3.0 3.031 1.463 2.994 0.447 3.014 0.281
ψ21 = 0.5 0.469 2.068 0.506 0.582 0.483 0.432
ψ22 = 2.0 1.968 1.886 2.002 0.508 1.987 0.418
ψ23 = 0.0 0.028 3.171 −0.008 0.700 0.017 0.674

n = 2,000
ψ10 = 18.0 17.916 1.197 17.997 0.327 18.006 0.269
ψ11 =−0.3 −0.299 0.018 −0.300 0.004 −0.300 0.004
ψ20 = 3.0 3.085 1.012 3.018 0.314 3.018 0.193
ψ21 = 0.5 0.386 1.432 0.473 0.412 0.473 0.297
ψ22 = 2.0 1.902 1.302 1.976 0.355 1.976 0.288
ψ23 = 0.0 0.144 2.196 0.030 0.487 0.038 0.463

4.5 Discussion

In this chapter, we have considered semi-parametric approaches to finding the
optimal DTR via modeling contrasts of conditional mean outcomes: G-estimation
and regret-based methods including an iterative minimization method and regres-
sion. We attempted to elucidate the connections between both the different types of
models (blips, regrets, and Q-functions) as well as the estimation approaches them-
selves.

G-estimation can estimate the effects of treatments in longitudinal data and in
particular, can estimate optimal DTRs even in the presence of measured confound-
ing variables through the use of treatment models. G-estimation avoids the diffi-
cult task of specifying a complete likelihood for the longitudinal distribution of
treatment, covariates, and response in each interval. G-estimation is similar, and in
some cases identical, to Q-learning. It is very flexible, and allows the analyst to
consider a larger set of potential treatment regimes than can typically be considered
in marginal structural models considered in Sect. 5.2.

Regret-based methods of estimation are in many cases similar to G-estimation
(and in some cases identical), and there is a simple transformation to allows conver-
sion of a regret to a blip function and vice versa. Regret-regression is particularly
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appealing because, like Q-learning, it can be accomplished almost entirely using
standard regression functions in any statistical software.

All of the methods that we have considered in this chapter are suitable for non-
randomized data, and several of these can be made doubly-robust to lessen the
dependence on model specification and often simultaneously improve precision.
All methods rely on the validity of a number of assumptions, some of which are
untestable but can be assessed at least informally using model diagnostics (see
Sect. 9.2) and substantive knowledge of the health condition under consideration.



Chapter 5
Estimation of Optimal DTRs by Directly
Modeling Regimes

In the previous chapters, we have considered methods of estimating the optimal
DTRs that typically proceed in two steps: first, they model either the conditional
mean outcomes (Q-learning) or contrasts between models for the mean outcomes
under alternative treatments (G-estimation, A-learning, regret regression) at differ-
ent stages, and then find the treatments that optimize the estimated mean or con-
trast models at each stage, ultimately leading to an optimal personalized treatment
sequence. As an alternative estimation strategy, one can directly estimate the value
or marginal mean outcome of each member in a pre-specified class of regimes D ,
often indexed by some parameter ψ ∈Ψ , and then pick the regimes that maximize
the estimated value, i.e. the estimated optimal regime is given by

d̂opt = argmax
d∈D

V̂ d ≡ argmax
ψ∈Ψ

V̂ d(ψ),

where V̂ d (or, V̂ d(ψ)) is the estimated value function of the regime d (or, d(ψ)).
Perhaps one of the simplest ways to conceptualize the indexing parameter ψ is
to consider treatment rules of the form: “At stage j, change treatment when the
tailoring variable (suitable summary of the available history Hj) falls below or
above a threshold ψ”. This class of methods is known as policy search methods
in the RL literature (Ng and Jordan 2000). A variety of methods from the statistics
literature, including inverse probability weighting (Robins et al. 2000) and marginal
structural models (Robins et al. 2000; Hernán et al. 2000; Murphy et al. 2001), fall
under this class of methods. The current chapter is devoted to a detailed description
of these methods.

B. Chakraborty and E.E.M. Moodie, Statistical Methods for Dynamic Treatment Regimes,
Statistics for Biology and Health 76, DOI 10.1007/978-1-4614-7428-9 5,
© Springer Science+Business Media New York 2013
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5.1 Estimating the Value of an Arbitrary Regime: Inverse
Probability Weighting

The most crucial part of all the procedures mentioned above is the estimation
of the value function for an arbitrary regime (or, treatment policy) d. The value
of d can be estimated from a sample of n data trajectories of the form
{O1,A1, . . . ,OK ,AK ,OK+1} in several ways. Note that the expectation in the ex-
pression of value in (3.6) is taken with respect to the distribution Pd , but the data
trajectories are drawn from a distribution Pπ , corresponding to the exploration
policy π ; see Chap. 3 for more details. When d = π , the estimation is relatively
straightforward. For example, in a SMART, the investigator may be naturally in-
terested in estimating the values of the regimes “embedded” in the study (these
are the exploration policies). To make the discussion concrete, let us consider the
hypothetical SMART design (with K = 2) in the addiction management context
introduced in Chap. 2.

CBT

NTX

R

R

R

TM

TMC

CBT

EM+CBT+NTX

R

R

TM

TMC

NTX

EM+CBT+NTX

Fig. 5.1 Hypothetical SMART design schematic for the addiction management example (an “R”
within a circle denotes randomization at a critical decision point)

There are eight embedded regimes in this study; see Fig. 5.1, which is a repro-
duction of Fig. 2.2. For example, one embedded regime is, “treat the patient with
NTX at stage 1; give TM at stage 2 if the patient is a responder, and give CBT
at stage 2 if the patient is a non-responder”. Other embedded regimes can be de-
scribed similarly. Estimating the value of any of these embedded regimes can be
done by collecting all the subjects whose realized treatment experiences are con-
sistent with the rules given by the embedded regime of interest, and computing
the sample average of the primary outcome. When the regime to be evaluated, d,
is not one of the embedded regimes in a study, the estimation is more compli-
cated. Viewed from a causal inference perspective, this is a problem of estimating a
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counterfactual expectation, i.e. the expectation of the potential outcome under a
particular regime, d. One can still estimate the desired expectation by using a
change of probability measure, under the assumption that Pd is absolutely contin-
uous with respect to Pπ . The implication of absolute continuity is that any trajec-
tory that can result in the implementation of the policy d, must also have a pos-
itive probability of occurring under the exploration policy π ; this is equivalent to
the feasibility1 condition discussed in Chap. 2. Let Y be the primary outcome; in
settings with stage-specific outcomes Yj(Hj,A j,O j+1) as in Chap. 3, one can set
Y = ∑K

j=1 Yj(Hj ,A j,O j+1). Then under the feasibility assumption, one can write the
value function as

V d = EdY =

∫

Y dPd =

∫

Y

(
dPd

dPπ

)

dPπ ,

where dPd
dPπ

is a version of the Radon-Nikodym derivative, and is given by the ratio
of the two likelihoods (3.2) and (3.1). This ratio simplifies to

K

∏
j=1

I[A j = d j(Hj)]

π j(A j|Hj)
.

Note that the trick of changing the probability measure employs the same basic
idea as importance sampling in Monte Carlo simulation. Thus, by changing the
probability measure as above, the expression for value becomes

V d =
∫ ( K

∏
j=1

I[A j = d j(Hj)]

π j(A j|Hj)

)

YdPπ =
∫

wd,πYdPπ ,

where

wd,π =
K

∏
j=1

I[A j = d j(Hj)]

π j(A j|Hj)

is a weight function depending on the entire data trajectory (we deliberately sup-
pressed the dependence on A j and Hj for notational simplicity). A natural way to
estimate V d is by its empirical version V̂ d ,

V̂ d = Pn

[

wd,πY
]

, (5.1)

where Pn denotes the empirical average over a sample of size n. Even though the
expectation of the weight function is 1, it is preferable to normalize the weights
by their sample mean to obtain a more stable estimate. The resulting estimator is
known as the inverse probability of treatment weighted (IPTW) estimator (Robins

1 While the term feasibility is commonly used in the causal inference literature, absolute continuity
is an older concept in measure-theoretic probability.
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et al. 2000), or more simply the inverse probability weighted or weighting (IPW)
estimator, and is given by

V̂ d
IPTW =

Pn
[

wd,πY
]

Pn
[

wd,π
] . (5.2)

In the case where the data arise from a SMART, the exploration policy consisting
of the randomization probabilities π j(A j|Hj) is known by design. Hence, by the law
of large numbers, the IPTW estimator is consistent. However, the IPTW estimator
is highly variable due to the presence of the non-smooth indicator functions inside
the weights.

Recently Zhang et al. (2012b) proposed a similar, doubly-robust estimator of
the value function for a single-stage treatment regime, using augmented inverse
probability of treatment weighting. Let a data trajectory be given by (H,A,Y ) with
the treatment A∈ {−1,1}, and H ≡O (since this is a one-stage setting). Let d(H;ψ)

denote a regime indexed by ψ , μ(A,H; β̂ ) an estimated model for the mean outcome
as a function of baseline covariates H and treatment A, and π(H; γ̂) an estimated
propensity score. Then

V̂ d
AIPTW = Pn

{
CψY

πc(H;ψ , γ̂)
− Cψ −πc(H;ψ , γ̂)

πc(H;ψ , γ̂)
m(H;ψ , β̂ )

}

is the doubly-robust, augmented IPTW estimator of the mean outcome (value) under
treatment rule d(H;ψ) where

Cψ = I[A = d(H;ψ)],

πc(H;ψ , γ̂) = π(H; γ̂)I[d(H;ψ) = 1]+ (1−π(H; γ̂))I[d(H;ψ) =−1],

m(H;ψ , β̂ ) = μ(1,H; β̂ )I[d(H;ψ) = 1]+ μ(−1,H; β̂)I[d(H;ψ) =−1].

Thus, for a specific value of ψ (denoting a specific regime), the contribution to the
value function estimator for someone treated with A = 1 and for whom d(H;ψ) =
1 is

{
Y

π(H; γ̂)
− 1−π(H; γ̂)

π(H; γ̂)
μ(1,X ; β̂)

}

while for someone treated with A = 1 and for whom d(H;ψ) = −1 it is simply
μ(−1,X ; β̂). Similarly, the contribution to the value function estimator for someone
who received A =−1 and for whom d(H;ψ) =−1 is

{
Y

1−π(H; γ̂)
− π(H; γ̂)

1−π(H; γ̂)
μ(−1,X ; β̂)

}

while for someone with A = −1 and d(H;ψ) = 1 it is μ(1,X ; β̂ ). Thus, each indi-
vidual contributes a convex combination of their observed outcome, Y , and their
modeled outcome, μ(d(H;ψ),H; β̂ ) to the value estimator. In addition to being
more robust to model mis-specification, doubly-robust estimators tend to be more
efficient than their non-augmented counterparts (Robins 2004).
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When the ultimate interest lies in picking a regime that is optimal, one can
consider the estimated value as function of ψ , and then select the value of ψ , say
ψopt , that maximizes V ψ

AIPTW ≡ V d
AIPTW . One can view this approach as a single-

stage marginal structural modeling where the target of estimation becomes the
marginal mean conditional on baseline covariates, i.e. V ψ

AIPTW (O1), instead of the
overall marginal mean V ψ

AIPTW ; see Sect. 3.3 to understand the distinction between
the two. See Sect. 5.2 for details on the marginal structural modeling approach.
Zhang et al. (2012b) also considered a similar estimator based on a standard IPTW
formulation (i.e. without the augmentation term), but found its performance inferior
to the optimal regime estimated via the augmented IPTW estimating function.

5.2 Marginal Structural Models and Weighting Methods

Marginal structural models (MSMs) were originally proposed to estimate the effect
of static treatment regimes (Robins 1999a; Robins et al. 2000; Hernán et al. 2000),
i.e., treatment regimens that are not tailored to evolving patient characteristics; how-
ever they are increasingly being applied to the problem of estimating optimal DTRs.
These models are said to be marginal because they pertain to population-average ef-
fects (marginalizing over all time-varying covariates and/or intermediate outcomes,
and possibly also over some or all baseline covariates), and structural because they
describe causal (not associational) effects. The approach requires an initial invest-
ment in data manipulation, but is appealing because of the ease with which the mod-
els may be estimated using standard software. Furthermore, the approach provides
a mechanism for evaluating the effect of small changes in the parameter indexing
the regime (e.g. a decision rule threshold) on the average potential outcome in the
population.

Although in discussing the estimation of marginal structural models, the focus
in this text is on inverse probability weighting, estimation can also be performed by
other means such as targeted maximum likelihood (Van der Laan and Rubin 2006;
Neugebauer et al. 2010). In brief, targeted maximum likelihood estimation can
estimate treatment effects for longitudinal data in the presence of time-dependent
confounders; the method is doubly-robust and can be made to optimize asymptotic
estimating efficiency, but may not be implemented as easily as IPTW in complex
scenarios.

5.2.1 MSMs for Static Treatment Regimes

A marginal structural model is a model for the marginal expectation of a counter-
factual outcome under a specified static treatment regime and, in great generality,
we can express an estimating function for a MSM by

UIPW (Y (a),HK |w,β ) = w(A|HK)
∂

∂β
V a(O1;β )[Y −V a(O1;β )]
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where O1 denotes baseline covariates; any subset of O1 may be used in modeling,
including the empty set. Most often, V a(O1;β ) is a specified as a linear combination
of components of a and O1, but recently more flexible, spline-based models have
been considered (Xiao et al. 2012).

When the randomization probabilities in a study are unknown (e.g. a typical
observational study), a nuisance model for the probability of receiving treatment
must be fit first, to be able to estimate the parameters of an MSM. The treatment
model is then used to weight individuals by the inverse probability of receiving the
observed treatment (given history) in an unadjusted model for the outcome as a
function of treatment. Stabilization of the inverse probability of treatment weights,
as in equation (5.2), is commonly used to reduce the variability of MSM estimators
that can arise when some combinations of covariates are rare (Sturmer et al. 2005).
If the treatment model is correctly specified with respect to confounding variables,
the estimator of the marginal effect of treatment has a causal interpretation.

As with all models for observational data, MSMs require strong assumptions to
allow a casual interpretation of model parameters (Robins et al. 2000). As noted
in Chap. 2, we require the assumptions of no unmeasured confounding (sequential
randomization), time ordering (treatment precedes outcome) and consistency. In ad-
dition, we require positivity: that all combinations of covariates are possible (Robins
et al. 2000; Mortimer et al. 2005).

The earliest use of MSMs for DTR estimation was undertaken to compare a
DTR which assigned one of three levels of an intervention with a static regime
corresponding to no intervention (Murphy et al. 2001). This approach used stan-
dard (static regime) MSM methodology to estimate the mean outcome under a
small number of candidate treatment regimes. History-adjusted MSMs were next
proposed as a means of estimating “statically optimal” DTRs; this approach re-
quires assuming a different MSM at each stage to permit investigation of interac-
tions between treatments and time-varying tailoring variables. Using notation from
Sect. 3.3, this is equivalent to modeling V a(Hj) for 1≤ j ≤ K. A potential limitation
of this approach is that it is possible to propose models at different stages which are
not compatible. MSMs were further developed to allow estimation of the treatment
tailoring threshold, allowing assessment of a much wider range of candidate treat-
ment rules (Hernán et al. 2006; Petersen et al. 2007; Van der Laan and Petersen
2007a; Robins et al. 2008; Orellana et al. 2010a,b; Cotton and Heagerty 2011).

5.2.2 MSMs for Dynamic Treatment Regimes

Comparing multiple dynamic treatment regimes in a marginal structural modeling
framework requires first the realization that an individual study participant’s ob-
served treatment history may be compatible with several treatment regimes, at least
for some part of the observation period. From a practical perspective, this implies an
augmentation of the original data set to create multiple copies of the same individual
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for each regime with which their observed history is consistent; we follow Shortreed
and Moodie (2012) in calling these copies replicates. For example, if an individual’s
data are consistent with regime d̄K through stage j, we say that the replicate follows
that regime through stage j; at the point where the individual’s observed history is
no longer compatible with regime d̄K , the replicate corresponding to that individ-
ual and threshold ψ is artificially censored. A weighted analysis of this augmented
data set with artificial censoring mimics an analysis of a trial in which individuals
are randomized to follow one of the treatment regimes of interest, under the as-
sumptions of Sect. 2.1.3 as well as the assumptions of correct specification of the
marginal response model.

MSMs for a Single-stage Treatment Rule

Zhao et al. (2012) and Zhang et al. (2012b) proposed closely related approaches
that straddle the static and dynamic regime settings, in that they seek to estimate
a personalized treatment rule, but do so in a single-stage setting only so that the
regime is not truly dynamic, or changing, over time. The approach of Zhang et al.
(2012b) has already been discussed in Sect. 5.1; we will discuss the approach of
Zhao et al. (2012) in Sect. 5.3 while considering classification-based approach to
estimating the value function.

MSMs for Multi-stage DTRs

As in the case of estimating the optimal treatment rule for a single stage of treat-
ment, estimation of the optimal DTR for multi-stage treatments requires finding the
regime d that maximizes the population average outcome V d(O1) = Ed [Y |O1] =
E[Y (d)|O1], or alternatively V d = E[Y (d)]. Then

UIPW (Y (d),HK |w,β ) = w(A|HK)
∂

∂β
V d(O1;β )[Y −V d(O1;β )]

= w(A|HK)
∂

∂β
V a(O1,ψ ;β )[Y −V a(O1,ψ ;β )]

is the estimating function for the marginal structural model, where w = w(A|HK) is
a weight for a replicate in the augmented data set, and the threshold ψ is treated as
a covariate in the outcome model, which is parameterized by β . The weight w is
constructed by taking the product of the probability of receiving the assigned treat-
ment regime and the probability of continued observation, i.e. of not being lost to
follow-up (not censored) or artificially censored, of a replicate in the augmented
data set under the assigned treatment regime. It is typically the case in MSM es-
timation of DTRs that, given a replicate’s current covariates and a regime thresh-
old ψ , the probability of continued observation at any stage j is equivalent to the
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time-dependent probability of being observed and treated, much as in the analysis
of HIV treatment initiation by Cain et al. (2010). That is, censoring is a determin-
istic function of the history of treatment and the history of covariates in addition to
the threshold ψ . Thus, for DTR analyses, it is usually the case that only censorship
weights are required, unlike in the static-regime MSMs where both treatment and
censoring models are needed to construct the weights.

The weights are often unknown; even when such probabilities are known, the
probabilities may be estimated to improve efficiency of the estimators of ψ of
the marginal model (Van der Laan and Robins 2003). This counter-intuitive phe-
nomenon, examined in detail by Henmi and Eguchi (2004), can occur if the two
components (that for the parameters of interest and that for the nuisance parameters)
of the estimating functions are orthogonal; see Sect. 8.1.1 for details. The variance
reduction can occur in fully parametric settings, but is more often observed in semi-
parametric settings; in the context of semi-parametric estimation, we can gain some
insight into the efficiency gain by realizing that estimating more components of
the full likelihood, when done using correctly specified models, is in some senses
“closer” to a fully parametric likelihood based approach and is therefore more effi-
cient than a semi-parametric modeling approach. Provided the weights are estimated
using consistent estimators of the treatment and censoring models which adequately
eliminate confounding the optimal threshold ψ can be identified. This is accom-
plished by solving

n∗

∑
i=1

UIPW (Y (d),HK |w,β ) = 0 (5.3)

where the subscript i is used to refer to an individual-regime pair in the augmented
data set, that is a person and a value of the parameter ψ , and n∗ is the total number
of individual-regime pairs.

As in MSMs for static treatment regimes, stabilization of weights is preferable
to the use of unstabilized weights (Robins et al. 2000), especially when weight vari-
ability is high: by reducing the variability of the weights, the variability of the entire
estimation procedure is often controlled. Although better efficiency is typically ob-
served with stabilized weights, it is not guaranteed. Furthermore, unlike in the con-
text of static treatment regimes, the numerator weight used for stabilization in the
dynamic treatment regimes context must condition only on baseline covariates but
not on treatment received in previous stages (Cain et al. 2010). Additionally, trun-
cation of the weights can decrease the chance that a small number of replicates will
have undue influence on the results of the analysis. The weights for censoring are
estimated using

P(Ci j = 0|O1,i,Ci, j−1 = 0,ψ)

P(Ci j = 0|O1,i,Oi j,Ci, j−1 = 0,ψ)
,

where Ci j = 1 denotes that a replicate was censored at stage j. Note that Cj = 0 im-
plies C1 =C2 = . . .=Cj−1 = 0. These models are typically fit via logistic regression.
Note that it is the models for the denominators of the weights that must contain all
time-varying confounders for consistent estimation of the parameters of the MSM
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(Robins 1999b). Furthermore, unlike in the stabilization of weights for marginal
structural model estimation of static treatment regimes, the probabilities in the
numerators cannot condition on treatment history (Cain et al. 2010).

We provide below an outline of the steps required to perform MSM estimation
of a dynamic treatment regime of the form “change treatment when the tailoring
variable O falls below ψ” for ψ ∈Ψ . We use the term original data to refer to the
data available in the study in question, which is in contrast to the augmented data
which is obtained by replicating individuals from the original data for each regime
(indexed by the threshold ψ) with which their data are compatible. The estimation
procedure is as follows:

1. Create an augmented data set by replicating individuals enrolled in the original
study data; recall that the term replicate is used to refer to a row in this augmented
data set, i.e. a person-threshold pair.

2. Censor replicates in the augmented data (setting Ci j = 1) at the first stage j in
which their data are no longer consistent with the ψ-regime in question. This is
sometimes referred to as artificial censoring.

3. Estimate censoring models to account for the fact that artificial censoring may be
(and typically is) informative. This ensures parameter estimates are not biased by
any covariates that may be predictive of both censoring and the outcome. Using
these models, construct stabilized censorship weights, taking the stage-specific
probability of being observed for each replicate at stage j to be:

wi( j) =
P(Ci j = 0|O1,i,Ci, j−1 = 0,ψ)

P(Ci j = 0|O1,i,Oi j,Ci, j−1 = 0,ψ)
.

Then construct the final weight for each replicate i by taking the product over all
observed stages, wi = ∏ j wi( j).

4. Perform a weighted linear regression with weights wi to obtain the coefficient
estimates of the model E[Y (d)|O1] =V a(O1,ψ ;β ). Typically, the model posited
for V a(O1,ψ ;β ) will not be monotonic, but rather will allow for a flexion point,
thus allowing the value to be maximized at some value ψ other than the bound-
aries of Ψ .

Cotton and Heagerty (2011) have proposed an approach that is closely related to
the above algorithm, but rather than creating a replicate for each person-threshold
pair, they propose generating m data sets in which patients are randomly assigned
to one of the treatment regimes with which their data are compatible. Each of the
m data sets is then analyzed as a single, complete data set in which regime mem-
bership is treated as known and unique. To date, no studies have been conducted
to determine the relative performance of the two data-augmentation approaches to
DTR MSM estimation.
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5.2.3 Simulation of a DTR MSM Analysis to Determine
the Optimal Treatment Threshold

To demonstrate the principle of estimating DTRs using MSMs, we provide a
simulated example based on the work by Moodie (2009b). The general data-
generating model of Bembom and Van der Laan (2007) is used, though somewhat
simplified by restricting consideration to a two-treatment setting. The simulation
considered data O1,A1,O2,A2,O3 where O j ( j = 1,2,3) is a health indicator
(e.g. CD4 cell counts) and A j ( j = 1,2) is an indicator of which of two treat-
ments (coded −1 and 1) was received at stage j. The outcome was Y = O3 −O1,
and the variable used for treatment switching was S=O2−O1. Patients are assumed
to have (unmeasured) susceptibility, U0, to one treatment option with probability
0.7. Susceptibility, U1, to the second treatment option occurs with probability 0.4
in those individuals susceptible to the first option and with probability 0.6 in those
individuals not susceptible to the first option. See Fig. 5.2.

O1

A1

O2

A2

X

O3

U0, U1

Fig. 5.2 Data-generating structure for the DTR MSM simulation

Following Bembom and Van der Laan (2007), O1 was generated from a uniform
(200, 800) distribution and O j, j = 2,3, were generated from a normal distribution
with mean π j, variance 102 where

π j = O j−1 − 40+ 50U0I[A j−1 =−1]+ 60U1I[A j−1 = 1]+ 1.2 jI[ j = 3]X ,

where X is a measured risk factor that is uniformly distributed on the range (−6, 3).
Treatment in the first stage, A1, was randomly allocated with equal probability given
to each option. In the second stage, treatment was again randomly allocated to all
individuals for whom S ≥−50; all individuals with S <−50 switched treatments.

Denote the mean response under treatment rule “treat with A1 = a1 then switch
to A2 = −a1 if S < ψ” by V (a1,ψ). The true values of V (a1,ψ) and of the optimal
threshold were determined by Monte Carlo simulation. Bembom and Van der Laan
(2007) were followed in assuming a simplifying, quadratic form for the relationship
between the switching threshold, ψ , and the expected response. Figure 5.3 depicts
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Fig. 5.3 The dependence of V (a1 ,ψ) on the threshold ψ: truth (thick black lines) and projections
onto a quadratic function (thinner grey lines)

the true dependence of the mean responses V (−1,ψ) and V (1,ψ) on the treatment-
switching threshold ψ , and the projection of these functions onto quadratic models
over the range of potential thresholds (−30, . . . ,20). The true optimal rule is given
by initial treatment A1 = −1 followed by a switch to A2 = 1 if the health indicator
is not increased by at least 12; if the initial treatment is A1 = 1, the optimal decision
is to switch to treatment A2 = 1 if the health indicator is not increased by at least
10. The projection of V (a1,ψ) onto quadratic models, however, yields slightly less
aggressive treatment rules: if initial treating is A1 = −1, switch to A2 = 1 if the
health indicator is not increased by at least 8 while for initial treatment A1 = 1,
switch to A2 =−1 if the indicator is not increased by at least 10.

Fifty-two candidate dynamic treatment regimes are evaluated, indexed by initial
treatment and the switching threshold ψ ∈ {−30,−28, . . .,18,20}, considering the
following mean models:

E[Y |A1,A2,ψ ;γ] = I[A1 =−1,A2 = 1](γ01,0 + γ01,1ψ + γ01,2ψ2)+

I[A1 = 1,A2 =−1](γ10,0 + γ10,1ψ + γ10,2ψ2)

E[Y |A1,A2,ψ ,X ;β ] = I[A1 =−1,A2 = 1](β01,0 +β01,1ψ +β01,2ψ2)+

I[A1 = 1,A2 =−1](β10,0 +β10,1ψ +β10,2ψ2)+β3X ,

which we refer to as Model 1 and Model 2, respectively.
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Results are presented in Table 5.1. Including the predictive variable in the re-
sponse model leads to reduced mean squared error for the estimators of the param-
eters of the quadratic projection of the response onto the decision rule threshold.
In terms of the decision rule itself, the median estimated optimal threshold over
the 5,000 simulated data sets coincides for Models 1 and 2 and indeed the median
values equal the values of the threshold that maximize the quadratic projection of
the true dependence of the mean response onto ψ . However, the interval formed by
taking the 2.5-th and 97.5-th percentiles in the distribution of thresholds is narrower
for Model 2 than Model 1. For example, the interval formed over the simulated data
sets for the optimal threshold for the regime A1 = −1,A2 = 1,ψ is (6, 10) if X is
included in the response model, and (4, 14) otherwise.

Table 5.1 Threshold rules for a continuous response estimated via MSMs. Bias, Monte Carlo
standard error (SE), and root mean squared error (rMSE) of parameters estimating the dependence
of the response, V (a1 ,ψ), on the decision threshold ψ in a quadratic model. Model 1 omits the risk
factor X from the response model; Model 2 does not. Summaries are based on 5,000 simulated
data sets, for sample sizes n = 100, 250, 500, 1,000

Model 1 Model 2
Bias (%) SE† rMSE† Bias (%) SE† rMSE†

A1 = 0,A2 = 1
n = 100 ψ 13.29 8.64 8.78 13.23 5.91 6.11

ψ2 9.16 0.42 0.43 9.42 0.31 0.32
n = 250 ψ 12.91 5.43 5.64 12.72 3.71 4.00

ψ2 8.85 0.26 0.27 8.56 0.20 0.21
n = 500 ψ 13.29 3.75 4.05 13.50 2.57 3.01

ψ2 8.67 0.18 0.19 8.64 0.14 0.15
n = 1,000 ψ 12.59 2.67 3.04 12.48 1.81 2.32

ψ2 8.38 0.13 0.14 8.24 0.10 0.11
A1 = 1,A2 = 0

n = 100 ψ 6.64 12.44 12.54 7.11 9.26 9.42
ψ2 0.38 0.56 0.56 0.59 0.41 0.41

n = 250 ψ 6.69 7.72 7.89 6.54 5.77 5.98
ψ2 0.94 0.35 0.35 1.01 0.25 0.25

n = 500 ψ 7.02 5.41 5.67 6.75 4.06 4.38
ψ2 0.51 0.24 0.24 0.77 0.18 0.18

n = 1,000 ψ 7.09 3.86 4.23 6.99 2.93 3.39
ψ2 0.33 0.17 0.17 0.47 0.13 0.13

†Multiplied by 102

5.2.4 Treatment for Schizophrenia: An Illustration

The Clinical Antipsychotic Trials of Intervention and Effectiveness (CATIE) study
was an 18-month multi-stage randomized trial (SMART) of 1,460 patients (Swartz
et al. 2003; Stroup et al. 2003; Lieberman et al. 2005; McEvoy et al. 2006; Stroup
et al. 2006). One of the primary scientific questions considered by the CATIE
study was a comparison of the effectiveness of atypical antipsychotic drugs to a
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mid-potency typical (first generation) antipsychotic (Stroup et al. 2003). At entry
into CATIE, patients were randomized to either the typical antipsychotic or to one
of four possible atypical medications, three of which will be considered as a group
in this analysis.2

Here, an analysis undertaken by Shortreed and Moodie (2012) will be presented.
The goal of the analysis was to identify the optimal treatment regime so as to mini-
mize schizophrenic symptoms while reducing exposure to the typical antipsychotic,
which bears the risk of a debilitating and irreversible side effect. Two regimes were
compared: the first is always atypical (AA), and the second is typical and atypical
(TA(ψ)). The AA regime is a static regime, which calls for treatment with any one of
the atypical antipsychotic drugs under study for 12 months, with switches between
the three medications permitted as part of the regime should the patient and physi-
cian find the current medication ineffective or its side effects intolerable. TA(ψ) is
a dynamic regime, indexed by threshold ψ , in which any patients whose Positive
and Negative Syndrome Scale (PANSS) score is at or above ψ at study entry will
receive the typical (first generation) antipsychotic, while those with PANSS scores
below ψ will receive an atypical antipsychotic medication. As part of this regime,
during the follow-up period, those patients who begin on the typical antipsychotic
will be switched to an atypical antipsychotic when symptom severity, as measured
by the PANSS score, decreases beyond the threshold ψ . Thus, this regime assigns
the typical antipsychotic to patients with high symptom severity in order to reduce
symptoms as measured by the PANSS score; once the symptoms are under con-
trol, i.e. under the specified threshold, the patient’s treatment is then switched to an
atypical medication in order to reduce the patient’s long term risk of side effects.
As in the AA regime, once a patient initiates treatment with an atypical antipsy-
chotic, changes between different atypical antipsychotic drugs are permitted under
the TA(ψ) regime.

We now apply the algorithm outlined in Sect. 5.2.2 to the CATIE context. The set
of thresholds considered for initiating an atypical antipsychotic at baseline or
switching away from the typical antipsychotic and onto an atypical antipsychotic
consists of Ψ = {30,35,40,45,50,55,60,65,70}, with ψ = 30 representing the
regime always treat with the typical antipsychotic as no PANSS scores in the sample
lie below 30. The estimation procedure for a complete data set proceeds as follows:

1. Create the augmented data set, replicating individuals in the CATIE study. Repli-
cates can correspond to the regime AA as well as each of the dynamic regimes
under consideration indexed by threshold ψ , TA(ψ). Each CATIE participant
is replicated according to the number of regimes, as listed below (i)–(iii), that
they follow for any length of time over the 12 months under consideration in this
analysis.

(a) AA: treat with an atypical antipsychotic, regardless of PANSS score;
(b) TA(30): always treat with the typical antipsychotic;

2 The fourth was not FDA-approved at the time CATIE began enrollment; consequently more than
a third of the study participants were not eligible to receive it. We therefore excluded all participants
assigned to this drug in our analysis.
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(c) TA(ψ), ψ ∈ (Ψ\30): treat with the typical antipsychotic at baseline if PANSS
score is ψ or higher, then switch to an atypical antipsychotic when PANSS
scores falls below ψ ; if the PANSS score is below ψ at baseline, treat with an
atypical antipsychotic for 12 months.
Note that if a replicate’s baseline PANSS score is less than the threshold ψ∗
and the individual was assigned the typical antipsychotic at enrollment in the
CATIE trial this replicate is not deemed consistent with the regime TA(ψ∗).
Any replicate with a baseline PANSS score below the threshold ψ∗ is consid-
ered to follow the regime TA(ψ∗) only if their initial assigned treatment in the
CATIE study was an atypical medication.

2. Censor CATIE replicates in the augmented data set at the month that any of the
three following events occur:

(a) An individual, and thus all corresponding replicates, is randomized to a drug
not considered in the current analysis.

(b) An individual, and thus all corresponding replicates, progresses to the unran-
domized, unblinded stage of the trial prior to month 12.

(c) A replicate, for which the corresponding individual is initially assigned the
typical antipsychotic, is censored for no longer following their assigned dy-
namic treatment regime. That is, given a PANSS threshold ψ , replicates may
stop following the regime for one of two reasons:
(i) Before choosing to switch off the typical antipsychotic, a replicate’s

PANSS score falls below the threshold ψ of their assigned regime.
(ii) At the visit that treatment is switched from the typical antipsychotic, the

PANSS score is equal to or greater than ψ .

Note that censoring individuals for reasons (a) and (b) could occur in any analysis
of the CATIE data depending, of course, on the scientific question of interest; we
refer to this as off-study censoring. Censoring for reason (c) is specific to the
data augmented dynamic treatment regimes analysis, and we refer to this type as
simply artificial censoring.

3. Estimate censoring models to ensure parameter estimates are not biased by any
covariates that may be predictive of both censoring and 12-month outcome. Esti-
mate stabilized censorship weights using the baseline variables listed below and
a spline on month of observation with knots at months 1,2, . . . ,11 to ensure con-
tinuity at the knots. Specifically, the baseline variables were:

• years on prescription antipsychotic medication;
• a binary indicator of hospitalization in the 3 months prior to CATIE entry;
• factors of the categorical variables site type, sex, race, marital status, educa-

tion, employment;
• PANSS score;
• body-mass index;
• alcohol and drug use;
• Calgary depression score;
• presence and severity of movement disorders;
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• quality of life;
• physical and mental functioning;
• and the threshold, ψ .

All baseline covariates are included in the numerator of the stabilized weights. In
addition to the baseline variables, the model for the denominator of the weights
includes baseline treatment, current (time-varying) values of body mass index,
alcohol and drug use, PANSS score, Calgary depression score, presence and
severity of movement disorders, quality of life, physical and mental function-
ing, medication adherence, date of observation, and previous month’s treatment
assignment. The baseline covariates are also included as linear terms in the final
response model which was estimated using the weighted, augmented data set.
Censorship models are estimated at each month, as individuals may switch treat-
ment at any month in the CATIE study. Since not all variables were collected at
every month, we use the last scheduled value for those covariates that were not
collected at a particular monthly visit. Following convention, all weights were
truncated at 10 to avoid excess variability (Cain et al. 2010; Van der Laan and
Petersen 2007a).

4. Perform a weighted linear regression with the weights constructed as in the pre-
vious step to obtain the coefficient estimates of the model

E[Y (d)|O1] = V a(O1,ψ ;β )

= β1I[a = AA]+ I[a = TA(ψ)](β2 +β3ψ +β4ψ2)+
40

∑
k=1

β4+kO1,k

where {O1,k} is the collection of baseline variables used in the numerator of the
stabilized censorship weights.

Missing data are handled by multiple imputation (Shortreed et al. 2010), while
confidence intervals are constructed using a bootstrap procedure (Shao and Sitter
1996). Results are summarized in Fig. 5.4, which shows the predicted mean 12-
month PANSS scores for an individual who is Caucasian and unmarried, who grad-
uated from college, had not been hospitalized in the 3 months prior to CATIE, was
not employed at entry into the CATIE study, had spent 13 years on prescription
anti-psychotic medications prior to CATIE, was recruited from a university clinic,
had an average baseline PANSS score (75.58), was classified as moderately ill by
the clinician global impression of illness severity index, had no drug or alcohol
use as judged by the clinician, had no movement disorder symptoms at baseline as
measured by any of the three movement disorder scales, and had average baseline
values of body-mass index (29.8), Calgary Depression score (4.7), quality of life
score (2.8), and mental and physical function as measured by the SF-12. The co-
efficient estimates (95 % CI) are β̂1: 62.9 (50.9, 74.7); β̂2: 60.8 (58.2, 73.0); β̂3:
7.7× 10−1(3.3× 10−1,1.02); β̂4 : −6.0× 10−3(−8.6,−2.0)× 10−3. These results
suggest that the treatment regimes “always treat with a typical antipsychotic” and
“always treat with an atypical antipsychotic” are equivalent treatment strategies in
order to reduce 12-month symptoms, as there was no significant difference between
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the predicted mean of these two regimes. As the threshold used for switching from
the typical to an atypical antipsychotic is increased, 12-month PANSS score in-
creases. The statistically significant threshold, ψ , indicates that there is merit to
tailoring within the TA(ψ) regime, and suggests that for most smaller values of ψ ,
reduced PANSS scores are observed at 12 months if initial therapy with the typical
antipsychotic is continued rather than changing therapy depending on ψ .
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Fig. 5.4 Predicted 12-month PANSS scores from dynamic MSM for the regimes AA and TA(ψ).
The horizontal axis indicates the threshold values for the TA(ψ) regime

5.3 A Classification Approach to Estimating DTRs

A change in perspective occurred with the use of marginal structural models to
estimate dynamic treatment regimes, as focus shifted to parameterize and estimate
the treatment rule directly, rather than to estimate a function of the mean or a contrast
between means and then derive the implied treatment rules. This idea was taken a
step further by Zhang et al. (2012a) and Zhao et al. (2012), who recast the estimation
of the optimal decision rule as a classification problem for a single stage setting.
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5.3.1 Contrast-Weighted Classification

It is first critical to note that the expected counterfactual outcome (i.e. value) under
a treatment regime d can be expressed as a function of that regime and the con-
trast function C(H) = μ(H,1)− μ(H,−1) where μ(H,A) is a model for the mean
outcome as a function of the treatment A (coded as −1/1) and the covariate H:

V d = E[Y (d)] = E
[

I[d(H) = 1]C(H)
]

+E[μ(H,−1)]

for d(H) = 2 · I[μ(H,1)> μ(H,−1)]−1. Thus, if an estimate of the contrast func-
tion C(H), say Ĉ(H), were available, the optimal regime could be found by taking:

dopt(H) = argmax
d

Pn [d(H)Ĉ(H)].

We briefly note that in a single stage case, an estimate of the contrast could be
found by regression (Q-learning), where parameters in the mean outcome model
μ(H,A;β ) are estimated to give Ĉreg(H) = μ(H,1; β̂)− μ(H,−1; β̂); or by G-
estimation, where the contrast itself is modeled, yielding ĈG(H); or indeed in any
number of ways including the augmented IPW approach of Zhang et al. (2012b).
Using either of the first two of these approaches, an optimal regime could be found
by recommending treatment whenever the estimated contrast exceeds 0. The disad-
vantage to this approach is that there is strong reliance on correct specification of the
model for the contrast (or the mean outcome); as we observed in Sect. 3.5, incorrect
specification of the model can lead to considerable bias and very poor coverage.

The classification approach, then, aims to separate the estimation of the optimal
regime from the modeling of the contrast to reduce the dependence of the optimal
regime estimator on the specification of the contrast. Zhang et al. (2012a) and Rubin
and van der Laan (2012) have independently shown that

dopt = argmax
d

E
[

I[d(H) = 1]C(H)
]

= argmin
d

E
[

W (Z − d(H))2]

where W = |C(H)| and Z = sign(C(H)). That is, they show that the optimal treat-
ment decision is the one that minimizes the distance between the rule, d(H), and the
rule implied by the contrast, Z = sign(C(H)), where that distance is weighted by the
relative importance of treating that individual, W = |C(H)|. That is, the goal is to
minimize the error for the response Z using covariates H in the classification rule
d. This can be accomplished using a host of different non-parametric classification
methods (e.g. trees) and does not require a parametric form for the treatment regime.
The authors further note that the augmented IPW estimator introduced in Sect. 5.1
is a special case of this type of classification-based estimator. In simulation, Zhang
et al. (2012a) showed that the classification-based estimator of the optimal DTR
using the augmented IPW estimate of the contrast performed very well, even when
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the true form of the decision rule was not characterized by a tree. However, the sim-
ulation results also demonstrated that the classification approach that took the es-
timated contrast from a regression or via non-augmented IPW often exhibited the
worst performance. It is perhaps not surprising that the quality of the estimated con-
trast can seriously affect the classification-based estimator, as the estimated contrast
is used to define the response, or target classification: Z = sign(C(H)).

5.3.2 Outcome Weighted Learning

Zhao et al. (2012) developed a method based on the IPTW approach to identifying
the optimal regime and termed it outcome weighted learning (OWL), in recognition
of the machine learning flavor present in the approach. Clearly the expected outcome
(value) under a treatment rule d is given by

V d
IPTW = E

[
I[A = d(H)]

Aπ(H)+ (1−A)/2
Y

]

where the treatment A is coded as −1/1 with π(H) = P(A = 1|H). Note that the
denominator reduces to the probability of being treated amongst those treated (A =
1), i.e. π(H), and the probability of not being treated amongst those who were not
(A =−1), i.e., 1−π(H). Thus the optimal rule is given by

dopt(H) = argmax
d

V d
IPTW .

Equivalently, this can be expressed as

dopt(H) = argmin
d

E

[
I[A �= d(H)]

Aπ(H)+ (1−A)/2
Y

]

= argmin
d

E

[
Y

Aπ(H)+ (1−A)/2
I[A �= d(H)]

]

,

which can be recognized as a weighted classification error. A natural estimator of
the above is

d̂opt(H) = argmin
d

Pn

[
Y

Aπ(H)+ (1−A)/2
I[A �= d(H)]

]

.

Since d(H) can always be represented as sign( f (H)), for some suitable function f
(exploiting the fact that A is coded −1/1), the above display is equivalent to finding

f̂ opt(H) = argmin
f

Pn

[
Y

Aπ(H)+ (1−A)/2
I[A �= sign( f (H))]

]

,
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and then setting d̂opt(H) = sign( f̂ opt(H)). In the machine learning literature, the
objective function appearing on the right side of the above display is viewed as a
weighted sum of 0–1 loss function, which is a non-smooth, non-convex function.
It is well-known that such a function is difficult to minimize directly. One common
approach to address this difficulty is to consider convex surrogate loss functions
instead of the original non-convex 0–1 loss (Zhang 2004). Most of the modern clas-
sification methods, as well as the classical logistic regression method, in effect min-
imize such a convex surrogate loss function; see Hastie et al. (2009, Sect. 10.6) for
a vivid discussion. In particular, Zhao et al. (2012) employed the popular hinge loss
function that is used in the context of support vector machines (Cortes and Vapnik
1995). In addition, Zhao et al. (2012) penalized the hinge loss for complexity in the
estimated f ; this is a common technique to avoid overfitting the data. Thus, follow-
ing the classification literature, Zhao et al. (2012) replaced the original minimization
problem by the following convex surrogate minimization problem:

f̂ opt(H) = argmin
f

Pn

[
Y

Aπ(H)+ (1−A)/2
(1−A f (H))++λn|| f ||2

]

,

where x+ = max(x,0), || f || is a suitable norm of f , and λn is a complexity param-
eter (tuning parameter) that can be chosen via cross-validation. The above can be
solved by standard algorithms from the support vector machine literature; see either
Hastie et al. (2009, Chap. 12) or the original paper by Zhao et al. (2012) for further
details. In addition, Zhao et al. (2012) derived theoretical properties of the resulting
estimator in terms of consistency, rate of convergence, and risk bounds. A thorough
discussion of these theoretical properties are beyond the scope of this book.

5.4 Assessing the Merit of an Estimated Regime

An interesting question that has not yet been properly addressed in the existing liter-
ature is how best to define the merit of the estimated optimal regime d̂, irrespective
of the estimation procedure employed (e.g. Q-learning, G-estimation, MSM etc.).
As in any estimation procedure, one would tend to think of bias and variance as
natural metrics. However, since regimes are functions, rather than real numbers or
vectors, bias and variance has to be defined, if possible, in terms of their associ-
ated values (mean potential outcomes) rather than directly. First let us consider the
notion of variance since it is easy to conceptualize. Naturally, one can consider the
variability in the value under the estimated regime or use cross-validation (Zhang
et al. 2012a; Rubin and van der Laan 2012). More precisely, we can write,

Var(d̂) = E
(

V d̂ −E(V d̂)
)2

,
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where the expectation is over the distribution of the entire sample. Thus, the above
variance represents the variability of the value of d̂ across different samples.

In the present context, bias is a more difficult concept. First, let V opt =
maxd∈D V d be the optimal value function (i.e. value of the optimal regime) within
a pre-specified class of regimes D . Then the bias of the estimated regime d̂ can be
defined as

Bias(d̂) = E(V d̂)−Vopt ,

where the above expectation is over the distribution of the entire sample. The bias
represents how much the expected value of the estimated regime, averaged over the
distribution of the sample, differs from the best possible value. One can combine
the bias and variance criteria into a mean squared error (MSE) type criterion of the
estimated regime:

MSE(d̂) = Bias2(d̂)+Var(d̂) = E(V d̂ −V opt)2.

The MSE measures how “close” the estimated regime is to the truly optimal regime
within the class under consideration, in a well-defined sense. It is not hard to imag-
ine the existence of a bias-variance trade-off across different estimation procedures
considered in this book; for example, the policy search or MSM-type methods con-
sidered in this chapter are likely to lead to less bias but more variance compared to
Q-learning (which involves more parametric modeling).

A more traditional criterion for assessing the merit of an arbitrary (but fixed)
regime from the reinforcement learning literature is the generalization error. The
generalization error of a fixed regime d at a state (e.g. baseline covariate) o1 is
defined as the difference between the optimal value function and the value function
under the regime of interest d. Thus,

ηd(o1) =V opt(o1)−V d(o1).

However to assess the overall performance of a regime, one needs to combine the
generalization errors over possible values of o1. The traditional approach in rein-
forcement learning (Bertsekas and Tsitsiklis 1996) is to use the maximum general-
ization error, maxo1(V

opt(o1)−V d(o1)), which represents the worst case scenario.
Another option is to consider an average generalization error (Kearns et al. 2000;
Kakade 2003; Murphy 2005b). An average generalization error is defined as

ηd =

∫

o1

(V opt(o1)−V d(o1))dP(o1) =V opt −V d ,

where P is a probability distribution over the possible values of o1. In the context of
medical decision making using DTRs, it is particularly appealing to use this average
generalization error, since P represents the distribution of baseline covariates of
subjects from a particular population of interest.
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For an estimated regime d̂, the MSE and the generalization error are related; it
turns out that the MSE is the expected value of the squared average generalization
error, i.e.,

MSE(d̂) = Eη2(d̂),

where the above expectation is taken with respect to the distribution of the sample.
While the concept of generalization error is simple and intuitive, its computa-

tion for a given estimation procedure is usually quite complex. Murphy (2005b)
derived finite-sample upper bounds on the generalization error of Q-learning. The
results are quite technical in nature, and hence beyond the scope of this book. We
are not aware of the existence of any work that has considered generalization errors
of other estimation procedures presented in this book. The next question is that of
formal inference, e.g. testing for a significant difference between candidate regimes,
arising from different procedures, in terms of their values; we will briefly re-visit
this in Sect. 8.10. It is not clear whether such testing must be done through values,
or whether a more direct approach can be devised.

5.5 Discussion

In this chapter, we have considered several approaches to estimating the optimal
DTR by directly modeling the regimes as opposed to modeling the conditional
mean models: IPTW, marginal structural models (MSMs), and classification-based
methods. The fundamental difference between the approaches considered in the
current chapter (e.g. MSM, weighting, and classification-based methods) and the
approaches considered in previous chapters (e.g. Q-learning and G-estimation),
lies in the primary target of estimation (and inference): the MSM, weighting, and
classification-based approaches really target the parameters of the decision rule it-
self, rather than parameters of a model for the mean outcome (Q-learning) or for
the contrast between models for the mean outcome under alternative treatments (G-
estimation). While the approaches considered in the present chapter are typically
non-parametric or semi-parametric, requiring only mild assumptions about the data
distribution and hence are quite robust, the main drawback is the high variability of
the value function estimates, and thereby the high variability in the resulting esti-
mated regimes.

We attempted to elucidate the connections between the different estimation ap-
proaches introduced in this chapter: IPTW, MSM, and classification-based methods
are deeply connected. Note that in a single-stage setting any mean model, μ(H,A;β )
defines a class of treatment regimes. For example, the model

μ(H,A;β ) = β0 +β1H +β2A+β3AH

defines regimes of the form d(H;β ) = I{β2 + β3H > 0}− I{β2 + β3H ≤ 0}. If
β3 is positive, this can be re-expressed as d(H;ψ) = I{H > ψ}− I{H ≤ ψ} for
ψ =−β2/β3, where many values of the β vector can give rise to the same ψ (Zhang
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et al. 2012b). Thus, while developed independently, the single-stage regime estima-
tor of Zhang et al. (2012b) is in fact based on the same principles of estimation
as the multi-stage (longitudinal) DTR estimators of Hernán et al. (2006), Van der
Laan and Petersen (2007a), Robins et al. (2008), Orellana et al. (2010a), and Orel-
lana et al. (2010b): in both cases, the treatment threshold parameters are the direct
targets of estimation, and are obtained through estimating the value (population av-
erage marginal outcome) as a function of the decision parameters, with the optimal
rule being chosen by the indexing parameter which maximizes the mean marginal
outcome.

Marginal structural models are appealing due to the simplicity of implementation
as well as their familiarity among statisticians and epidemiologists who use these as
a standard tool when estimating the impact of static treatment regimes in longitudi-
nal data. Using MSMs, estimated via inverse probability weighting (augmented or
not), allows the analyst to estimate the decision rule parameters directly.

All of the methods that we have considered in this chapter are suitable for non-
randomized data; of course they rely on the validity of a number of assumptions,
some of which are untestable but can be assessed at least informally using model
diagnostics (see Sect. 9.2) and substantive knowledge of the health condition under
consideration.



Chapter 6
G-computation: Parametric Estimation
of Optimal DTRs

In this chapter, we will focus on fully parametric estimation of optimal DTRs by
modeling the full, longitudinal distribution of the trajectories data. As noted in
Chap. 3, optimal dynamic treatment regimes may be determined using dynamic
programming. In a classic, likelihood-based framework, this requires modeling the
complete longitudinal distribution of the data. If a joint distribution for the longi-
tudinal data can be decomposed into its conditional components, it can be used to
predict the expected outcome under a variety of treatment regimes using a Monte
Carlo approach. The link between the models used in dynamic programming to
those used in G-computation has been made previously (Lavori and Dawson 2004),
and forms the basis of the likelihood-based methods of estimation.

6.1 Frequentist G-computation

The semi-parametric approaches to estimating DTRs of the previous two chapters
relied on correct modeling of the propensity score, π j(A j|Hj) (at least with re-
spect to confounding variables). This is trivially satisfied in RCT settings, but could
potentially be problematic in an observational study, where π j(A j|Hj) is unknown
and potentially difficult to model. In this case, one can proceed by expressing the
value function V d alternatively as

V d = E

{

∑
{(h j ,a j):1≤ j≤K}

I[d1(h1) = a1, . . . ,dK(hK) = aK ]

× E
[ K

∑
j=1

Yj

∣
∣
∣Hj = h j,A j = a j

]
}

,

and then fitting a parametric model, say φ j(h j,a j;θ j), for the inside conditional
expectation. Note that in a single-stage setting, the above expression simply gives
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V d = E
{

E[Y |H = h,A = d(h)]
}

, which is estimated by Pn[Y |A = d(h),H = h] =

Pnφ(h,d(h); θ̂ ) where θ̂ is an estimator of θ . The resulting estimator is known as
the G-computation formula (Robins 1986), and is given by

V̂ d
G = Pn

[

∑
{(h j ,a j):1≤ j≤K}

I[d1(h1) = a1, . . . ,dK(hK) = aK ] φ j(h j,a j; θ̂ j)

]

. (6.1)

This estimator is consistent if the models φ j(h j,a j; θ̂ j) are correctly specified. Like
inverse probability weighting and G-estimation, G-computation can be highly vari-
able due to the presence of non-smooth indicator functions; however in comparison
to the (semi-parametric) IPTW estimator, the variability is reduced to some extent
by employing the parametric model φ .

Note that unlike Q-learning or G-estimation, which are performed recursively
in time (backwards induction methods), G-computation models and then simulates
data forward in time. That is, in G-computation, a sequence of models for responses
at stage j, j = 1, . . . ,K are posited and estimated from the observed data. Then,
beginning at the first interval and using these models and their estimated parame-
ters, given observed baseline data, data is simulated under a particular regime of
interest, d, to generate a distribution of potential outcomes O2(d1); next, the stage
2 model is used to simulate (or generate) potential outcomes in response to fol-
lowing the regime of interest, d, in the second stage, generating the distribution
of potential outcomes Y (d) in a two-stage setting; more generally, in the K-stage
setting, the second stage of simulation would produce O3(d1,d2), and simulation
would continue forward until the final stage outcome was simulated under regime
d = d1(H1),d2(H2), . . . ,dK(HK).

As noted earlier, when d is not one of the embedded DTRs in the study,
estimating V d is really a problem of counterfactual estimation. In his original
work, Robins introduced the above method from a purely causal inference perspec-
tive as an approach to estimating counterfactual means, and more generally, entire
counterfactual distributions. When the interest lies in estimating counterfactual
distributions rather than means, instead of modeling the conditional expectation

E
(

∑K
j=1Yj

∣
∣
∣Hj = h j,A j = a j

)

, one must model the corresponding conditional

likelihood, e.g. ∏K+1
j=1 f j(o j|h j−1,a j−1) in Eq. (3.1). Thus the key idea underlying

G-computation is to estimate the marginal mean (or distribution) of the outcome
by first fitting models for conditional means (or conditional likelihoods) of stage-
specific, time-varying outcomes given history and action, and then to substitute
values corresponding to specific treatment patterns into Eq. (6.1) (or correspond-
ing expression of the data likelihood). Note that in G-computation, a potentially
greater part of the likelihood of the data is modeled (the states and responses), in
contrast to some of the semi-parametric approaches of the previous two chapters,
where efforts are focused on modeling the treatment allocation probabilities and
the final outcome model. G-computation requires the assumption of no unmeasured
confounding introduced in Chap. 2. See Robins and Hernán (2009) or Dawid and
Didelez (2010) for a detailed exposition of G-computation.
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6.1.1 Applications and Implementation of G-computation

G-computation has seen considerable use in the last decade. Thall et al. (2002)
considered G-computation to evaluate a phase II clinical trial of prostate cancer
treatment. Lavori and Dawson (2004) demonstrated (with R pseudocode) how to
evaluate two-stage data, motivated by the treatment for major depressive disorder
in the sequentially randomized STAR*D trial; see Chap. 2 for a brief description of
this trial. Bembom and Van der Laan (2007) demonstrated the use of G-computation
and compared results with marginal structural models (see Sect. 5.2) to examine the
optimal chemotherapy for the treatment of prostate cancer, choosing from among
four first-line treatments and the same four treatments offered as salvage therapy
(Thall et al. 2007b).

One of the most complex and realistic implementations of G-computation us-
ing epidemiological data was performed by Taubman et al. (2009), who used more
than 20 years of data from the Nurses’ Health Study to examine the effect of
composite lifestyle interventions on the risk of coronary heart disease. Similarly,
Young et al. (2011) analyzed data from a large multi-country cohort study of HIV+
individuals to determine when to initiate antiretroviral therapy as a function of CD4
cell count, and Westreich et al. (2012) used G-computation to evaluate the impact
of antiretroviral therapy on time to AIDS or death. The question was the same as
that investigated by Cain et al. (2010) using a marginal structural modeling ap-
proach (albeit with different data). G-computation has also been adopted in the
econometric literature (e.g. Abbring and Heckman 2007), where it has been used
to explore the effects of television-watching on performance in math and reading
(Huang and Lee 2010), and of spanking on behavior (Lee and Huang 2012).

Diggle et al. (2002) provided a simple expositional example on two stages where
all variables are binary; in such a case, it is simple to implement G-computation
non-parametrically (i.e. without using a parametric model for the conditional mean
or distribution). More recently, Daniel et al. (2013) demonstrated the use of G-
computation, as well as two semi-parametric approaches to estimating time-varying
treatment effects, using simulated data. In the tutorial, a small by-hand example of
a non-parametric implementation of G-computation is given as is a more complex
scenario which requires parametric modeling. The supplementary material in the
tutorial include a worked example in which there is loss to follow-up, so that the
treatment of interest is redefined to be not simply treatment pattern ā, but rather
receipt of treatment pattern ā and continued observation. G-computation has been
implemented as a SAS macro

http://www.hsph.harvard.edu/causal/software/

and as a Stata command (Daniel et al. 2011), facilitating dissemination and use of
the method.

There are two potentially serious drawbacks to G-computation. The first is that in
complex settings (many stages, or high dimensional intermediate observations), G-
computation typically requires an estimate of the distribution of each intermediate
outcome Oj, given each possible history up to that time point. Using a Monte Carlo
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approach to simulate the counterfactual distribution for complex longitudinal data
with many stages can be computationally intensive, however algorithms have been
proposed to reduce the computational burden (Neugebauer and Van der Laan 2006).
The second, and more worrisome, limitation of G-estimation is that incorrect model
specification can lead to biased results and incorrect conclusions in longitudinal
settings with time-varying treatments, even when the “sharp” null hypothesis holds,
i.e. when there is no treatment effect for any individual so that Y (āK)−Y (ā′K) = 0
with probability 1 for all regimes āK and ā′K . This is known as the null paradox, and
can occur even in sequentially randomized trials where randomization probabilities
are known (Robins and Wasserman 1997).

6.1.2 Breastfeeding and Vocabulary: An Illustration

Background and Study Details

The PROmotion of Breastfeeding Intervention Trial (PROBIT) (Kramer et al. 2001),
briefly introduced in Chap. 2, randomized hospitals and affiliated polyclinics in the
Republic of Belarus to a breastfeeding encouragement intervention modeled on the
WHO/UNICEF Baby-Friendly Hospital Initiative or to standard care. All study
infants were born from June 17, 1996, to December 31, 1997, at term in one of
31 Belarusian maternity hospitals, weighing at least 2,500 g, initiated breastfeeding,
and were recruited during their postpartum stay. This resulted in the enrollment of
17,046 mother-infants pairs who were followed regularly for the first year of life.
In a later wave of PROBIT, follow-up interviews and examinations were performed
on 13,889 (81.5 %) children at 6.5 years of age. One of the components of these
visits was the administration of the Wechsler Abbreviated Scales of Intelligence
(WASI), which consists of four subtests: vocabulary, similarities, block designs, and
matrices. We focus our analysis on the vocabulary subtest.

Many studies from developed countries have observed higher cognitive scores
on IQ and other tests among both children and adults who were breastfed com-
pared with those who were formula-fed (Anderson et al. 1999). Based on an
intention-to-treat analysis, PROBIT demonstrates that prolonged and exclusive
breastfeeding improves children’s cognitive development (Kramer et al. 2008). We
consider 13,739 children (excluding 159 children from the follow-up due to missing
data in the variables of interest from the first year of life). A simple random effects
model controlling for within-hospital correlation reveals a statistically significant ef-
fect of the intervention on the vocabulary subset score of 7.5 points (95 % CI: 0.7 to
14.4 points) in these children and, as noted by Kramer et al. (2008), the intervention
also served to significantly and meaningfully increase the duration and intensity of
breastfeeding; for instance, 43.3 % of infants in the intervention group were exclu-
sively breastfed at 3 months of age, as compared to 6.4 % of the infants in the control
group. Here, we provide a demonstration of G-computation to examine the evidence
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that actual breastfeeding (rather than exposure to breastfeeding encouragement)
increases verbal cognitive ability, and consider whether tailoring breastfeeding
habits to infant growth can improve this outcome.

Analysis and Results

In this example, consider two key stages (intervals): birth to 3 months, and
3–6 months of age. The “treatment” or exposure of interest for our analysis is
any breastfeeding measured in each of the stages. That is, A1 takes the value 1 if
the child was breastfed up to 3 months of age (and is set to −1 otherwise), and
A2 is the corresponding quantity for any breastfeeding from 3 to 6 months of age.
Note that any breastfeeding allows for exclusive breastfeeding or breastfeeding with
supplementation with formula or solid foods. The outcome, Y , is the vocabulary
subtest score on the WASI measured at age 6.5 years. A single tailoring variable
is considered at each stage: the birthweight of the infant at the first stage, and the
infant’s 3-month weight at the second stage.

Implementing G-computation to address the question of whether breastfeeding
itself produces higher vocabulary subtest scores requires models for both the vocab-
ulary subtest score, as well as for the 3-month weight. A linear model was used to fit
the vocabulary subtest score on the log-scale (Y ) as a function of baseline covariates
(intervention group status, geographical location (eastern/rural, eatern/urban, west-
ern/rural, or western/urban), mother’s education, mother’s smoking status, family
history of allergy, mother’s age, mother’s breastfeeding of any previous children,
whether birth was by cesarean section, gender) as well as birthweight, 3 month
weight, breastfeeding from 0 to 3 months (A1), breastfeeding from 3 to 6 months
(A2), and the first-order interactions (i) A1 × A2, (ii) A1 by birthweight, and (iii)
A2 by 3-month weight. Note that O1 includes all baseline covariates and the tai-
loring variable birthweight, while O2 includes all variables in O1 in additional to
3-month weight. Three-month weight was also fit on the log scale using a linear
model that conditioned on the baseline covariates and birthweight, breastfeeding
from 0 to 3 months (A1), and the interaction between A1 and birthweight.

The G-computation procedure used can be described by the following steps, for
any regime of interest, d = (d1(h1),d2(h2)):

1. Fit an appropriate joint distribution model for the baseline variables O1. For
PROBIT, a non-parametric approach is adopted, and the empirical distribution
was used.

2. Fit an appropriate model to the intermediate variable, O2, as a function of O1 and
A1. For PROBIT, a linear model on the log-transformed 3-month weight is used.

3. Fit an appropriate model to the response, Y , as a function of O1, A1, O2, and A2.
For PROBIT, a linear model on the log-transformed subtest score is used.

4. Create a hypothetical population by drawing a random sample with replacement
from the distribution of baseline covariates fit in Step (1).
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5. Using coefficient estimates and randomly sampled residuals from the model fit
in Step (2), determine the (counterfactual) intermediate variable o2(d1) under
treatment regime d1 with history h1 = o1.

6. Using coefficient estimates and randomly sampled residuals from the model fit in
Step (3), determine the response under treatment regime d with history h1 = o1,
h2 = (o1,d1(h1),o2(d1)).

Using this approach, we can compare distributions under different treatment
regimes, such as the static regimes “never breastfeed” or “breastfeed until at least
6 months of age”, or the dynamic regime “breastfeed until three months of age, then
continue only if 3-month weight exceeds 6.5 kg”. Note that in steps 5 and 6, one
could assume a likelihood for the potential outcomes, e.g. a normal distribution,
rather than the less parametric approach of selecting a random residual.

Table 6.1 Parameter coefficients from a linear regression model for the log-transformed vocabu-
lary subtest score of the WASI and log-transformed 3-month weight

Vocab. score Weight at 3 months
Est. SD Est. SD

Intercept 4.315 0.047 1.312 0.020
Intervention 0.071 0.035 0.012 0.006
East Belarus (rural) 0.034 0.048 −0.015 0.008
West Belarus (urban) 0.008 0.053 −0.011 0.008
West Belarus (rural) −0.002 0.044 −0.016 0.007
Attended some university 0.047 0.003 0.008 0.002
Completed university 0.099 0.004 0.009 0.003
Smoker −0.008 0.008 0.002 0.005
Allergy 0.023 0.006 −0.003 0.004
Age 0.009 0.002 −0.001 0.001
Age2 0.000 0.000 0.000 0.000
BF previously −0.049 0.003 0.001 0.002
Did not BF −0.042 0.003 −0.002 0.002
Cesarean 0.000 0.004 −0.005 0.002
Gender −0.011 0.002 0.045 0.001
Birthweight 0.010 0.004 0.139 0.002
A1: Breastfed 0–3 months 0.048 0.019 0.008 0.012
Weight at 3 months 0.017 0.002
A2: Breastfed 3–6 months −0.121 0.057
A1×Birthweight −0.012 0.005 0.001 0.004
A2×Weight at 3 months 0.016 0.007
A1 ×A2 0.019 0.037

Results from regression models which account for within-hospital clustering are
presented in Table 6.1; coefficient estimates from models which ignored clustering
are very similar. Statistically significant effects of breastfeeding and its interaction
with weight are found in the model for the log vocabulary score. However, when
these models are subsequently used to produce samples from the counterfactual
distribution of outcomes, it is evident that the impact of breastfeeding itself on the
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Fig. 6.1 Counterfactual vocabulary subtest score under three different breastfeeding regimes esti-
mated by G-computation: a DTR (gray, solid line), no breastfeeding (dashed line) and breastfeed-
ing until at least 6 months (dotted line)

vocabulary subtest score is minimal (see Fig. 6.1), with mean test scores varying by
less than one point under the three regimes considered. These results are broadly in
line with the findings of Moodie et al. (2012).

6.2 Bayesian Estimation of DTRs

A detailed presentation of the many modeling choices required for any particular
application of a Bayesian estimation of a dynamic treatment regime is beyond the
scope of this text, however a great number of resources are available to the interested
reader (see, e.g. Chen et al. 2010).

6.2.1 Approach and Applications

Parametric frequentist methods of estimating optimal DTRs typically rely on
the assumption that all models are correctly specified, while semi-parametric
approaches are often able to relax some modeling assumptions. In the Bayesian set-
ting, a number of different approaches have been proposed. Wathen and Thall (2008)
considered at the outset a number of candidate models, and choose from among
them using an approximate Bayes factor. Arjas and Saarela (2010) used model
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averaging over random draws from the space of possible models, so that inference
is based on results from the averaged model. They argued that this is a distinct
advantage of a Bayesian approach over frequentist methods (semi-parametric or
otherwise), as it allows the analyst to incorporate uncertainty regarding model spec-
ification into the estimation procedure. As in the frequentist approaches, Bayesian
estimation of optimal dynamic treatment regimes may be computationally bur-
densome in complex settings with many covariates and/or stages, although some
advances have been made. For example, Wathen and Thall (2008) adapted the
forward-sampling approach of Carlin et al. (1998) so as to be able to sample from
the predictive distribution of the outcome under each of several regimes, where the
distribution is estimated from the observed data, however in this case the “regimes”
of interest were stopping rules for group sequential clinical trials.

Arjas and Saarela (2010) considered data on HIV treatment from the Multi-
Center AIDS Cohort (Kaslow et al. 1987), focusing on a two-stage setting in which
there is a single (continuous) tailoring variable at each stage, treatment is binary,
and the outcome is a continuous variable. They postulated appropriate prior dis-
tributions for each component of the joint likelihood, and thus obtained the joint
posterior distribution. Following this, the posterior predictive distribution was used
to see how the outcomes of individuals drawn from the same population as those
who formed the sample data were distributed under different treatment patterns.
This approach uses the principles set forth by Arjas and Parner (2004), who sug-
gested using summaries of the posterior predictive distributions as the main crite-
rion for comparing different treatment regimes, leading to what they refer to as an
“integrated causal analysis” in which the same probabilistic framework is used for
inference about model parameters as well as for treatment comparisons and hence
the choice of an optimal regime.

Lavori and Dawson (2000) used multiple imputations performed by an
approximate Bayesian bootstrap (Rubin and Shenker 1991) to generate draws
from the counterfactual distributions, and thereby allow a non-parametric means
of comparing mean outcomes under different treatment strategies. Zajonc (2012)
proposed a similar approach, though from a more overtly Bayesian perspective, and
considers data from the North Carolina Education Research Data Center, examining
the impact of honors programs on tenth grade mathematics test scores. Two stages
with a binary exposure were considered; several baseline confounders, and two
time-dependent variables were used in the analysis. Tailoring of the decision rule
was performed in a variety of ways including using the single, continuous math-
ematics score at the start of each stage as well as by creating an index score that
was a composite of five variables including sex, race, and test score. The approach
was the same in spirit as that of Arjas and Saarela (2010), however the motiva-
tion was somewhat different. Like Lavori and Dawson (2000) and Zajonc (2012)
framed the estimation problem as one of missing data, where the missing infor-
mation is on the potential outcomes, and undertakes estimation through what is
effectively a multiple imputation approach. Thus, Bayesian machinery was used
to estimate the posterior predictive distribution of the potential outcomes, and the
optimal regime was selected as that which maximized the expected posterior utility,
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where the utility was simply some analyst-defined function of the outcome and
potentially other factors such as treatment cost.

The Bayesian posterior predictive approach to dynamic treatment regime estima-
tion is in many ways similar to G-computation, but is more readily able to capture
three primary sources of variability in estimators: (i) randomness in covariates and
outcomes as specified by the predictive distribution for the outcome given data, (ii)
potential randomness in the regime (if, for example, the DTR had a stochastic com-
ponent such as “treat within three months of the occurrence of a particular health-
related event”); and (iii) variability in the unknown model parameters (Arjas 2012).
There have also been a number of applications of Bayesian predictive inference to
examine questions of causation for non-continuous outcomes, many by Elja Arjas
and colleagues. For example, Arjas and Andreev (2000) used a Bayesian nonpara-
metric intensity model for recurrent events to study the impact of child-care setting
on the number of ear infections.

6.2.2 Assumptions as Viewed in a Bayesian Framework

Although rarely discussed explicitly in Bayesian analyses, most implicitly require
the assumption of no unmeasured confounding or exchangeability (Saarela et al.
2012b). Arjas and Saarela (2010) used this assumption so that in using the pos-
terior predictive distribution to estimate mean response, the values of treatment
at each stage could be set to specific values, i.e. they noted “we can switch
from observed treatment values in the data to ‘optional’ or ‘forced’ in the pre-
dictions is again consequence of the no unmeasured confounders postulate” and
that this “can be viewed as representing ‘do’-conditioning (Pearl 2009).” Arjas and
Saarela (2010) further related this condition to the assumption of missing at random
(Little and Rubin 2002). Arjas (2012) elaborated on the mathematical conditions
under which the forced ‘do’-probabilities can be identified from observational data
(what he terms a ‘see’-study, following Lindley (2002)) and related these probabilis-
tic statements to Rubin’s causal model (1974) and to the sequential randomization
design of Robins (1986), which rely on the potential outcomes framework. Zajonc
(2012), too, linked the NUC assumption to the idea that the treatment mechanism
may be considered ignorable, i.e. possibly dependent on observed data, but not on
unobserved counterfactual quantities.

6.2.3 Breastfeeding and Vocabulary: An Illustration, Continued

We now return to the PROBIT trial, and re-analyze the data using a Bayesian
predictive approach.

A Bayesian G-computation procedure is designed to complement and compare
with the analysis performed in Sect. 6.1.2. A variety of summary measures of the
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counterfactual outcome under different regimes may be computed. For example, to
estimate the counterfactual distribution of outcomes (see Fig. 6.1 for a frequentist
version) for a regime of interest, d = (d1(h1),d2(h2)), we may:

1. Fit an appropriate joint distribution model for the baseline variables O1. For
PROBIT, a non-parametric approach is adopted, and the empirical distribution
was used.

2. Fit an appropriate model to the intermediate variable, O2, as a function of O1 and
A1. For PROBIT, a linear model on the log-transformed 3-month weight is used
with a normal, mean-zero, variance 10 (covariance 0) prior is used for all regres-
sion coefficients, β2, and the (proper) Inverse Gamma prior with parameters 5,
0.2 is used for the variance parameters.

3. Fit an appropriate model to the response, Y , as a function of O1, A1, O2,
and A2. As in the previous step, a normal (0,diag(10)) prior is used for regres-
sion coefficients, β1, and an Inverse Gamma(5,0.2) prior is used for the variance
parameters in the PROBIT analysis.

4. Draw a sample from the posterior predictive distribution of the counterfactual
mean outcome using the following steps:

(a) Draw a random sample of size 10,000 with replacement from the distribution
of baseline covariates fit in Step (1) to create a hypothetical population.

(b) For each member of the hypothetical population, draw a sample value from
the posterior distribution of β1 found in Step (2) and use this to determine
the mean (counterfactual) intermediate variable o2(d1), and call this μo2(β1).
Next, draw a value of o2(d1) from the posterior predictive distribution with
mean μo2(β1).

(c) Then, for each member of the hypothetical population, draw a sample value
from the posterior distribution of β2 found in Step (3) and use this to deter-
mine the mean (counterfactual) outcome, and call this μy(β2). Draw a value
of y(d1,d2) from its posterior predictive distribution with mean μy(β2).

Note that in this approach, the uncertainty in the estimation of the regression
parameters β1 and β2 is incorporated into the sampling from the counterfactual
means. Figure 6.2 compares the counterfactual distribution of vocabulary subtest
scores under two static regimes “never breastfeed” and “breastfeed until at least
6 months of age”. Note that these are nearly identical to their frequentist analogues,
which is reassuring though not surprising given the large sample size.

The approach described above may be altered to produce the distributions of
the mean counterfactual outcomes, averaging over the covariate space, rather than
the distribution of the counterfactual outcomes themselves. To do this, follow Steps
(1)–(3) as above. Perform Step (4), and then in (5) take the average counterfactual
outcome. Repeat Steps (4) and (5) a large number of times; boxplots of 1,000 means
of counterfactual distributions can be found in Fig. 6.3.
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Fig. 6.2 Counterfactual vocabulary subtest score under two different breastfeeding regimes esti-
mated by a Bayesian implementation of G-computation: no breastfeeding (dashed line) and breast-
feeding until at least 6 months (dotted line)
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6.3 Discussion

In this chapter, we have presented the fully parametric estimation approach of
G-computation. We presented the approach in the frequentist setting, then turned
our attention to the Bayesian DTR literature, describing the general approach which
is effectively a G-computation based on posterior predictive distributions. We im-
plemented G-computation in the PROBIT data, using both a frequentist and then a
Bayesian approach; the conclusions of the two analyses were nearly identical, but
the Bayesian calculations permitted the incorporation of the variability due to the
estimation of the time-varying parameter distributions into the counterfactual re-
sponse distributions. A Bayesian perspective on the variance of marginal structural
models has recently been considered (Saarela et al. 2012a), but this has not yet been
used in the context of DTRs.



Chapter 7
Estimation of DTRs for Alternative Outcome
Types

Up to this point, our development has focused entirely on the continuous outcome
setting. In this chapter, we will turn our attention to the developments that have
been made for estimating DTRs for more difficult outcome types including multi-
component rewards, time-to-event data, and discrete outcomes. As we shall see,
the range of approaches considered in previous chapters have been employed, but
additional care and thought must be devoted to appropriately handling additional
complexities in these settings.

7.1 Trading Off Multiple Rewards: Multi-dimensional
and Compound Outcomes

Most DTR applications involve simple, univariate outcomes or utilities such as
symptom scores or even survival times. However, it may be the case that a single
dimension of response is insufficient to capture the patient experience under treat-
ment. Recently, for example, Wang et al. (2012) conducted an analysis of a SMART-
design cancer treatment study in which the outcome was taken to be a compound
score numerically combining information on treatment efficacy, toxicity, and the risk
of disease progression. The optimal DTR using the composite endpoint was found
to differ from that using simpler endpoints based on a binary or ternary variable
indicating treatment success.

Lizotte et al. (2010) considered an approach based on inverse preference elicita-
tion. They proposed to find optimal regimes that can vary depending on how a new
patient is willing to trade off different outcomes, such as whether he is willing to
tolerate some side-effects for a greater reduction in disease symptoms. Specifically,
they considered a situation where there were two possible outcomes of interest,
R1 and R2, whose respective desirability could be described via a weighted sum
Y = δR1 +(1− δ )R2 for δ ∈ [0,1]. In this situation, Q-functions may be modeled
as a function of the two possible outcomes and δ ; for example, a linear model for
the Q-function might be represented using

B. Chakraborty and E.E.M. Moodie, Statistical Methods for Dynamic Treatment Regimes,
Statistics for Biology and Health 76, DOI 10.1007/978-1-4614-7428-9 7,
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Qopt
j (Hj,A j) = δ (β T

j1Hj0 +ψT
j1Hj1A j)+ (1− δ )(β T

j2Hj0 +ψT
j2Hj1A j).

Estimates of β j = (β j1,β j2) and ψ j = (ψ j1,ψ j2) may be obtained by OLS by setting
δ to 0 or 1 (Lizotte et al. 2010). This conceptualization of the outcome addresses an
important issue for researchers who may wish to propose not a single DTR, but one
which may be adapted not only to patient covariates but also to the relative value
patients place on different outcomes. For example, Thall et al. (2002) provided an
analysis where the response is taken to be a linear combination of the probability
of complete remission and the probability of death as judged by a physician with
expertise. It would be possible to use the approach of Lizotte et al. (2010) to either
leave δ unspecified so that future “users” or “recipients” of the DTR (i.e. patients)
could select their preferred weighting on the risks of remission versus death.

As noted by Almirall et al. (2012b), using a linear combination of outcomes
as the final response may not in all circumstances be clinically meaningful, but
may provide an important form of sensitivity analysis when outcome measures are
subjective.

7.2 Estimating DTRs for Time-to-Event Outcomes
with Q-learning

While much of the DTR literature has focused on continuous outcomes, research
and analyses have been conducted for time-to-event data as well. Here, we briefly
review some key developments.

7.2.1 Simple Q-learning for Survival Data: IPW
in Sequential AFT Models

Huang and Ning (2012) used linear regression to fit accelerated failure time (AFT)
models (Cox and Oaks 1984) in a Q-learning framework to estimate the optimal
DTR in a time-to-event setting. Consider a two-stage setting, where patients may
receive treatment in at least one and possibly two stages of a study. That is, all
patients are exposed to some level of the treatment (where we include a control
condition as a possible level of treatment) at the first stage. After the first stage
of treatment, one of three possibilities may occur to a study participant: (1) the
individual is cured by the treatment and does not require further treatment; (2) the
individual experiences the outcome event, or (3) the individual requires a second
stage of treatment, e.g. because of disease recurrence. Let Y denote the total follow-
up time for an individual. If the individual is cured, he is followed until the end
of the study and then censored so that Y is the time from the start of treatment to
the censoring time; if he experiences the outcome event, Y is the time at which the
event occurs. Further, let R denote the time from the initial treatment to the start
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of the second stage treatment (assuming this to be the same as the time of disease
recurrence), and let S denote the time from the start of the second stage treatment
until end of follow-up (due to experiencing the event or the end of the study); then
Y = R+S. Set S = 0 for those individuals who did not experience a second stage of
treatment.

First, let us assume that there is no censoring. Then an AFT Q-learning algorithm
for time-to-event outcomes proceeds much like that for continuous outcomes:

1. Stage 2 parameter estimation: Using OLS, find estimates (β̂2, ψ̂2) of the condi-
tional mean model Qopt

2 (H2i,A2i;β2,ψ2) of the log-transformed time of follow-up
from the start of the second stage, log(Si), for those who experienced a second
stage treatment.

2. Stage 2 optimal rule: By substitution, d̂opt
2 (h2) = argmaxa2 Qopt

2 (h2,a2; β̂2, ψ̂2).
3. Stage 1 pseudo-outcome: Set S∗i =maxa2 exp(Qopt

2 (H2i,a2; β̂2, ψ̂2)), i = 1, . . . ,n,
which can be viewed as the time to event that would be expected under optimal
second-stage treatment. Then calculate the pseudo-outcome,

Ŷ1i =

{

Yi if Si = 0
Ri + S∗i if Si > 0

i = 1, . . . ,n.

4. Stage 1 parameter estimation: Using OLS, find estimates

(β̂1, ψ̂1) = arg min
β1,ψ1

1
n

n

∑
i=1

(

log(Ŷ1i)−Qopt
1 (H1i,A1i;β1,ψ1)

)2
.

5. Stage 1 optimal rule: By substitution, d̂opt
1 (h1) = argmaxa1 Qopt

1 (h1,a1; β̂1, ψ̂1).

In the presence of censoring, the regressions in steps 1 and 4 above can be per-
formed with inverse probability weighting (IPW), where each subject is weighted
by the inverse of the probability of not being censored. Because censoring time
is a continuous measure, the probability of not being censored can be calculated
from the estimated survival curve for censoring, e.g. by fitting a Cox proportional
hazards model to estimate the distribution of the censoring times. Huang and Ning
(2012) proved consistency and asymptotic normality of the regression parameters
under a set of regularity conditions, illustrated good finite-sample performance of
the methodology under varying degrees of censoring using a simulation study, and
applied the methodology to analyze data from a study on the treatment of soft tissue
sarcoma.

7.2.2 Q-learning with Support Vector Regression for Censored
Survival Data

In Q-learning, the Q-functions need not always be modeled by linear models. In the
RL literature, Q-functions had been modeled via regression trees or more sophisti-
cated variations like random forests and extremely randomized trees (Ernst et al.
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2005; Geurts et al. 2006; Guez et al. 2008) or via kernel-based regression (Or-
moneit and Sen 2002). More recently in the DTR literature, Zhao et al. (2011) em-
ployed support vector regression (SVR) to model the Q-functions in the context
of modeling survival time in a cancer clinical trial. These modern methods from the
machine learning literature are often appealing due to their robustness and flexibility
in estimating the Q-functions. Following Zhao et al. (2011), here we briefly present
the SVR method to fit Q-functions.

Stepping outside the RL framework for a moment, consider a regression problem
with the vector of predictors x ∈ R

m and the outcome y ∈ R. Given the data
{

xi,yi
}n

i=1, the goal in SVR is to find a (regression) function f : Rm → R that
closely matches the target yi for the corresponding xi. One of the popular loss
functions is the so-called ε-insensitive loss function (Vapnik 1995), defined as:
L ( f (xi),yi) = (| f (xi)−yi|−ε)+, where ε > 0 and u+ denotes the positive part of u.
The ε-insensitive loss function ignores errors of size less than ε and grows linearly
beyond that. Conceptually, this property is similar to that of the robust regression
methods (Huber 1964); see Hastie et al. (2009, p. 435) for more details on this sim-
ilarity, including a graphical representation.

In SVR, typically the regression function f (·) is assumed to take the form f (x) =
θ0 + θ T Φ(x), where Φ(x) is a vector of non-linear basis functions (or, features)
of the original predictor vector x. Thus, while the regression function employs a
linear model involving the transformed features Φ(x), it can potentially become
highly non-linear in the original predictor space, thereby allowing great flexibility
and predictive power. It turns out that the problem of solving for unknown f is a
convex optimization problem, and can be solved by quadratic programming using
Lagrange multipliers (see, for example, Hastie et al. 2009, Chap. 12).

In the context of dynamic treatment regimes, the outcome of interest y (e.g. sur-
vival time from cancer) is often censored. The presence of censoring makes matters
more complicated and the SVR procedure as outlined above cannot be used without
modification. Shivaswamy et al. (2007) considered a version of SVR, without the
ε-insensitive property, to take into account censored outcomes. Building on their
work, Zhao et al. (2011) developed a procedure called ε-SVR-C (where C denotes
censoring) that can account for censored outcomes and has the ε-insensitive prop-
erty. Below we briefly present their procedure.

In general, we denote interval-censored survival (more generally, time-to-event)
data by

{

xi, li,ui
}n

i=1, where l and u stand for the lower and upper bound of the
interval under consideration. If a patient experiences the death event, then the cor-
responding observation is denoted by

{

xi,yi
}n

i=1 with li = ui = yi. Also, letting
ui =+ ∞, one can easily construct a right-censored observation

{

xi, li,+ ∞
}

. Given
the interval-censored data, consider the following loss function:

L ( f (xi), li,ui) = max(li − ε − f (xi), f (xi)− ui− ε)+.

The shape of the loss function for both interval-censored data and right-censored
data are displayed in Fig. 7.1.
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a b

Fig. 7.1 ε-SVR-C loss functions for: (a) interval-censored data (left panel), and (b) right-censored
data (right panel)

Defining the index sets L = {i : li > −∞} and U = {i : ui < +∞}, the ε-SVR-C
optimization formulation is:

min
θ ,θ0,ξ ,ξ ′

1
2
||θ ||2 +CE

(

∑
i∈L

ξi + ∑
i∈U

ξ ′
i

)

, subject to

(θ0 +θ T Φ(xi))− ui ≤ ε + ξi, i ∈U ;

li − (θ0 +θ T Φ(xi))≤ ε + ξ ′
i , i ∈ L;

ξi ≥ 0, i ∈ L;

ξ ′
i ≥ 0, i ∈U.

In the above display, ξi and ξ ′
i are the so-called slack variables and CE is the cost

of error. By minimizing the regularization term 1
2 ||θ ||2 as well as the training error

CE

(

∑i∈L ξi +∑i∈U ξ ′
i

)

, the ε-SVR-C algorithm can avoid both overfitting and un-

derfitting of the training data.
Interestingly, the solution depends on the basis function Φ only through inner

products Φ(xi)
T Φ(x j), ∀i, j. In fact, one need not explicitly specify the basis func-

tion Φ; it is enough to specify the kernel function K(xi,x j) = Φ(xi)
T Φ(x j). One

popular choice of K used by Zhao et al. (2011) is the Gaussian (or radial basis) ker-
nel, given by K(xi,x j) = exp(−γ||xi − x j||2). Thus the above optimization problem
is equivalent to the following dual problem:

min
λ ,λ ′

1
2
(λ −λ ′)T K(xi,x j)(λ −λ ′)−∑

i∈L
(li − ε)λ ′

i + ∑
i∈U

(ui + ε)λi,

subject to

∑
i∈L

λ ′
i − ∑

i∈U

λi = 0, 0 ≤ λi,λ ′
i ≤CE , i = 1, . . . ,n.
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The tuning parameters γ (in the definition of K) and CE are obtained by
cross-validation to achieve good performance. Once the above formulation is
solved to find the optimal values of λi and λ ′

i , say λ̂i and λ̂ ′
i , the regression function

is given by f̂ (x) = ∑n
i=1(λ̂ ′

i − λ̂i)K(xi,x)+ θ̂0. Due to the nature of the constraints
in the above optimization problem, typically only a subset of values of (λ̂ ′

i − λ̂i) are
non-zero, and the associated data points are called the support vectors.

Possible
treatments

Immediate Death

Stage 2

Possible
treatments 
and initial
timings

Stage 1

Progression

1 2

Fig. 7.2 Treatment plan and therapy options for advanced non-small cell lung cancer in a hypo-
thetical SMART design

Zhao et al. (2011) implemented Q-learning in conjunction with the ε-SVR-C
method described above in the context of a hypothetical two-stage SMART for
treating advanced non-small cell lung cancer; see Fig. 7.2 for a schematic. In ad-
dition to the complexity of the problem of selecting optimal stage-1 and stage-2
treatments, another goal was to determine the optimal time to initiate the stage-2
treatment, either immediately or delayed, that would yield the longest overall sur-
vival time. Let t1 and t2 denote the time-points where the first and second stage
treatment decisions are made, respectively. Let the time to disease progression, after
initiation of the stage-1 treatment (chemotherapy), be denoted by TP (for simplicity,
it is assumed that TP ≥ t2 with probability 1). Let TM denote the targeted time after
t2 of initiating the stage-2 treatment. The actual time to initiate the stage-2 treatment
is (t2 +TM)∧TP. At the end of first-stage therapy, i.e. at time t2, clinicians make a
decision about the target start time TM. Let TD denote the time of death from the start
of therapy (t1), i.e. the overall survival time. Note that this scenario is more complex
than that of the previous section; in the simpler setting of Huang and Ning (2012),
R = (t2 + TM)∧TP and S = TD −R or, in the presence of censoring, S will be the
time on study following initiation of second treatment (total time minus R).

Acknowledging the possibility of right censoring, denote the patient’s censoring
time by C and indicator of the event (i.e. of not being censored) by δ = I[TD ≤C].
Assume that the censoring is independent of both the death time and the patient



7.2 Estimating DTRs for Time-to-Event Outcomes with Q-learning 119

covariates. For convenience, define T1 = TD ∧ t2 and YD = I[TD ∧C ≥ t2], and also
T2 = (TD − t2)I[TD ≥ t2] = (TD − t2)I[T1 = t2] and C2 = (C− t2)I[C ≥ t2]. Note that
TD = T1 + T2, where T1 is the time of life lived in [t1, t2] and T2 is the time of life
lived after t2.

As in previous chapters, let H1 and H2 denote the histories (e.g. current and past
covariates, and also past treatments) available at first and second stage respectively.
Also, let A1 and A2 denote the treatment choices at the two stages. In this study,
the treatment decision at the second stage also involves an initiation time TM , as
discussed above. Thus the stage-2 treatment is two-dimensional, denoted compactly
as (A2,TM). Define the optimal Q-functions for the two stages as follows:

Qopt
2

(

H2,(A2,TM)
)

= E
[

T2
∣
∣H2,(A2,TM)

]

,

Qopt
1 (H1,A1) = E

[

T1 + I[T1 = t2] max
(A2,TM)

Qopt
2

(

H2,(A2,TM)
)∣
∣H1,A1

]

.

In case of known Q-functions, the optimal DTR (dopt
1 ,dopt

2 ), using a backwards
induction argument, would be

dopt
2 (h2) = arg max

(a2,TM)
Qopt

2 (h2,(a2,TM)),

dopt
1 (h1) = argmax

a1
Qopt

1 (h1,a1).

When the Q-functions are unknown, they are estimated using suitable models. In the
present development, censored outcomes (T1 ∧C,δ1 = I[T1 ≤C]) and (T2∧C2,δ2 =
I[T2 ≤C2]) are used at both stages. The exact algorithm to perform Q-learning with
ε-SVR-C for censored survival data is as follows:

1. For those individuals with YD = 1 (i.e. those who actually go on to the second
stage of treatment), perform right-censored regression using ε-SVR-C of the cen-
sored outcome (T2∧C2,δ2) on the stage-2 variables (H2,(A2,TM)) to obtain Q̂opt

2 .
2. Construct the pseudo-outcome

T̂D = T1 + I[T1 = t2] max
(A2,TM)

Q̂opt
2 (H2,A2,TM) = T1 + I[T1 = t2]T̂2 = T1 +YDT̂2.

3. In fitting Qopt
1 , the pseudo-outcome T̂D is assessed through the censored ob-

servation (X̃ , δ̃ ), with X̃ = T1 ∧C +YDT̂2 = T̂D ∧ C̃ and δ̃ = I[T̂D ≤ C̃], where
C̃ =CI[C < t2]+∞I[C2 ≥ t2]. Perform ε-SVR-C of (X̃ , δ̃ ) on (H1,A1) to obtain
Q̂opt

1 .

Once the Q-functions are fitted, the estimated optimal DTR is given by (d̂opt
1 , d̂opt

2 ),
where the stage-specific optimal rules are given by

d̂opt
2 (h2) = argmax

(a2,TM)

Q̂opt
2 (h2,(a2,TM)),

d̂opt
1 (h1) = argmax

a1

Q̂opt
1 (h1,a1).
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In the ε-SVR-C steps of the Q-learning algorithm, the tuning parameters CE and
γ are chosen via cross validation over a grid of values. Zhao et al. (2011) reported
robustness of the procedure to relatively small values of ε; they set its value at 0.1
in their simulation study.

Zhao et al. (2011) evaluated the above method of estimating the optimal DTR
with survival-type outcome in an extensive simulation study. In short, they consid-
ered a generative model, the parameters of which could be easily tweaked to reflect
four different clinical scenarios resulting in four different optimal regimes. They
generated data on 100 virtual patients from each of the 4 clinical scenarios, thus a
total of 400 virtual patients. Then the optimal regime was estimated via Q-learning
with ε-SVR-C. For evaluation purposes, an independent test sample of size 100 per
clinical scenario (hence totaling 400) was also generated. Outcomes (overall sur-
vival) for these virtual test patients were evaluated for the estimated optimal regime
as well as all possible (12) fixed regimes, using the generative model. Furthermore,
they repeated the simulations ten times for the training sample (each of size 400).
Then ten different estimated optimal regimes from these ten training samples were
applied to the same test sample (of size 400) mentioned earlier. All the results for
each of the 13 treatment regimes (12 fixed, plus the estimated optimal) were aver-
aged over the 400 test patients. It was found that the true overall survival was sub-
stantially higher for the estimated optimal regime than any of the 12 fixed regimes.
They also conducted additional simulations to check the sensitivity of the procedure
to the sample size. It was found that for sample sizes ≥100, the procedure is very
reliable in selecting the optimal regime.

7.3 Q-learning of DTRs for Discrete Outcomes

Moodie et al. (2013) recently tackled the challenging problem of Q-learning for
discrete-valued outcomes, and took a less parametric approach to modeling the Q-
functions by using generalized additive models (GAMs). Generalized additive mod-
els provide a user-friendly means to introducing greater flexibility in modeling the
relationship between an outcome and covariates. GAMs are treated as penalized
regression splines with different smoothing parameters allowed for each covariate,
where the degree of smoothing is selected by generalized cross-validation (Wood
2006, 2011). The automatic parsimony that the approach ensures helps to control
the dimensionality of the estimation problem, an important feature in the DTR set-
ting where the covariate space is potentially very large.

Suppose we are in a setting where the outcome at the final stage is discrete,
and there are no intermediate rewards. The outcome could represent, for instance,
a simple indicator of success such as maintenance of viral load below a given
threshold over the course of a study (a binary outcome), or the number of emer-
gency room visits in a given period (a count, possibly Poisson-distributed). When
the outcome Y is discrete, the Q-learning procedure must be adapted to respect
the constraints on the outcome, for example, Y is bounded in [0,1], or Y is
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non-negative. By definition, in a two-stage setting, we have Qopt
2 (H2,A2) =

E
[

Y
∣
∣H2,A2

]

at the final interval. A reasonable modeling choice would be to consider
a generalized linear model (GLM). For instance, for a Bernoulli utility, we might

choose a logistic model of the form E
[

Y
∣
∣H2,A2

]

= expit
(

β T
j Hj0 +(ψT

j Hj1)A j

)

,

where expit(x) = exp(x)/(1+ exp(x)) is the inverse-logit function. Similarly, for a
non-negative outcome, we might choose a Poisson family GLM with the canonical
link. The key is to choose a link function that is strictly increasing (or decreasing),
since this allows maximization of the second-stage Q-function by a maximization
of the linear specification in the mean. For example, in the binary outcome setting,

since the inverse-logit function is strictly increasing, expit
(

β T
j Hj0 +(ψT

j Hj1)A j

)

can be maximized by maximizing its argument, β T
j Hj0 +(ψT

j Hj1)A j. Therefore

Qopt
1 (H1,A1;β1,ψ1) = max

a2
Qopt

2 (H2i,a2; β̂2, ψ̂2) = expit
(

β̂ T
2 H20,i + |ψ̂T

2 H21,i|
)

,

which is bounded by [0,1]. As in the continuous utility setting, the optimal regime
at the first interval is defined by

d̂opt
1 (h1) = argmax

a1
Qopt

1 (h1,a1; β̂1, ψ̂1).

Continuing with the binary outcome example, we have

argmax
a1

Qopt
1 (h1,a1; β̂1, ψ̂1) = argmax

a1
logit

(

Qopt
1 (h1,a1; β̂1, ψ̂1)

)

since the logit function is strictly increasing. We may therefore model the logit of
Qopt

1 (H1,A1;β1,ψ1) rather than the Q-function itself to determine the optimal DTR.
The Q-learning algorithm for a discrete outcome consists of the following steps:

1. Interval 2 parameter estimation: Using GLM regression with a strictly increasing
link function, f (·), find estimates (β̂2, ψ̂2) of the conditional mean model for the
outcome Y , Qopt

2 (H2i,A2i;β2,ψ2).

2. Interval 2 optimal rule: Set d̂opt
2 (h2) = argmaxa2 Qopt

2 (h2,a2; β̂2, ψ̂2).
3. Interval 1 pseudo-outcome: Set

Ỹ1i = max
a2

f (Qopt
2 (H2i,a2; β̂2, ψ̂2)), i = 1, . . . ,n.

4. Interval 1 parameter estimation: Using ordinary least squares regression, find
estimates

(β̂1, ψ̂1) = arg min
β1,ψ1

1
n

n

∑
i=1

(

Ỹ1i −Qopt
1 (H1i,A1i;β1,ψ1)

)2
.

5. Interval 1 optimal rule: Set d̂opt
1 (h1) = argmaxa1 Qopt

1 (h1,a1; β̂1, ψ̂1).
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The estimated optimal DTR using Q-learning is given by (d̂1, d̂2). In a binary
outcome scenario, note that unlike in the continuous utility setting, the pseudo-
outcome, Ỹ1i, does not represent the (expected) value of the second-interval Q-
function under the optimal treatment but rather a transformation of that expected
outcome.

We briefly consider a simulation study. The data for treatments (A1,A2), and
covariates (C1,O1,C2,O2) were generated as in Sect. 3.5. We considered three out-
come distributions: normal, Bernoulli, and Poisson, and two forms of the relation-
ship between the outcome and the variables C1 and C2. The first setting corresponds
to Scenario C of Sect. 3.5 (normal outcome, Q-functions linear in covariates); the
second varies only in that a quadratic terms for C1 and C2 are included in the mean
model. Similarly, settings three and four correspond to a Bernoulli outcome with Q-
functions that are, respectively, linear and quadratic in C1 and C2, and the final pair
of settings correspond to a Poisson outcome with Q-functions that are, respectively,
linear and quadratic in the covariates. Results are presented in Table 7.1.

Overall, we observe very good performance of both the linear (correct) speci-
fication and the GAM specification of the Q-function when the true confounder-
outcome relationship is linear: estimators are unbiased, and the use of the GAM for
the Q-function exhibits reasonably variability even for the smaller sample size of
250. In fact the variability of the estimator resulting from a GAM for the Q-function
is as low as the linear model-based estimator for the normal and Poisson outcomes,
implying there is little cost for the additional flexibility in the cases. When the de-
pendence of the utility on the confounding variables is quadratic, only the decision
rule parameters resulting from a GAM for the Q-function exhibits little or no bias
and good coverage rates.

Thus, it appears that Moodie et al. (2013) have taken a modest but promising step
on the path to a more fully generalized Q-learning algorithm, with the consideration
of a flexible, spline-based modeling approach for discrete outcomes. The next step
of adapting Q-learning to allow discrete interval-specific outcomes is challenging,
and remains an open problem.

7.4 Inverse Probability Weighted Estimation for Censored or
Discrete Outcomes and Stochastic Treatment Regimes

Some of the seminal work in developing MSMs for DTR estimation was performed
in a survival context, using inverse probability weighting combined with pooled
logistic regression to approximate a Cox model for the estimation of the hazard ra-
tio parameters (Hernán et al. 2006; Robins et al. 2008). The methods are gaining
popularity in straightforward applications examining, for example, when to initi-
ate dialysis (Sjölander et al. 2011) or antiretroviral therapy (Shepherd et al. 2010).
These methods require little adaptation to the algorithm described in Sect. 5.2.2: as
with continuous outcomes, data-augmentation is undertaken to create replicates of
individuals that are compatible with each regime of interest. The only step that dif-
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Table 7.1 Comparison of the performance Q-learning for normal, Bernoulli, and Poisson
outcomes when the true Q-function is either linear or quadratic in the covariates: bias, Monte
Carlo variance (MC var), Mean Squared Error (MSE) and coverage of 95 % bootstrap confidence
intervals (Cover) of the first interval decision rule parameter ψ10. Bias, variance, and MSE are each
multiplied by 10.

Adjustment n = 250 n = 1,000
method Bias MC var MSE Cover Bias MC var MSE Cover

Normal outcome, Q-functions linear in covariates
None 10.03 0.35 10.41 0.0 10.12 0.09 10.32 0.0
Linear 0.02 0.08 0.08 94.1 0.00 0.02 0.02 93.0
GAM 0.02 0.08 0.08 94.4 0.00 0.02 0.02 93.6

Normal outcome, Q-functions quadratic in covariates
None 18.18 16.30 4.935 68.1 18.92 4.31 40.11 10.8
Linear 29.64 20.53 108.38 37.9 31.42 4.72 103.46 0.1
GAM 0.21 1.49 1.50 95.2 −0.11 0.40 0.40 92.7

Bernoulli outcome, Q-functions linear in covariates
None 8.65 1.57 8.97 13.7 8.45 0.19 7.32 0.0
Linear 0.20 1.98 1.98 94.9 0.00 0.28 0.28 95.1
GAM 0.81 4.25 4.25 97.2 0.00 0.28 0.28 95.8

Bernoulli outcome, Q-functions quadratic in covariates
None 3.77 0.65 2.07 64.8 3.71 0.15 1.53 10.8
Linear 1.54 0.87 1.11 92.5 1.56 0.20 0.44 79.7
GAM 0.06 2.63 2.63 97.2 −0.11 0.32 0.32 97.0

Poisson outcome, Q-functions linear in covariates
None 8.97 0.70 8.74 5.6 9.49 0.23 9.23 0.0
Linear 0.14 0.11 0.11 93.9 0.14 0.02 0.03 93.8
GAM 0.13 0.11 0.11 95.7 0.14 0.02 0.03 94.5

Poisson outcome, Q-functions quadratic in covariates
None 4.39 0.19 2.12 15.4 4.32 0.04 1.91 0.0
Linear −1.01 0.27 0.38 90.1 −1.06 0.07 0.19 72.6
GAM 0.00 0.28 0.28 96.7 0.14 0.64 0.65 94.6

fers is the outcome regression model, which is adapted to the outcome type, using,
for example a weighted Cox model or a weighted pooled logistic regression rather
than weighted linear regression.

A separate but closely related body of work has focused on survival data
primarily in two-phase cancer trials. In the trials which motivated the statistical
developments, cancer patients were randomly assigned to one of several initial ther-
apies and, if the initial treatments successfully induced remission, the patient was
randomized to one of several maintenance therapies. A wide collection of methods
have been developed in this framework, including weighted Kaplan-Meier cen-
soring survivor curves and mean-restricted survival times (Lunceford et al. 2002),
an improved estimator for the survival distribution which was shown to be the
most efficient among regular, asymptotically linear estimators (Wahed and Tsiatis
2004, 2006). Log-rank tests and sample size calculations have since been developed
(Feng and Wahed 2009). While these methods do address estimation of a dynamic
regime of the form “what is the best initial treatment? what is the best subsequent
treatment if the initial treatment fails?”, these methods are typically used to select
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from among a small class of initial and maintenance treatment pairs, and have not
been developed to select an optimal threshold from among a potentially large list of
values.

The general MSM framework for DTR estimation has been further adapted to
handle stochastic treatment assignment rules. For example, Cain et al. (2010) con-
sidered treatment rules which allowed for a grace period of m months in the timing
of treatment initiation, i.e. a rule of the form “initiate treatment within m months of
covariate O crossing threshold ψ” rather than “initiate treatment when covariate O
crosses threshold ψ”.

7.5 Estimating a DTR for a Binary Outcome Using
a Likelihood Approach

Thall and colleagues have considered DTRs in several cancer treatment settings,
where the typical treatment paradigm is “play the winner, drop the loser” (Thall
et al. 2000): a patient given an initial course of a treatment will continue to receive
that treatment if it is deemed to be sufficiently successful (e.g. due to partial tumor
shrinkage or partial remission), will be switched to a maintenance therapy or follow-
up if completely successful, and will be switched to an alternative treatment (some-
times referred to as a salvage therapy) if the initial treatment is unsuccessful. The
definition of success on a particular course of treatment may depend on which
course it is. For example, in prostate cancer, a success on the first course of treat-
ment requires a decrease of at least 40 % in the cancer biomarker prostate-specific
antigen (PSA) from baseline, while success in the second course requires a decrease
of at least 80 % in PSA from the baseline value (and, in both cases, no evidence of
disease progression).

In a prostate cancer treatment trial, Thall et al. (2000) took a parametric approach
to estimating the best sequence of treatments with the goal of maximizing the prob-
ability of successful treatment, where success is a binary variable. Four treatment
courses were considered. Patients were randomized to one of the four treatments,
and if treatment failed, randomized to one of the remaining three options. That is,
A1 = {1,2,3,4} and A2 = A1 \ a1 (where a1 is the treatment actually given at the
first stage). A patient was switched from a treatment after the first failure, or deemed
to have had a successful therapy following two successful courses of the same treat-
ment. Thus, the trial can be viewed as a two-stage trial in which patients can have
at least one and at most two courses of treatment in the first stage, and at most two
courses of treatment in the second stage for a total two to four courses of treatment.

The optimizing criterion for determining the best DTR was the probability of
successful therapy. That is, the goal was to maximize ξ (a,a′) = ξa +(1− ξa)ξa′|a,
where ξa is the probability of a patient success in the first two courses with initial
treatment a and ξa′|a is the probability that the patient has two successful courses
with treatment a′ following initial (unsuccessful) treatment with a, i.e. under treat-
ment strategy (a,a′). Parametric conditional probability models were posited to
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obtain estimates of ξ (a,a′) that were allowed to depend on the patient’s state and
treatment history. For example, letting Yj take the value 1 if a patient experiences
successful treatment on the jth course and 0 otherwise, patient outcomes through
the first two courses of therapy can be characterized by the following probabilities:

θ1(a) = P(Y1 = 1|A1 = a)

θ2(1;(a,a)) = P(Y2 = 1|Y1 = 1,A1 = A2 = a)

θ2(0;(a′,a)) = P(Y2 = 1|Y1 = 0,A1 = a′,A2 = a)

which gives ξa = θ1(a)θ2(1;(a,a)). Logistic regression models were proposed for
the above probabilities, i.e. logit(θ j) were modeled as linear functions of treatment
and covariate histories for each of the j courses of treatment. These probability
models can be extended to depend on state variables such as initial disease severity
as well. Once all these models are fitted, one can pick the best DTR, i.e. the best
treatment pair (a,a′) that maximizes the overall success probability ξ (a,a′).

7.6 Discussion

In this chapter, we have considered the estimation of DTRs for a variety of outcome
types, including multi-dimensional continuous outcomes, time-to-event outcomes
in the presence of censoring, as well as discrete outcomes. Methods used in the
literature for such data include Q-learning, marginal structural models, and a fully
parametric, likelihood-based approach. In the context of Q-learning, modeling of
time-to-event data has been accomplished using accelerated failure time models
(with censoring handled by inverse probability weighting) and using the less para-
metric approach of support vector regression. For discrete outcomes, Q-learning has
also been combined with generalized additive models selected by generalized cross-
validation, with promising results. The MSM approach has been implemented for
discrete failure times only, but can easily be used in a continuous-time setting using
a marginal structural Cox model. G-estimation can also be employed assuming an
AFT (see Mark and Robins 1993; Hernán et al. 2005) to estimate DTRs, however
the approach remains under-utilized, perhaps because of the relative lack of standard
software with which it can be implemented.



Chapter 8
Inference and Non-regularity

Inference plays a key role in almost all statistical problems. In the context of DTRs,
one can think of inference for mainly two types of quantities: (i) inference for the
parameters indexing the optimal regime; and (ii) inference for the value function
(mean outcome) of a regime – either a regime that was pre-specified, or one that
was estimated. The literature contains several instances of estimation and inference
for the value functions of one or more pre-specified regimes (Lunceford et al. 2002;
Wahed and Tsiatis 2004, 2006; Thall et al. 2000, 2002, 2007a). However there has
been relatively little work on inference for the value function of an estimated policy,
mainly due to the difficulty of the problem.

Constructing confidence intervals (CIs) for the parameters indexing the optimal
regime is important for the following reasons. First, if the CIs for some of these
parameters contain zero, then perhaps the corresponding components of the patient
history need not be collected to make optimal decisions using the estimated DTR.
This has the potential to reduce the cost of data collection in a future implementa-
tion of the estimated optimal DTR. Thus in the present context, CIs can be viewed
as a tool – albeit one that is not very sophisticated – for doing variable selection.
Such CIs can be useful in exploratory data analysis when trying to interactively find
a suitable model for, say, the Q-functions. Second, note that when linear models are
used for the Q-functions, the difference in predicted mean outcomes corresponding
to two treatments, e.g. a contrast of Q-functions or a blip function, becomes a lin-
ear combination of the parameters indexing the optimal regime. Point-wise CIs for
these linear combinations can be constructed over a range of values of the history
variables based on the CIs for individual parameters. These CIs can dictate when
there is insufficient support in the data to recommend one treatment over another; in
such cases treatment decisions can be made based on other considerations, e.g. cost,
familiarity, burden, preference etc.

An additional complication in inference for the parameters indexing the optimal
regime arises because of a phenomenon called non-regularity. It was Robins (2004)
who first considered the problem of inference for the parameters of the optimal
DTR in the context of G-estimation. As originally discussed by Robins, the treat-
ment effect parameters at any stage prior to the last can be non-regular under
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certain longitudinal distributions of the data. By non-regularity, we mean that the
asymptotic distribution of the estimator of the treatment effect parameter does not
converge uniformly over the parameter space; see below for further details. This
technical phenomenon of non-regularity has considerable practical consequences; it
often causes bias in estimation, and leads to poor frequentist properties of Wald-type
or other standard confidence intervals. Any inference technique that aims to provide
good frequentist properties such as appropriate Type I error and nominal coverage
of confidence intervals has to address the problem of non-regularity. In this chap-
ter, we consider various approaches to inference in the context of Q-learning and
G-estimation.

8.1 Inference for the Parameters Indexing the Optimal
Regime Under Regularity

All of the recursive methods of estimation considered in previous chapters,
including Q-learning and G-estimation, can be viewed as two-step (substi-
tution) estimators at each stage. At stage j, the first step of estimation re-
quires finding the effect of treatment at all future stages, and then substitut-
ing these into the stage j estimating equation in order to find the estimator
of ψ j. For example, in the Q-learning context, for a two-stage example, the
pseudo-outcome at the first stage equals Ŷ1i = Y1i + maxa2 Qopt

2 (H2i,a2; β̂2, ψ̂2)
which relies on estimators of β2 and ψ2. Similarly, in the recursive implemen-
tation of G-estimation, the stage-1 estimating function includes Gmod,1(ψ1) =

Y +
[

γ1(h1,d
opt
1 ;ψ1)− γ1(h1,a1;ψ1)

]

+
[

γ2(h2,d
opt
2 ; ψ̂2)− γ2(h2,a2; ψ̂2)

]

, which

requires estimators of ψ2 (as well as estimators of propensity score model parame-
ters). At each stage, the decision rule parameters for that particular stage are treated
as parameters of interest, and any other parameters including those for treatment
models or subsequent treatment stages are considered nuisance parameters.

Newey and McFadden (1994) provide a discussion of the impact of the first-step
estimation on the standard errors of the second-step estimates. Van der Laan and
Robins (2003) also discuss the issue of second-step estimates’ standard errors, arriv-
ing at the same standard error as Newey and McFadden found by a different, more
measure-theoretic approach. We briefly review the theory of variance derivations
for estimating equations, and apply these methods to Q-learning and G-estimation.
Throughout this section, we consider only regular estimators, which in the DTR
context implies that there is a unique optimal treatment for each possible treatment
and covariate history at each stage. We will then consider the more challenging
problem of non-regular estimators in Sect. 8.2 and subsequent sections.
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8.1.1 A Brief Review of Variances for Estimating Equations

In this section, we provide a concise overview of the theory of estimating equations,
since most methods of estimation discussed in this book are M-estimators, i.e. esti-
mators which can be obtained as the minima of sums of functions of the data or are
roots of an estimating function. In particular, as implemented in previous chapters,
Q-learning and G-estimation are both M-estimators. This development will enable
us to derive and discuss measures of variability and confidence of the estimators of
decision rule parameters more precisely.

A function of the parameter and data, Un(θ ) = Un(θ ,Y ) = PnU(θ ,Yi), which
is of the same dimensionality as the parameter θ for which E[Un(θ )] = 0 is con-
sidered. Un(θ ) is said to be an estimating function (EF), and θ̂ is an EF estimator
if it is a solution to the estimating equation Un(θ ) = 0. That is, θ̂ is an EF esti-
mator if Un(θ̂ ) = 0. Note that the EF Un(θ ,Y ) is itself a random variable, since
it is a function of the random variable Y . To perform inference, we derive the fre-
quency properties of the EF and can then transfer these properties to the resultant
estimator with the help of a Taylor approximation and the delta method. Excel-
lent resources on asymptotic theory of statistics are given by Van der Vaart (1998)
and Ferguson (1996); or for a particular focus on semi-parametric methods, see
Bickel et al. (1993) and Tsiatis (2006).

The corresponding estimating equation that defines the estimator θ̂ has the form

Un(θ̂ ) =Un(θ̂ ,Y ) = PnU(θ̂ ,Yi) = 0. (8.1)

The estimating Eq. (8.1) is said to be unbiased if E[Un(θ )] = 0, and so

Var [Un(θ )] = E
[

(Un(θ )−E[Un(θ )]) (Un(θ )−E[Un(θ )])T
]

= E[Un(θ )Un(θ )T ],

which converges to some matrix ΣU . Further, Un(θ ) is a sum of conditionally inde-
pendent terms, so under standard regularity conditions

Un(θ )→d N (0,ΣU) . (8.2)

Using a first order Taylor expansion, we find

0 =Un(θ̂n) =Un(θ )+
(

∂Un(θ )
∂θ

)

(θ̂ −θ )+ op(1).

This gives that (θ̂ − θ ) = −
(

∂Un(θ)
∂θ

)−1
Un(θ )+ op(1). From this, we can deduce

that θ̂ →p θ and
√

n (θ̂ −θ )→d Np(0,A−1ΣU (A
T )−1) (8.3)
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where A = −E
[

∂
∂θ Un(θ )

]

. That is, θ̂ is a consistent and asymptotically normally

distributed estimator. The form of the variance in expression (8.3) has led to it being
called the sandwich estimator, where A forms the “bread” and ΣU is the “filling” of
the sandwich.

It follows from Eq. (8.3) that
√

nΣ−1/2
θ̂ (θ̂ − θ ) →d Np(0,Ip) where Σθ̂ =

A−1ΣU (AT )−1 and Ip is the p× p identity matrix, implying that confidence inter-
vals can be constructed, and significance tests performed, using a Wald statistic

of the form
√

nΣ−1/2
θ̂ θ̂ . In a more familiar form, this would give, for example, a

95 % confidence interval of θ̂ ± 1.96SE(θ̂) for a scalar-valued parameter θ (for
p-dimensional parameter θ , one can similarly construct component-wise CIs) and

a test statistic W =
√

nΣ−1/2
θ̂

θ̂ .
Confidence intervals for θ can also be constructed directly using the EF and its

standard error. From Eq. (8.2), we have Σ−1/2
U Un(θ ) →d N (0,Ip). It is therefore

the case that we can construct a score or Rao interval by searching for values θ
that satisfy |Σ−1/2

U Un(θ )| ≤ 1.96. Unlike the Wald intervals, which rely only on the
value of the estimated parameter and its standard error, score-based intervals may
be more computationally burdensome as they may require a search over the space
of θ . However, score-based intervals may exhibit better finite sample properties even
when standard regularity conditions do not hold, since these intervals do not require
derivatives of the EF (Robins 2004; Moodie and Richardson 2010).

Now suppose that θ is vector-valued and can be partitioned such that
θ = (ψT ,β T )T where ψ is of interest, and β contains nuisance parameters (such
as, for example, parameters associated with predictive variables in Q-learning,
or parameters from a propensity score model in G-estimation). If interest lies in
performing significance tests about ψ leaving β unspecified, i.e. in testing null
hypotheses of the form

H0 : ψ = ψ0,β = ‘anything’

versus the alternative hypothesis

HA : (ψ ,β ) �= (ψ0,β )

then we have what is called a composite null hypothesis. Suppose further that the

EF Un(θ ) can be decomposed into Un(θ ) =
(

Un(ψ)
Un(β )

)

.

To derive the correct variance for the composite null hypothesis, consider a Tay-
lor expansion of Un(ψ) about the limiting value, β , of a consistent estimator, β̂ , of
the nuisance parameter β :

Uadj(ψ) = Un(ψ)+

[
∂

∂β
Un(ψ)

]

(β̂ −β )+ op(1) (8.4)

= Un(ψ)−
[

∂
∂β

Un(ψ)

][
∂

∂β
Un(β )

]−1

Un(β )+ op(1). (8.5)
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From Eq. (8.4), it can be seen that E[Un(ψ)] = E[Uadj(ψ)] so Uadj(ψ) is an unbiased
EF; Eq. (8.5) follows from Eq. (8.4) via a substitution from a Taylor expansion of
the EF for β about its limiting value. From Eq. (8.5), we can derive the asymptotic
distribution of the parameter of interest ψ to be

√
n (ψ̂ −ψ)→d Np(0,Σψ̂)

where Σψ̂ = A−1
adjΣUadj (A

T
adj)

−1 is the asymptotic variance of ψ̂ with Aadj the

probability limit of −E
[

∂
∂ψ Uadj(ψ)

]

and ΣUadj is the probability limit of

E
[

Uadj(ψ)Uadj(ψ)T
]

. Note that ψ̂ is the substitution estimator defined by finding

the solution to the EF where an estimate of the (vector) nuisance parameter β̂ has
been plugged into the equation in place of the true value, β .

It is interesting to consider the variance of the substitution estimator ψ̂ with
the estimator, say ψ̃, that would result from plugging in the true value of the nui-
sance parameter (a feasible estimator only when such true values are known). That
is, we may wish to consider Σψ̂ and Σψ̃ . It turns out that no general statement
regarding the two estimators’ variances can be made, however there are special
cases in which relationships can be derived (see Henmi and Eguchi (2004) for a
geometric consideration of EF which serves to elucidate the variance relationships).
For example, if the EF is the score function for θ in a parametric model, there is a
cost (in terms of information loss or variance inflation) that is incurred for having to
estimate the nuisance parameters. In contrast, in the semi-parametric setting where
the score functions for ψ and β are orthogonal and that the score function is used as
the EF for β , it can be shown that Σψ̃ −Σψ̂ is positive definite. That is, efficiency is
gained by estimating rather than knowing the nuisance parameter β .

8.1.2 Asymptotic Variance for Q-learning Estimators

We now apply the theory of the previous section to Q-learning for the case where we
use linear models parameterized by θ j = (ψ j,β j) of the form Qopt

j (Hj,A j;β j,ψ j) =

β T
j Hj0 +(ψT

j Hj1)A j. For simplicity of exposition, we will focus on the two-stage
setting, but extensions to the general, K-stage setting follow directly. Following
the algorithm for Q-learning outlined in Sect. 3.4.1, we begin with a regression of
Y2 using the model Qopt

2 (H2,A2;β2,ψ2) = β T
2 H20 +(ψT

2 H21)A2. Letting X2 denote
(H20,H21A2), this gives a linear regression of the familiar form E[Y2|X2] = X2θ2,
with Var[θ̂2] = (XT

2 X2)
−1σ2 where σ2 denotes the variance of the residuals Y2 −

X2θ2. Confidence intervals can then be formed, and significance tests performed, for
the vector parameter θ2. If composite tests of the form H0 : ψ2 = 0 are desired, hy-
pothesizing that the variables contained in H21 are not significantly useful tailoring
variables without specifying any hypothesized values for the value of β2, then the

Wald statistic should be scaled using I
1/2

ψ2ψ2.β2
= (Iψ2ψ2 −Iψ2β2

I −1
β2β2

Iβ2ψ2
)1/2,

where
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(
Iψ2ψ2 Iψ2β2

Iβ2ψ2
Iβ2β2

)

is a block-diagonal matrix decomposition of the information of the regression

parameters at the second stage, and similarly I
1/2

ψ2ψ2.β2
should be used to determine

the limits of a confidence interval.
Now, let us consider the first-stage estimator. First stage estimation proceeds

by first forming the pseudo-outcome Y1 +β T
2 H20 + |ψT

2 H21|, which we implement
in practice using the estimate Ŷ1 = Y1 + β̂ T

2 H20 + |ψ̂T
2 H21|, and regressing this on

(H10,H11A1) using the model Qopt
1 (H1,A1;β1,ψ1) = β T

1 H10 + (ψT
1 H11)A1. This

two-stage regression-based estimation can be viewed as an estimating equation
based procedure as follows. Define

U2,n(θ2) = Pn

(

Y2 −Qopt
2 (H2,A2;β2,ψ2)

)( ∂
∂θ2

Qopt
2 (H2,A2;β2,ψ2)

)

= Pn

(

Y2 −β T
2 H20 − (ψT

2 H21)A2

)

(HT
20,H

T
21A2)

T ,

U1,n(θ1,θ2) = Pn

(

Y1 +max
A2

Qopt
2 (H2,A2;β2,ψ2)−

Qopt
1 (H1,A1;β1,ψ1)

)( ∂
∂θ1

Qopt
1 (H1,A1;β1,ψ1)

)

= Pn

(

Y1 +β T
2 H20 + |ψT

2 H21|−β T
1 H10 − (ψT

1 H11)A1

)

(HT
10,H

T
11A1)

T .

Then the (joint) estimating equation for all the parameters from both stages of
Q-learning is given by

(

U2,n(θ2)
U1,n(θ1,θ2)

)

= 0.

At the first stage, then, both the main effect parameters β1 and all second
stage parameters can be considered nuisance parameters. Collecting these into
a single vector β � = (β1,β2,ψ2), we use a similar form to above, form-
ing Wald test statistics or CIs for the tailoring variable parameters using

I
1/2

ψ1ψ1.β
�
1

= (Iψ1ψ1 −Iψ1β �
1
I −1

β �
1β �

1

Iβ �
1ψ1

)1/2, where

(
Iψ1ψ1 Iψ1β �

1

Iβ �
1ψ1

Iβ �
1β �

1

)

is a block-diagonal matrix decomposition of the inverse-variance of all parameters.
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8.1.3 Asymptotic Variance for G-estimators

The variance of the optimal decision rule parameters ψ̂ must adjust for the plug-in
estimates of nuisance parameters in the estimating function of Eq. (4.3), U(ψ) =

∑n
i=1 ∑K

j=1 Uj(ψ j , ς̂ j(ψ j), α̂ j). In the derivations that follow, we assume the param-
eters are not shared between stages, however the calculations are similar in the
shared-parameter setting. Second derivatives of the estimating functions for all
parameters are needed, and thus we require that each subject’s optimal regime must
be unique at every stage except possibly the first. If for any individual, the optimal
treatment is not unique, then it is the case that γ j(h j,a j) = 0, or equivalently that for
a Q-function β T

j Hj0 +(ψT
j Hj1)(A j +1)/2, ψT

j Hj1 = 0. Provided the rule is unique,
then the estimating functions used in each stage of estimation for G-estimation will
be differentiable and so the asymptotic variance can be determined.

Robins (2004) derives the variance of U(ψ ,ς(ψ),α) by performing a first order
Taylor expansion of the function about the limiting values of ς̂(ψ) and α̂ , ς and α:

Uadj(ψ) = U(ψ ,ς ,α)+E

[
∂

∂ς
U(ψ ,ς ,α)

]

(ς̂(ψ)− ς)+

E

[
∂

∂α
U(ψ ,ς ,α)

]

(α̂ −α)+ op(1)

to obtain the adjusted G-estimating function, Uadj(ψ), which estimates the
parameters from all stages j = 1, . . . ,K simultaneously. Of course, with the limiting
values of the nuisance parameters unknown, this expression does not provide a
practical EF. If l̇α and l̇ς denote the (score) EF for the treatment model and expected
counterfactual model nuisance parameters, respectively, then we can again apply a
Taylor expansion to find

α̂ −α = −
(

E

[
∂

∂α
l̇α(α)

])−1

l̇α(α)+ op(1),

ς̂(ψ)− ς = −
(

E

[
∂

∂ς
l̇ς (ς)

])−1

l̇ς (ς)+ op(1).

This gives

Uadj(ψ) = U(ψ ,ς ,α)−E

[
∂

∂ς
U(ψ ,ς ,α)

](

E

[
∂

∂ς
l̇ς (ς)

])−1

l̇ς (ς)

− E

[
∂

∂α
U(ψ ,ς ,α)

]

E

[
∂

∂α
l̇α(α)

]−1

l̇α (α).

Thus the estimating function has variance E[Uadj(ψ)⊗2] = E[Uadj(ψ)Uadj(ψ)T ].
It follows that the variance of the blip function parameters which index the deci-
sion rules, ψ̂ = (ψ̂T

1 , ψ̂T
2 , . . . , ψ̂T

K )
T , is given by
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Σψ̂ = E

⎡

⎣

{(

E

[
∂

∂ψ
Uadj(ψ ,ς ,α)

])−1

Uadj(ψ ,ς ,α)

}⊗2
⎤

⎦ .

Suppose at each of two stages, p different parameters are estimated. Then Σψ̂ is
the (2p)× (2p) covariance matrix

Σψ̂ =

(

Σ (11)
ψ̂ Σ (12)

ψ̂

Σ (21)
ψ̂ Σ (22)

ψ̂

)

.

The p × p covariance matrix of ψ̂2 = (ψ̂20, . . . , ψ̂2(p−1)) that accounts for using

the substitution estimates ς̂2 and α̂2 is Σ (22)
ψ̂ , and accounting for substituting ψ̂2

as well as ς̂1 and α̂1 to estimate ψ1 gives the p× p covariance matrix Σ (11)
ψ̂ for

ψ̂1 = (ψ̂10, . . . , ψ̂1(p−1)).
However, as shown in Sect. 4.3.1, parameters can be estimated separately at each

stage using G-estimation recursively at each stage. In such a case, it is possible to

estimate the variances Σ (22)
ψ̂ and Σ (11)

ψ̂ of the stage-specific parameters recursively as
well (Moodie 2009a). The development for the estimation of the diagonal compo-

nents, Σ ( j j)
ψ̂ , of the covariance matrix Σψ̂ will be undertaken in a two-stage setting,

but the extension to the K stage case follows directly.
Let Uadj,1(ψ1,ψ2) and Uadj,2(ψ2) denote, respectively, the first and second com-

ponents of Uadj(ψ). At the second stage, use Uadj,2 to calculate Σ (22)
ψ̂ . To find the

covariance matrix of ψ̂1, use a Taylor expansion of U1(ψ1, ψ̂2, ς̂1(ψ1), α̂1) about the
limiting values of the nuisance parameters (ψ2,ς1,α1). After some simplification,
this gives:

Uε
adj,1(ψ1,ψ2) = Uadj,1(ψ1,ψ2)−E

[
∂

∂ψ2
U1(ψ1,ψ2,ς1,α1)

]

·
(

E

[
∂

∂ψ2
Uadj,2(ψ2,ς2,α2)

])−1

Uadj,2(ψ2,ς2,α2)

+op(1).

It then follows that
√

n(ψ̂1 −ψ1) converges in distribution to

N

⎛

⎝0,E

⎡

⎣

{(

E

[
∂

∂ψ1
Uε

adj,1

])−1

Uε
adj,1

}⊗2
⎤

⎦

⎞

⎠ .

Thus, the diagonal components of Σψ̂ are obtained using a more tractable calcula-
tion.

Note that if there are K > 2 stages, the similar derivations can be used, but re-
quire the use of K − j adjustment terms to Uadj, j for the estimation and substitu-
tion of all future decision rule parameters, ψ j+1, . . . ,ψK . Note that Uε

adj and Uadj
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produce numerically the same variance estimate at each stage: that is, the recursive
variance calculation simply provides a more convenient and less computationally
intensive approach by taking advantage of known independences (i.e. zeros in the
matrix of derivatives of U(ψ) with respect to ψ) which arise because decision rules
do not share parameters at different stages. The asymptotic variances can lead to
coverage below the nominal level in small samples, but perform well for samples
of size 1,000 or greater in regular settings where differentiability of the EFs holds
(Moodie 2009a).

8.1.4 Projection Confidence Intervals

Berger and Boos (1994) and Berger (1996) proposed a general method for
constructing valid hypothesis tests in the presence of a nuisance parameter. One
can develop an asymptotically exact confidence interval for the stage 1 parameter
ψ1 by inverting these hypothesis tests, based on the following nuisance parameter
formulation. As we have noted above, many DTR parameter estimators are obtained
via substitution because the true value of the stage 2 parameter ψ2 is unknown and
must be estimated (see Sect. 8.2 for details). Instead, if the true value of ψ2 were
known a priori, the asymptotic distribution of

√
n(ψ̂1 −ψ1) would be regular (in

fact, normal), and standard procedures could be used to construct an asymptotically
valid confidence interval although performance of such asymptotic variance esti-
mators may be poor in small samples. Thus, while ψ2 is not of primary interest for
analyzing stage 1 decisions, it nevertheless plays an essential role in the asymptotic
distribution of

√
n(ψ̂1 −ψ1). In this sense, ψ2 is a nuisance parameter. This idea

was used by Robins (2004) to construct a projection confidence interval for ψ1.
The basic idea is as follows. Let Sn,1−α(ψ2) denote an asymptotically exact con-

fidence interval for ψ1 if ψ2 were known, i.e., P(ψ1 ∈Sn,1−α(ψ2)) = 1−α+oP(1).
Of course, the exact value of ψ2 is not known, but since

√
n(ψ̂2 −ψ2) is regular

and asymptotically normal, it is straightforward to construct a (1− ε) asymptotic
confidence interval for ψ2, say Cn,1−ε , for arbitrary ε > 0. Then, it follows that
⋃

γ∈Cn,1−ε Sn,1−α(γ) is a (1−α − ε) confidence interval for ψ1. To see this, note
that

P
(

ψ1 ∈
⋃

γ∈Cn,1−ε

Sn,1−α(γ)
)≥ 1−α+oP(1)+P

(

ψ2 /∈Cn,1−ε
)

= 1−α−ε+oP(1).

(8.6)

Thus, the projection confidence interval is the union of the confidence intervals
Sn,1−α(γ) over all values γ ∈ Cn,1−ε , and is an asymptotically valid (1−α − ε)
confidence interval for ψ1. The main downside of this approach is that it is poten-
tially highly conservative. Also, its implementation can be computationally highly
expensive.
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8.2 Exceptional Laws and Non-regularity of the Parameters
Indexing the Optimal Regime

The cumulative distribution function of the observed longitudinal data is said to
be exceptional if, at some stage j, the optimal treatment decision depends on at
least one component of covariate and treatment history and the probability that the
optimal rule is not unique is positive (Robins 2004). The combination of three fac-
tors makes a law exceptional: (i) the form of the blip or Q-function model, (ii) the
true value of the blip model parameters, and (iii) the distribution of treatments and
state variables. For a law to be exceptional, then, condition (i) requires the blip or
Q-function model to depend on at least one covariate such as prior treatment; condi-
tions (ii) and (iii) require that the model takes the value zero with positive probabil-
ity, that is, there is some subset of the population in which the optimal treatment is
not unique. Exceptional laws may commonly arise in practice: under the hypothesis
of no treatment effect, for a blip or Q-function that includes at least one compo-
nent of treatment and state variable history, every distribution is an exceptional law.
More generally, it may be the case that a treatment is ineffective in a sub-group of
the population under study. Exceptional laws give rise to non-regular estimators.

The issue of non-regularity can be better understood with a simple but instructive
example discussed by Robins (2004). Consider the problem of estimating |μ | based
on n i.i.d. observations X1, . . . ,Xn from N (μ ,1). Note that |X̄n| is the maximum
likelihood estimator of |μ |, where X̄n is the sample average. It can be shown that the
asymptotic distribution of

√
n(|X̄n|− |μ |) for μ = 0 is different from that for μ �= 0,

and more importantly, the change in the distribution at μ = 0 happens abruptly. Thus
|X̄n| is a non-regular estimator of |μ |. Also, for μ = 0,

lim
n→∞

E[
√

n(|X̄n|− |μ |)] =
√

2
π
.

Robins referred to this quantity as the asymptotic bias of the estimator |X̄n|. This
asymptotic bias is one symptom of the underlying non-regularity, as discussed by
Moodie and Richardson (2010).

We can graphically illustrate the asymptotic bias resulting from non-regularity
using a class of generative models in which exceptional laws arise (see Sect. 8.8
for details). Thus there are many combinations of parameters that lead to (near-)
non-regularity, and thereby bias in the parameter estimates. Hence it makes sense to
study the prevalence and magnitude of bias over regions of the parameter space.

Moodie and Richardson (2010) employed a convenient way to study this bias in
the context of G-estimation and the associated hard-threshold estimators using bias
maps. We employ the same technique here in the Q-learning context; see Fig. 8.1.
Bias maps show the absolute bias in ψ̂10 (parameter denoting main effect of treat-
ment at stage 1) as a function of sample size n and one of the stage 2 parameters,
ψ20, ψ21, or ψ22 (which are equal to the generative parameters γ5, γ6 and γ7, re-
spectively). The plots represent the average bias over 1,000 simulated data sets,
computed over a range of 2 units (on a 0.1 unit grid) for each parameter at sample
sizes 250,300, . . . ,1000. From the bias maps, it is clear that there exist many regions
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Fig. 8.1 Absolute bias of ψ̂10 in hard-max Q-learning in different regions (regular and non-regular)
of the underlying parameter space. Different plots correspond to different parameter settings.

of the parameter space that lead to bias in ψ̂10, thereby reinforcing the necessity to
address the problem through careful estimation and inference techniques.

As noted by Moodie and Richardson (2010), the bias maps can be used to visually
represent the asymptotic results concerning DTR estimators. Consistency may be
visualized by looking at a horizontal cross-section of a bias map: as sample size in-
creases, the bias of the first-stage estimator will decrease to be smaller than any
fixed, positive number at all non-regular parameter settings, even those that are
nearly non-regular. However, as derived by Robins (2004), there exist sequences of
data generating processes {ψ(n)} for which the second-stage parameters ψ2 decrease
with increasing n in such a way that the asymptotic bias of the first-stage estimator
ψ̂1 is strictly positive. Contours of constant bias can be found along the lines on the
bias map traced by plotting g2(ψ2) = kn−1/2 against n, for some constant k. The
asymptotic bias is bounded and, in finite samples, the value of the second-stage pa-
rameters (i.e. the “nearness” to non-regularity) and the sample size both determine
the bias of the first-stage parameter estimator.
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In many situations where the asymptotic distribution of an estimator is
unavailable, bootstraping is used as an alternative approach to conduct inference.
But the success of the bootstrap also hinges on the underlying smoothness of
the estimator. When an estimator is non-smooth, the ordinary bootstrap proce-
dure produces an inconsistent bootstrap estimator (Shao 1994). Inconsistency of
bootstrap in the above toy example has been discussed by Andrews (2000). Poor
performance of usual bootstrap CIs in the Q-learning context has been illustrated
by Chakraborty et al. (2010). We first discuss non-regularity in the specific con-
texts of G-estimation and Q-learning, then, in the following sections, we consider
several different approaches to inference that attempt to address the problem of
non-regularity.

8.2.1 Non-regularity in Q-learning

With (3.8) as the model for Q-functions, the optimal DTR is given by

dopt
j (Hj) = argmax

a j
(ψT

j Hj1)a j = sign(ψT
j Hj1), j = 1,2, (8.7)

where sign(x) = 1 if x > 0, and −1 otherwise. Note that the term β T
j Hj0 on the right

hand side of (3.8) does not feature in the optimal DTR. Thus for estimating optimal
DTRs, the ψ js are the parameters of interest, while β js are nuisance parameters.
These ψ js are the policy parameters for which we want to construct confidence
intervals.

Inference for ψ2, the stage 2 parameters, is straightforward since this falls in
the framework of standard linear regression. In contrast, inference for ψ1, the
stage 1 parameters, is complicated by the previously discussed problem of non-
regularity resulting from the underlying non-smooth maximization operation in the
estimation procedure. To further understand the problem, recall that the stage 1
pseudo-outcome in Q-learning for the i-th subject is

Ŷ1i = Y1i +max
a2

Qopt
2 (H2i,a2; β̂2, ψ̂2) = Y1i + β̂ T

2 H20,i + |ψ̂T
2 H21,i|, i = 1, . . . ,n,

which is a non-smooth (the absolute value function is non-differentiable at zero)
function of ψ̂2. Since ψ̂1 is a function of Ŷ1i, i = 1, . . . ,n, it is in turn a non-
smooth function of ψ̂2. As a consequence, the distribution of

√
n(ψ̂1 −ψ1) does

not converge uniformly over the parameter space of (ψ1,ψ2) (Robins 2004). More
specifically, the asymptotic distribution of

√
n(ψ̂1 −ψ1) is normal if ψ2 is such that

P[H2 : ψT
2 H21 = 0] = 0, but is non-normal if P[H2 : ψT

2 H21 = 0]> 0, and this change
in the asymptotic distribution happens abruptly. A precise expression for the asymp-
totic distribution can be found in Laber et al. (2011). The parameter ψ1 is called
a non-regular parameter and the estimator ψ̂1 a non-regular estimator; see Bickel
et al. (1993) for a precise definition of non-regularity. Because of this non-regularity,
given the noise level present in small samples, the estimator ψ̂1 oscillates between
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the two asymptotic distributions across samples. Consequently, ψ̂1 becomes a biased
estimator of ψ1, and Wald type CIs for components of ψ1 show poor coverage rates
(Robins 2004; Moodie and Richardson 2010).

8.2.2 Non-regularity in G-estimation

Let us again consider a typical, two-stage scenario with linear optimal blip func-
tions,

γ1(h1,a1) = (ψ10 +ψ11o1)(a1 + 1)/2, and

γ2(h2,a2) = (ψ20 +ψ21o2 +ψ22(a1 + 1)/2+ψ23o2(a1 + 1)/2)(a2+ 1)/2.

Let η2 = ψ20 + ψ21o2 + ψ22(a1 + 1)/2 + ψ23o2(a1 + 1)/2 and similarly define
η̂2 = ψ̂20 + ψ̂21o2 + ψ̂22(a1 + 1)/2+ ψ̂23o2(a1 + 1)/2. The G-estimating function
for ψ2 is unbiased, so E[η̂2] = η2. The sign of η2 is used to decide optimal treat-
ment at the second stage: dopt

2 = sign(η2) = sign(ψ20 +ψ21o2 +ψ22a1 +ψ23o2a1)

and d̂opt

2 = sign(η̂2) so that now the G-estimating equation solved for ψ1 at the first
interval contains:

Gmod,1(ψ1) = Y − γ1(o1,a1;ψ1)+ [γ2(h2, d̂
opt

2 ; ψ̂2)− γ2(h2,a2; ψ̂2)]

= Y − γ1(o1,a1;ψ1)+ [(d̂opt

2 − a2)(ψ̂20 + ψ̂21o2 + ψ̂22a1 + ψ̂23o2a1)/2]

= Y − γ1(o1,a1;ψ1)+ sign(η̂2)η̂2/2− a2η̂2/2
E
≥ Y − γ1(o1,a1;ψ1)+ sign(η2)η2/2− a2η2/2 = 0,

where E
≥ is used to denote “greater than or equal to in expectation”. The quan-

tity
[

γ2(h2,d
opt

2 ;ψ2)− γ2(h2,a2;ψ2)
]

in Gmod,1(ψ1) – or more generally, the sum

∑
k> j

[

γk(hk,d
opt
k ;ψk)− γk(hk,ak;ψk)

]

in Gmod, j(ψ j) – corresponds conceptually to |μ | in
the toy example with normally-distributed random variables Xi that was introduced
at the start of the section. By using a biased estimate of sign(η2)η2 in Gmod,1(ψ1),
some strictly positive value is added into the G-estimating equation for ψ1. The esti-
mating function no longer has expectation zero and hence is asymptotically biased.

8.3 Threshold Estimators with the Usual Bootstrap

In this section, we will present two approaches to “regularize” the non-regular
estimator (also called the hard-max estimator because of the maximum operation
used in the definition) by thresholding and/or shrinking the effect of the term in-
volving the maximum, i.e. |ψ̂T

2 H21|, towards zero. Usual bootstrap procedures in
conjunction with these regularized estimators offer considerable improvement over
the original hard-max procedure, as verified in extensive simulations. While these
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estimators are quite intuitive in nature, only limited theoretical results are available.
We present these in the context of Q-learning, but these can equally be applied in a
G-estimation setting.

8.3.1 The Hard-Threshold Estimator

The general form of the hard-threshold pseudo-outcome is

Ŷ HT
1i = Y1i + β̂ T

2 H20,i + |ψ̂T
2 H21,i| · I[|ψ̂T

2 H21,i|> λi], i = 1, . . . ,n, (8.8)

where λi (>0) is the threshold for the i-th subject in the sample (possibly depending
on the variability of the linear combination ψ̂T

2 H21,i for that subject). One way to
operationalize this is to perform a preliminary test (for each subject in the sample) of
the null hypothesis ψT

2 H21,i = 0 (H21,i is considered fixed in this test), set Ŷ HT
1i = Ŷ1i

if the null hypothesis is rejected, and replace |ψ̂T
2 H21,i| with the “better guess” of 0

in the case that the test fails to reject the null hypothesis. Thus the hard-threshold
pseudo-outcome can be written as

Ŷ HT
1i = Y1i + β̂ T

2 H20,i + |ψ̂T
2 H21,i| · I

[ √
n|ψ̂T

2 H21,i|
√

HT
21,iΣ̂ψ̂2

H21,i

> zα/2

]

(8.9)

for i = 1, . . . ,n, where n−1Σ̂ψ̂2
is the estimated covariance matrix of ψ̂2. The

corresponding estimator of ψ1, denoted by ψ̂HT
1 , will be referred to as the hard-

threshold estimator. The hard-threshold estimator is common in many areas like
variable selection in linear regression and wavelet shrinkage (Donoho and John-
stone 1994). Moodie and Richardson (2010) proposed this estimator for bias cor-
rection in the context of G-estimation, and called it the Zeroing Instead of Plugging
In (ZIPI) estimator. In regular data-generating settings, ZIPI estimators converge to
the usual recursive G-estimators and therefore are asymptotically consistent, unbi-
ased and normally distributed. Furthermore, in any non-regular setting where there
exist some individuals for whom there is a unique optimal regime, ZIPI estimators
have smaller asymptotic bias than the recursive G-estimators provided parameters
are not shared across stages (Moodie and Richardson 2010).

Note that Ŷ HT
1 is still a non-smooth function of ψ̂2 and hence ψ̂HT

1 is a non-
regular estimator of ψ1. However, the problematic term |ψ̂T

2 H21| is thresholded, and
hence one might expect that the degree of non-regularity is somewhat reduced. An
important issue regarding the use of this estimator is the choice of the significance
level α of the preliminary test, which is an unknown tuning parameter. As dis-
cussed by Moodie and Richardson (2010), this is a difficult problem even in better-
understood settings where preliminary test based estimators are used; no widely ap-
plicable data-driven method for choosing α in this setting is available. Chakraborty
et al. (2010) studied the behavior of the usual bootstrap in conjunction with this
estimator empirically.
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8.3.2 The Soft-Threshold Estimator

The general form of the soft-threshold pseudo-outcome considered here is

Ŷ ST
1i = Y1i + β̂ T

2 H20,i + |ψ̂T
2 H21,i| ·

(

1− λi

|ψ̂T
2 H21,i|2

)+

, i = 1, . . . ,n, (8.10)

where x+ = xI[x > 0] stands for the positive part of a function, and λi (>0) is a
tuning parameter associated with the i-th subject in the sample (again possibly de-
pending on the variability of the linear combination ψ̂T

2 H21,i for that subject). In the
context of regression shrinkage (Breiman 1995) and wavelet shrinkage (Gao 1998),
the third term on the right side of (8.10) is generally known as the non-negative
garrote estimator. As discussed by Zou (2006), the non-negative garrote estimator
is a special case of the adaptive lasso estimator. Chakraborty et al. (2010) proposed
this soft-threshold estimator in the context of Q-learning.

Like the hard-threshold pseudo-outcome, Ŷ ST
1 is also a non-smooth function of

ψ̂2 and hence ψ̂ST
1 remains a non-regular estimator of ψ1. However, the problematic

term |ψ̂T
2 H21| is thresholded and shrunk towards zero, which reduces the degree of

non-regularity. As in the case of hard-threshold estimators, a crucial issue here is to
choose a data-driven tuning parameter λi; see below for a choice of λi following a
Bayesian approach. Figure 8.2 presents the hard-max, the hard-threshold, and the
soft-threshold pseudo-outcomes.

Choice of Tuning Parameters

A hierarchical Bayesian formulation of the problem, inspired by the work of
Figueiredo and Nowak (2001) in wavelets, was used by Chakraborty et al. (2010)
to choose the λis in a data-driven way. It turns out that the estimator (8.10) with
λi = 3HT

21,iΣ̂ψ̂2
H21,i/n, i = 1, . . . ,n, where n−1Σ̂ψ̂2

is the estimated covariance ma-
trix of ψ̂2, is an approximate empirical Bayes estimator. The following theorem can
be used to derive the choice of λi.

Theorem 8.1. Let X be a random variable such that X |μ ∼ N(μ ,σ2) with known
variance σ2. Let the prior distribution on μ be given by μ |φ2 ∼ N(0,φ2), with
Jeffrey’s noninformative hyper-prior on φ2, i.e., p(φ2) ∝ 1/φ2. Then an empirical
Bayes estimator of |μ | is given by

ˆ|μ |EB
= X

(

1− 3σ2

X2

)+
(

2Φ
(X

σ

√
(

1− 3σ2

X2

)+)− 1

)

+

√

2
π

σ
√
(

1− 3σ2

X2

)+
exp

{

− X2

2σ2

(

1− 3σ2

X2

)+
}

, (8.11)

where Φ(·) is the standard normal distribution function.
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Fig. 8.2 Hard-threshold and soft-threshold pseudo-outcomes compared with the hard-max
pseudo-outcome
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The proof can be found in Chakraborty et al. (2010).

Clearly, ˆ|μ |EB
is a thresholding rule, since ˆ|μ |EB

= 0 for |X |<√
3σ . Moreover,

when |X/σ | is large, the second term of (8.11) goes to zero exponentially fast, and

(

2Φ
(X

σ

√
(

1− 3σ2

X2

)+)− 1

)

≈ (2 I[X > 0]− 1) = sign(X).

Consequently, the empirical Bayes estimator is approximated by

ˆ|μ |EB ≈ X
(

1− 3σ2

X2

)+
sign(X) = |X |

(

1− 3σ2

X2

)+
. (8.12)

Now for i = 1, . . . ,n separately, put X = ψ̂T
2 H21,i, and μ = ψT

2 H21,i (for fixed H21,i);
and plug in σ̂2 = HT

21,iΣ̂ψ̂2
H21,i/n for σ2. This leads to a choice of λi in the soft-

threshold pseudo-outcome (8.10):

Ŷ ST
1i = Y1i + β̂ T

2 H20,i + |ψ̂T
2 H21,i| ·

(

1− 3HT
21,iΣ̂ψ̂2

H21,i

n|ψ̂T
2 H21,i|2

)+

,

= Y1i + β̂ T
2 H20,i + |ψ̂T

2 H21,i| ·
(

1− 3HT
21,iΣ̂ψ̂2

H21,i

n|ψ̂T
2 H21,i|2

)

· I
[ √

n|ψ̂T
2 H21,i|

√

HT
21,iΣ̂ψ̂2

H21,i

>
√

3

]

,

i = 1, . . . ,n. (8.13)

The presence of the indicator function in (8.13) indicates that Ŷ ST
1i is a thresholding

rule for small values of |ψ̂T
2 H21,i|, while the term just preceding the indicator func-

tion makes Ŷ ST
1i a shrinkage rule for moderate to large values of |ψ̂T

2 H21,i| (for which
the indicator function takes the value one).

Interestingly, the thresholding rule in (8.13) also provides some guidance for
choosing the tuning parameter of the hard-threshold estimator. Note that the indi-
cator function in (8.13) corresponds to a pretest that uses a critical value of

√
3 =

1.7321; equating this value to zα/2 and solving for α , we get α = 0.0833. Hence a
hard-threshold estimator with tuning parameter α = 0.0833 ≈ 0.08 corresponds to
the soft-threshold estimator without the shrinkage effect. Chakraborty et al. (2010)
empirically showed that the hard-threshold estimator with α = 0.08 outper-
formed other choices of this tuning parameter as reported in the original paper
by Moodie and Richardson (2010).

8.3.3 Analysis of Smoking Cessation Data:
An Illustration, Continued

To demonstrate the use of the soft-threshold method in a health application, here we
present the analysis of the smoking cessation data described earlier in Sects. 2.4.1
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and 3.4.3. The variables considered here are the same as those considered in
Sect. 3.4.3. To find the optimal DTR, we applied both the hard-max and the soft-
threshold estimators within the Q-learning framework. This involved:

1. Fit stage 2 regression (n = 281) of FF6Quitstatus using the model:

FF6Quitstatus = β20 +β21 ×motivation+β22 ×source

+β23 ×selfefficacy+β24 ×story

+β25 ×education+β26 ×PQ6Quitstatus

+β27 ×source×selfefficacy

+β28 ×story×education

+
(

ψ20 +ψ21 ×PQ6Quitstatus
)

×FFarm+error.

2. Construct the hard-max pseudo-outcome (Ŷ1) and the soft-threshold pseudo-
outcome (Ŷ ST

1 ) for the stage 1 regression by plugging in the stage 2 estimates:

Ŷ1 = PQ6Quitstatus+ β̂20+ β̂21 ×motivation+ β̂22×source

+ β̂23 ×selfefficacy+ β̂24 ×story

+ β̂25 ×education+ β̂26 ×PQ6Quitstatus

+ β̂27 ×source×selfefficacy+ β̂28 ×story×education

+
∣
∣
∣ψ̂20 + ψ̂21 ×PQ6Quitstatus

∣
∣
∣;

and

Ŷ ST
1 = PQ6Quitstatus+ β̂20 + β̂21 ×motivation+ β̂22 ×source

+ β̂23 ×selfefficacy+ β̂24 ×story

+ β̂25 ×education+ β̂26×PQ6Quitstatus

+ β̂27 ×source×selfefficacy+ β̂28 ×story×education

+
∣
∣
∣ψ̂20 + ψ̂21 ×PQ6Quitstatus

∣
∣
∣

×
(

1− 3Var(ψ̂20 + ψ̂21 ×PQ6Quitstatus)

|ψ̂20 + ψ̂21 ×PQ6Quitstatus|2
)+

.

Note that in this case one can construct both versions of the pseudo-outcomes for
everyone who participated at stage 1, since there are no variables from post-stage
1 required to do so.

3. Fit stage 1 regression (n = 1,401) of the pseudo-outcome using a model of the
form:

Ŷ1 or Ŷ ST
1 = β10 +β11 ×motivation

+β12×selfefficacy+β13×education
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+
(

ψ(1)
10 +ψ(1)

11 ×selfefficacy
)

×source

+
(

ψ(2)
10 +ψ(2)

11 ×education
)

×story+error.

No significant treatment effect was found at the second stage regression,
indicating the likely existence of non-regularity. At stage 1, for either estima-
tor, 95 % confidence intervals were constructed by centered percentile bootstrap
(Efron and Tibshirani 1993) using 1,000 bootstrap replications. The stage 1 analysis
summary is presented in Table 8.1. In this case, the hard-max and the soft-threshold
estimators produced similar results.

Table 8.1 Regression coefficients and 95 % bootstrap confidence intervals at stage 1, using both
the hard-max and the soft-threshold estimators (significant effects are in bold)

Hard-max Soft-threshold
Variable Coefficient 95 % CI Coefficient 95 % CI
motivation 0.04 (−0.00, 0.08) 0.04 (0.00, 0.08)
selfefficacy 0.03 (0.00, 0.06) 0.03 (0.00, 0.06)
education −0.01 (−0.07, 0.06) −0.01 (−0.07, 0.06)
source −0.15 (−0.35, 0.06) −0.15 (−0.35, 0.06)
source × selfefficacy 0.03 (0.00, 0.06) 0.03 (0.00, 0.06)
story 0.05 (−0.01, 0.11) 0.05 (−0.01, 0.11)
story × education −0.07 (−0.13, −0.01) −0.07 (−0.13, −0.01)

From the above analysis, it is found that at stage 1 subjects with higher level of
motivation or selfefficacy are more likely to quit. The highly personal-
ized level of source is more effective for subjects with a higher selfefficacy
(≥7), and deeply tailored level of story is more effective for subjects with lower
education (≤ high school); these two conclusions can be drawn from the inter-
action plots (with confidence intervals) presented in Fig. 3.2 (see Sect. 3.4.3). Thus
to maximize each individual’s chance of quitting over the two stages, the web-based
smoking cessation intervention should be designed in future such that: (1) smok-
ers with high self-efficacy (≥7) are assigned to highly personalized level of
source, and (2) smokers with lower education are assigned to deeply tailored
level of story.

8.4 Penalized Q-learning

In the threshold methods considered earlier, the stage 1 pseudo-outcomes can be
viewed as shrinkage functionals of the least squares estimators of the stage 2 param-
eters. However, they are not optimizers of any explicit objective function (except in
the special case of only one covariate or an orthonormal design). The Penalized Q-
learning (hereafter referred to as PQ-learning) approach, recently proposed by Song
et al. (2011), applies the shrinkage idea with Q-learning by considering an explicit
penalized regression at stage 2. The main distinction between the penalization used
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here and that used in the context of variable selection is in the “target” of penaliza-
tion: while penalties are applied to each variable (covariate) in a variable selection
context, they are applied on each subject in the case of PQ-learning.

Let θ j = (β T
j ,ψT

j )
T for j = 1, 2. PQ-learning starts by considering a penalized

least squares optimization at stage 2; it minimizes the objective function

W2(θ2) =
n

∑
i=1

(

Y2i −Qopt
2 (H2i,A2i;β2,ψ2)

)2
+

n

∑
i=1

Jλn

(

|ψT
2 H21,i|

)

with respect to θ2 to obtain the stage 2 estimates θ̂2, where Jλn(·) is a pre-specified
penalty function and λn is a tuning parameter. The penalty function can be taken
directly from the variable selection literature; in particular Song et al. (2011) uses
the adaptive lasso (Zou 2006) penalty, where Jλn(θ ) = λnθ/|θ̂ |α with α > 0 and θ̂
being a

√
n-consistent estimator of θ . Furthermore, as in the adaptive lasso proce-

dure, the tuning parameter λn is taken to satisfy
√

nλn → 0 and nλn → ∞. The rest
of the Q-learning algorithm (hard-max version) is unchanged in PQ-learning.

The above minimization is implemented via local quadratic approximation
(LQA), following Fan and Li (2001). The procedure starts with an initial value ψ̂2(0)
of ψ2, and then uses LQA for the penalty terms in the objective function:

Jλn

(

|ψT
2 H21,i|

)

≈Jλn

(

|ψ̂T
2(0)H21,i|

)

+
1
2

J′λn

(

|ψ̂T
2(0)H21,i|

)

|ψ̂T
2(0)H21,i|

(

(ψT
2 H21,i)

2−(ψ̂T
2(0)H21,i)

2
)

for ψ2 close to ψ̂2(0). Hence the objective function can be locally approximated, up
to a constant, by

n

∑
i=1

(

Y2i −Qopt
2 (H2i,A2i;β2,ψ2)

)2
+

1
2

n

∑
i=1

J′λn

(

|ψ̂T
2(0)H21,i|

)

|ψ̂T
2(0)H21,i|

(ψT
2 H21,i)

2.

When Q-functions are approximated by linear models as in (3.8), the above mini-
mization problem has a closed form solution:

ψ̂2 = [X22(I−X21(XT
21X21)

−1XT
21 +D)X22]

−1XT
22(I−X21(XT

21X21)
−1XT

21)Y2,

β̂2 = (XT
21X21)

−1XT
21(Y2 −X22ψ̂2),

where X22 is the matrix with i-th row equal to HT
21,i A2i, X21 is the matrix with i-

th row equal to HT
20,i, I is the n× n identity matrix, D is an n× n diagonal matrix

with Dii =
1
2 J′λn

(

|ψ̂T
2(0)H21,i|

)

/|ψ̂T
2(0)H21,i|, and Y2 is the vector of Y2i values. The

above minimization procedure can be continued for more than one step or until
convergence. However, as discussed by Fan and Li (2001), either the one-step or
multi-step procedure will be as efficient as the fully iterative procedure as long as
the initial estimators are good enough.
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Inference for θ js in the context of PQ-learning is conducted via asymptotic
theory. Under a set of regularity conditions, Song et al. (2011) proved that:

1. θ̂2 is a
√

n-consistent estimator for the true value of θ2.
2. Oracle Property: With probability tending to 1, PQ-learning can identify the

individuals for whom the stage 2 treatment effect is zero.
3. Both θ̂2 and θ̂1 are asymptotically normal.

Variance Estimation

Song et al. (2011) provided a sandwich type plug-in estimator for the variance of θ̂2:

ĉov(θ̂2) = (Î20 + Σ̂)−1 Î20(Î20 + Σ̂)−1,

where Î20 ≡ Pn[∇2
θ2θ2

(Y2 −Qopt
2 (H2,A2;θ2))

2] is the empirical Hessian matrix and

Σ̂ = diag{0,PnJ′′λn
(|ψ̂T

2 H21|)H21HT
21}. The above variance formula can be further

approximated by ignoring Σ̂ , in which case ĉov(θ̂2) = Î−1
20 . Song et al. (2011) re-

ported having used this reduced formula in their simulation studies and achieved
good empirical performance. Likewise, the estimated variance for θ̂1 is given by:

ĉov(θ̂1) = Î−1
10

[

cov
{

∇θ1 Qopt
1 (H1,A1; θ̂1)

(

Y1 +max
a2

Qopt
2 (H2,a2; θ̂2)−

Qopt
1 (H1,A1; θ̂1)

)

+PnZ1S̄2
T ĉov(θ̂2)S̄2ZT

1

}]

Î−1
10 ,

where Î10 ≡ Pn[∇2
θ1θ1

(Y1+maxa2 Qopt
2 (H2,a2; θ̂2)−Qopt

1 (H1,A1;θ1))
2] is the empir-

ical Hessian matrix.
There are a few characteristics of the PQ-learning approach that demand some

discussion. First, this approach offers a data-analyst the ability to calculate stan-
dard errors using explicit formulae, which should be less time-consuming than a
bootstrap procedure. However in the present era of fast computers, the difference in
computing time between analytic and bootstrap approaches is gradually diminish-
ing. Second, the asymptotic theory of PQ-learning assumes a finite support for the
H21 values, which is achieved when only discrete covariates are used in the analysis.
Thus, if there are important continuous covariates in a study, one must first discretize
the continuous covariates before being able to use PQ-learning. Third, the success of
PQ-learning in addressing non-regularity crucially depends on the “oracle property”
described above; this property dictates that after the penalized regression in stage 2,
all subsequent inference will be the same as if the analyst knew which subjects had
no treatment effect. However this property does not say anything about very small
effects that are not exactly zero but are indistinguishable from zero in finite sam-
ples due to noise in the data (e.g. in “near non-regular” cases; see Sect. 8.8). It has
been widely argued (see e.g. Leeb and Pötscher 2005; Pötscher 2007; Pötscher and
Schneider 2008; Laber and Murphy 2011) that characterizing non-regular settings
by a condition like P[H2 : ψT

2 H21 = 0]> 0 is really a working assumption to reflect
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the uncertainty about the optimal treatment for patients with ‘small’ – rather than
zero – treatment effects. Such situations may be better handled by a local asymptotic
framework. From this perspective, the PQ-learning method is still non-regular as it
is not consistent under local alternatives; see Laber et al. (2011) for further details
on this issue.

8.5 Double Bootstrap Confidence Intervals

The double bootstrap (see, e.g. Davison and Hinkley 1997; Nankervis 2005) is a
computationally intensive method for constructing CIs. Chakraborty et al. (2010)
implemented this method for inference in the context of Q-learning. Empirically it
was found to offer valid CIs for the policy parameters in the face of non-regularity.
Below we present a brief description.

Let θ̂ be an estimator of a parameter θ and θ̂ ∗ be its bootstrap version. As is

well-known, the 100(1−α)% percentile bootstrap CI is given by
(

θ̂ ∗
( α

2 )
, θ̂ ∗

(1− α
2 )

)

,

where θ̂ ∗
γ is the 100γ-th percentile of the bootstrap distribution. Then the double

(percentile) bootstrap CI is calculated as follows:

1. Draw B1 first-step bootstrap samples from the original data. For each first-
step bootstrap sample, calculate the bootstrap version of the estimator θ̂ ∗b,
b = 1, . . . ,B1.

2. Conditional on each first-step bootstrap sample, draw B2 second-step (nested)
bootstrap samples and calculate the double bootstrap versions of the estimator,
e.g., θ̂ ∗∗bm, b = 1, . . . ,B1, m = 1, . . . ,B2.

3. For b = 1, . . . ,B1, calculate u∗b = 1
B2

∑B2
m=1 I[θ̂

∗∗bm ≤ θ̂ ], where θ̂ is the estimator
based on the original data.

4. The double bootstrap CI is given by
(

θ̂ ∗
q̂( α

2 )
, θ̂ ∗

q̂(1− α
2 )

)

, where q̂(γ) = u∗(γ), the

100γ-th percentile of the distribution of u∗b, b = 1, . . . ,B1.

Next we attempt to provide some intuition1 about the double bootstrap using the
bagged hard-max estimator. Bagging (Breiman 1996), a nickname for bootstrap ag-
gregating, is a well-known ensemble method used to smooth “unstable” estimators,
e.g. decision trees in classification. Bagging was originally motivated by Breiman
as a variance-reduction technique; however Bühlmann and Yu (2002) showed that it
is a smoothing operation that also reduces the mean squared error of the estimator
in the case of decision trees, where a “hard decision” based on an indicator function
is taken. Note that in the context of Q-learning, the hard-max pseudo-outcome can
be re-written as

Ŷ1i = Y1i + β̂ T
2 H20,i + |ψ̂T

2 H21,i|

1 This is unpublished work, but the first author was pointed to this direction by Dr. Susan Murphy
(personal communication).
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= Y1i + β̂ T
2 H20,i +(ψ̂T

2 H21,i) ·
(

2 · I[ψ̂T
2 H21,i > 0]− 1

)

. (8.14)

The second term in (8.14) contains an indicator function (as in a decision tree).
Hence one can expect that the bagged version of the hard-max estimator will ef-
fectively “smooth out” the effect of this indicator function (e.g. replace the hard
decision by a soft decision) and hence should reduce the degree of non-regularity.
More precisely, bagging would effectively replace the indicator I[ψ̂T

2 H21,i > 0] by

Φ

( √
nψ̂T

2 H21,i
√

HT
21,iΣ̂ψ̂2

H21,i

)

; see Bühlmann and Yu (2002) for details. The bagged hard-max

estimator of ψ1 can be calculated as follows:

1. Construct a bootstrap sample of size n from the original data.
2. Compute the bootstrap version ψ̂∗

1 of the usual hard-max estimator ψ̂1.
3. Repeat steps 1 and 2 above B2 times yielding ψ̂∗1

1 , . . . , ψ̂∗B2
1 . Then the bagged

hard-max estimator is given by ψ̂Bag
1 = 1

B2
∑B2

b=1 ψ̂∗b
1 .

When it comes to constructing CIs, the effect of considering a usual bootstrap CI
using B1 replications along with the bagged hard-max estimator (already using B2

bootstrap replications) is, in a way, equivalent to considering a double bootstrap CI
in conjunction with the original (un-bagged) hard-max estimator.

8.6 Adaptive Bootstrap Confidence Intervals

Laber et al. (2011) recently developed a novel adaptive bootstrap procedure to
construct confidence intervals for linear combinations cT θ1 of the stage 1 coeffi-
cients in Q-learning, where θ T

1 = (β T
1 ,ψT

1 ) and c ∈R
dim(θ1) is a known vector. This

method is asymptotically valid and gives good empirical performance in finite sam-
ples. In this procedure, Laber et al. (2011) considered the asymptotic expansion of
cT√n(θ̂1 −θ1) and decomposed it as:

cT√n(θ̂1 −θ1) =Wn +Un,

where the first term is smooth and the second term is non-smooth. While Wn is
asymptotically normally distributed, the distribution of Un depends on the under-
lying data-generating process “non-smoothly”. To illustrate the effect of this non-
smoothness, fix H21 = h21. If hT

21ψ2 > 0, then Un is asymptotically normal with
mean zero. On the other hand, Un has a non-normal asymptotic distribution if
hT

21ψ2 = 0. Thus, the asymptotic distribution of cT√n(θ̂1 − θ1) depends abruptly
on both the true parameter ψ2 and the distribution of patient features H21. In par-
ticular, the asymptotic distribution of cT√n(θ̂1 − θ1) depends on the frequency of
patient features H21 = h21 for which there is no treatment effect (i.e. features for
which hT

21ψ2 = 0). As discussed earlier in this chapter, this non-regularity compli-
cates the construction of CIs for cT θ1.
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The adaptive bootstrap confidence intervals are formed by constructing smooth
data-dependent upper and lower bounds on Un, and thereby on cT√n(θ̂1 − θ1), by
means of a preliminary hypothesis test that partitions the data into two sets: (i)
patients for whom there appears to be a treatment effect, and (ii) patients in whom
it appears there is no treatment effect, and then drawing bootstrap samples from
these upper and lower bounds. The actual bounds are rather complex and difficult
to present without going into the details, so the explicit forms will not be presented
here. Instead, we focus on communicating the key ideas.

The bounds are formed by finding limits for the error of the overall approximation
due to misclassification of patients in the partitioning step. The idea of conducting
a preliminary hypothesis test prior to forming estimators or confidence intervals is
known as pretesting (Olshen 1973). In fact, the hard-threshold estimator (Moodie
and Richardson 2010) discussed earlier uses the same notion of pretest. As in the
case of hard-thresholding, Laber et al. (2011) conducted a pretest for each individual
in the data set as follows. Each pretest is based on

Tn(h21)�
n(hT

21ψ̂2)
2

hT
21Σ̂ψ̂2

h21
,

where Σ̂ψ̂2
/n is the estimated covariance matrix of ψ̂2. Note that Tn(h21)

corresponds to the usual test statistic when testing the null hypothesis: hT
21ψ2 = 0.

The pretests are performed using a cutoff λn, which is a tuning parameter of the
procedure and can be varied; to optimize performance, Laber et al. (2011) used
λn = loglogn in their simulation study and data analysis.

Let the upper and lower bounds on cT√n(θ̂1 − θ1) discussed above be given
by U (c) and L (c) respectively; both of these quantities are functions of λn.
Laber et al. (2011) showed that the limiting distributions of cT√n(θ̂1 − θ1) and
U (c) are equal in the case HT

21ψ2 �= 0 with probability one. Similarly, the limit-
ing distributions of cT√n(θ̂1 −θ1) and L (c) are equal in the case HT

21ψ2 �= 0 with
probability one. That is, when there is a large treatment effect for almost all patients
then the upper (or lower) bound is tight. However, when there is a non-null subset of
patients for which there is no treatment effect, then the limiting distribution of the
upper bound is stochastically larger than the limiting distribution of cT√n(θ̂1 −θ1).
This adaptivity between non-regular and regular settings is a key feature of this
procedure.

Next we discuss how to actually construct the CIs by this procedure. By con-
struction of U (c) and L (c), it follows that

cT θ̂1 − U (c)√
n

≤ cT θ1 ≤ cT θ̂1 − L (c)√
n

.

The distributions of U (c) and L (c) are approximated using the bootstrap. Let û
be the 1−α/2 quantile of the bootstrap distribution of U (c), and let l̂ be the α/2
quantile of the bootstrap distribution of L (c). Then [cT θ̂1 − û/

√
n, cT θ̂1 − l̂/

√
n] is

the adaptive bootstrap CI for cT θ1.
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Through a series of theorems, Laber et al. (2011) proved the consistency of the
bootstrap in this context, and in particular that

P
(

cT θ̂1 − û/
√

n ≤ cT θ1 ≤ cT θ̂1 − l̂/
√

n
)≥ 1−α + oP(1).

The above probability statement is with respect to the bootstrap distribution.
Furthermore, if P(HT

21ψ2 = 0) = 0, then the above inequality can be strength-
ened to equality. This result shows that the adaptive bootstrap method can be used
to construct valid (though potentially conservative) confidence intervals regardless
of the underlying parameters of the generative model. Moreover, in settings where
there is a treatment effect for almost every patient (e.g. regular settings), the adaptive
procedure delivers asymptotically exact coverage.

The theory behind adaptive bootstrap CIs uses a local asymptotic framework.
This framework provides a medium through which a glimpse of finite-sample be-
havior can be assessed, while retaining the mathematical convenience of large
samples. A thorough technical discussion of this framework is beyond the scope
of this book; hence here we presented only the key results without making ex-
act statements of the assumptions and theorems. The procedure discussed here can
be extended to more than two stages and more than two treatments per stage; see
Laber et al. (2011) for details. The main downside to this procedure lies in its com-
plexity – not just in the theory but also in its implementation. Constructing the
smooth upper and lower bounds involves solving very difficult nonconvex optimiza-
tion problems, making it a computationally expensive procedure. This conceptual
and computational complexity may be a potential barrier for its wide-spread dis-
semination.

8.7 m-out-of-n Bootstrap Confidence Intervals

The m-out-of-n bootstrap is a well-known tool for producing valid confidence sets
for non-smooth functionals (Shao 1994; Bickel et al. 1997). This method is the
same as the usual nonparametric bootstrap (Efron 1979) except that the resample
size, historically denoted by m, is of a smaller order of magnitude than the orig-
inal sample size n. More precisely, m depends on n, tends to infinity with n, and
satisfies m = o(n). Intuitively, the m-out-of-n bootstrap works asymptotically by
letting the empirical distribution tend to the true generative distribution at a faster
rate than the analogous convergence of the bootstrap empirical distribution to the
empirical distribution. In essence, this allows the empirical distribution to reach
its limit ‘first’ so that bootstrap resamples behave as if they were drawn from the
true generative distribution. Unfortunately, the choice of the resample size m has
long been a difficult obstacle since the condition m = o(n) is purely asymptotic and
thus provides no guidance for finite samples. Data-driven approaches for choosing
m in various contexts were given by Hall et al. (1995), Lee (1999), Cheung et al.
(2005), and Bickel and Sakov (2008). However, these choices were not directly
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connected with data-driven measures of non-regularity. Chakraborty et al. (2013)
recently proposed a method for choosing the resample size m in the context of Q-
learning that is directly connected to an estimated degree of non-regularity. This
method of choosing m is adaptive in that it leads to the usual n-out-of-n bootstrap
in a regular setting and the m-out-of-n bootstrap otherwise. This methodology, de-
veloped for producing asymptotically valid confidence intervals for parameters in-
dexing estimated optimal DTRs, is conceptually and computationally simple, mak-
ing it more appealing to data analysts. This should be contrasted with methods of
Robins (2004) and Laber et al. (2011), both of which involve solving difficult non-
convex optimization problems (see Laber et al. 2011, for a discussion).

Intuitively, the choice of the resample size m should reflect the degree of non-
smoothness in the underlying generative model. The non-smoothness in Q-learning
arises when there is an amassing of points on or near the boundary {h21 : hT

21ψ2 =

0}. Define p � P(HT
21ψ2 = 0), and consider the situation where non-regularity does

not exist, i.e. p = 0. Then
√

n(θ̂1 −θ1) is asymptotically normal and the n-out-of-n
bootstrap is consistent. However, if p > 0, given that ψ̂2 is not exactly equal to the
true value, the quantity θ̂1, as a function of ψ̂2, oscillates with a rate n−1/2 around
a point where abrupt changes of the asymptotic distribution occur. This is also true

for its bootstrap analogue θ̂ (b)
1,m while the oscillating rate is m−1/2. With a large p,

indicating a high degree of non-regularity, it is hoped that this bootstrap analogue
oscillates with a rate much slower than n−1/2. Therefore, a reasonable class of re-
sample sizes is given by

m � n f (p),

where f (p) is a function of p satisfying the following conditions:

(i) f (p) is monotone decreasing in p, takes values in (0,1] and satisfies f (0) = 1;
and

(ii) f (p) is continuous and has bounded first derivative.

One still needs to estimate f (p) from data since p is unknown. Define the plug-
in estimator for p, p̂ = PnI[n(HT

21ψ̂2)
2 ≤ τn(H21)] for cutoff τn(H21) (see below),

where Pn denotes the empirical average. Thus, naturally, one can use the resample
size

m̂ � n f ( p̂). (8.15)

Chakraborty et al. (2013) showed that m̂/n f (p) → 1 almost surely, and thus m̂
p→ ∞

and m̂/n
p→ 0. For implementation, they proposed a simple form of f (p) satisfying

conditions (i) and (ii),

m̂ � n
1+α(1− p̂)

1+α , (8.16)

where α > 0 is a tuning parameter that can be either fixed at a constant or chosen
adaptively using the double bootstrap (see below for the algorithm). Note that for
fixed n, m̂ is a monotone decreasing function of p̂, taking values in the interval

[n
1

1+α ,n]. Thus, α governs the smallest acceptable resample size.
Another potentially important tuning parameter is τn(H21). For a given patient

history h21, the indicator I[n(hT
21ψ̂2)

2 ≤ τn(h21)] can be viewed as the acceptance
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region of the null hypothesis hT
21ψ2 = 0. Thus, a natural choice for τn(h21) is

(

hT
21Σ̂21h21

) · χ2
1,1−ν , where n−1Σ̂21 is the plug-in estimator of the asymptotic co-

variance matrix of ψ̂2 and χ2
1,1−ν is the (1−ν)×100 percentile of a χ2 distribution

with 1 degree of freedom. Chakraborty et al. (2013) used ν = 0.001 in their sim-
ulations, and also showed robustness of results to this choice of ν via a thorough
sensitivity analysis.

As before, let c ∈ R
dim(θ1) be a known vector. To form a (1−η)× 100 % con-

fidence interval for cT θ1, first find l̂ and û, the (η/2)× 100 and (1−η/2)× 100

percentiles of cT√m(θ̂ (b)
1 − θ̂1) respectively, where θ̂ (b)

1 is the m-out-of-n bootstrap

analog of θ̂1 (the dependence of θ̂ (b)
1 on m is implicit in the notation). The confi-

dence interval is then given by (cT θ̂1 − û/
√

m,cT θ̂1 − l̂/
√

m).
Next we describe the double bootstrap procedure for choosing the tuning

parameter α employed to define m. Suppose cT θ1 is the parameter of interest,
and its estimate from the original data is cT θ̂1. Consider a grid of possible values
of α; Chakraborty et al. (2013) used {0.025,0.05,0.075, . . .,1} in their simulation
study and data analysis. The exact algorithm follows.

1. Draw B1 usual n-out-of-n first-stage bootstrap samples from the data and calcu-

late the corresponding bootstrap estimates cT θ̂ (b1)
1 , b1 = 1, . . . ,B1. Fix α at the

smallest value in the grid.
2. Compute the corresponding values of m̂(b1) using Eq. (8.16), b1 = 1, . . . ,B1.
3. Conditional on each first-stage bootstrap sample, draw B2 m̂(b1)-out-of-n second-

stage (nested) bootstrap samples and calculate the double bootstrap versions of

the estimate cT θ̂ (b1b2)
1 , b1 = 1, . . . ,B1, b2 = 1, . . . ,B2.

4. For b1 = 1, . . . ,B1, compute the (η/2)×100 and (1−η/2)×100 percentiles of
{

cT
√

m̂(b1)
(

θ̂ (b1b2)
1 − θ̂ (b1)

1

)

, b2 = 1, . . . ,B2

}

, say l̂(b1)
DB and û(b1)

DB respectively.

Construct the double centered percentile bootstrap CI from the b1-th first-

stage bootstrap data as
(

cT θ̂ (b1)
1 − û(b1)

DB /
√

m̂(b1),cT θ̂ (b1)
1 − l̂(b1)

DB /
√

m̂(b1)
)

, b1 =

1, . . . ,B1.
5. Estimate the coverage rate of the double bootstrap CI from all the first-stage

bootstrap data sets as

1
B1

B1

∑
b1=1

I

[

cT θ̂ (b1)
1 − û(b1)

DB /
√

m̂(b1) ≤ cT θ̂1 ≤ cT θ̂ (b1)
1 − l̂(b1)

DB /
√

m̂(b1)
]

.

6. If the above coverage rate is at or above the nominal rate, up to Monte Carlo
error, then pick the current value of α as the final value. Otherwise, update α to
its next higher value in the grid.

7. Repeat steps 2–6, until the coverage rate of the double bootstrap CI, up to Monte
Carlo error, attains the nominal coverage rate, or the grid is exhausted.2

2 If this unlikely event does occur, one should examine the observed values of p̂. If the values of p̂
are concentrated close to zero, ν may be increased; if not, the maximal value in the grid should be
increased.
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Chakraborty et al. (2013) proved the consistency of the m-out-of-n bootstrap in
this context, and in particular that

P
(

cT θ̂1 − û/
√

m̂ ≤ cT θ1 ≤ cT θ̂1 − l̂/
√

m̂
)

≥ 1−η + oP(1).

The above probability statement is with respect to the bootstrap distribution.
Furthermore, if P(HT

21ψ2 = 0) = 0, then the above inequality can be strengthened
to equality. This result shows that the m-out-of-n bootstrap method can be used to
construct valid (though potentially conservative) confidence intervals regardless of
the underlying parameters or generative model. Moreover, in settings where there is
a treatment effect for every patient (regular setting), the adaptive procedure delivers
asymptotically exact coverage. Unlike the theoretical setting of adaptive CIs of
Laber et al. (2011), the theory of m-out-of-n bootstrap does not involve a local
asymptotic framework (in fact it is not consistent under local alternatives).

The m-out-of-n bootstrap procedure for two stages in the context of Q-learning
with linear models has been implemented in the R package qLearn that is freely
available from the Comprehensive R Archive Network (CRAN):

http://cran.r-project.org/web/packages/qLearn/index.html.

8.8 Simulation Study

In this section, we consider a simulation study to provide an empirical evaluation of
the available inference methods discussed in this chapter. Nine generative models
are used in these evaluations, each of them having two stages of treatment and two
treatments at each stage. Generically, these models can be described as follows:

• Oi ∈ {−1,1}, Ai ∈ {−1,1} for i = 1, 2;
• P(A1 = 1) = P(A1 =−1) = 0.5, P(A2 = 1) = P(A2 =−1) = 0.5;
• O1 ∼ Bernoulli(0.5), O2|O1,A1 ∼ Bernoulli(expit(δ1O1 + δ2A1));
• Y1 ≡ 0,

Y2 = γ1 + γ2O1 + γ3A1 + γ4O1A1 + γ5A2 + γ6O2A2 + γ7A1A2 + ε ,

where ε ∼ N (0,1) and expit(x) = ex/(1+ ex). This class is parameterized by nine
quantities γ1,γ2, . . . ,γ7,δ1,δ2.

The form of the above class of generative models, developed by
Chakraborty et al. (2010), is useful as it allows one to influence the degree of
non-regularity present in the example problems through the choice of γs and δ s,
and in turn evaluate performance in these different scenarios. Recall that in Q-
learning, non-regularity occurs when more than one stage 2 treatment produces
exactly or nearly the same optimal expected outcome for a set of patient histories
that occur with positive probability. In the model class above, this occurs if the
model generates histories for which γ5A2 + γ6O2A2 + γ7A1A2 ≈ 0, i.e., if it gener-
ates histories for which Q2 depends weakly or not at all on A2. By manipulating
the values of γs and δ s, we can control: (i) the probability of generating a patient



8.8 Simulation Study 155

history such that γ5A2 + γ6O2A2 + γ7A1A2 = 0, and (ii) the standardized effect size
E(γ5 + γ6O2 + γ7A1)/

√

Var(γ5 + γ6O2 + γ7A1). These two quantities, denoted by p
and φ , respectively, can be thought of as measures of non-regularity. Note that for
fixed parameter values, the linear combination (γ5 + γ6O2 + γ7A1) that governs the
non-regularity in an example generative model can take only four possible values
corresponding to the four possible (O2,A1) cells. The cell probabilities can be easily
calculated; the formulae are provided in Table 8.2. Using the quantities presented
in Table 8.2, one can write

E[γ5 + γ6O2 + γ7A1] = q1 f1 + q2 f2 + q3 f3 + q4 f4,

E[(γ5 + γ6O2 + γ7A1)
2] = q1 f 2

1 + q2 f 2
2 + q3 f 2

3 + q4 f 2
4 .

From these two, one can calculate Var[γ5+γ6O2+γ7A1], and subsequently the effect
size φ .

Table 8.2 Distribution of the linear combination (γ5 + γ6O2 + γ7A1)

(O2,A1) cell Cell probability Value of the
(averaged over O1) linear combination

(1,1) q1 ≡ 1
4

(

expit(δ1 +δ2)+ expit(−δ1 +δ2)
)

f1 ≡ γ5 + γ6 + γ7

(1,−1) q2 ≡ 1
4

(

expit(δ1 −δ2)+ expit(−δ1 −δ2)
)

f2 ≡ γ5 + γ6 − γ7

(−1,1) q3 ≡ 1
4

(

expit(δ1 −δ2)+ expit(−δ1 −δ2)
)

f3 ≡ γ5 − γ6 + γ7

(−1,−1) q4 ≡ 1
4

(

expit(δ1 +δ2)+ expit(−δ1 +δ2)
)

f4 ≡ γ5 − γ6 − γ7

Table 8.3 provides the parameter settings; the first six of these settings were
constructed by Chakraborty et al. (2010), and were described therein as “non-
regular,” “near-non-regular,” and “regular.” Example 1 is a setting where there is
no treatment effect for any subject (any possible history) in either stage. Example
2 is similar to example 1, where there is a very weak stage 2 treatment effect for
every subject, but it is hard to detect the very weak effect given the noise level in
the data. Example 3 is a setting where there is no stage 2 treatment effect for half
the subjects in the population, but a reasonably large effect for the other half of
subjects. In example 4, there is a very weak stage 2 treatment effect for half the
subjects in the population, but a reasonably large effect for the other half of sub-
jects (the parameters are close to those in example 3). Example 5 is a setting where
there is no stage 2 treatment effect for one-fourth of the subjects in the population,
but others have a reasonably large effect. Example 6 is a completely regular setting
where there is a reasonably large stage 2 treatment effect for every subject in the
population. Song et al. (2011) also used these six examples for empirical evaluation
of their PQ-learning method.

To these six, Laber et al. (2011) added three further examples labeled A, B, and
C. Example A is an example of a strongly regular setting. Example B is an example
of a non-regular setting where the non-regularity is strongly dependent on the stage
1 treatment. In example B, for histories with A1 = 1, there is a moderate effect of
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A2 at the second stage. However, for histories with A1 = −1, there is no effect of
A2 at the second stage, i.e., both actions at the second stage are equally optimal.
In example C, for histories with A1 = 1, there is a moderate effect of A2, and for
histories with A1 = −1, there is a small effect of A2. Thus example C is a “near-
non-regular” setting that behaves similarly to example B.

Table 8.3 Parameters indexing the example models

Example γT δ T Type R egularity Measures
1 (0,0,0,0,0,0,0) (0.5,0.5) Non-regular p = 1 φ = 0/0
2 (0,0,0,0,0.01,0,0) (0.5,0.5) Near-non-regular p = 0 φ = ∞
3 (0,0,−0.5,0,0.5,0,0.5) (0.5,0.5) Non-regular p = 1/2 φ = 1.0
4 (0,0,−0.5,0,0.5,0,0.49) (0.5,0.5) Near-non-regular p = 0 φ = 1.02
5 (0,0,−0.5,0,1.0,0.5,0.5) (1.0,0.0) Non-regular p = 1/4 φ = 1.41
6 (0,0,−0.5,0,0.25,0.5,0.5) (0.1,0.1) Regular p = 0 φ = 0.35

A (0,0,−0.25,0,0.75,0.5,0.5) (0.1,0.1) Regular p = 0 φ = 1.035
B (0,0,0,0,0.25,0,0.25) (0,0) Non-regular p = 1/2 φ = 1.00
C (0,0,0,0,0.25,0,0.24) (0,0) Near-non-regular p = 0 φ = 1.03

The Q-learning analysis models used in the simulation study are given by

Qopt
2 (H2,A2;β2,ψ2) = HT

20β2 +HT
21ψ2A2,

Qopt
1 (H1,A1;β1) = HT

10β1 +HT
11ψ1A1,

where the following patient history vectors are used:

H20 = (1,O1,A1,O1A1)
T ,

H21 = (1,O2,A1)
T ,

H10 = (1,O1)
T ,

H11 = (1,O1)
T .

So the models for the Q-functions are correctly specified. For the purpose of
inference, the focus is on ψ10 and ψ11, the parameters associated with stage 1 treat-
ment A1 in the analysis model. They can be expressed in terms of γs and δ s, the
parameters of the generative model, as follows:

ψ10 = γ3 + q1| f1|− q2| f2|+ q3| f3|− q4| f4|,
and ψ11 = γ4 + q′1| f1|− q′2| f2|− q′3| f3|+ q′4| f4|,

where q′1 = q′3 =
1
4(expit(δ1 +δ2)− expit(−δ1 +δ2)), and q′2 = q′4 =

1
4 (expit(δ1 −

δ2)− expit(−δ1− δ2)).

Below we will present simulation results to compare the performances of
ten competing methods of constructing CIs for the stage 1 parameters of Q-
learning. We will be reporting the results for centered percentile bootstrap (CPB)
(Efron and Tibshirani 1993) method. Let θ̂ be an estimator of θ and θ̂ (b) be its
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bootstrap version. Then the 100(1− α)% CPB confidence interval is given by
(

2θ̂ − θ̂ (b)
(1− α

2 )
,2θ̂ − θ̂ (b)

( α
2 )

)

, where θ̂ (b)
γ is the 100γ-th percentile of the bootstrap

distribution. The competing methods are listed below:

(i) CPB interval in conjunction with the (original) hard-max estimator (CPB-
HM);

(ii) CPB interval in conjunction with the hard-threshold estimator with α = 0.08
(CPB-HT0.08);

(iii) CPB interval in conjunction with the soft-threshold estimator (CPB-ST);
(iv) Double bootstrap interval in conjunction with the hard-max estimator (DB-

HM);
(v) Asymptotic confidence interval in conjunction with the PQ-learning estimator

(PQ);
(vi) Adaptive bootstrap confidence interval (ACI);

(vii) m-out-of-n CPB interval with fixed α = 0.1, in conjunction with the hard-max
estimator (m̂0.1-CPB-HM);

(viii) m-out-of-n CPB interval with data-driven α chosen by double bootstrap, in
conjunction with the hard-max estimator (m̂α̂ -CPB-HM);

(ix) m-out-of-n CPB interval with fixed α = 0.1, in conjunction with the soft-
threshold estimator (m̂0.1-CPB-ST);

(x) m-out-of-n CPB interval with data-driven α chosen by double bootstrap, in
conjunction with the soft-threshold estimator (m̂α̂ -CPB-ST)

The comparisons are conducted on a variety of settings represented by examples
1–6, A–C, using N = 1,000 simulated data sets, B = 1,000 bootstrap replications,
and the sample size n = 300. However, the double bootstrap CIs are based on
B1 = 500 first-stage and B2 = 100 second-stage bootstrap iterations, due to the in-
creased computational burden. Note that here we simply compile the results from the
original papers instead of implementing and running them afresh. As a consequence,
the results for all the methods across all examples are not available.

We focus on the coverage rate and width of CIs for the parameter ψ10 that denotes
the main effect of treatment; see Table 8.4 for coverage and Table 8.5 for width of
CIs. Different authors also reported results for the stage 1 interaction parameter ψ11;
however the effect of non-regularity is less pronounced on this parameter, and hence
less interesting for the purpose of illustration of non-regularity and comparison of
competing methods.

First, let us focus on Table 8.4. As expected from the inconsistency of the usual n-
out-of-n bootstrap in the present non-regular problem, the CPB-HM method shows
the problem of under-coverage in most of the examples. While CPB-HT0.08, by
virtue of bias correction via thresholding (see Moodie and Richardson 2010), per-
forms well in Ex. 1–4, it fares poorly in Ex. 5–6 (and was never implemented in
Ex. A–C). Similarly CPB-ST performs well, again by virtue of bias correction via
thresholding (see Chakraborty et al. 2010), except in Ex. 6, A, and B. The compu-
tationally expensive double bootstrap method (DB-HM) performs well across the
first six examples (but was never tried on Ex. A–C). The PQ method (see Song
et al. 2011) performs well across the first six examples (but was never tried on
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Ex. A–C). PQ-learning is probably the cheapest method computationally, because
CIs are constructed by asymptotic formulae rather than any kind of bootstrapping.
The ACI, as known from the work of Laber et al. (2011), is a consistent bootstrap
procedure that is conservative in some of the highly non-regular settings but deliv-
ers coverage rates closer to nominal as the settings become more and more regu-
lar (as the degree of non-regularity as measured by p decreases). The behavior of
the m-out-of-n bootstrap method with fixed α = 0.1 (m̂0.1-CPB-HM) is quite sim-
ilar to that of ACI in that these CIs are conservative in highly non-regular settings,
but become close-to-nominal as the settings become more regular. Both ACI and
m̂0.1-CPB-HM deliver nominal coverage in the two strictly regular settings (Ex. 6,
Ex. A) and the one mildly non-regular (p = 1

4 ) setting (Ex. 5) considered. However,
m̂0.1-CPB-HM is computationally much less expensive (about 180 times) than ACI
which involves solving a very difficult optimization problem. Interestingly, the m-
out-of-n bootstrap with data-driven α via double bootstrap (m̂α̂-CPB-HM) offers
an extra layer of adaptiveness; fine-tuning α via double bootstrapping reduces the
conservatism present in the case of ACI and m̂0.1-CPB-HM, and provides nominal
coverage in all the examples. However, it is computationally expensive (comparable
to ACI). The m̂0.1-CPB-ST method performs similarly to the other versions of m-
out-of-n bootstrap methods, except perhaps a bit more conservately in non-regular
examples. However, this conservatism is reduced in the m̂α̂ -CPB-ST method. The
performances of the last two methods of inference show that the use of m-out-of-n
bootstrap is not limited to the original hard-max estimator, but can also be success-
fully used in conjunction with other non-smooth estimators like the soft-threshold
estimator. See Chakraborty et al. (2013) for further discussion on the m-out-of-n
bootstrap methods in this context.

Table 8.4 Monte Carlo estimates of coverage probabilities of confidence intervals for the main
effect of treatment (ψ10) at the 95 % nominal level. Estimates significantly below 0.95 at the 0.05
level are marked with ∗. Examples are designated NR non-regular, NNR near-non-regular, R regular

n = 300
Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. A Ex. B Ex. C
NR NNR NR NNR NR R R NR NNR

CPB-HM 0.936 0.932* 0.928* 0.921* 0.933* 0.931* 0.944 0.925* 0.922*
CPB-HT0.08 0.950 0.953 0.943 0.941 0.932* 0.885* – – –

CPB-ST 0.962 0.961 0.947 0.946 0.942 0.918* 0.918* 0.931* 0.938
DB-HM 0.936 0.936 0.948 0.944 0.942 0.950 – – –

PQ 0.951 0.940 0.952 0.955 0.953 0.953 – – –
ACI 0.994 0.994 0.975 0.976 0.962 0.957 0.950 0.977 0.976

m̂0.1-CPB-HM 0.984 0.982 0.956 0.955 0.943 0.949 0.953 0.971 0.970
m̂α̂ -CPB-HM 0.964 0.964 0.953 0.950 0.939 0.947 0.944 0.955 0.960
m̂0.1-CPB-ST 0.993 0.993 0.979 0.976 0.954 0.943 0.939 0.972 0.977
m̂α̂ -CPB-ST 0.971 0.976 0.961 0.956 0.949 0.935 0.926* 0.971 0.967

Table 8.5 presents the Monte Carlo estimates of the mean width of CIs. Mean
widths corresponding to CPB-HT0.08, DB-HM and PQ were not reported in the
original papers in which they appeared. Among the rest of the methods, as expected,
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Table 8.5 Monte Carlo estimates of the mean width of confidence intervals for the main effect of
treatment (ψ10) at the 95 % nominal level. Widths with corresponding coverage significantly below
nominal are marked with ∗. Examples are designated NR non-regular, NNR near-non-regular, R
regular

n = 300
Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. A Ex. B Ex. C
NR NNR NR NNR NR R R NR NNR

CPB-HM 0.269 0.269* 0.300* 0.300* 0.320* 0.309* 0.314 0.299* 0.299*
CPB-HT0.08 – – – – – – – – –

CPB-ST 0.250 0.250 0.293 0.293 0.319 0.319* 0.323* 0.303* 0.304
DB-HM – – – – – – – – –

PQ – – – – – – – – –
ACI 0.354 0.354 0.342 0.342 0.341 0.327 0.327 0.342 0.342

m̂0.1-CPB-HM 0.346 0.347 0.341 0.341 0.340 0.341 0.332 0.342 0.343
m̂α̂ -CPB-HM 0.331 0.331 0.321 0.323 0.330 0.336 0.322 0.328 0.328
m̂0.1-CPB-ST 0.324 0.324 0.336 0.336 0.343 0.352 0.343 0.353 0.353
m̂α̂ -CPB-ST 0.273 0.275 0.306 0.306 0.328 0.349 0.331* 0.330 0.332

CIs constructed via the usual n-out-of-n method (CPB-HM and CPB-ST) have the
least width; however these are often associated with under-coverage. The widths
of the CIs from the last five methods are quite comparable, with m̂α̂ -CPB-HM and
m̂α̂ -CPB-ST offering narrower CIs more often.

Given the above findings, it is very hard to declare an overall winner. From a
purely theoretical standpoint, the ACI method (Laber et al. 2011) is arguably the
strongest since it uses a local asymptotic framework. However it is conceptually
complicated, computationally expensive, and often conservative in finite samples.
In terms of finite sample performance, both versions of the m-out-of-n bootstrap
method (Chakraborty et al. 2013) are at least as good as (and often better than) the
ACI method; moreover, they are conceptually very simple and hence may be more
attractive to practitioners. The version with fixed α (m̂0.1-CPB-HM), while simi-
lar to ACI in conservatism, is computationally much cheaper. On the other hand,
the version with data-driven choice of α (m̂α̂-CPB), while computationally as de-
manding as the ACI, overcomes the conservatism and provides nominal coverage in
all the examples. Nonetheless, m-out-of-n bootstrap methods are valid only under
fixed alternatives, not under local alternatives. The PQ-learning method (Song et al.
2011) is also valid only under fixed alternatives but not under local alternatives.
This method is non-conservative in Ex. 1–6, and is computationally the cheapest.
However its coverage performance in Ex. A–C and the mean widths of CIs resulting
from this method in all the examples are unknown to us at this point.

Note that the bias maps of Fig. 8.1 in Sect. 8.2 were created in a scenario where
γ5 + γ6O2 + γ7A1 = 0 with positive probability. As noted previously, the generative
parameters γ5, γ6 and γ7 correspond to the policy parameters ψ20, ψ21, and ψ22 of
the analysis model, respectively. For all bias maps in the figure, γ1 = γ2 = γ4 = 0 and
γ3 = −0.5; the first three plots (upper panel) explored the extent of bias in regions
around the parameter setting given in Ex. 5 of Table 8.3, while the last three plots
(lower panel) explore the extent of bias in regions around the parameter setting in
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Ex. 6 of Table 8.3. More precisely, in the first three plots, δ1 = 1, δ2 = 0; and only
one of ψ20 (= γ5), ψ21 (= γ6), or ψ22 (= γ7) was varied while the remaining were
fixed (e.g. (ψ21,ψ22) = (0.5,0.5) fixed in the first plot, (ψ20,ψ22) = (1.0,0.5) fixed
in the second plot, and (ψ20,ψ21) = (1.0,0.5) fixed in the third plot). Similarly, in
the last three plots, δ1 = δ2 = 0.1; and only one of ψ20, ψ21, or ψ22 was varied
while the remaining were fixed, e.g. (ψ21,ψ22) = (0.5,0.5) fixed in the first plot of
the lower panel, (ψ20,ψ22) = (0.25,0.5) fixed in the second plot of the lower panel,
and (ψ20,ψ21) = (0.25,0.5) fixed in the third plot of the lower panel.

8.9 Analysis of STAR*D Data: An Illustration

8.9.1 Background and Study Details

Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed
class of antidepressants with simple dosing regimens and a preferable adverse effect
profile in comparison to other types of antidepressants (Nelson 1997; Mason et al.
2000). Serotonin is a neurotransmitter in the human brain that regulates a variety
of functions including mood. SSRIs affect the serotonin based brain circuits. Other
classes of antidepressants may act on serotonin in concert with other neurotransmit-
ter systems, or on entirely different neurotransmitter. While a meta-analysis of all
efficacy trials submitted to the US Food and Drug Administration of four antidepres-
sants for which full data sets were available found that pharmacological treatment
of depression was no more effective than placebo for mild to moderate depression,
other studies support the effectiveness of SSRIs and other antidepressants in pri-
mary care settings (Arroll et al. 2005, 2009). Few studies have examined treatment
patterns, and in particular, few have studied best prescribing practices following
treatment failure.

Sequenced Treatment Alternatives to Relieve Depression (STAR*D) was a
multisite, multi-level randomized controlled trial designed to assess the comparative
effectiveness of different treatment regimes for patients with major depressive disor-
der, and was introduced earlier in Chap. 2. See Sect. 2.4.2 for a detailed description
of the study design along with a schematic of the treatment assignment algorithm.
Here we will focus on levels 2, 2A, and 3 of the study only. For the purpose of the
current analysis, we will classify the treatments into two categories: (i) treatment
with an SSRI (alone or in combination): sertraline (SER), CIT + bupropion (BUP),
CIT + buspirone (BUS), or CIT + cognitive psychotherapy (CT) or (ii) treatment
with one or more non-SSRIs: venlafaxine (VEN), BUP, or CT alone. Only the
patients assigned to CIT + CT or CT alone in level 2 were eligible, in the case of a
non-satisfactory response, to move to a supplementary level of treatment (level 2A),
to receive either VEN or BUP. Patients not responding satisfactorily at level 2 (and
level 2A, if applicable) would continue to level 3. Treatment options at level 3 can
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again be classified into two categories, i.e. treatment with (i) SSRI: an augmentation
of any SSRI-containing level 2 treatment with either lithium (Li) or thyroid hor-
mone (THY), or (ii) non-SSRI: mirtazapine (MIRT) or nortriptyline (NTP), or an
augmentation of any non-SSRI level 2 treatment with either Li or THY.

8.9.2 Analysis

Here we present the analysis originally conducted by Chakraborty et al. (2013). In
this analysis, level 2A was considered a part of level 2. This implies that a patient
who received an SSRI at level 2 but a non-SSRI at level 2A was considered a re-
cipient of SSRI in the combined level 2+ 2A for the present analysis. Also, levels
2 (including 2A, if applicable) and 3 were treated as stages 1 and 2 respectively of
the Q-learning framework (level 4 data were not considered in this analysis). As a
feature of the trial design, the outcome data at stage 2 were available only for the
non-remitters from stage 1; so Chakraborty et al. (2013) defined the overall primary
outcome (Y ) as the average −QIDS score over the stage(s) a patient was present in
the study, i.e.

Y = R1 ·Y1 +(1−R1) ·
(Y1 +Y2

2

)

,

where Y1 and Y2 denote the −QIDS scores measured at the end of stages 1 and 2
respectively (the negative of QIDS score was taken to make higher values corre-
spond to better outcomes), and R1 = 1 if the subject achieved remission (QIDS≤ 5)
at the end of stage 1, and 0 otherwise.

Following Pineau et al. (2007), three covariates (tailoring variables) were
included in this analysis: (i) QIDS-score measured at the start of the level
(QIDS.start), (ii) the slope of the QIDS-score over the previous level (QIDS.slope),
and (iii) preference. While QIDS.start and QIDS.slope are continuous variables,
preference is a binary variable, coded 1 for preference to switch previous treatment
and −1 for preference to augment previous treatment or no preference. Following
the notation used earlier, let O1 j denote the QIDS.start at the jth stage, and O2 j de-
note the QIDS.slope at the jth stage, O3 j denote the preference at the jth stage, and
A j denote the treatment at the jth stage, for j = 1,2. Treatment at each stage was
coded 1 for SSRI and −1 for non-SSRI. The following models for the Q-functions
were employed:

Qopt
2 = β02 +β12O12 +β22O22 +β32O32 +β42A1 +

(

ψ02 +ψ12O12 +ψ22O22

)

A2,

Qopt
1 = β01 +β11O11 +β21O21 +β31O31 +

(

ψ01 +ψ11O11 +ψ21O21 +ψ31O31

)

A1.

To avoid singularity, a preference-by-treatment interaction was not included in the
model for Qopt

2 ; similarly no A1A2 interaction was included. According to the above
models, the optimal DTR is given by the following two decision rules:

dopt
2 (H2) = sign(ψ02 +ψ12O12 +ψ22O22),
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dopt
1 (H1) = sign(ψ01 +ψ11O11 +ψ21O21 +ψ31O31).

One thousand two hundred and sixty patients were used at stage 1 (level 2); a small
number (19) of patients were omitted altogether due to gross item missingness in the
covariates. Of the 1,260 patients at stage 1, there were 792 who were non-remitters
(QIDS> 5) who should have moved to stage 2 (level 3); however, only 324 patients
were present at stage 2 while the rest dropped out. To adjust for this dropout, the
model for Qopt

2 was fitted using inverse probability weighting where the probability
of being present at stage 2 was estimated by logistic regression using O11, O21, O31,
A1, −Y1, O22, O11A1, O21A1, and O31A1 as predictors.

Another complexity came up in the computation of the pseudo-outcome,
maxa2 Qopt

2 . Note that for (792− 324) = 468 non-remitters who were absent from
stage 2, covariates O12 (QIDS.start at stage 2) and O32 (preference at stage 2)
were missing, rendering the computation of the pseudo-outcome impossible for
them. For these patients, the value of O12 was imputed by the last observed QIDS
score in the previous stage – a sensible strategy for a continuous, slowly changing
variable like the QIDS score. On the other hand, the missing values of the binary
variable O32 (preference at stage 2) were imputed using k nearest neighbor (k-NN)
classification, where k was chosen via leave-one-out cross-validation. Following
these imputations, Q-learning was implemented for this data; the estimates of the
parameters of the Q-functions, along with their 95 % bootstrap CIs were computed.
While only the usual bootstrap was used at stage 2, both the usual bootstrap and the
adaptive m-out-of-n bootstrap procedure (with α chosen via double bootstrap) were
employed at stage 1, to facilitate ready comparison.

8.9.3 Results

Results of the above analysis are presented in Table 8.6. In this analysis, m
was chosen to be 1,059 in a data-driven way (using double bootstrap). At both
stages, the coefficient of QIDS.start (β12 and β11) and the coefficient of prefer-
ence (β32 and β31) were statistically significant. Additionally ψ31, the coefficient
of preference-by-treatment interaction at stage 1 was significantly different from 0;
this fact is particularly interesting because it suggests that the decision rule at stage
1 should be individually tailored based on preference.

The estimated optimal DTR can be explicitly described in terms of the ψ̂s:
d̂opt

2 (H2) = sign(−0.18 − 0.01O12 − 0.25O22), and d̂opt
1 (H1) = sign(−0.73 +

0.01O11 + 0.01O21 − 0.67O31). That is, the estimated optimal DTR suggests treat-
ing a patient at stage 2 with an SSRI if (−0.18− 0.01× QIDS.start2 − 0.25 ×
QIDS.slope2) > 0, and with a non-SSRI otherwise. Similarly, it suggests treat-
ing a patient at stage 1 with an SSRI if (−0.73+ 0.01× QIDS.start1 + 0.01 ×
QIDS.slope1 − 0.67× preference1)> 0, and with a non-SSRI otherwise.
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Table 8.6 Regression coefficients and their 95 % centered percentile bootstrap CIs (both the usual
n-out-of-n and the novel m-out-of-n) in the analysis of STAR*D data (significant coefficients are
in bold)

Parameter Variable Estimate 95 % CI (n-out-of-n) 95 % CI (m-out-of-n)
Stage 2 (n = 324)

β02 Intercept2 −1.66 (−3.70, 0.43) –
β12 QIDS.start2 −0.72 (−0.87, −0.56) –
β22 QIDS.slope2 0.79 (−0.32, 1.99) –
β32 Preference2 0.74 (0.05, 1.50) –
β42 Treatment1 0.26 (−0.38, 0.89) –
ψ02 Treatment2 −0.18 (−2.15, 2.00) –
ψ12 Treatment2 ×QIDS.start2 −0.01 (−0.18, 0.13) –
ψ22 Treatment2 ×QIDS.slope2 −0.25 (−1.33, 0.94) –

Stage 1 (n = 1,260; m̂ = 1,059)
β01 Intercept1 −0.47 (−1.64, 0.71) (−1.82, 0.97)
β11 QIDS.start1 −0.55 (−0.63, −0.48) (−0.65, −0.46)
β21 QIDS.slope1 0.12 (−0.36, 0.52) (−0.41, 0.57)
β31 Preference1 0.88 (0.40, 1.40) (0.35, 1.46)
ψ01 Treatment1 −0.73 (−1.84, 0.43) (−1.91, 0.48)
ψ11 Treatment1 ×QIDS.start1 0.01 (−0.06, 0.09) (−0.07, 0.09)
ψ21 Treatment1 ×QIDS.slope1 0.01 (−0.44, 0.46) (−0.47, 0.49)
ψ31 Treatment1 ×Preference1 −0.67 (−1.17, −0.18) (−1.29, −0.16)

However, these are just the “point estimates” of the optimal decision rules.
A measure of confidence for these estimated decision rules can be formulated as
follows. Note that the estimated difference in mean outcome at stage 2 correspond-
ing to the two treatment options is given by

Qopt
2 (H2,1; β̂2, ψ̂2)−Qopt

2 (H2,−1; β̂2, ψ̂2)

= 2
(− 0.18− 0.01×QIDS.start2 − 0.25×QIDS.slope2

)

.

Likewise, the estimated difference in mean pseudo-outcome at stage 1 correspond-
ing to the two treatment options is given by

Qopt
1 (H1,1; β̂1, ψ̂1)−Qopt

1 (H1,−1; β̂1, ψ̂1)

= 2
(− 0.73+ 0.01×QIDS.start1 + 0.01×QIDS.slope1 − 0.67× preference1

)

.

For any fixed values of QIDS.start, QIDS.slope, and preference, one can construct
point-wise CIs for the above difference in mean outcome (or, pseudo-outcome)
based on the CIs for the individual ψs, thus leading to a confidence band around the
entire function. The mean difference function and its 95 % confidence band over the
observed range of QIDS.start and QIDS.slope are plotted for stage 1 (separately for
preference= “switch” and preference= “augment or no preference”) and for stage
2 (patients with all preferences combined), and are presented in Fig. 8.3. Since the
confidence bands in all three panels contain zero, there is insufficient evidence in
the data to recommend a unique best treatment.
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Fig. 8.3 Predicted difference in mean outcome and its 95 % confidence band for: (a) patients pre-
ferring treatment switch at stage 1; (b) patients either preferring treatment augmentation or without
preference at stage 1; and (c) all patients at stage 2

8.10 Inference About the Value of an Estimated DTR

In Sect. 5.1, we discussed estimation of the value of an arbitrary DTR. Once a DTR
d̂ is estimated from the data (say, via Q-learning, G-estimation, etc.), a key quantity
to assess its merit is its true value, V d̂ . A point estimate of this quantity, say V̂ d̂ ,
can be obtained, for example, by the IPTW formula (see Sect. 5.1). However it may
be more interesting to construct a confidence interval for V d̂ and see if the confi-
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dence interval contains the optimal value V opt (implying that the estimated DTR is
not significantly different from the optimal DTR), or the value of some other pre-
specified (not necessarily optimal) DTR. It turns out that the estimation of the value
of an estimated DTR, or constructing a confidence interval for it, is a very difficult
problem.

From Sect. 5.1, we can express the value of d̂ by

V d̂ =
∫ ( K

∏
j=1

I[A j = d̂ j(Hj)]

π j(A j|Hj)

)

YdPπ , (8.17)

where π is an embedded DTR in the study from which the data arose (e.g. the
randomization probabilities in the study); see Sect. 5.1 for further details. Note
that (8.17) can be alternatively expressed as

V d̂ =

∫
{

K

∏
j=1

1
π j(A j|Hj)

Y

}
( K

∏
j=1

I[A j = d̂ j(Hj)]
)

dPπ

=

∫

c(O1,A1, . . . ,OK+1;π)
( K

∏
j=1

I[A j = d̂ j(Hj)]
)

dPπ (8.18)

where

c(O1,A1, . . . ,OK+1;π) =

{
K

∏
j=1

1
π j(A j|Hj)

Y

}

is a function of the entire data trajectory and the embedded DTR π . Note that the
form of the value function, as expressed in (8.18), is analogous to the test error
(misclassification rate) of a classifier in a weighted (or, cost-sensitive) classifica-
tion problem, where c(O1,A1, . . . ,OK+1;π) serves as the weight (or, cost) function.
Zhao et al. (2012) vividly discussed this analogy in a single-stage decision problem;
see also Sect. 5.3.

From this analogy, one can argue that the confidence intervals for the value func-
tion could be constructed in ways similar to those for confidence intervals for the
test error of a learned classifier. Unfortunately, constructing valid confidence in-
tervals for the test error in classification is an extremely difficult problem due to
the inherent non-regularity (note the presence of non-smooth indicator functions in
the definition of the value function); see Laber and Murphy (2011) for further de-
tails. Standard methods like normal approximation or the usual bootstrap fail in this
problem. Laber and Murphy (2011) developed a method for constructing such con-
fidence intervals by use of smooth data-dependent upper and lower bounds on the
test error; this method is similar to the method described in Sect. 8.6 in the context
of inference for Q-learning parameters. They proved that for linear classifiers, their
proposed confidence interval automatically adapts to the non-smoothness of the test
error, and is consistent under local alternatives. The method provided nominal cover-
age on a suite of test problems using a range of classification algorithms and sample
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sizes. While intuitively one can expect that this method could be successfully used
for constructing confidence intervals for the value function, more research is needed
to extend and fine-tune the procedure to the current setting.

8.11 Bayesian Estimation in Non-regular Settings

Robins (2004) considered the behavior of Bayesian estimators under exceptional
laws, i.e. the situations where the data-generating distributions lead to non-regularity
in frequentist approaches. He considered a prior distribution, π(ψ), for the de-
cision rule parameters that is absolutely continuous with respect to a Lebesgue
measure and assigns positive mass over the area that includes the true (unknow-
able) parameter values. Robins (2004) showed that the posterior distribution of the
decision rule parameters is non-normal, but that credible intervals based on the
posterior distribution are well-defined under all data-generating distributions with
probability 1. Furthermore, in many cases the frequentist confidence interval and
the Bayesian credible interval based on the highest posterior density will coincide,
even at exceptional laws, in very large samples. Robins noted:

Nonetheless, in practice, if frequentist [confidence interval for ψ] includes exceptional laws
(or laws very close to exceptional laws) and thus the set where the likelihood is relatively
large contains an exceptional law, it is best not to use a normal approximation, but rather to
use either Markov chain Monte Carlo or rejection sampling techniques to generate a sample
ψ(v),v = 1, . . . ,V [. . . ] to construct highest posterior credible intervals, even if one had a
prior mass of zero on the exceptional laws.

Following the estimation of the posterior density via direct calculation or, more
likely, Markov Chain Monte Carlo, the Bayesian analyst must then formulate opti-
mal decision rules. This can be done in a variety of manners, such as recommending
treatment if the posterior median of HT

j1ψ j is greater than some threshold or if the
probability that the posterior mean of HT

j1ψ j exceeds a threshold is greater than a
half. Decisions based on either of these rules will coincide when the posterior is nor-
mally distributed, but may not in general (i.e. when laws are exceptional). Alterna-
tively, both Arjas and Saarela (2010) and Zajonc (2012) considered a G-computation
like approach, and choose as optimal the rule that maximizes the posterior predictive
mean of the outcome.

8.12 Discussion

In this chapter, we have illustrated the problem of non-regularity that arises in the
context of inference about the optimal “current” (stage j) treatment rule, when the
optimal treatments at subsequent stages are non-unique for at least some non-null
proportion of subjects in the population. We have discussed and illustrated the phe-
nomenon using Q-learning as well as G-estimation.
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As discussed by Chakraborty et al. (2010), the underlying non-regularity affects
the analysis of optimal DTRs in at least two different ways: in some data-generating
models it induces bias in the point estimates of the parameters indexing the optimal
DTRs, and in other settings it causes lightness of tail of the asymptotic distribu-
tion but no bias. The coexistence of these two not-so-well-related issues makes this
inference problem unique and challenging.

Non-regularity is an issue in the estimation of the optimal DTRs because it arises
when there is no (or a very small) treatment effect at subsequent stages. This is
exactly the setting that we are likely to face in many SMARTs in a variety of appli-
cation areas, due to clinical equipoise (Freedman 1987). Thus we want estimators
and inference tools to perform well particularly in non-regular settings. In the case
of the hard-max estimator, unfortunately the point of non-differentiability coincides
with the parameter value such that ψT

2 H21 = 0 (non-unique optimal treatment at the
subsequent stage), which causes non-regularity. The threshold estimators (both soft
and hard), in some sense, redistribute the non-regularity from this “null point” to two
different points symmetrically placed on either side of the null point (see Fig. 8.2).
This is one reason why threshold estimators tend to work well in non-regular set-
tings.

However, threshold estimators are still non-smooth, and hence cannot perform
uniformly well throughout the parameter space (particularly in regular settings).
Furthermore, due to their non-smoothness, the usual bootstrap procedure is still a
theoretically invalid inference procedure. Song et al. (2011) extended the idea of
thresholding into penalized regression in the Q-learning steps which led to the PQ-
learning estimators. Asymptotic CIs for PQ-learning estimators are constructed via
analytical formulae, making the procedure computationally cheap. While thresh-
old methods focused primarily on bias correction, PQ-learning was perhaps a more
comprehensive attack on the root of the problem.

A different class of methods emerged from the works of Laber et al. (2011)
and Chakraborty et al. (2013). These methods do not disturb the original Q-learning
(hard-max) estimators, but employ more sophisticated versions of the ordinary boot-
strap to mimic the non-regular asymptotic distributions of the estimators. The adap-
tive method of Laber et al. (2011) is computationally and conceptually complex,
while the m-out-of-n bootstrap method is simpler and thus may be more attractive
to practitioners. Another computationally expensive method is the double bootstrap,
which performs well in conjunction with the original estimator. Yet another method
to construct CIs in non-regular settings is the score method due to Robins (2004);
except for the work of Moodie and Richardson (2010), this approach has not been
thoroughly investigated in simulations, likely due to its computational burden.

As discussed by Chakraborty et al. (2013), their adaptive m-out-of-n resampling
scheme is conceptually very similar to the subsampling method without replace-
ment. In particular, a subsample size of m̃ = m̂/2 would enjoy similar asymptotic
theory to the adaptive m-out-of-n bootstrap and hence provide consistent confidence
sets (see, for example, Politis et al. 1999). One possible advantage of the adaptive
m-out-of-n scheme over an adaptive subsampling scheme is that in a regular setting,
the m-out-of-n procedure reduces to the familiar n-out-of-n bootstrap which may be
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more familiar to applied quantitative researchers. Many of the inference tools dis-
cussed in this chapter can be extended to involve more stages and more treatment
options at each stage; see, for example, Laber et al. (2011) and Song et al. (2011).
Aside from notational complications, extending the adaptive m-out-of-n procedure
should also be straightforward.

Finally, we touched on the problems of inference for the value of an estimated
DTR, discussing the work of Laber and Murphy (2011), and Bayesian estimation.
These are very interesting yet very difficult problems, and little has yet appeared in
the literature. More targeted research is warranted.



Chapter 9
Additional Considerations and Final Thoughts

The statistical study of DTRs and associated methods of estimation is a young
and growing field. As such, there are many topics which are only beginning to be
explored. In this chapter, we point to some new developments and areas of research
in the field.

9.1 Variable Selection

In estimating optimal adaptive treatment strategies, the variables used to tailor treat-
ment to patient characteristics are typically hand-picked by experts who seek to use
a minimum set of variables routinely available in clinical practice. However, studies
often use a large set of easy-to-measure covariates (e.g., multiple surveys of men-
tal health status and functioning) from which a smaller subset of variables must be
selected for any practical implementation of treatment tailoring. It may therefore
be desirable to be able to select tailoring variables with which to index the class of
regimes using automated or data-adaptive procedures. It has been noted that predic-
tion methods such as boosting could aid in selecting variables to adapt treatments
(LeBlanc and Kooperberg 2010); many such methods can be applied with ease, par-
ticularly to the regression-based approaches to estimating optimal DTRs, however
their ability to select variables for strong interactions with treatment rather than
simply strong predictive power may require special care and further study.

Recall the distinction between predictive variables (used to increase precision of
estimates) and prescriptive variables (used to adapt treatment strategies to patients),
i.e. tailoring variables (Gunter et al. 2007). In the Q-learning notation, predictive
variables correspond to the Hj0 terms in the Q-function associated with parameters
β , while the prescriptive or tailoring variables are those contained in Hj1, asso-
ciated with parameters ψ . Tailoring variables must qualitatively interact with the
treatment, meaning that the choice of optimal treatment varies for different values
of such variables. The usefulness of a prescriptive variable can be characterized by

B. Chakraborty and E.E.M. Moodie, Statistical Methods for Dynamic Treatment Regimes,
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the magnitude of the interaction and the proportion of the population for whom the
optimal action changes given the knowledge of the variable (Gunter et al. 2007).

We will focus the discussion in this section on the randomized trial setting, so that
variable selection is strictly for the purposes of optimal treatment tailoring, rather
than elimination of bias due to confounding. Further, we will restrict attention to
the one-stage setting, as to date there have been no studies on the use of variable
selection for dynamic treatment regimes in the multi-stage setting.

9.1.1 Penalized Regression

Lu et al. (2013) proposed an adaptation of the lasso which penalizes only interaction
terms. Specifically, they consider the loss function

Ln(ψ ,β ,α) = Pn[Yi −φ(Oi;β )−ψT Oi(Ai −π(Oi))]
2 (9.1)

where the covariate vector Oi is augmented by a column of 1s and has total length
p+ 1, π(o) = P(A = 1|O = o;α) is the propensity score for a binary treatment A
and φ(O) is an arbitrary function. Lu et al. (2013) noted that the estimating function
found by taking the derivative of the loss function Ln(ψ ,β ,α) with respect to ψ
corresponds to an A-learning method of estimation, and is therefore robust to mis-
specification of the conditional mean model φ(O;β ) for the response Y in the sense
that the estimator requires correct specification of either the propensity score or the
mean model φ(O;β ). The decision (or treatment interaction) parameters ψ are then
shrunk using an adaptive lasso which penalizes parameters with a weight inversely
proportional to their estimated value, solving

min
ψ

Ln(ψ , β̂ , α̂)+λn

p+1

∑
j=1

|ψ̂ j|−1|ψ j|

where ψ̂ , β̂ are solutions to Eq. (9.1), α̂ is a consistent estimate of the propensity
score model parameters, and λn is a tuning parameter that may be selected using
cross-validation or some form of Bayesian Information Criterion (BIC). By penal-
izing the interaction parameters with the inverse of their estimated values, important
interactions (i.e. those estimated to have large coefficients) will receive little penalty,
while those with small estimates will be highly penalized.

Lu et al. (2013) showed that under standard regularity conditions, the estimators
of the parameters ψ resulting from the penalized regression will be asymptotically
normal and the set of selected treatment-covariate interactions will equal the set of
treatment-interaction which are truly non-zero. The properties of the penalized esti-
mator in multi-stage or non-regular settings were not examined. The estimator was
compared to the unpenalized estimator ψ̂ that results from solving Eq. (9.1) in low
and high dimensional problems (10 and 50 variables, respectively). Using a linear
working model for φ(Oi;β ), the penalized estimator selected the truly non-zero
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interaction terms with very high probability in samples of size 100 or larger. In high
dimensional settings, the penalized estimator increased the selection of the correct
treatment choice relative to the unpenalized estimator by 7–8 %; in low dimensional
settings, the improvement was more modest (2–3 %).

9.1.2 Variable Ranking by Qualitative Interactions

As proposed by Gunter et al. (2007, 2011b), the S-score for a (univariate) variable
O is defined as:

SO = Pn

{

max
a∈A

Pn [Y |A = a,O]−max
a∈A

Pn [Y |A = a]

}

.

The S-score of a variable O captures the expected increase in the response that is
observed by adapting treatment based on the value of that variable. S-scores com-
bine two characteristics of a useful tailoring variable: the interaction of the variable
with the treatment and the proportion of the population exhibiting variability in its
value. A high S-score for a variable is indicative of a strong qualitative interaction
between the variable and the treatment, as well as a high proportion of patients for
whom the optimal action would change if the value of the variable were taken into
consideration. Thus, S-scores may be used to rank variables and select those that
have the highest scores. The performance of the S-score ranking method was found
to be superior to the standard lasso (Tibshirani 1996) in terms of consistent selection
of a small number of variables from a large set of covariates of interest.

In the real-data implementation of the S-score ranking performed by Gunter et al.
(2007), each variable was evaluated separately, without taking into account poten-
tial correlation between variables. Two variables that are highly correlated may have
similar S-scores (Biernot and Moodie 2010) but may not both be necessary for deci-
sion making. The S-score may be modified in a straight-forward fashion to examine
the usefulness of sets of variables, O′ given the use of others, O, by considering, for
example,

SO′|O = Pn

{

max
a∈A

Pn
[

Y |A = a,O,O′]−max
a∈A

Pn [Y |A = a,O]

}

.

Thus, the S-score approach could be used to select the variable, O, with the highest
score, then select a second variable, O′, with the highest S-score given the use of O
as a prescriptive variable, and so on.

For i= 1, . . . ,n subjects and j = 1, . . . , p possible tailoring variables, Gunter et al.
(2007, 2011b) proposed an alternative score, also based on both the strength of
interaction as measured by
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D j = max
1≤i≤n

(Pn[Y |O j = oi j,A = 1]−Pn[Y |O j = oi j,A = 0])

− min
1≤i≤n

(Pn[Y |O j = oi j,A = 1]−Pn[Y |O j = oi j,A = 0])

and the proportion of the population for whom the optimal decision differs if a
variable is used for tailoring, captured by

Pj = PnI

[

argmax
a

Pn[Y |O j = oi j,A = a] �= a∗
]

where a∗ = argmaxaPn[Y |A = a] is the optimal decision in the absence of tailoring.
These values are combined to form another means of ranking the importance of
tailoring variables, called the U-score:

Uj =

(
D j −min1≤k≤p Dk

max1≤k≤p Dk −min1≤k≤p Dk

)(
Pj −min1≤k≤p Pk

max1≤k≤p Pk −min1≤k≤p Pk

)

.

Gunter et al. (2007, 2011b) suggested the use of the S- and U-scores in combi-
nation with lasso:

1. Select variables that are predictive of the outcome Y from among the variables in
(H10,AH11), using cross-validation or the BIC to select the penalty parameter.

2. Rank each variable O j using the S- or U-score, retaining the predictive variables
selected in step (1) to reduce the variability in the estimated mean response.
Choose the M most highly-ranked variables, where M is the cardinality of the
variables in H11 for which the S- or U-score is non-zero.

3. Create nested subsets of variables.

(a) Let H∗
11 be the top M variables found in step (2), and let H∗

10 denote the union
of the predictive variables chosen in step (1) and H∗

11. Let M∗ denote the car-
dinality of (H∗

10,H
∗
11).

(b) Run a weighted lasso where all main effect and interaction variables chosen
in step (1) only have weight 1, and all interaction variables chosen in step
(2) are given a weight 0 < w ≤ 1 which is a non-decreasing function of the
U- or S-score. This downweights the importance of the prescriptive variables,
which are favored by lasso.

(c) Create M∗ nested subsets based on the order of entry of the M∗ variables in
the weighted lasso.

4. Choose from among the subsets based on the highest expected response, or al-
ternatively, the highest adjusted gain in the outcome relative to not using any
tailoring variables.

The variable selection approaches based on the S- and U-scores were found to
perform well in simulation, leading to variable choices that provided higher ex-
pected outcomes than lasso alone (Gunter et al. 2007, 2011b).
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9.1.3 Stepwise Selection

Gunter et al. (2011a) suggested that the qualitative ranking of the previous section
is complex and difficult to interpret, and instead proposed the use of a stepwise
procedure, using the expected response conditional on treatment A and covariates
O, as the criterion on which to select or omit tailoring variables.

The suggested approach begins by fitting a regression model for the response Y as
a function of treatment only, and estimating the mean response to the overall (“un-
tailored”) optimal treatment; denote this by V̂ ∗

0 . Next, let C contain the treatment
variable as well as all variables which are known to be important predictors of the
response. Fit a regression model for the response Y as a function of treatment and all
variables in C and estimate the mean response to the overall (un-tailored) optimal
treatment when the predictors in C are included in the model; denote this by V̂ ∗

C .
A key quantity that will be used to decide variable inclusion or exclusion is the
adjusted value of the model. For C , the adjusted value is AVC = (V̂ ∗

C − V̂ ∗
0 )/|C |

where |C | is the rank of the model matrix used in the estimation of the response
conditional on the variables in C .

Letting E denote all eligible variables, both predictive variables and treatment-
covariate interaction terms, not included in C . The procedure is then carried out by
performing forward selection and backwards elimination at each step.

Forward selection: For each variable e ∈ E ,

1. Estimate the predictive model using all the variables in C plus the variable e.
2. Optimize the estimated predictive model over the treatment actions to obtain

the optimal mean response, V̂ ∗
E , and calculate the adjusted value, AVe = (V̂ ∗

e −
V̂ ∗

0 )/|C + e|.
3. Retain the covariate e∗ which results in the largest value of AVe.

Backward elimination: For each variable c ∈ C ,

1. Estimate the predictive model using all the variables in C except the variable c.
2. Optimize the estimated predictive model over the treatment actions to obtain the

optimal mean response, V̂ ∗−c, and calculate the adjusted value, AV−c = (V̂ ∗−c −
V̂ ∗

0 )/|C − c|.
3. Let c∗ be the covariate which results in the largest value of AV−c.

If each of AVC, AVe∗ , and AV−c∗ are negative, the stepwise procedure is com-
plete and no further variable selection is required. If AVe∗ > max{AVC,AV−c∗}, e∗ is
included in C and AVC is set to AVe∗ ; otherwise, if AV−c∗ > max{AVC,AVe∗}, remove
c from C and AVC is set to AV−c∗ . Gunter et al. (2011a) suggested that all covariate
main effects should be retained in a model in which a treatment-covariate interac-
tion is present, and to group covariates relating to a single characteristic (e.g. dummy
variables indicating covariate level for categorical variables).

In simulation, the stepwise method was found to have higher specificity but lower
sensitivity than the qualitative interaction ranking approach of the previous section
(Gunter et al. 2011a). That is, the stepwise procedure was less likely to falsely in-
clude variables which did not qualitatively interact with treatment, at the cost of
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being less able to identify variables which did. However, the stepwise procedure is
rather easier to implement and can be applied to different outcome types such as
binary or count data.

Gunter et al. (2011c) used a similar, but more complex, method to perform
variable selection while controlling the number of falsely significant findings by us-
ing bootstrap sampling and permutation thresholding in combination. The bootstrap
procedure is used as a form of voting algorithm to ensure selection of variables that
modify treatment in a single direction, while the permutation algorithm is used to
maintain a family-wise error rate across the tests of significance for the coefficients
associated with the tailoring variables.

9.2 Model Checking via Residual Diagnostics

There has been relatively little work on the topic of model checking for estimating
optimal DTRs. The regret-regression approach of Henderson et al. (2010) is one of
the first in which the issues of model checking and diagnostics were specifically
addressed. Because regret-regression uses ordinary least squares for estimation of
the model parameters, standard tools for regression model checking and diagnostics
can be employed. In particular, Henderson et al. (2010) showed that residual plots
can be used to diagnose model mis-specification. In fact, these standard approaches
can and should be used whenever a regression-based approach to estimating DTR
parameters, such as Q-learning or A-learning as implemented by Almirall et al.
(2010), is taken.

Consider the following small example using Q-learning: data are generated such
that O11 ∼ N(0,1) and O21 ∼N(−0.50+0.5O11,1), treatment is randomly assigned
at each stage with probability 1/2, and the binary tailoring variables are generated
via

P[O12 = 1] = P[O12 =−1] = 1/2,

P[O22 = 1|O12,A1] = 1−P[O22 =−1|O12,A1] = expit(0.1O12 + 0.1A1).

Thus the state variables are O1 = (O11,O12) and O2 = (O21,O22). Then for
ε ∼ N(0,1),

Y = 0.5O11 − 0.5A1+ 0.5O12A1 + 0.5O21+A2 + 1.4O22A2 +A1A2 + ε.

We fit three models. The first is correctly specified, the second omits the single pre-
dictive variable, O j1, from the model for the Q-function at each stage, and the third
omits the interaction A jO j2 from the Q-function model. As observed in Fig. 9.1,
residuals from the OLS fit at each stage of the Q-learning algorithm can be used
to detect the omission of important predictors of the response, but may not be suf-
ficiently sensitive to detect the omission of important tailoring variables from the
Q-function model.
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Fig. 9.1 Residual diagnostic plots for Q-learning using a simulated data set with n = 500. The
first and second columns show plots for residuals at the first and second stages, respectively. The
first row corresponds to a correctly specified Q-function model. In the second and third rows,
Q-function models at each stage are mis-specified by the omission, respectively, of a predictive
variable and an interaction with a tailoring variable

It is also possible to generalize the ideas of model-checking in regression to
G-estimation, producing a type of residual that can be used to construct residual
diagnostic plots. Recall that doubly-robust G-estimation can be based on the esti-
mating function:

U =
K−1

∑
j=0

Uj =
K−1

∑
j=0

{

Gmod, j(ψ)−E[Gmod, j(ψ)|Hj ]
}{

S j(A j)−E[S j(A j)|Hj]
}

where

Gmod, j(ψ)≡ Gmod, j(ψ)(HK ,AK ,ψ j) =Y − γ j(Hj,A j;ψ j)+
K−1

∑
m= j+1

μm(Hm,Am;ψm),
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for S j(A j) an analyst-specified function of Hj and A j. In general, due to high dimen-
sionality of the covariate space, estimation is made more tractable when parametric
models are specified for:

1. The blip function γ j(h j,a j;ψ j);
2. The expected potential outcome E[Gmod, j(ψ)|Hj;ς j ];
3. The treatment model E[A j|Hj;α j ], required for E[S j(A j)|Hj;α j].

The first of these provides estimates of the decision rule parameters while the other
two are considered nuisance models. Although some model mis-specification is per-
mitted in the doubly-robust framework, there are efficiency gains when both models
(2) and (3) are correct (Moodie et al. 2007).

Rich et al. (2010) note that, letting Gi j be Gmod, j(ψ) for subject i at stage j,

Gi j −E[Gi j|Hj;ς j(ψ j)]

=
{

Yi − γ j(Hj,A j;ψ j))+
K−1

∑
m= j+1

μm(Hm,Am;ψm)
}

−E[Gi j|Hj;ς j(ψ j)]

= Yi −
{

E[Gi j|Hj;ς j(ψ j)]−
K−1

∑
m= j+1

μm(Hm,Am;ψm)+ γ j(Hj,A j;ψ j))
}

has mean zero conditional on history Hj, so that a fitted value for Yi is given by

Ŷi j(ψ) =
{

E[Gi j|Hj;ς j(ψ j)]−
K−1

∑
m= j+1

μm(Hm,Am;ψm)+ γ j(Hj,A j;ψ j))
}

.

The residual for the ith individual at the jth stage is then defined to be

ri j(ψ) = Yi −
{

E[Gi j|Hj;ς j(ψ j)]−
K−1

∑
m= j+1

μm(Hm,Am;ψm)+ γ j(Hj,A j;ψ j))
}

.

To use the residual for model-checking purposes, estimates ψ̂ and ς̂ j(ψ̂ j) must be
substituted for the unknown parameters. The residuals ri j can be used to verify the
models E[Gi j|Hj;ς j(ψ j)] and γ(h j,a j;ψ j), diagnosing underspecification (that is,
the omission of a variable) and checking the assumptions regarding the functional
form in which covariates were included in the models.

Rich et al. (2010) considered a two-stage simulation, and examined plots of the
first- and second-stage residuals against covariates and fitted values. The resid-
ual plots were able to detect incorrectly-specified models in a variety of settings,
and appeared able to distinguish at which stage the model was mis-specified.
While patterns in residual plots provide a useful indicator of problems with model
specification, they do not necessarily indicate in which model a problem occurs,
i.e. whether the problem is in the specification of the blip function or the expected
counterfactual model.
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Consider the following example, where data are generated as follows:

O1 ∼ N(0,140)

O2 ∼ N(50+ 1.25O1,120)

A j = 1 with probability p j and A j =−1 with probability 1− p j for j = 1,2

Y ∼ N(300+ 1.6O1+ 1.2O2,300)− μ1(H1,A1;ψ1)− μ2(H2,A2;ψ2)

where p1 = expit(0.1− 0.003O1), p2 = expit(0.5− 0.004O2), and the regret func-
tions μ1(O j,A1;ψ1), μ2(H2,A2;ψ2) are based on the linear blip functions

γ1(O1,A1;ψ1) = (170− 3.4O1)I[A1 = 1]

γ2(H2,A2;ψ2) = (420− 2.8O2)I[A1 = 1].

In Fig. 9.2, we plot the residuals for four different models, three of which have
mis-specified components, from a single data set of size 500. The first and sec-
ond models mis-specified the form of E[Gi j|Hj;ς j(ψ j)], the expected counterfac-
tual model, at stage one and two, respectively. The third model correctly specified
the expected counterfactual models, but omitted O1 and O2 from the blip models at
both stages. The fourth model was correctly specified. In the first, second, and fourth
rows, the stage(s) where no models are mis-specified provide residual plots with no
systematic patterns. However, if the expected counterfactual model (row 1 and 2)
or the blip models (row 3) are mis-specified at one or both stages, obvious trends
appear in the residual plots. As noted by Rich et al. (2010), mis-specification of
the expected counterfactual model and the blip function result in similar patterns in
the residual plots; it is therefore not possible to determine which model is incorrect
simply by inspection of residual plots.

9.3 Discussion and Concluding Remarks

In this book, we have attempted to provide an introduction to the key findings
in the statistical literature of dynamic treatment regimes. In Chaps. 1 and 2, we
introduced the motivation for seeking evidence-based decision rules for treating
chronic conditions, and outlined the key features of the structures of longitudinal
data which are used to make inference about optimal treatment policies: obser-
vational follow-up studies and sequential multiple-assignment randomized trials.
In the third chapter, we delved more deeply into the mathematics of the decision
making problem and the reinforcement learning perspective. We also introduced Q-
learning in Chap. 3, which is increasingly finding favor in the scientific community
for the ease with which it can be implemented. Chapter 4 presented several semi-
parametric methods arising from the causal inference literature: G-estimation and
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ŷ2

ŷ2
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Fig. 9.2 Residual diagnostic plots for G-estimation using simulated data set with n = 500. The first
two columns show plots for residuals and the first stage ( j = 1), the last two for residuals at the
second stage ( j = 2). Specifically, the columns plot: (1) first stage residuals vs. O1, (2) residuals
vs. fitted values at the first stage, (3) second stage residuals vs. O2, and (4) residuals vs. fitted
values at the second stage. Rows correspond model choices: (1) E[Gmod,1(ψ)|O1;ς1(ψ1)] mis-
specified, (2) E[Gmod,2(ψ)|H2;ς2(ψ2)] mis-specified, (3) γ1(O1,A1;ψ1) and γ2(H2,A2;ψ2) mis-
specified, and (4) all models correctly specified. The solid grey curve indicates a loess smooth
through the points

the regret-based methods including A-learning and regret-regression; where con-
nections exist between methods, they were demonstrated. In Chap. 5, we turned
our attention to methods that model regimes directly, including inverse probability
weighting, marginal structural models, and classification-based approaches.

Our survey of estimation methods continued in Chap. 6, where the likelihood-
based method of G-computation was demonstrated in both the frequentist and
Bayesian contexts. In Chap. 7, we turned our attention to estimating DTRs for
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alternative outcome types, including outcomes that are compound measures or
multi-component in nature, as well as time-to-event and discrete valued. A range
of methods have been applied in these settings, from Q-learning to marginal struc-
tural models to a likelihood-based approach.

Chapter 8 focused on improving estimation and inference, which presents a
particular challenge in the dynamic treatment regime setting due to non-regularity
of the estimators under certain underlying longitudinal data distributions, including
those in which treatment has no effect. Three methods of bias reduction are con-
sidered: hard- and soft-thresholding, and penalized Q-learning. We then presented
three bootstrap-based approaches to constructing confidence intervals which yield
greatly improved coverage over any naively constructed interval at and near points
in the parameter space that cause non-regularity of the estimators.

Finally, in this chapter, we have brought together a collection of topics that are at
the forefront of research activity in dynamic regimes. The first two sections consid-
ered practical problems in implementing optimal DTR estimation: variable selection
and model checking. In Sect. 9.1, we presented proposed approaches to the selection
of tailoring variables, which differs from the usual problem of variable selection in
that the analyst is seeking to find variables which qualitatively interact with treat-
ment rather than those which are good predictors of the outcome. In the following
section, we demonstrated the use of residual plots to assess model specification in
Q-learning and G-estimation. As a summary of current or ongoing work, it is likely
that this chapter is incomplete since the study of dynamic treatment regimes is, as
a field, so active and is attracting new researchers from a diversity of backgrounds.
The refinement and application of estimation techniques and the need to provide
reliable measures of goodness-of-fit will continue to provide inspiration for many
researchers in the coming years.

With the anticipated popularity of SMARTs in clinical and behavioral research,
we foresee an inevitable complexity in the near future. Note that many interventions,
either due to their very nature or due to logistical feasibility, need to be admin-
istered in group settings, requiring the design and analysis of cluster-randomized
SMARTs. Some such complex trials are currently being considered. At the design
level, cluster randomization would imply increased sample size requirements due
to intra-class correlation, as expected. At the analysis level, on the other hand, it
would open up several questions, e.g. how to incorporate random effects models or
generalized estimating equations (GEE) methods into the framework of estimation
techniques like Q-learning or G-estimation, whether the correlation would enhance
the phenomenon of non-regularity in inference, and so on. These are areas of active
current research.

While much of the personalized medicine literature is occupied by the use of
patients’ genetic information in personalizing treatments, the use of genetic infor-
mation in the dynamic regime context, as of now, is surprisingly limited. Thus we
envision this as a critically important research direction in the near future. This being
one of the most natural next steps, methodologists will have to carefully investigate
how best to handle the associated high dimensionality.



180 9 Additional Considerations and Final Thoughts

In today’s health care, there seems to be an increasing trend in the use of sophis-
ticated mobile devices (e.g. smart phones, actigraph units containing accelerom-
eters, etc.) to remotely monitor patients’ chronic health conditions and to act on
the fly, when needed. According to the reinforcement learning literature, this is an
instance of online decision making in a possibly infinite horizon setting involving
many stages of intervention. Development of statistically sound estimation and in-
ference techniques for such a setting seems to be another very important future
research direction.

The call to personalize medicine is growing more urgent, and reaching beyond
the walls of academia. Even in popular literature (see, e.g. Topol 2012), it has been
declared that

This is a new era of medicine, in which each person can be near fully defined at the individ-
ual level, instead of how we practice medicine at the population level, with [. . . ] use of the
same medication and dosage for a diagnosis rather than for a patient.

While it is true that high dimensional data, even genome scans, are increas-
ingly available to the average “consumer” of medicine, there remains the need
to adequately and appropriately evaluate any new, tailored approach to treatment.
It is that evaluation, by statistical means, that has proven theoretically, computa-
tionally, and practically challenging and has driven many of the methodological
innovations described in this text.

The study of estimation and inference for dynamic treatment regimes is still
relatively young, and constantly evolving. Many inferential problems, including
inference about the optimal value function, remain incompletely addressed. A fur-
ther key challenge is the dissemination of the statistical results into the medical and
public health spheres, so that the methods being developed are not used in ‘toy’
examples, but are deployed in routine use for the evidence-based improvement of
treatment of chronic illnesses. While observational data can help drive hypotheses
and suggest good regimes to explore, increasing the use of SMARTs in clinical re-
search will be required to better understand and evaluate the sequential treatment
decisions that are routinely taken in the care of chronic illnesses.



Glossary

Action From the reinforcement learning literature: a treatment or exposure.

Action-value function See Q-function.

Acute care model A treatment paradigm which focuses on intensive short-term
care for an episode of illness or trauma, often in a hospital setting.

Adaptive treatment strategy See Dynamic treatment regime.

Berkson’s bias See Collider-stratification bias.

Blip function A function describing the expected difference in outcome when re-
ceiving a treatment regime d∗

j instead of the observed treatment a j at stage j and
subsequently receiving the regime d instead of the observed treatments, given co-
variate history h j:

γ j(h j,a j) = E[Y (a j,d j+1)−Y(a j−1,d
∗
j ,d j+1)|Hj = h j].

A common choice for d∗
j is no treatment (or placebo, standard of care); this is

often called the reference function. The regime d is typically chosen to be the
optimal treatment regime. The blip function can be formulated as a difference of
Q-functions, γ j(h j,a j) = Qd

j (h j,a j)−Qd
j (h j,d∗

j ).

Chronic care model A treatment (or prevention) paradigm for chronic illness
based on the principle that effective care requires teams of providers with resources
at the community and health services levels who interact with an engaged and in-
formed patient. The six key elements of a chronic care model are health care orga-
nization, community resources, self-management support, delivery system design,
decision support, and a clinical information system.
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Collider-stratification bias Bias that arises due to the selection of the sample or
conditioning of an analysis model on a covariate that is a common effect of the
treatment of interest (or a variable which causes treatment) and the outcome (or one
of its causes).

Confounding The bias that occurs when the treatment and the outcome have a
common cause that is not appropriately accounted for in an analysis.

Counterfactual outcome The outcome that would have been observed if individ-
ual i had received treatment a where a is not the treatment actually received. Often
used interchangeably with the term potential outcome.

Dynamic treatment regime A set of rules for determining effective treatments for
individuals based on personal characteristics such as treatment and covariate history.

G-computation An estimation procedure that models the dependence of covariates
on the history, then simulates from these models the outcome that would have been
observed had exposures been fixed by intervention.

G-estimation An estimation procedure typically coupled with structural nested
models that aims to simulate nested randomized-controlled trials at each stage of
treatment within strata of treatment and covariate history.

Marginal structural model A model for the mean counterfactual outcome which
conditions on treatment (and sometimes also baseline covariates) only, but does not
include any post-baseline covariates.

Non-regular estimator An estimator whose asymptotic distribution does not con-
verge uniformly over the parameter space. In the context of the estimation of optimal
dynamic treatment regimes, this typically occurs due to non-differentiability of the
estimating function with respect to a parameter that indexes a decision rule.

Policy From the reinforcement learning literature: a dynamic treatment regime.

Policy search methods In the reinforcement learning literature, a class of methods
which finds the optimal regime directly by estimating the value or marginal mean
outcome under each candidate regime within a pre-specified class and then selects
as optimal the regimes that maximize the estimated value.

Potential outcome The outcome that would be observed if individual i were to
receive treatment a, where here treatment may indicate a single- or multi-component
intervention that is either static or dynamic.

Propensity score For a binary-valued treatment, it is the conditional probability of
receiving treatment given covariates.

Q-function The total expected future reward, starting from stage j with covariate
history h j, taking an action a j, and following the treatment policy d thereafter. Thus,

Qd
j (h j,a j) = E[Yj(Hj,A j,O j+1)+V d

j+1(Hj+1)|Hj = h j,A j = a j].
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Note that if a j follows policy d, then the Q-function equals the value function.

Regret A blip function where both the reference regime d∗
j and d are taken to

the optimal treatment regime. It is the expected difference in the outcome among
participants with history h j that would be observed had the participants taken the
optimal treatment from stage j onwards instead of taking the observed treatment
regime a j and subsequently followed the optimal regime:

μ j(h j,a j) = E[Y (ā j−1,d
opt
j )−Y(ā j,d

opt
j+1)|Hj = h j].

The regret can be expressed as a difference of optimal Q-functions, μ j(h j,a j) =

Qopt
j (h j,a j)−Qopt

j (h j,d j) or as a function of optimal blip functions: μ j(h j,a j) =

maxa j γ j(h j,a j)− γ j(h j,a j). Alternatively, the difference of regrets can be taken to
find the corresponding blip function, γ j(h j,a j) = μ j(h j,d∗

j )−μ j(h j,a j). The nega-
tive of the regret is called the advantage function.

Reward From the reinforcement learning literature: an outcome which may be ob-
served at the end of the study following the final stage of treatment, or at intermedi-
ate stages after each stage-specific treatment.

Selection bias See Collider-stratification bias.

Sequential multiple assignment randomized trial A randomized experimen-
tal design developed specifically for building time-varying adaptive interventions,
whereby participants may require more than one stage of treatment, and are ran-
domized to one of a set of possible treatments at each stage.

State From the reinforcement learning literature: the values of the covariates of an
individual at a particular time, e.g. at the beginning of a stage.

Static treatment regime A treatment regimen which does not change in response
to patient characteristics.

Structural nested mean model A model, or sequence of models (one per stage),
that parameterizes only the effect treatment (and any interactions between the treat-
ment and covariates) on the outcome. Any covariates that are purely predictive, and
do not act as treatment effect modifiers, are not included in the model.

Tailoring variable A personal characteristic, either fixed or time-varying, used to
adapt treatment to an individual. Also called a prescriptive variable.

Utility See Reward.
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Value function The total expected future reward, starting with a particular covari-
ate history, and following the given treatment regime actions thereafter. The stage- j
value function for history h j with respect to a regime d is

V d
j (h j) = Ed

[ K

∑
k= j

Yk(Hk,Ak,Ok+1)
∣
∣
∣Hj = h j

]

= Ed

[

Yj(Hj,A j,O j+1)+Vd
j+1(Hj+1)

∣
∣
∣Hj = h j

]

, 1 ≤ j ≤ K.

The value function, or simply value, represents the expected future reward starting at
stage j with history h j and thereafter choosing treatments according to the policy d.
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Examples, 109
G-computation, 109
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Causal graph, see Directed Acyclic Graph
Causal inference, 9, 83
Chronic care model, 2
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Counterfactuals, see Potential outcomes

Decision support system, 4, 33
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Diagnostic effect, 21
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Dynamic programming, 31, 39, 101
Dynamic treatment regime
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Inverse probability weighting, 38, 47, 80–84,
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Iterative minimization of regrets, 67–70, 72
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Lasso, 141, 146, 170–172
Loss, see Regret

Marginal structural models, 38, 77, 83–94,
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Data augmentation, 84, 87, 91
Examples, 90
History-adjusted, 84

Markov decision process, 32
Mediating variable, see Intermediate variable
Model checking, see Residual diagnostics

No unmeasured confounding, 13, 14, 18, 22,
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Non-regularity, 61, 70, 136–163
Null paradox, see Collider-stratification bias

Outcome weighted learning, 96

Penalization, 145, 170
Personalized medicine, 1, 179
Policy, 32, 35
Policy search methods, 38, 79, 98
Positivity, 15, 84
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PQ-learning, see Q-learning
Predictive variable, 40, 130, 174
Prescriptive effect, see Diagnostic effect
Prescriptive variable, see Tailoring variable
Projection confidence interval, 135
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optimal, 40
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Correspondence to G-estimation, 65
Discrete data, 120–122
Examples, 43
Hard-threshold, 140
Non-regularity, 138
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Pseudo-outcome, 40, 115, 119, 122
Recursive estimation, 41

Residual diagnostics, 174
Soft-threshold, 141–143, 157
Time-to-event data, 114–120
Variance, 131
With linear models, 39

Realistic regime, see Feasibility
Regret, 3, 4, 55, 58, 66–76
Regret-regression, 71–73, 174
Reinforcement learning, 31–35, 98
Residual diagnostics, 174–177
Reward, 32, 35

S-score, 171, 172
Selection bias, see Collider-stratification bias
Sequential ignorability, see Sequential

randomization
Sequential multiple assignment randomized

trial, 18–30
Comparison with a crossover trial, 27
Comparison with adaptive trial design, 26
Sample size, 22
Treatment randomizations, 24

Sequential randomization, see No unmeasured
confounding

Shared parameters, 17, 58, 63, 66
State, 3, 32
Static treatment regime, 2, 83
Stationary parameters, see Shared parameters
Stochastic treatment regime, 32, 35, 36, 109,
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Structural nested mean models, 53, 57
Support vector regression, 115

Tailoring variable, 40, 47, 169, 171, 173
Thresholding, 139–145

Hard, 140, 150, 157
Soft, 141, 157
Tuning parameters, 141

U-score, 172
Unit treatment additivity, see Additive local

rank preservation
Utility, 2, 3, 76, 108, 113

Value, 32, 36, 38, 80, 100, 164
Variable selection, 127, 146, 169–174

Penalization, 170
Ranking, 171–172
Stepwise procedure, 173

Viable regime, see Feasibility

Welfare contrast, 4
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